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Montreal, Québec, Canada

September 18, 2019

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

c© Martin R. Otto, 2019



ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Bradley Siwick for his commitment to excellent

science and the consistent academic and personal support he was able to provide throughout

my Ph.D. studies in his group at McGill. Your guidance and insistence on letting me

chart my own research course formed a true path to understanding which I now realise

to be precisely the reason I embarked upon a Ph.D. I would also like to deeply thank
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ABSTRACT

Ultrafast electron scattering with radio-frequency pulse compression is a laboratory

scale technique capable of interrogating the time-dependent structure of matter with sub-

picosecond temporal resolution. In this thesis, a novel approach to achieve high-quality

laser-microwave synchronization is devised and implemented. The technique involves the

direct generation of the compression field signal from a phase-locked frequency comb. The

frequency comb is produced through direct photo-detection of an ultrafast laser pulse

train and the appropriate signal is filtered and conditioned in an ultra-low phase noise

microwave system. This synchronization system, combined with an active phase stabiliza-

tion system integrated into the electron pulse compressor, is demonstrated to yield robust

timing synchronization into the sub-50 fs level for electron pulse arrival time stability. The

enhanced performance of the ultrafast electron diffraction instrument enabled by the new

synchronization system is applied in the study of the photo-induced phase transitions in

vanadium dioxide. The photo-induced monoclinic metallic phase is studied in detail and

found the consist of an anti-ferroelectric charge-ordering along the c-axis of the material. In

conjunction with complementary time-resolved terahertz spectroscopy measurements, the

fluence-dependent non-equilibrium volume phase fractions are determined, and the forma-

tion times of the monoclinic metallic phase are found to have an energy activated character

consistent with recent theoretical calculations. Titanium diselenide, a layered transition

metal dichalcogenide compound is also studied in the high-temperature phase. Measure-

ments of the time-resolved diffuse intensity reveal photo-induced phonon hardening on a

100 fs timescale at specific points of the Brillouin zone where a soft-mode lattice instability
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and Kohn anomaly are found. This novel observation is understood in terms of a diver-

gent electronic susceptibility and the relative magnitudes of the wave-vector dependent

electron-phonon coupling are determined at various points in the Brillouin zone.
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ABRÉGÉ

La diffraction ultrarapide par électrons avec compression radio-fréquence est une tech-

nique expérimentale capable dintérroger la structure évolutive de la matière, avec une

résolution temporelle sous une picoseconde. Cette thèse décrit une approche nouvelle

de synchronisation haute-performance entre laser et système électronique radiofréquence.

Cette technique enjoint la génération directe du signal de compression à partir dun peigne

de fréquence avec phase stabilisée. Le peigne de fréquence est produit par photo-détection

directe dun train dimpulsions laser ultrarapides et le signal approprié est filtré puis condi-

tionné dans un système radiofréquence à niveau de bruit ultra-faible. Ce système de syn-

chronisation, combiné à un système de stabilisation active de phase intégré au compresseur

radiofréquence, démontre une synchronisation robuste avec au plus 50 femtosecondes de

variation darrivée. L’amélioration de la performance du diffractomètre ultrarapide par

électron de au nouveau système de synchronisation est exploitée lors dune étude sur la

transition de phase par induction optique du dioxide de vanadium. La phase métallique

monoclinique induite de manière optique est étudiée en détail et est trouvée à supporter

un ordre de charge anti-ferroélectrique le long de laxe c du matériau. En tandem avec

la spectroscopie ultrarapide par térahertz résolue dans le temps, les fractions de phases

dépendentes de la fluence ont sont déterminées, et le temps de formation de la phase

métallique monoclinique est trouvée à avoir une énergie dactivation qui coincide avec de

récents calculs théoriques. Le séléniure de titanium, une dichalcogènure de métal de tran-

sition stratifié, est aussi étudié dans sa phase de haute-température. Des mesures résolues

dans le temps de lintensité diffuse révèlent un durcissement phononique par induction op-

tique à léchelle de 100 fs à certain points spécifiques de la zone de Brillouin, là où une

instabilité par adoucissement du mode phononique et une anomalie de Kohn se trouvent.
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Ces nouvelles observations sont analysées en terme de divergences dans la susceptibilité

électronique et lampleur relative du couplage électron-phonon est déterminés à plusieurs

points de la zone de Brillouin.
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provided by Laurent René de Cotret. The cavity modelling and RF electronics assembly

was carried out by the author. The vanadium dioxide experiments involved a collaboration

with the research group of David G. Cooke. His students, David Valverde-Chavez and

Kunal L. Tiwari performed the time-resolved terahertz spectroscopy experiments. The au-

thor performed the data analysis presented in this thesis. The ultrafast electron scattering

experiments where conducted by the author with help from Laurent René de Cotret. The
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CHAPTER 1
Introduction: material properties away from equilibrium

Time-dependent processes in nature play important roles in establishing the time-

independent, or equilibrium character of matter. Despite our perception of existing in a

universe which seems to be always “in-equilibrium”, the way in which matter tends toward

and ultimately reaches equilibrium is governed by the competition between fundamental

excitations. Understanding the interactions and coupling strengths between such funda-

mental excitations is dramatically simplified in the time-domain because rates of change

are often related to coupling terms. For well over a century, scientists have been developing

techniques to capture the motion of objects which exceed the capabilities human percep-

tion. In time this conquest entered the domain of microscopic objects such as molecules,

atoms and electrons. A central goal of science thus became recording physical and chemical

processes in “real-time”. There has been great excitement around this theme and its spans

from single elements to massive macro-molecular systems existing in the gas, liquid and

solid phases.

A related area of research is the use of external perturbations to control and even

create novel states of matter [1, 2, 3, 4]. Ultrafast optical pulses provide a mechanism to

selectively interact with electronic states on the femtosecond (10−15 s) timescale, rapidly

displacing them from equilibrium with respect to the crystal lattice of the material. The

competition between the interacting degrees of freedom (charge, spin, orbital and lattice)

govern the response of the material and transitions into non-trivial states of matter with

exotic properties can occur [5]. Understanding the microscopic processes which facilitate

these events is a central focus of ultrafast science of solid-state materials.

1



2

1.1 The challenge of resolving fundamental atomic level dynamics

Measurements of dynamical processes in nature require both spatial resolution and

temporal resolution often abbreviated as spatio-temporal. In basic terms, the apparatus

used in the experiment must consist of components which actuate faster than the physical

process to be measured. This condition is analogous to a conventional camera, for which the

time-resolution is dictated by the exposure time and shutter speed. The time-dependent

measurement of molecules and atoms is fundamentally constrained by the extreme scales

of space and time associated with atomic and molecular motion. In condensed phases,

atoms and molecules organize over length scales corresponding to roughly an Ångstrom

(10−10 m) and their motion is governed by the energy and bandwidth of permitted processes

along with their masses. Collective oscillations in solids typically have energies in the

range of roughly 10–100 meV which translates to periods of picoseconds and below (1

ps = 10−12 s) within which an atom may oscillate back-and-forth about its equilibrium

position. Larger molecular species, such as macro-molecules and proteins, are a thousand-

fold more massive than single atoms, and have weak inter-molecular interactions which

yield structural transformations transpiring on the order of microseconds (1 µs = 106 ps

= 10−6 s).

1.1.1 Reversible pump-probe technique

Acquisition times of state of the art detectors remain orders of magnitude to slow

for measuring atomic and molecular motion in a “continuous” manner. One way around

this problem is to use “flashes” or pulses of radiation which measure the material over a

short period of time established by the temporal duration of the pulse. Measuring time-

dependent phenomena in this way requires initiating the relevant processes with respect to

a timing reference or “clock” in the laboratory by means of an excitation or “pump” pulse.

This clock is typically some type of electronic or optical oscillator which precisely produces
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pulses at a well-defined repetition rate, or continuous signals at a stable frequency and

phase. Second, the measurement or “probe” pulse measures the sample at a particular point

during its temporal evolution following the pump excitation. This type of measurement is

said to be stroboscopic and is called the pump-probe experiment. Experiments of this type

are said to be reversible if the excited sample returns to its initial state (the state before

excitation by the pump pulse) within the period of the timing reference, or before the next

pump pulse. This concept is illustrated in Fig. 1–1. Physical processes which end up in

different final states following excitation by the pump are said to be irreversible.

Stroboscopic experiments are often referred to as equivalent time methods. This means

that the physical process undergoes an equivalent temporal evolution each time a pump

pulse stimulates the sample. Each instance measured by the probe at time t following the

pump is assumed to have behviour which is highly-correlated with the same time t for any

other pump pulse during the total measurement interval.

1.1.2 Time-resolution of a pump-probe experiment

The overall time-resolution of a pump-probe experiment depends on many experimen-

tal parameters. In a typical pump-probe spectroscopy experiment, the pump and probe

pulse widths dictate the total time resolution of the experiment. If the temporal enve-

lope of the pump and probe pulses may be treated as Gaussian, with root-mean-squared

(RMS) widths τpump and τprobe respectively, the total time resolution is a quadrature sum

τ2
pump + τ2

probe. In general, there can be temporal fluctuations affecting synchronization

between the pump and probe pulses, thus affecting the time-delay between the pulses, ∆τ .

This is called jitter and is described by τjitter. Finally, there can be geometric temporal

factor τgeom which depends on the velocity mismatch of the pump and probe pulses at the

sample position. The total time-resolution is thus given by

τtot =
√
τ2

pump + τ2
probe + τ2

jitter + τ2
geom. (1.1)
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…
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Figure 1–1: Illustration of a reversible pump-probe experiment.
A pump pulse having a temporal duration τpump excites a time-dependent sample response,
which lasts for some duration τrec. The probe pulse measures the sample response after a
precisely controlled time-delay ∆τ and captures a “snapshot” of the dynamics occurring
within a time interval established by the temporal duration of the probe pulse τprobe. The
pump and probe pulses are produced at a specific time interval Trep = 1/frep where frep

defines the repetition rate of the experiment. Temporal jitter is described by τjitter and
leads to a statistical broadening of the probe pulse. The condition for a reversible pump-
probe experiment is that τrec < Trep, so that the sample returns to its initial state. This
criteria allows for integration or averaging of many identical measurements within a time
interval Tint � Trep, elimating the constraint of using a relatively slow detector.

1.2 Ultrafast laser sources

It is no exaggeration to say that the development of ultrafast laser systems revolution-

ized both fundamental science and technology [6, 7]. The technique of mode-locking [8, 9]

has proven itself capable of producing very short pulses into the sub-picosecond regime in

oscillator lasers. These lasers and the work culminating to their optimization advanced our

understanding of opto-electronics and photonics, key research areas of the telecommunica-

tions industry [10]. Oscillators also gathered considerable interest as ultrastable frequency
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sources [11], and had the advantage of being highly tunable and broadband compared to

conventional atomic clocks and solid-state oscillators. Oscillators can generate high-quality

radio-frequency and microwave signals at the repetition rate of the laser fr defined by the

length of the laser cavity Lc and the speed of light c as fr = c/2Lc. Harmonics are also pro-

duced at nfr up to frequencies limited by the bandwidth of the opto-electronic device which

converts the laser beam to the electrical signal forming a stable, broadband, phase-locked

frequency comb. The opto-electronic device is typically a photo-detector, which consists

of a semiconducting photo-diode shunted to an RC integrated circuit. The electron-hole

carriers generated in the diode drive a current response in the time-domain at an interval

established by fr. In chapter 2 of this thesis, a synchronization system based on an ultra-

stable frequency comb synthesized by a mode-locked oscillator is developed and applied to

pump-probe measurements of atomically resolved dynamics in materials.

Oscillators were also implemented in pump-probe spectroscopy applications. The

range of possible experiments were however limited, in part due to high repetitions rates

of the oscillators but mostly due to the low pulse energies which limited the exploration

of strongly driven light-matter interactions and non-linear optics [12]. This was overcome

in the 1980’s due to the invention of chirped-pulse amplification by Nobel laureates Donna

Strickland and Gérard Mourou [13] which delivered roughly a factor of one-million increase

in the pulse energy of ultra-short laser pulses. This step forward transformed the discipline,

opening up many new avenues in fundamental science and industry. The field of optics

flourished and advances in non-linear optics lead to further development of laser sources

spanning from the ultraviolet to the far infrared. Strickland and Mourou stretched out the

ultrashort optical pulse in time using diffraction gratings before amplifying it in a laser

cavity. Only with this added dispersion was the peak power of the pulse low enough to

efficiently increase the pulse energy. Following amplification, the pulse was re-compressed
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using essentially the same grating configuration but to the reverse effect. This advance-

ment could reliably increase pulse energies into the milli-Joule range and peak powers well

into the giga-Watt regime. In turn, amplified femtosecond laser sources have become es-

sential instruments driving ultrafast science and research and are common-place in modern

ultrafast science laboratories.

1.3 Basic properties of electron pulses

Ultrafast laser systems provide the required time resolution for resolving atomic mo-

tion in a pump-probe experiment. However, the wavelength of the light produced by or

subsequently derived from such laser systems remains a limitation in terms of spatial reso-

lution. A suitable radiation source which has a wavelength on the order of the atomic scale

must be found. Electron pulses meet this requirement and have a DeBroglie wavelength

λ = 2π~/p, where p is the relativistic momentum given by

p = γmev, (1.2)

where me is the rest mass of the electron and γ = 1/
√

1− v2/c2 is Lorentz factor for

which c is the speed of light in vacuum and v is the speed of the electron. The relationship

between energy and momentum is given by

E =

√
p2c2 + (mec2)2. (1.3)

For non-relativistic (γ ≈ 1) Eqn. 1.3 is well approximated by E ≈ p2

2me
+mec

2 in which the

first term corresponds to the classical kinetic energy Ek = 1
2mev

2 and the second term is

the rest mass energy. For 100 keV electrons, the DeBroglie wavelength is 3.7 picometers

(pm).

Ultrashort pulses of electrons can be generated by the process of photo-emission using

UV light generated by a non-linear optical process called third harmonic generation. To
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first order, electrons of energy ε = ~ω−Φ are emitted if the energy of the incident photons

~ω exceeds the intrinsic work function Φ of the source material. Metals will typically

have values of Φ around 5 eV (ΦCu ' 4.16 eV for example) [14]. For an ideal pristine

emission surface, the initial energy distribution of photo-emitted electrons is governed by

the bandwidth of the optical pulse ∆ε = ~∆ω, which is typically ∼ 0.2 eV for femtosecond

pulses. In practice however, surface effects such as multi-faceting yield a distribution

of work-functions [15] contributing to an enhanced energy broadening. The process of

photo-emission will generate a dense bunch of electrons which then require acceleration to

sufficient energies such that they obtain a DeBroglie wavelength comparable to or shorter

than atomic length scales. This can be achieved using static DC fields, radio-frequency

fields and laser fields depending on the application and design of the electron source.

An important figure of merit for an electron beam is the transverse coherence ξ⊥

defined as [16, 17, 18]

ξ⊥ ≡
λ

2πσθ
, (1.4)

where σθ = σvx/v0 is the statistical RMS angular spread of the beam, expressed in terms

of the transverse velocity spread σvx . Making use of the DeBroglie formula, Eqn. 1.4 can

be expressed as

ξ⊥ =
~

meσvx
=

~
σpx

, (1.5)

where px is the transverse momentum. The beam emittance is a related quantity commonly

used when discussing charged particle beams and is defined as

εx ≡
1

mec

√
〈x2〉〈p2

x〉 − 〈xpx〉2, (1.6)

where 〈〉 represents a statistical average over particles. The first term in the square-

root describes uncorrelated statistical quantities whereas the second describes correlated

quantities. In a Gaussian beam waist, Eqn. 1.6 becomes εx = 1
mec

σxσpx where σx is the
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RMS width of the beam [16]. Therefore, the emittance of a beam in this case can be simply

understood as the product of a beam’s width and divergence, described by the transverse

velocity spread. It then follows that the transverse coherence can be expressed as

ξ⊥ =
~
mec

σx
εx
. (1.7)

As a general rule, the emittance of the beam determines how well (tight) it can be focused.

1.4 Space-charge dispersion

Electron pulses generated via photo-emission by an ultrashort (∼40 fs) laser pulse

initially have a high charge density. Space-charge effects [19, 16] (Coulomb repulsion) are

significant in this regime and initiate dispersive velocity broadening in both the longitu-

dinal (propagation axis) and transverse (radial) directions in the rest frame of the pulse.

Photo-emission produces a distribution of “photo-electrons” which may be approximately

described by a uniformly charged axially-symmetric ellipsoid with maximum radius R and

half-length L. The charge density of this distribution is given by ρ0 = Q/4
3πR

2L where

Q = Nq is the total charge consisting of N electrons. The electrostatic potential Φ(r, z) of

this electron distribution in cylindrical coordinates is given by [16, 20, 21]

Φ(r, z) =
ρ0

2ε0

(
arctan(Γ)

Γ
R2 − 1

2
(1−M) r2 −Mz2

)
, (1.8)

where Γ =
√
R2/L2 − 1 is the eccentricity of the ellipse and M is given by

M =
1 + Γ2

Γ3
(Γ− arctan(Γ)) . (1.9)

The fields in the electron bunch are found using E(r, z) = −∇Φ(r, z), which are found to

depend linearly on the coordinates r and z as given by

E(r, z) =
ρ0

ε0

(
1

2
(1−M) rr̂ +Mzẑ

)
. (1.10)
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The transverse and longitudinal linear space-charge fields in the bunch yield a linear ex-

pansion in both the longitudinal (`) and transverse (t) directions during acceleration and

propagation. In the rest frame of the pulse, potential energy is converted into kinetic en-

ergy as the pulse disperses. The potential energy of the bunch can be evaluated in closed

form and is found by integration of Φ(r)

Up =
1

2
ρ0

∫
Φ(r)dr =

1

2
ρ0

∫ 2π

0
dθ

∫ L

−L
dz

∫ R
√

1−z2/L2

0
Φ(r, z)rdr, (1.11)

Up =
3Q2

20πε0L

arctan(Γ)

Γ
. (1.12)

In the limit where R � L, Up → 3Q2/40ε0R remains finite. The particles in the bunch

develop a linear spatial correlation for which the velocity vector describing an electron is

v(r, z) = r
Rvtr̂ + z

Lv`ẑ. The kinetic energy of the bunch is given by

Uk =
1

2
me

ρ0

e

∫ 2π

0
dθ

∫ L

−L
dz

∫ R
√

1−z2/L2

0
|v(r, z)|2rdr (1.13)

Uk =
Q/e

5
mev

2
t +

Q/e

10
mev

2
` . (1.14)

As an illustration of the effects of space-charge dispersion, the magnitude of the in-

duced velocity chirp is estimated in the longitudinal direction by assuming that the poten-

tial energy Up of the bunch at the instance of photo-emission gets completely converted to

kinetic energy Uk after the pulse has dispersed in time during propagation. If the initial

charge distribution is sufficiently uniform, the transverse and longitudinal velocities will be

roughly equal. One then finds that v` =
√
Ne2/4ε0meR, where N = Q/e is the number

of electrons in the bunch. For N = 106 electrons, the maximum longitudinal velocity gain

is on the order or v` ≈ 106 m/s for an initial transverse pulse radius of 50 µm, corre-

sponding to a maximum energy gain (loss) of Uk ≈ 20 eV for particles at the front (back)

of the electron pulse as indicated in figure 1–2. The pz − z phase space representation
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Initial bunch radius (um)
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Figure 1–2: Space-charge effects in ultrashort electron pulses
Right) Magnitude of kinetic energy chirp acquired by an ultrashort electro pulse produced
by photoemission for various initial radii as a function of the bunch charge (electrons per
pulse). The maximum velocity gain is shown in the inset. Left) illustration of the pz − z
phase space evolution of the electron pulse distribution. Initially there are no pz − z
correlations and the bunch energy in the rest frame of the pulse is mostly potential energy
due to a high charge density. Over time the potential energy is converted to kinetic energy
resulting in a roughly linear pz − z correlation.

of this process is the following: Immediately following photo-emission, momentum in the

longitudinal direction (pz) is uncorrelated with the spatial coordinate (z); pz(z) is initially

homogeneous. Over time the space-charge forces induce a strengthening linear correlation

in the bunch distribution; pz(z) ∝ z is linearly correlated along the longitudinal direction.

1.4.1 Momentum modulation with time-dependent fields

The dominant first order effect of space-charge broadening is the deterioration of the

temporal resolution by lengthening the electron pulse in time. As shown in Fig. 1–2,
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this effect is strongly dependent on the pulse-charge Q, conforming with a basic intu-

ition from electrostatics. After roughly 1 nanosecond (∼ 20 cm propagation length at

100 keV) an electron pulse containing Q = 106 electrons initially with temporal duration

τ0 ≈ 100 femtoseconds stretches to ∼ 10 picoseconds due to space-charge dispersion. For-

tunately, the linear correlation in pz − z occurring in phase space of the electron pulse

distribution enables a solution. The solution is to re-compress the pulse with a time-

dependent field so as to invert the linear pz − z correlation [16, 22].

Consider a harmonic time-varying electric field Ez(t) = E0z sin(ωt+ϕ) along the z axis

of propagation of the electron pulse. Electrons interacting with the field will experience a

net change in momentum ∆pz according to

∆pz(ti) = −e
∫ ti+T

ti

Ez(t)dt, (1.15)

where T is the interaction time of the electrons injected into the field Ez(t) at time ti.

Positively chirped electrons will interact with the field earlier in time and will thus sample

a different portion of the oscillating field than the negatively chirped electrons. This

difference in arrival time at the field position results in a difference in the momentum

gained (or lost) by the electrons depending on their position within the pulse. This results

in an energy/momentum dependent velocity modulation which can be used to “invert”

space-charge induced dispersion. Since the space-charge induced energy gain is much less

than the total kinetic energy (v` � v) of each electron, it can be assumed that each

electron spends the same amount of time T = d/v interacting with Ez(t). Furthermore,

the phase of the field oscillation can be set to ϕ→ −ωd/2v + φ such that electrons at the

center of the pulse (i.e. those for which v` = 0) experience on average Ez(t) = 0 when

ti = 0. Appropriate selection of the phase yields a deceleration (acceleration) of positively

(negatively) chirped electrons. An overall field phase shift of π results in precisely the
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Figure 1–3: Concept of pulse compression with time-dependent electric fields
Electron pulses produced by photo-emission have an initial momentum spread ∆pz0 and
pulse duration τ0 roughly equivalent to the optical pulse. Space-charge effects lead to the
uniform broadening of the momentum distribution by ∆pz along the longitudinal z−axis
resulting in an elongated pulse with duration τint. A linearly-varying electric field intro-
duced a momentum dependent modulation of the pulse which reverses the space-charge
evolution resulting in the re-compression of the pulse to a duration τf at the temporal
focus position further down the propagation axis.

opposite effect: further temporal stretching of the pulse. In order to have a linear ∆pz(ti),

necessary for the inversion of space-charge effects, the pulse duration upon injection into

the field is much less than the period of the field cycle, τ � 1/ω so that the electrons will

sample the linearly varying segment of the field. The maximum momentum gain difference

between the fastest electrons which interact with the electric field first and the slowest

electrons which interact at the latest times can be estimated as follows. The duration

of the electron pulse upon injection into the field region is τ = 2L/v. This is found by

evaluating ∆∆pmax
z = ∆pz(ti = τ/2 = L/v)−∆pz(ti = −τ/2 = −L/v) which yields

∆∆pmax
z =

eE0zωτd

v
cos(φ). (1.16)



13

The details of the physics of electron pulse compression will be described further in chapter

2. The required compression fields can be reliably produced using 3-dimensional radio-

frequency cavities operating in the gigahertz frequency range. In this thesis the compression

of electron pulses to the ∼100 fs regime has been demonstrated for pulse charges of 0.1

pC (∼ 106e−) using a 3 GHz cavity. These pulses form a suitable probe of atomic scale

dynamics in condensed matter.

1.5 Laser-microwave synchronization

Equation (1.15), along with our strict phase conditions lead to a pronounced sensitivity

to the phase stability of the harmonic electric field performing the compression operation.

In essence, phase fluctuations ∆φ in the cycle of Ez(t) result in either a gain or reduction

in the average kinetic energy of the pulse depending on the sign of ∆φ. This translates

to a change in the time-of-flight from the compression cavity to the sample position in an

experiment and gives rise to a timing discrepancy with respect to a reference (for example,

an optical laser pulse). This effect is extreme for typical cavity structures used for electron

diffraction and is on the order of 100 fs/mrad depending on details of the beamline and

cavity geometry. This complication arises predominantly from two sources: 1) the quality of

synchronization between the laser system driving the electron pulse generation and the RF

signal driving the cavity compressor and 2) the frequency detuning between the RF drive

signal and the compression cavity resonance. Important concepts related to quantifying the

quality of synchronization and the overall phase/frequency stability of a harmonic signal

will be presented in Sec. 2.4.1.

1.6 Theory of electron scattering from crystalline materials

Scattering is a very general tool in physics and it can be applied with unprecedented

precision in a host of systems. The basic idea is to determine information about a system
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by analyzing the difference between incident and outgoing waves. This includes measur-

ing the momentum transfer and energy transfer between the incident and outgoing waves.

Scattering patterns are formed through the interference of the scattered waves. The result-

ing interference pattern results from phase modulations imparted on the scattered waves

through the interaction of the wave with the scattering source. In large periodic systems

such as crystals, this interference process culminates in a diffraction pattern which maps

the crystal structure in momentum space. In this section the key results of scattering

theory are presented when considering electrons as the radiation source. There are many

excellent resources available on scattering [23, 24, 25, 26, 27].

1.6.1 Quantum description of single particle scattering due to a potential

Electrons moving in free-space satisfy the time-dependent Schrödinger equation [28]

~2

2me
∇2Ψ(r, t)− i~ ∂

∂t
Ψ(r, t) = 0, (1.17)

and are described by plane-wave solutions of the form Ψ(r, t) ∝ exp (2πik · r + iωt). The

energy eigenvalue E is related to the wavevector k according to E = ~ω = ~2|k|2
2me

, where

|k| = 2π/λ is the electron wavelength. The evolution of this simple plane-wave solu-

tion upon the interaction with an electrostatic potential V (r) is of primary interest. The

influence of V (r) on Ψ(r, t) determines the amplitude of the scattered wave and trans-

fers a specific phase relationship with respect to the incident wave. For an incident

electron with energy E = 100 keV, λ = 3.7 pm, which yields an angular frequency of

ω = ~/2meλ
2 = 4.23 × 1018 Hz. The magnitude of this frequency establishes that the

scattering sites (atoms for example) appear completely static during the temporal period

of electron wave oscillation. From this it can be assumed that the scattering from the
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potential V (r) is a time-independent process and that the iωt phase component may be

ignored1 .

It follows that the scattered electron wave is a solution of the time independent

Schrödinger equation

− ~2

2me
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (1.18)

This can be re-written in the form of the Helmholtz equation given by

(
∇2 + k2

)
ψ(r) = V (r, ψ(r)) , (1.19)

where V (r, ψ(r)) = 2me
~2 V (r)ψ(r) [29]. A solution can be found using the Green’s function

method, where the Green’s function G(r) satisfies
(
∇2 + k2

)
G(r) = δ3(r) [29]. It follows

that ψ(r) =
∫
dr0G(r− r0)V(r0, ψ(r0)) is a solution to Eqns. (1.18) and (1.19). A Green’s

function of the form G(r− r0) = exp (ik|r− r0|)
/

4π|r− r0| may be used which yields the

following integral solution for Eqn. (1.19)

ψ(r) = ψ0(r)− me

2π~2

∫
dr0

exp (ik|r− r0|)
|r− r0|

V (r0)ψ(r0), (1.20)

where ψ0(r) satisfies the Schrödinger equation in free-space and describes the incoming

wave before scattering.

The first Born approximation [30] is made by assuming that the interaction of ψ(r)

with V (r) is spatially centered around r0 = 0. Furthermore, our interest in the behavior

of the wave-function at large distances from the scattering location, i.e. for |r| � |r0|.

From this it can be said that |r − r0| ≈ r − r̂ · r0 and the Green’s function simplifies to

1 One might point out that the topic of this thesis is in fact time-dependent electron
scattering. The experiments presented hereafter in this thesis measure time-dependent
scattering through the assembly of scattering measurements each of which are assumed to
be static (“snapshot”) in time over a prescribed time sequence.
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G(r, r0) = exp (ik|r− r0|)
/

4π|r−r0| ≈ r−1 exp(ikr) exp(−ikr̂ ·r0), allowing for Eqn. (1.20)

to take the form

ψ(r) = ψ0(r) +
exp(ikr)

r

[
−me

2π~2

∫
dr0 exp (−ikr̂ · r0)V (r0)ψ(r0)

]
. (1.21)

Equation (1.21) represents the sum of a plane wave given by ψ0(r) and a spherical wave with

a profile given by the exp(ikr)/r term. The term in the square brackets is the scattering

amplitude f , which has units of distance. The qualitative features of Eqn. (1.21) are

consistent with the scattering of light from a point source described by Huygen’s principle,

i.e. in the form of spherical waves. The amplitude, however, depends on the quantum

mechanical interaction with of the wave-function ψ with the potential V at r ≈ r0.

Another approximation, called the second Born approximation, where the potential

is assumed to be weak such that the ψ0(r) ≈ ψ0(r0) can now be made. Specifically, the

incident plane wave ψ0(r) exp (ik0 · r) and the scattered wave is only altered in its direction

determined by k. It follows that ψ(r0) = exp (ik · r0). Now the scattering amplitude f

takes the following form

f = − me

2π~2

∫
dr0V (r0) exp (−i(k− k0) · r0) . (1.22)

The integrand above in Eqn. (1.22) can be understood as the Fourier transform of the real-

space potential V (r) with the Fourier variable q = k − k0. Moreover, it can also be seen

as a matrix element describing the transition from |k0〉 to |k〉 plane wave states through

the interaction with V (r) according to

Vk0,k = 〈k0|V (r)|k〉. (1.23)

The scattering amplitude f is related to the differential scattering cross section dσ/dΩ =

|f(θ, φ)|2, where dΩ = sin θdθ′dφ′ is the solid angle in the lab-frame.
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In the case of a spherically-symmetric potential, i.e. V (r) = V (r), the angular inte-

gration may be carried out and the scattering amplitude may be expressed as

f(θ) = − 2me

~q(θ)

∫ ∞
0

dr0r0V (r0) sin (qr0) , (1.24)

where the θ dependence is contained in q(θ) = |q| = 2|k| sin(θ/2). Equation (1.24) generally

holds for spherical atoms (low energy orbitals, s and p, and ionically bonded materials)

but becomes less accurate when the electrostatic potential involves bonding electrons. By

convention, the scattering amplitude for electrons is expressed in terms of the scattering

vector q = k− k0 and expressed as

fe(q) =

∫
dr0 exp(−iq · r0)V (r0). (1.25)

1.6.2 Scattering from a crystal at zero temperature

Scattering becomes a very powerful tool when the symmetry of a physical system im-

parts specific phase criteria for constructive and destructive or interference of the scattered

waves. This allows for large scattered intensity to be measured at specific values of q.

In a crystalline solid, atoms are arranged in a periodic manner resulting in translational

symmetry. A crystal consists of unit cells which are defined as the smallest repeating

microscopic unit of the material. They can be single atoms or collections of many. In

remaining completely general, the potential of the crystal is written as a sum over α atoms

in the unit cell, and an infinite sum over unit cells n. The position of atom α in unit cell
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n is located at Rn + rα, and the potential is written as2 [25, 26, 23]

V (r) =
∑
n

∑
α

Vα (r−Rn − rα) , (1.26)

where Vα is the potential of atom α in unit-cell n. The periodicity of V (r) ensures that

the form of Vα(r−Rn− rα) is identical for a given pair of n and α values, thus the Fourier

transform of V (r), V (q) can take the form

V (q) =
∑
n

∑
α

∫
drVα(r−Rn − rα) exp (−iq · r) , (1.27)

=
∑
n

exp(−iq ·Rn)
∑
α

∫
drVα(r) exp(−iq · r) exp(−iq · rα), (1.28)

=
∑
{G}

δ(q−G)
∑
α

Vα(q) exp(−iq · rα). (1.29)

In arriving at Eqn. (1.29), the mathematical identity
∑

n exp(−iq ·Rn) =
∑
{G} δ(q−

G) has been applied, and the set of vectors G satisfies

G ·Rn = 2π × Integer. (1.30)

The real-space vectors Rn = n1a + n2b + n3c form the basis of the crystal lattice. Equa-

tion (1.30) is a representation of the Bragg condition [31] and defines the reciprocal lattice

vectors G = ha∗ + kb∗ + `c∗ which must be of the form

a∗ = 2π
b× c

Σcell
, b∗ = 2π

c× a

Σcell
, c∗ = 2π

a× b

Σcell
, (1.31)

where Σcell = (a×b) · c is the volume of the unit cell and the vectors shown in Eqn. (1.31)

satisfy orthogonality with their real-space counterparts, i.e. a∗ · a = b∗ · b = c∗ · c = 1.

