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Abstract

Projection-based reduced-order models (PROMs) have demonstrated accuracy, reliability,

and robustness in approximating high-dimensional, differential equation-based computa-

tional models across many applications. For this reason, it has been proposed as a tool

for high-querying parametric design problems like those arising in modern aircraft design.

Since aerodynamic simulations can be computationally expensive, PROMs offer the poten-

tial for more rapid estimations of high-fidelity solutions. However, the efficiency can still be

tied to the dimension of the full-order model (FOM), particularly when projected quanti-

ties must be frequently recomputed due to non-linearities or parameter dependence. In the

case of Petrov-Galerkin models, the projected residual and Jacobian are re-evaluated at ev-

ery Newton iteration, thereby limiting the anticipated cost improvements. Hyperreduction

is one of the tools available to approximate these quantities and address this issue. This

work tests the energy-conserving sampling and weighting (ECSW) method as a potential

approach for hyperreduction. It will be incorporated into the work by Blais in his thesis,

Goal-Oriented Adaptive Sampling for Projection-Based Reduced-Order Models, which had

developed an adaptive sampling procedure for building a reduced-order model (ROM) with

a controlled functional error. The impacts of hyperreduction on computational cost and

accuracy will be studied using the NACA0012 airfoil.
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Résumé

Les modèles d’ordre réduit par projection (PROM) se sont révélés, dans de nombreuses ap-

plications, précis, fiables et robustes lorsqu’il s’agit d’approximer des modèles numériques

de calcul pour des systèmes d’équations différentielles à haute dimension. C’est pourquoi ils

ont été proposés comme outil pour les problèmes de conception paramétrique itératifs, tels

que ceux qui se posent dans la conception moderne des avions. Étant donné que les simula-

tions aérodynamiques peuvent avoir un coût de calcul élevé, les PROM devraient permettre

des estimations plus rapides de solutions à haute-fidélité. Toutefois, l’efficacité des PROM

peut être liée à la dimension du modèle d’ordre complet (FOM), en particulier lorsque les

quantités projetées doivent être fréquemment recalculées en raison de leurs non-linéarités

ou de leur dépendance sur les paramètres de conception. Dans le cas des modèles utilisant

la projection de Petrov-Galerkin, le résidu projeté et le jacobien sont réévalués à chaque

itération de Newton, négligeant les avantages de coût de calcul attendus des modèles d’ordre

réduit. L’hyper-réduction est l’un des outils disponibles pour approximer ces quantités.

Dans ce travail, la méthode d’échantillonnage et de pondération conservant l’énergie (energy-

conserving sampling and weighting, ECSW) sera évaluée en tant qu’approche potentielle pour

l’hyper-réduction. Elle sera incorporée dans le travail de Goal-Oriented Adaptive Sampling

for Projection-Based Reduced-Order Models dans lequel une procédure d’échantillonnage

adaptative pour la construction d’un modèle d’ordre réduit (ROM) avec une erreur fonction-

nelle contrôlée a été développée. Afin d’étudier les impacts de l’hyper-réduction sur le coût

de calcul et la précision, l’écoulement autour d’un profil d’ail NACA0012 sera considéré.
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Chapter 1

Introduction

Many fields of design and engineering are increasingly reliant on computational models. In

aircraft design, for instance, computational fluid dynamics (CFD) has become an essen-

tial tool for accelerating analysis and design processes, and also helps inform decisions on

experimental testing. Advancements in higher-order methods, faster solution algorithms,

and parallel high-performance computing have significantly improved the time and cost ef-

ficiency of CFD. These innovations have been instrumental in advancing the design of more

fuel-efficient and environmentally friendly aircraft. Despite these advancements, in certain

applications there remain challenges due to the high computational costs and storage re-

quirements of these models, rendering them computationally intractable. This limitation

has driven substantial interest in methods for reducing the complexity and cost of large-

scale computational models.
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1.1 Reduced-Order Models and Computational Bot-

tlenecks

The cost of producing CFD solutions poses a significant challenge in high-querying problems,

such as aerodynamic shape optimization (ASO), where the model must be evaluated at nu-

merous design parameter combinations, and in online real-time scenarios, like active control,

where solutions must be computed within seconds. The goal of reduced-order modeling is to

decrease the solution time and storage requirements needed to compute new CFD solutions

while preserving the fidelity achieved by higher-order methods.

The approximation of a high-fidelity model by a low-dimensional representation is a ma-

jor area of research in model reduction methods. These methods focus on problems where

the high-fidelity model is a high-dimensional system of ordinary differential equations or a

system of equations derived from the discretization of partial differential equations, which

capture the underlying physics of the system [1]. The belief is then that the physical pro-

cesses and dynamics of the system can be represented by a smaller number of degrees of

freedom (DOFs). The reduced-order models (ROMs) used to approximate these complex

full-order models (FOMs) can be grouped into two categories: non-intrusive and intrusive

models. Non-intrusive models treat the problem as a black box and are independent of the

full-order equations. There are a multitude of challenges that arise when using these models,

particularly in large-scale dynamic systems. These include violations of physical constraints,

high costs associated with generating large training data sets, and lack of confidence in-

dicators [1]. Examples of non-instrusive models include proper orthogonal decomposition

coupled with interpolation [2], Isomap [3, 4], Kriging [5, 6], and neural networks [1, 7–9].

Intrusive models operate under the assumption that the solution of a large-scale system

of dimension N can be represented on a much lower dimensional subspace of dimension n in-

2



duced by parameter variation. The low-dimensional representation is found by projecting the

governing equations onto the reduced-order subspace, which is why these models are often

referred to as projection-based reduced-order models (PROMs). The two most commonly

used approaches are the Galerkin projection [10–12] and the least-squares Petrov-Galerkin

projection (LSPG) [13–15]. These models are often preferable to non-intrusive models as

they are physics-informed, making them more robust, and they offer accessible error met-

rics [16], which help predict the expected accuracy of the model online. In particular, Petrov-

Galerkin PROMs have been shown to be ideal for parametric, nonlinear high-dimensional

models. While it was previously thought that using PROMs in fluid dynamics would lead

to numerical instabilities due to their inability to resolve the dissipative regime of the tur-

bulent energy cascade, [17] demonstrated that in fact, the Galerkin framework was the true

source of these instabilities. Specifically, for problems where the Jacobian is not symmetric

positive definite, which is generally the case in CFD problems, PROMs constructed using

the Galerkin framework can perform poorly or exhibit instabilities [12, 17]. However, for

the same convection-dominated laminar and turbulent flows, PROMs constructed using the

Petrov-Galerkin (PG) framework were found to be numerically stable and accurate [17].

Overall, PG ROMs have proven to be ideal candidates for approximating CFD problems

and will therefore be used in this work.

The remaining major challenge is that, in practice, the computational cost of these tech-

niques still scales with the dimension of the FOM, N . In parametric and/or non-linear

problems, the parametric vectors and matrices-such as the residual and Jacobian-must be

re-evaluated at each non-linear iteration and then projected onto the reduced-order basis.

This can be computationally expensive, and the cost would scale with the dimension of the

FOM. If not addressed, the expected time-saving benefits of the PROM may not be fully

realized.

3



There are generally two approaches for addressing this computational bottleneck and

approximating these quantities: exact and inexact [18]. Both share the fundamental strategy

that underlies most PROM computations, of breaking down the evaluation of these quantities

into offline and online components. Exact methods are applicable to specific classes of

problems, two examples being parametric, linear FOMs admitting an efficient parameter-

affine representation, and non-linear FOMs with low-order polynomial dependence of the

internal force vector on the solution and a time-independent external force vector. These

methods are often referred to as exact precomputation-based methods, as they compute

the reduced matrices and vectors in two parts: the first part addresses the computational

bottleneck and can be precomputed offline, while the second part, whose computational

complexity scales with integer powers of the reduced-order subspace n, can be processed

online and in real time [18].

The problems addressed in this work, however, do not fall into the classes suitable for pre-

computation. Therefore, inexact or approximate reconstruction methodologies must be used.

Hyperreduction is an inexact method which has been developed for addressing more gen-

eral cases which can be both linear or non-linear, parametric or non-parametric [18]. These

approaches introduce an additional layer of approximation to evaluate the high-dimensional

quantities in a manner that is independent of the dimension N of the FOM. As a result,

some accuracy in the ROM is traded for computational efficiency. Many methods have been

developed in this field, most of which are related in some way, differing primarily by the level

of theoretical support they have [19].

4



1.2 Hyperreduction

Current hyperreduction techniques can be classified into two groups: approximate-then-

project methods and project-then-approximate methods. The former was developed first and,

as the name suggests, begins by generating an approximation of the high-dimensional quan-

tity and then computes the exact projection of the approximation onto the left reduced-order

basis (ROB) or test basis W associated with the PROM. Techniques in this group include

the empirical interpolation method (EIM) [20, 21], and its associated discrete form the dis-

crete empirical interpolation method (DEIM) [22], both of which have typically been applied

in the context of Galerkin projections. In contrast, the Gauss–Newton with approximated

tensors (GNAT) method is designed for Petrov–Galerkin projections [13]. [19] notes that

this group of methods tend to emphasize accuracy but not numerical stability. The second

group, project-then-approximate methods, was proposed more recently as a response to con-

cerns about the stability of hyperreduction techniques. These methods have demonstrated

greater robustness in certain cases [18]. Instead of approximating the high-dimensional quan-

tities directly, these approaches approximate their projections onto the left ROB. One of the

earlier examples of this method is the energy-conserving sampling and weighting (ECSW)

method, which was initially developed for Galerkin PROMs [23] and later adapted for use

in Petrov-Galerkin PROMs [15].

Farhat et al. [18] note that, at present, DEIM represents the state of the art among

approximate-then-project methods, while ECSW represents the state of the art among

project-then-approximate methods. Noting that this work focuses on solving fluid flows

problems, least-squares Petrov-Galerkin (LSPG) PROMS have been demonstrated to be

both numerically stable and accurate in the context of convection-dominated laminar flows

and turbulent flow problems, where Galerkin PROMs often exhibit instability [17]. For this

reason, the ECSW hyperreduction method emerges as a suitable choice for the goals of this

5



work. Moreover, it has both a substantial amount of theoretical and experimental support.

The ECSW method is provably unconditionally stable for second-order hyperbolic models

and has been shown to be both numerically stable and accurate in structural dynamics prob-

lems, where approximate-then-project methods have been known to fail [19]. Additionally,

when applied to first-order hyperbolic problems, it was shown to be reliable, accurate, and

computationally efficient [15].

1.3 Error Bounds and Goal-Oriented Model Reduction

A reduced-order model can always be constructed and optimized with hyperreduction; how-

ever, this does not guarantee that its outputs will be accurate. Without a reliable method

to quantify the error in a ROM, little confidence can be placed in its estimations. Several

approaches have been developed to address this issue. For example, the work in [24, 25]

introduced rigorous a posteriori error bounds based on the residual for linear problems and

problems with quadratic non-linearities. However, these bounds are not online-efficient and

have been shown to be impractical for complex nonlinear systems [14]. More efficient error

estimation methods have also been developed [26, 27]. These approaches estimate the error

between the FOM and the ROM using the magnitude of the norm of the residual. While

these methods are computationally cheaper, they do not guarantee that a specific bound on

the error exists.

Most of these approaches focus on state or solution error, but this is not always predictive

of the error in the output of interest [28]. In certain applications, the error in the output or

functional of interest could be more important. For instance, when designing an airfoil, the

lift or drag it produces might be of greater concern than the exact flow solution around it.

This is one of the motivations for the use of the dual-weighted-residual (DWR) method. In
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CFD problems, the flow solution is referred to as the primal solution, while the dual problem

refers to a problem that solves for the sensitivity of the functional relative to the primal so-

lution [16]. The DWR method provides a systematic way to relate the residual to the output

error through the use of a dual (or adjoint) solution [29]. Since this approach is computa-

tionally inexpensive, DWR error estimates have also been widely applied to automate mesh

adaptation for both finite volume and finite element discretizations [30–33].

While the DWR method does not provide a strict error bound but rather an estimate,

it is applicable to general nonlinearities in predictive settings [29] and has proven effective

in practice for aerodynamic applications [31]. This method has been utilized in various

contexts within model reduction. Early adoptions include work by Meyer and Matthies,

who applied DWRs to estimate functional errors in reduced-order models (ROMs) of wind

turbine blades [34]. More recently, DWR error indicators have become key components in

greedy and adaptive sampling strategies. Notable examples include works such as [29,35,36].

In adaptive sampling procedures, an error indicator is used to estimate the error between the

ROM and FOM, guiding the ROM’s construction to ensure that this error estimate satisfies

a specified tolerance. The DWR method has been shown to be both accurate and efficient

in these settings [16].

1.4 Thesis Overview

This work builds on the methodologies developed in [16], [37], and [36], which introduced

an adaptive sampling procedure designed to reduce the output error of an LSPG projection-

based reduced-order model (ROM) to within a prescribed tolerance. The sampling procedure

took advantage of dual-weighted residual (DWR) error indicators to estimate the error be-

tween the ROM and FOM at specific design parameter locations, which were then used
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to estimate the output error across the parameter space. However, as noted by Blais [16],

hyperreduction was not incorporated into the ROM, meaning the computational cost of ob-

taining reduced-order solutions still scales with the dimension of the FOM, N . In particular,

during each of the non-linear Newton iterations required to solve the ROM, the residual and

Jacobian must be re-evaluated, making the process computationally expensive—even when

the ROM has significantly reduced the problem’s dimensionality (i.e. n≪ N).

The goal of this work is to update the sampling procedure to build a hyperreduced

reduced-order model (HROM) which still achieves a prescribed error tolerance across the

parameter space, while accounting for the additional error introduced by hyperreduction.

The hyperreduction is implemented using the ECSW approach described in the previous

section and is employed to approximate both the residual and the Jacobian in the HROM.

Additionally, the second DWR error indicator introduced in [16], which quantifies the error

between a coarse and fine ROM (referring to the number of columns in the reduced order

basis), is modified to capture the error introduced by the hyperreduction.

