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Abstract

Audio morphing is a timbre-transformation technique that produces timbres which lie in
between those of two or more given tones. It can thus be seen as the interpolation of timbre
descriptors or features. Morphing is most convincing when the features are perceptually
relevant and the interpolation is perceived to be smooth and linear. Our research aims at
producing practical guidelines for morphing musical sound objects. We define a set of fea-
tures aimed at representing timbre in a quantifiable fashion, as completely and with as little
redundancies as possible. We then report the interpolation of each single feature imposed
on an otherwise neutral synthetic sound, exploring strategies to obtain smooth-sounding
interpolations. Chosen strategies are then evaluated by morphing recorded acoustic instru-
mental sounds. All of the scripts and the resulting sounds are available through the www

to the reader.

Sommaire

Le morphing audio est une transformation sonore produisant des timbres intermédiaires
entre ceux de sons donnés. On peut considérer qu’il s’agit d’'une interpolation des descrip-
teurs du timbre. Le morphing est plus convaincant lorsque les descripteurs choisis sont
pertinents perceptivement et quand l'interpolation est percue comme étant linéaire. Le
but de nos recherches est de constituer un guide pratique pour le morphing des objets mu-
sicaux. Nous définissons une collection de descripteurs qui décrivent le timbre d’une fagon
complete et non redondante. Nous nous livrons ensuite a une étude systématique ayant
pour objectif de déterminer les meilleures stratégies d’interpolation, pour chaque descrip-
teur sur des sons synthétiques simples. Les stratégies adaptées au traitement des signaux
synthétiques sont ensuite évaluées pour la modification de sons d’instruments acoustiques.

Toutes les routines et les fichiers audio sont disponibles sur un site internet.
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Chapter 1
Introduction

Transformations are central to music: inflections, modulations, rhythmic transformations,
motivic variations, all serve to shape musical discourse and elicit a reaction in the listener.

Although timbral transformations are already a part of traditional composition through
the use of techniques such as Klangfarbenmelodie, digital signal processing reveals an enor-
mous potential for the exploration of this avenue by allowing the creation of hybrid sounds
through sound morphing.Developments in audio morphing are readily applicable to electro-
acoustic music, where we find examples such as Jean-Baptiste Barriere’s Chreode I or Trevor
Wishart’s Voz-5.

The following thesis evaluates strategies for achieving feature-based morphing of musical
sound objects via a stochastic-plus-deterministic additive model. This evaluation aims to
contribute to the establishment of a series of practical guidelines for musicians who wish

to delve into this fascinating terrain.

1.1 Feature-based morphing of musical sound-objects explained

As analog studio techniques gained in sophistication, artists began exploring the possibility
of transforming timbre in ways that would have been very difficult or even impossible to
achieve with purely acoustical means. An example of smooth timbral transitioning during
this analog era was Red Bird[1] by Trevor Wishart; a musical piece rife with morphing that
was achieved exclusively through analog treatments.

The advent of digital recording and sound processing techniques created the possibility

of achieving timbral transformations with a much greater degree of control. The idea of

2010/09/17



1 Introduction 2

smoothly transitioning from one timbre to another then became more accessible. Research
and commercial applications that drew on this technology began to make their appearances
as early on as the late 1970’s.

The term audio morphing refers precisely to the migration from one timbre toward
another. Thus, morphing requires at least two input sounds to generate a new one; a
hybrid is created which merges timbral characteristics from the original inputs. Given the
temporal nature of sound, audio morphing can be used to generate either a single sound
which migrates from one timbre to another or a discrete series of sounds between two known
sounds|[2].

Although it’s simple to perform a cross-fading between two sounds, the most likely out-
come is that intermediate sounds would not be perceived as a hybrid, but as two sources
mixed together. If we seek to produce timbres that lie in between two known timbres, it
seems natural to think that we need to find a set of timbre descriptors that allow hybridiza-
tion by means of their interpolation. Descriptors or features can be temporal cues such
as attack or release; or atemporal characteristics that describe the sound and its timbre.
Some examples of the latter are spectral shape, fundamental frequency or fj, even to odd
partial amplitude ratio, inharmonicity and spectral flux.

Many documented audio morphing procedures [3] 4, 2 B 6, [7, 8] use some form of the
additive stochastic plus deterministic model, which enables the establishment of a corre-
spondence between partials and the direct interpolation of their frequencies and amplitudes.
Such a direct interpolation is effective, as it is based on an acoustically-motivated abstrac-
tion of data. However, direct interpolation may still yield morphs which are perceived as
mixed units and not true hybrids. In response to this shortcoming, we find some works in
the literature which take steps toward descriptor-based morphing[dl, [7], the current work
seeks to build upon these efforts.

As with most studies of audio morphing, we will use a stochastic-plus-deterministic
additive model. We have chosen this model both for the flexibility that it affords the
user and the potential it offers for extracting timbral descriptors by analyzing the additive
representation of a signal. The model divides a signal into two components: a deterministic
one which is best modelled by a relatively small set of partials and a stochastic one, which
is best viewed as filtered noise. Figure [Tl represents this component separation performed
on the sound of a clarinet.

The scope of the present work solely encompasses morphing in the context of musi-
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Fig. 1.1 Deterministic and stochastic component separation for a clarinet
note. On the top we can see the STFT of the deterministic component, with
a well defined series of partials. On the bottom, we see the remaining part of
the signal, which can be best modeled as coloured noise.

cal sound objects or single-event musical sounds, i.e. sounds which are relatively stable
throughout their lifespan, such as those commonly found in music. In other words, the
set of sounds for which we wish to evaluate strategies is that of sounds which constitute
a single event flanked by transients or silence. The clarinet note from figure [Tl is a good

characterization of this type of sound.

1.2 Aims of the current study

Research on audio morphing has gradually spawned a body of literature. Additionally, a
large set of articles have been written on image morphing, speech morphing and speech
transformation. The principles and techniques outlined in these articles can be easily
transferred to the context of audio morphing. One of the goals of the present work is to
compile pertinent ideas from prior publications.

Since we intend on exploring feature-based audio morphing, another one of our goals
is to choose a set of descriptors that fulfill certain conditions which we hereby detail.
They should be compatible with the chosen representational model, ie stochastic-plus-
deterministic additive model. The set of descriptors should also be tailored to fit timbral

characteristics which are frequent within musical sound objects as they have been defined.



1 Introduction 4

Furthermore, in order to effect convincing morphs, the chosen features should be meaning-
ful, i.e. correlated to perceptually relevant characteristics of timbre. Lastly, the choice of
the set of descriptors should ideally be such that, it allows the interpolation of each feature
separately without modifying other features.

Another one of the goals of our research stems from the last condition: we will set out
to explore isolated feature interpolation on a series of synthetic sounds, building up toward
the morphing of real-world sounds. Along the way, we will produce audio files to exemplify
our findings and the final morphs of real-world sounds will serve as a proof-of-concept for

results found during the process of single-feature interpolations.

1.3 Premises of the current work

There are three main ideas fueling this research. First, we argue that in order to achieve
a convincing morph, it is essential to define a set of meaningful features—i.e. correlated to
perceptually meaningful characteristics. Second, we argue that the interpolation of isolated
features will more readily reveal potential problems and their corresponding solutions than
the concurrent interpolation of all features. Third, we are convinced that morphing im-
plementation examples hold significant pedagogical value for composers and sound artists

who wish to implement their own morphing routines.

1.4 Structuring of the current work

The work is organized into six chapters and one appendix. After the brief introduction
presented in the current chapter, the reader shall find a literary review on chapter number
2l The review contains an overview of publications related to morphing in the context of
music, speech processing and image processing; we present some compositions with note-
worthy examples of morphing and mention several related software implementation efforts.
Chapter [Bl, formally establishes the framework in which the current research is circum-
scribed. It presents some important terminology and the set of features to be used during
interpolation. Chapter [ reports on the realization of each single-feature interpolation and
the final real-world sound interpolations; detailing the different strategies used to counter
problems that became evident during implementation. Subsequently, chapter [lis based on

the application of the defined feature-set and interpolation strategies, serving somewhat as
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an implementation guide. Audio files to accompany the realizations of chapters[d and [l can
be found on the project’s home page[d]. Conclusions drawn from the results are presented
in chapter [0l Lastly, the appendix presents a note in regards to the implementation scripts,

which can also be found on the project’s home page[9].



Chapter 2

State of the Art

Besides being of interest for the audio processing community, for a long time now, morphing
has received significant attention in the image processing community and to a certain degree
within the speech processing and audio community. In this chapter we present a broad
overview of some works on the subject. The overview is broken up by field of study: audio
morphing with musical applications is presented first, findings from speech morphing are
presented later and relevant image morphing ideas, which enrich or enforce the topic, are

presented at the end of the chapter.

2.1 Survey of morphing in the musical context

Advances in timbral interpolation are found in varied source materials, some are found in
the form of articles reporting on realizations, others make their appearance in the form
of music which is accompanied by a written presentation of the underlying principles and
some are found mainly as software packages which can be accompanied by relevant docu-
mentation. The presentation in the section is broadly separated by these three somewhat
arbitrary categories. Papers are not reviewed extensively but an attempt has been made

to retain key ideas from each of them.

2010/09/17
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2.1.1 Literary review
Perceptual effects of spectral modifications on musical timbres

After Grey[I0] published a study of timbre spaces through Multi-Dimensional Scaling in
1977, Grey and Gordon[II] carried out what are generally referred to as the first sound
morphings present in the literature. Grey and Gordon re-synthesized 16 sounds of different
instruments with an equalized loudness and pitch. The representation from which the
sounds were re-synthesized was based on a simplified additive model. The experiment was
performed in order to confirm their hypothesis in regards to the role of the spectral envelope
in the perception of timbre. For this purpose, from each one of the four pairs of sounds,
they exchanged the peak amplitudes of their corresponding harmonics. In doing so, they
effectively exchanged the sounds’ spectral envelopes while retaining all other characteristics

for each sound.

Dynamic timbre control for real-time digital synthesis

Schindler[12] presents a data reduction strategy which was based on a hierarchical-tree
representation of envelopes which could be used for either amplitude or spectral envelopes.
He also described a two dimensional state transition scheme. The aim of the data reduc-
tion technique and of the state change scheme was to facilitate real-time control for the
additive synthesis of instruments with a dynamic timbre controll. By seeking to produce
intermediate timbres from discrete points sampled from a single instrument’s timbre space,

Schindler was also performing morphing.

Adventures in musique concrete at CARL

In a paper published in the proceedings of the 1985 ICMC, Mark Dolson[13] reports the
usage of a technique known as cross-synthesis. Similarly to a vocoder the technique imprints
one sound’s spectrum on another sound, the later preferably being a spectrally rich one,
in order to heighten the effect. Let’s refer to sound 1 as the source for the spectrum to
be imprinted on sound 2. Cross synthesis is achieved by performing an ST FT analysis

on sound 1 to extract it’s envelope by smoothing the STFT along the frequency axis.

'In Schindler’s article, namely the ratio between the partial’s frequencies and amplitudes.
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Subsequently, ST F'T" analysis-synthesis is performed on sound 2 with an intermediate

multiplication of its spectra by the envelopes extracted from sound 1.

Sound hybridization techniques based on a deterministic plus stochastic de-

composition model

Serra[3] proposes effecting hybridization through a stochastic plus deterministic additive
model and contrasts it to cross synthesis or, as he calls it, hybridization through the ST F'T.
In Serra’s presentation of morphing through an additive model, there is an implicit hierarchy
of the two original sounds, where sound 1 retains its temporal and pitch characteristics
and sound 2 is warped to match it. Serra presents a scheme that grants independent
interpolation of fj, partials’ ratio to fy, overall deterministic amplitude, partial’s amplitude
ratios, stochastic part amplitude, stochastic interpolation factor and time warping factor
for sound 2. Morphing through SMS (Serra’s implementation of an additive model) and
cross synthesis are presented as musically complementary tools given the vast differences
between the effects that they achieve. In this regard, cross-synthesis is adequate when the
spectrum of one of the sounds to be hybridized has well defined formants, such as is the
case of speech, and the second has a rich and relatively flat spectrum, such as the roaring
of the sea. Sound hybridization by additive model, on the other hand, is likely to offer
better results when the deterministic components of both sounds can be modeled with a

similar amount of partials, irrespective of their spectral contour.

Timbre morphing of sounds with unequal numbers of features

Tellman, Haken and Holloway[4] from the CERL sound group at the University of Illi-
nois, addressed the topic of morphing in an article published by the Journal of the Audio
Engineering Society in 1995. In their article, they present a generalized strategy for mor-
phing which utilizes the Lemur representation; an implementation of McAulay-Quatieri’s
sinusoidal representation[I4]. A grosso modo, their approach to morphing implies the de-
scription of a given sound, which occupies a timbre space, by a series of features. A feature
is broadly defined to be a temporal portion of the sound that is important to the morphing
process. Features are taken to be either unique or repeatable.

Unique features are those which occur once, and only once, for the duration of each

one of the input sounds and therefore have a one to one correspondence between sounds.
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Clear examples of unique features are the onset or the end of a note. On the other hand,
repeatable features are those features which can be omitted or used in the morphing as is
seen fit. An example of a repeatable feature is a vibrato amplitude peak. The definition
of feature used within the article raises an interesting point. It’s important to note that in
the current text and other prior writings[7] the expression feature is used as a synonym of
the word descriptor, as opposed to the usage given to it in Tellman, Haken and Holloway’s
publication.

Morphing is thus seen as a process which includes time-warping, partial matching and
repeatable feature stepping. Time warping is used to align unique temporal features such
as maxima or minima within the amplitude envelope. Amplitude weighted partials are
matched between inputs. They offer more than one solution to partial coupling issues:
firstly, partials for which frequencies do not have a closely corresponding partial frequency
in the complementary input are paired with a zero-amplitude partial at the same frequency;
on the other hand, given that the analysis can yield erratic frequencies for low amplitude
partials, those with an amplitude lesser than a given threshold are corrected to the closest
frequency which is a multiple of the fundamental frequency. In regards to the interpola-
tion of repeatable features found between unique features, they are matched, warped and
omitted if necessary so that the end product contains an interpolated number of repeatable
features between each set of unique features. In this article, Tellman Haken and Holloway
also propose the idea of interpolating the logs frequencies rather than a linear interpolation:

farar = 9(1=a)logz(f(1,k))+alogz(fi2.x)) (2.1)
where « is the interpolation factor, and fi k), fior) and futar) are respectively the kth

partials’ frequencies for input 1, input 2 and interpolated output. This can be shown to be

f1+a = fl (%)

which is another form of writing formula which will be presented in chapter Eﬂ

equivalent to

2This, of course is valid as long as neither interpoland is 0.
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Automatic audio morphing

Slaney, Covell and Lassiter[2] present a method for automatically morphing audio. In-
terpolated sounds are found by extracting smooth spectral envelope information from the
targets; warping along the time and frequency axes to align their transients, attacks and
pitch, and then interpolating matched partial amplitudes and spectral envelopes. One of
the ideas presented in the paper is the possibility of three different types of morphing: a
static or stationary morph, finding one given sound between two targets with a constant in-
terpolation factor; a dynamic morph, producing a sound for which the interpolation factor
changes in the course of its duration; and a cyclo-stationary morph, which consists of find-
ing a series of repeated sounds, each with a constant interpolation factor, which smoothly

evolve from one of the target sounds to the other.

Timbre morphing of synthesised transients using the Wigner time-frequency

distribution

In a paper by Lysaght and Vernon[I5] the authors ponder the interpolation of short-duration
transient sounds. Because of the duration of such sounds, it is difficult to perform a
Fourier-based analysis with sufficient resolution for morphing. Thus, the authors propose
using a Smoothed Pseudo Wigner Distribution for the analysis stage. Since the SPWD
is a concentrated time-frequency representation, it allows for an increased resolution over
that afforded by the Fourier derived techniques generally used for morphing. Additionally,
they propose using subgraph isomorphism as a pattern matching technique in order to find
feature-correspondence for the two known sounds. The latter idea is more fully explained

in a subsequent publication by Lysaght, Vernon and Timoney[16].

Morphing for karaoke applications

While some of the articles found on morphing are extensible to real-time performance,
most applications are best suited for offline use. This is, of course, not possible when we
think of a karaoke application, the very nature of which requires a real-time algorithm.
In a paper presented at the ICMC in 2000 by the audiovisual group from Pompeu Fabra
University[5], interpolation is performed between a pre-analysed recording of a song and
the user’s performance of the same song with user-specified interpolation coefficients for

different features.
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The underlying model for the data is that of SMS[I7]. For the purpose of the appli-
cation, SMS analysis was fine-tuned to perform with low latency for the singing voice. In
addition to the low-level SMS model, Cano, Loscos et al propose using some higher-level
attributes as per a prior article by Serra and Bonada[I8]. The attributes or features that are
interpolated are spectral shape, fundamental frequency, amplitude, residual signal, pitch
micro variations, vibrato, spectral tilt and harmonicity.

Only relatively steady-state sections of the input are morphed; transients are left un-
touched. Because of this constraint and because of the fact that corresponding vowel sounds
need to be matched for the morphing, the audio is separated into what the authors call
morphing units, i.e. a relatively steady state signal flanked by silence and/or transients.

An interesting finding reported by the authors is that for the interpolation of both
spectral envelopes, which is performed on a bin-by-bin basis, or by cross-fading spectral
envelopes, interpolation factors close to 0.5 yield a relatively flat spectrum. This corre-

sponds to the fact that envelopes with non-correspondent peaks will tend to average out.

Sound timbre interpolation based on physical modeling

Hikichi and Osaka[I9] propose morphing by means of a physical model as an alternative
method to morphing through an additive model. In order to do this, it is necessary to
create a unified model of the two known sounds. In their paper, they present a three-part
physical model consisting of an exciter, a vibrator and a resonator. The unified model is
useful for synthesizing both guitar and piano. It is through the interpolation of parameters
in such a model that timbre morphing is achieved. Albeit the difficulties in fitting a
model to the known sounds, the primary advantage of such a method is the substantial
reduction of parameters that need to be interpolated. Hikichi and Osaka also state three
main areas of exploration to follow: the evaluation of interpolation strategies different from
linear interpolation, which is the strategy that they used; the expansion of the model to
include other target timbres, and the qualitative comparison between the results obtained
by the use of their method and the results obtained through the interpolation of an additive

models’ parameters.
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Sound morphing using Loris and the reassigned bandwidth-enhanced additive

sound model: practice and applications

Because morphing is essentially data interpolation, it’s greatly impacted by the underlying
choice of a representational model. While many articles on the subject converge toward
a sinusoidal representation, there are differences even among the additive models. Haken,
Fitz, Lefvert and O’Donnell[6] proposed morphing with the Loris representation which
stands apart from other sinusoidal models in two respects: that it consolidates stochastic
and deterministic parts by assigning a bandwidth to each partial and that it uses a time
reassignment method for resolution improvement. The argument put forth in favor of
enhanced-bandwidth partials is the resulting compactness of data and the convenience
of dealing with a single data stream for interpolation, as opposed to two data sets in
representations such as SMS.