2 In practice, the crystal potential is multiplied by the so-called shape function S(r)
which describes the finite spatial extent of the macroscopic material.
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a) b)

Figure 1–4: Illustration of scattering by a crystal in reciprocal space
a) Zeroth order elastic scattering where the Bragg and Laue conditions are met, k− k0 =
q = G, where k and k0 are the outgoing and incidient electron wavevectors, and G is a
reciprocal lattice vector. b) First order thermal diffuse scattering where q = G + kp with
kp describes a momentum contribution from phonons. The Ewald sphere is defined with
a radius of |k| = |k0|. The small electron wavelength yields a nearly flat Ewald sphere
surface on the scale of the reciprocal lattice thus allowing for many instances where the
Bragg and Laue conditions are satisfied.

The indices hk` are the Miller indices of crystallography and define points in reciprocal

space. Equation (1.30) is technically the Laue condition which explicitly states k − k0 =

q = G and is illustrated in Fig. 1–4 a). For elastic scattering, |k| = |k0| and by taking the

square modulus of the Laue condition one arrives at

2k ·G = |G|2,

2|k| · |G| sin θ = |G|2,

2

(
2π

λ

)(
2πn

d

)
sin θ =

(
2πn

d

)2

,

2d sin θ = nλ, (1.32)

where Eqn. (1.32) is the well-known Bragg Law. Above the parameter d was introduced

as a lattice plane spacing distance and λ is the electron wavelength. In reciprocal space,

|k| ∝ λ−1 establishes the radius of the so-called Ewald sphere [32]. The number of reciprocal
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lattice points which are intersected by the surface of the Ewald sphere determines where

the Bragg and Laue conditions are met thereby yielding elastic scattering. One of the main

differences between electrons and X-rays as scattering probes is that for electrons the radius

of the Ewald sphere is much larger. For example, electrons at 100 keV have a wavelength

on the order of picometers, which is roughly 100 times smaller than the wavelengths of

hard X-rays used for diffraction (on the order of Ångstroms). This translates to a nearly

flat Ewald surface of the scale of reciprocal lattice points since the radius of the Ewald

sphere is ∼100 times larger. This allows for many more Bragg reflections to be observed

in electron diffraction versus X-ray diffraction for a given crystal orientation.

In Equation (1.29), Vα(q) is defined for each atom labelled by α and determined

through Eqn. (1.25). The term following the delta function in Eqn. (1.29), is defined as

the structure factor F0(q = G) [27]

F0(G) =
∑
α

Vα(G) exp(−iG · rα), (1.33)

=
1

Σcell

∑
α

feα(G) exp(−iG · rα). (1.34)

The structure factor F0(G) describes the amplitude of the scattering at regions of momen-

tum space established by q = G through the sum of contributions from all the atoms in

the unit cell multiplied by a geometric phase G · rα. This factor can yield extinction rules

for certain G vectors where F0(G) = 0 and it generally describes the interference effects

between waves scattered by different atoms in the unit cell.

As shown above, the amplitude of the wavefunction for the scattered electrons is pro-

portional to the crystal potential, and therefore also the Fourier transform of the potential.

The intensity, which is measured as some distance after the scattering, is determined by
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probability amplitude of the scattered wavefunction[26]

I(q) = ψ(q)∗ψ(q) ∝ |F0(q)|2 =
∑
α

∑
β

feα(q)feβ(q) exp (−iq · (rα − rβ)) . (1.35)

1.6.3 Effect of lattice vibrations: phonons

The treatment of scattering presented in the previous section assumed a temperature

of T = 0. This assumption fixes atoms perfectly at their equilibrium lattice positions and

ensures that the distance between any pair of atoms in the material is perfectly equal to a

lattice vector Rn = n1a+n2b+n3c. Lattice vibrations and thermal effects complicate this

picture, but do not in any way detract from the power of scattering as a tool for accurate

structural determination of material properties. At finite temperatures, the lattice system

of atoms contains thermal energy which is stored in the time-dependent displacement of

the atoms about their equilibrium positions (rα). The geometric structure factor must

be re-written under the transformation of rα → rα + uα where uα is the instantaneous

displacement of atom α and a time average over the motion given by 〈uα(t)〉 must be taken.

Mathematically, this reads [23, 33, 26]

F0(q) =
∑
α

Vα(q) 〈exp(−iq · (rα − uα))〉 =
∑
α

fα(q) exp(−Mα(q)) exp(−iq · rα). (1.36)

The factor Mα(q) = 2π2〈u2
α〉q2 is the isotropic Debye-Waller factor and characterizes the

weakening of the scattering amplitude of the atoms due to thermal motion. This suppres-

sion can also be thought of as resulting from the Bragg condition not being met as often

during a time-averaging interval.

More generally, in order to understand the full effect of lattice vibrations on the scat-

tering intensity I(q), the ensemble time-averaged form of Eqn. (1.35) must be calculated.

In fact, more specifically the ensemble average of the square of Eqn. (1.27) is required and
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is given by

I(q) =

〈∣∣∣∣∣∑
m

∑
α

fα exp (−iq · (Rm − rα − uα))

∣∣∣∣∣
2〉

, (1.37)

=
∑
m,n

∑
α,β

fαfβ exp (−iq · (Rm,n − rα,β)) 〈exp (iq · (um,α − un,β))〉 , (1.38)

=
∑
m,n

∑
α,β

fαfβ exp (−iq · (Rm,n − rα,β)) exp

(
−1

2

〈
[q · (um,α − un,β)]2

〉)
.(1.39)

In Eqn. (1.39) the double sums arise from squaring the sum, the vector abbreviations

zi,j = zi− zj have been introduced to simplify the equation and the identity 〈exp(−ix)〉 =

exp(−1
2〈x

2〉) has been applied.

The motion of atoms in solids described by the displacement vectors u is not arbitrary,

they consist of specific terms involving specific momenta and frequencies determined by the

symmetries and material constants of the crystal lattice. In the harmonic approximation,

valid when |rα| � |uα|, atoms move according to the phonon modes supported by the

material. These modes are found by finding normal mode solutions to the dynamical

matrix [34, 26, 35] which yields a set of phonon Eigenvectors êj,α,k and Eigenenergies ωj,k

where the index j specifies the phonon branch which labels the symmetry properties of

the phonon mode. Making use of this, the displacement of atom α in unit cell m may be

written as a sum over phonon modes in the following manner

um,α = <

 1

mα

∑
j,k

aj,kêj,α,k exp (−ik ·Rm − iωj,kt+ iϕj,k)

 , (1.40)

where mα is the mass of atom α and ϕj,k is a phase factor. The phonon amplitude

is aj,k is related to the quantum number nj,k of phonons in the phonon field |aj,k|2 =

~
mαωj,k

(
nj,k + 1

2

)
. Equation (1.40) is substituted into Eqn. (1.39) and expanded in the

small displacement limit in a Taylor series I(q) ≈ I0(q) + I1(q) + . . . . The derivation

can be found in several references [33, 23]. The zeroth-order term reduces to the T = 0
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expression shown in Eqn. (1.29) and describes the Bragg peak reflections. The first-order

term is called the thermal diffuse scattering intensity and simplifies to

I1(q) ∝
∑
j

nj,k + 1
2

ωj,k
|F1j(q)|2 , (1.41)

where F1j(q) is called the one-phonon structure factor and is given by

F1j(q) =
∑
α

fα(q)
√
mα

exp (−Mα) (q · êj,α,k) exp (−iq · rα) . (1.42)

The form of F1j(q) is very similar to Eqn. (1.36) except for an additional factor of q · êj,α,k.

This factor gives distinct structure to F1j(q) (and therefore also I1(q)) through the set of

phonon Eigenvectors, {êj,α,k} leading to regions of reciprocal space where F1j(q) vanishes

if q ⊥ êj,α,k. The q dependence is contained through its relation to k and G which is

q = G + k. The thermal diffuse intensity also is proportional to the mode occupancy nj,k

which yields a linear dependence of the scattering intensity on the number of phonons in

the branches j appearing at a given q. Futhermore, the intensity depends inversely on the

frequency of the phonons ωj,k.

1.6.4 Time-resolved electron scattering

Ultrafast electron scattering in a pump-probe setup involves collecting diffraction in-

tensity at a particular time delay value ∆t, I(q,∆t). Each image of I(q,∆t) is formed by

the scattering of an ultrashort electron pulse with a temporal duration of ∼ 100 fs. Thus

I0(q,∆t) is a measure of the average crystalline structure and I1(q,∆t) is a measure of

phonon properties within a 100 fs time-interval. In practice, the time-dependent intensity

changes as the time-delay is varied in a controlled manner are of interest. It is also conve-

nient to normalize the intensity by its value before laser excitation (which marks ∆t = 0)

which reads

∆I(q,∆t) =
I(q,∆t)− I(q, 0)

I(q, 0)
. (1.43)
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This convention is useful for our measurements as the relative changes which arise from

effects such as lattice heating, changes in crystal symmetry during a phase transition and

changes in atomic form factors are of primary interest. The relative change in thermal dif-

fuse scattering ∆I1(q,∆t) reports on the number of phonons nj,k along with their energies

ωj,k as a function of ∆t.

1.7 Optical excitation of solids

Light interacts with the electronic degrees of freedom of the material. There are many

excellent texts about this diverse topic [36, 37, 38, 39], in this section the relevant physics

for the experiments presented in later chapters are presented. Electrons are described

by wavevector states |ϕke(r)〉 with ke being the electronic wavevector. In crystals, the

electronic states are modulated by the periodicity of the lattice and their wavefunctions

are given by Bloch states

|ϕke(r)〉 = vke(r) exp (i(G− ke) · r) . (1.44)

The energy Eigenstates for the system described by a Hamiltonian is given by the dispersion

ε(ke) which maps energy-momentum relationship for the electronic states in the form of

continuous bands. For simple materials well-described by Bloch theory, if the Fermi energy

εF falls within an electronic band, that band becomes the conduction band. Within the

conduction band there are many un-occupied states into and out of which the electrons

can collectively flow and the material is said to be metallic. In this situation electronic

wavefunctions in the conduction band are delocalized throughout the material. Energy

regions between bands are sometimes called forbidden bands, since electronic states with

such energies are not supported in the material. When the Fermi energy falls in forbidden

bands, the material is an insulator since electrons fill up all available valence band states

below the Fermi level. The band gap is the energy difference between the valence band
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valence band

conduction band

Figure 1–5: Illustration of optical excitation of electrons in solids in the form of an interband
transition.
An interband transition occurs between valence and condution band states if the energy
difference is matched by the photon energy ~ω. The number of available states in a energy
range g(ε)dε is largest for parallel bands, which typically occurs in the vicinity of the band
gap ∆εgap for a direct band gap semiconductor.

maximum and conduction band minimum. A direct band gap is the situation where these

points occur at the same point in momentum space, and an indirect band gap is where

they do not.

Optical light fields drive electronic transitions defined by the band structure of the

material. The process creates electrons in the conduction band and holes in the valence

band. In general many types of transitions are possible, and they all reduce to evaluat-

ing the appropriate transition probabilities in terms of quantum mechanical Hamiltonian

describing the light-matter interaction. Such a Hamiltonian for one electron in an optical

field is given by

H(r,ke) =
~2

2m
k2
e + V (r)− e~

mc
A · ke +

e2

2mc2
A2, (1.45)

where A is the vector potential of the optical field. The procedure of second quantization

transforms (1.45) into the Jaynes-Cummings Hamiltonian [40] of quantum optics which

treat the optical field as a quantized photon field and the classical limit recovers Maxwell’s
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equations in a medium [41]. The strength of the optical field is generally weak, and the

transition rates associated with Eqn. (1.45) can be treated within the framework of per-

turbation theory. The energy dispersion curves ε(ke) describing the electronic states form

though the overlap of all the discrete atomic states of all the individual atoms comprising

the material. Although a continuum of electronic states form, the bands still impose energy

conditions which must be satisfied for an optical transition to occur. In semiconductors

and insulators, electronic transitions from valence to conduction band can occur when the

photon energy of the optical light field is equal to or greater than the energy of the band

gap. Photons carry very little momentum (kphoton = 2π/λ ≈ 105 cm−1) compared to the

dimensions of the Brillouin zone (π/a ≈ 108 cm−1, with a being a lattice constant). Given

this, momentum conservation insists that the wavevectors of the valence and conduction

band electronic states involved in an optical transition must be equal.

1.7.1 Interband transitions

An interband transition is considered first. In this case the photon energy equals

the energy difference between the valence and conduction bands, εv(k) and εc(k), respec-

tively. The transition probability per unit volume W(k)/dk in momentum space is found

using Fermi’s Golden Rule (FGR) and depends on the matrix element 〈ϕkv |H′|ϕkc〉 of the

interaction Hamiltonian H′ = − e~
mcA · ke [39, 36].

W(k) =
2π

~
∣∣〈ϕkv |H′|ϕkc〉

∣∣2 δ (εc(k)− εv(k)− ~ω) dk. (1.46)

The coupling between the two states is determined by 〈ϕkv |H′|ϕkc〉 and can be taken

as independent of k since A is approximately constant throughout the Brillouin zone.

Integration of Eqn. (1.7.1) determined the total transition rate

W =
2π

~
∣∣〈ϕkv |H′|ϕkc〉

∣∣2 g(~ω). (1.47)
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where g(~ω) is called the joint density of states and describes the number of states per unit

volume in momentum space between valence and conduction bands separated in energy by

~ω. The joint density of states depends on the curvature of the valence and conduction

bands. It is given by

g(~ω) =
2

(2π)3

∫
dkδ(εc(k)− εv(k)− ~ω), (1.48)

where the volume element can be written as dk = dSdkn where S is an energy surface

where εc − εv = ~ω and to which kn is normal. Using the definition of the gradient

|∇(εc − εv)|dkn = d(εc − εv). The joint density of states then reads

g(~ω) =
2

(2π)3

∫∫∫
dSd(εc − εv)δ(εc − εv − ~ω)

|∇(εc − εv)|
, (1.49)

g(~ω) =
2

(2π)3

∫∫
dS

|∇(εc − εv)|~ω
. (1.50)

Equation (1.50) describes the number of states lying on the surface element dS of the

energy difference between bands εc− εv. The dependence of g on the gradient of the bands

translates to a large number of states available to undergo interband transitions in regions

where energy surfaces are parallel. From this, the density of states is expected to be large

near the band gap. For transitions where ~ω > ∆εgap, transitions occur, but are carried

out by fewer electron-hole carrier pairs. With ultrashort laser pulses, this can be overcome

to some extent because the high energy bandwidth offered by ultrafast laser pulses covers

more electronic states. Transitions for ~ω > ∆εgap inevitably leave the electrons and holes

away from the band minimum and maximum respectively with excess energy roughly equal

to ~ω/2 −∆εgap/2 depending on the curvature of the bands. In a typical semiconductor,

the electrons and holes may then undergo scattering and/or phonon emission processes to

relax back to the band minima/maxima before carrier recombination accross the gap.
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For direct interband transitions discussed above, momentum conservation requires that

the initial and final electronic wavevectors be equal. This means the electron remains at

the same point in the Brillouin zone. Another possible interband transition is an indirect

transition where the final electronic state has a different crystal momentum. Because the

photons carry very little momentum, the transition must be mediated by a relatively large

momentum quasiparticle such as a phonon. The interband transition becomes a second-

order process where the matrix element can be expanded in terms of the coupling of the

conduction and valence electronic states to phonon states of energy ~ωp and wavevector kp.

The transition rates are calculated by determining appropriate composite wavefunctions

for the coupled electron-phonon system and evaluating a new joint density of states which

involves the phonon system. A complete treatment of indirect transitions is beyond the

scope of this thesis, so they are only mentioned here briefly for completeness. A deeper

discussion can be found in various textbooks [39, 38].

1.7.2 Intraband transitions

The type of optical transitions most important for metals are intraband transitions.

In this case, electrons are delocalized throughout a partially filled conduction band. In

the steady-state regime, the collective electronic response is typically well described by the

Drude model of conduction and other variants. Optical intraband transitions are governed

by the availability of states s′ with an energy difference given by the photon energy ~ω in

the conduction band, the density of which are given by Fermi distribution functions f(εs′).

The transition probability per unit volume in momentum space from state s→ s′ is given

by by the Golden Rule:

Ws→s′ =
2π

~
∣∣〈s′|H′int|s〉

∣∣2 f(εs′) [1− f(εs)] δ (~ω − (εs′ − εs)) . (1.51)
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The states |s〉 and |s′〉 could be Bloch states, but are often considered free electron (Fermi

gas) states. Ultrafast laser excitation of metals transfers energy to the electrons via the

transitions described by Eqn. (1.51). This creates a non-thermal (non-Fermi-Dirac) electron

distribution which thermalizes through electron–electron scattering and electron phonon-

coupling processes. This process yields behavior such as screening dynamics and phonon

emission.

1.8 Electron-phonon coupling

Electron-phonon interactions are very important in a variety of materials as they

can have a significant impact of their bulk properties. A general picture and discussion

of electron-phonon interactions insofar as they relate to experimental observables in an

ultrafast electron diffraction experiment in presented in this section. The Hamiltonian for

a system of phonons with wavevector kp (in a lattice) and electrons with momentum pi

can be written as [42, 43, 25]

H = Hp +He +Hei,

=
∑
kpn

ωkpna
†
kpn

akpn +
∑
i

 p2
i

2m
+
e2

2

∑
j 6=i

1

rij

+
∑
ij

Vei(ri −Rj), (1.52)

where the first term counts the numbers of phonons n at each wavevector kp, the second

describes the total energy of the electrons and the third generally represents the interaction

potential between between electrons at position ri and atoms at position Rj . As described

in Sec.1.6.3 phonons create displacements uj in the atomic coordinates, and it is reasonable

to make the harmonic approximation for small uj and take terms below O(u2). Following

this Hei can be written as

Hei ≈
∑
ij

[
Vei(ri −R

(0)
j )− uj ·∇Vei(ri −R

(0)
j )
]
. (1.53)
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The first term in Eqn. (1.53) describes the periodic potential which determines the Bloch

Eigenstates. The second term describes the modulation of this potential arising from atomic

displacements and is denoted by Vep(r). By representing Vei(r) and ∇Vei(r) in terms of

their Fourier transforms and the displacement u in terms of raising and lowering operators

(akp , a
†
kp

respectively) of the phonon modes, the electron-phonon interaction Hamiltonian

is given by Hep =
∫
drρ(r)Vep(r) where

Vep(r) = −
∑
kpG

exp(ikp · r)

{
Vei(kp + G)(kp + G) · êkp

√
~

2ρV ωkp

}(
akp + a†−kp

)
. (1.54)

The term in curly brackets is the electron-phonon coupling matrix elementMkp+G, with êkp

and ωkp being the polarization and frequency of phonon kp. Carrying out the integration,

the following is obtained

Hep =
∑
kpG

Mkp+Gρ(kp + G)
(
akp + a†−kp

)
, (1.55)

where ρ(kp+G) is a particle density operator. Equation (1.55) determines the rate at which

electronic states couple to phonons in a material. In general the electron-phonon coupling

matrix is difficult to evaluate theoretically and is often calculated using computational

methods.

Consider the following simple situation to illustrate the effects of electron-phonon

coupling. A metal initially at equilibrium is photoexcited by an ultrafast laser pulse. The

carriers are initially described by a Fermi-Dirac distribution of temperature Te1. Following

photo-excitation, the carrier distribution achieves an elevated temperature Te2 extremely

rapidly (typically within ∼ 100 fs) which then finds itself out-of-equilibrium relative to

the phonon system of the lattice. In other words, the distribution of electron momenta

pi corresponds to a larger temperature compared to the lattice temperature. The Hep

coupling term lowers the energetic electronic states by creating phonons, i.e. by increasing
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the number of phonons per branch a†kpnakpn contained in the first term of Eqn. (1.52).

The momentum-averaged effect of electron-phonon coupling is to increase Debye-Waller

term (Mα) appearing in the scattering intensity I0 given by Eqn (1.36). This is propor-

tional to the average atomic displacement due to the distribution of phonon modes. In

a time-resolved measurement which examines the difference between scattering intensity

before and after laser excitation, a transient suppression of the Bragg peak intensities

measures these effects with a time-scale governed by the electron-phonon coupling term.

Furthermore, if sufficient intensity can be measured off the Bragg peaks (q 6= G), the

thermal diffuse intensity I1 (Eqn. (1.6.3)) contains information about the occupancies of

the various phonon branches visible at a particular q.

1.9 Ultrafast electron scattering: a concise historical perspective

In this chapter the essential physics behind the technique of ultrafast electron scatter-

ing have been demonstrated. The technique is made possible by ultrafast laser technology

and developments in ultrafast high-brightness electron sources. In this section, the ex-

perimental setup used in this work is described in detail, leaving out specifics which are

discussed to a deeper extend in later chapters. Before this however, a brief historical ac-

count of where the technique of ultrafast electron scattering began and how it has evolved

in recent years is presented.

The first demonstration of time-resolved electron diffraction was performed by Mourou

and Williamson in 1982 [44]. They generated electrons through photo-emission from a

thin-film cathode and accelerated them to an energy of 20 keV. Using this apparatus they

where able to observe photo-induced melting in aluminum [45]. The time resolution of the

apparatus was limited to 100 ps due to strong space-charge effects. The measurements were

thus unable to capture in any detail the rate at which the transition from crystalline to

amorphous occurred; they only saw an “ON–OFF” transition. These early results founded
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the idea of the space-charge problem, and instilled within many the idea that Coulomb

repulsion effects would inevitably be the bane of the technique. Many efforts which followed

this sought improved time-resolution by working in the single electron regime [46, 47].

While this provided time-resolution in the femtosecond regime, the limited signal-to-noise of

low brightness single electron sources severely limited the range of experiments which could

be performed. A few years later, Siwick and co-workers [48] demonstrated a new type of

compact high-brightness electron source which offered sub-picosecond temporal resolution

and sufficient electron flux to enable irreversible laser-excited melting experiments. With

this improvement the experiment of Williamson nearly 20 years before was finally resolved

with sub-picosecond resolution, mapping out the details of how a laser excited metal film

undergoes melting.

Despite this achievement, there remained a fundamental trade-off between beam in-

tensity and time-resolution [19]; i.e. the space-charge problem endured. Compression

techniques based on radio-frequency fields were proposed in 2007 by van Oudheusden [16].

As described in sec. 1.4.1, they offered a solution to the space-charge problem through the

inversion of space-charge driven temporal broadening. Pulse compression of this type was

demonstrated in the single-shot regime in 2010 [49] and later in 2012 by Chatelain [50] and

Gao [51] in two different laboratories focussing on multi-shot reversible experiments. The

resulting performance of ultrafast electron scattering instruments featuring pulse compres-

sion was strongly limited by synchronization jitter between the master laser source driving

electron emission and the microwave cavity field oscillation performing the pulse compres-

sion. In chapter 2 of this thesis, a synchronization methodology is devised and demonstrates

significant improvement in this area.

Over the past decade and a half, ultrafast electron diffraction has demonstrate powerful

insight into the non-equilibrium behavior of laser-excited materials [48, 52, 53, 54, 55, 5, 56,
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57]. The technique is capable of tracking with femtosecond time-resolution the structural

response of a material following laser excitation as well as the nature of phonon excitations

coupled to the photo-excited electron system. Some reviews of the field can be found in

Refs. [58, 59, 60, 61].

1.10 The experimental apparatus at McGill University

An overview of the experimental setup used throughout this thesis is shown in Fig. 1–

6. Earlier versions of the experimental setup are described in refs. [50, 62]. The system

begins with a mode-locked Titanium:Sapphire oscillator (Spectra-Physics Tsunami) which

produces 35 fs pulses at a repetition rate of ∼ 75 MHz. The central wavelength is 800 nm,

and the pulse energy is roughly 5 nJ. The oscillator beam is split, with 5% supplying the RF

system for synchronization and electron pulse compression and 95% providing the input

seed pulse for a regenerative Titanium:Sapphire laser amplifier (Spectra-physics Spitfire

XP pro). The laser amplifier cavity is synchronized to the oscillator laser by dividing the

75 MHz oscillator repetition rate and generating a 1 kHz signal. This 1 kHz signal triggers

a set of Pockels cells which select a laser pulse to be amplified and allow for the pulse

to spend a specific amount of time in the cavity in order to be optimally amplified. The

amplified pulse is then released from the cavity, re-compressed and the output energy is

roughly 3 mJ/pulse. The pulse is split 50%/50% on the optical table for the pump and

probe beams respectively. The pump beam is used for photo-excitation of the sample and

passes through a variable retro-reflector delay stage to tune the time-delay between pump

and probe pulses. The pump pulse is then focused and coupling into the sample chamber

which is maintained to a high-vacuum level (∼ 10−7 Torr).

The probe laser beam is frequency tripled using a non-linear optical process called

third harmonic generation [12]. This is achieved by sending the beam through a sequence

of three crystals, beta-barium borate (BBO), calcite, BBO in that order. The excess 800
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Figure 1–6: Schematic of an ultrafast electron scattering experiment with RF pulse com-
pression.
An ultrafast laser system produces ultrashort pulses which are converted to UV light for the
generation of electron pulses through a photo-emission process. The pulses are accelerated
and recompressed using a radio-frequency cavity synchronized to the laser system. Com-
pressed pulses are scattered by the sample (following photoexcitation) and the scattered
intensity of the electron beam is collected by a CCD camera.

nm and 400 nm light is removed from the beam path using either prisms or filters. The

remaining ultraviolet light (267 nm) is focused and coupled into the high-vacuum beam

line at the end opposite the sample chamber reflects of an aluminum mirror and is aligned

onto a copper DC photo-cathode which is at a voltage of −100 kV. The focusing lens is

positioned such that the beam diameter of the UV pulse is roughly 50 µm. A photo-

emitted electron bunch is accelerated to 100 keV energy. The electron beam collimated

(transverse focusing) by a solenoid lens. Further down the beamline the electron pulse

undergoes longitudinal space-charge broadening as described in Sec. 1.4. This dispersion

is counteracted by a 3 GHz microwave cavity supporting a uniformly time-varying E field
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mode along the axis of propagation (longitudinal). This re-compresses the electron pulse

and it achieves a minimum temporal duration at the temporal focus of the microwave

cavity some distance (roughly 20 cm) further down the beamline. The pulse is also focused

further by a second solenoid lens which establishes a spatial focus at the position of a

transmission electron microscope CCD camera roughly 26 cm behind the sample.

In a reversible pump-probe ultrafast electron diffraction experiment, (refer to Fig. 1–

1) the dynamics initiated in the sample via pump pulse excitation occur within the time-

interval between set by the laser repetition rate (1/1 kHz = 1 ms by default) and the

sample returns to its “initial-state” before the next pulse arrives. When this condition is

met, the slow acquisition times of typical CCD cameras (seconds) is not a limitation. An

image formed by a 10 second exposure of the CCD camera, collects 104 scattered electron

pulses each of which form a 100 femtosecond snapshot of the sample dynamics at time ∆t

following laser excitation.

1.10.1 Example: photo-excited chromium film

In this section a basic ultrafast electron diffraction measurement is presented to illus-

trate Bragg peak dynamics and how to interpret them for a laser-excited chromium film.

The Cr film is a 50 nm thick polycrystalline sample grown by electron beam deposition.

The texture of the sample is one consisting of vary small crystallites, (below 10 nm ac-

cording to SEM images of the sample). Given this, Debye-Scherrer rings are expected in

the scattering pattern rather than Bragg peaks, and their widths will be relatively broad

due to the shape functions of the small crystallites. The diffraction pattern is shown in

Fig. 1–7 a). The intensity of the diffraction rings is given by

I0(q) = δ (q−Ghkl) ∗ |S(q)F0(q)|2 ,

= δ (q−Ghkl) ∗ |S(q)feCr(q) exp (−M(q))|2 , (1.56)
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Figure 1–7: Ultrafast electron diffraction measurement of a photo-excited chromium film
a) Electron scattering pattern of polycrystalline 50 nm thick chromium. Three Debye-
Scherrer rings are indicated with blue, purple and orange arrows at reduced scattering
lengths of S = 0.25, 0.43 and 0.66 Å respectively. The solid rectangle is a beam block
which stops the intense beam at S = 0 of unscattered electrons. b) Time-resolved peak
intensities for the azimuthally-averaged rings in a).

where S(q) is the shape or texture function of the film which broadens the delta function

pertaining to the Bragg condition, feCr(q) is the electron scattering form factor for elemental

chromium and M is the isotropic Debye-Waller factor given by M(q) = 2π2〈u2〉|q|2 with

〈u〉 being the RMS thermal displacement of the Cr atoms. By taking the logarithm of the

time-dependent intensity I0(q,∆t) divided by the intensity of the sample before photo-

excitation I0(q,∆t = 0) is obtained [63]

− ln

(
I0(q,∆t)

I0(q,∆t = 0)

)
= 2π2

(
〈u(∆t)2〉 − 〈u(0)2〉

)
q2 = 2π2

(
〈∆u(∆t)2〉

)
q2. (1.57)
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Figure 1–8: Electron and lattice relaxation dynamics is photo-excited chromium
a) RMS change in atomic displacement ∆uRMS calculated from the diffraction peak dy-
namics. Heating is observed within the first 500 fs, due to strong electron-phonon cou-
pling, followed by a relaxation in the average vibrational amplitude of the lattice. b) Top:
complex index of refraction of chromium. Bottom: Schematic representation of partial
photo-excitation of a chromium film illustrating the various coupling mechanism.

The data shown in Fig. 1–7 b) is transformed using Eqn. (1.57) and plotted in Fig. 1–8 a).

As expected from Debye-Waller type effects, the q–scaling of the relative peak intensities

apparent in Fig. 1–7 b) no longer appears once the change in the RMS atomic displacement

∆uRMS is calculated.

The behavior of a photoexcited Cr film is presented at a qualitative level to understand

the importance of various coupling terms at play in the material with the goal of furnishing

some basic intuition for undertanding ultrafast electron diffraction results. The electron

pulses which form the diffraction pattern probe the full sample volume and therefore the

Debye-Waller factor represents an ensemble average of 〈u2
RMS〉 and consequently the average

lattice temperature. Clearly the data shown in Fig. 1–7 a) and Fig. 1–8 a) shows a rapid
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increase occurring with a time constant of roughly 400 fs indicative of strong lattice heating

through a large electron-phonon coupling term known to exist in chromium [64]. What is

unexpected however is the subsequent cooling of the lattice which overtakes the heating

after 1 ps and is characteristically slower. This effect arises because of the fact that the

optical depth of Cr is only about 18 nm at a wavelength of 800 nm [65] (the complex

index of refraction as a function of wavelength is shown in Fig. 1–7 b)), which produces an

inhomogeneous sample excitation; only electrons in roughly 40% of the film are excited.

The question now becomes how does the lattice lose heat? There are a few possibilities for

this and they are illustrated in Fig. 1–7 b). First, the excited electrons may cool through

interaction with the cold electrons which were not photoexcited with a rate determined

by electron–electron coupling. The second mechanism is that the phonons couple to the

cold electrons with a weaker electron–phonon coupling term, which is possible since the

coupling can be dependent on the electron temperature. In general the answer is probably

a combination of the two effects and without further experiments it would be difficult

to determine. Another possibility is that certain phonons initially are excited and yield

a particular ∆uRMS for the average sample. Over time, phonon-phonon coupling can re-

distribute the energy into lower frequency acoustic modes, which have a lower ∆uRMS. This

could be a mechanism which conserves energy in the phonon system (average temperature).

