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Abstract

Music is an information-bearing medium, containing highly structured signals. Its com-

plexity derives from its information-rich structure and enables music to be molded to the

imagination of any creator, regardless of time or geography. This thesis investigates the

rich information encoded in the temporal structure of music. It represents rhythm as a

progression of musical event durations (a note or a silence), and uses similarities hidden

in different layers of musical rhythm to construct a structural identity (temporal scale-free

features). These temporal scale-free structures are used for longitudinal analysis of com-

positions in a composer’s oeuvre, and are applied as composer descriptors for classification

in two large Western and non-Western music score repertoires. That is, this work presents

the scale-free structural features in rhythm as a universal, information-rich feature set.

More precisely, temporal scale-free correlation exponents are computed for two major

music categories: Western and non-Western compositions. Collections containing these

categories — 1165 and 1498 music pieces respectively — are further sub-categorized by

composer name (Western Collection) and geographical region or country of origin (non-

Western Collection). The analysis provides a more granular, composer-by-composer val-

idation of the scale-free structure of rhythm in the Western collection. This indicates
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that such exponents vary for composers of different musical eras, distinct time periods

and various countries of origin. Moreover, for a particular composer, though there are

key similarities between different compositions’ temporal scale-free exponents, they ex-

hibit non-negligible variation during the course of the composer’s professional life. These

variations can account for the high accuracy in the classification results for (1) Western

composers from disparate eras or with distinct compositional styles (e.g., Gershwin ver-

sus Mozart); (2) non-Western regions of distinct musical style and heritage (e.g., Chinese

versus Persian music); and (3) Western versus non-Western pieces.

In the second part of this thesis, rich information in music and particular features of hu-

man musical cognition are used to expand the existing CAPTCHA paradigm — wherein

problems that are easy for humans but which cannot yet be solved efficiently by com-

puter programs are used to distinguish between humans and automated music analysis

programs (computational Turing test). The ubiquity of music across all cultures, its com-

plex structure at different layers, and the perceptual characteristics and limitations of the

human auditory system are leveraged to construct more accessible, aesthetically pleasing

and secure computational Turing tests. Music-based CAPTCHAs, called mCaptchas, are

introduced to improve Web accessibility for individuals with visual impairments, to help

avoid susceptibility to security flaws of existing audio CAPTCHAs, and to improve the

overall user experience. The mCaptcha scheme generates musical streams which can be

heard as two by humans, but which appear as a single inseparable unit of music to the

state-of-the-art automated programs. A user is presented with a contextual question based

on a popular song which the user can identify in the composite music stream (challenge).

The security of the scheme lies in the fact that state-of-the-art music analysis programs
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cannot yet solve the challenge correctly before the mCaptcha expires.

Empirical evidence of the scheme’s security is presented for over 2000 mCaptchas,

while its usability is tested by approximately 500 individuals on the Amazon Mechan-

ical Turk (AMT) online market. These results demonstrate that humans can efficiently

and accurately solve the generated music-based challenges while sophisticated computer

programs fail.
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Abrégé

La musique est un support d’information contenant des signaux hautement structurés. La

complexité de la musique découle de la richesse informative de sa structure qui lui per-

met de se conformer à l’imaginaire de chaque créateur, quelle que soit l’époque ou la

localisation géographique. La présente thèse examine la richesse informative dissimulée

dans la structure temporelle de la musique. Cette thèse envisage le rythme comme une

progression de la durée d’événements musicaux (une note ou un silence) et utilise les sim-

ilarités dissimulées dans les différentes couches de rythme musical pour construire une

identité structurelle (caractéristiques temporelles libres d’échelle). Ces structures tem-

porelles libres d’échelle sont utilisées pour une analyse longitudinale d’un échantillon des

compositions faisant partie de l’œuvre d’un compositeur. Elles sont également appliquées

comme des descripteurs de l’œuvre d’un compositeur en vue d’une classification des com-

positions en deux grands répertoires, occidental et non-occidental. C’est-à-dire, ce travail

présente les caractéristiques structurelles libres d’échelle du rythme comme un ensemble

de caractéristiques universelles riches en information. Plus précisément, ces exposants

de la corrélation temporelle libre d’échelle sont calculés dans deux catégories: composi-

tions occidentales et non-occidentales. Ces catégories, contenant respectivement 1165 et
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1498 pièces musicales, sont ensuite divisées en sous-catégories, par nom du compositeur

(collection occidental) et sa région ou son pays d’origine (collection non-occidentales).

Cette analyse fournisse une validation plus granulaire, compositeur par compositeur, de

la structure rythmique libre d’échelle dans le répertoire occidental. Cela indique que de

tels exposants varient pour les compositeurs de différentes époques musicales, différentes

périodes et différents pays d’origine. De plus, malgré l’existence de similarités majeures

entre les exposants temporels libres d’échelle des compositions d’un compositeur, ces

exposants varient d’une manière significative au cours de la vie professionnelle. Ces vari-

ations peuvent expliquer la grande précision des résultats de la classification pour (1) les

compositeurs occidentaux venant de différentes époques ou présentant des styles de com-

position différents (par ex., Gershwin versus Mozart); (2) les régions non-occidentales

caractérisées par un style et un héritage musical particulier (par ex., musique chinoise ver-

sus musique perse); et (3) les morceaux de musique occidentale versus non-occidentale.

Dans la deuxième partie de la présente thèse, la richesse informative de la musique

et les caractéristiques particulières de la cognition musicale humaine sont utilisées afin

d’élargir le paradigme CAPTCHA existant. Dans ce paradigme, des problèmes facile-

ment résolus par les humains, mais que les programmes informatiques ne parviennent

pas encore à résoudre, sont utilisés pour distinguer la manière dont ces problèmes sont

résolus par les humains et les programmes d’analyse de la musique automatisés (test de

Turing). L’ubiquité de la musique à travers toutes les cultures, la structure très complexe

des différentes couches qui la constituent, ainsi que nos connaissances des caractéristiques

et des limitations de la perception auditive humaine permettent aujourd’hui de construire

des tests de Turing plus accessibles, plus agréables esthétiquement et mieux sécurisés. Je
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présente les mCAPTCHAs, CAPTCHAs basés sur la musique pour répondre à plusieurs

objectifs: améliorer l’accessibilité au Web pour les individus souffrant de handicaps vi-

suels, diminuer la vulnérabilité des CAPTCHAs audio existants aux brèches de sécurité, et

améliorer l’expérience générale de l’utilisateur. Le schéma mCAPTCHA génère des flux

musicaux pouvant être décomposés en 2 pièces musicale distinctes par ségrégation audi-

tive chez les humains, tout en étant considérés comme des unités musicales monolithiques

par les programmes automatisés actuels. Un utilisateur reçoit une question contextuelle

basée sur une chanson populaire incluse dans ce flux musical généré (défi). La sécurité

du schéma réside dans le fait que les programmes actuels les plus sophistiqués ne sont pas

encore capables de résoudre correctement le défi avant l’expiration du mCAPTCHA.

L’évidence empirique de la sécurité de ces schémas est présentée pour plus de 2000

mCAPTCHAs, tandis que sa convivialité a été testée par environ 500 individus sur le

marché en ligne Amazon MechanicalTurk. Ces résultats démontrent que les humains peu-

vent efficacement et correctement résoudre les défis musicaux générés, là où les logiciels

les plus sophistiqués échouent.
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1
Introduction

“There is nothing more difficult than talking about music.”

Charles-Camille Saint-Saëns

Music is a form of communication, a critical part of human cultural evolution [Mil00,

Cro01], and a fundamental medium of communication and emotional expression [BT99].

It transcends borders, languages and eras [BBN95, MDA+03].

The scientific study of musical communication includes research on music cognition,

the creation of music, and its emotional and therapeutic effects. Despite the use of massive

computational power and music analysis tools, there is still much to be understood about

how humans create and comprehend music. The composer Igor Stravinsky noted, “music’s

exclusive function is to structure the flow of time and keep order in it” [SS86]. Music

follows a progression of sounds and silences, which form audible patterns, variations and

themes over time [Mey56, Ber76, Ric00]. The particular repetitions — either exact or with

variation [Ric00] — form a structural identity that is rich with information. When music is

heard as a contiguous audio stream, the listener builds expectations for what is to be heard

next [Ric00, KNH+05], and the consequent surprise or validation is key to the overall

emotional musical experience [Mey56, Til08]. In other words, structural repetitions are a
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significant factor in the listeners’ experience of and appreciation for smusic [Sch00].

In the first part of this thesis, I investigate a concise temporal representation of struc-

tural repetitions in Western and non-Western music, and apply the extracted structural

information to classification. The concise representation consists of power law temporal

features generated from the rhythmic structure of music. Features are computed using the

long-term correlations (fluctuation analysis in the time-domain) and power spectra (spec-

tral analysis) from a simple temporal representation of music. If the probability that a

particular feature has value k is proportional to k−α, for sufficiently large k, then it has a

power law exponent of α. In our context, the power law correlation exponents are defined

as α , where the probability distribution of the correlations decays proportionally to L−α,

where L is a parameter such as length of the correlation blocks. To investigate informa-

tion latent in the structural repetitions of Western and non-Western music, I analyze the

power law temporal features generated from the rhythmic structure of 1165 movements

from compositions of Western classical music and 1498 pieces of non-Western music.

This Western analysis includes music by 24 composers from the 16th to the 20th century,

and the non-Western corpus consists of music pieces from Africa, China, Iran and Turkey.

Finally, the computed temporal scale-free exponents are used as descriptors in binary clas-

sifications of various Western composers, as well as .

The second part of this thesis focuses on a music-based computational access control

scheme. Alan Turing [Tur50] introduced a simple test that would differentiate between

machines and humans. He designed it to further quantify what it means for a machine

to be said to have intelligence indistinguishable from that of a human and it has come

be known as the Turing test. Luis von Ahn [vABHL03] extended the notion of a Turing
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test from a philosophical one to a security tool used to stop automated attacks and spuri-

ous registrations online. This invention — called a CAPTCHA1 — was introduced as an

access control security measure. CAPTCHAs, ubiquitous on the web, use problems that

are believed to be much easier for humans to solve compared to computers. The original

design was textual and obfuscated a short text with noise and other visual distortions. Two

main characteristics of a CAPTCHA are security and usability. Security in this context

is defined as the computational difficulty of a machine breaking the system by passing

the test, and usability measures how easy it is for a human to correctly solve the test.

Various forms of the scheme have been devised including audio CAPTCHAs. Existing

audio CAPTCHAs consist of a set of scrambled (English) letters and numbers embed-

ded in a noisy background. The user has to identify the letters and type them correctly

(the challenge) [vABHL03]. However, this challenge is not sufficiently difficult for the

current state-of-the-art machine learning and signal processing algorithms. Hence, audio

CAPTCHAs were shown to be insecure [BB09, BBP+11]. Moreover, from a human us-

ability point of view, both text-based and audio CAPTCHAs are still lacking in providing

an effective and pleasant Turing test [BBF+10].

I introduce a novel music-based Completely Automated Public Turing test to Tell Com-

puters and Humans Apart, denoted by mCaptchas, by applying music to generate computa-

tionally secure tests that distinguish between humans and machines. The new approach is

an efficient and computationally secure challenge-response scheme. Here, security, con-

trary to the existing paradigm, does not rely on obfuscation but rather on using certain

features particular to human musical cognition.

1CAPTCHA stands for: “Completely Automated Public Turing test to tell Computers and Humans
Apart,” and is a trademark of Carnegie Mellon University.
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1.1. OVERARCHING THEMES 4

1.1 Overarching Themes

This thesis analyzes structured information in music, and considers two related computa-

tional cases. In the first, structured information is used to classify music; the second case

focuses on cases where machine algorithms cannot classify music. Although both parts

investigate structured information latent in music, the first half uses music as represented

in scores (symbolic music), and the second half uses music as it is performed. The re-

search presented in this dissertation started with the fractal analyses of rhythm in music.

mCaptchas were the result of a thought experiment pondering the existence of a music-

based question, which is computationally intractable or impractical. While designing the

mCaptcha system, I realized that the computational indistinguishability of the two music

streams interleaved can be amplified if the two streams were chosen to have structural

similarities. In other words, knowing that the machines will have to perform some form

of analysis on the structure of the mCaptcha stream, the security of my proposed system

would be improved if the overall structure does not reveal two distinct signatures. That is,

if the mCaptcha system could select its music streams such that they have similar tempo-

ral scale-free signatures, then the computational cost of distinguishing between two such

interleaved streams would even be higher. In this way, the analysis of scale-free temporal

structures (1/f) latent in music grew organically out of my efforts to make the mCaptacha

design as rigorous as possible, and in turn, the results of the 1/f work can be applied to the

mCaptcha work.
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1.2 Thesis Contributions

This thesis lies at the intersection of two fields of research: music cognition and machine

learning. It draws from research in both fields to extract latent structural information in

music for both theoretical and practical purposes. The first component of this thesis fo-

cuses on the temporal structure of music and studies temporal self-similarities in various

compositions by extracting correlation power law exponents. This work comprises two

novel contributions. It shows how such power law exponents in music can be used to

classify compositions by their composer, musical era, and geographic origin. It also inves-

tigages the efficacy of using such exponents to classify the genre of music as Western vs.

non-Western. The results show that the emergence of scale-free patterns in music is not

limited to particular geographical, cultural or historical time periods.

The second part of the thesis focuses on another way of using latent information in

musical structure, in this case to create user-friendly security interfaces in the form of

mCaptchas, a new music-based computational Turing test. The integration of music into

this framework is novel. The analysis includes security challenges and a large-scale human

usability tests that use crowdsourcing. The experiments indicate that not only are the

mCaptchas secure, but also effective for human use. mCaptchas improve Web accessibility

for individuals with visual impairments , and provide a more pleasnt human experience due

to the integration of music and not noise.
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1.3 Organization

The body of this thesis is organized as follows. Chapter 2 introduces definitions and meth-

ods used to compute the self-similarity power law exsponents for musical compositions.

Chapter 3 studies self-similarity exponents for a large corpus of Western compositions,

and Chapter 4 performs a similar analysis for a corpus of Chinese, Persian, African and

Turkish music. In Chapter 5, I present mCaptchas by first motivating the need for this

new design. I proceed by highlighting its features , outlining the implementation , and

demonstrating its advantages over existing CAPTCHA designs. The thesis concludes with

a summary of the contributions in Chapter 6. An outline of possible future extensions of

this research is also discussed in the same chapter.

6



2
Background

“Music is given to us with the sole purpose of establishing an order in things,

including, and particularly, the coordination between man and time.”

- Igor Stravinsky [Str36]

This chapter introduces basic notions needed for temporal analysis of music. It also

outlines the methodology used to analyze the power law features in rhythm . The Western

music collection is organized into groups each labeled by the name of the composer, and

the non-Western collection is categorized by country or region of origin. I refer to these

labels as composer labels. The atomic unit of analysis is a movement of a particular com-

position from a certain composer, which is uniquely identified by its name and the name

of its composer. In the case of non-Western compositions, compositions are identified by

their origin.

2.1 Composers and their Compositions

Bregman defines an audio stream as “the perceptual unit that represents a single happen-

ing . . . [which] serves the purpose of clustering related qualities.” [Bre94] Accordingly, I
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2.1. COMPOSERS AND THEIR COMPOSITIONS 8

denote a temporal sequence of inter-onset durations for a movement by a musical stream,

and represent it as a time series — a sequence of values ordered in time. A musical stream

is a sequence of events that display continuity and consistency [MB79, Bre94]. In the

context of my analyses, the series is consistent as it originates from one movement —

a self-contained portion of a composition with a unified interpretation or theme [def] —

and its continuity originates from its temporal order, which creates its identity [MB79].

Let pcij represent the jth musical stream composed by composer ci. In this thesis, ci is a

label associated with a group of musical streams that have either been composed by the

same individual (e.g., Beethoven), or are associated with a particular geographical region

(e.g., China). I denote a consistent collection of these composer labels, c1, . . . , cn, by

C = {ci}ni=1. To analyze the temporal regularities that are characteristic of each composi-

tion, the occurrences of musical events (notes or silences) are used to compute inter-onset

durations.

A musical stream consists of combinations of notes and silences ordered in time in a

meaningful way, and patterns are similarities found between particular elementary compo-

nents of the stream. Order matters: music identity is determined by the temporal structure

— particular order of notes and silences — and changes made to this structure result in a

different identity [Ler01, Pat03].

A music time series is calculated by computing the time intervals in between adjacent

musical events. The durations are measured in standardized quarter note lengths. That is,

a quarter note will be encoded as 1, a whole note as 4, and an eighth note as 0.5. These

durations, in my analyses, are extracted from symbolic music using music21— an open-

source toolkit for computer-aided musicology [CA10]. Symbolic music is a score-based
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2.2. REDUNDANCY, PREDICTABILITY AND VARIATION IN MUSIC 9

representation of music that encodes information about notes, various voices and other

musical symbols.

2.2 Redundancy, Predictability and Variation in Music

“Indeed, all figures of speech, and all metaphors, in speech and music

alike, depend ultimately on repetition, which is then subjected to

variation, or as the linguists say, transformation”

- Leonard Bernstein [Ber76]

There exist multiple parallels between music and language [Ber76, LM03, Pat03].

Both are means of communication and use temporal patterns to convey coherency and

meaning [Kru91, Kru00]. Words are the building blocks of languages, and sequences of

words, ordered in time, form phrases and other components of languages [Akm01]. Lan-

guages are filled with repetitions of such building blocks.

Patterns in music — repeated individual or groups of notes or silences in a particular

order [Ler01, Pat03, LM03] — are redundancies appearing over time in a musical stream.

Levitin and Menon define musical structure as “that which exists when musical elements

are bound, through temporal coherence, in a way that leads to informational redundancy

and expectation.” [LM03] In the following sections, I further elaborate on key notions of

redundancy and variation, as applicable to this thesis.

9



2.2. REDUNDANCY, PREDICTABILITY AND VARIATION IN MUSIC 10

2.2.1 Measures of Predictability

A key concept in information theory is the notion of Shannon entropy, which quantifies

the amount of information gained after an observation is made. Shannon defines redun-

dancy as a measure of the statistical constraints imposed by the language on the text being

analyzed [Sha51]. He highlights the statistical constraints of a language — that for in-

stance, requires a C to be followed by an E with a higher probability than a C followed by

a Z in English . Such constraints directly influence the patterns emerging in the derived

words. He also defines entropy to be the amount information, on average, learned from

each letter of a source , which outputs words constructed from a particular finite alphabet.

Put differently, entropy measures how many bits, on average, are needed for encoding a

particular word, and can be directly associated with average information contained therein.

Redundancy and randomness are two sides of the same coin. High redundancy entails low

information — as almost everything is predictable.

More precisely, consider a model that generates the musical durations — measured in

standardized quarter note lengths which constitute the music time series — one at a time.

That is, assume that there is a probabilistic generator that generates the raster, represented

as, 〈X1 . . . XL〉, where each Xi is independent and identically distributed. The entropy

of the source, H(X), quantifies the predictability of the Xis: if the raster is highly pre-

dictable, then learning Xi will not add much to what is already known from〈X1 . . . Xi−1〉.

In other words, when entropy is low, predictability will be high, which means that predict-

ing future duration events, based on partial information, is more accurate. Autocorrelation,

or similarity between a time series and itself at various time lags, is a measure of redun-

dancy. The following basic definitions are used in my analysis, and I include them here for

10



2.2. REDUNDANCY, PREDICTABILITY AND VARIATION IN MUSIC 11

the sake of completion. For more rigorous treatment of these notions, the interested reader

is referred to the wealth of literature available on statistical tools in time series analysis.

A time series X(n) = 〈x1, . . . , xn〉 = [xi]
n
i=1 is an ordered series of observations.

For instance, the number of record sales for a particular band in the course of twenty

years can be represnted by X(20) = {x1, . . . , x20} = {xi}20
i=1, where xi denotes the

record sales in year i. An observed time series X(n) can be considered a realization of

a generative random process X = [Xi]
n
i=1 with an associated probability function, P .

The sample mean of a time series, X(n) is denoted by: µ(X(n)) = 1
n
Σn
i=1xi. I use

the sample mean as an estimate for the expected value of the generating random process,

E[X] = Σx∈LxPr {Xi = x} [GS01]. Spread and variation are computed using the stan-

dard deviation:

Definition 2.2.1 (Moments [GS01]). The kth moment of X is defined as mk = E[Xk],

and the kth central moment σk is defined similarly after removing the expected value:

σk = E[(X − µ)k].

In Definition 2.2.1, k is typically a positive integer; however, when it is a fraction, it

denotes fractional moments of order k. The mean and variance, two key characteristics of

a time series, can be reformulated in terms of moments as well:

• (Mean) k = 1 : m1 = µ = E[X],

• (Variance) k = 2 : var(X) = E[(X − E[X])2] = E[X2]− (E[X])2,

• (Standard deviation) σ =
√
var(X).

A time seriesX(n) is strictly stationary if all of its moments - includingE[X(n)], var[X(n)],

11
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and higher moments - are time-independent. More precisely, the joint statistical distribu-

tion ofXt1 , . . . , Xtl is the same as the joint statistical distribution at lag τ ,Xt1+τ , . . . , Xtl+τ

[Pri, Nas06]. A more practical notion is that of a weak stationarity which implies that the

mean and the variance do not depend on time, and that self-similarity — measured through

autocorrelation — will not depend on time but only on time lag [Pri, Nas06].

Definition 2.2.2 (Sample Autocorrelation). Let X(n) = {x1, . . . , xm} denote a time se-

ries. The autocorrelation function at lag l ∈ {0, . . . ,m− 1} is defined as:

AC(l) =
Σmi=l+1(xi−µ(X(n)))(xi−l−µ(X(n)))

Σmi=1(xi−µ(X(n)))2

The sample autocorrelation measures how similar a time series is to itself. The more

repetitive a time series is, the higher the product of time-lagged portions of the time se-

ries, which leads to a larger sample autocorrelation. The self-similarity of a time series

computed using different time-lags is also referred to as serial correlation.

2.2.2 Predictability and Surprise

Intuitive notions from information theory, such as information content or redundancy

[SW49], have been used to analyze certain characteristics of music such as pitch or tem-

poral features [Mey57, You58, Coh62]. Viewing a composition as a particular selection of

sounds forming some pattern in time [Coh62] paves the way for the application of infor-

mation theoretic tools to music. Information can be intuitively described in the words of

Weaver [Wea49b]:

12
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Information is ... a measure of one’s freedom of choice in selecting a message.

The greater this freedom of choice, and hence the greater the information, the

greater is the uncertainty that the message actually is some particular one.

Thus greater freedom of choice, greater uncertainty, greater information go

hand in hand.

However, he later [Wea49a] adds, “... the word information relates not so much to what

you do say, as to what you could say.” In other words, although a Spartan view of music

may reduce compositions to mere orderings of sounds, the artistic “value” of a compo-

sition comes from a composer’s most critical task: selection of such sounds [Coh62].

Stravinsky defines such a selection as, “the need we feel to bring order out of chaos. ... To

proceed by elimination — to know how to discard, as the gambler says, that is the great

technique of selection” [Str70]. Nonetheless, to measure structural order of compositions

using redundancy, Meyer notes [Mey56]:

Styles in music are basically complex systems of probability relations in which

the meaning of any term or series of terms depends upon its relationships with

all other terms possible within the style system.

Cohen further extends this treatment of music as a sequence generated from a random

source: “not only may the musical score be characterized as a probability system, but

the listener perceives the music ... as a probability system.” [Coh62] In other words,

the tension between a composition’s structural redundancy and unpredictability create its

perceptual identity for the listener. Hindemith describes the “listener’s act of perception”

as [Hin52]:

13
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While listening to the musical structure, as it unfolds before his ears, he is

mentally constructing parallel to it. ... Registering the composition’s compo-

nents as they reach him he tries to match them with their corresponding parts

of his mental construction.

Hence, understanding structural patterns, built from the relationship between successive

events, is a significant characterizer. Redundancy, as a quantitative measure of order, has

been studied as an identifier for a body of music [Den18, You58]. In this thesis, I study

the absence of order in inter-onset durations by measuring unpredictability through the

surprise index (Definition 2.2.4). This index depends on the occurrence of unlikely events.

Definition 2.2.3 (Frequency Moments). Denote an alphabet, containing all possible val-

ues, by Σd = {x1 . . . xn}. Let {d1, . . . , dm} be a sequence where di ∈ Σd,∀1 ≤ i ≤ m,

and let mi be the count of each alphabet element di in the sequence. That is, mi =

{j|dj == xi}. The kth frequency moment is defined as Fk = Σn
i=1m

k
i .

It is assumed that standardized notation durations form a finite, small set of values.

That is, although the durations calculated are not necessarily integers, the range of values

that the duration can have in the music time series, composed by humans for humans, will

be finite and small. I use four frequency moments in my analysis: F0, F1, F2, F∞. F0 is

the count of unique elements in the series, F1 is the sum of unique values in the series,

and F2, also known as the repeat rate or “Gini’s Index of homogeneity” [Goo89], is used

to calculate the surprise index (Definition 2.2.4) [Wea48]. F∞ is defined as the maximal

frequency count of the alphabet: max1≤i≤nmi.

Definition 2.2.4 (Surprise Index [Wea48, Goo89]). Denote the alphabet containing all

possible values for a time series by Σ = {x1 . . . xn}, with corresponding probabilities

14
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p1 . . . pn. The Weaver surprise index, Sn(i), is the ratio of the expected value of the prob-

abilities to the observed probability pi: Sn(i) =
Σnj=1p

2
j

pi
.

The surprise index computes the ratio of the likelihood that an event is expected to

occur to its actual occurrence [Wea48, Goo89]. Events that are unlikely - have a small

probability of occurrence will generate a larger surprise index.

I compute surprise indices for the generated music duration time series in this analysis.

The surprise index is calculated for all unique values in a time series and depends on its

frequency of occurrence (i.e. popularity) in the series. The occurrence of an element that is

not frequent is taken to be surprising, and hence should increase the local unpredictability

of the series at that point in time. The surprise index, Sn(i)1, is a global measurement for

a music time series, in that its value depends on the global frequencies of unique elements

of the series. This can be used to identify when least or most frequent elements in the time

series occur. Identifying such key changing points can be used as a global indicator of

surprise. In the present context, the surprise index will be used to determine compositions

that are most surprising or atypical.

2.2.3 Measures of Variation

A time series that does not change at all represents an extreme: it has maximal redundancy

and minimal variance. Such an invariant time series does not convey much information,

and can be described concisely. Other time series have some degree of embedded variation

and unpredictability. The following measures are used to quantify this variation.

1When the underlying alphabet and n are clearly understood, I simplify the notation and use Si to denote
Sn(i).

15
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Definition 2.2.5 (Coefficient of Variation). The coefficient of variation of time seriesX(n)

is defined as the ratio between the variance and the mean:

coefficient of variation =

√
E[X2(n)]−E[X(n)]2

E[X(n)]

Variation can also be computed by measuring the degree of deviation of the values

from the mean; i.e., the mean absolute deviation of the time series X = {x1, . . . , xn} is

computed as the expected value of the deviation from the mean for each xi: E[xi−E[X]].

In addition to computing the standard deviation, the interquartile range (Definition

2.2.6) is used to measure the spread of the data.

Definition 2.2.6 (Interquartile Range (IQR)). The interquartile range (IQR) denotes the

difference between the 75th upper and the 25th lower percentiles of the sample data. The

upper and lower percentiles are computed by dividing the data into two parts at the me-

dian, computing the median for each of these newly formed portions, and then computing

the medians of these portions: Q1 (lower quartile) and Q3 (upper quartile). The IQR is

defined as Q3−Q1.

The IQR, mean and standard deviation may be used to test the normality of the under-

lying distribution generating the sample time series. However, IQR is robust to non-normal

data distributions, while the standard deviation can be skewed by such data.

2.3 Emergence of Power Laws in Noise and Music

“There is no noise, only sound”

- John Cage [Koz92]

16
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The study of power laws in music dates back to Zipf [Zip49], who examined the length

of intervals between repetitions of notes and the number of melodic intervals on a very

small set of music pieces. Mandelbrot, the father of fractal geometry [Man89], coined

the term fractional noise to refer to fluctuations whose sample spectral density is of the

form f 1−2H , where f denotes the frequency and H falls in (0.5, 1) [Man67, MVN68]. He

proposed this term in place of “1:f noise” since values of H both close to and far away

from 1 are common [MVN68]. His research provided an alternative to the archetypical

analysis of random functions through the lens of independence. He argued that empirical

studies suggest an interdependence between distance samples. He highlighted a particular

class of phenomena that were shown by Hurst [Hur51, HBS65] to exhibit such properties.

Hurst, during his hydrological studies of the Nile, found that the accumulated water flows

approximately varied according to tH , 1/2 < H < 1 [Hur51, HBS65]. This significant

empirical finding was further analyzed by Mandelbrot [MW69].

White, brown and pink noise have characteristics “expected to be ‘typical’ of what

happens in the absence of asymptotic independence.” [MVN68] These stochastic signals,

termed “scaled noise” by Mandelbrot, exhibit spectral densities proportional to fβ, where

β ∈ (−2, 0) [Man67, MVN68]. In other words, similar to other fractional noise, they

exhibit self-similarity in that they can be characterized through their features which are

invariant with respect to time scale (scale-free noise) [MVN68].

