
INFORMATION TO USERS

This manuscript has been reproduced trom the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mt 48106-1346 USA

800-521-0600

•

•

•

A Distributed Vision System Usiog Streaming Video
Interconnects

Mark Sidloi
Department of Electrical and Computer Engineering

McGill University

July 2001

A thesis submitted to the Faculty ofGraduate Studies and Research in partial fulfillment
of the requirements of the degree of Master of Engineering

© Mark Sidloi, 2001

1+1 National LInIy
ofCanlda

Acquisitions and
Bibliographie Services
315 weIIIIlgIDn &net
a--ON K1A 0N4
c:.na

BHathèque nationale
du Canada

Acquisitions el
seNiees bibliographiques

385. rue w.-.1QIan
c...ON K1A0N4
c..dI

The author bas granted a Don­
exclusive licence aIlowing the
National Library ofCanada to
reproduce, 1080, distribute or seU
copies oftbis thesis in microform,
paper or electronic fonnats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduœd without the author's
pennission.

L'aute1U' a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction S1U' papier ou sur fonnat
électrODique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-75284-4

Canadl

•

•

•

Abstract

1 present a distributed vision system for testing and development of computer vision

a1gorithrns. The system's form foUows a new approach to the construction of vision

systems. Utilizing streaming video interconnects and distributed computer resources, the

system provides researchers with sufficient processing power to run complex a1gorithms

under real-time constraints. The system runs a1gorithrns in a pipelined manner, with data

passed between functional uoits using streaming video protocols. DirectShow forms the

basis for the system's processing block objects. Researchers cao configure the system

using functional uoits from a library of source, rendering, and transfonn processing

blocks available on the system. To aid in configuring the system to the specifications of a

given task, 1 have developed a system management tool that allows the user to configure

the system via interaction with a web-based Java applet. This presents the user with a

simple, object-oriented framework that is robust and easy to manage.

- 1 -

•

•

•

Résumé

Je présent un system de vision artificielle distribuer pour le développent et la vérification

d'algorithmes de vision artificielle. La forme du système s'accorde à une nouvelle

méthode de construction pour les systèmes de vision artificielle. Utilisant des connections

de "streaming video" et des ressources d'ordinateurs distribuer, le system et

suffisamment puisant pour exploiter des algorithmes complexes sous des contraints de

temps réel. Le système de vision artificielle contrôle des algorithmes dans une manière en

série, avec l'information passer entre les unîtes fonctionnelles utilisant des protocoles de

"streaming video". DirectShow est la base des unites fonctionnelles du système. Les

chercheurs peuvent configurer le système utilisant les unites fonctionnelles qui viennent

d'une bibliothèque d'unites de source, exposition et transformation, qui se trouve sur le

system. Pour aider les usagers du system a configurer le system j'ai développé un outil de

contrôle qui donne à l'usager la possibilité de configurer le system avec un applet sur

l'Internet. Cet applet présent à l'usage un mode d'access simple et orienté d'object qui est

robuste et facile a contrôler.

-ü-

• Acknowledgements

[would like to thank Professor James J. Clark, my supervising professor. Dr. Clark's

insight and support were invaluable to me during the course of my work on this thesis.

He did not spare any effort in ensuring that the resources [needed for design,

implementation and testing of this distributed vision system were a1ways available to me.

•

•

Professor Clark is blessed with a very competent and professional core of graduate and

undergraduate students working on bis projects. [would like ta acknowledge these

individuais, who are my coUeagues, for their support and understanding, especially while

making use of their computing resources. Of tbis group of researchers, special thanks go

to Ziad Haferl, whose assitance on logistical matters and questions proved very helpful to

me while writing tbis thesis.

1 would also like to acknowledge Vinod Nair and Gilbert Soucy, fonner colleagues and

members of the McGiU Centre for Intelligent Machines (CIM), for their assitance early

on during my work. Though neither worked on the details of the system, both provided

assistance in preparing the early versions of the system for crucial demonstrations and in

developping processing blacks for the system.

Finally, l would like to acknowledge and thank my parents, sister and wife, Rachel

Stephanie. for their support and patience during the course of my studies.

