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Abstract

Audio morphing is a timbre-transformation technique that produces timbres which lie in

between those of two or more given tones. It can thus be seen as the interpolation of timbre

descriptors or features. Morphing is most convincing when the features are perceptually

relevant and the interpolation is perceived to be smooth and linear. Our research aims at

producing practical guidelines for morphing musical sound objects. We define a set of fea-

tures aimed at representing timbre in a quantifiable fashion, as completely and with as little

redundancies as possible. We then report the interpolation of each single feature imposed

on an otherwise neutral synthetic sound, exploring strategies to obtain smooth-sounding

interpolations. Chosen strategies are then evaluated by morphing recorded acoustic instru-

mental sounds. All of the scripts and the resulting sounds are available through the www

to the reader.

Sommaire

Le morphing audio est une transformation sonore produisant des timbres intermédiaires

entre ceux de sons donnés. On peut considérer qu’il s’agit d’une interpolation des descrip-

teurs du timbre. Le morphing est plus convaincant lorsque les descripteurs choisis sont

pertinents perceptivement et quand l’interpolation est perçue comme étant linéaire. Le

but de nos recherches est de constituer un guide pratique pour le morphing des objets mu-

sicaux. Nous définissons une collection de descripteurs qui décrivent le timbre d’une façon

complète et non redondante. Nous nous livrons ensuite à une étude systématique ayant

pour objectif de déterminer les meilleures stratégies d’interpolation, pour chaque descrip-

teur sur des sons synthétiques simples. Les stratégies adaptées au traitement des signaux

synthétiques sont ensuite évaluées pour la modification de sons d’instruments acoustiques.

Toutes les routines et les fichiers audio sont disponibles sur un site internet.
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Chapter 1

Introduction

Transformations are central to music: inflections, modulations, rhythmic transformations,

motivic variations, all serve to shape musical discourse and elicit a reaction in the listener.

Although timbral transformations are already a part of traditional composition through

the use of techniques such as Klangfarbenmelodie, digital signal processing reveals an enor-

mous potential for the exploration of this avenue by allowing the creation of hybrid sounds

through sound morphing.Developments in audio morphing are readily applicable to electro-

acoustic music, where we find examples such as Jean-Baptiste Barrière’s Chreode I or Trevor

Wishart’s Vox-5.

The following thesis evaluates strategies for achieving feature-based morphing of musical

sound objects via a stochastic-plus-deterministic additive model. This evaluation aims to

contribute to the establishment of a series of practical guidelines for musicians who wish

to delve into this fascinating terrain.

1.1 Feature-based morphing of musical sound-objects explained

As analog studio techniques gained in sophistication, artists began exploring the possibility

of transforming timbre in ways that would have been very difficult or even impossible to

achieve with purely acoustical means. An example of smooth timbral transitioning during

this analog era was Red Bird [1] by Trevor Wishart; a musical piece rife with morphing that

was achieved exclusively through analog treatments.

The advent of digital recording and sound processing techniques created the possibility

of achieving timbral transformations with a much greater degree of control. The idea of

2010/09/17
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smoothly transitioning from one timbre to another then became more accessible. Research

and commercial applications that drew on this technology began to make their appearances

as early on as the late 1970’s.

The term audio morphing refers precisely to the migration from one timbre toward

another. Thus, morphing requires at least two input sounds to generate a new one; a

hybrid is created which merges timbral characteristics from the original inputs. Given the

temporal nature of sound, audio morphing can be used to generate either a single sound

which migrates from one timbre to another or a discrete series of sounds between two known

sounds[2].

Although it’s simple to perform a cross-fading between two sounds, the most likely out-

come is that intermediate sounds would not be perceived as a hybrid, but as two sources

mixed together. If we seek to produce timbres that lie in between two known timbres, it

seems natural to think that we need to find a set of timbre descriptors that allow hybridiza-

tion by means of their interpolation. Descriptors or features can be temporal cues such

as attack or release; or atemporal characteristics that describe the sound and its timbre.

Some examples of the latter are spectral shape, fundamental frequency or f0, even to odd

partial amplitude ratio, inharmonicity and spectral flux.

Many documented audio morphing procedures [3, 4, 2, 5, 6, 7, 8] use some form of the

additive stochastic plus deterministic model, which enables the establishment of a corre-

spondence between partials and the direct interpolation of their frequencies and amplitudes.

Such a direct interpolation is effective, as it is based on an acoustically-motivated abstrac-

tion of data. However, direct interpolation may still yield morphs which are perceived as

mixed units and not true hybrids. In response to this shortcoming, we find some works in

the literature which take steps toward descriptor-based morphing[4, 7], the current work

seeks to build upon these efforts.

As with most studies of audio morphing, we will use a stochastic-plus-deterministic

additive model. We have chosen this model both for the flexibility that it affords the

user and the potential it offers for extracting timbral descriptors by analyzing the additive

representation of a signal. The model divides a signal into two components: a deterministic

one which is best modelled by a relatively small set of partials and a stochastic one, which

is best viewed as filtered noise. Figure 1.1 represents this component separation performed

on the sound of a clarinet.

The scope of the present work solely encompasses morphing in the context of musi-
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Fig. 1.1 Deterministic and stochastic component separation for a clarinet
note. On the top we can see the STFT of the deterministic component, with
a well defined series of partials. On the bottom, we see the remaining part of
the signal, which can be best modeled as coloured noise.

cal sound objects or single-event musical sounds, i.e. sounds which are relatively stable

throughout their lifespan, such as those commonly found in music. In other words, the

set of sounds for which we wish to evaluate strategies is that of sounds which constitute

a single event flanked by transients or silence. The clarinet note from figure 1.1 is a good

characterization of this type of sound.

1.2 Aims of the current study

Research on audio morphing has gradually spawned a body of literature. Additionally, a

large set of articles have been written on image morphing, speech morphing and speech

transformation. The principles and techniques outlined in these articles can be easily

transferred to the context of audio morphing. One of the goals of the present work is to

compile pertinent ideas from prior publications.

Since we intend on exploring feature-based audio morphing, another one of our goals

is to choose a set of descriptors that fulfill certain conditions which we hereby detail.

They should be compatible with the chosen representational model, ie stochastic-plus-

deterministic additive model. The set of descriptors should also be tailored to fit timbral

characteristics which are frequent within musical sound objects as they have been defined.



1 Introduction 4

Furthermore, in order to effect convincing morphs, the chosen features should be meaning-

ful, i.e. correlated to perceptually relevant characteristics of timbre. Lastly, the choice of

the set of descriptors should ideally be such that, it allows the interpolation of each feature

separately without modifying other features.

Another one of the goals of our research stems from the last condition: we will set out

to explore isolated feature interpolation on a series of synthetic sounds, building up toward

the morphing of real-world sounds. Along the way, we will produce audio files to exemplify

our findings and the final morphs of real-world sounds will serve as a proof-of-concept for

results found during the process of single-feature interpolations.

1.3 Premises of the current work

There are three main ideas fueling this research. First, we argue that in order to achieve

a convincing morph, it is essential to define a set of meaningful features–i.e. correlated to

perceptually meaningful characteristics. Second, we argue that the interpolation of isolated

features will more readily reveal potential problems and their corresponding solutions than

the concurrent interpolation of all features. Third, we are convinced that morphing im-

plementation examples hold significant pedagogical value for composers and sound artists

who wish to implement their own morphing routines.

1.4 Structuring of the current work

The work is organized into six chapters and one appendix. After the brief introduction

presented in the current chapter, the reader shall find a literary review on chapter number

2. The review contains an overview of publications related to morphing in the context of

music, speech processing and image processing; we present some compositions with note-

worthy examples of morphing and mention several related software implementation efforts.

Chapter 3, formally establishes the framework in which the current research is circum-

scribed. It presents some important terminology and the set of features to be used during

interpolation. Chapter 4 reports on the realization of each single-feature interpolation and

the final real-world sound interpolations; detailing the different strategies used to counter

problems that became evident during implementation. Subsequently, chapter 5 is based on

the application of the defined feature-set and interpolation strategies, serving somewhat as
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an implementation guide. Audio files to accompany the realizations of chapters 4 and 5 can

be found on the project’s home page[9]. Conclusions drawn from the results are presented

in chapter 6. Lastly, the appendix presents a note in regards to the implementation scripts,

which can also be found on the project’s home page[9].
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Chapter 2

State of the Art

Besides being of interest for the audio processing community, for a long time now, morphing

has received significant attention in the image processing community and to a certain degree

within the speech processing and audio community. In this chapter we present a broad

overview of some works on the subject. The overview is broken up by field of study: audio

morphing with musical applications is presented first, findings from speech morphing are

presented later and relevant image morphing ideas, which enrich or enforce the topic, are

presented at the end of the chapter.

2.1 Survey of morphing in the musical context

Advances in timbral interpolation are found in varied source materials, some are found in

the form of articles reporting on realizations, others make their appearance in the form

of music which is accompanied by a written presentation of the underlying principles and

some are found mainly as software packages which can be accompanied by relevant docu-

mentation. The presentation in the section is broadly separated by these three somewhat

arbitrary categories. Papers are not reviewed extensively but an attempt has been made

to retain key ideas from each of them.

2010/09/17
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2.1.1 Literary review

Perceptual effects of spectral modifications on musical timbres

After Grey[10] published a study of timbre spaces through Multi-Dimensional Scaling in

1977, Grey and Gordon[11] carried out what are generally referred to as the first sound

morphings present in the literature. Grey and Gordon re-synthesized 16 sounds of different

instruments with an equalized loudness and pitch. The representation from which the

sounds were re-synthesized was based on a simplified additive model. The experiment was

performed in order to confirm their hypothesis in regards to the role of the spectral envelope

in the perception of timbre. For this purpose, from each one of the four pairs of sounds,

they exchanged the peak amplitudes of their corresponding harmonics. In doing so, they

effectively exchanged the sounds’ spectral envelopes while retaining all other characteristics

for each sound.

Dynamic timbre control for real-time digital synthesis

Schindler[12] presents a data reduction strategy which was based on a hierarchical-tree

representation of envelopes which could be used for either amplitude or spectral envelopes.

He also described a two dimensional state transition scheme. The aim of the data reduc-

tion technique and of the state change scheme was to facilitate real-time control for the

additive synthesis of instruments with a dynamic timbre control1. By seeking to produce

intermediate timbres from discrete points sampled from a single instrument’s timbre space,

Schindler was also performing morphing.

Adventures in musique concrete at CARL

In a paper published in the proceedings of the 1985 ICMC, Mark Dolson[13] reports the

usage of a technique known as cross-synthesis. Similarly to a vocoder the technique imprints

one sound’s spectrum on another sound, the later preferably being a spectrally rich one,

in order to heighten the effect. Let’s refer to sound 1 as the source for the spectrum to

be imprinted on sound 2. Cross synthesis is achieved by performing an STFT analysis

on sound 1 to extract it’s envelope by smoothing the STFT along the frequency axis.

1In Schindler’s article, namely the ratio between the partial’s frequencies and amplitudes.
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Subsequently, STFT analysis-synthesis is performed on sound 2 with an intermediate

multiplication of its spectra by the envelopes extracted from sound 1.

Sound hybridization techniques based on a deterministic plus stochastic de-

composition model

Serra[3] proposes effecting hybridization through a stochastic plus deterministic additive

model and contrasts it to cross synthesis or, as he calls it, hybridization through the STFT .

In Serra’s presentation of morphing through an additive model, there is an implicit hierarchy

of the two original sounds, where sound 1 retains its temporal and pitch characteristics

and sound 2 is warped to match it. Serra presents a scheme that grants independent

interpolation of f0, partials’ ratio to f0, overall deterministic amplitude, partial’s amplitude

ratios, stochastic part amplitude, stochastic interpolation factor and time warping factor

for sound 2. Morphing through SMS (Serra’s implementation of an additive model) and

cross synthesis are presented as musically complementary tools given the vast differences

between the effects that they achieve. In this regard, cross-synthesis is adequate when the

spectrum of one of the sounds to be hybridized has well defined formants, such as is the

case of speech, and the second has a rich and relatively flat spectrum, such as the roaring

of the sea. Sound hybridization by additive model, on the other hand, is likely to offer

better results when the deterministic components of both sounds can be modeled with a

similar amount of partials, irrespective of their spectral contour.

Timbre morphing of sounds with unequal numbers of features

Tellman, Haken and Holloway[4] from the CERL sound group at the University of Illi-

nois, addressed the topic of morphing in an article published by the Journal of the Audio

Engineering Society in 1995. In their article, they present a generalized strategy for mor-

phing which utilizes the Lemur representation; an implementation of McAulay-Quatieri’s

sinusoidal representation[14]. A grosso modo, their approach to morphing implies the de-

scription of a given sound, which occupies a timbre space, by a series of features. A feature

is broadly defined to be a temporal portion of the sound that is important to the morphing

process. Features are taken to be either unique or repeatable.

Unique features are those which occur once, and only once, for the duration of each

one of the input sounds and therefore have a one to one correspondence between sounds.
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Clear examples of unique features are the onset or the end of a note. On the other hand,

repeatable features are those features which can be omitted or used in the morphing as is

seen fit. An example of a repeatable feature is a vibrato amplitude peak. The definition

of feature used within the article raises an interesting point. It’s important to note that in

the current text and other prior writings[7] the expression feature is used as a synonym of

the word descriptor, as opposed to the usage given to it in Tellman, Haken and Holloway’s

publication.

Morphing is thus seen as a process which includes time-warping, partial matching and

repeatable feature stepping. Time warping is used to align unique temporal features such

as maxima or minima within the amplitude envelope. Amplitude weighted partials are

matched between inputs. They offer more than one solution to partial coupling issues:

firstly, partials for which frequencies do not have a closely corresponding partial frequency

in the complementary input are paired with a zero-amplitude partial at the same frequency;

on the other hand, given that the analysis can yield erratic frequencies for low amplitude

partials, those with an amplitude lesser than a given threshold are corrected to the closest

frequency which is a multiple of the fundamental frequency. In regards to the interpola-

tion of repeatable features found between unique features, they are matched, warped and

omitted if necessary so that the end product contains an interpolated number of repeatable

features between each set of unique features. In this article, Tellman Haken and Holloway

also propose the idea of interpolating the log2 frequencies rather than a linear interpolation:

f(1+α,k) = 2(1−α)log2(f(1,k))+αlog2(f(2,k)) (2.1)

where α is the interpolation factor, and f(1,k), f(2,k) and f(1+α,k) are respectively the kth

partials’ frequencies for input 1, input 2 and interpolated output. This can be shown to be

equivalent to

f1+α = f1

(

f2

f1

)α

which is another form of writing formula 3.5 which will be presented in chapter 32.

2This, of course is valid as long as neither interpoland is 0.
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Automatic audio morphing

Slaney, Covell and Lassiter[2] present a method for automatically morphing audio. In-

terpolated sounds are found by extracting smooth spectral envelope information from the

targets; warping along the time and frequency axes to align their transients, attacks and

pitch, and then interpolating matched partial amplitudes and spectral envelopes. One of

the ideas presented in the paper is the possibility of three different types of morphing: a

static or stationary morph, finding one given sound between two targets with a constant in-

terpolation factor; a dynamic morph, producing a sound for which the interpolation factor

changes in the course of its duration; and a cyclo-stationary morph, which consists of find-

ing a series of repeated sounds, each with a constant interpolation factor, which smoothly

evolve from one of the target sounds to the other.

Timbre morphing of synthesised transients using the Wigner time-frequency

distribution

In a paper by Lysaght and Vernon[15] the authors ponder the interpolation of short-duration

transient sounds. Because of the duration of such sounds, it is difficult to perform a

Fourier-based analysis with sufficient resolution for morphing. Thus, the authors propose

using a Smoothed Pseudo Wigner Distribution for the analysis stage. Since the SPWD

is a concentrated time-frequency representation, it allows for an increased resolution over

that afforded by the Fourier derived techniques generally used for morphing. Additionally,

they propose using subgraph isomorphism as a pattern matching technique in order to find

feature-correspondence for the two known sounds. The latter idea is more fully explained

in a subsequent publication by Lysaght, Vernon and Timoney[16].

Morphing for karaoke applications

While some of the articles found on morphing are extensible to real-time performance,

most applications are best suited for offline use. This is, of course, not possible when we

think of a karaoke application, the very nature of which requires a real-time algorithm.

In a paper presented at the ICMC in 2000 by the audiovisual group from Pompeu Fabra

University[5], interpolation is performed between a pre-analysed recording of a song and

the user’s performance of the same song with user-specified interpolation coefficients for

different features.
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The underlying model for the data is that of SMS[17]. For the purpose of the appli-

cation, SMS analysis was fine-tuned to perform with low latency for the singing voice. In

addition to the low-level SMS model, Cano, Loscos et al propose using some higher-level

attributes as per a prior article by Serra and Bonada[18]. The attributes or features that are

interpolated are spectral shape, fundamental frequency, amplitude, residual signal, pitch

micro variations, vibrato, spectral tilt and harmonicity.

Only relatively steady-state sections of the input are morphed; transients are left un-

touched. Because of this constraint and because of the fact that corresponding vowel sounds

need to be matched for the morphing, the audio is separated into what the authors call

morphing units, i.e. a relatively steady state signal flanked by silence and/or transients.

An interesting finding reported by the authors is that for the interpolation of both

spectral envelopes, which is performed on a bin-by-bin basis, or by cross-fading spectral

envelopes, interpolation factors close to 0.5 yield a relatively flat spectrum. This corre-

sponds to the fact that envelopes with non-correspondent peaks will tend to average out.

Sound timbre interpolation based on physical modeling

Hikichi and Osaka[19] propose morphing by means of a physical model as an alternative

method to morphing through an additive model. In order to do this, it is necessary to

create a unified model of the two known sounds. In their paper, they present a three-part

physical model consisting of an exciter, a vibrator and a resonator. The unified model is

useful for synthesizing both guitar and piano. It is through the interpolation of parameters

in such a model that timbre morphing is achieved. Albeit the difficulties in fitting a

model to the known sounds, the primary advantage of such a method is the substantial

reduction of parameters that need to be interpolated. Hikichi and Osaka also state three

main areas of exploration to follow: the evaluation of interpolation strategies different from

linear interpolation, which is the strategy that they used; the expansion of the model to

include other target timbres, and the qualitative comparison between the results obtained

by the use of their method and the results obtained through the interpolation of an additive

models’ parameters.
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Sound morphing using Loris and the reassigned bandwidth-enhanced additive

sound model: practice and applications

Because morphing is essentially data interpolation, it’s greatly impacted by the underlying

choice of a representational model. While many articles on the subject converge toward

a sinusoidal representation, there are differences even among the additive models. Haken,

Fitz, Lefvert and O’Donnell[6] proposed morphing with the Loris representation which

stands apart from other sinusoidal models in two respects: that it consolidates stochastic

and deterministic parts by assigning a bandwidth to each partial and that it uses a time

reassignment method for resolution improvement. The argument put forth in favor of

enhanced-bandwidth partials is the resulting compactness of data and the convenience

of dealing with a single data stream for interpolation, as opposed to two data sets in

representations such as SMS.