Phenomenological models such as the two-temperature model [66, 64] and generaliza-

tions [67] can be used to interpret ultrafast electron diffraction results my modeling the

system of electrons with temperature Te and heat capacity ce(Te) coupled to any number

of phonon subsystems with temperature Tpj and heat capacity cpj(Tpj). The electronic

system is driven out of equilibrium by a laser pulse providing an energy input described

by an impulsive function f(t − t0) which serves essentially as an initial condition for the
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system of equations

ce(Te)
∂Te
∂t

=
∑
j

ge−p,j(Te)(Te − Tpj) + f(t− t0), (1.58)

cpj(Tpj)
∂Tpj
∂t

= ge−p,j(Te)(Te − Tpj) +
∑
k 6=j

gp−p,jk(Tpj , Tpk)(Tpj − Tpk), (1.59)

where ge−p,j(Te) is a version of the electron-phonon coupling term in units of W K−1 m−3

and a phonon-phonon coupling term has been included gp−p,jk(Tpj , Tpk) with the same units

to remain general. A common approach for analyzing ultrafast electron diffraction results

is to assign some heat capacities for the electrons and phonons using approximate models

or direct computations. Using such results the RMS atomic displacement ∆〈u2
RMS〉 can

be converted to a lattice temperature. Equations (1.58) and (1.59) are then numerically

minimized to the data and the coupling terms may be extracted.

1.11 Thesis organization and statement of contributions

This thesis is arranged as follows; Chapter 2 focuses on the physics of electron pulse

compression and laser-microwave synchronization. It is related but by no means limited

to published work in ref. [68]. Chapter 3 presents ultrafast electron diffraction results in

the strongly correlated material vanadium dioxide most of which is published in ref. [69].

Chapter 4 presents ultrafast electron scattering results on the 2-dimensional material ti-

tanium diselenide, and focuses on phonon hardening effects observed in the time-resolved

diffuse scattering intensity.



CHAPTER 2
The machine physics of electron pulse compression

The use of radio-frequency (RF) electromagnetic fields to compress electron pulses is

an extension of the core physics driving particle accelerator technology [70, 71]. For over

half a century, resonant electromagnetic structures such as linear accelerators, bunchers and

injectors have been integral in the operation of large scale particle colliders and radiation

sources. In all forms of these technologies, energy is transferred to the particle beam from

an RF field. The RF field must be thus accurately synchronized for consistent energy gain

in the particle beam. Electron pulse compressors, similar to more advanced accelerator

structures are based on RF cavity structures, are engineered to yield localized harmonic

electromagnetic fields over specific spatial regions depending on the desired interaction

with the electron pulses. RF electron pulse compressors have extreme synchronization

requirements which must be properly addressed in order to achieve consistent, high time-

resolution performance when applied to ultrafast electron scattering [50, 51, 55, 72, 22, 73,

74, 75]. This challenge depends on both the details of the RF cavity response and also

the synchronization of the cavity field to the laser system driving the ultrafast electron

scattering experiment.

This chapter will present the physics of charged particle acceleration and its application

to a single-cell microwave cavity for use as a pulse compressor in an ultrafast electron

scattering instrument. A novel approach to synchronize the microwave cavity fields with

a femtosecond laser system is developed and characterized. In this approach, a phase-

locked frequency comb is directly synthesized by photo-detection of the laser pulse train

and the appropriate resonant frequency tone is selected for driving the resonant mode of

40
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the compression cavity. Furthermore an active phase feedback system is designed and

implemented for the compensation of phase fluctuations induced through the detuning

between the synchronized driving signal and the cavity resonance which result primarly

from thermal effects. The final performance of the instrument is characterized in detail

by temporal streaking measurements of the compressed electron pulses which is sensitive

to all forms of temporal jitter affecting time-resolution of a pump-probe ultrafast electron

scattering experiment. Some of the work presented in this chapter has been published in

ref. [68].

2.1 Charged particle acceleration in an electromagnetic field

First, some general features of charged particle acceleration in electromagnetic fields

are presented and discussed. The equation of motion for a charged particle with momentum

p in an electric field E and magnetic field B is determined completely by the Lorentz force

law [41]

d

dt
p = q

[
E +

1

me
p×B

]
. (2.1)

In general the evaluation of Eqn. (2.1) is difficult for arbitrary fields, but it will be shown

that it can be greatly simplified when the interactions between the E and B field can be

separated in space and when symmetry considerations constrain the field profiles.

Consider a charged particle subject to an standing electromagnetic field in the z -

direction. The field is given by Ez(z, t) = E(z) cos(ωt(z) + φ), where ω = 2πf is the

angular frequency of the field and φ is conventionally referred to as the synchronous phase

of the field. The field acting on a particle of charge q, velocity v at position z is obtained

by using t(z) =
∫ z

0 dz/v(z) to describe the velocity dependence of the time spent in the

field by the charged particle. This yields

Ez(z, t) = E(z) cos

(
ω

∫ z

0

dz

v(z)
+ φ

)
. (2.2)
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Figure 2–1: Particle acceleration across an RF gap
A particle travelled along the z direction in a field-free region then enters a gap of length
L where it interacts with a field E(r = 0, z, t) where it can be accelerated or deccelerated.
This is a good approximation for the cavity used in this work as will be shown in sec. 2.2.

The simplest electromagnetic modes in accelerator structures are TM0n0 modes for which

there are generally non-zero Ez, Er and Bθ fields (working in cylindrical coordinated for

simplicity). It follows from Eqn. (2.1) that the equations of motion for the particles in the

fields are

dpz
dt

= q [Ez(r, z) cos(ωt+ φ) + vrBθ(r, z) sin(ωt+ φ)] , (2.3)

dpr
dt

= q [Er(r, z) cos(ωt+ φ)− vzBθ(r, z) sin(ωt+ φ)] , (2.4)

where v = (vr, vθ, vz) is the velocity vector of the charged particle.

Consider now the case of on-axis (r = 0) acceleration occurring in a region of length

L within which the fields are non-zero as illustrated in Fig. 2–1. In this situation Ez(r =

0, z, t) = E(0, z) cos(ωt + φ) and the momentum gain ∆p is calculating by evaluating an

integral over time

∆p(t1, t2) = q

∫ t2

t1

Ez(0, z(t), t)dt, (2.5)
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where t2 − t1 is the time-of-flight or transit-time through the field region. Similarly, the

energy gain ∆ε is given by an integral over the spatial coordinate

∆ε = q

∫ L/2

−L/2
E(0, z, t(z))dz. (2.6)

In equations (2.5) and (2.6) position and time are related by dz = dtvz(z). Making use of

a trigonometric identity, (2.6) can be written as

∆ε = q

∫ L/2

−L/2
E(0, z) [cos(ωt) cosφ− sin(ωt) sinφ] dz. (2.7)

It is conventional to define an effective axial RF voltage as V0 =
∫ L/2
−L/2E(0, z)dz. This

should be understood as the effective DC field experienced by the particle in the center

of the gap (i.e. z = 0, t = 0). It follows that equation (2.7) can now be written as

∆ε = qV0T cosφ for which the transit time factor T is defined as [71, 76]

T ≡ 1

V0

[∫ L/2

−L/2
E(0, z) cos(ωt(z))dz − tanφ

∫ L/2

−L/2
E(0, z) sin(ωt(z))dz

]
. (2.8)

An average RF axial field E0 = V0/L can be defined which results in the famous Panofsky

equation for the energy gain of a charged particle

∆ε = qE0TL cosφ. (2.9)

Equations (2.8) and (2.9) describe the transit time effect which indicates that the energy

gain of a particle in a sinusoidal time-varying field is always less than that for a particle

in a DC field equal to that experienced by the particle in the center of the gap. Equation

(2.8) thus represents the reduction in energy gain induced by the time dependence of the

field. Most resonant accelerator structures yield fields which are symmetric functions with

respect to the center of the gap. By maintaining this point as the origin, the dependence

on φ can be removed since the second term of equation (2.8) vanishes and simplifies to the
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cosine weighted average of the field

T =
1

V0

∫ L/2

−L/2
E(0, z) cos(ωt(z))dz. (2.10)

2.2 The microwave pulse compression cavity

The character of the electromagnetic modes produced by a cylindrically symmetric

pulse compression cavity will be considered next in greater detail. For our interests, it will

be assumed that the relevant electromagnetic fields used for the acceleration of electrons

exist in regions containing no free charges and can be well approximated as being sur-

rounded by an equipotential surface. Making use of this, along with Maxwell’s equations

in the Lorentz gauge, it can be shown that the electric E and magnetic B fields depend

only on the vector potential A according to the following

B = ∇×A, E = − ∂

∂t
A. (2.11)

The vector potential is found by solving its wave equation which depends on a source

current density J according to

∇2A− 1

c2

∂2

∂t2
A = −µ0J (2.12)

The source term involving J is ideally confined to the conducting surfaces which defines

the geometry to the electromagnetic structure.

The fields produces by a cylindrical resonator, historically referred to as the “pillbox”

cavity, will now be considered. Such systems consist of two conducting boundaries located

at −L/2 and L/2 and cross-sectional radius Rc. In practice the conducting boundaries

have small holes to allow the electron beam to enter and exit the cavity, but these can be

safely ignored as they produce a negligible perturbation to the overall electrodynamics of

the resonant structure. Furthermore, the current density jpulse contributed by the electron
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pulse itself is negligible because it typically would be very small on average compared to

the current density from the conducting surfaces of the cavity (jpulse � J). The wave

equation for E is determined in the usual manner from Gauss’ law by taking ∇×∇×E =

−∇2E = − ∂
∂t (∇×B) = − 1

c2
∂2

∂t2
E. The component of the electric field in the z direction

Ez must obey the wave equation which in cylindrical coordinates is given by

∂2Ez
∂z2

+
∂2Ez
∂r2

+
1

r2

∂2Ez
∂θ2

+
1

r

∂Ez
∂r
− 1

c2

∂Ez
∂t

= 0. (2.13)

An azimuthally symmetric solution of the form Ez(z, r, t) = R(r)eiωt which is homogeneous

along z is assumed for simplicity. It must be that Ez(z, r = Rc, t) = 0 in order to satisfy the

continuity relation at the perpendicular conducting boundaries. First-order solutions are

determined by separation of variables and expressed in terms of Jm Bessel functions [71, 77]

Ez(r, t) = E0z(r) cos(ω0t+ φ) = E0J0(krr) cos(ω0t+ φ), (2.14)

Bθ(r, t) = −E0z(r)

c
sin(ω0t+ φ) = −E0

c
J1(krr) sin(ω0t+ φ), (2.15)

where the boundary conditions are satisfied by the resonance frequency ω0 = krc =

2.405c/Rc.

2.2.1 TM modes of a cylindrical cavity

For most cavities used in particle acceleration applications, cylindrical symmetry is

preserved, but the geometry of the structure is not a simple pillbox design. The reason

for this is that the pillbox is not a power efficient design and would require RF power on

the order of 10s of kW in order to perform the desired operations on the beam. Typical

engineered accelerator cavity structures have “lobes” which create regions of high-field

enhancement near the location of the particle beam and yield quality factors on the order

of 103 times larger than a pillbox. A schematic comparison of a model pillbox and a power

efficient cavity design is shown in Fig 2–2 c). The spatial profiles of the electromagnetic
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Figure 2–2: Electromagnetic fields of a cylindrical cavity.
a) Radial field profiles for the TM010 resonant mode. The blue and orange lines represent
Ez and Bθ describe fields for an idealized pillbox cavity and the green and dark red lines are
computed by a 3D finite element solver (ANSYS HFSS) of a power efficient design. Typical
field enhancement factors are on the order of 103 near the axis of symmetry for engineered
cavities. b) Geometry of an idealized pillbox cavity with radius Rcavity. c) Power efficient
cavity design with lobed radial geometry. The power efficient design significantly enhances
the Ez field along the longitudinal z axis at r = 0 where the electron pulse propagates.

fields described by Eqn. (2.14) and (2.15) remain accurate near the symmetry axis of

the structure. In general a resonant cylindrical expansion of the fields may be carried

out for the rotationally symmetric modes which gives the following for the relevant field

components [77]

Ez(z, r, t) =

(
1 +

r4

2

(
∂2

∂z2
+
ω2

c2

)
+ · · ·

)
Ez(r = 0, z) cos(ωt+ φ), (2.16)

Er(z, r, t) = −1

r

∫ r

0
r′
∂Ez(z, r, t)

∂z
dr′,

=

(
−r

2
+
r3

16

(
∂2

∂z2
+
ω2

c2

)
− · · ·

)
∂Ez(r = 0, z)

∂z
cos(ωt+ φ), (2.17)

Bθ(z, r, t) =
1

rc2

∫ r

0
r′
∂Ez(z, r, t)

∂t
dr′,

=

(
−r

2
+
r3

16

(
∂2

∂z2
+
ω2

c2

)
− · · ·

)
ω

c2
Ez(z, r = 0) sin(ωt+ φ). (2.18)
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Using Eqns. (2.16), (2.17) and (2.18) with Eqns. (2.3) and (2.4) the longitudinal and

transverse momentum components, pz and pr respectively, may be calculated.

2.2.2 Temporal focusing power of an RF cavity

In Sec. 1.4 it was illustrated how space-charge effects in the rest frame of the electron

pulse produce a linear elongation in both the longitudinal and transverse directions of the

electron pulse. These effects can by counteracted by the appropriate interaction with a

linearly time-varying in time electric field. The longitudinal or temporal focusing power is

determined by calculating the change in momentum pz (Eqn. (2.3)) experienced by all of

the electrons in the pulse. The following assumptions will be made in our case:

1. The transverse width of the electron pulse is sufficiently small so that

E(r, t) only depends on z and Bθ(r ≈ 0, t) ≈ 0.

2. The pulse duration τ = ξ/vz � 1/ω0 is much shorter than the oscillation

period of the cavity field.

3. The positions of the electrons in the pulse are constant during propagation

through the field. Compression doesn’t occur until after the pulse exits

the cavity fields.

4. The field-induced momentum change is small compared to the total mo-

mentum ∆pz � pz such that the time-of-flight in the cavity is constant

for all electrons in the pulse. It follows from this that the spatial bunch

duration ξ = z − vzt.

The following equation describes the momentum transfer due to interaction with the electric

field

∆pz = −q
∫ ∞
−∞

Ez(z, t)dt = − q

vz

∫ ∞
−∞

E0z(z) cos

(
ω0(z − ξ)

vz
+ φ

)
dz,

= − q

vz

∫ ∞
−∞

E0z(z)

[
cos

(
ω0z

vz

)
cos

(
−ω0ξ

vz
+ φ

)
− sin

(
ω0z

vz

)
sin

(
−ω0ξ

vz
+ φ

)]
dz,
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where the integral over t to z has been transformed using assumptions 3. & 4. The sin

terms above are odd functions of z while E0z(z) is even, therefore the second term vanishes

in the integral from −∞ to ∞. Applying a trigonometric identity to the first term yields

∆pz = − q

vz
E0dcav

[
cosφ cos

(
ω0ξ

vz

)
+ sinφ sin

(
ω0ξ

vz

)]
, (2.19)

≈ − q

vz
E0dcav

[
cosφ+

ωξ

vz
sinφ

]
, (2.20)

where a field weighted effective cavity length dcav has been defined as

dcav =
1

E0(0)

∫ ∞
−∞

E0,z(z) cos

(
ω0z

vz

)
dz. (2.21)

Figure 2–3: Transverse momentum (∆pz) modulation for various input electron pulse
durations.
The dashed blue line is Eqn. (2.19) and the solid blue line is the approximation valid for
ω0τ = ωξ/vz � 1 given by Eqn. (2.20). Ideal compression phase is offset from π/2 by
φ+ = ω0τ . At a fixed field frequency the effect of increasing τ is to reduce the maximum
amount of ∆pz which can be transferred to the electrons and also to shift the optimal
compression phase. This reults from the breakdown of the linearly varying Ez over the
time interval set by the pulse duration.
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The temporal or longitudinal focusing power PL of the compression cavity is related

to the temporal focal length fL and is defined according to the following [16, 77]

PL = f−1
L ≡ − 1

pz

∂ (∆pz)

∂ξ
=
qE0dcavω0

mev3
z

sinφ. (2.22)

2.2.3 Phase sensitivity

An inspection of Eqn. (2.19) reveals that the momentum modulation ∆pz = 0 when

the phase is φ0 = π
2 + ω0ξ

vz
≈ π

2 . The phase of the RF field cycle must be synchronized such

that electrons at the center of the dispersed pulse experience ∆pz = 0 during time-of-flight

through the cavity. The effect of any phase departure from φ0, to first order, is to give

an overall momentum shift of the pulse depending on the phase shift ∆φ, translating to a

change in the time-of-flight of the pulse from the cavity to the sample position. This yields

a timing drift, or jitter, relative to the reference (an ultrashort laser pulse in pump-probe

experiments which determined t = 0) and degrades the overall temporal resolution of the

instrument. Differentiation of (2.19) with respect to φ yields

d∆pz
dφ

= me
dvz
dφ

= − q

vz
E0dcav

[
cosφ sin

(
ω0ξ

vz

)
− sinφ cos

(
ω0ξ

vz

)]
.

The momentum is related to the time-of-flight over a distance L using dt = d (L/vz) =

−L
(
dvz/v

2
z

)
which gives the following when evaluating at φ0 = π

2 + ω0ξ
vz

. The following

expression is obtained and can be expanded in terms of the pulse duration τ = ξ/vz

dt

dφ
≈ qE0dcavL

mev3
z

[
ω0ξ

vz
sin

(
ω0ξ

vz

)
+ cos

(
ω0ξ

vz

)]
(2.23)

=
L

fLω0

(
1 +

3

2
(ω0τ)2 +

1

6
(ω0τ)3 + · · ·

)
. (2.24)

Equation (2.23) is a nice simple result. When positioned at the temporal focus (L = fL),

and assuming ωξ/vz � 1 it can be seen that |dt/dφ| = ω−1
0 , which depends only on

(and in fact is the definition of) the frequency of the field. Evaluating at a frequency of
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ω0 = 2π × 3 GHz, the resonance of the cavity used in this work, |dt/dφ| = 53 fs/mrad is

determined and describes the fundamental sensitivity of the compression fields to phase

fluctuations. For uncompressed pulses with duration τ = 20 ps the phase sensitivity

for a 3 GHz cavity is 64 fs/mrad, this value is consistent with previous characterization

measurements of the instrument [50]. It is interesting to note that for arbitrarily long

pulses up to ω0τ = 1, the fundamental sensitivity returns to 1/ω0. In this regime however,

pulses are not being compressed, since they sample the full range of Ez over time and ∆pz

averages to zero for all electrons in the pulse interacting with the cavity field over 1 cycle.

2.3 Microwave network model

The compression of electron pulses using radio-frequency fields in a cavity depends

fundamentally on the magnitude and phase of the electric field. However, it is often im-

practical to conduct measurements of the field directly. For ultrafast electron diffraction

with pulse compression, the magnitude of the temporal shift ∆t arising from all possible

sources of phase fluctuations ∆φ is of great interest. Fortunately, the cavity can be rea-

sonably well described as an effective circuit consisting of impedance terms defined by the

properties of the cavity in a lumped element approximation. Strictly speaking, the lumped

element approximation assumes that the E and B fields are spatially separated, and that

the energy stored within those fields form an effective capacitance Cc and inductance Lc

respectively which are confined to spatial regions much smaller than the wavelength λ of

the RF field. At 3 GHz, the wavelength is λ ≈ 10 cm. In a typical pillbox cavity, most

of the electric field energy is stored within a few mm along r near the z axis, and extends

along z for less than 1 cm (dcav). The magnetic field however, is homogeneous as a function

r and angle θ about z. The field-weighted circumference of Bθ is

Ccav =
2π

Bmax
θ

∫ Rcav

0
Bθ(r)dr ≈ 10 cm. (2.25)
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The effect of this is that the inductance term becomes frequency dependent Lc(ω). In

the steady-state regime near resonance, the inductance is roughly constant, so the lumped

approximation may still be applied.

2.3.1 Driven RLC resonator

The cavity may be modeled as a parallel RLC circuit [78, 71] consisting of resistance

Rc, inductance Lc and capacitance Cc. The current I(t) and voltage V (t) in the circuit

governed by the following equation

I(t) = Cc
dV (t)

dt
+

1

Lc

∫
V (t)dt+

V (t)

Rc
, (2.26)

which, upon differentiation with respect to t yields

1

Cc

dI

dt
=
d2V

dt2
+
ω0

Q0

dV

dt
+ ω2

0V. (2.27)

Equation (2.27) describes a samped harmonic oscillator with resonance frequency ω0 =

1/
√
LcCc. Steady state solutions of the form V (t) = V0e

iωt+φ and I(t) = I0e
iωt are sought,

where V0 and I0 are peak voltages and currents respectively. The energy stored in the cavity

near resonance is given by Us = 1
2CcV

2
0 and the energy dissipated is Ud = V 2

0 /2Rcω0, which

defines an internal quality factor Q0 = Us/Ud = ω0RcCc. The general steady state solution

for Q0 � 1 near resonance is given by

V (t) =
RcI0e

i(ωt+φ)√
1 +

(
2Q0

ω−ω0
ω0

)2
=

Rce
iφ√

1 +
(

2Q0
ω−ω0
ω0

)2
I(t) = Zc(ω)I(t), (2.28)

where Zc(ω) is the shunt impedance response function of the cavity resonator, which can

also be determined from the parallel addition of the circuit impedances

Zc(ω) =

(
1

Rc
+

1

iωLc
+ iωCc

)−1

≈ Rc
1− i2Q0

ω−ω0
ω0

1 +
(

2Q0
ω−ω0
ω0

)2 . (2.29)
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a) b)

Figure 2–4: Driven RLC circuit.
a) Lumped element equivalent circuit model of a 3-dimensional RF cavity resonator. A cur-
rent source I(t) drives a voltage response V (t) = Zc(ω)I(t) where Zc(ω) is the impedance
of the circuit which depends on the resistance Rc, inductance Lc and capacitance Cc. b)
Phasor representation of Zc in the complex plane indicating the phase angle φ between
I(t) and V (t) in the circuit.

The phase φ of the voltage response V (t) relative to the current response I(t) is found

by mapping Zc(ω) in the complex plane and calculating the angle between the real and

imaginary components

φ = arctan

(
= [Zc]

< [Zc]

)
= arctan

(
2Q0

ω − ω0

ω0

)
. (2.30)

Phase fluctuations ∆φ produced by frequency detuning ∆ω yield a timing shift of ∆t =

ω−1
0 ∆φ = 2Q0∆ω/ω2

0, which is on the order of 50 fs/kHz for Q0 ≈ 104. This simple model

illustrates the important features of the phase response of the cavity in the vicinity of

resonance, in particular that the sensitivity as a function of detuning ∆ω increases linearly

with Q0.

2.3.2 Microwave network response functions

In practice a microwave network consists of many impedance elements Zi which have

incident voltages Vi and currents Ii. Port i is some location within the network where the

a wave excitation is defined or measured in terms of Ii and Vi. The relationship between
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(Vi, Ii) at port i and (Vj , Ij) at port j is determined by the transmission matrix [78] (or

ABCD matrix) according to  Vi

Ii

 =
∏
i<j

Ti

 Vj

Ij

 . (2.31)

For a parallel circuit element as shown in Figure 2–5 a), the transmission matrix is given

in terms of the admittance Y (ω) = 1/Z(ω) and reads

Ti =

 1 0

Yi 1

 =

 A B

C D


An accurate circuit model description of the microwave network comprising the compression

cavity consists of a transmission line with characteristic impedance Z0 coupled to the cavity

resonator inductively by a transformer with power transfer coefficient n1. The cavity is also

coupled to second transformer (n2) which allows for signal transmission out of the cavity

to a second transmission line also with impedance Z0. The total transmission matrix is

given by the product of all transmission matrices

T = Tn1TCcTRcTLcTn2

=

 1/n1 0

0 n1

 .

 1 0

iCcω 1

 .

 1 0

1/iLcω 1

 .

 1 0

1/Rc 1

 .

 n2 0

0 1/n2


=

 n2/n1 0

n2 (iCcωn1 + n1/Rc − in1/Lcω) n1/n2

 . (2.32)

The transmission function S21(ω) =
∣∣V −2 /V +

1

∣∣ is of interest, with + and − representing

voltage waves entering or leaving the resonator circuit respectively. It can be shown that
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a) b)

Figure 2–5: Network theory description of a lumped-model cavity.
a) Microwave network representation of a parallel admittance element Y1. Port 1 has
voltage and current V1 and I1 respectively and the element Y1 transforms them to V2 and
I2 at port 2 respectively. The transmission matrix T1 for Y1 is shown below. b) Microwave
network model of an RF generator connected to a transmission line with impedance Z0

which couples to a parallel RLC resonator circuit via a transformer with transfer efficiency
n1. The resonator is output coupled via a second transformer (n2) to a readout transmission
line with impedance Z0.

this function is related to the elements of T according to the following equation [78]

S21(ω) =
2

A+B/Z0 + Z0C +D
, (2.33)

=
2

n1/n2 + n2/n1 + n1n2Z0/Rc − in1n2Z0 (Ccω − 1/Lcω) .
(2.34)

The above equation can be re-written in terms of the external quality factors Qe1 =

n1ω0Z0Cc and Qe2 = n2ω0Z0Cc (one for each port), the internal quality factor Q0 and

one additional parameter Qz = ω0Z0Cc. In this representation the transmission function

is

S21(ω) =
2 (Qe1/Qe2)

1 +
Q2
e1

Q2
e2

+
Q2
e1

Q0Qz

(
1 + iω0

ω Q0

(
ω2−ω2

0

ω2
0

)) . (2.35)

Equation (2.35) is the true lineshape response function of the coupled RF cavity system and

can be used as an exact fitting model for the cavity if measuring or simulating S21(ω) using
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a network analyzer or simulation package. By measuring the transmission S21 function,

a) b)

Figure 2–6: Response of the S21 transmission and S11 reflection functions.
a) Magnitude of the transmission function |S21(ω)| and |S11(ω)| reflection function. b)
Phase of the transmission funtion ∠S21(ω). Circuit paramters used: Z0 = 50 Ω, Rc = 50 Ω,
Lc = 0.26 pH, Cc = 10 nF Q0 = 8× 103, ω0 = 2.9985 GHz, n1 = 2 and n2 = 3.

information about the phase of the cavity field oscillation can be obtained. The amplitude

and phase of the S21 are shown in Fig. 2–6. Another potentially useful microwave network

parameter is the reflection function or the S11 parameter defined as S21 =
∣∣V −1 /V +

1

∣∣. In

terms of the ABCD matrix elements, the reflection function is given by

S11(ω) =
A+B/Z0 − Z0C −D
A+B/Z0 + Z0C +D

, (2.36)

=
−2iLcn

2
2Rcω

n2
1n

2
2RcZ0 + iLcn2

1Rcω + iLcn2
2Rcω + iLcn2

1n
2
2Z0ω − CcLcn2

1n
2
2RcZ0ω2

− 1.

The amplitude and phase of the S11 is shown in Fig. 2–6 for the purpose of comparing

with the S21. As seen in Fig. 2–6 b) in the vicinity of resonance, a linear phase-frequency

relationship appears, thus indicating that a measurement of the reflected RF signal would

contain information about the cavity phase. The slope (phase sensitivity) of the S21 phase
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as a function of frequency for the cavity parameters considered here is less than that of

the S21. Furthermore, the general functional form of the phase of the S11 depends strongly

on the details of the cavity coupling, whereas the overall arctan(x) character of the S21 is

a robust feature, holds for arbitrary cavity coupling parameters and only depends on the

internal Q0. The origin of this is rooted in the linear response of a harmonic oscillator

presented above. A detailed understanding of what constitutes the optimal cavity design

in terms of yielding a useful S11 phase response would follow a detailed simulation analysis

of the cavity as a function of coupling geometry. This analysis is beyond the scope of this

thesis, but the general aspects described here provide a useful starting point.

2.4 Fundamental synchronization limits

Now that the physics of RF cavities has been presented, the focus shifts to under-

standing the synchronization requirements for ultrafast electron diffraction with RF pulse

compression. There are fundamental processes in nature which establish limits to the

maximum quality of synchronization which can be achieved. In the context of an ultrafast

electron diffraction experiment, the temporal jitter ∆ts arising from the phase noise spec-

trum of the laser-microwave synchronization system is an important quantity to consider.

This term contributes to the total time resolution T of the experiment/instrument given

by Eqn. (1.1) which is given by

T =
√
τ2

laser + τ2
electron + ∆t2s, (2.37)

where τlaser and τelectron are the optical and electron pulse durations respectively. The

challenge of laser-microwave synchronization is to transfer the high-temporal resolution

provided by stable ultrafast laser systems to the electron domain whilst introducing as little

phase noise as possible. The main contributions to phase noise and therefore time resolution

result from thermal noise, shot noise and amplitude-phase conversion processes [10, 79, 80,
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81, 82, 83, 84]. These effects will be discussed in subsequent sections. In the next section

the concept of phase noise is introduced as a general figure of merit for synchronization.

2.4.1 Phase noise

Consider an oscillating signal A(t) = A0(t) sin (ω(t)t+ φ(t)) propagating in a trans-

mission line, where A(t) is a time-varying amplitude, ω(t) is a time-varying frequency

and φ(t) is a time-varying phase. If the frequency fluctuations ∆ω(t) are small relative

to the time-averaged carrier frequency ω0 = 〈ω(t)〉, such fluctuations yield an equivalent

phase shift ∆φω(t) = ∆ω(t)`/c which depends on the position ` along the transmission line

where the phase difference relative to a reference phase defined by the carrier φref = ω0`/c

is measured. In this situation, phase fluctuations due to frequency fluctuations are indis-

tinguishable from “pure” phase shifts characterized by ∆φ(t) as illustrated in Figure 2–7.

Phase fluctuations of this type produce phase noise [79, 80] which is characterized by a

mean-squared power spectral density (PSD) of the phase fluctuations in a 1 Hz bandwidth

Sφ(ω) = 〈∆φ(ω)〉2.
[

rad2

Hz

]
(2.38)

Equation (2.38) is the double sided PSD, which is commonly taken as twice the single

sided PSD, Sφ(ω) = 2Lφ(ω), because fluctuations may be taken as symmetric about the

carrier frequency ω0. The timing jitter spectral density is related to Lφ(ω) according to

Tφ(ω) =
∆φ(ω)

ω0
=

1

ω0

√
2Lφ(ω).

[
s√
Hz

]
(2.39)

For an application with bandwidth ω2 − ω1, the RMS timing jitter is found by integrating

Lφ(ω) over that bandwidth.

tRMS =
1

ω0

√
2

∫ ω2

ω1

Lφ(ω)dω. [s] (2.40)
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Time/distance

Time/distance

a)

b)

Figure 2–7: Illustation of frequency and phase fluctuations in the time domain.
a) An optical pulse train with repetition rate ωrep serves as a timing reference. Harmonic
signals with frequency detuning ∆ω yield an effective phase shifts at the time specified by
a particular optical pulse. b) Pure phase shifts in the time domain produce delays relative
to the optical pulse.

Inspection of Eqn. (2.40) indicates that the RMS timing jitter tRMS can be reduced by

minimizing the bandwidth of the application and the phase noise contributions within

such a bandwidth. In typical situations involving phase noise, it is conventional to define

the phase noise density relative to the power at the carrier frequency. In other words,

the phase-modulated component of the total noise power spectrum normalized to the RF

power of a carrier signal Prf is of interest and is defined as [10]

Lφ(ω) ≡ Single-sideband noise PSD due to phase modulation [W/Hz]

Prf(ω0) [W]
,

[
dBc

Hz

]
(2.41)
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where the units of dBc/Hz represents decibels relative to the carrier signal. In practice there

may be several sources contributing to Lφ such as thermal noise, shot noise and amplitude-

modulated phase noise. In Chapter 2, the relevant contributions will be discussed in

detail with respect to the application of laser-microwave synchronization for electron pulse

compression.

2.4.2 Optical-microwave timing transfer

In order to link the optical and electronic domains, an opto-electronic photonic device

such as a photodetector is required. A photodetector consists of a PIN junction fabricated

out of semiconducting material, the band-gap of which dictates roughly the wavelength

around which the photodetector can sample light efficiently. The PIN junction is micro-

fabricated in a circuit consisting of a shunt capacitance Cs and shunt resistance Rs which

governs the response time τr = RsCS and correspondingly the bandwidth of the detector

∆ωpd ≈ 1/τr. The circuit output coupled typically to a 50 Ω impedance. Applied to the

PIN junction is typically some type of biasing voltage for optimal operation. A photodiode

is characterized by its responsivity R(ν) = η(ν)q/hν, which has units of [A/W], where η(ν)

is the quantum efficiency of the PIN junction and ν is the frequency of the optical light.