The thesis is structured as follows: Chapter 2 introduces the fundamental methods used

in this work. This includes a brief overview of the discontinuous Galerkin method used in the

flow solver, as well as the implicit method utilized to solve the full-order system. Chapter 3

presents the components of the reduced-order model, providing brief introductions to proper

orthogonal decomposition and the LSPG framework. This chapter also explores existing

hyperreduction techniques and provides a detailed explanation of the selected ECSW hyper-

reduction method. Chapter 4 verifies the implementation of the ECSW method using two

test cases: the 1D Burgers’ equation and the NACA0012 airfoil. Chapter 5 introduces the

previously developed adaptive sampling method and outlines the changes necessary to incor-

porate hyperreduction. Updates to the DWR error indicators are discussed here, along with

a methodology for comparing the computational savings of hyperreduction using approxi-
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mate work units. Finally, Chapter 6 presents the results of HROMs constructed for various

configurations of a two-dimensional inviscid flow around the NACA0012 airfoil, comparing

them with non-hyperreduced ROMs in terms of both accuracy and efficiency.
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Chapter 2

Fundamental Methods

This chapter outlines the fundamental methods that underpin this work. The first section

provides a brief overview of the discontinuous Galerkin method and the second describes the

approach used to solve for steady-state solutions of the full-order model.

2.1 Discontinuous Galerkin Method

The in-house CFD solver PHiLiP [38] employed in this work is based on the discontinuous

Galerkin method, therefore a brief outline of this method will be given. This constitutes

the full-order model (FOM) used in this work. The governing equations for physical flow

phenomena can be expressed as the following conservation law:

R(w) =
∂w

∂t
+∇ · F(w)− S(w) = 0, (2.1)

wherew is the solution vector, F(w) is the flux vector, S(w) is a source term, andR(w) is the

residual. CFD invokes the Navier-Stokes equations, which take the above form and are used
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to solve problems involving fluid flows. These equations are an example of parameterized,

time-dependent, nonlinear partial differential equations (PDEs).

Discontinuous Galerkin methods are a class of high-order finite element methods which

were developed as a response to the shortcomings of the current methods for discretizing

PDEs [39]. The goal is to combine the high-order accuracy enabled through local approx-

imation by finite element methods with the stability provided by finite volume methods

in wave-dominated problems enabled by the discontinuities at cell interfaces [16, 39]. The

resulting framework is known as the discontinuous Galerkin finite element method (DG) [39].

A discrete numerical solution wh ∈ RN is introduced which approximates the solution w

to Equation 2.1 over the computational domain Ωh. This discrete solution has dimension N ,

which will represent the FOM dimension for the entirety of this work. The computational

domain Ωh approximates the physical domain Ω with boundary Γ using a collection of non-

overlapping elements Ωk ∈ Ωh with boundaries ∂Ωk. The discontinuous Galerkin method

seeks a solution represented by the piecewise sum of local solutions wk
h(x) over each element:

wh(x) =
⊕

Ωk∈Ωh

wk
h(x). (2.2)

The local solution on each element can be written in the form:

wk
h(x) =

Nk(pk)∑
i=1

wk
i ϕh,i(x), (2.3)

where pk is the degree of the polynomial approximation, Nk(pk) denotes the number of

solution points within the element, and ϕh,i is the i
th polynomial shape function on element

k. To obtain the local solutions, the weak formulation of Equation 2.1 is needed. Multiplying

the equation by an arbitrary test function ψ, we then require the residual to be orthogonal

to this function. In a Galerkin scheme, the test functions are from the same space as the
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polynomial shape functions used in the solution, meaningψ = ϕ. Thus, multiplying equation

2.1 by ϕh and integrating by parts over each element, we obtain:

∫
Ωk

ϕh

∂wh

∂t
dΩ−

∫
Ωk

∇ϕh ·F(wh) dΩ+

∫
∂Ωk

ϕhF
∗(wh) · n dΓ−

∫
Ωk

ϕhS(wh) dΩ = 0, (2.4)

where n represents the normal vector to the element boundary and F∗ represents a numerical

flux that ensures conservation of the governing equations across cell interfaces.

Substituting the discrete solution wk
h from Equation 2.3 into Equation 2.4 yields a local

system of equations for each element. The local contributions from all the elements are then

assembled to form a global discrete system of ordinary differential equations (ODEs). This

system is written in semi-discrete form, along with an output functional of interest, J , as:

M
dwh

dt
+R(wh(t),µ, t) = 0,

J = J (wh(t),µ, t),

(2.5)

where M is the global mass matrix, R is the discretized spatial residual, and µ is a set of

parameters.

2.2 Full-Order Model

The current work focuses only on steady-state solutions. Therefore, a steady-state solution

to the semi-discrete system of nonlinear ordinary differential equations given by Equation 2.5

is found using an implicit method with pseudo-time stepping. To begin, using the backward

Euler method, we can linearize the residual at nonlinear iteration k about the solution w
(k)
h .
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For brevity R(w
(k)
h ) ≡ R(wh(t

(k)),µ, t(k)), the linearization then reads:

R(w
(k+1)
h ) = R(w

(k)
h ) +

∂R

∂wh

∣∣∣∣
w

(k)
h

(w
(k+1)
h −w

(k)
h ). (2.6)

Re-arranging Equation 2.5 for time step (k + 1), we have:

M
dwh

dt
= −R(w

(k+1)
h ). (2.7)

Using the definition for R(w
(k+1)
h ) from Equation 2.6 and substituting it into Equation 2.7,

we find:

M
dwh

dt
= −R(w

(k)
h )− ∂R

∂wh

∣∣∣∣
w

(k)
h

(w
(k+1)
h −w

(k)
h ). (2.8)

We can then find an approximation of the time derivative of the solution:

dwh

dt
≈ (w

(k+1)
h −w

(k)
h )

∆τ
. (2.9)

Plugging this into Equation 2.8 and re-arranging, we obtain:

[
∂R

∂wh

∣∣∣∣
w

(k)
h

+
M

∆τ

]
(w

(k+1)
h −w

(k)
h ) = −R(w

(k)
h ). (2.10)

The local CFL number, given by c∆τ
∆x

where c is a constant, is used to determine the pseudo-

time step τ on each element. The pseudo-time step begins small and is gradually increased

as the solution approaches steady state, causing the second term in the square brackets (M
∆τ

)

to vanish. Therefore, for iterations k = 1, . . . , K until convergence of the nonlinear residual,
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the Newton steps can be written as:

[
∂R

∂wh

(k)
]
p(k) = −R(k),

w
(k+1)
h = w

(k)
h + r(k)p(k),

(2.11)

where ∂R
∂wh

(k)
is the Jacobian, p(k) is the search direction and r(k) the step length, found using

a line search algorithm. Finally, we formulate the complete full-order steady-state problem

as:

R(wh,µ) = 0,

J = J (wh,µ).

(2.12)

In the rest of this work, the approximate numerical solution wh will be referred to as w

for brevity. It is important to remember that the FOM itself may have error introduced

by the discrete approximation of the governing equations. For the discontinuous Galerkin

method, this error could be related to both grid size and polynomial order [16]. All error in

the reduced-order model will however only be measured with respect to the FOM solution

w, as the error introduced by the higher-order method prior to the model reduction cannot

be controlled in any way by the reduced-order modelling procedure.
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Chapter 3

Model Reduction

This chapter discusses the various components required to construct a hyperrreduced reduced-

order model (HROM). These include the creation of a trial basis, or reduced-order basis

(ROB), via proper orthogonal decomposition, onto which the full-order model (FOM) will

be projected. The basis is then used to derive an approximate representation w̃ for FOM

solution w. By projecting the system of nonlinear equations onto the test basis W, New-

ton’s method can be employed to solve for the unknown reduced-order solution ŵ. The

least-squares Petrov-Galerkin (LSPG) framework is introduced. Then, a brief description of

the two types of hyperreduction methods is given, followed by a more detailed description

of the chosen energy-conserving sampling and weighting (ECSW) approach.

3.1 Proper Orthogonal Decomposition

As mentioned in the introduction, projection-based reduced order models take advantage of

the lower dimensionality of the FOM solution manifold. They captures the physics of the

problem by projecting the FOM onto a subspace of a smaller dimension, typically using a

properly trained reduced-order basis V ∈ RN×n [40]. This basis is a matrix whose columns,
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often referred to as basis vectors or modes, span the lower dimensional subspace [16]. Among

the many possible choices for basis vectors, the Karhunen-Lo‘eve basis has been shown to

perform best in the context of model reduction [34]. In fluid dynamics, the expansion proce-

dure conducted to build the basis is referred to as proper orthogonal decomposition (POD).

POD can extract dominant features in data or decompose a function into its underlying

modes, which can then be used to build a reduced-order basis (ROB). Further details on the

POD procedure and its derivation can be found in [16].

The most common approach for identifying POD modes is singular value decomposition

(SVD), a concept from linear algebra. To construct the ROB, a set of solution samples

ws ∈ RN at various parameter combinations must be collected. The way in which these

samples are distributed in the parameter domain will be discussed further in Chapter 5.

Using a reference solution wref ∈ RN , which in the previous work [16] was chosen to be the

mean of the solution samples, the snapshots used to determine the basis vectors are of the

form s = {ws −wref}ns=1 to ensure consistency. These can be assembled into a matrix S:

S =

[
s1 s2 . . . sn

]
∈ RN×n. (3.1)

The SVD of the above matrix would then be given by:

S = UΣZT , (3.2)

where U ∈ RN×N ,Z ∈ Rn×n are orthogonal matrices and Σ = diag(σ1, . . . , σk, 0, . . . , 0) is

an N × n diagonal matrix containing singular values σ, where k = min(N, n). The columns

of U are equivalent to the POD modes identified using an eigenvalue problem. In this work,

the number of snapshots n is assumed to be much smaller than the dimension of the FOM

NAs a result, the last N −n columns of U are arbitrary, as they correspond to zero singular

16



values. Therefore, by employing a “thin” SVD without truncation, the first n columns of

U are selected as the basis vectors for the ROB V which spans the reduced-order subspace,

commonly referred to as the trial space.

3.2 Projection-Based Reduced-Order Model

Once a basis V ∈ RN×n has been determined using POD, the next step is to find an

approximation of the solution w ∈ RN to the FOM Equation 2.12. Projection-based ROMs

operate under the assumption that these solutions lie in the reduced-order subspace. At a

given parameter location µ, we would like to then find an approximate solution w̃ ∈ RN of

the form:

w̃ = wref +Vŵ, (3.3)

where wref ∈ RN is the reference state and ŵ ∈ Rn is the unknown reduced-order solu-

tion. Substituting the approximate solution in Equation 3.3 into Equation 2.12 results in

an overdetermined system as there are N equations and n unknowns in ŵ. The system of

equations is then projected onto a test subspace via the test basis W ∈ RN×n. This results

in the following reduced-order system of nonlinear equations:

WTR(wref +Vŵ,µ) = R̂(wref +Vŵ,µ) = 0T , (3.4)

where R̂ ∈ Rn is the reduced-order residual. Using a Taylor series expansion to approximate

the solution, we have:

R̂(wref +Vŵ(k+1),µ) ≈ R̂(wref +Vŵ(k),µ) +
∂R̂

∂ŵ

(k)

(ŵ(k+1) − ŵ(k)), (3.5)
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and given that R̂(wref +Vŵ,µ) = 0T , then:

0T = WTR(wref +Vŵ(k),µ) +
∂(WTR(wref +Vŵ(k),µ)

∂ŵ
(ŵ(k+1) − ŵ(k)). (3.6)

Ignoring the second-order sensitivities created by taking the derivative of the test basis and

using the chain rule on the remaining derivative of the residual with respect to ŵ, we find:

WT ∂R

∂w

(k)

V(ŵ(k+1) − ŵ(k)) = −WTR(wref +Vŵ(k),µ). (3.7)

Therefore, the Newton iteration for k = 1, ..., K are:

[
WT ∂R

∂w

(k)

V

]
p(k) = −WTR(k),

ŵ(k+1) = ŵ(k) + r(k)p(k),

(3.8)

where p(k) is the search direction and r(k) the step length.

3.3 Least-squares Petrov-Galerkin Projection

The final component of the PROM framework that must be selected is the test basis W.

Two options are available, the Galerkin and Petrov-Galerkin methods. As mentioned in the

introduction, the Petrov-Galerkin framework has been shown to be more robust and accurate

for CFD problems [14,17]. Specifically, the least-squares Petrov-Galerkin (LSPG) projection

offers several attractive properties, including optimality [13] and monotonicity [41], which

are discussed in detail in [16] and motivate its selection for use in this work.

In the case of the least-squares Petrov-Galerkin projection [42, 43], the test basis is con-

structed such that W ≡ ∂R
∂w

V. Recalling 3.8, the Newton iterations for k = 1, ..., K in the
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LSPG framework become:

[
VT ∂R

∂w

(k)T ∂R

∂w

(k)

V

]
p(k) = −VT ∂R

∂w

(k)T

R(k),

ŵ(k+1) = ŵ(k) + r(k)p(k),

(3.9)

where ∂R
∂w

(k) ∈ RN×N is the Jacobian, p(k) is the search direction and r(k) the step length. It

can be seen here that the test basis updates with each Newton iteration via the addition of

the Jacobian, allowing it to better capture nonlinear effects [13].

It can be shown that an approximation will be consistent throughout a ROM simulation,

provided it is consistent at the initial condition. This consistency can be enforced by setting

w̃(0) = wref + Vŵ(0) [44]. However, there is no guarantee that any arbitrary choice of

w̃(0) can be represented in this form. Therefore, a projection can be used to project an

arbitrary initial condition w(0) onto the reduced-order subspace. This is achieved by setting

ŵ(0) = VT (w(0) − wref). As a result, the initial condition is modified to a projected initial

condition w̃
(0)
proj:

w̃
(0)
proj = wref +V

(
VT

(
w(0) −wref

))
. (3.10)

3.4 Hyperreduction

In Newton’s method shown in Equation 3.9 above, it can be seen that the residual and

Jacobian must be re-computed at each iteration. This is one of the computational bottlenecks

for a ROM of a non-linear, parametric model, as the cost of recomputing and projecting these

quantities would scale with the dimension of the FOM N . Noting that the right-hand side

of the first line in equation 3.9 is the reduced-order residual R̂, each iteration requires the

evaluation of the high-dimensional residual R, followed by multiplication with the test basis

WT , which has asymptotic complexity O(Nn) [45]. Therefore, while ROMs of the above
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form can provide accurate approximations of the FOM, they may not be significantly less

computationally expensive. For the class of problems discussed in this work, an inexact

methodology is required for addressing this computational bottleneck. These methods are

referred to as hyperreduction methods, despite the fact that many of the approaches were

developed well before the use of the term “hyperreduction” was coined by Ryckelynck in [46].