- m-

• Table of Contents

Abstract

Résumé

Acknowledgements

List of Figures and Tables

List of Acronyms

1. Introduction

i

ii

iii

vü

ix

1

2. A Review of Related Work 3

2.1 Pipelined and Parallel Processing Systems 3

2.1.1 The PIPE System 3• 2.1.2 The AIPA System 5

2.2 Object Oriented Systems and Frameworks 6

2.2.1 General übject-based Systems 6

2.2.2 Object-based Systems used in Vision Research 8

2.3 Distributed Systems using Streaming Video 9

3. Higb·Level Design and Design Theory 10

3.1 Problem Description 10

3.2 The Alternative 15

3.2.1 Algorithms as Processing Blocks 16

3.2.2 Central ControUer 18

3.2.3 User Interface 22

3.2.4 Displaying Results 29

3.2.5 Distributed Computing Resources 33

3.2.6 Streaming Video vs. Still Images 36• 3.2.7 Definitions 38

- iv-

• 3.3 Design Goals and System Requirements 44

3.3.1 User Interface Requirements 45

3.3.2 System Control Requirements 46

3.3.3 Processing Block Requirements 46

3.4 DirectShow 47

3.4.1 A Quick Introduction to DirectShow and COM 47

3.4.2 Previous DirectShow Experience: Foveal Compression 50

3.5 High-level Design 51

3.5.1 Overall System Design Objectives 51

3.5.2 Central ControUer Design 55

3.5.3 Local Processing Block ControUers 58

3.5.4 User Interface Applet 60

3.5.5 User Display System 61

4. Implementation of the Distributed System 64

• 4.1 C++ Clients Implementation 64

4.1.1 An Application to Manage Local DirectShow Filters 64

4.1.2 List of Registered Filters 65

4.1.3 Filter Graph Management and Issuing Updates 65

4.1.4 Inter-System Connection and Display Filters 66

4.2 JavaServer Implementation 68

4.3 Applet Implementation 70

4.3.1 The Applet's Graphical Display 71

4.3.2 Information Request System 73

4.4 Display System Implementation 74

4.4.1 User's Display Program 74

4.5 Inter-Program Interaction Protocols and Functionality 75

4.5.1 Downward Communications 77

4.5.2 Upward Communications 79

•
-v-

• s. Experimental Results 81

5.1 Frame Rates and Throughput Results 81

5.1.1 Single Computer Frame Rates 81

5.1.2 Mufti-Computer Frame Rates and Inter-System Connection

~oughput 83

5.1.3 Upward and Downward Transmission Bandwidth Requirements

83

5.2 Full System Tests 84

Appendix 1. Towards the Future: A Discussion of Future Enhancements to the

System 90

1.1 Potential Future System Features 90

1.2 Future Improvements to the AppletlUser Interface 98

1.3 Future Improvements to the Display System 102

1.4 Future Improvements to Applet - JavaServer interaction 105

•

•

6. Conclusion and Comments

6.1 Fulfilment of System Requirements

6.2 Non-Standard Applications of the Distributed System

6.3 Concluding Comments

References

86

86

87

88

89

- vi-

Figure 3.2-1: Fully Centralized and Partly Decentralized systems

• List of Figures and Tables

Figures

Figure 2.2-1": The main components of the ORB architecture and their interconnections

7

20

Figure 3.2-2: Single-user and Multi-user systems with datapath indicated for a single

commandlreply 24

Figure 3.2-3: Upward and Downward directions in System description 39

•

•

Figure 3.2-4: Diagram indicating that the system comprises the local processing block

controllers (and the processing blocks running on them) and the central controler 40

Figure 3.2-5: Illustration of the difference between inter-system and intra-system

connections 41

Figure 3.2-6: Illustration of Local Processing Blocks Controller, depictng local

Processing Blocks Graph 42

Figure 3.2-7: Depiction of System Graph. The System Graph is the union ofall the local

processing block graphs 42

Figure 3.4-1: Block diagram of a Filter Graph, depicting decompression and rendering of

an MPEG-compressed stream of data. 48

Figure 3.4-2: Block diagram of a simple Filter Graph complete with Filter pins 49

- vü-

• Figure 3.4-3: Foveal compression. On the left, the subdivision of a 320x320 pixels image

ioto 3 annular regions with 64:1, 16:1 and 4:1 compression, with 1:1 compression in the

centre. On the right a depiction of the compressed data buffer. The resulting compressed

output is 15,606 bytes, compared to the 307,200 bytes in the uncompressed image.

SO

Figure 3.5-1: Datapath for a downward command and the upward system updates it

generates 52

Figure 4.3-1: Applet in Single Computer Graph view with the right tab in Filter [nsert

mode. Compare with Figure 3.5-l. 72

•

Figure 3.5-2: Sample GraphEdit application

Figure 4.1-1: View of the System

Figure AI.l-21: Network Latency view on User Interface

Tables

Table 4.5-l: Full list ofdownward messages

ss

64

91

79

•

Table 5.1-l: Frame Rates achieved using a Logitech QuickCarnVC connected to a single

computer in the distributed system with no displayed Dode set. 82

Table 5.1-2: Frame Rates achieved using an Axis 200+ NetCam accessed by a single

computer on the distributed system with no displayed node set. 82

Table 5.1-3: Frame Rates achieved using Logitech QuickCamVC data transmitted

between two computers in the distributed system. 83

- vili-

• List of Acronyms

This thesis makes use of several acronyms in its descriptions of the distributed vision

system.

•

•

AWT

CR

FLOPS

FrP

ICMP

IP

JPEG

LAN

MIPS

PTU

SMTP

TCP

WAN

Abstract Windowing Toolkit9 a standard Java Iibrary.

Carriage-Retum. Also known as end-of-line eharacter.

Aoating-Point Operations Per Seeond

File Transfer Protoeol

Internet Control Message Protocol

Internet Protocol.

Joint Photographie Experts Group

Loeal Area Network.

Million Instructions Per Second

Pan-Tilt Unit. Used on sorne video camera systems.

Simple Mail Transfer Protoeol

Transmission Control Protocol

Wide Area Network.

-ix-

•

•

•

1.lntrodudioo

Coopter 1. Introduction

Development of computer vision and image processing algorithms and testing systems

has been far from monolithic. However, in many ways, developments in computer vision

systems lag behind the available computer hardware. Certainly, vision and image

processing systems have begun to take advantage of the processing power available on

modern microprocessor systems, yet there has been relatively little development of other

computing technologies in systems used by these fields of research.

Networking technology is one of the technologies that has been very underused in vision

systems to date. For instance, few vision systems have been designed to take advantage

of distributed computing resources. Though the processing and storage capabilities of

modern microcomputers have increased greatly since vision researchers began using

them for research, vision systems stand to gain tremendously from the use of multiple

microcomputers running in tandem. Such a distributed system would benefit from the

increased processing capabilities available, especially when running algorithms that

require parallel processing or cao he pipelined.

