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Abstract

Goal-oriented mesh adaptation is a technique to create meshes optimized to compute

accurate values for specific outputs and flow characteristics of interest in CFD problems.

The goal of this thesis was to implement entropy adjoint equations for goal oriented mesh

adaptation to have a low computational-cost, yet efficient indicator. This was done using

the Discontinuous Galerkin method as the numerical scheme and the Dual-Weighted

Residual to determine cell-wise error. It was shown that the entropy adjoint indicator

succesfully adapts the mesh in areas of interest around two-dimensional NACA-0012

airfoils as well as captures entropy generating features in inviscid flow, namely shocks.
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Abrégé

L’adaptation de maillage orientée vers un objectif est une technique qui permet de créer

des maillages optimisés pour calculer des valeurs précises pour des sorties spécifiques et des

caractéristiques d’écoulement intéressantes dans les problèmes de CFD. L’objectif de cette

thèse était de mettre en œuvre les équations adjointes d’entropie pour l’adaptation de

maillage orientée vers un objectif afin d’avoir un indicateur efficace à faible coût de calcul.

Pour ce faire, la méthode Discontinuous Galerkin a été utilisée comme schéma numérique

et le Dual-Weighted Residual pour déterminer l’erreur au niveau des cellules. Il a été

démontré que l’indicateur adjoint d’entropie adapte avec succès le maillage dans les zones

d’intérêt autour des profils aérodynamiques bidimensionnels NACA-0012 et capture les

caractéristiques génératrices d’entropie dans les écoulements inviscides, à savoir les chocs.
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Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) is a method of analysis that utilizes numerical methods

and computational tools to allow researchers and industry professionals to study fluid flow.

This is essential as fluid flow phenomena seen in the real world are almost always defined

by highly nonlinear partial differential equations (PDEs) that cannot be solved analytically.

Numerical methods can be used to discretize and solve these equations. Advancement of

High Performance Computing (HPC) has allowed for more complex problems to be solved

using numerical methods. However, there is still emphasis in the field on the importance

of efficient methods that reduce computational costs. Additionally, due to the discretized

nature of numerical solutions, inconsistencies compared to natural phenomena are developed
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resulting in flow characteristics and changes not being accurately captured. These problems

that arise in CFD are the basis for a variety of research topics that have the goal of building

robust, high-order numerical solvers that efficiently produce accurate solutions.

High-order Discontinuous Galerkin Methods satisfy the requirements of the advancement

of robust and accurate solutions. These methods are a powerful combination of the finite

volume and finite element methods that are commonly used to solve PDEs. This allows for

them to have highly accurate and adaptive solutions that can solve conservation law problems

[1]. One of the key properties of the discontinuous galerkin method is its hp-discontinuous

property. Spatial discretizations of the domain are referred to as h and polynomial order for

the basis functions is referred to as p. These can be adjusted to develop a more accurate

solution. This adjustment is referred to as mesh adaptation and will be the focus of this

paper. Mesh adaptation is essential to capturing flow characteristics that tend to increase

error within numerical solutions [2]. Common examples of these are shock waves.

1.1.1 Shock Waves

Shock waves are common phenomena that occur when fluid flows over a wing. Shock waves

are caused by transonic flow which is a flow speed that causes both supersonic and subsonic

flow regions about the aircraft wing [3]. The sudden change from supersonic to subsonic flow

develops a shock. This change in flow properties including flow speed and pressure happens

over an infinitesimal distance. This introduces problems in producing accurate numerical
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representations of fluid flow over the shock as they are modelled as discontinuities. Figure

1.1 depicts shock waves developed by fluid flow over supersonic jets.

Figure 1.1: Oblique shocks from supersonic jets. Figure from [4]

These sudden changes in flow properties caused by shocks can introduce instabilities

into our solution. These instabilities can be seen by the production of non-physical

solutions. It is common for methods that aren’t sufficiently robust to allow shock waves to

create negative density regions which are not possible in nature [5]. These instabilities and

non-physical results need to be accounted for to avoid divergence and ensure an accurate

solution is obtained. Limiters are commonly used to adjust the computation of the solution

and stop non-physical results [6]. Artificial viscosity is also introduced as this creates

dissipation around the shock allowing it to be captured in high-order schemes [7]. Complex

flow features can also be captured by creating very fine grids. This however greatly

increases computational costs. As a result, mesh adaptation is commonly used to build

efficient grids. This allows for fine grid sections near areas of the flow that are primarily
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responsible for inaccuracies in the solution and coarse sections where the flow is stable and

easily captured by the numerical scheme.

There are two primary forms of mesh adaptation: feature based and goal oriented.