These techniques can be grouped into two categories: approximate-then-project methods

and project-then-approximate methods. This section will provide an overview of these two

categories and examples of the more widely adopted versions of these methods.

3.4.1 Approximate-then-Project

Following their naming convention, these methods first approximate the nonlinear high-

dimensional model quantity and then project the approximation onto the left reduced-order

basis W. [18] notes that the underlying concept of this approach finds its origin in the gappy

POD method [47], which was originally developed for image reconstruction.

These methods share the following steps, outlined by Farhat in [18]. For a nonlinear,

high-dimensional vector like the residual R(wref + Vŵ,µ) ∈ RN , a small number m ≪ N

of empirically derived basis functions are used to approximate the operator. These basis

functions are stored in the columns of the matrix U ∈ RN×m. The residual can then be

written as:

R(wref +Vŵ,µ) ≈ R̂N(wref +Vŵ,µ) = URm(wref +Vŵ,µ), (3.11)
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where Rm ∈ Rm is the vector of reduced-order coordinates. Using a minimization of the

2-norm, the optimal approximation of R becomes R̂N if Rm has the following form:

R̂N(wref +Vŵ,µ) = URopt
m (wref +Vŵ,µ)

= U(UI)†RI(wref +Vŵ,µ),

(3.12)

where (·)I represents the restriction of a vector or matrix to its rows specified by the elements

of I and the superscript † designates the Moore-Penrose pseudo-inverse [18]. In the above

optimal case, the number of empirical basis functions m is equal to |I| and I is the set of

computed rows of the FOM residual R at which the 2-norm error is minimized. Therefore,

RI ∈ R|I| and UI ∈ R|I|×m. The above approximation must then be projected onto the test

basis. The hyperreduced residual then becomes:

R̃(wref +Vŵ,µ) = WR̂N(wref +Vŵ,µ)

= WU(UI)†RI(wref +Vŵ,µ).

(3.13)

This splits the computation of the hyperreduced residual at a new parameter location µ

into two components. The first is the precomputation of the matrix-matrix product Q =

WU(UI)† ∈ Rn×|I|, which can be conducted offline. The second is the online reconstruction

of the approximation, given by R̃(wref +Vŵ,µ) = QRI(wref +Vŵ,µ) ∈ Rn. This online

computation requires O(n|I|) operations, where n≪ N and |I| ≪ N .

Some of the notable approximate-then-project hyperreduction methods include the em-

pirical interpolation method (EIM) [20, 21] and its discrete version discrete EIM (DEIM)

[22, 48], the missing point approach [49], and the Gauss-Newton with approximate tensors

(GNAT) method [13, 50]. These approaches differ in terms of the theoretical support they

have, the types of projection frameworks to which they have been applied, and their level
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of success when applied to CFD problems. EIM was originally derived at the continuous

level for PDEs and has some theoretical support for elliptic problems. The discrete version,

DEIM, has become one of the most popular approaches. However, both methods have been

applied only in Galerkin frameworks and have seen limited use in aerodynamics. When used,

such as in Carlberg et al. [14, 50], they have been reported to exhibit temporal instabilities

for turbulent unsteady flows [51]. The GNAT method, on the other hand, was formulated

at the discrete level for Petrov-Galerkin frameworks and designed around approximations

that satisfy consistency and discrete-optimality conditions [50]. It has proven highly effec-

tive for nonlinear structural dynamics problems [13], demonstrating robustness, accuracy,

and excellent computational cost savings, as well as for benchmark turbulent viscous flow

problems [50]. However, Washabaugh [43] notes that the GNAT method can be expensive

for parameterized steady aerodynamic problems. Given the limitations of the approximate-

then-project method, these approaches are not considered in this work.

3.4.2 Project-then-Approximate

Project-then-approximate methods first project the full-order model quantities onto the left

ROBW, then approximate the reduced-order vectors and matrices. These methods typically

decompose the reduced-order quantities into a summation over the elements in the computa-

tional mesh and then seek to approximate the quantities by including only the contributions

from a subset of the mesh elements, referred to as the reduced mesh. The way this set is

determined varies, but all of the methods can be interpreted as generalized quadrature rules,

where an empirical set of training data is collected, and a set of quadrature “points” and

associated weights are learned in a supervised procedure [15]. All project-then-approximate

methods conduct some form of mesh sampling in which the quadrature points are mesh

elements. Some examples of this class of approaches include the empirical quadrature proce-
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dure (EQP) [52,53], the energy-conserving sampling and weighting (ECSW) method [19,23],

and the empirical cubature method (ECM) [54]. The EQP method is unique in that it can

control the error introduced by hyperreduction in the norm of the solution [53], and was

later extended to control the error in the quantity of interest [55]. This differs from other

hyperreduction methods that control the error introduced into the quantity being approxi-

mated, such as the residual, which must then be “tuned” to achieve the desired functional

error tolerance [29]. However, both the EQP and ECM methods have only been applied in

Galerkin frameworks.

Farhat et al. [23] note that previous hyperreduction approaches have primarily focused on

the accuracy of the approximation of the FOM quantities, but have given little consideration

to important properties of the resulting HROM, such as preservation of symmetry or numeri-

cal stability [23]. The ECSW method was developed to preserve both symmetry and stability

using the concepts of mesh sampling and the principle of virtual work [23]. It has been shown

that, in second-order hyperbolic problems, this approach preserves the Lagrangian structure

associated with Hamilton’s principle, which in turn enables the preservation of the numer-

ical stability properties of the discrete system [19]. When applied to realistic structural

dynamics problems, the use of the ECSW method results in stable and accurate HROMs,

whereas HROMs built with DEIM fail due to numerical instability [19]. [15] extended the

ECSW method to Petrov-Galerkin PROMs and demonstrated its success in constructing

robust, accurate, and computationally efficient models for CFD applications, particularly

those associated with convention-dominated viscous flows. Due to these properties, the

ECSW method is the most suitable candidate for hyperreduction in this work.
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3.5 Energy-conserving Sampling andWeighting Method

Consider the discretization of a spatial domain into Ne mesh entities making up the set E ,

in the case of finite difference semi-discretization these would be vertices. The reduced-order

residual for a steady-state problem can be written as:

R̂(ŵ;µ) =
∑
e∈E

WTLT
e Re(Le+(wref +Vŵ);µ), (3.14)

where Le ∈ {0, 1}de×N is a boolean matrix localizing a FOM vector to the de degrees of

freedom (DOFs) associated with the mesh element e. Re ∈ Rde is the contribution of

this element to the global FOM residual; the spatial stencil determines the set of entities

ne+ required to evaluate Re, which can include the neighbours of e. Similar to Le, Le+ ∈

{0, 1}(dene+ )×N is the boolean matrix that localizes a FOM vector to the DOFs associated

with the entities ne+ . It is assumed that there exists a subset of all the mesh entities Ẽ ⊂ E ,

with size Ñe = |Ẽ | ≪ Ne, such that the reduced residual can be approximated with a smaller

number of entities. The hyperreduced residual vector R̃ can be written as:

R̂(ŵ;µ) ≈ R̃(ŵ;µ) =
∑
e∈Ẽ

ξeW
TLT

e Re(Le+(wref +Vŵ);µ), (3.15)

and interpreted as a generalized quadrature rule with a set of mesh element weights {ξe | e ∈

Ẽ}. Note that this is an approximation of the projected residual R̂ not the FOM residual

R, therefore R̃ ∈ Rn. With no additional approximation, the hyperreduced Jacobian J̃ can

be written as:

∂R̂

∂w
(ŵ;µ) ≈ J̃ =

∑
e∈Ẽ

ξeW
TLT

e Je(Le+(wref +Vŵ);µ)Le+V, (3.16)
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where Je ∈ Rde×d+e is the Jacobian matrix of Re with respect to the DOFs associated with

the ne+ entities involved in its evaluation [45].

3.5.1 Reduced Mesh Set Selection

[40] observed that, particularly in steady-state problems, residual values can often be very

close to zero. This can result in poor training data and lead to inaccuracies in the reduced

mesh and the associated weights. The challenges of applying the residual-based training

strategy to steady-state problems are discussed in detail in [40]. A summary of these chal-

lenges is provided below:

The hyperreduction will be conducted in two stages: first, the offline computation of the

reduced mesh and accompanying quadrature weights, followed by the online use of these ap-

proximations to evaluate the projected quantities within the LSPG framework. Two ECSW

approaches were compared in the offline computation stage of this work. One approach trains

the weights using the residual of a subset of the converged solution snapshots used to build

the ROB, as in [15] and [23]. The other approach uses the Jacobian of the snapshots instead.

This was motivated by our own initial results, which identified challenges with the condi-

tioning of the matrices produced by the residual approach. [40] observed that, particularly in

steady-state problems, the residual values can often be very close to zero. This can result in

poor training data and lead to inaccuracies in the reduced mesh and the associated weights.

The challenges of applying the residual-based training strategy to steady-state problems are

discussed in detail in [40]. A shortened list is provided here:

• If the ROB is selected without truncation of the singular value decomposition, the

snapshot solution will have an exact approximate representation in the reduced-order

space. As a result, the residuals—and thus the training data—would nearly vanish for

these computed solutions, which would be equivalent to training using numerical noise.
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This will likely lead to inaccurate approximations. Furthermore, [40] notes that this

scenario would invalidate the early stopping criterion in Equation 3.26 (introduced later

in the non-negative least squares (NNLS) problem) that is used to build the reduced

mesh.

• [40] also explains that parametric steady-state problems generally require fewer solu-

tion snapshots than unsteady ones, meaning that the available training data is more

limited which can negatively impact the online performance of the hyperreduction ap-

proximations. This could create a challenge in the adaptive sampling procedure, as

the purpose of the approach is to begin with as few snapshots as possible. If hyperre-

duction is then incorporated, there will be minimal training data available at earlier

iterations. This could make the hyperreduction inaccurate, causing the error indica-

tors at the ROM points to not capture the true error distribution, thereby affecting

the placement of new FOM snapshots.

The next two sections outline the residual-based and Jacobian-based approaches for as-

sembling the training data to determine the reduced mesh and associated weights. The final

section describes the optimization problem arising from the training data.

3.5.2 Residual-based ECSW Training Process

To begin, each solution snapshot used to find the right ROB V in equation 3.1 can be

represented on the lower dimension with the following projection [15]:

ŵs = VT (ws −wref), (3.17)
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which can then be converted into an approximation of the FOM vector of dimension N

through the equation:

w̃s = wref +Vŵs,

= wref +VVT (ws −wref).

(3.18)

The original set of snapshots S contains n FOM solutions as shown in the matrix in Equation

3.1. We create a new set SH of size Ns which contains all or a subset of the snapshots in

S, i.e. SH ⊆ S. For each snapshot in SH , the contributions from each mesh element to the

discrete ROM residual can be broken into:

cse = WTLT
e Re(Le+(wref +VVT (ws −wref));µ) ∈ Rn,

ds =
∑
e∈Ẽ

cse ∈ Rn s = 1, . . . , Ns e = 1, . . . , Ne.
(3.19)

The training data can then be organized in block form and the exact assembly of this data

will be as follows:

C1 = d, (3.20)

where,

C =


c11 . . . c1Ne

...
. . .

...

cNs1 . . . cNsNe

 ∈ R(Nsn)×Ne and d =


d1

...

dNs

 ∈ R(Nsn) (3.21)

and 1 is a Ne length vector of ones. The above matrix and vector will then be fed into

the NNLS problem to solve for the weights and mesh entities used for the hyperreduction

approximation, which will be described in more detail in an upcoming section.

27



3.5.3 Jacobian-based ECSW Training Process

Similar to the residual approach, a set SH of size Ns is created containing all or a subset of

the snapshots in S, i.e. SH ⊆ S. For each snapshot in SH , the contributions from each mesh

element to the discrete ROM Jacobian can be broken into:

cse = QWTLT
e Je(Le+(wref +Vŵ);µ)Le+V ∈ Rn2

,

ds =
∑
e∈Ẽ

cse ∈ Rn2

, s = 1, . . . , Ns, e = 1, . . . , Ne,
(3.22)

where Q is the matrix that converts an n× n matrix into a column vector of dimension n2

by stacking its columns on top of each other. The exact assembly of the training data can

be written as:

C1 = d, (3.23)

where,

C =


c11 . . . c1Ne

...
. . .

...

cNs1 . . . cNsNe

 ∈ R(Nsn2)×Ne and d =


d1

...

dNs

 ∈ R(Nsn2) (3.24)

and 1 is a Ne length vector of ones. It should be noted that while the number of rows in

the C matrix scales with the dimension n of the ROB V for residual-based training, for

the Jacobian-based training it scales with n2. This can lead to a significant increase in the

training cost, which in this paper will be controlled by adjusting the number of snapshots in

the set SH . Other methods for addressing this cost are also discussed in [40].
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3.5.4 Non-Negative Least-Squares Problem

Once the training data has been assembled using one of the two approaches above, the goal

is then to find a set of weights and accompanying mesh entities that can reproduce Equation

3.20 or 3.23 to a specified level of accuracy. Ideally, the vector of weights ξ replacing the

vector of ones would be sparse, meaning the number of elements required to approximate the

residual is much smaller than the total number of entities Ne. The result is an optimization

problem of the following form [45]:

minimize ∥ξ∥0,

subject to ∥Cξ − d∥2 ≤ ϵ∥d∥2,

ξ ≥ 0T ,

(3.25)

where ϵ is an error tolerance used to control the accuracy of the hyperreduction. However,

this is known to be an NP-hard problem. Using the results from [56], the non-convex problem

above is replaced by a convex approximation known as a non-negative least-squares (NNLS)

problem:

minimize ∥Cξ − d∥22,

subject to ξ ≥ 0T ,

with early stopping criteria ∥Cξ − d∥2 ≤ ϵ∥d∥2 and ξ ≥ 0T .