In their method, data pairing for partials is governed by a principle which they call
channelizing that consists in establishing corresponding frequency regions in the inputs and
allowing for a single bandwidth-enhanced partial in each region. The conflicting coexistence
of partials within regions can be solved either by eliminating additional partials (sifting) or
by broadening the remaining partial’s bandwidth according to the amount of energy in the
removed partial (energy redistribution). Each partial is seen to be a set of three envelope
streams, one for frequency, one for amplitude and one for bandwidth; interpolation is then
performed on each one of the three envelope pairs for every set of corresponding partials.

The same ideas were discussed with much more detail by Lippold Haken, Kelly Fitz
and Paul Christensen in the third chapter, Beyond Traditional Sampling Synthesis: Real-
Time Timbre Morphing Using Additive Synthesis, of Beauchamp’s book Sound of Music:
Analysis, Synthesis, and Perception|20].

High-level audio morphing strategies

Hatch’s thesis[7], as can be expected, contains a large amount of information on the subject
of morphing. It would therefore be inappropriate to cover all of the aspects presented in his
thesis but we will limit our presentation to some of the most relevant concepts therein. The
underlying representational model used for morphing is LORIS and the morphing strategies
that are explored are meant to satisfy a wide range of inputs, not a particular set of sounds.

The features that are defined to be interpolated are pitch, spectral envelope, harmonicity
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and spectral centroid. Hatch uses linear time warping for amplitude envelope matching.
Fy is interpolated on a logarithmic scale and a modulo 2 is applied to the frequency
multiplier, such that glissandi of more than an octave are avoided. The spectral centroid is
interpolated logarithmically and imposed onto the morphed sound in one of two ways: either
by multiplying the frequencies of partials when a sound does not have a harmonic partial
structure, or by modifying the partial’s amplitudes when there is a harmonic structure.
Because the strategies tested throughout the work are intended for sounds that have no
constraints in regards to having a relatively static amplitude or static frequency contentl,
Hatch proposes two different strategies for partial matching through time: one which is
based on a sliding window, where partials are matched again at the end of each window
length, and another in which partial matching is locked throughout the duration of the
sound. The later strategy is more geared toward sounds with relatively stationary states

throughout their duration.

SSynth: a real time additive synthesizer with flexible control

In this article, Verfaille, Boissinot, Depalle and Wanderley[21] present a synthesis frame-
work geared for real-time additive synthesis based off of a three-dimensional database of
sounds. The database dimensions are pitch, dynamic level and instrument. Additionally,
a series of spectral envelopes per instrument are also part of the database and the selec-
tion or interpolation of these envelopes is dependent on parameters which are independent
from pitch and dynamic level. The production of a note is thus an interpolation between
the closest four points, two closest in pitch and two closest in dynamic, for the particular
instrument. In the paper, there is no explicit mention of morphing between instruments
but it is an obvious application which would imply interpolating between the closest eight
points in the database—four for each instrument.

Because Ssynth is intended for real-time synthesis, morphing is performed in a different
way for transients than that of locally stationary parts of the sound. Stable-state parts
of the sound are looped through their additive parameters for as long as the note is being
played; requiring pitch warping for alignment, partial frequency matching and amplitude
interpolation as well as spectral envelope interpolation. Transients on the other hand,

involve an additional time warping as well as involving more stringent precautions to avoid

3In other words, it is geared toward the morphing of any two snippets of audio.



2 State of the Art 14

gliding artifacts due to the fact that partials’ relations are in flux during the transient stage.

In the article, particular attention is given to the fact that the spectral envelope E(f) can
be obtained and represented in many different ways. Because each of these representations
might be better suited to a given context, the authors have included a table of implemented

exact and inexact conversions between different representations of E(f).

Evolutionary spectral envelope morphing by spectral shape descriptors

Caetano and Rodet[22] propose finding intermediate spectral envelopes by means of the
interpolation of the envelopes’ statistical descriptors: centroid, spread, kurtosis, skewness
and slope. In order to properly achieve this interpolation, they propose the usage of an
evolutionary algorithm applied to the trajectories of the poles and zeros between the two
spectra. The results compare very favorably to the naive point-by-point interpolation
and they represent a slight improvement over the interpolation of the LPC coefficients.
Although the method is somewhat cumbersome, it has the advantage of offering control
over each independent statistical descriptor. The results of this endeavor may be consulted

on Marcelo Caetano’s home page[23].

Spectral tools for dynamic tonality and audio morphing

In an article published in the Computer Music Journal, Sethares, Milne, Tiedje, Prechtl
and Plamondon|[8] present the Spectral Toolbox; a series of Java classes and Max/MSP
routines created for dynamic tonality and audio morphing. Morphing is proposed as a
manipulation which is related to dynamic changes in tuning and temperament, where the
series of partials in a given sound is made to match the present tuning and temperament.

In the article, morphing is presented in a very similar fashion than that of several
prior publications; it is achieved through partial matching and interpolation performed
on the deterministic part of an additive model H In terms of the morphing aspect of it,
it is noteworthy that the paper explores strategies for matching partials which are not
necessarily harmonic. They propose to achieve this through the choice of one out of three
differinr% criteria: matching for nearest frequency, matching for corresponding component

numberl or matching according to the order of each partial series’ amplitudes. They also

40f course, if morphing is viewed as a partial alignment technique, the stochastic part of the model
should remain unmodified.
5In either ascending or descending order.
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state that frequency interpolation should be done on a logarithmic scale but that amplitude
interpolation should be done in a linear fashion. Both the toolbox and results obtained

through its use can be consulted at the dynamic tonality website[24].

Presently submitted for review

At the time of writing this thesis, we have received news about the submission an article
on the topic on descriptor-based morphing by Marcelo Caetano and Xavier Rodet from
IRCAM’s analysis/synthesis team. The paper was submitted to the International Com-
puter Music Conference for consideration for the 2010 conference. Since the paper would
be published shortly after this thesis, the reader is directed to consult the ICMC 2010

proceedings for further information.

2.1.2 Software implementations review

From the previous list of publications, there are two publicly available software imple-
mentations created with the purpose of morphing audio: LORIS[25], and the Spectral
Toolbox[24]. There is also mention of two software packages that are not currently avail-
able. One of them is Ssynth, also mentioned in the article review section, which is still
under a stage of development and the other one is Oberheim’s G-WIZ, which is mentioned
in Tellman, Haken and Holloway’s article[d] and of which there is no further appearance in
the literature.

Additionally there are some cases of audio morphing in commercial applications. Early
examples include embedded timbral transformation algorithms from the Fairlight CMI,
the PPG audio synthesizer or more recent digital musical instruments such as the Emu
Emulator 3 hybrid sampler. On such instruments, both wave-form and spectral shape
interpolation can be performed.

More recent software-only implementations also exist. Camel Audio’s Cameleon5000[20]
performs audio morphing according to a user-specified trajectory on a morph square that
contains a target sound on each one of its corners. The Cameleon uses an additive model
to represent audio snippets which are to be morphed.

Ircam’s Diphone Studio[27] decomposes input sounds into chunks or diphones and gen-
erates a dictionary with them. Once the dictionary has been assembled, the user can specify

a sequence of chunks and the software morphs from each diphone to the next.
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The Composer’s Desktop Project[28], or CDP for short, is a collection of routines for
the treatment of audio which has been spawned by a large international community for
over 20 years. Within this large collection there are a number of routines intended for

morphing.

2.1.3 Music applications review
Red Bird, Vox-5

Trevor Wishart, one of the founders and main contributors of the CDP, has dealt extensively
with sound transformations and sound morphing, which he has documented[29]. In one
of Wishart’s early works[I], composed during 1973 to 1977, Wishart explores morphing by
means of analog techniques. The amount of transformations obtained throughout the piece
is astonishing; utterances and cries morph to birdsong, barks, gunshots, slamming doors
and all sorts of animal and mechanical sounds. Some of the transformations present in the
piece are documented on the CD liner notes[30].

Years later Wishart composed a piece while in residence at IRCAM[3T]. Vox-5 was
created in 1986 with extensive use of the phase vocoder. The piece revolves around the
transformation of utterances to other real-world sounds, alluding to the voice of Shiva[32].
The techniques used in the creation of the piece include formant preservation during spectral
manipulation; warping for spectral matching; spectral stretching and shifting; as well as
spectral interpolation. Wishart wrote an article in the Computer Music Journal[33] which

documents the compositional process as well as the techniques used therein.

Chreode 1

Jean Baptiste Barriere[31, 32 B4] composed Chreode I on IRCAM’s PDP-10 during 1983.
Barriere used FOF synthesis to generate seamless transitions between different timbres that

represent four general characters; vocal, instrumental, acoustic and synthesized.

Farinelli

Corbiau’s biographical film on Carlo Maria Broschi’s life as a virtuosic castrato singer was

one of the first realizations of musical morphing presented to wider audiences[35], 36].
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Generally speaking, the voice of Castrati covered a more ample register than that of
any other, ehem... un-modified tessitura. Given the parts written for Farinelli, his register
can be inferred to have encompassed both the ranges of a Soprano and of a Tenor. Since
no singer alive these days is known to possess the combination of such a wide register and
extensive musical training, it was necessary to craft the music from parts performed by two
singers of the aforementioned tessiturae. The problem of merely mixing these two parts was
that the timbral characteristics of each voice were quite distinct and would have yielded
a composite register with a very clear timbral discontinuity somewhere in the middle.
Morphing and interpolation were key elements for the riddance of such a discontinuity.

Generally speaking, at each intersecting pitch and for each voiced sound, the two tim-
bral extremes for each of the two voices were established and timbres were interpolated
at different rates along the intersecting range, the interpolation being weighted by their

proximity to each of the two tessitura’s midpoints.

Sheep

One notable realization of morphing in the realm of Progressive Rock can be found in
Pink Floyd’s song Sheep, from the album Animals[37]. At the end of each verse, the voice
smoothly morphs into an synthesizer tone. Unfortunately, we have not come across any

sources describing the process by means of which this was achieved.

2.2 Survey of morphing in the context of speech processing

Within speech synthesis, there are some applications of morphing and interpolation which
are used areas such as generation of emotions in synthetic speech, unit articulation in
concatenative speech, speaker conversion and speech morphing.

Imprinting emotional content on synthesized speech can possibly be achieved by means
of morphing or warping some features of the synthesis to match characteristic features of
a given emotion.

Concatenative speech synthesis is built upon the notion that speech can be reproduced
by a relatively small number of sampled spoken units. Units vary in size, depending on the
type of synthesis but all types of concatenative synthesis share the need for articulating or
stitching pre-recorded bits. It is at these junctions that interpolation becomes of interest,

since it makes it possible to eliminate or diminish the discontinuities therein.
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Also useful for concatenative-based synthesis is data reduction. Phonetic databases
for each individual speaker make use of large storage spaces for the recorded samples or
codebooks. By means of speaker transformation, more speakers can be generated than the
amount of codebooks that the system contains. Thus, morphing is a means of reducing the
needed storage space for a given speaker diversity.

Speech morphing refers to the interpolation of two different recorded instances of sim-
ilarH speech. Applications in speech morphing are much less general in nature than those
sought in speaker transformation but allow for a much higher quality on each particular
realization.

In speech manipulation and synthesis literature, we find two main tendencies: pitch-
synchronous spectrum modifications and manipulations through source filter decomposi-
tion.

A considerable number of articles have been written on all of these subjects and it is
well beyond the scope of this thesis to present an extensive review of the literature. We
hereby present a few relevant ideas contained therein; ideas which can be carried over to

the morphing of musical sounds.

2.2.1 Generation of emotional content in speech synthesis

In a review of the subject written in 2001, Marc Schroder[38] presents several solutions
which have been proposed to this problem. Approaches are dependent on the type of
synthesis that they address. This is, of course, due to the fact that affecting certain features
of speech may prove to be easier or harder, depending on the speech synthesis technique in
use. Nevertheless, all approaches share the goal of imprinting on synthesized speech some
form of prosody, according to a set of rules. Additionally, voice quality is sought to be
modified in speech synthesis models which allow for this. Prosodic modifications involve
time-warping, fo-warping (the rhythmic quality and melodic contour of speech), as well as
amplitude modifications.

In a paper by Mareiiil, Célérier and Toen[39] we can find the presentation of some
rules regarding fy contour manipulation, time warping, amplitude manipulation and the

repetition of some phonemeﬂ These rules were derived separately for English, French and

6Similar in length and content, since correspondence between the two instances needs to be established
for morphing to take place.
e.g. Stuttering for emulation of fear.
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Spanish from actors who were recorded as they portrayed the set of emotions being studied.

2.2.2 Phonetic unit-articulation smoothing

As an example of work done for smoothing transitions between phonetic units used in
concatenative speech, we take an article by Stylianou, Dutoit and Schroeter[40] on diphone
concatenation. Diphone speech synthesis requires a library of diphones, which are small
speech units with transitions from one phoneme to another. Diphone libraries are among
the slimmest libraries for concatenative speech but, since they generally rely on time-based
overlap-add methods, artefacts can easily arise due to discontinuities in the transition from
one diphone to the next. The paper proposes modelling diphones with harmonic plus noise
additive parameters and smoothly interpolating from one diphone’s parametrization to the
next during a short mizing region. One thing to notice in the results presented in the
paper is that, although transitions from one diphone to the next are much smoother than
those obtained via a time-based overlap add method, formants are broadened during the
transitions.

Pfitzinger[4I] presents a spectral morphing technique based on the derivative of the
LPC-given spectrum. Where the spectral derivatives of the two spectra to be interpolated
are matched through dynamic programming. The process of matching and warping the
spectrum is called dynamic frequency warping (DFW). Using a function’s derivative for
locating peaks or valleys is a standard technique. The advantage of using this technique is
that zero-crossings in the derivative necessarily equate to local maxima or minima in the
spectrum and that the derivative slope is related to resonance bandwidth. Once the peaks
have been found, a dynamic programming algorithm is used to find the best correspondence
between the peaks of both interpoland spectra. Then, interpolation includes warping both
spectral envelopes in order according to peak matches.

Compared to the magnitude interpolation of two spectra performed as a cross-fade, this
method yields interpolation of spectra for which not only peak magnitudes are interpolated,
but also peak frequencies. In other words, peaks do not just rise and fall at the same
frequency during interpolation; rather, they slide toward their matching peaks on the target
spectrum. Thus Pfitzinger claims that, with this technique, there is no broadening of
formant regions at interpolation factors close to 0.5 and that formant frequency, amplitude

and bandwidth are interpolated in a phonetically meaningful way.
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Fig. 2.1 An illustration of DFW proposed by Pfitzinger. At the top, both
spectra’s derivatives are matched through dynamic programming, the yellow
line that crosses each derivative represents each one of their corresponding
zeros. At the bottom, the corresponding spectra are interpolated along the
matching lines.

2.2.3 Voice conversion

Voice conversion seeks to imprint the identity of one speaker onto the utterances of a second
speaker. In the context of speech synthesis a speaker refers to a series of rules coupled with
a codebook which is used by a particular synthesizer, and not necessarily to a human
speaker.

Several speech synthesis methods rely on a data reduction technique called vector quan-
tization which yields codebooks or sparse code. This technique extracts a discrete set of
spectra (vectors) which make up a sampled or discretized version the whole spectral palette
(or vector space) observed during a training period. The collection of sampled spectra is
called a codebook. Several articles[42] 43|, [44] have proposed a technique for voice con-
version between two speakers in such a system. The proposed technique consists of a
training period with matched utterances from two speakers which is used to generate a
transformation codebook which maps the spectrally partitioned codebook of one speaker
onto the second speaker’s spectrally partitioned codebook. While this is useful for a com-

plete transformation from speaker; to speakers, it does not allow smooth transitions from
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one speaker to the next. Another notable limitation, is that this technique is only useful
in cases involving no more and no less than two speakers.

The same sort of idea has been explored in later works by Iwasashi and Sagisaka[45], [40]
with some modifications which make it relevant in the context of morphing and interpola-
tion. The known speakers can be more than two. During the training period, the target
speaker’s utterances’ spectral characteristics are matched by dynamic time warping of those
from the known speakers. After the training period, the optimal weighting factor for the
known speakers is found so as to more closely match the target speaker. Iwasashi and
Sagisaka propose the use of cepstral coefficients and log-area ratios for spectrum interpo-
lations.

It is worth noting that these and other works with similar approach aim at either finding

correspondence between spectral characteristics or directly interpolating the spectra.

2.2.4 Speech morphing

Abe[dT7] proposed a time-domain pitch-synchronous-overlap-add (TD_PSOLA) based ap-
proach which consists of finding corresponding pitch marks (periods) for two given sources
and interpolating the F'F'T" of each period, afterwards, an IFF'T is performed on each
period which is overlap-added to obtain the resulting morphed speech signal. Interpolation
of the pitch period results in fj interpolation and the weighted sum of each corresponding
grains’ F'F'T yields a spectral envelope interpolation.

Ye and Young[48] propose morphing with a pitch-synchronous sinusoidal model which
helps avoid the phase incoherence at each pitch period that results from TD_PSOLA-based
strategies. Spectra are represented as Line Spectral Frequencies or Line Spectral Pairs
(LSP) since they behave better than LPC coefficients during interpolation. Ye and Young
found that, even while interpolating through LSPs, formant peaks became flattened out
and spectra lost details toward an interpolation factor of 0.5 . Thus they propose to train
the system to recognize the correspondence between the interpolated spectra—those which
have lost detail-and transitional spectra observed during the training; once the system is
trained, it can regain some of the lost spectral detail by combining the flattened-out spectra
with their corresponding learnt spectra. Residual or transient spectra are matched between
speakers in a training stage and the criteria for choosing correspondence between speakers’

transient spectra is to retain the longest matching sequences from recorded transients.
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In addition to the application of dynamic frequency warping to speech morphing,
Pfitzinger[49] proposes the interpolation of the source signal through a similar time do-
main process, matching separated source signals in short (20 ms) windows by dynamic time
warping and interpolating on a per-period basis. The results can be heard on Pfitzinger’s

home page[50], for which you may find a link here in the electronic version.