Feature based, also called hessian-based, focuses on refining based on the elements with the

largest residual [2]. Goal oriented introduces a function of interest allowing for the mesh to

be adapted to optimize for this function [2]. Due to entropy stability in smooth solutions

and the conservation of entropy in invscid flow, entropy variables are a prime candidate to

be a functional of interest. As a result, this thesis will focus on implementing

entropy-adjoint mesh adaptation so that areas where spurious entropy is generated will be

targeted allowing, for more efficient convergence to a numerical solution and better

capturing of flow characteristics of interest.

1.2 Objective

It is essential for flow features of interest to be captured in the solution to build a strong

understanding of the problems being analyzed. The objective of this thesis is to develop an

entropy adjoint equation that is paired to the primal problem presented by the flows partial

differential equation. This dual problem can be solved to find an adjoint solution that

allows for identification of areas of the grid that have entropy generation causing increased

inaccuracy within the solution. The mesh can then be adapted using a fixed fraction method

to refine the mesh in areas causing instability in the solution allowing for a grid that can be
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solved to find a more accurate solution.

This entropy-adjoint mesh adaptation will be investigated on three cases of fluid flow

over a NACA-0012 airfoil represented by Eulers equations. For transonic flow, this mesh

adaptation will allow for better capturing of the shock developed on the top surface. For

subsonic flow, regions where erroneous numerical entropy generation occurs will be

targeted. This will then be compared with lift adaptations, drag adaptations, and feature

based adaptations. An example of goal oriented mesh adaptation can be seen in figure 1.2

where various adjoint functionals were used for mesh adaptation to allow for a more

accurate solution.

Figure 1.2: Mesh adaptation for various adjoint funtionals. Figure from [8].
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1.3 Overview

This thesis is organized as follows. Chapter 2 describes the Discontinuous Galerkin method

which is the numerical scheme that is used to solve the fluid dynamics problems posed.

It also shows the derivation for the Euler equation in its conservative form and how it is

adjusted for the DG scheme. Chapter 3 gives an extensive overview of adjoint equations,

entropy adjoint variables, the Dual-Weighted Residual and how these are used for goal-

oriented, fixed-fraction mesh adaptation. Chapter 4 presents and discusses the results of the

test cases explored using entropy adjoint mesh adaptation. Chapter 5 is the final chapter,

providing a conclusion as well as future work.
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Chapter 2

The Discontinuous Galerkin Method

2.1 The Discontinuous Galerkin Method

There are various numerical high order schemes that are used for solving CFD problems.

These include the Finite Difference Method (FD), the Finite Volume Method (FV), and

the Finite Element Method (FE) [9]. The FD method is a very commonly used numerical

method where the grid is discretized and then solutions are found for each discrete point

on the resulting grid. The grid can then step through time to see how the solution evolves

for each time step. This method is generally considered the simplest to implement of the

three [9]. The FV method is another commonly used numerical method. This method divides

the domain into cells instead of individual grid points. The solution is then calculated via

dependencies such as flux between the cells. The solution for each cell is then assumed to be
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the average of the solution over the cell creating a constant value for the entire element [9].

This means that neighbouring cells will have different averages and as a result, the solution

will be discontinuous between cells. These discontinuities are advantageous as it means that

each cell is its own system and a global system doesn’t need to be solved. This also allows for

high performance computing clusters to be used to solve the solution as it can be divided into

sub-grids that are individually solved on separate nodes and the combined once a solution for

the sub-grids is found [9]. The third common method, the FE method, divides the domain

into cells and uses a set of basis functions to approximate the solution in each cell, differing

from the FV method as it doesn’t take the average, but attempts to approximate the solution

as a linear combination of the chosen basis functions. Additionally, the FEM is continuous

at the cell boundaries. The numerical method used for discretizing and solving problems in

this thesis is the Discontinuous Galerkin method which is a combination of the FV method

and the FE method.

The Discontinuous Galerkin method (DG) was first used by Reed and Hill to solve

linear hyperbolic advection equations that modelled neutron transfer [10]. The DG method

is a versatile high-order numerical scheme that is highly parallelizable, helping to reduce its

computational time compared to other schemes [1]. This is possible because it is

discontinuous at the boundaries of elements similar to the FV Method. However, the DG

method is similar to the FE method as it uses approximates the solution for each cell as a

linear combination of a set of chosen basis functions. This allows the DG method to solve
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for high-order solutions without a large stencil and accurate approximate solutions across

the entire domain that are only dependent on neighbouring cells.