The proliferation of high-speed networking technology and widely available Internet

access a1so allow for remote system access. Usually, single-user vision systems run on

single microcomputers can ooly he remotely accessed if the microcomputer is running an

operating system that allows remote access. In those cases, the vision researcher must

also he using a computer with a compatible operating system of log in scheme to access

the computer that the system can run on. This also assumes that there is no firewal1

preventing remote access to the system's computer from the researcher's location.

In contrast, a system designed for Internet access can he built with a user interface that is

accessible from anywhere. While this does necessitate sorne security precautions, it will

aIlow researchers to access their work, perform tests and view results from any location

with an Internet connection.

- 1 -

•

•

•

1. Introduction

Internet technology cao also expand an existing distnouted system by aUowing the

system to incorporate microcomputers that reside 00 different networks to functioo

within a single system.

The use of streaming video technology is also seldomly seen in vision systems. Partly,

tbis is due to perceived drawbacks to using streaming video, such as low quality video

capture devices or lower image resolutions. Most of these contentions are actually

unfounded, as moderate quality video capture devices do indeed exist, and even low

quality video capture devices can often provide medium image resolutions. The

detractors of usage of streaming video often ignore the benefits of streaming video.

Streaming multimedia is a naturaI fit to any vision system designed to run algorithms

under real-time constraints. Il also does away with the processing requirements for

systems that use software to poil video capture devices to pick up still images, which

effectively functions as a video stream anyway. Further, video capture sources for

streaming video are widely available, relatively inexpensive, and far more useful

interesting algorithms on real-world situations rather than on previously stored sets of

digitally-enhanced images.

This thesis presents a new approach to the design of vision systems - a new object­

oriented framework for running vision algorithms. The system described in tbis thesis is a

distributed vision system. Algorithms and non-algorithmic processing blacks in this

system are treated as objects, with input and output access points for information

interchange. The objects use streaming multimedia data types for aU data exchanges. The

system uses Microsoft's DirectShow technology for object design and dataflow control

and management. The system's user interface is designed to provide the user with a

simple yet powerful medium for controlling the vast computing resources available

thraugh the system.

-2-

•

•

•

%. A Review of Related Work

Coopter 2. A Review of Related Work

Though 1 am unaware of any existing framework for vision a1gorithms that is quite Iike

the distributed system discussed in tbis thesis, several systems and software platforms

bear similarities to the distributed system. The idea of using distributed computing

resources in design is hardly a noveIty, even in vision research. Pipelining and parallel

processing, both design strategies that lend themselves very weil to distributed

computing, have been used in computer-based system design for over a decade, and bath

have affected the design of vision systems.

The distributed system's user interface presents the user an object-oriented framework for

testing vision algorithms. Object-Oriented design, Iike distributed computing, is another

area where a fair amount of development has taken place. At least one major vision

algorithm development platform employs an object-oriented interface. As weil, several

competing software packages have been released in the last decade, offering

programmers and system developers access to object-oriented design.

Streaming multimedia technology, its protocols and data tyPes, used for data interchange

by the processing blocks in the distributed system, is also not a new technology. Though

vision research has been slow to pick up on it, several non-vision systems have used it for

distribution of video data.

The following review is not meant to be a comprehensive review of aU work done in the

areas of research that the distributed system touches upon. Rather, it is meant ta

demonstrate that the distributed system discussed in tbis thesis is a combination of

several older ideas that have been combined to foern a unique system.

2.1 Pipelined and Parallel Processing Systems

2.1.1 The PIPE System
The pipelined approach to system design has been in use for decades. One vision and

image processing system, designed in the last decade, to take advantage of pipelining was

- 3 -

•

•

•

2. A Review of Related Work

the PIPE system or Pipelined Image Processing Engine. PIPE was conceived by Dr.

Ernest Kent of the National Bureau of Standards [l], DOW known as the National Institute

of Standards and Teehno10gy. Designed for real-time or near-real-time performance of

functions such as edge extraction, motion detection and disparity map generation, the

PIPE was a coarse-grained parallel system designed with three to eight modular

processing stages (MPS) for data processing.

Like the distributed system described in this thesis, the PIPE system was designed to

perfonn in a large number of wide ranging applications, aU centred on image processing

and vision processing. Unlike the distributed system, the PIPE system was designed to

function on a dedicated hardware architecture and was not designed with much scalability

in mind. The PIPE system could use between three and eight modular processing stages

for computations. Each of these stages consisted of input look-up tables, a three input

arithmetic logie unit (ALU), two frame buffers, a pre-neighbourhood single value look­

up table operator, two 3x3 neighbourhood operators, an output ALU, a two value look-up

table operator and dataflow erosspoint switehes.

The PIPE system also used video for input, but rather than streaming video, it took input

in the fonn of analog video and then its input stage converted the video into a digital

signal. This is where the PIPE system's similarities to the distributed system end. Unlike

the distributed system, PIPE was designed to run on application-specifie hardware, rather

than general-purpose microprocessors. Though il is referred to as a parallel system, il was

not designed to alIow for aU possible paraDel proeessing configurations. The output of

each modular processing stage is hardware as an input to the next and the previous

modular processing stage. In contrast, the distributed system discussed in tbis thesis was

able to run any number of algorithms, assuming that sufficient processing power in the

fonn of general-purpose computers, was available on the system. Further, the distributed

system aUowed for any configuration.