2.3 Some considerations from the context of image processing

The use of morphing in films has been well established and dates back to the very dawn of
this industry. Experimentation began early on, at the beginning of the twentieth century
with Georges Melies’ transformations based on careful compositing[51]. Later films, such as
the 1931 realization of The strange case of Dr. Jekyll and Mr. Hyde further advanced this
effect. Later in the twentieth century, image morphing has yielded effects now memorable
to pop culture, such as those found in Michael Jackson’s music video for Black and White
or those in the film Willow. In the last couple of decades, convincing visual morphs have
become relatively common in film.

Writing a complete review of all that has taken place in this domain would be material
enough for another thesis, and most likely not one for a degree in Music Technology.
However, because we are dealing with morphing, it is relevant to invoke some aspects of

image morphing for which we can find analogies in the realm of audio morphing.

2.3.1 Feature selection and image warping

In image morphing, feature correspondence between two or more images is often found by
user specification, image warping is then performed and finally color interpolation is effected
to obtain the morph. Color interpolation has several variants, such as the interpolation of
raw RGB values; or the interpolation of hue, saturation and luminance. Even so, much of
the emphasis of literature regarding image morphing seems to be placed on the partition of
space given feature selection and the subsequent surface warping strategies; in their article
on feature-based image metamorphosis, Beier and Neely[52] note that after warping the
image, color interpolation is the simpler part of the process.

This is of interest to us as it reinforces the notion that an important part of the audio
morphing process lies both in the careful selection of features that we wish to morph as

well as in the mindful analysis and extraction of these features for each given realization.
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The reader should note that in the present work we refer to time and frequency alignment
when we talk about warping audio; so, these observations in regards to the major effort
being invested into warping do not hold true for audio morphing. Yet, if we include general
sonic feature selection and interpolation in the analogy, we can similarly observe that the
interpolation of already matching features is the simpler part of the process. Thus, in many
ways we can think of observations made in regards to feature selection and image warping
as equivalent to the general feature selection and morphing process of an audio signal.

In his survey of image morphing, Wolberg[53] gives a detailed explanation of several
feature selection and geometrical deformation strategies. The trend in feature selection
tends to go toward less constrained strategies, where initial strategies were based on gen-
erating meshes and later strategies rely on simple lines and points with a variable degree
of deformation influence from each feature to its surrounding areas. Another interesting
idea presented by Wolberg in his survey is that of more significant morphs being achieved
by allowing different rates of change for each one of the involved features.

In an article on the deformation of n-dimensional objects, Borrel and Bechmann[54]
state that a simple, flexible and efficient procedure for achieving the deformation of an
n-dimensional object is to map it to an m-dimensional object, where m > n, in order
to perform a series of simple linear transformation on the m-dimensional object and then
project it back onto an n-dimensional space.

We can extrapolate this idea of warping onto sound morphing in two ways: firstly, in
some cases the selection of features might very well be viewed as having a higher dimen-
sionality than the original sample-wise representation. Secondly, in order to avoid certain
undesirable effects once we are interpolating a feature, we might have little option but to
choose between interpolation paths that change some characteristic or another from both

our source and target soundd.

2.3.2 Contrast loss along interpolation midpoints

Another finding from the image processing community that can be of interest for the

purpose of audio morphing is mentioned in Grundland, Vohra, Williams and Dodgson’s[55]

8Wolberg refers to this as transition control.

9As we will see in the corresponding section, this is the case of fy interpolation, where in order to avoid
overbearing partial glissandi we must either choose to create phantom partials or to have an inharmonic
sound resulting from the interpolation of two harmonic sounds.
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article, Cross Dissolve without Cross Fade: Preserving Contrast, Color and Salience in
Image Compositing. In this publication, the authors propose a way of solving the frequent
loss of dynamic range which is likely to result from the interpolation of two or more data
sets. Their solution is to weight the interpolation by salience masks applied to each one of
the images. In the case of audio interpolation, we must bear in mind the loss of dynamic
range and look for solution involving the interpolation of salient or otherwise perceptually

meaningful representation of features whenever possibld.

10 A5 we will see in the corresponding section, this loss of contrast can be found in point by point spectral
envelope interpolation. It can be avoided by recurring to the interpolation of an alternate representation
of the spectral envelope, one which is more meaningful or alludes to perceptually salient features, as is the
case of reflection coefficients.
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Chapter 3
A Few Necessary Definitions

For the current explorations to be of any use to the reader, it’s essential to clarify certain
aspects that limit the context in which the strategies have been reviewed. As should be
fairly evident from the title of the thesis, the current work presents ideas and results of an
evaluation of spectral interpolation strategies for the morphing of musical sound objects;
the synthesis of sounds that contain features from two or more sources within the musical
context. Thus, it seems necessary to talk about what defines a musical sound object or
a single-event musical sound, to briefly expose some concepts regarding interpolation and
to explain the criteria for choosing the features across which interpolation will occur. The

features or descriptors themselves will also be defined in the current chapter.

3.1 Musical sound objects

The present exploration has a well defined scope which is to perform a broad evaluation
of strategies for morphing single-event musical sounds. In order to avoid confusion, it’s
necessary to state what the term single-event musical sounds implies. The terms single-
event or sound object refer to sounds having a clear delimitation in the temporal domain:
sounds which are flanked by either transients or silence. The reference to them being
musical is not a reference to their subjective musicality but rather refers to their relatively
stationary nature, as opposed to the extremely dynamic nature of other sounds such as
speech utterances or general everyday sounds. This means that we are interested in sounds
which possess relatively stable characteristics throughout their lifespan; sounds which are

commonly found in music as we traditionally know it, such as a note from an instrument

2010/09/17
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or a percussion hit.

3.2 Dynamic time-warping

We recall Dynamic time warping was used for speech morphing and that surface warping
was necessary for image morphing. The purpose of these warping processes is to align
features of the morph targets, in time or on the x—y plane respectively. Once this alignment
has been found, we can either warp one of the targets to match the other or warp both
according to the interpolation factor, so that both targets’ features match. By the same
token, during the interpolation of sound objects’ temporal features, such as the amplitude
envelope or vibrato, dynamic time-warping will be used extensively. Its application in this
context aims at producing different time-scaling coefficients for each section between key
features to be aligned; ie one time-scaling coefficient for the attack and another for the

stable section and another one for the release.

3.3 About meaningful features

We need to define the parameters or features with which we represent sounds so that we can
perform interpolation along the set of features and not along the raw data. The simplest
form of interpolation between known data of inputs z, y...z, would be to interpolate between
each of the samples x[n], y[n]...z[n] at time nTy, where T} is the sampling interva. Yet
it is likely that this interpolation, or cross-fade, would result in an unconvincing morph
since it would yield a perceptually distinguishable mix of multiple inputs rather than a
unique hybrid containing features from all inputs[4]. Thus, we will define a feature set
that describes the inputs and for which it is possible to interpolate each feature. This
set will contain descriptors used to warp for alignment along the temporal and frequency
domains; descriptors that define the event’s amplitude through time; descriptors that define
the relationship and behaviour between the deterministic and stochastic components of the
additive representation as well as descriptors which define the relationship between partials

of the sound.

Lprovided, of course that T is a constant for all signals at all times.
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3.3.1 Why do we need them?

In order to achieve a convincing morph, it is crucial to note we are not limited to directly
interpolating samples from signals themselves, since it is possible to approximate sufficiently
well the known data in parametric fashion by means of analysis performed on the signal
or on its transformations. One such example of parametrization is the additive sinusoidal
representation, which unveils the possibility of achieving interpolation of features such as
the frequencies or amplitudes of each partial. Further analysis steps might help represent
the data with higher-level parameters which will prove useful for obtaining features that
are true hybrids.

As an example of why it is important to establish meaningful features let us consider
two morphings effected from two input signals which are represented in two ways—the later
being more meaningful. We shall take our signals to be two notes, each having a full
harmonic spectrum, produced by the same instrument with differing f, and vibrato rates.
For simplicity’s sake, let fyo and fyiprato be 100 Hz and 3 Hz respectively for the first sound
and 125 Hz and 2 Hz for the second. Let’s also suppose the modulator for the vibrato to

be a pure sine and the interpolation factor to be 0.5.

Case 1 - Linear interpolation of the raw data.

We would obtain a hybrid containing energy at 100 Hz, 125 Hz, 200 Hz, 250 Hz, 300 Hz,
375 Hz, 400 Hz, 500 Hz and so forth. Where each partial that is a multiple of 100 Hz would
be modulated at 3 Hz and each partial that is a multiple of 125 Hz would be modulated
at 2 Hz-the partial at 500 Hz would display modulations at both of these frequencies.
Modulations aside, if we simply think of f; as the maximum common denominator for all
present partials, we would arguably perceive a note with an fy of 25 Hz and a very irregular
spectrum which is missing, among others, the first three partials. But then again, if we
do consider modulations and we consider the cues that synchronous modulations give for
source separation[56] we can actually argue that the interpolation will yield an event which

can be perceived as the mix of two distinct signals.

Case 2 - Linear interpolation of the additive model.

If we were to match partials and linearly interpolate their frequencies and amplitudes, with

an interpolation coefficient of 0.5, we would obtain a harmonic structure with an f; of
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112.5 Hz. In this regard, we would now perceive a true hybrid. It is when we think of the
modulations of the partials that we realize that the features used for morphing are still
problematic since the frequency modulation itself will contain components at both 2 and 3
Hz as opposed to a pure sine at 2.5 Hz.

In essence, this short example serves to show that as long as we don’t precisely define the
set of features—such as vibrato frequency or fy—that we wish to interpolate from the inputs
and as long as we don’t interpolate these features directly we will keep facing the same effect
at one level or another. It then becomes clear that in order to achieve a convincing morph,
we must define the set of features which we will use to represent sounds and over which
interpolation will occur. These features will generally be derived from at least one, and
most often more than one, step of analysis performed on the original data. Thus, because
the vast majority of features that interest us are obtained from transforming and analyzing
the sample-wise or lower-level representation of audio, they are commonly referred to as
higher-level features[5T].

Wesley Hatch has already done some work in terms of defining a set of higher-level
features for the purpose of morphing[7]. However, in the present work, we are interested
in obtaining a larger set of features which describe sounds within the musical context in
as meaningful a way as possible; thus we will diverge from this definition and allude to

meaningful features.

3.3.2 How do we go about defining them?

There are a few things we can establish before embarking on the quest for meaningful

features:

e We are interested in quantifiable features
e Features should be chosen to be as independent as possible
e Features should be perceptually meaningful

e Entire feature-set should describe the sound as completely as possible

Features should be perceptually meaningful

Ideally, there should be a link between a feature and some audible quality of the sound.

Features such as f; have much more correlation with what we hear than perceptually



3 A Few Necessary Definitions 29

irrelevant and arbitrary characteristics such as if fy is prime or not. Features with a

stronger correlation to what we can hear are more perceptually meaningful.

We are interested in quantifiable features

Since interpolation consists in finding an intermediate value from surrounding values, it
follows that a necessary condition for interpolation of a given feature is that it be quantifi-
able.

Features should be chosen to be as independent as possible

It’s quite likely that our extracted features will not be completely independent. For exam-
ple, the frequencies of the extracted partials in our previous examples contain both constant
partial frequencies (i.e. a carrier frequencies) and vibrato (i.e. a modulator) and would
require an additional analysis step, such as that proposed by Marchand and Raspaud[58],
to separate these two features. The more we can enforce independence in terms of percep-
tually meaningful features in our representation, the easier it will be to use our feature set

for interpolation.

Entire feature-set should describe the sound as completely as possible

We’ve previously stated that it is desirable to avoid morphs which contain elements from
each one of its inputs which can be perceived as separate and distinct elements (such as
the prior example with a composite vibrato). It then follows that we should choose a set of
features that describes sounds as completely as possible to avoid non-interpolated outcomes

of isolated features.

3.4 Presentation of meaningful features

After establishing what it is that we seek from a set of descriptors, we are ready to choose
the features that will conform the set which we’ll use for interpolation. The following
features will be used wherever applicable: fy, amplitude envelope, spectral centroid dur-
ing attack, spectral shape, vibratad, peak-amplitude time, odd to even partial amplitude

ratio, deterministic to stochastic energy ratio and inharmonicity. Whenever possible, the

2We will use an extended vibrato definition which includes FM, AM, and SEM as defined by[59].
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descriptors have been grouped according to whether they are only useful for sounds with
an underlying harmonic structure or they are useful for warping and morphing sounds
regardless of them having an underlying harmonic structure.

As Peeters[60] has noted, for some features such as the number of partials or the ampli-
tude envelope, analysis will yield a single result for every input soundH; while for others such
as vibrato (seen as a modulation) or spectral envelope, analysis will most likely yield one
or more results per analysis frame. Optionally, some of these results might be consolidated
by averaging them over time, which gives two possible representation and interpolation
strategies.

Since we will be using an additive model with stochastic and deterministic part decom-
position, we must take into account that each one of these parts should have descriptors
in its own right, where the stochastic part will not contain descriptors that are useful for
harmonic structures. Furthermore, interpolations for the stochastic and the deterministic
parts should be independent.

The rest of the chapter explains each one of these features in detail and table B.]

condenses important information regarding the set of descriptors.

3.4.1 Features used for morphing regardless of a harmonic structure

We will first review descriptors which can be used regardless of whether a harmonic struc-
ture is present or not. They are the amplitude envelope, the onset spectral centroid and
the spectral envelope. Strictly speaking, we will use the amplitude envelope for temporal

warping for alignment and not for morphing.

Amplitude Envelope

The function of amplitude vs time for any given signal. This function can be obtained
by calculating the RMS of windowed portions. For the envelope extraction, Peeters[60]

proposes a window with a size of 100 milliseconds.

=2

-1

Alk] = % (2 [n+H]w[n)? (3.1)

n

I
=)

3A single ADSR can describe the envelope or a constant number of partials will be valid throughout
the duration of the sound
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Where A[k] is the amplitude at analysis frame k. Once the function has been extracted, the
envelope can be approximated by an ADSR for most instrumental sounds. This is achieved
by fitting points of inflection within A[k] to the ADSR model.

Onset spectral centroid

As Grey has shown[I0], 11] in his well known studies of timbre, the distribution of energy
content during the attack is an important factor in our perception of timbre. The element
that separates this from any other spectral distribution feature is that it is only the ratio
at the event’s onsetH that interests us. Grey does not, however, give a clear-cut definition

for this and we will thus define it as:

N-—1
Zn:O fn * Amn

2o G

where OSC[m] is the onset spectral centroid at frame number m from 0 to M — 1 and

0SC[m] = (3.2)

where M is the number of frames corresponding to the attack. N represents the number
of bins, f,, represents the frequency at bin n, a,,, represents the amplitude at bin n during
frame m.

Although the onset spectral centroid can be useful to describe any given sound, imposing
a given OSC upon re-synthesis can be achieved through a variety of spectral modifications.
When we have a smaller set of partials, we propose to keep track of partial peak amplitude
times and interpolate them instead. This will be described with more detail in

Spectral shape

The spectral shape or spectral envelope of a particular sequence z[n] is a curve that fits
over the peaks of its spectrum. The spectral shape is typically characterized by how many
peaks it tries to fit and by its smoothness in some cases. Alternatively, from a source-filter
perspective, it can also be seen as the frequency response of the filter that we would need to
apply to a flat-spectrum signal in order to obtain a similar spectral distribution to that of
the sequence from which we obtained the envelope in the first place. Additionally, since the

spectral envelope can be viewed as the frequency response of a filter, it can be parametrized

4And possibly during the release portion.
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as a series of reflection coefficients, which guarantee it’s stability during the interpolation

process[61].

3.4.2 Features found only in pitched sounds

From the set of descriptors that we have defined, those that will be of interest to us only
in the case of sounds with an underlying harmonic structure are vibrato, inharmonicity,
even-to-odd partial energy ratio and Partials’ peak attack times. As in the case of the
amplitude envelope we will actually use fy for spectral warping for alignment and not

really for morphing.

Fundamental frequency: f;

For any sound containing a harmonic series of partials, fy is a frequency such that fy is the
greatest common divisor for the frequencies of all partials. fj is correlated to the notion of
pitch in the perceptual domain. As has been mentioned before, it will be important to warp
pitched sounds along this feature to avoid a hybrid that has an fy that is not necessarily

between that of the sources or a hybrid that can be perceived as having two distinct fys.

Vibrato

While it’s classically understood to mean a Frequency Modulation at a sub-audio rate,
whenever we talk about vibrato in the current study we will be referring to a general-
ized vibrato as the one defined by Verfaille, Guastavino and Depalle in their Perceptual
FEvaluation of Vibrato Models[59].

The generalized model of a vibrato is not only defined as Frequency Modulation but
also comprises sub-audio rate Amplitude and Spectral Envelope Modulations. AM, when
present at a sub-audio rate is typically referred to as tremolo, and SEM can fall under the
general category of Spectral Flux. These three modulations generally occur at correlated
frequencies, where for any particular type of sound, there is an almost constant relationship

between modulation phasesH and each modulation has it’s own amplitude or depthH. The

5Tt is an almost constant relationship, since we will find hysteresis given the most common of cases, as
has been shown in the aforementioned paper[59].

50f course, amplitude modulation depth, frequency modulation depth and the n-dimensional SE
maximum-difference vector are like apples, oranges and pineapples, in other words, units for each depth
will be unrelated to other modulation depths.
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classical approach to vibrato or tremolo was to ascribe a single frequency of modulation
throughout the event, but it’s preferable to extract these modulations by performing a
second order sinusoidal analysis, as has been shown by Marchand and Raspaud’s DAFX
article on time stretching[58]. This way, we can extract the three sets of modulation partial
tracks—equivalent to the partials in regular additive modelling—by performing an STF'T
on the up-sampled original partial track frequency and amplitude fluctuations. Spectral
envelope modulations are implicit if we perform amplitude modulation extraction for each

harmonic as opposed to doing so only on the first partial.

