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SUMMARY

One of the primary objectives of adaptive 0nite element analysis research is to determine how to e:ec-
tively discretize a problem in order to obtain a su<ciently accurate solution e<ciently. Therefore, the
characterization of optimal 0nite element solution properties could have signi0cant implications on the
development of improved adaptive solver technologies. Ultimately, the analysis of optimally discretized
systems, in order to learn about ideal solution characteristics, can lead to the design of better feedback
re0nement criteria for guiding practical adaptive solvers towards optimal solutions e<ciently and reli-
ably. A theoretical framework for the qualitative and numerical study of optimal 0nite element solutions
to di:erential equations of macroscopic electromagnetics is presented in this study for one- , two- and
three-dimensional systems. The formulation is based on variational aspects of optimal discretizations
for Helmholtz systems that are closely related to the underlying stationarity principle used in comput-
ing 0nite element solutions to continuum problems. In addition, the theory is adequately general and
appropriate for the study of a range of electromagnetics problems including static and time-harmonic
phenomena. Moreover, 0nite element discretizations with arbitrary distributions of element sizes and
degrees of approximating functions are assumed, so that the implications of the theory for practical
h-, p-, hp- and r-type 0nite element adaption in multidimensional analyses may be examined.
Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Currently, 0nite element analysis (FEA) is widely used in computational electromagnetic
design and research—typically, FEA tools are used to numerically simulate and evaluate
the performance of a new device design before building a prototype [1–16]. In recent years,
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the use of adaptive 0nite element methods (AFEMs) has received considerable attention for
solving problems more e<ciently than standard FEMs [17]. In general, 0nite element solutions
are approximate [18]; and their accuracy depends on the number of free parameters used to
mathematically model the problem, and on how e:ectively those parameters, or mathematical
degrees of freedom (DOF), are distributed throughout the problem space. In addition, the cost
of solving a 0nite element problem grows with the number of DOF used in the discretization.
Consequently, the most e<cient distributions of DOF for FEA are those that yield su<ciently
accurate solutions using the fewest free parameters. Today, one practical way to achieve this
objective is by using adaptive solution strategies which are capable of intelligently evolving
and improving e<cient distributions of DOF over the problem domain, by establishing error
distributions, and then adjusting or adding DOF to the discretization to correct them [19–21].
Standard FEMs increase the number of DOF throughout the problem domain in a uniform

fashion by augmenting the existing level of discretization in each subregion (element) equally.
Generally, this can result in an ine<cient solution process, since most electromagnetics 0eld
solutions will not conform to the initial distribution of DOF, and uniform re0nements do not
allow for this distribution to be changed. However, by augmenting the DOF in the regions of
higher solution error only, it is often possible to make signi0cant improvements in the global
accuracy of the 0nite element solution for the least additional computational cost [19; 20].
Presently, four basic types of adaption models are under study: h-type, p-type, hp-type and

r-type. Essentially, these models di:er only in the methods used to update the 0nite element
discretization within the adaptive feedback loop [20]:

A. Generate initial discretization.
Repeat:
B. Solve 0nite element problem.
C. Evaluate solution accuracy; if adequate STOP.
D. Identify regions of inadequate discretization.
E. Update 0nite element discretization.

Until STOP.

Simply stated, h-type adaption models add new elements to the mesh; p-type models in-
crease the degree of approximation over pre-existing elements in the mesh; hp-type models
employ a combination of both procedures; and r-type models reposition element vertices in
the mesh to improve the solution accuracy. All four adaption models are considered in this
work.
Today, many realistic problems require a large number of DOF to compute their solutions

with su<cient accuracy; and, the e<cient discretization of the physical problem has become
an essential requirement of modem 0nite element packages. These practical requisites have
led to an increasingly strong need and demand for advanced adaptive solver technologies for
electromagnetics FEA. Currently, the research and development of optimized AFEMs which
are e:ective, reliable and versatile enough for general application in electromagnetics analy-
sis and design, is a critical component of the state-of-the-art in FEA research. The purpose
of the present contribution is to advance this frontier, through the development of practical
adaptive re0nement criteria, which are able to e:ectively reproduce the main modelling char-
acteristics of optimal discretizations, without the expense of solving the optimal discretization
problem.
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1.1. Technical constraints

Generally, electromagnetic 0eld problems can be formulated using the operator equation:

Lu= g (1)

where L is a linear operator that can be chosen so that Equation (1) represents any of
Maxwell’s integral or di:erential equations of macroscopic electromagnetics, and u and g are
symbolic representations of corresponding scalar or vector 0elds [22]. In general, g could
represent a prescribed source of electromagnetic energy, and u would give the unknown elec-
tromagnetic 0eld, or auxiliary potential, which satis0es Equations (1) subject to the boundary
conditions for the problem under consideration. When solving electromagnetic problems using
FEMs, the basic approach is to de0ne a space of admissible approximating functions, say Vh,
from which the closest function to the true solution u, say uh, is eventually computed. In
general, FEMs use a 0nite number of 0xed-position geometric sub-domains (elements), over
which interpolation functions are used to approximate the unknown 0eld u. Therefore, one
restriction placed on Vh is the a priori imposed distribution of some of the mathematical DOF
used to model the physical problem due to the pre-assigned 0xed topology of these elements.
Standard FEA solutions are only optimal under these restrictions, i.e. the pre-assigned

element topology. However, if an operational speci0cation of truly optimal approximate
solutions, i.e. the approximate solutions that would result if these restrictions were removed,
were known a priori, then practical algorithms could be developed and applied to adaptively
compute FEA solutions with similar optimal properties, but at a much lower computational
cost and complexity than what would be required to resolve the geometrically unconstrained
optimization problems. Although AFEMs are well suited to evolving 0nite element approxi-
mations with optimal-discretization solution properties, this can only be achieved through the
application of appropriate feedback criteria for guiding the adaption process towards optimal
discretizations. Therefore, the identi0cation and veri0cation of an operational characterization
of optimal 0nite element discretizations forms an essential foundational step of the present
contribution.

1.2. Foundational support

There has been considerable research on optimal discretizations for numerical modelling meth-
ods, including FEMs, in mathematics and engineering [19; 20; 23–41]. Some of the prelimi-
nary developments that have played roles in this work are described in [23–27; 42; 43]. For
example, the characterization of solution properties associated with optimal discretizations for
modern FEMs received considerable theoretical and experimental attention in a series of in-
dependent works over the 1970s [24–27]. Unfortunately, this research was largely limited
to specialized, low-order, 1-D systems; and for the most part, the conclusions are unsuitable
or insu<cient for practical use. Some of the most prominent and enduring contributions to
emerge are based on the so-called equidistribution principle (EP) [28–30; 32–39; 41]. One
of the most general and powerful formulations in this area introduced the concept of the
grading function [30]. By this approach, optimal discretizations can be iteratively generated
by moving element vertices until a speci0ed grading function changes by the constant amount
1=N over each element in a mesh comprised of N elements. The grading function method
of [30] was also investigated in numerous other publications, including [28; 29; 32–39; 41].
Unfortunately, these approaches require explicit knowledge of the exact solution, u, in order
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to build the grading function. Therefore, while this method may be suitable for interpolation,
it is not su<cient for 0nite element approximation problems, where the exact 0eld solution
is not available in advance. More recently, a number of extended variations of the grading
function approach, designed for 2-D, 3-D, and even approximation problems, were reported in
References [36; 38–40]. Overall, the most promising of these contributions were subsequently
found to be potentially unreliable, or at best inconclusive, for practical 0nite element appli-
cations [44]. Finally, two other EP methods were proposed in References [29; 41]. The 0rst
represents a heuristic approach de0ned for the residual of the governing partial di:erential
equation; the second is based on equidistributing the energy norm of the error. Unfortunately,
both of these EP approaches were also determined to be poorly suited to the problem at
hand. Overall, and still consistent with the 0ndings of Reference [33], the current body of
published knowledge on optimal discretizations is insu<cient to provide a reliable operational
characterization of optimal 0nite element discretizations for electromagnetics analysis. A fully
expanded review and detailed discussion of the abridged survey presented above is provided
in Reference [44]

1.3. Objectives

The main purpose of this contribution is to develop practical adaptive re0nement criteria
which are su<cient to de0ne AFEMs that are able to e:ectively reproduce the dominant and
essential modelling characteristics of optimal 0nite element discretizations, without incurring
the prohibitive costs and complexities of solving for these associated optimal discretizations.
As clari0ed by the current state-of-the-art, an essential prerequisite objective of this work is
to identify and validate a foundational operational characterization of optimal discretizations
for electromagnetic analysis. This present contribution has been divided into three steps, in
order to complete these two goals. First, a mathematical formulation for computing optimal
discretizations, which is su<ciently operational to admit an adaptive re0nement criterion, is
developed from a theoretical basis. Second, the validity and generality of the formulation is
con0rmed through comprehensive independent testing. Finally, the ability of the re0nement
criteria to e:ectively and e<ciently reproduce the dominant performance results associated
with optimal discretizations, in practical AFEA applications, is investigated and established
computationally, and then rated in comparison with the current state-of-the-art.

2. FORMULATIONS FOR OPTIMAL FINITE ELEMENT SOLUTIONS

The purpose of this section is two-fold: 0rst, to develop a strongly founded operational for-
mulation for computing optimal 0nite element discretizations; second, to de0ne a family of
re0nement criteria with the potential to reproduce the dominant FEA performance results
associated with optimal discretizations, within a practical AFEA environment.
The 0rst objective is to assemble a collection of non-linear systems of equations that can

be used to simultaneously compute both optimal 0eld solution values and optimal geometric
discretization parameters, for 0nite element formulations of 1-D, 2-D and 3-D scalar boundary
value problems in macroscopic electromagnetics. This mathematical formulation is derived,
based on well-established variational principles, to be su<ciently general to cover a range of
electromagnetic problems including static and time-harmonic phenomena, and 0nite element
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discretizations entailing arbitrary distributions of element sizes and degrees of approximating
functions. A variational method is preferred because it facilitates independent veri0cation and
validation through both perturbation testing and solution space searches. Further, variational
schemes are intrinsically operational, and readily admit related re0nement criteria. Although
several di:erent choices exist for the shape of the elements to be used, the typical selection for
electromagnetics is the simplex [5; 45]. For example, line segments, triangles and tetrahedra
are usually used in 1-D, 2-D and 3-D applications, respectively [22]. Simplex elements are
used exclusively in this work, however the mathematical formulation is not restricted to any
speci0c choices of approximating functions. Ultimately, the matrix equations corresponding
to this formulation will be solved, using standard optimization methods, in order to compute
truly optimal 0nite element solutions for a set of benchmark electromagnetic systems. These
solutions will be of the highest accuracy possible for the level of problem re0nement speci0ed,
for the variational approach used, because the variational principle underlying the problem
formulation is itself used as the basis for deriving the optimization equations [44].
The second objective of this section is to specify a template mathematical de0nition for the

potential AFEA re0nement criteria associated with the proposed variational formulation.