Unlike the distributed system, PIPE's user interface was not object based, and required

PIPE's users to program their algorithms into the system using PIPE's assembly

-4-

•

•

•

2. A Review of Related Work

language. However, despite the differeoce, Kent recognized the necessity for a suite of

base software algorithms on a vision and image processing system. Though PIPE and the

distnbuted system differ 00 the algorithms they have available, bath systems incorporate

base software. In the case of the PIPE system, the base software package included

Roberts and Sobel operators, several motion and edge detectors, morphological operators,

min/max operators and stereo disparity operators. The PIPE system also provided video

capture access to the users, though, unlike the distributed system, it did no aUow the user

to select between several different types of video capture devices and did not support

digital video devices.

PIPE's architecture set an upper bound on its processing abilities. Though the distributed

system's architecture a1so a maximum upper hound on its processing abilities - two

hundred microcomputer systems - the distributed system's theoretical maximum

processing ability far exceeds PIPE's.

2.1.2 The AIPA System

A more recent system that more closely resembled the distributed system was the

Advanced Image Processing Accelerator or AIPA system [2]. Unlike PIPE, AlPA was

designed to run using general-purpose processors. Unlike the distributed system, AlPA

required that these processors run from four Processing and Storage Modules plugged

into a 6U VME64 motherboard instead of microcomputer systems.

The AIPA system itself was an incompletely specified system. It was designed to

compose the lowest layer in a three layer image processing system. No user interface was

designed for the AlPA system, though its designers recommended the Khoros Visual

Programming system, an object-based system that is discussed in the next section, for the

user interface. Sïnce no user interface was explicitly designed or selected for AIPA, the

middle layer, needed for interfacing AlPA and the user interface was not designed either.

- 5 -

•

•

•

2. A Review 01 Related Work

The AIPA system's designers understood that in the field of image processing and

computer vision, "the processing needs of end users are not being met. This trend will

ooly increase with the added performance demands of new algorithms."[2]. For any

system to successfully run these algorithms under real-time constraints using lower cost

general-purpose processors, a distributed solution utilizing multiple processors must be

implemented. AIPA, like PIPE and the distributed system, was designed to fit a wide

range of industries and applications.

2.2 Object Oriented Systems and Frameworks

2.2.1 General Object-based Systems

Along with the proliferation of object-oriented programming languages, several object­

oriented system controlling architectures have been developed over the last decade. In

object-based systems, each software-based processing unit is treated as a separate object,

complete with it own data input and output access points. Sorne of the more common

object-based systems that are used for object-based are CORBA, DCE and COM/DCOM.

CORBA, or Common abject Request Broker Architecture, was designed by OMG, the

Object Management Group, a non-profit consortium created in 1989 with the purpose of

promoting theory and practice of object technology in distributed computing systems [3].

CORBA follows OMG's abject Mode1. It specifies a standard for providing

interoperability between objects in a heterogeneous, distributed environment and in a way

transparent to the programmer. OMG's Object Model defines common object semantics

for specifying the extemally visible characteristics of objects in a standard and

implementation-independeot way. Under tbis model, objects are treated as servers in a

client-server system, and client programs cao request information from these objects

through an object interface. Figure 2.2-1 depicts the main components of CORBA and

the method used by client software for interfacing with an OMO object under CORBA.

The CORBA standard is quite popular, and is the most often used system for distributed

systems on microcomputers. It is a very general standard, and does oot constrain the data

-6-

•
2. A Review of Related Wort

types used by objects for information interchange. CORBA itself is a standard, not a

system. There are many implernentations of CORDA currently available. They vary in

their degree of CORDA compliance, quality of support, portability and availability of

additional features. Unfortunately, to date there are no fully compliant public domain

implementations. ILU, from Xerox Parc, is the most-compliant CORBA implementation

available in the public domain. Sorne commercially available packages are fully

compliant with the CORBA standard. Sorne of these, such as VisiBroker from

VISIGENIC offer interoperability with Sun Microsystems Inc.' s Java programming

language.

•

Client

Dynamic

Invocation

IDL
Stubs

ORB
Interface

OtIject Implementation

IDL Dymmic

Ske~ton Ske~ton

.. "

Object
Adapter

..
:-:.:":-:-:-:.:-:-:-:-:":-:-:.: .. :-:-:.:.:-:":":-:": .. :-: .. :-: .. :-:-:-:-:-:":-:-:-: .. :.:":-:-:-:-: .. :-:-:-:-:-:":-:-:-:-:-:-

ORB Core

&J--r::::::;I
~

interface identicaJ for ail ORB impIementations

there may be multiple abject adapters

stubs and skeletons for each abject type

ORB dependent interface

•

Figure 2.2-1: The main components of' the ORB architecture and their interconnections

DCE, short for the Distributed Computing Environment, is another distributed system

technology. Both DCE and CORBA support the construction and integration of client­

server applications in heterogeneous distributed environments. Though OCE is slightly

older that CORBA, it is slightly more stable and scalable than the CORBA standard. It

-7-

•

•

•

2. A Review 01 Related Work

a1s0 was designed with better security features than CORBA. The main difference

between the two approaches to distributed computing was that CORBA was a complete

redesign of the principles of distributed computing whereas DCE was a tightly integrated

package of existing technologies. DCE is still often used in true large-scale, enterprise­

class applications [5].

A third standard that has emerged as a competitor for CORBA is COMIDCOM,

Microsoft Corp's Component Object Model. Originally designed only for use on

Microsoft operating systems, OCOM, or Distributed COM, is in the process of being

ported to the Linux operating system[5]. Unlike CORBA and DCE, COM was not simply

designed as an open standard in search of implementation. Microsoft developed many

implementations of its COM architecture. One of these implementations, was

DirectShow, one of Microsoft's DirectX drivers. DirectShow provides a framework for

object-oriented design. DirectShow, and its relation to COM, is discussed in greater detail

in section 3.4.

