
HOST SPECIFICITY AND
PROACTIVE SURVEILLANCE
OF INFECTIOUS DISEASES

Maxwell J. Farrell

Doctor of Philosophy

Department of Biology

McGill University

Montreal, Quebec

2018-11-20

A thesis submitted to McGill University in partial fulfillment
of the requirements of the degree of Doctor of Philosophy

c⃝Maxwell J. Farrell, 2018
All rights reserved



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Abstract

Host specificity – the number and types of species that a parasite infects – can influ-

ence disease dynamics and the probability of emergence in novel hosts. The majority

of human and domesticated animal diseases can infect more than one host, but often

the range of susceptible species is unknown. Developing theory and tools for study-

ing multi-host parasites can help reduce the burden of neglected diseases by identifying

undocumented reservoir species, tracking pathogens in biodiversity hotspots, predicting

the outcome of novel host-parasite associations, and increasing our understanding of how

human impacts alter host-parasite systems. Studying the ecology and evolution of multi-

host parasites provides baseline knowledge of parasites before they emerge, potentially

as threats to global health, and forms the basis of proactive surveillance. In Chapter

1, I present a general framework for proactive disease surveillance through the study of

parasite sharing. The tendency for parasites to infect closely related host species is a

common property of diverse host-parasite systems, and allows for the development of

theory that can be applied to the surveillance of a broad range of organisms. In Chapter

2, I use the evolutionary relationships among hosts to identify gaps in a global database

of host-parasite associations for mammals. With this approach I generate ranked lists

of likely, yet currently undocumented host-parasite associations, which may be targets

for future surveillance. One method to fill these gaps in our knowledge of host-parasite

associations and discover cryptic parasite biodiversity is the sequencing of DNA present

in environmental samples. In Chapter 3, I use molecular and bioinformatic approaches

to explore the bacterial diversity across waterholes in the Kruger National Park, South

Africa. This area, marked by high mammal diversity, frequent cross-species contact, and

endemic multi-host diseases, is an ideal location to develop these methods while generating

baselines for biodiversity monitoring using environmental DNA. In addition to identifying

undocumented host-parasite associations, the evolutionary relationships among hosts may
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be used to predict the impact parasites will have on a given host species. While much

research has focused on the drivers of host mortality in parasites infecting single host

species, we lack theory for predicting the mortality of multi-host parasites. In Chapter

4, I use a global database of domesticated mammal diseases to show that the evolutionary

relationships among hosts can be used to predict disease-induced mortality. I find parasites

infecting distantly related hosts are more likely to result in fatal infections. Many of these

domesticated mammal diseases regularly spill over and contribute to population declines

in wild species. As wildlife are driven extinct, theory predicts that single-host parasites

are at greatest risk of coextinction following declines in their host species. In Chapter 5,

I test this prediction in a comparative study of threatened and non-threatened mammals

and find, counter to prediction, that threatened ungulates are associated with fewer multi-

host parasites. This indicates that the response of parasites to host endangerment varies

with host life history, and that human activities driving species to extinction can modify

the specificity of parasite assemblages. Overall, my work highlights the importance of host

specificity for understanding the ecology and evolution of parasitism, how human pressures

on ecosystems can alter disease ecology, and offers novel approaches for expanding our

knowledge of host-parasite associations.
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Abrégé

La spécificité des parasites chez les hôtes - le nombre et les types d’espèces qu’un par-

asite peut infecter - peut influencer la dynamique de la maladie et la probabilité d’émergence

chez de nouvelles espèces. La majorité des maladies chez les humains et les animaux do-

mestiques peuvent infecter plus d’une espèce d’hôte, mais l’aire de répartition des espèces

sensibles est souvent inconnue. En développant la théorie et les outils pour étudier les para-

sites multi-hôtes, nous pouvons contribuer à la réduction du fardeau des maladies négligées

de plusieurs manières: l’identification des espèces de réservoir non documentées, le suivi

des agents pathogènes dans les régions à haute biodiversité, la prévision des résultats

des nouvelles associations hôte-parasite et une meilleure compréhension de l’impact des

impacts humains sur les systèmes hôte-parasite. L’étude de l’écologie et de l’évolution

des parasites multi-hôtes fournit des connaissances de base sur les parasites avant leur

apparition, et constitue la base d’une surveillance proactive qui peut éviter des menaces

potentielles pour la santé mondiale. Au chapitre 1, je présente un cadre général pour

la surveillance proactive des maladies infectieuses en étudiant le partage des parasites

entre les hôtes. Les parasites sont connus pour infecter des hôtes étroitement apparentés

dans une diversité de systèmes hôte-parasite. Cela nous permet d’élaborer des théories

pouvant être appliquées à la surveillance de nombreux types d’organismes. Au chapitre

2, j’utilise les relations évolutives entre les hôtes pour identifier les lacunes dans une

base de données mondiale sur les associations hôte-parasite chez les mammifères. Avec

cette méthode, je génère des listes classées d’associations hôte-parasite probables, mais

actuellement non documentées, qui pourraient être des cibles pour une surveillance future.

Une méthode pour combler les lacunes dans notre connaissance des associations hôte-

parasite et découvrir la biodiversité cryptique des parasites est le séquençage de l’ADN

présent dans les échantillons environnementaux. Au chapitre 3, j’utilise des approches

moléculaires et bioinformatiques pour explorer la diversité bactérienne à travers les trous
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d’eau du parc Kruger, en Afrique du Sud. Cette zone, marquée par la diversité élevée

des mammifères, les contacts fréquents entre les différentes espèces et les maladies multi-

hôtes endémiques, est un endroit idéal pour développer ces méthodes, tout en générant des

données de base pour la surveillance de la biodiversité en utilisant l’ADN environnemental.

En plus d’identifier les associations hôte-parasite non documentées, les relations évolutives

entre les hôtes peuvent être utilisées pour prédire l’impact que les parasites auront sur

certaines espèces hôdémontretes. Bien que de nombreuses recherches aient porté sur les

facteurs de mortalité chez les parasites infectant des espèces hôtes uniques, nous manquons

de théorie pour prédire la mortalité des parasites multi-hôtes. Au chapitre 4, j’utilise une

base de données mondiale sur les maladies des mammifères domestiqués pour montrer

que les relations évolutives entre les hôtes peuvent être utilisées pour prédire les infections

mortelles. Je démontre que les parasites infectant des hôtes évolutifs éloignés sont plus

susceptibles de provoquer des infections mortelles. Bon nombre de ces maladies peuvent

entraı̂ner un déclin des populations d’espèces sauvages. Lorsque la faune est éteinte,

la théorie prédit que les parasites à un seul hôte sont les plus exposés au risque de co-

extinction après le déclin de leur seule espèce hôte. Au chapitre 5, je teste cette prédiction

dans une étude comparative de mammifères menacés et non menacés. Contrairement aux

prévisions, je trouve que les ongulés menacés sont associés à moins de parasites multi-

hôtes. Cela indique que la réponse des parasites au processus d’extinction de l’hôte varie

selon les caractéristiques de l’hôte et que les activités humaines qui causent l’extinction

des espèces peuvent modifier la spécificité des assemblages de parasites. Ensemble, mes

travaux soulignent l’importance de la spécificité de l’hôte pour comprendre l’écologie et

l’évolution du parasitisme, comment les pressions humaines sur les écosystèmes peuvent

modifier les interactions hôte-parasite et offrent de nouvelles approches pour élargir nos

connaissances des associations hôte-parasite.
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Contribution to Original Knowledge

This thesis takes an interdisciplinary approach to the study of host-parasite interac-

tions, framed in the context of proactive approaches for the surveillance of infectious

diseases. Using global databases, phylogenetic information, hierarchical Bayesian mod-

elling, field surveys, and next generation sequencing, I develop theory and methods to

better understand the ecology and evolution of multi-host parasites.

My first chapter is a literature-based review of approaches to strengthen disease surveil-

lance through the study of parasite sharing among species. This chapter outlines a general

framework for proactive surveillance of infectious diseases, and informs the structure of

my subsequent thesis chapters. My proposed approach involves identifying gaps in current

knowledge of host-parasite associations, using host specificity to better understand disease

dynamics, and documenting the potential for disease transmission through tracking of

animal contact.

My second chapter applies a novel method for predicting host-parasite interaction

using evolutionary relationships among hosts. Host phylogeny is a strong predictor of

parasite community similarity, and using a novel method developed in collaboration with

Mohamad Elmasri (McGill PhD Statistics 2017), we leverage this information to produce

lists of highly probable yet previously undocumented host-parasite interactions. I apply

this method to a global database of host-parasite associations and present approaches for

recursively filling in these missing links.

My third chapter explores the potential for next generation sequencing to describe

bacterial diversity from environmental samples. Using the watering holes of the Kruger

National Park, South Africa as a system with frequent cross-species contact, I characterize

bacterial diversity present across the watering holes, and describe community variation

across space, time, and environmental factors.

My fourth chapter asks the question “why are some diseases deadly?”. The factors
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determining host impact resulting from infection, termed virulence, has long been a topic

of study in the evolution of infectious diseases. However, we currently lack theory for pre-

dicting the virulence of diseases that infect multiple host species. Using global case-fatality

data for multiple diseases of domestic mammals I show that evolutionary relationships

among infected and susceptible hosts is a strong predictor of disease-induced mortality.

Finally, my fifth chapter adopts a comparative approach to the study of host-parasite

coextinction. Traditional coextinction theory predicts that parasites infecting single host

species are the most vulnerable to extinction following severe declines in the abundance

of their sole host. By comparing the relative proportions of single-host and multi-host

parasites across threatened and non-threatened hosts, I show that among ungulates the

decline to extinction is associated with a loss of multi-host parasites.
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General Introduction

Infectious diseases are responsible for severe health burdens in humans, domesticated

animals, and wildlife around the globe (Hotez et al., 2014; Grace et al., 2012; Smith

et al., 2009; Daszak et al., 2000). The majority of these diseases have the ability to infect

more than one species (Taylor et al., 2001; Cleaveland et al., 2001), but despite the severe

burdens imposed by multi-host parasites, we often lack fundamental knowledge about their

basic ecologies and life histories. Throughout this thesis I use parasite and pathogen,

and infectious disease interchangeably to describe any disease-causing organism ranging

from viruses, bacteria, and protozoa (commonly termed micro-parasites or pathogens) to

helminths and arthropods (commonly termed macro-parasites) (Anderson and May, 1979;

May and Anderson, 1979; Lafferty and Kuris, 2002; Stephens et al., 2016). Although

I use these terms interchangeably, typically parasite describes an ecological relationship,

pathogen refers to a disease causing organism, and infectious disease is the disorder caused

by infection.

A broad scale approach to the study of multi-host parasites may help reduce the

impacts these organisms have on wildlife conservation, human health via direct infection,

and loss of livelihoods resulting from disease in domesticated animals. Identifying over-

arching patterns in the ecology and evolution of multi-host diseases can contribute theory

and tools for strengthening the surveillance of infectious diseases around the world. By

understanding the forces that shape the interactions among hosts and parasites, we can

move towards a proactive approach to surveillance in which we study infectious organisms

before they emerge as threats to people, domesticated animals, or wildlife.

The transition from a nomadic to a sedentary lifestyle and the domestication of an-

imals beginning roughly 10,000 years ago resulted in a major shift in human infections

(Armelagos et al., 1996). Diseases responsible for some of the greatest contemporary

human health burdens, such as tuberculosis, measles, pertussis, and falciparal malaria,
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are thought to have originated from wildlife and emerged as human diseases as population

densities dramatically increased, and our reliance on domestic species created opportunities

for sustained transmission of animal diseases (Pearce-Duvet, 2006; Wolfe et al., 2007).

Although the origins of many major human diseases can be traced back to the onset of

agriculture, the rapid human development and increased global connectedness that has

occurred over the past century has facilitated the emergence of a new set of human diseases

(Woolhouse and Gowtage-Sequeria, 2005; Woolhouse and Gaunt, 2007; Jones et al., 2008).

These diseases are caused primarily by pathogens that are transmitted to humans directly

from wildlife, or are shared among humans, wildlife, and domestic species (Cleaveland

et al., 2001; Jones et al., 2008). Domesticated animals can facilitate the transmission of

parasites that originate in wildlife (Daszak et al., 2000) and the progressive transformation

of natural habitats has led to the emergence of diseases that are either newly recognized,

newly evolved, or have undergone recent expansions into a new areas, host species or

vectors (Schlundt et al., 2004; Jones et al., 2013). While much research into the drivers

of disease emergence are framed in the context of zoonoses (human diseases of animal

origin), human activities have also led to the emergence of devastating diseases in wild

species (Dobson and Foufopoulos, 2001; Daszak et al., 2001), many of which are attributed

to the transmission of diseases from domesticated animals (Pedersen et al., 2007; Smith

et al., 2009). As the demand for livestock products increases around the world, we are

likely to see the continued emergence of multi-host diseases with considerable global

impact (Perry et al., 2011; Jones et al., 2013). This trend is also likely to facilitate the

evolution of antibiotic resistant parasites (Jones et al., 2013), another major concern for

disease surveillance (Morens et al., 2004), though I do not focus on it here.

At the forefront of these interfaces are often subsistence livestock keepers, many of

which live on less than $2 USD per day and collectively suffer the greatest burdens of

zoonotic diseases (International Livestock Research Institute, 2012). These populations

lack the basic infrastructure necessary for disease diagnosis, reporting, and control, and
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as a consequence suffer heavy burdens from emerging diseases as well as long standing

neglected zoonoses (Perry and Grace, 2009; Maudlin et al., 2009; Molyneux et al., 2011).

Poor livestock keepers often live in areas of high biodiversity (Fisher and Christopher,

2007; International Livestock Research Institute, 2012), highlighting the importance of

programs that support the surveillance of endemic and emerging multi-host diseases that

also infect wildlife (Halliday et al., 2012). Effective monitoring of these diseases requires

interdisciplinary research that brings together the expertise of ecologists, evolutionary biol-

ogists, veterinarians, epidemiologists, statisticians, molecular biologists, social scientists,

and public health officials (Kruse et al., 2004; Daszak et al., 2013; Wood et al., 2012;

Lebov et al., 2017). By integrating knowledge from across these fields we can generate

the theory and infrastructure necessary to mitigate the impacts of multi-host infectious

diseases. Typically, investigation into the ecology of emerging infectious diseases and their

susceptible hosts is undertaken only after they have been found to infect humans (Wolfe

et al., 2007; Brownstein et al., 2008; Chan et al., 2010). To more effectively respond to

infectious disease threats, the global community needs to adopt a paradigm of proactive

surveillance in which we study infectious organisms before they shift to infect humans,

domesticated animals, or endangered wildlife. The threat of emerging diseases at human-

livestock-wildlife interfaces has led to a substantial body of research, but these studies

are heavily biased geographically and towards a handful of zoonotic diseases (Wiethoelter

et al., 2015), leaving a significant knowledge gap, especially with regard to diseases that

impact livestock and wildlife health.

Advances in addressing this gap range from identifying molecular changes in para-

sites that facilitate the transmission of diseases to novel hosts (Longdon et al., 2014) to

describing patterns in the global biogeography of infectious diseases (Dunn et al., 2010).

Determining the specific ecology, transmission routes, and susceptible hosts of a given par-

asite is essential for designing effective control programs (Viana et al., 2014), and may also

be informed by studying the distributions and impacts of parasites at the broadest scales of
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organization (Stephens et al., 2016). Essential knowledge for the proactive surveillance

of infectious diseases includes approaches for describing the diversity of host-parasite

interactions and determining the drivers and impacts of parasite sharing across hosts. The

number and types of hosts a pathogen infects, broadly termed host specificity, can influence

the dynamics of transmission, outbreak, and the likelihood of emergence in novel hosts

(Daszak et al., 2000; Woolhouse, 2002; Dobson, 2004; Woolhouse and Gowtage-Sequeria,

2005; Parrish et al., 2008; Allison et al., 2012). The ability to infect multiple species can

also facilitate the persistence of parasites as their wild hosts decline towards extinction

(Woolhouse et al., 2001; Deredec and Courchamp, 2003; Koh et al., 2004; Pedersen et al.,

2007). Therefore, an important first step in the proactive surveillance of infectious diseases

is to gain a clearer picture of the susceptible hosts of contemporary multi-host parasites.

In addition to identifying susceptible hosts, it is important to describe the diversity

of potential pathogens in areas of high biodiversity. The encroachment of humans and

domesticated animals into natural systems facilitates host shifts of wildlife diseases into

domestic and human hosts (Daszak et al., 2013; Jones et al., 2013; Faust et al., 2018). In

many regions considered to have a high risk of harbouring future emerging diseases, even

baseline surveys of biological diversity are lacking (Hopkins and Nunn, 2007; Pedersen

and Davies, 2009; Allen et al., 2017). While effective diagnostic tests have been developed

for many important diseases, the surveillance of parasitic biodiversity may be expanded

rapidly through the adoption of recent advances in genetic sequencing. The sequencing

of DNA present in environmental samples is revolutionizing modern biodiversity surveys

(Lodge et al., 2012; Taberlet et al., 2012; Bohmann et al., 2014; Deiner et al., 2017).

Applying this approach to systems of high cross-species contact will be useful for building

baseline surveys of cryptic biodiversity, tracking the distributions of multiple parasites

simultaneously, and discovering previously unknown organisms that may have potential

to emerge as infectious disease threats in the future.

Diseases that infect both domestic and wild species cause significant economic losses
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(Dehove et al., 2012), and can contribute to severe declines in host populations (Heard

et al., 2013). Yet some diseases rarely harm their hosts, while others nearly always fatal

(Bisson et al., 2015). The ability to infect multiple hosts may contribute to the evolution of

virulence and increased mortality due to infection (Brown et al., 2002; Osnas and Dobson,

2012; Alizon, 2013). At a fundamental level, parasites must do some harm to their hosts in

order to successfully reproduce and transmit to infect new individuals (Alizon et al., 2009;

Cressler et al., 2016). However, for multi-host parasites, conflicting trade-offs may select

for greater severity of disease in some host species (Woolhouse et al., 2001; Gandon, 2004;

Antonovics et al., 2013). Despite decades of research on mechanisms determining the out-

come of infection in single-host single-parasite systems, we still lack a robust framework

for predicting the impact of multi-host parasites in different host species (Leggett et al.,

2013).

Highly virulent diseases have been implicated in the declines of endangered wildlife

(Smith et al., 2009; Heard et al., 2013); however, infectious diseases also play key roles

in healthy ecosystems, including the regulation of host populations (Wood et al., 2007),

and promoting host genetic diversity (Altizer et al., 2003). Parasites comprise a major

component of biodiversity (Dobson et al., 2008), but are often neglected as conservation

targets (Gómez and Nichols, 2013). As humans push wildlife towards extinction, this not

only creates opportunities for the transmission of wildlife diseases to humans and domestic

animals, but may also cause the extinction or extirpation of parasites that infect threatened

hosts. The extinction of parasites in natural ecosystems may promote diseases shifting to

infect novel species, and their loss has been suggested as a cause of recent increases in the

number of emerging infectious diseases (Dunn et al., 2009). Theory predicts that single-

host parasites are more susceptible to coextinction than multi-host parasites (Anderson

and May, 1979; Koh et al., 2004; Lafferty, 2012), but this is also likely to depend on the

particular life histories of the hosts declining towards extinction (Colwell et al., 2012).

Testing and generating novel theories of host-parasite coextinction is critical not only for
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prioritizing surveillance efforts in the face of shifting species ranges and anthropogenic

alteration of natural ecosystems, but also for monitoring ecosystem health and stability.

This thesis presents an interdisciplinary approach to inform the proactive surveillance

of infectious diseases. In Chapter 1, I review recent advances in the study of parasite shar-

ing across species that may be useful for the proactive surveillance of zoonotic diseases.

The framework is presented in the context of emerging diseases in humans, but can be

applied to any host-parasite system. The core of the approach involves identifying gaps in

our current knowledge of host-parasite interactions, and developing technologies to track

contact among hosts and parasites. In Chapter 2, I build on this framework by using a

novel statistical model to predict undocumented links in a global database of host-parasite

interactions for mammals. I then conduct targeted literature searches of the top “missing”

links, and highlight interactions that should be the focus of future surveillance efforts.

In Chapter 3, I explore the potential for using the sequencing of environmental DNA to

track infectious organisms and build baseline surveys of bacterial diversity in areas of high

cross-species contact. In Chapter 4, I address the problem of predicting disease impacts in

different host species by exploring the relationship between host specificity and disease-

induced mortality for domesticated animal diseases. In Chapter 5, I use a comparative

approach to look for evidence of parasite coextinction in wild carnivores and ungulates,

and test the theory that single-host parasites are more likely to be lost as their hosts decline

to extinction. Finally, I conclude by reviewing the results from each chapter, and discuss

future applications and avenues of research that expand on my findings.
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CHAPTER 1
The study of parasite sharing for surveillance of zoonotic diseases
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1.1 Abstract

Determining the factors that influence the transmission of parasites among hosts is

important for directing surveillance of animal parasites before they successfully emerge

in humans, and increasing the efficacy of programs for the control and management of

zoonotic diseases. Here we present a review of recent advances in the study of parasite

sharing, wildlife ecology, and epidemiology that could be extended and incorporated into

proactive surveillance frameworks for multi-host infectious diseases. These methods reflect

emerging interdisciplinary techniques with significant promise for the identification of

future zoonotic parasites and unknown reservoirs of current zoonoses, strategies for the

reduction of parasite prevalence and transmission among hosts, and decreasing the burden

of infectious diseases.

1.2 Introduction

The majority of human emerging infectious diseases are of animal origin (Taylor

et al., 2001), and zoonotic diseases, infectious diseases caused by parasites transmissible

between humans and animals, contribute significantly to the global health burden and

can impose severe economic losses (Greger, 2007; Grace et al., 2012). Many current
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diseases causing significant global burden likely crossed the species barrier from animal

populations to humans thousands of years ago (e.g. malaria, tuberculosis, measles) (Wolfe

et al., 2007; Pearce-Duvet, 2006), while others have emerged more recently in human

populations (e.g. human immunodeficiency virus (HIV), severe acute respiratory syndrome

(SARS), influenza A/ H1N1). Considerable effort has focused on identifying the drivers

facilitating infectious disease emergence from animal hosts, which include a diverse array

of interacting social, political, environmental, biological, and ecological factors (Woods

and Versalovic, 1993; Dunn et al., 2010; Daszak et al., 2013; Plowright et al., 2008; Daszak

et al., 2001; Weiss and McMichael, 2004). Analyses of historical patterns of zoonotic

disease emergence and identification of these drivers has formed the basis for surveillance

of both novel and re-emerging zoonotic parasites (Flanagan et al., 2012), which has resulted

in an increased emphasis on interdisciplinary research that bridges taxonomic divides and

incorporates the overarching drivers of emergence for the effective prediction, surveillance,

and management of zoonotic diseases (Borer et al., 2011; Woolhouse, 2011; Wilkinson

et al., 2011). Defining the environmental and biological factors that facilitate zoonotic

disease emergence is an important first step for prediction of future infectious disease risks,

but it is challenging to include large scale drivers such as land use, climate change, and

globalization within an explicit mechanistic framework of disease emergence (Woolhouse

et al., 2012) unless the causal pathways influencing emergence can be teased apart from the

networks of indirect effects associated with these drivers (Plowright et al., 2008; Eisenberg

et al., 2007). In addition, the historical context and associated mechanisms behind emer-

gence events are useful when determining appropriate actions for responding to disease

outbreaks and minimizing the impacts of previously emerged diseases, but may be less

useful for identifying novel infectious agents before they shift from animal reservoirs to

human hosts.
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Zoonotic disease surveillance is typically undertaken only after the detection of a

novel illness in humans (Chan et al., 2010; Brownstein et al., 2008) and has predomi-

nantly focused on identifying human actions that promote contact with animals, which

include bushmeat hunting, handling livestock, the wildlife trade, and expansion of land

use practices into previously wild regions that facilitate disease emergence (Wolfe et al.,

2005; Gómez and Aguirre, 2008; Tomley and Shirley, 2009; Patz et al., 2004; Chomel

et al., 2007). Situations such as these, which increase the probability of human exposure

to animal parasites, have been prioritized for surveillance of novel zoonotic diseases. Con-

temporary surveillance approaches have proven successful in documenting novel simian

immunodeficiency viruses (Aghokeng et al., 2010) and have contributed to an increased

understanding of transmission risk for early detection. Despite these advances, surveillance

and monitoring of zoonoses remains largely reactive in that typically the emergence of a

parasite into human populations must occur before research is conducted to determine its

patterns of transmission, the health impacts on infected hosts, or the suite of hosts it is able

to utilize. Many recent human viruses including SARS coronavirus, Ebola and Marburg

viruses, Nipah virus, Hendra Virus, and simian variants of human immunodeficiency virus

types 1 and 2 were not known to infect wildlife until after first being documented in humans

(Parrish et al., 2008).

Wolfe et al. (2007) have highlighted the reactive nature of the current surveillance

paradigm, noting the need to move from opportunistic sampling of wildlife to new sys-

tematic efforts to detect infectious pathogens prior to shifts into human populations which

would allow for increased efficiency of control programs and permit accelerated responses

in the face of novel epidemics. A more proactive approach to surveillance would fa-

cilitate the precursory development of vaccines or other treatments, highlight potential

transmission routes and reservoir species to efficiently isolate disease spread after an initial

epidemic, and aid in classification of sentinel species used to monitor outbreaks of zoonotic

diseases before appearance in human populations. A shift towards proactive surveillance
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and early detection necessitates baseline documentation of the variety and nature of multi-

host animal parasites, including knowledge of contemporary infectious diseases of wildlife

and domesticated animals, and an understanding of the ecology of these parasites and their

known hosts. Identifying factors that promote parasite expansion, either geographically,

in abundance, or in host range, will help prioritize the monitoring of these parasites and

further development of proactive control and management programs. Here we present a

review of recent advances in the study of parasite sharing, wildlife ecology, and epidemiol-

ogy that provide promise for advancing surveillance frameworks for the control of zoonotic

diseases. We focus on four priority areas of research and methodological development: (1)

Identification of host species that are understudied and may harbour future zoonotic para-

sites, (2) identification of unknown reservoirs of current zoonotic parasites, (3) prediction

of parasites that are likely to be transmissible to humans, and (4) monitoring the movements

of potential reservoir populations to inform actions for limiting future contact with humans

or other susceptible hosts that may promote emergence.

1.3 Identifying gaps in baseline knowledge

Identification of parasites that pose a risk for emergence in human populations requires

knowledge of existing host-parasite associations from which we can infer future human

transmission potential. This necessitates the systematic documentation of host infection by

parasites. A complete knowledge of all parasites and the susceptibilities of hosts to infec-

tion is beyond our reach, but existing datasets provide useful starting points for gathering

such information. These data can be used to produce a list of known animal parasites and

allow profiling of important traits such as parasite type (virus, bacteria, protist, helminth,

fungi, etc.), transmission mode (sexually transmitted, vector borne, water borne, etc.),

genomic or proteomic markers for rapid identification or development of treatments, and

the range of hosts that are known to be susceptible. Importantly, such data can be used to

identify gaps in the sampling of wildlife hosts and their associated parasites.
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Hopkins and Nunn (2007) illustrate one method for identifying taxonomic and ge-

ographic gaps in parasite sampling within non-human primates. Using the primate sub-

section of a comprehensive database of host-parasite associations for free-living mammals

(Nunn and Altizer, 2005), and maps of primate geographical distributions, they highlight

geographical regions where sampling of primate parasites is most lacking with respect to

the diversity, taxonomy, and threat status of hosts, as well as the taxonomy of parasites.

Such gap analyses are useful for revealing hosts and regions where future sampling is most

likely to uncover previously undocumented parasites. The technique of gap analysis could

also be conducted on a smaller scale. For example, a recent Ouranos funded project is

interested in predicting the spread of Lyme disease in Canada in the face of climate change.

Lyme disease, caused by the bacterium Borrelia burgdorferi, is transmitted via the tick

vector Ixodes scapularis to a variety of vertebrate reservoirs and hosts, including humans.

The preferred host of I. scapularis is the white footed mouse (Peromyscus leucopus), which

is known to transmit the disease effectively, although studies have found that other small

mammals may be important in the transmission cycle of Lyme (Bouchard et al., 2011).

One aspect of the project is to identify the diversity of small mammal hosts in southern

Quebec and target sampling of these species to determine the differential preference of I.

scapularis, and prevalence of Lyme, in order to predict patterns of expansion and emer-

gence under different climate change scenarios. Targeted sampling such as this will greatly

contribute to baseline data on parasites, including associations with hosts, and hence to

our knowledge of the evolutionary and ecological factors that influence the dynamics of

parasite distributions, prevalence, host-shifts, and disease outbreak.

1.4 Host specificity

The range of hosts that a parasite infects, also known as host specificity, can influence

the dynamics of parasite transmission, disease outbreak, and emergence in novel hosts
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(Woolhouse, 2002; Daszak et al., 2000; Allison et al., 2012; Dobson, 2004). The transmis-

sibility and virulence of a parasite can differ dramatically among hosts, and the utilization

of multiple hosts may help parasites avoid extinction by not being tied to the fate of one host

species (Woolhouse et al., 2001). Host specificity is traditionally defined as the absolute

number of host species utilized (Mouillot et al., 2006), but alternative methods have been

proposed which take into account the geography, ecology, and taxonomic or evolutionary

distances among hosts (Poulin and Mouillot, 2003, 2005). Most metrics are derived from

presence/absence data for host-parasite associations, but can be modified to incorporate

information on differential parasite prevalence among hosts (structural specificity), quan-

tify changes in host use across the geographic range of the parasite (β-specificity), or

compounded into metrics that quantify the phylogenetic turnover of utilized host species

over geographic space (Poulin et al., 2011).