2.1. Abstract variational problem

The usual variational approach used to solve electromagnetic problems with FEMs is to re-
formulate the continuum 0eld problem de0ned by Maxwell’s equations using a variational
principle, to generate a system of algebraic equations which represent a discretized prob-
lem, whose solution approximates that of the original continuum problem [22]. The for-
mulation developed here is based on the variational principle of determining the function
u(x; y; z)‡ which renders the functional F(u) stationary, where

F(u)= 1
2 〈Lu; u〉 − 〈u; g〉 (2)

The notation 〈·; ·〉 denotes the symmetric product de0ned over the problem region P as

〈�;  〉=
∫
P
� dP (3)

where � and  are real or complex valued scalar functions.§ Assuming that L, subject to its
boundary conditions, is a self-adjoint complex operator, i.e.

〈L�;  〉= 〈�;L 〉 (4)

then it can be shown [7] that the functional F(u) in Equation (2) will be stationary about a
given function u if the following equation is satis0ed by u(x; y; z):

Lu− g=0 (5)

‡In the discussion above, it is assumed that only admissible functions, i.e. functions which comply with the
boundary conditions and continuity requirements of the given electromagnetics problem, and that are su<ciently
di:erentiable to the degree required to evaluate the functional F in Equation (2), are considered for determining
the stationary point of the functional F .

§The variational principle described in this section is also applicable to vector problems, for which the inner product
is de0ned as 〈a; b〉= ∫ P a·b dP. However, only problems that can be expressed in terms of scalar unknowns will be
considered in this work.
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Therefore, 0nding the function u(x; y; z) that renders the functional F(u) stationary is equiva-
lent to solving the original electromagnetics problem. Further, the function u(x; y; z) for which
F(u) is stationary may be determined uniquely since it must satisfy Maxwell’s equations sub-
ject to the speci0c boundary conditions associated with the original electromagnetics problem
[46].
In 0nite element applications, the functional F is uniquely de0ned by the values of a 0nite

set of parameters associated with the approximating functions used to model the solution
over the discretized domain. Therefore, the stationarity requirement amounts to 0nding the
stationary point of F with respect to variations in these parameters, which may be achieved
by the usual methods of di:erential calculus [47]. One important consequence of the fact that
this stationarity principle is appropriate for the solution of 0nite element problems formulated
using the above variational approach, is that such formulations can be used to de0ne e:ective
AFEA methods for optimizing 0nite element discretizations [19].

2.2. Generalized functional for electromagnetic systems

A generalized functional is developed for the variational 0nite element formulation of a range
of 1-D, 2-D and 3-D scalar boundary value problems in macroscopic electromagnetics. The
approach taken is to begin with a su<ciently general di:erential equation, together with
boundary conditions, and apply the variational principle described in Section 2.1 to derive
the corresponding functional. One important merit of this approach is its generality: the for-
mulation is valid for a generalized electromagnetics di:erential equation; and thereby models
problems in Laplace’s equation, Poisson’s equation, the Helmholtz equation, and a di:usion
equation, by simply dropping terms from the 0nal result.
Consider the general, second-order, scalar, partial di:erential equation:

∇ · (p∇u) + (k2 +D)u= g (6)

in the enclosed region P bounded by the surface S, with boundary conditions:

u|Sd = ud (7)

and

@u
@n

∣∣∣∣
Sn

= 0

The symbols appearing in Equations (6) and (7) have the following meaning:

u electromagnetic 0eld unknown to be solved for
p material-related parameter equal to �; �−1, or 1
� permittivity
� permeability
k wave number equal to !

√
��

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:939–978
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! frequency in radians=s
D parameter equal to −j!��
j equal to

√−1
� conductivity
� equal to �, 1, or 0
g source function
Sd Dirichlet surfaces
Sn Neumann surfaces

The Dirichlet surfaces are those parts of the problem domain boundary on which the solution
u must take on a prescribed value ud. Similarly, on Neumann surfaces the normal component
of the solution gradient, @u=@n, must take on a prescribed value. The surface bounding the
entire problem region P, is comprised of the union of the Dirichlet and Neumann surfaces,
i.e. S= Sd + Sn.
The di:erential equation (6) may be reformulated as the operator equation (1), if L is

de0ned as

L=∇ · (p∇) + (k2 +D) (8)

However, due to the inhomogeneous Dirichlet boundary condition (7), this operator is not
self-adjoint for the unknown function u. Nevertheless, L is self-adjoint for the related
function uo:

uo= u− � (9)

where � is any function that satis0es the given inhomogeneous boundary condition. Therefore,
if u is substituted by uo + � in Equation (1), then the variational principle described earlier
may be applied to the equation for uo. The corresponding functional, when expanded in terms
of Equation (9), may be written as

F(u)=
1
2

∫
P
{p∇u · ∇u− (k2 +D) u2 + 2gu} dP (10)

after some simpli0cation, as explained in Reference [44]. Finally, the true solution to
Equation (6) over the problem domain P, subject to the boundary conditions in Equation
(7), is the admissible function u for which the above functional F is stationary.

2.3. Non-linear system formulation for the 0nite element equations

Discretized forms of Equation (10) may be used to compute unique 0nite element solutions
to electromagnetics problems cast in terms of Equations (6) and (7). The approach is to
develop a non-linear system of optimization equations from a variational formulation, which
can be solved using standard optimization methods to determine optimal values for the solution
unknowns. The stationarity condition of the variational principle presented earlier is used as
the basis for deriving these optimization equations.
The dependence of the functional F on the solution unknowns may be expressed as

F =F(u(x);x) (11)
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where the 0eld solution is represented by the vector of 0eld solution parameters u, while x rep-
resents the vector of the unconstrained geometric discretization parameters for the
problem. The dependence of the 0eld solution parameters on the discretization parameters is
expressed by

u= u(x) (12)

Consequently, stationarity of the functional F with respect to variations in u, with the
geometric discretization held 0xed, is achieved by satisfying

@F
@u

∣∣∣∣
x
=0 (13)

which is equivalent to the usual variational 0nite element formulation for 0xed-position geo-
metric sub-domains. For 0nite element formulations in which the geometric discretization can
also vary, stationarity of the functional with respect to variations in the geometric discretization
implies

@F
@x
=

@F
@u

∣∣∣∣
x

@u
@x
+

@F
@x

∣∣∣∣
u
=0 (14)

Therefore, based on Equation (13) it follows that

@F
@x

∣∣∣∣
u
=0 (15)

represents the stationarity requirements for the functional F with respect to variations in the
geometric discretization of a problem.
The optimization equations required to simultaneously compute optimal 0eld solution values

along with optimal geometric discretization parameters for 0nite element formulations, i.e.
Equations (13) and (15) may be re-expressed as the non-linear system:

F(U)= 0 (16)

where the elements of vector F represent stationarity requirement expressions of the functional
F with respect to the elements of the unknown vector U=[uT;xT]. For example, in a problem
where N is the number of unknowns to be optimized:

F= [F1;F2; : : : ;FN]T (17)

U= [U1;U2; : : : ;UN]T (18)

and

Fi=
@F
@Ui

(19)
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Figure 1. Simplex co-ordinates for a 1-D 0nite element.

Thus, the non-linear system (16) will have the form

F1(U1;U2; : : : ;UN)=0

F2(U1;U2; : : : ;UN)=0

...

FN(U1;U2; : : : ;UN)=0

(20)

and may be solved using standard optimization methods. The solution U of (20) is the
characterization of the best approximation, from the space of admissible approximations, to
the true solution u of Equation (6).

2.4. Finite element optimization equations

The purpose of this section is to develop discretized forms of functional (10), and the 0nite
element optimization equations (20). The discretized functionals are derived using conven-
tional approaches detailed in standard references; only the key steps and results are mentioned
here. However, signi0cant details that di:er from the usual treatments, or that are key to the
derivation of the 0nite element optimization equations, are considered in greater depth. The
simpler 1-D results are developed 0rst, to clearly communicate the essential aspects and po-
tential limitations of the formulations; then the more demanding multi-dimensional versions
are derived along the same lines.

2.4.1. 1-D systems Electromagnetic systems which possess appropriate geometric symmetry
may be analyzed using 1-D 0nite element formulations. Consider the 1-D element with vertex
positions xe and xe+1, such that xe+1¿xe, as shown in Figure 1. The location of a point P(x)
within the element may be expressed in terms of the 1-D simplex co-ordinates,  1 and  2,
de0ned by

 1 =
x − xe

xe+1 − xe
;  2 =

xe+1 − x
xe+1 − xe

; and  1 +  2 = 1 (21)

The purely local nature of simplex co-ordinates permits certain parts of the 0nite element
formulation to be developed independent of the global co-ordinate system. Thereby, re-
sults developed for one element are equally applicable to all other elements, by co-ordinate
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transformations. Further, although only one co-ordinate is independent, various quantities aris-
ing in certain stages of the formulation are more conveniently expressed in terms of both  1
and  2.
The 0eld solution u to the di:erential equation (6) may be approximated, over an individual

1-D element e, using a linear combination of basis functions !i( 1;  2):

u≈
ne∑
i=0

Ui!i( 1;  2) (22)

where the Ui are real or complex, constant coe<cients, that represent the ne+1 0eld solution
unknowns associated with the element. The basis functions in Equation (22) are left general
for the moment, however, explicit forms are incorporated later in this work. Substituting the
approximation for u into functional (10) yields

F (e) =
1
2

ne∑
i=0

ne∑
j=0

UiUj

∫
Pe

{p∇!i · ∇!j − (k2 +D)!i!j} dP +
ne∑
i=0

Ui

∫
Pe

g!i dP (23)

where Pe represents the portion of the problem domain associated with the element e, and
F (e) represents the corresponding portion of the functional.
For 1-D systems where x represents the independent co-ordinate variable for the solution

u(x), it may be con0rmed that

∇!i · ∇!j=
@!i

@x
@!j
@x
=
1
h2e

@!i

@ 1

@!j
@ 1

(24)

by noting

@!i

@x
=

@!i

@ 1
@ 1
@x
+

@!i

@ 2
@ 2
@x

and
@ 1
@x
=
1
he

;
@ 2
@x
= − 1

he
(25)

where he is the length of the element, i.e.

