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ABSTRACT 
 Antibodies are crucial components of the adaptive immune arsenal against invading 

pathogens. Production of high-affinity class-switched antibodies relies on follicular helper T (Tfh) 

cells, a distinct subset of CD4 helper T cells that migrate into B cell follicles and promote B cell 

differentiation into plasma cells during germinal center (GC) reactions. The CD28-like 

costimulatory receptor Inducible Costimulator (ICOS) is expressed on the surface of activated T 

cells and is crucial for the generation of Tfh cells in mice and humans, but the molecular 

mechanisms remained unknown. ICOS had been known as a potent activator of phosphoinositide 

3-kinase (PI3K), but the role of ICOS-mediated PI3K activation in T cells has been poorly 

understood. The work presented here is a compilation of two studies that highlight the unique role 

of PI3K in ICOS-mediated Tfh cell differentiation and function.  

In the first study, presented in Chapter II, I analyzed a knock-in strain of mice possessing 

a point mutation in the cytoplasmic tail of ICOS that prevents binding of  PI3K (ICOS-YF). I show 

that ICOS-mediated PI3K activation is crucial for the generation of Tfh cells, and in turn, GC 

formation, antibody class-switch, and affinity maturation. The ICOS-PI3K axis was crucial for the 

potentiation of T cell receptor (TCR)-mediated expression of IL-21 and IL-4, key cytokines 

involved in T cell-mediated B cell help.  I also show data that strongly suggests that ICOS and 

CD28 have differential roles in the multistep process of Tfh cell differentiation, where CD28 is 

mainly involved in the early expansion of CD4 T cells through non-PI3K signaling mechanisms, 

while ICOS is involved in the later stages of Tfh cell differentiation in a PI3K-dependent manner.  

In the study presented in Chapter III, I show that ICOS costimulation enhances TCR-

mediated activation of the key translation mediators 4E-BP1 and S6K, in a manner dependent on 

PI3K. Consistently, I show that the ICOS-PI3K axis enhances the formation of polysomes on IL-

4 mRNA. Using an in vitro T-B cell co-culture system, I provide evidence that ICOS mutant CD4 

T cells have impaired ability to induce B cell differentiation due to a limited production of IL-4. 

These findings suggest that ICOS-PI3K signaling facilitates targeted delivery of IL-4 from helper 

T cells to cognate B cells during T cell-B cell interactions in the GC. 

Thus, I demonstrate that PI3K is a key downstream signaling component in ICOS signaling 

during Tfh cell generation. I also show that ICOS-PI3K signaling can alter translational efficiency 

of pre-existing mRNAs suggesting ICOS’ potential role in regulating the function of Tfh cells.  
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RÉSUMÉ 
 Les anticorps sont des composantes cruciales de l’arsenal que le système immunitaire 

adaptatif utilise contre les pathogènes invasifs. La production d’anticorps de haute-affinité 

réarrangés par commutation isotypique nécessite l’apport des lymphocytes T auxiliaires 

folliculaires (Tfh), un sous-type de lymphocytes T auxiliaires CD4+ qui migrent dans les follicules 

nodules lymphatiques et y promeuvent la différentiation des cellules B en cellules plasmatiques, 

le tout durant les réactions du centre germinatif (GC). Le récepteur de costimulation de type CD28 

Costimulateur Inductible (ICOS) est exprimé sur la surface des cellules T activées et joue un rôle 

critique dans la génération de cellules Tfh autant chez la souris que l’humain, cependant les 

mécanismes moléculaires demeurent inconnus. Jusqu’à présent, ICOS était reconnu comme un 

puissant activateur de la phosphatidyl inositol-3 kinase (PI3K), mais le rôle de l’activation de PI3K 

médiée par ICOS dans les cellules T demeure mal compris. Le travail présenté dans cette thèse 

retrace deux études qui décrivent le rôle unique de PI3K dans la fonction et la différentiation des 

cellules Tfh médiées par ICOS. 

 Dans la première étude, présenté dans le Chapitre II, j’ai analysé une ligné de souris 

‘knock-in’ possédant une mutation ponctuelle dans la région cytoplasmique de ICOS empêchant 

ainsi la liaison de PI3K (ICOS-YF). Je démontre que l’activation de PI3K médiée par ICOS 

demeure cruciale pour la génération de cellules Tfh, ainsi qu’en conséquence la formation des GC, 

la commutation isotypique d’anticorps et la maturation d’affinité. L’axe ICOS-PI3K s’avère 

critique pour la potentialisation de l’expression médiée par le récepteur de cellules T (TCR) de IL-

21 et IL-4, des cytokines clés impliquées dans l’aide aux cellules B médiée par les cellules T. 

J’illustre également des résultats qui prouvent que ICOS et CD28 exercent des rôles distinct dans 

le processus complexe de la différentiation des cellules Tfh, où CD28 est principalement impliqué 

dans l’expansion précoce des cellules T CD4+ par l’entremise de mécanismes de signalisation 

indépendants de PI3K, tandis que ICOS s’engage plutôt de façon PI3K-dépendante dans les étapes 

tardives de la différentiation des cellules Tfh. 

 Dans la seconde étude au Chapitre III, je révèle que la costimulation par ICOS augmente 

l’activation médiée par le TCR de médiateurs clés de la traduction de 4E-BP1 ainsi que S6K de 

façon dépendante à PI3K. De façon cohérente, je démontre que l’axe ICOS-PI3K augmente la 

formation de polysomes sur l’ARN messager d’IL-4. En utilisant un système in-vitro de co-culture 
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de cellules T et B, je fourni des preuves que les cellules T CD4+ mutantes pour ICOS ont une 

capacité détérioré d’induire la différentiation de cellules B due à une production limitée d’IL-4. 