White noise is an uncorrelated, stochastic time series: its autocorrelation — except at

lag zero — is zero (Figure 2.1), and is characterized by its flat power spectra: S(f) ∝

(1/f)0 [Fuc03].
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Filtered white noise is referred to as correlated or coloured noises (e.g., brown or pink

noise) [Fuc03]. For instance, brown noise — named for its similarities to Brownian motion

— is a scaling noise wherein each sample is influenced by its immediate history [Gar78].

It is a stochastic signal whose power spectral density decays as S(f) ∝ (1/f)−2 [MVN68,

Fuc03] (Figure 2.2).
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Lastly, many significant natural signals have scaling characteristics similar to those of

fractal noise, also referred to as pink noise and which is characterized by β = −1 [Fuc03].

Such signals have spectral scaling exponents β ≈ −1 [Gar78, Man83, Sch09], and will be

further discussed in Chapter 3.
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A comparison between the autocorrelation of pink noise (Figure 2.3) with brown (Fig-

ure 2.2) or white (Figure 2.1) noise, indicates an increase in correlation from white, to pink

to brown noise [VC78, Gar78]. In the context of music, fractal noise has been shown to ex-

ist in pitch and loudness fluctuations [VC75, VC78, GTM95, PB00], changes of acoustic

frequency [HH90, HH91], and rhythm [LCM12]. It has also been used for computer-

generated compositions that are judged to sound aesthetically pleasing [VC78, Gar78,

MVW+03, Sch87].

2.3.1 Significance of Power Laws in Music

“Music is imitating the characteristic way our world changes in time.”

Richard F. Voss [Vos88]

Power laws in music were first studied by Zipf, who studied the length of intervals

between repetitions of notes and the number of melodic intervals on a very small set of

music pieces [Zip49]. Subsequently, Voss and Clarke [VC75, VC78] studied the power

law (scaling) behaviour for pitch and loudness fluctuations, and noted that the frequency

fluctuations in music have a spectral density at frequencies down to the inverse of the

length of the piece. They tested audio power and frequency fluctuations on a few audio

examples taken from various genres of jazz, classical, blues, rock and radio recordings,

and boldly hypothesized that: “the ubiquity of noise [asserts that] music mimics the way

the world changes with time” [VC75]. This work was followed by Gilden et al. [GTM95]

and Patel and Balaban [PB00], showing that power laws can characterize the pitch struc-

ture in melodies. Manaris et al. [MVW+03] studied scaling laws in pitch, duration and

melodic intervals of a 220-piece corpus ranging from baroque, classical, romantic, jazz,
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rock and random music. The immediate question would be to test whether this behaviour

extends to other music features, specifically those that directly contribute to the identity of

the piece, such as rhythm. It is surprising that there is a gap of a few decades between re-

search on studying fractal-noise regularity analysis on the pitch structure in music and that

on rhythm. This question was addressed by Levitin et al. [LCM12] who studied rhythm

of 1788 movements from 558 compositions spanning 400 years of Western classical mu-

sic. Table 2.3.1 shows a brief summary of previous literature on power laws in music,

which will form a basis for this thesis’ contributions in Chapters 3 and 4. The outlined

state-of-the-art analytical approaches use distinct representations for symbolic music. Not

withstanding the manual analyses of sheet music used by Zipf [Zip49], two other musical

representations were used: (1) the Musical Instrumental Digital Interface standard (MIDI)

and (2) Humdrum **kern [Hur93]. The latter encodes core musical information (e.g., du-

ration information) as ASCII characters, and is a predefined representation used by the

musical anslysis software kit Humdrum [Hur94]. On the other hand, in the MIDI repre-

sentation, musical actions are described instead of sounded. For instance, the encoding

specifies what note is played at what time.
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Musical Scope of Dataset Music

Feature Analysis Size Representation

Zipf [Zip49]
melodic interval, length of intervals Mozart, Chopin,

5 Printed scores
between note repetitions Irving Berlin, Jerome Kern

Voss and Clark
pitch, loudness fluctuation, classical, jazz, blues, Several hours

Audio
[VC75, VC78] voltage and rock radio station of recordings

Hsü and Hsü [HH91] acoustic frequency J. S. Bach’s Invention no. 1 1 Digitized score

fluctuations in C Major, BWV 772

Manaris et al. pitch and duration Western classical composers 28 MIDI

[MVW+03, MRM+05] of musicals events 8 genres 196 MIDI

Zanette [Zan06] pitch and duration
J.S. Bach, Mozart,

4 MIDI
Debussy, Schoenberg

Levitin et al. [LCM12] rhythm Western classical compositions 558 Humdrum **kern

Table 2.1: A brief overview of existing literature on power law analysis of various music

features. Two representations of symbolic music are common: Humdrum **kern and

MIDI [Hur94].

The popularization of studying power laws in music by the works of Voss and Clarke

[VC75, VC78, Vos88] led to much debate as to the origins and necessity of such self-

similarity characteristics in music. Voss argues [Vos88]:

Both music and 1/f -noise are intermediate between randomness and pre-

dictability. Like fractal shapes there is something interesting on all (in this

case, time) scales. Even the smallest phase reflects the whole.

Another significant question initiated by the same line of work was whether fractal char-

acteristics affect the aesthetic quality of music, or can be used to predict which musical

25
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pieces will be most liked. Voss and Clarke [VC78] conducted listening experiments on

generated “white, 1/f , and 1/f 2 music” and concluded that, “1/f music was judged by

most listeners to be far more interesting than either the white music (which was ‘too ran-

dom’) or the scalelike 1/f 2 music (which was ‘too correlated’).”

Manaris [MVW+03, MRM+05] argues that aesthetically-pleasing music requires the

existence of a fractal structure. That is, the intricacies considered in generating pleasing

music will result in a structure that will manifest this scaling exponent.2 Accordingly,

Gardner notes: [Gar78]

The changing landscape of the world (or, to put it another way, the chang-

ing content of my total experience) seems to cluster around 1/f noise. It is

certainly not entirely uncorrelated, like white noise, nor is it as strongly cor-

related as brown noise. From the cradle to the grave my brain is processing

the fluctuating data that comes to it from its sensors. If I measure this noise at

the peripheries of the nervous system (under the skin of the fingers), it tends,

Mandelbrot says, to be white. The closer one gets to the brain, however, the

closer the electrical fluctuations approaches 1/f . The nervous system seems

to act like a complex filtering device, screening out irrelevant elements and

processing only the patterns of change that are useful for intelligent behaviour.

This observation about the human disposition to appreciate and create complex musical

structures — which paradoxically are elegant and simple because of their scale-free self-

similarity — has been further motivated by other researchers as well. For instance, Levitin

2It should be noted that, as highlighted by Manaris [MVW+03, MRM+05], the fractal structure found is
a necessary condition though not sufficient.
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2.4. EXTRACTION OF STRUCTURAL IDENTITY 27

et al. [LCM12] explain the finding of fractal power laws in rhythms (1/f structure) in

music as having an evolutionary/biological basis. Because 1/f structure is ubiquitous in

nature, they argue, the human brain evolved in such a way as to represent this regularity,

alongside other regularities of the physical world such as gravity, entropy, momentum, and

the forward motion of time [She87]. Composers introduce 1/f structure into their music

because they have internalized the power law as a property of nature, and they write music

to reflect these natural constants [VC78, Gar78, LCM12]. Human brains are evolved to

find power laws pleasing, whether in the fractal patterns of snowflakes and flowers or in

time series such as music [Gar78, Man83, WS90, MRM+05, Bea07, WLY09]. According

to the strong form of this argument, humans cannot help but to write music that conforms to

a power law when attempting to make aesthetically pleasing works [Ber71, Sch09, Bea07].

2.4 Extraction of Structural Identity

This section, describes the methodology used for analyses in Chapters 3 and 4. These

extract an information-rich structural information from a simple rhythmic representation

of music.The approach described here, will be applied to my Western and non-Western

repertoires of music scores for:

1. Temporal Representation: generate an efficiently-computable representation of

rhythm as a sequence of durations (standard musical note lengths) extracted from

scores.

2. Scale-Free Structural Features: investigate a concise representation of structural

repetitions in musical rhythm.
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• confirm the existence of temporal fractal relations in Western scores,

• demonstrate the existence of such self-similarity in Non-Western symbolic mu-

sic,

• highlight variation in values of such fractal exponents both among various

(Western and non-Western) composers and compositions of a particular com-

poser.

3. Structural Identity: use scale-free structural information in rhythm for classifica-

tion.

2.4.1 Temporal Representation: Music Time Series

Levitin et al. denote a raster representation of music to be an ordered sequence of the in-

tervals between successive note onsets, which are extracted from musical scores [LCM12].

To extract rasters from musical scores, those authors used scripts from the Humdrum

toolkit [Hur93]. In my analysis, rhythm is represented as music time series: a time se-

ries of durations of music events, measured in standardized quarter note lengths. I ap-

ply a new computational music analysis toolkit, music21 [CA10], to extract durations.

This toolkit provides for a hierarchical and event-based representation of music, “music21

stream” [AC11], and it has been applied for analysis in large symbolic music collections

[CAF11]. I use this tool, in place of Humdrum scripts used in [LCM12], to implement a

scalable, uniform framework of analysis for both MIDI and Humdrum **kern files in my

repertories. The use of this object-oriented Python toolkit makes future analysis, modifi-

cations or search of music scores based on fractal characteristics readily possible.
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2.4.2 Treatment of Silences in the Temporal Representation

“Music is the space between the notes.”

- Achille-Claude Debussy [Koo08]

A key question — turned into a parameter of the design — is the treatment of silences

(rests) in musical streams. Composers give silences an equal significance to notes; they

both influence and help shape the unique identity of a piece. The significant effect of

silences in forming musical identity, allows one to assign silences the same degree of

significance as notes in an analysis. John Cage’s famous “4’ 33” tacet for any inst/insts”

(1952) — consisting of three movements with only silences [PKG] — takes this particular

treatment of silences to an extreme. This composition ensures that a piece is perceived by

the audience devoid of any possible influence from the performers, the conductor and to

some extent even the composer.

In this thesis, notated durations are extracted from collections of symbolic (notated)

musical compositions. For each voice in a piece, durations of notes and rests are gener-

ated, and merged together. For instance, in this analysis, the music time series correspond-

ing to the schematic excerpt shown in Figure 2.4 is:

m = [1.5, 0.25, 0.25, 0.5, 0.5, 1, 1, 1, 1.5, 0.25, 0.25, 0.5, 0.5, 1, 1, 1, 1.5, 0.25, 0.25, 0.5, 0.5, 2, 1, 1, 1, 0.75, 0.25, 0.5, 0.5, 0.5, 0.5, 1].
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Figure 2.4: First eight measures from Beethoven’s String Quartet No. 1 in F Major (Op.

18, No. 1).

The merged durations of notes and rests form a concise representation of the rhythmic

content of a piece. By using notated compositions in this analysis, the set of possible

durations in the music time series will be finite — in contrast to performed durations. For

instance, Figure 2.5 visualizes the music time series corresponding to the first movement

of Beethoven’s Quartet No. 1 in F Major (Op. 18, No. 1), rBeethovenq18−1
. The durations

in rBeethovenq18−1
are measured in standardized quarter note lengths, and various voices (e.g.,

Violin I and Viola) are merged together. There are a total of 1948 durations in this music

time series, |rBeethovenq18−1
| = 1948.
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As an example, some of the predictability features (Section 2.2) computed for the

music time series corresponding to this Quartet are shown in Table 2.2. This shows that,

the shortest duration is a sixteenth note here, and that there are only nine unique duration

values in this music time series (F0 = 9 as shown in Table 2.2).

Music Time Series rBeethovenq18−1
= 〈r1, . . . , rn〉

Basic Statistics

n = |r| = 1948

E(rBeethovenq18−1
) = 0.48

σ(r) = 0.42

min(〈r1, . . . , rn〉) = 0.25

max(〈r1, . . . , rn〉) = 6

Coefficient of variation(R) = 0.87

E[ri − E[r]] = 0.23

IQR(r) = 0.25

Predictability Exponents (Π)

SImax = max(SI) = 269.69

|{ri|SI(ri) = SImax}| = 2

SI SImin = min(SI) = 0.55

SI |{ri|SI(ri) = SImin}| = 1

F0 = 9

Table 2.2: Basic statistical and predictability information about the first movement of

Beethoven’s Quartet No. 1 (Op. 18, No. 1).
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2.4.3 Scale-Free Structural Features

I adapted the methods discussed by Levitin et al. [LCM12] to analyze features of rhyth-

mic structure in my Western and non-Western symbolic music repertoires. Those authors

focused on power law features in spectra of rhythm computed using a spectral estima-

tion analysis, and refer to converging results computed using two time-domain analysis

approaches. I briefly mention these methods in what follows. The analyses in Chapter

3 and 4 focus on analysis in the time domain to exhibit the manifestation of scale-free

correlations in rhythmic structure of music. Classification in my analysis relies on the

information content of musical rhythm (Table 2.4.4). This is quantified using information

theoretic measures such as entropy and surprise index (predictability exponents - Section

2.2) and temporal power law correlation exponents (fractal exponents). The latter consist

of scale-free exponents generated from analysis in the time domain (α,H) and spectral

domain (β). These exponents are described below:

1. Spectral Exponent (β∗): Levitin et al. compute power law spectral exponent, β as

the slope of a linear fit to the logarithm of (mean) power spectrum in the frequency

range of 0.01 to 1 Hz. Though no particular justification is provided for the choice

of frequency range, this is consistent with previous research. For instance, Voss and

Clarke’s reported fractal noise in music for a variable range of frequencies smaller

than 1 Hz (as low as 0.002 Hz for a rock radio station and 4×10−4 Hz for a classical

radio station) . For comparative analyses, what matters is that the same range is

used for all time series under analysis. Thus, in my analyses, spectral exponents,

βinterpolate, are estimated using parameters identical to those used in [LCM12].
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Levitin et al. [LCM12] estimate the power spectra of the generated rhythmic rasters

— their equivalent representation of music time series — using the Chronux toolbox

[BAK+10], which implements multi-taper spectral estimation. The authors compute

the power law exponents as the slope of the linear regression fit to the log-log plot

of frequency versus power spectra of rhythm, with only frequencies in the 0.01 −

1 range considered. I denote these exponents by βinterpolate in my analysis, and

include two slightly different spectral exponents, denoted by βsimpleFit and βmtm.

For each music time series, βsimpleFit is computed identically to βinterpolate with

one difference: no frequency restriction in the linear fit. Lastly, βmtm exponents

are computed using a different power spectral estimation toolbox; Matlab’s built-

in implementation of Thomson’s multi-taper spectral estimation [Tho82, Mat] —

without any frequency restriction — is used. A drawback of spectral analysis is

an underlying assumption of stationarity, which may not hold for the majority of

musical genres.

2. Hurst Exponent (H): Hurst analysis is an empirical method used to study long-

range correlations in a time series. The Hurst exponent was first observed empiri-

cally by H. E. Hurst [Hur51] during his hydrological studies for the Nile, and was

further analyzed by Mandelbrot [MW69]. There are various estimators for this ex-

ponent. In my analysis, I compute the Hurst exponent, H , of a music time series

using a canonical rescaled range approach (R/S estimation) described in Algorithm

2.1. This exponent of self-similarity is estimated as (R/S) ≈ cnH : compute the

rescaled range, and compute the slope of a linear regression fit to log(R/S)n vs.

log(n). H is a measure of long-range dependence in a time series: estimated as
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0.5 for a random (uncorrelated) process [Hur51, HBS65]. Values greater than 0.5

are indicative of persistence (increases are likely to be followed by increases, and

decreases with decreases) in a time series, and values smaller than 0.5 are indicative

of anti-persistence processes. The Hurst exponent estimation with R/S has been

shown to be sensitive to bias for short time series [DRL+06].

3. Zipf Exponent: This power law exponent is the exponent of frequency’s exponent

decay with rank (most frequent events are not important) [Zip49]. This exponent,

denoted by simpleZipf in my analysis, is computed through a linear regression

applied to a log-transformed rank-frequency function of the data [WEG08]. In my

discrete context, a histogram of duration values is computed, frequency equal to

the number of elements contained in each bin is assigned to each bin (linear binning

[WEG08]). Ranks are assigned in decreasing order: the bin with the most number of

elements is assigned rank 1, and so forth. The exponent simpleZipf is the resulting

slope of a linear regression fit to the logarithms of the ranks.

4. Detrended Fluctuation Analysis - DFA Exponent (α): Detrended Fluctuation

analysis (DFA) introduced by Peng et al. [PHSG95] is an alternative approach for

measuring long-range correlations for both stationary and non-stationary time se-

ries. The DFA analysis — a modified random walk analysis — studies fluctuations

at various scales in a given time series without assuming any particular underlying

characteristics such as stationaritiy [PHSG95, BS12]. In this approach, displayed in

Algorithm 2.2, the input time series is first chopped into blocks of equal length n,

and for each block, a local linear trend — a linear least-square fit to the block —

is computed. For each local trend, variance of the difference between the original
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Algorithm 2.1 HURST EXPONENT ESTIMATION

Require: Input raster r = {xi}Li=1, where |r| = L and xi ≥ 0.
1: while L ≥ 8 do
2: Divide r into d chunks of length L: Xd = {{Zi,m}Li=1}dm=1 =
{Z1,m, . . . , ZL,m}dm=1

3: COMPUTE AVERAGE H ESTIMATE: (R
S

)L ← avgHEstimate(Xd, L)
4: STORE (L, (R

S
)L)

5: DIVIDE: L← L
2

6: end while
7: (slope, intercept)← linearRegression({(log d, log (R

S
)d)}d).

8: H ← slope

9: return H
10:
11: function AVGESTIMATE(r, l)
12: Slice r into portions pi of length l,
13: for i ∈ {1, . . . , d} do,
14: rescaledRangei ← hEstimate(pi)
15: end for
16: COMPUTE THE MEAN: (R

S
)l = 1

d
Σd
i=1rescaledRangei

17: return (R
S

)l
18: end function
19:
20: function HESTIMATE(p)
21: COMPUTE THE MEAN: E[p]←mean(p)
22: COMPUTE CUMULATIVE SUM y(t)← Σt

i=1xi − E[p]
23: COMPUTE THE RANGE: R(n)←maxt(y(t))−mint(y(t))
24: COMPUTE THE STANDARD DEVIATION: S(n)← σ(p)

25: COMPUTE RESCALED RANGE: rescaledRange← R(n)
S(n)

26: return rescaledRangen
27: end function
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values in the block and the corresponding estimates from the local trend is com-

puted (detrended walk). The variance of this detrended walk is averaged over all

blocks, denoted by F 2(n). The DFA exponent, α, is the slope of a linear least-

square fit to {logF (n)}n. The DFA analysis has been shown to be robust against

oscillatory trends [KKBR+01, BS12], and it has been applied to a wide array of

applications including correlation analysis in DNA [PBH+94, BGH+95], and stock

market analyses[VAB97].

Algorithm 2.2 DETRENDED FLUCTUATION ANALYSIS EXPONENT

Require: Input raster r = {xi}Li=1, where |r| = L and xi ≥ 0. return DFA exponent, α.

1: SEGMENT: r = {{Xi,m}ni=1}dm=1 = {X1,m, . . . , Xn,m}dm=1

2: CUMULATIVE SUM SERIES: {Ym}dm=1 = {{Σi
t=1Xt,m}ni=1}dm=1

3: FOR m ∈ {1, . . . , d} DO

4: (slopei, intercepti)← linearRegression(Ym)

5: F (m) =
√

1
n
Σn
i=1(yi,m − slopemi− interceptm)2

6: END FOR

7: F̄ (n) = 1
d
Σd
m=1F (m)

8: (slope, intercept)← linearRegression(log (n), log (F̄ (n)))

9: α← slope

2.4.4 Structural Identity

I use structural information in rhythm as discriminants to classify music in the repertoires

by composer labels. That is, machine learning — a subfield of Artificial Intelligence

(AI) [RNC+95] — algorithms are applied to use existing structural information in music
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to infer generalizations [Mit97]. In this context, I focus on supervised learning wherein

information is extrapolated from labelled input examples (training dataset). In my analysis

training datasets consist of the following features for each music time series:

• predictability features (Section 2.2.2),

• fractal exponents (Section 2.4), and

• composer labels (e.g., Mozart (Section 3.1) or Chinese music (Section 4.2.2))

Two supervised binary classifiers are trained on subsets of labelled datasets — Western

(Section 3.1) and non-Western (Section 4.2.2) — and are evaluated on the remainder por-

tions. That is, the goodness of these supervised classifiers is evaluated by measuring the

fraction of correct composer label assignments for instances that were not included in the

training phase; this process is repeated 10 times (10 fold cross-validation). Accuracy is

measured as the fraction of instances correctly classified (i.e., assigned the correct com-

poser label). In binary classifiers, with only two possible labels l1 and l2, accuracy is pre-

sented as a 2× 2 matrix of correct classifications (li as li, i = {1, 2}) or misclassifications

(li as lj where i 6= j, i, j ∈ {1, 2}). In other words, accuracy is measured in an overall

percentage of correct classification and presented in a confusion matrix. In the present

context, a classifier uses the training set to assign composer labels. Table 2.3 summarizes

the four possible outcomes of a confusion matrix for a binary classifier, with training set

R = {pcij }nj=1, where ci ∈ {0, 1} denote the composer labels.
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Table 2.3: A confusion matrix provides greater detail of accuracy. In the context of binary

classifying composer labels c0 or c1. Classifying compositions of ci as ci, represents cross-

diagonal entries in the matrix.

pc0j pc1j

f(pc∗j ) = c0 True positive False positive

f(pc∗j ) = c1 False negative True negative

My classification analysis applies logistic regression and decision trees, with 10-fold

validation, to classify composer labels using features listed in Table 2.4.4. The two clas-

sifiers are implemented in WEKA [HFH+09], a Java-based, open-source suite of machine

learning algorithms, with no modifications. Classification in Chapters 3 and 4 use statis-

tical features, denoted by Π, and fractal exponents (Table 2.4.4). In order to highlight the

influence of fractal exponents, I distinguish between the following classification scenarios.

Classification using

1. Predictability and Fractal Exponents - Denoted by {Π, Fractal exponents}, clas-

sification contains both sets of exponents

2. Predictability Exponents - Classification based on computed predictability features

of Section 2.2.2, denoted by Π,

3. Fractal Exponents - Classification using only fractional exponents of Section 2.4,

denoted by Fractal Exponents, and

4. DFA Exponent - Classification using only values of α in the training sets.
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In summary, the structural repetitions in music — quantified by temporal power law

correlation features in rhythm — are computed for large repertoires of Western (Chapter 3)

and non-Western (Chapter 4) symbolic music, and the informational significance of such

temporal features as distinguishers between various composers are investigated through

classification; This analysis approach is summarized in Figure 2.6.
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Figure 2.6: Two major components of analysis: power law exponent generation and clas-

sification. This figure focuses on the first and shows variation components generating the

feature scaling exponents. The generated exponents are spectral exponent (βinterpolate,

βsimpleFit, βmtm), Hurst exponent (H), and DFA exponent (α). The exponents are com-

puted for each composition of each composer under analysis.
43



3
Power Law Signatures for Western
Compositions

“Now our job is to invent, or discover, a deep structure out of which that

marvellous surface structure has been generated.”

Leonard Bernstein [Ber76]

This chapter studies the scale-free structural information encoded in Western classical

music rhythm. This is achieved by computing scale-free correlation exponents, temporal

fractal exponents, and is further used to form a composer signature. The Western music

collection consists of symbolic music only. This approach is used to analyze rhythmic

power law features devoid of any performance idiosyncrasies. A composer-by-composer

analysis of the computed fractal exponents is presented; variations and similarities for four

particular composers are further discussed; and compositions of anomalous scale-free tem-

poral exponents are highlighted. Finally, I present different cases of binary classifications

to determine the significance of these global self-similarity exponents — representing the

underlying power law phenomenon — as composer signatures.
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3.1. MUSIC COLLECTION 45

3.1 Music Collection

The Western classical music collection used in my analysis consists of symbolic mu-

sic taken from KernScores, an online library of musical scores [Sap05]. The collection

consists of machine-readable music pieces, stored in the Humdrum **kern data format

[Hur93], and includes compositions by a total of 24 Western composers from the 16th to

the 20th Century (Figure 3.1). Composers included in my Western analyses lived in dif-

ferent eras, hailed from a range of distinct countries and had distinct musical styles (Table

3.3). The analyses presented in this chapter are based only on the music pieces included in

this Western collection. Lastly, the choices of composers or their attributed music pieces

are limited to those available, in the appropriate format, in the digital online music library

at the time of this research.

Each music piece is represented as an a sequence of inter-onset durations of notated

musical events, notes and silences, ordered in time. This is the concise temporal represen-

tation of rhythm, referred to as a music time series in this thesis (Section 2.4.1), chosen

for the analysis of fractal exponents. The Western collection, RWestern, contains a total of

1165 music time series. Figure 3.2 shows a more granular statistical overview of the music

series collection, {rcj}j , corresponding to Western composer label, cj .
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1550 1600 1650 1700 1750 1800 1850 1900 1950

Giovannelli

Monteverdi

Frescobaldi

Buxtehude

Corelli

Vivaldi

Bach

Scarlatti

Haydn

Clementi

Mozart

Beethoven

Schubert

Mendelssohn

Chopin

Liszt

Foster

Brahms

Grieg

Sousa

MacDowell

Joplin

Scriabin

Gershwin

Figure 3.1: Chronological list of all Western composers. The plot’s y-axis marks the num-

ber of composers (no unit). The x-axis represents time (measured in years). A composer’s

lifetime is represented by an interval, and composers who hailed from the same country

are marked with the same colour.
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The 24 composers analyzed here may have features such as era and country of origin

in common (Figure 3.1). These similarities, in addition, to other distinctions are used to

investigate the variability in fractal exponents of different composers, and are the basis

of composer classifications. Depending on the availability of scores in KernScores at the

time of this study, the number of music time series varies from composer to composer. The

lengths of music time series, displayed in Figure 3.2, show variation from composer to

composer. The number of music time series corresponding to Western classical composer

cj is denoted by |Rcj | Figure 3.2shows that each composer, cj , has at least three music

times series included in my analysis.
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Number	
  of	
  Music	
  
Time	
  Series

Min Max Mean Standard	
  
Deviation

Bach 158 200 4338 633 529
Beethoven 173 208 5665 1462 827
Brahms 5 463 2194 1044 681
Buxtehude 12 242 1532 640 338
Chopin 75 200 3442 573 491
Clementi 15 226 992 515 236
Corelli 24 219 544 344 91
Foster 3 206 334 265 65
Frescobaldi 40 374 724 502 78
Gershwin 28 207 422 285 61
Giovannelli 6 210 312 249 35
Grieg 14 211 1376 506 328
Haydn 241 208 2251 860 467
Joplin 46 207 2176 596 256
Liszt 4 766 2781 1337 967
MacDowell 9 234 1732 560 487
Mendelssohn 3 269 1185 576 527
Monteverdi 13 200 592 330 127
Mozart 148 205 2314 903 539
Scarlatti 59 249 1511 639 231
Schubert 19 200 1920 574 603
Scriabin 11 302 1204 623 251
Sousa 10 387 840 586 145
Vivaldi 49 200 3041 951 538

Length	
  of	
  Music	
  Time	
  Series

Figure 3.2: For each composer cj in this Western collection, the number of music time
series |Rcj | = |{r

cj
1 , . . . , r

cj
n }|. Moreover, for each music time series in cj’s collection, the

mean(E(|rcji |)), sample standard deviation (σ(|rcji |)), min(|rcji |), and max(|rcji |) lengths
of the music time series are computed. The composers are sorted alphabetically.
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Composer Life Span Era Country of Birth

Giovannelli, Ruggiero 1560-1625
Late Renaissance/   

Early Baroque Italy

Monteverdi, Claudio 1567-1643
Late Renaissance/ 

Early Baroque Italy
Frescobaldi, Girolamo 1583-1643 Baroque Italy
Buxtehude, Dieterich 1637-1707 Baroque Germany
Corelli, Arcangelo 1653-1713 Baroque Italy
Vivaldi, Antonio 1678-1741 Baroque Italy
Bach, Johann Sebastian 1685-1750 Baroque Germany
Scarlatti, Domenico 1685-1757 Galant Italy
Haydn, Joseph 1732-1809 Classical Austria
Clementi, Muzio 1752-1832 Classical Italy
Mozart,           
Wolfgang Amadeus 1756-1791 Classical Austria
Beethoven, Ludwig van 1770-1827 Classical/Romantic Germany
Schubert, Franz 1797-1828 Classical/Romantic Austria
Mendelssohn, Felix 1809-1847 Romantic Germany
Chopin, Frederic 1810-1849 Romantic Poland
Liszt, Franz 1811-1886 Romantic Hungary
Foster, Stephen 1826-1864 American Folk USA
Brahms, Johannes 1833-1897 Romantic Germany
Grieg, Edvard 1843-1907 Romantic Norway
Sousa, John Philip 1854-1932 Romantic/ Military USA
MacDowell, Edward 1860-1908 Romantic USA
Joplin, Scott 1867-1917 Ragtime USA
Scriabin, Aleksander 
Nikolayevich 1871-1915 Late Romantic Russia

Gershwin, George 1898-1937
Musical Theatre 

Composer USA

Figure 3.3: Western classical composers included in the Western fractal signature analysis.