he= xe+1 − xe (26)

Further, it may be con0rmed that:

dP= xr dx=( 1he + xe)rhe d 1 (r=0; 1; 2) (27)

given the 1-D co-ordinate transformation:

d 1 =
@ 1
@x
dx=

1
he
dx (28)

and in view of (as determined by Equations (21) and (26))

x=  1he + xe (29)
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Therefore, upon substituting Equations (24) and (27) into Equation (23), the general form of
the discretized functional over a typical element e becomes

F (e) =
1
2

ne∑
i=0

ne∑
j=0

UiUj

∫ 1

 1=0

pe

h2e

@!i

@ 1

@!j
@ 1
[ 1he + xe]rhe d 1

− 1
2

ne∑
i=0

ne∑
j=0

UiUj

∫ 1

 1=0
(k2e +De)!i!j[ 1he + xe]rhe d 1

+
ne∑
i=0

Ui

∫ 1

 1=0
ge!i[ 1he + xe]rhe d 1 (30)

where pe; ke; De, and ge represent the speci0c forms of p, k, D, and g in Pe, respectively.
(Note: these quantities are assumed to be expressed purely in terms of the single simplex co-
ordinate  1.) Finally, the dependency of the functional on the underlying reference co-ordinate
system is determined by the value of the parameter r:

r = 0 corresponds to a Cartesian co-ordinate system: (x; y; z);
r = 1 corresponds to a circular cylindrical co-ordinate system: ($; �; z); and,
r = 2 corresponds to a spherical co-ordinate system: (R; &; �).

Although the functional F (e) corresponds to a 1-D formulation, the contribution from each
element in the three-dimensional volume associated with the physical problem must be in-
cluded in F (e) in order to correctly apply the variational principle. Hence, the Jacobian
( 1he+xe)rhe in Equation (30) corresponds to transformations from the di:erential elements of
volume associated with the three common co-ordinate systems, as de0ned by the value of r.
However, any factors which do not di:er in the unit volume from one element to the next,
for a particular co-ordinate system, have not been included in the expression for the elemental
functional F (e) in Equation (30). Speci0cally, when considering 1-D problems de0ned with
respect to the three reference co-ordinate systems, the independent co-ordinate variable is
taken to be either x, $, or R in each case, respectively. However, the independent co-ordinate
variable in all three cases is consistently represented by the symbol x. Thus, the volume cor-
responding to each element in a given 1-D discretization is determined, to within a common
multiplicative factor, by considering the di:erential volume element de0ned in Equation (27).
The functional F (e) de0ned in Equation (30) may be expressed more concisely by de0ning

V (e)ij =
∫ 1

 1=0

pe

h2e

@!i

@ 1

@!j
@ 1
[ 1he + xe]rhe d 1

B(e)ij =
∫ 1

 1=0
(k2e +De) !i!j[ 1he + xe]rhe d 1

and

f(e)i =
∫ 1

 1=0
ge!i[ 1he + xe]rhe d 1 (31)
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Figure 2. A 1-D 0nite element mesh of N elements.

Substituting for these integrals in Equation (30) yields

F (e) =
1
2

ne∑
i=0

ne∑
j=0

UiUjV
(e)
ij − 1

2

ne∑
i=0

ne∑
j=0

UiUjB
(e)
ij +

ne∑
i=0

Uif
(e)
i (32)

or, expressed in matrix form

F (e) =
1
2
u(e)TV(e)u(e) − 1

2
u(e)TB(e)u(e) + u(e)Tf (e) (33)

where the vector u(e) consists of the 0eld solution unknowns Ui, for the element e, of a 1-D
0nite element discretization comprised of N elements, as shown in Figure 2. The functional
for the full discretization is given by the sum of the elemental contributions:

F =
N∑

e=1
F (e) (34)

The optimization equations for the 0eld solution parameters u(e) are derived from the
stationarity requirements

@F (e)

@Ui
=0 (i=0; 1; : : : ; ne) (35)

or equivalently

@F (e)

@u(e)
= 0 (36)

Applying the identity

@
@u
(uTw)=

(
@uT

@u

)
w+

(
@wT

@u

)
u=w+

(
@wT

@u

)
u (37)

in view of the symmetry of the matrices V(e) and B(e), Equation (36) yields

V(e)u(e) − B(e)u(e) + f (e) = 0 (38)

Therefore, considering all the elements in a discretization yields the set of equations:

V(e)u(e) − B(e)u(e) = − f (e) (e=1; 2; : : : ; N ) (39)

which may be solved to optimize the values of the global 0eld solution parameters u. In
practical 0nite element implementations many 0eld solution parameters are common to a
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number of elements. The optimization equations corresponding to such parameters may be
consolidated into a single equation by consolidating any 0eld solution parameter common to
more than one element into a single unknown (e.g. Reference [22]).
The optimization equations for the geometric discretization parameters may be derived from

the stationarity requirements

@F
@xe

=0 (e=2; 3; : : : ; N ) (40)

where the positions of the end-point vertices, x1 and xN+1, are constrained to the boundaries
of the problem domain. Recalling Equation (34), where F (e) depends on the discretization
parameters such that

F (e) =F (e)(xe; he(xe; xe+1)) (41)

implies

F (e−1) =F (e−1)(xe−1; he−1(xe−1; xe)) (42)

and thereby

@F
@xe

=
@F (e−1)

@xe
+

@F (e)

@xe
(43)

where

@F (e−1)

@xe
=

@F (e−1)

@xe
+

@F (e−1)

@he−1
@he−1
@xe

(44)

However, the 0rst term on the right hand side in Equation (44) is equal to zero since xe does
not appear explicitly in F (e−1); and from Equation (26):

@he−1
@xe

=1 (45)

Hence

@F (e−1)

@xe
=

@F (e−1)

@he−1
(46)

Similarly

@F (e)

@xe
=

@F (e)

@xe
+

@F (e)

@he

@he

@xe
(47)

in which, from Equation (26)

@he

@xe
= − 1 (48)

and therefore

@F (e)

@xe
=

@F (e)

@xe
− @F (e)

@he
(49)
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Finally, substituting Equations (46) and (43) into Equation (43) yields

@F
@xe

=
@F (e−1)

@he−1
+

@F (e)

@xe
− @F (e)

@he
(50)

Thus, the set of optimization equations corresponding to the entire set of geometric discretiza-
tion parameters for a given problem is de0ned by

@F (e−1)

@he−1
+

@F (e)

@xe
− @F (e)

@he
=0 (e=2; 3; : : : ; N ) (51)

which may also be expressed in matrix form as

1
2

(
u(e−1)TP(e−1)u(e−1) + u(e)TS(e)u(e)

)
− 1
2

(
u(e−1)TQ(e−1)u(e−1) + u(e)TT(e)u(e)

)
+ u(e−1)Td(e−1) + u(e)Tr(e) = 0 (e=2; 3; : : : ; N ) (52)

where the matrices and vectors in the above equation are de0ned by

P(e−1)ij =
@

@he−1
V (e−1)ij

S(e)ij =
[

@
@xe

− @
@he

]
V (e)ij

Q(e−1)ij =
@

@he−1
B(e−1)ij

T (e)ij =
[

@
@xe

− @
@he

]
B(e)ij

d(e−1)i =
@

@he−1
f(e−1)i

and

r(e)i =
[

@
@xe

− @
@he

]
f(e)i (53)

Solving Equations (39) and (52) simultaneously for the 0eld solution unknowns u, and
the discretization parameters x, yields the optimal 0nite element solution for a given problem
within the space of admissible solutions de0ned by the chosen sets of basis functions. Note that
Equations (39) are equivalent to the set of equations which de0ne the 0eld solution unknowns
in conventional 0nite element formulations which have 0xed-position elements. Further, note
that Equations (52) may not be solved independently of Equations (39) for the discretization
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Figure 3. A tetrahedral element and the sub-simplex P234 used in the de0nition of  1.

parameters, since the former have been derived based on the condition of stationarity of
the functional with respect to the 0eld solution parameters. In general, stationarity of the
functional with respect to the 0eld solution parameters is dependent on the values of the
discretization parameters, i.e. the element vertex positions. This dependence is due to the fact
that the approximating functions over individual elements are de0ned by the values of both
their associated 0eld solution parameters and the element vertex positions.

2.4.2. 2-D and 3-D systems. Many practical electromagnetic systems do not possess the
appropriate symmetry to allow for 1-D treatments, and can only be analysed using 2-D or
3-D formulations. The counterparts of the optimization equations derived for 1-D systems
may be developed in a common form for 2-D and 3-D simplex elements. However, while
the principal steps of the development are the same, the speci0cs of their implementation
can be substantially di:erent, and in some instances considerably more complex for the 3-D
case [44]. Consequently, the more general 3-D case is considered 0rst, followed by a brief
explanation for extracting the corresponding 2-D equations.
Consider the tetrahedral element with vertex positions (xi; yi; zi), i=1; 2; 3; 4, as de0ned in

Figure 3. The location of a point P(x; y; z) in the element may be expressed in terms of the
volume-based simplex co-ordinates  1,  2,  3, and  4, which are de0ned as

 1 =
Vol(P234)
Vol(1234)

;  2 =
Vol(1P34)
Vol(1234)

;  3 =
Vol(12P4)
Vol(1234)

;  4 =
Vol(123P)
Vol(1234)

(54)
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and satisfy the relationship:  1 +  2 +  3 +  4 = 1. Just as in the 1-D case, the 0eld solution
u, to the di:erential equation (6), may be approximated over each tetrahedron in a 3-D
discretization, e.g. in element e:

u≈
ne∑
i=0

Ui!i( 1;  2;  3;  4) (55)

Here, the !i( 1;  2;  3;  4) are 3-D basis functions, and the Ui are the constant coe<cients that
represent the ne + 1 0eld solution unknowns associated with the element e. Similarly, the
source function g, in Equation (6), may be approximated by

g≈
ne∑
i=0

Gi!i( 1;  2;  3;  4) (56)

where the Gi are known constant coe<cients. Following the 1-D line of derivation, after the
approximations for u and g are substituted in functional (10), it can be shown that the general
form of the discretized functional over a typical element e, may be expressed as [22]

F (e) =
1
2

ne∑
i=0

ne∑
j=0

UiUj

[
1
6Ve

4∑
m=1

4∑
n=1
(bmbn + cmcn + dmdn)I

(e)
ijmn

]