(3.26)

Note, in the NNLS problem, the closer ϵ is to unity, the more the solution approaches the

results from the optimization problem in Equation 3.25 and the more sparse the resulting

weights vector is. The closer ϵ is to zero the more accurate the approximation is [56]. For

completeness, Algorithm 1 summarizes the full procedure to find the weights and reduced
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mesh for the ECSW residual-based approach. The only difference for the Jacobian-based

approach would be the entries of cse and ds.

Algorithm 1 Finding Weights for ECSW (Residual-based Training Data)

Inputs:
Set of Mesh Entities E = {e1, e2, . . . ene}
POD Basis V, Test Basis W
Reference state wref

Subset SH of snapshots S (which were used to build the POD Basis)
NNLS Tolerance ϵNNLS

Outputs:
Reduced Mesh Element Set Ẽ
Associate Set of Weights ξE = {ξe|e ∈ Ẽ}
————————————————-
for e ∈ E do
Construct Le ∈ {0, 1}de×N and Le+ ∈ {0, 1}(dene+ )×N

for ws ∈ SH do
Let cse = WTLT

e Re(Le+(wref +VVT (ws − wref));µ), where Rde is the contribution
of this element to the global FOM residual
Let ds =

∑
e∈Ẽ cse

end for
end for
Solve the NNLS optimization problem for Ẽ and ξE :

minimize ∥Cξ − d∥22
subject to ξ ≥ 0T

with early termination criterion ∥Cξ − d∥2 ≤ ϵNNLS∥d∥2
return ξE = {ξe|e ∈ Ẽ}

3.6 Hyperreduced ROM Solution Evaluation with ECSW

With the resulting set of weights and mesh elements, the total number of elements on which

the residual needs to be computed to approximate its reduced-order representation is ex-

pected to be much smaller than the total number of mesh elements Ne. The ECSW results

can then be applied within the Newton iterations of the LSPG projection shown in Equation

3.9. At each new iteration, both the test basis W, which depends on the Jacobian, and the

residual R must be re-evaluated. The process begins by solving for the test basis. Using
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the weights and mesh entities derived from the NNLS optimization solution, the Jacobian

can then be approximated with a reduced number of mesh entities. For the FOM, the Jaco-

bian at a specific Newton iteration k can be broken down into the contributions from each

element:

J(k) =
∂R

∂w

(k)

=
∑
e∈E

LT
e J

(k)
e Le+ , (3.27)

where J
(k)
e is the contribution of element e to the global, FOM Jacobian for the solution

w̃(k). Therefore, the hyperreduced FOM Jacobian would be represented by:

J(k) ≈ J̄(k) =
∑
e∈Ẽ

ξeL
T
e J

(k)
e Le+ . (3.28)

Note that the above J̄(k) is the approximation of the FOM Jacobian, i.e. before projection,

and differs from J̃(k) which would be the hyperreduced reduced-order Jacobian at iteration

k. This is required for the calculation of the test basis in the LSPG framework. The test

basis at iteration k would be:

W(k) ≈ W̃(k) = J̄(k)V = (
∑
e∈Ẽ

ξeL
T
e J

(k)
e Le+)V. (3.29)

The right-hand-side of equation 3.9 is the reduced-order residual which can also be found

using the weights and the test basis found above:

R̂(k) ≈ R̃(k) =
∑
e∈Ẽ

ξeW̃
(k)TLT

e R
(k)
e , (3.30)

where R
(k)
e is the contribution of element e to the global, FOM residual for the solution

w̃(k). Thus the dependence on the high-dimensional model size N has been removed from
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the LSPG projection approach and the cost should scale independently of this size. Below

in Algorithm 2, the online computation of the reduced-order solution w̃h is summarized.

Algorithm 2 Online Computation of the reduced-order solution by the LSPG projection
with Hyperreduced Quantities

Inputs:
POD Basis V, Reference state wref , Convergence tolerance ϵ
Reduced Mesh Element Set Ẽ
Associate Set of Weights ξE = {ξe|e ∈ Ẽ}
Output:
Converged approximate solution w̃h

————————————————-
Ensure consistency of initial guess: w̃

(0)
proj = wref +V(VT (w(0) −wref))

Evaluate the hyperreduced Jacobian J̄(0) using Equation 3.28 and use this to find the test
basis W̃(0) using Equation 3.29
Evaluate the hyperreduced residual R̃(0) using Equation 3.30 and compute the L2 norm

of the initial hyperreduced residual r =
∥∥∥R̃(0)

∥∥∥
2

while r > ϵ do
Evaluate the hyperreduced Jacobian J̄(k) using Equation 3.28 and use this to find the
test basis W̃(k) using Equation 3.29
Evaluate the hyperreduced residual R̃(k) using Equation 3.30

Solve
[
W̃(k)TW̃(k)

]
p(k) = −R̃(k)

Compute the step length a(k) by a line-search procedure
Update the approximate solution w̃(k+1) = w̃(k) +V(a(k)p(k))

Update R̃(k) and r =
∥∥∥R̃(0)

∥∥∥
2

end while
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Chapter 4

ECSW Hyperreduction Verification

In this chapter, we will verify that the ECSW hyperreduction technique has been imple-

mented correctly, before it is integrated it into the adaptive sampling procedure. First, we

will use the method presented in [16] to generate a POD basis. With the FOM snapshots

used to build the basis, a reduced mesh will be determined for multiple NNLS tolerance

values, employing both residual- and Jacobian-based training data. Next, we will test a

HROM that utilizes the same POD basis, the identified reduced set of elements, and the

corresponding weights, at various parameter locations using Algorithm 2. The test cases in-

clude the one-dimensional Burgers’ equation with one parameter and the NACA0012 airfoil

in transonic flow with two design parameters.
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4.1 One Parameter One Dimensional Burgers’ Equa-

tion

The first test case is the one-dimensional Burgers’ equation with a source function. The

problem is described by the following differential equation [57]:

R(w) =
∂w(x, t)

∂t
+ 0.5

∂w2(x, t)

∂x
− S(µ),

with initial and boundary conditions:

w(x, 0) = 1,∀x ∈ [0, 100],

w(0, t) = 1,∀t > 0.

(4.1)

Only steady-state solutions are considered in this case. The functional to optimize is the

integral of the steady-state solution w over the domain:

J (w) =

∫ 100

0

w dx. (4.2)

The spatial domain is discretized using 1024 nodes (i.e. the FOM dimension N is 1024), the

FOM solution is approximated using the upwind scheme:

wn+1
j − wn

j

∆t
=
F (wn

j+1)− F (wn
j )

∆x
+ S(µ,wn

j ), (4.3)

where F is the flux function F (u) = u2

2
, and S is the source term. An exponential source

term will be used: S(b, x) = ebx, where b is the one design parameter that can be varied

to values between 0.01 and 0.1. Example solutions from the upwind scheme can be seen in

Figure 4.1 at three evenly spaced parameter locations.
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Figure 4.1: Solutions of 1D Burgers’ Equation with Exponential Source Term from

Upwind Scheme

The adaptive sampling procedure was initialized with three solution snapshots, shown in

Figure 4.1, which are uniformly distributed over the parameter space. After running to an

error tolerance of 1E−4, the procedure solved the FOM at 4 additional parameter locations,

resulting in a ROM dimension n of 7. All 7 snapshots were then used as training data for

both the residual and Jacobian-based ECSW approaches. Three values of ϵ in the NNLS

problem were tested to evaluate the trade-off between computational/storage savings and

accuracy in the ECSW method. For the residual-based approach, ϵ values of 1E− 4, 1E− 6

and 1E− 8 were tested. The original intention was to test the same values for the Jacobian-

based approach; however, the algorithm used to solve the NNLS problem was only able to

achieve a minimum tolerance of 1E − 7. This limitation highlights a potential shortcoming

of the NNLS approach, as it does not guarantee convergence to a solution for all tolerance

values. Ideally, as the tolerance approaches very low values, the solution vector should

converge to a vector of ones. Even in the residual-based approach, there are practical limits

on acceptable ϵ values. These limitations may stem from the conditioning of the C matrix,

35



which could be affected by factors such as linear dependence among rows in the training

data or subtractive cancellation errors. Furthermore, since one of the main objectives of

the goal-oriented adaptive sampling procedure is to reduce the number of FOM solutions

computed, the amount of training data available is inherently limited, which could further

impact the performance of the ECSW method.

Figure 4.2: Error in the Functional J over the Parameter Domain for the Final ROM

and Three Residual-based ECSW HROM

Figure 4.3: Error in the Functional J over the Parameter Domain for the Final ROM

and Three Jacobian-based ECSW HROM

36



Using the reduced mesh identified from each combination of training data type and

NNLS tolerance value, six different hyperreduced ROMs (HROMs) were constructed. The

error between the FOM and the HROMs was sampled at 20 evenly spaced points, and

radial basis function (RBF) interpolation was employed to estimate the expected online or

“true” error distribution across the parameter domain for each model. The same process was

applied to the ROM without hyperreduction from the sampling procedure. Figures 4.2 and

4.3 show the functional error results for the HROMs built using residual and Jacobian-based

training data, respectively. In both figures, the left image displays the ”true” error estimate

for the ROM and three HROMs with different ϵ values. The right image focuses on the

HROM with the lowest NNLS tolerance value: ϵ = 1E − 8 for the residual-based ECSW

and ϵ = 1E − 7 for the Jacobian-based ECSW. These plots also include the estimated

error distribution from the final iteration of the sampling procedure, the ”true” error for the

ROM, and the functional error tolerance bound. The results reveal that for both approaches,

higher NNLS tolerance values lead to significant spikes in the error distribution, indicating

that the reduced mesh cannot accurately approximate the residual and Jacobian online.

When the tolerance is reduced to its lowest value, the performance becomes comparable to

the ROM without hyperreduction. Among the tested models, the Jacobian-based HROM

with ϵ = 1E − 7 performs best, though it only marginally outperforms the residual-based

HROM with ϵ = 1E − 8. At its worst, the Jacobian-based HROM violates the original

tolerance bound by no more than an order of magnitude at the ROM points.

The solution vectors from the FOM, ROM, and HROMs at a parameter location of

b = 0.044 are plotted together, Figure 4.4 displays the residual-based HROMs and Figure

4.5 displays the Jacobian-based HROMs. With the exception of the residual-based HROM

with ϵ = 1E − 4, the HROM and ROM solutions are nearly identical to the FOM solution,

showing minimal error and appearing visually indistinguishable.
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Figure 4.4: Solutions of 1D Burgers’ Equation from the FOM and Projection-Based

ROM with and without Residual-based Hyperreduction

Figure 4.5: Solutions of 1D Burgers’ Equation from the FOM and Projection-Based

ROM with and without Jacobian-based Hyperreduction

The solution and functional error results at this parameter location, along with the aver-

age ROM point functional error for each model, are summarized in Table 4.1. Hyperreduction
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has significantly decreased the number of elements required to compute the residual and Ja-

cobian at each iteration, reducing the original 1024 elements to as few as 11 in some cases.

The Jacobian-based HROMs outperform the residual-based HROMs in terms of errors in-

troduced in both the solution vector w and the functional J , as seen in the third and fourth

column of Table 4.1. However, even the best-performing HROMs introduce additional errors

relative to the original ROM without hyperreduction, as expected due to the added layer of

approximation.

Table 4.1: 1D Burgers’ ROM Results at b = 0.044 and Average Absolute ROM Point Error

over the Parameter Domain

ROM/HROM ∥ξ∥0 ∥w∗ −wFOM∥2 ∥J∗ − JFOM∥2 Avg. ROM Point Error

ROM - 2.0431E − 8 −3.7066E − 6 8.3270E − 6
Res. ϵ = 1E − 4 18 6.061E − 1 −2.224E2 1.1433E3
Res. ϵ = 1E − 6 35 1.2079E − 6 4.5142E − 4 8.8868E1
Res. ϵ = 1E − 8 46 2.1958E − 7 −8.0496E − 5 1.7082E − 4
Jac. ϵ = 1E − 4 11 3.8299E − 6 1.4331E − 3 5.5215E2
Jac. ϵ = 1E − 6 25 1.1953E − 6 −4.45416− 4 6.3034E1
Jac. ϵ = 1E − 7 28 8.8126E − 8 3.1820E − 5 8.0756E − 5

The size of the reduced mesh and the average ROM point error for the HROMs are plotted

against the NNLS tolerance in Figure 4.6. From the plot on the left, it is evident that the

Jacobian-based training data leads to a smaller reduced mesh for equivalent NNLS tolerance

values. This suggests that the Jacobian ECSW approach more efficiently approximates

the projected FOM quantities online, requiring only 28 of the total 1024 elements when

ϵ = 1E− 7 to maintain the solution and functional error at b = 0.044, as well as the average

ROM point error, within an order of magnitude of the ROM without hyperreduction. From

the plot on the right, Jacobian-based ECSW exhibits lower average ROM point errors for

the same or even higher NNLS tolerance values, indicating that it is both more accurate and

computationally more efficient than residual-based ECSW.
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Figure 4.6: Impact of NNLS Tolerance on the Size of the Reduced Mesh and the

Accuracy of the HROM for the Residual and Jacobian-based Training Approaches

4.2 Two Parameter NACA0012 Airfoil in Transonic

Flow

The second test case is for a NACA0012 airfoil in inviscid flow. The Euler equations governing

two-dimensional inviscid flow past an airfoil are:

∇xFx +∇yFy = 0, (4.4)

where,

Fx =



ρv1

ρv1v1 + p

ρv1v2

v1(ρe+ p)


and Fy =



ρv2

ρv1v2

ρv2v2 + p

v2(ρe+ p)


, (4.5)

where ρ is the density, v1 and v2 are velocity components, p is the pressure and e the internal

energy. The far-field boundary conditions are specified by the Mach number, angle of attack
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α, static pressure, and density. The airfoil surface is subject to no-slip boundary conditions

and is adiabatic. A mesh with 560 cells and a polynomial order of 0 is used, resulting in

a FOM dimension N of 2240 (total degrees of freedom). This test case involves two design

parameters: Mach number in the transonic range [0.5, 0.9] and angle of attack α between

[0, 5]◦. The functional of interest J is the lift coefficient. Figure 4.7 shows the pressure

coefficient distribution of an example solution taken at an angle of attack of 2◦.