When illuminated by an optical pulse train with repetition rate ωr, typical of an ultrafast

oscillator as described in sec. 1.2, the photo-diode will produce a current response of the

general form

I(t) = I0

+∞∑
n=−∞

f

(
t− 2πn

ωr

)
=

∞∑
n=1

An cos(ωnt) +

∞∑
n=1

Bn sin(ωnt), (2.42)

where the RHS of Eqn. (2.42) is represented in general by a Fourier series with coefficients

An and Bn. The form of f is governed by the response properties of the photo-detector. For

the limiting case where the harmonic frequencies are perfectly defined, the current response

in the Fourier domain at frequencies up to the bandwidth imposed by the response of the
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detector is given by

I(ω) =

∆ωpd/ωr∑
n=1

Inδ(ω − nωr), (2.43)

which describes a frequency comb spanning up to the detector bandwidth in steps of the

pulse train fundamental repetition rate. In practice, phase noise processes cause the delta

functions to widen into Lorentzian functions, more representative of a signal measured

using a typical spectrum analyzer.

20 

0.2 

0.002 

Figure 2–8: Fundamental phase noise power spectral densities as a function of optical
power on a photodetector.
Thermal phase noise Lthermal

φ and shot phase noise Lshot
φ are independent of carrier fre-

quency and exhibit P−2
opt and P−1

opt dependencies on optical power respectively. The jitter
integrated over 1 MHz bandwidth represents a noise floor contribution. Amplitude phase
modulation processes follow shot noise until the saturation point of the photodetector is
achieved, beyond which the noise rapidly increases.

2.4.3 Thermal noise

Thermal agitation of charge carriers at a temperature T produce voltage fluctuations

〈V 〉 which are approximately frequency independent when ω < kBT/~. This process yields
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a thermal noise power over a bandwidth ∆ω given by

Pthermal =
〈V 〉
Z0

=
1

2
kBT∆ω. (2.44)

The thermal phase noise power spectrum for a signal with carrier frequency ωc and power

Pc in a 1 Hz bandwidth is Lthermal
φ = 1

∆ωPthermal/Pc(ωc) = kBT/2Pc. The magnitude of Pc

produced by a photodiode in a 50 Ω system is Pc = I2Z0 = (RPopt)
2 Z0 which allows us to

express Eqn. (2.44) in terms of the optical power Popt incident on a photodiode.

Lthermal
φ =

kBT

2R2Z0P 2
opt

. (2.45)

The thermal phase noise as a function of optical power for any carrier frequency is shown

in Fig. 2–8.

2.4.4 Shot noise

A second source of phase noise arises from shot noise of the optical pulse train which

illuminates the photodetector. This type of noise yield fluctuations in the average photo-

current generated in the optical receiver circuit and is Lshot
φ = qIZ0/Pc which gives the

following when expressed in terms of optical power

Lshot
φ =

q

RPopt
. (2.46)

Equation (2.46) is also plotted in Fig. 2–8. Clearly Lshot
φ demonstrates a weaker dependence

on optical power and overtakes Lthermal
φ at a power of Popt ≈ 0.5 mW in a 50 Ω system at

T =295 K using a photodiode responsivity of 0.5 A/W.

Thermal noise and shot noise are both “white” processes which are frequency inde-

pendent and essentially define the noise floor of a phase noise spectrum at large Fourier

frequencies away from the carrier. Integration of Lthermal
φ and Lshot

φ over the bandwidth

thus yield relatively small contributions to the total RMS timing jitter (see Fig. 2–8) as
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per

tthermal
RMS =

1

ωc

√
2

∫ ω2

ω1

Lthermal
φ dω =

1

ωc

√
kBT∆ω

R2Z0P 2
opt

, (2.47)

tshot
RMS =

1

ωc

√
2

∫ ω2

ω1

Lshot
φ dω =

1

ωc

√
2
q∆ω

RPopt
. (2.48)

The phase noise spectrum of a typical ultrafast oscillator pulse train incident on a photode-

tector will be dominated by phase/frequency fluctuations at small offset Fourier frequencies

due to acoustic vibrations of the laser cavity, long term temperature drifts, electronic 1/f

flicker noise and amplitude phase conversion. Electronic flicker noise can arises during sub-

sequent amplification of the microwave signal generated by the photodetector and can be

minimized through the use of ultra-low phase noise microwave components. Management

of amplitude phase conversion processes in systems where low phase noise is required is

of critical importance. In practice the phase noise of such processes can be challenging

to measure and requires specialized frequency metrology techniques. Nonetheless accurate

models based on differentials of statistical averages can be constructed and are useful in

predicting the time-averaged effect of amplitude phase conversion.

2.4.5 Amplitude-phase conversion in photodetectors

The amplitude phase conversion process occuring in photodetectors may be modeled

by looking at the fluctuations in the current response generated by the laser pulse train.

Consider an ultrafast optical laser pulse with temporal duration τlaser incident on a pho-

todetector at t = 0. The time-domain response of the current generated in a photodetector

Ip(t) may be reasonably well-described by a product exponential function with rise-time

τr and fall time τf given by

Ip(t) = Ĩ
(

1− e−t/τr
)
e−t/τf , (2.49)
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Figure 2–9: Amplitude phase modulation in photodetectors
The timing transfer of an ultrashort laser pulse (red) to a current response in a photode-
tector for various waveform models given by equations (2.49) and (2.54). The effect of
saturation is to shift the first moment of the pulse 〈t〉 relative to the optical inpulse leading
to a temporal phase shift.

where Ĩ is a normalized current amplitude defined such that the maximum amplitude of

Ip(t) is the same for all values of τr and τf . Ĩ = 1/Ip(tmax) where tmax = τr ln (1 + τf/τr) is

found by minimizing dIp/dt. The intrinsic response delay D of the photodetector relative

to the optical pulse is found by calculating the first moment of the Ip(t) in the time domain

according to

D ≡ 〈t〉 = lim
t′→∞

∫ t′

0
tIp(t)dt

/∫ t′

0
Ip(t)dt, (2.50)

=
τf (τf + 2τr)

τf + τr
. (2.51)

Saturation effects within the photodiode lead to the increase of τf which are strongly

power dependent in the vicinity of and above the saturation power threshold Psat of the

photodetector. Such effects are of concern as they lead to changes in 〈t〉 relative to the
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optical reference. Differentiation of Eqn. (2.51) with respect to τf yields

d〈t〉
dτf

=
τ2
f + 2τfτr + 2τ2

r

(τf + τr)2
. (2.52)

The fall time τf may be modeled as a function of incident optical power Popt as τf (Popt) =

τf0

(
1 + (Popt/Psat)

β
)

. Applying this transformation to Eqn. (2.52) yields the following

expression

d〈t〉
dPopt

=
βτf0

Psat

(
Popt

Psat

)β−1
1 +

(
1 +

τf0

τr

(
1 +

Popt

Psat

)β)−2
 . (2.53)

Equation (2.53) is the amplitude phase coefficient for the photodiode which can be con-

verted to radians/pulse energy for a given laser system and carrier frequency. The phase

noise spectrum of 〈t〉 would essentially be established by the amplitude noise spectrum of

Popt. For our purposes however it is useful to remain in the time domain.

An alternative representation of the current response of the photodiode could be taken

as

Ip(t) = Ĩ
(
e−t/τf − e−t/τr

)
, τr < τf (2.54)

where Ĩ = Ip(tmax), with tmax = ln (τf/τr) /
(
τ−1
r − τ−1

f

)
is the normalization prefactor.

In this model, the first moment is given simply by 〈t〉 = τf + τr which in turn yields the

simple expression for the the amplitude phase coefficient

d〈t〉
dPopt

=
βτf0

Psat

(
Popt

Psat

)β−1

, (2.55)

which is roughly equivalent to Eqn. (2.53). The magnitude of Eqn. (2.55) may be easily

estimated using typical photodiode parameters. In this work a commercial GaAs fast pho-

todetector (Newport 818-BB-45) is used. This photodetector unit has an optical saturation

power of Psat ≈ 20 mW, and an unsaturated fall time of τf0 = 30 ps. These are typical val-

ues for commercial products designed for ultrafast lasers. Using a non-linearity exponent
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of β = 2, a value consistent with recent research in this area [85, 86, 87, 84, 88, 89] it is

found that d〈t〉
dPopt

= 1.5 ps/mW for an input optical power of Popt = 10 mW. At saturation,

this value doubles to 3 ps/mW. A typical Titanium:Sapphire mode-locked oscillator will

have a power stability between ∆Popt/Popt ≈ 0.1− 1% in terms of long-term stability and

0.2% at the shot-to-shot level. This translates to a time-averaged timing-transfer jitter of

15− 150 fs for an input power of Popt = 1
2Psat. More elaborate solutions such as balanced

optical-microwave phase detectors [90, 91, 92] exist but are based on Er-doped fiber laser

technology [93] not transferable to Titanium:Sapphire technology.

2.4.6 Amplitude-phase conversion in microwave mixers

Amplitude phase conversion can occur in microwave mixers due to saturation effects in

the diode ring array and power instability of the input signals. A microwave mixer combines

two input signals typically referred to as the “local oscillator” (LO) and RF signals given

by VLO(t) = V 0
LO cos(ωLOt + φLO) and VRF(t) = V 0

RF cos(ωRFt + φRF) respectively. The

output signal is called the intermediate frequency signal (IF) and is ideally of the form [78]

VIF(V 0
LO, V

0
RF, ωLO, ωRF, t, φLO, φIF) = f(V 0

LO, V
0

RF) cos ((ωLO ± ωRF)t+ φLO ± φRF) .

(2.56)

In phase detection mode, the LO and RF frequencies are equivalent, and the IF output is

low-pass filtered which results in a DC output which depends only on the relative phase

between the LO and RF signals ∆φ = φLO−φRF. In practice, mixers have small, amplitude

dependent, DC offset terms A(V 0
LO, V

0
RF) which yields VIF 6= 0 for ∆φ = π/2. The phase

detector is characterized by dVIF/d∆φ at ∆φ = 0, called the detector constant κ which is

typically on the order of κ ≈ 0.1 V/rad. When operating at near ∆φ = π/2, fluctuations

in the offset yield a phase error given simply by dA/dφ = κ, which corresponds to the

amplitude phase conversion coefficient of the mixer as illustrated in Fig. 2–10. The phase

detector constant κ is also in principle sensitive to amplitude fluctuations, but these effects
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a) b)

Figure 2–10: Microwave mixer amplitude phase conversion.
a) Amplitude-phase conversion yielding a scaling of the sinusoidal output. This process can
be minimized by operating near the zero-crossing. Amplitude phase conversion by changes
in detector offset. This process yields amplitude-modulated phase errors given according
to the detector constant κ.

can be made negligible compared to offset fluctuations by operating as close as possible

to VIF = 0. By converting to a timing error using a phase detector coefficient of κ =

300 mV/rad at a carrier frequency of ωc = 2π × 3 GHz, ∆t/∆A is roughly 180 fs/mV.

So called double-balanced mixers do a reasonably good job in minimizing the amplitude

sensitivity of the mixer, but for precise timing applications the detector offset can easily

become a limitation in feedback systems such as phase locked loops [94] (PLLs). In general

all measures should be taken to characterize the amplitude phase sensitivity of a detector

and stabilize the microwave signals to below 1 mV. This can be very challenging at the

microwave powers typically required for efficient operation of the mixer, which are usually

above +10 dBm, meaning that power fluctuations of ±0.01 dBm correspond to a value of

±∆A = ±0.8 mV yielding roughly ±140 fs.
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2.5 Robust high-performance synchronization for ultrafast electron diffrac-
tion with pulse compression

2.5.1 Issues with previous pulse compression systems

The first generation of ultrafast electron diffraction instruments with pulse compres-

sors suffered from significant synchronization issues, which limited the overall temporal

resolution to roughly 500 fs [50, 55]. As a result, the practical benefits from using mi-

crowave pulse compression were primarily enhanced signal and beam brightness rather

than the expected significant improvement in time resolution compared to older generation

compact ultrafast electron diffraction instruments. Most synchronization approaches em-

ployed a phase-locked-loop (PLL) to synchronize the laser to an external voltage-controlled-

oscillator (VCO) which had a center frequency designed to be resonant with the compres-

sion cavity (2.9985 GHz). The system was a commercial product marketed for ultrafast

electron diffraction with pulse compression provided by the company AccTec B.V. with a

design based off of the work found in ref. [94]. The PLL worked in the following way: the

5th harmonic of the oscillator repetition rate (5×frep ≈ 375 MHz) was synchronized to the

8th subharmonic of a ∼ 3 GHz voltage controlled oscillator (VCO), obtained by frequency

division. The locking was achieved by varying the VCO frequency until the mixing product

of the two signals yielded a minimum DC term, which corresponded to the frequencies be-

ing equivalent thereby establishing a phase-lock. The PLL system worked reasonably well

in the elimination of high-frequency jitter (i.e. the phase noise PSD was relatively low at

larger carrier offset frequencies) but suffered significantly from low-frequency jitter (drift)

components. These low frequency originated primarily from amplitude phase conversion

intrinsic to the mixer of the PLL. Moreover the amplitude phase response properties of the

cavity (as described in sec. 2.3.2) were not incorporated into the synchronization control

loop.
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2.5.2 Design considerations

In this section the synchronization system for ultrafast electron diffraction with pulse

compression is presented. In our experiments the relative timing changes with respect to

an optical pulse, not the absolute timing error error of a single clock, are important and of

concern. Our approach thus elects to use the laser oscillator as the master clock as overall

drift gets transferred to the entire system and does not impact the relative changes. This

approach also has the advantage of eliminating amplitude phase conversion errors which

arise inevitably when locking to an external oscillator in a phase-locked loop configuration.

Furthermore, the phase noise power spectral density of the repetition rate is suppressed

by a factor equal to the harmonic order extracted from the frequency comb which can be

made far lower than standard voltage-controlled oscillators. The work presented hereafter

is a detailed presentation and characterization of the new synchronization approach. At

the end a comparison with the previous synchronization system will be made from the

point of the view of amplitude-phase conversion effects.

The overall approach of the new synchronization system focuses on the minimization

of all the phase/timing instability effects mentioned in the preceding sections. In summary

the approach begins with synthesis of a phase-locked frequency comb from a mode-locked

titanium:sapphire oscillator using a high-bandwidth photo-detector. The 40th harmonic

of the oscilliator repetition rate is isolated and passed through an ultra-low phase noise

amplification and filtering chain. A reference portion of this signal is split prior to the high-

power amplification step required for driving the electron pulse compression cavity. The

reference signal is power stabilized and mixed with the transmitted cavity signal retreived

by a pickup antenna integrated into the cavity. The mixing of the signals is performed in

a low-phase noise detector and accurately measures phase fluctuations induced by cavity
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Figure 2–11: Photodetector spectrum of a 75 MHz mode-locked oscillator.
a) Schematic of the measurement. b) Broadband output of a 12.5 GHz bandwidth high-
speed photoectector illuminated by a 35 fs optical pulse produced by an ultrafast oscillator
shown in a). c) 200 MHz spectrum centered on the 40th harmonic of the laser repetition
rate. d) 1 MHz spectrum.

resonance detuning processes. This output further serves in an active phase stabilization

feedback system.

2.5.3 Microwave signal generation from a mode-locked laser

The first step in the synchronization system is the synthesis of the frequency comb

by photodetection of the oscillator pulse train illustrated in Fig. 2–11. The photo-detector

used in this work is a commercial product (Newport 818-BB-45) which has a PIN junction

fabricated from GaAs, a bandwidth of 12.5 GHz and a responsivity at 800 nm of R =

0.475 A/W. The saturation current is ∼ 10 mA, corresponding to an optical saturation

power of Popt ≈ 20 mW. The power incident on the photo-detector is set to 5 mW which

translates to an amplitude phase modulation jitter of ∼ 20 fs for oscillator power stability
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Figure 2–12: Low-level RF synchronization system.
a) Broadband spectrum analyzer trace of the filtered frequency comb showing the isoloation
of the 40th harmonic of the laser repetition rate. b) 200 MHz spectrum analyzer trace
showing the harmonic signal along with some spurious signals. The spurious signals are
insignificant as they fall outside the bandwith of the compression cavity. c) 1 MHz span of
the drive signal. d) Schematic of the low-level RF system and measurement setup.

of 0.5% according to Eqn. (2.55). The oscillator-photodetector output spectrum is shown

in Fig. 2–11 a) and consists of a broadband frequency comb with spacing given by the

fundamental repetition rate of the ocillator which is frep = 74.962350± 0.5 MHz measured

using a nanosecond counter and confirmed by a second measurement with a calibrated

spectrum analyzer. The amplitude of the comb signals demonstrate a inverse frequency

dependence, and the power at the n = 40 harmonic of frep is measured to be −29.34 dBm

in a 1 Hz bandwith.

2.5.4 Low-level RF system

The desired frequency for pulse compression is the n = 40 harmonic of frep which

is resonant with the cavity frequency of f0 ∼ 2.9985 GHz (at 18 degrees Celsius). The
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low-level signal requires amplification by nearly 80 dB before it can be used to drive the

cavity. Before efficient amplification can occur however, the spectrum requires filtering to

isolate the desired frequency, otherwise gain with be distributed across all harmonics which

fall within the amplification band resulting is weaker spectral power at the harmonic of

interest. The spectrum is coarsely filtered by a bandpass filter spanning 2.7− 3.1 GHz and

then is amplified by an ultra-low phase noise amplifier (Miteq AMF-2F-02700310-04-10P-

LPN) providing +28 dB of gain from 2.7− 3.1 GHz which has noise figure < 0.4 dB. The

phase noise spectrum of this amplifier is specified at Lφ = −123,−140,−148,−160 dBc/Hz

at 10 Hz, 1 kHz, 10 kHz and 1 MHz carrier offset frequencies respectively and contributes

a negligible amount of jitter to the signal (< 1 fs RMS). The signal is then filtered by a

custom designed K & L cavity bandpass filter which has bandwidth of 44.8 MHz centered

at 2.9985 GHz and a lower and upper rejection of ∼ 60 dB at 2.9 and 3.1 GHz. Between the

first amplifier and filter is an isolator which protects the amplifier output from reflected

signals which are rejected by the filter. Another low phase noise amplifier follows the

filter (Holzworth HX2400) providing 14 dB of gain and has phase noise specified by Lφ =

−160, 172 dBc/Hz at 100 Hz and 10 kHz carrier offset frequencies. The output spectrum

after this stage is shown in Fig. 2–12. The magnitude of the synchronization signal is

−2.56 dBm and is passed to the front-end of the RF-system.

2.5.5 Front-end RF system

The front-end of the RF synchronization system (see Fig. 2–13 a) and b)) consists of

a high-power amplification stage and an active feedback system design to compensate for

detuning of the cavity resonance frequency relative to the synchronized drive signal which

is now referred to as fd. The drive signal from the low-level RF system passes through

a saturated low-noise amplifier to achieve optimal power stability which is crucial for the

next step in the synchronization system. The drive signal is then split into two paths using
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Figure 2–13: Front end of the synchronization system for electron pulse compression.
a) The low-level RF system for the generation of the synchronization signal by photode-
tection of the oscillator pulse train. b) The low-level RF signal is split into two signals, the
first being a stable reference (LO) and the second is used for pulse compression after high-
power amplification using a solid state continuous wave amplifier. The signal transmitted
(RF) through the cavity is amplitude stabilized and mixed in a homodyne configuration
with the reference signal by a phase detector. The output of the phase detector measures
the relative phase of the two signals which is used in a control loop. c) Phase detector out-
put as a function of phase difference between the LO and RF signals the detector constant
is 320 mV/rad. d) Measurement of the forward, reflected and transmitted compression
cavity signals. The amplitude response (transmission function) of the cavity is shown as
the gray line.

a low phase noise splitter (Holzworth HX3300) the first signal serves as the local oscillator

reference of an ultralow phase noise mixer (Holzworth HX3100). The second signal passes

through a manual phase-shifter which is used for manual tuning of the compression cavity

phase, an electronic low-phase noise phase shifter (Holzworth HX5100), a power 2.5 dBm

power limiter as an extra precaution to maxiumize power stability. High power ampli-

fication to the level of 50-100 W is achieved using a solid-state continuous-wave power
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amplifier (Ophir RF 4022) which can provide up to 60 dB of gain from 2.7 to 3.2 GHz.

The RMS power stability of the amplified signal was measured to be ±0.003 dBm. The

amplified signal passed through a dual-directional coupler before coupling to the cavity for

electron pulse compression. Measurements of the forward, reflected and transmitted power

are shown in Fig. 2–13 d). The transmitted signal carries a phase shift given by equation

(2.30) which is re-written here for completeness in terms of f0 and fd

∆φ = arctan

(
2Q0

fd − f0

f0

)
≈ 2Q0

fd − f0

f0
, fd/f0 ≈ 1. (2.57)

The transmitted signal is amplitude stabilized by a low phase noise amplifier and power

limiter before coupling to the RF port of the phase detector. The detector IF output

yields a DC voltage depending on the phase difference between the LO and RF signals

φLO − φRF which is plotted in Fig. 2–13 c). The detector was calibrated and found to

have a phase detector constant of κ = 320 mV/rad. The phase detector output voltage

may be used to accurately follow fluctuations and drift of the cavity field phase. The

fluctuations which yield phase changes according to equation (2.57) are primarily slow

processes (longer than 1 s) associated with the drift in the cavity resonance f0 and drive

signal fd. The cavity resonance is governed by cavity temperature changes ∆T and the

thermal expansion coefficient according to ∆f0/f0(T0) = −k∆T which is on the order of

300 kHz/K. This effect is minimized as much as possible using a recirculating chiller with

a temperature stability of ±5 mK. This alone is insufficient for acheiving the required

time resolution, but it is possible to make use of the measured phase changes and apply a

correction to restore the cavity phase to an ideal operating point.

2.5.6 Active phase feedback for cavity resonance detuning

The phase detector signal can be further used to compensate phase changes induced

by cavity detuning by integrating a feedback system which forms a closed loop around the
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Figure 2–14: Schematic of the cavity active phase feedback system.
The transmitted cavity signal is mixed with a pre-amplification reference signal and the
output is low pass filtered. Phase fluctuations relative to an initial point are detected and
compensated for using an analog PID controller which drives a precise low phase noise
phase shifter. The phase detector output can be analyzed in an FFT manner to yield the
phase noise spectrum.

cavity and amplifier system as shown in Fig. 2–13 b) and 2–14. The phase detector signal

establishes a reference phase which can be maintained over time by applying a corrective

phase shift electronically to the cavity drive signal using low phase noise phase shifter.

The feedback system is driven by a 100 kHz analog PID system (Stanford research systems

SIM 960 module). The voltage resolution of the PID controller is (at maximum) ±1 mV,

which corresponds to a phase sensitivity given by 1 mV×/κ = 3.125 mrad. This limit

would mean that the minimum detectable phase difference occuring in the cavity would

be ∼ 165 fs according to equation (2.23). The phase detection sensitivity is increased by

a factor or ∼30 by amplifying the output voltage from the phase detector using a 30 dB

scaling amplifier. This translates to an absolute phase/timing measurement resolution of

roughly 5 fs assuming no amplitude-phase conversion occuring in the mixer (this will be

treated later). The electronic phase shifter can perform a phase shift of 0 to 190 degrees

over the voltage range of 0 to 10V, which translates to ∼ 330 mrad/V. The resolution of

the control voltage is also 1 mV which would only correspond minimum phase correction
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of 0.33 mrad, which is improved by division of the control voltage by 100 such that the

correction resolution is 3.3 µrad/10µV, which lies in the sub-fs regime.

2.5.7 Feedback stabilization performance

The time dependent voltage output of the phase detector V (t) represents phase fluc-

tuations induced by the compression cavity system. The cavity phase noise spectrum is

thus related to the Fourier transform of V (t), Ṽ (ω) through the phase detector constant κ.

This phase noise describes the additive phase noise on top of the reference LO signal since

the phase detector operates as a homodyne receiver. Measurements of the cavity phase

drift as a function of time measured over a period of time exceeding 16 hours is shown in

Fig. 2–15 a) for both free-running and phase-stabilized modes of operation. The additive

phase noise spectrum of the compression cavity system (represented as a timing noise power

spectral density) is shown in Fig. 2–15 b). As a function of laboratory time, without active

phase correction the cavity demontrates long term drift components on the order roughly

10 mrad, corresponding to a timing drift of roughly 500 fs at a carrier frequency of 2.9985

GHz. A histogram of the phase measurements reveals that the RMS timing drift is reduced

from 100 to 5 fs. The phase noise spectra demonstrate the suppression by roughly 2 orders

of magnitude of the low frequency drift components in the 10 µHz to above 100 mHz. The

measurements shown in Fig. 2–15 are electronic measurements of the timing noise/jitter

between two signals. In principle this translates 1-to-1 to the temporal arrival time drift

of the compressed electron pulses in the limit where ω0τ � 1 is well satisfied according to

Eqn. (2.23). This considerable improvement in the synchronization of RF field cycles in

a pulse compression cavity are entirely the product of accounting for the phase response

function which is highly sensitive to the cavity resonance relative to the drive signal.
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Figure 2–15: Electronic phase stabilization of the compression cavity system.
a) Measurements of the cavity phase drift as a function of time with and without the phase
correction system activated. b) Fourier tranforms of the traces shown in a) representing
the additive phase noise contribution of the compression cavity system to the underlying
synchronization signal. Frequencies represent offset frequencies with respect to the carrier
frequency of the cavity drive fd ' 2.9985 GHz.

2.5.8 Resolution and stabilization limits

Our ability to ultimately correct for phase fluctuations and drift resulting from the

cavity detuning factor depend on the ability to detect the phase, or rather, to distinguish

real phase changes from those induced by amplitude fluctuations which modulate the de-

tector output as describes in section 2.4.6. All measures are taken to stabilize the power

levels of both the reference LO signal and the RF signal feeding the phase detector. The

LO signal is amplitude stabilized using the hardware illustrated in Fig. 2–13 to an RMS
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stability of σLO = 0.001 dBm at a power of 12.00 dBm which yields an amplitude-phase

conversion timing error of ∆terr
LO = σLO/ωdκ = 16 fs. The RF signal is more challenging

to stabilize. The first challenge is that the signal is necessarily amplified to high power

(∼ 47.0 dBm) using a CW solid-state amplifier. The amplifier has an output-level control

of 0.1 dBm an a stability of σA = ±0.05 dBm which would on its own yield timing fluctu-

ations of ±800 fs (assuming the signal is obviously attenuated down to the 12 dBm level

required by the phase detector). Furthermore, the RF signal is amplitude modulated ac-

cording to the cavity amplitude response (Eqn. (2.35)) unless precisely at resonance, which

clearly cannot always be satisfied. As such, the cavity operation is always initiated as

close to resonance as possible (found by temperature tuning an optimizing the transmitted

power). Figure 2–16 show the arrangement for power stabilization of the RF signal. The

transmitted cavity signal is first attenuated slightly by 3 dB then limited to 2.5 dBm using

a precision limiter. The power level is then well within the input range which results in

a saturated output of an ultra-low phase noise amplifier the output from which is filtered

prior to coupling to the phase detector. The power stability of the resulting signal is mea-

sured to be σLO = ±0.0031 dBm which results in an amplitude-phase conversion timing

error of ∆terr
RF = σRF/ωdκ = 53 fs. At present in this system, these fundamental limits

associated with the power stability of the microwave signals prevents the phase/timing

detection threshold from becoming comparable or ideally equal to the phase correction

threshold which is established by the control loop. The phase shifter can apply a minimum

correction of 3.3 µrad which at 2.9985 GHz translates to a timing shift of 175 attoseconds.

The required amplitude stability in order to distinguish a phase shift of this magnitude is

roughly 10−5 dBm, or 1µV. Achieving this would be technically quite challenging in this

configuration, but could perhaps be achieved using complex interferometric stabilization
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Figure 2–16: Power stability of the phase feedback system.
The raw transmitted cavity power demontrates amplitude noise which is stabilized using
a microwave limiter and a low phase noise amplifier operating in saturation mode. This
sequence of components smooths out the RF signal feeding the mixer to an RMS stability
of 0.0031 dBm.

techniques, IQ quadrature demodulation prior to phase detection or perhaps a secondary

power stabilization feedback loop.
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2.6 Temporal characterization of compressed electron pulses

In order to be confident about the performance of the pulse compressor and to deter-

mine the overall time resolution of the instrument, direct temporal measurements of the

electron pulses are required. In general this requires invoking some means of projecting the

longitudinal (temporal) axis of the electron pulse onto the transverse axis, thereby linking

the pulse duration to a measurable distance on a detector. A simple way to achieve this is

to use a streaking electric field field orthogonal to the momentum vector pz. The electric

field Ex(t) (defined along the x axis) must be sufficiently time varying such that electrons

within the compressed pulse experience a range of field strengths. This leads to the streak-

ing of the pulse by imparting a range of transverse momenta px(t) which depends on the

interaction time of the pulse in the streaking field and by consequence the pulse duration

τ . Figure 2–17 a) illustrates the principle of electron pulse streaking. Streaking can be

accomplished using high-frequency fields ranging from microwaves to terahertz, in either

resonant structures or free-space. Pulse duration measurements may also be performed

using optical fields using the method of grating-enhance ponderomotive scattering.

The momentum transfer along the x direction is determined by the Lorentz force

according to

px(t) = q

∫ ds/vz

0
Ex(t)dt, (2.58)

where ds/vz is the time-of-flight of the electrons with speed vz in the transverse streaking

electric field which has a spatial extent ds. Depending of the time-dependence of Ex(t)

the electrons in the pulse experience (ideally) a linearly-varying field such that electrons

acquire a linearly varying transverse momentum px depending on their position within

the pulse, and therefore the pulse duration. After interaction with the streaking field,

the electrons propagate freely over a drift region and are then imaged by a detector. The

streaked electron pulses are displaced by an average amount ∆x and are streaked to a width
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σS . The resolving power of a streak camera is characterized by its streaking rate (or streak

velocity) vS defined as vS = ∆x/∆t where ∆t is the time after which the streaking field

is initiated. The pulse duration is determined by deconvolution of the streaked electron

pulse with an unstreaked reference of width σR according to

τ =
1

vS

√
σ2
S − σ2

R. (2.59)

A streak camera can be efficiently used for pulse duration measurements and also arrival

time stability measurements by tracking the position of the streaked pulse ∆x as a function

of time in the laboratory.

2.6.1 Ultra-compact streak camera design

A compact (1×2 cm) streak camera device has been designed in this work and is

implemented for simple and efficient characterization of the electron pulses. The design is

based on using a GaAs photoswitch to optically trigger the streaking field using an 800

nm ultrafast laser pulse. The operation of the streak camera is nearly identical to a pump-

probe measurement, and thus is a reliable method for characterizing the performance of an

ultrafast electron scattering instrument. The streak camera is an RC circuit (see Fig. 2–

17 b)) which is charged by a high-voltage (1 kV) square-wave pulse as shown in Fig. 2–17 c).

Once the capacitor is charged, an ultrashort laser pulse impinges on a GaAs chip coupled

to the circuit impulsively creating a short in the circuit, resulting in a discharge of the

capacitor. The electron pulses pass through the capacitor plates during this discharge and

thus samples a time-varying electric field as shown in Fig. 2–17 c). The discharge process

in the streak camera results in a ring-down which has a frequency roughly determined by

the resonant properties of the circuit.
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Figure 2–17: Streak camera principle of operation and design.
a) Electron pulses with momentum pz interact with a transverse streaking field Ex(t)
and obtain a transverse momentum px via the Lorentz force. The effect is to streak and
displace the pulse thereby mapping the temporal axis onto spatial axis at the position of
the detector. The width of the streaked pulse is σS . b) Circuit model of a photo-triggered
streak camera. A voltage V (t) charges and RLC circuit coupling to a GaAs switch which
“flips” when illuminated by a laser pulse causing the circuit to discharge and create a time
varying electric field in the capacitor which streakes the electrons as described in c). d)
Design of the streak camera fabricated on a printed circuit board. The GaAs photoswitch
is located in the middle above a parallel plate capacitor structure. Bonding pads and
ground planes are present for additional circuit elements. The electric field profile between
the plates is shown to the right.

The streak camera is fabricated on a printed circuit board (pcb) (Rogers RO3003 lam-

inate 1.52mm, 70µm electro-deposited copper foil). The material was chosen for its high-

vacuum compatibility and also for its high-frequency properties such as low-dissipation
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Figure 2–18: Streak camera calibration measurement.
Displacement of the electron pulse on the detector as a function of the time after the
streak camera is triggered using 800 nm laser light. The streaking velocity of the device is
given by the slope of the data in the first linearly varying region. It is determined to be
vS = 87± 2 µm/ps.

above 10 GHz and high breakdown voltage characteristics. The design is shown in Fig. 2–

17 d), and consists of various bonding pads for the soldering of resistors and ground con-

nections. The GaAs chip is placed roughly in the middle of the device, in a pocket milled

out to a depth of 500 µm. The GaAs chip has patterned Ohmic contacts deposited in

a Ti-Ge-Au trilayer process which are connected to adjacent contact pads on the pcb by

silver paint. The capacitor is a simple parallel plate structure located beneath the GaAs

chip. The plate structures where fabricated by milling a slot, plating the sides extending

into the board and then defining the plates by drilling out the top and bottom regions.