In their method, data pairing for partials is governed by a principle which they call

channelizing that consists in establishing corresponding frequency regions in the inputs and

allowing for a single bandwidth-enhanced partial in each region. The conflicting coexistence

of partials within regions can be solved either by eliminating additional partials (sifting) or

by broadening the remaining partial’s bandwidth according to the amount of energy in the

removed partial (energy redistribution). Each partial is seen to be a set of three envelope

streams, one for frequency, one for amplitude and one for bandwidth; interpolation is then

performed on each one of the three envelope pairs for every set of corresponding partials.

The same ideas were discussed with much more detail by Lippold Haken, Kelly Fitz

and Paul Christensen in the third chapter, Beyond Traditional Sampling Synthesis: Real-

Time Timbre Morphing Using Additive Synthesis, of Beauchamp’s book Sound of Music:

Analysis, Synthesis, and Perception[20].

High-level audio morphing strategies

Hatch’s thesis[7], as can be expected, contains a large amount of information on the subject

of morphing. It would therefore be inappropriate to cover all of the aspects presented in his

thesis but we will limit our presentation to some of the most relevant concepts therein. The

underlying representational model used for morphing is LORIS and the morphing strategies

that are explored are meant to satisfy a wide range of inputs, not a particular set of sounds.

The features that are defined to be interpolated are pitch, spectral envelope, harmonicity
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and spectral centroid. Hatch uses linear time warping for amplitude envelope matching.

F0 is interpolated on a logarithmic scale and a modulo 2 is applied to the frequency

multiplier, such that glissandi of more than an octave are avoided. The spectral centroid is

interpolated logarithmically and imposed onto the morphed sound in one of two ways: either

by multiplying the frequencies of partials when a sound does not have a harmonic partial

structure, or by modifying the partial’s amplitudes when there is a harmonic structure.

Because the strategies tested throughout the work are intended for sounds that have no

constraints in regards to having a relatively static amplitude or static frequency content3,

Hatch proposes two different strategies for partial matching through time: one which is

based on a sliding window, where partials are matched again at the end of each window

length, and another in which partial matching is locked throughout the duration of the

sound. The later strategy is more geared toward sounds with relatively stationary states

throughout their duration.

SSynth: a real time additive synthesizer with flexible control

In this article, Verfaille, Boissinot, Depalle and Wanderley[21] present a synthesis frame-

work geared for real-time additive synthesis based off of a three-dimensional database of

sounds. The database dimensions are pitch, dynamic level and instrument. Additionally,

a series of spectral envelopes per instrument are also part of the database and the selec-

tion or interpolation of these envelopes is dependent on parameters which are independent

from pitch and dynamic level. The production of a note is thus an interpolation between

the closest four points, two closest in pitch and two closest in dynamic, for the particular

instrument. In the paper, there is no explicit mention of morphing between instruments

but it is an obvious application which would imply interpolating between the closest eight

points in the database–four for each instrument.

Because Ssynth is intended for real-time synthesis, morphing is performed in a different

way for transients than that of locally stationary parts of the sound. Stable-state parts

of the sound are looped through their additive parameters for as long as the note is being

played; requiring pitch warping for alignment, partial frequency matching and amplitude

interpolation as well as spectral envelope interpolation. Transients on the other hand,

involve an additional time warping as well as involving more stringent precautions to avoid

3In other words, it is geared toward the morphing of any two snippets of audio.
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gliding artifacts due to the fact that partials’ relations are in flux during the transient stage.

In the article, particular attention is given to the fact that the spectral envelope E(f) can

be obtained and represented in many different ways. Because each of these representations

might be better suited to a given context, the authors have included a table of implemented

exact and inexact conversions between different representations of E(f).

Evolutionary spectral envelope morphing by spectral shape descriptors

Caetano and Rodet[22] propose finding intermediate spectral envelopes by means of the

interpolation of the envelopes’ statistical descriptors: centroid, spread, kurtosis, skewness

and slope. In order to properly achieve this interpolation, they propose the usage of an

evolutionary algorithm applied to the trajectories of the poles and zeros between the two

spectra. The results compare very favorably to the naive point-by-point interpolation

and they represent a slight improvement over the interpolation of the LPC coefficients.

Although the method is somewhat cumbersome, it has the advantage of offering control

over each independent statistical descriptor. The results of this endeavor may be consulted

on Marcelo Caetano’s home page[23].

Spectral tools for dynamic tonality and audio morphing

In an article published in the Computer Music Journal, Sethares, Milne, Tiedje, Prechtl

and Plamondon[8] present the Spectral Toolbox; a series of Java classes and Max/MSP

routines created for dynamic tonality and audio morphing. Morphing is proposed as a

manipulation which is related to dynamic changes in tuning and temperament, where the

series of partials in a given sound is made to match the present tuning and temperament.

In the article, morphing is presented in a very similar fashion than that of several

prior publications; it is achieved through partial matching and interpolation performed

on the deterministic part of an additive model 4. In terms of the morphing aspect of it,

it is noteworthy that the paper explores strategies for matching partials which are not

necessarily harmonic. They propose to achieve this through the choice of one out of three

differing criteria: matching for nearest frequency, matching for corresponding component

number5 or matching according to the order of each partial series’ amplitudes. They also

4Of course, if morphing is viewed as a partial alignment technique, the stochastic part of the model
should remain unmodified.

5In either ascending or descending order.
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state that frequency interpolation should be done on a logarithmic scale but that amplitude

interpolation should be done in a linear fashion. Both the toolbox and results obtained

through its use can be consulted at the dynamic tonality website[24].

Presently submitted for review

At the time of writing this thesis, we have received news about the submission an article

on the topic on descriptor-based morphing by Marcelo Caetano and Xavier Rodet from

IRCAM’s analysis/synthesis team. The paper was submitted to the International Com-

puter Music Conference for consideration for the 2010 conference. Since the paper would

be published shortly after this thesis, the reader is directed to consult the ICMC 2010

proceedings for further information.

2.1.2 Software implementations review

From the previous list of publications, there are two publicly available software imple-

mentations created with the purpose of morphing audio: LORIS[25], and the Spectral

Toolbox[24]. There is also mention of two software packages that are not currently avail-

able. One of them is Ssynth, also mentioned in the article review section, which is still

under a stage of development and the other one is Oberheim’s G-WIZ, which is mentioned

in Tellman, Haken and Holloway’s article[4] and of which there is no further appearance in

the literature.

Additionally there are some cases of audio morphing in commercial applications. Early

examples include embedded timbral transformation algorithms from the Fairlight CMI,

the PPG audio synthesizer or more recent digital musical instruments such as the Emu

Emulator 3 hybrid sampler. On such instruments, both wave-form and spectral shape

interpolation can be performed.

More recent software-only implementations also exist. Camel Audio’s Cameleon5000[26]

performs audio morphing according to a user-specified trajectory on a morph square that

contains a target sound on each one of its corners. The Cameleon uses an additive model

to represent audio snippets which are to be morphed.

Ircam’s Diphone Studio[27] decomposes input sounds into chunks or diphones and gen-

erates a dictionary with them. Once the dictionary has been assembled, the user can specify

a sequence of chunks and the software morphs from each diphone to the next.
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The Composer’s Desktop Project[28], or CDP for short, is a collection of routines for

the treatment of audio which has been spawned by a large international community for

over 20 years. Within this large collection there are a number of routines intended for

morphing.

2.1.3 Music applications review

Red Bird, Vox-5

Trevor Wishart, one of the founders and main contributors of the CDP, has dealt extensively

with sound transformations and sound morphing, which he has documented[29]. In one

of Wishart’s early works[1], composed during 1973 to 1977, Wishart explores morphing by

means of analog techniques. The amount of transformations obtained throughout the piece

is astonishing; utterances and cries morph to birdsong, barks, gunshots, slamming doors

and all sorts of animal and mechanical sounds. Some of the transformations present in the

piece are documented on the CD liner notes[30].

Years later Wishart composed a piece while in residence at IRCAM[31]. Vox-5 was

created in 1986 with extensive use of the phase vocoder. The piece revolves around the

transformation of utterances to other real-world sounds, alluding to the voice of Shiva[32].

The techniques used in the creation of the piece include formant preservation during spectral

manipulation; warping for spectral matching; spectral stretching and shifting; as well as

spectral interpolation. Wishart wrote an article in the Computer Music Journal[33] which

documents the compositional process as well as the techniques used therein.

Chreode I

Jean Baptiste Barrière[31, 32, 34] composed Chreode I on IRCAM’s PDP-10 during 1983.

Barrière used FOF synthesis to generate seamless transitions between different timbres that

represent four general characters; vocal, instrumental, acoustic and synthesized.

Farinelli

Corbiau’s biographical film on Carlo Maria Broschi’s life as a virtuosic castrato singer was

one of the first realizations of musical morphing presented to wider audiences[35, 36].
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Generally speaking, the voice of Castrati covered a more ample register than that of

any other, ehem... un-modified tessitura. Given the parts written for Farinelli, his register

can be inferred to have encompassed both the ranges of a Soprano and of a Tenor. Since

no singer alive these days is known to possess the combination of such a wide register and

extensive musical training, it was necessary to craft the music from parts performed by two

singers of the aforementioned tessiturae. The problem of merely mixing these two parts was

that the timbral characteristics of each voice were quite distinct and would have yielded

a composite register with a very clear timbral discontinuity somewhere in the middle.

Morphing and interpolation were key elements for the riddance of such a discontinuity.

Generally speaking, at each intersecting pitch and for each voiced sound, the two tim-

bral extremes for each of the two voices were established and timbres were interpolated

at different rates along the intersecting range, the interpolation being weighted by their

proximity to each of the two tessitura’s midpoints.

Sheep

One notable realization of morphing in the realm of Progressive Rock can be found in

Pink Floyd’s song Sheep, from the album Animals[37]. At the end of each verse, the voice

smoothly morphs into an synthesizer tone. Unfortunately, we have not come across any

sources describing the process by means of which this was achieved.

2.2 Survey of morphing in the context of speech processing

Within speech synthesis, there are some applications of morphing and interpolation which

are used areas such as generation of emotions in synthetic speech, unit articulation in

concatenative speech, speaker conversion and speech morphing.

Imprinting emotional content on synthesized speech can possibly be achieved by means

of morphing or warping some features of the synthesis to match characteristic features of

a given emotion.

Concatenative speech synthesis is built upon the notion that speech can be reproduced

by a relatively small number of sampled spoken units. Units vary in size, depending on the

type of synthesis but all types of concatenative synthesis share the need for articulating or

stitching pre-recorded bits. It is at these junctions that interpolation becomes of interest,

since it makes it possible to eliminate or diminish the discontinuities therein.
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Also useful for concatenative-based synthesis is data reduction. Phonetic databases

for each individual speaker make use of large storage spaces for the recorded samples or

codebooks. By means of speaker transformation, more speakers can be generated than the

amount of codebooks that the system contains. Thus, morphing is a means of reducing the

needed storage space for a given speaker diversity.

Speech morphing refers to the interpolation of two different recorded instances of sim-

ilar6 speech. Applications in speech morphing are much less general in nature than those

sought in speaker transformation but allow for a much higher quality on each particular

realization.

In speech manipulation and synthesis literature, we find two main tendencies: pitch-

synchronous spectrum modifications and manipulations through source filter decomposi-

tion.

A considerable number of articles have been written on all of these subjects and it is

well beyond the scope of this thesis to present an extensive review of the literature. We

hereby present a few relevant ideas contained therein; ideas which can be carried over to

the morphing of musical sounds.

2.2.1 Generation of emotional content in speech synthesis

In a review of the subject written in 2001, Marc Schröder[38] presents several solutions

which have been proposed to this problem. Approaches are dependent on the type of

synthesis that they address. This is, of course, due to the fact that affecting certain features

of speech may prove to be easier or harder, depending on the speech synthesis technique in

use. Nevertheless, all approaches share the goal of imprinting on synthesized speech some

form of prosody, according to a set of rules. Additionally, voice quality is sought to be

modified in speech synthesis models which allow for this. Prosodic modifications involve

time-warping, f0-warping (the rhythmic quality and melodic contour of speech), as well as

amplitude modifications.

In a paper by Mareüil, Célérier and Toen[39] we can find the presentation of some

rules regarding f0 contour manipulation, time warping, amplitude manipulation and the

repetition of some phonemes7. These rules were derived separately for English, French and

6Similar in length and content, since correspondence between the two instances needs to be established
for morphing to take place.

7e.g. Stuttering for emulation of fear.
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Spanish from actors who were recorded as they portrayed the set of emotions being studied.

2.2.2 Phonetic unit-articulation smoothing

As an example of work done for smoothing transitions between phonetic units used in

concatenative speech, we take an article by Stylianou, Dutoit and Schroeter[40] on diphone

concatenation. Diphone speech synthesis requires a library of diphones, which are small

speech units with transitions from one phoneme to another. Diphone libraries are among

the slimmest libraries for concatenative speech but, since they generally rely on time-based

overlap-add methods, artefacts can easily arise due to discontinuities in the transition from

one diphone to the next. The paper proposes modelling diphones with harmonic plus noise

additive parameters and smoothly interpolating from one diphone’s parametrization to the

next during a short mixing region. One thing to notice in the results presented in the

paper is that, although transitions from one diphone to the next are much smoother than

those obtained via a time-based overlap add method, formants are broadened during the

transitions.

Pfitzinger[41] presents a spectral morphing technique based on the derivative of the

LPC-given spectrum. Where the spectral derivatives of the two spectra to be interpolated

are matched through dynamic programming. The process of matching and warping the

spectrum is called dynamic frequency warping (DFW). Using a function’s derivative for

locating peaks or valleys is a standard technique. The advantage of using this technique is

that zero-crossings in the derivative necessarily equate to local maxima or minima in the

spectrum and that the derivative slope is related to resonance bandwidth. Once the peaks

have been found, a dynamic programming algorithm is used to find the best correspondence

between the peaks of both interpoland spectra. Then, interpolation includes warping both

spectral envelopes in order according to peak matches.

Compared to the magnitude interpolation of two spectra performed as a cross-fade, this

method yields interpolation of spectra for which not only peak magnitudes are interpolated,

but also peak frequencies. In other words, peaks do not just rise and fall at the same

frequency during interpolation; rather, they slide toward their matching peaks on the target

spectrum. Thus Pfitzinger claims that, with this technique, there is no broadening of

formant regions at interpolation factors close to 0.5 and that formant frequency, amplitude

and bandwidth are interpolated in a phonetically meaningful way.
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Fig. 2.1 An illustration of DFW proposed by Pfitzinger. At the top, both
spectra’s derivatives are matched through dynamic programming, the yellow
line that crosses each derivative represents each one of their corresponding
zeros. At the bottom, the corresponding spectra are interpolated along the
matching lines.

2.2.3 Voice conversion

Voice conversion seeks to imprint the identity of one speaker onto the utterances of a second

speaker. In the context of speech synthesis a speaker refers to a series of rules coupled with

a codebook which is used by a particular synthesizer, and not necessarily to a human

speaker.

Several speech synthesis methods rely on a data reduction technique called vector quan-

tization which yields codebooks or sparse code. This technique extracts a discrete set of

spectra (vectors) which make up a sampled or discretized version the whole spectral palette

(or vector space) observed during a training period. The collection of sampled spectra is

called a codebook. Several articles[42, 43, 44] have proposed a technique for voice con-

version between two speakers in such a system. The proposed technique consists of a

training period with matched utterances from two speakers which is used to generate a

transformation codebook which maps the spectrally partitioned codebook of one speaker

onto the second speaker’s spectrally partitioned codebook. While this is useful for a com-

plete transformation from speaker1 to speaker2, it does not allow smooth transitions from
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one speaker to the next. Another notable limitation, is that this technique is only useful

in cases involving no more and no less than two speakers.

The same sort of idea has been explored in later works by Iwasashi and Sagisaka[45, 46]

with some modifications which make it relevant in the context of morphing and interpola-

tion. The known speakers can be more than two. During the training period, the target

speaker’s utterances’ spectral characteristics are matched by dynamic time warping of those

from the known speakers. After the training period, the optimal weighting factor for the

known speakers is found so as to more closely match the target speaker. Iwasashi and

Sagisaka propose the use of cepstral coefficients and log-area ratios for spectrum interpo-

lations.

It is worth noting that these and other works with similar approach aim at either finding

correspondence between spectral characteristics or directly interpolating the spectra.

2.2.4 Speech morphing

Abe[47] proposed a time-domain pitch-synchronous-overlap-add (TD PSOLA) based ap-

proach which consists of finding corresponding pitch marks (periods) for two given sources

and interpolating the FFT of each period, afterwards, an IFFT is performed on each

period which is overlap-added to obtain the resulting morphed speech signal. Interpolation

of the pitch period results in f0 interpolation and the weighted sum of each corresponding

grains ’ FFT yields a spectral envelope interpolation.

Ye and Young[48] propose morphing with a pitch-synchronous sinusoidal model which

helps avoid the phase incoherence at each pitch period that results from TD PSOLA-based

strategies. Spectra are represented as Line Spectral Frequencies or Line Spectral Pairs

(LSP) since they behave better than LPC coefficients during interpolation. Ye and Young

found that, even while interpolating through LSPs, formant peaks became flattened out

and spectra lost details toward an interpolation factor of 0.5 . Thus they propose to train

the system to recognize the correspondence between the interpolated spectra–those which

have lost detail–and transitional spectra observed during the training; once the system is

trained, it can regain some of the lost spectral detail by combining the flattened-out spectra

with their corresponding learnt spectra. Residual or transient spectra are matched between

speakers in a training stage and the criteria for choosing correspondence between speakers’

transient spectra is to retain the longest matching sequences from recorded transients.
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In addition to the application of dynamic frequency warping to speech morphing,

Pfitzinger[49] proposes the interpolation of the source signal through a similar time do-

main process, matching separated source signals in short (20 ms) windows by dynamic time

warping and interpolating on a per-period basis. The results can be heard on Pfitzinger’s

home page[50], for which you may find a link here in the electronic version.