The DG method has been derived to cover a significant number of differential equations

such as conservation laws. Conservation laws include linear advection problems, Euler

equations, and the Navier-Stokes equations [1]. This makes it ideal for solving

computational fluid dynamics problems and the problems posed in this thesis. Because of

this it is important to build an understanding of how the method is developed.

∂u

∂t
+ ∂f(u)

∂x
= 0, x ∈ [L,R] = Ω (2.1)

The simplest equation to derive the solution using the DG method is the linear advection

equation given in equation 2.1. In this equation there is a linear flux term given by f(u),

a solution given by u(x, t), and the domain is represented by the symbol Ω. As explained

earlier, the domain is then split into elements.

Ω ≈ Ωh =
K⋃

k=1
Dk (2.2)

From equation 2.2 the domain is seen to be split into K cells. These cell-wise solutions

are approximated using basis functions. This set of basis functions is labelled as ψn and the

number of basis functions corresponds to p which is the polynomial order of the solution.

The approximated solution can then be written in the form:
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x ∈ Dk : uk
h(x, t) = ΣNp

i=1u
k
hψn(x) (2.3)

The flux for each element is directly dependent on the solution uk
h so we only have uk

h as

the set of unknowns that must be solved for to find a solution for our problem. The result

of this will be a set of solutions for each cell. The solution over the entire domain can then

be written as the direct sum of the cell-wise solutions and is of the form:

u(x, t) ≈ uh(x, t) = ⊕K
k=1u

k
h(x, t) (2.4)

To solve for our approximate solutions uk
h, we multiply the original PDE in equation 2.1

by a test function that is carefully selected from the set of basis functions and integrate over

the element to get the following formulation:

∫
Dk

(∂u
k
h

∂t
ϕm + ∂fk

h

∂x
ϕm)dx = 0 (2.5)

After this step, we can integrate by parts, yielding the weak form of the DG method:

∫
Dk

(∂u
k
h

∂t
ϕm − fk

h

∂ϕm

∂x
)dx = −[f ∗ϕm]xk+1

xk (2.6)

This is what can be reformulated into a flux equation that is solvable. Integrating by

parts again yields the strong-form of the DG method, however in this thesis only the weak
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DG form is used and so the strong form will not be considered. To simplify solving and to

allow a stress and mass matrix to be built in the next steps, we can set the test and basis

functions to be equivalent. There are various basis polynomials that can be used. These

include Lagrange polynomials, Legendre polynomials and many more. These are chosen to

make sure our matrices do not become ill-conditioned [1].

ψj(x) = ϕj(x) = lkj (x) = Πp
i=0,i ̸=j

x− xi

xj − xi

(2.7)

After choosing an interpolating polynomial such as the lagrange polynomials seen in

equation 2.7, they can be subbed into equation 2.6 to get the following important formulation

which represents the weak DG solution in terms of the interpolating polynomials re-written

in its operator form:

Mk du
k
h

dt
+ Skfk

h = (fk
h − f ∗)lk

∣∣∣∣∣
xk+1

xk

(2.8)

In this form we observe the mass and stiffness matrix. These are computed as follows:

Mk
ij =

∫
k
lki (x)lkj (x)dx (2.9)

Sk
ij =

∫
k
lki (x)

dlkj (x)
dx

dx (2.10)
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In equation 2.8 we also see the flux differentials between elements. This is calculated

using a chosen flux scheme. This adaptivity of the DG method allows for various types of

flux schemes such as upwind or downwind schemes depending on the requirements of a given

problem [1]. Equation 2.8 can be solved and then integrated through time using various

classic ODE solvers. In this thesis, implicit ODE solvers are used as they are adequate

enough to satisfy the requirements, but explicit solvers such as Runge-Kutta are commonly

used in DG schemes such as when solving using the strong-form [11]. The main requirement

of the time step size is that it must satisfy the Courant-Friedrichs-Lewy (CFL) condition or

the scheme becomes unstable and will diverge [12]. The optimal rate of convergence for this

scheme is O(∆xp+1). DG schemes can then be extended into 3-dimensions. For conservation

laws, this can be expressed in the following form:

R(u) = ∂u

∂t
+ ∇ · F (u) − S(u) = 0 (2.11)

In this form R represents the residual, F (u) represents the flux, and S(u) represents the

source term. The next section of this thesis will review how this is applied to the Euler

equations.
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2.2 Euler Equations

Eulers equations are derived from the governing equations of fluid dynamics, the Navier-

Stokes equations, and represents fluid flow that is inviscid and adiabatic [13]. This means

that fluid viscosity and heat transfer are not accounted for in the fluid flow. The Euler

equations are as follows:

∂ρ

∂t
+ u⃗ · ∇ρ+ ρ∇ · u⃗ = 0 (2.12)

∂(ρv⃗)
∂t

+ ρu⃗ · ∇u⃗+ ∇p = 0 (2.13)

∂(ρe)
∂t

+ u⃗ · ∇e+ p∇ · u⃗ = 0 (2.14)

Equations 2.12, 2.13, and 2.14 correspond respectively to the conservation of mass,

conservation of momentum, and conservation of energy laws seen for fluid flow. In these

equations ρ refers to the density, u⃗ is the velocity vector, p is the fluid pressure, and e is

specific energy of the fluid. These can be rewritten in the conservative form seen in

equation 2.11 as follows:
∂W

∂t
+ ∇ · F = 0 (2.15)

As expected, in equation 2.15 it can be seen that there are no source terms. W and F

are also observed. W is a vector that represents the conservative solution set to the Euler

equations at the given time step. F is a matrix that represents the convective flux at the
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given time step. This form allows the solution W to step through time as a function of the

convective flux represented by ∇ · F . This is how the DG method is able to numerically

solve and provide accurate solutions to the Euler equations. The conservative solution W is

represented as follows:

W =



ρ

ρu

ρv

e


The convective source matrix F can be separated into the following three vectors:

Fx =



ρu

ρu2 + p

ρuv

ρuh


, Fy =



ρv

ρvu

ρv2 + p

ρvh


This reformulation of the convective flux allows the conservative form seen in equation

2.15 to be rewritten in the following simplified form:

∂W

∂t
+ ∂Fx

∂x
+ ∂Fy

∂y
= 0̄ (2.16)

Equation 2.16 is used when solving the Euler equations with PHiLiP (Parallel High-Order

Library for PDEs), the McGill Computational Aerodynamics research group code.
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Chapter 3

Goal Oriented Mesh Adaptation

In mesh adaptation there are two common types of mesh adaptation: feature based and

goal oriented [14]. Feature based, also known as hessian based, takes features from the

primal flow solution and uses these to optimize the mesh adaptation. This works by using

the residual of the solution as an error estimate and then adapting according to this using a

mesh adaptation technique such as fixed-fraction. The goal of feature based mesh adaptation

is to minimize interpolation error [14]. While successful at this and adapting to improve the

overall solution, it doesn’t adapt the mesh to better identify error in observable design

variables such as lift and drag [15]. It also doesn’t help adapt the mesh to accurately show

the existence of flow characteristics of interest such as shocks. As a result, there has been

an increase in research into goal-oriented mesh adaptation [8, 15, 16]. Goal-oriented mesh

adaptation takes a function of interest such as the entropy equations and solves the adjoint
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problem. Methods such as the Dual-Weighted Residual are then used to adapt the mesh

according to the adjoint solution. This allows for characteristics such as entropy generation

around shocks to be identified in the mesh adaptation and to adapt accordingly [17]. As

goal-oriented mesh adaptation is the primary method analyzed in this thesis, its formulation

will be the focus of this chapter.

3.1 Adjoint Problems

3.1.1 Adjoint Equations

Adjoint equations are a dual problem that is derived from the primal flow solution. Certain

design variables can be chosen and the sensitivity of these variables is used to determine an

optimal mesh design [18]. These design functions are written in the following form:

J =
∫

Ω
gΩ(u)dΩ +

∫
Γ
gΓ(u)dΓ (3.1)

The form shown in equation 3.1 shows the functional has a domain integral represented

with Ω and a boundary integral represented with Γ. Different functionals of choice such as

lift, drag, and entropy functionals can be implemented into this equation to create a dual

problem. This results in an adjoint solution. This dual problem can be formulated as an

optimization problem.
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min
x

J (u, x)

s.t. R(u, x) = 0,
(3.2)

In the optimization problem the functional J is optimized with respect to the design

variable x. This optimization is constrained by the residual of the primal flow solution. This

optimization problem can be re-formulated using Lagrange multipliers to give the following

problem:

L(u, x, ψ) = J (u, x) −
∫

Ω
ψT R(u, x)dΩ (3.3)

We can then take the derivative of this equation with respect to the design variable

resulting in the following problem:

∂L
∂x

= [∂J
∂x

− ψT ∂R
∂x

] + (∂u
∂x

)T [∂J
∂u

− ψT ∂R
∂u

] (3.4)

An optimal solution for this equation is when it is equal to zero. To achieve this, the

first and second term need to be equal to zero. This is done by taking the second term and

equating it to determine the following result

[∂R
∂u

]ψ = (∂J
∂u

)T (3.5)
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which is the adjoint problem with the adjoint solution represented as ψ. This is a problem

that requires a system of linear equations to be solved.