Phylogenetic metrics of host specificity are particularly useful when the host traits

determining parasite preferences are unmeasured and/or unknown. Phylogeny, a represen-

tation of the evolutionary relationships among species, provides a means to quantify species

similarity: closely related species are more likely to share physiological, biochemical, or

behavioural traits that influence the successful infection, development, and transmission

of parasites, although evolutionarily more labile traits might co-vary only poorly with

phylogeny. One example of a trait that influences successful parasite sharing is the presence

of phylogenetically conserved cell receptors for viral pathogens, which has been proposed

as a useful tool for predicting whether or not a novel virus will be able to infect humans

(Woolhouse et al., 2012). Phylogeny might, therefore, act as a proxy for cell receptor

similarity between potential hosts. Experimental studies which cross-infected hosts and

their specific parasites found that decreasing phylogenetic distance between hosts promoted

successful parasite infection and reproduction (Perlman and Jaenike, 2003; Gilbert and

Webb, 2007; de Vienne et al., 2009; Longdon et al., 2011), and comparative studies of

free-living primates have shown that the phylogeny and geographic distribution of hosts
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are strong predictors of parasite sharing (Cooper et al., 2012; Davies and Pedersen, 2008;

Pedersen et al., 2005).

Determining the factors influencing the sharing of parasites among host species in

ecological communities can allow the prediction of the range of hosts that a particular

parasite might be able to infect. Predicting the potential host range of a parasite is critical

for prioritizing surveillance efforts in the face of shifting animal ranges and the expan-

sion of human land use practices, which have the potential to bring previously isolated

host populations into contact and create novel opportunities for cross-species transmission

(Plowright et al., 2008; Parrish et al., 2008; Reluga et al., 2007; Martin et al., 2011). For

example, the phylogenetic relationship between hosts could be used as an index for intrinsic

susceptibility to infection based on distance from a known host, and geographic overlap

could be used as a proxy for the likelihood of contact between potential hosts (Pedersen

and Davies, 2009). Under these assumptions, host species that are recently diverged and

have large overlaps in their geographic ranges are most likely to share similar suites of

parasites. This model may be helpful in the identification of previously undocumented

reservoirs for current zoonotic parasites, or prioritization of monitoring for host species

that are likely to become future reservoirs after a successful host shift.

The applicability of phylogenetic host specificities for predicting host switching events

will likely vary depending upon the parasite type and transmission mode, as well as the

strength of phylogenetic conservatism in host defence traits. Recently emerged parasites

such as the coronavirus responsible for Severe Acute Respiratory Virus (SARS) and the

2009 pandemic strain of influenza A (H1N1) are examples of extremely large phyloge-

netic jumps between hosts which a predictive model based on phylogenetic host affinities

may not have anticipated. Rapid generation times and high mutation rates, such as typi-

cal for RNA viruses, might facilitate large host jumps. However, examining the genetic

and proteomic changes coincident with these distal host switching events may allow for

identification of homologous viral strains in related reservoir species which may gain the
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potential to shift hosts in the future. Additionally, some viruses known to have jumped

large phylogenetic distances, such as rabies viruses and lentiviruses have been found to

more often make small rather than large phylogenetic jumps between hosts (Streicker

et al., 2010; Charleston and Robertson, 2002). For parasites that demonstrate frequent

shifts between distantly related hosts, host phylogeny may be less informative, and more

appropriate predictors may be identified from the geography and ecology of potential hosts.

In these cases, similarity in life history traits or overlap in geographic ranges may be

essential for promoting increased contact and opportunities for parasite exposure and cross-

species infection.

1.5 Animal movement and contact

Monitoring the distribution of both hosts and parasites, and understanding the forces

that modify ecological interactions among potential hosts will be critical for moving to-

wards successful proactive surveillance of zoonotic diseases because host shifts are not

possible unless there is opportunity for parasites to move between individuals of different

host species. The movement and co-occurrence of host species is important not only

for parasite transmission at global and regional scales associated with migration, species

invasions, and the wildlife trade, but also impacts local disease dynamics (Fèvre et al.,

2006). Many local opportunities for cross-species transmission can have far reaching

effects when they involve species with long range dispersal such as humans, migratory

species, or animals that are traded as commodities. By traveling large distances, these

species can connect previously isolated populations and contribute to the long-range trans-

port of parasites, as illustrated by the transmission of haematozoan parasites of migratory

waterfowl (Figuerola and Green, 2000). The global transport of passengers and goods has

been implicated in the spread of influenza pandemics, introduction of mosquito vectors,

and increases in the range of falciparum malaria (Tatem et al., 2006). Livestock trade

and complex market systems have the potential to mix infected hosts from distant sites
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and often involve frequent close contact with humans involved in the raising, pasturing,

transport, trade, and butchering of these animals (Fèvre et al., 2006). Additionally, the

hunting of wild animals for nutritional purposes brings human hunters into direct contact

with wild species harbouring zoonotic parasites, and the carcasses of hunted animals are

often subject to long distance transportation via market systems and commodity chains

involving multiple vendors (Wolfe et al., 2005; Aghokeng et al., 2010; Bachand et al.,

2012; Kamins et al., 2011). The tendency for migrating species to travel long distances

and over international boundaries often makes the tracking of movements difficult, but

recent technological advances have permitted the use of satellite telemetry to track reservoir

populations, such as fruit bats responsible for transmitting zoonotic Nipah and Hendra

viruses (Smith et al., 2011).

The monitoring of migrating species and increasing understanding of how human

activities and climate change alter species dispersal is essential to predict changes in contact

patterns among susceptible hosts and the transmission of zoonotic infections. While the

movement of infected individuals obviously increases a parasites geographical range, the

relationship between animal movement and parasite transmission may be more complex.

Altizer et al. (2011) suggest that migration might increase or decrease parasite prevalence

depending on the parasites traits, such as transmission mode and host specificity, and that

long distance migration is likely to decrease the prevalence of host-specific parasites while

increasing the prevalence of generalist parasites able to infect both the migratory species

as well as non-migratory resident species.

Examining the genetics of hosts and parasites across heterogeneous landscapes can

be used to elucidate environmental drivers of parasite genetic diversity, quantify ecological

processes such as gene flow and host movements that may indirectly influence parasite

prevalence, and infer transmission patterns across various temporal and spatial scales (Biek

and Real, 2010). Using Escherichia coli as a model system, Rwego et al. (2008) gen-

erated DNA fingerprints for E. coli isolates from humans, livestock, and gorillas around
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Bwindi Impenetrable National Park, Uganda to map transmission routes. Repetitive DNA

sequences are found throughout the bacterial genome and can be used to rapidly distinguish

bacterial species and strains (Woods and Versalovic, 1993). Rwego et al. (2008) found

that the variance in diversity of E. coli strains was higher within species than between,

suggesting a larger number of multi-species strains than species-specific strains. In addi-

tion, they also found that habitat overlap contributed significantly to transmission: humans

and livestock shared very similar strains, reflecting their close geographical proximity and

frequent interactions, whereas the similarity of strains in humans and gorillas was found to

be a function of the frequency of human-gorilla contact (strains of wild groups were less

similar to humans than those for eco-tourism, and research gorilla groups intermediate)

which may be reflective of direct exchange of microbes or indirect transmission contact

through shared environment (Rwego et al., 2008). The use of genetic markers in this

manner can provide pertinent information on the transmission pathways of multi-host

pathogens and allow the estimation of contact rates at the scale of individuals, populations,

communities.

Heterogeneity in parasite transmission within and across susceptible groups is im-

portant to consider when modeling epidemic dynamics and investigating the potential

outcomes of control strategies. Traditional epidemiological models such as Susceptible-

Infected-Recovered (SIR), metapopulation, or lattice-based approaches assume that all

individuals are identical in their epidemiological traits that contribute to transmission,

whereas network models adapted from statistical physics allow to the explicit inclusion of

variation in contact patterns, infectiveness, and recovery rates among individuals (Craft and

Caillaud, 2011). Craft and Caillaud (2011) review the application of network models for in-

vestigating contact structures in wildlife epidemiology, an approach that can be used in con-

junction with contemporary methods for monitoring the movement of animal populations

such as behavioural observations, mark and recapture surveys, video tracking, and radio or

satellite telemetry. By merging the tracking of animal movements with landscape genetics,
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network models can be generated for local and regional scale processes of changing land

use, increasing agricultural intensity, eco-tourism, wildlife research, bushmeat hunting,

and habitat fragmentation, which have been identified as modifiers of the distributions of

species that promote increased contact between hosts (Wolfe et al., 2005; Goldberg et al.,

2007; Alexander and Day, 2010). These models can be used to simulate control strategies

targeted at particular species, or sub-groups that have been identified as “super-spreaders”

– individuals contributing disproportionately to the transmission of infectious agents.

Spatially explicit models must also consider environmental variance, seasonality, and

anthropogenic change as these factors can modify contact patterns, host susceptibility,

and parasite prevalence (Altizer et al., 2006). Correlations between host and parasite

locations and local environmental properties have been used to predict the distributions

of 15 potentially interacting reservoir and vector species of Chagas disease throughout

Mexico (Peterson et al., 2002). Techniques for the collection and analysis of geographic

information such as satellite imagery and remote sensing have also been used to analyze

environmental changes contributing to outbreaks of waterborne and vector borne zoonoses

(Ford et al., 2009). Understanding the link between the environment and the biogeography

of host and parasite interactions is especially critical for predicting the effects of climate

change, which has the potential to alter seasonal regimes and shift both parasite and host

distributions (Lafferty, 2009).

1.6 Beyond zoonotic diseases

Wild and domesticated animals have been proposed as sentinels for zoonotic diseases

(Gubernot et al., 2008; Halliday et al., 2007), the monitoring of which would allow us to

recognize outbreaks before they appear in human populations. The use of sentinels such as

livestock and domesticated carnivores that interact frequently with both wildlife and human

populations would be useful for monitoring changes in host contact patterns, or the rapid

spread of previously endemic diseases. However, surveillance of wildlife and domesticated
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animal parasites that are potentially harmful to humans should extend beyond the search

for the next major emerging zoonotic disease, or unknown reservoirs of current infections.

In many developing countries livestock remain a major livelihood resource (Herrero et al.,

2009), and the health of domesticated animals has both direct and indirect impacts on those

that are dependent on livestock livelihoods (Perry and Grace, 2009; Maudlin et al., 2009).

The predicted rapid population growth of developing countries and concurrent increase

in the demand for livestock products (Perry et al., 2011; Thornton, 2010) coupled with

the documented sharing of parasites among humans, livestock, and wildlife (Cleaveland

et al., 2001) highlights the need for proactive surveillance of wildlife parasites that may

emerge in livestock. The overlap of biodiversity hotspots and human poverty (Fisher and

Christopher, 2007), the global correlation between bird and mammal richness and the

number of human pathogens (Dunn et al., 2010), and the consistent under-reporting of

infectious disease burdens in the developing world (Maudlin et al., 2009) highlights the

need for surveillance of multi-host parasites in these regions to identify future emerging

disease threats, as well as unknown endemic diseases that may be currently afflicting

these populations. Recent efforts that have employed molecular markers and rapid genetic

sequencing of retroviral and bacterial pathogens of primates targeted by the bushmeat

trade are particularly successful examples of proactive surveillance. These studies have

taken into account host-parasite associations, host geography and ecology, as well as the

environmental and social factors that increase contact and could facilitate emergence of

primate parasites in human populations (Aghokeng et al., 2010; Bachand et al., 2012;

Locatelli and Peeters, 2012; Wolfe et al., 2004; Betsem et al., 2011).

We suggest that the same tools described in this paper for guiding surveillance and

monitoring of zoonotic parasites could be applied to any infectious disease organism,

although we recognize that there is an urgent need to first increase current baseline infor-

mation on host-parasite associations across a greater breadth of host taxa. Using livestock

as an example, lists of parasitic and infectious diseases have been compiled (Lefèvre
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et al., 2010) and could be merged with reported host-parasite associations for ungulates

(Cetartiodactlya plus Perissodactlya, minus cetaceans (Nunn and Altizer, 2005)), which

represent the group of terrestrial mammals most closely related to the major five livestock

species: cows, goats, sheep, pigs, and horses. This information can then be used to

distinguish gaps in the sampling of ungulate parasites and quantify the applicability of host

phylogenetic affinities for predicting parasite sharing among ungulates. Factors influencing

the transmission of infections among wild and domestic ungulates in Europe have already

been identified (Martin et al., 2011), and may help direct surveillance programs towards

high risk areas. Models of infectious disease spread have been produced for parasites

of some wild ungulate species, such as cervids of North America, which has informed

management programs for limiting the prevalence and spread of multi-host parasites such

as bovine tuberculosis and brucellosis which are also known to infect livestock (Conner

et al., 2008). Analyzing the environmental and anthropogenic factors that facilitate ag-

gregations of wild ungulates (e.g. Bhola et al. (2012)) could be used to infer previously

undocumented reservoir interactions, or combined with landscape genetic techniques to

estimate the degree of parasite transmission among these species, humans, livestock, or

other domesticated animals. Monitoring overlaps in the distributions of livestock and re-

lated wildlife species and quantifying transmission of parasites between hosts may uncover

multi-host transmission dynamics which can then be integrated with environmental and

ecological data, and contemporary livestock transport networks to develop a continuously

updating surveillance program that would help reduce the disease burden in livestock and

improve the well-being of those reliant upon them.

1.7 Conclusion

Understanding broad patterns driving host-parasite associations can aid in the predic-

tion of novel disease emergence for humans, domesticated animals, and wildlife, and will

be essential in designing effective control programs for emerging infectious diseases as
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well as neglected endemic diseases. Through the amalgamation of baseline ecological data

and focusing on the four priority research areas highlighted in this review: (1) identification

of understudied host species, (2) identification of unknown reservoirs of current zoonotic

parasites, (3) prediction of parasites that are likely to be transmissible to humans, and (4)

monitoring the movements of potential reservoir populations, we can identify areas with

inadequate surveillance relative to a high probability of cross-species parasite transmis-

sion. Directing surveillance in this manner will help to generate more explicit tests of the

drivers of parasite sharing between species, allow for increased accuracy when predicting

novel emerging disease events, identify reservoirs of contemporary infectious agents, and

decrease the burden of zoonotic diseases.
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Linking Statement 1

Chapter 1 presents a framework for the proactive surveillance of infectious diseases

based on the study of parasite sharing among hosts. A central focus of this framework

is identifying the suite of hosts that a particular parasite is likely to infect. With this

information we can direct research towards parasites that may pose a risk for emergence in

humans, domesticated animals, or wildlife of interest. Based on the observation that closely

related species often host similar parasites, I suggest that host phylogeny may inform the

likelihood of a given host-parasite combination.

In Chapter 2, I use a novel method for link prediction in ecological networks to identify

missing links in a global database of host-parasite interactions for mammals. The method,

described in Elmasri et al. (2017), was developed in collaboration with Mohamad Elmasri,

a former doctoral student in the Department of Mathematics & Statistics at McGill. The

method uses only the structure of observed interactions and the evolutionary relationships

among hosts to identify links that are highly likely, yet undocumented. I apply this method

to the most comprehensive host-parasite database available, amalgamating four global

databases of host-parasite interactions for mammals. After applying the link prediction

method of Elmasri et al. (2017), I conduct literature searches for evidence of the top missing

links. This chapter demonstrates an iterative approach to proactive disease surveillance

that involves synthesizing current knowledge, identifying gaps, predicting missing links,

building literature based databases, and targeting undocumented interactions that may be

causing unseen disease burdens, or that could become established in the future.
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CHAPTER 2
Proactive disease surveillance through link prediction

in global host-parasite networks
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Author Affiliations:

1Department of Biology, McGill University
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2.1 Introduction

Infectious diseases are a significant cause of death and disability in humans, domesti-

cated animals, and wildlife. Most disease causing organisms of human and domesticated

animal can infect multiple species (Cleaveland et al., 2001; Taylor et al., 2001), which has

ramifications for biodiversity conservation (Smith et al., 2009) and human health via direct

infection, food insecurity, and diminished livelihoods (Grace et al., 2012). The number

of emerging infectious diseases has significantly increased over the last 60 years, with

the majority of human diseases caused by pathogens crossing the species boundary from

animals to infect humans (Jones et al., 2008). Cross-species disease transmission has been

implicated in the declines of endangered wildlife (Daszak et al., 2000) and acts in synergy

with other drivers of extinction (Heard et al., 2013). The human burden of multi-host dis-

eases falls largely on the world’s poor livestock keepers (International Livestock Research

Institute, 2012), many of which live in biodiversity hotspots (Fisher and Christopher, 2007)

where resources for disease surveillance and reporting are lacking (Halliday et al., 2012).

Despite the severe burdens they impose, we do not know the full range of susceptible host

species for the vast majority of infectious organisms (Hopkins and Nunn, 2007; Dallas

et al., 2017). Predicting host species that may be susceptible to infection can help to
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improve disease monitoring and control programs for infectious diseases around the world.

There is therefore an urgent need to fill these gaps. Here, we show how it is possible to

leverage current knowledge of host-parasite associations to identify missing links in global

host-parasite networks, and suggest that this offers a cost-effective approach to guide the

surveillance of both emerging and neglected diseases.

For a given pathogen, knowledge of susceptible hosts is critical for understanding

disease spread and persistence in multi-host systems (Viana et al., 2014). Predicting the

suite of potential host species for known infectious diseases may also allow for more

effective disease control, rapid response in the event of disease emergence (i.e. increases

in prevalence, geographic spread, or infection of novel host species), and reduce risk of

disease spillover and emergence through limiting cross-species contact of potential hosts

(Roeder et al., 2013; Miller et al., 2013; Büscher et al., 2018; Molyneux and Sankara,

2017). While investigation into the specific ecologies and range of natural hosts often

takes place after diseases have emerged as public health threats, iterative prediction and

verification of potential host species provides one method of proactive surveillance that

can strengthen capacities for disease monitoring and control of multi-host pathogens before

emergence (Farrell et al., 2013).

Filling gaps in our knowledge of host-parasite networks additionally provides insight

into the ecological and evolutionary forces shaping host-parasite interactions and disease

spread. This includes the role of network structure for transmission (Gomez et al., 2013;

Pilosof et al., 2015), the nature of “forbidden links” (Morales-Castilla et al., 2015), and

the drivers of parasite richness (Nunn et al., 2003; Huang et al., 2015; Ezenwa et al., 2006;

Kamiya et al., 2014) and parasite sharing across hosts (Davies and Pedersen, 2008; Huang

et al., 2014; Braga et al., 2015; Luis et al., 2015). Determining the roles of wildlife hosts

in disease transmission can also identify factors driving the evolution of highly virulent

parasites (Shwab et al., 2018).
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The search for undescribed pathogens and novel host-parasite associations forms the

basis of proactive disease surveillance programs (Wolfe et al., 2007; Farrell et al., 2013).

Such efforts have been adopted by researchers studying primate infectious diseases (e.g.

Ghai et al. (2014)), and disease exposure associated with the handling and consumption

of wild-caught meat (Wolfe et al., 2005; Kamins et al., 2011; Aghokeng et al., 2010).

These studies focus on interfaces of high human-wildlife contact and attempt to discover

novel pathogens, often by metagenomic analyses of blood, feces, or tissue samples. These

sequencing-based approaches may be scaled up to estimate the number of unknown viruses

with zoonotic potential (Anthony et al., 2013), and are being expanded to identify the

majority of these viruses in an effort to mitigate the impact of future pandemics (Car-

roll et al., 2018). While exploratory approaches aimed at identifying unknown viruses

are important for describing the depth of viral diversity and building local capacities for

disease surveillance, they do not directly address the issue that we do not even know the

animal reservoirs for many diseases currently of public health importance (Geoghegan and

Holmes, 2017).

Here, we describe an alternative approach to identifying susceptible species of known

diseases that uses existing global databases of host-parasite associations to predict missing

links. By allowing for more directed surveillance efforts through targeted sampling of the

most likely missing links, it may be possible to both save money and improve the efficiency

of detecting undocumented host-parasite interactions. Recent efforts have employed ma-

chine learning to identify potential rodent and bat reservoirs of zoonotic diseases (Han

et al., 2015, 2016), and illustrate that link prediction in ecological networks can generate

accurate predictions. However, they frequently rely on detailed knowledge of ecological

and functional traits of interacting species (Gravel et al., 2013; Morales-Castilla et al.,

2015; Bartomeus et al., 2016; Dallas et al., 2017). In some cases only a small number

of traits may be necessary to accurately predict whether two species interact (Eklöf et al.,

2013; Dallas et al., 2017), yet the scale and taxonomic diversity of global host-parasite
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databases make their implementation challenging. Few traits are likely be available for all

species (Morales-Castilla et al., 2015) and for very diverse taxa there may only be a few

comparable traits. Further, as these databases grow to include more species it becomes

increasingly difficult to exhaustively search the literature for trait or interaction data if not

directed, especially since much of the data can be in grey literature. Trait-based methods

for link prediction are therefore powerful for smaller sized or local host-parasite networks,

but can scale poorly. Algorithms such as recommender systems can be more flexible,

drawing strength from the size of the network, and allowing for the identification of highly

probable links in a variety of large networks (see Ricci et al. (2011) for a review). Here we

employ a recently developed hierarchical Bayesian approach for link prediction in bipartite

ecological networks inspired by recommender systems (Elmasri et al., 2017). This method

is particularly well-suited to link prediction in global ecological networks as it does not

require trait data, and allows us to make accurate predictions of missing links using only

the structure of the observed host-parasite associations and the evolutionary relationships

among hosts.

Our implementation draws on the evolutionary theory linking species ecologies and

their phylogenetic histories (Felsenstein, 1985; Harvey and Pagel, 1991). Phylogenetic

trees are representations of the evolutionary relationships among species, and provide

a means to quantify species similarity (Wiens et al., 2010). Hosts may be associated

with a parasite through inheritance from a common ancestor, or as a result of parasites

shifting to use novel host species (Page, 1993). In both cases we expect closely related

species will host similar parasite assemblages (Davies and Pedersen, 2008). Over the

past decade, studies of natural and experimental host-parasite systems across diverse taxa

have increasingly shown cross-species parasite sharing to be constrained by host phylogeny

(Perlman and Jaenike, 2003; Gilbert and Webb, 2007; Davies and Pedersen, 2008; Streicker

et al., 2010; Longdon et al., 2011; Huang et al., 2014; Braga et al., 2015; Luis et al., 2015).

Host phylogenetic relationships can thus capture the influence of parasite inheritance from
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common ancestors, and also serve as proxies for unmeasured physiological, biochemical,

or behavioural traits that influence the successful infection, development, and transmis-

sion of parasites. By using host phylogeny to predict missing links in large host-parasite

networks we can make accurate predictions with limited data, and generate ranked lists

of highly likely, but currently undocumented, hosts of known infectious organisms which

could be targeted for disease surveillance.

2.2 Materials and Methods

Data

We aimed to generate a list of highly probable, yet previously undocumented host-

parasite interactions for humans, domesticated animals, and wildlife. First, we amalga-

mated four recently published global host-parasite databases for mammals derived from

primary literature, genetic sequence databases, and natural history collections. The Global

Mammal Parasite Database 2.0 (Stephens et al., 2016) contains records of disease causing

organisms (viruses, bacteria, protozoa, helminths, arthropods, and fungi) in wild ungulates

(artiodactyls and perrisodactyls), carnivores, and primates drawn from over 2700 literature

sources published through 2010 for ungulates and carnivores, and 2015 for primates. The

static version of the Enhanced Infectious Disease Database (EID2) (Wardeh et al., 2015)

contains 22,515 host-pathogen interactions from multiple kingdoms based on evidence

published between 1950 - 2012 extracted from the NCBI Taxonomy database, NCBI Nu-

cleotide database, and PubMed citation and index. The Host-Parasite Database of the

Natural History Museum, London (Gibson et al., 2005) contains over a quarter of a million

host-parasite records for helminth parasites extracted from 28,000 references published

after 1922, and is digitally accessible via the R package helminthR (Dallas, 2016). Finally,

Olival et al. (2017) compiled a database of 2,805 mammal-virus associations for every

recognized virus found in mammals, representing 586 unique viral species and hosts from

15 mammalian orders.
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To amalgamate these databases, host names were standardized to those in Wilson

and Reeder (2005) and used in the Fritz et al. (2009) mammal phylogeny. Virus names

were standardized to the 2015 version of the International Convention on Viral Taxonomy

(Lefkowitz et al., 2018). For non-viral parasites there exists no single accepted authority for

nomenclature or species concepts, however all parasite names were thoroughly checked for

typographical and formatting errors. When potentially synonymous names were identified

(e.g. Cylicocyclus insigne and Cylicocyclus insignis), online searches of primary liter-

ature and taxonomic databases including the Integrated Taxonomic Information System

(www.itis.gov), Catalogue of Life (http://www.catalogueoflife.org), World Register of Ma-

rine Species (www.marinespecies.org), Encyclopedia of Life (www.eol.org), NCBI Taxon-

omy Database (https://www.ncbi.nlm.nih.gov/taxonomy), UniProt (www.uniprot.org), and

the Global Names Resolver (https://resolver.globalnames.org) were conducted to verify

synonymy. Synonymous names were corrected to the name with the majority of references,

or to the preferred name in recently published literature or taxonomic revision when this

this information was available. Host associations for parasite names that were later split

into multiple species were removed from the dataset (e.g. Bovine papillomavirus). All

hosts and parasites reported below species level were assigned to their respective species

(e.g. Alcelaphus buselaphus jacksoni was truncated to Alcelaphus buselaphus), and any

species reported only to genus level or higher (e.g. Trichostrongylus sp.) was removed.

The resulting network includes 29,112 documented associations among 1835 host and

9149 parasite species (Fig. 2–1). To our knowledge this constitutes the largest host-parasite

interaction database assembled for mammals, and includes parasites from diverse groups

including viruses, bacteria, protozoa, helminths, arthropods, and fungi, and wild, domestic,

and human hosts. The resulting matrix is quite sparse, with ∼0.17% of the ∼16.8 million

possible links having documented interactions. Parasite species are largely represented by

helminths (63.9%), followed by bacteria (13.1%) and viruses (7.89%). The number of

documented interactions per species (degree distribution) varies considerably and is shown
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to be linear on the log scale for both hosts and parasites (Fig. 2–2). This database comprises

presence-only data as we do not have consistent information about the strength or nature

of each interaction, only that it has been documented at least once by any accepted method

(direct observation, genetic sequencing, or serology). Therefore interactions are taken

as binary (0/1 for a given host-parasite interaction). Absences should not be considered

true absences and are likely to include some host-parasite associations that (1) have been

observed but which are not recorded in the original database, (2) currently exist but have

not yet been observed or are undocumented, and that (3) may be realized in the future given

sufficient opportunity.

Statistical analyses

We apply the link prediction model of Elmasri et al. (2017) to the amalgamated dataset

of 29,112 documented and ∼16.8 million potential host-parasite interactions. The model

has three variants: “affinity only” which generates predictions based only on the number of

observed interactions for each host and parasite, “phylogeny only” in which only the host

evolutionary relationships are used to make predictions, and the “full model” which layers

both components. The affinity model is fit by preferential attachment whereby hosts and

parasites that have many interacting species in the network are assigned higher probabilities

of forming novel interactions. The phylogeny model uses the similarity of host species

based on evolutionary distances to assign higher probability to parasites interacting with

hosts closely related to their documented host species, and lower probability of interacting

with hosts that are distantly related. To account for uncertainty in the phylogeny, and

allow the model to place more or less emphasis on recent versus deeper evolutionary

relationships, we fit a tree scaling parameter (“Eta”) based on an accelerating-decelerating

model of evolution (Blomberg et al., 2003; Harmon et al., 2010). This transformation,

which allows for changes in the relative evolutionary distances among hosts, was shown

to have good statistical properties for link prediction in a subset of the GMPD (Elmasri
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et al., 2017). We apply all three versions of the model to the full dataset. The tree scaling

parameter is applied across the whole phylogeny, but since the importance of recent versus

deep evolutionary relationships among hosts is likely to vary across parasite types (Park

et al., 2018), we additionally run the phylogeny only model and the full model on the

dataset subset by parasite taxonomy (arthropods, bacteria, fungi, helminths, protozoa, and

viruses).

For each model we determined the number of iterations required for parameter con-

vergence by visual inspection of parameter traceplots, auto-correlation plots, and effective

sample size (see Elmasri et al. (2017) for detailed discussion of convergence diagnostics).

For parameter estimation and evaluation of model performance we ran each model using

5-fold cross validation holding out links for which there is a minimum of two observed

interactions (the model would not be able to recover interactions for parasites that infect a

single host species). Model performance was evaluated using the area under the receiver

operating characteristic curve (AUC) and proportion of observed interactions recovered.

As additional validation, and to determine the utility of the model, we identify the

top 10 most likely links that were not documented in the database and conducted online

searches of primary and grey literature for evidence of these associations. For models run

on the full dataset, we also investigate the top ten links for domesticated mammals (Bison

bison, Bos sp., Bubalus bubalis, Camelus sp., Capra hircus, Canis lupus, Cavia porcellus,

Equus asinus, Equus caballus, Felis catus, Felis silvestris, Lama glama, Mus musculus,

Oryctolagus cuniculus, Ovis aries, Rangifer tarandus, Rattus norvegicus, Rattus rattus,

Sus scrofa, Vicugna vicugna), and wild host species separately. Together we ran the three

model variants on the full dataset and identified the top ten links overall, plus the top ten

links for domesticated hosts and wild hosts, resulting in 90 links. We also ran the phylogeny

only and full model variants for each of the six parasite subsets, resulting in another 120

links. In total we identified 210 highly likely undocumented links to target; however, as

there was some overlap in the top links among models and data subsets, this resulted in 154
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unique links that we investigated for published evidence of infection.