The electric field profile is shown in the right of Fig. 2–17 d).

The performance of the streak camera is determined by streaking the electron pulse

as a function of time after the streaking fields are initiating via the optical laser trigger.
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The calibration data is shown in Fig. 2–18, which plots the center position of the streaked

pulse as a function of time. The linearly-varying region of the streaking field is found in

the vicinity of roughly 50 ps, where the slope is calculated to be 87± 2 µm/ps correspond-

ing to the streak velocity vS . The ring-down of the streak-camera roughly traces out a

damped oscillation, with a frequency of approximately 10 GHz. The temporal resolution

of the streak camera is directly proportional to the streak velocity and depends how well

streaked pulsed can be differentiated from the reference pulse. For the geometry of the

instrument studied in this work, the center of the pulse can be detected by fitting down to

±0.25 detector pixels which corresponds to ∆xmin = ±4.0µm and thus an RMS temporal

resolution of ∆xmin/vS = 46±1 fs (108±3 full-width at half-maximum). This limit is also

applies for distinguishing between streak and unstreaked pulsed for IRF measurements.

2.6.2 Temporal impulse response function

The time-averaged temporal impulse response function (IRF) defines the time-resolution

of the instrument over a particular averaging time. Depending on the duration of this time

interval, the IRF is determined by the electron pulse duration τ , the arrival time jitter ∆t

ranging from as fast as shot-to-shot (1/fexp = 1 ms) up to the averaging time and also the

optical pulse duration according to

IRF =
√
〈τ〉2 + 〈τlaser〉2 + 〈∆t〉2, (2.60)

where 〈x〉 denotes the time-average of x. The time-averaged pulse duration 〈τ〉 is deter-

mined using (2.59), where σS and σR are determined over a period of 30 seconds (1 s per

image, 30 images averaged together), with an electron pulse repetition rate of 1 kHz. Thus

an image acquired by integrating the streaked electron pulse signal for 30 seconds intrin-

sically averages 30,000 individual pulses. This image is fit to a 2-dimensional Gaussian
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function to determine the center position of the pulse along with the width σS . Measure-

ments of the streaked electron pulse as a function of cavity phase are presented first to

determine and characterize the cavity performance when the streak camera is positioned

at the position of the sample for an ultrafast electron scattering experiment. The distance

between the compression cavity to the streak camera (sample plane) is 23 cm and the IRF

is measured for various cavity phase settings. For all phase settings, the streaked pulse

is maintained in the center of the linearly varying streak field (Fig. 2–18) by varying the

time delay of the optical trigger of the streak camera. Figure 2–19 shows IRF vs. phase

for 3 different cavity driving strengths. This ensures that the resolving power of the streak

camera is roughly equivalent for all measurements. Optimal power for compression is found

to be 44.7 W for a cavity temperature of 18.0 degrees Celsius (measured using an external

thermometer anchored to the copper) and a drive signal of 2.99849 GHz. In this regime, the

measured IRF very near to optimal compression phase “levels-out” as the streak camera

resolution is reached; the streaked and unstreaked pulses cannot be differentiated within

the error established by fitting the images. At optimal phase for compression, the power

dependence of the cavity may be characterized. Figure 2–20 shows the IRF for various pow-

ers relative to the optimal power of 44.7 W. The temporal focusing power demonstrates

a sharp minimum and behaves asymmetrically as a function of power with respect to this

minimum. The asymmetry at larger power results from over compression counteracted by

space-charge repulsion effects. The smallest measurable IRF determined using our streak

camera was 106± 2 fs FWHM.

2.6.3 Long-term arrival time stability

The long-term temporal stability of the compressed electron pulses over the typical

time-scales necessary to perform ultrafast electron scattering experiments is of particular

importance because of its direct detrimental impact on the data. The reason for this is
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Figure 2–19: Electron pulse temporal impulse response function as a function of cavity
phase.
The bunch charge of the electrons was 0.2 pC, the drive frequency was 2.99849 GHz and the
cavity was temperature stabilized to 18 C. At the optimal power of 44.7 W, the measured
IRF becomes resolution limited by the streak camera.

because typical measurements run for several hours and several tens of individual time-

delay scans are carried out. At the end of the measurement, all of these individual scans

are averaged together to improve signal to noise. Problems arise when “time-zero” drift

occurs between subsequent scans resulting in a degradation of time-resolution following

the averaging process. In certain cases, there may be sufficient time-resolved diffraction

intensity signal such that the true value of time-zero can be determined for each scan

and a post-processing correction procedure called “time-stamping” may be performed to

eliminate the scan-to-scan drift. For many measurements however, this procedure is not

possible. The long term drift of the electron pulse is tracked relative to the optical pulse

in the following manner. The center of the streaked pulse is tracked over the course of

4 hours to measure the performance of the phase feedback system in compensating for
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Figure 2–20: Electron pulse temporal impulse response function as a function of cavity
power.
Cavity power is relative to 44.7 W and the paramters of the instrument are the same as
those described in Fig. 2–19.

cavity induced phase changes, and thus time-of-flight drift between the cavity and the

sample (streak camera) position. The results are displayed in Fig. 2–21 for both the phase

feedback control ON and OFF. Without active phase correction, the arrival time drift

demonstrates a long-term underlying drift on the order of 500 fs and also oscillation cycles

on the order of hours. With phase stabilization activated, both of the long-term drift and

oscillatory behaviour are eliminated. By examining the arrival time distribution in the form

of a histogram, it can be seen that the statistical RMS arrival time drift is reduced from

greater than 200 fs to below 50 fs RMS, roughly equivalent to the limit of the measurement

due to the temporal resolution of the streak camera.
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Figure 2–21: Long-term arrival time stability of compressed electron pulses.
a) Arrival time drift converted from the streaked pulse position measured on the detector
for both phase contol ON (blue) and OFF (red). b) Histograms of the data shown in a)
depicting the statistical jitter contribution to the overall instrument resolution.

2.6.4 Correlation with microwave power stability

In this section, the impact of microwave power stability on the performance of the

feedback system is quantified in detail. As described in sections 2.4.6 and 2.5.8, amplitude

drift and instability in the microwave signals feeding the phase detector produces phase

errors through amplitude-phase conversion processes. The feedback system is unable to

differentiate such phase errors from true phase terms and will thus apply false corrections

to the phase. This effect would not be observed in a electronic measurement of the phase,

but would appear in the behaviour of the streaked electron pulses which are subject to the

phase stabilization system. The amplitude phase conversion coefficient was measured to

be 54 mV/dBm by varying the power of the compression cavity. This translates to 170

mrad/dBm using the detector constant and translates to a timing error of 9.0 ps/dBm.
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Figure 2–22: Long-term arrival time stability of compressed electron pulses.
Measurement of the time-zero shift as a function of time plotted along-side the compression
cavity drive power. Correlations between the arrival time and power drift are observed
and correspond well to the measured amplitude phase conversion coefficient for the phase
detector which was determined to be 9.0 ps/dBm.

This number is consistent with what is observed by comparing the cavity drive power and

the temporal drift of the streaked electron pulse shown in Fig. 2–22. A drift in amplifier

power of ∼ 0.03 dB correlates well with an arrival time drift of ∼ 300 fs observed in the

measurements of the streaked pulse. Following these measurements, as described in 2.5.8,

the RMS power stability of the cavity signal was improved by roughly a factor of 10 to

0.0031 dBm, yielding an improved amplitude-phase timing error term of 28 fs RMS.

2.6.5 Comparison of amplitude-phase conversion effects

Pulse streaking measurements may also be conducted to characterize the amplitude-

phase-conversion processes ocurring in the synchronization system prior to the pulse com-

pression cavity. Here we present a comparison between the new synchronization approach

described in this chapter and the previous approach based on the used of a commercial
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PLL. The measurements are carried out by varying the optical power incident on the fast

photodetector used for synchronization and measuring the microwave power at the syn-

chronization frequency of interest. As a function of this power the displacement of the

streak is recorded and corresponds to an erroneous phase shift in the microwave signal

relative to the optical pulse which triggers the streak field. For these measurements the

phase feedback was left off as the measurements could be taken quickly and compensation

for long-term drift was not required. Here we present an important comparison of the am-

plitude phase conversion processes between the new synchronization approach and the old

approach involving the VCO-based phase-locked-loop (PLL). The measurement schematic

and results are displayed in Fig. 2–23. For the current synchronization system (3 GHz

direct generation) the amplitude phase conversion factor is determined to be 2.2 ps/dBm

which reflects the amplitude phase conversion processes arising in the photodetector alone.

The PLL based synchronization system is influenced amplitude phase conversion processes

both in the photodetector and also in the double balanced mixer of the PLL. The PLL ap-

proach yields a value of 43 ps/dBm nearly 20 times larger than the current approach. This

indicates a pronounced sensitivity to optical power fluctuations coming from the oscillator.

2.6.6 Summary and outlook

To conclude this chapter we have presented a new synchronization approach for ul-

trafast electron scattering featuring microwave pulse compression. The approach involved

using the relevant oscillator repetition rate harmonic signal generated from a phase locked

frequency comb. The comb is generated directly by photodetection using a high-bandwidth

(12.5 GHz) photodetector. The signal is instrincally phase locked and is less sensitive to

amplitude phase conversion effects than a PLL-based approach. The compression cav-

ity phase response is actively stabilized by a phase correction system which accurately

compensates for phase shifts arising from detuning between the cavity resonance and the
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Figure 2–23: Comparison of amplitude phase conversion effects.
a) Measurement schematic. The power of the portion of the oscillator pulse train illumi-
nating the synchronization diode is attenuated using a variable neutral density wheel. The
microwave power at the synchronization frequency (3 GHz for the direct generation and
375 MHz for the phase-locked-loop) is measured using a calibrated power meter. As a
function of the power, the position of the streaked electron pulse is tracked over the linear
streaking range the amplidue phase conversion coefficient is determined.

synchronized microwave drive signal. The synchronization system presented here, along

with long-term stability over time-periods exceeding measurement times (days), offers a

5-fold improvement in the overall temporal resolution of the instrument [68, 50]. Impor-

tantly, the performance of the instrument has now been pushed to a regime where the

time resolution is limited by the pulse duration, not the arrival time jitter and drift. The

impulse response function over the course of many hours is 131±5 fs FWHM (56±5 RMS)
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and it essentially limited by the temporal resolution of the streak camera. With strong

streaking fields, such as those generated by THz fields we would be able to determine the

pulse duration more reliably, and possibly push the temporal resolution to the sub-50 fs

regime with high-brightness pulses.



CHAPTER 3
Photo-induced phase transitions in vanadium dioxide

Revealing how the complex interplay between charge, spin, orbital and lattice-structural

degrees of freedom gives rise to emergent properties is central to materials research. Using

external perturbations to modify this interplay and control materials is at the forefront

of these efforts. Vanadium dioxide, VO2, is a prototypical material whose properties are

strongly dependent on the correlations between the aforementioned degrees of freedom. A

key feature of VO2 is an insulator-to-metal transition (IMT) with a relatively low transi-

tion temperature of Tc ' 340 K [95]. Associated with the IMT is a crystallographic phase

transition (CPT) where the lattice structure transforms from its low-symmetry monoclinic

(M1) phase to a high symmetry rutile (R, tetragonal) phase. The key difference between

the M1 and R phases is the existence of V–V dimers in the M1 phase which produces

a periodic lattice distortion (PLD) along the chains of V atoms yields a doubling of the

lattice constant along the c axis of the R phase. The driving mechanism(s) for IMT and

CPT transitions, along with an understanding of to what extent they depend on each other

have been longstanding open questions.

Optical excitation pulses can be used to modify and control electronic correlation

effects in materials [1, 96] and in turn provide insight into the basic interactions at play. For

the case of VO2, measurements have demonstrated a complicated structural response [97,

98, 5] to optical excitation which cannot be understood simply in terms of phases found on

the equilibrium phase diagram. This has made reconciliation of the results obtained using

various time-resolved spectroscopy techniques [99, 100, 101, 102, 103] difficult and often

misleading. Not only can an IMT and CPT that are analogous to the equilibrium case be

92
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driven by sufficiently intense laser excitation, but a metastable phase possessing metallic

properties for which no equilibrium analog exists is also formed under certain excitation

conditions [5, 104]. This non-equilibrium phase retains the crystal symmetry and atomic

coordinates of its parent monoclinic M1 (to a very good approximation) phase and is known

as the monoclinic metallic or M phase. It has been established qualitatively that the M

phase is characterized by a re-arrangement of valence charge density to a distribution

demonstrating 1-dimensional anti-ferroelectric charge ordering [69]. Details concerning

the nature of this M phase are challenging to obtain, mostly because of the complicated

spectroscopic response of VO2 due to the concurrency of multiple phase transitions.

In this chapter, UED and time-resolved terahertz spectroscopy (TRTS) are combined

to perform a detailed structure-property correlative study of the photo-induced phase tran-

sitions in VO2, with the primary aim of understanding in as much detail as possible the

structural changes associated with the monoclinic metallic M phase. Time-dependent

structural changes in VO2 from the diffraction data as a function of photo-excitation

strength are associated to conductivity changes in the low-frequency THz range and linked

according to their temporal behaviour. The combination of these techniques allows for the

various phase transitions to be separated and in turn the details of the monoclinic metallic

phase can be extracted. We determine from the electron diffraction data the nature of

the optically-induced charge ordering within the unit cell. We then determine the fluence

dependent heterogeneous response of the material using a phase-fractional model based on

diffraction peak intensities serving as order parameters for the various phases. Further-

more, we characterize the fluence-dependent formation time and kinetics of the M phase.

Finally, we present a consistent picture of photo-induced phase transitions in VO2.
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3.1 Vanadium dioxide at equilibrium

Before we present the experimental results we will overview the equilibrium proper-

ties of VO2 and also relevant time-resolved studies. Under equilibrium conditions, the

various phases of VO2 reside on a complicated phase diagram illustrated in Fig. 3–1 a).

As a function of pressure P and temperature T , VO2 has three structurally distinct low-

symmetry insulating phases, namely, monoclinic M1 and M2 and triclinic T occuring at

low temperature or higher pressure (or strain from doping). The high-symmetry metallic

rutile R (tetragonal) phase lives above the IMT temperature of Tc ≈ 340 K. The IMT is

the hallmark feature of this complicated phase diagram and yields a conductivity change

of 5 orders of magnitude in addition to striking changes in optical properties [105]. The

first measurements of the IMT were conducted by Morin [95] and are shown in Fig. 3–1 b)

along with various other transition metal oxide compounds. The primary structural distor-

tion is the V–V dimerization which occurs along the c–axis of the rutile phase depicted in

Fig. 3–1 c). The dimers do not form in a perfect 1-dimensional manner, as they are tilted

with respect to the c–axis in two different directions depending on which V–V pair within

the unit cell is considered. In the M1 phase, electrons are localized on the dimer pairs

and this is generally thought to arise from the mixing of V–3d electrons. Interestingly,

the low-temperature insulating M1 phase exhibits no magnetic ordering (paramagnetic).

This property differs from so-called Mott insulators which typically have insulating phases

demonstrating anti-ferromagnetic ordering [106]. In the R phase electrons become delocal-

ized across the unit cell volume. Although at first glance it seems clear that the structural

distortions are responsible for the IMT, the role of Mott-Hubbard physics [106] and the

interplay with the structural distortions must be considered.
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a) b)

c)

Figure 3–1: Equilibrium phase diagram and insulator metal transition in vanadium dioxide.
a) P − T phase diagram indicating the 3 structurally distinct low temperature insulating
phases, M1, M2 and T and the high-symmetry rutile R phase at higher temperature. b)
Data of the electrical conductivity for various transition metal oxides including VO2 from
Ref. [95] (with permission). c) Cartoon illustration of the effect of dimerization between
M1 and R VO2. In this dimerized state electrons are localized on the dimers wheres in the
R phase they become delocalized.

3.1.1 Crystal structures

The M1 and R phases of VO2 are the most common in nature and are the phases

relevant to the content of this chapter. The space group of the M1 phase is P21/c and the

lattice constants are a = 0.575 nm, b = 0.452 nm and c = 0.538 nm [107]. The monoclinc

angle of the unit cell is β = 122.6◦. The R phase has a space group of P42/nmn and the

lattice constants are a = b = 0.455 nm and c = 0.286 nm [108]. Figure 3–2 shows 3-

dimensional atomic models of the M1 and R VO2 systems along with various projections
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a) b) c)

d) e) f)

Figure 3–2: Equilibrium crystal structures of vanadium dioxide.
a) View of 2 units cells of R VO2. b) view up the rutile cR axis. c) View of equidistant V
atoms. d) View of single unit cell of M1 VO2. e) View up the rutile cR axis (a axis in the
M1 basis.) f) Dimerized V–V pairs.)

to illustrate the structural distortions. Figure 3–2 a) and d) show views of the VO2 unit

cells for the R and M1 respectively. Figure 3–2 b) and e) show the unit cell looking down

the cR–axis in both phases. In b) there are no dimer pairs (see c)) and in e) the tilt of

the dimer pairs is clearly seen along the aR + bR and aR − bR directions for the V atom

chain at the unit cell edge and center respectively. A secondary effect arising from this

dimerization is the displacement of the V atoms to off-center coordinates with respect to the

VO6 octahedral units. Moreover, the two different dimer tilt directions are accommodated

by a small rotation of the VO6 octahedra in the aR–bR plane. These effects are illustrated

in Fig. 3–2 b) e) and f).

3.2 Insulator-metal transition

The first step in understanding the insulator-metal-transition in vanadium dioxide

involves understanding the band structures of the equilibrium phases. There have been
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many theoretical descriptions of VO2 and the driving mechanism of the IMT over the

years [109, 110, 111] which consider both the impact of structural distortions and electron-

electron correlations. There have alse been many computational studies [112, 113, 114,

115, 116, 117] which in some cases re-affirm the earlier theoretical models, but often omit

important interactions necessary for a complete and accurate account. Before this however,

the Peierls and Mott insulator transition models will be introduced, as they form the

essential building blocks for understanding the IMT in VO2.

3.2.1 Peierls and Mott models

Many materials demonstrate dimerization of atoms along a particular direction at low

temperatures. This fact came as quite a surprise; it was not expected that systems would

favour a lower symmetry state in this way [118]. The argument and description of this fact

in 1-dimension is quite straightforward and was calculated by Rudolf Peierls in 1930 [119].

Although 1-dimensional materials do not exist in nature, ordering or dimerization often

occurs along a particular direction. This is approximately true for M1 VO2, where V–V

pairs form along the rutile cR axis, albeit with a tilt either in or out of the aR,bR plane

breaking the truly 1-dimensional character of the distortion.

Peierls considered the ground state energy of a 1-dimensional chain of atoms with

equal spacing a and with 1 free electron per site. The electron wave-vector is kF = π/2a

which falls halfway between the zone-boundary (π/a). The effect of displacing every other

atom by δ < a (creating a structural distortion) is analyzed in terms of the energy gain

to the lattice and energy loss of the electronic bands. The structural distortion lowers the

symmetry of the system and doubles the unit cell to length to 2a and halving the crystal

momentum to π/2a in reciprocal space. When this happens the electronic states become

“nested” at the new-zone boundary (since kF = π/2a) and it is energetically preferable for

the system to open up a band gap. The energy change of the electronic system was found
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to be ∆Ee ∝ −δ2 log δ, whereas the energy of the lattice goes as ∆El ∝ δ2. Thus for small

distortions electron energy changes dominates.

In their basic form, Mott insulators are described by the Mott-Hubbard Hamilto-

nian [106, 120] which is essentially a tight-binding model [25] with additional on-site

Coulomb interactions. The Hamiltonian is given by

HH = Ht + HU − µN,

= −t
∑
〈ij〉

(
c†iσcjσ + ciσc

†
jσ

)
+ U

N∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

N∑
i

c†iσciσ, (3.1)

where, 〈ij〉 represents nearest-neighbour pairs and t is the tight-binding energy. This first

term, Ht, describes many conventional metals and insulators, the solutions of which are

Bloch-like states. The µN term describes the self-energy or chemical potential of the

electrons in the solid. The effect of HU , the Hubbard on-site interaction term is to localize

the electronic states, split the conduction band and create a larger density of states below

the Fermi level. A general feature of interacting systems is the lowering of the energies of

the electronic states. The qualitative behaviour of a Mott-insulator is shown in Fig. 3–3.

3.2.2 Band structures of VO2

We start with a molecular orbital picture which illustrates the relevant orbitals along

with their symmetry properties [109, 113]. The vanadium atoms are typically assumed

to have a 3d1 character, meaning each V-atom has one electron in the valence 3d orbital

shell. In the high-symmetry rutile phase the vanadium atoms are situated at the center of

a coordinated VO6 octahedra (see Fig. 3–4 b)), and the symmetric crystal field of these O

atoms split the five V-3d orbitals shown in Fig. 3–4 a) into states of eg (dx2−y2 , dxy, dyx)

and t2g (dxz, dz2) symmetry. Hybridization of the V–3d and O–2p orbitals leads to the

formation of σ and π type orbitals, with stronger overlap occurring in the σ and σ∗ (with ∗

denoting anti-bonding) yielding a larger energy splitting. The bonding orbitals are mostly
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Figure 3–3: Mott-Hubbard metal insulator transition diagram.
For low on-site Coulomb interactions U , a conduction band forms at the Fermi level. As
the interaction is increased, electron correlation effects open up a gap and push electronic
states to lower energies, yielding a fully occupied valence band and insulating behavior at
sufficiently larger U .

formed by fully occupied O–2p orbital states below the Fermi level. The anti-bonding

orbitals are primarily formed by the V–3d orbital manifold within which the Fermi level

falls because of the electron count. This manifold technically forms two overlapping bands,

the so called d‖ band and the π∗ band. The metallic conductivity of the R phase is carried

by the d‖ and the π∗ bands.

A robust feature of structural distortions is the lifting of degeneracies held by the

orbital states forming conduction bands [119, 43]. In some cases this effect opens up an op-

tical gap in the electronic structure. In monoclinic M1–VO2 for example, the degeneracy of

the t2g V–3d obitals is lifted by molecular orbital effects following the structural distortion.

This process strongly influences band structure of the material. Most calculations indicated

that these effects alone were insufficient to open up an optical band gap, suggesting that

M1 VO2 should remain a metallic [113]. This was because despite the splitting of the d‖

band the remaining π∗ band was predicted to still cover the Fermi level. Initially this was
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Figure 3–4: Vanadium orbitals involved in the electronic bands of VO2.
a) V-3d orbitals. b) V–V pairs in the rutile (R) and monoclinic (M1). The V atoms are
uniformly surrounded by 6 O atoms in the R phase and off center the O–cage octahedra
in the M1 phase. c) Electronic band of R (left) and M1 (right).

interpreted as a failure of the local densiy approximation (LDA) of density function theory

(DFT), which may be partially true, but it is now clear that electron-electron interactions

and Mott-Hubbard physics play important roles in opening a band gap in M1 VO2. That is,

there is a growing consensus that the M1 phase must be accompanied by the localization of

electrons on the V–V dimer pairs themselves through correlation effects in a manner which

respects the structural distortion. Among the questions remaining are those concerning

the relative importance of structural distortions, orbital degeneracy and electron-electron

correlations. There was great hope that understanding these would pinpoint the driving

mechanism behind the phase transition.

The work of Biermann et al. [114] made an important step in identifying that electron

correlations effects are necessary in allowing for a Peierls-type transition to open up a gap.

They achieve this by extending DFT calculations to include cluster-extended dynamical

mean field theory (C-DMFT) to accurately include long-range correlation effects. They
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perform the calculations within a multi-band Hubbard Hamiltonian [121] description of

VO2 so as to properly account for the electron-electron interaction terms. Their results

establish that VO2 is a not a conventional Mott-Hubbard insulator, as correlation effects

alone cannot open up an insulating gap. Rather, the structural distortion of the M1 phase

allows for the formation of dynamical singlets through electron-electron and inter-dimer

correlation effects, yielding the localization of electrons on the dimers. In this view, M1

VO2 is a “Mott-assisted” Peierls insulator; Mott-Hubbard (electronic correlations) physics

renormalizes the Peierls gap in between the d‖ and d∗‖ and opens an optical gap. This was

an important step in understanding how the M1 is insulating, but did not focus on the

driving mechanism of the IMT phase transition.

Later, Weber et al. [116], motivated by recent X-ray absorption measurements [122]

proposed that the Peierls transition is assisted by orbital selection rather than electron

correlations. They conduct linear-scaling DFT along with non-local DMFT corrections

to determined the band structure of M1. Within these calculations they established that

Coulomb repulsion alone cannot drive the IMT, because a Hubbard–U energy of ∼ 25 eV,

roughly 10 times larger that typical values, would be required to de-stabilize the R phase.

Moreover, the structural distortion lifts the degeneracy of the t2g and drives orbital overlap

of the V–3dxy and 3dxz states along the rutile c–axis (rougly in the direction of the dimer

bond). When this happens the 3dyz orbital is nearly entirely depleted and it follows that 2

electrons rather than one become shared by the V–3dxy and 3dxz states. This is what they

refer to as orbital selectivity, and they claim this mechanism is responsible for enhanced

dynamical singlet (dimer) correlations which drive a self-energy divergence in the form

of a Mott transition. In Weber’s view, VO2 is well described as a “ Peierls-assisted”

Mott transition. They link their findings qualitatively to the anti-ferroelectric structural

distortion mentioned in the pioneering work of Goodenough [109].
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Recent work by Brito et. al [117] suggest that the best description of VO2 is one in

which the IMT is correlation driven (Mott transition), but only in conjunction with strong

intersite exchange correlations between dimers. In other words, the structural distortion

facilitates and enhances correlation effects. They indicate that the intersite exchange cor-

relations are connected to a Peierls-like transition in the adiabatic limit. Furthermore,

they present calculations inspired by time-resolved experiments of the IMT (see follow-

ing section) which show that because the optical gap in VO2 is temperature dependent,

suppression of correlation effects alone can collapse the gap given reasonable interaction

strengths.

3.3 Photo-excitation of vanadium dioxide

Photoexcitation using ultrafast laser pulses has provided another route to initiate the

transition between the insulating and metallic phases of VO2 since it was discovered that the

IMT occurs very rapidly following femtosecond laser excitation with sufficient fluence [123].

Since this discovery, VO2 has been the focus of many time-resolved experiments including

X-ray [97, 124] and electron [98, 5, 125] diffraction, X-ray absorption [126, 122], photoe-

mission [104] and optical spectroscopies [127, 99, 101, 102, 100, 103, 128, 129, 130] from

terahertz to ultraviolet aimed at uncovering the connection between the photo-induced

IMT and changes in lattice structure.

The band gap of insulating VO2 is 0.6 eV, therefore photo-excitation with 1.55 eV (800

nm) photons drive direct interband transitions and shown in Fig. 3–5 b) (see section. 1.7)

between the d‖ and d∗‖ bands creating photo-excited carriers (electrons and holes) with

considerable excess energy. This mechanism in some basic sense provides an avenue for

the control of electronic correlation effects and in the strong-driving (high-fluence) regime

the ability to dissolve the lattice distortion and transform the crystal structure. Optical
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Figure 3–5: Non-equilibrium phase diagram of VO2 and photo-excitation processes.
a) Photo-excitation of vanadium dioxide provides a mechanism to control electron correla-
tion effects which enables transitions into metastable phases of matter. b) Simplified VO2

band structure showing d−d interband transitions driven by 800 nm (1.55 eV) femtosecond
laser pulses.

excitation creates another axis to the phase diagram (see Fig. 3–5 a)) along which electron

correlations can be varied.

3.3.1 Summary of time-resolved measurements

The first time-resolved measurements of the IMT initiated using laser excitation were

presented by Becker et al. in two publications [123, 131]. They determined the complex

index of refraction of a polycrystalline VO2 film excited by 780 nm laser light using optical

transmission and reflection measurements. They find metallic behaviour in the film for

fluences above 3.7 mJ/cm2 occurring within roughly 500 fs, which was also the temporal

resolution of their apparatus. Visible in their data is clearly the presence of two-timescales

which they interpret in terms of a modified electron plasma model which relies on using

different electronic parameters than the equilibrium metal. Given the known existence of

the IMT in VO2 the easy (and of course logical given the knowledge at hand!) explanation
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for the results was that photoexcitation was driving the M1 to R CPT transition, even

though the spectroscopic response only measured the electronic character of the material

not the crystal structure.

The evolving picture of VO2 became more interesting when time resolved X-ray diffrac-

tion measurements of the photo-induced M1 to R phase transition were carried out by

Cavalleri et al. [97]. These results demonstrated that the photo-induced change in crystal

structure occurred within 300 fs, and that this time-scale suggested it’s character was non-

thermal and occurring above a threshold fluence of 7 mJ/cm2. The non-thermal character

of the transition is defined as being driven solely through electronic excitation and with a

rate faster that one expected from the equilibrium electron-phonon coupling. Furthermore

they determined that the IMT is completely concurrent with the CPT. This motivated

later work in which ultrafast spectroscopy tracked the IMT for various excitation pulse

widths [127], and demonstrated that the onset of the IMT was limited to roughly 100 fs,

governed by the intrinsic lattice response. Spectroscopic reflectivity measurements with

high time resolution also revealed that below the structural threshold the metallic charac-

ter induced by photoexcitation would not recover to the expected value of the M1 phase

prior to photo-excitation rather it would undertake a partial recovery on the picosecond

timescale towards something neither M1 or R in terms of its optical response.

A few years later, the first time-resolved multi-THz spectroscopy measurements were

performed by Kubler et al. [99] which measured the photo-induced complex conductivity

(σ(ω)) of a VO2 sample. They clearly identify two timescales of the IMT response, one

roughly 60 fs due to transient metallization of the film by the photo-excited carriers and

the second associated with a ∼ 1 ps recovery of the conductivity. The recovery of the

conductivity was complete at fluences up to roughly 3 mJ/cm2 and partial above a threshold

fluence determined to be 4.6 mJ/cm2. They approached understanding this exclusively in
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terms of M1 and R phases, as they were not directly sensitive to crystal structure, and

provided a qualitative model in terms of the electron relaxation in the R phase. This work

was extended by Pashkin [101] which pointing to a “long-lived metallic state” for which

the electronic response is coupled to the V–V dimer phonons.

The detailed temperature dependent THz spectroscopy measurements performed by

Cocker et al. mapped the IMT from 300 K to 17 K. They establish that the fluence thresh-

old is strongly dependent on temperature and that both Mott and Peierls-like mechanisms

play important roles. They confirm the non-thermal character of the IMT and model the

transition as being triggered by a critical electron density on the V–V dimers which in

turn couples to dimer modes. They also found some evidence that an intermediate metal-

lic phase, one for which the Peierls distortion remains intact and Mott correlations are

significantly suppressed, although they lacked direct structural evidence.

Recently, ultrafast electron diffraction and mid-infrared spectroscopy experiments per-

fomed by Morrison et al. [5] were combined to show that there are two distinct photo-

induced IMTs in M1 VO2. The first, accessible at relatively high pump fluence, is an ana-

log of the equilibrium IMT and is associated with the lattice-structural transition between

M1 and R crystallography expected from the equilibrium phase diagram. The second,

accessible at lower pump fluence, has no equilibrium analog and yields a metastable, struc-

turally distinct monoclinic metal phase (M) that retains the crystallographic symmetry

of its parent equilibrium monoclinic phase. These claims were deduced through the fact

that the mid-infrared spectroscopy results demonstrated that the VO2 sample exhibited

a metallic response for fluences above 3.7 mJ/cm2 while the electron diffraction measure-

ments of the same sample at such a fluence indicated the crystal symmetry remained

monoclinic. Furthermore the diffraction patterns in this regime showed that the intensity

of specific low-index (low–q) Bragg reflections perpendicular to the c–axis of the rutile
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structure (roughly perpendicular to the V–V dimers). Given the nature of this observed

feature in the diffraction, the most robust explanation involved a re-organization of unit

cell charge leading to a enhanced scattering amplitude while retaining the symmetry of the

monoclinic structure (atomic coordinates). In summary this identifies a new IMT process,

distinct from the equilibrium transition, which was observed to be metastable, lasting for

100s of picoseconds. This was the first clear observation of metallic monoclinic VO2.