Ces découvertes suggèrent que la signalisation par ICOS-PI3K facilite l’acheminement dirigé 

d’IL-4 d’une cellule T auxiliaire à une cellule B apparentée durant une interaction entre les deux 

types cellulaires dans le GC. 

 En conclusion, je démontre que PI3K est une composante de signalisation clé en aval de la 

signalisation par ICOS durant la génération de Tfh. De plus, je prouve que la voix ICOS-PI3K 

peut modifier l’efficacité de traduction d’ARN messager préexistant suggérant un rôle potentiel 

d’ICOS dans la régulation de la fonction des cellules Tfh. 
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PI(3,4)P2: Phosphoinositide-(3,4)-biphosphate 

PI(4)P: Phosphoinositide-(4)-phosphate 

PI(4,5)P2: Phosphoinositide-(4,5)-biphosphate 

PI(3,4,5)P3: Phosphoinositide-(3,4,5)-triphosphate 

PIC: Pre-initiation complex 

PLC-γ: Phospholipase C-γ 

PMA: Phorbol 12-myristate 13-acetate 

PP: Peyer’s patch 

PRTE: Pyridime-rich translational element 

PTCL: Peripheral T cell lymphoma 

PtdIns: Phosphatidylinositide 

PTEN: Phosphatase and tensin homologue 

RF: Ribosome footprinting 

Rheb: Ras homolog enriched in brain 
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rpS6: Ribosomal protein S6 

S6K: S6 kinase 

SAP: SLAM-associated protein 

SH2: Src homology 2 

SHIP: SH2-domain-containing inositol polyphosphate 5-phosphatase 

SHP: SH2-domain containing tyrosine phosphatase 

SHM: Somatic hypermutation 

SLAM: Signaling lymphocyte activation molecule 

SM: LCMV-specific TCR transgenic (SMARTA) CD4 T cells 

STAT: Signal transducer and activator of Transcription 

TC: Ternary complex 

TCR: T cell receptor 

TD: T cell dependent response 

Tfh:  Follicular helper T (cell) 

Tfr: Follicular regulatory T (cell) 

Th:  T helper (cell) 

TI: T cell independent response 

TLR: Toll-like receptor 

TOP: 5’ terminal oligopyrimidine 

Treg: Regulatory T (cell) 

TSC: Tuberous sclerosis complex 

UTR: Untranslated region 

WT:  Wild type 

XLP: X-linked lymphoproliferative disease 

ZAP70: Zeta-chain-associated protein kinase 70 
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The T-cell costimulatory receptors, CD28 and the inducible costimu-
lator (ICOS), are required for the generation of follicular B helper
T cells (TFH) and germinal center (GC) reaction. A common signal
transducer used by CD28 and ICOS is the phosphoinositide 3-kinase
(PI3K). Although it is known that CD28-mediated PI3K activation is
dispensable for GC reaction, the role of ICOS-driven PI3K signaling
has not been defined. We show here that knock-in mice that
selectively lost the ability to activate PI3K through ICOS had severe
defects in TFH generation, GC reaction, antibody class switch, and
antibody affinity maturation. In preactivated CD4� T cells, ICOS
delivered a potent PI3K signal that was critical for the induction of
the key TFH cytokines, IL-21 and IL-4. Under the same settings, CD28
was unable to activate PI3K but supported a robust secondary
expansion of T cells. Thus, our results demonstrate a nonredundant
function of ICOS-PI3K pathway in the generation of TFH and
suggest that CD28 and ICOS play differential roles during a mul-
tistep process of TFH differentiation.

CD28 � follicular B helper T-cell � germinal center � ICOS � PI3K

Follicular B helper T cells (TFH) are a subset of CD4� T cells
that facilitates germinal center (GC) reaction, B cell prolif-

eration, and B cell differentiation (1). TFH cells have an ability
to migrate into B cell area using chemokine receptor CXCR5,
and they abundantly express costimulatory molecules such as
ICOS, PD-1, and CD40L. TFH cells can arise in the absence of
factors that mediate Th1, Th2, or Th17 differentiation, but
depend on Bcl-6 (2–5). TFH cells express a high level of IL-21,
which provides a robust stimulus for proliferation and differen-
tiation of B cells (6, 7). IL-21 also plays an indispensible role in
the generation of TFH cells, probably by enhancing Bcl-6 expres-
sion (3). Recent studies also revealed an exquisite regulation of
IL-4 transcription and translation that allows highly targeted
secretion of IL-4 by TFH cells while they form conjugates with
cognate B cells (8). Thus, IL-21 and IL-4 appear to be crucial for
differentiation and/or function of TFH cells.

ICOS is a CD28 family costimulatory receptor that is ex-
pressed in recently activated or antigen-experienced T cells (9,
10). By binding to ICOS ligand (ICOS-L) expressed on antigen
presenting cells (APCs), ICOS delivers costimulatory signals
that augment T-cell proliferation and expression of an array of
cytokines including IL-4, IL-10, and IL-21 (10–12). Both in mice
and humans, interruption of ICOS-ICOS-L interaction leads to
impaired GC reaction, Ab class switch, and affinity maturation
(13–16). Recent findings suggested that these defects in humoral
immune responses in ICOS-deficiency are due to the lack of TFH
cells (17–19). Conversely, dysregulated overexpression of ICOS
in sanroque mice causes a lupus-like autoimmune disease that is
associated with an increased number of TFH cells, spontaneous
GC reaction, and augmented IL-21 production (20–22).