Composers are sorted chronologically by year of birth, and further categorized by their

corresponding musical era and last name.

In this collection of compositions, a simple count of unique values in all music time
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series reveals that the most frequently-used duration value is 1, corresponding to the no-

tated duration of the musical quarter note, often associated by musicians with one beat

(or the tactus). Also, a simple calculation reveals that, on average, the music time series

contain more randomness (i.e., are more unpredictable) in their second half. That is, the

(Shannon) entropy computed for a time series’ first half is lower than its second half; there

is a small increase in entropy from 1.69± 1.2 to 1.80± 1.3 (µH ± σH), though this is not

statistically significant.

3.1.1 Limitations of the Music Collection

The choices of compositions analyzed here are not random. For the sake of consistency, I

only included music pieces from the KernScores online library of musical scores [Sap05].

Although this collection provides for a great starting point, extending the analysis dis-

cussed in this thesis to a more comprehensive collection of Western music is left for future

research. Moreover, this collection of available classical music scores contains music

pieces for which the year of composition are not definitively known. In those cases, either

the approximate year of composition — according to appropriate musical history records

— or the average of the attributed compositional interval is used in my analysis.

3.2 Western Temporal Power Law Spectral Exponents

Section 2.4 outlined methods used to generate scale-free temporal correlation exponents

for music time series. DFA and Hurst fractal exponents, denoted by α andH , are computed

using Algorithms 2.2 and 2.1 respectively. The average behaviour of these exponents are

50



3.2. WESTERN TEMPORAL POWER LAW SPECTRAL EXPONENTS 51

summarized for each Western composer , based on his corresponding sample music time

series included here.

3.2.1 Detrended Fluctuation Analysis Scaling Exponents

DFA power law exponents, α, are computed using the Detrended Fluctuation Analysis al-

gorithm [PHSG95] (Algorithm 2.2) for compositions available in this Western collection

whose music time series have a minimum length of 200. This minimum length require-

ment — identical to the minimum length of rasters in [LCM12] — ensures that the du-

ration of each music piece is sufficiently long to contain characteristic information; such

a restriction will not eliminate may music time series in the Western collection analyzed

here (Figure 3.2).

The DFA exponents of the Western collection analyzed in this dissertation are dis-

played in Figures 3.4, 3.6 and 3.5. The mean DFA exponents fell in the 0.5 − 1 range

(Figures 3.4 and 3.6); that is, fractal power law behaviour emerged in the music time

series of the Western compositions studied. The α values, though similar for some com-

posers, vary from composer to composer, and are distinct for different compositions of a

particular composer (Figures 3.4).
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Composer Mean Standard 
Deviation Min Max Number of 

Compositions Era Country of 
Birth

1785-1826 Beethoven 1.03 0.15 0.61 1.49 173 Classical/ 
Romantic Germany

1853-1896 Brahms 0.99 0.13 0.88 1.21 5 Romantic Germany
1607-1643 Frescobaldi 0.97 0.16 0.55 1.31 40 Baroque Italy
1703-1741 Vivaldi 0.92 0.22 0.36 1.29 49 Baroque Italy
1764-1791 Mozart 0.89 0.14 0.54 1.32 148 Classical Austria
1750-1803 Haydn 0.88 0.18 0.41 1.31 241 Classical Austria
1658-1705 Buxtehude 0.88 0.16 0.65 1.19 12 Baroque Germany
1771-1821 Clementi 0.88 0.14 0.69 1.26 15 Classical Italy
1822-1886 Liszt 0.87 0.19 0.61 1.01 4 Romantic Hungary

1872-1932 Sousa 0.82 0.2 0.55 1.21 10 Romantic/ 
Military USA

1700-1757 Scarlatti 0.81 0.18 0.35 1.18 59 Galant Italy
1821-1847 Mendelssohn 0.79 0.32 0.46 1.09 3 Romantic Germany

1880-1904 MacDowell 0.79 0.14 0.62 1.07 9 Romantic USA
1677-1712 Corelli 0.76 0.18 0.46 1.14 24 Baroque Italy
1862-1906 Grieg 0.73 0.25 0.38 1.12 14 Romantic Norway

1810-1828 Schubert 0.71 0.18 0.37 1.05 19 Classical/ 
Romantic Austria

1583-1624 Giovannelli 0.68 0.2 0.46 0.94 6
Late 
Renaissance/   
Early Baroque

Italy

1886-1914 Scriabin 0.68 0.15 0.46 0.95 11 Late Romantic Russia
1821-1849 Chopin 0.67 0.24 0.23 1.68 75 Romantic Poland
1899-1917 Joplin 0.65 0.11 0.51 0.96 46 Ragtime USA

1582-1643 Monteverdi 0.64 0.18 0.33 0.94 13
Late 
Renaissance/   
Early Baroque

Italy

1844-1862 Foster 0.64 0.17 0.52 0.84 3 American Folk USA

1703-1749 Bach 0.63 0.12 0.36 1.45 718 Baroque Germany
1916-1937 Gershwin 0.41 0.14 0.21 0.7 28 Musical Theatre USA

Figure 3.4: DFA (α) exponents for Western composers sorted in a decreasing order of

mean α. The composers professional time lines are used to categorize the composers in to

groups with distinct colors: (1) Early to mid 17th century, (2) Mid to late 18th century, (3)

Early 20th century.

In this collection of Western composers, Beethoven — with the highest mean α = 1.03

— and Gershwin — with the lowest mean α = 0.41 — represent the composers with
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the most and least predictable rhythmic structures, respectively (Figure 3.4). Gershwin’s

minimal DFA exponent, indicates that his rhythmic compositional style contains fewer

long-range correlations. One of Gershwin’s signatures is that he helps the listener learn

the motifs that are to come by restating the opening material, and then he follows that

with contrasting material [RC]. At the other end of the extreme, Figure 3.5 indicates

that Beethoven’s compositions , analyzed in this sample collection, are more structurally

correlated, and contain more long-range patterns. It is interesting to note the similarity

between the exponents of Beethoven and Brahms computed in my analysis, which may be

attributed to similarities in compositional style of these composers [BW].

Figure 3.4 highlights similarities in the DFA exponents computed, for music pieces

included in this Western collection. For instance, Haydn (1750 − 1803) has a mean α

of 0.88(± 0.18) and Liszt (1822 − 1886) has 0.87(± 0.19), where the values inside the

brackets represent the corresponding standard deviations.
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Figure 3.5: The Detrended Fluctuation Analysis (DFA) Exponents, α, computed for each

music piece in the Western classical collection presented. The exponents are sorted in
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The values of α computed for composers in this Western collection are shown in Figure

3.5.
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0.4 0.6 0.8 1.0 1.2

Monteverdi

Frescobaldi

Buxtehude

Corelli

Vivaldi

Bach

Scarlatti

Haydn

Clementi

Mozart

Beethoven

Schubert

Chopin

Grieg

Sousa

MacDowell

Joplin

Scriabin

Gershwin

Gershwin

Beethoven

Frescobaldi

Mozart

Vivaldi

1643

1791

1904

1937

Mean DFA Exponents and Standard Error of Mean

C
o

m
p

o
s
e

rs

Figure 3.6: Mean DFA exponents. Each interval indicates the mean and the standard error

mean for a particular Western composer in this study. Composers are sorted chronologi-

cally, and only those with 15 music time series in the Western collection of Section 3.1 are

displayed.
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The variability of the presented temporal fractal exponents — both for different com-

posers as well as various compositions of a particular composer — highlight the richness

of rhythmic structures in music. It is surprising that some of the most well known com-

posers have highly concentrated α ranges. For instance, this study shows that the DFA

exponents of music time series that were available for Bach, Mozart, and Scarlatti have

small standard errors of mean (Figure 3.6).

3.2.2 Hurst Exponents

The Hurst exponent (H), measuring long-range correlations [Hur51, HBS65], is computed

for each music time series using Algorithm 2.1 described in Section 2.4.

HGershwin
ri

ri ∈ RGershwin) ≈ 0.5 where ri ∈ RGershwin, is notably smaller than other

composers’ (Figure 3.7). On the other hand, Beethoven’s Hurst values (E[H(RBeethoven)] =

µ({HBeethoven
ri

}ri∈RBeethoven
) = 0.99) — similar to his DFA exponents (E[α(RBeethoven)] =

µ({αBeethoven
ri

}ri∈RBeethoven
) = 1.03) discussed in Section 3.2.1 — highlight the existence

of highly structured patterns in his compositions available in my collection, and confirm

Levitin et. al.,’s previous finding that Beethoven’s rhythms are among the most predictable

[LCM12]. Lastly, Frescobaldi’s forty compositions analyzed here, exhibit the least amount

of variation in H . It is evident that although there are similarities between the power law

exponents of all composers, there is also considerable variation.
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Composer Mean Standard 
Deviation Min Max Number of 

Compositions Era Country of 
Birth

Liszt 1.08 0.2 0.84 1.27 4 Romantic Hungary
Bach 1.03 0.14 0.37 1.73 718 Baroque Germany
Brahms 1.02 0.14 0.89 1.25 5 Romantic Germany
Mendelssohn 1 0.36 0.65 1.36 3 Romantic Germany

Beethoven 0.99 0.15 0.68 1.54 173 Classical/ 
Romantic Germany

Vivaldi 0.95 0.17 0.49 1.38 48 Baroque Italy
Buxtehude 0.94 0.19 0.59 1.35 12 Baroque Germany

Sousa 0.93 0.13 0.77 1.15 10 Romantic/ 
Military USA

Frescobaldi 0.92 0.08 0.71 1.05 40 Baroque Italy
Clementi 0.88 0.17 0.56 1.24 15 Classical Italy
Haydn 0.87 0.16 0.48 1.47 241 Classical Austria
Scarlatti 0.87 0.23 0.46 1.45 59 Galant Italy
MacDowell 0.86 0.19 0.6 1.2 9 Romantic USA
Mozart 0.84 0.11 0.56 1.23 148 Classical Austria
Grieg 0.83 0.19 0.55 1.26 14 Romantic Norway
Chopin 0.82 0.29 0.3 1.75 75 Romantic Poland

Giovannelli 0.81 0.11 0.66 0.97 6
Late 

Renaissance/E
arly Baroque

Italy

Corelli 0.77 0.15 0.55 1.08 24 Baroque Italy
Scriabin 0.77 0.19 0.51 1.15 11 Late Romantic Russia

Schubert 0.75 0.23 0.51 1.39 19 Classical/ 
Romantic Austria

Monteverdi 0.74 0.1 0.59 0.93 13
Late 

Renaissance/E
arly Baroque

Italy

Joplin 0.73 0.12 0.56 1.06 46 Ragtime USA
Foster 0.58 0.17 0.41 0.74 3 American Folk USA

Gershwin 0.49 0.13 0.31 0.9 28 Musical 
Theatre USA

Figure 3.7: Mean Hurst values (H) for Western composers of Table 3.3. Rows are sorted

in a descending order of H . Each row is highlighted by three colors: green for composers

born in the 16th, blue for those born in the 17−18th and red for the composers of 19−20th

century.

For the sample Western collection available here, Section 3.3 presents presents fur-

ther analysis for groups of composer — where there is a common characteristic amongst
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composers in each group.

3.3 Fractal Exponents: Influence of Time and Geography

A composer’s compositions may be influenced both by the musical style of his era (time

period factor), his contemporaries (competition factor), as well as his personal preferences

molded by his upbringing (nationality factor). These factors are not, by any measure, an

exhaustive list of all that may influence a composer’s compositional style. Tables 3.1 and

3.2 demonstrate temporal power law exponents computed for composers grouped by time

period and country of origin. The results outlined therein show that indeed composers

with similar time period, competition and nationality factors may have structurally-similar

compositions. These similarities are further discussed in the binary classification Section

3.5.

3.3.1 Similar Time Era

This section presents fractal exponents for composers that have lived during the same

time period (i.e., they are coeval), and had similar corresponding periods of professional

activity. The beginning of a professional timeline is marked by a composer’s first com-

position, and unless otherwise stated, all proceeeding timelines correspond to periods of

professional activity.
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Composer (cj) Life Span Professional Timeline |Rcj | E[α] E[H]

Giovannelli, Ruggiero 1560− 1625 1583− 16241 6 0.68 0.81

Monteverdi, Claudio 1567− 1643 1582− 16432 13 0.64 0.74

Buxtehude, Dieterich 1637− 1707 1658− 17053 21 0.88 0.94

Corelli, Arcangelo 1653− 1713 1677− 17124 47 0.76 0.77

Bach, Johann Sebastian 1685− 1750 1703− 17495 908 0.79 0.92

Scarlatti, Domenico 1685− 1757 1700− 17576 59 0.81 0.87

Vivaldi, Antonio 1678− 1741 1703− 17397 61 0.92 0.95

Joplin, Scott 1867− 1917 1899− 19178 46 0.65 0.73

Sousa, John Philip 1854− 1932 1872− 19329 10 0.82 0.93

Scriabin, Aleksander Nikolayevich 1871− 1915 1886− 191410 13 0.69 0.77

Table 3.1: Western Composers’ Fractal Exponents. Temporal power law exponents listed

here are mean values of exponents computed using the DFA (Algorithm 2.2) and Hurst

(Algorithm 2.1) algorithms. Total number of compositions analyzed for composer cj is

denoted by |Rcj |.

Table 3.1 demonstrates similar exponents, based on the samples collection studied

here. However, there are also coeval composers with distinct temporal fractal exponents,

in my study. For instance, mean α value for Vivaldi (1703 − 1739) is higher than that of

Scarlatti (1700 − 1757), in this Western collection. Also, my investigation found distinc-

tions between the power law signatures of Bach and Vivaldi: That is, Figure 3.6 shows a

distinction between the mean and standard error of mean of the DFA Exponents computed

for the Bach (1703−1749) and Vivaldi (1703−1741) sub-categories available for analysis

here.
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3.3.2 Similar Origins

Patel [Pat06] shows that the native language of a composer and the structure of his compo-

sitions may be correlated. I investigate this influence for four composers born in Germany.

Here, I focus on Western composers hailing from the same country as an indicator of a

commonality between their first languages (mother tongue). Table 3.2 shows basic infor-

mation for compositions attributed to Bach, Beethoven, Buxtehude and Brahms, a total of

1124 music time series.

Composer (cj) Country of Birth |Rcj | E[α] E[H]

Bach, Johann Sebastian Germany 908 0.79 0.92

Buxtehude, Dieterich Germany 21 0.88 0.94

Beethoven, Ludwig van Germany 186 1.03 0.9

Brahms, Johannes Germany 9 0.99 1.02

Table 3.2: Fractal Exponents - Composers born in the same country. Temporal power law

exponents listed correspond to mean values. Temporal power law exponents listed here are

mean values of exponents computed using the DFA (Algorithm 2.2) and Hurst (Algorithm

2.1) algorithms. |Rcj | denotes the number of the compositions analyzed for composer cj .

In my investigation, I found disinctions between the fractal signatures for composers

with a common mother tongue (e.g., consider Bach and Beethoven in Table 3.6).
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3.4 Western Composers Case Studies

In this section, I provide a more in-depth analysis for four composers. These composers

were selected for their distinct professional timelines, music styles, and the large number

of music time series available for each in my Western dataset (Section 3.1). My goal

is to show that the power law exponents, as measures of self-similarity, can be used to

analyze and ultimately classify compositions by their composers. In other words, these

power law exponents will be shown to be useful in forming a signature for each composer.

The composers analyzed are: Gershwin (Section 3.4.1), Grieg (Section 3.4.2), Mozart

(Section 3.4.3), and Scarlatti (Section 3.4.4). The factors influencing the creation of each

composition are diverse. For instance, each composer’s set of compositions is influenced

by the era in which the composer lived in and his geographical location. This influence

may be minimal, but I note that there is further diversity in the nationality of the composers

chosen as representatives in the following sections.

Composer Name Life Span Professional Span Nationality Era

George Gershwin 1898− 1937 1916− 1937 American Musical Theatre Composer

Edvard Grieg 1843− 1907 1862− 1906 Norwegian Romantic

Wolfgang Amadeus Mozart 1756− 1791 1764− 1791 Austrian Classical

Domenico Scarlatti 1685− 1757 1700− 1757 Italian Galant

Table 3.3: Basic information about the four case study composers in my Western composer

collection.
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The composers selected as case studies (Table 3.3) had no direct influence on each

other, lived in different time periods, hailed were from distinct countries and had various

musical styles.

3.4.1 George Gershwin

George Gershwin (1898− 1937) was an American composer of popular songs and musi-

cals (Broadway shows) as well as a composer of jazz-influenced classical music [BGP06,

Sch73, CSC13]. The analysis here focuses on Gershwin’s professional work from 1921

to 1946. The twenty nine compositions analyzed, along with their corresponding year of

composition [Sch73, Gib95, Car00], are listed in Figure 3.8. Gershwin, who by the early

1920s had become established as composer, composed his first composition in 1916 and

first full Broadway score, “La, La, Lucille”, in 1919 [BGP06, Sch73, CSC13]. To bet-

ter understand his compositional characteristics, here I analyzed compositions from 1921

until his death.

The collection available for Gershwin, RGerwhsin contains 27 music pieces. Figure

3.8 shows the lengths of series analyzed in my investigation, when sorted by the year of

composition. The two longest analyzed composition are “Fascinating Rhythm” (1924),

|rgersh06.krn| = 422, and “Nashville Nightingale” (1923) with |rgersh20.krn| = 400. The

shortest composition analyzed, |rgersh03.krn| = 204, is “Bidin’ My Time” composed in

1930. It also shows that, if one were to consider number of compositions in a year as a

measure of activity, then — based on this small collection available — Gershwin, with

four compositions, was most active in the year of his death.

The Gershwin music pieces, rGershwini , analyzed here all have DFA exponents less than
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0.75: That is, Figures 3.5, 3.8 show that ∀rGershwini ∈ RGershwin, α
Gershwin
ri

< 0.75. The

Gershwin music pieces available —RGershwin outlined in Figure 3.8 — were found to have

much smaller DFA exponents compared to other composers included in this study (Figure

3.5); these compositions, with µ({αGershwin
ri

}ri∈RGershwin
) = 0.41 (Table 3.4), demonstrated

very distinct temporal signatures from other composers in my analysis (Figure 3.6).

|RGershwin| = 29 Mean Median Standard Deviation

α 0.41 0.39 0.14

Table 3.4: Gershwin - Average Temporal Correlation Power Exponent (DFA)
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Composition Name Year of 
Composition

DFA 
Exponent

Music Time 
Series Length

Drifting Along with the Tide 1921 0.47 217
Innocent Lonesome Blue Baby 1923 0.4 290
Nashville Nightingale 1923 0.66 400
Fascinating Rhythm 1924 0.61 422
The Half of it, Dearie, Blues 1924 0.53 214
Naughty Baby 1924 0.35 269
It's a Great Little World 1925 0.44 229
Kickin' the Clouds Away 1925 0.39 288
Fidgety Feet 1926 0.24 257
High Hat 1927 0.22 216
How Long Has This Been Going On? 1927 0.25 309
I've Got a Crush on You 1928 0.29 247
Bidin' My Time 1930 0.51 207
Could You Use Me? 1930 0.46 343
I Got Rhythm 1930 0.47 256
Love Is Sweeping the Country 1931 0.26 237
You've Got What Gets Me 1932 0.21 264
Isn't It a Pity? 1933 0.35 354
I Got Plenty O' Nuttin' 1935 0.7 312
(I've Got) Beginner's Luck 1937 0.3 264
A Foggy Day 1937 0.42 225
I Can't Be Bothered Now 1937 0.35 293
Love Is Here to Stay 1937 0.52 261
Nice Work If You Can Get It 1937 0.45 328
They Can't Take that Away from Me 1937 0.23 324
Shall We Dance? 1937 0.38 209
Let's Call the Whole Thing Off 1937 0.65 379

Figure 3.8: George Gershwin (1898− 1937) - Compositions sorted chronologically by the

year of composition [Sch73, Gib95, Car00].
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α Length of Analysis Name Year

(|rGershwini |) of Composition

0.66 400 “Nashville Nightingale” 1923

0.24 257 “Fidgety Feet” 1924

0.61 422 “Fascinating Rhythm” 1924

0.22 216 “High Hat” 1927

0.25 309 “How Long Has This Been Going On?” 1927

0.26 237 “Love Is Sweeping the Country” 1931

0.21 264 “You’ve Got What Gets Me” 1932

0.70 312 “I Got Plenty O’ Nuttin”’ 1935

0.23 324 “They Can’t Take that Away from Me” 1937

0.65 379 “Let’s Call the Whole Thing Off” 1937

Table 3.5: Gershwin - Compositions with fractal exponents at least one standard deviation

removed from the mean.

The collection of Gershwin music time series studied here revealed variation in values

of α, even for some compositions in the same year (e.g.,“Hight Hat” and “How Long

Has This Been Going On”) composed in 1927 (Table 3.5). Figure 3.9 presents the DFA

exponents computed for the Gershwin sub-collection, RGershwin, sorted chronologically.
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Figure 3.9: DFA exponents for the music series attributed to Gershwin in this study. The

red plot illustrates the changes in mean DFA exponents — averaged over α value(s) com-

puted for each particular year — over time.

Although no clear long-range disorder trends — a consistent decrease or increase in

disorder — are apparent in a chronological grouping of Gershwin’s compositions (Figures

3.8 and 3.9), a few critical points of disruption can be detected. For instance, based on

the Gershwin music time series included in this study, there is a gradual decrease in The

mean α values of his compositions from 1923 − 1926. That is, in my study, the mean
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α values for compositions in 1923 to 1926 decrease; more precisely, a decreasing trend

is visible from ᾱGershwin
y1923

to ᾱGershwin
y1926

(Figure 3.9), where the mean DFA exponents of all

compositions in year yi is computed as ᾱGershwin
yi

= µ({αGershwin
ri

}ri∈RGershwin
yi

). In the con-

text of this study, Figure 3.9 also shows an increase from ᾱGershwin
y1926

to ᾱGershwin
y1930

, a decrease

from ᾱGershwin
y1930

to ᾱGershwin
y1932

, and a increase from ᾱGershwin
y1930

to ᾱGershwin
y1935

. That is, I consider

1926, 1930, and 1935 to be points of disruption for this Gershwin collection (Figure 3.9).

Based on these observations and in the context of the Gershwin collection available, com-

positions of 1926, 1930, and 1935 signify a sudden change in the composer’s regularity

style. Biographical notes indicate that Gershwin’s success in 1924 led to a few lifestyle

changes. The resulting financial flexibility led him to move his family to upper West side

in Manhattan, and around the same time, his interest in visual arts increased as he began

painting himself and also collecting paintings and sculptures [CSC13]. Years 1925 − 26

mark the creation of his Concerto in F for piano and orchestra, which deviates from his

compositional style in that it is a non-musical theater piece [CSC13]. The years following

1926 mark his growth as a composer. In 1928, he traveled to Europe and met influential

composers such as Prokofiev, Ravel, Poulenc, Milhaud, and Berg [CSC13]. In particular,

meeting Ravel had great influence on his compositional style [BGP06, Sch73, CSC13].

The sudden increase in both the number of compositions as well as the notable fluctuation

in fractal exponents of compositions in the 1928 − 1931 period may be attributed to a

few milestones in his professional life. The early thirties mark Gershwin’s focus on con-

cert music [CSC13] in addition to his compositions for Broadway productions. The same

period marks his debut as a conductor (1929) [CSC13] and his first visit to Hollywood

(1930 − 31) [CSC13]. This period culminated with the success of his “Porgy and Bess”
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(1935) and his untimely death [CSC13]. To the extent that this Western collection permits,

Gershwin was prolific both in performance and composition (Figure 3.8) in his final year

[CSC13].

3.4.2 Edvard Grieg

In this section, I focus on compositions by Edvard Grieg, a Norwegian composer (1843−

1907), included in the Western collection of Section 3.1. Compositions studied here en-

compass pieces from 1861 to 1875, and include solo piano, lyric piano, sonata, dances and

incidental music (suite) pieces (Figure 3.10).
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Index Composition Name
Composition 

Year Notes

op01-3.krn
Four Piano Pieces, Op. 1. Mazurka: Con 
grazia (A minor) 1861

op03-4.krn
Poetic Tone-Pictures, Op. 3. Andante con 
sentimento (A major) 1863

op06-3.krn
Humoresques, Op. 6. Allegretto con grazia (C 
major) 1865

op17-01.krn
Norwegian Folksongs and Dances, Op. 17. 
Spring Dance I, Allegro marcato (C major) 1869

butterfly.krn Lyric Pieces, Op. 43 No. 1. Butterfly (A major) 1886
solitary-
traveller.krn

Lyric Pieces, Op. 43 No. 2. Solitary Traveller (B 
minor) 1886

native-
country.krn

Lyric Pieces, Op. 43 No. 3. In My Native 
Country (F major) 1886

little-bird.krn Lyric Pieces, Op. 43 No. 4. Little bird (D minor) 1886

erotic-poem.krn Lyric Pieces, Op. 43 No. 5. Erotikon (F major) 1886

to-spring.krn
Lyric Pieces, Op. 43 No. 6. To Spring (F major) 1886

op66-06.krn
Norwegian Folksongs, Op. 66 
Cow Call and Lullaby, Andante -- Allegro 1896

op12-2.krn
Lyric Pieces, Op. 12 2. Waltz: Allegro moderato 
(A minor) 1864-1867

op07-1.krn
Piano Sonata in E minor, Op. 7 Allegro 
moderato 1865 (rev.1887) (rev.1887)

op46-1.krn

Peer Gynt Suite No. 1, Op. 46 [piano solo 
transcription]
Morning Mood (E major) 

1874-75*

1874-75; 
revised 

1885,1887-
88,1890-92, 

1901-02
op46-3.krn Anitra's Dance 1874-75*
op46-4.krn In the Hall of the Mountain-King (B minor) 1874-75*

Figure 3.10: List of compositions by Grieg available for my Western power law analysis.

sCompositions are sorted chronologically.

First, the compositions have a mean length of 506 ± 328. The shortest composition,

“Lyric Pieces, Op. 43 No. 2. Solitary Traveller (B minor)” (1886 [BSEHS88]), has 211

inter-onset durations. From his later years, I consider five compositions from 1886.
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Figure 3.11: Grieg - Lengths of various music time series corresponding to compositions

of Figure 3.10.

In these compositions (Figure 3.10), Grieg prefers shorter length notes. That is, the

most frequent note duration used in his compositions studied here has mean value of 0.39±

0.22, with a range of 0.12− 1.
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3.4.2.1 Grieg - DFA Exponent (α)

Table 3.6: Compositions with fractal exponents at least one standard deviation removed

from the mean. The table also shows the length and year of composition of each music

time series.

α Index (rGriegi ) |rGriegi | Composition Name
Year

1.12 op07-1.krn 1376 “Piano Sonata in E minor, Op. 7 Allegro moderato” 1865

0.41 op17-01.krn
258 “Norwegian Folksongs and Dances, Op. 17.

1869
Spring Dance I, Allegro marcato (C major)”

1.07 butterfly.krn 632 “Lyric Pieces, Op. 43 No. 1. Butterfly (A major)” 1886

0.45 little-bird.krn 340 “Lyric Pieces, Op. 43 No. 4. Little bird (D minor)” 1886

0.38 solitary-traveller.krn 211 “Lyric Pieces, Op. 43 No. 2. Solitary Traveller (B minor)” 1886

In the collection analyzed here, certain pieces stand out either for their compositional

context or their style. For instance, Grieg’s “Norwegian Folksongs and Dances, Op. 17.

Spring Dance I, Allegro marcato (C major) ” (op17−01), composed in 1869, highlights his

nationalism by incorporating Norwegian musical and composition elements [BSEHS88].

Here, his only piano sonata — dedicated to the Danish composer Niels Gade [Bai93] — is

included. The piece, “Piano Sonata in E minor, Op. 7 Allegro moderato” (op07− 1), was

first composed in 1865 and then revised in 1887. The α values for both these pieces stand

out from the rest and are at least one standard deviation away from the mean (Table 3.6).

In particular, his piano sonata is his most structurally predictable piece with the maximal
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Figure 3.12: Grieg - DFA (α) exponents sorted in chronological order of composition.

α of 1.12 (Figure 3.12).

DFA analysis of Grieg’s compositions (Figure 3.12) shows that the maximal α value,

1.12, occurs earlier in his professional life (“Piano Sonata in E minor, Op. 7 Allegro mod-

erato” - 1865) when he was only 22 years old [BSEHS88]. The piece with the highest

level of disorder, as measured by distance to α(white noise) = 0, is “Lyric Pieces, Op.