Figure 4.7: Example Solution of NACA0012 Airfoil Test Case

The adaptive sampling is initialized with 9 snapshots arranged in a grid pattern across

the parameter space, as seen in the left plot of Figure 4.8. The functional error tolerance for

the ROM points is set to 1E− 4. After running the sampling procedure, 27 additional FOM

snapshot solutions are computed, bringing the total ROM dimension n to 36. The final RBF

error estimate for the ROM, based on the snapshot and ROM locations, is shown in Figure

4.9.
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Figure 4.8: Initial and Final Configuration of the Parameter Space for the 2 Parameter

NACA0012 Airfoil in Transonic Flow

Figure 4.9: Error Estimate Across the Parameter Space for the ROM after Adaptive

Sampling

Similar to the previous test case, three ϵ values of 1E − 4, 1E − 5, and 1E − 6 were

tested for both the residual and Jacobian-based ECSW approaches. In the Jacobian-based

approach, including all snapshots as training data would result in a C matrix with Nsn
2

rows, equating to 36× 362 = 46, 656 total rows. This proved to cause convergence issues in
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the NNLS problem, likely due to poor matrix conditioning and potential linear dependence

among the numerous rows in the training data. To address this, only six snapshots located

on the boundaries of the parameter space were used during the training phase for both the

residual-based and Jacobian-based hyperreduction. Developing more informed methods for

selecting training snapshots is left for future work.

The online performance of each HROM with different training data approaches and hy-

perreduction tolerances can be compared to the ROM by evaluating their errors relative

to the FOM at 400 evenly distributed locations across the parameter space. An RBF in-

terpolation is then conducted to approximate the expected online accuracy of the models,

referred to as the “true” or “actual” error. Figure 4.10 shows the online error distribution

for the ROM. The results indicate that the goal-oriented adaptive sampling procedure was

largely effective in predicting the ROM’s behavior and accuracy. The plot on the right high-

lights regions of the parameter space where the tolerance bound of 1E−4 from the adaptive

sampling procedure is exceeded. Notably, at low Mach numbers and high angles of attack,

higher functional errors are observed, likely due to the limited number of snapshots added

in this region. Nevertheless, the ROM performs well across most of the design space, with

deviations from the original tolerance bound being less than an order of magnitude.

Figure 4.10: True Error for the ROM and Zones of Tolerance Violation
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Figures 4.11, 4.12, and 4.13 show the RBF-interpolated error distributions for the HROMs

built using residual-based training data with ϵNNLS tolerances of 1 × 10−4, 1 × 10−5, and

1 × 10−6, respectively. Each figure includes a plot on the right that highlights regions of

the parameter domain where the adaptive sampling tolerance of 1E − 4, used to construct

the ROM, is exceeded. Green circles mark the POD snapshots that were employed to train

the ECSW hyperreduction. As expected, the hyperreduction introduces additional errors

into the HROM solutions, as it adds another layer of approximation. Interestingly, the

hyperreduction alters the regions where the tolerance bound is violated; however, as the

ϵNNLS tolerance decreases, the error distribution converges towards the original ROM “true”

error depicted in Figure 4.10.

Figure 4.11: True Error for the Residual-based HROM with ϵNNLS = 1E − 4 and Zones of

Tolerance Violation
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Figure 4.12: True Error for the Residual-based HROM with ϵNNLS = 1E − 5 and Zones of

Tolerance Violation

Figure 4.13: True Error for the Residual-based HROM with ϵNNLS = 1E − 6 and Zones of

Tolerance Violation

Figures 4.14, 4.15, and 4.16 present the RBF-interpolated error distributions for the

HROMs constructed using Jacobian-based training data with ϵNNLS tolerances of 1 × 10−4,

1× 10−5, and 1× 10−6, respectively. It is evident that the Jacobian-based ECSW introduces

more error than the residual-based ECSW across all ϵNNLS tolerances. The largest errors

occur in regions with fewer snapshots, suggesting that incorporating hyperreduction into

the adaptive sampling procedure could help mitigate this issue. Despite these challenges,
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the errors remain within an order of magnitude of the functional error tolerance used to

construct the ROM.

Figure 4.14: True Error for the Jacobian-based HROM with ϵNNLS = 1E − 4 and Zones of

Tolerance Violation

Figure 4.15: True Error for the Jacobian-based HROM with ϵNNLS = 1E − 5 and Zones of

Tolerance Violation
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Figure 4.16: True Error for the Jacobian-based HROM with ϵNNLS = 1E − 6 and Zones of

Tolerance Violation

Figure 4.17 illustrates the impact of the NNLS tolerance on the size of the reduced mesh

and the average functional error at the 400 test points used to evaluate the HROMs. The plot

on the left shows that, as observed in the previous test case, Jacobian-based training data

produces smaller reduced mesh sizes. In this test case, the plot on the right indicates that

the different NNLS tolerance values tested had little effect on the average ROM point error.

While the Jacobian-based ECSW introduced higher functional errors than the residual-based

ECSW, these additional errors could likely be mitigated by incorporating hyperreduction into

the adaptive sampling procedure. Therefore, if the primary goal is to maximize the efficiency

of hyperreduction—by achieving the smallest possible reduced mesh—the Jacobian-based

ECSW would be preferable, as the additional error can be addressed during the sampling

procedure.
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Figure 4.17: Impact of NNLS Tolerance on the Size of the Reduced Mesh and the

Accuracy of the HROM for the Residual and Jacobian-based Training Approaches

48



Chapter 5

Adaptive Sampling Procedure

This chapter outlines the modifications required to integrate hyperreduction into the adaptive

sampling procedure developed in [16]. First, the approximation of the residual and Jacobian

in the Newton iterations, used to compute Reduced Order Model (ROM) solutions, must

be updated. Additionally, the dual-weighted error indicators which approximate the error

at ROM points require adjustments to account for the additional approximation introduced

by the hyperreduction. Finally, a method for calculating the work units associated with the

various sampling procedures will be presented.

5.1 Overview of the Adaptive Sampling Procedure

In this work, we focus on parameterized problems. For this class of problems, the ROM is

built by sampling the FOM at various parameter combinations µ in the parameter domain D.

It is then used to predict the solution at new parameter locations where the “true” solution

is unknown. Without a reliable quantification of the error in the ROM, little value can be

placed in these predictions [16]. In CFD problems, the focus is not only on the accuracy

of the solution approximation but in particular on the error introduced in the functional J
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by the ROM.For example, in aerodynamic shape optimization, the iterative design of the

aircraft or airfoil is guided by an output of interest, such as lift or drag, therefore confidence

in the functional value is additionally important.

Building a ROM for parameterized problems involves two key challenges: identifying an

a posteriori functional error estimate and determining optimal snapshot placement. The

accuracy of the ROM depends heavily on the quality of the training data used to construct

the reduced-order basis. Sampling too few points or placing them poorly within the param-

eter domain can lead to an inaccurate model. Conversely, oversampling the FOM incurs

unnecessary computational costs. Therefore, it is essential to develop a method for selecting

parameter values judiciously to collect snapshots efficiently.

In [16], a novel adaptive sampling procedure was developed with two major objectives.

The first is to minimize the number of FOM solutions computed through efficient snap-

shot selection. The second is, through the use of an a posteriori error estimate based on

dual-weighted residual error indicators, ensure that a prescribed output error tolerance is

estimated to be satisfied across the entire parameter domain D.

The following is a brief summary of the steps taken in the adaptive sampling procedure:

• An initial set of snapshots is evenly distributed across the parameter space, along with

a set of ROM points placed between these snapshots. ROM points are used to probe

the error between the ROM and FOM. Two dual-weighted residual errors are tracked

at each ROM point.

• At each adaptive cycle, a radial basis function (RBF) interpolation is used to model

the error across the parameter space. The next snapshot is placed at the extremum of

the RBF. The error estimates at the ROM points are updated, and new ROM points

are added near the newly selected snapshot.
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• This process is repeated until the specified error tolerance is met at all ROM points

across the parameter domain.

Further details on these steps, along with an algorithm describing the procedure, can be

found in [16].

5.2 Dual-Weighted Residual Errors

Two distinct dual-weighted residual (DWR) errors are used to approximate the error at a

ROM point: ϵf , which measures the error between the FOM and the ROM, and ϵr, which

quantifies the error between a ”coarse” ROM and a ”fine” ROM. The coarseness of a ROM

refers to the dimension of the basis and which iteration of the sampling cycle a ROM is from.

Meaning, that a “coarse” ROM will have a coarse basis VH which will have fewer columns

than the fine basis Vh. We then say that for a given parameter location µ with full-order

solution w, there are two ROM solutions, one computed on the fine basis wrefh + Vhŵh

and one computed on the coarse basis wrefH + VHŵH . Therefore, the total error ϵ in the

functional at this ROM is approximately [16]:

ϵ = J (wrefh +Vhŵh)− J (w) = (J (wrefH +VHŵH)− J (w))

− (J (wrefH +VHŵH)− J (wrefh +Vhŵh))

≈ ϵf − ϵr.

(5.1)

ϵr will be the DWR error impacted by hyperreduction as it requires the evaluation of the

reduced residual and Jacobian, therefore we will re-derive it in the context of a HROM.
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5.2.1 Error Estimate Between Coarse and Fine Hyperreduced Reduced-

Order Models

The error estimate between a coarse and fine ROM derived in [16] will be extended here to

account for a hyperreduced ROM. As before, let the coarse ROM solution be denoted by

wrefH +VHŵH , where the subscript H indicates a coarse-space representation. Similarly, let

the fine ROM solution be wrefh +Vhŵh, where the subscript h represents a fine-space rep-

resentation. For brevity, these solutions will also be referred to as w̃H and w̃h, respectively.

Then the solutions must satisfy the following:

R̃h(w̃h) = 0,

R̃H(w̃H) = 0,

(5.2)

where R̃∗ represents the hyperreduced reduced-order residual from each HROM. Using a

first-order Taylor series expansion of the fine-dimension hyperreduced reduced-order residual

about the coarse reduced-order solution, we find:

R̃h(w̃h) = 0 ≈ R̃h(w̃H) +

[
∂R̃h

∂ŵh

∣∣∣∣
ŵH

]
(w̃h − w̃H). (5.3)

Note that the derivative is taken with respect to the reduced-order solution representation

ŵh rather than w̃h. This choice simplifies the analysis and is justified because the errors

arising from the derivative of the residual with respect to the reference state wrefh or the

POD basis Vh are primarily influenced by the accuracy of the DG approach not the ROM.
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Conducting the chain rule on this derivative, we find:

∂R̃h

∂ŵh

∣∣∣∣
ŵH

=
∂R̃h

∂w̃h

∣∣∣∣
w̃H

∂w̃h

∂ŵh

=
∂R̃h

∂w̃h

∣∣∣∣
w̃H

Vh.

(5.4)

Using the definition of the hyperreduced residual in Equation 3.30, we can then write the

remaining derivative as follows:

∂R̃h

∂w̃h

=
∂

∂w̃h

∑
e∈Ẽ

ξeW̃
T
hL

T
e Re


=

∑
e∈Ẽ

ξe
∂W̃T

h

∂w̃h

LT
e Re +

∑
e∈Ẽ

ξeW̃
T
h ∂w̃hL

T
e

∂Re

∂w̃h

.

(5.5)

Given that a LSPG framework was used, second-order sensitivities will arise when taking

the derivative of the test basis with respect to the solution, as it contains the Jacobian as

well. [58] notes that this can be safely neglected with a minor loss in accuracy. Therefore,

the first term on the right-hand side of Equation 5.5 will be ignored.

In a similar fashion, the first-order Taylor series expansions of the functional is:

J (w̃h) ≈ J (w̃H) +

[
∂J
∂ŵh

∣∣∣∣
ŵH

]
(w̃h − w̃H). (5.6)

We then define ψ̃h as the solution of the hyperreduced reduced-order dual problem:

[
∂R̃h

∂ŵh

∣∣∣∣
ŵH

]T

ψ̃h = −

[
∂J
∂ŵh

∣∣∣∣
ŵH

]T

. (5.7)
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Using Equations 5.4 and 5.5, and applying the chain rule in a similar manner to the

derivative of the functional, we find:

∑
e∈Ẽ

ξeW
T
hL

T
e

∂Re

∂w̃h

∣∣∣∣
w̃H

Vh

T

ψ̃h = −

[
∂J
∂w̃h

∣∣∣∣
w̃H

Vh

]T

. (5.8)

Note that the set of weights and the test basis will be from the fine ROM, meaning they

are computed in the most recent iteration. Using the hyperreduced reduced-order adjoint in

Equation 5.8 and the Taylor series expansion in Equation 5.3, an error metric between the

fine and coarse space can be defined:

ϵr = J (w̃H)− J (w̃h)

≈ −

[
∂J
∂w̃h

∣∣∣∣
w̃H

]
(w̃h − w̃H)

≈ −

[
∂J
∂w̃h

∣∣∣∣
w̃H

][
∂R̃h

∂w̃h

∣∣∣∣
w̃H

]−1

(R̃h(w̃h)− R̃h(w̃H))

≈ −ψ̃T
h R̃h(w̃H).