−1
2

ne∑
i=0

ne∑
j=0

UiUj6VeB
(e)
ij +

ne∑
i=0

ne∑
j=0

UiGj6VeH
(e)
ij (57)

where Ve is the element volume, bi, ci, and di are de0ned as follows, based on the tetrahedron
vertices speci0ed in Figure 3, with the subscripts progressing modulo 4:

bi = (−1)i
∣∣∣∣∣∣
1 yi+1 zi+1
1 yi+2 zi+2
1 yi−1 zi−1

∣∣∣∣∣∣ (58)

ci = (−1)i+1
∣∣∣∣∣∣
1 xi+1 zi+1
1 xi+2 zi+2
1 xi−1 zi−1

∣∣∣∣∣∣ (59)

di = (−1)i
∣∣∣∣∣∣
1 xi+1 yi+1

1 xi+2 yi+2

1 xi−1 yi−1

∣∣∣∣∣∣ (60)

and

I (e)ijmn =
∫ 1

 1=0

∫ 1− 1

 2=0

∫ 1− 1− 2

 3=0
pe

@!i

@ m

@!j
@ n

d 1 d 2 d 3 (61)

B(e)ij =
∫ 1

 1=0

∫ 1− 1

 2=0

∫ 1− 1− 2

 3=0
(k2e +De) !i!j d 1 d 2 d 3 (62)
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H (e)
ij =

∫ 1

 1=0

∫ 1− 1

 2=0

∫ 1− 1− 2

 3=0
!i!j d 1 d 2 d 3 (63)

Note that the integrands of Equations (61)–(63) are expressed purely in terms of the three
simplex coordinates ( 1;  2;  3). Therefore, I

(e)
ijmn, B

(e)
ij , and H (e)

ij are independent of both the size
and shape of the tetrahedral element, i.e. they do not involve the element vertex positions.
As in the 1-D case, the functional corresponding to a typical element e, given in Equation

(57), also may be expressed in matrix form:

F (e) = 1
2u
(e)TV(e)u(e) − 1

2u
(e)T (6VeB(e)

)
u(e) + u(e)T

(
6VeH(e)) g(e) (64)

where u(e) and g(e) are the element-wise vectors of the 0eld solution and source term
parameters, respectively; and the entries of matrix V(e) are de0ned by

V (e)ij =
1
6Ve

4∑
m=1

4∑
n=1
(bmbn + cmcn + dmdn)I

(e)
ijmn (65)

The functional for the full problem domain, comprising N elements, is given by

F =
N∑

e=1
F (e) (66)

The optimization equations for the 0eld solution parameters u(e), associated with a typical
element e, may be derived from the functional stationarity equations:

@F (e)

@u(e)
= 0 (67)

By the symmetry of the matrices in Equation (64), Equation (67) implies the Equations [22]

V(e)u(e) − (6VeB(e)
)
u(e) =− (6VeH(e)) g(e) (e=1; 2; : : : ; N ) (68)

which may be solved for the optimal values of the entire set of 0eld solution parameters u,
if the geometric discretization is held 0xed. As in the 1-D case, any optimization equations
corresponding to 0eld solution unknowns which are common to more than one element, may
be consolidated into a single optimization equation.
The optimization equations for the geometric discretization parameters, i.e. the element

vertex positions, associated with a tetrahedral element e, may be derived by considering the
functional stationarity equations de0ned by

@F (e)

@x(e)l

=0 (l=1; 2; 3; 4) (69)

@F (e)

@y(e)l

=0 (l=1; 2; 3; 4) (70)

and

@F (e)

@z(e)l

=0 (l=1; 2; 3; 4) (71)
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where x(e)l , y
(e)
l and z(e)l represent the x, y and z co-ordinate values of the position of vertex

l (l=1; 2; 3; 4) for element e, respectively. Since several elements may share a common
vertex in a 3-D tetrahedral mesh, it is not generally possible to pre-determine the mesh
topology. Therefore, it is necessary to also derive the functional stationarity equations for
the discretization parameters in a local manner, i.e. element-wise. As before, the functional
stationarity expressions corresponding to a discretization parameter common to more than one
element may be consolidated into a single optimization equation.
To derive more explicit forms of Equations (69)–(71), it may be con0rmed that the

component-wise partial derivatives of V(e) with respect to x(e)l are given by

@V (e)ij

@x(e)l

=
1

36V2
e

4∑
m=1

4∑
n=1

[
6Ve

(
@(cmcn)

@x(e)l

+
@(dmdn)

@x(e)l

)
− (bmbn + cmcn + dmdn)bl

]
I (e)ijmn (72)

which may be obtained from Equation (65) upon noting that

@(bmbn)

@x(e)l

=0 (m; n; l=1; 2; 3; 4) (73)

and

@(6Ve)

@x(e)l

= bl (l=1; 2; 3; 4) (74)

as explained in Reference [44]. In a similar manner, it may be also con0rmed that

@V (e)ij

@y(e)l

=
1

36V2
e

4∑
m=1

4∑
n=1

[
6Ve

(
@(bmbn)

@y(e)l

+
@(dmdn)

@y(e)l

)
− (bmbn + cmcn + dmdn)cl

]
I (e)ijmn (75)

and

@V (e)ij

@z(e)l

=
1

36V2
e

4∑
m=1

4∑
n=1

[
6Ve

(
@(bmbn)

@z(e)l

+
@(cmcn)

@z(e)l

)
− (bmbn + cmcn + dmdn)dl

]
I (e)ijmn (76)

Further, since u(e), g(e), B(e), and H(e) are independent of the geometric discretization param-
eters, the optimization equations for the geometric discretization parameters associated with a
given tetrahedral element e, may be expressed as

1
2
u(e)TS(e)u(e) − bl

2
u(e)TB(e)u(e) + blu(e)TH(e)g(e) = 0 (l=1; 2; 3; 4) (77)

1
2
u(e)TT(e)u(e) − cl

2
u(e)TB(e)u(e) + clu(e)TH(e)g(e) = 0 (l=1; 2; 3; 4) (78)

and

1
2
u(e)TW(e)u(e) − dl

2
u(e)TB(e)u(e) + dlu(e)TH(e)g(e) = 0 (l=1; 2; 3; 4) (79)
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Table I. Explicit 3-D forms of @(bmbn)=@y
(e)
l in terms of bi and Zij for m; n; l=1; 2; 3; 4.

(m; n)=l 1 2 3 4

(1; 1) 0 2b1Z43 2b1Z24 2b1Z32

(1; 2); (2; 1) b1Z34 b2Z43 b2Z24 + b1Z41 b2Z32 + b1Z13

(1; 3); (3; 1) b1Z42 b3Z43 + b1Z14 b3Z24 b3Z32 + b1Z21

(1; 4); (4; 1) b1Z23 b4Z43 + b1Z31 b4Z24 + b1Z12 b4Z32

(2; 2) 2b2Z34 0 2b2Z41 2b2Z13

(2; 3); (3; 2) b3Z34 + b2Z42 b2Z14 b3Z41 b3Z13 + b2Z21

(2; 4); (4; 2) b4Z34 + b2Z23 b2Z31 b4Z41 + b2Z12 b4Z13

(3; 3) 2b3Z42 2b3Z14 0 2b3Z21

(3; 4); (4; 3) b4Z42 + b3Z23 b4Z14 + b3Z31 b3Z12 b4Z21

(4; 4) 2b4Z23 2b4Z31 2b4Z12 0

where the entries of the matrices S(e), T(e) and W(e) are de0ned by

S(e)ij =
@V (e)ij

@x(e)l

T (e)ij =
@V (e)ij

@y(e)l

and

W (e)
ij =

@V (e)ij

@z(e)l

(80)

Note that the partial derivatives of (bmbn), (cmcn), and (dmdn) with respect to the element
vertex positions, can be determined directly from Equations (58) through (60). They are
given in Table I for reference, where the quantities Xij, Yij, and Zij are de0ned by

Xij = xi − xj (81)

Yij = yi − yj (82)

Zij = zi − zj (83)

(Note: explicit forms of @(bmbn)=@z
(e)
l may be obtained from Table I by replacing Zij with

Yji; explicit forms of @(cmcn)=@x
(e)
l may be obtained from Table I by replacing bi with ci, and

Zij with Zji; explicit forms of @(cmcn)=@z
(e)
l may be obtained from Table I by replacing bi

with ci, and Zij with Xij; explicit forms of @(dmdn)=@x
(e)
l may be obtained from Table I by

replacing bi with di, and Zij with Yij; explicit forms of @(dmdn)=@y
(e)
l may be obtained from

Table I by replacing bi with di, and Zij with Xji.)
Finally, the combined set of optimization equations, de0ned for the 0eld solution unknowns

in Equations (68), and the geometric discretization parameters in Equations (77)–(79), for all
e, may be solved simultaneously for the optimal values of the 0eld solution and geometric
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Table II. Explicit 2-D forms of @(bmbn)=@y
(e)
l in terms

of bi for m; n; l=1; 2; 3.

(m; n)=l 1 2 3

(1; 1) 0 2b1 −2b1
(1; 2); (2; 1) −b1 b2 b1 − b2
(2; 2) −2b2 0 2b2
(1; 3); (3; 1) b1 b3 − b1 −b3
(2; 3); (3; 2) b2 − b3 −b2 b3
(3; 3) 2b3 −2b3 0

discretization parameters. As in the 1-D case, the formulation presented above is valid for
any choice of legitimate 0nite element basis functions.
For electromagnetic systems that possess translational symmetry, the corresponding set of

2-D optimization equations may be obtained directly from Equations (68), (77) and (78),
modi0ed to range over l=1; 2; 3, together with the following additional simpli0cations. First,
the terms 6Ve and 36V2

e appearing in the various equations and expressions in this section,
should be substituted by 2Ae and 4A2

e , respectively, where Ae represents the area of a
triangular element e. Second, the product term (dmdn) as well as its partial derivatives with
respect to element vertex positions, which appear in Equations (65), (72) and (75), are not
required in the analogous 2-D equations. Third, it may be noted that the partial derivatives
of (bmbn) and (cmcn) with respect to the element vertex positions, are given in Table II for
2-D systems, where bi and ci are de0ned as

bi=yi+1 − yi−1; ci= xi−1 − xi+1 (84)

with the subscripts progressing modulo 3, i.e. cyclically around the three vertices of a trian-
gular element [22]. (Note: explicit forms of @(cmcn)=@x

(e)
l may be obtained from Table II by

replacing bi with −ci.) Finally, it should be noted that the integrands in Equations (61), (62)
and (63) must be reduced to their 2-D equivalents, as explained in Reference [44].