3.1.2 Entropy Adjoint Equations

One choice for the adjoint functional is the entropy equation. This is because entropy is

conserved across the boundaries of a system unless entropy is generated [19]. This results

in the entropy adjoint equations being able to identify locations of entropy generation such

as shocks. This makes the choice of entropy as a functional well-suited to mesh-adaptation

that wants to capture this flow feature. The entropy function is defined as follows:

U = −ρS
γ − 1 , S = ln( p

ργ
) (3.6)

The derivation of the entropy functional begins by defining the entropy flux as Fi and the

entropy function as U(u⃗). Entropy conservation laws state that for inviscid flow ∂iFi = 0 [19].

The entropy variables are the calculated as

v⃗ ≡ UT
u (3.7)

where the entropy variables are the vector v⃗ and are equivalent to the derivative of the chosen

entropy function with respect to the solution. This allows the entropy variables to be defined

as follows for an i-dimensional grid:
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v⃗ = UT
w⃗ =



γ−S
γ−1 − 1

2
ρV 2

p

ρvi

p

−ρ
p


(3.8)

A flux Jacobian matrix can then be defined as Ai resulting in the entropy flux relation

Uu⃗Ai = (Fi)u⃗. The transformation matrix is then defined as the derivative of the primal

solution with respect to the entropy variables and is represented as u⃗v⃗. These satisfy the

following two properties [8]:

1. The transformation matrix is symmetric and positive definite.

2. The resulting quantity Aiu⃗v⃗ is symmetric.

This allows the conservation law to be linearized and results in the following important

relations taken from [8]:

Ai∂iu⃗ = Aiu⃗v⃗∂iv⃗ = (Aiu⃗v⃗)T∂iv⃗ = u⃗v⃗A
T
i ∂iv⃗ = u⃗v⃗A

T
i ∂iv⃗ = 0 ⇒ AT

i ∂iv⃗ = 0 (3.9)

This relation is important when substituting to see that the domain term cancels out in

the functional. Fidkowski and Roe showed that using perturbation methods equation 3.3

could be transformed into the following [8]:

J ′(δu⃗) −
∫

Ω
ψT R′(u⃗)(δu⃗)dΩ = 0 (3.10)
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This equation can then be integrated by parts to recieve the following formulation where

both the domain and the boundary adjoint results can be seen:

J ′(δu⃗) +
∫

Ω
∂iψ

TF ′
i (δu⃗)dΩ −

∫
Γ
ψTF ′

i (δu⃗)nidΓ = 0 (3.11)

This adjoint lagrangian then implemented using entropy variables yields the following

results:

J ′(δu⃗) +
∫

Ω
∂iv⃗

TAi(δu⃗)dΩ −
∫

Γ
v⃗TAi(δu⃗)nidΓ = 0 (3.12)

It can then be seen from the relation yielded in 3.9 that the domain integral becomes zero

and only the boundary integral must be solved for. The final step for finding the entropy

functional is to transform this form into one that incorporates the entropy flux:

J ′(δu⃗) =
∫

Γ
v⃗TAi(δu⃗)nidΓ = δ[

∫
Γ
FinidΓ] (3.13)

This gives us the resulting equation for the entropy functional in terms of the entropy

flux:

J =
∫

Ω
Fi(ub

h)nidΩ (3.14)

It is also important to note that comparing equation 3.13 to equation 3.11 that the
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entropy variables are equivalent to the adjoint solution. Because of this either the entropy

variables can be used as the adjoint solution or a linear solver can be used with the entropy

functional to calculate the adjoint solution. The reduced computational costs of the entropy

transport equation due to not having to solve a linear system at every adaptation step is

where its advantage lies. After this, an error estimate for each cell needs to be determined.

This is done by finding the Dual Weighted Residual.

3.2 Dual Weighted Residual

The next step to mesh adaptation is to use a method that calculates the error for each cell.

The Dual-Weighted Residual (DWR) is a commonly used method for determining cell-wise

error in goal-oriented mesh adaptation [20, 21]. This method begins by defining a a flow

solution for a coarse grid and a fine grid which can be represented as uH and uh respectively.