(5.9)

5.3 Updated Goal-Oriented Adaptive Sampling

The adaptive sampling procedure summarized in Section 5.5 and Algorithm 6 of [16] is up-

dated here with modifications to accommodate the current work. While not all components

are discussed in detail, we refer the reader to [16] for comprehensive descriptions. The major

changes come from the need to train the ECSW weights at every iteration before solving for

the ROM probing points, as well as the introduction of the updated dual-weighted residual

(DWR) error indicator for measuring the error between coarse and fine ROMs. For clarity,

algorithms from [16] are referenced as D-* (where * corresponds to the original numbering),
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while algorithms introduced in this work are referred to by their sequence number in this

document.
Algorithm 3 Goal-Oriented Adaptive Sampling

Inputs:
Error tolerance ϵ
Initial snapshot parameter locations Sµ = {µs

1,µ
s
2, . . . ,µ

s
k}

NNLS tolerance ϵNNLS

Output:
POD basis V
Maximum error ϵmax

————————————————-
Compute initial set of k snapshot solutions Sw at Sµ

Compute initial POD basis VH from Sw using Algorithm D-2
Determine initial set of ROM probing parameter locations Pµ = {µp

1,µ
p
2, . . . ,µ

p
k} using

Algorithm D-3
Solve for the reduced mesh set and weights using the ECSW approach in Algorithm 1 or
the Jacobian-based equivalent
for µp ∈ Pµ do
Compute the HROM solution w̃(µp) with POD basis VH using Algorithm 2
Compute error between FOM and coarse ROM, ϵf (µ

p) = −ψTR(w̃)
Update total error, ϵ(µp)← ϵf (µ

p)
end for
Compute RBF and obtain maximum error ϵmax at µmax using Algorithm D-4
while ϵmax > ϵ do
Compute new snapshot solution w(µmax), update Sw = Sw ∪ {w(µmax)}
Compute Vh from Sw using Algorithm D-2
Solve for the reduced mesh set and weights using the ECSW approach in Algorithm 1
or the Jacobian-based equivalent
for µp ∈ Pµ do
Compute error between coarse ROM and fine ROM, ϵr(µ

p) = −ψ̃T
h R̃h(w̃H)

Update total error, ϵ(µp)← ϵf (µ
p)− ϵr(µp)

end for
Recompute solution at select ROM probing points in Pµ using Algorithm D-5
Add new ROM probing points Pµ

∗ at midpoint of µmax and np + 1 nearest neighbours
in Sµ

for µp
∗ ∈ Pµ

∗ do
Update Pµ = Pµ ∪ {µp

∗}
Let VH = Vh

Compute ROM solution w̃(µp
∗) with POD basis VH using Algorithm 2

Compute error between FOM and coarse ROM, ϵf (µ
p) = −ψTR(w̃)

Update total error, ϵ(µp
∗)← ϵf (µ

p
∗)

end for
Compute RBF and obtain maximum error ϵmax at µmax using Algorithm D-4

end while
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5.4 Analysis of Computational Cost Savings through

Work Units

Currently, due to the implementation of the DG method in PHiLiP [38], it is not possible

to compute the residual or Jacobian on a specific mesh element. TAs a result, a pseudo-

implementation of the ECSW method is employed. wIn this approach, the residual and

Jacobian are evaluated over the entire mesh, but only the elements in the reduced mesh are

utilized in the HROMs. This means the CPU time cannot be used to compare the efficiency

of the models. Instead, an approximation of work units, based on matrix dimensions and

sparsity, is used to compare the cost of the different sampling procedures.

The number of work units at each cycle comes from two major contributions; the first

is from the cost of solving for the reduced-order solutions at the new ROM points and the

second is from re-evaluating the DWR error indicator between the coarse and fine ROM at

all the previously added ROM points. The cost of solving for the FOM snapshots is not

considered as it is not impacted by the hyperreduction. The cost of computing the FOM

snapshots is excluded from these considerations as it is not impacted by the hyperreduction,

and thus the cost incurred will be the same for any sampling procedure.

For ROM point solutions, the number of total non-linear iterations in a sampling iteration

is multiplied by the cost of solving the linear system in Equation 3.9. Work units are

estimated under the following assumptions: evaluating an entry in the residual or Jacobian

costs one work unit; each floating-point operation (FLOP) in a matrix multiplication counts

as one work unit; and the cost of solving the linear system is approximated using the worst-

case operation count for the generalized minimal residual method (GMRES), which is O(n3).
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In the original adaptive sampling procedure which builds the ROM with no hyperreduc-

tion, the total number of work units to solve one non-linear iteration is given by:

Wnon lin =(units to evaluate the residual)+

(units to evaluate the Jacobian)+

(units to assemble LHS matrix and RHS vector in Equation 3.9)+

(units to solve for solution update)

=(N) + (N2) + [(2Nni + n2
i +N + ni)(2N − 1)] + (n3

i ).

(5.10)

where N is the dimension of the FOM and ni is the number of bases in the POD or reduced-

order subspace dimension at adaptive sampling cycle i. In the sampling procedures where

the hyperreduction is used to evaluate the residual and Jacobian to solve Equation 3.9 at

the ROM points, each nonlinear iteration has work units determined by:

Wnon lin =(units to evaluate the hyperreduced residual)+

(units to evaluate the hyperreduced test basis)+

(units to assemble LHS matrix and RHS vector in Equation 3.9)+

(units to solve for solution update)

=[nei(de + 2nide + ni)] + [2neided
+
e + 2ded

+
e neini] + [n2

i (2N − 1)] + (n3
i ).

(5.11)

where nei the number of elements in the reduced mesh at adaptive sampling cycle i. Details

of how both Equations 5.10 and 5.11 are derived are included in Appendix A.

The other contribution is from the evaluation of the second DWR error indicator ϵr at all

of the ROM points from the previous sampling cycles. Similar to the previous case, the work

units for this evaluation can be broken down into a couple of components. For the original

adaptive sampling procedure which builds the ROM with no hyperreduction, the work units
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required to solve for the error indicator are:

WDWR error =(units to evaluate the residual)+

(units to evaluate the Jacobian)+

(units to evaluate the derivative of the functional w.r.t. w̃)+

(units to assemble the adjoint problem)+

(units to solve for the adjoint)+

(units to solve ϵr)

=(N) + (N2) + (N) + [(2Nni + n2
i + ni)(2N − 1)]+

(n3
i ) + [(N + ni)(2N − 1) + (2ni − 1)].

(5.12)

In the sampling procedures where the hyperreduction is applied in the DWR error indicator,

such as in Equation 5.8 and 5.9, the work unit required to solve for the error indicator are:

WDWR error =(units to evaluate the hyperreduced residual)+

(units to evaluate the hyperreduced test basis)+

(units to evaluate the derivative of the functional w.r.t. w̃)+

(units to assemble thee adjoint problem)+

(units to solve for the adjoint)+

(units to solve ϵr)

=[nei(de + 2nide + ni)] + [neided
+
e + 2ded

+
e neini] + (N)

+ [nei(deni + ni) + (n2
i )(2N − 1) + ni(2N − 1)] + (n3

i ) + (2ni − 1).

(5.13)

Details of how both Equations 5.12 and 5.13 are derived are included in Appendix A.
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Once the sampling procedure is completed, we can gather the number of nonlinear iter-

ations at each cycle. We will refer to the total number sampling of cycles as c. This, along

with the knowledge of the dimension of the reduced-order subspace ni and the number of

previously added ROM points at each iteration, can be used to approximate the work units

for a given adaptive sampling procedure. The algorithms for computing the work units for

the three approaches used in the results section are included below. Algorithm 4 corresponds

to the original sampling procedure, which does not include hyperreduction. Algorithm 5 rep-

resents the sampling procedure that incorporates hyperreduction in the ROM point solution

evaluations but excludes the updated DWR error. Algorithm 6 represents the sampling pro-

cedure that includes both hyperreduction in the ROM point solution evaluations and the

hyperreduced DWR error.

Algorithm 4 Evaluating Work Units for ROM

Inputs:
Number of sampling cycles c
Total number of nonlinear iterations in each sampling cycle (nnl = N1,N2, . . . ,Nc)
Number of design parameters np

Outputs:
Work Units for each sampling cycle Wtot(i) for i = 1, 2, . . . , c
————————————————-
for i = 1, 2, . . . , c do
Evaluate Wnon lin using Equation 5.10
Solve for the work units from ROM points solutions : Wall ROM = (Ni) ∗Wnon lin

Evaluate WDWR error using 5.12
Solve for the work units needed to find the DWR error at all previous ROM points:
Wall DWR = (np + 1)(i− 1) ∗WDWR error

Wtot(i) = Wall ROM +Wall DWR

end for
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Algorithm 5 Evaluating Work Units for HROM without Hyper-DWR

Inputs:
Number of sampling cycles c
Total number of nonlinear iterations in each sampling cycle (nnl = N1,N2, . . . ,Nc)
Number of design parameters np

Outputs:
Work Units for each sampling cycle Wtot(i) for i = 1, 2, . . . , c
————————————————-
for i = 1, 2, . . . , c do
Evaluate Wnon lin using Equation 5.11
Solve for the work units from ROM points solutions : Wall ROM = (Ni) ∗Wnon lin

Evaluate WDWR error using 5.12
Solve for the work units needed to find the DWR error at all previous ROM points:
Wall DWR = (np + 1)(i− 1) ∗WDWR error

Wtot(i) = Wall ROM +Wall DWR

end for

Algorithm 6 Evaluating Work Units for HROM with Hyper-DWR

Inputs:
Number of sampling cycles c
Total number of nonlinear iterations in each sampling cycle (nnl = N1,N2, . . . ,Nc)
Number of design parameters np

Outputs:
Work Units for each sampling cycle Wtot(i) for i = 1, 2, . . . , c
————————————————-
for i = 1, 2, . . . , c do
Evaluate Wnon lin using Equation 5.11
Solve for the work units from ROM points solutions : Wall ROM = (Ni) ∗Wnon lin

Evaluate WDWR error using 5.13
Solve for the work units needed to find the DWR error at all previous ROM points:
Wall DWR = (np + 1)(i− 1) ∗WDWR error

Wtot(i) = Wall ROM +Wall DWR

end for
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Chapter 6

Results

This chapter presents results from the updated adaptive sampling framework. As noted in

Chapter 3, [40] observed that in steady-state problems, residual values can often be very

close to zero which cause issues when using it as training data for the ECSW hyperreduction

approach. Furthermore, based on the findings in Chapter 4, Jacobian-based training data has

been shown to produce smaller reduced mesh sizes, resulting in more computationally efficient

approximations of the residual and Jacobian. For these reasons, all HROMs constructed in

this section will exclusively use Jacobian-based training data with an NNLS tolerance of

1 × 10−6. Various flow conditions and design parameter combinations for the NACA0012

airfoil will make up the different test cases. HROMs will be compared to ROMs built

with the original sampling procedure presented in [16]. To evaluate the effectiveness of the

updated DWR error indicator in capturing the additional approximation errors introduced

by the ECSW hyperreduction approach, two types of HROMs are studied: those without the

updated DWR error indicator (referred to as ”HROM w/o Hyper-DWR”) and those with

the updated indicator (referred to as ”HROM w/ Hyper-DWR”).
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6.1 One Parameter NACA0012 Airfoil in Inviscid Sub-

sonic Flow

This test will use the NACA0012 airfoil in inviscid flow. It will have the same set up as the

test in section 4.2, however the Mach number will be fixed at 0.5 and the angle of attack

is varied between [0, 4]◦. The functional of interest will still be the lift coefficient. The full-

order model is run on a grid with 560 cells and a polynomial of order 0, resulting in 2240

DOFs. The adaptive sampling tolerance is set to 1E − 4. As stated previously, three ROMs

will be built and compared. The first will use the unchanged adaptive sampling procedure

without hyperreduction incorporated, referred to in plots as the “ROM”. The second will be

a hyperreduced ROM which uses the ECSW hyperreduction method to evaluate the residual

and Jacobian to find reduced-order solutions but does include the update to the DWR error

indicator discussed in Chapter 5. This HROM is referred to as the “HROM w/o Hyper-

DWR”. The final HROM is built using the update adaptive sampling procedure shown in

Algorithm 3 which includes the new DWR error indicator which incorporates hyperreduction.

This HROM is referred to as the “HROM w/ Hyper-DWR”.

Figures 6.1 to 6.3 show the results of the three models in the order they were just

introduced. Each figure includes a plot of the final configuration of the parameter domain

which shows the placement of the FOM snapshots and ROM points. They also include a

plot of the “estimated” and “true” error distributions for each ROM. The estimated error

is produced via an RBF interpolation using the snapshot locations and ROM points from

the adaptive sampling cycle. The true error is found by sampling the error between each

ROM and the FOM at 20 evenly distributed points across the parameter space at the end

of the sampling procedure. The functional error tolerance bound is also plotted. It can be
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seen that all three processes successfully predicted the online behaviour of the ROMs, as the

“true” error remained inside of the tolerance bound for all of the plots.

Figure 6.1: Snapshot and ROM Points with Estimated and True Error for the ROM

From Figure 6.2, we can see that for the HROM without the hyperreduced error indicator

the distribution of the snapshots is similar to the ROM, with one additional point added at

0.02◦. This is likely because the error indicator is what dictates the placement of the snapshot

locations, so without consideration of the hyperreduction in the DWR error indicator, the

placement of the snapshots will remain similar unless the ROM point solutions are also

inaccurate due to hyperreduction of the residual and Jacobian in the Newton iterations in

Equation 3.9.
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Figure 6.2: Snapshot and ROM Points with Estimated and True Error for the HROM w/o

Hyper-DWR
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Figure 6.3: Snapshot and ROM Points with Estimated and True Error for the HROM w/

Hyper-DWR

Figure 6.3 shows that once hyperreduction is introduced into the error indicator, more

snapshots are required to achieve the same error tolerance as in the ROM. In Figure 6.4, the

maximum and average error at all of the ROM points for each model are plotted over the

adaptive sampling iterations. With the introduction of hyperreduction and the additional

layer of approximation, one additional adaptive sampling cycle is required for the HROM w/o

hyper-DWR and two additional sampling cycles are required for the HROM w/ hyper-DWR

to achieve the same tolerance that the ROM reached in 5 cycles.
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Figure 6.4: Maximum and Mean Error Estimate at the ROM Points during each Sampling

Iteration for the Three Models

In Table 6.1, key characteristics and quantities for each of the models are summarized.

We can see that the dimension of the POD n increases as hyperreduction is introduced first in

the ROM solutions and then into the DWR error indicators, however, all are still significantly

smaller than the FOM dimension N of 2240. The reduction in the number of elements used

to evaluate the residual and Jacobian is also shown, for the HROM w/o hyper-DWR only

39 of the 560 mesh elements are required and 45 are used in the HROM w/ hyper-DWR.