2.3 Results and Discussion

We identify a number of links that are missing from the original databases, indicating

that link prediction can be used to improve existing literature-derived databases of host-

parasite interactions. These databases provide the best estimates of the host-specificity of

infectious organisms, which is important for identifying potential reservoirs of neglected

diseases (Viana et al., 2014), and provide essential information for macroecological studies

of infectious disease (Stephens et al., 2016). Our method demonstrates that these databases

can be efficiently expanded through targeted searches, and can help to identify host-parasite

interactions that may emerge in the future given sufficient contact among previously iso-

lated hosts and parasites.

Model diagnostics

All models showed high predictive accuracy in cross-fold validation: AUC values

ranging from 0.92 - 0.984, where maximum AUC signifying perfect predictive accuracy

is 1, and between 88.61% and 96.02% of the held-out documented interactions recov-

ered (Table 2–1; see Fig. 2–3 for posterior interaction matrices for the full dataset).

Of the top 154 undocumented links for which literature searches were conducted, we

identified 59 links with evidence of infection (direct observation, genetic sequencing, or

positive serology), and identified an additional 13 links with some evidence, but for which

additional confirmatory data are required (e.g. antibodies but no confirmed cases for

human infections, known cross-reactivity of the serological test used, an unconfirmed

visual diagnosis, or the identification of a genetically similar but previously unknown

parasite) (Table 2–2, see Appendix 6.1 for lists of top links and detailed results of literature

searches). Of the remaining links for which we could not find conclusive evidence, we

highlight 38 that should be targeted for surveillance. These include links where there is
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known geographic overlap in the ranges of the host and parasite and host ecologies likely

facilitate exposure. We also identify a number of links that are highly likely in the model,

but may be unlikely due to the mode of disease transmission, non-overlapping host and

parasite geographies, or potential competitive interactions with closely related parasites.

The top links from the affinity only and full models were largely dominated by humans

and domesticated hosts, while the phylogeny only models more often included endan-

gered and relatively poorly studied host species. The full models more often included a

larger diversity of parasite species, but among all models, parasites infecting large numbers

and phylogenetic ranges of hosts were most often included in the top links (ex. Rabies

lyssavirus, Sarcoptes scabiei, Toxoplasma gondii, Trypanosoma cruzi). This is not surpris-

ing as these parasites are commonly cited as capable of causing disease in a large number

of (and sometimes all) mammals, however we were still able to identify many hosts of

these parasites that were not documented in the original database.

Across all links examined, the phylogeny only models identified a greater number of

documented links that were not in the original database (36/90) compared to the full models

(32/90), although the full model identified a larger number of links in some subsets (Table

2–2). The slight increase in performance by the phylogeny only models may be because

the influence of sampling biases among hosts and parasites is reduced. The affinity only

and full models predict that hosts and parasites with many reported interactions are also

likely to interact with one another. The number of interactions will vary across species

because of ecological or evolutionary reasons (Kamiya et al., 2014; Poulin and Mouillot,

2003), but it may also be influenced by research effort (Nunn et al., 2003; Ezenwa et al.,

2006; Huang et al., 2015; Olival et al., 2017). Thus the affinity only and full models may

underestimate the contribution of ecology and evolution, however the AUC values were

consistently, although only marginally higher for full models compared to phylogeny only

models (Table 2–1), indicating that they performed better in predicting the structure of
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links internal to the dataset.

Phylogeny scaling

Not surprisingly, the phylogeny scaling parameter (Eta) varied when the data was

subset by parasite type (Figs. 2–4 & 2–5), but in all models Eta was estimated to be

positive indicating accelerating evolution and less phylogenetic non-independence among

hosts compared to a pure Brownian motion model (Harmon et al., 2010). Interestingly,

fungi were estimated to have the smallest Eta parameter (8.42), indicating that more recent

host divergences are less influential for infection. This may reflect the tendency for fungi to

include opportunistic pathogens such as Pneumocystis carinii and Chrysosporium parvum.

Helminths and viruses were estimated as having similar Eta transformations (17.15 and

16.37 repectively), consistent with the observation of Park et al. (2018) that mean phy-

logenetic specificity is similar in these two groups, though viruses are more variable and

contain more extreme specialist and generalist parasites.

Missing links with published evidence

Our ability to identify links that were not included in the original database, but for

which there was some published evidence of infection demonstrates the utility of the model

for guiding future surveillance efforts. Through iterative cycles of prediction, evidence

gathering, and re-prediction we can more effectively build global host-parasite interaction

databases and identify highly likely links that should be targeted by field-based surveil-

lance.

Some of the links we identified as missing were only documented for the first time

after the input databases were assembled (e.g. T. cruzi in horses (Bryan et al., 2016)

and Nematodirus spathiger in Gazella leptoceros (Said et al., 2018)), providing strong

support for the utility of link prediction to guide future surveillance. We also identified

links reported only in literature from over 30 years ago, such as T. cruzi in the critically
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endangered cotton-top tamarin (Saguinus oedipus) (Marinkelle, 1982) and the vulnerable

black-crowned Central American squirrel monkey (Saimiri oerstedii) (Sousa, 1972). Due

to their potential impact on the conservation of these species, we strongly recommend that

these associations be verified with modern approaches.

Parasites of endangered and captive animals

Through our guided mining of the literature we found evidence of severe infections

in several endangered species such as rabies and sarcoptic mange (Sarcoptes scabiei) in

Dhole (Cuon alpinus) and Toxoplasma gondii in critically endangered African wild dogs

(Lycaon pictus) which was noted as causing a fatal infection in a pup (Van Heerden et al.,

1995), highlighting the potential impact of our approach for conservation. The importance

of infectious diseases in conservation is often hampered by our lack of knowledge about

the diversity of pathogens in natural systems (Smith et al., 2009). Our approach could help

identify diseases that are current drivers of extinction in endangered species. For example,

the model predicts that rabies and sarcoptic mange are likely to infect the endangered Dar-

win’s fox (Lycalopex fulvipes). Diseases spread via contact with domestic dogs (notably

Canine distemper virus) is currently one of the main threats to this species (Silva-Rodrı́guez

et al., 2016) and considering that both rabies and sarcoptic mange from domestic dogs are

implicated in the declines of other wild canids (Pence and Ueckermann, 2002; Fleming

et al., 2017), they may pose a risk for the conservation of Darwin’s foxes. We also found

evidence that these two diseases infect the near threatened bush dog (Speothos venaticus)

(Jorge et al., 2008; DeMatteo, 2008) and sarcoptic mange is suggested to have caused a

substantial loss of individuals from a group in Brazil (de Souza Lima et al., 2012).

Occasionally our models predicted interactions that are unlikely to exist due to lack of

geographic overlap, such as T. cruzi, which is currently restricted to the Americas (Browne

et al., 2017), infecting endangered African species such as black rhinoceros (Diceros bi-

cornis), lowland gorilla (Gorilla gorilla), and chimpanzee (Pan troglodytes). Although
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natural infections of chimpanzees by this parasite are unlikely, we did find a report of a

fatal infection of a captive individual in Texas (Bommineni et al., 2009). Furthermore,

we identified infections of Giardia intestinalis in a captive bred black rhino calf (Wagner

and Edwards, 1984), sarcoptic mange in captive Taurotragus oryx (Bornstein et al., 2002),

and T. gondii infections in captive Canis aureus (Dubey et al., 2010) and G. gorilla (Akue

et al., 2018). While these interactions may not occur in natural settings, they demonstrate

that the model is able to accurately identify biologically plausible infection risks that might

be relevant for managing captive populations.

Links with mismatched host and parasite ecologies

The top predictions also included links that are unlikely due to an mismatch in host

ecology. For example, Echinococcus granulosus is typically maintained by a domestic

cycle of dogs eating raw livestock offal (Otero-Abad and Torgerson, 2013), and while wild

canids such as Lycalopex gymnocercus is a documented host (Lucherini and Luengos Vidal,

2008), the model predicts Lycalopex vetulus to be susceptible. However, this interaction is

unlikely as L. vetulus has a largely insectivorous diet (Dalponte, 2009). Another example is

the prediction that domestic cattle (Bos taurus) is susceptible to infection by Anisakis sim-

plex. A. simplex is a trophically transmitted nematode that uses aquatic mammals as final

hosts, with marine invertebrates and fish as intermediate hosts (Buchmann and Mehrdana,

2016), implying that cattle may only be exposed to the parasite if fed a marine-based diet.

Similarly, domestic sheep (Ovis aries) are predicted to be susceptible to the tapeworm

Echinococcus multilocularis and although the specific distribution and epidemiology of

this parasite is relatively unknown, it is maintained by a predation cycle between carnivores

and rodents, and not currently known to infect ungulates (Massolo et al., 2014).
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Risks for humans and domesticated animals

The top predicted links for humans and domesticated animals represent interactions

that could have large impacts on public health; however, there is a large amount of effort

that goes into studying infectious diseases of humans and domestic species. Out of the

26 links involving humans, we identified 5 (∼19%) links with clear evidence of infection,

and another 6 (∼23%) links with potential evidence that require additional confirmation. It

is likely that most human-parasite associations have been well documented, even if not

included in the databases we aggregated, or occur rarely. For example, in our model

humans were predicted to be infected by Bartonella grahamii and the first documented

case was in an immunocompromised patient in 2013 (Oksi et al., 2013). Similarly, humans

were predicted to be susceptible to Mycoplasma haemofelis, which was again documented

in someone who was immunocompromised (dos Santos et al., 2008), indicating that while

these infections may be pose little risk for a large portion of the human population, they

are a serious concern for the health of immunocompromised individuals.

Two other Mysoplasma species, M. conjunctivae and M. mycoides, are also predicted

to cause infections in humans, and while they were not documented in immunocompro-

mised individuals, they have caused infections in people who come into close contact with

domesticated animals (Lysnyansky et al., 2007; Gonçalves, 2007). Our approach also iden-

tified a number of diseases that are currently considered a risk for zoonotic transmission

such as Alaria alata, an intestinal parasite of wild canids – a concern as other Alaria species

have been reported to cause fatal illness in humans (Murphy et al., 2012), and Bovine viral

diarrhea virus 1, which is not currently considered to be a human pathogen, but is highly

mutable, has the ability to replicate in human cell lines, and has been isolated from humans

on rare occasions (Walz et al., 2010).

While the model predicts links that may occur only in extenuating circumstances, it

also highlights the potential for previously unknown zoonoses originating from domesti-

cated animals. For example, Neospora caninum is responsible for severe economic losses
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by causing abortions in cattle, and although antibodies against it have been reported in

humans, the zoonotic potential of this parasite is not known (Dubey et al., 2007). Similarly,

Anaplasma bovis and Anaplasma marginale are not currently considered zoonoses, but

are globally distributed tick-borne diseases of ruminiants, and are closely related to the

zoonotic Anaplasma phagocytophilum which can also infect a wide range of mammals,

including ruminants (Rar and Golovljova, 2011).

In addition to potential zoonotic diseases, the model predicts that domestic cattle may

be susceptible to known human diseases, including St. Louis encephalitis virus and T. cruzi,

the aetiological agent of Chagas disease. Birds are the primary vertebrate hosts for St. Louis

encephalitis virus, though amplification by certain mammals has been suggested (Kopp

et al., 2013), and there is some serological evidence of infection in domestic mammals,

including cattle (Diaz et al., 2006). For T. cruzi, Browne et al. (2017) compiled over 16,000

records of infection and identified that while there are 177 alternative host species, domestic

dogs are thought to be largely responsible for the longterm maintenance of local parasite

populations. Currently the role of cattle in the epidemiology of Chagas disease is unknown,

but the majority of cows in Latin America (comprising 280 million heads) are likely to be

be exposed to the parasite (Giangaspero, 2017), indicating a major risk if they are able

to promote parasite transmission. While cattle have tested positive for T. cruzi in some

serological studies, cows and other domestic animals are also commonly infected by related

species, which can cause complications due to cross-reactions in serology based diagnostic

tests (Gürtler and Cardinal, 2015). This highlights the importance of verifying infections

through additional methods when the only evidence of an interaction is serological.

Future extensions

We have demonstrated that missing links in global databases of host-parasite asso-

ciations can be predicted using information on known associations and the evolutionary

relationships among host species. Applying this method to host-parasite associations for
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mammal host species we are able to make robust predictions with relatively little input data,

indicating that this method may be applied to disparate host-parasite systems. Here we use

information on the evolutionary relationships among hosts as this has been shown to con-

strain parasite sharing in a diversity of parasite systems (e.g. Perlman and Jaenike (2003);

Gilbert and Webb (2007); Davies and Pedersen (2008); Braga et al. (2015)). The model

represents evolutionary relationships in the form of a species-by-species distance matrix.

However, the flexibility of this approach means that any information on species similarities

that can be represented by a distance matrix, such as trait or spatial dissimilarities, may be

used to generate predictions (Elmasri et al., 2017). Similarly, the model could be extended

to incorporate weighted rather than binary associations, allowing for modelling links as

a function of prevalence, intensity of infection, or to explicitly incorporate the amount of

evidence supporting each link. In this way sampling biases may be directly incorporated

and in addition to identifying likely missing links, we could identify weakly supported

interactions or sampling artefacts that may benefit from additional investigation.

Link prediction in global host-parasite networks marks the first step in an iterative

process of prediction and verification whereby likely links are identified, the published

literature queried, and new links are added, allowing predictions to be updated. As we move

down the list we are likely to uncover links among diseases that are less well studied, but

which may emerge as public health burdens in the future. These links represent key targets

for disease surveillance. By disseminating these predictions to veterinarians, conservation

managers, and public health officials, we can spread awareness of potential threats and

enhance surveillance by incorporating these taxa within existing disease and biodiversity

monitoring programs. An important next step will be to move beyond the binary notion

of infection used here and attempt to classify the nature of the association between host

and parasite. In this way we may be able to predict not only the presence or absence

of a particular host-parasite association, but what epidemiological role the host plays in

parasite transmission, the potential impact a parasite might have in a given species, and
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better understand the ecologies of reservoir versus spillover hosts (Plourde et al., 2017).

2.4 Conclusion

We suggest that the model of link prediction we present here represents a cost-effective

approach for supporting disease surveillance and should be employed in active attempts

to document potential host-parasite interactions, and spread awareness of their potential

in the wake of future movements of livestock and wildlife species. Global change in

the form of shifting climates and alteration of natural habitats has the potential to bring

in contact previously isolated host and parasite populations, increasing opportunities for

disease spillover. Strengthening our knowledge of the potential for cross-species disease

transmission is an essential step toward building effective methods to mitigate the impacts

of these diseases.
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Data subset Model AUC % 1s recovered

Full dataset
Affinity only 0.934 91.73
Phylogeny only 0.949 93.10
Full model 0.966 90.91

Arthropods
Phylogeny only 0.928 94.49
Full model 0.945 92.13

Bacteria
Phylogeny only 0.952 91.19
Full model 0.984 95.37

Fungi
Phylogeny only 0.963 93.02
Full model 0.982 96.02

Helminths
Phylogeny only 0.947 92.29
Full model 0.970 94.23

Protozoa
Phylogeny only 0.965 92.60
Full model 0.975 94.75

Viruses
Phylogeny only 0.925 89.49
Full model 0.949 88.61

Table 2–1: Average model performances diagnostics after 5-fold cross validation: area un-
der the receiver operating characteristic curve (AUC), and percent documented interactions
(1s) correctly recovered from the held-out portion.
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Dataset Model Unique Hosts Unique Parasites Links with evidence
Full Affinity only 1 10 1
Full-Domestics Affinity only 3 9 3
Full-Wild Affinity only 10 1 7
Full Phylogeny only 10 2 4
Full-Domestics Phylogeny only 9 2 7
Full-Wild Phylogeny only 10 2 4
Arthropod Phylogeny only 9 2 4
Bacteria Phylogeny only 9 4 0
Fungi Phylogeny only 10 1 1
Helminths Phylogeny only 8 8 2
Protozoa Phylogeny only 10 2 8
Viruses Phylogeny only 10 1 6
Full Full model 2 10 2
Full-Domestics Full model 3 9 3
Full-Wild Full model 10 1 7
Arthropod Full model 7 3 3
Bacteria Full model 3 10 3
Fungi Full model 4 8 4
Helminths Full model 3 8 2
Protozoa Full model 7 4 7
Viruses Full model 10 1 1

Table 2–2: Numbers of unique hosts, unique parasites, and links for which evidence was
identified in the literature for each of the top 10 lists
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Figure 2–2: Degree distributions of the number of associations (degree) for hosts and
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models run on the full dataset. Rows are ordered to match Figure 2–1.
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Source tree Full dataset (Eta = 17.02)

Arthropod subset (Eta = 18.41) Bacteria subset (Eta = 10.68)

Figure 2–4: The source phylogeny pruned to include only hosts in the amalgamated dataset,
and the phylogenies scaled by mean estimated Eta for the phylogeny only models applied
to the full dataset, and arthropod and bacteria subsets.
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Fungi subset (Eta = 8.42) Helminth (Eta = 17.15)

Protozoa (Eta = 15.37) Virus (Eta = 16.37)

Figure 2–5: Phylogenies scaled by mean estimated Eta for the phylogeny only models
applied to the fungi, helminth, protozoa, and virus subsets.
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Linking Statement 2

In Chapter 2, I use a novel prediction method to generate lists of highly likely, yet

undocumented host-parasite interactions that should be targeted for verification and future

surveillance. I show that some of these predicted links have been recorded and are docu-

mented in primary or grey literature, but they were not included in the original host-parasite

databases. For other highly likely links, there was no currently published documentation.

Likely links with no support could be targeted by field-based surveys. Recent advances

in genetic sequencing technologies allow for unprecedented descriptions of biological di-

versity, and may be used to simultaneously track host-parasite interactions and gather

baseline data on the diversity of potentially pathogenic organisms in an ecosystem. Such

approaches provide potential for rapid assaying of biodiversity to screen for novel host-

parasite interactions, and search for evidence in support of missing links.

In Chapter 3, I conduct a survey of bacterial diversity in the Kruger National Park, South

Africa, a biodiversity hotspot known for its high richness of mammals. In African savannah

ecosystems such as the Kruger, waterholes are vital resources for many animals, but can

also facilitate the spread devastating infectious diseases. By examining DNA present

in these water sources, I describe patterns of bacterial diversity from across the park,

and explore the utility of this approach for identifying infectious organisms. Developing

methods for DNA-based biodiversity surveys can support disease monitoring programs

by generating baseline data on bacterial diversity, a taxonomic group for which most

species are not described and cannot be cultured using traditional techniques. In addition to

identifying potentially pathogenic bacteria, the results of this study may provide improved

understanding of the roles micro-organisms play in ecosystem stability and resilience, and

offer an approach for monitoring shifting species interactions in the face of environmental

change.
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Bacterial diversity in the waterholes of the Kruger National Park:
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3.1 Abstract

Bacteria are essential components of natural environments. They contribute to ecosys-

tem functioning through roles as mutualists and pathogens for larger species, and as key

components of food webs and nutrient cycles. Bacterial communities respond to envi-

ronmental disturbances, and the tracking of these communities across space and time

may serve as indicators of ecosystem health in areas of conservation concern. Recent

advances in DNA sequencing of environmental samples allow for rapid and culture-free

characterization of bacterial communities. Here we conduct the first metabarcoding survey

of bacterial diversity in the waterholes of the Kruger National Park, South Africa. We

show that eDNA can be amplified from waterholes and find strongly structured microbial

communities, likely reflecting local abiotic conditions, animal ecology, and anthropogenic

disturbance. Over timescales from days to weeks we find increased turnover in community
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composition, indicating bacteria may represent host-associated taxa of large vertebrates

visiting the waterholes. Through taxonomic annotation we also identify pathogenic taxa,

demonstrating the utility of eDNA metabarcoding for surveillance of infectious diseases.

These samples serve as a baseline survey of bacterial diversity in the Kruger, and in the

future, spatially distinct microbial communities may be used as markers of ecosystem

disturbance, or biotic homogenization across the park.

3.2 Introduction

Traditional programs that monitor for early signs of ecosystem degradation require

baseline data on the distributions and ecology of species in an ecosystem. DNA barcoding

uses differences in conserved regions of genomes to classify sequences as belonging to

particular taxonomic units, regardless of whether or not they have been described formally

by taxonomists (Hebert et al., 2003; Blaxter et al., 2005; Ratnasingham and Hebert, 2013).

DNA barcoding is thus a particularly powerful tool for exploring microbial diversity, where

there are many undescribed taxa that cannot be cultured using traditional methods (Rappé

and Giovannoni, 2003). Molecular barcoding coupled with recent advances in genetic

sequencing have allowed for unprecedented exploration of microbial communities and the

ability to characterize organisms of interest from environmental samples with great sensi-

tivity (Shokralla et al., 2012). In particular, sequencing of cellular and extracellular DNA

that can be extracted from environmental samples, collectively known as environmental

DNA (eDNA) (Taberlet et al., 2012), is an emerging approach for exploring diversity in

aquatic ecosystems (Rees et al., 2014; Lodge et al., 2012).

Microbial diversity in freshwater systems responds to environmental conditions (Lozupone

and Knight, 2007), and perturbations (Zeglin, 2015) including multiple anthropogenic

impacts such as urbanization (Fisher et al., 2015) and pollution (Bouskill et al., 2010).

In addition to acting as indicators of ecosystem health, changes in microbial diversity may

be important in themselves. Bacteria are essential components of ecosystems and play
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important roles in food webs, nutrient recycling, disease, and as important mutualists for

larger multicellular species. Bacteria are thus integral to maintaining the natural balance of

ecosystems and shifts in taxonomic composition due to environmental change may severely

impact connectivity, functioning (Laforest-Lapointe et al., 2017; Delgado-Baquerizo et al.,

2016) and increase exposure to pathogens (Cabral, 2010). However, in most ecosystems of

conservation priority, microbial diversity is poorly described.

Surface waters are a vital resource for savannah ecosystems (Redfern et al., 2005;

Owen-Smith, 1996), but frequent use by a large variety of species means they can also be

a source of cross-species infection and spread of harmful pathogens (Bengis and Erasmus,

1988). These ecosystems provide an ideal context for refining eDNA metabarcoding ap-

proaches as they act as sources and sinks of microbial species for larger animals, however

baseline information about microbial diversity in these systems is lacking. Here we conduct

a survey of bacterial diversity among watering holes of Kruger National Park, South Africa

(KNP) through spatio-temporal sampling and sequencing of the V3-V4 region of 16S genes

present in water. Water can be scarce in the KNP throughout the dry season and periods of

drought (Redfern et al., 2005), and the park has a long history of water provisioning that

included the construction of a series of more than 300 artificial waterholes beginning in the

1930s (Smit et al., 2007). These waterholes were intended to increase game numbers by

stabilizing water availability year-round and are frequently visited by a diversity of birds

and mammals (Smit and Grant, 2009). However, they have proven to alter the distributions

of wildlife, which in turn have negative impacts on vegetation dynamics and the park-wide

ecosystem (Smit et al., 2007; Smit and Grant, 2009). As a result, a number of artificial

waterpoints have been closed since 1994 as the park began reverting to a more natural

cycle of water availability (Smit et al., 2007; Van Wyk, 2011). A subset of the waterholes

still open are small concrete troughs which are well mixed, largely mud and silt-free, and

experience limited inflow from nearby surface waters. This means that eDNA samples will
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largely represent microbes in sourcewater and those dispersed by air and animals, allowing

us to capture snapshots of local bacterial diversity across the park.

This study provides the first survey of bacterial diversity in the waterholes of the

KNP, and is among the first studies using next-generation sequencing to describe aquatic

microbial diversity in Africa (see Jordaan and Bezuidenhout (2016, 2013); Tekere et al.

(2012); Mwirichia et al. (2011); Tekere et al. (2011)). Here we explore bacterial diversity

across the southern half of the park and describe variation across, space, time, sample

volume, and abiotic influences.

3.3 Methods

Study Site

Waterholes were sampled in June and July of 2015 in the Kruger National Park,

South Africa (KNP), a large protected savannah ecosystem and a global diversity hotspot

(Lahaye et al., 2008). Sampling was conducted during the dry season when natural sources

of surface water are largely dry and watering hole visitation rates by medium and large

vertebrates are highest. The park is divided into twenty-two ranger sections, which range

in size from roughly 520 to 1,170 square kilometers. Across the southern half of the reserve

below the Olifants river, ten concrete bottom artificial waterholes were selected from five of

these sections (Table 3–1, Fig. 3–1). The waterholes varied in shape with some mimicking

the contours of natural pans, making volume estimations difficult. However, the generic

design included longer and shorter axes, with comparable dimensions across waterholes.

Each waterhole is equipped with a ball-valve, which regulates water levels and re-fills the

trough from nearby reservoirs when water levels drop. Water is sourced predominantly

from groundwater via boreholes, but three sites use pipeline troughs filled with diverted

river water.
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Water Sampling and Processing

At each site, samples were taken once per week for three weeks. For one site (NWA),

samples were also taken every day for five consecutive days. Sampling consisted of two

1L water samples collected in autoclaved, UV sterilized glass jars from opposite ends of

the waterhole, approximately one foot from the nearest edge. These two within-waterhole

samples (A/B) were taken along the waterhole’s longest axis that maximized the distance

and upwind-downwind gradient between them, if a strong wind was present. Water sam-

ples were placed on icepacks in a cooler and kept between 4-8◦C until returning to the

laboratory, where they were placed in the fridge.

Water quality parameters were taken during each sampling period using a YSI 650QS

multi-parameter sonde. Temperature (◦C), conductivity (mS/cm), dissolved oxygen (in

mg/L and % saturation), and pH were recorded. Three measurements were taken along

the same axis that the A/B water samples were drawn, and then averaged to measure water

quality per sample-time.

In the lab, the outside of water sample collection bottles were washed with ELIMINase

(Decon Labs) and rinsed with deionized (DI) water to limit contamination. For each A/B

sample, 150 mL of water was sub-sampled and filtered through gamma-irradiated 0.2 µm

Supor hydrophilic polyethersulfone membranes (Pall no. 66234). The filtration apparatus

consisted of three 300 mL Advantec polysulfone 47mm filter funnels fitted to a Pall vacuum

manifold with vacuum pressure maintained by a Pall filtration vacuum/pressure pump

(model no. 13158). After filtration, filters were stored in sterile 15 mL Falcon tubes and

placed in a freezer at -60◦C. On one sampling date for six sites, additional volumes of 50

mL and 15 mL were filtered from each 1L sample to asses the impact of sample volume

filtered. Twice throughout sampling, BLANK samples were generated by filtering 1L of

deionized water used in the laboratory.

Prior to and between filtrations, all funnel components and tweezers used to manip-

ulate the filters were sterilized by soaking with 10% bleach for 10 minutes, rinsing with
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DI water, washing with ELIMINase, rinsing with DI water, and subsequent exposure to

UV radiation for a minimum of 30 minutes. Gloves were worn at all times and changed

between samples to minimize cross-sample contamination. To avoid sample freezing and

bacterial growth in collection jars, all samples were processed within 12 hours of collection.

Frozen 50 mL unfiltered voucher samples were kept and placed at -80 ◦C at the University

of Johannesburg’s African Centre for DNA Barcoding for long term storage.

DNA Extraction, Amplification, and Sequencing

DNA was isolated from filter papers using MO BIO PowerWater DNA Isolation Kits.

Universal bacterial primer sets designed by Sundquist (2007) (V3-F: 5’ACTCCTACGGGAG-

GCAGCAG 3’; V4-R: 5’GGACTACARGGTATCTAAT 3’) tagged with an Illumina adapter

sequence were used to amplify the V3-V4 hypervariable region of the 16S ribosomal RNA

gene through polymerase chain reaction (PCR). The PCR used a standard mix of 17.8µL

molecular grade water, 2.5µL 10 reaction buffer (200mM Tris HCl, 500mM KCl, pH 8.4),

1µL MgCl2 (50mM), 0.5µL dNTP (10mM), 0.5µL forward primer (10mM), 0.5µL reverse

primer (10mM), 0.2µL Platinum Taq DNA polymerase (Invitrogen), and 2µL DNA as

template for a total volume of 25µL. PCRs underwent the following cycler conditions:

initial 94◦C for 5 minutes, then 30 cycles of 94◦C for 40 seconds, 46◦C for 1 minute,

72◦C for 30 seconds, and a final temperature of 72◦C for 2 minutes. Amplification success

was confirmed through gel electrophoresis, using a 1.5% agarose gel. PCR products were

purified using MinElute PCR purification kit (Qiagen), and quantified through flurometry

using a Quant-iT PicoGreen dsDNA assay kit (Invitrogen). Samples were normalized,

then multiplexed with the Nextera XT Index kit (96 indexes) (Illumina) and sequenced

on an Illumina MiSeq flowcell using a V2 sequencing chemistry kit (2 x 250) making up

approximately 1/8th of the run.
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Sequence Processing, Taxonomy Assignment, and Phylogeny Construction

Across all samples, we generated a total of 2,164,262 Illumina reads. Primer se-

quences were removed using the trim.seqs function in mothur (Schloss et al., 2009). Reads

were then processed in R version 3.4.3 (R Development Core Team, 2008) using the

package dada2 version 1.6.0 (Callahan et al., 2016) following a modified version of the

DADA2 Bioconductor workflow (Callahan et al., 2017) and online tutorials v1.6 and work-

flow for big data v1.4 (benjjneb.github.io/dada2/tutorial.html). Reads were filtered by

quality, removing sequences with maximum expected error (maxEE) greater than 6 for

both forward and reverse reads, and reads with any base pair having Q of 6 or lower. Reads

were truncated to a length of 230bp and 220bp for forward and reverse reads respectively,

consistent with dropoffs in quality profiles, and reads shorter than this were removed. Since

the samples were sequenced across four different runs, subsequent steps of learning error

rates, dereplication, denoising and Amplicon Sequence Variant (ASV) calling (Callahan

et al., 2017) using pooled samples, and merging of paired reads were performed separately

for each run. Tables of ASV sequences per sample within each run were then combined and

chimera detection using all pooled samples was performed (see Table 6–23 for the number

of reads retained across each step). In total 1,184,831 reads were retained, representing

3533 ASVs.

Taxonomy assignment from kingdom to genus was performed using the RDP classifier

and SILVA nr v128 reference database (Quast et al., 2013) formatted for DADA2 (available

at benjjneb.github.io/dada2/training.html), using the assignTaxonomy function (Fig. 3–

5). ASVs assigned as Archaea, Eukarya, Chloroplast, or Mitochondria were removed.