2.5. Optimal discretization-based re0nement criteria

The most straightforward approach to developing AFEA re0nement criteria based on the
variational methods derived above arise directly from the optimization equations de0ned for
the geometric discretization parameters themselves, i.e. Equation (52) for 1-D and Equations
(77)–(79) for 3-D. Speci0cally, the relative discretization errors over a non-optimal 0nite
element mesh can be estimated directly in terms of how well these equations are satis0ed
by that discretization. These optimization equations are de0ned element-wise, with respect to
vertex positions, and they can be evaluated locally to indicate the relative ‘optimality’ of the
elements in a mesh. All the speci0c optimal discretization-based re0nement criteria proposed in
this research are special cases derived from this fundamental template de0nition. As such, and
unlike typical AFEA error indicators, they cannot be conveniently expressed as straightforward
formulas. Rather, they are better de0ned and understood implicitly, as measures of the residuals
of the geometric optimization equations, evaluated locally with variational 0eld solutions on
de0cient 0nite element discretizations. It should be noted that this implicit formulation does
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not impose any signi0cant di<culties or complexities on the implementation and evaluation
of the criteria. The component terms of the optimization equations are common to standard
FEA local matrix assembly modules, and thus, are readily available to facilitate the practical
development and application of the new re0nement criteria within electromagnetic AFEA.
Two straightforward and e:ective examples of practical re0nement estimators belonging to
the family described by the template above are de0ned and investigated in Section 4.

2.6. 2-D second-order functional derivative criteria

A family of functional gradient optimal discretization-based re0nement criteria have been
proposed for AFEA in Section 2.5, and the computational performance of speci0c indicators
will be presented in Section 4. Despite their strengths, these 0rst-order functional derivative-
based indicators are not completely immune to the problems associated with guiding adaptive
methods reliably and e<ciently when used with insu<cient or unbalanced discretizations
[48; 49]. Under such conditions, ine:ective discretizations may evolve during the course of
adaption, and poor results can occur over part, or throughout the entire adaptive process, if
problematic error distributions due to unstable 0rst-order functional derivative error indicators
are not detected and corrected [44]. The purpose of this section is to investigate the use of
second-order functional derivatives for analysing the stability and estimating the reliability of
0rst-order derivative-based local error assessments.
Second-order functional derivative-based error indicators are de0ned in terms of deriva-

tives with respect to element vertex positions for 2-D systems in this section. For example,
in Cartesian problems where the 0eld solution variation is independent of the co-ordinate
variable z, i.e. u= u(x; y), the second-order functional derivatives may be computed directly
from the 0nite element optimization equations derived in Section 2.4.2. Consider a scalar
triangular element with vertex positions (xl; yl), l=1; 2; 3. For Helmholtz systems the x- and
y-components of the second-order functional derivatives may be readily determined from the
matrix forms

1
2u
TPu (85)

and

1
2u
TQu (86)

respectively, evaluated over the elements that share the vertex in question; u is the 0eld
solution vector. The square matrices P and Q contain the x and y second-order derivative
information, respectively, that corresponds to the Laplacian part of the functional for vertex
l (l=1; 2; 3) of the triangular element. The entries of the matrices P and Q are de0ned by

Pij =
1
4A2

e

3∑
m=1

3∑
n=1

[
cl
@(cmcn)

@xl
− bl

@(bmbn)
@yl

+ 2Ae
@2(cmcn)

@x2l

]
Iijmn − 1

Ae
(bl + cl)Sij (87)

and

Qij =
1
4A2

e

3∑
m=1

3∑
n=1

[
bl

@(bmbn)
@yl

− cl
@(cmcn)

@xl
+ 2Ae

@2(bmbn)
@y2l

]
Iijmn − 1

Ae
(bl + cl)Tij (88)
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where Ae is the element area; and bi and ci are the geometric parameters related to an
element’s vertex positions de0ned in Section 2.4.2. Iijmn is the elemental integral (in homo-
geneous co-ordinates) of the product of the derivatives of the ith and jth basis functions,
with respect to the mth and nth simplex co-ordinates, de0ned in Section 2.4. Note that the
‘mixed’ second-order functional derivative terms with respect to both the x and y element
vertex positions are incorporated into the de0nitions of P and Q, and that Sij and Tij are
the ij-entries of the 0rst-order functional derivative matrices, with respect to element vertex
positions, de0ned in Section 2.4.2. Further, the second-order partial derivatives of (bmbn) and
(cmcn) appearing in Equations (87) and (88) may be readily determined from Equation (84)
and Table II: they evaluate to integer constants (1, −1 and 0).
Given the 0rst-order functional derivative quantities, these second-order results are inex-

pensive to compute since the only extra terms required are numerical constants which can
be tabulated once and for all. As in the 0rst-derivative case, these second-order functional
derivative formulas are also valid for any choice of legitimate 0nite element basis functions.
Further, these functional derivatives may be computed for uniform- or mixed-order meshes
as may be required by speci0c re0nement models such as in h- , p- , or hp-adaptive meth-
ods. Although these second-order results have been derived for scalar Helmholtz systems, it
is interesting to note that the second-order derivatives of the wave and source terms of the
functional are identically zero. This suggests that 2-D Laplace systems may bene0t most from
error estimation based on using both 0rst- and second-order functional derivatives.
Second-order functional derivatives can be implemented and used as practical adaptive

re0nement criteria in a number of ways. For example, they can be applied in an analogous
fashion to the 0rst-order derivatives: to assess how well a discretization locally zeros these
derivative quantities. In this case, the second-order derivative results can be used to verify the
veracity of the 0rst-order derivative error assessments, i.e. small 0rst-order derivatives indicate
low error (or relatively high accuracy), but large second-order derivatives suggest instability
and potentially unreliable 0rst-order derivative error results. A second approach would be to
combine the two functional derivatives to form an integrated indicator, based on the 0rst
two terms of a standard Taylor’s expansion. A practical electromagnetic AFEA application is
presented in Section 4.2.2 to illustrate the potential advantages of this method.

3. VERIFICATION OF OPTIMAL DISCRETIZATION FORMULATION

As summarized in Section 1.2, a range of di:erent formulations for determining optimal
0nite element discretizations have been proposed over the past 25 years. For the most part,
they have been developed based on theoretical, heuristic or combined intuitive foundations.
Subsequently, nearly all of these results have been shown to be incorrect or inconsistent for
general applications, and of questionable veracity at best [44]. The purpose of this section is
to test the validity and generality of the new formulations derived in Section 2. Independent
computational investigations involving local perturbation studies and global solution space
searches are reported for a range of 1-D, 2-D and 3-D electromagnetic benchmark analyses.
These optimal discretization benchmarks will also be used in Section 4, to help evaluate the
e:ectiveness and e<ciency of the new re0nement criteria proposed in Section 2.5.
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3.1. 1-D benchmark analyses

A 1-D electromagnetic benchmark based on the classical free-space point charge model is
presented in this section. Speci0cally, this point singularity model is used to determine a
series of 0nite element approximations that possess both optimal 0eld solutions and optimal
geometric discretizations, by solving the 1-D optimization equations derived in Section 2.4.
In each analysis, the objective is to resolve the functional value (stored energy) over a 0nite
spherical annulus centred on the point charge, that spans a 100-fold decay in electric scalar
potential: the charge, of magnitude 10−9=9 C, is located at the origin; the boundaries of the
problem domain are set at radial distances of 0.1 and 10m from the charge. The main attribute
of this system is the rapid 0eld solution variation near the singularity. This feature is basic
to many practical devices that contain sharp material corners [22; 50], and has been shown to
drastically reduce the convergence rate of the 0nite element method if appropriate measures
are not taken [18; 22]. One such measure is to develop discretizations which have strongly
focused distributions of DOF close to singularities, which is most readily achieved by applying
AFEMs that recognize and re0ne regions of rapid 0eld solution variation [20; 51].
Lagrangian basis functions were employed to approximate the unknown 0elds over the

elements for all the 1-D solutions reported [5]. First- , second- , fourth- and eighth-order
C0 0nite element approximations were tested. The optimization equations were solved us-
ing a Gauss–Newton method [52], with double-precision arithmetic throughout; and a ter-
mination convergence criterion of 10−10 was applied for both the unknown equation vari-
ables and the residuals of the optimization equations. Finally, the target functional values
were calculated from the computed scalar potential solutions using exact di:erentiation and
integration.
A series of 20 optimal 0rst-order 0nite element solutions were computed. The optimal

values of the discretization parameters xi, and the 0eld solution parameters Ui, for meshes
ranging from 1 to 8 elements, are reported in Table III; the corresponding results for the other
12 meshes are tabulated in Reference [44]. Each 0rst-order element has two discretization
parameters, which de0ne the element’s vertex positions, and two 0eld parameters, which
correspond to the electric scalar potential values at these vertices. The boundary conditions
were enforced by 0xing the positions of the 0rst and last vertices at 0.1 and 10 m, and by
prescribing the 0eld solution to the analytical values of the scalar potential at those locations.
The convergence of the percent error in the functional values for these 20 discretizations

is plotted in Figure 4. The corresponding errors for a series of 20 uniform 0rst-order meshes
are superposed for comparison. For all cases, the errors were calculated using the analytical
functional value of 9:9000 (J m=F). The optimality of these results was independently tested
and fully veri0ed by comprehensive local vertex perturbation studies and methodical global
solution space searches, in order to validate the 1-D formulation derived in Section 2.4 [44].
For this benchmark system, the superior accuracy of the optimal discretization solutions

relative to the uniform results is directly related to the distribution of DOF over the problem
domain: the optimal formulation focuses DOF close to the point charge where the solu-
tion variation is most rapid; whereas the DOF are equally distributed throughout the space
in the uniform case. For example, the relative placement of the element vertices for cor-
responding optimal and uniform meshes, for two, three and four elements, are described in
Figure 5; the remaining 17 optimal discretizations exhibit analogous characteristics, as reported
in Reference [44].
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Figure 4. The variation of per cent error in
functional value with discretization level for
0rst-order 0nite element solutions for the 1-D
electrostatic benchmark system is illustrated. The
triangle knot results correspond to uniform dis-
cretizations; the circle knot results correspond to

optimal discretizations.