Around the same time, Wegkamp et. al. [104, 132] performed time-resolved photo-

emission experiments which clearly showed that hole-doping of VO2 through photo-excitation

of electrons from localized V-3d states (M1 phase) leads to an effectively instantaneous

band-gap collapse above the threshold fluence of roughly 3 mJ/cm2. At lower fluences, the

response was Mott-Hubbard like in the sense that the band gap quickly reopened with-

ing hundreds of femtoseconds. They propose that the effect of hole-doping alone through

photo-excitation is sufficient to drive an iso-structural IMT (i.e. monoclinic metal). They

support this claim with first-principles many-body perturbation theory calculations which

reveal that the hole-doped state has a finite density of states at the Fermi-level, explaining

its metallic nature.

The work mentioned above emphasizes the importance of multi-modal experimental

approaches. The need to measure both the electronic and structural response of complex

systems was crucial in reconciling the vast number of experiments on VO2 demonstrating

what initially seemed like profound disagreement. During the remainder of this chapter

we present results obtained in commitment to a multi-modal approach to understanding

VO2. We seek to answer the following question using ultrafast electron diffraction and time-

resolved terahertz spectroscopy (TRTS): 1) What specifically are the microscopic changes in

unit cell charge arrangement occurring during the formation of the monoclinic metal phase?

2) What is the relative participation of the photo-induced monoclinic metal and rutile
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metal phase as a function of excitation fluence? 3) What are the kinetics describing the

formation of the monoclinic metal phase, and do our results agree with recent theoretical

results? Most of the results presented hereafter are published in Ref. [69].

3.4 Ultrafast electron diffraction measurements

Ultrafast electron diffraction measurements are carried out at ∼ 300 K in transmis-

sion mode with 90 keV RF-compressed electron pulses which have a bunch charge of

∼ 0.1 pC [68, 50]. The compression technique and synchronization approach follows that

outlined in chapter 2. The sample and the beam line are under high-vacuum (∼ 10−7 mbar).

The laser setup is based on a commercial Ti:Sapphire amplified system (Spectra-Physics

Spitfire XP-Pro). The photo-induced transitions in VO2 are reversible processes which re-

quire relatively long recovery times between measurements. Repetition rates of 50–200 Hz

(depending on excitation fluence) were thus used to allow for sufficient sample recovery.

The duration of the optical pump pulse is 40 fs (FWHM) with a spot size of 350 µm

(FWHM). The 50 nm VO2 samples were deposited by pulsed laser deposition on a 40 nm

SiNx substrate. The sample area is formed by a 250 µm by 250 µm silicon window. Details

of the deposition process can be found in [133]. A schematic of the measurement and data

acquisition procedure is shown in Fig. 3–6.

A single image acquired during the experiment is formed by a 10 second exposure of

the CCD camera to the scattered electron beam which forms a diffraction pattern for VO2

shown in Fig. 3–6 a). A single image therefore contains the accumulated signal from 2500

electron pulses, each of which captures a snapshot of the material structure at a particular

time-delay value ∆t following photo-excitation. A typical UED experiment consists of an

array of images index by pump-probe delay value t. This array constitutes a scan. To

achieve sufficient signal-to-noise, several scans are required. This is particularly important
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Figure 3–6: Ultrafast electron diffraction measurement and processeing of VO2

a) Schematic illustration of an ultrafast electron diffraction measurement of VO2. An 800
nm pump pulse (40 fs FWHM) illuminates the VO2 sample which is deposited to a thickness
of 60 nm on a 30 nm SiNx substrate. Transmitted scattered electrons are collected by a
CCD detector camera for various pump-probe time-delays ∆t. A typical image formed by
a 10 second exposure to the scattered electrons is shown in the top right. b) An experiment
consists of a matrix of individual images Ist where s indexes the scan number and t indexes
the time-delay. Scans are averaged together at the end of the experiment during the
analysis procedure. For each average image 〈It〉, a dynamic background is removed, and a
radial pattern is generated by azimuthal integration. Changes in 〈It〉 as a function of time
yield the structural dynamics of the material.

for VO2 because the necessarily low repetition rates of the experiments yield a trade-

off in terms of scattering signal. We denote the scan index as s and the measurement

becomes a matrix of images Ist, with dimension Ns ×Nt where Nt and Ns are the size of
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the time and scan arrays respectively as shown in Fig. 3–6 b). In post-processing steps,

scans are averaged together and images are normalized. Averaged images are azimuthally

integrated and the time-dependent background of the entire pattern is removed using an

iterative algorithm based on the dual-tree complex wavelet transform [134, 135]. These

post-processing steps are performed using a home-built open-source software package called

iris which uses many functions and libraries from scikit-ued.

3.4.1 Bragg peak analysis

For detailed analysis of the Bragg peaks in the diffraction pattern, a local background

is estimated similarly in the vicinity of the peak of interest in order to correct for skewness

as shown in FIG. 3–7 b) for the (220) peak. Diffraction peaks of interest at a time-delay

point t is fit to a Gaussian function given by

I(G−G0, t) = I(hkl)(t, t0)e−(G−G0)2/2Γ2
, (3.2)

where I(hkl)(t, t0) is the peak intensity, |G| = G is the scattering vector, G0 is the peak

center and Γ is the RMS peak width. The relative peak intensity is computed by finding

the set of I(hkl)(t, t0) for all pump probe time-delays. The parameter t0 is “time-zero”

and represents the initiation of the photo-induced dynamics (the moment when the pump

pulse stimulates the sample) and is usually t0 ' 0. Typically, prior to a measurement, t0 is

determined with a precision only to a picosecond level. Therefore we let t0 float as a fitting

parameter, and determine its value more precisely for each measurement. This data is then

fit to I(hkl)(t, t0) = Θ(t − t0)∆I(hkl)

(
1− e−(t−t0)/τ(hkl)

)
to extract the amplitude ∆I(hkl)

and time constants τ(hkl) for each diffraction peak (hkl) used in the analysis. Appropriate

error bars are determined from the standard error calculated by the fitting routine based

on the χ2 distribution. Hereafter we will refer to measurements of time-dependent Bragg

peak intensities as normalized changes relative to the equilibrium intensity before t = 0,
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I(hkl)(t < 0). Explicitly this is given by

∆I(hkl)(t) =
I(hkl)(t)− I(hkl)(t < 0)

I(hkl)(t < 0)
. (3.3)

3.4.2 Monoclinic insulator to Monoclinic metal dynamics

The photo-induced structural changes occuring in the VO2 sample begin at a fluence

level of ∼ 2 mJ/cm2 and are characterized by a relatively slow increase in diffracted

intensity of the low-index (200) and (220) peaks shown in Fig. 3–7 a). We interpret these

signals in the following way: The intensity changes preserve the crystal symmetry of the

equilibrium monoclinic insulator phase since none of the diffraction peaks vanish, nor do

any new diffraction peaks appear. The changes in diffraction intensity on a Bragg peak

are proportional to the geometric structure factor

I ∝ |F0(G)|2 =

∣∣∣∣∣∣
∑
j

exp (−Mj(G)) fj(G) exp (−iG · rj)

∣∣∣∣∣∣
2

, (3.4)

where Mj is the Debye-Waller factor, fj(G) is the atomic form factor and rj is the co-

ordinate of atom j in the unit cell. The atomic form factor is determined by the Fourier

transform of the electrostatic potential of atom j, Vj(r) according to

fj(G) =

∫
drVj(r) exp (iG · r) . (3.5)

Commonly observed in ultrafast electron diffraction, is the transient suppression of peak

intensities due to an increase in Mj(G) known as the transient Debye-Waller effect. This

arises directly from the transfer of energy from the photo-excited electrons to the lattice,

yielding an increase in the RMS atomic displacement due to the creation of phonons. This

effect demonstrates a clear |G|2 dependence and always results in a peak-suppression with

time following laser excitation. Neither of these traits are observed in our measurements.

The only remaining explanation of our observations is a photo-induced change in the atomic
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form factors fj contributing to I(200) and I220. Electron scattering is sensitive to valence

charge distributions, and thus to a certain extent orbital order. Photo-excitation impul-

sively perturbs the carrier (and hole) densities of the valence band and can be detected

by electron scattering if a significant change in Vj(r) follows. The transient changes in

I200 and I220 are thus attributed to changes in fj(G) (via changes in Vj(r)) at low G in

reciprocal-space and correspondingly large r (valence) in real-space.

Now we will present in greater detail a dataset of VO2 photo-excited at a fluence of 6

mJ/cm2 to illustrate the important aspects of the results. The (200) and (220) peak inten-

sity dynamics at low-fluence demonstrate a slow increase with time contants determined

to be τ(200) = 5.5± 1.4 ps and τ(220) = 5.3± 1.2 ps determined by a single-exponential fit

up for data up to +15 ps to capture the full extent of the rise. The data and the fitting

results are shown in Fig. 3–8 a) and b). Visible at later times, is an even slower partial

recovery of the scattering intensity signal. It was not possible to reliably fit this feature of

the measurement occurring at longer time-scales and determine significant parameters for

a single bi-exponential fitting function. A separate fit of data spanning from +15–60 ps

revealed a time-constants of τ∗(200) = 8.7 ± 3.6 ps and τ∗(220) = 9.3 ± 2.2 ps. This recovery

could be the result of a Debye-Waller-like effect transpiring in the M phase, due to the

heating of the lattice following the formation of the M phase. This is difficult to determine

definitively however, due to the limited number of diffraction peaks which demonstrate the

signals illustrated in Fig. 3–8. limiting our ability verify the expected scaling of this effect

as a function |G|2. Furthermore, the overall dynamics of the material become increas-

ingly complicated as the fluence is increased (this will be discussed further in the following

sections) and longer-term dynamics play important roles for timescales exceeding 100 ps.

Our focus for this work is the time-window spanning the initial ∼ 10 − 15 ps following

photo-excitation with the goal of characterizing the initial formation of the M phase.



112

0.2 0.3 0.4 0.5 0.6

0

1

313

220

302

021

210

200

 

 
In

te
n
s
it
y
 [
n
o
rm

.]
  

Scattering vector (A
-1

)

011

peak fitting

a)

c) d)

b)

Figure 3–7: Low fluence dynamics in VO2.
a) Diffraction pattern for monoclinic M1 VO2 with various diffraction peaks indexed with
respect to the high-temperature rutile R phase. b) Example of peak-fitting with a local
background refinement for the (220) diffraction peak. c) Normalized intensity change ∆I(t)
as a function of scattering vector for a few relevant time-delay values. The grey curve is
the average of all traces before photo-excitation (t = 0) and thus describes the noise level
of the relative intensity change measurement as a function of scattering vector. d) The
black curve is the relative intensity change between the blue and purple traces shown in c)
along with the noise level.

3.4.3 Monoclinic insulator to Rutile metal dynamics

The dynamics which occur at higher fluences describe the M1 to R phase transition.

This transition occurs much faster that the M1 to M phase transition and corresponds

to a clear change in crystal symmetry. The (302̄) reflection shown in Fig. 3–9 a) is a

forbidden peak (the geometric structure factor vanishes) in the high-symmetry R phase
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Figure 3–8: Low-fluence VO2 integrated peak intensity dynamics
a) Peak intensity dynamics for the (200) Bragg peak. The rise is fit to an exponential
function, and the time constant is 5.5±1.4 ps. a) Peak intensity dynamics for the (220)
Bragg peak. The rise is fit to an exponential function, and the time constant is 5.3±1.2
ps. The rise in diffraction intensity is due to a transient atomic form factors, produced by
charge re-distribution within the unit cell of the material.

and can its magnitude can be suppressed roughly linearly with photo-excitation fluence

indicating partial conversion of the film. The time constant of this transition is roughly

300 fs and independent of fluence in our measurements. This transition occurs in the

material alongside the M1 to M transition described in the previous section and indicated in

the plot of the relative intensity change show in Fig. 3–9 a) and c). Below a threshold fluence

of roughly 8 mJ/cm2 the suppression of the (302̄) peak is not visible in our measurements.

At highest excitation fluences, the (302̄) peak is suppressed by greater than 75%. The

fluence dependence will be discussed further in Sec. 3.7.



114

0.2 0.3 0.4 0.5 0.6

0

1

313

220

302

021

210

200

 

 
In

te
n

s
it
y
 [

n
o

rm
.]

  

Scattering vector (A
-1
)

011

a)

b)

-2 0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.1

0.0

 

P
e

a
k
 i
n

te
n

s
it
y
 c

h
a

n
g

e
 (

a
.u

.)

Pump-probe time-delay (ps)

 Fast M
1
 melting

 Slow charge

           re-organization

c)

Figure 3–9: High-fluence VO2 dynamics
a) Azimuthally averaged powder diffraction pattern of M1 VO2. The 302̄ peak serves at
an order parameter for the M1 phase, as it vanishes in the R phase. b) Time-resolved
differential scattering signal at high fluence (23 mJ/cm2) indicated the presence of both
fast and slow processed, M1 to R melting and M1 to M charge re-organization respectively.
c) Time-traces of the normalized peak intensity dynamics for the 302̄ (fast M1 melting)
and 220 peak (slow charge re-organization).

3.5 Real-space reconstruction

At fluences below the CPT threshold, there is no formation of R phase crystallites.

This has been confirmed by several other works and out measurements show no significant

change in the intensity of the (302̄) which is a forbidden reflection in R phase VO2. There-

fore, observed intensity changes in this regime pertain exclusively to structural changes in

the material during the formation of the M phase. Since its discovery [5], the structure

of the photoinduced M phase and its relationship to the parent M1 phase has remained

unclear as the subtle details of the material microstructure are difficult to discern through

spectroscopic measures. Here we use measured UED intensities to determine the changes

in the electrostatic crystal potential, V (r), associated with the transformation between
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M1 and M phases. This is a Fourier inversion process which transforms the diffraction

data back to a real-space representation. The centrosymmetry of the monoclinic and rutile

phases provides a solution to the phase problem [136] and allows for the reconstruction

of the full three-dimensional real-space electrostatic potential from each one-dimensional

diffraction pattern obtained using UED. The analysis procedure and results are described

below.

As mentioned in section 3.4.2, the M1-to-M phase transition involves no lattice sym-

metry changes. Simply put, the atoms remain in their positions established by the M1

phase. Moreover, the measured diffracted intensity changes associated with the M1-to-M

transition are only observed at low scattering vectors (|G| < 0.3 Å
−1

). This reinforces

the claim of preserving lattice symmetry as there is no change in atomic coordinates (rj

in the geometric structure factor (Eqn. 3.4) which would not affect scattering vectors

(|G| > 0.3 Å
−1

). Therefore, the changes in diffracted intensity must primarily be caused

by changes in atomic form factors fj(G).

3.5.1 Fourier synthesis

The real-space electrostatic potential, V (r), is given by an inverse Fourier-transform

of the structure factors:

V (r) =
∑
{G}

√
IG exp (iϕG) cos(r ·G), (3.6)

where the set {G} is understood to be the set of scattering vectors Ghkl = hb1 +kb2 + lb3

lying within range of angles visible to the diffractometer. IG is the diffraction intensity

associated only with scattering vector G, and ϕG is the diffraction phase. Diffraction

measurements are not sensitive to the phases ϕG; we must therefore infer them. We use

the centrosymmetry of VO2 rutile R and monoclinic M1 phases (and by association the

monoclinic metal M phase). This limits the phases to either 0 or π. It follows that we can
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infer the phases from the well-known crystal structures. In this case, the diffraction phase

ϕG is simply the complex phase of the structure factor F0(G):

ϕG = ∠F0(G) (3.7)

The assumption that the diffraction phases of the theoretical structure are the same as the

observed structure is tested in section 3.5.4.

For the electrostatic potential maps shown for the M1 and non-equilibrium M phases

(Fig. 3), we distribute the measured intensity in a manner consistent with the expectation

for the known equilibrium M1 phase, rather than via Le Bail decomposition or other

methods typically used when the initial crystallography is unknown. The extraction of

diffraction intensity associated with a reflection G = (hkl) is arduous for the case of VO2

because of many overlapping reflections. For an experimental diffraction pattern Iexp(G),

we extract the diffracted intensity associated only with the reflection G, IG like so:

IG = Iexp(|G|)× F0(G)2

Itheo(|G|)
= Iexp(|G|)× F0(G)2∑

{K} F0(K)2
(3.8)

where Itheo(G) is a simulated electron powder diffraction pattern computed according to

Eqn. 3.4 using the rj values for the equilibrium monoclinic M1 phase, and F0(G) is the

theoretical structure factor associated with reflection G. The calculation of theoretical

quantities are provided by the open-source package scikit-ued [135]

3.5.2 Reconstruction of the equilibrium phases

Although we are confident that the VO2 samples are in the monoclinic M1 phase prior

to photo-excitation, it is useful to confirm that the real-space reconstruction algorithm

involving the diffraction intensities reflects this fact. Equilibrium diffraction patterns of

M1 and R phase VO2 are used in Eqn.(3.6) along with the known phases ϕG and the

results are shown in Fig.3–10. It is conventional when comparing the phases of VO2 to
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Figure 3–10: Real-space reconstruction of the equilibrium monoclinic M1 and rutile R
phases
a) View of the crystal structure of M1 VO2 using the basis vectors from the R phase aR, bR
and cR. Vanadium atoms are shown as red sphere while oxygen atoms appear as smaller
gray spheres. V–V dimer pairs are shown by black and red lines where the former tilts in
and the latter tilts out of the plane defined by aR + bR and cR. b) Side view of the unit
cell showing more clearly the in-plane and out-of-plane dimer tilting. c) Reconstructed
V (r) for M1 VO2. The dashed blue line marks a line-cut of V (r) which is plotted to the
right showning the V–V spacings along cR. d) Reconstructed V (r) for R VO2. The dashed
red line marks a line-cut of V (r) plotted to the left illustrating the uniform V–V spacings
along cR.

remain in the basis for the R phase established by aR, bR and cR. Figure 3–10 a) and

b) shows the crystal arrangement of the M1 system and illustrates the dimerization of the

vanadium atoms. The important features of VO2 are best captured by plotting the a slice

of the 3-dimensional function V (r) in the plane spanned by the vectors aR + bR and cR

as shown in Fig. 3–10 c) and d). The dimerization occurs primarily along the cR direction

with certain dimers tilted in the plane and other out of the plane as depicted by the black

and red lines in Fig. 3–10 c) and d). We observe clearly this structural distortion, and

retrieve the expected V–V spacing of 2.6 Å and 3.1 Å in the M1 phase and 2.9 Å in the R

phase.
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3.5.3 Reconstruction of the monoclinic metallic phase

Using the ultrafast electron diffraction data, we are in a position to directly determine

the changes in the electrostatic potential V (r) from the changes in the diffraction intensity.

At low fluence, a small fraction of the material transforms to the monoclinic metal M phase

and none transforms to rutile R as we are in the regime below the CPT threshold. Thus

∆IG relates directly and exclusively to ∆V (r) pertaining to charge re-arrangement leading

to the M phase.

In Fig. 3–11 the changes in V (r) associated with the M1–M transition are revealed.

This map is computed from the measured ∆IG between the M and M1 phases 10 ps after

photoexcitation at a fluence of 6 mJ/cm2. The preservation of M1 crystallography is clear;

i.e. V–V dimerization and tilting along the cR axis endures. Also evident is a transition to

a novel 1-dimensional anti-ferroelectric charge order along cR. In the equilibrium phases

all oxygen atoms are equivalent. The M phase however, exhibits a periodic modulation in

Φ(r) at the oxygen sites along the cR axis indicated by arrows in Fig. 3–11 (d). This charge

modulation is commensurate with the lattice constant and mirrors the existing periodic

lattice distortion established by the vanadium dimers. The oxygen atoms exhibiting the

largest changes are those associated with the minimum V–O distance in the octahedra

and, therefore, the V–V dimer tilt. This emphasizes a relationship between the lattice

distortion (dimers) present in the parent M1 phase and the emergence of the M phase. The

anti-ferroelectric lattice distortion in M1 was already emphasized by Goodenough [109] in

his seminal work on VO2. Significant changes in electrostatic potential are also visible

between V atoms in the octahedrally-coordinated chains along cR that is consistent with

a delocalization or transfer of charge from the V–V dimers to the region between dimers.

These findings revealed by the reconstruction of the transient electrostatic potential M
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Figure 3–11: Real-space reconstruction of the change in the electrostatic potential during
the monoclinic metal phase
a) Atomic model of the unit cell of M1 VO2 illustrating the V–V dimers up the cR axis.
Dimers tilting out of the plane define by aR and bR are depicted by red lines and those
tilting in the plane are represented by black lines. b) View of the unit cell atoms looking up
the c-axis showing more clearly the dimer tilts. c) Reconstruction electrostatic potential
V (r) of M1 VO2 using illustrating the V–V dimer pairs. d) Change in electrostatic crystal
potential 10 ps following photo-excitation at a fluence of 6 mJ/cm2. Important features
are the retention of dimerization, and increased in oxygen atom charge for those nearest V
atoms in the O-cage octahedra.

phase clearly indicate that it arises from a collective reorganization of the valence charge

distribution.

3.5.4 Patterson Pair-distribution Function

The reconstruction of real-space electrostatic potential from diffraction data requires

the knowledge of diffraction phases as well, information that is not available to ultrafast

electron diffraction measurements. We get around this by using the known crystal struc-

tures of monoclinic M1 and rutile VO2. It could be possible that there is a small (though

not resolvable in experiment) relaxation in the lattice structure to accommodate the new

charge order of the M-phase.

To validate the use of theoretical diffraction phases in the reconstructed electrostatic

potential maps, we calculate the radial pair-distribution function G(r, t) in two ways:
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• Directly from the polycrystalline diffraction patterns; the Patterson function GP(r, t)

• As the autocorrelation of the 3D electrostatic potential, GA(r, t)

To calculate the Patterson radial pair-distribution function, the diffracted intensity

I(G, t) must be normalized to a per unit cell level. The normalized (or reduced) intensity

I is defined for a general unit cell U of N atoms as follows:

I(G, t) ≡
I(G, t)− 1

N

N∑
a∈U
|fa(G)|2

1
N

N∑
a∈U
|fa(G)|2

(3.9)

where fa(G) is understood to be the atomic form factor for electrons for atom a. The

Patterson radial pair-distribution function is then given by:

GP(r, t) =
1

2π2r

∫ ∞
0

dG I(G, t) sin(G · r)G. (3.10)

The radial pair-distribution function can also be computed as the radial auto-correlation

of a 3D electrostatic potential V (r, t):

GA(r, t) =

∫ ∞
0

dSr′V (r, t)V ∗(r− r′, t) (3.11)

where dSr is the spherical surface element.

The radial pair-distribution function of the unpumped monoclinic M1 VO2, G(r, t <

0), is presented in fig. 3–12. It is contrasted with the radial autocorrelation of an elec-

trostatic potential volume of 2 × 2 × 2 unit cells of monoclinic M1 VO2. The agreement

between the two curves is close to perfect, indicating that the use of theoretical diffraction

phases in this work is fully consistent with other analyses based on the diffraction data.
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Figure 3–12: Comparison of the radial pair-distribution function computed in two separate
ways from static diffraction of monoclinic M1 VO2.
The blue curve has been calculated directly from the polycrystalline diffraction intensity.
The orange curve was calculated by reconstructing a large real-space electrostatic potential
map (2×2×2 unit cells) and autocorrelating it. Negative feature at I is due to the average
half V–V dimer length. Positive feature at II is due to the average V-O distance around
the octahedron. Negative feature at III represents the sum of dimerized and undimerized
average V-V distance.

3.6 Time-resolved terahertz spectroscopy

Complementary time-resolved terahertz spectroscopy (TRTS) measurements were per-

formed on the same samples under identical excitation conditions to determine the as-

sociated changes in the time-dependent complex conductivity, σ̃(∆t, ω) = σ1(∆t, ω) +

iσ2(∆t, ω). The conductivity is extracted by measuring the complex electric field wave-

forms directly by electro-optic sampling. The THz pulse is split in two parts, one which

probes the conductivity response of the photo-excited sample and yields a transmitted

waveform Ẽt(∆t, t) the profile of which depends of the time ∆t following photo-excitation

with 800 nm laser light. The second is a reference waveform Ẽref(t) and is used calculate the

pump-induced differential electric field ∆Ẽ(∆t, t) = Ẽref(t)−Ẽt(∆t, t). The pump-induced

photo-conductivity of the VO2 sample of thickness d = 50 nm is analyzed in a thin-film

model involving the index of refraction of the SiNx substrate which is n = 1.85 in the THz
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(40 fs 1.55 eV)
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a)

Single-cycle

Multi-THz pulse
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Figure 3–13: Time-resolved terahertz spectroscopy (TRTS) of thin-film VO2.
a) Experimental schematic of time-resolved terahertz transmission measurement of a VO2

thin film photo-excited by 800nm laser light. THz waveforms Eref (reference pulse) and
Et are determined by electro-optic sampling. b) Fourier transforms of the THz electric
field waveforms shown in a). The differential conductivity is extracted from the difference
between the two spectra.

range. In a transmission geometry as shown in Fig. 3–13 a). The Fourier transforms of

the electric field waveforms Ẽref(ω) and Ẽref(∆t, ω) are shown Fig. 3–13 b) and related to

σ̃1(ω) according to the following analytic model [137, 138, 139]

1 +
∆Ẽ(∆t, ω)

Ẽref(ω)
=

(
1 + n

1− n

)
1− n− Z0dσ̃1(∆t, ω)

1 + n+ Z0dσ̃1(∆t, ω)
, (3.12)

where Z0 = 377 Ω is the vacuum impedance of freespace.

The TRTS experiments performed to acquire the data presented in this thesis are

based on two-color laser plasma generation of single cycle, broadband THz pulses and

air-biased coherent detection providing a spectral range from 0.5–30 THz and temporal

resolution of ∼ 40 fs [137]. The THz spectrometer is driven by 35 fs, 795 nm pulses from

an amplified Ti:sapphire femtosecond laser operating at 250 Hz repetition rate to allow for

sample recovery between shots. The pump spot size was ∼ 700 µm which was at least 4

times the size of the THz pulse for the lowest frequencies analyzed here (2 THz).
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A typical TRTS experiment proceeds as follows: At a particular 800 nm pump excita-

tion fluence, Ẽref(ω) and Ẽref(∆t, ω) waveforms are acquired by the electro-optic sampling

spectrometer as a function of pump-probe time-delay ∆t. The waveforms are Fourier trans-

formed to the spectral domain and the complex conductivity σ̃1(∆t, ω) is retreived using

Eqn. 3.12. This process is carried out for all fluences of interest.
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Figure 3–14: Time-resolved terahertz conductivity of VO2.
a) Complex conductivity components σ1 and σ2 of photo-excited VO2 at a fluence of 22
mJ/cm2. The dashed lined represent the frequency bounds within which the conductivity
response is integrated (2–6 THz) b) Normalized conductivity change (left:σ1, right:σ2)
illustrating the bi-exponential time-dependence. The fast component matches the timescale
for the M1 to R transition and the slow matches the M1 to M transition.
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3.6.1 Time-dependent terahertz conductivity

The pump-induced changes in real conductivity, σ1(∆t, ω), over the ∼2–20 THz fre-

quency range (Fig. 3–14 (a)) also exhibit qualitatively distinct fast (∆σfast
1 ) and slow

(∆σslow
1 ) dynamics, consistent in terms of timescales those described above for the struc-

tural transitions found in the UED measurements. These findings are similar measurements

performed on sputtered VO2 films in the 0.5–2 THz window [100]. Additional structure

at higher frequencies is due to optically active phonons associated with O–cage vibra-

tions around V atoms [99]. The total conductivity response is integrated across a spectral

bandwidth of interest and the data is then fit to a bi-exponential function of the form∫
σ1(ω, t−t0)dω = Θ(t−t0)

(
∆σfast

1

(
1− exp

(
− t− t0
τfast

))
+ ∆σslow

1

(
1− exp

(
− t− t0
τslow

)))
.

(3.13)

An example of this fitting is shown for σ1 in Fig. 3–14 b) at a fluence of 22 mJ/cm2. Given

the clear link established by the similar time-scales, we attribute the fast rise in conductivity

to the M1–R IMT (CPT) and the slower metallicity onset to the M1–M IMT. The THz

response is connected to the two structural transformations by focusing on the integrated

spectral region from 2–6 THz, which includes exclusively electronic contributions to the

conductivity (Drude-like) and omits phonon resonances [99, 101, 102]. Figure 3–14 (b)

shows an example of the transient real conductivity measured at 22 mJ/cm2 along with

the fast and slow exponential components plotted individually. These time constants are

in excellent agreement with those of the fast and slow processes determined from the UED

measurements at similar fluences. This comparison will be made more thoroughly in the

coming sections when the fluence dependence is examined in detail.



125

Scattering vector (A-1) 

Time-delay (ps) 

0 10 

In
te

ns
ity

 c
ha

ng
e 

(a
.u

.)
 

0.3 0.2 0.4 0.5 

Slow

Fast

(200)

(302)

(220)

Figure 3–15: Differential ultrafast electron diffraction intensity at 21 mJ/cm2.
Both fast and slow structural processes are observed to occur in parallel according to the
transient scattering.

3.7 Fluence dependence of the photo-induced transitions in VO2

We return now to the ultrafast electron diffraction measurements and discuss the

evolution of the photo-induced dynamics as the excitation fluence is increased. UED mea-

surements of pulsed laser deposited 50 nm VO2 films (optical depth is ∼ 130 nm at 800

nm wavelength) reveal rich pump-fluence dependent dynamics up to the damage threshold

of ∼50 mJ/cm2 (35 fs, 800 nm, frep = 50 − 200 Hz). The (302̄) peak serves as an order

parameter for the M1 → R transition, since it is forbidden by the symmetry of the R

phase, while the (200) and (220) peaks remain present in all equilibrium phases albeit with

slightly different amplitudes because of varying structure factor terms.

Consistent with previous work [5], as the excitation fluence increases, the pump-

induced changes to diffracted intensity (Fig. 3–15) depict the two distinct and independent

photo-induced structural transformations; the M1–M phase transition and the M1 to R

phase transition. As mentioned previously, at low pump fluences (∼4–8 mJ/cm2) the M1–

M is exclusively observed, while at high pump fluences (> 35 mJ/cm2) the fast process
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Figure 3–16: Fluence dependence of diffraction peak intensity dyanmics.
a) Relavtive intesity changes of (200), (220) and (302̄) Bragg peaks. b) Phase volume
fractions for the M (blue line) and R (red line) phases calculated using the ultrafast electron
diffraction data shown in (a) via the volume phase fraction model. Red triangles are the
(302̄) data points from (a) and blue circles are the (200) data points in (a) (scaled for
clarity) with the M1 → R phase transition contribution subtracted.

dominates. In the intermediate fluence range of 8–30 mJ/cm2 both transitions occur in

a concurrent manner and form a complex heterogeneous sample response. We empha-

size again that these structural transitions are independent; the M1–M transition is not a

prerequisite for the eventual formation of the R phase.

The samples studied in this work are polycrystalline powder samples grown by pulsed

laser deposition. The microscopic sctructure of the sample consists of crystallites on the

order of 50 nm with a distribution width of 25 nm. In the following discussion of the het-

erogenous sample response of photo-excited VO2, we assume that the various populations

of R and M phases produced are restricted to a single phase per crystallite as supported by

spatially resolved studies of the photo-induced IMT [140, 141, 142, 143]. The conclusions

of our measurements do not rely on this claim, since the diffraction measurements report
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fundamentally on the ensemble averaged content of the material, but a discussion of the

physics is more clearly articulated by assuming each individual crystallite in the material

is either photo-induced R or M .

Having established the fact that there are two qualitatively distinct ultrafast photo-

induced phase transitions in VO2. The pump-fluence dependence of the sample response,

specifically the heterogeneous character of the film following photoexcitation (due to both

M1 → M and M1 → R transformations) is addressed in this section. UED intensities

report on the fluence dependence of both structural phase transitions (Fig. 3–16 (a)). The

change in the (302̄) peak intensity provides an order parameter exclusively for the M1 → R

transition, while the (200) and (220) peak intensities report on both M1 →M and M1 → R

transformations. Measurements of the (302̄) peak intensity (Fig. 3–16 (a) red triangles)

clearly demonstrate a fluence threshold of ∼ 8 mJ/cm2 for the M1 → R transformation

that is consistent with previous work [5, 98, 97]. Above this threshold the suppression of the

(302̄) peak increases approximately linearly with fluence up to a magnitude greater than

75% at ∼ 30 mJ/cm2. This result is inconsistent with a widely implemented“two-step”

model [98] to describe the M1–R transition in VO2. This model involves fast V–V dimer

dilation (elongation of V–V pairs to the distance corresponding to the R lattive constant)

on the order of ∼ 300 fs followed by a slow dimer rotation occurring within roughly 7 ps.