Species level assignments were added by exact sequence matching using the addSpecies

function. ASV sequences were aligned with the pynast algorithm via align seqs.py in

QIIME (Caporaso et al., 2010) and sequences with poor alignment automatically removed.

A phylogenetic tree was constructed using the GTRCAT model in FastTree version 2.1.3
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(Price et al., 2010) after filtering nucleotides with greater than 90% gap fraction and remov-

ing the 5% highest entropy positions with filter alignment.py in QIIME (Caporaso et al.,

2010). This resulted in a phylogenetic tree of 3393 ASVs which were used in subsequent

community analyses.

Community Analyses

The ASV sequence table was merged with the phylogeny and sample metadata using

the R pacakge phyloseq version 1.22.3 (McMurdie and Holmes, 2013). Negative controls

(BLANK samples) used to investigate contamination during sample filtration contained 43

ASVs collectively (with 9 ASVs found in both samples). The sequence reads in each filtra-

tion blank were both dominated by the same ASV (53% and 86% respectively), however

none of the 43 ASVs identified in the blanks were identified in any of the other samples.

These control samples were removed prior to community analyses.

A subset of core samples was created by removing the first four daily NWA samples

and samples of differential volume (S & XS samples), resulting in 54 samples of 150 mL

each (Table 3–2). An ASV accumulation curve for core samples was generated using the

specaccum function in the R package vegan version 2.4.6 (Oksanen et al., 2018) using

the “exact” method, and extrapolated to total ASV richness using the Chao and Bootstrap

methods in vegan’s specpool function. Alpha diversity was calculated for the core samples

as observed ASV richness and Shannon diversity using the phyloseq package. Additive

partitioning of Shannon diversity across core samples was investigated using the adipart

function in vegan (Table 3–3).

Taxonomic composition was assessed by merging core samples at each site, and plot-

ting relative abundances of reads for the most common taxa at levels of phylum, class, and

order (Fig. 3–6). Temporal variation in taxonomic composition across core samples was

assessed by merging A and B samples and plotting relative abundances of reads for sites

53



with two or more weekly samples, for the levels of phylum (Fig. 3–7), and class (Fig. S6–

6). To further investigate fine-scale temporal variation in taxonomic composition (phylum,

class, and order), relative abundance of reads were plotted across the daily samples at site

NWA (Fig. 3–8). We also explored temporal turnover among samples with Sorensen’s

dissimilarity calculated using the beta.pair function from the betapart package (Baselga

et al., 2018) (Fig. 6–9) and significant differences among daily and weekly samples was

assessed using multivariate ANOVAs (anosim in vegan) with 999 permutations each.

Community composition across sites in the core samples was described with non-

metric multidimentional scaling (NMDS) ordinations on relative ASV abundances per sam-

ple using the Bray-Curtis dissimilarity, and the abundance weighted Unifrac dissimilarity

(Figs. 3–9, 6–10 & 6–11). Statistically, associations between dissimilarities and both water

quality properties and common taxonomic groups were assessed using the envfit function

in vegan for bacterial classes (Fig. 3–10) and orders (Fig. 6–12).

Phylogenetic community structure across core samples was calculated using standard-

ized effect sizes of mean pairwise phylogenetic distances (MPD) and mean nearest taxon

distances (MNTD) in the R package picante version 1.6.2 (Kembel et al., 2010) using

the abundance weighted “richness” null model and 999 randomizations in the ses.mpd and

ses.mntd functions (Fig. 6–13). For a given sample, MPD calculates the mean phylogenetic

distance among each pair of taxa present, while MNTD calculates the mean phylogenetic

distance from each taxa to its closest relative. These raw metrics give an estimate of

how closely related community members are to each other, and are then compared to

randomized communities to determine whether the observed metrics are different than

what would expected if communities were assembled at random from taxa pooled across

all samples.

To assess the effect of differential sample volumes, S (50 mL) and XS (15 mL) samples

were subset along with their corresponding full volume samples (150 mL). Alpha diversity,

calculated as observed ASV richness and Shannon diversity, were calculated as described
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above (Fig. 6–14). Variation in taxonomic composition was investigated by comparing

relative read abundances of bacterial phyla in A/B samples across sites and differential

volumes (Fig. 6–15).

3.4 Results

Our sampling design aimed to sequence a core set of samples with all ten sites being

sampled once per week for three weeks. Due to logistic constraints of sample storage

and extremely low water levels from drawdown by animals, we were only able to process

27 of the planned 30 weekly samples (Table 3–2). In addition to this core sampling, we

sequenced differential volumes for six samples, and an additional four daily samples from

Nwaswitshaka (site NWA). A/B samples were taken at each site-time, resulting in a total

of 88 sequenced samples, including the two filtration blanks. Across all 88 samples, we

identified a total of 3393 ASVs. Roughly 15% of ASVs (n=524) were represented by a

single read, together comprising fewer than 0.05% of all reads. The DADA2 approach

infers the biological sequences in the sample prior to the introduction of amplification

and sequencing errors, and can distinguish sequence variants differing by as little as one

nucleotide. As such, we included all ASVs, including those represented by single reads, in

subsequent analyses of biodiversity.

The ASV accumulation curve generated for the core sample set (2603 ASVs) does not

appear to saturate (Fig. 3–2). Estimates of total richness using the Chao estimator predicts

6164 ASVs (+/- 262 SE) among the core samples, indicating we may be capturing less

than half of the total bacterial diversity present among our sites. However, estimates of

total diversity using the Bootstrap method were more conservative, with 3260 (+/- 146 SE)

estimated ASVs. ASV diversity varied across sites (Figs. 3–3, Fig. 3–4), but the largest

turnover (β diversity) was observed among park sections (Table 3–3). Variation among

A/B samples contributed very small amounts to β diversity, indicating that at a particular

time, microbial diversity within each waterhole was fairly well mixed.
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In terms of taxonomic composition, 99.2% of ASVs were assigned to a known phy-

lum, with the proportion of assignments decreasing at lower taxonomic levels (Fig. 3–5).

The majority of bacterial ASVs were classified as Proteobacteria (∼ 59%), followed by

Bacteroidetes (∼ 14%), Firmicutes (∼ 9%), Actinobacteria (∼ 6%), and Verrumicrobia (∼

2%). For bacterial classes, ASVs were largely classified as Betaproteobacteria (∼ 34%),

Alphaproteobacteria (∼ 11%), Gammaproteobacteria (∼ 10%), and Sphingobacteriia (∼

6%). Among core samples, relative abundances of phyla, classes, and orders varied across

sites (Figs. 3–6, S6–4, S6–5). Across weeks, relative abundances of phyla varied within

each site (Fig. 3–7), with some sites displaying more stability (IMB & HOY) compared

to others (NYA & NGO). Patterns among bacterial classes (Fig. 6–6) largely reflected

variation among phyla, though one site (HOY) displayed much more variation in relative

abundances among classes, reflecting substantial turnover within Proteobacteria. Compar-

ing weekly turnover with the five daily samples taken at Nwaswitshaka (NWA) (Fig. 3–8),

taxonomic composition appeared more stable across days than weeks. Using hierarchical

clustering of Sorensen’s dissimilarity, we find that samples taken within a single week

cluster together (Fig. 6–9). Multivariate ANOVAs on these distances revealed a significant

difference in beta diversity among weekly samples (NWA 2,7,8; Pr(> F ) = 0.02), with

49% of the variance explained by sample date, but no significant difference among the

additional daily samples (NWA 3,4,5,6; Pr(> F ) = 0.54), with 14% of the variance

explained by sample date.

Community composition visualized through NMDS ordinations reflected results from

the additive partitioning of diversity, with core samples clustering by site (Fig. 3–9) and

section (Fig. 6–10) for both Bray-Curtis and abundance weighted UniFrac dissimilarities.

Interestingly, waterholes filled by water from pipeline troughs (NGO, NYA, WIT) grouped

together (Fig. 6–10), although these three sites are situated on a different geological type

than sites fed by boreholes, making us unable to differentiate the effects of each factor (Fig.

6–11). Bacterial community composition was significantly structured by conductivity and
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pH for both Bray-Curtis and UniFrac dissimilarities, and dissolved oxygen also had an

influence on UniFrac dissimilarity (Figs. 3–10 & 6–12).The dissimilarity of high conduc-

tivity sites (particularly HOY & IMB in the Kingfisherspruit section) was associated with

high abundances of Clostridia, Gammaproteobacteria, and Bacteroidia, while sites with

high pH and dissolved oxygen were positively related to the abundances of Actinobacteria

and Alphaproteobacteria (Fig. 3–10).

Reflecting the NMDS structure of the abundance weighted UniFrac dissimilarities,

MNTD, which is most sensitive to phylogenetic structure towards the tips of the tree (Mazel

et al., 2016), indicated strong phylogenetic clustering within the majority of samples (Fig.

6–13). The strength of clustering was weaker for MPD, which is more sensitive to phylo-

genetic structure deeper in the tree (Mazel et al., 2016).

We did not find any clear decrease in alpha diversity with smaller sample volumes

(Fig. 6–14), and one of the 15 mL samples returned the largest richness of ASVs, though

the median value for 15 mL samples was lower and had a larger interquartile range than the

50 mL and 150 mL samples. The major phyla detected within samples was also relatively

consistent, with most groups represented across different sample volumes, though not

always in the same proportions (Fig. 6–15).

3.5 Discussion

Biological monitoring is an essential aspect of conservation for tracking contemporary

changes in ecosystems as well as providing a historical baseline for making management

decisions. The Kruger National Park, established in 1898, has a long history of man-

agement practices revolving around maintenance of large mammals (Venter et al., 2008).

While bacterial diversity has been explored for important infectious agents in the system

(Michel et al., 2007; Bengis and Erasmus, 1988; Smith et al., 2000), recent advances in

next generation sequencing methods now allow for the rapid and culture-free description

of bacterial diversity throughout the park.
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Here we present the first description of bacterial diversity in the waterholes of the

Kruger National Park. In total we identified over 3000 unique taxa (referred to as amplicon

sequence variants, or ASVs), only about half of which could be assigned to a previously

described genus. The relative dominance of bacterial phyla was consistent with bacterial

surveys of the Vaal River in central South Africa (Jordaan and Bezuidenhout, 2016). How-

ever, bacterial diversity was strongly structured across space, with the largest turnover in

diversity occurring among park sections. This is not surprising considering the distances

from site to site range from 3km to 115km and represent a gradient in large animal density,

rainfall, vegetation, and major subsurface geology (Chirima et al., 2012; Van Wilgen et al.,

2000; Smit and Grant, 2009; Smit et al., 2013). Samples also clustered by site, displaying

substantial variation in taxonomic composition across sites. This variation was associated

with physico-chemical properties of the water, with conductivity and pH being important

explanatory variables. In addition to water quality, variability in taxonomic composition

is likely influenced by the origin of the water used to fill each waterhole, differences in

the surrounding soil and vegetation types, and the particular species and populations of

animals using the waterholes.

We assessed daily turnover in composition at Nwaswitshaka, which appeared to be

more stable over this shorter timescale when compared to turnover across weeks. How-

ever, Nwaswitshaka was less variable across weeks than other sites, indicating that daily

variation in bacterial communities could be greater in other locations. Important water

quality variables (conductivity and pH) were largely consistent across weeks (Table 6–

22), suggesting that the observed temporal heterogeneity may be driven by differences in

external factors influencing bacterial input and removal from the system, such as variation

in animal visitation throughout the sampling period. Between sampling events, water

levels would sometimes drop substantially, indicating major drawdown by animals and

likely removing bacteria deposited by animals visiting earlier in the week. Large mammal

communities vary across the sampled regions of the park (Chirima et al., 2012), which
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may contribute to observed spatial variation in bacterial communities. However, different

species also differ in their dependence on water, which is reflected in their rates of visitation

to water points (Redfern et al., 2005). Variation in samples taken across subsequent weeks

may therefore reflect different components of local animal communities, each with their

unique host-associated bacterial taxa (Ley et al., 2008). By pairing bacterial composition

with animal visitation prior to sampling (either through direct observation, or presence of

genetic material), it may be feasible to build statistical probabilities of associations using

co-occurrences of microbial and animal signatures.

Across samples, patterns of phylogenetic clustering were consistent with observed

taxonomic variation. Multiple phyla were present in all samples, consistent with an even

representation of deep bacterial lineages. However, turnover at lower taxonomic levels

shown by significantly low mean nearest taxon distances indicate that there are distinct

subsets of closely related taxa present at each site. This structuring may reflect filtering of

bacterial communities by local environmental conditions, or the deposition of microbes by

particular animal populations or individuals. Many vertebrate species have expansive home

ranges, but during the dry season drought-intolerant animals will restrict their movement

so as to stay close to permanent water bodies (Redfern et al., 2005). Thus the maintenance

of major bacterial taxa may reflect both free-living environmental bacteria, and the core

microbiome of water-dependent species. By taking repeat temporal samples, it may be

possible to build association networks between bacterial taxa and host species, or even

their local populations, solely from environmental DNA.

Through examination of taxonomic assignments we identified taxa belonging to gen-

era that include important pathogens (Arcobacter, Bacillus, Burkholderia, Coxiella, Le-

gionella, Neisseria, Pasteurella, Rickettsia, and Yersinia). While many of these genera

include both pathogenic as well as benign species found in environmental samples, some of

these genera are comprised solely of pathogenic species. For example, the genus Coxiella

is represented by one species, Coxiella burnetii, the causative agent of Q fever, which has
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previously been documented as causing disease in the park (Van Heerden et al., 1995).

Additionally, taxa in the order Chlamydiales are all obligate intracellular pathogens of

eukaryotes (Ball et al., 2015), and taxa in the genus Neisseria colonize mucosal surfaces

of animals, some of which are pathogenic in humans (Liu et al., 2015). Interestingly, we

also identified sequences classified as Streptococcus urinalis, a recently described species

linked to urinary tract infections in humans (Peltroche-Llacsahuanga et al., 2012). While

hypervariable regions of the 16S gene may not be the optimal genomic regions for detecting

the presence of particular pathogenic species or strains, our findings indicate that broad

scale surveys of microbial diversity may be useful in determining the presence of potential

pathogens across vastly divergent groups of bacteria. This can in turn guide more targeted

sampling of both pathogenic and commensal bacteria across the park.

In addition to the presence of pathogens, surveys of bacterial diversity may be used to

detect anthropogenic influences in the park. For example, we found that bacterial diversity

was quite different for the two sites sampled in the Kingfisherspruit section (Hoyo Hoyo

and Imbali). These sites were dominated by an ASV assigned to the genus Arcobacter, but

which did not exactly match any sequence in the SILVA reference database. Three of the

five described members of this genus are known to be pathogenic (Fera et al., 2004) and

include A. butzleri, which can cause severe diarrhea (Lerner et al., 1994) and was detected

in two of the weekly samples at Hoyo Hoyo. The two waterholes in Kingfisherspruit

are fed in part with greywater that is passed through reed beds. Greywater is untreated

household wastewater that typically has not been contaminated by toilet waste and is often

used as year-round sources of water, especially in water scarce areas (Nganga et al., 2012).

Compared to source water, kitchen and laundry greywater can have elevated conductivity

(Nganga et al., 2012), which may explain the high conductivity of water at these sites, and

present a strong selective environment driving their unique bacterial communities.

We did not have sufficient sampling of sites to explore all possible drivers of dif-

ferences in bacterial communities. Nonetheless, some features differed obviously among
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sites. For example, Witpens is a heavily vulture-dominated site. Bathing by vultures

likely results in large influxes of nutrients such as blood, and vulture feces has been found

to alter soil bacterial communities through elevated nitrogen and decreased pH (Ganz

et al., 2012). Visually, water from Witpens was bright green, indicating high abundance

of photosynthetic species and consistent with the large variations observed in dissolved

oxygen (Table S1). However, we found no evidence of elevated abundances of Microcystis

or other Cyanobacteria, though samples from Witpens strongly clustered together and had

relatively high abundances of Rhizobiales and Rhodocylales, both of which include species

known to fix nitrogen (Carvalho et al., 2010; Loy et al., 2005).

Witpens, along with Nyamarhi and Ngotso North are filled by pipeline troughs that

divert river water to waterholes many kilometers away. While pipeline troughs are likely to

reflect a subsample of the diversity found in river water, the acts of pipeline transport and

storage themselves may have strong filtering effects on bacterial communities. Our results

indicate that waterholes represent locally unique bacterial communities, thus the practice

of diverting river water to waterholes kilometers away may homogenize microbial diversity

across the landscape, ultimately disrupting local communities. The consequences of such

shifts in community structure are difficult to assess without comparing pipeline troughs

with their source waters, but the diversion of river water may have unintended impacts

on microbial diversity. For example, genes conferring antimicrobial resistance have been

shown to spread from river water to impala in the Kruger National Park (Mariano et al.,

2009).

Here we show that eDNA can be amplified from waterholes in the Kruger National

Park, and find strongly structured microbial communities, likely reflecting local abiotic

conditions, animal ecology, and anthropogenic disturbance. We suggest that disruption

of spatially distinct microbial communities may be used as a marker of ecosystem distur-

bance, or biotic homogenization across the park. We find that for artificial waterholes,

bacterial diversity is surprisingly insensitive to sample volume, with even small volumes
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useful for capturing major components of bacterial communities, though larger volumes

are necessary to detect rare taxa. Replicating this study across different seasons, and

expanding sampling to include natural waterpoints will provide improved understanding of

the roles micro-organisms play in ecosystem stability and resilience, and offer an effective

method for monitoring of shifting species interactions in the face of environmental change.

Just as studies of the microbiome have revolutionized our understanding of human health,

metagenomic analysis of environmental DNA have the potential to revolutionize our un-

derstanding of ecosystem health. Tracking of bacterial communities can provide a template

for monitoring ecosystem disturbance through their response to biological contaminants,

documenting the spread of invasive species or infectious organisms, and better understand-

ing the impacts ecological disturbances have on the composition of native communities.
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Figures & Tables

Section Site Type Geology
Tshokwane (TSH) Nhlanguleni (NHL) Borehole Granite
Skukuza (SKZ) Nwaswitshaka (NWA) Borehole Granite
Skukuza (SKZ) De LaPorte (DLP) Borehole Granite
Skukuza (SKZ) Kwaggas Pan (KWA) Borehole Granite
Satara (SAT) Girivana (GIR) Borehole Granite
SaTara (SAT) Witpens (WIT) Pipeline trough Basalt
Kingfisherpruit (KFI) Imbali (IMB) Borehole Granite
Kingfisherpruit (KFI) Hoyo Hoyo (HOY) Borehole Granite
Houtboschrand (HOU) Nyamarhi (NYA) Pipeline trough Basalt
Houtboschrand (HOU) Ngosto North (NGO) Pipeline trough Basalt

Table 3–1: Sample locations with section, waterhole type, and geology.
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Figure 3–1: Map of site locations with park boundary indicated by dashed line. Circles
represent sites filled by boreholes while triangles represent sites filled by river water via
pipeline troughs.
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Site Weeks S XS Daily A/B Total
Nhlanguleni (NHL) 3 0 0 0 Yes 6
Nwaswitshaka (NWA) 3 1 1 4 Yes 18
De LaPorte (DLP) 1 1 1 0 Yes 6
Kwaggas Pan (KWA) 2 1 1 0 Yes 8
Girivana (GIR) 3 0 0 0 Yes 6
Witpens (WIT) 3 0 0 0 Yes 6
Imbali (IMB) 3 0 0 0 Yes 6
Hoyo Hoyo (HOY) 3 1 1 0 Yes 10
Nyamarhi (NYA) 3 1 1 0 Yes 10
Ngosto North (NGO) 3 1 1 0 Yes 10
BLANK 2 0 0 0 No 2

29 6 6 4 88

Table 3–2: Samples sequences, broken down by number of weekly samples, number of
site-times for which S (50 mL) and XS (15 mL) samples were filtered, additional daily
samples taken, whether A/B samples were taken, and the resulting total number of samples
sequenced per site.
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Figure 3–2: ASV accumulation curve of bacterial ASV richness using the “exact” method.
Bars represent two standard deviations around mean estimates.
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Figure 3–3: Phylogenetic tree of 16S ASV sequences in the core samples, paired with their
relative abundances at each site. Sites are ordered by section.

Diversity Level Shannon SES 2.5% 97.5% Pr(sim.)
α A/B samples 2.93 -9335.9 5.10 5.10 0.01
α Temporal samples 2.99 -12535.9 5.13 5.13 0.01
α Sites 3.39 -16873.6 5.15 5.15 0.01
α Sections 3.94 -14919.9 5.16 5.16 0.01
γ (Total) 5.17 0.0 5.17 5.17 1.00
β A/B samples 0.05 153.3 0.027 0.027 0.01
β Temporal samples 0.40 2688.2 0.022 0.022 0.01
β Sites 0.55 6528.7 0.008 0.008 0.01
β Sections 1.23 14919.9 0.008 0.008 0.01

Table 3–3: Additive partitioning of Shannon diversity into α, β, and γ diversities across
sections, sites, temporal samples, and within site-time samples (A/B) as components of
the total diversity observed across all core samples. Observed diversity is compared to 99
simulations using “r2dtable” null model with the adipart function in the R package vegan.
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Figure 3–4: Plots of observed ASV richness and Shannon diversity across samples.
Samples are grouped and coloured by park section and with shape indicating waterhole
type.
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database v128 and a pre-trained RDP classifier with minimum 50% bootstrap support.
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Figure 3–7: Relative abundances of bacterial phyla across weekly samples.
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Figure 3–8: Relative abundances of bacterial phyla across five days at a single site (NWA).
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Figure 3–9: Nonmetric multidimensional scaling (NMDS) ordination of variation in bac-
terial community structure across 54 samples based on a) Bray-Curtis and b) abundance-
weighted UniFrac distances. Colours represent site.

68



−3 −2 −1 0 1 2

−2
−1

0
1

2

NMDS1

N
M

D
S2

Actinobacteria

AlphaproteobacteriaBacteroidia

Betaproteobacteria

Clostridia

Flavobacteriia

Gammaproteobacteria

Sphingobacteriia

Conductivity

pH

(a) Bray-Curtis NMDS

−0.03 −0.01 0.01 0.02 0.03

−0
.0

2
0.

00
0.

01
0.

02
0.

03

NMDS1

N
M

D
S2

Actinobacteria
Alphaproteobacteria

Bacteroidia

Clostridia

Gammaproteobacteria

Sphingobacteriia

Conductivity

Dissolved Oxygen

pH

(b) Weighted UniFrac NMDS

Figure 3–10: NMDS ordinations of variation in bacterial community structure across 54
samples based on a) Bray-Curtis and b) abundance-weighted UniFrac distances. Arrows
indicate the direction of significant (p < 0.05) correlations among variables and the NMDS
axes, with arrow length indicating the strength of the correlation. Blue arrows indicate
environmental variables, while black arrows indicate relative abundances of sequences
from different microbial classes. The ordination axes explain 96.8% (a) and 98.1% (b)
of the variance in the dissimilarities (Fig. 6–17).
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Linking Statement 3

In Chapters 2 & 3, I apply statistical and molecular tools to gather baseline information

that may be useful for the proactive surveillance of infectious diseases. This includes

using evolutionary relationships among hosts to predict likely host-parasite interactions,

and developing molecular approaches for monitoring microbes in shared water sources.

As we continue to discover potentially pathogenic organisms and build our knowledge of

the host ranges of poorly studied parasites, a critical next step for prioritizing research

and surveillance efforts is to identify the set of potential host-parasite interactions that

likely impose the greatest disease burden. Some parasites are notorious for causing severe

disease in infected hosts, while others are relatively benign. In Chapter 2, I use evolutionary

relationships among hosts to predict likely host-parasite associations. Phylogeny may

provide a good proxy for latent traits, and also reflects the co-evolutionary histories of

hosts and parasites. It seems reasonable, therefore, that phylogeny might also be useful for

predicting disease outcomes.

In Chapter 4, I use evolutionary relationships among susceptible and infected hosts

to predict disease-induced mortality in domesticated animals. Predicting the impact a

given parasite will have on host fitness is a major challenge in disease ecology (Osnas

and Dobson, 2012; Leggett et al., 2013), but developing theory for multi-host parasites

has been limited by the availability of comparable data across a range of host-parasite

combinations. The severe economic burdens caused by domesticated animal diseases have

encouraged the establishment of organizations that collate information on the numbers of

cases and deaths due to infectious diseases from nations around the world. These data

provide a unique opportunity to examine parasite virulence through a comparative lens,

and identifying predictors of disease mortality in domesticated animals has the potential to

benefit global animal health as well as contribute to ecological and evolutionary theory of

infectious diseases.
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4.1 Abstract

Infectious diseases vary in the impacts they have on their hosts; some are nearly

always fatal, whereas others rarely result in death. Identifying the drivers of mortality

for diseases that infect multiple host species may help to reduce the burden of infectious

diseases across the globe, and predict the severity of novel host-parasite combinations.

Using a global dataset of over 4000 case-fatality rates for 65 parasites and 12 domesticated

host species, we show that the average evolutionary distance from an infected host to other

mammal host species is a strong predictor of disease-induced mortality. We find that as

parasites infect species outside of their typical phylogenetic host range, they are more

likely to result in lethal infections, the odds of host death doubling with each additional 10

million years of evolutionary distance. The study of domesticated animal diseases reveals

patterns in the evolution of highly lethal parasites that may be difficult to observe in the

wild, and indicates that the severity of emerging infectious diseases may be predicted from

the evolutionary relationships among hosts.

4.2 Introduction

Infectious diseases that cross species barriers are responsible for severe human health

burdens (Hotez et al., 2014), and act as direct and synergistic drivers of species extinctions

(Heard et al., 2013). Many of these diseases are also shared with domesticated animals
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and additionally impact human well-being via loss of food security, labour and livelihoods,

costs of prevention and control programs, and increased human infection (Dehove et al.,

2012). However, the severity of disease can vary dramatically among parasites. Canine ra-

bies alone results in approximately 59,000 human deaths and 8.6 billion USD in economic

losses annually (Hampson et al., 2015). By contrast, other diseases rarely result in death.

For example, bovine brucellosis largely impacts cattle by causing abortion, infertility and

reduced growth, but disease induced mortality in adult cows is uncommon (McDermott

et al., 2013).

For parasites restricted to a single host species, the reduction in host fitness caused

by infection, termed virulence, should evolve to an optimal level determined by a trade-

off with transmission (Cressler et al., 2016; Alizon et al., 2009). For multi-host parasites,

conflicting trade-offs may select for high or low virulence depending on the evolutionary

histories and ecological backgrounds of the parasite and each susceptible host species

(Woolhouse et al., 2001). Despite a large body of work on mechanisms driving virulence

in single-host single-parasite systems, we still lack a framework for predicting virulence

of multi-host parasites (Leggett et al., 2013). This gap in our understanding of parasite

virulence is a major concern given recent increases in the emergence of diseases that

transmit among humans and animals (Jones et al., 2008).

In the absence of constraints, the expansion of a parasite’s host range should provide

a larger pool of susceptible hosts and increased opportunities for transmission and per-

sistence, in turn allowing for higher levels of virulence to evolve (Barrett et al., 2009).

However, as parasites adapt to infect novel hosts they may encounter trade-offs such that

the ability to utilize resources of their original host is reduced (Ebert, 1998; Longdon et al.,

2014), ultimately resulting in limited replication and decreased virulence among more gen-

eralist parasites (Antonovics et al., 2013). This trade-off is supported by comparative stud-

ies of plant RNA viruses and avian malaria parasites in which specialist parasites tended to

be more virulent than generalists (Garamszegi, 2006; Agudelo-Romero and Elena, 2008).
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Yet some generalist parasites remain highly virulent, potentially due to increased trans-

mission opportunities, or to a decoupling of virulence with transmission. This decoupling

may occur through parasites escaping costs of high virulence in hosts contributing little

to transmission, or through co-evolutionary mismatch and maladaptation of parasites and

novel hosts, resulting in sub-optimal virulence in some host species (Leggett et al., 2013).

Thus, while virulence was historically considered a property of the parasite, it may be

better understood as an outcome of the interaction between parasite and host (Poulin and

Combes, 1999).

For the vast majority of host-parasite interactions, the full suite of traits underlying

virulence are either poorly estimated or unknown. Our knowledge of host evolutionary

relationships is often much better, and phylogeny can act as a proxy for latent traits and

evolutionary histories that have shaped host-parasite associations (Davies and Pedersen,

2008). Closely related hosts suffer similar impacts for some parasites of Drosophila (Long-

don et al., 2015; Perlman and Jaenike, 2003), consistent with the prediction that parasite

virulence should co-vary with host phylogeny, but the influence of host evolutionary rela-

tionships across multiple host-parasite combinations is less well understood.