2.2.2 Object-based Systems used in Vision Research

Object-based systems are not foreign to vision systems. The most well known object­

based vision system developed was the Khoros [ntegrated Development Environment.

Designed by Khoral Research, Inc., Khoros was a software integration and development

environment. Included with the system was a suite of software development tools and a

vast collection of image processing, data manipulation, rnatrix processing and scientific

visualization applications [6]. The Khoros system also included a user interface called

Cantata.

More than a simple user interface, Cantata was a visual programming environment. It

allowed users to selectively load applications from among the various applications

available as data processing objects on the Khoros system, and then configure

interconnections between the loaded objects. These connected objects, or glyphs, as they

were referred to in the I<"J1oros system, would fonn complete algorithms.

- 8-

•

•

•

2. A Review of Related Work

Though Khoros never was the most popular vision system available, its worth to

distributed vision systems, such as AIPA, is quite weU documented [2]. Though not

restricted to a specifie operating syste~ Khoros' design favoured Unix environments.

2.3 Distributed Systems using Streaming Video

Considering how long technologies such as television and cinema have been standard

forInS of entenainment in western cultures, it is by no rneans surprising that streaming

video has emerged as a popular network-based technology. Several systems have sought

to take advantage of streaming video technology. Sorne of these include Video-on­

Demand, using TCPIIP socket connections, and distributed systems to provide quick

access to data stored on video servers [7]. Video-on-Demand systems have been designed

by Berkely systems, Stoney Brook Video and the Expertise centre for Digital Media at

Limburg liniversity Centre in Belgium. Other streaming video systems, such as the

Excalibur [8] Analysis Engine, have been used for video storing, indexing and

cataloguing.

These examples are merely the tip of the iceberg. As transmission bandwidth increases,

the demand for streaming multimedia will only încrease. Already, sorne Internet websites

exist that provide media content using streaming video. This content ranges from

alternative news sites to free low-budget television over the Internet. The proliferation of

streaming video technology over the World Wide Web has caused Internet browser

software to be coupled with multimedia software. Given tbis, a vision system designed

with user access over the Internet using Internet browser software for system access

could be designed under the ·assumption that any user with a browser capable of logging

in would have access to multimedia software. Though accessing that software might be

difficult, al least the assumption that it is present could aid in system design.

-9-

•
3. Rigil-Levet Design and Design Tbeory

Cbapter 3. High·Level Design and Design Tbeory

This chapter focuses on elements of the design of the system discussed in tbis thesis.

Ftrst, a more complete description of the problem than the one presented in the

introduction is put forward, to justify the decision of designing this system. Next, a high­

level description of the system is presented, including an explanation of how this system

addresses the problems described at the beginning of tbis section.

3.1 Problem Description

Vision systems that use microprocessors to run image processing and computer vision

algorithms are not a new phenomenon. In the past, one of the major barriers to

development in this area was due to the available tools - either lack of adequate

computing power, or lack of ability on the part of the microcomputers to access resources

• or desired input data. When microcomputers were tirst introduced, they lacked the

hardware to handle full colour images, and so the ooly workable options required

greyscale images. The tirst general-purpose mieroprocessor systems also lacked the

processing power needed to process images quicldy, precluding their use in robotie

systems. Finally, the early microprocessors lacked both sufficient storage capacity and

network connectivity needed give them aceess to sources of data. Though the capabililies

of microprocessors grew very fast, their use in vision systems was practically non­

existent.

About ten to fifteen years ago, the computational power available in general-purpose

microprocessor systems reached a point where they could begin to he considered for

tasks that were previously the domain of application-specifie proeessors and digital signal

processors in several fields, including image processing and computer vision. Since then,

general-purpose microprocessor systems have been used increasingly in research and

development of new techniques and algorithms related to image processing and computer

• vision.

- LO-

•

•

•

3. High-Level Design and Design 1beory

These systems have several associated properties that make them useful to researchers in

the field of artificial vision. They are easily available, as they are mass-produced for the

public, and the cost of these systems has been falling for sorne time. They are powerful

enough to process images under real-time constraints, which is useful in many vision

applications. They can access visual data from many different sources, such as peripheral

devices or network connections. Theyalso have software tools that aid programming and

debugging algorithms. Theyalso have sufficient storage and memory capacity to handle

large image files and sufficient graphical processing power to process and correctly

render results.

Generally, efforts in the field of computer vision performed on general-purpose

microprocessors have tended to follow a similar path. Most work in tbis field bas been

concentrated on single algorithm systems, where a single stand-alone application tests

one main algorithm by applying it to image data. Image data for these applications tends

to consist of still images, either a single image or a series of still images, though

streaming video data format have seen increased usage. It is Iikely that this approach to

image processing and vision algorithms remains widespread for several reasons. One

reason is the pace of change in microcomputers. In terms of processing power, storage

capacity, image rendering and handling, and data acquisition, the abilities of

microcomputer systems have grown very quickly - faster than researchers' ability to

adapt to those changes and take advantage of the full potential of their computer systems.