The residuals for these two grids are then calculated

RH(uH) = 0, Rh(uh) = 0 (3.15)

where the fine grid is created as a more refined space using h or p adaptations. In this

research a p+1 solution is used for the fine grid as this is what is currently implemented for the

DWR in the group code PHiLiP. Once these two solutions are created a prolongation operator

is determined which transfers the coarse grid to a fine grid. This is defined as uH
h = IH

h uH
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where IH
h is the prolongation operator. The residual of the coarse grid projection to the fine

grid is then approximated using a Taylor’s series expansion that neglects higher-order terms

Rh(uh) = 0 ≈ Rh(uH
h ) + [∂Rh

∂uh

∣∣∣∣∣
uH

h

](uh − uH
h ) (3.16)

resulting in:

[∂Rh

∂uh

∣∣∣∣∣
uH

h

](uh − uH
h ) = −Rh(uH

h ) (3.17)

The same procedure can be done for the functional of interest resulting in a similar Taylor

series expansion:

Jh(uh) ≈ Jh(uH
h ) + [∂Jh

∂uh

∣∣∣∣∣
uH

h

](uh − uH
h ) (3.18)

The fine grid solution for the functional is then assumed to be a sufficient approximation

of the true solution allowing the functional error to be expressed as the the difference between

these two:

Jh(uh) − Jh(uH
h ) ≈ J (u) − Jh(uH

h ) = (∂Jh

∂uh

∣∣∣∣∣
uH

h

)(uh − uH
h ) (3.19)

Analyzing equation 3.19 and 3.19 the following relation is determined:

[∂Rh

∂uh

∣∣∣∣∣
uH

h

]ψh = (∂Jh

∂uh

∣∣∣∣∣
uH

h

)T (3.20)
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In this equation ψh is the adjoint solution for the fine grid. Substituting 3.17 into 3.20

the error can be written as:

Jh(uh) − Jh(uH
h ) = −ψT

h Rh(uH
h ) (3.21)

This allows the cell-wise error represented by ηk to be represented and bound as follows:

ηk = |(ψT
h )k(Rh(uH

h ))k| (3.22)

|Jh(uh) − Jh(uH
h )| ≤ Σk|(ψT

h )k(Rh(uH
h ))k| (3.23)

From this it can be seen that the cell-wise error is a function of the adjoint solution on

the fine grid and the residual on the coarse grid. This cell-wise error calculation is the final

step prior to mesh adaptation. It is important as it allows the mesh adaptation software to

identify elements of interest that are significantly affecting the sensitivities of the functional.

3.3 Grid Refinement Strategy

There are many types of mesh adaptation strategies. These include uniform, and fixed

fraction grid refinement. Uniform is a simple technique where the grid is refined uniformly

throughout [22]. This is effective at building a more accurate solution, however it is very
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inefficient. This is because elements that are contributing minimally to the error of the

solution are further refined. This is unnecessary for determining flow features of interest and

increases computational costs. As a result, fixed fraction is the grid refinement strategy used

in this thesis.

The fixed-fraction grid refinement technique can be used for both feature-based and

goal-oriented error-indicators. The requirement of it is that cell-wise error is computed.

This is because the fixed-fraction method requires a fraction that indicates the percentage

of elements that are to be refined. It is also possible to have a very small percentage of cells

that are coarsened at each mesh adaptation iteration, however this won’t be explored in this

thesis [23]. The number of elements with the highest element-wise error corresponding to the

fraction are chosen to be refined. These are then refined via h or p adaptation. In this thesis

h adaptation will be the focus. This works by splitting the identified elements isotropically

into 4 smaller elements for quad meshing [24].

Figure 3.1: Fixed Fraction Mesh Refinement for f = 0.75. Figure from [25].
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Chapter 4

Results

To analyze the results of the entropy adjoint mesh adaptation, it was used on three test

cases. The tests were steady state flow analysis using two-dimensional grids. Two subsonic

test cases with different angles of attack, and a transonic test case, all using NACA-0012

airfoils were run. The cells-wise solutions were approximated with p = 1 order polynomials.

The entropy adjoint indicator is then compared to other design indicators lift and drag, as

well as feature based mesh adaptation.

4.1 Subsonic Test 1

The first subsonic test case was steady inviscid flow over a NACA-0012 airfoil. The NACA-

0012 airfoil had an angle of attack of 2.5 degrees and the mach number of the flow was

M = 0.5. Three adaptations were run on the case using a fixed fraction of f = 0.15. This
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was done for lift adjoint, drag adjoint, entropy adjoint, and feature based adaptation. The

results of these adaptations are seen in figure 4.1.