Figures 6.5 and 6.6 show the selected elements that are included in the reduced mesh for the

HROM w/o and w/ Hyper-DWR, respectively. It can be seen that both approaches include

some of the far field mesh elements ahead of the airfoil as well as some of the elements aft.

Both include a majority of the cell directly behind the trailing edge of the airfoil. All three

models have accuracy within the same orders of magnitude at the ROM points from the

adaptive sampling cycle as well as the 20 points used to evaluate the models “online”. Both

HROMs also outperform the ROM online, likely due to their larger POD dimension.
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Table 6.1: One Parameter NACA0012 Airfoil ROM and HROM Important Dimensions,

Average ROM Point Error and Average Online Error

Model POD Dim. n ∥ξ∥0 Avg. ROM Error Avg. Online Error

ROM 7 - 2.5162E − 5 2.2850E − 5
HROM w/o Hyper-DWR 8 39 1.5532E − 5 1.7671E − 5
HROM w/ Hyper-DWR 9 45 1.7692E − 5 1.5497E − 5

Figure 6.5: ECSW Reduced Mesh Set for the HROM w/o Hyper-DWR
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Figure 6.6: ECSW Reduced Mesh Set for the HROM w/ Hyper-DWR

6.2 Two Parameter NACA0012 Airfoil in Transonic

Flow

This case uses the same setup as section 4.2, however, the adaptive sampling tolerance is

increased to 3E − 4. The design parameters remain Mach number in the transonic range

[0.5, 0.9] and angle of attack α between [0, 5]◦, and the functional of interest is the lift

coefficient. Figures 6.7 to 6.9 show the final configuration of the parameter space for each

ROM as well as the error distribution found from the ROM points at the last adaptive

sampling iteration. For the ROMs which included hyperreduction in some capacity, the

FOM snapshots used to train the ECSW hyperreduction approach are highlighted using green

circles. These were selected for training as they are solved for at the very first iteration of the

sampling procedure and can therefore be used to train the reduced mesh at every iteration,
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and are evenly distributed in the parameter domain. Further investigation into how to select

these points is left as future work.

It can be seen that both hyperreduction in the ROM solution and the DWR error indicator

change the distribution of the interpolated error, and therefore the final snapshot placements

for all three models differ. The results show that both the HROM w/o Hyper-DWR and

HROM w/ Hyper-DWR sampling procedures tend to favor placing snapshot locations at

higher Mach numbers and on the boundaries of the parameter space.

Figure 6.7: Final Configuration of the Parameter Space for the ROM and the

Interpolated Estimated Error Distribution from the ROM Points

Figure 6.8: Final Configuration of the Parameter Space for the HROM w/o Hyper-DWR

and the Interpolated Estimated Error Distribution from the ROM Points
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Figure 6.9: Final Configuration of the Parameter Space for the HROM w/ Hyper-DWR

and the Interpolated Estimated Error Distribution from the ROM Points

Figure 6.10: Maximum and Mean Error Estimate at the ROM Points during each Sampling

Iteration for the Three Models

Figure 6.10 shows the maximum and average error at the ROM points during each adap-

tation cycle for the three models. It can be seen that the HROM w/ Hyper-DWR tends to

have higher errors, which is expected as the hyperreduction introduces an additional approx-
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imation to the model. This is not captured in the HROM w/o Hyper-DWR, and therefore

it terminates earlier than the other HROM but still later than the ROM.

Figures 6.11 to 6.13 show the expected online behaviour or “true” error for each of the

models as well as the areas of the domain where the functional error tolerance of 3E − 4

is not met. This distribution is found by evenly distributing 400 points over the parameter

space and using an RBF interpolation to approximate the error everywhere. Here we can see

the impact of updating the DWR error indicator to include the approximations introduced

by hyperreduction. In Figure 6.11, we can see the ROM meets the tolerance bound over

almost the entire domain, expect for a very small region of high Mach numbers and high

angles of attack. This suggests the adaptive sampling procedure and error estimates closely

predicted the online behaviour of the model. In contrast, in Figure 6.12, the HROM w/o

Hyper-DWR has multiple larger regions where the tolerance is not met online. The error

behaviours in these regions were not predicted by the RBF interpolation from the sampling

procedure in Figure 6.8 and were therefore not considered during the sampling procedure.

Once the hyperreduced DWR is used, the tolerance is met over the entire parameter space,

as seen in Figure 6.13. This suggests the updated error indicator is correctly capturing the

additional error introduced by the hyperreduction, allowing the adaptive sampling procedure

to build an accurate HROM with a controllable functional error prediction.
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Figure 6.11: True Error for the ROM and Zones of Tolerance Violation

Figure 6.12: True Error for the HROM w/o Hyper-DWR and Zones of Tolerance Violation
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Figure 6.13: True Error for the HROM w/ Hyper-DWR and Zones of Tolerance Violation

Table 6.2 summarizes some of the key dimensions of the three models as well as the

average error at the ROM points and at the 400 points used to estimate the online behaviour.

The HROM w/o Hyper-DWR has reduced-space dimension n of 34 which is 9 larger than

the ROM dimension, and 152 elements in the reduced mesh. The HROM w/ Hyper-DWR

has a larger n of 40, note however it is still true that n ≪ N given that N is 2240, and

a reduced mesh with 179 elements down from the 560 FOM mesh. This results in a 68

percent reduction in the number of elements used to evaluate the residual and Jacobian.

The reduced mesh of the two HROMs is shown in Figures 6.14 and 6.15. It can be seen that

in comparison to the one parameter subsonic case, these reduced meshes tend to weigh more

heavily elements closer to the airfoil, which may be because in transonic flow these elements

are more relevant to changes in flow solution, and in turn the residual and Jacobian.

Table 6.2: Two Parameter NACA0012 Airfoil in Transonic Flow ROM and HROM Impor-

tant Dimensions, Average ROM Point Error and Average Online Error

Model POD Dim. n ∥ξ∥0 Avg. ROM Error Avg. Online Error

ROM 26 - 9.2964E − 5 9.4169E − 5
HROM w/o Hyper-DWR 34 152 4.7918E − 5 8.7406E − 5
HROM w/ Hyper-DWR 45 179 3.8079E − 5 4.8941E − 5
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Figure 6.14: ECSW Reduced Mesh Set for the HROM w/o Hyper-DWR

Figure 6.15: ECSW Reduced Mesh Set for the HROM w/ Hyper-DWR
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Next, the impact of the hyperreduction on the computational cost of the adaptive sam-

pling procedure can be studied. The work units discussed in section 5.4 for each of the

models are plotted against the average ROM point error, as seen in Figure 6.16. It can be

seen that although the POD dimension n and reduced mesh are slightly larger for the HROM

w/ Hyper-DWR, each iteration is much less computationally expensive than the other two

models due to the savings in evaluating the residual and Jacobian. The addition of hyper-

reduction into the second DWR indicator results in significant savings as well, since this

must be evaluated at all the ROM points from previous iterations, the number of which only

grows as the adaptive sampling cycle proceeds. Overall, it appears that by incorporating

hyperreduction into the ROM the true computational savings can be realized and with the

updated error indicator the online behaviour can be accurately predicted.

Figure 6.16: Work Units for the Adaptive Sampling Procedure to Build the Three Models
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6.3 One Parameter NACA0012 Airfoil in Inviscid Sub-

sonic Flow on a Fine Mesh

The following test will use the same setup as section 6.1, however, a finer mesh will be used

which contains 2240 elements rather than 540, resulting in 8960 DOFs. Going forward, we

will no longer build the HROM without the updated DWR as we have seen that it is necessary

to predict the online behaviour of the model and is more computationally efficient. Figures

6.17 and 6.18 show the final distribution of FOM snapshots in the parameter space and the

error distributions at the end of the adaptive sampling cycle and “online”. The HROM tends

to place new snapshots quite close together. This may be because the error in the DWR

error indicators is growing too quickly between cycles, as they are only approximations of

the error at each ROM. Further investigation into this is left as future work.
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Figure 6.17: Snapshot and ROM placement with Estimated and True Error across the

parameter space at the end of the Adaptive Sampling Procedure for the ROM
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Figure 6.18: Snapshot and ROM placement with Estimated and True Error across the

parameter space at the end of the Adaptive Sampling Procedure for the HROM w/ Hyper-

DWR
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Figure 6.19: Maximum and Mean Error Estimate at the ROM Points during each Sampling

Iteration for the ROM and the HROM with the Hyperreduced Error

Figure 6.19 shows the average and maximum ROM point error for each model over the

adaptive sampling process. We can see that the HROM takes 3 additional cycles to achieve

the same tolerance, which is expected as it introduces an extra approximation layer and a

new source of error. Table 6.3 summarizes some of the key dimensions of the models as well

as the average error from the ROM points at the end of the adaptive sampling cycle and the

points used to find the “true” online error. Although the reduced-subspace dimension n is

slightly larger for the HROM, significant computational savings will come from the reduced

mesh. The original FOM mesh has 2240 elements and the hyperreduction technique only

requires 72 of these elements to accurately approximate the variation in the residual and

Jacobian. This is a 96.8% reduction in the number of elements that need to be evaluated for

these quantities, which is even larger than in the case of the 560-element mesh in section 6.1.

We suspect that the finer the mesh gets or the larger the number of total elements, the greater

the savings from the ECSW hyperreduction approach. Figure 6.20 shows the reduced mesh
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set selected for the ECSW hyperreduction technique. Comparing this to the coarser mesh

in the transonic case in Figure 6.15, we suspect that having a mesh with smaller elements

of similar sizes allows the ECSW method to more accurately select important elements as

we can see a clearer pattern in this finer mesh. A majority appear to be placed aft of the

airfoil, specifically in the wake above and below the airfoil. Future work can be conducted

on problems with larger meshes to study this relationship further.

Table 6.3: One Parameter NACA0012 Airfoil in Subsonic Flow ROM and HROM Important

Dimensions, Average ROM Point Error and Average Online Error

Model POD Dim. n ∥ξ∥0 Avg. ROM Error Avg. Online Error

ROM 12 - 2.3611E − 5 2.7680E − 5
HROM w/ Hyper-DWR 15 72 1.7420E − 5 2.1243E − 5

Figure 6.20: ECSW Reduced Mesh set for the HROM w/ Hyper-DWR
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6.4 Two Parameter NACA0012 Airfoil in Inviscid Sub-

sonic Flow on a Fine Mesh

The final test case will be for a two-design parameter NACA0012 airfoil in inviscid subsonic

flow. The parameters are the Mach number in the range [0.3, 0.55] and the angle of attack

in the range [0, 3]◦. The finer mesh used in section 6.3 will be used here, which has 2240

cells and 8960 DOFs. The functional of interest will still be the lift coefficient, for which the

estimated error tolerance is set to 1E − 4.

Figures 6.21 and 6.22 show the final parameter space configurations and error distribu-

tions for the ROM and HROM. It can be seen that both tend to place more snapshots at

the highest Mach number, this is likely because more variation is seen in the lift coefficient

and flow solutions at higher Mach numbers.

Figure 6.21: Final Configuration of the Parameter Space for the ROM and the

Interpolated Estimated Error Distribution from the ROM Points
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Figure 6.22: Final Configuration of the Parameter Space for the HROM w/ Hyper-DWR

and the Interpolated Estimated Error Distribution from the ROM Points

Figure 6.23: Maximum and Mean Error Estimate at the ROM Points during each Sampling

Iteration for the ROM and the HROM with the Hyperreduced Error

Figure 6.23 shows the average and maximum ROM point error from the two models

over the sampling cycles. We can see that the HROM takes 21 more iterations to achieve

the same tolerance. It is interesting to note however that the average error dips below the
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tolerance quite quickly but the maximum ROM point error takes longer to drop and even

plateaus at some of the later iterations. This may be due to the training data used to find

the ECSW reduced mesh set and weights. The error introduced by hyperreduction cannot

be overcome by adding more snapshots into the POD, as the same six points highlighted in

Figure 6.22 are always used for training. Reviewing the snapshot distribution, we can also

see the HROM ends up placing more snapshots in the center of the parameter space than

the ROM. This may be because the procedure is trying to compensate for the lack of points

in this region used for hyperreduction. Future work could look into how this training data

may be intelligently selected as well to result in the most accurate reduced mesh set.

Table 6.4: Two Parameter NACA0012 Airfoil in Subsonic Flow ROM and HROM Impor-

tant Dimensions, Average ROM Point Error and Average Online Error

Model POD Dim. n ∥ξ∥0 Avg. ROM Error Avg. Online Error

ROM 42 - 1.3841E − 5 2.4963E − 5
HROM w/ Hyper-DWR 63 221 1.0600E − 5 2.0884E − 5

Table 6.4 summarizes the key dimensions as well as the average ROM point and online

error for the two models. The key result to note is that in this case, which is more complex

than the one-parameter subsonic case in the previous section, there still is a significant re-

duction in the number of elements required to accurately evaluate the residual and Jacobian.

The FOM mesh contains 2240 elements, while the HROM only requires 221 to solve for these

quantities in the Newton iteration in Equation 3.9 and in the DWR error indicator in Equa-

tion 5.9. This is a 90.1% reduction in the number of mesh elements. We can note that the

savings in the subsonic case are even greater than the two-parameter transonic case. This

may be because of the mesh size, having more cells resulting in an even greater reduction in

the mesh, or the complexity of the problem. Figure 6.24 shows the reduced mesh set for the

HROM.
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Figure 6.24: ECSW Reduced Mesh set for the HROM w/ Hyper-DWR

Figures 6.25 and 6.26 show the true error distributions from the ROM and HROM,

respectively. We can see both models perform quite well onlinee and only have small regions

wherethe tolerance bound is not met.

Figure 6.25: True Error for the ROM and Zones of Tolerance Violation
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Figure 6.26: True Error for the HROM w/ Hyper-DWR and Zones of Tolerance Violation

Figure 6.27: Work Units for the Adaptive Sampling Procedure to Build the Three Models

Finally, the work units for each model are plotted in Figure 6.27. We can see the HROM

with the hyperreduced DWR error indicator costs much less to achieve the same average

ROM point error. This means the HROM is both less expensive to assemble offline and

also more computationally efficient online through the approximation of the residual and

Jacobian.
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Chapter 7

Conclusion

This thesis explores the use of hyperreduction as a way to address the computational bot-

tlenecks caused by the re-evaluation of high-dimensional quantities in a projection-based

reduced-order modelling framework, specifically for parametric, highly nonlinear computa-

tional models. The energy-conserving sampling and weighting technique was selected out

of the many available techniques for hyperreduction. It had been previously used in least-

squares Petrov-Galerkin projection models and has been shown to be robust, accurate, and

stable [15, 19,23,45].