43 No. 2. Solitary Traveller (B minor)” with an α value of 0.38 and was composed in

1886. This study contained more pieces from the composer’s later years (Figure 3.12 (a)).

73



3.4. WESTERN COMPOSERS CASE STUDIES 74

Here, the composer has the highest frequency of composition in 1886. All compositions

in that year are lyric piano piece [BSEHS88] with “Lyric Pieces, Op. 43 No. 1. Butterfly

(A major)” having the highest level of regularity (α = 1.07), as shown in Figure 3.12 (b).

From a regularity point of view, the fluctuation structure of the piece is closer to that of

“Piano Sonata in E minor, Op. 7 Allegro moderato” - 1865 (α = 1.12). That is, his second

most temporally regular piece occurs in his later years (Figure 3.12). To make any defini-

tive conclusions about chronological trends in Grieg’s compositions, the study needs more

compositional data. Nonetheless, Figure 3.12 represents DFA exponents computed for his

compositions sorted by year, and highlights the variability of DFA exponents in his com-

positions, stuided here. This also shows similarities between compositions of 1863 and

1874 − 1875, where α = 0.98 in both cases. This demonstrates that Grieg has composed

two pieces, separated by more than a decade, that are structurally highly similar.

3.4.3 Wolfgang Amadeus Mozart

“It is hard to think of another composer who so perfectly marries form and

passion ... Mozart combines serenity, melancholy, and tragic intensity into one

great lyric improvisation. Over it all hovers the greater spirit that is Mozart’s-the

spirit of compassion, of universal love, even of suffering–a spirit that knows no

age, that belongs to all ages.”

Leonard Bernstein [Ber70]

Wolfgang Amadeus Mozart (1756 − 1791), an iconic child prodigy, was an Austrian

composer who personifies Western classical music for most (non-musician) individuals.

His professional life, though short, is prolific and influential. Mozart made his first public
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appearance in Salzburg when he was 5 [Ste04], started composing small pieces around the

same time (1961− 1962) and composed his first symphony in 1764 [moz].

In this analysis, 169 Mozart compositions are considered. The timeline of words con-

sidered spans compositions from 1770 to his final year. Pieces considered are diverse in

genre and instrument (Table 3.7):

Table 3.7: Mozart Compositions (1770− 1791) - Genre and Instrument.

Instrument Genre

Voice and piano (arrangement) Song

Voice and piano (arrangement) Opera

Piano Variations

Piano Sonatina

Piano Sonata

As in the previous case studies (Sections 3.4.1 - 3.4.2), structural repetitions in each

composition’s sequence of durations are used to construct a Mozart signature. Similar

to the previous case studies, fractal exponents were computed for music time series with

at least 200 duration points. These music time series, 148 in total, are referred to as

the Mozart collection, RMozart. The Mozart collection contains pieces of various lengths

ranging from 200 to 2314.
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After considering only the compositional years of the Mozart collection in my anal-

ysis, two particular years stand out: In 1773 and 1783, Mozart completed more than 20

compositions in each . In 1773, the music time series analyzed have a maximum of 961,

with a mean of 578, duration elements. In 1783, his longest composition creates a music

time series of length 2030, and the rest are on average 875 long. Since these two years

mark years with a high number of compositions and the length of the compositions are not

small, I can consider Mozart to have been abnormally active in these years.

3.4.3.1 Mozart - DFA Exponent (α)

Since it is difficult to visualize all αvalues on the same plot, Figure 3.13 illustrates mean(α)

over the course of a particular year, and highlights the variability in the exponent within a

particular year , and over the course of a few decades analyzed in my investigation. The

overall variation in α fall within 0.89± 0.14 (Table 3.8). Since the compositions selected

in this study span two decades and the number of compositions considered is relatively

large, the small deviation from the mean for the majority of the compositions, highlights a

particular style or preference. In other words, such persistence in Mozart’s α values may

be interpreted as a consistency in temporal structure of his compositions.
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|RMozart| = 168 Mean Median Standard

Deviation

α 0.89 0.90 0.14

Table 3.8: Basic Statistics computed for the DFA exponents of the Mozart music time

series available in my Western collection, {αMozart
ri

}ri∈RMozart .

In the collection of compositions analyzed here, Mozart’s α values are closer to fractal

noise (i.e., α ≈ 1) than those of Gershwin (Section 3.4.1) and Grieg (Section 3.4.2). This

indicates higher regularity and structure in Mozart’s compositions , which were included

in this analysis. His most regular pieces in my analysis, α = αmax = 1.21, is “String

Quartet No. 4 in C major” (k157-02.krn) composed in 1772 − 1773. The other critical

value, αmin = 0.54, corresponds to his “Piano Sonata No. 1 in C major” (sonata01-2.krn)

composed in 1774− 1775.

Despite the variations shown in Figure 3.13, various pieces have similar or approximately-

similar exponents. In the collection analyzed here, Mozart’s most predictable piece, α =

1.32, is one composed in his youth (Figure 3.13), and the higher values of α, correspond

to his earlier compositions. Although his compositions seem to be structurally similar —

such as 40 compositions with 0.9 ≤ α ≤ 1 throughout his career — his more structurally

predictable pieces, α > 1, are more rare and occur in the first half of his professional life.

This analysis shows that many Mozart compositions , analyzed here, are structurally
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(a) Mozart - α

(b) Number of compositions α ∈ (αMozart
min : 0.1 : αMozart

max )

Figure 3.13: Mozart - DFA (α) exponent (select compositions from 1770 − 1791) sorted
chronologically. 78
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very similar; the number of unique fractal exponents is smaller than the number of music

time series analyzed. Moreover, a large number of his compositions have highly pre-

dictable structures: 0.9 < α < 1 for more than 40 music time series (Figure 3.13). Lastly,

particular structural similarities emerge repeatedly but with chronological gaps. For in-

stance, compositions from 1775, 1777, 1781 and 1783 all have α = 0.8 (Figure 3.13).

3.4.4 Domenico Scarlatti

The compositions of Italian composer Domenico Scarlatti (1685 − 1757) fall under the

Gallant style: “freer, and more song-like, homophonic” than Baroque [BGP06] — and

his work was influenced by Corelli, Gasparini, A. Scarlatti, and Folk music (Italian, Span-

ish and Portuguese) [PBH+]. The Scarlatti collection includes fifty-nine of his Sonatas

composed from 1738 to 1757. Henceforth, this set of compositions is referred to as the

Scarlatti collection, RScarlatti.
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Figure 3.14: Scarlatti - Lengths of music time series generated for his compositions sorted

by year of composition. The markers are scaled by the composition’s corresponding α

value.

Compositions analyzed here, rScarlatti ∈ RScarlatti, contain 639 duration points on

average, σ(|ri|) = 231, min(|ri|) = 249, and max(|ri|) = 1511.

3.4.4.1 Scarlatti - DFA Exponent (α)

Table 3.4.4.1 summarizes DFA exponents computed for the Scarlatti collection,RScarlatti.
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|RScarlatti| = 59 Mean Median Standard Deviation

α 0.81 0.82 0.18

Table 3.9: Scarlatti - Temporal Correlation Power Exponent (DFA)

Figure 3.15 shows that different compositions have various scaling fluctuation expo-

nents. That is, although the majority of compositions considered are structurally similar,

some are atypical since their scaling fluctuation exponent, α is far removed from the mean

(Table 3.10).
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Figure 3.15: Scarlatti’s Compositions (1738− 1757) - Values of α sorted chronologically.

For instance, compositions with the extremal α values are:

• αmin = αL027K238 = 0.33:

“K. 238, Sonata in F minor, 4/4, Andante” (1752),

• αmax = αL348K244 = 1.18:
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“K. 244, Sonata in B major, 3/8, Allegro” (1752).

The compositions with the most and least structural regularity were composed in the same

year, and towards the end of Scarlattis life. Table 3.10 highlights compositions with struc-

tural features that are atypical in the Scarlatti collection.

Index Composition Name Year of Composition α H

α > µ± 2σ(RScarlatti) L198K296 K. 296, Sonata in F major, 3/4, Andante 1753 0.77 0.86

α > µ± 3σ(RScarlatti) L523K205 K. 205, Sonata in F major, 2/2, Vivo 1752 0.72 0.77

Table 3.10: Scarlatti - Compositions with atypical α values
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Figure 3.16 presents a chronological overview for Gershwin, Grieg, Mozart and Scar-

latti. It highlights that the Grieg sub-category of my music collection, the maximal αGrieg =

1.12 occurs earlier in his professional life (“Piano Sonata in E minor, Op. 7 Allegro mod-

erato” 1865) [BSEHS88]; while his least predictable composition, “Lyric Pieces, Op. 43

No. 2. Solitary Traveller (B minor)” with an α value of 0.38, and was composed in 1886.

From a regularity point of view, the fluctuation rhythmic structure of “Lyric Pieces, Op.

43 No. 1. Butterfly (A major)” is very similar to “Piano Sonata in E minor, Op. 7 Al-

legro moderato” 1865 (α = 1.12). The 168 Mozart compositions selected in this study

span over two decades, and the concentration of α values in Figure 3.16 over the course

of the 1770−1790 highlights a consistency in his compositional preferences; for instance,

there are 40 Mozart pieces with 0.9 ≤ α ≤ 1, and that the majority of his compositions

fell in the 0.5 − 0.7 range (Figure 3.17). Over time, there is a slight decrease in mean

α-values computed for the rhythm of compositions by Mozart. His most regular piece in

this analysis — “String Quartet No. 4 in C major” has α = 1.21 — was composed in

1772 − 1773; whereas, the least structured composition — in 1774 − 1775. Finally, the

rhythmic structures in Scarlatti’s compositions, sorted chronologically in Figure 3.16, are

clustered in the 0.75− 0.85 range for the majority of compositions considered here In this

study, the compositions with the most and least structural regularity were composed in the

same year, and towards the end of Scarlatti’s life: αmin = 0.33 (“K. 238, Sonata in F minor,

4/4, Andante” 1752), and αmax = 1.18 (“K. 244, Sonata in B major, 3/8, Allegro” 1752).
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Frequency Histogram for the DFA Exponents of Four Western Composers
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Figure 3.17: Each bar represents the normalized number of compositions with a particular
value of DFA exponent (α), for Gershwin, Grieg, Mozart and Scarlatti.
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3.5 Binary Classification

“All models are wrong, but some are useful.”

- George E. P. Box [BD87]

This section presents classification results using temporal scale-free features of struc-

tural repetitions of Western compositions studied in this chapter. The accuracy of distin-

guishing between two Western composers using such temporal self-similarity power law

exponents is presented as evidence of their significance as descriptors. In other words,

classification accuracy is interpreted as an indicator for rich information content captured

by these fractal exponents. Here, Western compositions classified are grouped by com-

posers, styles, or period. I use binary classification as outlined in Section 2.4.4): pairs

of the Western composition groupings are classified using logistic regression and deci-

sion trees. As discussed in Section 2.4.4, a particular implementation of decision tree

classifiers, J48 [Qui93], is used in my analysis. In all classification cases, WEKA’s user

interface was directly used [HFH+09] (Section 2.4.4).

These classifiers train on fractal exponents and predictability features listed in Table

2.4.4. Fractal exponents consist of spectral, DFA and Hurst exponents computed for each

composition’s music time series. For each pair of composers, the confusion matrix, pre-

sented in percentages, further highlights what portion of a composer’s compositions were

classified correctly. A 10-fold cross-validation is used for both classifiers, and unless oth-

erwise specified, no other filtering has been applied. When classifying two sets which

differ in size by more than a factor of 2.5, the larger set has been subsampled randomly.

Mean absolute error (MAE) and weighted F-measures are statistical measures of accuracy
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of the classification (Section 2.4.4).
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Figure 3.18: Classification accuracy (%) of distinguishing between distinct Western com-

poser using decision tree algorithm J48 [HFH+09] as binary classifiers. The various mu-

sical eras are highlighted in different colours, and composers from the same century are

boxed together.

The classification accuracy results for all pairs of composers (using the decision tree

algorithm) are reported in Figure 3.18. The composers are sorted in increasing chronology,
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and for each composer, the appropriate musical style and period of professional activity

are highlighted. Overall, the accuracy classifications are quite high. Figure 3.19 visually

conveys that Gershwin and Clementi yielded the best and the worst mean classification

accuracies, respectively.

Figure 3.19: Binary classification accuracy colormap, wherein the colours represent vari-

ous values of classification accuracy. The composers are sorted in increasing chronological

order from Frescobaldi to Gershwin.

In the following sections, I consider various groupings of composers to better under-

stand the influence of a composer’s musical era, coeval composers and geographical origin
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on classification accuracy. Further details about the classification results in each category

are included in Appendix B.

The precise accuracy, Aci,cj , of correctly classifying music pieces for all possible pairs

of composer labels, ci ∈ RWestern and cj ∈ RWestern, are shown in Figure 3.18. Gershwin

yielded the best mean classification accuracy in this study: ĀGershwin ≥ Āci∀i, where

the mean classification accuracy is computed as Āci = 1
N

Σcj 6=ciAci,cj (Figure 3.18). To

better understand the influence of a composer’s era, his coeval composers and artists, and

geographical origin on his corresponding signature, we analyzed the following groupings

of composers.

3.5.1 Disparate Composers

The classification analyses here considered composers from RWestern with different mu-

sical eras, whom hailed from distinct countries and lived in distinct time periods (e.g.,

Corelli vs. Frescobaldi). In the context of this study, the resulting classification is highly

accurate. Figure 3.18 shows that

• ACorelli,Joplin = 97%, where Corelli (1677−1712, Baroque) - Joplin (1899−1917,

Ragtime),

• AMozart,Gershwin = 95%, where Mozart (1764− 1791, Classical) - Gershwin (1916−

1937, Musical Theatre),

• AFrescobaldi,Vivaldi = 93%, where Frescobaldi (1607−1643, Late Renaissance/Early

Baroque) - Vivaldi (1703− 1741, Baroque),
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• AScarlatti,Gershwin = 90%, where Scarlatti (1700−1757, Gallant) - Gershwin (1916−

1937, Musical Theatre).

3.5.2 Stylistically Affiliated Composers

Two composers, ci and cj , are considered stylistically affiliated if musical history has

some record of notable influence by composer ci on cj , or vice versa. For instance, Mozart

and Haydn are stylistically affiliated composers because of Haydn’s influence on Mozart’s

compositional style [Bro81]. Figure 3.11 lists a few stylistically affiliated composers in

this study. The classification results — computed for the pairs of composer labels in this

RWestern — are less accurate (Figure 3.18).

Professional Life Musical Era E[α] E[H]

Bach 1703− 1749 Baroque 0.79 0.92

Haydn 1750− 1803 Classical 0.88 0.87

Mozart 1764− 1791 Classical 0.89 0.84

Joplin 1899− 1917 Ragtime 0.65 0.73

Sousa 1872− 1932 Romantic/Military 0.82 0.93

Table 3.11: DFA and Hurst exponents for interdependent composers

For instance, ABach,Vivaldi = 78% (Baroque) and AClementi,Mozart = 58% (Classical).

For more details on such classifications, see Appendix B.
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3.5.3 Coeval Composers

Coeval composers may have similar musical styles, sources of inspiration, historical con-

straints or major events (e.g., wars or other national atrocities). Table 3.12 highlights basic

fractal features of three coeval composers included in this study.

Table 3.12: DFA and Hurst exponents for composers with similar timelines.
Composer Professional Life Life Timeline Musical Era E[α] E[H]

Bach 1703− 1749 1685− 1750 Baroque 0.79 0.92

Scarlatti 1700− 1757 1685− 1757 Galant 0.92 0.95

Vivaldi 1703− 1739 1678− 1741 Baroque 0.81 0.87

Based on the music samples of this study, it appears that highly accurate classifi-

cations are possible in this case (Figures 3.18 and 3.19). For instance, ABach,Haydn =

96%, ABach,Beethoven = 97%, and ABach,Scarlatti = 82%; while in cases of high frac-

tal similarities, distinguishing between the two composers proved more difficult (e.g.,

ABeethoven,Haydn = 69%, AScarlatti,Vivaldi = 68%, and AMozart,Scarlatti = 77%). Finally,

Table 3.13 summarizes binary classification results for Bach, Scarlatti and Vivaldi using

decision trees. Similar accuracy results — Bach - Vivaldi: 67%; Vivaldi - Scarlatti: 88.9%

— are obtained using logistic regression.
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Table 3.13: Binary Classification - Composers from similar time periods. A decision tree

(J48) classifier, with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RBach| = 27, |RVivaldi| = 49 Bach Vivaldi

Bach (1685− 1750) - Vivaldi 77.6 0.23 0.78
19 8 Bach

9 40 Vivaldi

|RBach| = 22, |RScarlatti| = 59 Bach Scarlatti

Bach - Scarlatti (1678− 1741) 81.5 0.22 0.81
12 10 Bach

5 54 Scarlatti

|RVivaldi| = 49, |RScarlatti| = 59 Vivaldi Scarlatti

Vivaldi (1678− 1741) - Scarlatti 67.6 0.33 0.67
28 21 Vivaldi

14 45 Scarlatti

3.5.4 Composers with Identical First Language

In this section, Western composers hailing from the same country, in this music collection,

are classified. Patel [Pat06] shows that the native language of a composer and the structure

of his compositions may be correlated. Moreover, results from Section 3.3.2 demonstrated

similarities between composers who share a common first language because of their coun-

try of origin (Table 3.2). Here, I present classification results for two German composers

(Bach versus Beethoven) and two Italian composers (Frescobaldi versus Vivaldi).
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Table 3.14: Binary Classification - Composers with Similar Country of Origin. A decision

tree (J48) classifier, with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RBach| = 241, |RBeethoven| = 173 Bach Beethoven

Bach - Beethoven 96.6 0.04 0.97
232 9 Bach

5 168 Beethoven

|RVivaldi| = 49, |RFrescolbaldi| = 40

Vivaldi Frescobaldi

Vivaldi - Frescobaldi 93.3 0.08 0.93
48 1 Vivaldi

5 35 Frescobaldi

The high classification accuracy evident in Figures 3.18 and 3.19 — as well as fur-

ther details included in Table B.1 — demonstrates that composers with similar language

heritage in RWestern, may vary in their structural compositional style. This is in contrast

to the high classification accuracy yielded for the following two pairings in this analysis:

ABach,Beethoven = 96.6% and AFrescobaldi,Vivaldi = 93.3%.

3.5.5 Compositions from Different Centuries

To show the power of these exponents in classification, I consider three eras for binary

classification. For each composer included in groups 1− 3, I indicate the range of years of

his professional activity in brackets. I also note that the span of a composer’s professional

life does not reflect the same range of my analysis. For all composers, my analysis is a
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subset of their compositions.

1. Early to mid seventeenth century: Giovannelli (1583−1624), Monteverdi (1582−

1643), Frescobaldi (1607− 1643).

2. Mid to late eighteenth century: Scarlatti (1700 − 1757), Haydn (1750 − 1803),

Mozart (1764− 1791).

3. Early to mid twentieth century: Sousa (1872− 1932), MacDowell (1880− 1904),

Scriabin (1886− 1914), Gershwin (1916− 1937).

To demonstrate the efficacy of temporal power law exponents in century identification, we

grouped compositions into three groups, labeled by their corresponding century of com-

position. We found that accurate century identification based on fractal exponents is possi-

ble, A1583−1643,1700−1757 = 90.6%. In such cases, the classifier was able to correctly assign

century labels because the structural patterns, quantified by fractal exponents in musical

rhythm, are significantly distinguishable; this is in contrast toA1700−1791,1872−1937] = 78%,

which signifies the structural similarities between compositions in of the 17th century and

those of the early 18 to the 19th centuries results, in this study.
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Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RGroup1| = 59, |RGroup3| = 58 1600− 1650 1900− 1950

Group 1 - Group 3 89.7 0.11 0.9
51 7 1600− 1650

5 54 1900− 1950

|RGroup1| = 59, |RGroup2| = 69 1600− 1650 1750− 1800

Group 1 - Group 2 90.6 0.11 0.91
61 8 1600− 1650

4 55 1750− 1800

|RGroup2| = 69, |RGroup3| = 58 1750− 1800 1900− 1950

Group 2 - Group 3 78 0.25 0.78
41 17 1750− 1800

11 58 1900− 1950

Table 3.15: Binary Classification - Compositions from the 17th, 18th and 20th centuries.

A decision tree (J48) classifier, with 10 fold cross validation, is used.

3.5.6 Influence of Fractal Exponents on Binary Classification

In this section, binary classification using J48 decision trees of the following pairs of

Western composers are considered in greater detail:

• Gershwin - Mozart (Table 3.16),

• Gershwin, Scarlatti (Table 3.17), and

• Mozart, Scarlatti (Table 3.18).
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Table 3.16: Binary Classification: Gershwin - Mozart. A decision tree (J48) classifier,

with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RGershwin| = 28, |RMozart| = 59 Gershwin Mozart

Fractal Exponents, Π 95.4 0.05 0.95
26 2 Gershwin

2 57 Mozart

Π 94.3 0.07 0.94
26 2 Gershwin

3 56 Mozart

Fractal Exponents 95.4 0.05 0.95
26 2 Gershwin

2 57 Mozart

α 93.1 0.09 0.93
23 5 Gershwin

1 58 Mozart

Table 3.16 shows binary classification of Gershwin versus Mozart. Mozart’s feature

space is randomly sub-sampled to ensure that both training sets, RGershwin, RMozart, are

comparable in size. The classification accuracy is high, and the high accuracy classifica-

tion results of using only Fractal exponents, or only α, highlight distinct differences in

rhythmic structure of music composed by Gershwin and Mozart. A similar observation

applies to the classification of Gershwin and Scarlatti. These demonstrate that the more

unpredictable musical structure in Gerswhin compositions — E[α] = 0.41, E[H] = 0.49

— contain sufficient information to be used by classifiers to distinguish his compositions

effectively from those of others.
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Table 3.17: Binary Classification: Gershwin - Scarlatti. A decision tree (J48) classifier,

with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RGershwin| = 28, |RScarlatti| = 59 Gershwin Scarlatti

{Fractal Exponents, Π} 89.7 0.11 0.9
24 4 Gershwin

5 54 Scarlatti

Π 89.7 0.11 0.9
22 6 Gershwin

3 56 Scarlatti

Fractal Exponents 86.2 0.14 0.86
23 5 Gershwin

7 52 Scarlatti

α 87.4 0.19 0.87
21 7 Gershwin

4 55 Scarlatti

Finally, within the parameters of our music dataset in this study, using rhythmic struc-

ture of Mozart’s compositions (E[α] = 0.89, E[H] = 0.84) here with Scarlatti’s (E[α] =

0.81, E[H] = 0.87) to distinguish between the two groups is not as successful as the

comparison of each with Gershwin. In this case, the lower classification success rate of

RMozart − RScarlatti (Table 3.18) — compared to their corresponding binary classifica-

tion with other composers — highlights temporal similarities in rhythmic patterns of the

RMozart, RScarlatti collections.
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Table 3.18: Binary Classification: Mozart - Scarlatti. A decision tree (J48) classifier, with

10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RMozart| = 148, |RScarlatti| = 59 Mozart Scarlatti

Fractal Exponents, Π 76.8 0.24 0.77
126 22 Mozart

23 33 Scarlatti

Π 68.6 0.38 0.65
131 17 Mozart

48 11 Scarlatti

Fractal Exponents 76.3 0.28 0.76
129 19 Mozart

30 29 Scarlatti

α 70 0.39 0.65
135 13 Mozart

49 10 Scarlatti

3.6 Conclusion and Future Works

The work presented in this chapter was motivated by the existence of fractal exponents in

rhythm [LCM12]. I adapted methodology used in [LCM12] (Section 2.4), and analyzed

fractal exponents of various compositions. I verified the results of [LCM12] by imple-

menting Hurst [Hur51, HBS65] and Detrended Fluctuation Analysis [PHSG95, PBH+94,

KKBR+01] exponents (α and H respectively) for each composition in a Western collec-

tion comprising of 1165 Western classical music pieces (Section 3.1). Novel contributions
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of this chapter include: granular analyses of fractal exponents of twenty four Western com-

posers; these exponents were further statistically analyzed and used for composer classi-

fication. The results suggest that fractal exponents capture essential structural aspects of

music.

The composer-by-composer analysis highlighted structural variation latent in temporal

power law exponents of different compositions by a particular composer. Though these

exponents are typically clustered around the mean fractal exponent value, there are anoma-

lies. The degree of variation in structural regularity — as captured by fractal exponents —

depends on the composer analyzed. For better understanding of this variation, I focused

on four Western classical composers from different eras and with diverse compositional

style. More precisely, compositions by George Gershwin (1898 − 1937), Edvard Grieg

(1843 − 1907) from the Romantic era, Wolfgang Amadeus Mozart (1756 − 1791) from

the Classical era, and Domenico Scarlatti (1685 − 1757) from the Galant musical style

were analyzed. The four composers are geographically diverse; they hail from the USA,

Norway, Austria and Italy respectively. I presented a detailed analysis of α for these com-

posers, and highlighted compositions that had anomalous exponents (with corresponding

biographical notes when available). Temporal power law exponents were used for clas-

sification. The classification accuracy results demonstrated that fractal exponents carry

enough information to be used for decade, composer and genre classification. In other

words, this work presented further evidence that temporal power laws in rhythm carry

critical information that enable the use of such exponents in classification, identification

(decade, composer or classical music genre). In the future, it may be feasible to search or

recommend music based on structural similarities to an input music piece.
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4
Power Law Signatures for
Non-Western Compositions

“Music is the universal language of mankind.”

- Henry W. Longfellow [Lon86]

4.1 Introduction

Though music is prevalent across cultures, there is no consensus on the origins of its

universality [Net92, BBN95]. Some writers have accounted for the ubiquity of music

by considering it to be a byproduct of the innate biological characteristics of its creators

[WMB01, Per06] while others consider music to be a culture-dependent social vehicle,

influenced by a particular culture’s fundamental values [Sch75]. Leonard Bernstein, based

on Montaigne’s notion of “universality in diversity” [DM77], investigated this duality

by understanding the underlying similarities and candidate universal features in music

[Ber76]:

Just as the grammars of human languages (even mutually unintelligible ones)

may have sprung from the same monogenetic sources, so in the same way
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highly varied musical tongues (which are also strangers to one another) can

be said to have developed out of their common origins.

This chapter studies power law features in the rhythmic structure of music originat-

ing from four culturally diverse countries. The collection analyzed here is categorized

by geographical origin and consists of samples from Africa, China, Iran and Turkey. For

simplicity, I label and refer to this collection as the “non-Western collection”, though this

is not a comprehensive collection or a complete representative of rich, non-Western mu-

sic.Temporal scale-free exponents are used to form signatures for their corresponding cate-

gories in the non-Western collection. This chapter attempts to determine whether there is a

commonality between the rhythmic structure in non-Western and Western music analyzed

in thesis, and to determine whether scale-free structural descriptors are suitable for auto-

matically distinguishing between the dichotomies. That is, I use these scaling signatures

in binary classifications of different categories of non-Western music; this demonstrates

that such structural features impart significant information.

4.2 Methods and non-Western Music Collection

Though power laws in the musical rhythm of Western compositions have been previously

studied by Levitin et al. [LCM12] and in Chapter 3 of this thesis, such an investigation

for non-Western music is entirely novel. The methodology of analysis adopted here, anal-

ogous to Chapter 3, is outlined in Section 2.4.
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4.2.1 Related Works

Music, though prevalent in all cultures [Bro91, BBN95], manifests itself with cultural

specificity. Moreover, fundamental features of music, such as pitch and rhythm structures,

vary widely across different cultures [Net56], and some features may not be universally

detectable by all listeners [Jeh05]. However, even the casual listener can notice stylis-

tic differences between Western and non-Western music in terms of scales, tonality, and

rhythm. That is, even without being able to identify or label these attributes, most listen-

ers say that these musics “feel” different. A compelling research question is whether the

mathematical analysis techniques developed in the context of Western music can be ap-

plied to the music of other cultures [TKSW07]. The existence of large ethnic collections,

such as traditional Indian [Cho07], African [CDCDT+05], and Turkish Makam [Kar12],

make such an investigation possible. For instance, rhythmic features have been used for

music identification of Greek and African traditional music [APT+07], style classification

of Malay music [NDW05], and the analysis of Persian “Santur” music [HRQ05].

4.2.2 Non-Western Dataset

The non-Western symbolic music collection, denoted by Rnon−Western, consists of African,

Chinese, Persian and Turkish music samples, that are encoded in some appropriate machine-

readable format. The African and Chinese datasets are from the KernScores collection

[Sap05] (Humdrum **kern); the Persian collection (MIDI) is created by Abdoli [Abd11],

and the Turkish collection (MIDI) considered is the “SymbTr Collection” [Kar12]. The

four regional labels — African, Chinese, Persian and Turkish — can be used to divide and

analyze the resulting sub-categories in RnonWestern. The choices of the music samples in
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this collection are limited by availability in the corresponding source music library; the

collection is not all inclusive or well-representative of all non-Western music. However,

analyses presented in the following section can be used as a stepping stone for future, more

comprehensive analyses of symbolic music.