The prototype T-cell costimulator CD28 is also required for
GC reaction, humoral immunity, and generation of TFH cells (23,
24). It is puzzling that the generation of TFH requires both CD28

and ICOS, although the two costimulators have a seemingly
redundant function in activating PI3K (25, 26). Whether CD28-
mediated PI3K pathway plays significant roles in T-cell prolif-
eration, cytokine production, and survival has been a matter of
hot debate (27). Recent data from knock-in mice showed that
CD28-mediated PI3K pathways do not have any obvious non-
redundant role in T-cell functions and humoral immune re-
sponses (28).

To address the role of ICOS-mediated PI3K signal transduc-
tion pathways in the context of the overall ICOS function, we
generated a knock-in mouse strain in which the cytoplasmic tail
of ICOS cannot recruit PI3K. Here, we show that the generation
of TFH cells critically depends on the PI3K signaling initiated by
ICOS. Consequently, GC reaction, Ab class switch, and affinity
maturation are drastically diminished in the knock-in mice. We
find evidence that in preactivated CD4� T cells, expression of
IL-21 and IL-4 is heavily dependent on PI3K and that the
dominant activator of PI3K in this context is ICOS, not CD28.

Results
Normal Inducible Expression Pattern of ICOS-YF with Altered Signaling
Capacities. We generated knock-in mice, termed ICOS-YF here-
after, possessing a tyrosine-to-phenylalanine mutation at amino
acid residue 181 in the cytoplasmic tail of ICOS, a mutation
known to abrogate ICOS-mediated PI3K recruitment (29) (de-
tails in SI Text and Fig. S1). We compared littermates of
ICOS-WT (�/�) and ICOS-YF (yf/yf ) mice along with nonlit-
termate ICOS-KO (-/-) mice that have �2 weeks of age differ-
ence. All of these mice have been backcrossed five generations
into C57BL/6.

Since tyrosine residues in the cytoplasmic tails of membrane
proteins are often involved in protein trafficking and recycling,
we tested whether ICOS-YF maintained its expression pattern
on the cell surface. As shown in Fig. S2 A, WT and YF-mutant
ICOS displayed an identical inducible expression pattern. Thus,
the tyrosine-to-phenylalanine mutation does not alter the ex-
pression pattern of ICOS, and all of the phenotypic outcomes
should be attributable to the altered signaling capacities of the
mutant ICOS.

In vitro binding assays using GST fusion proteins have shown
that the Tyr 181 residue of ICOS is critical for recruiting PI3K
(29). Consistently, anti-ICOS immunoprecipitates from WT
CD4� T-cell blasts contained the regulatory subunit of PI3K,
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p85� (Fig. S2B, WT). There was a basal level of p85� associated
with ICOS that increased upon ligation of TCR or ICOS. The
TCR-independent ICOS-mediated p85� recruitment may re-
flect a potential antigen-independent function of ICOS on
cytoskeletal rearrangement of T cells (30). However, the amount
of p85� was maximal when the T cells were activated by a
combination of anti-CD3 and anti-ICOS mAb. Importantly, the
ICOS-p85� interaction was abrogated when the Tyr 181 was
mutated to phenylalanine (Fig. S2B, YF).

It has been shown that ligation of ICOS strongly enhances
TCR-mediated activation of AKT and, to some extent, MAPKs
(ERK, JNK, and p38) (25, 26). We examined these signal
transduction events in primary T-cell blasts derived from WT or
ICOS-YF mice. In keeping with the PI3K activation, ICOS
engagement dramatically augmented TCR-mediated AKT acti-
vation as judged by the increase phosphorylation of AKT at
Ser-473 in WT T cells (Fig. 1, AKT, WT). The ability of ICOS
to enhance TCR-mediated AKT activation was completely ab-
rogated in ICOS-YF T cells (Fig. 1, AKT, YF). ERK phosphor-
ylation was moderately enhanced by ICOS ligation in WT but not
in ICOS-YF. This is consistent with the observations that PI3K
can activate Ras-MAPK pathway (31, 32). ICOS did not aug-
ment phosphorylation of JNK and p38 in primary CD4� blasts
under our experimental settings (Fig. S3). As shown by others
(25, 26), CD28-costimulation strongly enhanced JNK activation
with a moderate level of AKT phosphorylation (Fig. S4).

It was shown that ligation of ICOS can facilitate Ca2� mobi-
lization when TCR signal is suboptimal, possibly through PI3K
(25, 29). As shown in Fig. S5, both WT and Y181F mutant ICOS
were able to augment TCR-mediated Ca2� f lux in CD4� T
blasts. Thus, ICOS can augment TCR-mediated Ca2� f lux in a
PI3K-independent manner.

Collectively, the Y181F mutation selectively disrupts PI3K-
dependent signaling pathways, AKT and ERK, without affecting
Ca2� signaling.

Reduced Basal Serum Ig Levels in ICOS-YF Mice. One of the hallmarks
of ICOS-deficient mice or humans is a reduction of class-

switched immunoglobulins in serum, a reflection of defective
GC reaction (13–16). Thus, we quantified the basal serum Ig
levels by ELISA from 2-month-old mice of WT, YF, and KO
mice (Fig. 2). As previously documented, ICOS-KO mice dis-
played up to 10-fold reduction in serum concentrations of IgG1,
IgG2b, and IgG2c without any difference in IgM compared with
WT control. Remarkably, ICOS-YF mice had an identical serum
IgG1 level as that of ICOS-KO. Serum IgG2b and IgG2c
concentrations in ICOS-YF mice were also reduced to levels
close to those of ICOS-KO mice. These results suggest that the
ICOS function in supporting Ig class switch critically relies on
signaling mechanisms dependent on the Tyr 181.