Inharmonicity

Generally speaking, when we talk about pitched sounds or harmonic series of partials, there
is a slight deviation from purely harmonic relations. This is caused by specific character-
istics of the physical principle for sound generation. For example, string geometry for an
oscillating string or bore irregularities in a wind instrument slightly affect the frequencies
of different partials. Thus, for each different sound, we will often find a particular series
of deviations from purely harmonic relations between each harmonic and the fundamental
frequency.

Inharmonicity refers to this deviation of partial frequencies from their expected frequen-

cies as per h - fo. Peeters proposes inharmonicity to be:

2Zh \fn—"h- f0|a%
fodonas-h

inharmonicity =

With a value of [0,1]. We propose to extend the range to [—1, 1], where negative values
correspond to generally compressed harmonic spectra and positive values correspond to
stretched harmonic spectra. We can avoid the use of absolute value from the previous

equation to know if the trend of the inharmonicity corresponds to compression or stretching.

2>, (fn =N fo)aj
fodon ai -h

The prior definition allows us to consider a single coefficient that measures the overall

So we would have:

inharmonicity = (3.3)

inharmonicity of a given sound this is a broad characterization which is generally insufficient
if we intend to reconstruct the sound from such a characterization. It is only in certain cases

where inharmonicity relations have been studied, such as is the case of piano sounds [62]
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that a single measure of inharmonicity would suffice to approximate individual coefficients
for each partial during re-synthesis. We will find that, in most cases, a complete vector of
inharmonicity coefficients will be needed in order to reconstruct each partial’s frequency

given an fy. Such a vector could be denoted as follows:

2(fn — h - fo)

= (3.4)

Inharmonicity = iy, =
Where h is only relevant for partials above the one with a frequency which coincides with

fo, if such a partial were presentl].

Even to odd partial energy ratio

The ratio between these two energies is correlated with spectral smoothness and plays an
important part in our perception of timbre[63]. A typical example of a very low even to
odd harmonic energy ratio is a stopped pipe, e.g. the clarinet, played piano at the lower
end of its register. An example of an instrument which has a ratio of approximately 1 is
the trumpet. High EOR values will tend to sound an octave above the fundamental pitch.
Even to odd partial energy ratio or EOR can be calculated as follows[60]:

LH/2| 2

_ =1 %on
BOR = s 85)
h=1 @op_1

Partial attack times

We recall that the spectral fluctuation during attack has been described as a correlate of
instrument families[10, [11] and that in[B.Z.Tlwe proposed an alternative to the onset spectral
centroid can be useful in cases where a relatively low number of partials are presentfl. The
proposed alternative is to have a vector of times at which each partial attains its peak
amplitude, which can be imprinted on the attack of a series of partials with less ambiguity
than the onset spectral centroid. Similarly to the onset spectral centroid, partial attack

times can describe the spectral fluctuation of the attack.

7 Allowing for pitched sounds with a phantom fundamental component.

8Since we can consider the deterministic plus stochastic representation as a data-reduction technique
from the ST FT, we can generally say that a number of partials describing a sound is significantly smaller
than the number of bins required for the same purpose.



3 A Few Necessary Definitions 35

In regards to the amount of data needed for describing onset spectral fluctuations, we
have a few observations. Keeping a vector of OSC values across all frames for long attack
is not too far from keeping a single attack time for each partial. Also, if there were a need
to reduce the data in the representation, we could approximate the time of reaching peak
amplitude as a function of partial number.

Once we have created an additive deterministic and stochastic model through analysis,
we can easily keep track of the times at which peak values are attained for each partial.
We can do so with a minimum error equivalent to half of the partial frequency sampling

time which is given by the analysis hop sizd™.

3.4.3 Other considerations

Once additive model separation has been done, we are dealing with (at least) two entities
for each sound; its deterministic and stochastic components. It’s possible to extract some
characteristics, such as spectral envelope or amplitude envelope from the sound before
performing deterministic and stochastic component separation as well as doing so after
performing the separation. Depending on the application, it is important to weigh the
qualitative difference between the outcomes of these two procedures against their added

cost in terms of processing and storage.

Harmonic-part to noise-part ratio

After having performed the separation of harmonic and noise components of a signal, a
global value may be obtained by calculating the ratio of the energy of each component.
Alternatively we may obtain a sequence of power values at each frame, for both the de-
terministic and stochastic components, and then store a vector of power ratios across all
frames. Peeters proposes harmonic part energy and noise part energy as two separate
features[60], but consolidating the two into a ratio diminishes the number of features and

avoids the overlap with the amplitude envelope.

91f we consider a 0.5s attack with an analysis framerate of 86 H z, we would contemplate 43 onset spectral
centroid values.

10At a sampling rate of 44,100 Hz, a hop size of 256 samples would thus be accurate to within 2.9
milliseconds which should prove to be sufficient.
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3.5 On interpolation

Interpolation is a means to find an intermediate value between known samples. Mathemat-
ically this is achieved by fitting a function to pass through a set of known point. Many
common interpolation schemes, such as cubic interpolation, require more than two known
points through which a function must be fitted. In general we will interpolate between
two given sounds, which means that our data-set for each feature will consist of two sam-
ples. This leaves a choice from three common interpolation strategies: nearest-neighbour,
linear interpolation and logarithmic interpolation—or linear interpolation performed on the
logarithm of the known points.

Seeking the value 1,,,, by these three different types of interpolation, where 0 < o <'1
is given by the following expressions: 51l [7]:

nearest-neighbour interpolation

B yp if a<0.5
Ynte Yni1 fa>05

linear interpolation

Ynta = (1 - a) Yn + (a> Yn+1

o Yn+1 “
Yn+a = Yn
Yn

Although nearest neighbour interpolation can be considered as more of a decision-making

logarithmic interpolation

strategy than interpolation, we have decided to mention it, as does Wolberg in his presen-
tation on the subject[51]. This strategy would be inappropriate in most scenarios which
aim at morphing, since it does not really find intermediate values between known points
but merely opts for one or the other. As for linear and logarithmic interpolations, choosing
between them shall be part of evaluating strategies for different features. We hereby hy-
pothesize that in some features logarithmic interpolation will be preferable since it better

corresponds to our perception of the evolution of the parameters themselves. For example,

HFor many types of interpolation, we can alternatively see this as convolving each point with a given
kernel function[5I]. This is not so for polynomial interpolations.
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it is well known that the linear evolution of the logy of frequency is strongly correlated
with the perception of pitch, therefore it is likely that interpolation of fy for two given
inputs might seem preferable when erformed with logarithmic interpolation than when

performed with linear interpolation

Table 3.1 Perceptually meaningful descriptors: features can be affected dur-
ing time-warping, spectral-warping or during the morphing process. Features
can be exclusive to the deterministic component and they can be seen as one
measure—or an average measure—per event or can be seen as a time-series of
measures per event.

Descriptor Used during Found only Single Time
warping(w) or in deterministic measure or series
morphing(m)  component average

Amplitude envelope w

Spectral centroid m * *
during attack

Spectral shape m * *
fO W * *
Vibrato m * * *
Inharmonicity m/w * * *
Odd/even partial m * * *
amplitude ratio

Partial attack m * *

time

Harmonic/noise m * * *

amplitude ratio

12]deally, interpolation would be best performed within all perceptually validated scales, but since this
is not contemplated within the scope of the present work, the extrapolation of the results herein presented
into the perceptual domain is left as future work.
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Chapter 4

Experimental Observations and

Results for synthetic sounds

The stated goal of the present study, is to evaluate several different interpolation strategies
which can be used for the purpose of morphing between single-event musical sounds. This
chapter presents an evaluation of isolated interpolation strategies for features which we
defined in chapter Bl These strategies were tested on pairs of synthesized sounds which
vary exclusively and heavily in terms of the feature being tested. We present the features in
the same order as we did in chapter Bl In the presentation and comparison of interpolation
strategies, we've commented in regards to the desirability of using one strategy versus
another. In some cases, more than one strategy may produce viable results. In these cases,
we discuss the usefulness of each strategy under different circumstances.

We have also posted sound files on the project’s website[d] so as to provide an audible
tllustration of the results. These sound files are intended to be complementary to the
observations and figures presented herein to illustrate these comparisons. The reader is

encouraged to refer to these samples.

4.1 Amplitude envelope warping and alignment

An important first step for audio morphing consists in finding the time-alignment of the
involved sounds, this will facilitate the subsequent performance of dynamic time-warping.
The warping and alignment of the amplitude envelope or A[n] involves dealing with both

amplitude and time. For each one of these axes, there are two obvious strategies which are

2010/09/17
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logarithmic interpolation and linear interpolation.

Having two possible interpolation strategies for two different aspects of the temporal
envelope yields four possible strategies for interpolation: linear time and linear amplitude;
linear time and logarithmic amplitude; logarithmic time and linear amplitude, and finally,
logarithmic time and logarithmic amplitude. For all strategies, the envelope was interpo-
lated in 5 steps, where the interpolation factors were: 0.0, 0.25, 0.5, 0.75 and 1.0.

ADSR interpolations with linear Time and linear Amplitude ADSR interpolations with linear Time and logarithmic Amplitude
— interpolation factor = 0.00 —— interpolation factor = 0.00
08 —— interpolation factor = 0.25 | | 08 interpolation factor = 0.25 | |
’ interpolation factor = 0.50 : interpolation factor = 0.50
interpolation factor = 0.75 interpolation factor = 0.75
0.6 interpolation factor = 1.00 | 0.6 interpolation factor = 1.00 |
0.4 1 0.4
0.2 ———\ 0.2
0 e i i i 0 N n I i i i L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
4 4
x 10 x 10
ADSR interpolations with logarithmic Time and linear Amplitude ADSR interpolations with logarithmic Time and logarithmic Amplitude
— interpolation factor = 0.00 — interpolation factor = 0.00
08 —— interpolation factor = 0.25 | | 08 interpolation factor = 0.25 | |
’ interpolation factor = 0.50 : interpolation factor = 0.50
interpolation factor = 0.75 interpolation factor = 0.75
0.6 interpolation factor = 1.00 | 4 0.6 interpolation factor = 1.00 |
0.4 1 0.4
0.2 j-———— 1 0.2
\ NL* E———
O e L L L [ T — L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
4 4
x 10 x 10

Fig. 4.1 Comparison of amplitude envelope interpolation strategies, the cor-
responding audio files can be found in the the project’s web pagel

We generated the sinusoidal model for a band-limited sawtooth-wave at 441 Hz in
Matlab and then used Ircam’s pm2 to synthesize the wave. Two arbitrary contrasting
amplitude envelopes were created. Then the envelopes were interpolated with the different
combinations of strategies. Afterwards, the sawtooth-wave’s gain was scaled by the set of
interpolated envelopes. Lastly, we compared the results of the four different interpolation
strategies in an informal listening test.

The listening test showed the choice of logarithmic interpolation along both, time and


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR
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amplitude, dimensions to be superior to linear interpolation. The envelope interpolations
are depicted in figure L] and the resulting audio samples can be accessed on the project’s
website[d]. The following list contains links to playlists in order to provide easy access for

readers of the electronic version:
e linear time, linear amplitude,
e linear time, logarithmic amplitude,
e logarithmic time, linear amplitude and

e logarithmic time, logarithmic amplitude.

4.2 Morphing spectral envelopes

The interpolation of spectral envelopes or E(f) will generally be performed separately on
the deterministic and stochastic component. This would imply that our choice of strategy
for spectral envelope morphing is perhaps of greater importance than that of other features.
The comparison that we carried out uses deterministic component. However, since the
component is a spectrally-rich source, the results should be readily applicable to stochastic-
part representations.

Spectral envelopes can be obtained through various analysis techniques[64] and they
can also be represented in several exactly equivalent or approximately equivalent ways[21].
Because the combination of spectral envelope analysis techniques, spectral envelope rep-
resentations, and types of sounds which can be analyzed is rather large, we have chosen
the true envelope estimation, which seems to be accurate and well-behaved in most cir-
cumstances, albeit computationally expensive. We mention different analysis techniques,
leading up to the one we have chosen. Afterwards presenting possible representations of
spectral envelope information and finally reporting on the implementation of the com-
parison of spectral envelope interpolation strategies. Note that we can find equivalences
between E( f) representations, some exact and some approximate, regardless of the method

by which the estimation was performed[21].


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/linT-linAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/linT-logAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/logT-linAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/logT-logAmp.m3u
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4.2.1 On spectral envelope estimation

A spectral envelope obtained from spectral analysis of a given signal is an approximation
that relies on smoothing spectral information as a function of frequencyll in one way or
anotherﬁ. Therefore, the way in which the spectral envelope is estimated will greatly
impact the sort of envelope we obtain. Schwarz and Rodet[64] wrote an article which
compares different spectral envelope estimation techniques. The following descriptions are
extremely simplified but are sufficient for giving the reader a broad idea in regards to
spectral estimation.

The simplest forms of approximating spectral envelopes are given by the line-segment
approximation of peak Valueﬁ selected from each section of a partitioned frequency domain.

Linear predictive coding gives a good approximation of spectral envelopes but requires
significant tuning of the model order. This tuning calls for either prior knowledge or for
making assumptions about the signal to be analyzed.

Another way of estimating the spectral envelope is to low-pass filter a given signal’s
spectrum. This is the way in which cepstral approximations of the spectral envelope are
obtained. By choosing only the low frequency bins of a F'T' of the logarithm of the F'T
of the signal, we eliminate abrupt changes (higher quefrencz’esH)in the spectrum. The
problem with this approach is that the estimated spectral envelope generally turns out to
be significantly lower in magnitude than the actual peaks in the spectrum.

The discrete cepstrum yields a spectral approximation that, like the cepstrum, is also a
sum of sinusoidal functions. The difference is that the discrete cepstrum is an estimation of
the spectral envelope comprised by a sum of sinusoids which must pass through a discrete
number of points taken from the original spectrum. This method gives a better approxi-
mation than regular cepstral estimation when we have adequate information in regards to
the spectral peaks and the order is chosen appropriately. Yet, despite the improvement in
accuracy, discrete cepstral estimation can produce inaccurate envelope estimations when

the constraints are too tight for the order that has been chosent.

'In other words, smoothing each spectrum.

2This is not necessarily the case for envelopes obtained otherwise, for example those that derive from
knowledge of a particular physical model.

3whether we are referring to a single peak or some sort of peak averaging.

4In cepstral analysis we obtain the FT of the logarithm of the FT of a signal-quefrencies are to the
cepstrum what frequencies are to the standard spectrum.

e.g. When two points with very different magnitudes are too close in the frequency domain.
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An alternate way to counter the low magnitude yielded by cepstral analysis is to iter-
atively compute the spectral envelope for the peaks that remain larger in magnitude than

the spectrum. This is called a true envelope estimation.

4.2.2 On spectral envelope representations

We now focus on the comparison of the interpolations performed via different representa-
tions of the spectral envelope. All of the strategies that we tested relied on representations
which were derived from a true envelope estimation.

True envelope estimation yields either cepstral coefficients or an equivalent magnitude
spectrum. Based on the Wiener-Khinchine theorem, we can convert a magnitude spectrum
into an autocorrelation sequence by transforming it into a power spectrum and applying an
IFFT toit. Having an autocorrelation sequence is an intermediate step toward being able
to represent the spectrum as an auto-regressive model. From the transversal coefficients,

we can easily obtain a series of reflection coefficients, log-area ratios or line spectral pairs.

4.2.3 Comparison of F(f) interpolation strategies

We created a pair of arbitrary spectral envelopes with very different characteristics. The
first arbitrary spectral envelope has two resonances: the first resonance, with a peak am-
plitude of 1, is at 500H z, with a bandwidth of 25H z; the peak of the second resonance
is at 1150H z with a magnitude of 0.5 and a bandwidth of 50H 2. The target arbitrary
envelope contains a single broad resonance at 1500H z with a peak magnitude of 1 and a
bandwidth of 100Hz. A 90-partial sawtooth-wave with f, = 85Hz was generated again
through pm2. Then, for each strategy, the magnitudes were scaled by a series of 32 spectra
obtained by interpolating the two arbitrary envelopes. The choice of a low fundamental
frequency was made in order to have closely-spaced harmonics, revealing a good degree
of detail in the spectral envelope. This was deemed important since we did not include
frequency modulations in the audio examples.

We compared four interpolation strategies: naive linear and naive logarithmic cepstral
coefficient interpolation; reflection coefficient interpolation and log-area ratio interpolation.
These four strategies can be clearly grouped into two types: the cross-fade or bin-by-bin
interpolation of spectra and the interpolation of a representation with a stronger correlation

to a physical representation. Both naive interpolations belong to the former category and
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the remaining interpolations pertain to the latter. The resulting synthesized interpolations
can be heard on the project’s website[d] and each strategy is presented in the following

paragraphs.

Naive cepstral coefficient interpolation, linear and logarithmic interpolations

The naive interpolation of cepstral coefficients tends to give poor results with interpolation
factors nearing 0.5. Resonant frequencies of the peaks of the spectral envelopes remain
constant throughout the interpolation. Thus, toward the mid-point in the interpolation we
tend to have as many spectral maxima as the sum of the number of resonancesH in both
spectra. However, the interpolated peaks would all present a lower amplitude than their
original counterparts. This tends to produce a relatively flat spectrum which parallels the
loss of contrast addressed in image morphing in subsection 2.3.21 This relative flatness can
be observed in figure 2l Both audio examples can be found on the project’s website[9].
They have also been linked in the electronic version, click herel for the linear interpolation

and lhere for the logarithmic interpolation.

Interpolation of reflection coefficients and log-area ratios

Naive interpolations did not prove to be convincing given that there was no sweeping
of resonant frequencies and that it was found that interpolations with an interpolation
coefficient close to 0.5 could produce relatively flat spectra. Therefore, we then tried
two interpolation strategies that address these problems: The interpolation of reflection
coefficients and of log-area ratios. The former offer two important advantages over other
spectral interpolation techniques. Firstly, if the magnitudes of all coefficients for both
source and target spectra are limited to 1 then system stability is guaranteed throughout
the interpolation[61] since no interpolated coefficients will have a magnitude larger than
1. Secondly, their interpolation produces more meaningful spectral changes because they
can be seen as being derived from the ratios between cross-sectional areas of a series of
cylindrical sections which constitute a propagation path. That is to say, they are meaningful
changes since they reflect the acoustic behavior of interpolating the sampled diameters for

propagation paths: resonant frequencies move as well as magnitudes and bandwidths.