2.3 Some considerations from the context of image processing

The use of morphing in films has been well established and dates back to the very dawn of

this industry. Experimentation began early on, at the beginning of the twentieth century

with Georges Melies’ transformations based on careful compositing[51]. Later films, such as

the 1931 realization of The strange case of Dr. Jekyll and Mr. Hyde further advanced this

effect. Later in the twentieth century, image morphing has yielded effects now memorable

to pop culture, such as those found in Michael Jackson’s music video for Black and White

or those in the film Willow. In the last couple of decades, convincing visual morphs have

become relatively common in film.

Writing a complete review of all that has taken place in this domain would be material

enough for another thesis, and most likely not one for a degree in Music Technology.

However, because we are dealing with morphing, it is relevant to invoke some aspects of

image morphing for which we can find analogies in the realm of audio morphing.

2.3.1 Feature selection and image warping

In image morphing, feature correspondence between two or more images is often found by

user specification, image warping is then performed and finally color interpolation is effected

to obtain the morph. Color interpolation has several variants, such as the interpolation of

raw RGB values; or the interpolation of hue, saturation and luminance. Even so, much of

the emphasis of literature regarding image morphing seems to be placed on the partition of

space given feature selection and the subsequent surface warping strategies; in their article

on feature-based image metamorphosis, Beier and Neely[52] note that after warping the

image, color interpolation is the simpler part of the process.

This is of interest to us as it reinforces the notion that an important part of the audio

morphing process lies both in the careful selection of features that we wish to morph as

well as in the mindful analysis and extraction of these features for each given realization.

http://www.phonetik.uni-muenchen.de/~hpt/morphing
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The reader should note that in the present work we refer to time and frequency alignment

when we talk about warping audio; so, these observations in regards to the major effort

being invested into warping do not hold true for audio morphing. Yet, if we include general

sonic feature selection and interpolation in the analogy, we can similarly observe that the

interpolation of already matching features is the simpler part of the process. Thus, in many

ways we can think of observations made in regards to feature selection and image warping

as equivalent to the general feature selection and morphing process of an audio signal.

In his survey of image morphing, Wolberg[53] gives a detailed explanation of several

feature selection and geometrical deformation strategies. The trend in feature selection

tends to go toward less constrained strategies, where initial strategies were based on gen-

erating meshes and later strategies rely on simple lines and points with a variable degree

of deformation influence from each feature to its surrounding areas. Another interesting

idea presented by Wolberg in his survey is that of more significant morphs being achieved

by allowing different rates of change for each one of the involved features8.

In an article on the deformation of n-dimensional objects, Borrel and Bechmann[54]

state that a simple, flexible and efficient procedure for achieving the deformation of an

n-dimensional object is to map it to an m-dimensional object, where m > n, in order

to perform a series of simple linear transformation on the m-dimensional object and then

project it back onto an n-dimensional space.

We can extrapolate this idea of warping onto sound morphing in two ways: firstly, in

some cases the selection of features might very well be viewed as having a higher dimen-

sionality than the original sample-wise representation. Secondly, in order to avoid certain

undesirable effects once we are interpolating a feature, we might have little option but to

choose between interpolation paths that change some characteristic or another from both

our source and target sounds9.

2.3.2 Contrast loss along interpolation midpoints

Another finding from the image processing community that can be of interest for the

purpose of audio morphing is mentioned in Grundland, Vohra, Williams and Dodgson’s[55]

8Wolberg refers to this as transition control.
9As we will see in the corresponding section, this is the case of f0 interpolation, where in order to avoid

overbearing partial glissandi we must either choose to create phantom partials or to have an inharmonic
sound resulting from the interpolation of two harmonic sounds.
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article, Cross Dissolve without Cross Fade: Preserving Contrast, Color and Salience in

Image Compositing. In this publication, the authors propose a way of solving the frequent

loss of dynamic range which is likely to result from the interpolation of two or more data

sets. Their solution is to weight the interpolation by salience masks applied to each one of

the images. In the case of audio interpolation, we must bear in mind the loss of dynamic

range and look for solution involving the interpolation of salient or otherwise perceptually

meaningful representation of features whenever possible10.

10As we will see in the corresponding section, this loss of contrast can be found in point by point spectral
envelope interpolation. It can be avoided by recurring to the interpolation of an alternate representation
of the spectral envelope, one which is more meaningful or alludes to perceptually salient features, as is the
case of reflection coefficients.
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Chapter 3

A Few Necessary Definitions

For the current explorations to be of any use to the reader, it’s essential to clarify certain

aspects that limit the context in which the strategies have been reviewed. As should be

fairly evident from the title of the thesis, the current work presents ideas and results of an

evaluation of spectral interpolation strategies for the morphing of musical sound objects;

the synthesis of sounds that contain features from two or more sources within the musical

context. Thus, it seems necessary to talk about what defines a musical sound object or

a single-event musical sound, to briefly expose some concepts regarding interpolation and

to explain the criteria for choosing the features across which interpolation will occur. The

features or descriptors themselves will also be defined in the current chapter.

3.1 Musical sound objects

The present exploration has a well defined scope which is to perform a broad evaluation

of strategies for morphing single-event musical sounds. In order to avoid confusion, it’s

necessary to state what the term single-event musical sounds implies. The terms single-

event or sound object refer to sounds having a clear delimitation in the temporal domain:

sounds which are flanked by either transients or silence. The reference to them being

musical is not a reference to their subjective musicality but rather refers to their relatively

stationary nature, as opposed to the extremely dynamic nature of other sounds such as

speech utterances or general everyday sounds. This means that we are interested in sounds

which possess relatively stable characteristics throughout their lifespan; sounds which are

commonly found in music as we traditionally know it, such as a note from an instrument

2010/09/17
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or a percussion hit.

3.2 Dynamic time-warping

We recall Dynamic time warping was used for speech morphing and that surface warping

was necessary for image morphing. The purpose of these warping processes is to align

features of the morph targets, in time or on the x−y plane respectively. Once this alignment

has been found, we can either warp one of the targets to match the other or warp both

according to the interpolation factor, so that both targets’ features match. By the same

token, during the interpolation of sound objects’ temporal features, such as the amplitude

envelope or vibrato, dynamic time-warping will be used extensively. Its application in this

context aims at producing different time-scaling coefficients for each section between key

features to be aligned; ie one time-scaling coefficient for the attack and another for the

stable section and another one for the release.

3.3 About meaningful features

We need to define the parameters or features with which we represent sounds so that we can

perform interpolation along the set of features and not along the raw data. The simplest

form of interpolation between known data of inputs x, y...z, would be to interpolate between

each of the samples x[n], y[n]...z[n] at time nTs, where Ts is the sampling interval1. Yet

it is likely that this interpolation, or cross-fade, would result in an unconvincing morph

since it would yield a perceptually distinguishable mix of multiple inputs rather than a

unique hybrid containing features from all inputs[4]. Thus, we will define a feature set

that describes the inputs and for which it is possible to interpolate each feature. This

set will contain descriptors used to warp for alignment along the temporal and frequency

domains; descriptors that define the event’s amplitude through time; descriptors that define

the relationship and behaviour between the deterministic and stochastic components of the

additive representation as well as descriptors which define the relationship between partials

of the sound.

1provided, of course that Ts is a constant for all signals at all times.
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3.3.1 Why do we need them?

In order to achieve a convincing morph, it is crucial to note we are not limited to directly

interpolating samples from signals themselves, since it is possible to approximate sufficiently

well the known data in parametric fashion by means of analysis performed on the signal

or on its transformations. One such example of parametrization is the additive sinusoidal

representation, which unveils the possibility of achieving interpolation of features such as

the frequencies or amplitudes of each partial. Further analysis steps might help represent

the data with higher-level parameters which will prove useful for obtaining features that

are true hybrids.

As an example of why it is important to establish meaningful features let us consider

two morphings effected from two input signals which are represented in two ways–the later

being more meaningful. We shall take our signals to be two notes, each having a full

harmonic spectrum, produced by the same instrument with differing f0 and vibrato rates.

For simplicity’s sake, let f0 and fvibrato be 100 Hz and 3 Hz respectively for the first sound

and 125 Hz and 2 Hz for the second. Let’s also suppose the modulator for the vibrato to

be a pure sine and the interpolation factor to be 0.5.

Case 1 - Linear interpolation of the raw data.

We would obtain a hybrid containing energy at 100 Hz, 125 Hz, 200 Hz, 250 Hz, 300 Hz,

375 Hz, 400 Hz, 500 Hz and so forth. Where each partial that is a multiple of 100 Hz would

be modulated at 3 Hz and each partial that is a multiple of 125 Hz would be modulated

at 2 Hz–the partial at 500 Hz would display modulations at both of these frequencies.

Modulations aside, if we simply think of f0 as the maximum common denominator for all

present partials, we would arguably perceive a note with an f0 of 25 Hz and a very irregular

spectrum which is missing, among others, the first three partials. But then again, if we

do consider modulations and we consider the cues that synchronous modulations give for

source separation[56] we can actually argue that the interpolation will yield an event which

can be perceived as the mix of two distinct signals.

Case 2 - Linear interpolation of the additive model.

If we were to match partials and linearly interpolate their frequencies and amplitudes, with

an interpolation coefficient of 0.5, we would obtain a harmonic structure with an f0 of
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112.5 Hz. In this regard, we would now perceive a true hybrid. It is when we think of the

modulations of the partials that we realize that the features used for morphing are still

problematic since the frequency modulation itself will contain components at both 2 and 3

Hz as opposed to a pure sine at 2.5 Hz.

In essence, this short example serves to show that as long as we don’t precisely define the

set of features–such as vibrato frequency or f0–that we wish to interpolate from the inputs

and as long as we don’t interpolate these features directly we will keep facing the same effect

at one level or another. It then becomes clear that in order to achieve a convincing morph,

we must define the set of features which we will use to represent sounds and over which

interpolation will occur. These features will generally be derived from at least one, and

most often more than one, step of analysis performed on the original data. Thus, because

the vast majority of features that interest us are obtained from transforming and analyzing

the sample-wise or lower-level representation of audio, they are commonly referred to as

higher-level features [57].

Wesley Hatch has already done some work in terms of defining a set of higher-level

features for the purpose of morphing[7]. However, in the present work, we are interested

in obtaining a larger set of features which describe sounds within the musical context in

as meaningful a way as possible; thus we will diverge from this definition and allude to

meaningful features.

3.3.2 How do we go about defining them?

There are a few things we can establish before embarking on the quest for meaningful

features:

• We are interested in quantifiable features

• Features should be chosen to be as independent as possible

• Features should be perceptually meaningful

• Entire feature-set should describe the sound as completely as possible

Features should be perceptually meaningful

Ideally, there should be a link between a feature and some audible quality of the sound.

Features such as f0 have much more correlation with what we hear than perceptually
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irrelevant and arbitrary characteristics such as if f0 is prime or not. Features with a

stronger correlation to what we can hear are more perceptually meaningful.

We are interested in quantifiable features

Since interpolation consists in finding an intermediate value from surrounding values, it

follows that a necessary condition for interpolation of a given feature is that it be quantifi-

able.

Features should be chosen to be as independent as possible

It’s quite likely that our extracted features will not be completely independent. For exam-

ple, the frequencies of the extracted partials in our previous examples contain both constant

partial frequencies (i.e. a carrier frequencies) and vibrato (i.e. a modulator) and would

require an additional analysis step, such as that proposed by Marchand and Raspaud[58],

to separate these two features. The more we can enforce independence in terms of percep-

tually meaningful features in our representation, the easier it will be to use our feature set

for interpolation.

Entire feature-set should describe the sound as completely as possible

We’ve previously stated that it is desirable to avoid morphs which contain elements from

each one of its inputs which can be perceived as separate and distinct elements (such as

the prior example with a composite vibrato). It then follows that we should choose a set of

features that describes sounds as completely as possible to avoid non-interpolated outcomes

of isolated features.

3.4 Presentation of meaningful features

After establishing what it is that we seek from a set of descriptors, we are ready to choose

the features that will conform the set which we’ll use for interpolation. The following

features will be used wherever applicable: f0, amplitude envelope, spectral centroid dur-

ing attack, spectral shape, vibrato2, peak-amplitude time, odd to even partial amplitude

ratio, deterministic to stochastic energy ratio and inharmonicity. Whenever possible, the

2We will use an extended vibrato definition which includes FM, AM, and SEM as defined by[59].
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descriptors have been grouped according to whether they are only useful for sounds with

an underlying harmonic structure or they are useful for warping and morphing sounds

regardless of them having an underlying harmonic structure.

As Peeters[60] has noted, for some features such as the number of partials or the ampli-

tude envelope, analysis will yield a single result for every input sound3; while for others such

as vibrato (seen as a modulation) or spectral envelope, analysis will most likely yield one

or more results per analysis frame. Optionally, some of these results might be consolidated

by averaging them over time, which gives two possible representation and interpolation

strategies.

Since we will be using an additive model with stochastic and deterministic part decom-

position, we must take into account that each one of these parts should have descriptors

in its own right, where the stochastic part will not contain descriptors that are useful for

harmonic structures. Furthermore, interpolations for the stochastic and the deterministic

parts should be independent.

The rest of the chapter explains each one of these features in detail and table 3.1

condenses important information regarding the set of descriptors.

3.4.1 Features used for morphing regardless of a harmonic structure

We will first review descriptors which can be used regardless of whether a harmonic struc-

ture is present or not. They are the amplitude envelope, the onset spectral centroid and

the spectral envelope. Strictly speaking, we will use the amplitude envelope for temporal

warping for alignment and not for morphing.

Amplitude Envelope

The function of amplitude vs time for any given signal. This function can be obtained

by calculating the RMS of windowed portions. For the envelope extraction, Peeters[60]

proposes a window with a size of 100 milliseconds.

A[k] =

√

√

√

√

1

N

N−1
∑

n=0

(x[n+k]w[n])2 (3.1)

3A single ADSR can describe the envelope or a constant number of partials will be valid throughout
the duration of the sound
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Where A[k] is the amplitude at analysis frame k. Once the function has been extracted, the

envelope can be approximated by an ADSR for most instrumental sounds. This is achieved

by fitting points of inflection within A[k] to the ADSR model.

Onset spectral centroid

As Grey has shown[10, 11] in his well known studies of timbre, the distribution of energy

content during the attack is an important factor in our perception of timbre. The element

that separates this from any other spectral distribution feature is that it is only the ratio

at the event’s onset4 that interests us. Grey does not, however, give a clear-cut definition

for this and we will thus define it as:

OSC[m] =

∑N−1
n=0 fn · amn
∑N−1

n=0 amn

(3.2)

where OSC[m] is the onset spectral centroid at frame number m from 0 to M − 1 and

where M is the number of frames corresponding to the attack. N represents the number

of bins, fn represents the frequency at bin n, anm represents the amplitude at bin n during

frame m.

Although the onset spectral centroid can be useful to describe any given sound, imposing

a given OSC upon re-synthesis can be achieved through a variety of spectral modifications.

When we have a smaller set of partials, we propose to keep track of partial peak amplitude

times and interpolate them instead. This will be described with more detail in 3.4.2

Spectral shape

The spectral shape or spectral envelope of a particular sequence x[n] is a curve that fits

over the peaks of its spectrum. The spectral shape is typically characterized by how many

peaks it tries to fit and by its smoothness in some cases. Alternatively, from a source-filter

perspective, it can also be seen as the frequency response of the filter that we would need to

apply to a flat-spectrum signal in order to obtain a similar spectral distribution to that of

the sequence from which we obtained the envelope in the first place. Additionally, since the

spectral envelope can be viewed as the frequency response of a filter, it can be parametrized

4And possibly during the release portion.
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as a series of reflection coefficients, which guarantee it’s stability during the interpolation

process[61].

3.4.2 Features found only in pitched sounds

From the set of descriptors that we have defined, those that will be of interest to us only

in the case of sounds with an underlying harmonic structure are vibrato, inharmonicity,

even-to-odd partial energy ratio and Partials’ peak attack times. As in the case of the

amplitude envelope we will actually use f0 for spectral warping for alignment and not

really for morphing.

Fundamental frequency: f0

For any sound containing a harmonic series of partials, f0 is a frequency such that f0 is the

greatest common divisor for the frequencies of all partials. f0 is correlated to the notion of

pitch in the perceptual domain. As has been mentioned before, it will be important to warp

pitched sounds along this feature to avoid a hybrid that has an f0 that is not necessarily

between that of the sources or a hybrid that can be perceived as having two distinct f0s.

Vibrato

While it’s classically understood to mean a Frequency Modulation at a sub-audio rate,

whenever we talk about vibrato in the current study we will be referring to a general-

ized vibrato as the one defined by Verfaille, Guastavino and Depalle in their Perceptual

Evaluation of Vibrato Models [59].

The generalized model of a vibrato is not only defined as Frequency Modulation but

also comprises sub-audio rate Amplitude and Spectral Envelope Modulations. AM, when

present at a sub-audio rate is typically referred to as tremolo, and SEM can fall under the

general category of Spectral Flux. These three modulations generally occur at correlated

frequencies, where for any particular type of sound, there is an almost constant relationship

between modulation phases5 and each modulation has it’s own amplitude or depth6. The

5It is an almost constant relationship, since we will find hysteresis given the most common of cases, as
has been shown in the aforementioned paper[59].

6Of course, amplitude modulation depth, frequency modulation depth and the n-dimensional SE
maximum-difference vector are like apples, oranges and pineapples, in other words, units for each depth
will be unrelated to other modulation depths.
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classical approach to vibrato or tremolo was to ascribe a single frequency of modulation

throughout the event, but it’s preferable to extract these modulations by performing a

second order sinusoidal analysis, as has been shown by Marchand and Raspaud’s DAFX

article on time stretching[58]. This way, we can extract the three sets of modulation partial

tracks—equivalent to the partials in regular additive modelling—by performing an STFT

on the up-sampled original partial track frequency and amplitude fluctuations. Spectral

envelope modulations are implicit if we perform amplitude modulation extraction for each

harmonic as opposed to doing so only on the first partial.