This slower timescale is even slower that the M1–M time constant reported in our work

for comparable fluences. Structure factor simulations suggest that complete V–V dimer

dilation can only yield maximum (302̄) peak suppression of 50%. Our results clearly show

a greater magnitude which is consistent with a simplified picture of the M1–R transition

where the periodic lattice distortion of the M1 phase simply melts in ∼ 300 fs or perhaps

less as suggested by recent ultrafast x-ray scattering work [144]. The photoinduced fraction
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of R–phase VO2 reaches ∼ 75% of the film on this timescale at the highest pump fluences

reported.

The (200) and (220) peaks (Fig. 3–16 (a)) show a more complicated fluence depen-

dence, reaching a maximum change in intensity in the 20 mJ/cm2 range. At the highest

excitation fluences reported the intensity changes in the (200) and (220) peaks correspond

to the relative increase expected for the R phase compared to the M1 of VO2. The max-

imum at ∼ 20 mJ/cm2 is entirely due to the presence of the M phase as we demonstrate

next by converting the changes in UED intensities to phase volume fractions in a detailed

model.

3.7.1 Phase fraction analysis

The normalized peak intensity changes measured using UED are shown in Fig. 3–16 a).

This data provides the necessary inputs for our phase fractional model to determine the

volume fractions. We denote FR as the phase volume fraction for the R phase and FM for

the M phase. The normalized relative intensity change ĩ(F) as a function of fluence F for

the χ = (200) and (220) peaks can be written as

ĩ(F) =
∆Iχ(F)

ĪM1
χ

(3.14)

=
ĪM1
χ FM1(F) + ĪRχ FR(F) + ĪMχ FM(F)− ĪM1

χ

ĪM1
χ

.

Equation (3.14) includes intensity contributions ĪφχFφ from the three phases φ = M1,M, R

of VO2, where Fφ is the fluence-dependent volume phase fraction, and Īφχ is the peak

intensity when completely in phase φ. We may write it more compactly as

ĩ(F) =
∆Iχ

ĪM1
χ

=
1

ĪM1
χ

∑
φ=M1,R,M

ĪφχFφ − 1. (3.15)
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Using the condition that
∑

φ Fφ = 1 (crystallites are conserved) to eliminate FM1 we obtain

∆Iχ

ĪM1
χ

= (Λχ − 1)FR + (Σχ − 1)FM, (3.16)

where Λχ = ĪRχ /Ī
M1
χ and Σχ = ĪMχ /Ī

M1
χ . The model parameter Σχ can be determined in the

high fluence limit by setting FM → 1−FR (i.e. there are no remaining M1 crystallites in the

sample at high fluences) and using FR = ∆I(302̄)(F)
/
ĪM1

(302̄)
which is simply the normalized

diffraction peak suppression for the 302̄ peak. The results for this estimation are shown

in Fig. 3–17. We will assume that Σ(200) = Σ(220) = Σ. Consistency of the model requires

that
∑

φ Fφ = 1 be respected, yielding a lower bound of Σmin = 1.125. The maximum

value we compute over the fluence range of 20 to 30 mJ/cm2 is Σmax = 1.175. Taking the

average of the (200) and (220) results gives a value of Σ = 1.150 ± 0.025. This value in

some sense describes the increase in scattering strength of M–phase VO2 compared to the

M1 phase since it is also describes a structure factor ratio. Consider the peak at (200), we

then have

Σ(200) =
ĪM(200)

ĪM1

(200)

=
|FM

0 (G = 2a∗1 + 0b∗2 + 0c∗3)|2

|FM1
0 (G = 2a∗1 + 0a∗2 + 0b∗3)|2

. (3.17)

Since the M phase has the same lattice symmetry (atomic unit cell coordinates) Eqn. 3.17

roughly describes the ratio of the average unit cell form factors, i.e. Σ(200) ≈ 〈fM〉unit-cell

/
〈fM1〉unit-cell.

The results of the model calculation are shown in Fig. 3–16 b). For fluences below

the CPT (M1 to R) IMT fluence threshold of ∼ 8 mJ/cm2, we observe clearly that only

a small percentage (∼ 10%) of M crystallites have been formed by photoexcitation. As

the fluence increases, the photoexcitation of R crystallites begins at the threshold and

increases roughly linearly afterwards. The M phase, achieves a maximum in the vicinity

of 20 mJ/cm2 where we determine that FM = 45± 13%. At greater fluences, FM decreases

as the material becomes increasingly R phase due to stronger photoexcitation. The data
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Figure 3–17: Phase fraction model paramters
Estimation of Σχ using ultrafast electron diffraction measurements and Eqn. 3.16. Peak
intensity data ∆I(F)/ĪM1

χ for peaks χ = (200), (220) are used along with ∆I(F)/ĪM1

(302̄)

in the high-fluence limit to solve for Σ. We assume that no M1 crystallites remain (1 =
FR + FM). The orange (blue) curve is the calculation using the (200) ((220)) peak, and
the green curve is the average, which is the final result we use under the assumption
that Σ(200) = Σ(220) = Σ is an intrinsic constant. Σmax

χ is the maximum value (upper

bound) determined using the data and Σmin
χ is a lower bound enforced by the crystallite

normalization condition
∑

φ Fφ = 1. Σavg
χ is the average of the green curve over the fluence

range given by the bounds.

points shown in Fig. 3–16 b) as blue circles are an average of the (200) and (220) data

points from (a) with the contribution from the M1 → R phase transition subtracted.

We obtain quantitatively consistent results for the fluence dependence of the tran-

sient conductivity obtained by TRTS, firmly establishing a link between the differential

structure and differential electronic response. The combination of the THz conductivity

measurements and the structural dyanmics provided by the UED results, allow for the

clear separation of the two photo-induced IMTs based on their temporal character. Fig-

ure 3–18 shows the fluence dependence of the fast (∆σfast
1 ) and slow (∆σslow

1 ) conductivity

terms extracted from the TRTS measurements. The ∆σfast
1 component corresponds to the
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conductivity response associated with the transition from M1 → R as it increases steadily

with fluence in accordance with FR shown in Fig. 3–16 a) and b). Furthermore, we clearly

observe that ∆σslow
1 achieves a maximum at a fluence of ∼20 mJ/cm2 beyond which it

decreases, consistent with the behavior of the (200) and (220) diffraction peaks and FM

shown in Fig. 3–16 b). The TRTS results indicate that the photo-induced conductivity of

the VO2 film at a fluence of 20-25 mJ/cm2 is formed by roughly equal contributions from

∆σfast
1 and ∆σslow

1 . Based on these results it is interesting to note that the total conduc-

tivity ∆σtotal
1 = ∆σslow

1 + ∆σfast
1 is roughly equal to ∆σfast

1 in the high fluence limit where

only the M1 to R process is occurring. This indicates that under our experimental condi-

tions in order to achieve a THz conductivity comparable to the high-temperature R phase,

sufficient photo-excitation is required such that the M1 to R CPT occurs. This directly

answers the question: is there a “structural bottleneck” in the IMT phase transition?

The TRTS measurements are analyzed in a similar manner using a Bruggeman effective

medium model [145] in the limit where the material is mostly metallic (FM+FR → 1). The

conductivities determined from the TRTS measurements presented in Fig. 3–18. ∆σfast
1

and ∆σslow
1 form two contributions to the an effective medium for which the Bruggeman

model states

FR
∆σfast

1 − σe
∆σfast

1 + 2σe
+ FM

∆σslow
1 − σe

∆σslow
1 + 2σe

= 0, (3.18)

where σe is an effective conductivity of the heterogeneous material. Due to the time-

resolution provided by the TRTS data, we have access to all conductivity terms, since

we temporally distinguish between σfast
1 and σslow

1 , and σe is simply the total measured

conductivity (after 10 ps). In the high-fluence limit, we use (3.18) to compute FM which

is shown in FIG. 3–18 b). We find that this yields a result consistent with what was

determined using the UED measurements in the high-fluence regime.



132

10 20 30
0

2

4

6

8

 

 

T
H

z
 c

o
n

d
u

c
ti
v
it
y
 c

h
a

n
g

e
 /

1
0

5
 (


-1
 c

m
-1
) 

Fluence (mJ/cm
2
)


1

fast
(2-6 THz)


1

slow
(2-6 THz)

0 10 20 30
0.0

0.2

0.4

0.6

 

 

V
O

2
 p

h
a

s
e

 f
ra

c
ti
o

n

Fluence (mJ/cm
2
)

 UED F
M
 

 UED F
R

 Bruggeman F
M

a) b)

Figure 3–18: Terahertz conductivity fluence dependence
a) Fluence dependence of the fast ∆σfast

1 and slow ∆σslow
1 components of the transient

terahertz optical conductivity (red and blue respectively). Solid lines serve as a guide
to the eye. ∆σfast

1 increased steadily and corresponds to the formation of R crystallites
and ∆σslow

1 attains a maximum at 25 mJ/cm2 and corresponds to the formation of M

crystallites. Error bars represent the error given by the fitting routine. b) Structural phase
fraction model results determined from the ultrafast electron scattering data. The M phase
fraction is maximal around 20-25 mJ/cm2 in agreement with the THz conductivity shown
in a).

The TRTS results can examined in another manner which nicely shows the temporal

evolution of the IMTs as the fluence is increased. Figure 3–19 a) shows a high-temporal

resolution measurements of the normalized conductivity change ∆σ1/∆σ
max
1 . At the low-

est fluence reported, 8.8 mJ/cm2, the conductivity response is very fast, effectively time-

resolution limited and a small recovery occurs within roughly 500 fs. This is consistent with

previous THz studies in the low-fluence regime [99, 101, 100]. This corresponds primarily to

the rapid transient metallization due to the promotion of electrons to the conduction band

by photo-excitation and is well understood as a Mott-Hubbard like response. It should be

notes that the magnitude of ∆σmax
1 at 8.8 mJ/cm2 is roughly 10 times smaller than ∆σmax

1
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Figure 3–19: Normalized time-resolved terahertz spectroscopy time traces for various flu-
ences
a) Photo-induced conductivity within a 1 ps window. At lowest fluences the transient
conductivity is described by a resolution limited rise (much smaller in magnitude compared
to the higher fluence measurements) followed by a small recovery. At higher fluences
the photo-induced conductivity follows the M1 to R CPT timescale. b) Photo-induced
conductivity within a 10 ps window, with traces normalized to demonstrate the evolution
of the bi-exponential character.

at 12 mJ/cm2 which is above the CPT threshold fluence. The small recovery found in the

8.8 mJ/cm2 trace shown in Fig. 3–19 a) is relaxation of the exited carriers in the M phase.

At fluences well above the CPT threshold, (25 an 33 mJ/cm2 in Fig. 3–19 a)) demonstrate

a qualitatively slower time-scale indicating clearly that the onset of metallic behaviour is

established by the M1 to R CPT transition. In other words the electronic response follows

the structural response of the material. Over a time interval spanning up to 10 ps, the

role of the slower M1 to R transition is evident. All fluences ranging up to 35 mJ/cm2 the

bi-exponential character of the THz conductivity response is clearly oberved. At lower flu-

ences (15-22 mJ/cm2 shown in Fig. 3–19 b)) the transition is dominate by the slow process

and at high fluences the fast process is nearly exclusively observed in the measurement. In
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Figure 3–20: Time constants for the photoinduced phase transitions in VO2.
Shown as circles are the slow ((200) blue, (220) green) and fast (302̄, red) peak dynamics as
determined from the UED measurements. Not all fluences were carried out with sufficient
time resolution to resolve the fast dynamics, thus certain data points are not shown. TRTS
measured time constants pertaining to the slow and fast components of σ1 are depicted
by turquoise and red diamonds respectively. The red dashed line represents the tempo-
ral region (300 ± 150 fs) associated with the photo-induced structural phase transition
from M1 → R which dominates at high pump fluence. The slow time constants general
demonstrate an exponential dependence on fluence.

the following section we will investigate in greater detail the fluence dependent behaviour

of the IMT times in terms of a kinetic model.

3.8 Structural transition kinetics

The M1 → R and M1 →M transitions exhibit qualitatively different kinetic behavior

as evidenced by the fluence dependence of the time constants τfast and τslow obtained from

both UED and TRTS (Fig. 3–20). The time constant for the M1 → R transition (τfast),

captured by the dynamics of the (302̄) peak in the UED measurements and by τfast in

the THz measurements, is 350 ± 100 fs independent of fluence. This demonstrates that

photo-induced M1 → R transition – the melting of the periodic lattice distortion and CPT
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transition – is non-thermal and barrier free. This is inferred from the observed fact that

the transition rate is independent from the driving excitation strength. The results for

the R–phase volume fraction (Fig. 3–16) also show that the excitation threshold for this

non-thermal phase transition is heterogeneous in the films since not all crystallites switch

from M1 to R at a fluence of 8 mJ/cm2. The crystallites only start switching at this

point and an increasing proportion of them convert as the fluence is augmented. What

is consistent however is the rate and therefore time-constant extracted for this process.

These facts are supported by previous observations of the inhomogeneous threshold using

ultrafast electron microscopy [146] and others by nanoscopy [140, 141].

The M1 → M time constant, conversely, decreases significantly with pump fluence

as seen in the (200) and (220) peak dynamics from UED and the τslow from TRTS. The

exponential increase in the M1 →M rate with excitation energy deposited in the electron

system strongly suggests that the M1 → M is an activated process, i.e. there exists an

energy barrier which the system must overcome in order to realize the phase transition.

We can extract the activation energy EA from this data by determining the electronic

excitation energy per unit cell E deposited in the sample as a function of pump fluence.

We may apply the Eyring-Polanyi equation from transition state theory [147] which is given

by

ln

(
hτ−1

slow

kBTe

)
= − EA

kBTe
+

∆S‡

kB
, (3.19)

where ∆S‡ is the entropy of activation and Te is an effectice temperature of the source

which receives the photo-excitation energy. We will treat this temperature as the electron

temperature.

3.8.1 Optical energy absorption

We follow the prescription shown in [148] which uses the Fresnel equations to determine

the energy deposited in a thin film resting on a substrate. The 50 nm thick VO2 sample is
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on top of a 40 nm SiNx substrate which is illuminated by a beam with fluence F (normal

incidence is assumed). The complex index of refraction for VO2 is ñ = 2.9 + i0.5 [97, 149]

and n = 2.0 for SiNx. We determine the absorption to be A = 0.222 at 800 nm. VO2

has a unit cell volume of Vunit-cell = 117 Å3 and the number of unit cells in the sample is

N = Vsample/Vunit-cell. The energy deposited per unit cell is given by

ε(F) =
A

N
F Asample, (3.20)

where Asample is the area of the sample on the substrate (250 µm by 250 µm).

3.8.2 Calculation of electron temperature

We must now understand how the deposited energy translates to an increase in the

electron temperature within VO2 following photo-excitation. This involves applying some

type of model involving the electronic heat capactiy. In general, information about the

electronic heat capacity ce(Te) is difficult to extract in the vicinity of room temperature

using conventional techniques, since the total heat capacity of the material is dominated by

the lattice heat capacity. For strongly correlated electron system, information about the

electronic heat capacity is even more scarce and must be determined through computational

techniques. To first order, it is reasonable to model the photo-excited electrons using a free

electron model, as this roughly describes their character after photo-excitation drives them

into the conduction band. Within 300 fs following photo-excitation interactions between

the photo-excited electrons causes them to thermalize to a common temperature Te. This

is often described as a pseudothermal electronic state and recent theoretical work has

established this state to be a necessary prerequisite for the formation of the monoclinic

metallic phase [149]. Since our results indicated that the M phase constitudes electronic

restructuring of the valence charge exclusively we are interest in the rate of this process as

a function of the electron temperature Te.
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We begin with dE = cedTe, where E is the internal energy from photo-excitation

acquired by the electrons, ce is the electronic heat capacity, and Te is the electron temper-

ature. In the free electron model, ce = γTe where

γ =
π2NAk

2
B

2EF
, (3.21)

where EF = ~2

2me

(
3π2N

V

)2/3
is the Fermi energy, with me the mass of the electron, and

N/V = n is the carrier density. Integration of dE = cedTe yields E = γ
2T

2
e,f from which a

final temperature Te,f can be computed from an initial temperature Te,i given an energy

increase ∆E (photo-excitation). We have for Te,f

Te,f =

√
2∆E

γ
+ T 2

e,i. (3.22)

Using Eqn. (3.22) along with the Eqn. 3.20 as ∆U , we may calculate Te,f for a set of

physically plausible γ values (and therefore photoexcited carrier densities N/V ). Figure 3–

21 shows temperatures computed for carrier densities n ranging from 0.1 to 10 electrons

per unit cell. These temperatures are then used in the Eyring-Polanyi equation given by

Eqn. (3.19). Figure 3–21 shows various plots of ln

(
hτ−1
slow

kBTe

)
vs. 1/kBTe for various values

of γ along with fits to Eqn. (3.19). We take the values of τslow for the (200) peak shown

in Fig. 3–20 and plot ln
(
hτ−1

slow

/
E
)

vs. 1
/
E which is shown in the inset of Fig. 3–21. The

results are tabulated in Table 3–1. For the model where the deposited energy E = kBTe,

we find a lower limit to the activation energy of EA = 304 ± 109 meV, which is similar

to the value found for a photo-excited carrier density of n = N/V = 0.1 e−/unit cell

using Eqn. 3.22 in a free electron heat capacity model. For realistic photo-excited carrier

densities up to ∼ 1 e−/unit cell the value of the activation energy is roughly 700 meV (see

Fig. 3–21 and Table 3–1).
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Figure 3–21: Kinetics of the M1 →M phase transition.
a) Calculations of the electron temperature created by photo-excitation using the ab-
sorption properties of VO2 within a simple free-electron model. b) Various plots of
ln
(
hτ−1
slow/kBTe

)
vs 1/kBTe for various electron temperatures Te computed using a free

electron heat capacity model and E = kBTe.

EA (meV)

E = kBTe 304± 109

N/V (e−/ unit cell) γ (mJ/mol K2)

0.1 10.7 315± 36
0.5 3.69 524± 61
1.0 2.32 659± 77
2.0 1.46 828± 97
10 0.50 1410± 165

Table 3–1: Results for the activation energy EA determined using the Eyring-Polanyi
equation for various electron temperatures Te.
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This analysis speaks to a fundamental property of the photo-induced M1 → M tran-

sition, namely, that it is an activated transition because the rate dependes on the en-

ergy drive. Furthermore we find that the fluence required to deposit EA per unit cell is

F ≈ 3.7 mJ/cm2, which is the value previously attributed to the M1 → R IMT thresh-

old [123, 99]. This is also in agreement with the fluence threshold extracted from the low

fluence data points in Fig. 3–6 a). This fact offers a clear explanation as to why metallic

character what measured below the CPT threshold.

3.8.3 Comparison with theoretical work

Recent calculations performed by He and Millis [149] provide a convincing description

of the photo-induced IMT and the metastable monoclinic metallic phase. Their computa-

tional approach begins by solving for the relaxation dynamics of the photo-excited electron

distribution in a quantum-Boltzmann equation (QBE) methodology. They demonstrate

that the electron distribution forms a pseudothermal state at an elevated temperature due

to photo-excitation and that this is a precursor for a sequence of “soft-band” effects wherein

the magnitude of the optical varies significantly. They demonstrate that the shifts in the

various bands of VO2 arise from pronounced changes to the Hartree-Fock interaction term

which includes the onsite interaction U and intersite interaction V due to d − d orbital

exchange. They calculate the change in the free energy of the non-equilibrium VO2 sys-

tem and determine two minima as a function of the number of electrons in the V–3dxz

orbital. They show that this feature is robust for a range of realistic U and V interaction

parameters.

He and Millis also compute the new valence band partial density of states (see Fig. 3–

22) which reveals that bands formed by the V–3dxz and O–2p orbital states fall over the

Fermi level, eliminating the gap. They vary the magnitudes of the U and V parameters

assumed in their calculations they show that the M phase can only arise for a U interaction
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Figure 3–22: Calculated partial density of states for insulating monoclinic M1 and mono-
clinic metal M phase adapted from He and Millis [149].
Band overlap at the Fermi level is driven by the occupancy of the V–3dxz orbital which
corresponds to a free energy minima. This minima is attainable for certain onsite (intra-
dimer) U correlation energies and intersite (d − d orbital) exchange energies (far right).

term above roughly 3.5 eV, and that V must be weaker. When the M phase cannot be

formed because of these parameters, the behavior of the IMT falls into a Mott-Hubbard

like response where transient screening collapses the gap, but it quickly recovers as the

electrons cool. They focus on U and V values of 4.5 and 0.6 eV respectively and for this

they show that the band closes (and stays closed) for a pseudothermal electron temperature

of ∼ 220 meV and energy per unit cell of ∼ 700 meV. These numbers are in excellent

qualitative agreement with our results in section 3.8.

3.8.4 Free energy landscape

We have demonstrated that photoexcitation of M1 VO2 yields a complex, heteroge-

neous, multi-phase film whose structure and properties are both time and fluence depen-

dent. The character of the fluence dependent transformation is summarized in Fig. 3–23.

At pump fluences below ∼ 4 mJ/cm2 there is no long-lived (> 1 ps) transformation of

the M1 structure, and VO2 behaves like other Mott insulators insofar as optical excita-

tion induces a relatively small, impulsive increase in conductivity followed by a complete
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recovery of the insulating state [101, 100, 5, 104]. Above ∼ 4 mJ/cm2, however, pho-

toexcitation stimulates a phase transition in the electron system that stabilizes metallic

properties through an orbitally selective charge re-organization: the M phase. Between

∼4-8 mJ/cm2 photoexcitation exclusively yields the M phase, which populates 15–20%

of the film by 8 mJ/cm2. In this fluence range, time-resolved photoemission experiments

show a complete collapse of the band gap [104], TRTS experiments show a dramatic in-

crease in conductivity [101, 100] and optical studies show large changes in the dielectric

function [97, 102, 129], all of which are persistent, long-lived and characteristic of a phase-

transition. Given the nature of the equilibrium phase diagram, these observations were in-

terpreted mostly as evidence of the M1 → R transition. The M1 → R transition, however,

exhibits a minimum fluence threshold of ∼8–9 mJ/cm2 consistent with surface sensitive

experiments [98, 146] and coherent phonon investigations [102]. Above 8 mJ/cm2 photoex-

citation yields a heterogeneous response with both M and R phase fractions increasing

with fluence to approximately 20 mJ/cm2 where each phase occupies ∼ 50% of the film.

At higher fluences M1 → R dominates and the M phase occupies a decreasing proportion

of the film. Our measurements are ensemble averaged over the probe volume, and are

thus not sensitive to the spatial detail of this heterogeneity. Spatially resolved studies have

indicated M1 and R phase separation on length scales of 50–100 nm [146, 141, 140] which

is on the order of the average crystallite size in our samples. Given this, and the fact that

it would be energetically unfavorable to have a mixture of M1 and R phases for reasons

related to strain we believe that M1 and R phase coexistence within a single crystallite

to be unlikely. Phase coexistence between M1 and M however, since they share the same

crystal structure, could be occurring and would be interesting to investigate with sensitive

spatially-resolved techniques.
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a)

b)

Figure 3–23: Illustration of photo-induced IMTs and the electronic free energy landscape
a) Schematic illustration of the heterogeneous sample response of VO2 as a function of
fluence. At low-fluence the material undergoes neither IMT, the transient response of the
metal is Mott-Hubbard like, rapid metallization from hot excited carriers, but followed
by complete recovery within roughly 1 ps. At stronger fluences, above 4 mJ/cm2 the
monoclinic metal (M) phase is formed. At intermediate fluences (roughly 8-30 mJ/cm2)
both the M and rutile R are formed among different crystallites in the material. In this high
fluence limit (>30 mJ/cm2) the R phase forms exclusively. b) Illustration of the electronic
free energy landscape of photo-excited VO2. The M1 to M transition is thermally activated
over an energy barrier EA. The M1 to R forms if a critical electron excitation density is
reached, which leads to the CPT and rapid dimer dilation.

3.8.5 Discussion

Non-thermal melting as a route to the control of material structure and properties

with femtosecond laser excitation has been known for some time and there are examples
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in several material classes. Much more novel is the (M1 → M) which has no equilibrium

analog and represents a new direction for using optical excitation to control the properties

of strongly correlated materials. The M1 →M is thermally activated and does not involve

a significant lattice structural component, representing a phase transition in the electron

(valence charge) system alone. Our results are consistent with the recent computations

of He and Millis [149] which indicate that an orbital selective first-order transition can

be driven in M1 VO2 through the increase in electron temperature following femtosecond

laser excitation. This transition depletes the occupancy of the V–3dx2−y2 band that is split

by the V–V dimerization in favor of the V–3dxz band that mixes strongly with the O–2p

orbitals due to the anti-ferroelectric tilting of the V–V dimers (3–11 (d)). The M1 band

gap collapses along with this transition yielding a metallic phase. The three salient features

of this picture are in agreement with our observations: thermal activation on the order of

100 meV, orbital selection and band gap collapse to a metallic phase. Of interest is the

fact that depletion of the V–3dx2−y2 band where states are expected to be localized on the

V–V dimers does not seem to significantly lengthen the V–V dimer bond. The question

arises whether this phenomena can be entirely understood inside a picture that treats M1

VO2 as a d1 system, or whether more than a single V–3d electron is involved as DMFT

calculations suggest [116]. Such DMFT results from Weber [116] suggest that M1 VO2 is

a paramagnetic metal with anti-ferroelectric character, like that shown in Fig. 3–11 (d).

3.9 Conclusion

In this chapter, detailed time-resolved measurements of thin-film VO2 were presented.

Ultrafast electron diffraction measurements tracked the structural evolution of the sample

at the atomic level during the 20 ps time interval following photo-excitation with 800

nm ultrafast laser pulses. During this period, the sample demonstrates a heterogeneous

response as a function of photo-excitation comprising two distinct and independent phase
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transitions. One of the transitions, is the expected and well-studied change in crystal

symmetry (atomic lattice coordinates) where the low-temperature, structurally distorted

(V–V dimers) M1 phase transitions to the high-temperature R phase. This processes

occurs at fluences above 8 mJ/cm2 with an increasing proportion (phase fraction) of the

sample undergoing the transition with increasing photo-excitation fluence. Furthermore,

the time-constant for this transition is roughly 300 fs and independent of fluence. The

second transition is more novel, and involves a redistribution of valence charge in the M1

sample which maintains crystal symmetry but acquires metallic properties. This transition

occurs at lower fluences (∼3 mJ/cm2) and transpires at a quantitatively slower timescale

than the M1 → R transition and is dependent on fluence. Analysis of the time-dependent

diffraction patterns reveal an anti-ferroelectric charge order along Oxygen atoms situated

closest to the Vanadium atoms. This picture and the nature of the transition to this

monoclinic metallic M phase is consistent with theoretical results describing the transition

in terms of a change in V–3dxz orbital occupancy.

Complementary time-resolved terahertz spectroscopy measurements show excellent

agreement with the ultrafast electron diffraction results. Time-dependent photo-conductivity

measurements of the VO2 sample show the onset of metallic behaviour with two distinct

timescales. The timescales found here are in agreement with the M1 → R and M1 → M

time constants extracted from the diffraction measurements. From these measurements,

the conductivity component of the M phase is determined and found to be roughly 1/3

that of the R phase conductivity. This is an important result, as it helps address a long-

standing question about VO2; is there a structral bottleneck to the photoinduced IMT?

Our results indicate clearly that the extent to which the photo-excited film can be made

metallic without changing the crystal symmetry is only 1/3 that of the equilibrium R phase.

This fact will have consequences for ultrafast electronic devices based on VO2.
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The combination of ultrafast electron diffraction and time-resolved terahertz spec-

troscopy have yielding a consistent picture of photo-induced phase transitions in VO2 and

should be very informative for other strongly-correlated materials which demonstrate com-

plex phenomena such as insulator-metal transitions.



CHAPTER 4
Photo-induced phonon hardening in titanium diselenide

Exotic phenomena and emergent material properties can arise in materials possess-

ing reduced dimensionality. Such materials are often called “low-dimensional” and many

of them exhibit enhanced interactions and symmetry breaking processes that drive novel

phase transitions. Transition metal dichalcogenides (TMDCs) [150, 151, 152, 153], are lay-

ered compounds which have complex in-plane physics arising from their two-dimensional

character, high-anisotropy and in some cases significantly weaker out-of-place forces. These

materials are a very active research area because of their rich condensed matter physics [154]

and broad range of applications in optoelectronric devices [150, 151]. Many TMDCs un-

dergo charge-density wave (CDW) transitions [155], where the ground state of the system

consists of a periodic modulation of charge density determined by the Fermi wavevector

kF . In a commensurate charge-density wave system, there is corresponding modulation

of the lattice constant(s) with a matching period. For an incommensurate charge-density

wave system, the periodicity of the associated lattice distortion does not match that of the

charge density.

As a general rule, the CDW transition is a consequence of enhanced electron-phonon

interactions enabled by the reduced dimensionality of the material. There are two mech-

anisms which can lead to the CDW phase. The first is Fermi-surface nesting where the

Fermi-wavevector of conduction electrons connects many different points on the Fermi-

surface. The second is more conventional electron-phonon coupling, which mediates a

transition to a more stable phase through energy exchange to a CDW. Both the electronic

and phononic spectra of the materials are strongly modified as the system tends toward and

146
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passes into the CDW phase. The electron gas describing the conduction electrons in a 1-

dimensional system acquires divergences its electronic susceptibility χ(q, T ) at a particular

wave-vector q = 2kF [43]. This effect is also known as the Kohn anomaly [156]. As a result,

electron screening effects at this point in momentum space lead to a re-normalization of the

frequency of a phonon ωq,ren which tends to ωq,ren → 0 at a finite temperature correspond-

ing to the CDW transition, Tcdw. This “frozen-phonon” component of a CDW transition

is a common feature found in many CDW materials such as NbSe2 [157], ZrTe3 [158],

TbTe3 [159], NbSe3 [160] and TiSe2 [161]. In this picture the periodic lattice and charge

modulations arise simulatenously when the phonon frequency becomes zero at the point

in reciprocal space where the Kohn anomaly occurs. A specific question which remains

in certain cases is: what are the microscopic processes contributing to the lattice ordering

vector(s) associated with a CDW transition? In considering only the effect of χ(q, T ),

complete phonon softening (ωq,ren(T = Tcdw) = 0) through electronic screening effects only

occurs in the situation of so-called perfect nesting, which means all points on the Fermi-

surface can be connected by the same wave-vector magnitude. This is only exactly true in

1-dimensional systems, roughly true in certain special 2-dimensional systems depending on

the Fermi surface topology (graphite [162] for example), but seldom true in many TMDCs

which demonstrate the CDW phase transition [163, 157]. An excellent discussion of Fermi

surface nesting and its relations to CDW phase transitions can be found in the paper of

Johannes and Mazin [164].

The TMDC material studied in this chapter is titanium diselenide (TiSe2) which has

a bulk CDW transition at Tcdw = 188 K [165]. TiSe2 has been extensively studied the-

oretically since the 1970s [166]. Accurate computation of the electronic and phononic

band structures in both the high-temperature semi-metallic and low temperature insulat-

ing (CDW) phases is challenging. X-ray studies of the phonon system have clearly revealed



148

and characterized the soft phonon behaviour in TiSe2 [161, 163] and strongly suggested the

presence of a divergent electronic susceptibility and a Kohn anomaly. These results will be

discussed further in sec. 4.4. TiSe2 is an example of a CDW material whose Fermi surface

does not exhibit nesting [167]. Therefore, the divergent character of χmust depend on other

aspects of the interacting electron and phonon systems. Time-resolved and angle-resolved

photo-electron spectroscopy (ARPES) experiments have been conducted to learn about

the behaviour of the electron system [168, 169, 170], by examining in detail the behavior

of the valence and conduction bands with momentum resolution within the Brillouin zone.

These results motivated a description of TiSe2 as an excitonic insulator [171, 172, 173]

which emerges from an indirect bandgap combined with electron-phonon coupling across

the narrow gap yielding bound excitonic states which sustain insulating character through-

out the material. However, other mechanisms for the CDW transition such as a band

Jahn-Teller effect [174] have been proposed and remain plausible. Time-resolved measure-

ments have examined non-thermal melting and recovery of the CDW phase using various

spectroscopic techniques to glean information about electron-phonon and electron-hole cou-

pling [175, 176, 177, 178]. These ARPES measurements, however, lack direct sensitivity to

the phonon system, which is a necessary ingredient for a complete understanding of χ and

the CDW transition in TiSe2.