From the first test it can be seen the initial grid is very coarse. After undergoing feature-

based adaptation there were very few cells around the NACA-0012 airfoil that adapted. The

majority of adaptations for it appeared in the wake or the farfield of the mesh. This shows

how the feature-based mesh adaptation does a poor job at adapting the mesh in the location

of interest, near the NACA-0012 airfoil. This trend continued to be seen in the rest of the

test cases and shows how the feature-based mesh adaptation doesn’t work well for capturing

flow outputs and features of interest. Following this, it can be seen that in the lift and

drag oriented mesh adaptation a significant number of cell adaptations were done near the

stagnation points on the leading and trailing edge of the airfoil along with their associated

streamlines. This is as expected as these are the locations primarily responsible for the

calculation of the lift and drag of the airfoil as well as where a significant amount of error

was introduced into the numerical solution. Finally, the entropy adjoint mesh adaptation

shows similar results to the drag and lift oriented mesh adaptation with the majority of

mesh adaptation occuring at the leading and trailing edges of the airfoil. This indicates that

the entropy-adjoint indicator is able to detect spurious entropy generation in the numerical

solution at these locations.
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(a) Baseline Solution

(b) Feature Based Solution

(c) Drag Adjoint Solution
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(d) Lift Adjoint Solution

(e) Entropy Adjoint Solution

Figure 4.1: Subsonic Test 1, M = 0.5, α = 2.5, f = 0.15

Analyzing the lift coefficients of the test case shows that all the different adjoints converge

towards a similar value. Figure 4.2 shows how the lift adjoint seems to converge the fastest,

followed by the drag adjoint beginning to converge to the same value. After this, the entropy

adjoint is shown to begin converging towards a similar value. Finally, the feature-based

adaptation is the furthest away from the lift-adaptation value. This is as expected as the lift

indicator is tailored towards converging the coefficient of lift value the fastest, and the drag

indicator will perform similarly as it will be mainly adapting elements along the boundary
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layer of the airfoil responsible for the drag calculation. The feature-based will also take a

very long time to converge towards the coefficient of lift value as the majority of the mesh

adaptation is seen in the farfield and not near the airfoil. In general, figure 4.2 doesn’t show

the best convergence and this is likely due to the fact that the solution is approximated with

p = 1 polynomials and because there were not very many mesh adaptations performed. If

more adaptations were done for higher order solutions it would likely show better convergence

towards the coefficient of lift and it would give a better depiction of the performance of the

different types of adaptation. This is discussed further in the future work section of this

thesis.

Figure 4.2: Subsonic Test 1 Coefficients of Lift during Adaptation
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4.2 Subsonic Test 2

The second subsonic test case was steady inviscid flow over a NACA-0012 airfoil. The

NACA-0012 airfoil had an angle of attack of 1.25 degrees and the mach number of the flow

was M = 0.5. Three adaptations were run on the case using a fixed fraction of f = 0.10.

This was done for lift adjoint, drag adjoint, entropy adjoint, and feature based adaptation.

The results of these adaptations are seen in figure 4.3.

The mesh adaptations for subsonic test 2 yielded very similar results to the mesh

adaptation for subsonic test 1. This is as a expected as very little changed with the

exception of the angle of attack and the fixed fraction. Again, figure 4.3 shows how the

feature-based adaptation performed very poorly at adapting the mesh in the areas of

interest around the airfoil. The lift, drag, and entropy adjoint mesh adaptations all had

very similar mesh adaptations, pinpointing the stagnation points as the location of interest

for their indicators.

(a) Baseline Solution

Figure 4.3: Subsonic Test 2, M = 0.5, α = 1.25, f = 0.10
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(b) Feature Based Solution

(c) Drag Adjoint Solution

(d) Lift Adjoint Solution

Figure 4.3: Subsonic Test 2, M = 0.5, α = 1.25, f = 0.10
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(e) Entropy Adjoint Solution

Figure 4.3: Subsonic Test 2, M = 0.5, α = 1.25, f = 0.10

As expected, the lift coefficients also performed very similar to subsonic test 1, with the

lift adjoint mesh adaptation converging the fastest. After this the drag adjoint appears to

converge to a similar value. Following this the entropy adjoint and then the feature-based

mesh adaptation slowly converge. Again, the reasoning for the lack of convergence by all

adaptation types to the same value is likely due to the fact that the solution is approximated

with low order polynomials and not many mesh adaptations were run.
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Figure 4.4: Subsonic Test 2 Coefficients of Lift during Adaptation

4.3 Transonic Test

The transonic test case was steady inviscid flow over a NACA-0012 airfoil. The NACA-0012

airfoil had an angle of attack of 1.25 degrees and the mach number of the flow was M = 0.8.

Three adaptations were run on the case using a fixed fraction of f = 0.25. This was done

for lift adjoint, drag adjoint, entropy adjoint, and feature based adaptation. The results of

these adaptations are seen in figure 4.5.