Defective GC Reaction in Peyer’s Patches of ICOS Mutants. Peyer’s
patches (PPs) are part of gut-associated immune tissue in which
ongoing humoral immune responses against the intestinal mi-
croflora are taking place. It has been shown that, in ICOS-KO
mice, the number of PPs is normal, but the size and cellularity
of PPs are dramatically reduced, and the active GCs are not
detected (33). However, the basis of these defects has been
unknown. We chose to analyze the PPs of ICOS mutant mice to
gain insights into the cellular basis of GC defects. ICOS-YF mice
had a normal number of PPs, as do ICOS-KO mice (Fig. S6A).
However, the total cellularity of PP was substantially reduced in
ICOS-YF mice to a level similar to that of ICOS-KO mice (Fig.
S6B). Accordingly, the GC area was greatly reduced in both
ICOS-YF and KO mice (Fig. S6C). Flow cytometric analysis
revealed that there is a drastic reduction in the percentage of GC
B cells over the total B cells (Fig. 3 Top). Importantly, the
percentages of TFH cells over the total CD4� T cells in the PPs
of ICOS-YF and KO were reduced by 5- to 9-fold compared with
that of WT mice (Fig. 3 Bottom). Consistent with the GC defects,
the content of secreted IgA in the feces was dramatically reduced

Fig. 1. Defective AKT and ERK activation by ICOS-YF. CD4� T blasts were
stimulated with antibodies against CD3 and/or ICOS, and the activation of AKT
or MAPKs was measured by immunoblotting using phospho-specific antibod-
ies. A representive of three independent experiments is shown.

Fig. 2. ICOS-YF and KO mice have reduced levels of class-switched immu-
noglobulins in serum. Sera were obtained from nonimmunized mice of ICOS
WT, YF, and KO mice at 8 weeks of age. Concentrations of IgM, G1, G2a, G2c,
G3, and A were determined by isotype specific ELISA. Each data point repre-
sents a serum Ig level of an individual mouse (n � 10 WT, 14 YF, and 10 KO).

*, P � 0.01.
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in YF and KO mice (Fig. S6D). This is in contrast to the normal
serum IgA levels in ICOS mutant mice (Fig. 2), suggesting that
the serum IgA level is mainly controlled by T-independent
mechanisms (34). Thus, the Tyr 181 motif of ICOS plays a critical
role in TFH differentiation and GC reaction in the PP.

Defective Humoral Immunity in ICOS Mutants. It has been shown that
ICOS-KO mice have impaired GC reaction, Ab class switch, and
affinity maturation upon immunization (13–15). We immunized
mice with alum-precipitated NP-CGG to examine the role of
ICOS-PI3K pathway in humoral immune responses. Both
ICOS-YF and KO mice had severely impaired GC reaction along
with reduced TFH cells in the spleen (Fig. 4 A and B). Anti-NP
IgG1 antibody titers in serum were substantially reduced in both
ICOS-YF and KO mice (Fig. 4C). The difference in anti-NP
IgG1 titer was more pronounced in high-affinity Ab (Fig. 4C,
NP3) as opposed to the total Ab (Fig. 4C, NP33). It was also clear
that the difference in high-affinity Ab titers became bigger upon
secondary immunization (Fig. 4C, NP3 1 ° vs. 2 °). We assessed
affinity maturation process more precisely by measuring anti-NP
antibodies after a differential washing step using NaSCN solu-
tions during ELISA (SI Text). As depicted in Fig. 4D, a shift from
lower to higher affinity anti-NP IgG1 was readily seen in WT
mice upon secondary immunization, but this was not observed

in ICOS-YF and KO mice. Collectively, these data demonstrate
that ICOS-YF mice have severely impaired GC reaction, TFH
generation, Ab class switch, and affinity maturation.

ICOS Promotes Expression of IL-21 and IL-4 in a PI3K-Dependent
Manner. The lack of CXCR5�CD4� TFH cells during humoral
immune reaction in ICOS mutant mice prompted us to examine
if ICOS is directly involved in upregulation of CXCR5. When T
cells were activated by soluble anti-CD3 Ab in the presence of
APCs, there was no difference in the expression levels of OX40
and CXCR5 on CD4� T cells (Fig. S7A). This result is consistent
with the notion that CXCR5 is mainly induced by OX40, whose
expression is enhanced by CD28 costimulation (35). Thus, ICOS
is not required for the induction of CXCR5, and the lack of
CXCR5�CD4� cells in ICOS mutants probably reflects a failed
TFH differentiation program.

Next, we sought to examine the impact of ICOS costimulation
on cytokine gene expression in the CD4� T cells. We activated
highly purified CD4� T cells for 2 days in vitro using antibodies
against CD3 and CD28, rested them 1 day in the absence of
stimuli, and then restimulated the cells with a combination of
TCR and costimulatory signals. This regimen allowed us to use
CD4� T cells with maximal surface ICOS expression within a
time frame when primed CD4� T cells migrate to B cell follicles
in secondary lymphoid organs (day 3 postimmunization) (36).
Under these conditions, ICOS played a dominant role over
CD28 in augmentation of IL-21 and IL-4 expression (Fig. 5A).
Further, pharmacological inhibition of PI3K activity during the
restimulation period negated all of the costimulatory impacts of
ICOS on IL-21 and IL-4 expression. In contrast, IL-10 expression
was marginally increased by ICOS and CD28, but largely unaf-
fected by PI3K inhibition. Consistent with results from PI3K
inhibition experiments, ICOS-mediated upregulation of IL-21
and IL-4 was abrogated in ICOS-YF T cells to levels close to
those of ICOS-KO T cells (Fig. 5B). In parallel, the differences
in cytokine induction capacity of ICOS vs. CD28 in the primed
CD4� T cells well correlated with their abilities to activate PI3K,
a potent AKT phosphorylation by ICOS but not by CD28 (Fig.
S7B). Despite the weak costimulatory activity in cytokine ex-
pression, CD28 had a major impact on the secondary expansion
of primed CD4� T cells, whereas ICOS played minor contribu-
tion (Fig. S7C). Interestingly, the ICOS-mediated proliferation
is disrupted in ICOS-YF T cells, suggesting that the ICOS-PI3K
pathway may have an additional role in the secondary expansion
of primed CD4� T cells. Taken together, these data show that
ICOS-PI3K signaling plays a dominant role in augmenting
expression of IL-21 and IL-4 during secondary activation of
CD4� T cells and that CD28 is not able to substitute ICOS.