While it would he false to suggest that researchers in computer vision have not taken

advantage of the increased potential of their microprocessor systems, the main potential

they seem to he exploiting in most of their work is the increased processor power and

storage capacity, wbich they use to produce a1gorithms that would have been too

computationally expensive for older microprocessor systems. Though tbis is significant,

it still remains that few of the new capabilities of microcomputers are being exploited for

vision research. For instance, few vision researchers have taken advantage of the new

multimedia capabilities of microcomputers, such as streaming video. White there are

drawbacks to using streaming video instead of using still images, those are often much

- Il -

•

•

•

3. Bigll.Levet Design and Design Theory

less important than the advantages that using these techniques afford. This will he

discussed in further detail in section 3.2.6.

These factors have combined to bring research in vision and image processing to the

point it now stands al. Most software written in vision and image processing research is

written to test only a single algorithm, or perhaps two. Generally, the software is written

as stand-alone software and must include software code to access input data, usually from

a file, and store results in an output file. Any other lesser, "helper" algorithms required by

the main algorithm, such as a simple edge detector required for the main algorithm to run,

must he either added into the source code before the software is compiled or must he run

on the input data separately and report result to a file tbat is later used as input to the

main algorithm. This method of writing vision software produces code according to one

of two programming paradigms - statically connected integration and quasi-dynamically­

connected integration. Either the code implements a single algorithm, or statically links

several algorithms. In the case of the latter, generally only one of the algorithms is the

main one under review. If the algorithms are linked, dynamically one might say, at run

time, theyare linked either by passing data through files, and not run simultaneously, or

if they are run simultaneously, such as wilh the use of Unix pipes, the configuration of

the system of a1gorithrns cannot he a1tered while the algorilhms are being rune 1 refer to

the later paradigm as quasi-dynamic since though the integration takes place after

compile-time and allows for the system of algorithms to he configured and re-configured

at a later time, and so it is not statie, the integration must take place hefore run-time and

cannot, in the cases 1 describe here, he reconfigured while the a1gorithms are being rune A

truly dynamic system would allow the researcher to make modifications to the

configuration of the system, including the loading or removal of algorithms from the

system, while the system is being ruD.

These two paradigms that have dominated vision and image processing research thus far,

place unnecessary constraints on vision and image processing software. First, they

imposes a de facto limitation on the researcher' s choices in terms of sources of data, by

forcing the researcher to write the software that accesses input data. While it is true that a

- 12-

•

•

•

3. Bigh-Level Design and Design Tbeory

researcher could write software to access peripheral data devices, local-area network

(LAN) and wide-area network (WAN) based cameras and remote, web-based sources of

video, it is also true that the amount of effort expended to write software to access these

sources of data is often much greater than the effort required to write software to access

data files. As weU, software used to access each of these sources of data is not identical­

software designed to access network resources shares Iittle in common with software

designed to access local resources and peripheral devices. In the end, the additional effort

required to access these sources of data under the software design paradigms traditionally

used in image processing and computer vision research generaUy precludes their being

used in vision and image processing software.

These paradigms also serve to reinforce the notion of testing no more than a single

algorithm per software application. In a statically connected syste~ it would he difficult

to test several algorithms, unless theyare being compared against each other. One must

be sure that ail other algorithms, except the one being tested, are reliable enough to

function as required. If several algorithms were being tested in a staticaUy-connected

system, then without output at intermediate stages, a researcher would have no way of

determining in which algorithm fault lay if a test failed. While intermediate outputs

would., perhaps, remedy the situation, assuming rightly that the researcher knows what

output is expected at the end of each individual stage, it still foUows that, had the

researcher known what outputs to expect at the end of any given stage, then why would

he or she not test each of those algorithms separately to determine that each one functions

as intended and produces the desired effect ?

This is a very strong argument for modularized software code - smaller software

applications that perform specialized tasks. Another is the ease of re-use. Integrating

several pieces of software code that is written as modularized procedures and subroutines

may aid the development of a statically connected system of algorithms. However,

"copy-pasting" software modules inta a single application's source code is far more

cumbersome and thus, a researcher may be forced to choose between using a sub-optimal

set of helper algorithms or spending the extra time, compared to the dynamically linked

- 13 -

•

•

•

3. Higb.Level Design and Design Tbeory

approach, needed to integrate and then excise each helper algorithm in an effort to find

the most optimal set of helper algorithms. Dynamic linking alIows a researcher to find the

best-fitting "helper" aIgorithms for an algorithm under design without having to take the

effort of adding code to the applications source code and correctly integrated it before

compilation to test out the compatibility of the helper algorithms with the main

algorithm's requirements, and the effort required to excise that same helper algorithm

from the application software if it proves less compatible with the main algorithm's

requirements than an altemate helper algorithm.

While these arguments may support the use of the second paradigm detailed above ­

namely the use of separate programs linked together by pipes - it should he noted that it

tbis paradigm also reinforces the testing of ooly a single algorithm. Generally, powerful

vision algorithms take full advantage of the processing power that has ooly recently

become available on microcomputers. Often, innovative image processing and computer

vision algorithms are too computationally expensive to share a single microcomputer's

processing resources with one or more other computationally-intensive algorithms and

still function under real-time constraints. For algorithms that have no real-time

constraints, there is little need and few advantages to testing more than one algorithm at a

time. There is a benefit to paraDel testing of several real-time constrained algorithms with

similar functionality, such as testing several object tracking algorithms that use different

approaches to arrive at the same desired result. However, parallel testing of such

algorithms without real-time constraints is not preferable to testing those same algorithms

separately and then comparing the results. Once real-time constraints are no longer an

issue for the researcher, the algorithms do not need to keep up with the incoming data

rate. Further, results produced by algorithms that do not run under real-time constraints

must be written to output files and he reviewed after the processing is complete for the

results to he properly examined.