Similar to the Western analysis of Chapter 3, each music piece included inRnon−Western

is represented as a music time series: that is, a sequence of inter-onset durations of no-

tated musical events, notes and silences, ordered in time (Section 2.4.1). Although this

collection of symbolic non-Western music has over 4400 pieces, the majority of their cor-

responding series are quite short with |r∗i | < 100.

cj |Rcj | E[|rcji |] med(|rcji |) σ(|rcji |) |{ri||ri| ≥ 150}|

Africa 25 232 202 105 21

China 2260 64 52 54 107

Iran 64 435 185 10271 47

Turkey 1695 412 415 249 1328

Table 4.1: Basic Features - African, Chinese, Persian, and Turkish music time series.

To determine the minimum length of analysis permissible, a small subset of the com-

positions were chosen at random from my Western analysis in Chapter 3. Each series, ri,

was then segmented into a set of sub-series of 52 duration elements, L = 52, and fractal

exponents were computed for ri(1 : L), ri(1 : 2L), . . . , ri(1 : |ri|) and ri(1 : L), ri(L+ 1 :

2L), . . . , ri(kL + 1 : |ri|). The results showed that although the fractal exponents vary
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slightly, when the sub-series is sufficiently long (e.g., 150 duration points), the fractal ex-

ponents of the sub-series merge to the value for the entire series. Figure 4.1 shows an

example of this analysis for a representative composition by Grieg.
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(a) DFA exponents at incremental lengths: αr(1:L), αr(1:2L), . . . , αr(1:l).

The mean α value is shown in red.
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(b) DFA exponents of segments: αr(1:L), αr(L+1:2L), . . . . The mean α

value is shown in red.

Figure 4.1: DFA exponents are computed for different segmentat“little bird” of a com-

positition by Grieg called “little bird” (“Lyric Pieces, Op. 43 No. 4. in D minor”). The

total length of this music time series is l = 340, and the segmentation length visualized

here is L = 52.
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Accordingly, the minimum length of analysis for my non-Western collection is Lmin =

150 and any series shorter than Lmin were excluded. Table 4.1, presents general statistics

on the length of time series analyzed for each region. It should also be noted that although

the following methodology enables a novel structural analysis of the latent temporal in-

formation in non-Western music from Africa, China, Iran and Turkey, the use of Western

musical notation may not be ideally suited for capturing the richness of music in this

context; transcriptions of deep interpretations of non-Western music may be impossible

[ATTB91, Tou05, TKSW07, MCL+07, Şen11].

4.3 Non-Western Temporal Power Law Exponents

For this collection of over 1500 non-Western music time series, fluctuation structures in

the musical rhythms decrease exponentially with 0.5 ≤ α ≤ 1. Figure 4.2 presents the

median α values for the four regions of analysis: Africa, China, Iran and Turkey. All

four regions have median DFA exponent values close to 0.5: αAfrica = 0.41, αChina =

0.41, αIran = 0.47, and αTurkey = 0.48. These low values of α are indicative of lower

predictability in the rhythmic structure of music from these regions. Table 4.2 provides a

more granular analysis for values of α, grouped by region. The Turkish collection, despite

its larger size, does not show much variation (σα = 0.13, σH = 0.14).
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Non Western DFA Exponents (Notes - Merged) 
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Figure 4.2: Detrended Fluctuation Exponent (α) for compositions in
RAfrican, RChina, RIran, RTurkey sub-categorizations of the Rnon−Western collection.
The Mean and 95% confidence intervals are marked in blue.
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Figure 4.3: Hurst Exponents (H). Median of H for compositions in each collection,

RAfrican, RChina, RIran, RTurkey, are shown in red in each box. The lower and the upper

boundaries of the boxes represent 25% and 75% interquartiles ofH . Anomalies are marked

in red ‘+’.

Finally, in all four non-Western groups considered, power law correlation exponents, α

(Figure 4.2) and H (Figure 4.3) indicate high structural unpredictability. That is, duration

time series in these non-Western compositions have less repetitive, long-range rhythmic

structures, and change more often.
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Table 4.2: Non-Western Music - Hurst (H) and DFA exponents (α).

Mean Median
Standard Coefficient

Deviation of Variation

|RAfrica| = 21
α 0.44 0.41 0.17 0.38

H 0.56 0.57 0.12 0.22

|RChina| = 107
α 0.44 0.41 0.17 0.37

H 0.54 0.51 0.17 0.31

|RIran| = 47
α 0.51 0.47 0.21 0.42

H 0.61 0.60 0.15 0.25

|RTurkey| = 1328
α 0.48 0.48 0.13 0.28

H 0.57 0.58 0.14 0.25

The collection’s mean H values (Table 4.2) are close to 0.5: persistent long-range

similarities are absent. Finally, higher average values of Hurst exponents in the Persian

collection (Table 4.2) indicate a rhythmic pattern of composition: an increase in a Persian

duration time series is more likely to be followed by other increases.

4.4 Binary Classification of non-Western Compositions

This section demonstrates the significance of temporal self-similarity power law exponents

as descriptors (signatures) of the African, Chinese, Persian, and Turkish music samples
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available in Rnon−Western (Section 4.2.2). In this section, I choose the name of each re-

gion or country as a composer identity; this categorization assumes a cohesive musical

tradition within a culture or region [Per06, GH08]. I use binary classification as outlined

in Section 2.4.4; all pairs of the non-Western composition groupings are classified using

logistic regression (linear classifier used here) and J48 decision trees (non-linear binary

classifier used here) implemented in WEKA [HFH+09]. The classifiers train on fractal

exponents and predictability features listed in Table 2.4.4. The accuracy of these classi-

fications depends on the amount of information latent in this temporal representation of

structural repetitions in non-Western music. A 10-fold cross-validation is used for both

classifiers, and unless otherwise specified, no other filtering has been applied. When clas-

sifying two sets of non-Western compositions that differ in size by more than a factor of

2.5, the larger set has been sub-sampled randomly. Lastly, mean absolute error (MAE),

weighted F-measures and confusion matrices (Section 2.4.4) are used to assess classifica-

tion accuracy.

More precisely, structural information extracted from the temporal representations of

this study’s African, Chinese, Persian and Turkish music pieces are used for binary clas-

sification. The resulting classification accuracies signify the information-rich structural

identity of music , included in this dissertation.

The classification results for the African, Chinese, Persian and Turkish music pieces

are summarized in Figure 4.4. In this context, the African music pieces, RAfrica, are

significant because they are the most difficult to distinguish and classify. That is, using

fractal and predictability exponents, the African compositions yield the lowest classifica-

tion accuracy; while the best accuracy results were observed in comparing Chinese versus
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Turkish (91%) and Persian versus Turkish (86%) compositions available in RnonWestern.
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Figure 4.4: Binary Classification (Decision trees) for theRAfrica, RChina, RIran andRTurkey

music collections. All possible pairings are displayed. Numerical values inside circles

indicate the number of instances considered; an edge value, eij, denotes the percentage

of instances with label i that were labeled as j; self-loops represent the percentage of

instances correctly classified; and the classification accuracy percentage is marked in bold,

black in between edges.

To better understand the influence of various features included in the classification

(Table 2.4.4), detailed break-down of various features and the resulting classification ac-

curacies are presented in Appendix A (Tables A.1, A.3, A.5, and A.9).
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Among all non-Western classification pairs considered, African pieces resulted in low-

est true positives (Tables A.1, A.3, and A.5 in Appendix A), and can be considered most

difficult to be captured by temporal power law and predictability exponents. However,

even in this case, classification achieved accuracy results of at least 70%. Classification

accuracy was highest between Chinese and Turkish pieces, 91% (Table A.9). The abil-

ity to linearly discriminate between the two collections indicates significant disparities

between their rhythmic fractal features. Finally, my analysis shows a clear distinction be-

tween Persian and Turkish compositions. In this case, both classifiers achieved higher than

80% accuracy. Also, fractal exponents produced more true positives for Turkish pieces.

The ability to distinguish between music from two geographically-approximate regions is

significant on its own as it highlights subtle cultural and musical differences between the

two cultures.

4.5 Western vs. Non-Western Classification

After classifying all possible binary pairings of the sub-categories in this non-Western

collection, RnonWestern, (Figure 4.4), this section studies the efficacy of Western vs. non-

Western binary classifications. That is, this section investigages the success of tempo-

ral power law exponents in binary classifications of music samples from RnonWestern and

RnonWestern.

The feature set used consists of fractal and predictability exponents (Table 2.4.4) for

the following two categories:

• Western: Grieg, Gershwin, Mozart and Scarlatti compositions from RWestern, and
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• Non-Western: African, Chinese and Persian music from Rnon−Western.

Instances which corresponded to lengths less than 200 in the Western case, and 150 in the

non-Western, were not used in the classification. The results, shown in Tables 4.3 and

4.4, demonstrate 90.3% accuracy. Binary classification using only DFA exponents, α, as

features, still yields accuracy greater than 82% for both logistic regression and decision

trees. This suggests that the existing temporal power law features in Western and non-

Western music are distinctly different.

Table 4.3: Binary classification results using logistic regression: Western vs. Non-Western

categories.

|RWestern| = 249 Correctly Mean Weighted Average Confusion Matrix

|RNon−Western| = 175 Classified (%) Absolute Error F-Measure Non-Western Western

Fractal Exponents, Π 90.3 0.11 0.9
154 21 Non-Western

20 229 Western

Π 89.2 0.14 0.89
157 18 Non-Western

28 221 Western

Fractal Exponents 82.5 0.25 0.83
140 35 Non-Western

39 210 Western

α 82.1 0.26 0.82
137 38 Non-Western

38 211 Western

For both classifiers — logistic regression (Table 4.3) and decision trees (Table 4.4)

— benefit from combining predictability exponents, Π, with fractal exponents. However,

fractal exponents on their own achieve considerably accurate — greater than 80% — clas-

sification results as well.
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Table 4.4: Binary classification results using decision trees (J48): Western vs. Non-

Western categories.

|RWestern| = 249 Correctly Mean Weighted Confusion Matrix

|RNon−Western| = 175 Classified (%) Absolute Error Average F-Measure Non-Western Western

Fractal Exponents, Π 90.3 0.1 0.9
155 20 Non-Western

21 228 Western

Π 88.2 0.14 0.88
150 25 Non-Western

25 224 Western

Fractal Exponents 81.4 0.23 0.82
147 28 Non-Western

51 198 Western

α 83 0.26 0.83
160 15 Non-Western

57 192 Western

In both classification methods, fractal exponents seem to result in more true positives

in Western compositions, which can be interpreted as more discriminative scale-free struc-

tural characteristics in such compositions. This demonstrates that the temporal power law

features of this non-Western collection are more homogenous than their Western counter-

parts.

4.6 Conclusion and Future Works

In this chapter, I computed temporal power law correlation exponents (fractal exponents)

for symbolic music categorized based on geographical origin. This collection consisted of

115



4.6. CONCLUSION AND FUTURE WORKS 116

symbolic music from Africa [Sap05], China [Sap05], Iran [Abd11] and Turkey [Kar12].

These music pieces form the non-Western collection of this dissertation; the choices in-

cluded in this non-Western collection are limited to availability of non-Western symbolic

music, at the time this research was undertaken; the collection is further sub-categorized by

geographical labels: Africa, China, Iran and Turkey. In this temporal analysis, over 1500

music time series were included. For each music time series, I computed fractal exponents,

and for each region, the Detrended Fluctuation analysis exponents, α, were reported (Fig-

ure 4.2) and discussed. Generated fractal and predictability Exponents (Table 2.4.4) were

used to distinguish between pairs of non-Western regions in this context (binary classifica-

tion). This investigation showed that such classifications, using self-similarity information

in musical rhythm, are highly accurate (Figure 4.4). Also, I used these exponents for the

classification of Western versus non-Western music pieces; that is, the binary classifier was

provided access to all compositions attributed to Gershwin, Grieg, Mozart, and Scarlatti

available in the collection of Section 3.1 (collectively labelled as Western) and African,

Chinese and Persian music pieces available in this dissertation (collectively labelled as

non-Western). Throughout all classification analyses, I applied binary classification using

logistic regression and decision trees with 10-fold cross validations.

This analysis demonstrated the manifestation of the power law phenomenon — tem-

poral power law correlation exponents component for the African, Chinese, Persian and

Turkish samples available fall in ≈ (0.5, 1.5) range as shown in Figure 4.2 — for these

non-Western compositions as well.

This analysis shows that not only are power law structural features not unique to West-

ern compositions (Section 3.2), but that also such features have sufficient information
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content to be used as identifiers (Section 4.4).

My investigation of this music collection shows that the power law phenomenon, which

is well-studied for music compositions from Europe and North America (i.e., composi-

tions often referred to as Western classical compositions) [Zip49, VC75, VC78, GTM95,

PB00, MVW+03, LCM12], is consistently present in music samples of African, Chinese,

Persian and Turkish music analyzed here as well. Given the ubiquity of power laws in

nature [WS90], it is not surprising to find temporal power laws manifest in music from

various regions in the World. In other words, the emergence of fractal power laws and the

culture-dependent granularity in this collection of non-Western music (Figure 4.2), may

be used in support of the notion of “universality in diversity” [DM77] (Section 4.1). The

existence of fractal exponents and their successful application as identifying signatures in

classification demonstrated that these attributes of music’s structural regularity are compu-

tationally significant. These efficiently computable signatures can be used for large-scale

music information retrieval tools. More precisely, structural similarities, represented by

fractal exponents, will ultimately be critical for a global and culture-independent, mu-

sic search engine. The high accuracy classification results of these exponents show that

classification techniques applied to Western classical music may also be applied to other

cultures and can further be used in comparative analysis of structural style. Finally, my

results present fractal exponents as promising parameters used in a uniform comparative

analysis of music from different regions, traditions or eras.
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5
mCaptcha: A New
Challenge-Response Security Test
Based on Music

The Turing test, first proposed by Alan Turing [Tur50], is an attempt to distinguish ma-

chines from humans. A computationally efficient realization of such a Turing test is a

CAPTCHA — Completely Automated Public Turing Test to tell Computers and Humans

Apart — developed by Luis von Ahn at Carnegie Mellon in 2000 [vABHL03]. The cor-

nerstone idea of CAPTCHAs is to take advantage of certain features of human cognition to

solve problems that are easy for humans but are currently too computationally expensive

or intractable to be solved by computers. Since their introduction, CAPTCHAs have been

widely adopted as a practical means of access control and security against automated com-

puter attacks (bots) and spam for major e-commerce, social networks, and online posting

sites (e.g., Wikipedia). Other applications include protecting the integrity of registration

processes (e.g., e-mail service providers such as Hotmail, Gmail, Yahoo!) and online

polling [cap, vABL04, gov12, vABHL03]. Their seminal design and ease of integration

into web interfaces and applications have led to their ubiquity online. Though the seminal
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work of von Ahn et al. [vABHL03] led to the widespread use of such tests, they also note

prior similar work [BvALH00, vABHL03]. The first mention of systems or notions similar

to CAPTCHAs are in an unpublished manuscript by Naor [Nao96] and a system developed

by Lillibridge et al. at AltaVista [LABB01]. However, von Ahn et al. presented alternative

varieties for such tests in the CAPTCHA system [BvALH00, vABL02, vABL04], high-

lighted benefits of adopting an empirical notion of security in this context [vABHL03] and

facilitated the large-scale deployment of such tests [vAMM+08]. Finally, a modification

of CAPTCHAs — reCAPTCHA [vABM08] which has helped to successfully digitized

millions of old books [vAMM+08] — demonstrates the potential power of leveraging hu-

man time and processing power for the advancement of computationally expensive, if not

difficult, problems in many research fields.

This chapter proposes a novel design that uses the framework of existing CAPTCHAs.

My proposal integrates music into its design components, relies on characteristics of hu-

man musical cognition for its improved usability and takes advantage of the current com-

putational difficulty of music information retrieval and scene analysis algorithms for its

enhanced security. Music CAPTCHAs (mCaptchas)1 rely on particular features of mu-

sic cognition to generate efficient human-machine distinguishability tests. The objective

of this design is to enhance the existing computational Turing tests by improving user

experience (usability), amplifying the computational gap between machines and humans

(security), and taking advantage of the available human computational resource for crowd-

sourcing oriented towards open problems dependent on large-scale user-generated music

information.
1The system has a provisional patent filed on November 6, 2012 as “Music CAPTCHA System and

Method”, US patent application/PCT international application number 61722848.
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5.1 Problem Statement and Relevant Research

The problem of designing a CAPTCHA can be described as follows. The entity accessing a

web site (the “user,” and which may be a bot or a human), requests access and is presented

with a challenge. The user is said to pass the CAPTCHA — is identified as human by

the system — if and only if his response to the challenge is correct. The challenge is a

question with a unique answer, and it is designed such that it is relatively easy for humans

but computationally difficult for the state-of-the-art programs.

A typical CAPTCHA will present the user with a distorted word on a noisy back-

ground, and will challenge the user to detect and type the correct phrase. Given the ubiq-

uity of CAPTCHAs and usability issues with the original text-based form, various forms of

CAPTCHAs have been devised. In particular, audio CAPTCHAs were created to improve

accessibility of these tests to individuals with visual impairments and also to provide an

alternative form for when the user finds reading the distorted CAPTCHA words difficult

[TSHvA08].

5.1.1 Existing Audio CAPTCHAs

Audio CAPTCHAs consist of a set of scrambled (English) letters and numbers to be iden-

tified by a user from a background of noise. Audio CAPTCHAs were created to extend

the accessibility of textual CAPTCHAs to individuals with visual impairment. An audio

CAPTCHA is created by overlaying voices of different speakers pronouncing (random)

letters or numbers on top of noise. The user must correctly identify the digits or charac-

ters spoken to pass the test. Although such designs are important in that they make sites
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such as Google and Digg available to the visually impaired, they have been compromised

by (computational) adversaries, computer algorithms which use various machine learn-

ing techniques to learn the pronounced letters and numbers from the audio. The security

of audio CAPTCHAs was first tested and shown to be compromised for [TSHvA08] three

types of audio CAPTCHAs used in Google.com, Digg.com and reCaptcha.net. Tam et. al.,

used machine learning techniques to segment, classify components and ultimately break

visual CAPTCHAs [SC04]. Furthermore, Tam et. al. [TSHvA08] go on to suggest the

use of meaningful phrases in place of randomly placed, random letters or numbers over a

background noise. During the design of CAPTCHAs, a balance must be struck between

the computational difficulty of solving a CAPTCHA and the human usability. This hu-

man element is the second pillar of designing CAPTCHAs that needs to be given adequate

treatment. Recent research has shown that CAPTCHAs are often difficult for humans to

solve [BBF+10]. Moreover, Bursztein et al. [BBF+10] showed that non-musical audio

CAPTCHAs are problematic in that not only users have difficulties in solving them, but

also that approximately only a third of the participants concur on their responses to the

same CAPTCHA challenge.

5.1.2 Distinct Features of CAPTCHAs

“If you tell me precisely what it is a machine cannot do, then I can always

make a machine which will do just that.”

John von Neumann [Wikb]

Any CAPTCHA scheme has three significant design tenets [Nao96, vABHL03]:

121



5.1. PROBLEM STATEMENT AND RELEVANT RESEARCH 122

• First, generating CAPTCHA instances should be computationally practical (effi-

ciency). Otherwise, a large-scale adoption of the scheme would be impractical. The

generation algorithm uses an AI (Artificial Intelligence) that, by consensus, is un-

solved and whose approximate solutions need much computational resources, time

or space [vABHL03],

• Second, the scheme should ensure that the generated CAPTCHAs are easy for hu-

mans to solve (usability),

• Third, answering the challenge should require much more computational resources

(e.g., time) for the state-of-the-art algorithms (security).

These tenets will form a framework of design and evaluation for mCaptchas proposed in

Section 5.2.

5.1.2.1 Usability of CAPTCHAs

Though exact parameters were never specified, for practicality measures, a large portion

of the human population should be able to answer the challenge correctly in a very short

period of time [vABHL03].

5.1.2.2 Security of CAPTCHAs

“The enemy knows the system. One ought to design systems under the

assumption that the enemy will immediately gain full familiarity with

them.”

Claude E. Shannon [Sha49]
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Modern cryptography studies the notion of computational security in an adversarial

model. It redefines security not in the impossibility of a system being broken, but rather

in the infeasibility of a computationally-bounded2 adversary learning more than what is

publicly known [GM82]. Security is not based on the secrecy of a component or code in

the system (Kerckhoffs’s principle [Ker83]).

In the context of multimedia security, protected content should only appear secure to

a computationally bounded security (e.g., security through scrambling images or video)

[Lia08]. Security of CAPTCHAs is empirical; it is based on a consensus of computa-

tional difficulty and not on proven intractability [Nao96, vABHL03]. A CAPTCHA is

considered to be secure if an adversary — having access to the state-of-art solutions, al-

gorithms and systems — cannot correctly and efficiently solve a problem that is easy for

humans. More precisely, an adversary, in this context, is assumed to be any automated

design or algorithm which has access to the state-of-the-art solutions to the underlying

difficult problem used for CAPTCHA challenges. An adversary knows how the system

generates CAPTCHAs, but does not have access to the parameter choices or the randomly

chosen input, determining the correct response to the challenge. It should also be noted

that unlike many cryptographic protocols, a particular CAPTCHA scheme considered to

be secure today might not be so in the future [vABHL03]. As state-of-the-art AI algo-

rithms improve over time, so should CAPTCHA schemes.

As an example of empirical proof of security, consider reCaptchas. This scheme

was introduced after the textual CAPTCHA scheme [BvALH00, vABL02, vABL04] was
2Saying that the adversary’s computational power is bounded means that the adversary runs in polyno-

mial time. The adversary’s success probability in breaking the system, given what is already known about
the system and the input, is negligible though not zero. This turns into the adversary from an all powerful
adversary to a realistically pragmatic one.
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shown to be susceptible to pattern recognition attacks by Mori and Malik [MM03]. The

scheme uses actual English pairs of words, in place of randomly chosen alphanumeric let-

ters, and harnesses “wasted” human computation to digitize millions of books [vAMM+08,

vA05]. In this context, von Ahn et al. argue for the scheme’s security empirically[vAMM+08]:

Because computer programs can easily attempt to pass the CAPTCHA mul-

tiple times, if a computer has a success rate of even 5%, the CAPTCHA is

considered broken. A typical convention is that a program should not be able

to pass the CAPTCHA with a success rate of more than 1 in 10, 000. (Down-

loading 10, 000 CAPTCHA images requires substantial usage of bandwidth,

exposing the IP address as potentially abusive.) Our system uses more than

100, 000 words, which yields a probability of random guessing that is much

smaller than 1/10, 000. By contrast, conventional CAPTCHAs that use seven

random characters yield an even smaller probability of success for random

guessing: 1/367.

This probability (i.e., 1/367) corresponds to randomly guessing meaningful English phrases.

In Section 5.2, I introduce mCaptchas as an alternative to existing noise-based CAPTCHAs.

This scheme uses the complexity of music to improve security and usability. It uses latent

information in music and unique attributes of human auditory perception; its security relies

on the disparity between capabilities of the state-of-the-art music identification algorithms

and humans to distinguish two music streams from a mixture played simultaneously, and

to answer contextual challenges.
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5.2 mCaptcha: A Music-Based Computational Turing Test

A Turing test is an interactive dialogue: a verifier, V , presents a challenge , c, to a requester

, A,, A responds with a solution to the challenge, sAc , and V deems A to be human after

verifying sAc . Turing proposed to use a human verifier [Tur50]; whereas, von Ahn et al.

[vABL02, vAMM+08, vABHL03, vABL04] introduced the notion of computational Tur-

ing tests— computational verifiers distinguishing between polynomial-time adversaries

and humans. The system proposed in my thesis differs from the computational framework

of CAPTCHAs in that it:

• uses music: a complex and information-rich primitive,

• uses a slightly modified notion of CAPTCHA-security:

– security is based on the computational difficulty of distinguishing between two

valid streams, and

– security is dependent on contextual questions about music.

Here, the user is presented with a single audio stream which can be heard as two streams

by humans, but which appears as a single, inseparable unit of music for the current state-

of-the-art audio identifiers. More precisely, the mCaptcha system presents a requester, R,

with a pair consisting of a composite stream and a corresponding contextual challenge:

(mj, cmj). The stream is constructed from a widely known piece of music (the primary,

pmj ) which is then segmented and intertwined with segments from a distracter (a secondary

music stream, smj , from a very different genre (e.g., the primary might be rock and the sec-

ondary might be classical)). The requester responds with a solution to the challenge, rRcj .
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A requester is said to have passed the test (i.e., the sequence has terminated in accept) if

a correct response to the posed challenge has been received before the mCaptcha expires.

In a proof-of-concept implementation of this scheme (Section 5.3), the primary and

secondary music snippets — a few seconds long representing the most recognizable por-

tions — are chosen from different decades and genres of western music to be identifiable

by members of the potential user pool. However, this choice is arbitrary and the design

is not limited to any particular genre, language or style of music. In fact, one of the ad-

vantages of the proposed system is possible future customization to a particular user’s

music library — assuming that the collection is large enough and access is granted. The

challenge chosen should have an unambiguous answer.

5.2.1 Components and Design Considerations

The architecture of the mCaptcha system comprises three components:

1. the primary-secondary stream selection module,

2. the generator module, and

3. the challenge module.

I give a brief overview of these modules in this section, and highlight key design con-

siderations. I describe two particular implementations of these modules in more detail in

Section 5.3 and viability analysis (security and usability) at greater depth in Sections 5.4

and 5.5.
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5.2.1.1 Design Guidelines

The key design considerations of the mCaptcha scheme are based on the following CAPTCHA

tenets [Nao96, vABL02, vABHL03, vABL04]. An mCaptcha instance is a tuple, (j, cj, λ(cj)),

consisting of a composite music stream, referred to as the context (j), the challenge asso-

ciated with this context (cj) and a corresponding unambiguous response to the challenge

(λ(cj)). The scheme accepts human responses, rH , and rejects those of any adversary, A:

That is, 〈(j, cj, λ(cj)), rH〉 = accept and 〈(j, cj, λ(cj)), rA〉 = reject, with high proba-

bility. An assumption of the mCaptcha scheme is that users can hear the generated music

stream. In other words, similar to the CAPTCHA model, the scheme should be usable by

as large a proportion of the population as possible. [vABHL03]

1. Efficiency of instance generation: A generator,G(.), efficiently generates mCaptcha

music streams, together with their corresponding challenge and the correct solution

(Figure 5.1). The generator requests and receives a random song from the primary

collection. Next, it sends a request and receives a secondary song. The secondary

song may be chosen at random, or it may be chosen adaptively. In the latter case,

efficiently-computable features of the primary, such as regularity in its temporal

structure, are used to select a secondary. Finally, G calls the challenge module to

generate a challenge, response pair. The challenge should be contextual and de-

pendent only on the primary stream. The corresponding correct response to the

challenge should be unambiguous. Detailed description of the generator is provided

in Section 5.3.
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2. Ease of use by humans (usability): Humans should be able to answer the challenge

correctly, efficiently and with ease. The scheme should not be overly complicated or

annoying to discourage or prevent human users from solving the challenge (user ex-

perience). Moreover, the challenge should be chosen such that a typical human user

can accurately respond to it (accuracy). The type of contextual information needed

in the challenge determines the amount of time needed to respond (efficiency) and

the pre-determined time-out period. I discuss mCaptcha’s usability by providing in-

tuition for its improvement over existing schemes, and provide usability tests, TH(.),

for the construction in Section 5.5

3. Computational difficulty for an adversary (security): A computationally-bounded

adversary, with access to the state-of-the-art algorithms, should fail to correctly an-

swer the challenge on almost all instances [Nao96, vABHL03]. Naor [Nao96] fur-

ther adds that this probability of failure can be amplified, to an almost certainty, by

requiring the requester to solve multiple3 instances correctly. In Section 5.4.1, I pro-

vide evidence for this scheme’s enhanced security, and present a security test, TS(.),

for my constructions of Section 5.3.

4. Succinct instance representation: For integration into a web interface, a gener-

ated mCaptcha instance should be efficiently (in time and space) delivered, possibly

stored until requested, and represented to the user. A practical, large-scale imple-

mentation of such an interactive system requires that the instances representation

can be efficiently communicated and stored.

3From a usability point of view, this leads to an interesting question: after solving how many CAPTCHAs
will a typical user give up.
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In Section 5.3, I discuss the influence of these design requirements on my two particular

proof-of-idea implementations at greater depth.

5.2.1.2 Architecture

The proposed scheme is an interactive system: a system involving a sequence of challenge-

response communications from and to the user. The challenge-response sequence starts

with the arrival of a request from a user, who may be a bot or a human. Consequently,

the user’s request is countered by a music stream and an associated challenge. The user

must submit a response to the challenge within a pre-set, appropriate short period of time.

If no response is received, the system rejects this round. Otherwise, the input response is

verified against the stored, correct answer for this instance. The user passes the mCaptcha

test if and only if his response matches the correct answer. The streams used in building

the mCaptcha go through modules which modify their underlying structure. These mod-

ifications can be thought of — loosely speaking — as evolution phases. I highlight each

such phase in the following, and note those which appear computationally-irreversible to

an adversary.

More precisely, the architecture of this system consists of a primary-secondary selec-

tion, a generator and a challenge selection module. The mCaptcha challenge-response

sequence begins with the arrival of a request from a user, which may be a bot or a human.