Discussion
In this study we show that ICOS potently activates PI3K in
synergy with the TCR. When its ability to activate PI3K is
selectively abrogated, ICOS cannot support the generation of
TFH cells, GC reaction, Ab class switch, and affinity maturation.
We found a nonredundant role of ICOS-PI3K pathway in
upregulation of IL-21 and IL-4, key cytokines crucial for TFH
generation and function.

It has been shown that in murine Th2 clones, ICOS is
constitutively bound to PI3K, and ICOS ligation further in-
creases PI3K recruitment (37). We confirmed these results in
activated CD4� T blasts. The finding that ligation of ICOS
without TCR stimulation can activate PI3K signaling cascades
explains TCR-independent, yet PI3K-dependent ICOS function
in cytoskeletal rearrangement that may have a potential role in
T-cell adherence and migration (30). However, it has been shown
that interruption of ICOS function does not affect T-cell traf-
ficking itself in vivo (38, 39). Regardless, it is clear that co-
ligation of the TCR and ICOS gives rise to a maximal PI3K

Fig. 3. ICOS-YF as well as KO mice have severely impaired humoral immune
responses in the PP. GC B cells and TFH cells in the PP were analyzed by flow
cytometry. The (Top) two were gated on B220� B cells and the (Bottom) two
on CD4� T cells. Numbers represent mean � SD of data pooled from four mice
per genotype.
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signaling. Biochemical and imaging data have indicated that
ICOS is in complex with TCR complexes, and it gets recruited
into the immunological synapses, supporting the view that ICOS
probably functions in conjunction with the TCR (40–42).

The mechanism by which ICOS enhances TCR-mediated
Ca2� mobilization is not clear. It was proposed that the ICOS-

mediated PI3K pathway can enhance PLC�1 function through
ITK leading to sustained Ca2� f lux (29). Since ICOS-YF T cells
have intact Ca2� f lux, we conclude that ICOS can mediate Ca2�

f lux through a yet unknown mechanism, but clearly in a PI3K-
independent manner. Although the overall defects in humoral
immunity in ICOS-YF mice are very close to those of ICOS-KO
mice, we observed marginally higher levels of serum IgG2b and
IgG2c in ICOS-YF mice compared to ICOS-KO mice (Fig. 2).
Also, preactivated ICOS-YF CD4� T cells produced slightly
higher levels of IL-21 and IL-4 compared to ICOS-KO coun-
terparts (Fig. 5B). The intact capacity of ICOS-YF to augment
TCR-mediated Ca2� f lux may explain these residual T-cell
functions.

Our finding that PI3K plays a key role in ICOS-mediated TFH

cells is very relevant to the results that inactivation of the p110�
isoform of PI3K leads to impaired humoral immunity and
reduced size of PPs in the gut (32). It will be interesting to see
whether a lack of TFH underlies these phenotypes and whether
the p110� isoform is the PI3K under the control of ICOS.

Similar to ICOS, CD28 can activate PI3K through its Tyr-
based motif (YMNM) in the cytoplasmic tail (27). Why is CD28
unable to compensate the lack of ICOS-PI3K signaling pathway?
Our data show that it is due to an intrinsic weak capacity of CD28
to activate PI3K compared with that of ICOS. It has been shown
that the membrane proximal segment containing the YMFM
motif of the ICOS tail is much stronger than its CD28 counter-
part (containing the YMNM motif) in the ability to activate PI3K
when chimeric receptors were compared in transfected human
CD4� T cells (25). The same observation was made in murine
CD4� T cells upon ligation of endogenous CD28 and ICOS (26).
Particularly, in CD4� T cells that rested for 1 day after a 2-day
stimulation, CD28 did not evoke any PI3K activity above the
TCR stimulation, whereas it could still strongly enhance sec-
ondary expansion of T cells (Fig. S7 B and C). Recent results
from CD28 knock-in mice reinforced the notion that CD28-
mediated PI3K does not play any nonredundant function in
T-cell proliferation, cytokine production, and survival; it is,

Fig. 4. Impaired Ab responses in ICOS-YF and ICOS-KO mice upon immunization. (A) Defective GC reaction. Cryosections of spleens from mice immunized with
NP16-CGG/alum 12 days before were stained with PNA. (B) Decreased GC B cells and TFH cells in ICOS-YF and KO mice. Mice were immunized with NP16-CGG/alum,
and the splenocytes were analyzed 12 days later. Percentages represent mean � SD of data from three mice per genotype. A representative of two independent
experiments. (C) Impaired class switch. Sera were prepared from immunized mice at day 11 (1°) or day 7 (2°) postinjection, and antigen-specific IgG1 were
measured by ELISA using NP33-BSA vs. NP3-BSA. Numbers represent mean � SD of data from six mice per genotype. A representative of two independent
experiments. (D) Defective Ab affinity maturation. Mice were immunized at day 0 and boost injected at day 30. Serum samples were prepared at day 11 after
primary injection or day 7 after secondary injection, and the anti-NP IgG1 was measured after differential washes with increasing concentrations of NaSCN
solution. Each histogram represents mean � SD of data from six mice per genotype. A representative of two independent experiments.