Fitness costs that parasites experience when adapting to novel hosts are expected to

increase with evolutionary distance from the original host (Antonovics et al., 2013), leading

to the prediction of lowered virulence following greater phylogenetic jumps. This pattern,

referred to as “non-host resistance”, may act in tandem with resistance evolved by hosts

in response to infection. However, the strength of evolved host resistance is expected to

decrease with evolutionary distance from a parasite’s original host, since distantly related

hosts may have experienced little selective pressure to evolve defenses (Antonovics et al.,

2013). The relative strengths of these opposing relationships with evolutionary distance

will influence the expressed level of virulence for a given host-parasite interaction.

To explore the link between host specificity and virulence we use a measure that

takes into account both the diversity of susceptible hosts and their relative evolutionary
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relationships, which we term “host evolutionary isolation” (Fig 4–1). For a given parasite,

host evolutionary isolation measures the mean phylogenetic distance from all documented

host species to the infected host species, and may capture the extent of adaptation of

both the parasite and infected host. This metric is analagous to species-level measures

of mean phylogenetic relatedness, which have been used to describe patterns of species

invasion (Strauss et al., 2006), and a related metric was found to be a strong predictor of

disease pressure in plant communities (Parker et al., 2015). Here we evaluate whether this

relationship can inform patterns of infection-induced mortality for domesticated mammals.

The majority of domesticated mammal diseases can infect multiple species (Cleave-

land et al., 2001) and in Africa, thirty-five priority livestock diseases together result in 9

billion USD in losses per year, primarily due to animal deaths (OIE, 2015). World Trade

Organization member countries have undertaken systematic reporting of economically im-

portant animal diseases over several years, with numbers of cases and deaths aggregated

by the World Organization for Animal Health (OIE) (OIE, 2016), providing a remarkable

dataset on disease-induced mortality rates for single and multi-host parasites. These data

present a unique opportunity to examine parasite virulence through a comparative lens, and

identify predictors of virulence for diseases that have far reaching consequences for human

and ecosystem health.

Using OIE data on infection-induced mortality rates in domesticated mammals, we

construct a Bayesian hierarchical model to examine the relationship between host evo-

lutionary isolation and virulence. The database comprises 4157 reports (after removing

those for which culling was recorded) for 202 unique combinations of 65 parasites and 12

hosts, reported by 155 countries across 7 years. Among host-parasite combinations average

mortality varied substantially (Fig 4–2A). While virulence can take on many forms, data on

host mortality is most widely reported, and we use it here to quantify disease impact on host

fitness. For each parasite, we identified the set of known domestic and wild mammal host

species from two recently published global host-parasite databases (see section 4.3). This
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returned 788 unique host-parasite interactions, from which we quantified host evolutionary

isolation, and host species richness calculated as the total number of documented mammal

host species for each parasite (Fig 4–2B).

To separate the importance of host evolutionary isolation and host species richness

from other factors that might also influence host mortality, we include additional co-predictors

and hierarchical terms in our model. These include at the parasite level traits for ma-

jor modes of transmission (via arthropod vector, via reproduction, and production of an

environmental resting stage), plus hierarchical effects of parasite type (virus, bacteria,

helminth, etc.) to account for parasite traits not measured directly. We additionally include

hierarchical effects for host, host taxonomic order, country, and year of reporting. Envi-

ronmental conditions, which include socio-economic factors such as the ability of local

peoples to maintain animal health, effects of ambient temperature on parasite growth rate,

or co-infection with other parasites may also influence host mortality. To control for these

country-level effects we include per capita Gross Domestic Product (GDP) and latitude per

country in addition to modelling variation among countries. The virulence-transmission

trade-off suggests that outbreaks resulting in large numbers of infected individuals are

unlikely to be associated with high mortality, as premature host death restricts transmission

rate, ultimately resulting in lower case numbers for more lethal diseases (Alizon et al.,

2009). We therefore also include the number of cases per report as an offset variable. We

estimate the effect sizes of these predictors on host mortality with a Bayesian hierarchical

binomial-logit model.

Methods

4.3 Data

Case-fatality reports

Reports of number of cases and deaths due to infection were taken from published

OIE year end reports for the years 2005-2011 (OIE, 2005, 2006, 2007, 2008, 2009, 2010,
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2011). Reported by individual countries, these include information per disease-host com-

bination on the number of cases (infected individuals), deaths due to infection, individuals

destroyed, and individuals slaughtered. We included only reports of diseases in mammal

hosts. We excluded any observations in which host individuals were reported as destroyed

or slaughtered as this would interfere with estimates of deaths due to infection. We also

excluded the few instances where the reported number of deaths due to infection exceeded

the number of reported cases.

Host and parasite Latin binomials

Reported host codes used by the OIE were assigned a Latin binomial based on a

combination of geographic location, OIE reports, and classifications defined by Clutton-

Brock (1999) (Table 4–1). Reports that included OIE host codes “cer” (cervidae) and “o/c”

(sheep or goats) could not be attributed to a single host species and were excluded.

OIE host code Location Binomial
bov Global Bos taurus
buf Sub-saharan Africa Syncerus caffer
buf North America Bison bison
buf Asia, Latin America, Caribbean, Europe, N. Africa Bubalus bubalis
can Global Canis lupus
cap Global Capra hircus
cml Global Camelus dromedarius
equ Global Equus caballus
fel Global Felis silvestris
lep Global Oryctolagus cuniculus
ovi Global Ovis aries
sui Global Sus scrofa

Table 4–1: Conversion table for OIE host codes to Latin binomials.

Reported disease names were assigned a parasite Latin binomial based on OIE publi-

cations (disease summaries from the OIE Terrestrial Manual (OIE, 2012) and OIE techni-

cal disease cards (available via www.oie.int/animal-health-in-the-world/technical-disease-

cards). For diseases caused by a particular subspecies or strain, this subtype was kept in
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cases where susceptible host species was available for these subtypes (Equine Influenza be-

ing largely caused by strain H3N8, and Paratuberculosis caused by Mycobacterium avium

paratuberculosis). Diseases attributed to multiple species were removed (Atrophic rhinitis

of swine, Equine piroplasmosis, Equine rhinopneumonitis, Horse mange, Leishmaniosis,

Leptospirosis, Sheep and goat pox, Theileriosis, Trichinellosis, and Trypanosomosis), un-

less the likely causative species could be identified based on geography and/or reported host

species (Bovine babesiosis in Europe caused by Babesia divergens, Malignant catarrhal

fever in sheep worldwide largely caused by Macavirus ovine herpesvirus 2, and Malignant

catarrhal fever in African cattle caused by Macavirus alcelaphine herpesvirus 1). Diseases

caused by prions (Scrapie, Bovine Spongiform Encephalopathy) were excluded.

Host specificity

The suite of mammalian host species infected by each parasite was taken from the

Global Mammal Parasite Database 2.0 (Stephens et al., 2017) and a static version of the

Enhanced Infectious Disease Database (EID2) database (Wardeh et al., 2015). Host species

for Influenza A H3N8 and Mycobacterium avium paratuberculosis are not included in the

static version of the EID2 database, so were instead taken from EID2 online (eid2.liverpool.ac.uk,

accessed June 14th 2017). We also included the host species reported as infected by each

parasite in the OIE report data used in the analysis. Host Latin binomials were standardized

to the 2005 Wilson Reeder taxonomy (Wilson and Reeder, 2005) using Wilson & Reeder

online (www.departments.bucknell.edu/biology/resources/msw3) and

the Wilson & Reeder 1993-2005 binomial synonym table included in PanTHERIA (Jones

et al., 2009). Hosts reported to subspecies were collapsed to the parent binomial, and hosts

not reported to species level were removed. Homo sapiens were excluded. Host species

richness was then calculated as the number of unique host Latin binomials associated with

each parasite. For each combination of host and parasite reported in the OIE data, mean

phylogenetic distances from all known hosts to the infected OIE host was calculated using
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the Fritz et al. mammal supertree (Fritz et al., 2009) and the R package ape version 3.4

(Paradis et al., 2004).

Parasite traits

Transmission mode is often listed as a key factor linked to virulence (Ewald, 1983;

Alizon et al., 2009; Rigaud et al., 2010; Cressler et al., 2016). Here we include whether a

parasite is transmitted by an arthropod vector, is transmitted as a function of reproduction

(either vertically transmitted, sexually transmitted, or passed from mother to offspring via

ingestion of milk or colostrum), and whether it has a resting stage capable of persisting for

long periods of time in the environment (typically months to years). Binary parasite traits

coding primary modes of transmission and the use of avian species as reservoir hosts were

taken from OIE publications (disease summaries from the OIE Terrestrial Manual (OIE,

2012) and OIE technical disease cards), and from Lefèvre et al. (2010). Parasite-level

effects were modelled as a function of these covariates plus hierarchical effects of parasite

type (virus, bacteria, helminth, etc.), to account for phylogenetic non-independence and to

capture additional parasite traits not measured directly.

Country-level covariates

Host mortality is also likely influenced by local environmental conditions. In our data,

these may include socio-economic factors such as the ability of local peoples to maintain

animal health, effects of ambient temperature on parasite growth rate, or co-infection

with other parasites. While the scale of reporting does not allow us to investigate these

factors directly, we include two country-level predictors: 1) per capita Gross Domestic

Product (GDP) to model economic abilities to reduce host mortality, and 2) latitude as a

proxy for temperature and biodiversity gradients that may reflect environmental conditions

determining the strength of species interactions (Schemske et al., 2009), in addition to

modelling country-level variation. To include country-level covariates from the World
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Bank World Development Indicators API (https://data.worldbank.org/data-catalog/world-

development-indicators), we standardized country names to those used in the WDI R

package version 2.4 (Arel-Bundock, 2013). For each country we extracted mid-country

latitude and per capita in current US dollars (WDI code “NY.GDP.PCAP.CD”) using the

WDI package. Countries that did not have reported GPD per capita from the WDI were

supplemented with information from the United Nations Data Retrieval System (data.

un.org) so that there was at least one estimate of per capita GDP for the period of 2005-

2011. Mean gross domestic product per capita per country was then calculated across all

years. We excluded records from countries with no iso3 code or for which no latitude was

reported.

4.4 Methods

Model

Using a hierarchical Bayesian binomial-logit model, we model deaths (deathsi) as

following a binomial distribution determined by sample size per observation (casesi) and

a probability parameter pi. The higher-level structure of the model is as follows:

deathsi ∼ Bin(casesi, pi) (4.1)

Where pi is modeled with β0 as the grand mean plus the effects of mean phylogenetic

distance from all known hosts to the species infected (EvoIsoi), the number of cases per

observation (casesi), and partially-pooled hierarchical effects for parasites (µpara), hosts

(µhost), countries (µcountry), and years (µyear):

logit(pi) = β0+β1 ∗EvoIsoi+β2 ∗ log(casesi)+µpara+µhost+µcountry+µyear (4.2)

Parasite level effects, µpara, are defined by a normal distribution as follows:

µpara ∼ N (β3∗SRpara+β4∗aviRespara+β5∗vectpara+β6∗repropara+β7∗envRestpara+µtype, σ
2
P )

(4.3)
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Where the difference from the grand mean (β0) for each parasite (para) is determined by

host species richness (SRpara), transmission modes (aviRespara, repropara, envRespara),

and a hierarchical effect of the parasite type (µtype), and variance parameter (σ2
P ).

Parasite taxonomic type (i.e. virus, bacteria, helminth, etc.), µtype, is modelled fol-

lowing a normal distribution with mean of zero and variance parameter (σ2
T ) as follows:

µtype ∼ N (0, σ2
T ) (4.4)

Host level effects, µhost, are modelled following a normal distribution with mean

determined by a hierarchical effect of the host taxonomic order (µorder) and variance pa-

rameter (σ2
H) as follows:

µhost ∼ N (µorder, σ
2
H) (4.5)

Host taxonomic order level effects, µorder, are modelled following a normal distribu-

tion with mean of zero and variance parameter (σ2
O) as follows:

µorder ∼ N (0, σ2
O) (4.6)

Country level effects, µcountry, are modelled following a normal distribution with

mean determined by gross domestic product per capita (GDPc) and latitude (latitudec),

and variance parameter (σ2
C) as follows:

µcountry ∼ N (β8 ∗GDPc + β9 ∗ latitudec, σ2
C) (4.7)

Year level effects, µyear, are modelled following a normal distribution with mean of

zero and variance parameter (σ2
Y ) as follows:

µyear ∼ N (0, σ2
Y ) (4.8)
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Priors & Data transformations

Following the recommendations of Gelman et al. (2008), continuous predictors were

normalized to mean of zero and standard deviation of 0.5. Estimated parameters were mod-

elled using weakly informative priors as recommended by Ghosh et al. (2015) and the Stan

development team (https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations):

β0−9 ∼ Student t(4, 0, 1) (4.9)

σ2
P,H,O,C,Y ∼ Half Student t(4, 0, 1) (4.10)

Sampling and Convergence Diagnostics

Models were fit in Stan (Stan Development Team, 2017c; Carpenter et al., 2017) via

R 3.2.3 (R Core Team, 2015) with rstan version 2.14.2 (Stan Development Team, 2017a)

using 4 chains with 30,000 iterations per chain. The first 15,000 iterations per chain were

used for warm-up and discarded. The remaining posterior was thinned to retain every 10th

iteration, resulting in a total of 6,000 posterior draws. Convergence was diagnosed by

observation of Rhat values equal to 1 (see Table 6–24) and explored with shinystan version

2.4.0 (Stan Development Team, 2017b). Posterior predictive checks were performed to

ensure model validity and fit to the data. The main model was also fit with simulated data

to ensure the model performs as expected and is able to recover simulated parameters.

4.5 Results

We find that mortality is highest when the infected host is evolutionarily distant from

other documented hosts (Fig 4–3A, Fig 4–4, Table 6–24), with an increase of 10 million

years of evolutionary isolation resulting in a two-fold increase in the odds of host death

(odds ratio 50% credible interval: 1.99 - 2.15). A disease infecting only Primate hosts

that shifts to infect an Artiodactyl is thus expected to have ∼ 4.8 times higher odds of

host death than a parasite shifting from hosts in the order Carnivora. This effect becomes
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stronger when excluding single-host parasites from the analysis (Appendix 6.3). Consistent

with the virulence-transmission trade-off, our results also indicate that instances of high

mortality are not usually associated with large numbers of infected individuals (Fig 4–3B,

Fig 4–4). We find some support for a positive relationship between mortality and host

species richness (50% credible interval does not overlap zero), opposite to the relationship

that would be predicted if there was a trade-off between parasite generalism and virulence

(parasites with larger host ranges causing lower mortality on average). There is large

variability in the strength of this relationship, as is the case for all parasite-level predictors;

however, host species richness is a better predictor than host taxonomic diversity (Appendix

6.3).

4.6 Discussion

Our study demonstrates that as parasites infect domesticated species outside of their

typical evolutionary host range, they have a higher probability of resulting in lethal infec-

tions. This result is surprising considering that for some parasites, such as poxviruses, it

has been suggested that host switches involving more distantly related species tend to result

in benign infections, whereas shifts onto closely related species lead to severe disease

(Haller et al., 2014). Our results, to the contrary, indicate that on average host switches

involving more distantly related species have a greater potential to result in host death.

Certain poxviruses, and some of the diseases included in this study have host ranges that

extend beyond mammals, and expanding our framework to include non-mammal hosts

may provide further insights into trade-offs for parasites exhibiting extreme phylogenetic

generalism. For example, non-host resistance may dominate in parasites that undergo

cross-kingdom jumps (van Baarlen et al., 2007).

There are several reasons why parasites might cause high mortality in evolutionar-

ily isolated hosts. Mortality can result from a combination of direct damage caused by

parasites, and damage caused by the host’s immune response to infection, which may
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impose different selective pressures on the evolution of virulence (Graham et al., 2005).

For example, if parasites impose fitness costs on a host, but the host contributes little

to transmission, or constitutes an epidemiological dead end, there may be little to no

selection for parasites to reduce virulence (Antonovics et al., 2013). This can occur when

the majority of transmission is facilitated by a reservoir host, such as has been suggested

for foot and mouth disease in southern Africa which uses asymptomatic African buffalo

as a reservoir, but causes severe outbreaks after spillover in domestic cattle (Michel and

Bengis, 2012). This is also the case for many arboviruses, which commonly use birds as

reservoir hosts, but fail to transmit after spillover into mammal hosts such as humans and

horses, where they are highly virulent (Weaver and Barrett, 2004). Identifying reservoir

species can be a difficult challenge, and for many parasites included here the reservoirs

are unknown. However, we were able identify diseases in our data that use avian species

as reservoirs, though found no strong evidence that these parasites cause higher mortality

(Appendix 6.3, Table 6–27).

Virulence may also be high for host-parasite combinations if host mortality is decou-

pled from transmission. This decoupling may occur if parasites infect tissues unrelated to

transmission, such as bacterial meningitis infection of the central nervous system (Longdon

et al., 2015), if host mortality is due to hyperactive immune responses (Graham et al.,

2005), or if parasites produce a long lasting environmental resting stage (Cressler et al.,

2016). We did not have information on infected tissues or specific host immune responses

to model these effects directly; although we were able to identify parasites capable of

producing an environmental resting stage. However, this and other transmission modes

included in our model had no clear relationship with host mortality, with the 50% credible

intervals overlapping zero (Fig 4–4). Nonetheless, parasite identity had an important effect

(Table 6–24, Fig 6–19, Fig 6–18), suggesting other parasite traits not considered here

modify virulence.
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Our model also reveals an important effect of country (Fig 4–3, Fig 6–19). Variation in

host mortality among countries may indicate the potential to identify animal management

practices that reduce infection-induced mortality in one nation, and introduce them in other

nations. Nations with the largest positive country effects, indicating mortality rates higher

than predicted from the rest of the model, may have difficulties building capacities for early

detection and prevention of infectious disease outbreaks. For example, Sri Lanka, which

ranks first, has struggled to develop adequate legislative frameworks and infrastructure for

addressing veterinary public health issues, largely due to rural development driving animal

health priorities rather than export-oriented animal production (Dissanayake et al., 2012).

Kyrgyzstan, ranked second, has seen a severe deterioration of its veterinary and sanita-

tion systems since independence in 1991, and also suffers from severe under-reporting

of zoonotic diseases despite the majority of its citizens having livelihoods dependent on

livestock farming (Counotte et al., 2016). In contrast, nations with mortality rates lower

than predicted from the rest of the model (e.g. Macedonia, China, and Iran), while still

suffering considerable burdens from infectious diseases, have made great strides towards

improved surveillance systems, and implemented successful large-scale control and eradi-

cation programs (Stojmanovski et al., 2014; Hotez et al., 2012; Wang et al., 2008).

We have shown host evolutionary isolation to be a strong predictor of host mortality

in domesticated mammals, and our results re-enforce the notion that virulence is a product

of both parasite and host properties. The subset of diseases for which we have multiple

estimates of case-fatality rates are also those diseases that have global health impacts.

While these might not represent the full spectrum of parasite virulence, we suggest that

these diseases provide a window into the evolution of virulence that is otherwise hard to

observe. In natural systems, spillover of highly virulent diseases often display stuttering

chains of transmission before parasites burn themselves out (Longdon et al., 2014). It is

likely, therefore, that these instances of highly virulent disease in wild hosts may often go

undocumented (Leggett et al., 2013). High host densities allow parasites to maintain high
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transmission rates despite causing high mortality (Mennerat et al., 2010), and in human

influenced systems, artificially high host densities of domesticated animals may facilitate

the maintenance of highly deadly diseases, allowing us to better observe their behaviour. In

addition, intensively farmed populations often have shorter lifespans and are more likely to

experience co-infection, both of which can also promote parasite virulence (Mennerat et al.,

2010). Farmed populations often have low levels of genetic variation which may favour the

spread of disease, and on longer timescales selection for traits that promote production in

livestock may lead to trade-offs with reduced resistance to parasites (Mennerat et al., 2010).

The diseases with exceptionally high mortality studied here are likely achieving such

high virulence through multiple pathways including spillover from wildlife reservoirs into

dead end hosts, inappropriate host immune responses, a decoupling of transmission from

virulence, and maladaptation due to recent or frequent host shifts. While it is difficult

to differentiate among these alternative mechanisms, we suggest that the evolutionary

distances among infected and susceptible hosts can, to some extent, capture these multiple

dimensions.

Predicting the likely outcomes of novel host-parasite interactions presents a major

challenge in disease ecology. Our analysis showing how evolutionary relationships among

hosts links to the virulence of multi-host pathogens provides an important first step towards

addressing this challenge, and suggests that diseases that shift between distantly related

hosts are likely to be more deadly. This is also likely to be the case for emerging animal

diseases shifting to infect humans. As ecosystems are increasingly transformed by human

actions we may witness the formation of communities never before seen in evolutionary

history, and with them comes the opportunity for diseases to interact with novel hosts. For

example, Nipah virus, a lethal zoonosis transmitted from bats to humans via domestic pigs,

emerged as a result of agricultural intensification and repeated spillover events from wild

bats, followed by transmission among pig farms (Daszak et al., 2013). Our results indicate

that proactive approaches to fill gaps in our knowledge of the wildlife hosts (Farrell et al.,
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2013) may help predict mortality of emerging diseases in novel hosts. We also suggest there

may be opportunities to reduce disease mortality by identifying factors that contribute to

the large variation in mortality across countries, and by close monitoring of diseases at the

domestic-wildlife interface.
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A

Mycoplasma mycoides
7% mortality in goats
Ev. isolation: 27.4 MY

Rabies virus
98% mortality in goats
Ev. isolation: 161.9 MY

B

(2 + 6) / 2 
  = 3 MY

 = 1 MY

(8 + 8) / 2 
  = 8 MY

Figure 4–1: a) Example of how host evolutionary isolation is calculated. Red circles
indicate the infected host, blue circles indicate documented hosts. Host evolutionary
isolation is calculated as the mean phylogenetic distance from the infected host to all
documented host species. b) Examples with Mycoplasma mycoides and Rabies virus.
Documented hosts are indicated by blue bars on the host phylogeny, with host evolutionary
isolation and average mortality calculated for goats (Capra hircus, shown in red).
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Figure 4–3: Posterior predictions of the probability of death as a function of a) host
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the posterior mean effects for each country.
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Linking Statement 4

In Chapter 4, I show that the evolutionary relationships among host species can be

used to predict the mortality of infectious diseases in domestic animals. I suggest that

the process of domestication facilitates the evolution and maintenance of deadly diseases,

many of which are known to cause severe declines in wild animals (Smith et al., 2009)

and act in synergy with other human-mediated drivers of extinction such as habitat loss,

hunting, and persecution (Heard et al., 2013). As human activities encroach into previously

wild landscapes, this creates opportunities for contact among previously isolated hosts and

facilitates the spread of diseases (Faust et al., 2018). However, as the fate of parasites is

intimately linked to that of their hosts, processes that drive hosts to extinction may either

cause the coextinction of parasites (Woolhouse et al., 2001; Dunn et al., 2009; Colwell

et al., 2012), or alter host specificity. Because host specificity is linked to disease impact,

host extinction could impose selection on parasites that lead to increases or decreases in

disease burden.

In Chapter 5, I explore how host declines reshapes the parasite assemblages of endangered

species. Coextinction theory predicts that parasites specializing on a single host species

are more likely to go extinct following significant declines of their hosts (Koh et al., 2004).

Parasites comprise a major component of biological diversity (Dobson et al., 2008), and

contribute to ecosystem health (Hudson et al., 2006). The loss of parasite diversity is

therefore a conservation concern, but they are often neglected when setting conservation

targets (Gómez and Nichols, 2013). The extinction of co-evolved specialist parasites may

facilitate the emergence of novel diseases due to loss of competition among parasites

(Lloyd-Smith, 2013; Dunn et al., 2009). The loss of any single host will also alter selective

pressures with respect to extant hosts, which could have important implications for both

disease transmission pathways and evolution of virulence. Developing a robust theory of
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coextinction is therefore essential for tracking shifting patterns of host-parasite interactions

and building surveillance systems for diseases in wildlife. Here, I conduct a comparative

study to investigate whether single-host parasites are being lost from threatened hosts more

often than multi-host parasites.
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5.1 Abstract

Host extinction can alter disease transmission dynamics, influence parasite extinc-

tion, and ultimately change the nature of host-parasite systems. While theory predicts

that single-host parasites are among the parasite species most susceptible to extinction

following declines in their hosts, documented parasite extinctions are rare. Using a com-

parative approach, we investigate how the richness of single-host and multi-host para-

sites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite

associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders

Perrisodactlya + Cetartiodactlya minus cetaceans) were merged with host trait data and

IUCN Red List status to explore the distribution of single-host and multi-host parasites

among threatened and non-threatened hosts. We find that threatened ungulates harbour a

higher proportion of single-host parasites compared to non-threatened ungulates, which is

explained by decreases in the richness of multi-host parasites. However, among carnivores

threat status is not a significant predictor of the proportion of single-host parasites, or

the richness of single-host or multi-host parasites. The loss of multi-host parasites from
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threatened ungulates may be explained by decreased cross-species contact as hosts decline

and habitats become fragmented. Among carnivores threat status may not be important

in predicting patterns of parasite specificity because host decline results in equal losses of

both single-host parasites and multi-host parasites through reduction in average population

density and frequency of cross-species contact. Our results contrast with current models of

parasite coextinction and highlight the need for updated theories that are applicable across

host groups and account for both inter and intraspecific contact.

5.2 Introduction

Parasites are often viewed as negative aspects of ecosystems, as causes of disease and

indicators of unhealthy environments. Infectious diseases of wildlife have been implicated

in the declines of several free-living hosts (Smith et al., 2009; Heard et al., 2013), and

as agents of many important diseases of humans and domesticated animals (Cleaveland

et al., 2001). However, parasites are integral components of natural ecosystems with

unique roles in food webs (Dunne et al., 2013), regulating community composition (Wood

et al., 2007), and maintaining host genetic diversity (Altizer et al., 2003). Furthermore, it

has been speculated that loss of parasites may predispose hosts to infection by generalist

parasites or emerging diseases (Dunn et al., 2009; Lloyd-Smith, 2013), and thus have severe

downstream effects. Recent efforts have therefore rallied for the inclusion of parasitic

biodiversity in conservation efforts (Harris and Dunn, 2010; Mihalca et al., 2011; Moir

et al., 2012; Pérez et al., 2013; Gómez and Nichols, 2013). Parasites are susceptible to

many of the same threats affecting free-living species, but their added dependence on hosts

suggests that parasites will be among the organisms most susceptible to extinction in the

ongoing biodiversity crisis (Dunn et al., 2009; Colwell et al., 2012).

Parasite extinction risk depends on the number of hosts a parasite infects and the

extinction rates of those hosts (Koh et al., 2004; Lafferty, 2012). Recent models of parasite

coextinction indicate that generalist parasites (those able to utilize multiple host species)
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are less susceptible to coextinction as they have alternative ways to complete their life-

cycles (Dunn et al., 2009; Lafferty, 2012). However, local extirpations of infected host

populations or preferred host species could result in parasite extinction well before the loss

of all available host species as parasites are often unevenly distributed among host individ-

uals, populations, and species (Shaw and Dobson, 1995; Poulin, 2007; Moir et al., 2010;

Välimäki et al., 2011). As the transmission of parasites depends in part upon sufficient

contact among infected and susceptible hosts (McCallum et al., 2001), extinction processes

may decrease the density or abundance of hosts below critical thresholds for parasites to

transmit effectively (Deredec and Courchamp, 2003; de Castro and Bolker, 2005).

Although theory suggests that coextinction of hosts and parasites is a common phe-

nomenon, empirical support is scarce and only a few instances of coextinction have been

documented (Dunn et al., 2009; Moir et al., 2010). An analysis of parasite richness among

wild primates revealed that threatened host species were associated with fewer parasite

species compared to non-threatened hosts (Altizer et al., 2007). This result supports co-

extinction theory; however, the proportion of specialist parasites was not significantly

different, suggesting that host declines lead to the loss of both specialist and generalist

parasites. A similar result was found among acacias and the phytophagous insects that

feed on them (Powell, 2011). A recent study of fish parasites found that specialist parasites

tend to use hosts with low vulnerability to extinction (Strona et al., 2013), which may be

additional support for the loss of specialist parasites from threatened hosts. Conversely,

a study of viral richness in bats found the opposite trend with threatened bat species

harbouring increased richness of viruses (Turmelle and Olival, 2009). These conflicting

results highlight the need for an improved understanding of coextinction and host-pathogen

dynamics in declining host populations.

Here we contrast patterns of single-host versus multi-host parasites among threatened

and non-threatened wild ungulates and carnivores. Although host range can be considered

as a continuous variable, multi-host parasites may also infect hosts with different risks of
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extinction, which makes it difficult to predict coextinction risk based solely on the number

of hosts per parasite. However, single-host parasites must go extinct before or immediately

upon the loss of their sole host. We use phylogenetic comparative methods to evaluate

whether single-host parasites are less common among threatened hosts compared to non-

threatened hosts, as we expect host species with small or declining populations to be less

likely to support viable populations of single-host parasites. We focus on wild ungulates

and carnivores because of the availability of data and their shared evolutionary histories

with domesticated mammals.

5.3 Materials and methods

Parasite Records

Records of parasitic organisms reported from free-living carnivores and terrestrial un-

gulates (Perrisodactlya + Cetartiodactlya minus cetaceans) were obtained from the Global

Mammal Parasite Database (Nunn and Altizer, 2005) updated to include papers published

up to 2010 and accessed October 15th 2013. This database documents host-parasite as-

sociations and encompasses both micro and macro-parasites including viruses, bacteria,

protozoa, fungi, helminths, and arthropods. We restricted reports to wild populations

of hosts sampled within their native ranges. Host Latin binomials were standardized to

Wilson and Reeder (2005). Parasites reported to genus level or higher were excluded from

the analyses. Only reports with prevalence greater than zero were included. Parasites were

classified as single-host if associated with only one host species in the dataset and multi-

host if associated with more than one host species.