The requester is presented with a single music stream, mpr,sr and an associated challenge,

cmpr,sr ; the composite stream mpr,sr can be easily heard as two distinct music streams, pr

and sr, by humans, but appears as a single inseparable unit of music to the adversary. The

user must submit a response, ru, to this challenge within a predetermined short period of
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time, t∗. If no response is received within t∗ seconds, the system rejects this round and

refreshes to another randomly selected mCaptcha; otherwise, the response is verified to

match the corresponding correct answer, λ(cmpr,sr ), stored for this instance. The requester

passes the mCaptcha test if and only if his response matches, or almost matches, the cor-

rect answer: That is, λ(cmpr,sr ) ≈ ru. The three modules used to generate (mpr,sr , cmpr,sr ,

λ(cmpr,sr )) are:

1. Primary-Secondary Stream Selection. In this module, a primary (P ) and a sec-

ondary (S) stream selected to be combined into a single auditory stream: the mCaptcha

stream (m). Each stream will be represented as a time series of amplitude values,

or amplitude values mapped to a particular range such as (−1, 1). Since the human

auditory system has a limited hearing range [Ols67], time series representation of

music pieces will also have a limited range of possible values.

(a) Primary selection. The primary stream, P = {pi}ni=1, is the most significant

auditory component of m since the mCaptcha’s challenge depends on P .

(b) Secondary selection. The secondary stream, S = {sj}mj=1, is used as a dis-

tractor, and its choice influences both security and usability. A successful

mCaptcha strikes a balance between similarity and disparity of S and P : (1)

S should be sufficiently different from P for the user to easily distinguish be-

tween the two (usability), and (2) the chosen secondary should be adequately

similar to P in musical quality and structure (e.g., rhythm and spectral signa-

ture) so that the adversarial separation between the two is difficult (security).

In other words, such structural similarity improves security through computa-

tional indistinguishability between two valid music streams.
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2. mCaptcha Generator.

(a) Segmentation. This sub-module segments both primary and secondary streams

into blocks of random length4:

• Segr←U∗
(P ) = [〈P 1〉〈P 2〉 . . . 〈P np〉],

• Segr←U∗
(S) = [〈S1〉〈S2〉 . . . 〈Sns〉].

The segmentation function, Seg, uses its internal random choices — denoted

by r and which is chosen uniformly at random — to divide the audio stream

into blocks of random length. The total number of blocks for the primary and

the secondary are denoted by np and ns respectively. The segmented blocks,

especially for the primary, cannot be too short or too long. If the generated

blocks are too short, human usability suffers. At the other extreme, although

very long blocks may be aesthetically more pleasing, increase the likelihood

of audio identification by the adversary. Note that no irreversible modification

has yet been applied.

(b) Stochastic linear transformations. This sub-module, combines blocks of pri-

maries and secondaries by dropping certain blocks at random and interleaving

the primary and secondary blocks. A block, 〈P i〉, being “dropped” refers to

multiplying values of that block by zero. This sub-module is the first evolution

phase which inserts extra information — in this case randomly chosen weights

4For simplicity, streams are represented in capital letters (e.g., P ) with their corresponding values over
time in lower case (e.g., P = [p1 . . . pn]). Segmented blocks of a particular stream are represented by the
name of the stream and the index of the block. For instance, 〈P i〉 = [pi,1, . . . , pi,l] corresponds to the ith

block, of length l, taken from audio stream P .
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— into the construction. Each stream is multiplied by weights chosen uni-

formly at random from the set of possible weightsW1 = {0, ε1, . . . , εj, . . . , 1}.

This set includes zero, resulting in a particular block being “dropped”, and 1

which corresponds to the no change case. Other weights, εs, are chosen close

to one (e.g 0.92 ≤ εj ≤ 0.98). I denote the stochastic linear transformation

by SLT, and further distinguish between its treatment of the primary and sec-

ondary streams for the sake of clarity.

Let w1
i be the ith weight chosen from W1 uniformly at random: w1

i ←U W1. In

all cases,←U represents sampling uniformly at random. I use w1
i 〈P i〉 to mean

a multiplication of all values in block P i by weight w1
i . Then the stochastic

linear transformation for each stream can be written as:

• SLTW1,r∈U∗(Segr←U∗
(P )) := [w1

1〈P 1〉 . . . w1
np〈P

np〉],

where ∀i, 1 ≤ i ≤ np, w1
i ←U W1

• SLTW1,r∈U∗(Segr←U∗
(S)) := [〈w1

1〈S1〉+ 〈r1〉〉 . . . 〈w1
ns〈S

ns〉+ 〈rns〉〉]

where ∀i, 1 ≤ i ≤ ns, w1
i ←U W1, and

〈ri〉 is noise with the same length as Si (|〈Si〉|).

In very broad terms, this transformation takes in the segmented primary and

secondary, chooses fillers of random length to be inserted between various

primary blocks, randomly drops some of the primary blocks, and fills in the

“gaps” — which have random lengths from a particular range ensuring that the

blocks are not too short or too long — with modified blocks of the segmented

secondary. Stochastic linear transformations of the secondary blocks may map

it to some fractional noise — white (Figure 2.1), brown (Figure 2.2) or pink
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noise (Figure 2.3)). Let’s denote the resulting streams from this evolution by

P̃ and S̃. To an adversary who does not have access to the random weights,

exact recovery of P and S is not possible.

(c) Stochastic combination. The stochastic combination module, Glue, builds a

new stream, m̂, from “interleaving” P̃ with S̃:

• GlueW1,W2,W3(P̃ , S̃) := [〈w2
1P̃

1 + w3
1S̃

1〉 . . . 〈w2
np

˜P np + w3
npS̃

np〉]

where ∀i, 1 ≤ i ≤ np, 1 ≤ j ≤ 3, wji ←U Wj.

The weights — chosen uniformly at random from W1,W2,W3 — are heuristic

design parameters and will emulate certain blocks being dropped at random,

and blocks being added together. Particular instances of these parameters will

be discussed in the prototype mCaptcha implementation of Section 5.3.

(d) Global modification. Finally, a transformation that alters global characteristics

of the mixture, such as its temporal structure, is applied. Permissible audio

manipulations include only transformations which cause either inaudible or

minimal changes. The resulting stream is the output mCaptcha stream, m.

3. Challenge Selection. This module outputs a contextual question. The correct an-

swer to the challenge depends on the primary, P , and is unambiguous. The contex-

tual questions rely on real-world knowledge that is easy for humans to acquire and

non-trivial for computers. The challenge has a unique answer; however approxi-

mately correct responses are accepted. This fuzziness is not inherent in the question,

but rather in the shortcomings of humans in recalling certain information (e.g., name

of an artist or a song) exactly. Lastly, the question should not be subjective, and so
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candidate challenges involving music genre should not be considered.

The Primary-Secondary Selection Module

Choose 
Secondary

Challenge 
Module

(challenge, Response)

Choose 
Primary

Composite
Audio 

Streams

Output

p,s
Seg SLT Glue Global

mp,s

The Generator Module
The Challenge 

Selection Module

mp,s (cm,rc)

p s

Figure 5.1: The mCaptcha system comprising of the primary-secondary selection mod-

ule, the generator module, and the challenge selection module. The system outputs an

mCaptcha composite music stream, a context challenge and the associated correct re-

sponse. The generated composite stream can be heard as two by humans but is unlikely to

be separated by automated programs.

5.2.1.3 Assumptions and Other Considerations

The new mCaptcha scheme assumes that the user is able to hear the generated music

stream. That is, similar to the CAPTCHA model, the goal is to make the scheme accessible

to as large a fraction of the population as possible [vABHL03].

The underlying demographic assumptions are based on current statistics available on
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digital music use. The rise and development of new technology that makes efficient ac-

cess to music on a massive-scale possible, have created a new digital reality which will

further be shaped by the “digital natives” [PG08, PGSB09]. In other words, our current

technological reality not only has forced a change in past behavioural norms — such as

means and duration of accessing or streaming music — but also it has nurtured youth who

spend more time online and start using online resources at a much earlier age. The new

generation of users may start using the internet as early as 10, and spend more than 3 hours

online listening to music [JGB+12].

Hence, it will be assumed that the majority of the target mCaptcha users will be be-

tween the ages of 10 − 45. These users are without major hearing impairments, and can

listen to the mCaptcha through their computers, mobile phones or other portable digital

systems.

The chosen CAPTCHA challenge should be simple enough for human beings to solve.

The CAPTCHA should be efficient to create even though they will be generated offline5.

The music snippets, primary and secondary streams, are less than 15 seconds long, and

the generated mCaptchas are manipulated remixes of these streams. The somewhat di-

minished aesthetic quality of the resulting composite and the short length of the building

streams render potential copyright infringement objections moot. The particular choice of

the challenge associated with an mCaptcha is an open design parameter, and will ensure

that humans can solve the mCaptcha’s challenge before the end of the allocated time t

(efficiency), and computers will need more than t to correctly answer the challenge (secu-

rity). Finally, in the security analysis of the scheme, I assume that the adversary does not

5In other words, mCaptchas can be generated and securely stored in a database for later access.
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include humans posing as bots.

5.2.2 Security Considerations of mCaptchas

“There is no way to prove that a program cannot pass a test which a

human can pass, since there is a program — the human brain — which

passes the test.”

-Luis von Ahn et al. [vABHL03]

Security of this proposed system uses the CAPTCHA security framework (Section

5.1.2.2). Security is empirical, depends on the state-of-the-art algorithms, and evolves

over time. Finally, if the mCaptcha scheme is broken by automated programs in the future,

then a believed-to-be-difficult problem — at the intersection of music information retrieval

(MIR) and computational auditory scene analysis (CASA) — can be efficiently solved.

Consequently, a different set of music-based contextual challenges should be used.

In the context of mCaptchas, a requester is presented with a single audio stream which

can be heard as two distinct music streams by humans, but which appears as a single

inseparable unit of music to an automated adversary. In Section 5.2.2.1, security is jus-

tified in terms of increased size of the building alphabet (i.e., music streams instead of

an alphanumerical one), random segmentation, combination of two valid but sufficiently

distinct music streams, and a contextual challenge based on one of the music streams.

Though a rigorous proof of security is impossible [vABHL03], evidence is provided in

Section 5.4.1 through an investigation of resilience against attacks from a widely-used au-

dio identification program. The ultimate test of mCaptchas, similar to other CAPTCHA
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protocols, is a large-scale adoption by web services, and the ultimate measure of its prac-

tical security is time.

5.2.2.1 Computational Difficulty of Adversarial Attacks

The adversary model used to break visual or audio CAPTCHAs relies on machine learn-

ing algorithms to detect speech components from a noisy background [TSHvA08, SC04].

The CAPTCHA is first broken into smaller components believed to contain an elementary

unit, a letter or a number, and (speech) classifiers are applied to each segment. This ad-

versarial model is not applicable to mCaptchas since speech classifiers are not sufficiently

sophisticated to capture the information-rich structure and features in music.

The elementary unit of mCaptchas, instead of letters or digits, is music, and this choice

highlights the system’s complexity. By using music,“the composer has a large alphabet of

possibilities. This alphabet is not a simple set of seven notes, but is the 350, 000 differ-

entiable sounds in the full range of human hearing.” [Coh62] Use of a more complex,

information-latent medium — in place of 26 elements of construction — increases the

amount of uncertainty [Wea49b] faced by automated, adaptive programs. Moreover, the

number of songs available to be used for the primary and secondary streams are in the

order of millions and this number continues to grow. For instance, the iTunes music stores

— with 29% share of the music sales and available in 199 countries — contains 26 million

songs with 15, 000 being songs downloaded per minute [Pha13], and the typical user has

on average more than 8000 [BC09] songs in his iTunes library. This increased uncertainty

and deluge of options implies that a state-of-the-art machine learning algorithm — absent

the introduction of an ingenuous method to search through an exponentially-large space of
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possibilities efficiently — fails to correctly reconstruct the streams by randomly guessing.

The mCaptcha system is considered broken if a computational adversary can correctly

answer challenges — contextual questions about primary music streams — corresponding

to random generated mCaptchas in an allotted short period of time. The computational

difficulty for breaking the mCaptcha relies on the following:

1. the computational difficulty of identifying the primary by separating the primary

from the secondary music stream in the mCaptcha,

2. the computational difficulty of answering the contextual, primary-dependent chal-

lenge in an allotted, short period of time.

The challenge is chosen at random from a pool of possible contextual questions, and

the correct response depends on a particular primary stream, chosen at random from a large

collection of possible streams (millions of songs). These make guessing the response at

random moot for the adversary.

I assume that the adversary has access to a large music collection,M∗, and that for each

song there is associated meta information: (si, tsi) ∈ M∗. Such stored meta information

may include name of the song, artist(s), album, year of release, information about genre

and subjective tags (i.e., keywords such as emotional descriptors). Moreover, I assume

that the adversary has access to any state-of-the-art algorithm that may be used to cor-

rectly answer the challenge, S∗. An mCaptcha instance is denoted by the composite music

stream, mpr,sr , a corresponding challenge, cm, and a corresponding response, λ(cm). The

mCaptcha’s music stream, mpr,sr , is built using randomly chosen primary (pr) and sec-

ondary (sr) songs as described in Section 5.2.1.2. Potential attacks to break an mCaptcha

instance may be categorized into the following two general approaches:
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• Musical Stream Segregation: Given mpr,sr , the adversary applies source separa-

tion techniques to separate pr from sr: IM
∗

S∗ (mpr,sr) = p̃r. It then extracts meta

information stored for p̃r in M∗ to answer cm before the current mCaptcha instance

expires.

• Music Summarization: The adversary extracts key local or global music attributes

(e.g., spectral, rhythmic, or tonal information) from m, creates a music signature

and compares this summarized description, m̃, against M∗ to find pr. Alternatively,

a classifier (e.g., an state-of-the-art genre, artist or instrument classifier) may be ap-

plied to learn (partial or complete) information about the primary. The information

learned by the adversary about m is denoted by: IM∗
S∗ (m̃). Finally, the adversary

uses IM∗
S∗ (m̃) to correctly answer cm before expiration.

The computational difficulty of the above two approaches can be summarized as:

• The problem of separating mixed auditory streams into their constituents is compu-

tationally difficult [Bre94]. Separating one stream from another — especially when

the two are summed with random weights — is difficult because of the interference

between their corresponding spectral components [Bre94].

• Despite current computational and algorithmic advances, exact automatic extraction

of certain musical key attributes (e.g., time signature) from audio is computationally

difficult [MEKR11].

• The problem of music source separation in this setting corresponds to under-determined

source separation (USS) since there are more sources, (pr, sr), than audio mixtures

139



5.2. MCAPTCHA: A MUSIC-BASED COMPUTATIONAL TURING TEST 140

(mpr,sr). USS, and more precisely music under-determined source separation, are

particularly difficult [MEKR11]. Current approaches incorporate information about

timbre models, harmonicity of the sources, temporal continuity and sparsity con-

straints [MEKR11]. Nonetheless, these remain computationally difficult.

• If the adversary successfully identifies pr, answering certain contextual questions

remains computationally difficult.

In Section 5.4.1, I present empirical results showing that a widely-used audio identifi-

cation algorithm fails to identify the primary stream with high probability.

5.2.2.2 Large-Scale Deployment: Test of Time

From the initial deployment of reCAPTCHAs in May 2007 until July 2008 as a free ser-

vice, over 40, 000 CAPTCHAs were incorporated into Websites and over 100 million

CAPTCHAs were solved on a daily basis [vAMM+08]. The ubiquity of music, the high

number of culture-independent possibilities for primaries and secondaries, and the po-

tential for improved Web accessibility for the visually impaired, are strong indicators for

large-scale adoption of mCaptchas. Similar to CAPTCHAs, the true test of security will

be resilience against attacks after a publicized massive-scale deployment.

5.2.3 Auditory Features Related to Usability

A key feature of the human auditory system is the ability to comprehend distinct compo-

nents — originating from distinct sources — separately [Bre94, Dar97]. Auditory scene

analysis (ASA), a term first coined by Bregman [Bre94], is devoted to the study of such
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Figure 5.2: An example of a gestalt principle. Similarity and proximity of two distinct
objects lead to the emergence of a new perceptual object. In other words, disparate shapes
grouped together may be perceived as a single shape. For instance, the two distinct musical
notes are perceived as an “M” here.

perceptual features. The ability of the auditory system to group and organize sound into

meaningful components is similar to the visual grouping principles put forward by the

school of Gestalt psychology [Bre94, Dar97]. The Gestalt grouping principles describe

humans’ unique ability to perceive complex patterns from simpler ones (emergence), gen-

erate information from limited portions of a stimulus (reification), ability to interchange

between ambiguous perceptual stimulus (multi-stability), and classification of similar but

manipulated objects together (invariance). For instance, in Figure 5.2 an “M” emerges

from two distinct but similar objects.

Though an in-depth treatment of auditory scene analysis [BC71, BD73, BR75, DB76,

Bre78, BP78, Bre94] is outside the scope of this work, I highlight the following principles

relevant in the context of mCaptchas:

• The principle of grouping: auditory grouping depending on similarity and proximity,
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– “Principle of harmonicity” [Bre94]: regularities are used to detect multiple

sources; grouped according to the most probable cause,

– “Envelope independence” [Bre94]: asynchronies in intensity fluctuations

lead to perception of multiple sources,

– “Streaming” [Bre94]: Non-simultaneous sounds that are sufficiently similar

— proximity in “acoustic distance” — are heard as one, and those with large

acoustic distance as distinct streams.

• the principle of continuity, and

• the principle of past experience.

These principles account for why humans can hear the primary as a continuous stream,

despite deleted chunks and the interruptions of the distractor (secondary stream); they also

justify the detection of two distinct music streams from a mixture. Being able to hear two

streams from a mixture, and detect a continuous primary stream are critical in recall and

answering contextual questions about the primary musical stream.

To ensure that the primary and secondary streams are clearly heard as two distinct

streams, music pieces with very different spectral signatures (“Frequency separation”

[Bre94]) separated with sufficient temporal gaps (“Temporal separation” [Bre94]) are

used. The temporal gaps — between blocks of the primary and secondary streams —

and the choice of secondaries — with sufficiently distinct spectral signatures — are two

heuristic parameters of design. The more different the primary is from the secondary —

the notion of difference is based on information latent in the two streams (e.g., structural

features such as rhythmic regularity) as well as contextual or culture (e.g., genre or musical
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style), the easier it is for an auditory segregation into two distinct streams [Bre94].

5.2.4 Applications of mCaptchas

My proposed scheme meets the requirements of CAPTCHA schemes outlined in Section

5.1.2. It relies on an information-potent ubiquitous commodity: digital music. The cor-

nerstone novelty of the scheme is in its application of music and departure from security

in the form of noise-based scrambled visual or audio signals. mCaptchas improve acces-

sibility for users with visual impairments, remove dependence on a specific language, and

allow for further customization to particular music libraries. They may be more pleasant

because they avoid the use of noisy alphanumeric audio clips, and could even be entertain-

ing to solve.The issue of improving user experience and web accessibility for the visually

impaired is significant. The World Health Organization estimates that there are over 285

million individuals with visual impairments [PM12]. Article 21 of the United Nations

Convention on the Rights of Persons with Disabilities - Freedom of expression and opin-

ion, and access to information- mandates equal access to information for all [Ass06]. That

is, users should not be deterred from access due to a disability. This novel design improves

user accessibility by both using more pleasant building blocks instead of scrambled noise,

and by allowing for a user-by-user customization. Music is unequivocally intertwined

with numerous aspects of our daily lives [Ren12], and our innate ability to identify known

pieces in matters of seconds [MB93, PG99] mark this design relevant for many applica-

tions.

The mCaptcha system, similar to its predecessors, is at the intersection of practical

security and human computation. Possible applications for mCaptchas include, but are not
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limited to, access control, subjective user-generated music tags, and artist promotion. In

the proceeding sections, I outline a few potential applications.

5.2.4.1 Access Control

The mCaptcha system can be used in all existing applications which currently use CAPTCHAs.

Such applications include provision of access for online polls, online ticket brokers, regis-

tration process for web-based email service providers such as Gmail, online postings such

as Wikipedia, blogs and forums and open government initiatives such as online govern-

ment petitions [cap, vABL04, gov12, vABHL03].

5.2.4.2 Massive-scale Online Music Exposure

The CAPTCHA framework provides access to distributed human computation on a mas-

sive scale. For instance, the reCAPTCHA scheme was introduced as an enhancement of

CAPTCHA [BvALH00, vABL02] to use the time and human processing power “wasted”

on solving textual challenges for “good” [vAMM+08]. This scheme replaced randomly

selected alphanumeric letters, used in CAPTCHAs, with words from digitized books that

optical character recognition (OCR) cannot accurately identify [vAMM+08]. Von Ahn et

al. note that within the course of fourteen months, over 100 million CAPTCHAs were

solved on a daily basis [vAMM+08].

There is a wealth of potential music streams to be used to generate mCaptchas. In 2012,

there were over 1.5 billion digital singles downloaded [Fri12]. In May 2013, comScore

estimated VEVO, a music channel on YouTube, to have close to 53 million unique users,

watching over 600 million music videos [com13]. Other studies have reported over 3 hours
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per day of streaming [JGB+12] or listening to music on a portable device [BAG+12].

Lastly, a typical music library has thousands of songs [KBM12, BC09]. The mCaptcha

system has two potential targets: advertisers and site owners. This provides the music

industry the opportunity to direct the human user to upcoming concerts or promotional

events through adaptive ads embedded in the mCaptcha. For independent artists with fan

registration or polling services on their site, mCaptchas can be used to separate humans

from bots while showcasing their own work as well as other artists who are in the same

genre or music category.

5.2.4.3 Wisdom of the Crowds to Improve Music Recommendation

The future of music will be online. Cloud computing and online music streaming are no

longer science fiction, and large companies such as Google, Apple and Amazon not only

see that future but are actively working towards materializing this vision. In a near future,

almost all music ever recorded will be made available online, and music recommendation

engines will be a necessary tool. Because of the highly dimensional aspect of music, its

subjectivity and reliance on human cognition, any feasible music recommendation engine

will rely fully or partially on user-generated tags. The sheer amount of music available

mandates the use of crowdsourcing for such a task. mCaptchas can be slightly modified

to be further used as a massively-scalable tool to generate millions of user-generated tags.

One particular approach, similar to reCaptcha [vAMM+08], is to ask a user to solve an

mCaptcha and require him to give at least two tags that he associates with it.
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5.2.5 Drawbacks

Similar to existing CAPTCHAs, both textual and audio, mCaptchas are susceptible to

man-in-the-middle attacks. In these attacks an automated program or service provides

incentives — financial or otherwise — for other humans to solve the challenges in place

of the bots. Blum et al. refer to such attacks as “stealing cycles from humans” [vABL02].

5.3 An mCaptcha Prototype

A prototype of the mCaptcha system, described in Section 5.2.1.2, is presented here. De-

tails of various modules (Figure 5.1) are given in Section 5.3.1. Security experiments

are presented in Section 5.4.1, and finally usability is investigated in Section 5.5. I use an

audio-identification algorithm to provide evidence for security and investigate the scheme’s

usability on a crowdsourcing platform. The usability experiments provide an overview of

the user-experience, response accuracy and efficiency for over 4000 mCaptchas (Section

5.5). The prototype (Figure 5.1) is implemented in Matlab, and uses a Matlab implemen-

tation of an audio identification algorithm by Ellis [Ell09] as an adversary; the security

results for over 2000 (unique) mCaptchas are presented in Section 5.2.2.

5.3.1 Parameters of Design

The mCaptcha system outlined in Section 5.2.1.2 has access to two collections of music:

the primary and the secondary. The primary music collection, P , contains songs selected

from the Billboard Hot 100 [Fra91]. To ensure diversity and user ease of detection, at

least ten popular songs were chosen from decades between 1960 and the present. The
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music snippets, each less than 15-seconds long, were downloaded from freely available

music snippets on Wikipedia and Amazon’s mp3 store. The secondary music collection,

S, contains classical music snippets downloaded for free from Deutsche Grammophon, a

German classical record label [dG]. The genres of the two collections are chosen to be

very different (pop vs. classical) to ensure sufficient variation in musical attributes, such

as structural regularity, between the primary and secondary streams.

An mCaptcha instance is a tuple: (mpr,sr , cmpr,sr , λ(cmpr,sr )) where the music stream

mpr,sr is generated through the following sequence of phases:

• Primary Selection: pr

– Choose pr randomly from the primary music collection, P .

• Secondary Selection: sr

– Choose sr randomly from the secondary music collection, S.

• Generator Module:

– Segmentation Phase (Seg(.)):

∗ Segment the primary and secondary streams; segmentation lengths of the

primary are chosen at random ranging from the 700 to 1000 ms,

∗ Denote the primary and secondary segments by P = [〈P 1〉〈P 2〉 . . . 〈P np〉]

∗ The secondary segments are denoted by S = [〈S1〉〈S2〉 . . . 〈Sns〉] with

segments’ lengths chosen at random:

|〈Si〉 = ri|〈P i〉|, where ri is chosen at random from (0.15,0.2).
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– Stochastic Linear Transformation Phase (SLT(.)):

∗ Two variations are implemented: discard blocks either at random or drop

all even blocks. The result is: P̃ = {〈w1
iPi〉}

np
i=1 = {〈P̃i〉}npi=1 where,

1. (Even Indices) w1
i = 0 for even indices,

2. (Random Indices) w1
i = 0 for randomly chosen indices. However,

consecutive blocks are not discarded to ensure that the resulting stream

is aesthetically pleasing.

– Stochastic Combination Phase (Glue(.)): Choose weights uniformly at ran-

dom from (0.5 : 0.05 : 0.7), pad the secondary as needed, and compute a

weighted average {(w2
i P̃i + w3

i S
i)}npi=1, with w2

i + w3
i = 1

• Challenge Generation Module: The following two challenges are implemented:

1. Name That Tune Case: name the artist, album or song,

– In the first case, the user will be granted access so long as the name of the

song or the album entered are approximately correct - allowing for small

typos by the human users.

2. Comparison Case: which sounds older?

– the user will listen to two mCaptchas and select which one sounds older.

The two mCaptchas created use building block music pieces that are at

least three decades apart. Studies have shown that human beings are great

at detecting the decade information about music piece even if the user is

not familiar with the piece.
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• Verification of the User’s Response: The provided human response should match

the meta-information corresponding to the mCaptcha stored in a secure database on

the provider’s servers.

Finally, to investigate whether visual aids further improve user-experience, the user is

presented with a mosaic of various cover arts with the cover art corresponding to the

primary magnified (Figure 5.3).

Figure 5.3: A possible visual aid. The mosaic of various cover arts includes a magnified

cover art corresponding to the primary stream. This is to visually help the user rememer

the name of the album, song or the artist.

5.4 A Security Evaluation of the Prototype

As discussed in Section 5.2.2, a rigorous proof of security is not possible for mCaptchas.

The ultimate test of security, similar to existing CAPTCHAs, will be the test of time after a

large-scale adoption. However, this section provides evidence for security by investigating

the success of a widely-used audio identification program in detecting the primary stream.
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I use Shazam, a commercial music identification service [WSI00], to evaluate the ease

of detecting the primary or the secondary streams, given access to the mCaptcha and the

underlying music collections (primary and secondary music collections).

Developed in the early 2000 [WSI00], Shazam’s music identification system is able to

correctly identify very short segments of music despite strong background noise and inter-

ference in less than 10 seconds [Wan03]. The great success of its mobile application [sha]

in correctly and efficiently identifying songs from very short noisy or distorted samples

recorded and transmitted from mobile phones, has turned it into a great financial success

[Kin11] with a great following of over 300 million users [sha13].

This audio identification algorithm computes an audio fingerprint for a noisy, dis-

torted short song sample and compares it to musical fingerprints of already stored millions

of songs [Rei08]. More precisely, for each song a time-frequency map (spectrogram)

is computed; Local peaks of the spectrogram are selected (“constellations”). From the

constellations, focal points with clusters around them (“anchors”) are chosen; For each

frequency-time pair (fj, tj) in the neighbourhood around an anchor (fa, ta), (fa, fj, ta−tj)

are stored; These, along with the time offset from the beginning of the stream and track

ID are stored as fingerprints The algorithm is robust against distortions and noise since a

true peak in the original will most likely remain a peak after the stream has been filtered

or distorted by adding noise [WSI00]. The collected peaks in the spectrogram are referred

to as a constellation [Wan03]. From the constellation, anchors are chosen. These are focal

points in the constellation with clusters around them. For each point (fj, tj) in the neigh-

bourhood around anchor (fa, ta), (fa, fj, ta − tj) are stored. These values along with the

time offset from the beginning of the stream and track ID are stored as fingerprints and
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used to determine a match [Wan03].

Shazam’s efficiency, accuracy and large scale adoption make it a great candidate for

an state-of-the-art adversary in my security analysis of mCaptchas. I use an open-source

implementation of Shazam by Ellis [Ell09]. I use this Matlab implementation — instead

of Shazam’s mobile application — in my analysis to ensure that the adversary has access

to all primary and secondary songs, and that the failure to identify the primary (or the sec-

ondary) is not due to a lack of access to classical music. This particular audio identification

algorithm is, henceforth, referred to as the adversary.