Fig. 5. ICOS-YF and ICOS-KO CD4� T cells have defects in IL-21 and IL-4
expression. (A) ICOS induces IL-21 and IL-4 in a PI3K-dependent manner.
Preactivated CD4� T cells were restimulated with anti-CD3 plus hamster IgG
(H), anti-ICOS (I), or anti-CD28 (28) followed by goat anti-hamster IgG for 6 h
without or with LY 294002. The cytokine mRNA levels in the restimulated cells
were analyzed by qPCR. A representative of three independent experiments.
(B) Abrogation of IL-21 and IL-4 induction in ICOS-YF T cells. Cytokine gene
expression was analyzed in WT, YF, and KO T cells as described in A. Each data
point represents fold increase over hamster IgG control. Data pooled from six
independent experiments (n � 5–6 WT, 2–3 YF, and 2–3 KO). *, P � 0.02.
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rather, signals emanating from the carboxy terminal proline-rich
motif that play more important roles (28).

Deficiency of either CD28 or ICOS results in defective TFH
and humoral immunity, suggesting distinct roles for the two
costimulators (13–15, 23, 24, 35). What differential roles do they
play during the process of TFH generation? Based on our results
and the data in literature, we propose a model in which CD28
and ICOS support TFH cell differentiation in rather specialized
manners. During the first 2–3 days of antigenic exposure, CD4�

T cells interact with dendritic cells in the T-cell zone of second-
ary lymphoid organs (36). At this stage, antigen-specific T cells
rapidly proliferate producing IL-2, upregulate CXCR5 through
OX40, and induce ICOS. Since these processes are known to be
dependent on CD28 costimulation (35, 43, 44), CD28-deficiency
may heavily compromise TFH differentiation at this stage. The
primed CD4� T cells then migrate toward B cell follicles and
interact with cognate B cells. During this T:B interaction, T cells
make helper cytokines such as IL-21 and IL-4. IL-21 may play a
key role in facilitating full differentiation of TFH cells (3, 12),
whereas IL-4 and IL-21 induce B cell proliferation and differ-
entiation (6). Our data show that ICOS provides a unique
PI3K-mediated signal to enhance IL-21 and IL-4 at this stage,
and CD28 cannot substitute ICOS. Therefore, ICOS-deficiency
is likely to block this later stage of TFH differentiation. This
model is consistent with the finding that a transient activation of
CD28 at the early phase of immunization is sufficient for GC
formation (45). On the other hand, T cells primed in B cell-
deficient mice showed normal expansion, but failed to induce Ab
class switch during in vitro coculture with B cells, suggesting an
incomplete helper T differentiation in the absence of B cells (46).

In sum, we demonstrated here that the function of ICOS in
supporting TFH generation and humoral immunity critically
relies on the evolutionarily conserved tyrosine-based signaling
motif in its cytoplasmic tail. We provided evidence that ICOS
can induce key TFH cytokines by activating PI3K through this
signaling motif, probably when primed T cells contact with B
cells to complete the TFH differentiation program.

Materials and Methods
Animals. ICOS-YF knock-in mice were generated in 129 background and then
backcrossed into C57BL/6 background. ICOS-KO mice have been described
(13). The animals were housed in the Institut de Recherches Cliniques de
Montreal (IRCM) Animal Facility under specific pathogen-free conditions.
Animal experiments were performed according to animal use protocols ap-
proved by the IRCM Animal Care Committee.

Antibodies and Cytokines. Details of the reagents are described in SI Text.

In Vitro T-Cell Culture. All T cells were cultured in RPMI1640 medium (1 � 106

cells/mL) supplemented with 10% FBS, glutamine, penicillin, streptomycin,
�-mercaptoethanol. Total LN cells were activated by soluble anti-CD3 (1

�g/mL). For preparation of CD4� T blasts for biochemical analyses and Ca2�

flux experiments, CD4� T cells were positively selected (�95%) from single
cells suspensions of spleen and LN using CD4 selection kit (Stem Cell Technol-
ogies) and then activated by culturing with plate-bound anti-CD3 (3 �g/mL)
plus soluble anti-CD28 (1 �g/mL) for 2 days and expanded in media containing
recombinant IL-2 (100 �g/mL) for 3 days. For experiments described in Fig. 5
and Fig. S7 B and C, splenic CD4� T cells were negatively selected (�90%) using
the MACS CD4� T-cell isolation kit (Myltenyi). The CD4� T cells were stimulated
for 2 days as described above, except that 10 ng/mL IL-6 were added to
enhance IL-21 expression (47). Subsequently, the activated cells were col-
lected, washed once in complete medium, and rested for 1 day in complete
medium without IL-2 at 1 � 106 cells/mL in 6-well plates (2 mL/well) to avoid
overcrowding.

Acute T-Cell Activation, Lysis, and Immunoprecipitaton. The CD4� T-cell blasts
were harvested and stimulated by combinations of anti-CD3 (1 �g/mL), anti-
ICOS (2 �g/mL), and control hamster IgG. The bound antibodies were cross-
linked by goat anti-hamster IgG (20 �g/mL) at 37 °C. After washing, cells were
lysed in lysis buffer (1% Nonidet P-40, 20 mM Tris pH 7.4, 137 mM NaCl, 1 mM
CaCl2, 1 mM MgCl2, 1 mM PMSF, and 0.1 mM sodium orthovanadate) for 20
min on ice. After clearance of cell debris, lysates were boiled in Laemmli
sample buffer for immunoblot analysis. For immunoprecipitation of ICOS-
associated proteins, the lysates were incubated with anti-ICOS antibody (2
�g/mL) for 1 h at 4 °C, and the immune complexes were recovered by a mixture
of protein G-agarose beads (Thermo Scientific) and protein A-agarose beads
(Pierce).