Host Traits

To quantify host extinction risk we employed the categorical threat status reported by

the 2014 IUCN Red List of Threatened Species (International Union for the Conservation

of Nature, 2014). We converted IUCN status to a binary variable with species listed as Least
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Concern (LC) or Near Threatened (NT) considered Non-Threatened, and species listed as

Vulnerable (VU), Endangered (EN), or Critically Endangered (CR) considered Threatened.

Hosts with the status of Data Deficient (DD), Extinct in the Wild (EW) or Extinct (EX) were

excluded from our analysis. To limit temporal mismatches in the reporting of parasites and

changes in IUCN status, two species reported to have genuine changes in status between the

2010 and 2014 editions of the IUCN Red List were assigned their 2010 status. The IUCN

also provides information on species population trends, which was converted into a binary

variable with species listed as either decreasing, or not decreasing (i.e. increasing or stable)

to capture decreases in host abundances where rate of decline may be below thresholds

necessary to be considered threatened (Mace et al., 2008). To control for additional host

traits that have been shown to correlate with both extinction risk and parasite richness in

mammals (Nunn et al., 2003; Ezenwa et al., 2006; Lindenfors et al., 2007; Cardillo et al.,

2008) we included data on average adult female body mass (g), geographic range area

(km2), and average population density (number of individuals/km2) per host species from

the PanTHERIA database of mammalian life history traits (Jones et al., 2009). Additional

population density estimates for ten species in the order Carnivora were obtained from grey

literature.

Statistical Analyses

Generalize Estimating Equations (GEEs) (Paradis and Claude, 2002) were used to ex-

plore relationships between host traits and univariate responses of a) proportion single-host

parasites, b) richness of single-host parasites, and c) richness of multi-host parasites. GEEs

offer a flexible and unified method allowing the specification of non-normal error structures

for binomial and count data as well as correcting for phylogenetic non-independence. All

analysis were conducted in R v.3.1.0 (R Core Team, 2014).

To control for uneven sampling of parasites among hosts we included as a covariate the

number of citations per host (Altizer et al., 2007) as reported in the ISI Web of Knowledge
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using the Latin binomial of each species in either the title or topic fields. Citation counts

as well as estimates of body mass, geographic range, and population density were log

transformed prior to analyses. As ungulates and carnivores differ significantly with respect

to their life histories, ecology, and predictors of extinction risk, we conducted models

separately for each group, though the number of hosts per parasite was taken from the

merged host-parasite lists of both groups. Before model fitting we checked the predictors

for collinearity by estimating the variance inflation factors (VIFs). In all cases VIFs were

less than three, indicating no significant effect of collinearity (Belsley et al., 1980).

Full models including all predictor variables were first fit with the geeglm function

in the package geepack (Højsgaard et al., 2006). For proportion of single-host parasites,

we used counts of single-host and multi-host parasites as the response and specified a

binomial error structure with a logit link function. To determine whether or not changes

in the proportion of single-host parasites were being driven by changes in the richness of

single-host or multi-host parasites, we fit separate models with richness of single-host and

multi-host parasites, respectively, as response variables assuming a Poisson error structure.

For each of the full models (6 in total), we estimated Pagels lambda as a measure

of phylogenetic signal in the residuals using the fitContinuous function in the package

geiger (Harmon et al., 2008) and most current inclusive estimates of phylogeny. We used

a species-level mammal super tree for ungulates (Fritz et al., 2009), and a more recent

species-level tree for the order Carnivora (Nyakatura and Bininda-Emonds, 2012). To

correct for phylogenetic non-independence in model residuals due to shared evolutionary

histories among hosts, the respective trees were transformed using the estimated lambda

value from model residuals (Revell, 2010) with the function transform.phylo in the package

geiger (Harmon et al., 2008). We then refit the models using the compar.gee function in the

package ape (Paradis et al., 2004) specifying the phylogenetic covariance structure from

the transformed phylogeny.
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Sensitivity Analyses

As a full suite of predictors was not available for every host species, sample sizes

were maximized by removing predictors with p > 0.1 and the above procedure correcting

for phylogenetic non-independence in the residuals repeated. The reduced models often

allowed for increased sample sizes and thus comparison across a larger number of host

species. Threat status and citation count were forced into all models. We additionally

fit bivariate models which included only threat status and citation count as predictors to

explore the effect of threat status in the absence of ecological covariates. To determine

whether patterns differed by parasite type, parasites were categorized as either micro-

parasites (bacteria, viruses, fungi, protozoa), or macro-parasites (helminths, arthropods),

and models re-run separately for each parasite type. This distinction represents a functional

difference whereby micro-parasites tend to have shorter lifecycles and directly reproduce

in their definitive hosts (Anderson and May, 1991), which may cause the two groups to

respond differently to host extinction.

5.4 Results

A total of 13,724 reports of host-parasite associations were used, representing 4098

unique confirmed host-parasite associations among 235 hosts and 1384 parasites. This

resulted in 729 single-host and 656 multi-host parasites. 95 ungulate and 140 carnivore

host species were included, of which complete covariate data was available for 68 and

64 respectively. In both groups, mean multi-host parasite richness per host appears lower

among threatened hosts when examining data uncorrected for sampling effort or ecological

covariates (Fig. 5–1).

In statistical tests threatened ungulates harbour a significantly higher proportion of

single-host parasites compared to non-threatened ungulates (Fig. 5–2a, Table 6–28). This

result is supported by the finding that threatened ungulates harbour a significantly lower

richness of multi-host parasites compared to non-threatened ungulates (Fig. 5–2c), whereas
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single-host parasite richness was not significantly associated with threat status (Fig. 5–

2b). Multi-host parasite richness was significantly negatively associated with threat status

and a decreasing population trend, and significantly positively associated with range area,

body mass, and citation count (Fig. 5–2c). The significance and direction of predictors

did not vary between full (n=68; Fig. 5–2, Table 6–28) and reduced models (n=68-95;

Tables 6–29 & 6–30), except for Threat Status in the bivariate model of multi-host parasite

richness, which became marginally non-significant (p = 0.073). In contrast, single-host

parasite richness did not correlate significantly with any of our ecological predictors. The

significance and direction of predictors did not vary between full models when classifying

parasites as either micro or macro-parasites (Table 6–31).

Among carnivores we found no significant effect of host threat status on the proportion

of single-host parasites, the richness of single-host, or the richness of multi-host parasites

(Fig. 5–2d-f, Tables 6–29 & 6–30). However, both the proportion of single-host parasites

and richness of single-host parasites were positively associated with population density

(Fig. 5–2d-e). The richness of multi-host parasites was not significantly predicted by any

of our ecological variables (Fig. 5–2f). As for ungulates, the significance and direction of

predictors did not vary between full (n=64; Table 6–28) and reduced models (n=64-140,

Tables 6–29 & 6–30). While the significance and direction of predictors was similar for

models predicting the proportion of single-host parasites and the proportion of single-host

macro-parasites, the proportion of single-host micro-parasites among carnivores was not

significantly predicted by any of our ecological predictors (Table 6–31).

5.5 Discussion

We found host extinction risk to be a significant predictor of the proportion of single-

host parasites among ungulates, but not carnivores (Fig. 5–2). Although current theory

predicts that threatened hosts should have decreased proportions of single-host parasites

(Dunn et al., 2009; Lafferty, 2012), we found no trend within carnivores and the opposite
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trend within ungulates. For ungulates, we suggest this result can be explained by the dis-

proportionate loss of multi-host over single-host parasites. For carnivore hosts, threat status

was not a significant predictor of the proportion of single-host parasites or the richness of

either single-host or multi-host parasites. Our results suggest a need for improved theory

on the process of coextinction, and highlight the necessity of challenging models with

empirical data.

Recent models of coextinction operate under the assumption that parasites will be lost

from a system when all of their potential hosts go extinct (Colwell et al., 2012). However,

these models focus only on the outcome after complete host extinction, whereas a species

will frequently experience significant contractions in abundance and range size well before

it finally becomes extinct. Here we used IUCN Red List status and data on host population

trend to document this path towards extinction. Our study provides added evidence that

models of parasite coextinction with host decline may differ from models based solely on

host extinction.

Why does threat status result in a disproportionate loss of multi-host parasites in

ungulates but not carnivores? It is possible that this contrast reflects differences in the

major threatening processes or life-history traits between the two groups. If ungulates

and carnivores are listed under different Red List criteria, this might explain differences in

loss of parasites with extinction risk. Indeed, a greater proportion of threatened ungulates

included in this study are listed because of an observed reduction in population size (Crite-

rion A1, A2, or A4): 14 out of 20 ungulates opposed to 13 out of 29 carnivores. While this

difference is not statistically significant (Pearson’s χ2 = 2.10, p = 0.147), it may indicate

that threatened ungulates have more often experienced significant reductions in abundance

and geographic range. Host geographic range is a key predictor of parasite species richness

(Kamiya et al., 2014). Broad ranging species are also more likely to overlap with other host

species, increasing opportunities for infection with multi-host parasites (Gregory, 1990).

Overlap in host geographic range is a significant predictor of parasite community similarity
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in carnivores (Huang et al., 2014) and primates (Davies and Pedersen, 2008), and similarly

among sympatric African bovids habitat overlap is positively correlated with increased

prevalence of multi-host gastrointestinal parasites (Ezenwa, 2003). Geographic range is

often used as a proxy for the amount of interspecific contacts experienced by a given host,

while population density is used to represent the amount of intraspecific contact. However,

as extinction processes can reduce both species abundances and range (Price and Gittleman,

2007; Hayward, 2009), it is not immediately obvious how population density will respond,

especially when host individuals are unevenly distributed throughout a species range.

Among ungulates group living is common and is hypothesized to provide benefits via

reduction in predation pressure (Averbeck et al., 2012). In some cases, human hunting

and habitat degradation have even resulted in increased group sizes, which is hypothesized

to allow greater vigilance and predator avoidance (Averbeck et al., 2012). It is possible,

therefore, that extinction drivers might decrease total abundance of species by reducing the

total number of groups, while maintaining the number of individuals per group. If this is the

case, the number of intraspecific contacts among individuals may stay relatively constant

as species decline. We suggest that the path to extinction in ungulates may follow this

trajectory. In threatened ungulate species local densities may remain high due to pressure

to maintain minimum group sizes, and thus allow intraspecific contact rates sufficient to

support single-host parasites, while reduction in total range size will result in a loss of

multi-host parasites. In contrast with ungulates, only 10-15% of carnivores are known

to live in social groups (Gittleman, 1989). The natural rarity of carnivores may lead to

species being placed on the IUCN Red List solely because of living at critically small

population sizes. Additionally, species which have undergone a historical decline but

currently have range and population sizes above critical thresholds will not be considered

threatened (Mace et al., 2008), which may be the case for many large carnivores (Ripple

et al., 2014). Consequently, threat status in carnivores may not be a reliable proxy of recent

population decline. It is understandable then that direct measures of population density are
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a better predictor of parasite assemblages in carnivore hosts, with those species living at

higher densities able to support a higher proportion and richness of single-host parasites.

While these explanations fit the known ecologies of these two host groups, com-

parative analyses are inherently susceptible to issues of data quality. It is possible that

insufficient sample size or mismatched data may lead us to miss important patterns, but it

is unclear how these issues would bias our results so as to cause the observed differences

between carnivores and ungulates. We have shown that the response of parasite assem-

blages to host decline depends upon the interaction between intrinsic attributes of hosts and

extrinsic drivers of extinction. As changes in both geographic range and population density

during host decline impact parasite transmission, gathering additional baseline data on host

population densities is therefore essential for predicting coextinction events.

Considering the important roles parasites play in ecosystems and the burdens they

cause for wildlife, domesticated animals, and humans, it is vital that we better understand

how anthropogenic changes to natural ecosystems alter host-parasite dynamics. The loss

of multi-host parasites may have detrimental outcomes to ecosystems, including facilitat-

ing disease emergence (Johnson, 2013). Determining how anthropogenic and biological

factors interact to alter host-parasite systems can aid in the prediction of disease emer-

gence through future host shifts, or increased prevalence of endemic diseases; an important

consideration for the proactive surveillance of emerging pathogens (Farrell et al., 2013).

Generating a broader understanding of host-parasite coextinction dynamics will be critical

for prioritizing surveillance efforts in the face of shifting species ranges and expansion

of human land use practices. Anthropogenic activities not only directly contribute to

species loss, but have the potential to bring previously isolated host populations into contact

and create novel opportunities for cross-species transmission and exacerbation of existing

threats. Our results indicate that there is an urgent need to develop new theories of parasite

transmission and loss in declining hosts, but more critically this theory needs to be tested

against empirical data which we currently lack.
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Figure 5–1: Average parasite richness per host for multi-host and single-host parasites,
sorted by host group and threat status (NT = Non-threatened; T = threatened). Error bars
represent standard errors.
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General Discussion & Conclusion

Contemporary drivers of ecological change alter disease landscapes, facilitate the

spread of parasites to novel hosts and ultimately shape the ecology, evolution, and impacts

of infectious diseases around the globe. In this thesis, I presented theory and tools that

can help support the surveillance of infectious diseases that infect multiple species. This

involved analysis of multiple data sources including global species interaction databases,

phylogenetic trees, animal health reports, life history traits, and genetic sequence data, and

required the integration of approaches from ecology, evolutionary biology, computational

statistics, bioinformatics, and molecular biology. Together I used these approaches to

identify susceptible hosts of mammal parasites, describe patterns of bacterial diversity in

a mammal diversity hotspot, predict the disease-induced mortality of domesticated ani-

mal diseases, and explore how host extinction impacts parasite diversity. Each of these

approaches supports proactive disease surveillance by offering ways to study neglected

diseases and those that may emerge as threats to public health or conservation in the future.

In Chapter 2, I showed that by predicting undocumented host-parasite interactions we

can effectively build on existing global infectious disease databases and prioritize future

disease surveillance efforts. Initial efforts to search for evidence of predicted interactions

may be done through targeted literature surveys, but will eventually require field based

surveillance. Proactive disease surveillance may be most effective when combined with

baseline biodiversity surveys in high-risk areas of disease emergence. In Chapter 3, I

showed that through the sequencing of DNA present in environmental samples, we have

the potential to simultaneously track the distributions of diverse sets of taxa, including

currently recognized parasites, and those that may infect novel hosts in the future.

As we continue to build inventories of diseases that can infect both wild and domesti-

cated animals, we may wish to direct research towards those parasites more likely to cause

severe disease burdens. In Chapter 4, I found that domesticated animals are more likely
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to die from diseases that also infect distantly related hosts. While the exact mechanisms

underlying this pattern are unknown, these results indicate that evolutionary relationships

among hosts can act as a proxy for disease outcomes, and thus help prioritize research and

surveillance efforts towards parasites with greater potential to cause lethal or debilitating

infections. The majority of the diseases examined in Chapter 4 have the ability to infect

both domestic and wild species, and in some cases are responsible for severe declines

in wild populations. The encroachment of humans and domesticated animals into wild

habitats facilitates the spread of these diseases and may act in synergy to push wild species

towards extinction. This in turn can result in the extinction of parasites that depend on

them. In Chapter 5, I found that endangered ungulates are associated with fewer multi-

host parasites compared to non-endangered ungulates. While the small population sizes

typical of many endangered species may provide some shelter from contact with diseases

harboured by domesticated animals, the extinction of co-evolved parasites may create

open niches and increase the impact of diseases that are able to reach these rare species.

Host extinction may also result in a narrowing of host specificity, or expansion through

adaptation to alternate hosts, each having knock-on impacts on the evolution of virulence.

To better understand these risks, we must expand our knowledge and understanding of

diseases that infect wild species.

The results and methods presented in this thesis narrow some of the knowledge gaps

described in the general introduction, and provide approaches that may be put into prac-

tice to support current disease surveillance efforts. Through an iterative process of link

prediction, literature compilation, and field based surveys (as outlined in Chapters 2 &

3), we can more efficiently build the databases that are necessary to develop broad-scale

theories of the ecology and evolution of infectious diseases and for guiding proactive

surveillance (such as Chapters 4 & 5). The merger of pure and applied research is also

vital for the development of healthy landscape management strategies, fostering sustainable

livelihoods, and implementation of cost-effective programs for disease control (Fish et al.,
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2011; Lebov et al., 2017). Due to the interdisciplinary nature of this approach and the

need to integrate data across multiple spatial, temporal, and taxonomic scales, the task

will require collaboration from multiple domains. Through the dissolution of disciplinary

boundaries we have the ability to generate a holistic understanding of the mechanisms

underlying disease emergence, and ultimately prevent excessive burdens of disease around

the globe.

Using the most comprehensive host-parasite interaction databases available for mam-

mals, I showed that there are still missing interactions that have some published documen-

tation in the literature (Chapter 2). The link prediction model I implement (Elmasri et al.,

2017) demonstrates how our knowledge of host-parasite interactions could be efficiently

expanded by targeted literature searches. However, I identified a number of interactions that

were highly likely, but for which I could not find any published evidence of infection. Some

are due to geographic or ecological mismatch, indicating that contemporary infections are

unlikely. Extensions of the model could include geographic or trait dissimilarities among

hosts – or parasites – in addition to phylogenetic relatedness. In addition to these predicted

but ecologically unlikely links, I also identified links among hosts and parasites with

overlapping ranges and ecologies that would facilitate infection. For these links, it may

be possible to generate a “most wanted list” which could be disseminated to veterinary and

public health offices around the world, potentially in conjunction with existing platforms

such as the Program for Monitoring Emerging Diseases (ProMED-Mail – an internet-based

reporting system for infectious disease outbreaks) (Morse et al., 2012), or more recently

developed approaches for digital-based emerging disease surveillance (Olson et al., 2015).

Considering that evidence of many of the top links in Chapter 2 were found in older

articles or more obscure journals, there likely exists a wealth of information collected by

conservation practitioners and national veterinary laboratories that is well known locally,

but does not make it into peer reviewed academic literature. In addition, there may be

opportunities to target the investigation of particular diseases in coordination with local
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organizations or ongoing efforts such as the USAID PREDICT program, which aims to

build global capacity for infectious disease surveillance across species at the animal-human

interface (Morse et al., 2012). Obtained samples could be sent to centralized facilities for

expert taxonomic or molecular identification (Fonjungo et al., 2017), and integrated into a

global real-time genomics-based surveillance system (Gardy and Loman, 2018).

One approach to develop this program would be to initiate DNA-based monitoring

in collaboration with disease ecologists and veterinarians in conservation areas. The field

work conducted in the Kruger National Park as part of my third chapter is one example of

a highly collaborative effort that brought together genomics experts, veterinarians, and

ecologists to develop a biodiversity monitoring program. This marked the first explo-

ration of bacterial diversity in watering holes throughout the park, and is one of the few

metagenomic studies of freshwater systems in Africa. We showed that it is possible to

sequence DNA present in watering holes, however the majority of sequences could not

be identified to the species level. This is common for microbial DNA in environmental

samples (Solden et al., 2016), but also illustrates the potential for environmental DNA

to be used for both biodiversity censuses and disease surveillance when target organisms

might not be known. These sequences could be merged with efforts to create a real-time

genomics-based global disease surveillance system (Gardy and Loman, 2018). A useful

extension of this framework would be to sequence additional genetic markers to identify

vertebrates and known disease vectors from the same samples. Through repeated spatial

and temporal sampling it may be able to use the method of Elmasri et al. (2017) or other

hierarchical network models (e.g. Ovaskainen et al. (2017)) to build more complete species

association networks and infer potential host-parasite interactions.

Filling gaps in our current knowledge of host specificity provides critical primary data

for understanding and modelling multi-host multi-parasite disease dynamics (Rigaud et al.,

2010; Buhnerkempe et al., 2015). In some cases this information may be directly useful for

disease prevention, such as the identification of novel reservoir hosts for neglected diseases,
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but these data also play a fundamental role in generating and testing hypotheses about the

ecology and evolution of infectious diseases (Stephens et al., 2016). Chapters 4 and 5

used published data to test ecological theories and identify broad scale patterns across

multiple host-parasite systems. These studies contribute novel insights to the existing

literature on parasite virulence and coextinction, however they also lead to new questions.

Some questions may be answered with existing data, while others may require the building

of novel databases. For example, for the majority of host-parasite interactions we have

some evidence of exposure or infection that results in apparent clinical symptoms, but

often we lack more specific information about the nature of the infection (Bisson et al.,

2015). In many cases we do not know if a host is necessary for successful transmission,

or is merely an accidental or spillover host that plays little role in the epidemiology of

the disease (Buhnerkempe et al., 2015). Similarly, we often do not have data on the

specific site of infection, induced pathologies, or how host physiology and behaviour may

be modified by infection (Stephens et al., 2016). Undoubtedly these not only play a role in

the cross-species transmission of diseases, but may also constrain or facilitate the evolution

of parasite host specificity. Finally, we are often missing phylogenies and even basic trait

data for the vast majority of parasitic organisms (Stephens et al., 2017). By gathering these

data we may be able to adopt more trait-based approaches to the study of host-parasite

interactions, and explore co-phylogenetic patterns to shed light on the evolution of complex

disease systems (Sweet et al., 2018).

Finally, I emphasize the importance of research that builds ecological theory in an

applied context. While recent disease emergence events have provided new insights into

the ecology of infectious diseases, it is important to remember that full burden of infectious

diseases is unknown (Halliday et al., 2012). This is largely due to a lack of infrastructure

for diagnosing and reporting of diseases in the world’s lowest resource areas (Perry and

Grace, 2009; Chan et al., 2010; Halliday et al., 2017). In these areas, human population

densities and demand for livestock are expanding at unprecedented rates (Perry et al.,
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2011). This enormous increase in livestock production will inevitably increase contact

rates among livestock and wildlife as agricultural lands expand into previously undeveloped

territories (Perry et al., 2011; Jones et al., 2013). Increasing contact among previously

isolated populations can contribute to disease emergence through parasites switching to

novel hosts (Charleston and Robertson, 2002; Parrish et al., 2008; Faust et al., 2018). A

holistic view of health that incorporates humans, animals, and ecosystems has come to

the forefront of public health initiatives over the last twenty years (Lebov et al., 2017).

One overarching theme that is integral to the study of emerging infections disease is the

need for interdisciplinary research. I have been lucky to develop projects with fantastic

collaborators, and by moving between disciplines I have been able to learn a little about a

great diversity of topics. Interdisciplinary work is central to innovation and necessary for

tackling complex problems. None of the research presented in this thesis would have been

possible without the support of experts willing to learn new vocabularies and explain their

work to those outside of their disciplines.
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Appendix
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6.1 Chapter 2 Supplementary Data and Results

Top predicted links and literature search results

Affinity only – Full Dataset

Host Parasite

Homo sapiens Taenia mustelae

Homo sapiens Bluetongue virus

Homo sapiens Bovine viral diarrhea virus 1

Homo sapiens Neospora caninum

Homo sapiens Mastophorus muris

Homo sapiens Plagiorchis vespertilionis

Homo sapiens Alaria alata

Homo sapiens Carnivore protoparvovirus 1

Homo sapiens Taenia pisiformis

Homo sapiens Physocephalus sexalatus

Table 6–1: Top 10 undocumented links with highest probablity of interaction (Affinity
only model - full data set)

• A recent molecular phylogeny of the Taenia genus supported the creation of a new genus and

renaming of Taenia mustelae to Versteria mustelae (Nakao et al., 2013). Since then there has

been a report of fatal infection of a previously unknown Versteria species in a captive orangutan

Pongo pygmaeus cloesly related to species found in wild mustelids, suggesting the need for

increased vigilance of Versteria infections in humans (Lee et al., 2016).

• While bluetongue virus is known to infect a wide range of ruminants, it is not currently consid-

ered to infect humans (Spickler, 2015).

• Bovine viral diarrhea viruses are not considered to be human pathogens, but there is some concern

about zoonotic potential as they are highly mutable, have the ability to replicate in human cell

lines, and have been isolated from humans on rare occasions (Walz et al., 2010).

• Although antibodies to Neospora caninum have been reported in humans, the parasite has not

been identified in human tissues and the zoonotic potential is not known (Dubey et al., 2007).
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• While natural infections of Plagiorchis species in humans are rare, the first case of human

infection by the bat parasite Plagiorchis vespertilionis was reported in 2007 (Guk et al., 2007).

The source of infection is uncertain, it has been suggested that freshwater fish and snails may be

undocumented intermediate hosts and infection was due to ingestion of raw freshwater fish.

• Mastophorus muris is a rodent-specific nematode that requires arthropods as intermediate hosts

and while this makes it unlikely to infect humans, it was recently documented in an urban

population of rats in the UK (Mcgarry et al., 2015), indicating the potential for human exposure.

• Alaria alata, an intestinal parasite of wild canids, has not been identified in humans, but is

considered a potential zoonotic risk as other Alaria species have been reported to cause fatal

illness in humans (Murphy et al., 2012).

• Carnivore protoparvovirus can infect a number of hosts in the order Carnivora (Balboni et al.,

2018), though there seems to be no evidence of human infection.

• Due to the characteristics of the biological cycle of Tenia pisiformis and the observation that it

is innocuous in humans, this parasite has been used as a model for the study of other important

zoonosis relevant to human health including T. solium (Betancourt-Alonso et al., 2011).

• The definitive hosts of Physocephalus sexalatus are commonly wild and domestic pigs, but it is

sometimes found in other mammals and some reptiles (McAllister et al., 2004). However the

parasite uses beetles as an intermediate host, which makes human infection unlikely.
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Affinity only – Full Dataset – Domestic Hosts

Host Parasite

Bos taurus Trypanosoma cruzi

Bos taurus Hymenolepis diminuta

Rattus norvegicus Rabies lyssavirus

Bos taurus Mesocestoides lineatus

Bos taurus Capillaria hepatica

Bos taurus St louis encephalitis virus

Bos taurus Canine distemper virus

Bos taurus Anisakis simplex

Bos taurus Taenia mustelae

Ovis aries Trypanosoma cruzi

Table 6–2: Top 10 undocumented links with highest probablity of interaction for
domesticated species (Affinity only model - full data set)

• Currently the role of cattle in the epidemiology of Chagas disease (caused by Trypanosoma cruzi)

is unknown, though the majority of cattle in Latin America may be exposed (280 million heads;

1/4 of the world population) (Giangaspero, 2017). Browne et al. (2017) report that 177 species

have been documented as susceptible to infection by T. cruzi, with domestic hosts in some cases

being responsible for the maintenance of local parasite populations over long periods of time.

While cattle have tested positive in serological studies, cows and other domestic species are also

infected by Trypanosoma and Phytomonas species which can cause cross-reactions in diagnostic

tests (Gürtler and Cardinal, 2015).

• The natural hosts of Hymenolepis diminuta are rats and cattle have not been found to be suscep-

tible to infection, however H. diminuta eggs have been found in the feces of dairy cattle, likely

the result of ingesting forage contaminated with rodent feces (Huang et al., 2014).

• Rabies has an extremely large host range and surprisingly rats are rarely reported as suffering

from rabies, though there have been a few reported cases rabid Rattus norvegicus in the United

States (Fitzpatrick et al., 2014).
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• Mesocestoides lineatus has a three-stage lifecycle with two intermediate hosts and a large range

of carnivorous mammals as definitive hosts (Cho et al., 2013). Human infections of the tapeworm

Mesocestoides lineatus are rare but can occur through the consumption of chickens, snails,

snakes, or frogs (Ito and Budke, 2014) and therefore it is unlikely that cows will consume to

the intermediate life stages of this parasite.

• Capillaria hepatica (syn. Calodium hepaticum), is a globally distributed zoonotic parasite which

uses rodents as main hosts, but is known to cause infection in over 180 mammalian species,

including cattle (Fuehrer, 2014).

• Birds are the primary vertebrate hosts for St. Louis encephalitis virus, though amplification by

certain mammals has been suggested (Kopp et al., 2013). There is some serological evidence of

infection in domestic mammals, including cattle (Diaz et al., 2006). The common vector Culex

nigripalpus feeds primarily on birds, but shows a seasonal shift from avian hosts in the spring

to mammalian hosts in the summer, indicating it may be able to act as a bridging vector among

different host species (Kopp et al., 2013).

• Canine distemper virus infects a wide range of hosts within the order Carnivora, but has also

been found to cause fatal infection in some non-human primates and peccaries (Beineke et al.,

2015).

• Anisakis simplex uses cetaceans as final hosts, with marine invertebrates and fish as intermediate

hosts (Buchmann and Mehrdana, 2016). Whales are infected by ingesting that cattle may be

susceptible, though they would need sufficient exposure to marine based feed.

• Ovis aries is reported to be infected by Trypanosoma cruzi (Browne et al., 2017).