Inharmonicity

Generally speaking, when we talk about pitched sounds or harmonic series of partials, there

is a slight deviation from purely harmonic relations. This is caused by specific character-

istics of the physical principle for sound generation. For example, string geometry for an

oscillating string or bore irregularities in a wind instrument slightly affect the frequencies

of different partials. Thus, for each different sound, we will often find a particular series

of deviations from purely harmonic relations between each harmonic and the fundamental

frequency.

Inharmonicity refers to this deviation of partial frequencies from their expected frequen-

cies as per h · f0. Peeters proposes inharmonicity to be:

inharmonicity =
2
∑

h |fh − h · f0|a
2
h

f0
∑

h a
2
h · h

With a value of [0, 1]. We propose to extend the range to [−1, 1], where negative values

correspond to generally compressed harmonic spectra and positive values correspond to

stretched harmonic spectra. We can avoid the use of absolute value from the previous

equation to know if the trend of the inharmonicity corresponds to compression or stretching.

So we would have:

inharmonicity =
2
∑

h(fh − h · f0)a
2
h

f0
∑

h a
2
h · h

(3.3)

The prior definition allows us to consider a single coefficient that measures the overall

inharmonicity of a given sound this is a broad characterization which is generally insufficient

if we intend to reconstruct the sound from such a characterization. It is only in certain cases

where inharmonicity relations have been studied, such as is the case of piano sounds [62]
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that a single measure of inharmonicity would suffice to approximate individual coefficients

for each partial during re-synthesis. We will find that, in most cases, a complete vector of

inharmonicity coefficients will be needed in order to reconstruct each partial’s frequency

given an f0. Such a vector could be denoted as follows:

Inharmonicity = ih =
2(fh − h · f0)

h · f0
(3.4)

Where h is only relevant for partials above the one with a frequency which coincides with

f0, if such a partial were present7.

Even to odd partial energy ratio

The ratio between these two energies is correlated with spectral smoothness and plays an

important part in our perception of timbre[63]. A typical example of a very low even to

odd harmonic energy ratio is a stopped pipe, e.g. the clarinet, played piano at the lower

end of its register. An example of an instrument which has a ratio of approximately 1 is

the trumpet. High EOR values will tend to sound an octave above the fundamental pitch.

Even to odd partial energy ratio or EOR can be calculated as follows[60]:

EOR =

∑⌊H/2⌋
h=1 a22h

∑⌊H/2⌋
h=1 a22h−1

(3.5)

Partial attack times

We recall that the spectral fluctuation during attack has been described as a correlate of

instrument families[10, 11] and that in 3.4.1 we proposed an alternative to the onset spectral

centroid can be useful in cases where a relatively low number of partials are present8. The

proposed alternative is to have a vector of times at which each partial attains its peak

amplitude, which can be imprinted on the attack of a series of partials with less ambiguity

than the onset spectral centroid. Similarly to the onset spectral centroid, partial attack

times can describe the spectral fluctuation of the attack.

7Allowing for pitched sounds with a phantom fundamental component.
8Since we can consider the deterministic plus stochastic representation as a data-reduction technique

from the STFT , we can generally say that a number of partials describing a sound is significantly smaller
than the number of bins required for the same purpose.
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In regards to the amount of data needed for describing onset spectral fluctuations, we

have a few observations. Keeping a vector of OSC values across all frames for long attacks9

is not too far from keeping a single attack time for each partial. Also, if there were a need

to reduce the data in the representation, we could approximate the time of reaching peak

amplitude as a function of partial number.

Once we have created an additive deterministic and stochastic model through analysis,

we can easily keep track of the times at which peak values are attained for each partial.

We can do so with a minimum error equivalent to half of the partial frequency sampling

time which is given by the analysis hop size10.

3.4.3 Other considerations

Once additive model separation has been done, we are dealing with (at least) two entities

for each sound; its deterministic and stochastic components. It’s possible to extract some

characteristics, such as spectral envelope or amplitude envelope from the sound before

performing deterministic and stochastic component separation as well as doing so after

performing the separation. Depending on the application, it is important to weigh the

qualitative difference between the outcomes of these two procedures against their added

cost in terms of processing and storage.

Harmonic-part to noise-part ratio

After having performed the separation of harmonic and noise components of a signal, a

global value may be obtained by calculating the ratio of the energy of each component.

Alternatively we may obtain a sequence of power values at each frame, for both the de-

terministic and stochastic components, and then store a vector of power ratios across all

frames. Peeters proposes harmonic part energy and noise part energy as two separate

features[60], but consolidating the two into a ratio diminishes the number of features and

avoids the overlap with the amplitude envelope.

9If we consider a 0.5s attack with an analysis framerate of 86Hz, we would contemplate 43 onset spectral
centroid values.

10At a sampling rate of 44,100 Hz, a hop size of 256 samples would thus be accurate to within 2.9
milliseconds which should prove to be sufficient.
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3.5 On interpolation

Interpolation is a means to find an intermediate value between known samples. Mathemat-

ically this is achieved by fitting a function to pass through a set of known points11. Many

common interpolation schemes, such as cubic interpolation, require more than two known

points through which a function must be fitted. In general we will interpolate between

two given sounds, which means that our data-set for each feature will consist of two sam-

ples. This leaves a choice from three common interpolation strategies: nearest-neighbour,

linear interpolation and logarithmic interpolation–or linear interpolation performed on the

logarithm of the known points.

Seeking the value yn+α by these three different types of interpolation, where 0 ≤ α ≤ 1

is given by the following expressions:[51, 7]:

nearest-neighbour interpolation

yn+α =

{

yn if α < 0.5

yn+1 if α ≥ 0.5

linear interpolation

yn+α = (1− α) yn + (α) yn+1

logarithmic interpolation

yn+α = yn

(

yn+1

yn

)α

Although nearest neighbour interpolation can be considered as more of a decision-making

strategy than interpolation, we have decided to mention it, as does Wolberg in his presen-

tation on the subject[51]. This strategy would be inappropriate in most scenarios which

aim at morphing, since it does not really find intermediate values between known points

but merely opts for one or the other. As for linear and logarithmic interpolations, choosing

between them shall be part of evaluating strategies for different features. We hereby hy-

pothesize that in some features logarithmic interpolation will be preferable since it better

corresponds to our perception of the evolution of the parameters themselves. For example,

11For many types of interpolation, we can alternatively see this as convolving each point with a given
kernel function[51]. This is not so for polynomial interpolations.
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it is well known that the linear evolution of the log2 of frequency is strongly correlated

with the perception of pitch, therefore it is likely that interpolation of f0 for two given

inputs might seem preferable when performed with logarithmic interpolation than when

performed with linear interpolation.12

Table 3.1 Perceptually meaningful descriptors: features can be affected dur-
ing time-warping, spectral-warping or during the morphing process. Features
can be exclusive to the deterministic component and they can be seen as one
measure—or an average measure—per event or can be seen as a time-series of
measures per event.

Descriptor Used during Found only Single Time

warping(w) or in deterministic measure or series

morphing(m) component average

Amplitude envelope w *

Spectral centroid m * *

during attack

Spectral shape m * *

f0 w * *

Vibrato m * * *

Inharmonicity m/w * * *

Odd/even partial m * * *

amplitude ratio

Partial attack m * *

time

Harmonic/noise m * * *

amplitude ratio

12Ideally, interpolation would be best performed within all perceptually validated scales, but since this
is not contemplated within the scope of the present work, the extrapolation of the results herein presented
into the perceptual domain is left as future work.
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Chapter 4

Experimental Observations and

Results for synthetic sounds

The stated goal of the present study, is to evaluate several different interpolation strategies

which can be used for the purpose of morphing between single-event musical sounds. This

chapter presents an evaluation of isolated interpolation strategies for features which we

defined in chapter 3. These strategies were tested on pairs of synthesized sounds which

vary exclusively and heavily in terms of the feature being tested. We present the features in

the same order as we did in chapter 3. In the presentation and comparison of interpolation

strategies, we’ve commented in regards to the desirability of using one strategy versus

another. In some cases, more than one strategy may produce viable results. In these cases,

we discuss the usefulness of each strategy under different circumstances.

We have also posted sound files on the project’s website[9] so as to provide an audible

illustration of the results. These sound files are intended to be complementary to the

observations and figures presented herein to illustrate these comparisons. The reader is

encouraged to refer to these samples.

4.1 Amplitude envelope warping and alignment

An important first step for audio morphing consists in finding the time-alignment of the

involved sounds, this will facilitate the subsequent performance of dynamic time-warping.

The warping and alignment of the amplitude envelope or A[n] involves dealing with both

amplitude and time. For each one of these axes, there are two obvious strategies which are

2010/09/17



4 Experimental Observations and Results for synthetic sounds 39

logarithmic interpolation and linear interpolation.

Having two possible interpolation strategies for two different aspects of the temporal

envelope yields four possible strategies for interpolation: linear time and linear amplitude;

linear time and logarithmic amplitude; logarithmic time and linear amplitude, and finally,

logarithmic time and logarithmic amplitude. For all strategies, the envelope was interpo-

lated in 5 steps, where the interpolation factors were: 0.0, 0.25, 0.5, 0.75 and 1.0.
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Fig. 4.1 Comparison of amplitude envelope interpolation strategies, the cor-
responding audio files can be found in the the project’s web page.

We generated the sinusoidal model for a band-limited sawtooth-wave at 441 Hz in

Matlab and then used Ircam’s pm2 to synthesize the wave. Two arbitrary contrasting

amplitude envelopes were created. Then the envelopes were interpolated with the different

combinations of strategies. Afterwards, the sawtooth-wave’s gain was scaled by the set of

interpolated envelopes. Lastly, we compared the results of the four different interpolation

strategies in an informal listening test.

The listening test showed the choice of logarithmic interpolation along both, time and

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR
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amplitude, dimensions to be superior to linear interpolation. The envelope interpolations

are depicted in figure 4.1 and the resulting audio samples can be accessed on the project’s

website[9]. The following list contains links to playlists in order to provide easy access for

readers of the electronic version:

• linear time, linear amplitude,

• linear time, logarithmic amplitude,

• logarithmic time, linear amplitude and

• logarithmic time, logarithmic amplitude.

4.2 Morphing spectral envelopes

The interpolation of spectral envelopes or E(f) will generally be performed separately on

the deterministic and stochastic component. This would imply that our choice of strategy

for spectral envelope morphing is perhaps of greater importance than that of other features.

The comparison that we carried out uses deterministic component. However, since the

component is a spectrally-rich source, the results should be readily applicable to stochastic-

part representations.

Spectral envelopes can be obtained through various analysis techniques[64] and they

can also be represented in several exactly equivalent or approximately equivalent ways[21].

Because the combination of spectral envelope analysis techniques, spectral envelope rep-

resentations, and types of sounds which can be analyzed is rather large, we have chosen

the true envelope estimation, which seems to be accurate and well-behaved in most cir-

cumstances, albeit computationally expensive. We mention different analysis techniques,

leading up to the one we have chosen. Afterwards presenting possible representations of

spectral envelope information and finally reporting on the implementation of the com-

parison of spectral envelope interpolation strategies. Note that we can find equivalences

between E(f) representations, some exact and some approximate, regardless of the method

by which the estimation was performed[21].

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/linT-linAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/linT-logAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/logT-linAmp.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpADSR/logT-logAmp.m3u
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4.2.1 On spectral envelope estimation

A spectral envelope obtained from spectral analysis of a given signal is an approximation

that relies on smoothing spectral information as a function of frequency1 in one way or

another2. Therefore, the way in which the spectral envelope is estimated will greatly

impact the sort of envelope we obtain. Schwarz and Rodet[64] wrote an article which

compares different spectral envelope estimation techniques. The following descriptions are

extremely simplified but are sufficient for giving the reader a broad idea in regards to

spectral estimation.

The simplest forms of approximating spectral envelopes are given by the line-segment

approximation of peak values3 selected from each section of a partitioned frequency domain.

Linear predictive coding gives a good approximation of spectral envelopes but requires

significant tuning of the model order. This tuning calls for either prior knowledge or for

making assumptions about the signal to be analyzed.

Another way of estimating the spectral envelope is to low-pass filter a given signal’s

spectrum. This is the way in which cepstral approximations of the spectral envelope are

obtained. By choosing only the low frequency bins of a FT of the logarithm of the FT

of the signal, we eliminate abrupt changes (higher quefrencies4)in the spectrum. The

problem with this approach is that the estimated spectral envelope generally turns out to

be significantly lower in magnitude than the actual peaks in the spectrum.

The discrete cepstrum yields a spectral approximation that, like the cepstrum, is also a

sum of sinusoidal functions. The difference is that the discrete cepstrum is an estimation of

the spectral envelope comprised by a sum of sinusoids which must pass through a discrete

number of points taken from the original spectrum. This method gives a better approxi-

mation than regular cepstral estimation when we have adequate information in regards to

the spectral peaks and the order is chosen appropriately. Yet, despite the improvement in

accuracy, discrete cepstral estimation can produce inaccurate envelope estimations when

the constraints are too tight for the order that has been chosen5.

1In other words, smoothing each spectrum.
2This is not necessarily the case for envelopes obtained otherwise, for example those that derive from

knowledge of a particular physical model.
3whether we are referring to a single peak or some sort of peak averaging.
4In cepstral analysis we obtain the FT of the logarithm of the FT of a signal–quefrencies are to the

cepstrum what frequencies are to the standard spectrum.
5e.g. When two points with very different magnitudes are too close in the frequency domain.
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An alternate way to counter the low magnitude yielded by cepstral analysis is to iter-

atively compute the spectral envelope for the peaks that remain larger in magnitude than

the spectrum. This is called a true envelope estimation.

4.2.2 On spectral envelope representations

We now focus on the comparison of the interpolations performed via different representa-

tions of the spectral envelope. All of the strategies that we tested relied on representations

which were derived from a true envelope estimation.

True envelope estimation yields either cepstral coefficients or an equivalent magnitude

spectrum. Based on the Wiener-Khinchine theorem, we can convert a magnitude spectrum

into an autocorrelation sequence by transforming it into a power spectrum and applying an

IFFT to it. Having an autocorrelation sequence is an intermediate step toward being able

to represent the spectrum as an auto-regressive model. From the transversal coefficients,

we can easily obtain a series of reflection coefficients, log-area ratios or line spectral pairs.

4.2.3 Comparison of E(f) interpolation strategies

We created a pair of arbitrary spectral envelopes with very different characteristics. The

first arbitrary spectral envelope has two resonances: the first resonance, with a peak am-

plitude of 1, is at 500Hz, with a bandwidth of 25Hz; the peak of the second resonance

is at 1150Hz with a magnitude of 0.5 and a bandwidth of 50Hz. The target arbitrary

envelope contains a single broad resonance at 1500Hz with a peak magnitude of 1 and a

bandwidth of 100Hz. A 90-partial sawtooth-wave with f0 = 85Hz was generated again

through pm2. Then, for each strategy, the magnitudes were scaled by a series of 32 spectra

obtained by interpolating the two arbitrary envelopes. The choice of a low fundamental

frequency was made in order to have closely-spaced harmonics, revealing a good degree

of detail in the spectral envelope. This was deemed important since we did not include

frequency modulations in the audio examples.

We compared four interpolation strategies: naive linear and naive logarithmic cepstral

coefficient interpolation; reflection coefficient interpolation and log-area ratio interpolation.

These four strategies can be clearly grouped into two types: the cross-fade or bin-by-bin

interpolation of spectra and the interpolation of a representation with a stronger correlation

to a physical representation. Both naive interpolations belong to the former category and
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the remaining interpolations pertain to the latter. The resulting synthesized interpolations

can be heard on the project’s website[9] and each strategy is presented in the following

paragraphs.

Naive cepstral coefficient interpolation, linear and logarithmic interpolations

The naive interpolation of cepstral coefficients tends to give poor results with interpolation

factors nearing 0.5. Resonant frequencies of the peaks of the spectral envelopes remain

constant throughout the interpolation. Thus, toward the mid-point in the interpolation we

tend to have as many spectral maxima as the sum of the number of resonances6 in both

spectra. However, the interpolated peaks would all present a lower amplitude than their

original counterparts. This tends to produce a relatively flat spectrum which parallels the

loss of contrast addressed in image morphing in subsection 2.3.2. This relative flatness can

be observed in figure 4.2. Both audio examples can be found on the project’s website[9].

They have also been linked in the electronic version, click here for the linear interpolation

and here for the logarithmic interpolation.

Interpolation of reflection coefficients and log-area ratios

Naive interpolations did not prove to be convincing given that there was no sweeping

of resonant frequencies and that it was found that interpolations with an interpolation

coefficient close to 0.5 could produce relatively flat spectra. Therefore, we then tried

two interpolation strategies that address these problems: The interpolation of reflection

coefficients and of log-area ratios. The former offer two important advantages over other

spectral interpolation techniques. Firstly, if the magnitudes of all coefficients for both

source and target spectra are limited to 1 then system stability is guaranteed throughout

the interpolation[61] since no interpolated coefficients will have a magnitude larger than

1. Secondly, their interpolation produces more meaningful spectral changes because they

can be seen as being derived from the ratios between cross-sectional areas of a series of

cylindrical sections which constitute a propagation path. That is to say, they are meaningful

changes since they reflect the acoustic behavior of interpolating the sampled diameters for

propagation paths: resonant frequencies move as well as magnitudes and bandwidths.

6If the spectral maxima or resonances from the two original spectra do not overlap during the interpo-
lation, otherwise we would have less peaks than the total number of peaks.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-naiveLin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-naiveLog.wav
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Fig. 4.2 Flattening of spectral envelope obtained by naive interpolation of
the cepstral coefficients at an interpolation factor of 0.5 vs. that of a spectral
envelope obtained by the interpolation of reflection coefficients with the same
interpolation factor.

Log-area ratios are similar to reflection coefficients but are often preferred in the speech

processing community since they are more directly related to the physical properties of the

vocal tract. Log-area ratios are related to reflection coefficients in that lark = log
(

1−rk
1+rk

)

where rk is the kth reflection coefficient[65].

In figure 4.3 we can observe the difference between naive and non-naive interpolation

strategies. It is plain to see in this figure that not only do the spectral envelopes flatten out

toward the middle of the interpolation on both naive cases whereas peakiness is maintained

throughout both reflection coefficient and log-area ratio interpolations. Another difference

which is apparent to the naked eye is that the resonant frequencies do not move during

naive interpolation, whereas figures 4.3(c) and 4.3(c) present a frequency sweep along in-

terpolation paths. The frequency sweep is, perhaps, ideally smooth but the results are a

considerable improvement over the results from naive interpolation.