T-Cell Restimulation Assays. Negatively selected CD4� T cells were stimulated
for 2 days and rested for 1 day in media alone. For cytokine qPCR, 5 million
CD4� T blasts were restimulated for 6 h in 400 �L media containing Ab
cocktails: Anti-CD3 (1 �g/mL) plus either hamster IgG, anti-ICOS, or anti-CD28
(2 �g/mL each), followed by goat anti-hamster IgG (20 �g/mL). For PI3K
inhibition experiments, cells were pretreated for 1 h with LY 294002 (50 �M;
Calbiochem) and then stimulated with the Abs in the continued presence of
the inhibitor. RNA was isolated using the TRIzol reagent (Invitrogen). cDNA
was prepared from the extracted RNA using the SuperScript First-Strand
Synthesis System for RT-PCR (Invitrogen). HGPRT, IL-21, IL-4, and IL-10 TaqMan
primers and probes were from Applied Biosystems. Quantitative real-time PCR
was performed by using a TaqMan 7300/7500 system and software (Applied
Biosystems). Fold expression was calculated using the ��CT method using
HGPRT as a reference gene. For proliferation assays, cells were restimulated in
U-bottom 96 wells (1 � 105 cells/well) with the Abs for 24 h. For the last 8 h of
incubation, 3H-thymidine was added at 1 �Ci/well.

Ca2� Flux, Immunization of Mice, and ELISA. Details are described in the SI Text.

Statistical Analysis. The significance of the data were tested by Student’s t test.
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Generation of ICOS-YF Mice. We designed a targeting construct
such that the exon 3 of the wild-type Icos gene will be replaced
by an engineered exon 3 and a neomycin-resistance (Neo)
cassette flanked by two loxP elements (Fig. S1 A). The engi-
neered exon 3 contained an adenine-to-thymidine change that
results in a tyrosine-to-phenylalanine mutation at amino acid 181
of the cytoplasmic tail of ICOS. Using an EcoRI site created by
the mutation, we identified ES clones (R1, 129 background) that
have integrated the mutant allele by Southern blot analysis (Fig.
S1B) and subsequently verified the intended mutation by se-
quencing the PCR products generated from the gene-targeted
ES cells (Fig. S1C). We injected the ES cells into the blastocysts
(C57BL/6 background), and resulting chimeric mice were back-
crossed with C57BL/6 mice. Mice with germline transmitted Icos
(Y181F)-Neo allele were bred with CMV-Cre transgenic mice (1)
to achieve in vivo deletion of Neo cassette (Fig. S1D). We also
verified that the mRNA transcribed from Icosy181f locus has the
same structure as the WT Icos mRNA, except for the point
mutation by sequencing PCR-amplified cDNA fragments en-
compassing exon 2 to exon 5.

Antibodies and Cytokines. For flow cytometry or T-cell stimula-
tion, the following antibodies were used: Armenian hamster IgG,
antibodies against ICOS (mAb C398.4A for stimulation and 5F9
for staining), CD3 (145.2C11), CD4, CD8, CD16/32 (Fc block),
Fas, IgD, PD-1 (all purchased from eBioscience), and GL7 (BD).
Goat anti-Armenian hamster IgG (Jackson Immunoresearch) or
avidin (Calbiochem) were used to cross-link primary antibodies.
Biotinylated anti-CXCR5 (BD) was used with streptavidin-APC
or -PE (eBioscience). For immunoblots, goat anti-mouse ICOS
(sc 5748; Santa Cruz) and rabbit anti-PI3K p85� (Upstate
Biotechnology) and antibodies against phospho-specific or total
Akt, p44/42 MAPK, JNK, p38 (Cell Signaling Technology) were

used with HRP-conjugated anti-goat (sc2020; Santa Cruz) or
anti-rabbit (Bio-Rad Laboratories) secondary antibodies. Re-
combinant IL-2 was purchased from R&D Systems and IL-6
from eBioscience.

Ca2� Flux. CD4� T blasts were loaded with Indo-1 (Invitrogen) at
5 � 106 cells/mL in HBSS buffer supplemented with 0.1% BSA,1
mM CaCl2, and 1 �M MgCl2. Cells were incubated for 1 min at
RT with biotinylated antibodies: 0.1 �g/mL anti-CD3 plus 1
�g/mL anti-ICOS (1 �g/mL) or control hamster IgG. After
recording baseline for 30 s, avidin (14 �g/mL) was added, and the
mobilization of intracellular Ca2� was monitored by measuring
FL4/FL5 on LSR FACS machine (BD). Equal loading of Indo-1
was confirmed by releasing intracellular Ca2� by ionomycin (1
�g/mL; Sigma–Aldrich).

Immunization of Mice. NP16-CGG (1 mg/mL in PBS; Biosearch
Technologies) was mixed with an equal volume of Imject Alum
(Thermo Scientific) for 30 min at room temperature. Mice were
injected i.p. with 100 �g (primary) or 50 �g (secondary) of
alum-precipitated NP16-CGG.