114



Affinity only – Full Dataset – Wild Hosts

Host Parasite

Cervus elaphus Rabies lyssavirus

Ondatra zibethicus Rabies lyssavirus

Capreolus capreolus Rabies lyssavirus

Sorex araneus Rabies lyssavirus

Apodemus sylvaticus Rabies lyssavirus

Odocoileus virginianus Rabies lyssavirus

Pan troglodytes Rabies lyssavirus

Syncerus caffer Rabies lyssavirus

Dama dama Rabies lyssavirus

Microtus arvalis Rabies lyssavirus

Table 6–3: Top 10 undocumented links with highest probablity of interaction for wild
host species (Affinity only model - full data set)

• For the affinity only model run on the full dataset, all of the top ten interactions involve rabies,

which is unsurprising as rabies is commonly said to be capable of infecting all mammal species

(Mollentze et al., 2014) and is the parasite with the largest number of documented hosts in

the database (176). Of these ten most likely hosts, we found evidence of rabies infection in

eight (Cervus elaphus and Odocoileus virginianus (Birhane et al., 2017), Ondatra zibethicus

(World Health Organization, 1983), Capreolus capreolus (Sempere et al., 1996), Pan troglodytes

(Gautret et al., 2014), Apodemus sylvaticus (Steck and Wandeler, 1980), Dama dama (Zhu et al.,

2015), and successful experimental infection of Microtus arvalis (Schindler, 1957)).
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Phylogeny only – Full Dataset

Host Parasite

Vulpes ferrilata Rabies lyssavirus

Vulpes rueppellii Rabies lyssavirus

Vulpes macrotis Rabies lyssavirus

Lycalopex culpaeus Rabies lyssavirus

Lycalopex fulvipes Rabies lyssavirus

Lycalopex griseus Rabies lyssavirus

Lycalopex gymnocercus Rabies lyssavirus

Cuon alpinus Rabies lyssavirus

Speothos venaticus Rabies lyssavirus

Holochilus chacarius Schistosoma mansoni

Table 6–4: Top 10 undocumented links with highest probablity of interaction (Phylogeny
only model - full data set)

• Domestic dogs are considered a major predation threat to the Tibetan fox (Vulpes ferrilata) (Wang

et al., 2007), and rabies is confirmed to circulate in wild and domestic animals in Tibet (Tao et al.,

2015).

• We did not find any record of rabies infecting Vulpes rueppellii, but this should be investigated

as this disease is known to cause severe declines in wild canids (Fleming et al., 2017).

• Rabies has been documented to infect the endangered San Joaquin kit fox (Vulpes macrotis

mutica) and is suggested to have caused a catastrophic decline of the species in the 1990s (White

et al., 2000).

• Domestic dogs alter the ecology of Andean foxes (Lycalopex culpaeus), have been observed

hunting them, and are at risk of disease transmission from dogs (Zapata-Rı́os and Branch, 2016).

• Diseases from domestic dogs (largely canine distemper) is considered a major threat to the

endangered Lycalopex fulvipes (Silva-Rodrı́guez et al., 2016), indicating that rabies may also

pose a risk.
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• There is one report of serological evidence of rabies in Lycalopex griseus in Chile in 1989 (Juan,

1989) (reported as Pseudalopex griseus, a formerly accepted name (Wilson and Reeder, 2005)).

• We did not find evidence of rabies infection in Lycalopex gymnocercus, however its distribution

overlaps with species known to be important in the transmission of rabies in Brazil (Carnieli

et al., 2008).

• The endangered Dhole (Cuon alpinus) is known to suffer from rabies and was a source of fatal

human infections during an outbreak in the 1940s (Durbin et al., 2005).

• Rabies has been reported as potentially infecting Speothos venaticus (DeMatteo, 2008) and there

is a report of an individual with positive serology (Jorge et al., 2010).

• We could not find evidence of Schistosoma mansoni infection in Holochilus chacarius. Congener

Holochilus braziliensis was experimentally shown to be a viable host, although infection resulted

in host death (Borda and Rea, 2006).
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Phylogeny only – Full Dataset – Domestic Hosts

Host Parasite

Bison bison Rabies lyssavirus

Bos grunniens Rabies lyssavirus

Bos frontalis Rabies lyssavirus

Bos javanicus Rabies lyssavirus

Vicugna vicugna Rabies lyssavirus

Rattus rattus Rabies lyssavirus

Rattus norvegicus Rabies lyssavirus

Cavia porcellus Rabies lyssavirus

Oryctolagus cuniculus Rabies lyssavirus

Bos grunniens Toxoplasma gondii

Table 6–5: Top 10 undocumented links with highest probablity of interaction for
domesticated species (Phylogeny only model - full data set)

• Rabies in Bison bison is considered rare, but there are multiple cases reported (Stoltenow et al.,

2000).

• Rabies has been reported to infect yak (Bos grunniens) in Nepal (Joshi, 1982).

• We could not find evidence of rabies infection in Bos frontalis, but as this is a semi-wild and

endangered species (Mei et al., 2016) and other Bos species are susceptible, the disease may

pose a conservation risk. This may also be the case for the endangered Bos javanicus.

• We did not find a specific report of rabies infection in Vicugna vicugna, although all South

American camelids are noted to be susceptible and display clinical signs of infection (Fowler,

1996).

• There are documented cases of rabies infecting Rattus rattus (ex. Carey and Mclean (1983)),

though it appears to be rare.

• Rabies in Rattus norvegicus was predicted by the affinity only model with the full dataset for

domestic hosts.
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• Pet guinea pigs Cavia porcellus have been infected with rabies after being bitten by a raccoon

(Eidson et al., 2005).

• There are reported cases of rabid Oryctolagus cuniculus in the United States (Fitzpatrick et al.,

2014).

• Toxoplasma gondii is known to infect Bos grunniens and cause severe economic losses (Li et al.,

2014).
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Phylogeny only – Full Dataset – Wild Hosts

Host Parasite

Vulpes ferrilata Rabies lyssavirus

Vulpes rueppellii Rabies lyssavirus

Vulpes macrotis Rabies lyssavirus

Lycalopex culpaeus Rabies lyssavirus

Lycalopex fulvipes Rabies lyssavirus

Lycalopex griseus Rabies lyssavirus

Lycalopex gymnocercus Rabies lyssavirus

Cuon alpinus Rabies lyssavirus

Speothos venaticus Rabies lyssavirus

Holochilus chacarius Schistosoma mansoni

Table 6–6: Top 10 undocumented links with highest probablity of interaction for wild
host species (Phylogeny only model - full data set)

• These predictions are the same as for the phylogeny only model on the full dataset (all wild host

species in the top 10 links).
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Full model – Full Dataset

Host Parasite

Homo sapiens Taenia mustelae

Homo sapiens Bluetongue virus

Homo sapiens Bovine viral diarrhea virus 1

Homo sapiens Neospora caninum

Homo sapiens Mastophorus muris

Homo sapiens Simian immunodeficiency virus

Homo sapiens Plagiorchis vespertilionis

Homo sapiens Alaria alata

Bos taurus Trypanosoma cruzi

Homo sapiens Carnivore protoparvovirus 1

Table 6–7: Top 10 undocumented links with highest probablity of interaction (Full model
- full data set)

• All of the top links were previously discussed except for human infection with simian immun-

odeficiency virus (SIV). Notably SIV strains of wild primates have infected humans and are

responsible for the AIDS pandemic (from HIV-1) (Van Heuverswyn et al., 2006). While HIV

and SIV are now considered different species, SIV is clearly a risk for human populations.
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Full model – Full Dataset – Domestic Hosts

Host Parasite

Bos taurus Trypanosoma cruzi

Rattus norvegicus Rabies lyssavirus

Bos taurus Hymenolepis diminuta

Bos taurus Capillaria hepatica

Bos taurus Anisakis simplex

Bos taurus Mesocestoides lineatus

Bos taurus St louis encephalitis virus

Bos taurus Canine distemper virus

Bos taurus Taenia mustelae

Ovis aries Trypanosoma cruzi

Table 6–8: Top 10 undocumented links with highest probablity of interaction for
domesticated species (Full model - full data set)

• These links have already been predicted in models discussed above.
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Full model – Full Dataset – Wild Hosts

Host Parasite

Cervus elaphus Rabies lyssavirus

Capreolus capreolus Rabies lyssavirus

Sorex araneus Rabies lyssavirus

Ondatra zibethicus Rabies lyssavirus

Apodemus sylvaticus Rabies lyssavirus

Odocoileus virginianus Rabies lyssavirus

Dama dama Rabies lyssavirus

Apodemus agrarius Rabies lyssavirus

Syncerus caffer Rabies lyssavirus

Microtus arvalis Rabies lyssavirus

Table 6–9: Top 10 undocumented links with highest probablity of interaction for wild
host species (Full model - full data set)

• All links were predicted by models discussed above except for rabies infection in Apodemus

agrarius, which was documented in China in 2009 (Wang et al., 2014).
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Arthropods – Phylogeny only

Host Parasite

Canis adustus Sarcoptes scabiei

Lycalopex fulvipes Sarcoptes scabiei

Lycalopex vetulus Sarcoptes scabiei

Cerdocyon thous Sarcoptes scabiei

Chrysocyon brachyurus Sarcoptes scabiei

Cuon alpinus Sarcoptes scabiei

Speothos venaticus Sarcoptes scabiei

Vulpes lagopus Pulex irritans

Ovis ammon Sarcoptes scabiei

Vulpes lagopus Sarcoptes scabiei

Table 6–10: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Arthropod subset)

• Bornstein et al. (2002) compiled a list of documented host species of sarcoptic mange (caused

by Sarcoptes scabiei) which includes Cerdocyon thous and Vulpes lagopus (reported as Alopex

lagopus, a common synonym).

• There does not appear to be a published record of sarcoptic mange in Canis adustus, however

in areas with sympatric jackal species C. adustus usually display ecological segregation through

preferring denser vegetation (Loveridge and Macdonald, 2003). This may indicate that while

C. adustus may be susceptible to sarcoptic mange, differences in the ecologies of this species

relative to other canids may limit transmission making overt infections difficult to document.

• Lycalopex fulvipes is endangered (Silva-Rodrı́guez et al., 2016), meaning that its small pop-

ulation sizes and restricted geographic range may reduce exposure to S. scabiei, however as

sarcoptic mange is implicated in the declines of other wild canids, it should be targeted in disease

monitoring programs for this species.

• While Lycalopex vetulus is not endangered, it displays some adaptability to anthropogenic dis-

turbance (Dalponte and Courtenay, 2008), which may expose it to sarcoptic mange through
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contact with domestic dogs. In addition, Lycalopex vetulus is sympatric with the crab eating

fox (Cerdocyon thous) – a documented host of S. scabiei (Bornstein et al., 2002). The IUCN

reports a gap in conservation actions for L. vetulus regarding the role of disease in population

regulation, and their status as reservoirs of scabies, canine distemper, leishmaniasis, and rabies

(Dalponte and Courtenay, 2008).

• Chrysocyon branchyurus has one report of clinical signs suggestive of sarcoptic mange-like

infestation (Luque et al., 2014).

• The endangered Dhole (Cuon alpinus) has been documented as suffering from mange as early

as 1937 (Durbin et al., 2005) and appear to be especially susceptible to disease outbreaks due to

their large group sizes and amicable behaviour within packs.

• S. scabei was identified in Speothos venaticus (Jorge et al., 2008), and identified as potentially

contributing to the loss of individuals from a group in Mato Grosso, Brazil (de Souza Lima et al.,

2012).

• While the Arctic fox (Vulpes lagopus) is considered the most important terrestrial game species in

the Arctic (Angerbjörn and Tannerfeldt, 2014), I cannot find documented infection by the “human

flea” (Pulex irritans). P. irritans is thought to be unable to persist in Arctic envrionments due

to the lack of artificial warmth necessary for breeding (Buckland and Sadler, 1989), though this

may change in the future with continued Arctic warming.

• I cannot find a record of mange in Ovis ammon, though outbreaks of sarcoptic mange have been

documented in ibex and blue sheep in the Taxkorgan Reserve, China, in which O. ammon are

also present, although this population has received little study (Schaller and Kang, 2008).
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Arthropods – Full model

Host Parasite

Cervus elaphus Rhipicephalus evertsi

Taurotragus oryx Sarcoptes scabiei

Vulpes vulpes Rhipicephalus evertsi

Sus scrofa Rhipicephalus evertsi

Cervus nippon Sarcoptes scabiei

Odocoileus virginianus Sarcoptes scabiei

Vulpes vulpes Rhipicephalus appendiculatus

Sus scrofa Rhipicephalus appendiculatus

Cervus elaphus Rhipicephalus appendiculatus

Cerdocyon thous Sarcoptes scabiei

Table 6–11: Top 10 undocumented links with highest probablity of interaction (Full
model - Arthropod subset)

• Rhipicephalus evertsi and R. appendiculatus are common ticks in East and Southern Africa

(Jongejan and Uilenberg, 1994) and are unlikely to interact with non-African hosts such as

Cervus elaphus and Vulpes vulpes (though there are some populations of Vulpes vulpes in North

Africa). Future iterations of the link prediction model by Elmasri et al. (2017) may benefit

from the inclusion of information on geographic range overlap among host species, however this

may reduce the ability to identify future host-parasite associations that may occur given range

expansions or species translocations.

• R. appendiculatus was found to be the most prevalent tick species on domestic pigs in the Busia

District of Kenya (Kagira et al., 2013), indicating that increased monitoring may also identify R.

evertsi on domestic pigs.

• Sarcoptes scabiei has been documented in captive Taurotragus oryx in Israel (Bornstein et al.,

2002).

• Sarcoptes scabiei has been documented to infect Cervus nippon in Japan (Chen et al., 2012).
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• While multiple cervids have been reported with sarcoptic mange (Bornstein et al., 2002), we

cannot find any report of infection in white-tailed deer Odocoileus virginianus, although there

are numerous reports of infection with mange caused by Demodex sp., including the host specific

Demodex odocoilei (Nemeth et al., 2014), potentially indicating competition among Sarcoptes

and Demodex species.

• Cerdocyon thous found to have sarcoptic mange (Bornstein et al., 2002), which was also in the

top ten predictions made by the phylogeny only model for the arthropod subset.
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Bacteria – Phylogeny only model

Host Parasite

Canis aureus Leptospira interrogans

Canis mesomelas Leptospira interrogans

Canis mesomelas Anaplasma phagocytophilum

Lycaon pictus Leptospira interrogans

Saguinus geoffroyi Escherichia coli

Equus burchellii Escherichia coli

Equus zebra Escherichia coli

Vulpes lagopus Leptospira interrogans

Vulpes velox Leptospira interrogans

Equus zebra Leptospira interrogans

Table 6–12: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Bacteria subset)

• Leptospira sp. are commonly regarded as infecting a wide range of mammals (Siembieda et al.,

2011). van der Hoeden (1955) identified Leptospira interrogans serovar canicola in the urine

of jackals in Israel though did not identify the particular species. However, Canis aureus is the

only jackal species present in the country (Dayan et al., 1992) providing some support for this

host-parasite association, though the findings of van der Hoeden (1955) should be verified.

• We did not find any documentation of leptospirosis in Canis mesomelas or Lycaon pictus but

considering it is found in multiple species in Africa including domestic dogs (Allan et al., 2015),

wild canids are likely to be exposed.

• Penzhorn et al. (2018) sequenced DNA from blood samples of Canis mesomelas in South Africa

and identified 16S rDNA sequences very similar to Anaplasma phagocytophilum. This study also

identified other Anaplasma species indicating the potential for 16S rDNA sequencing to gather

evidence of predicted host-parasite and discover previously unknown pathogens.
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• E. coli is ubiquitous commensal microbe of vertebrates (Tenaillon et al., 2010) and pathogenicitiy

is linked to particular strains, indicating that our approach may be expanded by identifying the

host ranges of particular subspecies or virulent strains of common commensal bacteria.

• We did not find any evidence of Leptospira infections in Vulpes lagopus. We did find one report

of positive serology for Leptospira interrogans in Vulpes velox macrotis (Standley and McCue,

Standley and McCue), though there is debate as to whether this subspecies is actually its own

species Vulpes macrotis (Wilson and Reeder, 2005).

• We did not find evidence of Leptospira interrogans in Equus Zebra although one study reported a

low prevalence of Leptospira antibodies in Equus burchellii in Zimbabwe (Anderson and Rowe,

1998).
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Bacteria – Full model

Host Parasite

Homo sapiens Bartonella grahamii

Homo sapiens Anaplasma bovis

Homo sapiens Anaplasma marginale

Homo sapiens Mycoplasma haemofelis

Homo sapiens Mycoplasma mycoides

Canis lupus Yersinia enterocolitica

Homo sapiens Chlamydophila pecorum

Ovis aries Mycobacterium bovis

Homo sapiens Lawsonia intracellularis

Homo sapiens Mycoplasma conjunctivae

Table 6–13: Top 10 undocumented links with highest probablity of interaction (Full
model - Bacteria subset)

• Bartonella grahamii is a pathogen of rodents worldwide, but was first identified as causing an

infection in an immunocompromised human in 2013 (Oksi et al., 2013).

• Anaplasma bovis, causal agent of bovine anaplasmosis, is not currently considered zoonotic

(Rar and Golovljova, 2011), but Anaplasma phagocytophilum the causative agent of human

anaplasmosis placed is as sister taxa to A. bovis in a recent phylogeny (Yang et al., 2017).

Similarly, A. marginale, the causative agent of anaplasmosis in cattle, is also not considered

zoonotic, but it reaches high prevalence in cattle and humans are likely exposed to the tick vector

(Rar and Golovljova, 2011).

• There has been one documented case of infection in an immunocompromised human with a

Mycoplasma haemofelis-like bacteria (dos Santos et al., 2008) and the authors note that disease-

causing latent mycoplasma infections in immunocompromised and non-immunocompromised

patients are an emerging issue.
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• While there is some debate whether sheep are relatively immune or highly susceptible to in-

fection by Mycobacterium bovis, spillover infections can occur when animals are exposed to

contaminated pasture (Cousins, 2001).

• Mycoplasma mycoides is not typically thought to infect humans, but there is one report of disease

and positive serology in a farm worker exposed to multiple calves infected with M. mycoides

subsp. mycoides LC (Gonçalves, 2007).

• Pathogenic strains of Yersinia enterocolitica, the main cause of yersiniosis in Europe and one of

the five main bacterial gastrointestinal diseases of humans, were found in the feces of dogs from

several European countries (Stamm et al., 2013).

• The zoonotic potential of Chlamydophila pecorum is not known, although it is associated with

abortions in small ruminants and related Chlamydophila psittaci is a known zoonotic disease

from birds (Barati et al., 2017).

• Mycobacterium bovis is known to cause infection in goats as a result of contact with infected

cattle, although the importance of the disease varies across countries and production systems

(Cousins, 2001).

• Lawsonia intracellularis was recently recognised as the cause of an emerging intestinal disease in

horses (Equine proliferative enteropathy), but is currently not considered to be zoonotic (Pusterla

and Gebhart, 2009).

• Mycoplasma conjunctivae causes a highly contagious ocular infection of sheep, goats, and wild

Caprinae, and is possibly zoonotic as it has been associated with eye inflammation in young

children (Lysnyansky et al., 2007).
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Fungi – Phylogeny only

Host Parasite

Macaca sylvanus Pneumocystis carinii

Felis silvestris Pneumocystis carinii

Ateles paniscus Pneumocystis carinii

Mustela lutreola Pneumocystis carinii

Pan troglodytes Pneumocystis carinii

Gorilla beringei Pneumocystis carinii

Mustela erminea Pneumocystis carinii

Ovis canadensis Pneumocystis carinii

Nyctereutes procyonoides Pneumocystis carinii

Rattus rattus Pneumocystis carinii

Table 6–14: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Fungi subset)

• Pneumocystis carinii belongs to a genus that normally reside in the pulmonary parenchyma

of a wide range of mammals (Danesi et al., 2016). It is capable of causing life threatening

pneumonia in immunocompromised hosts is documented as causing natural infections in Rattus

rattus (Palmer et al., 2000) as well as species in the genera Macaca and Mustela (Laakkonen,

1998).
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Fungi – Full model

Host Parasite

Homo sapiens Geomyces destructans

Homo sapiens Chrysosporium parvum

Homo sapiens Neocallimastix frontalis

Bos taurus Pneumocystis carinii

Homo sapiens Pilobolus kleinii

Sus scrofa Pneumocystis carinii

Phascolarctos cinereus Pneumocystis carinii

Homo sapiens Chaetomidium arxii

Homo sapiens Trichophyton terrestre

Homo sapiens Entomophthora coronata

Table 6–15: Top 10 undocumented links with highest probablity of interaction (Full
model - Fungi subset)

• Geomyces destructans is the cause of white nose syndrome in multiple bat species (Warnecke

et al., 2012), but is not documented to be zoonotic.

• Chrysosporium parvum and related species are soil fungi that cause pulmonary infections in

rodents, fossorial mammals, their predators, and occasionally humans, though the taxonomy of

these pathogens is muddied in the literature (Anstead et al., 2012).

• Neocallimastix frontalis appears to be a commensal fungi of bovid rumens (Gleason and Marano,

2011) and we cannot find documentation of zoonotic infection.

• Pneumocystis carinii has been documented to infect cattle and pigs (Settnes and Henriksen,

1989).

• Pilobolus kleinii play a role in the decomposition of herbivore dung and although they are non-

pathogenic to herbivores, they can facilitate the spread of attached parasitic lungworms because

of their projectile dispersal system (Aluoch et al., 2017).

• We cannot find any documentation of Chaetomidium arxii infection in humans, although this

genus is well known for its opportunistic animal and human pathogens (Ma et al., 2018).
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• Trichophpyton terrestre is part of a large species complex with some variants documented to

cause human infection (Campbell et al., 2006).

• Entomophthora coronata is primarily a parasite of insects, but can cause sinus infections in

humans and was first reported in 1965 (Su et al., 1997).
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Helminths – Phylogeny only

Host Parasite

Holochilus chacarius Schistosoma mansoni

Onychogalea unguifera Echinococcus granulosus

Canis adustus Echinococcus granulosus

Gazella leptoceros Nematodirus spathiger

Kobus vardonii Cotylophoron cotylophorum

Onychogalea unguifera Rugopharynx australis

Lycalopex vetulus Echinococcus granulosus

Canis mesomelas Trichinella spiralis

Kobus vardonii Paramphistomum cervi

Gazella leptoceros Trichostrongylus vitrinus

Table 6–16: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Helminth subset)

• Schistosoma mansoni infection in Holochilus chacarius was predicted by the phylogeny only

model in the full dataset (discussed above).

• Echinococcus granulosus has not been reported to infect northern nail-tail wallabies (Onychogalea

unguifera), other wallaby species including endangered bridled nail-tailed wallaby (Onychogaela

fraenata) are involved in the transmission the parasite in Australia (Jenkins and Macpherson,

2003). Onychogaela unguifera may be also be involved in Echinococcosus transmission, but its

parasites may not be as well studied compared to the bridled nail-tail wallaby due to its stable

conservation status.

• Similarly, Rugopharynx australis is known to infect multiple wallaby species, however the diver-

sity of Rugopharynx and their susceptible hosts is still being discovered (Chilton et al., 2016),

suggesting that Onychogalea ungifera may be a promising target for future study.

• While there does not appear to be evidence of Echinococcosus granulosus infection in Canis

adustus, other Canis species in Africa are known hosts (Otero-Abad and Torgerson, 2013),

indicating that this should be a target for future surveillance.
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• A recent molecular survey of gastrointestinal parasites of wild ruminants in Tunisia identified

Nematodirus spathiger in engandered Gazella leptoceros that were genetically identical from

those found in other domestic and wild ruminants (Said et al., 2018). This is an example of a

successful exploratory study aimed at describing the diversity of parasites in threatened species.

• We did not find much information on the parasites of the near threatened Kobus vardonii, however

it is known to inhabit floodplains and grasslands near permanent water in south-central Africa

(IUCN SSC Antelope Specialist Group, 2016) where is likely to be exposed to Cotylophoron

cotylophoron, a “rumen fluke” which emerge from snails intermediate hosts and encyst on veg-

etation, later being ingested by ruminant definitive hosts in East Africa (Laidemitt et al., 2017).

Similarly, the related stomach fluke Paramphistomum cervi has been found in Kenya (Dinnik,

1951), though additional surveillance may identify a distribution overlapping with that of Kobus

vardonii in Zambia or Tanzania.

• Echinococcus granulosus is usually maintained by a domestic cycle of dogs eating raw livestock

offal (Otero-Abad and Torgerson, 2013), and while its vertebrate-eating congener Lycalopex

gymnocercus has been documented to host the parasite (Lucherini and Luengos Vidal, 2008),

Lycalopex vetulus is unlikely to become infected with E. granulosus as it has a largely insectivo-

rous diet (Dalponte, 2009).

• Canis mesomelas has been reported with infection of Trichinella spiralis in the Kruger National

Park, South Africa (Young and Kruger, 1967).

• Gazella leptoceros is also predicted to be susceptible to Trichostrongylus vitrinus. Although Said

et al. (2018) did not identify this parasite in their study, T. vitrinus has been documented in lambs

in Tunisia (Akkari et al., 2012), indicating potential range overlap with G. leptoceros.
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Helminths – Full model

Host Parasite

Homo sapiens Taenia mustelae

Bos taurus Hymenolepis diminuta

Homo sapiens Mastophorus muris

Ovis aries Hymenolepis diminuta

Bos taurus Anisakis simplex

Bos taurus Mesocestoides lineatus

Bos taurus Capillaria hepatica

Homo sapiens Plagiorchis vespertilionis

Ovis aries Echinococcus multilocularis

Bos taurus Taenia mustelae

Table 6–17: Top 10 undocumented links with highest probablity of interaction (Full
model - Helminth subset)

• We did not find any documented infections of sheep with Hymenolepis diminuta.

• Although the distribution, ecology, and epidemiology of Echinococcus multilocularis in North

America is still largely unknown, it does not appear to infect any ungulates as it is maintained in

a carnivore-rodent prey cycle (Massolo et al., 2014).

• The other top links were predicted in other models and discussed above.
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Protozoa – Phylogeny only

Host Parasite

Canis aureus Toxoplasma gondii

Saguinus oedipus Trypanosoma cruzi

Cuon alpinus Toxoplasma gondii

Lycaon pictus Toxoplasma gondii

Saimiri oerstedii Trypanosoma cruzi

Mazama gouazoubira Toxoplasma gondii

Nyctereutes procyonoides Toxoplasma gondii

Saguinus niger Trypanosoma cruzi

Capricornis swinhoei Toxoplasma gondii

Panthera tigris Toxoplasma gondii

Table 6–18: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Protozoa subset)

• Canis aureus with antibodies against T. gondii have been identified in captive animals in the

United Arab Emirates (Dubey et al., 2010).

• Two recent reviews of parasites in non-human primates find no documented infection of the

critically endangered Cotton-top tamarin (Saguinus oedipus) by Trypanosoma cruzi, although

multiple Saguinus sp. have been documented with infections (Strait et al., 2012; Solórzano-

Garcı́a and Pérez-Ponce de León, 2018). However, a 1982 study of Colombian monkeys and

marmosets identified S. oedipus as a host for T. cruzi for the first time (Marinkelle, 1982). This

highlights the potential conservation importance of this parasite for S. oedipus and the need for

periodic disease surveys of critically endangered species.

• Similarly, Saimiri oerstedii is not listed by these reviews as a host of T. cruzi, although a 1972

study identifies S. oerstedii as a reservoir for the parasite in Panama (Sousa, 1972). While this

report should be follwed up with contemporary diagnostic methods, this reiterates the difficulty of

exhaustively searching the literature for interaction data and the utility of link prediction methods

to for directing these efforts.
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• Toxoplasmoa gondii infection in Cuon alpinus has rarely been investigated, except for one captive

individual which tested negative in serological testing (Zhang et al., 2000).

• High prevalence of antibodies against Toxoplasma gondii was found in wild dogs (Lycaon pictus)

in the Kruger National Park, South Africa, and was documented as causing a fatal infection in

one pup (Van Heerden et al., 1995), indicating that this parasite has the potential to influence the

population dynamics of this endangered canid.

• T. gondii has been identified in Mazama gouanzoubira from French Guiana (Mercier et al., 2011)

and Nyctereutes procyonoides (Zhou et al., 2017) in China via genetic sequencing.

• Trypanosoma cruzi is known to infect Saguinus niger (Solórzano-Garcı́a and Pérez-Ponce de

León, 2018).

• We did not find any reports of T. gondii infection in Taiwan serow Capricornis swinhoei, although

direct evidence of infection has been found in Japanese serow (Sakae and Ishida, 2012) and T.

gondii has been found to infect multiple animals in Taiwan (Chen et al., 2015).

• The Siberian tiger Panthera tigris altaica acts as a definitive host for T. gondii and observed to

naturally shed oocysts (Elmore et al., 2010).

• Saguinus niger is documented to be infected by Trypanosoma cruzi (Solórzano-Garcı́a and Pérez-

Ponce de León, 2018).
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Protozoa – Full model

Host Parasite

Bos taurus Trypanosoma cruzi

Ovis aries Trypanosoma cruzi

Homo sapiens Neospora caninum

Pan troglodytes Toxoplasma gondii

Diceros bicornis Trypanosoma cruzi

Equus caballus Trypanosoma cruzi

Gorilla gorilla Toxoplasma gondii

Diceros bicornis Giardia intestinalis

Pan troglodytes Trypanosoma cruzi

Gorilla gorilla Trypanosoma cruzi

Table 6–19: Top 10 undocumented links with highest probablity of interaction (Full
model - Protozoa subset)

• Toxoplasma gondii has been documented to infect chimpanzees (Pan troglodytes), and interest-

ingly appears to mirror the behaviour induced in rodents and humans to infection, with infected

chimpanzees attracted to the urine of leopards, their only natural predator (Poirotte et al., 2016).

• Recent finding of a Gorilla gorilla individual seropositive for T. gondii at a primate center in

Gabon (Akue et al., 2018).

• T. cruzi was recently identified in Equus caballus, marking the first evidence of infection in

equids (Bryan et al., 2016).

• As T. cruzi is currently restricted to the Americas (Browne et al., 2017), it is unlikely to infect

black rhinos (Diceros bicornis) or gorillas (Gorilla gorilla) in natural conditions, unless exported

through human movement.