6If the spectral maxima or resonances from the two original spectra do not overlap during the interpo-
lation, otherwise we would have less peaks than the total number of peaks.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-naiveLin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-naiveLog.wav
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Fig. 4.2 Flattening of spectral envelope obtained by naive interpolation of
the cepstral coefficients at an interpolation factor of 0.5 vs. that of a spectral
envelope obtained by the interpolation of reflection coefficients with the same
interpolation factor.

Log-area ratios are similar to reflection coefficients but are often preferred in the speech
processing community since they are more directly related to the physical properties of the
vocal tract. Log-area ratios are related to reflection coefficients in that lar, = log(i;—ZZ)
where 7, is the k™ reflection coefficient[65].

In figure we can observe the difference between naive and non-naive interpolation
strategies. It is plain to see in this figure that not only do the spectral envelopes flatten out
toward the middle of the interpolation on both naive cases whereas peakiness is maintained
throughout both reflection coefficient and log-area ratio interpolations. Another difference

which is apparent to the naked eye is that the resonant frequencies do not move during

naive interpolation, whereas figures |4.3(c)| and [4.3(c)| present a frequency sweep along in-

terpolation paths. The frequency sweep is, perhaps, ideally smooth but the results are a
considerable improvement over the results from naive interpolation.
Both audio examples can be found on the project’s website[9]. They have also been

linked in the electronic version, click lhere for the reflection coefficient interpolation and


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-rc.wav
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herel for the log area ratio interpolation.
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Fig. 4.3 Four spectral interpolation strategies, two bin-per-bin interpolation
strategies, reflection-coefficient interpolation and log-area ratios interpolation
applied to the same two arbitrary spectral envelopes. Meshes were obtained
by performing 32 interpolation steps between two 512-point spectra.

Line Spectral Pairs or Frequencies

An additional strategy was tested but gave very poor results in the present context. In

speech processing, it is common to use line spectral pairs, also called line spectral frequen-

cies, for envelope representation[48]. But in this context, we found that as the order of our

representations increased, interpolation of LSP introduced considerable inaccuracies and


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-lar.wav
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discontinuities. Figure 4] represents an interpolation of the same two spectra which were
used for previous examples. In this case, the order is reduced to 64 frequency sampling
points as opposed to 512 which were used in prior realizations. Already with this order
we start to see some discontinuities, such as the spurious peaks throughout the higher fre-
quencies, as well as a gap in the resonance toward interpolation factor 0.8. Higher orders

produced increasingly disparate results.

Spectrum interpolation, line spectral frequencies
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Fig. 4.4 Line spectral pairs interpolation for the same two envelopes that
were used for prior interpolations. With as little as 64 sample points per
envelope, spurious peaks can be observed.

4.2.4 Some considerations and proposed improvements

We have compared four interpolation strategies for spectral envelopes which, due to their
generality, could be useful in most cases. Yet there are several improvements which can
be implemented. Foremost, if we were to be dealing with spectra having well-defined
formants, optimal results could be obtained by using a method consisting of matching
formants between the involved spectra and then performing a logarithmic interpolation of

resonant frequencies, Q factors and amplitudes[66]. Formant information can be acquired in
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several ways. It could be derived from a physical model, estimated through L PC analysis or
it could also possibly be approximated from a power spectrum as proposed by Depalle[67].

Alternatively, for peaky envelopes, which can be estimated via LPC' line spectral pairs
would seem to be an appropriate choice if we rely on findings from the speech processing
community.

We also recall, from subsection 1], Caetano and Rodet’s[22] paper on evolution-
ary spectral morphing. By the same token, we recall that in section we mentioned
Pfitzinger’s[41] Dynamic Frequency Warping algorithm. This seems to be a very promising
method as can be heard from the results posted on his webpage[50] which is linked here in
the electronic version of this document. It’s worth noting that, in the implementation of
DFW, the preoccupations in terms of strategy are displaced to the tuning of the Dynamic

Programming algorithm for finding correspondences between spectral peaks.

4.3 Warping along the frequency axis

As we have previously stated, within the musical context we often find sounds which have
a harmonic or quasi-harmonic structure in the arrangement of their partials. For these
sounds we have a frequency fy such that it is the maximum common divisor of all partial
frequencies. Sounds with such characteristics are perceived as having a definite pitch, and
it is important, throughout a morph between two such sounds, to retain the harmonic
structure so that as one sound evolves toward the other, fractional interpolation factors
don’t yield inharmonic sounds.

The first and obvious comparison that we could perform between a pair of strategies
is that of logarithmic interpolation vs. linear interpolation. Yet most times that we find
mention of the actual method of interpolation of partial frequencies in the literature, log-
arithmic interpolation is preferred[4], [7, [§]. Since we found a quick perceptual test to be
in agreement with the unanimous choice of logarithmic interpolation, we have decided to
forgo this comparisont].

In what regards fy interpolation, a more interesting area of exploration is that of keeping

a harmonic structure throughout the interpolation while avoiding glissandi covering great

"We have, nevertheless, investigated linear interpolation and left it as a commented out section of code
in the scripts. If uncommented, this section performs linear interpolation, in case the reader is interested
in executing it.


http://www.phonetik.uni-muenchen.de/~hpt/morphing
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distances between different fys, since the gliding becomes an overpowering characteristic
of the sound. Thus the comparisons performed in this area head toward proposing a
viable solution to spanning greater fundamental frequency differences through the shortest
possible glissandi.

For every comparison, we chose two fundamental frequencies, fy, and fy, and performed

their interpolation throughout a 5 second sawtooth-wave.

4.3.1 First strategy, one-to-one naive partial frequency interpolation

In order to illustrate the overpowering effect of glissandi, a choice of fy,, = 441Hz and
fo, = 882H z was made; this is equivalent to an ascending octave. An sawtooth-wave with
twenty partials was created in order to avoid aliasing toward fj, and the partial frequencies
were logarithmically interpolated from the onset to ¢ = 4s. An example of this strategy

can be found on the project’s webpage[9] and has been linked herel in the electronic version.

4.3.2 Second strategy, closest harmonic structure partial amplitude

interpolation

The same fundamental frequencies were interpolated but in this case, we took advantage of
the common harmonic structure between the two sounds. Since the partials’ frequencies of
a sawtooth-wave at fy, are equivalent to the even partials’ frequencies in an sawtooth-wave
at fo,, fo,’s odd partials were faded out between ¢ = 1s and ¢t = 4s. There is a very big
difference with the prior strategy, since the proposed octave fadings produce no glissando
throughout. Recalling the three possible types of audio morphing proposed by Slaney,
Covell and Lassiter[2], this strategy yields a result which is most likely to be preferable
particularly in the context of a dynamic morph since it seems easier to keep focused on the
timbre throughout the interpolation than with the glissando. By the same token, the first
strategy might be preferable for what Slaney et al refer to as stationary and cyclostationary
morphs. The comparison of the first and second strategies can also be seen on figure 5l
An example of this strategy can be found on the project’s webpage[d] and has been linked

here in the electronic version.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-naiveOctave.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantomOctave.wav
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FO alignment strategy with partial frequency interpolation for two sounds an octave ape FO alignment strategy with odd partials’ amplitude fading out
18000

16000
14000
12000
10000

N

T
8000
6000 -

4000

2000

0

[ 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400
frames frames

(a) fo naive warping over an octave (b) fo warping with octave fading.

Fig. 4.5 Two fy warping strategies, corresponding audio files can be found
on the project’s websitel Partials obtained by performing interpolations di-
rectly on the parameter set. The representations differ since amplitude—
pictured as brightness—only varies in the second strategy. A frequency
vs frames representation: frequency of partials gradually increases toward the
target fo, keeping a harmonic relation. frequency, frames and ampli-
tude representation: The spectrogram shows partials fading out toward the
end, where only even partials remain

4.3.3 Extending the previous strategy

For the next trial we have chosen fy, = 3 - fp, which is equivalent to an ascending just
thirteenth or an octave plus a just fifth. Instead of a very broad glissando, we have again
resorted to fading partials out throughout the event; in this case we fade out two out of
every three partials.

An example of this interpolation can be found on the project’s webpage[d] and has been

linked herel in the electronic version.

4.3.4 Third strategy, closest neighbor and closest harmonic structure partial

amplitude interpolation

In order to illustrate this strategy, we have chosen fy, = 441Hz and fy, to be %fol which
is equivalent to an ascending minor sixth in just tuning. Following the same principle
of fading partials, we have performed a glissando toward % fo, coupled with fading odd

partials. We have also performed a naive interpolation of fy, and fy,. The fy ratio from


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantom13th.wav
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the interpolation with the fading partials is equivalent to a descending major third in just
tuning. The rationale behind this choice is to take the shortest distance approach in order
to avoid extensive glissandi.

The reader is encouraged to listen and compare the results; both interpolations are
available from the project’s website[9]. They have been linked in the electronic version: the
naive interpolation has been linked here and the fading-partials interpolation here.

Given any two fos, fo, and fo,, a good procedure for obtaining the shortest glissando
along with phantom partials would be to follow an algorithm which seeks to minimize the
interval of the glissando and at the same time retains as much as possible from the target
harmonic structures. We have sketched out a routine to achieve this goal in algorithm [4.1]
where we study several possible routesH to get from the lower f; to the higher f;. We then
store values for each one of these possible routes in an array and in the end we opt for the
route ¢ with the lesser glissando. Note that minor adjustments should be made at the end
for slight deviation of partial frequencies from the underlying harmonic model due to their
inharmonicity coefficients.

The possibility of combining partial fading with glissandi can prove useful for the ful-
fillment of certain musical constraints. One example of this could be the placement of a
different constraint for choosing ¢, such that it yields a cent2gliss value as close as possible
to forcing a certain intervalic content on a morph; where the sought interval is in accordance
with a harmonic or melodic context.

It would be advisable to exercise caution, avoiding too many of the partials to fade in or
out during the process since we can easily approach results which are closer to cross-fading
than to morphing. Thus it could also be of interest to place constraints on ¢ in regards to
the resulting finalPartial2phantom. Another consideration to take into account is that
in performing this type of strategy we might impose changes on the spectral envelope as

well as on even-to-odd ratio.

4.4 Morphing vibrato

As we have seen in chapter B a generalized form of vibrato can be understood to be

comprised of the modulations of an event’s frequency and amplitude, and the implicit

8There is a potentially redundant number of them, but it seems to be sound enough for a first approx-
imation to the issue at hand.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-glissSixth.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantomSixth.wav
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Algorithm 4.1 is a way of interpolating between fy, and fy, getting the shortest glissando
with partial fading. Several paths, ¢, between harmonic structures that in the case fading
partials would have no more than % of their partials in common are explored and the
shortest glissando, is chosen to be finalCent2gliss, giving a final number of common

partials partial2phantom.
if j:o—2 > 1 then
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end if

for b =2 to f%} do
exponent,_g < log, (5) :
partial2phantomp,_g) < plezponentp_z+0.5],
ratiop_o) <— pewponentip_ —lezponent(y_+0.5].
cents2glissy_g) < logs (mtz’o[b_Q]) - 1200;
end for
c<b—2, s.t. |cent2glissy_o| = min(|cent2glissp_q));
finalCents2gliss < cent2gliss,;

final Partial2phantom < partial2phantomy;
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spectral envelope modulations which result from considering the amplitude modulation
of each first-order partial separately. Modulations can be seen as a series of inharmonic
low-frequency partials which can be extracted from a second order sinusoidal analysis.
We have sought to extrapolate the time-stretching technique proposed by Marchand
and Raspaud[58] in the context of morphing and have found the results to be adequate.
In order to do so, we have performed an interpolation of two vibratos extracted from the
analysis of a violin tone and a saxophone tone. The steps that were followed can be grouped
into three general stages: Analysis of interpoland modulations, establishment of temporal
correspondence and re-synthesis of target modulations. The stages and the steps performed

therein are described in the following pages.

4.4.1 Analysis of interpoland modulations

The first step is to define how we will measure modulations in a way that is somewhat
independent of fy and amplitude. Take for example the case of frequency deviation: since a
maximum deviation of 20 Hz is perceived as a mild vibrato for a note with f, = 2000H z but
a wild vibrato for an event with fy = 200H z, it would be desirable to have our measure of
deviation in units that can be easily ported between sounds by virtue of being independent
from fy. The same principle applies to whatever choice we make for measuring amplitude
modulations. A standard procedure to achieve this is to use a relative error, which instead
of measuring the total frequency deviation Af it measures the variation relative to the
mean €, = %.

We have chosen a particular variant to measure frequency deviations in such a portable

fashion: doing so in cents. This can be done in the following manner:

fO'mst [k]

- 1200
anvg

fmcents [k] - l0g2
where foinst[k] is the value of the first partial’s frequency at frame k, fyq., is the mean value
of fo across all the event’s analysis frames and fmcens[k], for the K available frames is the
frequency-independent representation of the modulated signal.

Amplitude modulation or the instant amplitude deviation from the amplitude envelope,
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on the other hand, can be measured in decibels. Thus we have:

AMPinst [k]

amgBlk] = 20 - logy p—E

where amp;,s[k| is taken to be the amplitude at analysis frame k and ampe,,[k] is the
value of the amplitude envelope at frame k.

During the analysis, stage, we perform a first-order sinusoidal analysis of our target
sounds and then extract the modulation signals in cents and dB. Once we have the tar-
get modulation signals, we extrapolate them in preparation for a second-order sinusoidal

analysis which we perform at the end.

Vibrato extraction

In order to evaluate the proposed strategy on two realistic vibratos, we prepared for the
interpolation by performing second order sinusoidal analysis of two notes played on a violin
and a saxophone respectively. For the most part, we followed the procedure proposed by
Marchand and Raspaud[58]. The analysis was performed on the harmonic track information
which was obtained from a pm2 analysis. The hop size for the harmonic analysis was 1024
samples and the audio files were originally sampled at 44100 Hz. Thus the resulting analysis
sampling rate for the extracted first-level sinusoidal data was roughly 43 Hz, which allowed
us to extract modulation informationH up to 21.5 Hz. This upper bound effectively limited
the information that we could obtain from a second order sinusoidal analysis to the sub-
audio frequency range, which is precisely the range in which we are interested.

Frequency modulation was extracted only from the first partial, as a deviation given in
cents, allowing the information to be independent of the notes’ fj.

For the analysis of amplitude modulations, we needed to define a method for estimating
the amplitude envelope. We opted for performing a frequency-domain low-pass filtering of
the partial’s amplitude evolution. Filtering in the frequency-domain, yields no group delay
and eliminates all energy at frequencies above the cutoff frequency. We chose a cutoff
frequency of 6 Hz and obtained adequate results. Yet as with many analysis methods,
some tuning should be performed on the cutoff frequency for each realization in order to

obtain a smooth amplitude envelope.

Yie, second order partials.
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Fig. 4.6 Figure shows the raw amplitude values per frame and their
Fourier transform, excluding dc offset. Figure shows an ideal low pass
filtering of the amplitude envelope, obtained by zeroing out higher frequen-
cies in the spectral domain. Figure shows the ratio between these two
versions of the amplitude envelope.

For an implicit spectral envelope modulation, amplitude modulation analysis should
be performed on each partial; in this reductionist trial, we only used a single amplitude

modulator obtained from the first partial.

Signal extrapolation

Following the procedure for vibrato preservation during time-stretching proposed by Marc-
hand and Raspaud[58], the frequency and magnitude-independent modulations were ex-
trapolated, or extended, so as to increase the accuracy of the analysis for the first frames of

our signal. In this case, differing from the method that they propose, a standard method
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for extrapolation was used; by placing a symmetric inversion of the signals at their start
and end-points:
—x[—k] it —K<k<0
Teatrap k] = S x[k] if0<k<K
—z[K — k] if K <k<2K

where z[k] is defined for k € Z such that 0 < k < K and Zegirqp is defined for k € Z such
that —K < k < 2K. The result of extending a signal with this extrapolation strategy can

be seen on figure
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(a) Original signal. (b) Extrapolated signal
Fig. 4.7 Extrapolation increases the accuracy of the STFT at the extrap-

olated region by diminishing the impact of discontinuities. Here we have an
illustration of the extrapolation procedure described above.

Second order sinusoidal analysis

After the signals were extrapolated, a partial tracking analysis was performed on the fre-

quency and amplitude information obtained from the first-order sinusoidal analysis. The

10 Although through this type of extrapolation we eliminate discontinuities at the boundaries of our
signal, we do not necessarily eliminate discontinuities in its first derivative, thus the spectrum cannot be
steeper than 12 dB per octave.
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analysis was performed via pm2. Attention was paid both to the upper and lower frequency

bounds of the second-order partial analysis.
The upper frequency bound is important since the goal of the second—ordeartial
We

satisfied this condition by choosing the first-order partial analysis frame rate to be 43 Hz;

analysis is to model the sub-audio rate partials that can represent modulations

effectively placing an upper bound of 21.5 Hz on the frequency content that could be
extracted by the second-order partial analysis.

In regards to the lower bound, vibrato can contain very low frequencies which should
not be lost during the second-order partial analysis; therefore, the ST FT parameters for
second-order partial analysis should include a large window size. But with an already low
sample rate, as was the case with our first-order analysis frame-rate, a large window implies
a very poor time resolution; we are faced with the ubiquitous time-frequency resolution
constraint. Fortunately, the loss in time resolution can be palliated by the use of a small
hop size. Weighting trade-offs, we chose to use a 64 point windo with a hop-size of 4

samples.

4.4.2 Time-warping, re-sampling and matching of modulation information

Once we had extracted a second-order partial model of the modulations of each target
sound, we were faced with the need to warp these models. The need stems from the
discrepancy between both sounds’ durations. Thus, each morph requires warping target
sounds to an interpolated duration. Consequently, the second-order partial models must
also be warped. The approach taken was to over-sample these models until a common
number of second-order frames was attained. Oversampling the second-order models’ am-
plitude and frequency information required a different approach from oversampling their

phase information.

Time-warping

Once the duration of the interpolated sound was decided, and for each target sound a

time-warping factor was found. Each frame’s timestamp was modified according to the

Vibrato is, by definition, concerned only with the modulations that occur below the frequency threshold
of audibility.
12More than two periods of frequencies higher than 1.34 Hz.
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time-warping factor, effectively changing the frame rate so as to attain the target dura-
tion without modifying the amount of frames. Differently from frequency and amplitude
information this time-warping required some sort of compensation to be performed on
phase information; each partial’s phase vectors were unwrapped and then multiplied by
the time-warping value in order to preserve phase evolution.