ELISA. Various isotypes of mouse Ig were detected using mouse
Ig isotyping kit (SouthernBiotech). Fecal extracts were prepared
from fresh fecal pellets by vortexing in PBS containing 0.02%
NaN3 and 1 mM PMSF (10 �L/mg feces). NP-specific Ab from
mice immunized with NP16-CGG was measured using plate-
bound NP33-BSA or NP3-BSA. Affinity profiling ELISA was
performed as described in ref. 2. Anti-NP antibodies in serum
samples (1:100 dilution) were allowed to bind to NP33-BSA
ELISA plates. After regular washing, bound antibodies were
treated for 10 min at RT with NaSCN solutions (Sigma–Aldrich)
each column receiving stepwise increments: 0.05, 0.1, 0.25, 0.5,
1, 2, 2.5, 3, 3.5, 4, and 5 M. Remaining antibodies were detected
by AP-conjugated secondary antibodies.

1. Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiqui-
tous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic
Acids Res 23:5080–5081.

2. Luxton RW, Thompson EJ (1990) Affinity distributions of antigen-specific IgG in pa-
tients with multiple sclerosis and in patients with viral encephalitis. J Immunol Methods
131:277–282.
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Fig. S1. Generation of ICOS-YF mice. (A) The targeting vector was constructed with Neo cassette flanked by two loxP elements for positive selection and DT-A
for negative selection. The exon 4 containing Tyr-181 residue is represented with a filled box, the Southern blot probes are denoted with thick underlines, and
PCR primers are shown as arrow heads. (B) Southern blot screening of ES clones using HindIII-digested ES genomic DNA. (C) Genomic DNA from ES cells positive
for Icos (y181f)-Neo locus was PCR-amplified using primers 1 and 3 as depicted in A, and the nucleotide sequences of the PCR products were determined. Asterisks
indicate the A-to-T mutation that results in Tyr-to-Phe mutation with an EcoRI site. (D) Genomic DNAs from mice possessing one copy of Icos (y181f)-Neo locus
without or with Cre transgene were analyzed by Southern blot after HindIII digestion. (E) The genotype of F2 progeny of heterozygous interbreeding was
determined by PCR using primers 1 and 2 as shown in A.
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Fig. S2. Normal surface expression but impaired PI3K binding by ICOS-YF. (A) Normal expression patterns of ICOS-YF. Total LN cells isolated from WT or ICOS-YF
mice were stimulated with soluble anti-CD3 antibody for the indicated periods of time. ICOS expression on CD4� or CD8� T cells was assessed by flow cytometry.
(B) Impaired PI3K recruitment by ICOS-YF. CD4� T-cell blasts were stimulated with antibodies against CD3 and/or ICOS, and the immune complexes were
recovered by immunoprecipitation. The amounts of p85a subunit of PI3K and the total ICOS protein were assessed by immunoblotting. Data shown in A and
B are representative of three independent experiments.
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Fig. S3. ICOS does not activate JNK and p38. CD4� T blasts were stimulated with indicated antibodies up to 20 min, and the amounts of phospho-JNK and
phospho-p38 were assessed by immunoblotting.
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Fig. S4. Moderate activation of AKT by CD28. CD4� T blasts were stimulated with indicated antibodies up to 20 min, and the amounts of phospho-AKT, total
AKT, and phospho-JNK were assessed by immunoblotting.
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Fig. S5. Intact calcium mobilization by ICOS-YF. Indo-1 loaded CD4� T blasts were stimulated with suboptimal anti-CD3 without or with anti-ICOS, and the
intracellular calcium flux was monitored by flow cytometry. A representative of four independent experiments is shown.
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Fig. S6. Normal number of PPs with decreased GC reaction in ICOS-YF and KO mice. (A) Each data point represents the number of PPs per mouse (n � 10 WT,
10 YF, and 6 KO). (B) Each data point represents the total number of PP cells collected from a single mouse (n � 8 WT, 8 YF, and 6 KO). *, P � 0.01. (C) Representative
sections of PPs stained with H&E are shown. (Scale bars, 250 �m.) (D) Decreased mucosal IgA secretion in the gut. IgA contents in fresh fecal pellets were measured
by ELISA. Each data point represents the fecal IgA content of an individual mouse (n � 9 WT, 12 YF, and 11 KO). *, P � 0.01.
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Fig. S7. Differential costimulatory impacts of CD28 and ICOS. (A) Unaltered induction of OX40 and CXCR5 in ICOS-YF and ICOS-KO CD4� T cells. Total lymph
node cells were stimulated with soluble anti-CD3 (1 �g/mL) for 2 days, and the levels of OX40 and CXCR5 were analyzed by FACS. A representative of two
independent experiments is shown. (B) Differential activation of PI3K pathway by ICOS and CD28. Cell lysates were prepared from CD4� T cells restimulated with
anti-CD3 plus hamster IgG (H), anti-ICOS (I), or anti-CD28 (28) followed by goat anti-hamster IgG for 5 min and analyzed by immunoblotting. A representative
of two independent experiments is shown. (C) CD28 plays a major role in secondary expansion of CD4� T cells. Cells were restimulated as in B in 96-well plates
for 24 h. 3H-thymidine was pulsed for the last 8 h of incubation. A representative of three independent experiments is shown.
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Figure 1. Increased PI3K signalling results in more Tfh cells. Conditionally deleting PTEN in 
T cells leads to increased GC B cells (top left panels) and Tfh cells (bottom left panels) in the PP 
of WT, as well as partially rescues the defect in GC formation (top right panels) and Tfh cell 
differentiations (bottom right panels) in the PP of ICOS-YF mice. 
 

 


	Preface_131108_2
	Introduction 131108_2
	Chapter2_131108
	Chapter3_IL4_131108
	Discussion_131108
	Appendices_part1_131108_PDFa
	PNAS-2009-Gigoux-20371-6
	Appendices_part2_131108