As this test case was transonic, it means that a shock will appear in the solution along
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the airfoil. In figure 4.5 this can be seen. From the original coarse solution, the shock is

not well captured and the mesh did a poor job at capturing flow features of interest around

the airfoil. The same occurred in the feature-based mesh adaptation, where cells around the

airfoil didn’t refine, only cells in the wake and farfield. This continues to show that feature-

based mesh adaptation does a poor job at refining the mesh in areas of interest. Following

this, the drag and lift oriented mesh adaptations are shown. It can be seen that there was

significant mesh adaptation at the stagnation points. They also adapted the mesh around

the location of the shock as it is close to the boundary layer and cells that affect the lift and

drag computation. In general, these two performed very well at capturing the flow features

of interest. Finally, the entropy adjoint mesh adaptation can be analyzed. As in the case of

the two subsonic tests, there was significant mesh adaptation at the stagnation points on the

leading and trailing edge as this is where spurious entropy generation occurs in numerical

simulations over airfoils. There was also significant mesh adaptation along the shock, better

capturing its effects in the solution. This is due to the fact that the shock generates entropy

and so it is captured by the entropy adjoint indicator.
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(a) Baseline Solution

(b) Feature Based Solution

(c) Drag Adjoint Solution

Figure 4.5: Transonic Test, M = 0.8, α = 1.25, f = 0.25
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(d) Lift Adjoint Solution

(e) Entropy Adjoint Solution

Figure 4.5: Transonic Test, M = 0.8, α = 1.25, f = 0.25

Again, figure 4.6 shows the convergence of the coefficient of lifts can be seen to have a

similar trend to the previous two test cases. The lift indicator converged fastest, followed by

the drag indicator. Finally, the entropy adjoint and feature-based mesh adaptation look to

need more iterations for convergence to the true coefficient of lift. This is as expected due to

the low order polynomials and the low number of mesh adaptations run on the original grid.

With an increase of adaptations on a higher order grid, it likely would have better depicted

the difference in performance of the indicators.
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Figure 4.6: Transonic Test Coefficients of Lift during Adaptation

4.4 Summary

In summary, the entropy adjoint mesh adaptation succesfully identified locations in the

mesh of spurious entropy generation, along with the shock that generated entropy. This

shows its utility as an indicator for doing mesh adaptation in areas of interest in airfoil

problems. It also has the advantage of not needing to solve a linear system of equations

to determine the adjoint solution, reducing its computational costs compared to other goal-

oriented indicators. Finally, figure 4.7 shows how as the degrees of freedom increased during
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adaptations, the Dual-Weighted Residual decreases for the entropy indicator. This indicates

that the numerical solution has grid independence.

Figure 4.7: Fixed Fraction Mesh Refinement for f = 0.75.
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Chapter 5

Conclusion and Future Work

This thesis implemented and investigated the usage of the entropy adjoint equations for

mesh adaptation. Using the Discontinuous Galerkin method as a numerical solver and the

Dual-Weighted Residual to compute the cell-wsie error, it was shown with three different

two-dimensional test cases that the entropy adjoint functional can be used to identify cells

of spurious entropy generation. It also successfully identified locations in the inviscid flow

that generated entropy such as shock waves. Additionally, it was also shown that there

are reduced computational costs for the entropy indicator compared to other goal-oriented

indicators as a linear system of equations doesn’t need to be solved to compute the adjoint

solution. The two subsonic and transonic test case also underwent mesh adaptation for lift-

oriented, drag-oriented and feature-based mesh adaptation for comparison. From this it was

shown that feature-based mesh adaptation performed very poorly at identifying cells to be



5. Conclusion and Future Work 40

adapted that were in areas of interest of the airfoil compared to the goal-oriented indicators.

Aditionally, the coefficient of lift convergence was tracked for the different adaptation types

to compare their performances. From this, it was shown that the lift indicator converged the

fastest followed by the other two goal-oriented indicators. Finally, the feature-based mesh

adaptation didn’t show signs of convergence towards the coefficient of lift.

Future work to improve the analysis of the indicator performance needs to be done.

Running test cases with higher order polynomial approximations for the cell-wise solutions

along with more adaptations would show more clearly the improved performance of the

goal-oriented indicators and how they compare to eachother. The entropy adjoint mesh

adaptation technique could also be extended to three-dimensional test cases to adapt the

mesh to capture other flow characteristics of interest such as wingtip vortices [26]. Other

possible future work includes adapting the entropy adjoint functional for the Navier-Stokes

equations. This is to account for the introduction of viscosity into the flow meaning that

entropy will be generated in the solution, changing the formulation of the entropy transport

flux.
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