Both audio examples can be found on the project’s website[9]. They have also been

linked in the electronic version, click here for the reflection coefficient interpolation and

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-rc.wav
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here for the log area ratio interpolation.
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(a) Naive cepstral coefficient linear inter-
polation
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(b) Naive cepstral coefficient logarithmic
interpolation
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(c) Reflection coefficient interpolation
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(d) Log-area ratio interpolation

Fig. 4.3 Four spectral interpolation strategies, two bin-per-bin interpolation
strategies, reflection-coefficient interpolation and log-area ratios interpolation
applied to the same two arbitrary spectral envelopes. Meshes were obtained
by performing 32 interpolation steps between two 512-point spectra.

Line Spectral Pairs or Frequencies

An additional strategy was tested but gave very poor results in the present context. In

speech processing, it is common to use line spectral pairs, also called line spectral frequen-

cies, for envelope representation[48]. But in this context, we found that as the order of our

representations increased, interpolation of LSP introduced considerable inaccuracies and

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpE(f)/interpEf-lar.wav
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discontinuities. Figure 4.4 represents an interpolation of the same two spectra which were

used for previous examples. In this case, the order is reduced to 64 frequency sampling

points as opposed to 512 which were used in prior realizations. Already with this order

we start to see some discontinuities, such as the spurious peaks throughout the higher fre-

quencies, as well as a gap in the resonance toward interpolation factor 0.8. Higher orders

produced increasingly disparate results.
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Fig. 4.4 Line spectral pairs interpolation for the same two envelopes that
were used for prior interpolations. With as little as 64 sample points per
envelope, spurious peaks can be observed.

4.2.4 Some considerations and proposed improvements

We have compared four interpolation strategies for spectral envelopes which, due to their

generality, could be useful in most cases. Yet there are several improvements which can

be implemented. Foremost, if we were to be dealing with spectra having well-defined

formants, optimal results could be obtained by using a method consisting of matching

formants between the involved spectra and then performing a logarithmic interpolation of

resonant frequencies, Q factors and amplitudes[66]. Formant information can be acquired in
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several ways. It could be derived from a physical model, estimated through LPC analysis or

it could also possibly be approximated from a power spectrum as proposed by Depalle[67].

Alternatively, for peaky envelopes, which can be estimated via LPC, line spectral pairs

would seem to be an appropriate choice if we rely on findings from the speech processing

community.

We also recall, from subsection 2.1.1, Caetano and Rodet’s[22] paper on evolution-

ary spectral morphing. By the same token, we recall that in section 2.2 we mentioned

Pfitzinger’s[41] Dynamic Frequency Warping algorithm. This seems to be a very promising

method as can be heard from the results posted on his webpage[50] which is linked here in

the electronic version of this document. It’s worth noting that, in the implementation of

DFW, the preoccupations in terms of strategy are displaced to the tuning of the Dynamic

Programming algorithm for finding correspondences between spectral peaks.

4.3 Warping along the frequency axis

As we have previously stated, within the musical context we often find sounds which have

a harmonic or quasi-harmonic structure in the arrangement of their partials. For these

sounds we have a frequency f0 such that it is the maximum common divisor of all partial

frequencies. Sounds with such characteristics are perceived as having a definite pitch, and

it is important, throughout a morph between two such sounds, to retain the harmonic

structure so that as one sound evolves toward the other, fractional interpolation factors

don’t yield inharmonic sounds.

The first and obvious comparison that we could perform between a pair of strategies

is that of logarithmic interpolation vs. linear interpolation. Yet most times that we find

mention of the actual method of interpolation of partial frequencies in the literature, log-

arithmic interpolation is preferred[4, 7, 8]. Since we found a quick perceptual test to be

in agreement with the unanimous choice of logarithmic interpolation, we have decided to

forgo this comparison7.

In what regards f0 interpolation, a more interesting area of exploration is that of keeping

a harmonic structure throughout the interpolation while avoiding glissandi covering great

7We have, nevertheless, investigated linear interpolation and left it as a commented out section of code
in the scripts. If uncommented, this section performs linear interpolation, in case the reader is interested
in executing it.

http://www.phonetik.uni-muenchen.de/~hpt/morphing
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distances between different f0s, since the gliding becomes an overpowering characteristic

of the sound. Thus the comparisons performed in this area head toward proposing a

viable solution to spanning greater fundamental frequency differences through the shortest

possible glissandi.

For every comparison, we chose two fundamental frequencies, f01 and f02 and performed

their interpolation throughout a 5 second sawtooth-wave.

4.3.1 First strategy, one-to-one naive partial frequency interpolation

In order to illustrate the overpowering effect of glissandi, a choice of f01 = 441Hz and

f02 = 882Hz was made; this is equivalent to an ascending octave. An sawtooth-wave with

twenty partials was created in order to avoid aliasing toward f02 and the partial frequencies

were logarithmically interpolated from the onset to t = 4s. An example of this strategy

can be found on the project’s webpage[9] and has been linked here in the electronic version.

4.3.2 Second strategy, closest harmonic structure partial amplitude

interpolation

The same fundamental frequencies were interpolated but in this case, we took advantage of

the common harmonic structure between the two sounds. Since the partials’ frequencies of

a sawtooth-wave at f02 are equivalent to the even partials’ frequencies in an sawtooth-wave

at f01 , f01 ’s odd partials were faded out between t = 1s and t = 4s. There is a very big

difference with the prior strategy, since the proposed octave fadings produce no glissando

throughout. Recalling the three possible types of audio morphing proposed by Slaney,

Covell and Lassiter[2], this strategy yields a result which is most likely to be preferable

particularly in the context of a dynamic morph since it seems easier to keep focused on the

timbre throughout the interpolation than with the glissando. By the same token, the first

strategy might be preferable for what Slaney et al refer to as stationary and cyclostationary

morphs. The comparison of the first and second strategies can also be seen on figure 4.5.

An example of this strategy can be found on the project’s webpage[9] and has been linked

here in the electronic version.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-naiveOctave.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantomOctave.wav
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Fig. 4.5 Two f0 warping strategies, corresponding audio files can be found
on the project’s website. Partials obtained by performing interpolations di-
rectly on the parameter set. The representations differ since amplitude–
pictured as brightness–only varies in the second strategy. 4.5(a) A frequency
vs frames representation: frequency of partials gradually increases toward the
target f0, keeping a harmonic relation. 4.5(b)A frequency, frames and ampli-
tude representation: The spectrogram shows partials fading out toward the
end, where only even partials remain

4.3.3 Extending the previous strategy

For the next trial we have chosen f02 = 3 · f01 which is equivalent to an ascending just

thirteenth or an octave plus a just fifth. Instead of a very broad glissando, we have again

resorted to fading partials out throughout the event; in this case we fade out two out of

every three partials.

An example of this interpolation can be found on the project’s webpage[9] and has been

linked here in the electronic version.

4.3.4 Third strategy, closest neighbor and closest harmonic structure partial

amplitude interpolation

In order to illustrate this strategy, we have chosen f01 = 441Hz and f02 to be 8
5
f01 which

is equivalent to an ascending minor sixth in just tuning. Following the same principle

of fading partials, we have performed a glissando toward 4
5
f01 coupled with fading odd

partials. We have also performed a naive interpolation of f01 and f02 . The f0 ratio from

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantom13th.wav
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the interpolation with the fading partials is equivalent to a descending major third in just

tuning. The rationale behind this choice is to take the shortest distance approach in order

to avoid extensive glissandi.

The reader is encouraged to listen and compare the results; both interpolations are

available from the project’s website[9]. They have been linked in the electronic version: the

naive interpolation has been linked here and the fading-partials interpolation here.

Given any two f0s, f01 and f02 , a good procedure for obtaining the shortest glissando

along with phantom partials would be to follow an algorithm which seeks to minimize the

interval of the glissando and at the same time retains as much as possible from the target

harmonic structures. We have sketched out a routine to achieve this goal in algorithm 4.1

where we study several possible routes8 to get from the lower f0 to the higher f0. We then

store values for each one of these possible routes in an array and in the end we opt for the

route c with the lesser glissando. Note that minor adjustments should be made at the end

for slight deviation of partial frequencies from the underlying harmonic model due to their

inharmonicity coefficients.

The possibility of combining partial fading with glissandi can prove useful for the ful-

fillment of certain musical constraints. One example of this could be the placement of a

different constraint for choosing c, such that it yields a cent2gliss value as close as possible

to forcing a certain intervalic content on a morph; where the sought interval is in accordance

with a harmonic or melodic context.

It would be advisable to exercise caution, avoiding too many of the partials to fade in or

out during the process since we can easily approach results which are closer to cross-fading

than to morphing. Thus it could also be of interest to place constraints on c in regards to

the resulting finalPartial2phantom. Another consideration to take into account is that

in performing this type of strategy we might impose changes on the spectral envelope as

well as on even-to-odd ratio.

4.4 Morphing vibrato

As we have seen in chapter 3, a generalized form of vibrato can be understood to be

comprised of the modulations of an event’s frequency and amplitude, and the implicit

8There is a potentially redundant number of them, but it seems to be sound enough for a first approx-
imation to the issue at hand.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-glissSixth.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpF0/warpF0-phantomSixth.wav
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Algorithm 4.1 is a way of interpolating between f01 and f02 getting the shortest glissando
with partial fading. Several paths, c, between harmonic structures that in the case fading
partials would have no more than 1

b
of their partials in common are explored and the

shortest glissando, is chosen to be finalCent2gliss, giving a final number of common
partials partial2phantom.

if
f02
f01
≥ 1 then

p
q
←

f02
f01

;

else
p
q
←

f01
f02

;

end if

for b = 2 to ⌈p
q
⌉ do

exponent[b−2] ← logb

(

p
q

)

;

partial2phantom[b−2] ← b⌊exponent[b−2]+0.5⌋;

ratio[b−2] ← bexponent[b−2]−⌊exponent[b−2]+0.5⌋;

cents2gliss[b−2] ← log2
(

ratio[b−2]

)

· 1200;

end for

c← b− 2, s.t. |cent2gliss[b−2]| = min(|cent2gliss[b−2]|);

finalCents2gliss← cent2gliss[c];

finalPartial2phantom← partial2phantom[c];
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spectral envelope modulations which result from considering the amplitude modulation

of each first-order partial separately. Modulations can be seen as a series of inharmonic

low-frequency partials which can be extracted from a second order sinusoidal analysis.

We have sought to extrapolate the time-stretching technique proposed by Marchand

and Raspaud[58] in the context of morphing and have found the results to be adequate.

In order to do so, we have performed an interpolation of two vibratos extracted from the

analysis of a violin tone and a saxophone tone. The steps that were followed can be grouped

into three general stages: Analysis of interpoland modulations, establishment of temporal

correspondence and re-synthesis of target modulations. The stages and the steps performed

therein are described in the following pages.

4.4.1 Analysis of interpoland modulations

The first step is to define how we will measure modulations in a way that is somewhat

independent of f0 and amplitude. Take for example the case of frequency deviation: since a

maximum deviation of 20 Hz is perceived as a mild vibrato for a note with f0 = 2000Hz but

a wild vibrato for an event with f0 = 200Hz, it would be desirable to have our measure of

deviation in units that can be easily ported between sounds by virtue of being independent

from f0. The same principle applies to whatever choice we make for measuring amplitude

modulations. A standard procedure to achieve this is to use a relative error, which instead

of measuring the total frequency deviation ∆f it measures the variation relative to the

mean erel =
∆f
f
.

We have chosen a particular variant to measure frequency deviations in such a portable

fashion: doing so in cents. This can be done in the following manner:

fmcents[k] = log2
f0inst[k]

f0avg
· 1200

where f0inst[k] is the value of the first partial’s frequency at frame k, f0avg is the mean value

of f0 across all the event’s analysis frames and fmcents[k], for the K available frames is the

frequency-independent representation of the modulated signal.

Amplitude modulation or the instant amplitude deviation from the amplitude envelope,
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on the other hand, can be measured in decibels. Thus we have:

amdB[k] = 20 · log10
ampinst[k]

ampenv[k]

where ampinst[k] is taken to be the amplitude at analysis frame k and ampenv[k] is the

value of the amplitude envelope at frame k.

During the analysis, stage, we perform a first-order sinusoidal analysis of our target

sounds and then extract the modulation signals in cents and dB. Once we have the tar-

get modulation signals, we extrapolate them in preparation for a second-order sinusoidal

analysis which we perform at the end.

Vibrato extraction

In order to evaluate the proposed strategy on two realistic vibratos, we prepared for the

interpolation by performing second order sinusoidal analysis of two notes played on a violin

and a saxophone respectively. For the most part, we followed the procedure proposed by

Marchand and Raspaud[58]. The analysis was performed on the harmonic track information

which was obtained from a pm2 analysis. The hop size for the harmonic analysis was 1024

samples and the audio files were originally sampled at 44100 Hz. Thus the resulting analysis

sampling rate for the extracted first-level sinusoidal data was roughly 43 Hz, which allowed

us to extract modulation information9 up to 21.5 Hz. This upper bound effectively limited

the information that we could obtain from a second order sinusoidal analysis to the sub-

audio frequency range, which is precisely the range in which we are interested.

Frequency modulation was extracted only from the first partial, as a deviation given in

cents, allowing the information to be independent of the notes’ f0.

For the analysis of amplitude modulations, we needed to define a method for estimating

the amplitude envelope. We opted for performing a frequency-domain low-pass filtering of

the partial’s amplitude evolution. Filtering in the frequency-domain, yields no group delay

and eliminates all energy at frequencies above the cutoff frequency. We chose a cutoff

frequency of 6 Hz and obtained adequate results. Yet as with many analysis methods,

some tuning should be performed on the cutoff frequency for each realization in order to

obtain a smooth amplitude envelope.

9ie, second order partials.
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(a) Amplitude envelope
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(b) Low-passed amplitude envelope
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(c) Amplitude ratio

Fig. 4.6 Figure 4.6(a) shows the raw amplitude values per frame and their
Fourier transform, excluding dc offset. Figure 4.6(b) shows an ideal low pass
filtering of the amplitude envelope, obtained by zeroing out higher frequen-
cies in the spectral domain. Figure 4.6(c) shows the ratio between these two
versions of the amplitude envelope.

For an implicit spectral envelope modulation, amplitude modulation analysis should

be performed on each partial; in this reductionist trial, we only used a single amplitude

modulator obtained from the first partial.

Signal extrapolation

Following the procedure for vibrato preservation during time-stretching proposed by Marc-

hand and Raspaud[58], the frequency and magnitude-independent modulations were ex-

trapolated, or extended, so as to increase the accuracy of the analysis for the first frames of

our signal. In this case, differing from the method that they propose, a standard method
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for extrapolation was used; by placing a symmetric inversion of the signals at their start

and end-points:

xextrap[k] =











−x[−k] if −K < k < 0

x[k] if 0 ≤ k < K

−x[K − k] if K ≤ k < 2K

where x[k] is defined for k ∈ Z such that 0 ≤ k < K and xextrap is defined for k ∈ Z such

that −K < k < 2K. The result of extending a signal with this extrapolation strategy can

be seen on figure 4.710.
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(b) Extrapolated signal

Fig. 4.7 Extrapolation increases the accuracy of the STFT at the extrap-
olated region by diminishing the impact of discontinuities. Here we have an
illustration of the extrapolation procedure described above.

Second order sinusoidal analysis

After the signals were extrapolated, a partial tracking analysis was performed on the fre-

quency and amplitude information obtained from the first-order sinusoidal analysis. The

10Although through this type of extrapolation we eliminate discontinuities at the boundaries of our
signal, we do not necessarily eliminate discontinuities in its first derivative, thus the spectrum cannot be
steeper than 12 dB per octave.
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analysis was performed via pm2. Attention was paid both to the upper and lower frequency

bounds of the second-order partial analysis.

The upper frequency bound is important since the goal of the second-order partial

analysis is to model the sub-audio rate partials that can represent modulations11. We

satisfied this condition by choosing the first-order partial analysis frame rate to be 43 Hz;

effectively placing an upper bound of 21.5 Hz on the frequency content that could be

extracted by the second-order partial analysis.

In regards to the lower bound, vibrato can contain very low frequencies which should

not be lost during the second-order partial analysis; therefore, the STFT parameters for

second-order partial analysis should include a large window size. But with an already low

sample rate, as was the case with our first-order analysis frame-rate, a large window implies

a very poor time resolution; we are faced with the ubiquitous time-frequency resolution

constraint. Fortunately, the loss in time resolution can be palliated by the use of a small

hop size. Weighting trade-offs, we chose to use a 64 point window12 with a hop-size of 4

samples.

4.4.2 Time-warping, re-sampling and matching of modulation information

Once we had extracted a second-order partial model of the modulations of each target

sound, we were faced with the need to warp these models. The need stems from the

discrepancy between both sounds’ durations. Thus, each morph requires warping target

sounds to an interpolated duration. Consequently, the second-order partial models must

also be warped. The approach taken was to over-sample these models until a common

number of second-order frames was attained. Oversampling the second-order models’ am-

plitude and frequency information required a different approach from oversampling their

phase information.

Time-warping

Once the duration of the interpolated sound was decided, and for each target sound a

time-warping factor was found. Each frame’s timestamp was modified according to the

11Vibrato is, by definition, concerned only with the modulations that occur below the frequency threshold
of audibility.

12More than two periods of frequencies higher than 1.34 Hz.
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time-warping factor, effectively changing the frame rate so as to attain the target dura-

tion without modifying the amount of frames. Differently from frequency and amplitude

information this time-warping required some sort of compensation to be performed on

phase information; each partial’s phase vectors were unwrapped and then multiplied by

the time-warping value in order to preserve phase evolution.

It is important to remember that in this simplistic case we had a single time-warping

factor, yet for most sounds, time-warping would imply at least two different time-warping

coefficients in order to be able to align the attack independently from the overall duration.

Oversampling

We then oversampled second-order partial information from both target sounds to a least

common multiple of each one of the resulting frame rates. In their article, Marchand and

Raspaud propose oversampling by means of convolving with a sinc function. We over-

sampled our data by a process which is equivalent to this convolution: by adding zeros

between known samples13; then performing a FT on the resulting signal; eliminating all

frequencies which are higher than the original Nyquist frequency; scaling all magnitudes

by the upsampling factor, and then performing an IFT on the rescaled low-pass filtered

information.