Not ooly do these two paradigms promote one source of input data - files - over other

forms, they also serve to either to constrain the processing power available to the

researcher to a single machine or forcing the vision researcher to set up a complicated

- 14-

•

•

•

3. Rigil-Leve. Design and Design Theory

and delicate networked system or leaving the researcher no alternative other than to

abandon any real-time constraints on the algorithm(s) under development and/or review.

3.2 The Alternative

In the previous section, the current state of computer vision research software was

presented. Researchers are often forced to choose hetween spending many man-hours on

designing software that can take input from multiple sources or to select a single source

of input, files usually, and use that source exclusively in developing and testing

algorithms. Usually, researchers are limited in the computing resources they have al their

disposai to test any given aIgorithm, especially if they ooly have personal computers at

their disposai. As weU, since vision software usually ends up taking the form of stand­

alone applications, helper algorithms, such as edge detectors, which must he integrated

into a single application with the main algorithm under review. Further, testing multiple

algorithms in a single application is difficult, unless each intermediate stage within the

application can he monitored by the researcher so tbat the researcher cao fine tune the

algorithms individually.

There is an alternative to this. A system cao he designed in software, to provide vision

researchers with an environment upon which they can test their algorithms. Tbe system

would grant access to multiple sources of input, allowing researchers to make use of

more practical sources of input data upon which to test algorithms and saving them the

time required to write input/output software to interface with their algorithm. To

accomplish this, data capture software for each data input source would he part of the

system and tbis software would he loadable on the system, where once loaded it could he

connected to the researcher' s algorithm processing blocks.

Under such a system, each algorithm would he treated as a processing block, with input

and output points. [n actuality, the algorithms would either he written as stand-alone

programs or as software executable from within another program such as a dyoamically

- 15 -

•

•

•

3. Rigil-Levet Design and Design Tbeory

linked library. Sorne standards would need to he set for these processing blocks such as

for data types. The system would aIso need to he able to handle dataflow issues and he

able to configure each processing block so that any buffer allocation within a processing

block would he handled by the system.

The system could he further improved by running on multiple computers at once,

providing seamless control over multiple microprocessor systems. The vision researcher

will he able to view the eotire system as one execution eovironment, upon which

computer vision a1gorithms cao he run. The system would need to he intelligent enough

to keep track of the data tyPes in use by the various a1gorithms and would need to handle

any handshaking that would take place upon inter-connectioo betweeo a1gorithms.

Further, for tbis system to he of any use, it must he able to display the results of data

processing at various nodes within the user-configured system of processing blocks.

[n the next few subsectioos, the alternative approach proposed here is explained in further

detail. The subsequent sections in tbis chapter describe the system requirements in teems

of bigh-level design, and then proceed to detail the solution approach chosen and a high­

level description of the implementation of the distributed vision system.

3.2.1 Aigorithms as Processing Blocks

Representing a1gorithms as modular processing blocks has several advantages. Ficst, it

allows each processing block to he tested and validated independently. [t also allows for

easy re-use of algorithms. For instance, a researcher is researching several ideas for

vision-based a1gorithms may requice simple edge detection to he performed on input

hefore the algorithms are applied to the data. The researcher could tirst design an edge­

detection processing block and test it independently to insure that it was in good working

order and functioning according to the needs of the researcher's algorithms. Once the

edge detector was shown to he in working order, the researcher could then test out each

algorithm he/she designed that required the edge detection function. There would he no

need to integrate the edge detection into the software ioto the software code of every

- 16-

•
3. High.Level Design and Design Theory

algorithm that required edge detection; simply loading the edge-detection proeessing

block ooto the syste~ and then loading the a1gorithm that required it and routing the

output of the edge detector to the a1gorithm under designlstudy would he adequate.

Designing algorithms into modular processing blocks would also aid researchers in

eombining their work or in coUaborating on research projeets. Once a standardized

ehoice for input and output data tyPes would he agreed upon, several researchers'

processing blocks could he joined or linked just as the edge detection software was linked

in the previous example. As weU, a researcher could easily re-use old processing blocks,

both those designed by himlher and those designed by others, without the need to spend

time to review the specifies on the input/output data handling that takes place within

those blocks.

Standardizing algorithms as proeessing blocks also serves another purpose that benefits

the system's design. By writing ail algorithms as processing blocks that must adhere to a

• standardized format, the design of the system's controlling software cao he simplified. By

using a modular design approach, the system will not oeed to retain sPecific information

on the inner working of each algorithme The benefit of tbis cannot he uoderstated. Under

this approach to vision software, the syste~ which contr~ls the processing blocks, must

control each processing block. Il must he able to instruct processing blocks on setting up

any buffering the processing blocks may need to handle input/output data. As weU, it

must control dataflow between the processing blocks. FinaUy, the system must he able to

access any significant information on each processing block such as the number and type

of data input/output points on each processing black.

Defining a complete programming structure for the processing blocks can he taxing on its

own. The format for tbis programming structure by which processing blacks must he

written must he both open enough to accommodate ail of the needs - both in the present

and in the foreseeable future - of the system described in tbis chapter and the researchers

who will use it and yet closed enough to truly standardize the format for writing

• processing blacks. Sorne software packages currently available define such formats for

- 17 -

•

•

•

3. High.Level Design and Design Tbeory

developing processing blocks. Aside from the Khoros system and the 000-Vision­

specifie packages, such as CORBA, discussed in chapter 2, there is Microsoft's COM and

DirectShow. A discussion of the streogths of DirectShow appears in section 3.4.