It is important to remember that in this simplistic case we had a single time-warping
factor, yet for most sounds, time-warping would imply at least two different time-warping

coefficients in order to be able to align the attack independently from the overall duration.

Oversampling

We then oversampled second-order partial information from both target sounds to a least
common multiple of each one of the resulting frame rates. In their article, Marchand and
Raspaud propose oversampling by means of convolving with a sinc function. We over-
sampled our data by a process which is equivalent to this convolution: by adding zeros
between known sample; then performing a F'T" on the resulting signal; eliminating all
frequencies which are higher than the original Nyquist frequency; scaling all magnitudes
by the upsampling factor, and then performing an I FT on the rescaled low-pass filtered
information.

The procedure for the phase information of each partial was different than the one used
for magnitude and frequency. The previous procedure, actually retains the frequency infor-
mation of the signal up to the original Nyquist frequency and does not add any frequency
content above it, eliminating contributions from the frequency range between the original
Nyquist frequency and the higher Nyquist frequency resulting from oversampling. Since
linear or quasi-linear functions can be generally seen to have a relatively flat spectrum and
a partial’s phase tends to present a quasi-linear evolution, it follows that phase information
is not well represented as a sum of lower-frequency sinusoids. Thus the previously described
oversampling procedure generally yields a fair amount of ripples. If instead of oversampling
by the frequency-domain equivalent of a sinc convolution, we perform a cubic interpolation
for the known phase values at the times given by the new sampling intervals, we obtain a

phase evolution which is much closer to the original in terms of being quasi-linear.

13This is Matlabs standard upsample() routine.
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4.4.3 Interpolation and target modulations

What remained to be done was the interpolation of the second-order partial models, re-
synthesizing modulations from the resulting model and applying these modulations to the
otherwise morphed first-order partial set. It is important to note that interpolation of the

second-order partial sets required finding a strategy for matching partials between models.

Interpolation

Once our second-order sinusoidal analysis had a common duration and a common frame-
rate, partial correspondence was sought between each one of the interpolands. The first
strategy was to establish a correspondence based on the proximity of each second-order
partials’ frequency. This was seen to yield poor results and so we tried establishing corre-
spondence based on partials’” magnitudes; the latter strategy yielded far superior results.
Since partial sets differed in regards to number of partials, the unmatched partials of the
larger set were matched with phantom partials. Their frequencies and phases were equal-
ized to the matching set’s frequencies and phases. The phantom partial’s magnitude, on
the other hand, was set to be zero.

Subsequently, corresponding partials’ frames were interpolated. Having observed log-
arithmic interpolation to be best suited for frequency and magnitude, it was seen as an
obvious choice for these two partial characteristics, while phase interpolations were per-

formed linearly on the unwrapped phases.

re-synthesis of modulator

After performing interpolation, we performed a re-synthesis of the frequency and amplitude-
independent modulator signals via pm2. It was observed that performing such a re-
synthesis through the oversampled partial information produced unexpected results, con-
taining higher frequencies than the original modulators, this is perhaps a phase evolution
problem or a bug in our sample-rate changing routines but we have not yet discovered it.
The solution was found to be to downsample back to a lower sampling rate, in the vicinity
of either one of the original samplerates, before re-synthesis.

Different resulting modulator signals are shown in figures and
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Fig. 4.8 Amplitude modulation interpolation, the extracted AM is repre-
sented in terms of dB, so as to be useful for modulating any partial despite its
magnitude .
Modulation

The last step was to impose the resulting modulators on a sawtooth-wave for perceptual
validatio. This was achieved by importing the modulator tracks into Matlab and using
them to modulate an arbitrary set of partials which were then re-synthesized through pm2-
similarly to those of other prior tests. The results can be found on the author’s webpage[9]
and have been linked in the electronic version.

“During this particular realization, the saxophone vibrato, was perceived to be somewhat faint and was
thus exaggerated by multiplying the magnitude of both it’s AM and FM parts by a factor of 4.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpVib/interpVib.m3u
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Interpolation of frequency modulations
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Fig. 4.9 Frequency modulation interpolation, the extracted FM is repre-
sented in terms of deviation in cents, so as to be useful for modulating any
partial despite its frequency.

4.5 Inharmonicity

As we have seen in chapter [3 inharmonicity is a deviation from purely harmonic relations.
In physically produced sounds, inharmonicity tends to occur due to specific characteristics
of the resonator; characteristics such as string geometry for an oscillating string or bore
irregularities in a wind instrument.

The way that we have defined inharmonicity allows us to consider a single coefficient that
measures the overall inharmonicity of a given sound or to characterize the relations between
partials’ frequencies by means of a vector of inharmonicity coefficients corresponding to each

partial above the first.



4 Experimental Observations and Results for synthetic sounds 61

The proposed inharmonicity vector allows us to interpolate between harmonic or quasi-
harmonic series. Moreover, such a definition grants us the necessary tools to interpolate
completely inharmonic sounds with a harmonic series. Since inharmonicity relies on the
assumption that at least one of the interpolands has an underlying harmonic structure, we
have not contemplated the interpolation of two completely inharmonic signals, where we
should be faced with a partial matching problem that doesn’t require a harmonic structure
for it’s solution.

We have written a few scripts for testing different possibilities of interpolation of in-
harmonicity coefficients on harmonic, quasi-harmonic and inharmonic partial series. For
harmonic and quasi-harmonic partial series of n components, all of the first n components
are present and have an -6 dB per-octave roll off; thus, we could talk about sawtooth-waves
and quast sawtooth-waves.

When dealing with inharmonic series, we have contemplated two cases. In order to
deal with the two categories that we have envisioned for fully inharmonic sounds let us
define a full-partial, inharmonic set as one for which each partial could be matched with an
underlying harmonic structure. By the same token, let us define a sparse set of inharmonic
partials as one for which there are fewer partials than those which would be contained in
an underlying harmonic structure spanning the same frequency space. For the first case, or
the full-partial inharmonic sound, all partials present in our tests have equal magnitudes.
In the second case, or sparse set of inharmonic partials, we used varying magnitudes as
well as phantom partials to match with the underlying harmonic structure.

We have first set out to compare linear and logarithmic interpolation. Furthermore, we
then detail a method for interpolating sparse inharmonic sets of partials, such as those that

we could extract from a bell sound, with full harmonic or quasi-harmonic series.

4.5.1 Interpolation of coefficients

The linear interpolation of inharmonicity values for any two given series of partials is a
trivial routine. Yet if we want to compare it with a logarithmic interpolation we are then
faced with a problem: inharmonicity coefficients include the set of numbers [—1,0] for
which a logarithmic function is not defined.

One solution is to offset inharmonicity values to a range such as [1, 3], interpolate them

and then remove the offset. This is not an optimal solution, since interpolation curves will
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vary depending on how large of an offset we use and our original intention was to have the
resulting frequencies behave as if they had been interpolated in a logarithmic fashion.

Thus, another solution is to obtain target frequency values according to each partials’ in-
harmonicity coefficients and then to interpolate partial frequencies as opposed to the actual
inharmonicity coefficients. This is, in a way, cheating since we are not really interpolating
the inharmonicity coefficients but the actual frequencies that they yield. Nevertheless, it
should give us accurate sound examples by which we can evaluate logarithmic interpolation.

One comparison trial was realized for a full-partial, inharmonic set to harmonic series
interpolation and another one was carried out for an interpolation between two quasi-
harmonic series. Finding a sound with a full-partial, equal-magnitude, inharmonic set is
unlikely, yet this realization was used to test what could be considered an extreme case;
thus helping to perform a qualitative evaluation of the method via the resulting sound file.

For each comparison, a random vector of inharmonicity coefficients was created. The
complete [—1,1] range was used for inharmonic sounds. Whereas an arbitrary constraint
was placed on the inharmonicity coefficients in order to consider the sound quasi-harmonic,
limiting them to the [—0.25,0.25] range.

Although logarithmic interpolation did sound more natural to our ears, we found the
difference between linear and logarithmic interpolation to be rather small.

A closer look at the behavior of partials during interpolation is more eloquent in regards
to the almost negligible effect of the choice of interpolation type. Let us remember that
the limit case is when we interpolate the inharmonicity coefficient of -1 from the source
sound’s partial with an inharmonicity coefficient of 1 for the target partial. In this limit
case, the largest differences between linear and logarithmic interpolation occur around an
interpolation coefficient of O.. For the second partia, interpolating coefficients 1 and
-1 would yield a maximum difference of approximately 55 cents between the two types of
interpolation. As the harmonic number increases, this difference decreases, as can be seen

in figure .10l Already at partial number four, we can see that the worst-case difference is a

15 Actually the point of maximum difference is where % of h — 0.5 % (ng:g)o‘ = 1, which for a second

partial is roughly o = 0.522, for a third e = 0.511 and it asymptotically approaches o = 0.5 as h increases.
16 Although the first partial may have an inharmonicity coefficient, or even be absent, we simplify by
stating that fy will be the average frequency of our first partial.
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Fig. 4.10 The worst-case relative frequency difference per partial for the
interpolation coefficient which gives the largest discrepancy between linear
and logarithmic interpolation of inharmonicity coefficients. Differences are
given as cents, dependent on the partial number and the worst case scenario
corresponds to the interpolation of coefficients 1 and -1. As can be observed,
the difference above the third partial becomes negligible.

negligible 13 cents. These differences can be found by evaluating the following expression:

h =05+ 0nuw ) 90 (4.1)

h/ - 05 * <_Ztgg>aAmaz

ACentsy, = loga(

Where h is the harmonic number, ACentsy, is the difference in cents between the logarithmic

and linear interpolations for a given harmonic and ap,, . is the interpolation coefficient at

which the maximum difference between interpolation strategies is found.
The resulting sound examples can be found on the project’s website[d] and the files are

herein linked for the reader’s convenient access.

e linear interpolation between two quasi-harmonic sounds,

e logarithmic interpolation between two quasi-harmonic sounds,


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-quasi2quasi-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-quasi2quasi-log.wav

4 Experimental Observations and Results for synthetic sounds 64

e linear interpolation between an inharmonic sound and a harmonic sound,

e logarithmic interpolation between an inharmonic sound and a harmonic sound

4.5.2 Matching partials between inharmonic sounds and underlying harmonic

structures

The partial-matching strategy we chose dictates that partials from inharmonic sounds are
always matched to their closest neighbour from the underlying harmonic structure. For any
given partial in an inharmonic sound, correspondence to the underlying harmonic structure
only results ambiguous in the limit case, when the partial’s frequency falls exactly half-
way between two harmonics and it could matched with partial A with inharmonicity 1 as
well as with partial A + 1 with an inharmonicity coefficient of -1. In such a limit case,
other considerations might decide in favour of one choice or another; e.g. the trends of
surrounding partials. Conversely, components from the underlying harmonic structure
that find no correspondence in the inharmonic sound’s partials can then be paired with a
zero magnitude version of themselves

Both logarithmic and linear interpolations between sparse inharmonic series of variable
partial magnitudes and harmonic series can be found at the project’s website[d]. The files
have also been linked in the electronic version of the document for the reader’s convenience:

Interpolations between an inharmonic sound with phantom partials and a harmonic

sound:

e linear,

e logarithmic

4.6 Even to odd partial energy ratio

The interpolation of the even to odd ratios is relatively straight-forward. By definition,

EOR deals with energies, which is a sum of squared magnitudes and can be seen as a

17As in other partial matching strategies which rely on phantom partials, it is important to note that
due to simultaneous masking, phantom partials become evident only toward the end of their magnitude
interpolation. We thus propose researching the factors that might influence the choice of a lower threshold
for phantom partial magnitude interpolation. We believe that phantom partials should start at a magnitude
slightly inferior to whatever masking threshold is in play for their frequency within a given context. Yet
this is subject matter for future study.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-log.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-phantom-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-phantom-log.wav

4 Experimental Observations and Results for synthetic sounds 65

squared gain which is applied to the even set of partial@. From chapter Bl we recall
the three types of morphs mentioned by Slaney, Covell and Lassiter[2]: stationary, cyclo-
stationary and dynamic. During a stationary or cyclo-stationary morph we can interpolate
the ratio of the total energy contained in each of the subsets of partials: even or odd.
But for dynamic morphs we can only interpolate the ratio of the power of both sets; an
interpolation which takes place on a frame-by-frame basis. Thus, for the EOR interpolation
during dynamic morphs, a single EOR measure is insufficient; we must have a measure of
EOR per frame.

Like most of the previous features, the interpolation can be performed linearly or loga-
rithmically. We have carried out tests with both sorts of interpolations and found logarith-
mic interpolation to be much smoother. This comes as no surprise since we have already
corroborated logarithmic interpolation of amplitudes to be much smoother than their linear

interpolation.

Magnitudes of normalized even and odd harmonics with linear EOR interpolation Magnitudes of normalized even and odd harmonics with logarithmic EOR interpolatic
T T T T T 18 T T T T T T

T T T T T
Even Harmonics| Even Harmonics|
— Odd Harmonics — Odd Harmonics
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(a) Linear interpolation of EOR (b) Logarithmic interpolation of EOR

Fig. 4.11 A comparison of the behaviour of amplitude given by linear and
logarithmic EOR interpolation strategies.

A brief scrutiny of the differences between logarithmic and linear interpolation of EOR
will serve to caution the reader against the use of linear interpolation for this feature. As
previously mentioned, let us simply consider the EOR as a square of the gain applied to
even amplitudes keeping in mind that this is a heuristic, since that which concerns us
is the interpolation of energy, and not amplitude. With this simplification, it becomes

evident that the logarithmic interpolation of squared values is equivalent to the square of

18This dismisses the importance of the overall final gain of a sound but results in no loss of generality.
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the interpolation of the same two values.

2\ & a\ 2
2 [ 92 g2> )
' <9%) ( (91
For linear interpolation of squared quantities, however, this identity does not hold.

g (1—a)+gia # (g1 (1 — a) + g20)” (4.3)

With the interpolation of squared gain values, the divergence in the trends of the gain is
more pronounced than it would be in the case of logarithmic vs linear interpolation of the
gain itself. This divergence can be seen in figure LT1] and is bound to produce noticeable
discontinuities when EOR is linearly interpolated.

Both logarithmic and linear interpolations of EOR can be found at the project’s website[9].
The files have also been linked in the electronic version of the document for the reader’s

convenience:
e linear interpolation of EOR values ranging from 3—12 to 32,

e logarithmic interpolation of EOR values ranging from % to 32,

4.7 Partial attack times

We recall from chapter Bl that the distribution of energy throughout the attack is an impor-
tant feature. We also recall that it can be represented as a vector of times from the events t,
to each partial’s peak amplitude. Since the attack happens only once during a single-event
sound, this feature can only be morphed in stationary or cyclo-stationary morphs.

We have written a script to compare the linear and logarithmic interpolations of this
feature. The attack times for each of the partials were determined with a random generator,
and some of the times were sorted in ascending order corresponding to partial numbers.
Partial attack times ranged from 0 to 0.075 seconds during the first sound and from 0 to
0.25 for the second. Partials were chosen to be sorted in ascending time order according
to a Bernoulli process; in other words, the equivalent of a coin toss was performed for each
partial to decide if it would be part of the lot to be sorted or not. The target partial peak
times are plotted on figure as are the peak time interpolations.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEOR/interpEor-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEOR/interpEor-log.wav
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Fig. 4.12 A comparison of partial attack times for different partials given
by linear and logarithmic interpolation strategies.

Both logarithmic and linear interpolations of partial onset time difference can be found
at the project’s website[9]. The files have also been linked in the electronic version of the

document for the reader’s convenience:
e linear interpolation of partial attack times for two target sounds),

e logarithmic interpolation of partial attack times for two target sounds,

4.8 Deterministic vs stochastic energy ratio

Once all other features have been interpolated for both deterministic and stochastic compo-
nents, we will be able to synthesize them. After doing so, the last step required to effect the
morph is to mix the two components. By controlling the energy ratio for the deterministic
and stochastic components, we are indirectly controlling the gain that should be given to
each one of the components during their mix. Since many sounds of the type that we have
defined as musical sounds have a predominant deterministic part, we then propose that a
good rule of thumb should be to adjust the stochastic component’s gain in order to achieve
the desired energy rati.

We have carried out both linear and logarithmic cyclo-stationary interpolations so that

the user may compare them. The interpolations were performed between two given broad-

9Tn dynamic morphs, this would actually alter the stochastic part’s amplitude envelope.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpOTD/interpOTD-lin.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpOTD/interpOTD-log.m3u
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band components with an arbitrary amplitude envelope; the two target ratios were 1 and
4. We have two reasons for arguing logarithmic interpolation to be preferable to its linear
counterpart. Firstly, amplitude interpolation is generally perceived as smoother when it’s
carried out logarithmically than when it is done linearly. Secondly, as we have seen in
the section on even to odd energy ratio and corresponding figure 11l logarithmic inter-
polation of energy equates to logarithmic interpolation of gain, whereas there is no such
correspondence between linear interpolation of energy and gain.

We then performed a dynamic interpolation using the same two components and target
ratios. Given previous results, the chosen strategy for the dynamic morph was logarithmic.
Additionally, the interpolation was effected in both possible directions; form source to target
and from target to source. We note that while cyclo-stationary and stationary morphs only
require the interpolation of a single value throughout the whole morph, dynamic morphs
call for the interpolation of the ratio®™] on a per-frame basis. However, since this is a time-
variant ratio, it constitutes an approximation of a power ratio rather than the actual energy
ratio.

It is worth pointing out an important difference between this in vitro interpolation tes
and the interpolation of this feature during the cyclo-stationary morphing of two real-world
sounds: in the latter, all other features, would have been interpolated and thus the two
components to be mixed should be different for each different interpolation coefficient.

The reader may find all involved sounds on the projects webpage[9]. As with all other

examples, files have been linked in the electronic version for the reader’s convenience:

e deterministic component,

stochastic component,

linear cyclo-stationary interpolation,

logarithmic cyclo-stationary interpolation,

logarithmic dynamic interpolation source to target| and

e logarithmic dynamic interpolation target to source

20And thus, indirectly, the stochastic part gain.
21With a static behaviour for all other features.