Figure 5. Example 0rst-order optimal and uni-
form radial discretizations for the 1-D electro-
static benchmark system are illustrated: (a), (c),
and (e) correspond to the 2, 3, and 4 element
optimal meshes, respectively; (b), (d), and (f)
correspond to the 2, 3, and 4 element uniform
meshes, respectively. The radial discretizations
are plotted on a logarithmic scale because of
the proximity of the element vertices to each
other near the singularity in the optimal meshes.
Note: the positions of the element vertices in the
optimal meshes are speci0ed in Table III.

In addition to these 0rst-order investigations, further series of 16, 8 and 4 optimal 0nite
element solutions were also computed for the point charge benchmark system, using second-,
fourth- and eighth-order Lagrangian elements, respectively. In each case, virtually identical
conclusions were obtained [44]; therefore, only the 0rst-order results are presented. Further,
a analogous set of optimal discretization studies were conducted using a second benchmark
system, based on the 1-D magnetostatic analysis of the fundamental line-singularity model.
The primary results from the magnetostatic investigations are in close agreement with those
reported for the electrostatic analyses; they are also reported in Reference [44]. Finally, a
series of 1-D Helmholtz benchmark systems were tested, adhering to the same comprehensive
procedures and independent veri0cations used for the singularity investigations, to validate
the optimal discretization formulation for solving fundamental wave problems. These studies
served to further con0rm the validity of the 1-D optimization equations, and demonstrate the
generality of the new optimal discretization formulation; these Helmholtz studies are reported
in Reference [44].

3.2. 2-D and 3-D benchmark analyses

A set of thirteen multidimensional singularity-based Laplacian benchmarks were solved for
truly optimal discretizations in 2-D and 3-D, based on triangles and tetrahedra, using the
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Figure 6. The geometry and initial 0nite element mesh con0guration for the 2-D electrostatic potential
analysis of the Laplace benchmark system are illustrated. Eight triangular elements are used to model
one-quarter of the square coaxial line in cross-section. The conductor boundary conditions (Dirichlet)
are labelled 1V and 0V ; the symmetry planes are labelled N (Neumann). The sharp reentrant corner at

the intersection of the edges of the inner conductor boundary has an included angle of 270◦.

formulations derived in Section 2:4 for 2-D and 3-D systems. For example, four of the
2-D benchmark results represent optimal r-re0nements for the classical ‘L’ problem de0ned
by Figure 6, using 0rst- , second- , fourth- and eighth-order Lagrangian triangles, respectively.
These multidimensional optimal discretization results, together with the perturbation studies
and solution space searches which con0rm their validity, are reported in Reference [44]. In
each case, these benchmark results echo those of the 1-D investigations: they consistently
a<rm the validity of the new optimal discretization formulation and further demonstrate its
generality. Therefore, the details of these studies have not been included here.

4. VERIFICATION OF OPTIMAL DISCRETIZATION REFINEMENT CRITERIA

The main purpose of this section is to evaluate the ability of the new re0nement criteria,
as de0ned in Section 2.5, to e:ectively and e<ciently reproduce the dominant performance
results associated with optimal discretizations, in actual AFEA applications. A selected set
of illustrative AFEA studies, based on two practical implementations of the new criteria, are
presented for applications in 1-D, 2-D and 3-D. These abridged results have been chosen to
provide an unbiased representation of the full body of studies used to verify the performance
of the new criteria, reported in Reference [44].

4.1. 1-D studies

This section is presented in three parts, addressing h-adaption, p-adaption and hp-adaption.
For each case, the optimal point-charge singularity benchmark de0ned in Section 3.1 is used
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Figure 7. The convergence of per cent error
in functional value with discretization level for
0rst-order h-adaption studies for the 1-D elec-
trostatic benchmark system is illustrated. The
triangle knot results correspond to uniform
h-re0nement discretizations; the asterisk knot re-
sults correspond to element bisection h-adaption
discretizations evolved using the new optimal
discretization-based re0nement criterion; the cir-
cle knot results correspond to 0rst-order optimal

discretizations.

Figure 8. The convergence of per cent error
in functional value with discretization level for
the p-adaption studies for the 1-D electrostatic
benchmark system is illustrated. Curve A, B, and
C results correspond to uniform p-discretizations
for initial meshes of four, eight and 12 elements,
respectively. Curve D, E, and F results corre-
spond to mixed-order p-discretizations evolved
using the new optimal discretization-based re0ne-
ment criterion for initial meshes of four, eight

and 12 elements, respectively.

for the evaluations. All h-re0nements were implemented using unbiased bisections; and all
p-re0nements were realized using 0rst- , second- , fourth- and eighth-order Lagrangian
elements.

4.1.1. h-adaption. The convergence of the percent error in functional value for a practical
h-adaption strategy is illustrated in Figure 7. The initial mesh consisted of one 0rst-order
element, which was bisected to yield a uniform mesh of two elements. At each subsequent
adaptive iteration, one element in the mesh was selected for bisection: the optimal discretiza-
tion based re0nement criterion described in Section 2.5 was used to rank the elements; the
one with the highest derivative magnitude, i.e. the element which yields the largest residual
for Equation (52), was chosen for re0nement. The uniform h-re0nement baseline and the
optimal 0rst-order discretization functional convergence results are also plotted in Figure 7
for comparison. The convergence of the h-adaption guided by the new re0nement criterion
indicates that it can produce discretizations that are clearly superior to uniform re0nements, but
also markedly inferior to initial optimal discretizations, for equivalent numbers of elements.
However, after seven adaptive steps the functional accuracy achieved by the new scheme
becomes remarkably close, and almost equivalent, to that of the optimal discretizations. The
practical signi0cance of this result is ampli0ed by the relative computational cost of the two
approaches: the new h-adaption scheme only needs to evaluate the non-linear optimization
equations at 0xed element vertex positions to compute the functional derivatives required for
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the adaptive re0nement, which is much less expensive than solving these equations for the
optimal values of the element vertex positions.
Analogous second- , fourth- and eighth-order h-adaption results were also computed,

following the same procedures used for these 0rst-order tests. In each case, identical con-
clusions were obtained with the higher-order elements [44]; therefore, only the 0rst-order
results are presented in this contribution.

4.1.2. p-adaption. The convergence of the percent error in functional value for two
p-adaption strategies, applied to a range of uniform initial meshes, is illustrated in
Figure 8. Uniform and mixed-order p-adaption schemes were investigated. The performance
of uniform p-adaption for initial meshes of four, eight and 12 elements is shown by curves
A, B and C, respectively. In each case, the initial discretizations were comprised of 0rst-
order elements, which were successively re0ned by incrementing all the element orders uni-
formly, through to eighth order. The functional convergence for the corresponding mixed-order
p-adaption scheme is represented by curves D, E and F, for the four, eight and 12 element
meshes, respectively. For the mixed-order p-adaption, only one element in the mesh was
re0ned at each adaptive iteration; the derivative magnitude criterion described Section 4.1.1
was used to select the best candidate. If an eighth-order element was chosen for re0nement, the
next highest ranking lower-order element was re0ned instead. Based on Figure 8, mixed-order
p-adaption results in a signi0cantly faster rate of convergence, compared to uniform
p-adaption, for uniform initial meshes. For example, in the four element case, the same
functional accuracy level was achieved with 13 DOF by mixed-order p-adaption, compared
to 33 DOF for the uniform method (a relative savings of approximately 61 per cent in the
number of DOF). Similarly, for the eight element case a relative reduction of approximately
66 percent in the number of DOF was achieved using mixed-order p-adaption, compared
to uniform p-re0nements. Analogously, a 68 percent economy in DOF was realized in the
12 element case.

4.1.3. hp-adaption. The convergence of the percent error in functional value for three pri-
mary hp-adaption strategies, based on integrated, decoupled and uniform hp-re0nements are
investigated. The objective for these studies is not only to evaluate the e:ectiveness of the new
re0nement criterion for hp-adaption, but also to determine which type of hp-adaption model
is more e<cient for resolving point singularities. At each step, the integrated hp-adaptive
strategy re0ned the discretization by either bisecting an element or increasing its order. The
decoupled approach started by re0ning the 0rst-order mesh using element bisection for a 0xed
number of steps, and then continued by increasing the order of individual elements in each
subsequent adaptive re0nement (i.e. mixed-order p-adaption). For both adaption models, el-
ements were ranked for re0nement using the same derivative magnitude criterion employed
for the individual h- and p-adaption investigations, and the mixed-order p-re0nements were
implemented using the same procedures adopted in Section 4.1.2. The uniform hp-adaption
results were also determined using both integrated and decoupled approaches. For the inte-
grated approach, all of the elements in a mesh were bisected, and their orders augmented,
alternately, at successive adaptive iterations. For the decoupled approach, the 0rst-order mesh
was re0ned by element bisection for the 0rst three adaptive steps, then the element orders
were increased uniformly at each successive step.
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Figure 9. The convergence of per cent error
in functional value with discretization level
for hp-adaption studies for the 1-D electro-
static benchmark system is illustrated. The
triangle knot results correspond to integrated
hp-discretizations evolved using the new op-
timal discretization-based re0nement criterion;
the circle knot results correspond to decoupled
hp-discretizations evolved using the new optimal
discretization-based re0nement criterion; the as-
terisk knot results correspond to uniform inte-
grated hp-re0nement discretizations; the square
knot results correspond to uniform decoupled

hp-re0nement discretizations.

Figure 10. Evolving radial discretizations for
hp-adaption for 1-D electrostatic benchmark sys-
tem are illustrated: (a) integrated hp-adaption
discretizations; and (b) decoupled hp-adaption
discretizations. The radial discretizations are plot-
ted on a logarithmic scale because of the prox-
imity of the element vertices to each other near
the singularity. Note: the positions of the el-
ement vertices in the meshes are determined
by element bisection; the orders of the elements
are speci0ed above each element; and the number
of DOF in each mesh is shown to the right

of each discretization.

The convergence of the percent error in functional value for these hp-adaption strate-
gies are illustrated in Figure 9. Note that the variable re0nement integrated and decoupled
schemes result in superior rates of convergence relative to the corresponding uniform hp-
adaption strategies for this benchmark system. Further, the decoupled approach is seen to
provide a faster rate of convergence relative to integrated hp-adaption. Theoretically, decoupled
hp-adaption should not yield faster convergence than fully integrated hp-adaption [44]. How-
ever, based on the point singularity results, the decoupled approach is more e:ective for sys-
tems with regions of rapid 0eld variation. The superior decoupled hp-adaption performance
may be explained as follows. The decoupled and integrated hp-adaption schemes evolve sig-
ni0cantly di:erent discretizations, as illustrated in Figure 10. The integrated approach initially
attempts to resolve the singularity by increasing element order, rather than by element bi-
section. The decoupled approach yields a superior distribution of DOF primarily because it
produces meshes with a higher density of DOF near the singularity, compared with the less
tightly focussed distribution produced by the integrated approach.