In this chapter, ultrafast electron diffuse scattering of single crystal 70 nm TiSe2 are

presented. Ultrafast electron scattering provides a direct time and momentum resolved

view of the phonon system. The measurements are carried out at room temperature

so that the sample is well away from the CDW transition temperature. The sample is

photo-excited with 800 nm laser pulse which drives interband transitions in the M −

L − M region of reciprocal space where hole-pockets in the band-structure are found.

Unexpectedly, measurements of the time-dependent diffuse scattering intensity reveal, for
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the first time in the time-domain, the instantaneous hardening of the transverse optical

phonon at the expected region of the Brillouin zone. The wave-vector of this phonon

matches the ordering vector of the CDW phase. This novel effect indicates the presence

of an electronic susceptibility divergence responsible for soft-mode behaviour in TiSe2 and

manifests as a rapid reduction in diffuse intensity occurring over an impulse-response-

limited ∼150 fs timescale. Following this effect, is a recovery and increase of diffuse signal

due to expected overall lattice heating. This slower, secondary effect, is consistent in terms

of time-scale with the suppression of the Bragg peaks due to the Debye-Waller effect. The

results presented in this chapter are an important new account of how ultrafast electron

diffuse scattering quantities can be used to measure not only changes in phonon occupancy

but also changes in phonon frequency. It is demonstrated that ultrafast electron diffuse

scattering reports on the re-normalization of phonon frequencies resulting from optical

modulation of χ(q) due to electron screening in addition to energy transfer between the

electron and phonon systems.

4.1 Electronic susceptibility

Before proceeding with the discussion of the experimental results, some basic notions

pertaining to the electronic susceptibility in a low-dimensional material are presented.

Consider the microscopic electrostatic potential of the material given as

φ(r) =

∫
dq φ(q) exp (iq · r) , (4.1)

where the Fourier transform of the microscopic potential in momentum space is φ(q) [43].

Consider now a homogeneous electron gas (i.e. a Fermi gas, which is an accurate ap-

proximation for conduction band electrons in this case) subject to the potential φ(q). A

corresponding induced charge density given as ρi(q) will be determined in the static linear
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response regime by the electronic susceptibility χ(q) according to

ρi(q) = χ(q)φ(q). (4.2)

Equation (4.2) describes the response of the conduction electron system to the presence

of the lattice ions (and bound valence electrons). χ(q) thus strongly influenced by the

microscopic bonding environment of the material. In general, the quantities can be easily

recast to include a time-dependence (or frequency dependence), but this is not necessary

in our situation, since within the temporal resolution of the instrument (∼ 100 fs) the

evolution of the quantities in Eqn. (4.2) may be treated as static.

4.1.1 Lindhard susceptibility function

For metals, the complete form of the electronic susceptibility was established in the

1950s by Lindhard [179, 180, 181, 42, 43] and is given in d dimensions by

χd(q, ω, T ) =

∫
dk

(2π)d
f(εk+q, T )− f(εk, T )

~ω + εk+q − εk
, (4.3)

where f(εk, T ) is the Fermi-Dirac distribution function, εk are the electronic energies for

states with wavevector k, and T is the absolute temperature. The frequency ω is impor-

tant in the dynamic case, when the potential is time-dependent (φ(q, ω)). In the static

limit, ω → 0, and for the integration only values up to kF are required, since the distri-

bution functions vanish shortly above. Following some algebra, the following expression is

obtained [181]

χd(q, T ) = −
2k2

F

εF

∫
k≤kF

dk

(2π)d
2q2

q4 − 4 (k · q)2 . (4.4)

For the case of d = 2 dimensions the expression becomes

χ2(q, T ) = −
k2
F

π2εF

∫ kF

0
dkk

∫ 2π

0

dϕ

q2 − 4k2 cos2 ϕ
, (4.5)

= −
2k2

F

π2εF

[
1−Θ (q − 2kF )

√
1− (2kF /q)

2

]
, (4.6)
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where Θ is the Heaviside step function. The character of the step function imposes a

discontinuity in χ which can be a precursor to a divergence depending on other interactions

in the material. The behaviour of the electrons in the vicinity of 2kF are strongly affected

by χ as is in turn the relation between ρi(q) and φ(q).

4.2 Soft modes and the charge density wave transition: the Fröhlich model

As mentioned above, highly anisotropic materials often have CDW transitions which

emerge through extreme instances of electron-phonon coupling. This strong coupling plays

a role in conjuction with the electronic susceptibility and other material properties which

vary considerably along different crystal axes. In a material, a fully second-quantized

Hamiltonian of free electrons with wavevector states k and phonons of momentum k′ cou-

pled by an anisotropic (wave-vector dependent) coupling gk′ is described by the Fröhlich

Hamiltonian [43, 182]

H =
∑
k

εka
†
kak + ~

∑
k′

ωk′b
†
k′bk′ +

∑
k,k′

gk′a
†
k+k′ak

(
b†−k′ + bk′

)
. (4.7)

In Eqn. 4.7 above, a†k (b†k′) and ak (bk′) are the creation and anhilliation operators for

the electrons (phonons). In a Heisenberg picture, the equations of motion for the atoms

described by normal coordinates Qk′ are determined by solving ~2Q̈k′ = − [[Qk′ ,H] ,H].

This is achieved by using the definition of momenta Pk =
√
~Mωq/2

(
b†k′ − b−k′

)
along

with the commutation relation [Qi, Pj ] = i~δij , which gives

Q̈k′ = −ω2
k′Qk′ − gk′

√
2ωk′

M~
∑
k

a†k+k′ak, (4.8)

where the sum term
∑

k a
†
k+k′ak is in fact charge density in the volume element k′ which

we denote as ρk′ . It follows from Eqn. (4.2) that this is related to χ(k′, T ) through the

potential φk′ . In a quasi-mean field approach the potential can be written as φk′ =

gk′
√

2Mωk′/~Qk′ [155], because it describes a relative displacement amplitude, and scales
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with the coupling strength. Using these notions, Eqn. 4.8 becomes

Q̈k′ = −
[
ω2
k′ + g2

k′
2ωk′

~
χ(k′, T )

]
Qk′ , (4.9)

where the term in the square brackets describes the re-normalization (r) of the phonon

frequency ωk′ due to electron screening (χ(k′)) and electron-phonon coupling gk′ . Equa-

tion (4.9) describes harmonic motion of the atoms due to the phonon with re-normalized

frequency given by
ω2
k′,r(T )

ω2
k′,0

= 1 +
2g2
k′

~ωk′,0
χ(k′, T ). (4.10)

As the system is cooled toward the CDW transition temperature Tcdw, the phonon fre-

quency is reduced (softening) and achieves a minimum at Tcdw where the lattice symmetry

changes and the charge density wave forms. It will be shown later, that the behaviour of

Eqn. (4.10) directly impacts the time-resolved electron scattering intensity.

4.3 Properties of TiSe2

In this section, the essential properties of titanium diselenide will be presented. The

type of crystalline TiSe2 which are measured in this work is 1T−TiSe2, where 1T refers

to the stacking order of 1 layer per trigonal unit cell. The lattice parameters are a = b =

3.536 Å and c = 6.004 Å with a symmetry group of P 3̄m1. The real-space unit cell is

shown in Fig. 4–1 a) along with the lattice vectors. The Brillouin zone of TiSe2 is shown

in Fig. 4–1 b) illustrating the zone center at Γ along with various other high-symmetry

points.

The phonon and electronic band structures of TiSe2 are shown in Fig. 4–2. In general

detailed and accurate calculations of the band structures are tedious and computationally

intensive [183, 184, 185, 186, 187]. The semi-metallic character of high-temperature TiSe2

has been established for some time [166]. Photo-excitation with 800 nm (1.55 eV) drives

interband transitions at the M and L regions of the Brillouin zone, where electron pockets
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a) b) c)

high-temperature

low-temperature

d)

hole

pocket

electron

pocket

1.55 eV

Figure 4–1: Structural properties of 1T-TiSe2.
a) Unit cell of layered 1T-TiSe2 showing the Ti and Se atoms and basis crystal lattice
vectors. b) Brillouin zone of TiSe2 in reciprocal space. A reciprocal lattice vector G
connects different zone centers (Γ points). High-symmetry points are indicated by M, K,
H, A and L. c) Hexagonal Brillouin zones of the high and low-temperature phases indicating
the reduction of zone by one-half (in the Γ–M plane). d) Schematic illustration of photo-
excitation of TiSe2 at room temperature. Interband transitions are driven at the M and L
points of reciprocal space to regions of a partially filled conduction band.

exists below the Fermi-level. These high-symmetry points of the Brillouin zone are of

particular interest because they correspond to momenta of the CDW ordering vector and

are where phonon softening is expected to occur.

When TiSe2 undergoes the transition to the CDW phase, the lattice parameters double

in all three directions, i.e. the unit cell transforms from a×a×c→ 2a×2a×2c. This differs

from most other TMDCs where the CDW phase forms only in the plane perpendicular to

c. In reciprocal space, the unit cell volume reduces as shown in Fig. 4–1 c). The hexagonal

Brillouin zone boundary reduces to half its size, transforming the M points of the high-

temperature phase into zone-center Γ points in the low-temperature CDW phase. This

picture can be understood in terms of the soft phonon picture discussed previously. When

the phonon frequency goes to zero, the symmetry of the high-temperature phase is broken

yielding a modulation of charge density corresponding to the wavelength of the phonon.

Figure 4–1 d) shows the photo-excitation mechanism. 1.55 eV photons undergo transitions

into a partially occupied conduction band at M and L points of reciprocal space. At



154

the Γ-point, an unoccupied region of the band exists above the Fermi level and forms a

hole-pocket.

a) b)

Figure 4–2: Phononic and electronic band structures of 1T-TiSe2.
a) Phonon band structure computed by Duong et al. [186], used with permission. b)
Electronic band determined from the Materials Project database [188].

4.4 X-ray thermal diffuse scattering of titanium diselenide

Static X-ray diffuse and inelastic scattering measurements have characterized in detail

the behaviour of the soft phonon mode which varies strongly with temperature [161, 163].

These measurements will be summarized here as they are relevant in understanding the

ultrafast electron scattering results which follow.

In 2001, Holt and co-workers reported the first observation of the soft phonon mode in

TiSe2 [161]. The existence of a such a soft mode was expected and the presence of a Kohn

anomaly had been suggested by neutron scattering measurements carried out the M and

L points of reciprocal space [165], but the limited scattering cross-section of the neutrons

limited the ability to identify the behaviour of the phonon energy. Holt used the latest
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generation of X-ray synchrotron radiation with a beam flux sufficient to resolve thermal

diffuse intensity off the Bragg peaks, and thus was able to resolve the phonon energy as a

function of temperature. The soft-mode phonon has a symmetry of L−1 and they find that

the temperature dependence of the phonon can be described by the following empirical

relation

ω(T ) =
√
T − Tc

[
a+ b(T − Tc) + c(T − Tc)2

]
, (4.11)

where a = 7.92×10−2 THz/
√

K, b = 2.40×10−4 THz/K3/2 and c = 1.91×10−6 THz/K5/2

are fitting parameters. They identify a critical temperature of Tc = 188 K and the minimum

energy of the phonon they are able to determine is roughly 0.1 THz. Their results provided

the first important evidence of the soft mode CDW behaviour in TiSe2.

A decade later, Weber and colleagues [163] performed new inelastic X-ray measurments

of the L−1 phonon. They combine their results with ab-initio calculations of the electronic

structure. In their analysis, they suggest that electron-phonon coupling along with a

strongly divergent electronic susceptibility is sufficient to yield a stable CDW phase. They

verify the relation for a stable CDW phase predicted in Ref. [189]

4g2
k′

~ω0
≥ 1

χ(k′, T )
+ 2Uk′ − Vk′ , (4.12)

where ω0 is the bare (not-renormalized) frequency, Uk′ is the Coulomb interaction and Vk′ is

the correlation-exchange interaction. The energy resolution provided by their experiment

indicates that both a strongly divergent χk′ and strong electron-phonon coupling terms

must exist in TiSe2.
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a) b)

Figure 4–3: Soft phonon in TiSe2 observed by X-ray thermal diffuse scattering [161].
a) Thermal diffuse intensity at q = (1,−1/2, 7/2) (L-point) in reciprocal lattice units. b)
Phonon frequency vs. temperature of the L−1 phonon indicating a Tc of 188 K corresponding
to the CDW phase transition. Figures used with permission.

4.5 Contribution of χ to time-resolved diffuse intensity

Given the intriguing nature of TiSe2 revealed by ARPES and X-ray thermal diffuse

scattering measurements, ultrafast electron scattering is expected to be a powerful tech-

nique capable of revealing insights into the qualitatively distinct electron-lattice interac-

tions in the material from the perspective of the phonon system directly. To understand

how the relevant physical quantities of TiSe2 may be determined by ultrafast electron

diffuse scattering, consider the first-order thermal diffuse intensity given by Eqn. (1.6.3)

I1(q) ∝
∑
j

|F1j(q)|2

ωq,j
coth

(
~ωq,j

2kBTj

)
, (4.13)

where j labels the phonon modes ωq,j at wavevector q and F1j(q) is the one-phonon struc-

ture factor. In the thermal limit we have ~ωq,j � kBTj which is a very good approximation

for low-frequency phonons such as the one which softens at the M-point in the Brillouin

zone of TiSe2 (this approximation in fact holds holds for most other phonons in TiSe2 as
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well). It follows that Eqn. (4.13) can be approximated as

I1(q) ≈ 2kB
~
∑
j

Tj
ω2
q,j

|F1j(q)|2. (4.14)

For the moment both ωq,j and Tj will be treated and time-dependent. In a charge density

wave system, there is usually only 1 phonon which has a strongly temperature-dependent

frequency, we label this phonon s and separate it from the “normal” phonons (those which

do not have temperature-dependent frequencies) indexed by j 6= s. Then the above ex-

pression has two components is written as

I1(q) ≈ 2kB
~

Ts

ω2
s0

(
1 +

2g2
q

~ωq,0
χ(q, Te)

) |F1s(q)|2 +
2kB
~
∑
j 6=s

Tj
ω2
q,j

|F1j(q)|2, (4.15)

where Eqn. (4.10) has been used to described the temperature (χ) dependence of the

phonon frequency. As described earlier, the electronic susceptibility χ(q, Te) depends on

the electronic temperature Te, which can be modulated much more rapidly than the phonon

temperature Ts (and Tj for the normal phonons) when the material is laser-excited. The

separation of the electronic temperature from the phonon temperatures is valid when the

system is laser-excited to a non-equilibrium state in which interband transitions have been

driven by the optical excitation field. From this, Eqn. (4.15) naturally separates into

fast and slow terms. Furthermore, increasing Te via photo-excitation yields an increase

in χ which actually corresponds to phonon hardening. The effect of this is in fact a

reduction of the diffuse intensity, which would be measurable only while the changes in

χ are faster than changes in the phonon temperatures Ts and Tj . This effect can be

understood in the following manner: photo-excitation modifies the electronic environment

via the susceptibility χ. In turn this directly influences the electronic screening of atomic

vibrations at particular wavevectors and therefore the effective force-constants between the

atoms. A phonon mode with momentum vector falling at the point where χ diverges is
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strongly influcenced by this efffect. In this remainder of this chapter, this femtosecond

process is measured for the first time using ultrafast electron diffuse scattering and allows

for the relative magnitude of the electron-phonon coupling constant to be determined at

various points in the Brillouin zone.

4.6 Ultrafast electron scattering of TiSe2
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a) b)

Figure 4–4: Diffraction pattern formed by a 70 nm single crystal TiSe2 sample.
a) Raw diffraction image formed by 60 images of each having a 10 second exposure time
of the CCD detector. Various Bragg reflections are indicated to show the reciprocal lattice
and points of interest in various Brillouin zones are shown in blue (M), green (M) and red
circles (K). G120 is a reciprocal lattice vector, q is the scattering vector, and k is the phonon
wavevector. b) 6-fold symmetrical version of the image in a), generated for improved signal
to noise since the diffraction pattern is 6-fold redundant due to its symmetry.

Thin flakes of TiSe2 are sliced by ultra-microtomy at the McGill facility for electron

microscopy research by Jeannie Mui who is an electron microscopy technician. Suitable

flakes are transferred to a transmission electron microscopy substrates which have a 200µm

diameter hold and aligned for optimal diffraction illumination conditions. The sample is
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mounted in the ultrafast electron diffraction instrument for experiments involving laser-

excitation. Normal incidence of the electron beam is found by fine tuning the angle using a

UHV motorized sample holder. An example diffraction pattern of TiSe2 obtained using the

instrument is shown in Fig. 4–4 a). The sample area is roughly 10000 µm2 (80% coverage

of the substrate aperture) and the spot size of the 800 nm excitation laser pulse is 450 µm

in diameter ensuring a uniform excitation across the probed volume of the sample.

The ultrafast electron scattering measurements of TiSe2 which are presented exhibit

very small diffuse intensity changes on the order of a few percent. In order to obtain

sufficient signal to noise for the experiments, measurements spanning 24-48 hours where

conducted. Temporal stability throughout the measurements was crucial in order to reliably

resolve the scattering intensity changes. The timing and synchronization system for pulse

compression presented in Chapter 2 was critical in achieving sufficient time resolution and

stability for the following experiments.

4.6.1 Bragg peak dynamics

The Bragg peak dynamics of photo-excited TiSe2 are shown by examining the time-

dependent behavior of the (030) reflection at the Γ point. The results are shown in Fig. 4–5.

Consistent with previous UED measurements [190], is the bi-exponential time-dependence

of the Debye-Waller effect which demonstrates a 833 ± 188 fs initial decrease followed by a

slower 2.09 ± 1.08 ps decrease. An explanation of this in terms of strongly-coupled optical

phonons has been given [191, 190]. The Debye-Waller effect is observed in all reflections

and demonstrated the expected q2–scaling. The time-scales found in this data report on

the average heating of the lattice, and will thus form a useful reference time-constant when

comparing to time-scales found in the diffuse intensity signals.

Ultrafast diffuse scattering strives to determine where the scattering intensity which

leaves the Γ points is distributed throughout the rest of the Brillouin zone [192]. In general,
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Figure 4–5: Transient Debye-Waller effect in TiSe2.
a) Time-dependent intensity of the (030) Bragg peak. A bi-exponential time-dependence
is observed, with an 833± 188 fs fast component and 2.09± 1.08 ps slow component. The
solid line is a fit to such a model.

the intensity will be distributed among specific modes in time according to the magnitude

of the wave-vector dependent electron-phonon coupling gk, followed by phonon-phonon

coupling between optical and acoustic modes in a manner which respects momentum and

energy conservation. This results in an energy flow into the phonon system, yielding non-

equilibrium mode populations. In this work however, changes in intensity corresponding

to modulation of the soft phonon are also observed in addition to changes in phonon mode

populations.

The fluence range of 2–6 mJ/cm2 was investigated in this work. Measurements at

higher-fluences were found to cause damage to the sample. Differential changes in scattering

intensity of roughly 1% are detectable given the signal to noise which can be achieved in

the instrument. This is because a typical TiSe2 single crystal flake has relatively small

area limiting the possible electron flux for the measurement and it is not practical to run
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measurements much longer that a few days to collect statistics. Changes in intensity of

this magnitude are only found to occur for fluences at or above 2 mJ/cm2 because of the

limited response of the sample. For fluences above 7 mJ/cm2 the sample doesn’t survive a

measurement run.

4.6.2 Diffuse intensity dynamics
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Figure 4–6: Ultrafast electron diffuse scattering of TiSe2.
a) Normalized intensity change 1 ps after photo-excitation with a fluence of 4 mJ/cm2. b)
Selected region of reciprocal space shown in the white rectangle of a). The green circle
identifies the M-point around the (030) Bragg, the blue circle identifies the M-point around
the (020) peak and the red circle identifies the K point around the (030) peak. c) Time
traces at the points shown in b) showing the rapid decrease and slower increase found at
the M-points and only the slower increase at the K-points. d) Intensity line-cuts along the
lines shown in b).

The diffuse intensity dynamics are analyzed by comparing the normalized relative

intensity change (i.e. the change normalized to pattern shown in Fig. 4–4 b)) in regions of

reciprocal space which fall off the Bragg peaks (regions off of the Γ points of the Brillouin

zone). The change in intensity at a pump-probe time delay of 1 ps is shown in Fig. 4–6 a).
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What is striking, and unique compared to other diffuse scattering measurements [192, 193,

194], is the fact that a decrease in intensity is found not only on the Bragg peaks but also

effectively instantaneously at the M-points of reciprocal space. In Fig 4–6 a) and b) black

regions depicting a negative change occur at all Γ and M-points. Unlike the Bragg dynamics

however, the time-resolved dynamics at the M-points demonstrate a rapid recovery after 1

picosecond which is qualitatively consistent with other points in the Brillouin zone (such as

the K-point) which corresponds to the expected increase in phonon mode occupancy due to

lattice heating by energy transfer from the photoexcited carriers through electron-phonon

coupling. A comparison of the time-traces is shown in Fig. 4–6 c). The decreasing intensity

is of particular interest because it occurs where phonon softening/hardening is expected

in TiSe2. Line-cuts of the intensity change are shown in Fig 4–6 d) along two different

Γ–M–Γ paths which are shown in b). At a time-delay of 1 ps, the decrease in intensity at

the M-points is a few percent, comparable with that of the Bragg peaks.
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a) b) c)

Figure 4–7: Fluence dependent dynamics in TiSe2.
Photo-induced scattering intensity dynamics at the Γ (a)), M (b)) and K (c)) points of the
Brillouin zone for various fluences.

The sample was measured at fluences of 2, 4 and 6 mJ/cm2. The fluence dependence

of the intensity dynamics are shown in Fig. 4–7. The Bragg peaks show the expect scaling

of peak suppression with fluence, as more energy from the laser excitation translates in an
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increased average lattice heating through the transient Debye-Waller effect. The dynamics

of the M-point, interestingly do not demonstrate a clear dependence on fluence. The

two components of the time-domain response remain present, but the magnitude doesn’t

demonstrate a clear scaling or dependence on fluence up to 6 mJ/cm2, which is approaching

the maximum excitation which can be applied to the sample. Between 2 and 4 mJ/cm2

the intensity change at the M-point roughly scales in a manner proportional to the incident

fluence. Further determination of this at lower fluences is limited by realistic signal to noise

considerations. A similar scaling is found to occur at the K points shown in Fig. 4–7 c).

At a fluence of 4 mJ/cm2, the M-points dynamics are fit to a bi-exponential func-

tion, which yields a time constant of 137 ± 29 fs for the fast decrease in intensity and a

508 ± 66 fs increase. Based on these time-constants, the fast component is most likely

instrument resolution limited, since the total instrument response function is roughly 100

fs as determined previously (see Chapter 2.) The fast rise which follows, interestingly, is

slightly faster than the reduction of the Bragg peak intensities (833±188 fs). These values

should be in agreement if they report on the same mechanism of lattice heating. A possible

explanation is that the phonon hardens impulsively but “kicks-back” and softens quickly

thereafter, with a time-constant slightly faster that the heating of the other phonons in

the material. More detailed measurements of this are expected to clarify this point, as the

modeling of this data is limited by the fitting analysis procedure. The time-constant of the

dynamics at the K-point is found to be 724± 176 fs which is in better agreement with the

Bragg peak dynamics.

4.7 Analysis of phonon hardening

The rapid decrease in diffuse scattering intensity at the M-points is of primary interest

because it represents novel physics of CDW materials which can be probed by ultrafast

electron diffuse scattering. The first term of Equation (4.15) describes the diffuse scattering
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intensity due exclusively to the soft phonon of TiSe2 at the M-point. It reads

I1(q) ≈ 2kB
~

Ts
ω2
s

|F1s(q)|2.

An rapid decrease in I1 can be described by an increase in the phonon frequency ωs which

is related to the electronic susceptibility χ according to ω2
s0

(
1 +

2g2
q

~ωs,0χ(q, Te)
)

. Photo-

excitation impulsively increases χ by excitation of carriers into the electron pocket at

the M and L points yielding an increase in the effective electron temperature Te. The

frequency of the phonon before photo-excitation is found by examining Fig. 4–3 b) to be

ωs0 = 1.3 THz [161]. Fitting the data shown in Fig. 4–7 b) at a fluence of 4 mJ/cm2 reveals

that the decreasing component has an amplitude of 3.4± 0.5% which directly corresponds

to an equivalent percent increase in χ of 3.4% and an ωs − ωs0 of 24 GHz.

The line-cuts of the time-resolved intensity change after 1 ps shown in Fig. 4–6 d) also

reveal the momentum range over which the phonon hardening occurs. This is determined

to be 0.26 ± 0.03 × G centered at the M-points where G is the magnitude of a reciprocal

lattice vector. Within this range about the M, ω2
s has hardened by 1–3% with the maximum

hardening occurring exactly at the M-point, consistent with the computations shown in

Fig. 4–2 a) and expected features of soft-phonon CDW materials.

The existence of the rapid decrease in diffuse intensity at the M-points occurs because

of the character of χ for a soft-phonon system. The rate at which this process occurs

however, is governed by the electron-phonon coupling term gM at M in the Brillouin zone.

Changes in electron screening and χ resulting from photo-excitation are the precursor the

phonon hardening observed, but the coupling of the electrons to the soft mode at this

wavevector must be very strong in order to rapidly change the frequency of the phonon.

The magnitude of this term at M relative to other points in the zone is in fact what truly

allows for separation of changes in phonon frequency from changes in phonon occupancy in
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the time domain. Given the time-constants determined in this work we find that
g2
M

g2
K,Γ
≈ 5.7

indicating that both strong electron phonon coupling and a divergent χ exist in the high-

temperature phase of TiSe2.

It is particularly interesting to note that the differential scattering shown in Fig. 4–

6 a) demonstrates the symmetry of the the expected scattering pattern of TiSe2 in the

low-temperature charge density wave phase. All of the regions with decreasing diffuse

intensity are areas which either remain or become Γ points after the CDW transition

(see Fig. 4–1 c)). Thus, this new type of time-resolved measurement identifies directly

the signature of a lattice instability (Kohn anomaly) and its wave-vector far away from

charge-density wave transition through phonon re-normalization.

4.8 Outlook and conclusion

In this chapter, ultrafast electron diffuse scattering measurements of 1T-TiSe2 have

been presented at 300 K. The measurements reveal transient phonon hardening of the

L−1 optical phonon that plays a critical role during the charge density wave transition. A

change in the electronic susceptibility χ of 3.4±0.5% is inferred from the changes in diffuse

scattering at the M-point of the Brillouin zone corresponding to a frequency shift of ∼ 24

GHz of the phonon. Furthermore it is determined that the electron-phonon coupling at

the M-point must be roughly 6 times stronger that elsewhere in the Brillouin zone.

Temperature-dependent measurements of TiSe2 down to and through the CDW transi-

tion are expected to reveal more information related to the effects observed in this chapter.

This is experimentally challenging because of the nature of the sample which is mounted

in the instrument for the scattering measurements. The thin flake of TiSe2 is placed on a

TEM grid substrate with poor thermal contact. This makes cooling the flake challenging

and highly sample-dependent (each flake has a different contact area). When thermal con-

tact is sufficient, the vacuum conditions of the chamber (10−7 torr) are insufficient because
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the formation of ice layers on the order of 10 nm occurs since the monolayer growth rates

are on the order of Å/min [195]. This result of this is that there is insuffient time to

perform an experiment before the ice layers completely attenuated the electron beam and

the scattering signal. This is expected to be overcome in the near future with improved

UHV conditions and sample mounting capacity.

Measurements at fluences below 2 mJ/cm2 would be interesting to conduct if improved

instrument signal to noise can be obtained. This is because the strength of the photo-

excitation remains quite a strong perturbation to the electron system. Finding strategies

to produce larger area TiSe2 flakes would be the quickest avenue to increasing the signal

to noise, as the scattering intensity scales with the area of the flake.

Excitation of the TiSe2 sample with different photon energies would also be interesting

to investigate. The 1.55 eV excitation drives transitions at the M points, which impact

directly the electron environment which strongly influences the soft phonon in TiSe2. It

would be interesting to investigate whether phonon hardening occurs when photo-excitation

drives transitions elsewhere in the Brillouin zone, creating either band-edge excited carriers

(1 eV, 1200 nm, laser light) or carriers with significant excess energy (3 eV, 400 nm).

In conclusion, the observation of ultrafast phonon hardening in TiSe2 using ultrafast

electron diffuse scattering establishes that the technique is able to detect changes in phonon

frequency which are directly related to the momentum dependent electronic susceptibility.

The technique is thus capabable of probing phenomena reliant on the Kohn anomaly, a

feature of condensed matter systems difficult to access experimentally.
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[34] M. Born, “über schwingungen in raumgittern,” Phys. Z, vol. 13, p. 287, 1912.

[35] G. P. Srivastava, The physics of phonons. CRC press, 1990.

[36] M. Fox, Optical properties of solids. Oxford University Press, 2001.

[37] P. Parravicini, G. Electronic States and Optical Transitions in Solids. Pergamon
press, 1975.
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[141] S. A. Dönges, O. Khatib, B. T. OCallahan, J. M. Atkin, J. H. Park, D. Cobden,
and M. B. Raschke, “Ultrafast nanoimaging of the photoinduced phase transition
dynamics in vo2,” Nano Letters, vol. 16, no. 5, pp. 3029–3035, 2016.

[142] L. Vidas, C. M. Gunther, T. A. Miller, B. Pfau, D. Perez-Salinas, E. Mart́ınez,
M. Schneider, E. Guhrs, P. Gargiani, M. Valvidares, et al., “Imaging nanometer
phase coexistence at defects during the insulator–metal phase transformation in vo2
thin films by resonant soft x-ray holography,” Nano letters, vol. 18, no. 6, pp. 3449–
3453, 2018.

[143] H. Stinson, A. Sternbach, O. Najera, R. Jing, A. Mcleod, T. Slusar, A. Mueller,
L. Anderegg, H. Kim, M. Rozenberg, et al., “Imaging the nanoscale phase separation
in vanadium dioxide thin films at terahertz frequencies,” Nature communications,
vol. 9, no. 1, p. 3604, 2018.

[144] S. Wall, S. Yang, L. Vidas, M. Chollet, J. M. Glownia, M. Kozina, T. Katayama,
T. Henighan, M. Jiang, T. A. Miller, D. A. Reis, L. A. Boatner, O. Delaire, and
M. Trigo, “Ultrafast disordering of vanadium dimers in photoexcited vo2,” Science,
vol. 362, no. 6414, pp. 572–576, 2018.



179

[145] R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conference
Proceedings, vol. 40, no. 1, pp. 2–45, 1978.

[146] V. A. Lobastov, J. Weissenrieder, J. Tang, and A. H. Zewail, “Ultrafast electron mi-
croscopy (uem): Four-dimensional imaging and diffraction of nanostructures during
phase transitions,” Nano letters, vol. 7, no. 9, pp. 2552–2558, 2007.

[147] M. G. Evans and M. Polanyi, “Some applications of the transition state method to
the calculation of reaction velocities, especially in solution,” Trans. Faraday Soc.,
vol. 31, pp. 875–894, 1935.

[148] S. G. Tomlin, “Optical reflection and transmission formulae for thin films,” Journal
of Physics D: Applied Physics, vol. 1, no. 12, p. 1667, 1968.

[149] Z. He and A. J. Millis, “Photoinduced phase transitions in narrow-gap mott insula-
tors: The case of VO2,” Phys. Rev. B, vol. 93, p. 115126, Mar 2016.

[150] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electron-
ics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature
nanotechnology, vol. 7, no. 11, p. 699, 2012.

[151] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerg-
ing device applications for semiconducting two-dimensional transition metal dichalco-
genides,” ACS nano, vol. 8, no. 2, pp. 1102–1120, 2014.

[152] K. F. Mak and J. Shan, “Photonics and optoelectronics of 2d semiconductor transi-
tion metal dichalcogenides,” Nature Photonics, vol. 10, no. 4, p. 216, 2016.

[153] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2d transition
metal dichalcogenides,” Nature Reviews Materials, vol. 2, no. 8, p. 17033, 2017.

[154] T. C. Berkelbach and D. R. Reichman, “Optical and excitonic properties of atomically
thin transition-metal dichalcogenides,” Annual Review of Condensed Matter Physics,
vol. 9, no. 1, pp. 379–396, 2018.
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