5.4.1 Security Results

The adversary used in the following tests forms pairs from of frequency peaks (“land-

marks”) in the audio; For each pair, frequency values along with time offsets in between

these local maxima are stored and further quantized to approximately 20 − 50 landmarks

per second [Ell09]. The music collection, of size 393, consists of all primary and secondary

streams in addition to a few audio streams not used in the generation of mCaptchas. These

fingerprints are computed for a music collection containing all primary and secondary

streams, and matched against those computed for mCaptchas. For an mCaptcha stream,

mpr,sr , the adversary returns a list of top 10 matches, A(mpr,sr) = {aimpr,sr}
10
i=1. The

following cases are significant in the security analysis

1. No matches. The mCaptcha is secure:

• @i ∈ [1, 10], aimpr,sr = pr,

• @j ∈ [1, 10], ajmpr,sr = sr,
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2. Primary stream is found.

• ∃i ∈ [1, 10], aimpr,sr = pr

– If the primary is returned as the first choice (i.e., a1
mpr,sr

= pr), the

mCaptcha is broken.

3. Secondary stream is found.

• ∃j ∈ [1, 10], ajmpr,sr = sr

In addition to the security of generated mCaptchas, denoted by M = {mpi,si}Ni=1 where

N is the total number of mCaptchas generated, the influence of two design parameters on

security are investigated: the length of the segmentation blocks and choice of which blocks

are discarded (i.e. are multiplied by weights wi = 0). A security score, sm, is computed

which depends on the likelihood that the adversary fails (cannot identify the primary and

the secondary stream) and his partial successes; a (partial or complete) success implies a

correct identification of the primary (analogously the secondary) stream in the adversary’s

list, A(mpr,sr) = {aimpr,sr}
10
i=1. A higher penalty is assigned for matched primaries than

secondaries and to finding matches higher up in the list. The following indicator variables

(i.e., binary variables that taken on 1 only when a particular condition is satisfied) are used

define a security score (Definition 5.1):

• ∀j ∈ [1, N ],∀i ∈ [1, 10],

– (Primary match at index i):

∗ I ipj = 1, iff aimpj,sj = pj ,
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– (Secondary match at index i):

∗ I isj = 1, iff aimpj,sj = sj ,

– (No matches):

∗ Impj,sj = 1, iff Σ10
i=1I

i
pj

+ I isj = 0.

Let the security score, sM , for an mCaptcha collection, M = {mpj ,sj}Nj=1, be defined as:

sM = ΣN
j=1(Impj,sj − Σ10

i=1(
I ipj
i

+
I isj
i2

)) (5.1)

An mCaptcha stream, mpr,sr ∈ M , is constructed from randomly chosen, distinct

primary and secondary music streams, pr and sr. These streams are subjected to stochas-

tic segmentation (Seg), stochastic linear transformation (SLT), stochastic combination

(Glue) and a global modification (Section 5.3.1). I include two intermediate collections

of music streams,Me andMr, in the security analysis. These collections consist of streams

before the application of any global non-linear transformations (final step in the mCaptcha

prototype - Section 5.3.1). The following variations are considered:

• Me (“Drop Even Blocks”): set weights wi in Seg(.) to zero for even indices,

– M̂e: Choose segmentation lengths at random from (700− 1000) ms.

– M̄e: Choose segmentation lengths at random, and drop random blocks (but use

longer gaps filled with the secondary.)

• Mr (“Drop Random Blocks”): Choose indices i where wi = 0 at random

– M̂r: Choose segmentation lengths at random from (700− 1000) ms.
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– M̄r: Choose segmentation lengths at random, use longer gaps filled with the

secondary (extend by factor e) and ensure that no two adjacent blocks are

dropped. The length of each secondary block will be an e multiple of the

length of its most immediate primary block neighbour. The extension factor, e,

is chosen at random, from a fixed small set of possible values, for each stream

(e.g., e = 1.2).

Table 5.1 summarizes the security results of mCaptchas tested. Here, the adversary is

Shazam, an audio identification algorithm, and mCaptchas were constructed using 248

primary (popular songs taken from Billboard top 100 songs [Fra91]) and 107 secondary

streams (Western classical music taken from Deutsche Grammaphone [dG]). Shazam was

given access to both the primary and secondary collections, in addition to 37 other audio

signals (e.g. birds chirping). Based on Table 5.1, I make the following observations:

• Case 1 (700 − 1000): Segmentation blocks in the primary are at least 700 and at

most 1000 ms long.

– Generated mCaptchas, M , are resilient against audio identification attacks:

over 98% of the final mCaptcha streams,M , were undetectable against Shazam

[Wan03, Ell09].

– Dropping even blocks is harder to detect than random blocks (compare 27% to

48% rate of failure); presumably because in the random case, adjacent blocks

may contain structural or harmonic information useful for audio identification,

∗ M̂r vs. M̄r: By ensuring that no two adjacent blocks in the primary are
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dropped at random, M̄r, the adversary can potentially detect latent in-

formation and security suffers. This is reflected in Shazam’s increased

success percentage of approximately 10%. In other words, randomness in

choosing which blocks of the primary are silenced in M̄r is biased, and ad-

jacent blocks of the primary are likely to contain enough temporal-spectral

information that Shazam can correctly identify the primary. In that case

(pi, sj, pi+1), the secondary block in between the two contiguous primary

blocks will be treated as noise by the adversary.

• Case 2 (1000 − 1200): Segmentation lengths are increased to the 1000 − 1200 ms

range. Although in this case, the streams may sound slightly more pleasant, the

likelihood of detection by the adversary also increases (5% instead of the previous

2%).

– Similar to the previous case, dropping even blocks of the primary results in a

slight disadvantage for Shazam (27% vs. 35%).

• In both cases, dropping random blocks makes detection more difficult for Shazam.
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Final mCaptcha Streams
Intermediate Streams

Drop Even Blocks Drop Random Blocks

(M) (Me) (Mr)

Segmentation length: 700− 1000 ms |M | = 2232 |M̂e| = 744 |M̄e| = 744 |M̂r| = 744 |M̄r| = 744

pr and sr are not found 2135(96%) 201(27%) 525(71%) 346(47%) 281(38%)

Segmentation length: 1000− 1200 ms |M | = 744 |M̂e| = 248 |M̄e| = 248 |M̂r| = 248 |M̄r| = 248

pr and sr are not found 709(95%) 66(27%) 160(65%) 88(35%) 92(37%)

Table 5.1: Influence of mCaptcha design parameters on security. Generated mCaptchas,

M , are the streams presented to a requester. “Intermediate streams” columns show the

influence of different design parameters on the likelihood of the adversary’s success.

Table 5.1 highlights all-or-nothing scenarios of security: either the mCaptcha is broken

(i.e., the primary is found) or not. However, security compromises may be partial: the

adversary may find the primary or the secondary as candidate streams in his return list

of 10, A(mpr,sr) = {aimpr,sr}
10
i=1. Although a partial match is not as significant as the

previous scenario, I present evidence that the proposed scheme — in its final form (M )

and its intermediate phases — remains resilient with high probability. Security scores are

computed according to Equation 5.1, and Figures 5.4 and 5.5 show the likelihood of the

adversary achieving such security scores. These scores and their associated probabilities

are computed for results of Table 5.1. Figure 5.4 shows that the adversary fails identify

the primary and the secondary with overwhelming probability, and that the probability it

finds the primary or the secondary as its first response (a1
mpr,sr

) is almost zero: Pr[sm =

−1] ≈ 0.
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Figure 5.4: Distribution of security scores of final mCaptchas (M ): A score of 1 corre-

sponds to the primary and secondary not being found, and scores less than 0 correspond

to partial matches of the primary or the secondary weighted by significance of the match

(Equation 5.1).

Figure 5.4 also highlights that partial matches further down in the adversary’s list of

candidate stream, {aimpr,sr}i, is very unlikely: Pr[−1 < sm < 0] < 0.1. The following

observations are of note about the security scores:
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(a) Distribution of security scores for M̂e
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Figure 5.5: Distribution of security scores (intermediate case of Me): A score of 1 corre-
sponds to the primary and secondary not being found, and scores less than 0 correspond to
partial matches of the primary or secondary weighted by significance of the match (Equa-
tion 5.1).
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• Security scores M̂e vs. M̂r: Although by dropping even blocks, the adversary less

likely to correctly identifying the primary in Mr (i.e., the probability of a secu-

rity score 1 — corresponding to no matches — is higher in M̂r than in M̂e), it has

a higher probability of correctly identifying the primary or the secondary (corre-

sponding to security score sm = −1 (equation 5.1)) in M̂e.

• Security scores M̂e vs. M̄e: Figure 5.5(b) shows that by increasing the lengths

of gaps in between primary segments, security scores improve: Pr[sM̂e
= 1] >

Pr[sM̄e
= 1].

• Security scores M̂r vs. M̄r: By ensuring that no consecutive blocks of the primary

are discarded, the number of non-matches for both the primary and the secondary

decreases (Table 5.1). In other words, the adversary can correctly identify the pri-

mary. However, Figure 5.6 shows that there is a decrease in the number of partial

matches for the primary or the secondary; there is a decrease in the likelihood of

security scores −1 < sm < 0.

5.4.2 Discussion of the Security Results

Similar to CAPTCHAs [vABHL03], proof of security in this context is impossible. There-

fore, I do not attempt to give a formal proof of security but rather provide empirical ev-

idence for the computational difficulty of attacks. The security results of Section 5.2.2

demonstrate the resilience of generated mCaptchas against a state-of-the-art adversary.

159



5.4. A SECURITY EVALUATION OF THE PROTOTYPE 160

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
mCaptcha Security

Security Scores (s
m

)

P
r(

s
m

)

(a) Distribution of security scores for M̂r

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
mCaptcha Security

Security Scores (s
m

)

P
r(

s
m

)

(b) Distribution of security scores for M̄r

Figure 5.6: Distribution of security scores (intermediate case of Mr): A score of 1 corre-
sponds to the primary and secondary not being found, and scores less than 0 correspond
to partial matches of the primary or the secondary weighted by significance of the match
(Equation 5.1).
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Though the results are promising, the ultimate test of security is time6, and requires a

large-scale deployment of the scheme. In the following section, mCaptchas that passed

the security test (i.e., those on which Shazam failed to detect both the primary and the

secondary streams), are used in a series of large-scale user tests, wherein I investigate how

easy it is for humans to solve mCaptchas accurately.

5.5 Usability Analysis of mCaptchas

The notion of usability measures the efficiency and accuracy of solving mCaptcha chal-

lenges by humans. I show that mCaptchas are user-friendly through large-scale exper-

iments on a popular crowdsourcing online market, Amazon Mechanical Turk (AMT)

[mTu]. This crowdsourcing platform is well suited for problems which are trivial for

humans but computationally complex or expensive otherwise [KCS08, KK08, MBR10,

Ipe10a, MS12, PCI10, Ipe10b]. Examples of problems solved on AMT include photo

tagging, handwriting recognition and iterative text improvement [LCGM09, PCI10].

5.5.1 Mechanical Turk Parameters

In mCaptcha usability tests, human participants, workers, are assigned mCaptchas,

HITs, and paid a small fee ($0.01 − $0.05) for the successful completion of each HIT

, which stands for “Human Intelligence Task”. In my experiments, the majority of work-

ers were paid a penny, and a few were paid 5 cents to solve mCaptchas and answer a few

6I borrow the notion of “test of time” from cryptography where certain cryptographic primitives, such as
practical encryption schemes, are considered to be strong if the state-of-the-art attacks by the best cryptog-
raphers continue to fail over time [FS03].
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usability questions. Workers participating after June 2013 were paid 5 cents to encourage

only new users to participate in the study in a short period of time. I examined the user

experience in solving mCaptchas by measuring the duration needed to solve, and also by

asking users to rank their experience, on a scale of 1 (very pleasant) - 4 (unpleasant). HITs

were presented in a random order, and batches were uploaded at various times of a day to

avoid targeting a particular worker demographic. Each HIT is solved by at least 3 work-

ers, and each worker must solve the HIT without any interruptions. HITs expire after 5

minutes of inaction, and each batch of HITs is considered finished when all assignments

have been completed or 10 days have passed.

I conducted three variations on AMT [mTu]:

1. Name That Tune without Visual Aid. The user listens to a composite music stream

and is asked to name the tune or the artist (Figure 5.7)

2. Name That Tune with Visual Aid. This case investigates if visual aids can im-

prove efficiency or accuracy: a mosaic is shown to the user, containing the current

primary’s cover art along with others chosen at random (Figure 5.8), and

3. Compare the Decades. In this final category, the user is presented with two com-

posite streams and asked to identify the composite stream whose primary stream

belongs to a more recent decade. For instance, the first mCaptcha contains an Adele

song (1st decade of the 21st century) whereas the second contains a piece by Aretha

Franklin (recorded 50 years earlier). All instances tested were at least 30 years apart.

A total of 3104 mCaptchas (156 unique mCaptchas) were solved by 290 unique

workers. The most active worker solved a total of 165 mCaptchas (Figure 5.9).
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In addition, workers were asked to rate their experience and to indicate whether or

not they found the task easy. For quality control, a simple test is put in place to distin-

guish humans from bots on AMT and ensures that users are not answering the mCaptcha

challenges at random. Workers who failed these tests were not paid, their responses were

rejected and the mCaptchas were returned to the pool of available HITs.

Figure 5.7: mCaptchas: Name that Tune Case. No visual aids are provided.

In the “Name that Tune without Visual Aid” case, users listen to a composite music

stream and answer the challenge: name the tune or the artist — whichever they found to

be easier.
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Figure 5.8: mCaptchas: Name that Tune Case. A mosaic of various album cover arts of

different sizes are presented. The cover art corresponding to the correct answer is the one

most prominently visible.

The “Name that Tune with Visual Aid” case was considered to investigate if visual

aids are necessary, and whether or not they can sufficiently help users not familiar with

the presented stream. The final category of experiments is the “Comparison Case.” In

this scenario, the user was presented two composite streams, and is asked to identify the

mCaptcha whose primary stream belongs to a more recent decade. For instance, the first

mCaptcha consists of an Adele song (1st decade of the 21st century) whereas the second

contains a piece by Aretha Franklin (recorded 50 years earlier). All instances tested were
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Figure 5.9: mCaptchas: Comparison case. The user is presented with two mCaptchas and
asked to mark the one whose primary stream sounds more recent.
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at least 30 years apart.

To protect against automated responses during my tests, I placed in a few simple ques-

tions for the users to answer. If a user did not pass this simple test, his response was

rejected. The rejected mCaptchas were placed back in the pool of possible mCaptchas to

be solved. Table 5.5.1 lists questions along, with possible choices. A worker’s approval

rating, measured in percentages, and marks his rate of success passing these rudimentary

tests.
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Question
Possible

Choices

Which can be the next logical item in the following list:

Ferrari, Porsche, and Lamborghini? a BMW

a turtle

In reality, which of the following can fly?

a Ferrari

an eagle

Which one is closer to the colour of the ocean?

1. (red text)

2. (blue text)

In reality, which can you possibly drive?

a magic carpet

a Ferrari

In reality, who can you have lunch with?

Mozart

your best friend

In reality, who can you have dinner with?

your best friend

Einstein

Table 5.2: Different basic tests put in place to ensure that user was not randomly answering

the questions.

5.5.2 Description of the Users in this Usability Analysis

My experiments ran through January - July 2013 and contracted
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Figure 5.10: The power law in AMT worker participation (Name that Tune and Compari-
son cases). The Workers are sorted in a decreasing order of the number of mCaptchas they
solved, forming their ranks, rw. The number of mCaptchas solved, nm, follows a power
law: That is, nm ∝ rαw where α = −1.2.

• 218 workers for the “name that tune with no aid” case,

• 55 workers for the “name that tune with aid” case, and

• 290 workers for the “comparison” case.

The same worker may have participated in different categories, and each mCaptcha was

solved by at least 3 workers. A total of 490 unique workers participated. The worker

participation distribution follows a power law: many users solve few mCaptchas and very

few many (Figure 5.10).
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Even though some mCaptchas were redundant, they were assigned at random to vari-

ous workers. Moreover, the majority of workers were not prevented from solving mCaptchas

of different types; however, new workers7 were given a higher financial incentive (5 cents

instead of 1) in the final days of the experiment. Finally, each worker was required to

answer (1) the usability — ranking their overall experience — and (2) quality questions

— demonstrating that they are indeed humans by solving a simple question (e.g., Table

5.5.1) — before submission.

5.5.3 Efficiency and Accuracy Results

In this context, efficiency is the amount of time (measured in seconds) that a Mechani-

cal Turk worker spent on solving an mCaptcha, and accuracy is computed as fraction of

mCaptchas correctly solved, over all responses and for all workers. It should be noted that

workers were asked miscellaneous questions, to rank their overall experience, and that the

durations discussed below include duration needed to answer such questions as well. In

other words, the efficiency measures discussed here are conservative, and will, in reality,

be smaller.

Tables 5.3, 5.4, and 5.5 include the efficiency results of various mCaptchas tested in

my usability analysis. These are presented as evidence for feasibility of using mCaptchas.

7The workers were “non-master”; the master vs. non-master qualification granted by Amazon has no
direct implications on the quality of work done. Amazon charges more for master workers.
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|M | = |{mi}i| = 4211 No Aid

Durations (sec)

E[di] 29.48

σ(di) 26.10

E[di − |mi|] 18.94

σ(di − |mi|) 23.29

Table 5.3: Efficiency Results - “Name the Tune with No Visual Aid” Case. A total of 4211

mCaptchas were solved.

The efficiency overview of the scheme can be further refined by subtracting the amount

of time each user spent on listening to a mCaptcha stream. After deducting the duration

of each mCaptcha music mixture, mi, the resulting mean efficiencies (µ[{di}mi∈M ] ±

σ({di}mi∈M)) are: (1) (Name that Tune (without aid)) 18.94 seconds (σ = 23.29), (2)

(Name that Tune (with aid)) 26.78 seconds (σ = 42.51), and (3) (Comparison) 26.09

seconds (σ = 28.10).
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|M | = |{mi}i| = 513 With Aid

Durations (sec)

E[di] 38.85

σ(di) 45.78

E[di − |mi|] 26.78

σ(di − |mi|) 42.51

Table 5.4: Efficiency Results - “Name the Tune with Visual Aid” Case. A total of 513

mCaptchas were solved.

In the Name that Tune (with aid) case (Table 5.4), the increase in mean duration and

variation can be attributed to users taking time to comprehend the visual hint. The variation

in user response time in the Comparison Case (Table 5.5) is comparable to that of the Name

that Tune (no aid) case(Table 5.3). Its challenge does not require a user to remember the

names of artists or songs, and requires no particular information to be read. As such, such

mCaptchas are accessible options for individuals with mobility and visual impairments.

A total of 290 workers solved 3104 comparison mCaptchas. The correct answer cor-

rectly identified which of two mCaptchas presented sounded to belong to a more recent

decade.
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|M | = |{mi}i| = 3104 Comparison

Durations (sec)

E[di] 39.01

σ(di) 34.60

E[di − |mi|] 26.09

σ(di − |mi|) 28.10

Table 5.5: Efficiency Results - Comparison Case. A total of 3104 mCaptchas were solved.

In the Name that Tune Case, from the 138 unique mCaptchas tested in the Name that

Tune case, Roxette’s “Joy Ride” (1991) was the hardest mCaptcha — solved by 5 distinct

workers and requiring µ ± σ = 82.40 ± 80.13 seconds — while Cher’s “Believe” (1998)

was the easiest — solved by 9 workers who took 16.33± 6.2 seconds. In addition, Gnarls

Barkley’s “Crazy (2006) was the song with the highest duration of 291 seconds; while,

Aerosmith’s “Don’t Wanna Miss Anything” (1998) was the most efficient, with a duration

of only 6 seconds.

No Aid With Aid Comparison

|M | = |{mi}ni=1| = n 4211 513 3104

Accuracy 0.96 0.97 0.73

Table 5.6: Mechanical Turk accuracy results

The accuracy results presented in Table 5.6 demonstrate that humans are able to solve

mCaptchas correctly. For instance, Name that Tune (no aid) mCaptchas yielded over 96%
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accuracy. In this case, 3114 (74%) of the user responses were exact matches to the correct

response; 908 (22%) were partially matches (i.e., had few typos but were deemed to be

correct) and only 189 (4%) were rejected. The Comparison mCaptchas demonstrated much

lower accuracy, which may be caused by workers on AMT being more inclined to select

one of the two tunes randomly to minimize their time spent on the task.

5.5.4 Aesthetic Quality Indicators

My investigation showed that the majority of users found mCaptchas to be somewhat or

very pleasant, 84% in the name that Tune case and 81% in the comparison case (Table

5.7).

No Aid With Aid Comparison

|M | 4211 513 3104

% Participants % Participants % Participants

Very Pleasant 54 32 42

Somewhat Pleasant 30 42 39

No Opinion 9 17 14

Unpleasant 8 8 4

Table 5.7: User experience as rated by AMT workers reported in this usability analysis.

User experience and enjoyment are key factors that affect efficiency and accuracy of

the system. For instance, users who did not find it easy to solve mCaptchas took longer

to solve the posed challenge as well: That is, the mean and standard deviations of the
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time needed by users can be categorized as µEasy ± σ = 25.7 ± 18.4 seconds versus

µNot Easy ± σ = 46.5± 39.8 seconds in the Name that Tune case. However, this influence

is not drastic, and the mean durations further categorized by user experience are very close:

• µVery Pleasant ± σ = 25.4± 17.3 seconds,

• µSomewhat Pleasant ± σ = 28.0± 22.9 seconds,

• µNo Opinion ± σ = 31.2± 28.9 seconds, and

• µUnpleasant ± σ = 30.1± 25.0 seconds.

The usability tests outlined in Section 5.5 not only show that mCaptchas can be accu-

rately and efficiently solved, but also that users could find solving them pleasant. This is

reflected in both direct user feedback (Table 5.7). In an attempt to demonstrate that users

can enjoy solving mCaptchas, I introduce the addictive factor. In my usability analysis,

it became apparent that various users took little time to start a new mCaptcha after the

completion of another. More precisely, I denote the addictive factor, Aw(.) for worker w,

to be the expected time that passes once w submits mCaptcha mw
ti

and until w’s accep-

tance of the next mCaptcha, mw
ti+1

. That is, for each worker w solving a collection of n

mCaptchas — Mw = {mw
t1
, . . . ,mw

ti
,mw

ti+1
, . . . ,mw

tn}— the addictive factor is measured

as: Aw(Mw) = 1
n−1

Σn−1
i=2 (ti+1 − ti). In this usability study, the addictive factors are less

than a minute long on average (Table 5.8).

In this usability study, the mCaptchas were presented to the workers at random and the

users were paid very little (between 1− 5 cents per mCaptcha). In this case, the addictive

factor may be interpreted as how eager users, which were included in my study, were
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Total Number of Workers Mean (sec) Standard Deviation (sec)

Comparison Case 179 49 195

Name the Tune (no visual aid) 159 45 121

Name the Tune (with visual aid) 54 17 30

Table 5.8: Expected time passed between a worker’s submission and his acceptance of the
next mCaptcha.

to solve mCaptchas. That is, in this case, the addictive factor outlined in Table 5.8 may

indicate that users enjoyed solving mCaptchas.

5.5.5 Discussion of the Usability Results

The results of the large-scale user studies of Section 5.5.3 are presented as evidence that

mCaptchas are easy to solve. Three mCaptcha variations were tested: name that tune

(with visual aid), name that tune (without visual aid), and compare decades. In total, 7828

mCaptchas were solved by 490 different individuals. The typical user spent:

• Name that tune (without aid): 18.94 (σ = 23.29) sec,

• Name that tune (with aid): 26.78 (σ = 42.51) sec,

• Comparison: 26.09 (σ = 28.10) sec.

In the case of standard textual CAPTCHAs, user studies based on two different sets of

1000 randomly chosen users, show that, on average, a textual CAPTCHA can be solved

in 13.51± 6.37 seconds and a reCaptcha for 13.06± 7.67 seconds [vAMM+08]. In com-

parison, a set of 1000 randomly chosen users from the Mechanical Turk usability study

(Section 5.5), can solve mCaptchas in 18.57 seconds (Table 5.9).

175



5.5. USABILITY ANALYSIS OF MCAPTCHAS 176

Name that Tune (No Aid) Comparison

|M | = |{mi}ni=1| = n 1000 1000

Accuracy 0.95 0.72

E[di] 29.19 38.18

σ(di) 26.79 34.64

E[di − |mi|] 18.57 25.99

σ(di − |mi|) 24.51 29.40

Table 5.9: Accuracy and efficiency results for a sample of 1000 randomly chosen users.

It should be noted that these durations include the time needed for a user to answer

whether the mCaptchas was “easy” to answer, to rank their overall experience, and to

answer a rudimentary question demonstrating that the mCaptcha is not solved by a bot

(Figures 5.9 and 5.8). Answering these usability questions increases the effective time

needed to solve an mCaptcha by at least a few seconds.

The complete usability tests, Table 5.6, demonstrate that a typical user correctly solved

“Name that tune” mCaptchas with 96% — analogously, 97% in the “Name that tune with

aid” case — accuracy. These are comparable to the accuracy results of 96.1% reported

for reCaptcha [vAMM+08]. However, accuracy in this context is not dependent on a

user’s familiarity with a particular language (e.g., English) or the ability to correctly spell

[vAMM+08]; use of music enables a global integration of particular globally known songs

(e.g., mCaptchas using Adele or John Lennon’s songs). Finally, allowing for approximate

user answers — due to imperfect human memory recall — allows humans to avoid solving
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multiple challenges unnecessarily because of mistypes.

5.6 Conclusion and Future Work

In this chapter, I developed a novel music-based computational Turing test. The mCaptcha

scheme was introduced as an efficient, secure, accurate scheme to tell humans apart from

computer bots. The new scheme improves on CAPTCHAs by enhancing accessibility for

individuals with visual impairments or those who may not be comfortable with English.

Moreover, it exhibits improved security and usability, and will not be susceptible to current

attacks against (audio) CAPTCHAs. Unlike any other existing access control measures,

it takes advantage of complex structure of music and music cognition: particular charac-

teristics of human comprehension of music, high dimensionality of music. It can be used

to improve significant problems in the field of music information retrieval such as music

keyword (tag) generation and music recommendation.

I introduced the building blocks of the scheme (Section 5.2.1.2) and described one pos-

sible implementation in detail (Section 5.3). I provided evidence for its improved security

and usability attributed to the incorporation of complex, information-rich building blocks

which may easily be processed and comprehended by humans.

Security of mCaptchas, similar to that of CAPTCHAs, is empirical and cannot be

rigorously proven [vABL02, vABL04]. However, in this context, security relies not on the

obfuscation by noise (e.g., audio and traditional (text-based) CAPTCHAs), but instead on

the computational difficulty of correctly distinguishing between two valid musical streams

and answering a contextual challenge about one.
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I provided preliminary evidence for the security of the scheme through tests against

a state-of-the-art audio identification algorithm (Section 5.4.1). Lastly, mCaptchas were

shown to be easy for humans through tests on the Amazon Mechanical Turk, an online

crowdsourcing market place. These usability results indicated that humans are able to

solve mCaptchas efficiently and accurately.

5.6.1 Contributions

To the best of my knowledge, there exist no similar music-based computational Turing test

schemes. The objectives of this new scheme were to improve accessibility, usability and

security. The scheme is significant as it

• incorporates music in place of letters and numbers in the questions (the challenge)

posed to a requester,

• uses a music-based contextual challenge,

• uses an alternative notion of security without relying on noise embeddings,

• is a great candidate for large-scale deployment:

– can be efficiently generated,

– it is customizable,

– it is not restricted to a particular language (e.g., English).

• exhibits (potentially) improved security,

• exhibits (potentially) improved usability,
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• improves accessibility for individuals with visual impairments and those who may

not be very comfortable with English,

• can be used to further generate contextual, subjective knowledge about music on a

massive scale.

5.6.2 Future Directions

A massive-scale adoption of mCaptchas can further solidify the suggested improved secu-

rity and accessibility based on the preliminary results of Sections 5.4 and 5.5.

5.6.2.1 Personalized mCaptchas

Future implementations can be further customized to a particular user’s musical taste (e.g.,

using primaries from a different genre), past preferences, or online music library. The

more users are exposed to a particular type of music, the stronger the cognitive prediction

models that enable speedy recognition [Til08]. Consequently, customizations based on in-

dividual (cloud) music libraries will both improve efficiency and accuracy as the user will

almost certainly be familiar with his/her own music collection. Lastly, instead of selecting

songs from a pre-determined list of popular songs, primary streams can be selected to be

songs that are determined to be “popular” either through crowdsourcing (e.g., selected as

the most popular from a few candidate song collections by Mechanical Turk workers) or

through automated analysis of social informatics (e.g., user-generated information from

Twitter, Facebook, etc.).
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5.6.2.2 Subjective Tag Generation

“Before the Internet, coordinating more than 100, 000 people, let alone paying them, was essentially

impossible. . . . [Now,] we’ve gotten 750 million people to help us digitize human knowledge.”