The procedure for the phase information of each partial was different than the one used

for magnitude and frequency. The previous procedure, actually retains the frequency infor-

mation of the signal up to the original Nyquist frequency and does not add any frequency

content above it, eliminating contributions from the frequency range between the original

Nyquist frequency and the higher Nyquist frequency resulting from oversampling. Since

linear or quasi-linear functions can be generally seen to have a relatively flat spectrum and

a partial’s phase tends to present a quasi-linear evolution, it follows that phase information

is not well represented as a sum of lower-frequency sinusoids. Thus the previously described

oversampling procedure generally yields a fair amount of ripples. If instead of oversampling

by the frequency-domain equivalent of a sinc convolution, we perform a cubic interpolation

for the known phase values at the times given by the new sampling intervals, we obtain a

phase evolution which is much closer to the original in terms of being quasi-linear.

13This is Matlabs standard upsample() routine.
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4.4.3 Interpolation and target modulations

What remained to be done was the interpolation of the second-order partial models, re-

synthesizing modulations from the resulting model and applying these modulations to the

otherwise morphed first-order partial set. It is important to note that interpolation of the

second-order partial sets required finding a strategy for matching partials between models.

Interpolation

Once our second-order sinusoidal analysis had a common duration and a common frame-

rate, partial correspondence was sought between each one of the interpolands. The first

strategy was to establish a correspondence based on the proximity of each second-order

partials’ frequency. This was seen to yield poor results and so we tried establishing corre-

spondence based on partials’ magnitudes; the latter strategy yielded far superior results.

Since partial sets differed in regards to number of partials, the unmatched partials of the

larger set were matched with phantom partials. Their frequencies and phases were equal-

ized to the matching set’s frequencies and phases. The phantom partial’s magnitude, on

the other hand, was set to be zero.

Subsequently, corresponding partials’ frames were interpolated. Having observed log-

arithmic interpolation to be best suited for frequency and magnitude, it was seen as an

obvious choice for these two partial characteristics, while phase interpolations were per-

formed linearly on the unwrapped phases.

re-synthesis of modulator

After performing interpolation, we performed a re-synthesis of the frequency and amplitude-

independent modulator signals via pm2. It was observed that performing such a re-

synthesis through the oversampled partial information produced unexpected results, con-

taining higher frequencies than the original modulators, this is perhaps a phase evolution

problem or a bug in our sample-rate changing routines but we have not yet discovered it.

The solution was found to be to downsample back to a lower sampling rate, in the vicinity

of either one of the original samplerates, before re-synthesis.

Different resulting modulator signals are shown in figures 4.8 and 4.9.



4 Experimental Observations and Results for synthetic sounds 59

0

0.2

0.4

0.6

0.8

1

0
0.5

1
1.5

2
2.5
−4

−2

0

2

4

Interpolation factor

Interpolation of amplitude modulations

Frame

A
m

pl
itu

de
 d

ev
ia

tio
n,

 in
 d

B

Fig. 4.8 Amplitude modulation interpolation, the extracted AM is repre-
sented in terms of dB, so as to be useful for modulating any partial despite its
magnitude .

Modulation

The last step was to impose the resulting modulators on a sawtooth-wave for perceptual

validation14. This was achieved by importing the modulator tracks into Matlab and using

them to modulate an arbitrary set of partials which were then re-synthesized through pm2–

similarly to those of other prior tests. The results can be found on the author’s webpage[9]

and have been linked here in the electronic version.

14During this particular realization, the saxophone vibrato, was perceived to be somewhat faint and was
thus exaggerated by multiplying the magnitude of both it’s AM and FM parts by a factor of 4.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpVib/interpVib.m3u
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Fig. 4.9 Frequency modulation interpolation, the extracted FM is repre-
sented in terms of deviation in cents, so as to be useful for modulating any
partial despite its frequency.

4.5 Inharmonicity

As we have seen in chapter 3, inharmonicity is a deviation from purely harmonic relations.

In physically produced sounds, inharmonicity tends to occur due to specific characteristics

of the resonator; characteristics such as string geometry for an oscillating string or bore

irregularities in a wind instrument.

The way that we have defined inharmonicity allows us to consider a single coefficient that

measures the overall inharmonicity of a given sound or to characterize the relations between

partials’ frequencies by means of a vector of inharmonicity coefficients corresponding to each

partial above the first.
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The proposed inharmonicity vector allows us to interpolate between harmonic or quasi-

harmonic series. Moreover, such a definition grants us the necessary tools to interpolate

completely inharmonic sounds with a harmonic series. Since inharmonicity relies on the

assumption that at least one of the interpolands has an underlying harmonic structure, we

have not contemplated the interpolation of two completely inharmonic signals, where we

should be faced with a partial matching problem that doesn’t require a harmonic structure

for it’s solution.

We have written a few scripts for testing different possibilities of interpolation of in-

harmonicity coefficients on harmonic, quasi-harmonic and inharmonic partial series. For

harmonic and quasi-harmonic partial series of n components, all of the first n components

are present and have an -6 dB per-octave roll off; thus, we could talk about sawtooth-waves

and quasi sawtooth-waves.

When dealing with inharmonic series, we have contemplated two cases. In order to

deal with the two categories that we have envisioned for fully inharmonic sounds let us

define a full-partial, inharmonic set as one for which each partial could be matched with an

underlying harmonic structure. By the same token, let us define a sparse set of inharmonic

partials as one for which there are fewer partials than those which would be contained in

an underlying harmonic structure spanning the same frequency space. For the first case, or

the full-partial inharmonic sound, all partials present in our tests have equal magnitudes.

In the second case, or sparse set of inharmonic partials, we used varying magnitudes as

well as phantom partials to match with the underlying harmonic structure.

We have first set out to compare linear and logarithmic interpolation. Furthermore, we

then detail a method for interpolating sparse inharmonic sets of partials, such as those that

we could extract from a bell sound, with full harmonic or quasi-harmonic series.

4.5.1 Interpolation of coefficients

The linear interpolation of inharmonicity values for any two given series of partials is a

trivial routine. Yet if we want to compare it with a logarithmic interpolation we are then

faced with a problem: inharmonicity coefficients include the set of numbers [−1, 0] for

which a logarithmic function is not defined.

One solution is to offset inharmonicity values to a range such as [1, 3], interpolate them

and then remove the offset. This is not an optimal solution, since interpolation curves will
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vary depending on how large of an offset we use and our original intention was to have the

resulting frequencies behave as if they had been interpolated in a logarithmic fashion.

Thus, another solution is to obtain target frequency values according to each partials’ in-

harmonicity coefficients and then to interpolate partial frequencies as opposed to the actual

inharmonicity coefficients. This is, in a way, cheating since we are not really interpolating

the inharmonicity coefficients but the actual frequencies that they yield. Nevertheless, it

should give us accurate sound examples by which we can evaluate logarithmic interpolation.

One comparison trial was realized for a full-partial, inharmonic set to harmonic series

interpolation and another one was carried out for an interpolation between two quasi-

harmonic series. Finding a sound with a full-partial, equal-magnitude, inharmonic set is

unlikely, yet this realization was used to test what could be considered an extreme case;

thus helping to perform a qualitative evaluation of the method via the resulting sound file.

For each comparison, a random vector of inharmonicity coefficients was created. The

complete [−1, 1] range was used for inharmonic sounds. Whereas an arbitrary constraint

was placed on the inharmonicity coefficients in order to consider the sound quasi-harmonic,

limiting them to the [−0.25, 0.25] range.

Although logarithmic interpolation did sound more natural to our ears, we found the

difference between linear and logarithmic interpolation to be rather small.

A closer look at the behavior of partials during interpolation is more eloquent in regards

to the almost negligible effect of the choice of interpolation type. Let us remember that

the limit case is when we interpolate the inharmonicity coefficient of -1 from the source

sound’s partial with an inharmonicity coefficient of 1 for the target partial. In this limit

case, the largest differences between linear and logarithmic interpolation occur around an

interpolation coefficient of 0.515. For the second partial16, interpolating coefficients 1 and

-1 would yield a maximum difference of approximately 55 cents between the two types of

interpolation. As the harmonic number increases, this difference decreases, as can be seen

in figure 4.10. Already at partial number four, we can see that the worst-case difference is a

15Actually the point of maximum difference is where d

dα
of h − 0.5 ∗ (h+0.5

h−0.5
)α = 1, which for a second

partial is roughly α = 0.522, for a third α = 0.511 and it asymptotically approaches α = 0.5 as h increases.
16Although the first partial may have an inharmonicity coefficient, or even be absent, we simplify by

stating that f0 will be the average frequency of our first partial.
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Fig. 4.10 The worst-case relative frequency difference per partial for the
interpolation coefficient which gives the largest discrepancy between linear
and logarithmic interpolation of inharmonicity coefficients. Differences are
given as cents, dependent on the partial number and the worst case scenario
corresponds to the interpolation of coefficients 1 and -1. As can be observed,
the difference above the third partial becomes negligible.

negligible 13 cents. These differences can be found by evaluating the following expression:

∆Centsh = log2(
h− 0.5 + α∆max

h− 0.5 ∗ (h+0.5
h−0.5

)α∆max

) · 1200 (4.1)

Where h is the harmonic number, ∆Centsh is the difference in cents between the logarithmic

and linear interpolations for a given harmonic and α∆max
is the interpolation coefficient at

which the maximum difference between interpolation strategies is found.

The resulting sound examples can be found on the project’s website[9] and the files are

herein linked for the reader’s convenient access.

• linear interpolation between two quasi-harmonic sounds,

• logarithmic interpolation between two quasi-harmonic sounds,

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-quasi2quasi-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-quasi2quasi-log.wav
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• linear interpolation between an inharmonic sound and a harmonic sound,

• logarithmic interpolation between an inharmonic sound and a harmonic sound

4.5.2 Matching partials between inharmonic sounds and underlying harmonic

structures

The partial-matching strategy we chose dictates that partials from inharmonic sounds are

always matched to their closest neighbour from the underlying harmonic structure. For any

given partial in an inharmonic sound, correspondence to the underlying harmonic structure

only results ambiguous in the limit case, when the partial’s frequency falls exactly half-

way between two harmonics and it could matched with partial h with inharmonicity 1 as

well as with partial h + 1 with an inharmonicity coefficient of -1. In such a limit case,

other considerations might decide in favour of one choice or another; e.g. the trends of

surrounding partials. Conversely, components from the underlying harmonic structure

that find no correspondence in the inharmonic sound’s partials can then be paired with a

zero magnitude version of themselves.17

Both logarithmic and linear interpolations between sparse inharmonic series of variable

partial magnitudes and harmonic series can be found at the project’s website[9]. The files

have also been linked in the electronic version of the document for the reader’s convenience:

Interpolations between an inharmonic sound with phantom partials and a harmonic

sound:

• linear,

• logarithmic

4.6 Even to odd partial energy ratio

The interpolation of the even to odd ratios is relatively straight-forward. By definition,

EOR deals with energies, which is a sum of squared magnitudes and can be seen as a

17As in other partial matching strategies which rely on phantom partials, it is important to note that
due to simultaneous masking, phantom partials become evident only toward the end of their magnitude
interpolation. We thus propose researching the factors that might influence the choice of a lower threshold
for phantom partial magnitude interpolation. We believe that phantom partials should start at a magnitude
slightly inferior to whatever masking threshold is in play for their frequency within a given context. Yet
this is subject matter for future study.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-log.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-phantom-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpInharm/interpInharm-inharm2harm-phantom-log.wav
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squared gain which is applied to the even set of partials18. From chapter 2, we recall

the three types of morphs mentioned by Slaney, Covell and Lassiter[2]: stationary, cyclo-

stationary and dynamic. During a stationary or cyclo-stationary morph we can interpolate

the ratio of the total energy contained in each of the subsets of partials: even or odd.

But for dynamic morphs we can only interpolate the ratio of the power of both sets; an

interpolation which takes place on a frame-by-frame basis. Thus, for the EOR interpolation

during dynamic morphs, a single EOR measure is insufficient; we must have a measure of

EOR per frame.

Like most of the previous features, the interpolation can be performed linearly or loga-

rithmically. We have carried out tests with both sorts of interpolations and found logarith-

mic interpolation to be much smoother. This comes as no surprise since we have already

corroborated logarithmic interpolation of amplitudes to be much smoother than their linear

interpolation.
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(a) Linear interpolation of EOR
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(b) Logarithmic interpolation of EOR

Fig. 4.11 A comparison of the behaviour of amplitude given by linear and
logarithmic EOR interpolation strategies.

A brief scrutiny of the differences between logarithmic and linear interpolation of EOR

will serve to caution the reader against the use of linear interpolation for this feature. As

previously mentioned, let us simply consider the EOR as a square of the gain applied to

even amplitudes keeping in mind that this is a heuristic, since that which concerns us

is the interpolation of energy, and not amplitude. With this simplification, it becomes

evident that the logarithmic interpolation of squared values is equivalent to the square of

18This dismisses the importance of the overall final gain of a sound but results in no loss of generality.
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the interpolation of the same two values.

g21

(

g22
g21

)α

=

(

g1

(

g2

g1

)α)2

(4.2)

For linear interpolation of squared quantities, however, this identity does not hold.

g21 (1− α) + g22α 6= (g1 (1− α) + g2α)
2 (4.3)

With the interpolation of squared gain values, the divergence in the trends of the gain is

more pronounced than it would be in the case of logarithmic vs linear interpolation of the

gain itself. This divergence can be seen in figure 4.11 and is bound to produce noticeable

discontinuities when EOR is linearly interpolated.

Both logarithmic and linear interpolations of EOR can be found at the project’s website[9].

The files have also been linked in the electronic version of the document for the reader’s

convenience:

• linear interpolation of EOR values ranging from 1
32

to 32,

• logarithmic interpolation of EOR values ranging from 1
32

to 32,

4.7 Partial attack times

We recall from chapter 3 that the distribution of energy throughout the attack is an impor-

tant feature. We also recall that it can be represented as a vector of times from the events t0

to each partial’s peak amplitude. Since the attack happens only once during a single-event

sound, this feature can only be morphed in stationary or cyclo-stationary morphs.

We have written a script to compare the linear and logarithmic interpolations of this

feature. The attack times for each of the partials were determined with a random generator,

and some of the times were sorted in ascending order corresponding to partial numbers.

Partial attack times ranged from 0 to 0.075 seconds during the first sound and from 0 to

0.25 for the second. Partials were chosen to be sorted in ascending time order according

to a Bernoulli process; in other words, the equivalent of a coin toss was performed for each

partial to decide if it would be part of the lot to be sorted or not. The target partial peak

times are plotted on figure 4.12 as are the peak time interpolations.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEOR/interpEor-lin.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEOR/interpEor-log.wav
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(a) Linear partial attack time interpola-
tions
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(b) Logarithmic partial attack time inter-
polations

Fig. 4.12 A comparison of partial attack times for different partials given
by linear and logarithmic interpolation strategies.

Both logarithmic and linear interpolations of partial onset time difference can be found

at the project’s website[9]. The files have also been linked in the electronic version of the

document for the reader’s convenience:

• linear interpolation of partial attack times for two target sounds,

• logarithmic interpolation of partial attack times for two target sounds,

4.8 Deterministic vs stochastic energy ratio

Once all other features have been interpolated for both deterministic and stochastic compo-

nents, we will be able to synthesize them. After doing so, the last step required to effect the

morph is to mix the two components. By controlling the energy ratio for the deterministic

and stochastic components, we are indirectly controlling the gain that should be given to

each one of the components during their mix. Since many sounds of the type that we have

defined as musical sounds have a predominant deterministic part, we then propose that a

good rule of thumb should be to adjust the stochastic component’s gain in order to achieve

the desired energy ratio19.

We have carried out both linear and logarithmic cyclo-stationary interpolations so that

the user may compare them. The interpolations were performed between two given broad-

19In dynamic morphs, this would actually alter the stochastic part’s amplitude envelope.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpOTD/interpOTD-lin.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpOTD/interpOTD-log.m3u
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band components with an arbitrary amplitude envelope; the two target ratios were 1 and

4. We have two reasons for arguing logarithmic interpolation to be preferable to its linear

counterpart. Firstly, amplitude interpolation is generally perceived as smoother when it’s

carried out logarithmically than when it is done linearly. Secondly, as we have seen in

the section on even to odd energy ratio and corresponding figure 4.11, logarithmic inter-

polation of energy equates to logarithmic interpolation of gain, whereas there is no such

correspondence between linear interpolation of energy and gain.

We then performed a dynamic interpolation using the same two components and target

ratios. Given previous results, the chosen strategy for the dynamic morph was logarithmic.

Additionally, the interpolation was effected in both possible directions; form source to target

and from target to source. We note that while cyclo-stationary and stationary morphs only

require the interpolation of a single value throughout the whole morph, dynamic morphs

call for the interpolation of the ratio20 on a per-frame basis. However, since this is a time-

variant ratio, it constitutes an approximation of a power ratio rather than the actual energy

ratio.

It is worth pointing out an important difference between this in vitro interpolation test21

and the interpolation of this feature during the cyclo-stationary morphing of two real-world

sounds: in the latter, all other features, would have been interpolated and thus the two

components to be mixed should be different for each different interpolation coefficient.

The reader may find all involved sounds on the projects webpage[9]. As with all other

examples, files have been linked in the electronic version for the reader’s convenience:

• deterministic component,

• stochastic component,

• linear cyclo-stationary interpolation,

• logarithmic cyclo-stationary interpolation,

• logarithmic dynamic interpolation source to target and

• logarithmic dynamic interpolation target to source

20And thus, indirectly, the stochastic part gain.
21With a static behaviour for all other features.

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/det.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/stoc.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/linCyclo.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/logCyclo.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/dyn1.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/dyn2.wav
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We have seen that during dynamic interpolation we are actually dealing with power and

modifying the stochastic component’s amplitude envelope. Thus along these lines we could

also consider the possibility of deriving the stochastic component’s amplitude envelope

from the energy ratio between both deterministic and stochastic components. In order to

do this, we need to extract the power ratio per analysis frame, up-sample the sequence of

power ratios to audio-rate and take the square root of the resulting sequence to be the gain

parameter of the stochastic component.
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Fig. 4.13 Deterministic vs stochastic component power ratios

Extraction is done by obtaining the energy ratio at each analysis frame. We have

extracted two such ratios from real world sounds, one lute tone and one english horn note

and depict them along with their interpolations in figure 4.13. Having obtained power ratio

sequences and their interpolations, each ratio represents the squared gain at the center of

each analysis frame. Thus we up-sampled power ratios with a logarithmic strategy. Finally,

in order to convert them into usable gains, we obtained the square root of each sample in

the resulting sequence. The resulting series of gains is an amplitude envelope which can be

applied to a constant-power stochastic component for which spectral characteristics would
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generally have been interpolated22. The reader may find an example of this strategy on the

project’s website[9]. Additionally, the file has been linked here in the electronic version.