4.1.4. Discussion. The adaption examples presented in the sections above have been chosen
to represent a range of the basic methods most commonly used for practical electromagnetic
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AFEA. However, to con0rm the highest possible resolution in the convergence rates, each
adaptive iteration was implemented to increase the number of DOF in a discretization by
the minimal increments appropriate for the adaption model examined. In addition, analogous
evaluations were computed for two other benchmark systems: the magnetostatic line-current
singularity model; and the 1-D Helmholtz transmission-line model. The results of these inves-
tigations are consistent, and strongly supportive of those obtained in the electrostatic studies;
they are presented in Reference [44]. Therefore, based on these h- , p- and hp-adaption perfor-
mance evaluations, it is clearly indicated that the newly proposed adaptive re0nement criteria
have the potential to e:ectively and e<ciently reproduce the dominant performance character-
istics associated with optimal 0nite element discretizations, in practical electromagnetic AFEA
applications. Performance evaluations for similar optimal discretization-based re0nement cri-
teria, for the AFEA of 2-D and 3-D electromagnetic systems are reported in Sections 4.2
and 4.3.

4.2. 2-D studies

A series of studies based on a fundamental Laplace benchmark system is investigated to
evaluate the computational performance of the new AFEA re0nement criteria within h- ,
p- and hp-adaptive solvers. Two practical implementations of these criteria are tested and
compared against some of the most e:ective and e<cient indicators available. Unlike the 1-D
studies, the hierarchal basis functions developed in Reference [53] are used to approximate
the unknown 0eld solutions, over the C0 triangular elements, for the tests reported in this
section.
The most direct equivalent to the 1-D functional derivatives applied in Section 4.1 are

the gradients of the functional, with respect to the element vertex positions, in a 2-D mesh.
Therefore, a simple extension of the 1-D criterion is to use a weighted sum or an average
value of the magnitudes of the vertex-based functional gradients associated with a triangle; this
implementation is called Type-A criterion. A more directed approach is to use the projections
of the functional gradients onto vectors directed from the vertices towards the centroids of the
triangles; this version is called Type-B criterion. Unlike Type-A approach, this implementation
incorporates both the directions and the magnitudes of the functional gradients.

4.2.1. Laplace studies. The Laplace studies are based on the standard electrostatic ‘L’ prob-
lem de0ned in Figure 6. It consists of one-quarter of an in0nitely long, air-0lled, uniform,
square coaxial line modeled in cross-section. The objective for this benchmark is to compute
the functional value corresponding to the electrostatic potential energy per unit length stored
in the air region between the two conductors. The dominant feature of this system is the
rapid 0eld solution variation close to the sharp reentrant corner. This feature is common to
many practical devices that contain sharp material edges, and has been shown to signi0cantly
reduce the convergence rate of the 0nite element method [5].
The convergence of the percent error in functional value for 0rst-order h-adaption is

illustrated in Figure 11. The initial mesh used for these studies is de0ned by Figure 6. The
Type-A re0nement criterion was used to rank the elements at each adaptive step; and the
elements with the highest weighted-average gradient magnitudes were chosen for re0nement.
Further, a 50 per cent increment in the number of DOF per adaptive re0nement was used
to update the discretizations. In addition, all h-re0nements were based on either element
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Figure 11. The convergence of per cent error
in functional value with discretization level for
0rst-order h- and hp-adaption studies for the
Laplace benchmark system is illustrated: the tri-
angle knot results correspond to uniform dis-
cretizations; the circle knot results correspond
to h-adaption discretizations evolved using the
new optimal discretization-based re0nement cri-
teria (Type-A); the asterisk knot results corre-
spond to h-adaption discretizations evolved us-
ing 0eld discontinuity-based re0nement criteria;
the square-knot results correspond to h- followed
by mixed-order p-adaption (i.e., hp-adaption)
discretizations evolved using the new optimal
discretization-based re0nement criteria (Type-A).
Note: the cumulative computational cost of adap-
tion was calculated based on using a precondi-
tioned conjugate gradient algorithm to solve the

0nite element matrix equations.

Figure 12. An example re0nement due to
the new h-adaption is illustrated for the
Laplace benchmark system. The second-order
discretization shown was evolved using the
new optimal discretization-based re0nement cri-
teria (Type-A). The initial mesh used for
the h-adaption is the eight-element discretiza-
tion de0ned by Figure 6. The h-re0nements
at each adaptive iteration were based on el-
ement bisections and uniform subdivisions of
elements into similar triangles. The resulting
set of new element vertices were retriangu-

lated using a Delaunay algorithm.

bisections or 1 : 4 similarity subdivisions; however, the resulting set of new element vertices
were retriangulated after each adaptive step using a Delaunay algorithm [54]. Both the uniform
h-re0nement baseline, and a practical 0eld discontinuity h-adaption result [21] are also plotted
in Figure 11 for comparison. It should be noted that this 0eld discontinuity re0nement crite-
rion has been shown to be amongst the most e:ective for resolving AFEA problems of this
type using h-adaption models [55]. Analogous second- , fourth- and eighth-order h-adaption
results for the Laplace benchmark system are reported in Reference [44]; they were computed
following the same procedures used for the 0rst-order tests. Overall, h-adaption guided by the
optimal discretization-based re0nement criteria consistently produced results of signi0cantly
superior accuracy, compared to uniformly re0ned meshes with similar numbers of DOF, in
each analysis. Finally, an example h-adapted mesh is presented in Figure 12 to illustrate the
sharp focus of DOF near the reentrant corner.
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Table IV. Discretization level versus per cent error in functional for p-adaption
strategies applied to the Laplace benchmark system.

Method=#DOF 1.00% 0.50% 0.10% 0.05%

Uniform p-adaption 230 290 1050 1670
Hierarchal coe:. p-adaption 230 290 530 675
New p-adaption 110 200 550 700
New hp-adaption 100 120 280 375

The performance results for a range of p-adaption strategies applied to the Laplace bench-
mark system are summarized in Table IV. Speci0cally, uniform and mixed-order p-adaption
schemes were investigated using C0 hierarchal elements ranging from order one through 10
[56]. An initial mesh of 128 0rst-order elements, de0ned by uniformly subdividing the eight
element mesh shown in Figure 6, was used for the p-adaption studies. In addition to the uni-
form p-re0nement baseline, the hierarchal coe<cient p-adaption result [51] is presented for
comparison. It should be noted that the hierarchal coe<cient criterion has been shown to be
amongst the most e:ective for resolving AFEA problems of this type using p-adaption [55].
Type-A re0nement criterion was used to rank the elements, and those in need of re0nement
were identi0ed as before. The order of an element selected for re0nement was increased suc-
cessively from 0rst- through to tenth-order each time the element was selected to be re0ned;
however, if a tenth-order element was chosen for re0nement, the highest ranking lower-order
element was re0ned instead. Further, a 50 per cent increment in the number of DOF per
adaptive re0nement was used to update the discretizations. Based on Table IV, it is clear
that for uniform-order initial meshes, the new mixed-order p-adaption scheme results in sig-
ni0cantly faster rates of convergence compared to uniform p-adaption. The same functional
accuracy was achieved with 700 DOF by the new mixed-order p-adaption scheme, compared
against 1670 DOF for the uniform method (a relative savings of approximately 58 per cent
in the number of DOF). Further, it should be noted that the new mixed-order p-adaption
performance results are on par with the hierarchal coe<cient results. An example p-adapted
mesh is presented in Figure 13 to illustrate the strongly focussed and e<cient placement of
the higher-order elements near the reentrant corner.
The performance results for combined hp-adaption are also reported in Table IV. The

decoupled hp-adaptive strategy 0rst re0ned the initial 0rst-order eight-element mesh shown
in Figure 6 by h-adaption for the 0rst three adaptive steps, and then continued to re0ne
the discretization using mixed-order p-adaption in each subsequent step. For both adaption
models, elements were ranked for re0nement using Type-A criterion, and the speci0c h- and
p-adaptive re0nements were implemented using the same procedures described earlier for the
individual h- and p-adaption studies. The convergence of the percent error in functional value
for the decoupled hp-adaption strategy is clearly superior to all of the p-adaption strategies
investigated for the Laplace benchmark system. In addition, these hp-adaption results are also
plotted in Figure 11, where it is readily con0rmed that they are clearly superior to all the
methods represented therein.
In addition to the h- , p- and hp-adaption Laplace benchmark studies presented above,

comprehensive analogous investigations were conducted for a Helmholtz benchmark, based on
the 2-D time-harmonic analysis of a planar microstrip antenna. Type-B re0nement criterion
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Figure 13. An example re0nement due to the new p-adaption is illustrated for the Laplace benchmark
system. The mixed-order discretization shown was evolved using the new optimal discretization-based
re0nement criteria (Type-A). The initial discretization used for the p-adaption is the 128 element
0rst-order mesh de0ned by the 0gure. The range of element orders used in the discretization are shown

in the legend accompanying the 0gure.

was used for these studies, and the results are consistent with, and supportive of, those found
for the Laplace system; they are reported in Reference [44]. Overall, these investigations
serve to further con0rm the general applicability, e:ectiveness and e<ciency of the newly
proposed optimal discretization-based re0nement criteria for practical AFEA applications in
2-D electromagnetics.

4.2.2. Second-order derivative criteria. The purpose of this section is to illustrate the potential
value of using second-order functional derivative indicators in 2-D electromagnetic AFEA
applications. The test system is de0ned by Figure 6. Performance results for second-order
(i.e. using quadratic C0 triangles) h-adaption studies on functional convergence are presented
in Figure 14. The uniform h-re0nement baseline is included for comparison with h-re0nement
based on both a 0rst-order derivative error estimator (Type-A) and an integrated (Taylor’s
expansion) 0rst- and second-order error criterion (Type-A). A 50 per cent increment in the
number of DOF per adaptive step was used to update the discretizations. The results indicate
a marginal improvement in performance for functional accuracy levels between 1 and 0.1 per
cent, for the integrated criterion versus the 0rst-order derivative estimator, and an increasingly
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Figure 14. The convergence of per cent error
in functional value with discretization level
for second-order (i.e., quadratic C0 elements)
h-adaption studies with 50 per cent DOF updates
for the 2-D Laplace benchmark system is illus-
trated: the curve (A) results correspond to uni-
form discretizations; the curve (B) results corre-
spond to h-adaption discretizations evolved using
a 0rst-order derivative error estimator (Type-A);
the curve (C) results correspond to h-adaption
discretizations evolved using a combined 0rst-
and second-order error estimator (Type-A). Note:
The cumulative computational cost of adaption
was calculated based on using a preconditioned
conjugate gradient algorithm to solve the 0nite

element matrix equations.