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/det.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/stoc.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/linCyclo.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/logCyclo.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/dyn1.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/dyn2.wav
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We have seen that during dynamic interpolation we are actually dealing with power and
modifying the stochastic component’s amplitude envelope. Thus along these lines we could
also consider the possibility of deriving the stochastic component’s amplitude envelope
from the energy ratio between both deterministic and stochastic components. In order to
do this, we need to extract the power ratio per analysis frame, up-sample the sequence of
power ratios to audio-rate and take the square root of the resulting sequence to be the gain

parameter of the stochastic component.
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Fig. 4.13 Deterministic vs stochastic component power ratios

Extraction is done by obtaining the energy ratio at each analysis frame. We have
extracted two such ratios from real world sounds, one lute tone and one english horn note
and depict them along with their interpolations in figure .13l Having obtained power ratio
sequences and their interpolations, each ratio represents the squared gain at the center of
each analysis frame. Thus we up-sampled power ratios with a logarithmic strategy. Finally,
in order to convert them into usable gains, we obtained the square root of each sample in
the resulting sequence. The resulting series of gains is an amplitude envelope which can be

applied to a constant-power stochastic component for which spectral characteristics would
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generally have been interpolate. The reader may find an example of this strategy on the

project’s website[d]. Additionally, the file has been linked lherel in the electronic version.

22 Although in this trial we are simply using white noise


http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/cycloAlternate.m3u
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Chapter 5

Experimental Observations and

Results for real-world sounds

The current chapter presents some simple morphings which are solely aimed at assembling
the morphing framework, as well as validating proposed strategies. Morphing real-world
sounds revealed challenges that we had not anticipated during the interpolation of synthetic
sounds. In each case, we have at the minimum suggested a plausible solution as a future
exploration. In some cases we have attempted to solve these difficulties.

Two morphs were performed between a pair of notes from a clarinet. Despite their many
similarities, these two notes were different enough to allow the application and validation
of previously explored concepts. Throughout the chapter, we document both the procedure
that we employed in each case and the difficulties we encountered while effecting the morphs.

The arrangement of the chapter fully reflects the structure of the procedures that we
followed. These procedures were mainly determined by the choice of a representational
model and the selection of descriptors. The deterministic-plus-stochastic additive model
forced upon us an initial component separation. The subsequent analysis, interpolation and
resynthesis were almost all performed separately for each component and some descriptors
had to be obtained and re-synthesized in a particular order. On the other hand, the differ-
ences between cyclo—stationar or dynamic morphs called for slightly different procedures
to be followed.

Thus, we first explain the procedures followed for the extraction of features obtained

LOr stationary morphing, which is procedurally equivalent to cyclo-stationary morphing.

2010/09/17
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from the complete musical sound object, then for the component separation, followed by
the extraction of descriptors that can only be obtained after component separation has
been performed. We then recount the steps taken to achieve a cyclo-stationary series of
morphs and conclude by reporting on the realization of a dynamic morph.

The pitches of the two given musical sound objects were a B3 and an Ff; at roughly
250 Hz and 380 Hz respectively. The dynamic level for the Bs being mezzo-forte and piano
for the F'f4; both notes presented a noticeable vibrato. The vibrato of the first note was
stronger at the start while the vibrato of the second note was more pronounced toward the
end of the sound. The recordings were obtained from the RWC music database available
at the SPCL. As with the previous chapter, corresponding sound files can also be found
on the project’s website[d] so as to provide an audible illustration of the ideas discussed
herein; the reader is encouraged to refer to these samples. The B3 has been linked here

and the Ffi; has been linked here in the electronic version.

5.1 Analysis

The first step taken was to fit a global amplitude envelopeH to each sound object. The
subsequent step was to separate each one of the notes into its stochastic and deterministic
components. Afterwards, analysis and parametric extraction of both the deterministic and
stochastic components were carried out, bringing us one step closer to the morphing of each

one of the components.

5.1.1 An envelope fit for warping

The traditional model for amplitude envelopes is the ADSR, which finds its roots more
in parametric synthesis than it does in analysis. Peeters[60] has rejected this model as a
descriptor and after trying to employ it, we too find it ill-suited for our purposes. Morphing
musical sound objects requires us to perform dynamic time-warping in order to match
certain key moments. The definition of these key moments is a determining factor for
designing an amplitude envelope model. Taking this into consideration, we have defined a
collection of key-points that yields an alternative amplitude envelope model. This sort of

amplitude envelope approximation can be seen in figure 5.1l

2The amplitude envelope of the whole musical sound object, as opposed to an amplitude envelope for
one of the note’s partials or the amplitude of either the stochastic or deterministic component.


http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.sym.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.sym.wav
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The temporal features or key-points that we have chosen are the pre-attack, the attack,
the stable part, the release and the post-release. The pre-attack and post-release sections
contain ancillary noise such as the preparation of the attack or the breath release after
a note. Due to their noisy nature, these two sections are more present in the stochastic
component than the deterministic one. The attack and release sections are transitive stages
with a heavy amount of spectral flux. It is in these sections that the spectral centroid
change mentioned in chapter 3 takes placeH. The remaining section, the stable section,
is the quasi-stationary section characteristic of many musical sound objects; it is in this
section, for example, that we may find a significant extended vibratﬂ. In regards to the
amplitude envelope that stems from this choice, all sections except the stable stage are
represented by start and end times as well as start and end amplitudes; in the case of the
stable section, because of it’s potential duration and changed’ it can be modeled by a line

segment approximation.

On envelope approximation methods

We employed an ideal notch filter for our first attempt at amplitude envelope extraction;
we performed filtering in the frequency domain, completely removing all frequency content
that spanned the defined notch. Separating all frequencies that are relevant for amplitude
modulations was the motivation for the choice of this type of filter. We were aiming for
obtaining an envelope approximation and amplitude modulation information in a single
step. The reader may see in figure [5.1] that the resulting amplitude envelope is a very poor
approximation, presenting an extremely slow attack and considerable oscillations. We tried
tuning the filter with different upper and lower bounds for the ideal notch and were unable
to obtain good results. The notch filtering performed in figure [5.1] effectively eliminates
frequencies between 1 and 20 Hz.

We then tried a classic smoothing procedure: a moving average filtering. In this case,
the envelope approximation behaved much better than ideal-notch filtering, particularly
for the purpose of extended vibrato extraction. However, it also caused some important

distortions by augmenting attack and release times.

3We remind the reader that this movement in the spectral centroid during attack and release has been
proven to be perceptually meaningful by Grey|[10 [I1]

4Comprised of frequency and amplitude modulations.

5Eg, for many instruments, it’s during this section that we find a continual energy input from the player.
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(a) Amplitude envelope and approximations of the F'f; clarinet tone.

Fig. 5.1 A comparison of amplitude envelope approximation for the Ffiy
clarinet tone by means of line segments; weighted moving-average filter per-
formed with a Bartlett window of 64 points, and an ideal notch filter—excluding
all frequencies which are useful for modulation estimation, ie 1 to 20 Hz.

We thus approximated the envelope by manually chosen line-segments. This strategy
proved to be unwieldy for large amounts of data, yet was found to be justifiable given that
we would be working with only two musical sound objects. The advantage of this method
was that it provided us with a finer degree of control. In order to manually approximate
the envelope, we relied on the data as much as we relied on attentive listening. The
section with the fastest rate of change in amplitude was chosen as the point of attack. We
started at the first few frames, where blowing could be heard, and we ended at a point
where heavy spectral fluctuations were ﬁnishedH. Finding the release portion also relied
heavily on attentive listening, particularly for the F'i4 tone, since it decreases in amplitude

throughout the duration of the note, as can be seen in figure (Il Thus, for finding the

In other words, a point which, if taken as a starting point to play the musical sound object, would
yield a sound which was perceived to have a stable timbre
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period of release, we relied on several cues: steeper decrease in amplitude, increased spectral
flux, and most importantly the absence of breath noise and a lack of modulations. The
last two cues are relevant for wind instrumentEl sounds, signaling a halt in the excitation of
the instrument. Once these two sections are identified, pre-attack, stable and post-attack

stages can be picked by process of elimination.

5.1.2 Component separation

In preparation for the separation of stochastic and deterministic components, each note was
carefully trimmed and extrapolated in the same manner as we presented in .41l TRCAM’s
pm2 was used for the purpose of the separation. Both files had a sample rate of 44100
Hz and were mono. The analysis for separation was performed with a Blackman window
of 1024 points, oversampled to 8192 points and with a hop size of 128 samples—giving an
anlaysis framerate of 344.5 Hz. The spectrogram of the deterministic component resulting

from this operation for the B3 note can be seen in figure [Tl

5.1.3 Extraction of the deterministic to stochastic energy ratios

Once the stochastic and deterministic components were separated, we were able to perform

a calculation of the energy ratio between the two.

5.1.4 Extraction of descriptors from the deterministic component

Most of the features for which we tested interpolation strategies correspond to the deter-
ministic component. We extracted these features for their subsequent interpolation. The
two extracted deterministic components can also be found on the project’s website [9]. The

B3 has been linked here and the F'f; has been linked here in the electronic version.

Even to odd ratio

The extraction of the even-partial to odd-partial energy ratio from the deterministic com-
ponent can be performed in the time domain or in the frequency domain. By Parseval’s
identity, we know that the sum of the square of the Fourier coefficients of the FT of a

signal is equivalent to the sum of the squared samples of the signal itself. Thus, given

"The absence of friction noise should also be relevant to bowed notes.


http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.det.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.det.wav
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Fig. 5.2 Deterministic components of the B3 clarinet tone, amplitude is
presented in deciBels. Vibrato is clearly visible as is EOR in the first few
partials.

that the information we receive from pm2 for the deterministic component is essentially
equivalent to a series of F'T coefﬁcientsH, the ratio between the sum of the square of all
even-partial magnitudes and that of all odd-partial magnitudes should give us the EOR.
Furthermore, since we will be performing a logarithmic interpolation of these ratios, we
will obtain equivalent results if we use the ratio of the sum of all even-partial magnitudes
and all odd-partial magnitudes. Performing the extraction this way reduces the operation
to the quotient of two summations with no need to re-synthesize even and odd partials.
We found that by extracting the EOR and then remowving itt], produced an even more
irregular spectrum than the original one. Additionaly, since the correction at higher fre-
quencies makes all even partials louder than odd ones—see figure the result is per-

ceived to be an octave higher. The resulting jaggedness of the spectral envelope results

8We obtain maximal amplitude values for the partials present in the deterministic component, where
the contribution of all other bins to this component is zero.
9By dividing all even-partial magnitudes by it.
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Fig. 5.3 Deterministic component, up to the partial number 30, of the F'fis
clarinet tone. Amplitudes lower than -12 dB have been clipped.

from the low EOR of a stopped pipe being much more present in the first few partials than
it is in higher partiald™, as an example, we can see a very low EOR below 6th harmonic,
but closer to unity after the 8th partial on both figures and B3

We implemented a tentative solution to this problem; we smoothed the spectral envelope
by scaling the magnitude of even partials to lie at a point of log-interpolation between the
magnitudes of odd ones and extracting a vector of ratios between the magnitudes of the
original even partials vs the magnitudes of the logarithmically interpolated ones. This
allowed us to estimate the envelope with a higher spectral smoothness than that which
is characteristic of the clarinet. The importance of this spectral smoothness lies in that
the loci at which the notches which characterize the spectral irregularity of the clarinet
are correlated to the fundamental frequency of the pitch that is being played; making
it undesirable to include these notches during spectral envelope interpolation. The steps

involved in the proposed solution can be seen in figure (.41

10Tt is also more present in notes played piano than it is in notes that are played forte.
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Fig. 5.4 EOR is present mostly in the lower partials of tones played with
a piano dynamic, thus a single EOR value for all partials can be misleading.
We utilize an alternative strategy for the same phenomenon which allows for
different values per partial. If we try to smooth out the spectral envelope
by removing a unified EOR, upper partials end up jagged, where odd partials
are louder than even ones, sounding an octave higher. We omit all even
partials and the resulting spectral envelope is much smoother. Then
we can extract a vector of ratios of the magnitudes of all even partials to the
magnitude of the smooth envelope at equivalent loci.

Vibrato

As we have discussed in chapter B we will take vibrato to be the ensemble of amplitude and
frequency modulations. With the intention of evaluating the quality of an approximation,

we only extracted modulations of the first partial. This approximation was based on
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the premise that frequency modulations of all partials are very similar and amplitude
modulations of all partials are also fairly homogeneous.

Both the frequency and amplitude the modulations were extracted in the manner pre-
viously detailed in 4.1 and E.4.1] with one notable exception; instead of using the ideally
filtered envelope, we used the line-segment amplitude envelope approximation from BT
scaled to fit the magnitude of the first partial’s amplitude envelope. After extracting the
partial tracks of the extrapolated modulations of the complete envelope, we kept only the
frames pertaining to the stable stage of the musical sound object and discarded all other

frames.
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Fig. 5.5 Clarinet tone modulations
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PAT and PRT

Although the extraction of the global amplitude envelope is performed on the complete
musical sound object, partial-specific attack and release times must be obtained from the
amplitude envelope of each individual partial in order to attempt to recreate it from the
global envelope during interpolation. Extraction of this value proved to be difficult due to
the heavy presence of modulations. Thus, using any single criteria—such as maximum effort
or maximum amplitude—for finding the peak of the attack proved to be unreliable. We
resorted to a combination of the following: peak rate of change, amplitude thresholds and
time constraints. Both peak effort and amplitude thresholds are suggested by Peeters[60];
the additional time constraints were added for robustness.

The estimation of the end of each partial’s attack was performed by evaluating a series
of candidate points. The points were chosen from local maxim that were located after
the first attack fram and before half of the sound’s duration. No local maxima under
half of the sound’s maximum amplitude were considered candidates. For each candidate
point, the slopes of the line crossing the start of the attack and the given candidate point
were taken to be it’s effort. Thus, from the pool of possible points, the one having the
maximum effort was chosen to be the end point of the partial’s attack.

The end of the release was much simpler to find: we chose the first point after the
release frame having an amplitude 20dB lower than the start of the release.
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Fig. 5.6 PAT and PRT estimation for the Bj clarinet tone

Hfound by means of the derivative method
12Per the global amplitude envelope extraction in 11l
130nce again, of those found in [E.1.11
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Spectral envelope

Although we already had a line segment approximation of the spectral envelope in .17,
we were interested in transforming it into a function with a continuous derivative, such as
that given by cepstral coefficients. The reason for doing this was that the interpolation
of spectral envelopes via reflection coefficients is not as well-behaved when the envelopes
are given by line-segments instead of a smooth function such as that given by cepstral
coefficients. Thus, in order to obtain a smoother envelope, we used pm2 to synthesize
a brief audio file having the average frequencies and amplitude of partials during the
stable stage of the sound object. We subsequently used supervp to perform a true envelope
estimation on the newly synthesized file. Upon importing the resulting estimation, we kept
the middle frame, discarding the effect of discontinuities at the start and end of our audio

file. The resulting envelope for the B3 tone can be seen in figure 5.7

log amplitude

0 160 260 tle‘)O 4(;0 560 600
Fig. 5.7 True envelope estimation for the Bj clarinet tone, obtaining the
envelope this way yields a much smoother envelope than that given in 1.4
as can be seen by comparing this figure to figure |5.4(b)

MHaving corrected the even partials as described in [5.1.4]
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Inharmonicity

Inharmonicity was easily found once we had the average partial frequencies from the stable

region of the sound object by applying the following equation.

fn—(fo-h)

i (5.1)

Inharmy, =2 -

Where Inharmy, is the inharmonicity coefficient for partial h, f, is the average frequency
of the same partial and f; is the sound object’s fundamental frequency, which, in this case,

is taken to be the average frequency of the first partial.
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Fig. 5.8 Inharmonicity coefficients for the F'f4 clarinet tone, a steep drop
from the normal 1 to -1 range can be seen in the upper harmonics; a possible
indicator of them being spurious.

At least in the case of sounds with a strong harmonic structure like the two clarinet
notes used herein, we found that the inharmonicity coefficient could be a helpful gauge
of spurious harmonics. In both sounds, the highest partials had inharmonicity coefficients
with a magnitude far exceeding 1, meaning they were well into frequencies that would
generally correspond to other harmonic components. An illustration of the inharmonicity

coefficients of the F'f; clarinet tone can be seen in figure

5.1.5 Extraction and morphing of features from the stochastic component

Given the separation of stochastic and deterministic components, we must also extract

features from the stochastic component for their subsequent interpolation. We only need



5 Experimental Observations and Results for real-world sounds 83

to extract the amplitude envelope and the spectral envelope. The two extracted stochastic
components can also be found on the project’s website [9]. The Bs has been linked here

and the Ffi; has been linked here in the electronic version.

Amplitude envelope

The goal of extracting the amplitude envelope from the stochastic component lies in being
able to scale the grains of our subsequent OLA resynthesis. As grains are essentialy created
by frequency-domain filtering of noise, using the spectral envelope of the corresponding
analysis frame of the stochastic component and then scaling the grains to have the desired
power. Thus we deemed it more practical to actually extract a power envelope instead
of an amplitude envelope. The chosen method of estimating the temporal envelope was
to obtain the stochastic part’s power every 128 samples and then smooth it with a 64-
point Bartlett-weighted moving average filter. Finally, we compensated the group delay by

shifting the envelope 32 frames.
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Fig. 5.9 Power envelope for the stochastic component of the Bs clarinet
tone.

5.1.6 Spectral envelope

We had originally planned to extract a single spectral envelope to represent the stochastic
component and apply modifications for measured spectral centroid changes throughout the

attack and release. However, shifting the spectral centroid can be achieved in several ways,


http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.stoc.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.stoc.wav
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each of which produce different spectra. We decided to avoid the direct manipulation of
the spectral centroid. Instead, we kept the succession of spectral envelopes for the whole
stochastic component. Working with a series of envelopes corresponding to each analysis
frame guaranteed that we implicitly retained spectral centroid values at each frame. This
descriptor was obtained by supervp, performing a true-envelope estimation with an analysis

hop size of 128 samples.

5.2 Cyclo-stationary morphing

Of the three possible types of morphing, we decided to try our hand at cyclo-stationary
morphing first. One of the remaining possible types: stationary morphing, can be reduced
to a cyclo-stationary morph of a single intermediate stage. It then followed that whichever
procedure we found to work for cyclo-stationary morphs should also prove useful for per-
forming stationary morphs. We performed a cyclo-stationary morph with the interpolation
coefficients being 0, 0.25, 0.5, 0.75, and 1. We thus generated three intermediate pitches,

between B3 and F'f4 which were slightly further apart than a major second.