- Luis von Ahn [TED11]

With a slight modification, mCaptchas can be leveraged to collect user-generated sub-

jective music keywords (e.g., mood descriptors such as sad, happy, and angry) for each

primary music stream. Also, an implementation of mCaptchas as a two-player game —

wherein the objective of the game is to solve the mCaptchas in the shortest amount of time

— can be envisioned. In such a game, the genre of the next mCaptcha can be chosen at

random or by the winner of the previous round, scores against other players can be accu-

mulated in real-time or stored and updated over a period of time, as more games are played

by the two particular players. In such a game, players can also be rewarded bonus points

by entering keywords related to the primary which either match those of the other player,

or those already stored from previous games — higher bonus points can be assigned to

“less popular” keywords.
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6
Conclusions and Remaining Work

“If a composer could say what he had to say in words he would not bother

trying to say it in music.”

- Gustav Mahler [Mah96]

Music is a rich form of communication and emotional expression [Mil00, Cro01]. Its

ubiquity manifests itself with cultural specificity [Bro91, BBN95] and its information-

rich structure and features render its analyses non-trivial. While scientific research on

musical analysis is by no means sparse, most works in the field of Musical Information

Retrieval (MIR) have focused on applying computational tools to extract features from

various aspects of this information-bearing stream, and have leveraged those features to

distinguish between different musical types, characteristics or forms. Informally, the two

common threads in many such problems are the application of computational tools to sim-

plify the informational structure of music to a set of representative features (lifting the veil

of information deluge), and the computational use of the resulting discriminants to catego-

rize (information-based segregation into disjoint categories). This thesis takes a different

viewpoint. It targets the computational analyses of features extracted from musical rhyth-

mic structure in (1) music attributed to Western European or American composers (i.e.,
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the Western collection analyzed in Chapter 3) and (2) non-Western music (i.e., African,

Chinese, Persian and Turkish music pieces available in my analyses, presented in Chapter

4. Lastly, in Chapter 5, the complexity and high information content of music is used to

improve a practical computational application. The seemingly disparate theoretical and

practical focuses of this dissertation intentionally target some of the intrinsic dualities in

music (e.g., veil of information deluge compared to the ease of comprehending music by

humans): That is, the temporal scale-free (1/f) analysis and the mCaptcha scheme both

wrestle with a complexity-simplicity duality. To rigorously investigate the duality in this

information-bearing medium, I developed or adopted computational tools that

• investigated the structural patterns in music to better understand predictability and

surprise features in symbolic music samples (simplicity),

• investigated and extracted structural information in the form of self-similarity from

music (simplicity),

• demonstrated that this non-trivial, latent information is simple and efficiently com-

putable (simplicity),

• analyzed the temporal structure for music available from various parts of the World

and different time eras (manifestation simplicity despite diversity and complexity),

• presented evidence that such simple descriptors convey sufficient information to dis-

tinguish between various sub-categorizations of music (complexity),

• studied complex musical features and problems in music to determine a computa-

tional gap between human musical capabilities and those of automated programs
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(computational complexity versus simplicity),

The work presented in this thesis draws from research in music cognition and machine

learning, and its novel contributions can be broadly summarized as follows:

1. it extended the body of work on power law exponents in musical rhythm to composi-

tions from Africa, China, Iran and Turkey By doing so, it shows that the emergence

of temporal scale-free patterns in music are not limited to particular geographical,

cultural or historical time periods,

2. it used the scale-free temporal exponents in musical rhythm to classify composi-

tions by their “composer” labels and by a broad geographical binary dichotomy as

Western vs. non-Western,

3. it leveraged the complexity of music and particular features of music cognition to

create new music-based computational Turing tests. This novel integration of music

enhances the security and accessibility of the existing computational framework.

The resulting analyses and all corresponding discussions, in the context of Chapters 3

and 4, were limited to the symbolic music samples available. In other words, music collec-

tions analyzed in my dissertation were limited to pieces available in online music libraries

such as KernScores[Sap05]). The contributions of each chapter are further reviewed be-

low.
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6.1 Temporal Scale-Free Signatures

6.1.1 Western Music (Chapter 3)

In this chapter, I studied scale-free features of musical rhythm for the Western music col-

lection , RWestern described in Section 3.1. These features were used as a concise temporal

representation of the structural repetitions in music from the 16th to the 20th century.

The Western music collection ,RWestern, categorized by the name of composers, consisted

of compositions by 24 composers (Figure 3.1) with corresponding styles ranging from

Baroque to Musical theatre. The collection comprised 1165 symbolic music pieces; each

represented concisely as a progression of notated durations in time (music time series).

In this rhythmic representation, silences were treated equally as significant as notes: their

durations were also stored in the music time series. Lastly, in the presence of various

instruments (voices), durations for various voices were merged, while preserving tempo-

ral order. The Detrended Fluctuation Analysis (DFA) [PBH+94] was applied to compute

a temporal power law exponent, α, for each music time series. These exponents, along

with other temporal similarity features — encapsulating the information latent in musical

structure — were used as concise identifiers (signatures). Variations and similarities in

values of α were highlighted for different composers, various compositions by a particular

composer, and distinct compositions grouped according to some common characteristic of

their corresponding composers (e.g., musical era). Lastly, I presented detailed analyses for

the temporal scale-free exponents of compositions by four composers with geographically

diverse backgrounds and distinct musical styles (Table 3.3).

More precisely, my work directly built on existing research by Levitin et al. [LCM12],
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and it made the following main contributions in Chapter 3:

• This work expanded the power law characterization of rhythm in [LCM12] by

– Incorporating an alternative toolkit for computer-aided musicology. I used

a new, object-oriented computational toolkit, music21 [CA10]. This alterna-

tive approach led for the first time in such work to the inclusion of MIDI files

[SF97] in the symbolic music collection analyzed.

– Expanding the scope of Western analysis. Though the Western collection

used in this analysis overlapped with that of [LCM12] (both use the Kern-

Scores library [Sap05]), inclusions of composers such as Gershwin, from the

20th century with distinct compositional styles, uniquely expanded the scope

of analyses and set it apart from [LCM12].

– including different temporal fractal exponents. My novel analyses focused

on α, computed using the DFA algorithm [PHSG95] for its robust behaviour

in case of non-stationary processes; however other temporal power law expo-

nents from structural repetitions in musical rhythm were also computed. More

precisely, whereas Levitin et al., focused on power law exponents of spec-

tra computed for rhythms of Western compositions [LCM12], my analyses

computed spectral power law exponents, DFA exponents (α) [PHSG95], and

Hurst exponents (H) [Hur51] for each music time series. The spectral ex-

ponents, βinterpolate, were implemented with identical parameters as those of

[LCM12], and were consistent with results presented therein. Two other spec-

tral exponents, with slightly different parameters, were also computed. In the
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time-domain, two power law correlation exponents were computed: α and H .

These have been used to detect long-range correlations in time series, and their

applications as composer signatures are novel.

– Providing a granular analysis of temporal scale-free exponents in rhythm.

This work provided a focused study of variations and similarities of such ex-

ponents on a composer-by-composer basis.

• This work showed that the mean values of α for Western classical compositions

, analyzed in this thesis, were in the fractal range, α ∈ (0, 1); these results are

consistent with previous research on power laws in the spectra of Western rhythms

[LCM12] but extend that work in novel directions, scope, and depth.

• Moreover, the granular composer analysis presented here highlighted variations in

α for various compositions by a particular composer. This variation was further

studied in correspondence with a composer’s biography, whenever possible.

• The influences of a composer’s musical era, other coeval composers, and his ge-

ographical origin on the fractal exponents were tested. This analysis demonstrated

that capturing the structural preferences of composers using the previous factors falls

short to fully capture the richness latent in distinct compositional styles of different

composers. Although these factors may contribute to similarities in temporal scale-

free exponents, these factors may not be sufficient conditions to accurately predict

or explain similarities between two repertories. Nonetheless, the following catego-

rizations based on era and origin were considered. The following similarities and

disparities were noted, only in as so far as relating to the music samples analyzed in
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this dissertation:

– Composers with similar professional timelines (Table 3.1):

∗ Similar DFA exponents:

· Giovannelli (1583− 1624) - Monteverdi (1582− 1643).

∗ Disparate DFA exponents:

· J. S. Bach (1703− 1749) - Vivaldi (1703− 1739)

• Composers with the same country of birth and hence native language (Table 3.2):

– Similar DFA exponents: Beethoven - Brahms,

– Disparate DFA exponents: J. S. Bach - Beethoven.

• Similar DFA exponents were observed for composers whose rivalry or whose influ-

ence on one another is well documented (e.g., Beethoven and Brahms)

• The following cases of similarities in values of α for particular composers were

noted:

– Distinct compositions, in a particular year, having similar scale-free structural

characteristics.

– Repetitions of structural patterns in a particular composer’s distinct composi-

tions separated by an extended period of time

∗ Grieg’s “op03-4” (1863) and “op46-4” both have α = 0.98, and are sepa-

rated by almost a decade (Figure 3.12)
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• Since all composers in this Western collection demonstrated some degree of varia-

tion in their fractal exponents, I further focused on four Western classical composers.

More precisely, compositions by George Gershwin (1898 − 1937), Edvard Grieg

(1843 − 1907) from the Romantic era, Wolfgang Amadeus Mozart (1756 − 1791)

from the Classical era, and Domenico Scarlatti (1685 − 1757) from the Galant mu-

sical style were analyzed. The four composers are geographically diverse; they hail

from the USA, Norway, Austria and Italy respectively. I presented a detailed anal-

ysis of α for the compositions attributed to these composers , that were available in

RWestern, and highlighted compositions that had anomalous exponents (with corre-

sponding biographical notes when available).

– variation in values of α where observed even for compositions in the same

year (e.g.,“Hight Hat” and “How Long Has This Been Going On”) composed

by Gershwin in 1927 (Table 3.5))

• Finally, classification of various compositions based on temporal features were pre-

sented here for the first time. The classification accuracy demonstrated the high

information-content value of such exponents, and provided further evidence for their

application as discriminative descriptors:

– The classification accuracy results demonstrated that fractal exponents carry

enough information to be used for decade, composer and genre classification.

The following binary classification cases were analyzed:

∗ Major composers: Bach, Beethoven, Haydn, Frescobaldi, Joplin, Mozart,

Scarlatti, Schubert, Sousa and Vivaldi,
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∗ Disparate composers: The classification analyses here considered com-

posers with different Musical eras, whom hailed from different countries

and lived in distinct time periods (e.g., Corelli vs. Frescobaldi)

∗ Stylistically affiliated composers: Here, I considered composers with

documented evidence of influence (e.g., Joplin vs. Sousa or Mozart vs.

Bach)

∗ Composers with similar time era: This classification further focused

on composers in this Western collection whom not only lived in approx-

imately identical time periods, but that also were active professionally in

similar periods (e.g., Bach vs. Vivaldi)

∗ Composers with the same first language Classification analysis included

only composers that hailed from the same country (e.g., Bach vs. Beethoven),

and finally

∗ Compositions grouped by century: Three categories were classified:

· early to mid 17th century,

· mid to late 18th century,

· early to mid 20th century.

– To determine the influence and significance of fractal exponents, in compar-

ison with other predictability exponents such as surprise indices and entropy

included in the feature sets (Table 2.4.4), classifications of composers from the

case studies (Gershwin, Grieg, Mozart and Scarlatti) were repeated by using

all exponents, only predictability exponents only fractal exponents (spectral, α

and H), or only α. My analysis shows that the temporal scale-free exponents

189



6.1. TEMPORAL SCALE-FREE SIGNATURES 190

provide complimentary information in classifications in that classification ac-

curacy increases by using all exponents together. The extent of this improve-

ment depends on the structural style of each composer. For instance, scale-free

temporal features were more influential in classifications involving Mozart’s

collection in my study (e.g., Mozart vs. Scarlatti), and less so in other classifi-

cations (e.g., Gershwin vs. Scarlatti).

6.1.2 Non-Western Music (Chapter 4)

Chapter 4 studied power law features in the rhythmic structure of music originating from

Africa, China, Iran and Turkey. The collection of symbolic music samples available for

these regions was referred to as the non-Western collection, Rnon−Western, in my disserta-

tion for simplicity. The contributions of this chapter include:

• The novel extension of temporal scale-free correlation exponents in rhythm to music

origination from Africa, China, Iran and Turkey,

• Demonstrating a commonality between the rhythmic structure in georgraphically-

diverse music using temporal scale-free exponents

– in the context of the analyzed music samples, this analysis showed that tem-

poral correlations in the structure of music were not limited to a particular

geographical region or culture.

• Demonstrating a successful application of mathematical analyses and techniques

typically developed in the context of Western music to the music of other cultures

(Question posed in [TKSW07]),
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• Presenting highly-accurate classification results as support for the suitability of these

temporal fractal descriptors to automatically distinguish between the Western and

non-Western dichotomies, in the context of the music collections discussed in this

dissertation.

6.2 mCaptcha: A Computational Use of Music’s Com-

plexity

Chapter 5 presented a novel integration of music in a ubiquitous application used as a se-

curity measure against automated programs. Music-based CAPTCHAs, mCaptchas, were

introduced as a scheme wherein music’s complexity and latent rich information are not

hindering obstacles, but rather key contributing factors to improve security. The proposed

scheme is the first of its kind to incorporate music and use unique features of the human

musical cognition in a computational Turing test context. I motivated the need for such

a new scheme and highlighted the general guidelines for creating efficient music-based

schemes that accurately distinguishes between humans and automated programs. The ar-

chitecture of the system and two prototypes were discussed. Empirical evidence for the

following features were presented:

• Security: Computational difficulty

– security in this context, unlike existing schemes, is not based on noise-embeddings,

and relies on the computational difficulty of

∗ distinguishing between two valid musical streams, and
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∗ accurately and efficiently answering a contextual question about one of

the streams.

– empirical security tests were performed against a widely-used audio identifi-

cation algorithm,

– these security tests demonstrated the resilience of the mCaptchas against iden-

tification:

∗ a quantifiable security score, sm, was introduced,

∗ this score marks the failure of the adversary as 1, and penalizes this max-

imal score depending on which stream (primary or secondary) the adver-

sary detects,

∗ this score was computed for all mCaptchas generated for the security tests

in addition to streams resulting from intermediate phases of the mCaptcha

generation process,

∗ security analysis of the intermediary streams highlighted the strength and

necessity of various design components

• Accessibility: Ease of use by humans: A crowdsourcing platform was used to

determine how easy it is for humans to solve mCaptchas correctly. This phase,

included only mCaptchas that were demonstrated to be secure from the security

analysis:

– Usability results were tested for three variations of mCaptchas: (1)“Name that

Tune” (no visual aid), (2)“Name that Tune” (with visual aid), and (3)“Com-

parison Case”.
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– Human usability tests used crowdsourcing:

∗ Amazon Mechanical Turk online market was used,

∗ Over 4000 mCaptchas were solved by 500 “workers”

∗ the usability results of Section 5.5 demonstrated that users are able to ac-

curately and efficiently solve mCaptchas:

· A typical user spent 18.94, 26.78, and 26.09 seconds respectively for

the three usability cases considered.

· Moreover, it was shown that human efficiency in the context of mCaptchas

is comparable to that of traditional, text-based CAPTCHAs (Section

5.5.5).

– The large-scale access to human testers provided by the Mecshanical Turk on-

line market was used to show that most humans found the task pleasurable (and

were likely to become “addicted” to solving mCaptchas; the addictive factor

for each user was computed as the mean time interval, measured in seconds,

between the completion of an mCaptcha and the acceptance of the next).

• the scheme was designed with the following objectives:

– to improve Web accessibility (e.g., for individuals with visual impairments),

– remove any language barriers in solving such human vs. bot tests,

– improve security, and

– improve the overall user-experience in solving mCaptchas.
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• Finally, the scheme was demonstrated to be efficient by presenting an actual proto-

type.

6.3 Outlook

This section briefly outlines future possible extensions of this dissertation. An immediate

extension of this analysis is to apply the temporal power law correlation analyses to a

larger collection, preferably one including composers or regions that were not available

in machine-readable format at the time of this study. The ELVIS project — Electronic

Locator of Vertical Interval Successions — with over 5000 pieces from the 14th to the

19th century is one such suitable candidate [elv]. The temporal analysis of repetitions in

rhythm, can be applied to compositions with ambiguous attributions. For instance, fractal

signatures may be used to shed some light on the veracity of compositions attributed to

Josquin des Prez, a late 15th century Franco-Flemish composer [Eld89, She00].

Future implementations of mCaptchas can be further customized to a particular user’s

taste (e.g., using primaries from a different genre), past preferences, or online music li-

brary. Moreover, large-scale social informatics (e.g., information available on Facebook

or Twitter about what is “cool” or popular) may be used instead of the pre-determined

list of primary streams. Lastly, generates streams could be adapted for a particular music

genre related music site such as Deutsche Grammophon [dG] or orchestral groups [VSO],

or they can be customized for promoting works of particular artists.

With a slight modification, mCaptchas can be leveraged to collect user-generated sub-

jective music keywords (e.g. mood descriptors such as sad, happy, angry) for each primary
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music stream. Also, an implementation of mCaptchas as a two-player game — wherein the

objective is to solve the mCaptchas in the shortest amount of time — can be envisioned.

In such a game, the genre of the next mCaptcha can be chosen at random or by the winner,

scores against other players are accumulated in real-time or stored and updated over a pe-

riod of time as more games are played by the two particular players. In this game, players

can also be awarded bonus points by entering keywords related to the primary which either

match those of the other player, or have already been stored — higher bonus points can be

assigned to “less popular” keywords.

The fractal exponents computed in Chapters 3 and 4 provided a rich, granular charac-

terization of music, which can be applied to mCaptchas: to determine which combinations

of primary-secondary streams have a higher chance of remaining safe, and on the other

hand, to be used to enhance audio identification algorithms by shortening the amount of

time needed to search for a particular song. Namely, instead of choosing the secondary

stream at random, one could choose a secondary stream with an appropriate fractal char-

acteristic. Initially, a temporal self-similarity signature can be computed for each primary

and secondary. This is proceeded by a classification and sensitivity analysis to determine

if primaries and secondaries with similar fractal exponents are more likely to form secure

pairs. Since similarities in fractal signatures indicate repetitions in the temporal struc-

ture, it would be more computationally difficult for an adversary to distinguish between

two streams with similar fractal exponents. It should also be noted that fractal exponents

may improve the state-of-the-art algorithms trying break mCaptchas. For instance, fu-

ture implementations of Shazam, or similar audio identification algorithms, may use the

discriminative power of these scale-free exponents can be leveraged to narrow down the
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audio search space and be beneficial to audio identification algorithms.

Classification results presented in Chapters 3 and 4 fall under the category of content-

based classification. An enhancement would be to build classifiers which use both tempo-

ral scale-free exponents and subjective tags generated by millions of users who are solving

mCaptchas. The fusion of these two information-rich techniques may be critical for future

World music recommendation and search engines.

tocchapterNon-Western Binary Classification Tables
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A
Detailed Non-Western Binary
Classification Results

A.1 African - Chinese Music

Table A.1: Binary Classification of African and Chinese music. Logistic regression is used

with 10 fold cross validation.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RChinese| = 69 Classified (%) Absolute Error F-Measure African China

Fractal Exponents, Π 70 0.32 0.69
6 15 African

12 57 China

Π 70 0.33 0.69
5 16 African

11 58 China

Fractal Exponents 72.2 0.32 0.67
2 19 African

6 63 China

α 76.7 0.36 0.67
0 4 African

0 69 China
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Table A.2: Binary Classification of African and Chinese music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RChinese| = 69 Classified (%) Absolute Error F-Measure African China

Fractal Exponents, Π 67.8 0.33 0.68
6 15 African

14 55 China

Π 65.6 0.36 0.66
6 15 African

16 53 China

Fractal Exponents 73.3 0.45 0.65
0 21 African

3 66 China

α 76.7 0.36 0.67
0 21 African

0 69 China
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A.2 African - Persian Music

Table A.3: Binary Classification of African and Persian music. Logistic regression is used

with 10 fold cross validation.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RPersian| = 47 Classified Absolute Error F-Measure African Persian

Fractal Exponents, Π 58.8 0.45 0.60
9 12 African

16 31 Persian

Π 60.3 0.46 0.59
5 16 African

11 36 Persian

Fractal Exponents 60.3 0.41 0.58
4 17 African

10 37 Persian

α 69.1 0.42 0.57
0 21 African

0 47 Persian
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Table A.4: Binary Classification of African and Persian music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RPersian| = 47 Classified Absolute Error F-Measure African Persian

Fractal Exponents, Π 72.1 0.3 0.72
11 10 African

9 38 Persian

Π 61.8 0.43 0.58
3 18 African

8 39 Persian

Fractal Exponents 66.2 0.44 0.57
1 20 African

3 44 Persian

α 69.1 0.43 0.57
0 21 African

0 47 Persian
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A.3 African - Turkish Music

Table A.5: Binary Classification of African and Turkish music. Logistic regression is used

with 10 fold cross validation.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RTurkish| = 38 Classified Absolute Error F-Measure African Turkish

Fractal Exponents, Π 74.6 0.26 0.75
16 5 African

10 28 Turkish

Π 69.5 0.30 0.70
15 6 African

12 26 Turkish

Fractal Exponents 71.2 0.36 0.7
10 11 African

6 32 Turkish

α 67.8 0.44 0.62
4 17 African

2 36 Turkish
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Table A.6: Binary Classification of African and Turkish music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RAfrican| = 21 Correctly Mean Weighted Average Confusion Matrix

|RTurkish| = 38 Classified (%) Absolute Error F-Measure African Turkish

Fractal Exponents, Π 67.8 0.32 0.67
9 12 African

7 31 Turkish

Π 69.5 0.30 0.7
14 7 African

11 27 Turkish

Fractal Exponents 62.7 0.42 0.61
7 14 African

8 30 Turkish

α 64.4 0.45 0.53
1 20 African

1 37 Turkish
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A.4 Chinese - Persian Music

Table A.7: Binary Classification of Chinese and Persian music. Logistic regression is used

with 10 fold cross validation.

|RChina| = 107 Correctly Mean Weighted Average Confusion Matrix

|RPersian| = 47 Classified Absolute Error F-Measure Chinese Persian

Fractal Exponents, Π 77.9 0.29 0.77
95 12 Chinese

22 25 Persian

Π 74.7 0.33 0.73
97 10 Chinese

29 18 Persian

Fractal Exponents 72.0 0.38 0.68
100 7 Chinese

36 11 Persian

α 69.5 0.42 0.58
106 1 Chinese

46 1 Persian
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Table A.8: Binary Classification of Chinese and Persian music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RChina| = 107 Correctly Mean Weighted Average Confusion Matrix

|RIran| = 47 Classified (%) Absolute Error F-Measure Chinese Persian

Fractal Exponents, Π 66.2 0.34 0.66
82 25 Chinese

27 20 Persian

Π 76 0.3 0.74
98 9 Chinese

28 19 Persian

Fractal Exponents 68.2 0.4 0.62
98 9 Chinese

40 7 Persian

α 69.5 0.42 0.58
107 0 Chinese

47 0 Persian
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A.5 Chinese - Turkish Music

Table A.9: Binary Classification of Chinese and Turkish music. Logistic regression is used

with 10 fold cross validation.

|RChina| = 107 Correctly Mean Weighted Average Confusion Matrix

|RTurkey| = 193 Classified (%) F-Measure Chinese Turkish

Fractal Exponents, Π 91 0.11 0.91
94 13 Chinese

14 179 Turkish

Π 89 0.14 0.89
94 13 Chinese

20 173 Turkish

Fractal Exponents 73.3 0.33 0.73
58 49 Chinese

31 162 Turkish

α 65 0.45 0.54
5 102 Chinese

3 190 Turkish
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Table A.10: Binary Classification of Chinese and Turkish music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RChina| = 107 Correctly Mean Weighted Average Confusion Matrix

|RTurkey| = 193 Classified(%) Absolute Error F-Measure Chinese Turkish

Fractal Exponents, Π 88.3 0.14 0.88
88 19 Chinese

16 177 Turkish

Π 85.3 0.16 0.88
83 24 Chinese

20 173 Turkish

Fractal Exponents 70 0.36 0.7
57 50 Chinese

40 153 Turkish

α 67 0.43 0.65
37 70 Chinese

29 164 Turkish

A.6 Persian - Turkish Music

This observation holds for both logistic regression and decision trees.
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Table A.11: Binary Classification of Persian and Turkish music. Logistic regression is

used with 10 fold cross validation.

|RIran| = 47 Correctly Mean Weighted Average Confusion Matrix

|RTurkey| = 81 Classified (%) Absolute Error F-Measure Persian Turkish

Fractal Exponents, Π 82.8 0.18 0.83
33 14 Persian

8 73 Turkish

Π 79 0.24 0.79
31 16 Persian

11 70 Turkish

Fractal Exponents 78.1 0.29 0.78
29 18 Persian

10 71 Turkish

α 63.3 0.47 0.49
0 47 Persian

0 87 Turkish
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Table A.12: Binary Classification of Persian and Turkish music. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

|RPersian| = 47 Correctly Mean Weighted Average Confusion Matrix

|RTurkish| = 81 Classified Absolute Error F-Measure Persian Turkish

Fractal Exponents, Π 85.6 0.18 0.83
34 13 Persian

8 73 Turkish

Π 85.9 0.15 0.86
33 14 Persian

4 77 Turkish

Fractal Exponents 74.2 0.28 0.74
27 20 Persian

13 68 Turkish

α 63.3 0.46 0.49
0 47 Persian

0 81 Turkish

tocchapterNon-Western Binary Classification Tables
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B
Detailed Western Binary
Classification Results

B.1 Major Western Composers

“You can’t have Bach, Mozart and Beethoven as your favorite composers.

They simply define what music is!”

Michael Tilson Thomas [Wika]

This section presents results on binary classification of Bach, Beethoven, Haydn, Fres-

cobaldi, Joplin, Mozart, Scarlatti, Schubert, Sousa, and Vivaldi.
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Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RBach| = 241, |RBeethoven| = 173 Bach Beethoven

Bach - Beethoven 96.6 0.04 0.97
232 9 Bach

5 168 Beethoven

|RBach| = 339, |RHaydn| = 241 Bach Haydn

Bach - Haydn 95.7 0.05 0.96
326 13 Bach

12 229 Haydn

|RBeethoven| = 173, |RHaydn| = 241 Beethoven Haydn

Beethoven - Haydn 69.3 0.33 0.69
108 65 Beethoven

62 179 Haydn

Table B.1: Binary Classification - Bach, Beethoven and Haydn. A decision tree (J48)

classifier, with 10 fold cross validation, is used.
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Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RBach| = 241, |RBeethoven| = 173 Bach Beethoven

Bach - Beethoven 95.4 0.05 0.95
233 8 Bach

11 162 Beethoven

|RBach| = 339, |RHaydn| = 241 Bach Haydn

Bach - Haydn 96.6 0.05 0.97
326 13 Bach

7 234 Haydn

|RBeethoven| = 173, |RHaydn| = 241 Beethoven Haydn

Beethoven - Haydn 72.2 0.33 0.72
110 63 Beethoven

52 189 Haydn

Table B.2: Binary Classification - Bach, Beethoven and Haydn. Logistic regression, with

10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RCorelli| = 24, |RJoplin| = 46 Corelli Joplin

Corelli - Joplin (Logistic Regression) 90 0.10 0.9
22 2 Corelli

5 41 Joplin

|RCorelli| = 24, |RFrescobaldi| = 40 Corelli Frescobaldi

Corelli - Frescobaldi (J48 Decision Trees) 96.9 0.05 0.97
22 2 Corelli

0 40 Frescobaldi

Table B.3: Binary Classification - Disparate Composers. Binary classification used 10 fold

cross validation, is used.
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Table B.4: Binary Classification - Stylistically affiliated Composers. A decision tree (J48)

classifier, with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RMozart| = 148, |RBach| = 126 Mozart Bach

Mozart - Bach 94.2 0.06 0.94
142 6 Mozart

10 116 Bach

|RMozart| = 148, |RHaydn| = 241 Mozart Haydn

Mozart - Haydn 58.1 0.44 0.57
50 98 Mozart

65 176 Haydn

|RJoplin| = 20, |RSousa| = 10 Sousa Joplin

Sousa - Joplin 76.7 0.24 0.78
15 5 Sousa

2 8 Joplin
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Table B.5: Binary Classification - Stylistically affiliated Composers. Logistic regression,

with 10 fold cross validation, is used.

Correctly Mean Weighted Average Confusion

Classified (%) Absolute Error F-Measure Matrix

|RMozart| = 148, |RBach| = 126 Mozart Bach

Mozart - Bach 91.6 0.08 0.92
135 13 Mozart

10 116 Bach

|RMozart| = 148, |RHaydn| = 241 Mozart Haydn

Mozart - Haydn 64.5 0.44 0.62
51 97 Mozart

41 200 Haydn

|RJoplin| = 20, |RSousa| = 10 Sousa Joplin

Sousa - Joplin 80 0.21 0.8
16 4 Sousa

2 8 Joplin
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