Figure 15. The geometry used for the 3-D elec-
trostatic potential analysis of the Laplace bench-
mark system is illustrated. The 0gure depicts
one-eighth of an air-0lled, concentric, cuboidal
capacitor. The conductor boundary conditions are
1V (Dirichlet) on the smaller, inner, ideal con-
ductor cube and 0V (Dirichlet) on the outer,
ideal conductor cube. The symmetry planes de-
0ned by x = 0; y = 0, and z = 0 were
left unconstrained (Neumann) between the two

ideal conductors.

signi0cant improvement for functional accuracy levels beyond 0.1 per cent. In addition to this
study, analogous tests based on the microstrip antenna benchmark addressed in Section 4:2:1
were also conducted, using Type-B criterion. Overall, these results demonstrate that integrated
estimators, formulated from 0rst- and second-order functional derivatives, have the potential
to improve upon the AFEA performance of purely 0rst-order indicators.

4.3. 3-D study

The purpose of this section is to investigate the potential bene0ts and related costs of using the
0nite element optimization equations, (77)–(79), as optimal discretization-based re0nement
criteria for 3-D electromagnetic AFEA. Similar to the 2-D development, functional gradient
error indicators for 3-D re0nement criteria can be de0ned directly in terms of derivatives
with respect to tetrahedral vertex positions. Analogous to the 2-D result, one straight forward
technique is to assess a weighted sum of vertex-based functional gradient magnitudes for each
element, then use these values to rank the elements for re0nement. This method is illustrated in
the following example, based on the 3-D test problem de0ned by Figure 15. This benchmark
represents one-eighth of an air-0lled, concentric, cuboidal capacitor, i.e. the 3-D analog to
the classical 2-D ‘L’ problem. The objective for this study is to compute the functional
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Figure 16. The convergence of per cent error
in functional value with discretization level for
0rst-order h-adaption studies for the Laplace
benchmark system are illustrated: the triangle
knot results correspond uniform h-re0nements;
the circle knot results correspond to h-adaption
discretizations evolved using the new optimal
discretization-based re0nement criterion. Note:
the cumulative computational cost of adaption
was calculated based on using a preconditioned
conjugate gradient algorithm to solve the 0nite

element matrix equations.

Figure 17. An example re0nement achieved us-
ing the new h-adaption is illustrated, in terms
of the distribution of tetrahedra vertices, for the
Laplace benchmark system. The 0rst-order dis-
cretization represented above was evolved using
the new optimal discretization-based re0nement
criterion. The initial mesh used for the h-adaption
was comprised of 144 elements. Note: the 0gure
depicts the same one-eighth of the cuboidal ca-
pacitor considered previously, but viewed from a
di:erent perspective in order to e:ectively illus-

trate the distribution of element vertices.

value corresponding to the electrostatic potential energy stored in the air region between the
conductors. The primary feature of this system is the rapid 0eld solution variation close to
the sharp reentrant edges and corners of the inner conductor. These features are common to
many practical devices, and have been shown to signi0cantly reduce the convergence rate of
the 0nite element method [57; 58].
The convergence of the percent error in functional value for h-adaption is illustrated in

Figure 16. The initial mesh used for these studies was comprised of 144 0rst-order Lagrangian
tetrahedra. At each subsequent adaptive step, the new re0nement criterion was used to rank
the elements, and the tetrahedra with the highest average functional gradient magnitudes were
chosen for re0nement. A 100 per cent increment in the number of DOF per adaptive re0ne-
ment was used to update the discretizations. The h-re0nements were implemented using the
tetrahedral mesh re0nement algorithms described in Reference [59]. The uniform h-re0nement
baseline is also included in Figure 16 for comparison. These results show that the new
h-adaption strategy produced signi0cantly higher accuracy levels than uniform discretizations,
at comparable computational costs. For example, for solution accuracies near 1 per cent, more
than a 10-fold savings in computational cost is achieved. Finally, an example h-adapted 3-D
discretization is given in Figure 17, to illustrate the sharp focus of DOF produced by the new
re0nement criterion near the reentrant edges and corners of the inner conducting cube.
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4.4. Switched-reluctance motor study

Switched reluctance motor (SRM) operation depends on how reluctance paths change with
rotor position, for torque production; they are commonly found in applications requiring pre-
cision movements. The purpose of this section is to demonstrate a practical application of the
new Type-A re0nement criterion for the 2-D h-adaptive FEA of the SRM design represented
by Figure 18. Although standard, non-adaptive, magnetostatic FEMs can be used to anal-
yse this SRM, key features of the device make it challenging and computationally intensive
to determine its 0eld solution(s) accurately. For example, the design of SRMs requires the
calculation of the magnetic Vux linkage of the motor as a function of both rotor position and
excitation current [60]. To analyse the full behaviour of this SRM, at least eight solutions
are required at di:erent angular positions of the rotor, and for each position, at least eight
di:erent excitation current levels need to be considered [60]. Therefore, a practical design
cycle will involve a minimum of 64 solutions, and a new 0nite element discretization must
be created for each rotor position. Further, the complex geometric details of the machine must
be adequately resolved by the 0nite element discretizations to yield accurate solutions. For
example, the narrow air gap regions and the curved material boundaries of the design must be
modelled su<ciently well with appropriate numbers and sizes of elements. Moreover, several
re0nements of an initial discretization may be necessary to converge the 0nite element 0eld
solution errors to within practical engineering tolerances. Consequently, a large number of
DOF can be required to compute each of the 64 0eld solutions accurately, and AFEMs are
frequently used for e<cient SRM analysis and design.
The convergence of the percent error in functional value for the h-adaptive analysis of the

SRM is illustrated in Figure 19. The initial mesh was comprised of 257 0rst-order elements,
and 50 per cent DOF increments were used to update the discretizations in each subsequent
adaptive step. The uniform h-re0nement baseline result, starting from the same initial mesh,
is also plotted for comparison. A termination criterion of 2.5 per cent error in the func-
tional value was used for both adaption runs. The new h-adaption provides a considerable
cost reduction over the uniform approach: a functional accuracy level of approximately 2.8
per cent is achieved after four adaptive steps, at a relative computational cost of 24,452;
whereas, the error in the functional value after three uniform re0nements is approximately 3.4
per cent, at a relative computational cost of 109 869. These 0gures indicate a 78 per cent reduc-
tion in the computational e:ort required to converge the 0eld solution to a functional error of
5 per cent error. Similarly, a savings of 94 per cent was appreciated for functional accuracy
levels of less than 2.5 per cent error. The signi0cance of these savings is ampli0ed by the
fact that 64 0nite element 0eld solutions are required for this SRM analysis. Finally, a plot of
the SRM magnetic Vux density is provided in Figure 20, to illustrate the highly non-uniform
0eld variation over the device.

5. CONCLUSIONS

The central goal of this research has been to develop practical adaptive re0nement criteria
which can make it possible for AFEMs to e:ectively reproduce the dominant and essen-
tial modelling characteristics of optimal 0nite element discretizations, without the prohibitive
computational costs and complexities associated with constructing optimal discretizations. Four
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Figure 18. The geometry for the magnetic vector
potential analysis of a switched reluctance motor
is illustrated. The 2-D view depicts one-quarter
of the cross-section of a 12=10 switched reluc-
tance motor in an unaligned position [54]. The
air gap between the stator and rotor is 0:5 mm,
and the total diameter of the motor is 165 mm.
The stator and rotor relative permeabilities are
each 1000, and the coil labelled A was excited
with a uniform current density of 1:0 A=m2.

Figure 19. The convergence of per cent error
in functional value with discretization level for
0rst-order h-adaption studies for the switched re-
luctance motor model of Figure 18 is illustrated.
The triangle knot results correspond to per cent
error in functional values computed from solu-
tions based on 0rst-order uniform discretizations.
The circle knot results correspond to per cent
error in functional values computed from solu-
tions based on 0rst-order h-adaption discretiza-
tions evolved using the new optimal discretiza-
tion-based re0nement criteria (Type-A). Both re-
sults are based on the same initial mesh. Note:
the cumulative computational cost of adaption
was calculated based on using a preconditioned
conjugate gradient algorithm to solve the 0nite

element matrix equations.

key contributions are provided by this work: the 0rst three are primary to the central objec-
tive; the fourth is secondary, but of equal importance to the research area in general. First, a
new formulation for building truly optimal 0nite element discretizations for electromagnetics
analysis has been developed. It was derived from a variational foundation; cross-veri0ed and
authenticated on a theoretical level; and independently validated using rigorous computational
testing. The result is valid for scalar Laplace, Poisson, Helmholtz and eddy-current di:usion
problems, modeled in 1-D, 2-D and 3-D. Second, a template prescription for implement-
ing a family of optimal discretization-based AFEA re0nement criteria has been developed.
Two practical implementations were derived, evaluated and shown to be highly e:ective,
cost-e<cient and potentially superior to the state-of-the-art. Third, both second-order and
mixed-order functional derivative error indicators, designed to identify, stabilize and improve
spurious and unreliable adaptive re0nement trajectories, have been developed. An exam-
ple mixed-order implementation was presented, tested and shown to be very e:ective in a

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:939–978



976 S. MCFEE AND D. GIANNACOPOULOS

Figure 20. An approximate 0eld solution for the switched reluctance motor model of Fig-
ure 18 is illustrated. The plot is based on the 0nite element solution computed using an

adaptively re0ned mesh with 1847 second-order elements.

sensitive electromagnetic AFEA application. Finally, a set of fundamental electromagnetic
FEA benchmark systems with truly optimal 0nite element discretizations has been developed
and fully validated. This primary test bed provides an objective and absolute measure by
which to assess the raw performance and e:ectiveness of any adaptive re0nement criterion
considered for electromagnetics AFEA applications. Overall, the consistent and strongly sup-
ported conclusion of this research study is that the new optimal discretization-based re0nement
criteria possess the potential to facilitate the development of practical AFEMs that can repro-
duce the dominant and essential modelling aspects of optimal discretizations, without incurring
their associated costs or complexities.
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