22Although in this trial we are simply using white noise

http://www.music.mcgill.ca/~fede/files/thesis/audio/interpEDetStoc/cycloAlternate.m3u
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Chapter 5

Experimental Observations and

Results for real-world sounds

The current chapter presents some simple morphings which are solely aimed at assembling

the morphing framework, as well as validating proposed strategies. Morphing real-world

sounds revealed challenges that we had not anticipated during the interpolation of synthetic

sounds. In each case, we have at the minimum suggested a plausible solution as a future

exploration. In some cases we have attempted to solve these difficulties.

Two morphs were performed between a pair of notes from a clarinet. Despite their many

similarities, these two notes were different enough to allow the application and validation

of previously explored concepts. Throughout the chapter, we document both the procedure

that we employed in each case and the difficulties we encountered while effecting the morphs.

The arrangement of the chapter fully reflects the structure of the procedures that we

followed. These procedures were mainly determined by the choice of a representational

model and the selection of descriptors. The deterministic-plus-stochastic additive model

forced upon us an initial component separation. The subsequent analysis, interpolation and

resynthesis were almost all performed separately for each component and some descriptors

had to be obtained and re-synthesized in a particular order. On the other hand, the differ-

ences between cyclo-stationary1 or dynamic morphs called for slightly different procedures

to be followed.

Thus, we first explain the procedures followed for the extraction of features obtained

1Or stationary morphing, which is procedurally equivalent to cyclo-stationary morphing.

2010/09/17
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from the complete musical sound object, then for the component separation, followed by

the extraction of descriptors that can only be obtained after component separation has

been performed. We then recount the steps taken to achieve a cyclo-stationary series of

morphs and conclude by reporting on the realization of a dynamic morph.

The pitches of the two given musical sound objects were a B3 and an F♯4 at roughly

250 Hz and 380 Hz respectively. The dynamic level for the B3 being mezzo-forte and piano

for the F♯4; both notes presented a noticeable vibrato. The vibrato of the first note was

stronger at the start while the vibrato of the second note was more pronounced toward the

end of the sound. The recordings were obtained from the RWC music database available

at the SPCL. As with the previous chapter, corresponding sound files can also be found

on the project’s website[9] so as to provide an audible illustration of the ideas discussed

herein; the reader is encouraged to refer to these samples. The B3 has been linked here

and the F♯4 has been linked here in the electronic version.

5.1 Analysis

The first step taken was to fit a global amplitude envelope2 to each sound object. The

subsequent step was to separate each one of the notes into its stochastic and deterministic

components. Afterwards, analysis and parametric extraction of both the deterministic and

stochastic components were carried out, bringing us one step closer to the morphing of each

one of the components.

5.1.1 An envelope fit for warping

The traditional model for amplitude envelopes is the ADSR, which finds its roots more

in parametric synthesis than it does in analysis. Peeters[60] has rejected this model as a

descriptor and after trying to employ it, we too find it ill-suited for our purposes. Morphing

musical sound objects requires us to perform dynamic time-warping in order to match

certain key moments. The definition of these key moments is a determining factor for

designing an amplitude envelope model. Taking this into consideration, we have defined a

collection of key-points that yields an alternative amplitude envelope model. This sort of

amplitude envelope approximation can be seen in figure 5.1.

2The amplitude envelope of the whole musical sound object, as opposed to an amplitude envelope for
one of the note’s partials or the amplitude of either the stochastic or deterministic component.

http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.sym.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.sym.wav
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The temporal features or key-points that we have chosen are the pre-attack, the attack,

the stable part, the release and the post-release. The pre-attack and post-release sections

contain ancillary noise such as the preparation of the attack or the breath release after

a note. Due to their noisy nature, these two sections are more present in the stochastic

component than the deterministic one. The attack and release sections are transitive stages

with a heavy amount of spectral flux. It is in these sections that the spectral centroid

change mentioned in chapter 3 takes place3. The remaining section, the stable section,

is the quasi-stationary section characteristic of many musical sound objects; it is in this

section, for example, that we may find a significant extended vibrato4. In regards to the

amplitude envelope that stems from this choice, all sections except the stable stage are

represented by start and end times as well as start and end amplitudes; in the case of the

stable section, because of it’s potential duration and changes5 it can be modeled by a line

segment approximation.

On envelope approximation methods

We employed an ideal notch filter for our first attempt at amplitude envelope extraction;

we performed filtering in the frequency domain, completely removing all frequency content

that spanned the defined notch. Separating all frequencies that are relevant for amplitude

modulations was the motivation for the choice of this type of filter. We were aiming for

obtaining an envelope approximation and amplitude modulation information in a single

step. The reader may see in figure 5.1 that the resulting amplitude envelope is a very poor

approximation, presenting an extremely slow attack and considerable oscillations. We tried

tuning the filter with different upper and lower bounds for the ideal notch and were unable

to obtain good results. The notch filtering performed in figure 5.1 effectively eliminates

frequencies between 1 and 20 Hz.

We then tried a classic smoothing procedure: a moving average filtering. In this case,

the envelope approximation behaved much better than ideal-notch filtering, particularly

for the purpose of extended vibrato extraction. However, it also caused some important

distortions by augmenting attack and release times.

3We remind the reader that this movement in the spectral centroid during attack and release has been
proven to be perceptually meaningful by Grey[10, 11]

4Comprised of frequency and amplitude modulations.
5Eg, for many instruments, it’s during this section that we find a continual energy input from the player.
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(a) Amplitude envelope and approximations of the F♯4 clarinet tone.

Fig. 5.1 A comparison of amplitude envelope approximation for the F♯4
clarinet tone by means of line segments; weighted moving-average filter per-
formed with a Bartlett window of 64 points, and an ideal notch filter–excluding
all frequencies which are useful for modulation estimation, ie 1 to 20 Hz.

We thus approximated the envelope by manually chosen line-segments. This strategy

proved to be unwieldy for large amounts of data, yet was found to be justifiable given that

we would be working with only two musical sound objects. The advantage of this method

was that it provided us with a finer degree of control. In order to manually approximate

the envelope, we relied on the data as much as we relied on attentive listening. The

section with the fastest rate of change in amplitude was chosen as the point of attack. We

started at the first few frames, where blowing could be heard, and we ended at a point

where heavy spectral fluctuations were finished6. Finding the release portion also relied

heavily on attentive listening, particularly for the F♯4 tone, since it decreases in amplitude

throughout the duration of the note, as can be seen in figure 5.1. Thus, for finding the

6In other words, a point which, if taken as a starting point to play the musical sound object, would
yield a sound which was perceived to have a stable timbre
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period of release, we relied on several cues: steeper decrease in amplitude, increased spectral

flux, and most importantly the absence of breath noise and a lack of modulations. The

last two cues are relevant for wind instrument7 sounds, signaling a halt in the excitation of

the instrument. Once these two sections are identified, pre-attack, stable and post-attack

stages can be picked by process of elimination.

5.1.2 Component separation

In preparation for the separation of stochastic and deterministic components, each note was

carefully trimmed and extrapolated in the same manner as we presented in 4.4.1. IRCAM’s

pm2 was used for the purpose of the separation. Both files had a sample rate of 44100

Hz and were mono. The analysis for separation was performed with a Blackman window

of 1024 points, oversampled to 8192 points and with a hop size of 128 samples–giving an

anlaysis framerate of 344.5 Hz. The spectrogram of the deterministic component resulting

from this operation for the B3 note can be seen in figure 1.1.

5.1.3 Extraction of the deterministic to stochastic energy ratios

Once the stochastic and deterministic components were separated, we were able to perform

a calculation of the energy ratio between the two.

5.1.4 Extraction of descriptors from the deterministic component

Most of the features for which we tested interpolation strategies correspond to the deter-

ministic component. We extracted these features for their subsequent interpolation. The

two extracted deterministic components can also be found on the project’s website [9]. The

B3 has been linked here and the F♯4 has been linked here in the electronic version.

Even to odd ratio

The extraction of the even-partial to odd-partial energy ratio from the deterministic com-

ponent can be performed in the time domain or in the frequency domain. By Parseval’s

identity, we know that the sum of the square of the Fourier coefficients of the FT of a

signal is equivalent to the sum of the squared samples of the signal itself. Thus, given

7The absence of friction noise should also be relevant to bowed notes.

http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.det.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.det.wav
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Fig. 5.2 Deterministic components of the B3 clarinet tone, amplitude is
presented in deciBels. Vibrato is clearly visible as is EOR in the first few
partials.

that the information we receive from pm2 for the deterministic component is essentially

equivalent to a series of FT coefficients8, the ratio between the sum of the square of all

even-partial magnitudes and that of all odd-partial magnitudes should give us the EOR.

Furthermore, since we will be performing a logarithmic interpolation of these ratios, we

will obtain equivalent results if we use the ratio of the sum of all even-partial magnitudes

and all odd-partial magnitudes. Performing the extraction this way reduces the operation

to the quotient of two summations with no need to re-synthesize even and odd partials.

We found that by extracting the EOR and then removing it9, produced an even more

irregular spectrum than the original one. Additionaly, since the correction at higher fre-

quencies makes all even partials louder than odd ones–see figure 5.4(a)–the result is per-

ceived to be an octave higher. The resulting jaggedness of the spectral envelope results

8We obtain maximal amplitude values for the partials present in the deterministic component, where
the contribution of all other bins to this component is zero.

9By dividing all even-partial magnitudes by it.
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Fig. 5.3 Deterministic component, up to the partial number 30, of the F♯4
clarinet tone. Amplitudes lower than -12 dB have been clipped.

from the low EOR of a stopped pipe being much more present in the first few partials than

it is in higher partials10, as an example, we can see a very low EOR below 6th harmonic,

but closer to unity after the 8th partial on both figures 5.2 and 5.3.

We implemented a tentative solution to this problem; we smoothed the spectral envelope

by scaling the magnitude of even partials to lie at a point of log-interpolation between the

magnitudes of odd ones and extracting a vector of ratios between the magnitudes of the

original even partials vs the magnitudes of the logarithmically interpolated ones. This

allowed us to estimate the envelope with a higher spectral smoothness than that which

is characteristic of the clarinet. The importance of this spectral smoothness lies in that

the loci at which the notches which characterize the spectral irregularity of the clarinet

are correlated to the fundamental frequency of the pitch that is being played; making

it undesirable to include these notches during spectral envelope interpolation. The steps

involved in the proposed solution can be seen in figure 5.4.

10It is also more present in notes played piano than it is in notes that are played forte.
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(c) Even-to-smooth ratios

Fig. 5.4 EOR is present mostly in the lower partials of tones played with
a piano dynamic, thus a single EOR value for all partials can be misleading.
We utilize an alternative strategy for the same phenomenon which allows for
different values per partial. 5.4(a) If we try to smooth out the spectral envelope
by removing a unified EOR, upper partials end up jagged, where odd partials
are louder than even ones, sounding an octave higher. 5.4(b) We omit all even
partials and the resulting spectral envelope is much smoother. 5.4(c) Then
we can extract a vector of ratios of the magnitudes of all even partials to the
magnitude of the smooth envelope at equivalent loci.

Vibrato

As we have discussed in chapter 3 we will take vibrato to be the ensemble of amplitude and

frequency modulations. With the intention of evaluating the quality of an approximation,

we only extracted modulations of the first partial. This approximation was based on
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the premise that frequency modulations of all partials are very similar and amplitude

modulations of all partials are also fairly homogeneous.

Both the frequency and amplitude the modulations were extracted in the manner pre-

viously detailed in 4.4.1 and 4.4.1 with one notable exception; instead of using the ideally

filtered envelope, we used the line-segment amplitude envelope approximation from 5.1.1,

scaled to fit the magnitude of the first partial’s amplitude envelope. After extracting the

partial tracks of the extrapolated modulations of the complete envelope, we kept only the

frames pertaining to the stable stage of the musical sound object and discarded all other

frames.
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(a) B3 Amplitude modulations.
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(b) B3 Frequency modulations.
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(c) F♯4 Amplitude modulations.
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(d) F♯4 Frequency modulations.

Fig. 5.5 Clarinet tone modulations
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PAT and PRT

Although the extraction of the global amplitude envelope is performed on the complete

musical sound object, partial-specific attack and release times must be obtained from the

amplitude envelope of each individual partial in order to attempt to recreate it from the

global envelope during interpolation. Extraction of this value proved to be difficult due to

the heavy presence of modulations. Thus, using any single criteria–such as maximum effort

or maximum amplitude–for finding the peak of the attack proved to be unreliable. We

resorted to a combination of the following: peak rate of change, amplitude thresholds and

time constraints. Both peak effort and amplitude thresholds are suggested by Peeters[60];

the additional time constraints were added for robustness.

The estimation of the end of each partial’s attack was performed by evaluating a series

of candidate points. The points were chosen from local maxima11 that were located after

the first attack frame12 and before half of the sound’s duration. No local maxima under

half of the sound’s maximum amplitude were considered candidates. For each candidate

point, the slopes of the line crossing the start of the attack and the given candidate point

were taken to be it’s effort. Thus, from the pool of possible points, the one having the

maximum effort was chosen to be the end point of the partial’s attack.

The end of the release was much simpler to find: we chose the first point after the

release frame 013 having an amplitude 20dB lower than the start of the release.
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Fig. 5.6 PAT and PRT estimation for the B3 clarinet tone

11found by means of the derivative method
12Per the global amplitude envelope extraction in 5.1.1.
13Once again, of those found in 5.1.1.
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Spectral envelope

Although we already had a line segment approximation of the spectral envelope in 5.1.4,

we were interested in transforming it into a function with a continuous derivative, such as

that given by cepstral coefficients. The reason for doing this was that the interpolation

of spectral envelopes via reflection coefficients is not as well-behaved when the envelopes

are given by line-segments instead of a smooth function such as that given by cepstral

coefficients. Thus, in order to obtain a smoother envelope, we used pm2 to synthesize

a brief audio file having the average frequencies and amplitudes14 of partials during the

stable stage of the sound object. We subsequently used supervp to perform a true envelope

estimation on the newly synthesized file. Upon importing the resulting estimation, we kept

the middle frame, discarding the effect of discontinuities at the start and end of our audio

file. The resulting envelope for the B3 tone can be seen in figure 5.7
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Fig. 5.7 True envelope estimation for the B3 clarinet tone, obtaining the
envelope this way yields a much smoother envelope than that given in 5.1.4
as can be seen by comparing this figure to figure 5.4(b).

14Having corrected the even partials as described in 5.1.4
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Inharmonicity

Inharmonicity was easily found once we had the average partial frequencies from the stable

region of the sound object by applying the following equation.

Inharmh = 2 ·
fh − (f0 · h)

f0
(5.1)

Where Inharmh is the inharmonicity coefficient for partial h, fh is the average frequency

of the same partial and f0 is the sound object’s fundamental frequency, which, in this case,

is taken to be the average frequency of the first partial.
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Fig. 5.8 Inharmonicity coefficients for the F♯4 clarinet tone, a steep drop
from the normal 1 to -1 range can be seen in the upper harmonics; a possible
indicator of them being spurious.

At least in the case of sounds with a strong harmonic structure like the two clarinet

notes used herein, we found that the inharmonicity coefficient could be a helpful gauge

of spurious harmonics. In both sounds, the highest partials had inharmonicity coefficients

with a magnitude far exceeding 1, meaning they were well into frequencies that would

generally correspond to other harmonic components. An illustration of the inharmonicity

coefficients of the F♯4 clarinet tone can be seen in figure 5.8.

5.1.5 Extraction and morphing of features from the stochastic component

Given the separation of stochastic and deterministic components, we must also extract

features from the stochastic component for their subsequent interpolation. We only need
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to extract the amplitude envelope and the spectral envelope. The two extracted stochastic

components can also be found on the project’s website [9]. The B3 has been linked here

and the F♯4 has been linked here in the electronic version.

Amplitude envelope

The goal of extracting the amplitude envelope from the stochastic component lies in being

able to scale the grains of our subsequent OLA resynthesis. As grains are essentialy created

by frequency-domain filtering of noise, using the spectral envelope of the corresponding

analysis frame of the stochastic component and then scaling the grains to have the desired

power. Thus we deemed it more practical to actually extract a power envelope instead

of an amplitude envelope. The chosen method of estimating the temporal envelope was

to obtain the stochastic part’s power every 128 samples and then smooth it with a 64-

point Bartlett-weighted moving average filter. Finally, we compensated the group delay by

shifting the envelope 32 frames.
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Fig. 5.9 Power envelope for the stochastic component of the B3 clarinet
tone.

5.1.6 Spectral envelope

We had originally planned to extract a single spectral envelope to represent the stochastic

component and apply modifications for measured spectral centroid changes throughout the

attack and release. However, shifting the spectral centroid can be achieved in several ways,

http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-b3-vib.stoc.wav
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/clar-fSh4-vib.stoc.wav
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each of which produce different spectra. We decided to avoid the direct manipulation of

the spectral centroid. Instead, we kept the succession of spectral envelopes for the whole

stochastic component. Working with a series of envelopes corresponding to each analysis

frame guaranteed that we implicitly retained spectral centroid values at each frame. This

descriptor was obtained by supervp, performing a true-envelope estimation with an analysis

hop size of 128 samples.

5.2 Cyclo-stationary morphing

Of the three possible types of morphing, we decided to try our hand at cyclo-stationary

morphing first. One of the remaining possible types: stationary morphing, can be reduced

to a cyclo-stationary morph of a single intermediate stage. It then followed that whichever

procedure we found to work for cyclo-stationary morphs should also prove useful for per-

forming stationary morphs. We performed a cyclo-stationary morph with the interpolation

coefficients being 0, 0.25, 0.5, 0.75, and 1. We thus generated three intermediate pitches,

between B3 and F♯4 which were slightly further apart than a major second.

5.2.1 Deterministic component morphing

We found a one-to-one partial correspondence to be adequate and opted to discard partials

that presented indications of being spurious15, such as very low amplitudes; highly variable

amplitudes or frequencies; or inharmonicity coefficients outside of the range [−1, 1]. This

left us with the first fifty partials of both sounds. Generally speaking, the process involved

the separate morphing of the deterministic and stochastic parts.