5.2.1 Deterministic component morphing

We found a one-to-one partial correspondence to be adequate and opted to discard partials
that presented indications of being spuriou, such as very low amplitudes; highly variable
amplitudes or frequencies; or inharmonicity coefficients outside of the range [—1,1]. This
left us with the first fifty partials of both sounds. Generally speaking, the process involved
the separate morphing of the deterministic and stochastic parts.

For the purpose of morphing the deterministic component, we proceeded by performing
dynamic time-warping on the global amplitude envelope; warping fy; resampling and inter-
polating the vibrato; interpolating all other parameters and using them for the purpose of
imprinting the resulting interpolated features onto a series of 50 harmonic partials of equal
magnitude—a band-limited impulse-train. Two steps of the process proved to be slightly
more involved than others: vibrato interpolation and generating an amplitude envelope for
each partial from the global amplitude envelope and the partial’s PAT and PRT coefficients.

Most interpolations were relatively simple to perform. Fundamental frequency™ inter-

1580, generally higher-order partials
6Which we took to be the mean frequency of the first partial throughout the stable stage.
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polation was performed logarithmically; spectral envelopes were interpolated via reflection
coefficients; inharmonicity was interpolated linearly; even-to-smooth ratio were interpo-

lated logarithmically as were PAT and PRT coefficients.

Amplitude envelope

Dinamic time-warping was performed on the global amplitude envelope contemplating pre-
attack, attack, stable, release and post-release sections of both sounds. The global envelope
was then only employed as a guide for time-warping and as a basis for generating each
individual partial’s amplitude envelope. Thus, amplitudes between both global envelopes
were not interpolated at this point. It was only after having interpolated PAT and PRT for
each partial that partial-specific envelopes were created. Times for the beginning of most
staged-q were kept from the global envelope, yet the time for the end of the attack and for
the end of the release were found through the interpolated PAT and PRT coefficients. This
effectively scaled the time alloted to the stable section of the envelope in each partial. Line
segments contained in both global amplitude envelopes were then scaled so that the total
duration of both corresponded to the duration allotted to the stable stage of that particular
partial. Points from each line-segment approximation were then projected onto the other
sound object’s stable-stage envelope. As a result, we were able to define amplitudes values
at all the times previously defined in either one of the stable-stage amplitude envelopes.
The process is illustrated in figure .10

This procedure results in envelopes that recreate the expected spectral flux during the
onset by interpolating the partial attack times of both sound objects. Yet the fact that
all envelopes have the same shape results in a somewhat unnatural sound. The motivation
for using a single amplitude envelope was to evaluate if data could be significantly reduced
in the model without too great a loss in quality. Although the end results are reasonable,
the compromise is noticeable. As we can see in both figures and (.3l envelopes tend
to vary significantly between partials, suggesting that exploring a strategy that preserves

individual partial amplitude envelopes would still be desirable.

17used instead of EOR.
18With the exception of the stable and post-release stages.
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Fig. 5.10 Preparation for the interpolation of the stable stage of amplitude
envelopes. Points from each envelope are projected onto it’s counterpart, so
that both envelopes, without having changed shape, have the same number of

points defined at the same times.

Vibrato

Vibrato from both sounds was warped to match the duration of the globally warped stable
stage. This was achieved by means of resampling and changing time as described in [£.4.2]
Once the target amplitude and frequency modulations were interpolated, they were applied
to every partial at frames corresponding to the global stable-stage, regardless of the partial’s

stable stage after PAT interpolation; this was necessary to guarantee the synchronous

modulations across all partials.
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Fig. 5.11 Resulting interpolations of frequency modulations of the target
clarinet sounds. We refer the reader to figures [5.5(b)| and [5.5(d), where both
frequency modulation signals are presented.

Synthesizing the deterministic part

After having carried out all necessary interpolations, we then proceeded to imprint all
features onto the harmonic structure of a band-limited impulse-train, with a fundamental
frequency of the interpolated fy. The resulting harmonic structure would later be used
to synthesize the deterministic component. Partial frequencies were modified according
to the inharmonicity coefficients and subsequently modified via the frequency modulation
component of the interpolated vibrato. Also, having established the shape of the normalized
amplitude envelope for each partial, it was then modulated by the amplitude modulation
component of the interpolated vibrato; scaled by its even-to-smooth ratio, in the case
of even partials; and scaled by the amplitude of the interpolated spectral envelope at
the locus of the instantaneous frequency for each frame. Due to its dependence on the

instantaneous frequency, it was deemed important to ensure that frequency modulations
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and inharmonicity adjustments took place before scaling with the spectral envelope. The
resulting harmonics were exported from matlab as an SDIF file and synthesized through
pm?2. The resulting morphs of the deterministic component can be found on the project’s

website [9]. In the electronic version, they have been linked here.

5.2.2 Stochastic component morphing

Morphing the stochastic component proved to be relatively simple, involving time-warping,
amplitude envelop warping and spectral envelope warping. Similarly to the deterministic
component, we warped time based on the pre-attack, attack, stable, release and post-release
sections of the global amplitude envelope. Warping the power envelope is a trivial process
however, it is worth mentioning that warping the spectral envelope frames and preserving
a uniform frame-rate was achieved by means of the same reflection-coefficient spectral-
envelope interpolation which was presented in 2.3l A uniform frame-rate for both the
power envelope and the spectral envelope was deemed important since it would allow us to
interpolate the features from both sound objects on a frame by frame basis. By the same
token, keeping the power envelope and the spectral envelope information at the same rate
allowed us to scale each envelope for the OLA re-synthesis. The grains for the overlap-add
were generated by multiplying a unity-gain and random-phase spectrum with each scaled
spectral envelopd®], performing an inverse F'T on the result and multiplying by a window
functio. The result of this morph can be found on the project’s website[9]. In the

electronic version, they have been linked herel

5.2.3 Mixing

Having synthesized both morphed components, mixing them was only a matter of adjusting
the stochastic component’s gain in order for it to conform to the interpolated deterministic-
to-stochastic component energy ratio. The resulting mixed morph can be found on the

project’s website[d] and has been linked herel in the electronic version.

9Tn fact, power envelope.
20Tts symmetric version, that is.
21The grains were 1024 samples and we used a Blackman window.


http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationaryDet.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationaryStoc.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationary.m3u
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5.3 Dynamic morphing

We found this morph to be the perfect opportunity to try a phantom-partial f, interpolation
strategy, diminishing the span of the glissando. Thus we interpolated between Bs and an
Ft3 with phantom partials, eventually turning into an F'ff4. This decision resolved partial-
matching for the morph. The amplitudes of phantom-partials were chosen to be -80 dB.
Since we had two sound objects with different durations for each of their five sections,
we perceived the difficulty of the dynamic morph to lie in finding a simple time warping
strategy. We chose to resample one of the sound objects—the one with the shorter stable
stage—to a sampling rate which caused both sounds to have the same number of frames
for their stable section. This effectively reduced the sampling interval of the resampled
file. Afterwards, we kept an interpolation coefficient of 0 during the pre-attack and attack
stages and we enforced an interpolation coefficient of 1 for the release and post-release
stages. The dynamic part of the morph took place during the stable stage, where the
interpolation coefficient goes linearly from 0 to 1 with an equal rate of change per frame.
In order to achieve the dynamic time warping, the sampling interval at each frame was
interpolated logarithmically from the sampling periods of both sound ob ject.

Due to the change in framerate, PAT and PRT coefficients were converted to frame
values, instead of time. All other parameters were interpolated on a per-frame basis, as
the interpolation coefficient changed. The rest of the procedure was generally equivalent
to the cyclo-stationary morph. The results can be found on the project’s website[d]. They

have also been linked lhere.

22Meaning that although the interpolation coefficient changes linearly throughout stable frames, it
changes exponentially in time.


http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/dynamicDet.wav
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Chapter 6
Summary

At the onset of this project, we embarked on a reconnaissance of the scholarly literature on
morphing, drawing on established bodies of work in image processing and speech processing.
In so doing, the aim was to improve the understanding of morphing within the context of
isolated instrumental tones. This work remains exploratory in its nature and is intended
as an aide for those who seek to acquaint themselves with morphing audio and perhaps
implement morphing algorithms. It is particularly intended as a pedagogical tool for those
with more of a musical background than a technical one-albeit hopefully also useful for
the latter. In this chapter we recapitulate and evaluate how we fared in our research
and conclude by proposing possible improvements to the austere implementation that we
have prepared as part of our project, in the event that others wish to replicate such an

undertaking.

6.1 Conclusions

Whether stemming from high-resolution analysis or from Fourier-based analysis, we have
seen that most modern approaches to sound morphing employ an additive model. Our
research corroborates this as a wise choice. We found it to be an ideal model for achiev-
ing a controlled timbral manipulation, particularly with instrumental sounds, which are
most often characterized by a well defined set partials—if not a fully harmonic spectrum.
Moreover, as an established standard in the field, the stochastic-plus-deterministic additive
model seems even better suited for the purpose than the purely additive one.

Among it’s many virtues, it is a helpful model for extracting timbre descriptors—one of

2010/09/17
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the focal areas of our research. We remain convinced of the need to have a series of mean-
ingful descriptors and we found the set chosen for this work to be sufficient. Conversely,
some of the features of the set seemed far more convincing within the isolated-feature inter-
polations from chapter @ than they did in chapter B This is a point which will be discussed
more fully in The reader should not take this to mean that the testing from chapter
(] did not succeed in contributing towards real-world implementation. Rather, we consider
that they have shown to be of exceptional heuristic value in the progression of our research.

We briefly summarize our appraisal of the interpolation of each one of the chosen de-

scriptors for the purpose of effecting a convincing morph between musical sound objects.

6.1.1 Amplitude envelope warping

A classical descriptor, the amplitude envelope is invaluable for warping a set of sound
objects to bring crucial unique temporal features or temporal stages—such as the attack—
to take place simultaneously. We based our implementation on the basis that amplitude
envelopes for all partials of a given musical tone will generally retain a degree of similarity.
Surprisingly, our first implementation of morphing real-world sounds proved this to be
a flawed assumption. We suggest exploring an algorithm that interpolates per-partial
amplitude envelopes and per-partial modulations. This is discussed further in section [6.21
Nevertheless, we consider that the use of a global envelope may be used to improve the
temporal match of sound objects, allowing a generalized time-warp which enforces temporal
feature simultaneity. Furthermore, we have proposed a model for temporal division of a
sound object based on its envelope; yielding five sections: pre-attack, attack, stable, release
and post-release. Both the pre-attack and post-release stages contain ancillary sounds:
respectively noises from preparation for attack and adjustments after playing. The attack,
on the other hand, is a transient stage characterized by a relatively high spectral flux and a
fast rate of energy increase. The stable stageEI refers to the part of the sound where energy
is still being input into the instrument, such as blowing for a wind instrument or bowing
for strings. It is here that we may encounter an extended VibratoH. Finally, the release

stage is when the instrument’s oscillations fade out, not being excited anymore; it generally

"Which does not necessarily need to be stable in amplitude.

2A limit case springs to mind; while not directly inputting energy into a guitar, we can still produce a
vibrato as a note rings. In this case, the imprint of a vibrato is actually inputting energy, however minimal,
into the strings’ oscillations.
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presentins a higher degree of spectral flux than the stable stage. For some musical sound
objects, the release stage will be very short, while others might present a prolonged release

stagdd.

6.1.2 Warping f

This is a fairly standard part of morphing and is generally perceived to be smoother if
interpolation is performed logarithmically. For larger intervals in dynamic morphs, fy
interpolations may produce an overbearing glissando which can be circumvented if we glide
to a closer pitch which is related to the target pitch in its harmonic structure. A generalized

formalization of this idea is presented in algorithm [4.1]

6.1.3 Interpolation of vibrato

The interpolation of vibrato is performed exclusively during the stable stage and is achieved
through a second-order sinusoidal analysis[58]. If second-order partial-matching is made
following a closest-amplitude criterion, results are optimal. Yet we have based our pro-
cedure on the premise that the relative difference of modulations is roughly equal for all
partials. However, the results of the procedure revealed this to be yet another incorrect
assumption. In fact, during our implementation of morphing, we found relative differences
to be equal only for frequency modulations, and we also found that amplitude modulations

were much more pronounced in even partials, as can be seen in figure

6.1.4 Inharmonicity

Inharmonicity proved to be a meaningful parameter, for which linear interpolation produced
reasonably smooth results.

6.1.5 Even to odd partial energy ratio

The proposed EOR is a good descriptor of timbre, having a strong correlation with the
spectral irregularity of a given sound. Yet, as we saw in [B.1.4] it is not advantageous
for manipulating and resynthesizing, since this ratio is not constant across all partials,

decreasing rapidly as the order of partials increases. We have thus proposed an alternative

3 Again, plucked strings come to mind, where most of the note can be though of as a release stage.
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Fig. 6.1 Comparison of frequency modulations and amplitude modulations.
presents the relative breadth of frequency modulations of the first few
partials of a clarinet tone, while presents the log amplitude of a few
partials, wider amplitude modulations are evident in even partials.

vector of ratios of all even partials to a smooth version of the sound object’s spectral
envelope. In the real-world interpolations effected during our research this vector still
retains the stopped pipe quality of the sound without distorting the spectral envelope.
Logarithmic interpolations of either EOR or even-to-smooth ratios yield smooth progression

while linear interpolations yield unacceptably unequal progressions.

6.1.6 Partial attack times, partial release times

The purpose of these two measures was to retain spectral centroid changes present in the
original sound object while using a global amplitude envelope, yet given that it would be
best to work towards a model that interpolates amplitude envelopes for each partia]H, we
consider that these two measures should prove to be obsolete. However, if we were to use

them, they should be logarithmically interpolated for optimal results.

6.1.7 Spectral envelope

From cross-synthesis to present day state-of-the-art, the spectral envelope constitutes a
cornerstone for most attempts at audio morphing. We deem it essential to retain the

use of this descriptor in any framework aimed at morphing. Although direct formant

4While still extracting amplitude modulations before the interpolation of the envelopes.
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interpolation is best when formant parameters are available, we have explored interpolation

of an arbitrary envelope via reflection coefficients and find it to produce very good results.

6.1.8 Deterministic vs stochastic energy ratio

This ratio is very important for mixing the resulting components. In the case of cyclo-
stationary or stationary morphs, the logarithmic interpolation of a single scalar is sufficient.
In the case of dynamic interpolations, we need to interpolate the energy on a per-frame
basis, effectively turning this into a power interpolation. In the latter case, the power
interpolation will be a time-varying gain of the stochastic component and therefore render

the stochastic component’s amplitude envelope useless.

6.2 Further development

Our research findings suggest possibilities for new directions of exploration and research.
We here relay to the reader our thoughts on these possibilities.

Firstly, although we resorted to a manual approximation of the global amplitude enve-
lope, this is an extremely unwieldy process. Moving-average filters already yield reasonable
results and could easily be used if we sacrifice precision for the timing of the sound object’s
unique temporal features. One possibility for increasing the precision of a moving-average
estimation of the envelope could be to drive the filter’s parameters with spectral parameters
indicative of transients, such as spectral flatness or spectral flux.

Another important avenue of possible future research relates to a common practice
in audio morphing. We have previously mentioned that there are many proponents of
morphing partial amplitudes directly. While this is far from being the interpolation of
meaningful features that we seek, we must acknowledge that individual track envelopes
are very important for preserving the natural quality of a sound object. Thus we propose
that each partial’s amplitude envelope should be treated in the same way we have dealt
with some of the global parameters: extracting vibrato from each partial and temporally
warping the partials’ smooth amplitude envelopes in accordance with unique-temporal-
features warping from the interpolands’ global envelopes. Another argument in favor of
this proposition is that spectral envelope modulation can be shown to be implicit if both

amplitude and frequency modulations are unique to each partial.
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The way we performed vibrato extraction, via pm2, did not yield values for bin 0. Thus
all modulations were centered around zero. This eliminates the possibility of including
micro-melodic movements in modulations, so we propose the inclusion of a dc-offset partial
in second-order sinusoidal analysis. The relevance of its inclusion has already been stated
by Marchand and Raspaud[5§].

Most of our efforts have centered around the deterministic component of sound objects.
We have thus overlooked parameter extraction from the stochastic component to a certain
extent. The need for the extraction of at least one feature has become evident: extended
vibrato. Although there is no fundamental frequency in the stochastic component, ampli-
tude modulations and spectral envelope modulations are present. The frequencies of these
modulations are correlated with the frequencies of the modulations present in the deter-
ministic component and should also be interpolated for consistency. The extraction of the
former should not prove too difficult, following a similar procedure to the one we used to
extract amplitude modulations from the deterministic component. Conversely, a method
for obtaining the spectral envelope modulations remains unknown to us.

One practical consideration remains in regards to all phantom-partial interpolations.
We have observed that the effect of phantom partials is most effective when they decrease
in amplitude to a point at which they almost cannot be perceived—which is generally far
louder than -96 dB. We therefore consider it a worthwhile effort to set phantom partials’
amplitudes to a point just a few decibels lower than their temporal and frequency masking
thresholds. Lastly, we consider that moving towards using similar descriptors based on

perceptually motivated units would prove highly beneficial.
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Appendix A

Note Regarding the Available Code

Our research is yet far from being aimed at producing a working suite of scripts capable
of unsupervised morphing. Regardless, we are aware of the pedagogical value and overall
usefulness of the scripts that we used to evaluate strategies and to produce examples.
The scripts have been tailored to work in a somewhat idiosyncratic setup, including a
particular directory structure and licensed copies of Mathworks” Matlab and IRCAM’s pm2
and superv. Yet, even if the reader does not have access to the required software, the
code may reveal the procedures that we have followed from a different perspective than
that offered from the writing. We have thus made it available on the project’s website[9)].

Reader’s who have access to the required software may set up an environment to run
the scripts by downloading the code and following the instructions in the README file.
Window’s users should be aware that, at least at the time of writing this document, supervp
does not work on current window’s versions. An alternative is to setup the software and
downloaded scripts inside a virtual machine running any distribution of LINUX.

Given that the code is a relatively artisanal sandbox for prototyping and evaluating
some interpolation strategies, let the user be warned: it does not have consistent naming
conventions or consistent encapsulation. Although coding style may change from one script
to the next to reflect the coder’s whim throughout the research period, we have tried to

maintain a habit of writing comments.

'These are the kernels of IRCAM’s Audiosculpt.

2010/09/17
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