First, it was verified that the ECSW method successfully identified a reduced mesh set

in both one-dimensional and two-dimensional test cases with one or two parameters. As

expected, an additional source of error is introduced once this set is used to approximate the

residual and Jacobian in a ROM. The accuracy of the hyperreduction is impacted both by

the source of the training data and the NNLS tolerance used. The Jacobian-based training

data proved to be more robust and reliable, confirming the results found in [40]. The NNLS

tolerance serves as a measure of the tradeoff between accuracy and computational savings.

The lower the tolerance, the more elements are included in the reduced mesh resulting in a less
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efficient HROM but likely a more accurate approximation of the projected high-dimensional

quantities.

Hyperreduction is not only important for achieving computational efficiency in online

numerical predictions but also for accelerating the offline construction of a ROM through

a greedy or adaptive sampling procedure. While the ECSW hyperreduction technique has

been used in other greedy sampling frameworks [40], these use residual or solution-based

error indicators. In this work, we incorporate hyperreduction into a goal-oriented adaptive

sampling method which uses dual-weighted residual errors that tailor a reduced-order model

to a specific output of interest [16].

One of the key contributions of [16] is the addition of a second dual-weighted residual

error between a coarse and a fine reduced-order model, which makes it possible to recycle

an existing reduced-order model solution computation. In this work, the error indicator is

updated to measure the error between two hyperreduced reduced-order models. This allows

the sampling procedure to capture the additional error introduced by the hyperreduction,

and consider this when selecting new snapshot locations.

The updated sampling framework was tested on two-dimensional test cases, specifically

the NACA0012 with various design parameter combinations and flow conditions. It was

shown that the ECSW hyperreduction method can significantly reduce the number of el-

ements re-evaluated in the high-dimensional quantities and that with the updated DWR

errors the framework can still construct an ROM which provides a certain level of confidence

in the expected error in the output functional. In all test cases, the difference between the

prescribed tolerance in the sampling procedure and the true error online was small. Fur-

thermore, the work units required to assemble the model are significantly reduced through

hyperreduction in the reduced-order solutions and in the error indicator. This suggests

savings both in the offline and online stages of the reduced-order modelling procedure.
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7.1 Future Work

There are multiple avenues for future work in this research. The impact of problem com-

plexity and mesh size on the effectiveness of the hyperreduction can be further studied. The

scope of the research can also be extended to unsteady CFD problems, 3D problems, and

problems with more complex parameter spaces. In addition, there are several components

of the sampling procedure that could be examined further. These include the way in which

ROM probing points are placed and the interpolation method used to model the error distri-

bution, specifically in regards to the new hyperreduced DWR error indicator which appears

to result in more snapshot clustering when compared to the original sampling distributions.

When considering the hyperreduction approach, the training procedure can be studied in

more detail. This could include research into how the training data is selected, including

both how many snapshots are included and how their placement impacts both the compu-

tational cost of finding and the accuracy of the resulting reduced mesh set. The cost and

necessity of re-training the hyperreduction at every sampling cycle could also be researched;

in particular, possible additional error measures, like those in [40], could be used to deter-

mine whether the hyperreduction must be recomputed at a particular iteration. Alternatives

to the non-negative least squares problem for finding the reduced set of important mesh ele-

ments could also be considered. Finally, full implementation of the hyperreduction approach

which only computes the residual and Jacobian on the elements in the reduced mesh should

be tested in order to study the true computational cost and storage savings.
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Appendix A

Work Units Derivations

A.1 ROM Solution Non-linear Iteration Work Units

Equation 5.10 is an evaluation of the work units required to solve:

[
VT ∂R

∂w

(k)T ∂R

∂w

(k)

V

]
p(k) = −VT ∂R

∂w

(k)T

R(k). (A.1)

We assume it requires one work unit to evaluate every entry in the residual and Jacobian.

Since R(k) ∈ RN and ∂R
∂w

(k) ∈ RN×N , they require N and N2 work units, respectively. To

evaluate the LHS of the above equation, three matrix multiplications must be performed. By

simply counting the number of operations required, the FLOPs necessary to perform matrix

multiplication between a matrix of dimension n × p and another with dimension p × m is

nm(2p− 1).
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Therefore, the total number of FLOPs to assemble the LHS (which are assumed to be

one work unit) is:

WLHS =(FLOPs to multiply V and
∂R

∂w

(k)

)+

(FLOPs to multiply the matrix resulting from the previous step and
∂R

∂w

(k)T

)+

(FLOPs to multiply the matrix resulting from the previous step and VT )

=(FLOPs to multiply matrices of dimensions (N ×N) and (N × ni))+

(FLOPs to multiply matrices of dimensions (N ×N) and (N × ni))+

(FLOPs to multiply matrices of dimensions (ni ×N) and (N × ni))

=[Nni(2N − 1)] + [Nni(2N − 1)] + [n2
i (2N − 1)]

=(2Nni + n2
i )(2N − 1).

(A.2)

Similarly, to assemble the RHS:

WRHS =(FLOPs to multiply R(k) and
∂R

∂w

(k)

)+

(FLOPs to multiply the matrix resulting from the previous step and VT )

=(FLOPs to multiply matrices of dimensions (N ×N) and (N × 1))+

(FLOPs to multiply matrices of dimensions (ni ×N) and (N × 1))

=[N(2N − 1)] + [ni(2N − 1)]

=(N + ni)(2N − 1).

(A.3)
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Therefore, the total cost to assemble the linear system is:

Wassemble =(2Nni + n2
i )(2N − 1) + (N + ni)(2N − 1)

=(2Nni + n2
i +N + ni)(2N − 1).

(A.4)

The work units, as shown in Chapter 5, for one non-linear iteration for the ROM solution

is:

Wnon lin =(units to evaluate the residual)+

(units to evaluate the Jacobian)+

Wassemble+

(units to solve for solution update)

=(N) + (N2) + [(2Nni + n2
i +N + ni)(2N − 1)] + (n3

i ).

(A.5)

A.2 HROM Solution Non-linear Iteration Work Units

Once the ECSW hyperreduction is introduced, the cost to assemble and solve the Newton

iterations changes. The following equation is the one to be evaluated:

[
W̃(k)TW̃(k)

]
p(k) = −R̃(k), (A.6)

where W̃(k) is the hyperreduced test basis and R̃(k) is the hyperreduced residual. Recall, the

hyperreduced test basis can be written as:

W̃(k) = J̄(k)V = (
∑
e∈Ẽ

ξeL
T
e J

(k)
e Le+)V. (A.7)
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It can be shown that for a sparse matrix, the number of FLOPs for matrix multiplication

with a dense matrix (i.e. S ∗D where S is sparse) is two times the number of non-zeros in

S, times the number of columns in D [59]. Again,assuming the cost of evaluating one entry

in the matrix is one work unit, the cost to assemble the elemental Jacobian contribution

J
(k)
e is dede+ . This must be then multiplied by the number of elements in the reduced mesh

nei . Assuming we can find the elemental Jacobian contribution in the global dimension (i.e.

ignoring the matrix multiplication with Le and Le+), the cost of evaluating the hyperreduced

test basis is:

Wtest =(units to evaluate the nei Jacobian contributions from each element in Equation 3.28)+

(units to sum each elemental contribution)+

(FLOPs to multiply the matrix resulting from the previous step and V)

=(neidede+) + (neidede+)+

(FLOPs to multiply matrices of dimensions (N ×N) and (N × ni) where the first is sparse)

=(2neidede+) + (2neidede+ni).

(A.8)

where nei is the number of elements in the reduced mesh at a particular sampling cycle i.

The hyperreduced residual can be written as:

R̂(k) ≈ R̃(k) =
∑
e∈Ẽ

ξeW̃
(k)TLT

e R
(k)
e . (A.9)
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Again neglecting the projection of the elemental residual into the FOM dimension, the work

units to find the hyperreduced is:

Wresidual =(units to evaluate the ne residual contributions from each element in Equation 3.15)+

(FLOPs to multiply the matrix resulting from the previous step and W̃(k))+

(units to sum each elemental contribution)

=(neide) + (2neinide) + (neini)

=nei(de + 2nide + ni).

(A.10)

The cost to assemble the LHS and RHS of Equation A.6 is then:

Wassemble =(FLOPs to multiply W̃(k) and W̃(k))

=[n2
i (2N − 1)].

(A.11)

The work units, as shown in Chapter 5, for one non-linear iteration for the HROM

solution is:

Wnon lin =Wresidual +Wtest +Wassemble + (units to solve for solution update)

=[nei(de + 2nide + ni)] + [2neided
+
e + 2ded

+
e neini] + [n2

i (2N − 1)] + (n3
i ).

(A.12)

A.3 DWR Error ϵr Work Units

Prior to incorporating hyperreduction, the adjoint problem for the second DWR error indi-

cator between the coarse and fine ROM is:

[
VT

h

∂R

∂w̃h

∣∣∣∣T
w̃H

∂R

∂w̃h

∣∣∣∣
w̃H

Vh

]T

ψ̂h = −

[
∂J
∂w̃h

∣∣∣∣
w̃H

Vh

]T

. (A.13)
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The cost to assemble the LHS of the adjoint problem is then:

WLHS adj =(FLOPs to multiply Vh and
∂R

∂w̃h

∣∣∣∣
w̃H

)+

(FLOPs to multiply the matrix resulting from the previous step and
∂R

∂w̃h

∣∣∣∣T
w̃H

+

(FLOPs to multiply the matrix resulting from the previous step and VT
h )

=(FLOPs to multiply matrices of dimensions (N ×N) and (N × ni))+

(FLOPs to multiply matrices of dimensions (N ×N) and (N × ni))+

(FLOPs to multiply matrices of dimensions (ni ×N) and (N × ni))

=[Nni(2N − 1)] + [Nni(2N − 1)] + [n2
i (2N − 1)]

=(2Nni + n2
i )(2N − 1).

(A.14)

The cost to assemble the RHS of the adjoint problem is:

WRHS adj =(FLOPs to multiply Vh and
∂J
∂w̃h

∣∣∣∣
w̃H

)

=(FLOPs to multiply matrices of dimensions (1×N) and (N × ni))

=[ni(2N − 1)].

(A.15)

The error estimate found using the adjoint from above is then:

ϵr = ψ̂T
h R̂h(w̃H) = ψ̂T

hV
T
h

∂R

∂w̃h

∣∣∣∣T
w̃H

Rh(w̃H). (A.16)
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The work units required to solve for ϵr can be broken down into:

Wϵr =(FLOPs to multiply Rh(w̃H) and
∂R

∂w̃h

∣∣∣∣T
w̃H

)+

(FLOPs to multiply the matrix resulting from the previous step and VT
h )+

(FLOPs to multiply the matrix resulting from the previous step and ψ̂T
h )

=(FLOPs to multiply matrices of dimensions (N ×N) and (N × 1))+

(FLOPs to multiply matrices of dimensions (ni ×N) and (N × 1))+

(FLOPs to multiply matrices of dimensions (1× ni) and (ni × 1))

=[N(2N − 1)] + [ni(2N − 1)] + (2ni − 1)

=(N + ni)(2N − 1) + (2ni − 1).

(A.17)

Recalling the result in Chapter 5, the work units associated with solving the DWR at

one ROM point is:

WDWR error =(units to evaluate the residual)+

(units to evaluate the Jacobian)+

(units to evaluate the derivative of the functional w.r.t. w̃)+

WLHS adj +WRHS adj+

(units to solve for the adjoint) +Wϵr

=(N) + (N2) + (N) + [(2Nni + n2
i + ni)(2N − 1)]+

(n3
i ) + [(N + ni)(2N − 1) + (2ni − 1)].

(A.18)
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A.4 Hyperreduced DWR Error ϵr Work Units

As discussed in Chapter 5, the updated error indicator with hyperreduction can be found

using the following adjoint:

∑
e∈Ẽ

ξeW
T
hL

T
e

∂Re

∂w̃h

∣∣∣∣
w̃H

Vh

T

ψ̃h = −

[
∂J
∂w̃h

∣∣∣∣
w̃H

Vh

]T

(A.19)

The cost to assemble the LHS of the adjoint problem is then:

WLHS adj =(FLOPs to evaluate quantity in the curly brackets)+

(FLOPs to multiply the matrix resulting from the previous step and Vh)

=(FLOPs to evaluate quantity in the curly brackets)+

(FLOPs to multiply matrices of dimensions (ni ×N) and (N × ni))

=[nei(deni + ni)] + [n2
i (2N − 1)].

(A.20)

The cost to assemble the RHS of the adjoint problem is:

WRHS adj =(FLOPs to multiply Vh and
∂J
∂w̃h

∣∣∣∣
w̃H

)

=(FLOPs to multiply matrices of dimensions (1×N) and (N × ni))

=[ni(2N − 1)].

(A.21)

The error indicator can then be found using:

ϵr = −ψ̃T
h R̃h(w̃H). (A.22)
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The work units required to solve for ϵr can be broken down into:

Wϵr =(FLOPs to multiply R̃h(w̃H) and ψ̃
T
h )

=(FLOPs to multiply matrices of dimensions (1× ni) and (ni × 1))

=(2ni − 1).

(A.23)

Recalling the result in Chapter 5, the work units associated with solving the hyperreduced

DWR at one ROM point is:

WDWR error =(units to evaluate the hyperreduced residual)+

(units to evaluate the hyperreduced test basis)+

(units to evaluate the derivative of the functional w.r.t. w̃)+

WLHS adj +WRHS adj+

(units to solve for the adjoint) +Wϵr

=[nei(de + 2nide + ni)] + [neided
+
e + 2ded

+
e neini] + (N)

+ [nei(deni + ni) + (n2
i )(2N − 1) + ni(2N − 1)] + (n3

i ) + (2ni − 1).

(A.24)
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