For the purpose of morphing the deterministic component, we proceeded by performing

dynamic time-warping on the global amplitude envelope; warping f0; resampling and inter-

polating the vibrato; interpolating all other parameters and using them for the purpose of

imprinting the resulting interpolated features onto a series of 50 harmonic partials of equal

magnitude–a band-limited impulse-train. Two steps of the process proved to be slightly

more involved than others: vibrato interpolation and generating an amplitude envelope for

each partial from the global amplitude envelope and the partial’s PAT and PRT coefficients.

Most interpolations were relatively simple to perform. Fundamental frequency16 inter-

15So, generally higher-order partials
16Which we took to be the mean frequency of the first partial throughout the stable stage.
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polation was performed logarithmically; spectral envelopes were interpolated via reflection

coefficients; inharmonicity was interpolated linearly; even-to-smooth ratios17 were interpo-

lated logarithmically as were PAT and PRT coefficients.

Amplitude envelope

Dinamic time-warping was performed on the global amplitude envelope contemplating pre-

attack, attack, stable, release and post-release sections of both sounds. The global envelope

was then only employed as a guide for time-warping and as a basis for generating each

individual partial’s amplitude envelope. Thus, amplitudes between both global envelopes

were not interpolated at this point. It was only after having interpolated PAT and PRT for

each partial that partial-specific envelopes were created. Times for the beginning of most

stages18 were kept from the global envelope, yet the time for the end of the attack and for

the end of the release were found through the interpolated PAT and PRT coefficients. This

effectively scaled the time alloted to the stable section of the envelope in each partial. Line

segments contained in both global amplitude envelopes were then scaled so that the total

duration of both corresponded to the duration allotted to the stable stage of that particular

partial. Points from each line-segment approximation were then projected onto the other

sound object’s stable-stage envelope. As a result, we were able to define amplitudes values

at all the times previously defined in either one of the stable-stage amplitude envelopes.

The process is illustrated in figure 5.10.

This procedure results in envelopes that recreate the expected spectral flux during the

onset by interpolating the partial attack times of both sound objects. Yet the fact that

all envelopes have the same shape results in a somewhat unnatural sound. The motivation

for using a single amplitude envelope was to evaluate if data could be significantly reduced

in the model without too great a loss in quality. Although the end results are reasonable,

the compromise is noticeable. As we can see in both figures 5.2 and 5.3, envelopes tend

to vary significantly between partials, suggesting that exploring a strategy that preserves

individual partial amplitude envelopes would still be desirable.

17used instead of EOR.
18With the exception of the stable and post-release stages.
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Fig. 5.10 Preparation for the interpolation of the stable stage of amplitude
envelopes. Points from each envelope are projected onto it’s counterpart, so
that both envelopes, without having changed shape, have the same number of
points defined at the same times.

Vibrato

Vibrato from both sounds was warped to match the duration of the globally warped stable

stage. This was achieved by means of resampling and changing time as described in 4.4.2.

Once the target amplitude and frequency modulations were interpolated, they were applied

to every partial at frames corresponding to the global stable-stage, regardless of the partial’s

stable stage after PAT interpolation; this was necessary to guarantee the synchronous

modulations across all partials.
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(a) Frequency modulations.

Fig. 5.11 Resulting interpolations of frequency modulations of the target
clarinet sounds. We refer the reader to figures 5.5(b) and 5.5(d), where both
frequency modulation signals are presented.

Synthesizing the deterministic part

After having carried out all necessary interpolations, we then proceeded to imprint all

features onto the harmonic structure of a band-limited impulse-train, with a fundamental

frequency of the interpolated f0. The resulting harmonic structure would later be used

to synthesize the deterministic component. Partial frequencies were modified according

to the inharmonicity coefficients and subsequently modified via the frequency modulation

component of the interpolated vibrato. Also, having established the shape of the normalized

amplitude envelope for each partial, it was then modulated by the amplitude modulation

component of the interpolated vibrato; scaled by its even-to-smooth ratio, in the case

of even partials; and scaled by the amplitude of the interpolated spectral envelope at

the locus of the instantaneous frequency for each frame. Due to its dependence on the

instantaneous frequency, it was deemed important to ensure that frequency modulations
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and inharmonicity adjustments took place before scaling with the spectral envelope. The

resulting harmonics were exported from matlab as an SDIF file and synthesized through

pm2. The resulting morphs of the deterministic component can be found on the project’s

website [9]. In the electronic version, they have been linked here.

5.2.2 Stochastic component morphing

Morphing the stochastic component proved to be relatively simple, involving time-warping,

amplitude envelope19 warping and spectral envelope warping. Similarly to the deterministic

component, we warped time based on the pre-attack, attack, stable, release and post-release

sections of the global amplitude envelope. Warping the power envelope is a trivial process

however, it is worth mentioning that warping the spectral envelope frames and preserving

a uniform frame-rate was achieved by means of the same reflection-coefficient spectral-

envelope interpolation which was presented in 4.2.3. A uniform frame-rate for both the

power envelope and the spectral envelope was deemed important since it would allow us to

interpolate the features from both sound objects on a frame by frame basis. By the same

token, keeping the power envelope and the spectral envelope information at the same rate

allowed us to scale each envelope for the OLA re-synthesis. The grains for the overlap-add

were generated by multiplying a unity-gain and random-phase spectrum with each scaled

spectral envelope20, performing an inverse FT on the result and multiplying by a window

function21. The result of this morph can be found on the project’s website[9]. In the

electronic version, they have been linked here.

5.2.3 Mixing

Having synthesized both morphed components, mixing them was only a matter of adjusting

the stochastic component’s gain in order for it to conform to the interpolated deterministic-

to-stochastic component energy ratio. The resulting mixed morph can be found on the

project’s website[9] and has been linked here in the electronic version.

19In fact, power envelope.
20Its symmetric version, that is.
21The grains were 1024 samples and we used a Blackman window.

http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationaryDet.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationaryStoc.m3u
http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/cyclostationary.m3u
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5.3 Dynamic morphing

We found this morph to be the perfect opportunity to try a phantom-partial f0 interpolation

strategy, diminishing the span of the glissando. Thus we interpolated between B3 and an

F♯3 with phantom partials, eventually turning into an F♯4. This decision resolved partial-

matching for the morph. The amplitudes of phantom-partials were chosen to be -80 dB.

Since we had two sound objects with different durations for each of their five sections,

we perceived the difficulty of the dynamic morph to lie in finding a simple time warping

strategy. We chose to resample one of the sound objects–the one with the shorter stable

stage–to a sampling rate which caused both sounds to have the same number of frames

for their stable section. This effectively reduced the sampling interval of the resampled

file. Afterwards, we kept an interpolation coefficient of 0 during the pre-attack and attack

stages and we enforced an interpolation coefficient of 1 for the release and post-release

stages. The dynamic part of the morph took place during the stable stage, where the

interpolation coefficient goes linearly from 0 to 1 with an equal rate of change per frame.

In order to achieve the dynamic time warping, the sampling interval at each frame was

interpolated logarithmically from the sampling periods of both sound objects22.

Due to the change in framerate, PAT and PRT coefficients were converted to frame

values, instead of time. All other parameters were interpolated on a per-frame basis, as

the interpolation coefficient changed. The rest of the procedure was generally equivalent

to the cyclo-stationary morph. The results can be found on the project’s website[9]. They

have also been linked here.

22Meaning that although the interpolation coefficient changes linearly throughout stable frames, it
changes exponentially in time.

http://www.music.mcgill.ca/~fede/files/thesis/audio/clar-clar/dynamicDet.wav
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Chapter 6

Summary

At the onset of this project, we embarked on a reconnaissance of the scholarly literature on

morphing, drawing on established bodies of work in image processing and speech processing.

In so doing, the aim was to improve the understanding of morphing within the context of

isolated instrumental tones. This work remains exploratory in its nature and is intended

as an aide for those who seek to acquaint themselves with morphing audio and perhaps

implement morphing algorithms. It is particularly intended as a pedagogical tool for those

with more of a musical background than a technical one–albeit hopefully also useful for

the latter. In this chapter we recapitulate and evaluate how we fared in our research

and conclude by proposing possible improvements to the austere implementation that we

have prepared as part of our project, in the event that others wish to replicate such an

undertaking.

6.1 Conclusions

Whether stemming from high-resolution analysis or from Fourier-based analysis, we have

seen that most modern approaches to sound morphing employ an additive model. Our

research corroborates this as a wise choice. We found it to be an ideal model for achiev-

ing a controlled timbral manipulation, particularly with instrumental sounds, which are

most often characterized by a well defined set partials–if not a fully harmonic spectrum.

Moreover, as an established standard in the field, the stochastic-plus-deterministic additive

model seems even better suited for the purpose than the purely additive one.

Among it’s many virtues, it is a helpful model for extracting timbre descriptors–one of

2010/09/17
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the focal areas of our research. We remain convinced of the need to have a series of mean-

ingful descriptors and we found the set chosen for this work to be sufficient. Conversely,

some of the features of the set seemed far more convincing within the isolated-feature inter-

polations from chapter 4 than they did in chapter 5. This is a point which will be discussed

more fully in 6.2. The reader should not take this to mean that the testing from chapter

4 did not succeed in contributing towards real-world implementation. Rather, we consider

that they have shown to be of exceptional heuristic value in the progression of our research.

We briefly summarize our appraisal of the interpolation of each one of the chosen de-

scriptors for the purpose of effecting a convincing morph between musical sound objects.

6.1.1 Amplitude envelope warping

A classical descriptor, the amplitude envelope is invaluable for warping a set of sound

objects to bring crucial unique temporal features or temporal stages–such as the attack–

to take place simultaneously. We based our implementation on the basis that amplitude

envelopes for all partials of a given musical tone will generally retain a degree of similarity.

Surprisingly, our first implementation of morphing real-world sounds proved this to be

a flawed assumption. We suggest exploring an algorithm that interpolates per-partial

amplitude envelopes and per-partial modulations. This is discussed further in section 6.2.

Nevertheless, we consider that the use of a global envelope may be used to improve the

temporal match of sound objects, allowing a generalized time-warp which enforces temporal

feature simultaneity. Furthermore, we have proposed a model for temporal division of a

sound object based on its envelope; yielding five sections: pre-attack, attack, stable, release

and post-release. Both the pre-attack and post-release stages contain ancillary sounds:

respectively noises from preparation for attack and adjustments after playing. The attack,

on the other hand, is a transient stage characterized by a relatively high spectral flux and a

fast rate of energy increase. The stable stage1 refers to the part of the sound where energy

is still being input into the instrument, such as blowing for a wind instrument or bowing

for strings. It is here that we may encounter an extended vibrato2. Finally, the release

stage is when the instrument’s oscillations fade out, not being excited anymore; it generally

1Which does not necessarily need to be stable in amplitude.
2A limit case springs to mind; while not directly inputting energy into a guitar, we can still produce a

vibrato as a note rings. In this case, the imprint of a vibrato is actually inputting energy, however minimal,
into the strings’ oscillations.
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presentins a higher degree of spectral flux than the stable stage. For some musical sound

objects, the release stage will be very short, while others might present a prolonged release

stage3.

6.1.2 Warping f0

This is a fairly standard part of morphing and is generally perceived to be smoother if

interpolation is performed logarithmically. For larger intervals in dynamic morphs, f0

interpolations may produce an overbearing glissando which can be circumvented if we glide

to a closer pitch which is related to the target pitch in its harmonic structure. A generalized

formalization of this idea is presented in algorithm 4.1.

6.1.3 Interpolation of vibrato

The interpolation of vibrato is performed exclusively during the stable stage and is achieved

through a second-order sinusoidal analysis[58]. If second-order partial-matching is made

following a closest-amplitude criterion, results are optimal. Yet we have based our pro-

cedure on the premise that the relative difference of modulations is roughly equal for all

partials. However, the results of the procedure revealed this to be yet another incorrect

assumption. In fact, during our implementation of morphing, we found relative differences

to be equal only for frequency modulations, and we also found that amplitude modulations

were much more pronounced in even partials, as can be seen in figure 6.1.

6.1.4 Inharmonicity

Inharmonicity proved to be a meaningful parameter, for which linear interpolation produced

reasonably smooth results.

6.1.5 Even to odd partial energy ratio

The proposed EOR is a good descriptor of timbre, having a strong correlation with the

spectral irregularity of a given sound. Yet, as we saw in 5.1.4, it is not advantageous

for manipulating and resynthesizing, since this ratio is not constant across all partials,

decreasing rapidly as the order of partials increases. We have thus proposed an alternative

3Again, plucked strings come to mind, where most of the note can be though of as a release stage.
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(b) Log-amplitudes with modulations

Fig. 6.1 Comparison of frequency modulations and amplitude modulations.
6.1(a) presents the relative breadth of frequency modulations of the first few
partials of a clarinet tone, while 6.1(b) presents the log amplitude of a few
partials, wider amplitude modulations are evident in even partials.

vector of ratios of all even partials to a smooth version of the sound object’s spectral

envelope. In the real-world interpolations effected during our research this vector still

retains the stopped pipe quality of the sound without distorting the spectral envelope.

Logarithmic interpolations of either EOR or even-to-smooth ratios yield smooth progression

while linear interpolations yield unacceptably unequal progressions.

6.1.6 Partial attack times, partial release times

The purpose of these two measures was to retain spectral centroid changes present in the

original sound object while using a global amplitude envelope, yet given that it would be

best to work towards a model that interpolates amplitude envelopes for each partial4, we

consider that these two measures should prove to be obsolete. However, if we were to use

them, they should be logarithmically interpolated for optimal results.

6.1.7 Spectral envelope

From cross-synthesis to present day state-of-the-art, the spectral envelope constitutes a

cornerstone for most attempts at audio morphing. We deem it essential to retain the

use of this descriptor in any framework aimed at morphing. Although direct formant

4While still extracting amplitude modulations before the interpolation of the envelopes.
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interpolation is best when formant parameters are available, we have explored interpolation

of an arbitrary envelope via reflection coefficients and find it to produce very good results.

6.1.8 Deterministic vs stochastic energy ratio

This ratio is very important for mixing the resulting components. In the case of cyclo-

stationary or stationary morphs, the logarithmic interpolation of a single scalar is sufficient.

In the case of dynamic interpolations, we need to interpolate the energy on a per-frame

basis, effectively turning this into a power interpolation. In the latter case, the power

interpolation will be a time-varying gain of the stochastic component and therefore render

the stochastic component’s amplitude envelope useless.

6.2 Further development

Our research findings suggest possibilities for new directions of exploration and research.

We here relay to the reader our thoughts on these possibilities.

Firstly, although we resorted to a manual approximation of the global amplitude enve-

lope, this is an extremely unwieldy process. Moving-average filters already yield reasonable

results and could easily be used if we sacrifice precision for the timing of the sound object’s

unique temporal features. One possibility for increasing the precision of a moving-average

estimation of the envelope could be to drive the filter’s parameters with spectral parameters

indicative of transients, such as spectral flatness or spectral flux.

Another important avenue of possible future research relates to a common practice

in audio morphing. We have previously mentioned that there are many proponents of

morphing partial amplitudes directly. While this is far from being the interpolation of

meaningful features that we seek, we must acknowledge that individual track envelopes

are very important for preserving the natural quality of a sound object. Thus we propose

that each partial’s amplitude envelope should be treated in the same way we have dealt

with some of the global parameters: extracting vibrato from each partial and temporally

warping the partials’ smooth amplitude envelopes in accordance with unique-temporal-

features warping from the interpolands’ global envelopes. Another argument in favor of

this proposition is that spectral envelope modulation can be shown to be implicit if both

amplitude and frequency modulations are unique to each partial.
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The way we performed vibrato extraction, via pm2, did not yield values for bin 0. Thus

all modulations were centered around zero. This eliminates the possibility of including

micro-melodic movements in modulations, so we propose the inclusion of a dc-offset partial

in second-order sinusoidal analysis. The relevance of its inclusion has already been stated

by Marchand and Raspaud[58].

Most of our efforts have centered around the deterministic component of sound objects.

We have thus overlooked parameter extraction from the stochastic component to a certain

extent. The need for the extraction of at least one feature has become evident: extended

vibrato. Although there is no fundamental frequency in the stochastic component, ampli-

tude modulations and spectral envelope modulations are present. The frequencies of these

modulations are correlated with the frequencies of the modulations present in the deter-

ministic component and should also be interpolated for consistency. The extraction of the

former should not prove too difficult, following a similar procedure to the one we used to

extract amplitude modulations from the deterministic component. Conversely, a method

for obtaining the spectral envelope modulations remains unknown to us.

One practical consideration remains in regards to all phantom-partial interpolations.

We have observed that the effect of phantom partials is most effective when they decrease

in amplitude to a point at which they almost cannot be perceived–which is generally far

louder than -96 dB. We therefore consider it a worthwhile effort to set phantom partials’

amplitudes to a point just a few decibels lower than their temporal and frequency masking

thresholds. Lastly, we consider that moving towards using similar descriptors based on

perceptually motivated units would prove highly beneficial.
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Appendix A

Note Regarding the Available Code

Our research is yet far from being aimed at producing a working suite of scripts capable

of unsupervised morphing. Regardless, we are aware of the pedagogical value and overall

usefulness of the scripts that we used to evaluate strategies and to produce examples.

The scripts have been tailored to work in a somewhat idiosyncratic setup, including a

particular directory structure and licensed copies of Mathworks’ Matlab and IRCAM’s pm2

and supervp1. Yet, even if the reader does not have access to the required software, the

code may reveal the procedures that we have followed from a different perspective than

that offered from the writing. We have thus made it available on the project’s website[9].

Reader’s who have access to the required software may set up an environment to run

the scripts by downloading the code and following the instructions in the README file.

Window’s users should be aware that, at least at the time of writing this document, supervp

does not work on current window’s versions. An alternative is to setup the software and

downloaded scripts inside a virtual machine running any distribution of LINUX.

Given that the code is a relatively artisanal sandbox for prototyping and evaluating

some interpolation strategies, let the user be warned: it does not have consistent naming

conventions or consistent encapsulation. Although coding style may change from one script

to the next to reflect the coder’s whim throughout the research period, we have tried to

maintain a habit of writing comments.

1These are the kernels of IRCAM’s Audiosculpt.

2010/09/17
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