• Giardia has been identified in a captive bred Diceros bicornis calf (Wagner and Edwards, 1984)

in San Diego, indicating the potential for grey literature from zoo and captive breeding facilities

to inform potential host-parasite interactions.
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• Although T. cruzi naturally occurs in the Americas, and thus natural infection of chimpanzees

is unlikely, a fatal infection was documented in a captive individual in Texas (Bommineni et al.,

2009).

• The remaining links were predicted by models discussed above.
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Viruses – Phylogeny only

Host Parasite

Vulpes macrotis Rabies lyssavirus

Lycalopex culpaeus Rabies lyssavirus

Lycalopex griseus Rabies lyssavirus

Lycalopex gymnocercus Rabies lyssavirus

Myotis nattereri Rabies lyssavirus

Myotis blythii Rabies lyssavirus

Myotis myotis Rabies lyssavirus

Myotis macrodactylus Rabies lyssavirus

Myotis mystacinus Rabies lyssavirus

Myotis dasycneme Rabies lyssavirus

Table 6–20: Top 10 undocumented links with highest probablity of interaction (Phy-
logeny only model - Virus subset)

• The first four links were predicted by previous models and discussed above.

• Rabies has been isolated from a single Myotis nattereri individual in France (Picard-Meyer et al.,

2014).

• In 2017, an inidivual Myotis blythii from Croatia tested positive for antibodies against rabies

(Šimić et al., 2017).

• Rabies has been detected in Myotis myotis in a few European countries (Schatz et al., 2013).

• We did not find evidence of rabies infection in Myotis macrodactylus or Myotis mystacinus.

• Identification of rabies positive Myotis dasycneme in the Netherlands (Nieuwenhuijs et al., 1992).
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Viruses – Full model

Host Parasite

Mus musculus Crimean congo hemorrhagic fever nairovirus

Rattus tiomanicus Crimean congo hemorrhagic fever nairovirus

Gerbilliscus kempi Crimean congo hemorrhagic fever nairovirus

Lepus californicus Crimean congo hemorrhagic fever nairovirus

Oryx beisa Crimean congo hemorrhagic fever nairovirus

Oryx leucoryx Crimean congo hemorrhagic fever nairovirus

Hippotragus equinus Crimean congo hemorrhagic fever nairovirus

Alcelaphus lichtensteinii Crimean congo hemorrhagic fever nairovirus

Connochaetes gnou Crimean congo hemorrhagic fever nairovirus

Connochaetes taurinus Crimean congo hemorrhagic fever nairovirus

Table 6–21: Top 10 undocumented links with highest probablity of interaction (Full
model - Virus subset)

• A recent review of 50 years of seroepidemiological studies of Crimean-Congo hemorrhagic fever

virus in domestic and wild species found that a large number of bird and mammal species may be

infected (Spengler et al., 2016). This study found positive serology in Alcelaphus lichtenshetinii

(reported as Alcelaphus buselaphus, a synonym (Wilson and Reeder, 2005)). They also report

positive serology for species in the genera Rattus, Lepus, Oryx, and Hippotragus, although the

particular species identified by our model were not identified with positive serology.
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6.2 Chapter 3 Supplementary Data and Results

Table 6–22: Water quality measurements

Sample code Site Date Temp (◦C) mS/cm DO (%) DO (mg/L) pH

DLP 8 DLP July 10 15.27 3.11 83.37 39.67 9.16

GIR 1 GIR June 24 18.58 1.95 50.83 42.00 9.27

GIR 2 GIR July 1 21.85 1.80 74.47 41.00 9.24

GIR 3 GIR July 8 20.72 1.90 88.47 39.00 9.35

HOY 2 HOY June 22 17.59 3.18 14.53 43.43 8.14

HOY 3 HOY June 29 17.84 3.01 42.53 40.00 8.25

HOY 4 HOY July 6 16.83 2.96 39.27 35.90 8.39

IMB 2 IMB June 22 15.17 2.46 74.80 46.77 8.19

IMB 3 IMB June 29 16.07 2.43 45.23 40.67 8.16

IMB 4 IMB July 6 15.56 2.46 35.30 35.57 8.13

KWA 5 KWA June 19 19.20 1.80 154.90 55.30 9.92

KWA 6 KWA June 26 16.50 1.75 111.93 45.10 9.51

NGO 2 NGO June 24 14.97 0.48 111.23 44.10 9.44

NGO 3 NGO July 1 17.26 0.48 108.43 40.00 9.45

NGO 4 NGO July 8 18.22 0.51 94.50 40.33 9.21

NHL 2 NHL June 22 17.80 1.99 118.23 50.20 8.45

NHL 3 NHL June 29 25.52 1.97 134.97 49.87 8.08

NHL 4 NHL July 6 22.38 2.03 125.73 40.93 8.23

NWA 2 NWA June 26 16.14 0.90 106.67 44.77 9.77

NWA 3 NWA June 29 24.14 0.82 199.27 53.60 9.90

NWA 4 NWA June 30 18.91 0.90 124.63 44.43 9.66

NWA 5 NWA July 1 23.40 0.93 180.93 49.20 9.75

NWA 6 NWA July 2 18.65 0.91 114.90 41.00 9.66

NWA 7 NWA July 3 17.90 0.91 104.30 40.00 9.73

NWA 8 NWA July 10 18.06 0.87 68.53 37.27 9.24
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NYA 2 NYA June 24 14.92 0.52 54.90 39.67 8.64

NYA 3 NYA July 1 17.51 0.54 70.27 38.00 8.64

NYA 4 NYA July 8 18.30 0.55 76.93 37.63 8.82

WIT 2 WIT June 24 15.31 0.58 173.60 48.87 9.40

WIT 3 WIT July 1 18.94 0.58 139.73 43.73 9.11

WIT 4 WIT July 8 18.89 0.69 63.37 36.23 8.54
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Figure 6–1: Histogram of retained sequencing depth across samples.

Table 6–23: Read counts tracked through the DADA2 pipeline

Sample code Input Filtered Denoised Merged No Chimeras Final Count ASVs

BLANK 2 33813 24642 24642 22763 22468 22468 38

BLANK 3 20304 17219 17219 16166 16130 16130 14

DLP 8A 27355 26994 26994 22875 15843 15767 136

DLP 8A S 31978 30863 30863 25222 19664 19461 179

DLP 8A XS 38337 36972 36972 31551 27325 27087 274

DLP 8B 48282 40544 40544 34017 22401 22401 57
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DLP 8B S 28748 27713 27713 22625 17294 17119 176

DLP 8B XS 27466 26385 26385 22277 19193 19138 168

GIR 1A 17079 16649 16649 12463 8752 8658 146

GIR 1B 15040 14314 14314 10702 7928 7865 102

GIR 2A 19825 18985 18985 14444 10003 9974 179

GIR 2B 25000 23992 23992 18315 11595 11558 199

GIR 3A 19792 19024 19024 15107 10745 10479 111

GIR 3B 23759 22888 22888 18333 12489 12184 116

HOY 2A 33258 32209 32209 15900 13831 13831 83

HOY 2B 67589 61567 61567 55496 52321 52321 58

HOY 3A 13966 13303 13303 6637 5364 5364 38

HOY 3A S 31543 29962 29962 19154 15199 15152 128

HOY 3A XS 34251 32392 32392 20304 16688 16599 130

HOY 3B 46882 40568 40568 31787 25515 25470 87

HOY 3B S 14641 13727 13727 7053 5936 5908 24

HOY 3B XS 39784 37517 37517 23198 18706 18531 168

HOY 4A 21589 19517 19517 13064 10283 10278 192

HOY 4B 26018 23698 23698 15860 11959 11959 223

IMB 2A 25930 22856 22856 15788 13076 13076 149

IMB 2B 32851 29178 29178 21347 17355 17349 227

IMB 3A 28191 25483 25483 16789 12998 12998 231

IMB 3B 21749 18798 18798 11600 9444 9444 177

IMB 4A 33674 30905 30905 19937 15659 15659 151

IMB 4B 32822 30115 30115 18815 14584 14578 142

KWA 5A 46221 39502 39502 29959 25293 24740 88

KWA 5B 44409 38312 38312 28420 22721 22216 80

KWA 6A 15998 15708 15708 12820 10654 9660 94

KWA 6A S 21283 20439 20439 17043 15071 13822 98

KWA 6A XS 31733 30158 30158 25821 24649 20123 162
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KWA 6B 29050 24618 24618 17083 15058 12912 60

KWA 6B S 18791 18050 18050 15145 13585 11870 100

KWA 6B XS 44397 42687 42687 24822 24362 19676 63

NGO 2A 23500 22834 22834 18953 15565 10494 135

NGO 2B 34501 29490 29490 23297 20611 16238 72

NGO 3A 23725 23459 23459 19390 13459 8635 83

NGO 3A S 20459 19686 19686 15621 12597 10548 67

NGO 3A XS 25913 25002 25002 14069 13273 7472 28

NGO 3B 19885 16860 16860 11958 9884 6077 19

NGO 3B S 23204 22345 22345 17909 14328 10529 73

NGO 3B XS 23313 22525 22525 13626 12918 9092 24

NGO 4A 22054 21360 21360 16498 12455 10794 59

NGO 4B 22608 21868 21868 17077 13071 11159 60

NHL 2A 30627 29976 29976 26084 17626 17156 134

NHL 2B 15758 15015 15015 11797 8362 8185 53

NHL 3A 20174 18424 18424 13628 10730 9355 181

NHL 3B 17707 15991 15991 11497 9145 8746 142

NHL 4A 16675 15894 15894 12917 8961 8700 68

NHL 4B 20089 19130 19130 15677 10697 10307 83

NWA 2A 26097 22271 22271 16953 12983 12405 57

NWA 2A S 19149 18326 18326 15107 12871 11840 116

NWA 2A XS 20071 19273 19273 10180 9890 6330 20

NWA 2B 20898 17634 17634 13251 10543 10330 37

NWA 2B S 15648 14878 14878 12009 9819 9052 104

NWA 2B XS 27808 26838 26838 13564 12591 10713 38

NWA 3A 10226 9735 9735 7264 6029 4895 67

NWA 3B 28430 26973 26973 21273 15416 13726 119

NWA 4A 17654 17123 17123 14118 11196 10140 124

NWA 4B 15907 15184 15184 12240 9456 8760 93

147



NWA 5A 14896 14275 14275 11127 9207 8777 91

NWA 5B 17054 16316 16316 13064 10570 10189 89

NWA 6A 19653 18822 18822 14894 12020 11380 98

NWA 6B 15184 14591 14591 11804 9839 9355 85

NWA 7A 13767 13177 13177 10932 9017 8445 72

NWA 7B 16831 16102 16102 12835 9883 9231 87

NWA 8A 15266 14481 14481 10673 8879 8531 109

NWA 8B 17882 16958 16958 12503 10249 10038 127

NYA 2A 33395 28245 28245 21413 18148 18143 60

NYA 2B 36205 30519 30519 23387 18678 18631 57

NYA 3A 29675 25050 25050 16505 13118 13019 55

NYA 3B 30193 25942 25942 17723 14146 13985 76

NYA 4A 17561 16928 16928 12689 8760 7377 241

NYA 4A S 13136 12431 12431 9507 7404 5624 157

NYA 4A XS 13283 12762 12762 5737 4120 3220 24

NYA 4B 24397 20885 20885 14109 9512 7813 74

NYA 4B S 15610 14774 14774 11127 8646 6365 169

NYA 4B XS 16154 15502 15502 8077 6182 4653 36

WIT 2A 14307 13757 13757 9617 7282 7100 78

WIT 2B 13757 13277 13277 8501 6283 6283 80

WIT 3A 25714 25291 25291 16183 10271 9958 201

WIT 3B 14067 13479 13479 7899 5799 5600 76

WIT 4A 18581 17947 17947 13911 8764 8701 66

WIT 4B 22216 21441 21441 16481 11437 11333 78
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Figure 6–2: Scatterplot of reads and ASV richness per sample.
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Figure 6–3: Box and whisker plots of reads among the core samples, grouped by site.
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Figure 6–4: Relative abundances of bacterial classes across sites. Sites are ordered by
relative abundance of phylum Proteobacteria.
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Figure 6–5: Relative abundances of bacterial orders across sites. Sites are ordered by
relative abundance of phylum Proteobacteria.
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Figure 6–6: Relative abundances of bacterial classes across weekly samples.
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Figure 6–7: Relative abundances of bacterial classes across five days at a single site (NWA).
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Figure 6–8: Relative abundances of bacterial orders across five days at a single site (NWA).
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Figure 6–9: Hierarchical clustering of 150mL NWA samples based on pairwise Sorensen’s
beta diversity.
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Figure 6–10: NMDS plots of a) Bray-Curtis and b) abundance-weighted UniFrac distances.
Colours represent section, shapes represent waterhole type.
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Figure 6–11: NMDS plots of a) Bray-Curtis and b) abundance-weighted UniFrac distances.
Colours represent subsurface geology, shapes represent waterhole type.
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Figure 6–12: NMDS ordinations of variation in bacterial community structure across 54
samples based on a) Bray-Curtis and b) abundance-weighted UniFrac distances. Arrows
indicate the direction of significant (p < 0.05) correlations among variables and the NMDS
axes, with arrow length indicating the strength of the correlation. Blue arrows indicate
environmental variables, while black arrows indicate relative abundances of sequences
from different microbial orders. The ordination axes explain 96.9% (a) and 98.1% (b)
of the variance in the dissimilarities (Fig. 6–17).
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Figure 6–13: Phylogenetic community structure of bacterial ASVs across samples based
on a) mean phylogenetic pairwise distance (MPD) and b) mean nearest taxon distance
(MNTD). Each plot depicts the relationship between observed values (y-axis), and the
standardized effect size (z-score) for each community following 999 permutations using the
“richness” null model. Gray lines depict z-scores of 0. Red dashed lines represent critical
values for a two-tailed z-test (α=0.05), with points lesser than these values indicating
significant phylogenetic clustering.
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Figure 6–14: Alpha diversity as measured by observed number of ASVs and Shannon
diversity for samples in which 150mL, 50mL and 15mL volumes were filtered. Colours
represent sites.
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Figure 6–15: Relative abundances of bacterial phyla across different sample volumes.
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Figure 6–16: Reads for samples in which different volumes were filtered.
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(b) Weighted UniFrac NMDS

Figure 6–17: Stressplots for NMDS plots using a) Bray-Curtis and b) abundance-weighted
UniFrac distances
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6.3 Chapter 4 Supplementary Data and Results

Main model

Level Parameter mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Intercept -0.57 0.74 -2.06 -1.03 -0.57 -0.08 0.87 1338 1.00
log (Cases) -1.33 0.01 -1.35 -1.34 -1.33 -1.32 -1.30 6000 1.00
Evolutionary Isolation 1.69 0.12 1.45 1.61 1.70 1.78 1.93 6000 1.00

Parasite

Host Species Richness 0.90 0.71 -0.42 0.41 0.88 1.37 2.36 3335 1.00
Vectored -0.27 0.65 -1.60 -0.69 -0.26 0.15 1.00 3631 1.00
Reproduction 0.12 0.66 -1.19 -0.32 0.13 0.56 1.43 4317 1.00
Environmental Resting Stage 0.22 0.96 -1.65 -0.40 0.20 0.83 2.19 6000 1.00

Country
Latitude -0.21 0.42 -1.04 -0.49 -0.21 0.08 0.61 3796 1.00
GDP per capita -0.56 0.37 -1.29 -0.81 -0.56 -0.31 0.18 6000 1.00

Table 6–24: Summary of model output for continuous predictors including posterior
means, posterior standard deviations, 2.5%, 25%, 50%, 75% and 97.5% quantiles, the
effective sample size (n eff), and the potential scale reduction statistic (Rhat).
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Figure 6–18: Posterior predictions of the probability of death as a function of a) host
evolutionary isolation (in millions of years), and b) the number of cases. Solid blue
lines represent the mean logistic curve, dashed yellow lines represent the upper and lower
bounds of the 50% credible interval. Grey lines depict equivalent mean curves offset by
the posterior mean effects for each parasite.
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Figure 6–19: Mean estimated effects for individual hierarchical terms (parasites, parasite
types, hosts, host orders, countries, and years). Plotted estimates have been set to 50%
transparency to visualize overlapping points, and extreme estimates in each group have
been identified.

161



Sensitivity Analyses and Alternative Models

Excluding single-host parasites

As selective pressures driving virulence evolution are likely to differ among single and multi-host

parasites, the main model fit again after removing single-host parasites from the data.

Level Parameter mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Intercept -0.83 0.80 -2.50 -1.32 -0.81 -0.30 0.70 1075 1.00
log (Cases) -1.30 0.01 -1.33 -1.31 -1.30 -1.29 -1.28 6000 1.00
Evolutionary Isolation 1.74 0.11 1.52 1.66 1.74 1.81 1.96 5847 1.00

Parasite

Host Species Richness 0.55 0.75 -0.86 0.06 0.53 1.04 2.09 3668 1.00
Vectored -1.05 0.76 -2.61 -1.53 -1.02 -0.54 0.36 2760 1.00
Reproduction 0.47 0.71 -0.87 -0.02 0.44 0.92 1.92 3564 1.00
Environmental Resting Stage 0.26 0.96 -1.60 -0.34 0.24 0.83 2.26 6000 1.00

Country
Latitude -0.25 0.42 -1.08 -0.52 -0.24 0.04 0.57 4573 1.00
GDP per capita -0.58 0.37 -1.32 -0.83 -0.58 -0.33 0.13 5092 1.00

Table 6–25: Summary of main model excluding single-host parasites for continuous and
binary predictors including posterior means, posterior standard deviations, 2.5%, 25%,
50%, 75% and 97.5% quantiles, the effective sample size (n eff), and the potential scale
reduction statistic (Rhat).
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Host taxonomic diversity

Due to incomplete sampling, the host species reported in the GMPD and EID2 databases are

unlikely to include the complete set of susceptible hosts for each parasite. As a sensitivity analysis,

host species richness (SRp) was replaced by a measure of taxonomic diversity using data reported

by Lefèvre et al. (2010) and the OIE documentation. Host taxonomic diversity varies from 1-6

corresponding to whether parasites infect hosts belonging to a single species (1), genus (2), family

(3), order (4), class (5), or multiple classes (6). Just as with host species richness, the ability to

infect humans was not included in estimates of taxonomic diversity.

Level Parameter mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Intercept -0.79 0.90 -2.71 -1.37 -0.75 -0.19 0.87 2261 1.00
log (Cases) -1.33 0.01 -1.35 -1.34 -1.33 -1.32 -1.30 6000 1.00
Evolutionary Isolation 1.70 0.13 1.45 1.61 1.70 1.78 1.93 5833 1.00

Parasite

Host Taxonomic Diversity -0.01 0.20 -0.39 -0.15 -0.02 0.12 0.38 2687 1.00
Vectored -0.26 0.66 -1.59 -0.69 -0.26 0.18 1.02 5847 1.00
Reproduction 0.04 0.67 -1.28 -0.40 0.05 0.48 1.36 5347 1.00
Environmental Resting Stage 0.30 0.98 -1.56 -0.34 0.27 0.90 2.39 6000 1.00

Country
Latitude -0.20 0.43 -1.05 -0.48 -0.21 0.08 0.65 5261 1.00
GDP per capita -0.55 0.37 -1.27 -0.80 -0.55 -0.30 0.18 6000 1.00

Table 6–26: Summary of model with host taxonomic diversity for continuous and binary
predictors including posterior means, posterior standard deviations, 2.5%, 25%, 50%, 75%
and 97.5% quantiles, the effective sample size (n eff), and the potential scale reduction
statistic (Rhat).
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Parasites with avian reservoirs

As an extension of our main model, we include whether or not a parasite uses an avian reser-

voir (Eastern equine encephalitis, Western equine encephalitis, Venezuelan equine encephalitis,

Fowlpox, Newcastle Disease, West Nile Virus, Pasturella multocida), as we hypothesize that this

might correlate with whether domesticated mammals represent dead-end hosts from which the

parasite is not transmitted further, such as is the case for West Nile Virus and other encephalitic

viruses that spillover from birds to horses (Weaver and Barrett, 2004). The use of avian species

as reservoir hosts were taken from OIE publications (disease summaries from the OIE Terrestrial

Manual (OIE, 2012) and OIE technical disease cards), and from Lefèvre et al. (2010), and coded as

a binary predictor.

Level Parameter mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Intercept -0.59 0.72 -2.04 -1.07 -0.59 -0.11 0.80 1568 1.00
log (Cases) -1.33 0.01 -1.35 -1.33 -1.33 -1.32 -1.30 5980 1.00
Evolutionary Isolation 1.69 0.12 1.46 1.61 1.69 1.78 1.93 5935 1.00

Parasite

Host Species Richness 0.90 0.73 -0.45 0.41 0.87 1.36 2.42 3574 1.00
Vectored 0.28 0.65 -1.60 -0.70 -0.26 0.16 1.01 4318 1.00
Reproduction 0.14 0.65 -1.14 -0.30 0.13 0.58 1.42 5209 1.00
Environmental Resting Stage 0.23 0.97 -1.61 -0.39 0.20 0.82 2.29 5934 1.00
Avian Reservoir 0.18 0.83 -1.47 -0.36 0.17 0.68 1.83 5474 1.00

Country
Latitude -0.20 0.42 -1.05 -0.48 -0.20 0.09 0.62 3896 1.00
GDP per capita -0.55 0.37 -1.29 -0.80 -0.55 -0.31 0.15 5942 1.00

Table 6–27: Summary of model including indicator for avian reservoir for continuous and
binary predictors including posterior means, posterior standard deviations, 2.5%, 25%,
50%, 75% and 97.5% quantiles, the effective sample size (n eff), and the potential scale
reduction statistic (Rhat).
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Figure 6–20: Version of Fig. 4–2 including parasite common names. Parasite names are
colour coded by parasite type.
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6.4 Chapter 5 Supplementary Data and Results

Host Group Response N hosts λ Phylo df Predictor Slope S.E. t p

Ungulates

Proportion
Single-
Host
Parasites

68 0.0 68

Citation Count 0.34 0.083 4.118 <0.0001
Threatened 1.537 0.447 3.442 0.001
Adult Body Mass (g) -0.015 0.108 -0.141 0.888
GR Area (km2) -0.151 0.081 -1.869 0.066
Population Density (n/km2) 0.086 0.083 1.033 0.306
Decreasing Population Trend 0.283 0.328 0.862 0.392

Richness
of
Single-
Host
Parasites

68 0.0 68

Citation Count 0.528 0.094 5.615 <0.0001
Threatened 0.374 0.425 0.88 0.382
Adult Body Mass (g) 0.136 0.12 1.131 0.262
GR Area (km2) 0.073 0.086 0.846 0.401
Population Density (n/km2) 0.122 0.09 1.362 0.178
Decreasing Population Trend -0.641 0.374 -1.717 0.091

Richness
of
Multi-
Host
Parasites

68 0.0 68

Citation Count 0.193 0.061 3.14 0.003
Threatened -0.964 0.403 -2.392 0.02
Adult Body Mass (g) 0.18 0.076 2.375 0.021
GR Area (km2) 0.166 0.068 2.439 0.018
Population Density (n/km2) 0.12 0.063 1.916 0.06
Decreasing Population Trend -0.747 0.237 -3.155 0.002

Carnivores

Proportion
Single-
Host
Parasites

64 0.0 64

Citation Count 0.381 0.154 2.468 0.017
Threatened -0.648 0.822 -0.789 0.434
Adult Body Mass (g) 0.195 0.111 1.76 0.084
GR Area (km2) -0.094 0.126 -0.746 0.459
Population Density (n/km2) 0.339 0.088 3.848 <0.0001
Decreasing Population Trend -0.111 0.348 -0.318 0.752

Richness
of
Single-
Host
Parasites

64 0.0 64

Citation Count 0.833 0.175 4.759 <0.0001
Threatened -0.84 1.031 -0.814 0.419
Adult Body Mass (g) 0.162 0.118 1.372 0.176
GR Area (km2) -0.133 0.161 -0.826 0.412
Population Density (n/km2) 0.267 0.09 2.954 0.005
Decreasing Population Trend -0.586 0.443 -1.324 0.191

Richness
of
Multi-
Host
Parasites

64 0.178 54.9

Citation Count 0.591 0.101 5.882 <0.0001
Threatened -0.352 0.425 -0.83 0.411
Adult Body Mass (g) -0.018 0.078 -0.236 0.814
GR Area (km2) -0.077 0.076 -1.015 0.315
Population Density (n/km2) 0.044 0.055 0.805 0.425
Decreasing Population Trend -0.215 0.24 -0.895 0.375

Table 6–28: Full models
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Host Group Response N hosts λ Phylo df Predictor Slope S.E. t p

Ungulates

Proportion
Single-
Host
Parasites

93 0.0 93
Citation Count 0.255 0.065 3.916 <0.0001
Threatened 1.072 0.029 3.695 <0.0001
GR Area (km2) -0.082 0.063 -1.297 0.198

Richness
of
Single-
Host
Parasites

86 0.0 86
Citation Count 0.613 0.074 8.323 <0.0001
Threatened 0.506 0.316 1.604 0.113
Decreasing Population Trend -0.669 0.345 -1.941 0.056

Richness
of
Multi-
Host
Parasites

68 0.0 68

Citation Count 0.193 0.061 3.14 0.003
Threatened -0.964 0.403 -2.392 0.02
Adult Body Mass (g) 0.18 0.076 2.375 0.021
GR Area (km2) 0.166 0.068 2.439 0.018
Population Density (n/km2) 0.12 0.063 1.916 0.06
Decreasing Population Trend -0.747 0.237 -3.155 0.002

Carnivores

Proportion
Single-
Host
Parasites

85 0.0218 83.5

Citation Count 0.320 0.113 2.834 0.006
Threatened 0.360 0.368 0.978 0.331
Adult Body Mass (g) 0.114 0.073 1.567 0.121
Population Density (n/km2) 0.246 0.059 4.189 <0.0001

Richness
of
Single-
Host
Parasites

85 0.0 85

Citation Count 0.883 0.133 4.189 <0.0001
Threatened -0.008 0.424 -0.02 0.984
Population Density (n/km2) 0.185 0.061 3.043 0.003

Richness
of
Multi-
Host
Parasites

140 0.16 121

Citation Count 0.615 0.066 9.338 <0.0001
Threatened -0.306 0.201 -1.528 0.129

Table 6–29: Reduced models
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Host Group Response N hosts λ Phylo df Predictor Slope S.E. t p

Ungulates

Proportion
Single-
Host
Parasites

95 0.0 95
Citation Count 0.21 0.057 3.717 <0.0001
Threatened 0.956 0.259 3.693 <0.0001

Richness
of
Single-
Host
Parasites

95 0.0 95
Citation Count 0.533 0.065 8.205 <0.0001
Threatened 0.51 0.314 1.624 0.108

Richness
of
Multi-
Host
Parasites

95 0.0 95

Citation Count 0.329 0.050 6.55 <0.0001
Threatened -0.570 0.314 -1.81 0.073

Carnivores

Proportion
Single-
Host
Parasites

140 0.0281 137

Citation Count 0.14 0.08 1.743 0.084
Threatened 0.109 0.308 0.353 0.725

Richness
of
Single-
Host
Parasites

140 0.0 140

Citation Count 0.742 0.107 6.94 <0.0001
Threatened -0.317 0.406 -0.781 0.436

Richness
of
Multi-
Host
Parasites

140 0.16 121

Citation Count 0.615 0.066 9.338 <0.0001
Threatened -0.306 0.201 -1.528 0.129

Table 6–30: Bivariate models
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Host Group Response N hosts λ Phylo df Predictor Slope S.E. t p

Ungulates

Proportion
Single-
Host
Micro-
Parasites

49 0.0 49

Citation Count 0.366 0.142 2.568 0.0014
Threatened 2.002 0.61 3.279 0.002
Adult Body Mass (g) -0.139 0.18 -0.771 0.445
GR Area (km2) -0.183 0.096 -1.903 0.064
Population Density (n/km2) 0.064 0.137 0.468 0.642
Decreasing Population Trend 0.083 0.578 0.143 0.887

Proportion
Single-
Host
Macro-
Parasites

64 0.0 64

Citation Count 0.367 0.099 3.708 <0.0001
Threatened 1.234 0.554 2.229 0.030
Adult Body Mass (g) 0.058 0.117 0.496 0.622
GR Area (km2) -0.182 0.128 -1.426 0.159
Population Density (n/km2) 0.071 0.097 0.729 0.469
Decreasing Population Trend 0.443 0.346 1.279 0.206

Carnivores

Proportion
Single-
Host
Micro-
Parasites

53 0.984 13

Citation Count 0.216 0.259 0.831 0.438
Threatened -0.524 0.923 -0.568 0.591
Adult Body Mass (g) 0.042 0.192 0.218 0.835
GR Area (km2) 0.035 0.214 0.165 0.875
Population Density (n/km2) 0.092 0.015 0.616 0.561
Decreasing Population Trend 0.906 0.491 1.844 0.115

Proportion
Single-
Host
Macro-
Parasites

60 0.0 60

Citation Count 0.434 0.189 2.291 0.026
Threatened -1.14 1.251 -0.911 0.366
Adult Body Mass (g) 0.206 0.131 1.572 0.122
GR Area (km2) -0.306 0.175 -1.749 0.086
Population Density (n/km2) 0.358 0.102 3.516 0.001
Decreasing Population Trend -0.599 0.458 -1.307 0.197

Table 6–31: Micro and Macro-Parasite Models
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Gómez, A. and A. A. Aguirre (2008). Infectious diseases and the illegal wildlife trade.

Annals of the New York Academy of Sciences 1149, 16–19.
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