3.2.2 Central ContmUer

In order for a system, 5uch as the one descrihed above, to load various processing blocks

and then control their operations and their inter-connections, controlling software must

exist. In a multi-computer syste~ such as the one proposed here, the controlling software

can either he fully centralized or can he partly decentralized. Both of these choices

require a central control hub to relay commands from the system's users to the processing

blocks and present information and system updates to the user interface.

It is worthy of note that a true fully decentralized control technically, is difficult to build

and manage. As long as there is some central controUing software, a system cannot he

referred to as fully decentralized. Any multi-computer system that utilized decentralized

control prograrns, running on each computer within the system must still interact with

one or more users to he of use. If a single user is present, then that user's interface to the

system would serve as the central controller, and the system could no longer he

considered fully decentralized. If multiple users were accessing the system at the same

time, then either one would have priority in controlling the system - and that user's

interface would he the central controller for the system - or ail would have sorne control

of the system. Qnly the last case can he considered a fully decentralized system. In this

case, some agreement between the system's users on sharing the resources would he

necessary. Further, the system's user interface would need to he designed so that it would

he able to find and connect to all the computers on the system. Finally, for the fully

decentralized system, all of the user interface consoles logged into the system would

collectively function as the central control mechanism for the system and the system

would effectively function as a partly decentralized system.

- 18 -

•

•

•

3. Bigla.Levet Design and Design Tbeory

Note also that in a system where multiple users can access a system with no dedicated

central controller and no dedicated user connections to decentralized controlling uoits,

connection-oriented sockets could not he used as a means of transmiuing commands from

the users to the decentralized controlling uoits. Unless a means other than sockets is

employed, such a system would need to use connectionless socket protocols, and those

tend to he very unreliable. For tbis reason, decentralizing the system to the point that no

dedicated central hub exists is no very practical.

The controlling software required for a fully centralized system is far more complex than

software designed to function as the central hub in a partly decentralized system. Under

both paradigms, the central controller must keep track of processes loaded on the system.

It must he able to relay user commands to the appropriate computer in the multi-computer

system and retum system updates to the user. As well, in a multi-user environment, it

must he able to handle multiple user connections. The controller must keep track of ail of

the processing blocks availabIe on the computers within each system and must a1so keep

track of aU of the processing block currently Ioaded on each computer within the system

and on the connections between their input and output points.

In order to make the system as seamless to the user as possible it must make it possible

for the user to view the entire system as a single environment for running processing

blocks, rather than a set of environments present on several computers. However, in order

to balance the processing and memory load 00 each computer in the muIti-computer

system, the central cootroller must keep track of the locations where the processing

blocks are loaded and must either use that information to balance loads on the system or

present that information to user(s) and aUow the user(s) of the system to handle load

balancing.

In addition to these funetions, a fully eentralized controUer must handle aU dataflow

issues and aU micromanagement of processing blocks. As weU, it should he noted once

again that the processing blocks may or may not he wriuen as stand-alone applications ­

and even were they fully exeeutable applications, there would necessarily need to he a

- 19-

•

•

3. mgb·Level Design and Design Tbeory

standard control interface for the controller to access them. A fully centralized controller

would require the ability to access these interfaces. Further, in the case of processing

blocks designed as dyoamic link libraries, the fully centralized controller would need to

set up an environment on each computer in the system in which those processing blocks

could he loaded and run.

FinaUy, it should he noted that using a fully centralized approach incurs a delay between

the issuing of micromanagement commands and their implementation. In a foUy

centralized system, every dataflow command must he issued from the central controller.

Unless dataflow commands can he designed as unidirectional, without requiring

acknowledgement and updating messages from the processing blocks - a situation which

is highly improbable - there will he a delay hetween the time a processing block issues an

update to the central controUer and the time it receives new instructions. This delay is

equal to twice the transmission latency hetween the central controller and the computer

where the processing block is loaded plus the processing time required by the controller

to determine the next instruction to send. While the latter delay is generally negligible

compared to the transmission delay and likely will show up in a partIy or even folly

decentralized system, the transmission delay can he considerable, on the order of tens or

even hundreds of milliseconds. This is a clear disadvantage of a fully centralized system.

Fully Centralized

CID •ProcesUlg Block

PartIYDecentralized

•
Figure 3.2·1: FuUy Centralized and Partly Decentralized systems

The decentralized approach does away with much of the software code needed under the

fuUy centralized approach. In the decentralized approach, only those functions that must

he maintained from a centralized location are present within the central controUer. Each

- 20-

•

•

•

3. 8lgb.Levet Desilll and Design Theory

computer in the system must have its own local controUer to handle local dataflow and

handshaking issues. The central controUer must he able to make connections between

processing blocks on different systems, but aU local micromanagement is handed locally

on each computer within the multi-computer system.

This approach aUows for far greater simplification of the design of the central controller.

It means that the central controUer can be written as a server with threads or processes

spawned as needed to handle each connection. Local controlling software running on

each computer in the multi-computer system could gather data on available processing

blocks, handle local dataflow and keep track of aU processing blocks loaded locally. The

controlling software on each machine in the system could then connect to the central

server and make tbis information available to il, and from there available to the system's

user(s).

Though the central controller in a partly decentralized system must he designed to take

ioto accouot the requirements of the controlling software that runs locally on each

computer under the system's control, the central controUer must also he designed in

accordance with the system interface that will he presented to the user(s). A system such

as the one described here can he designed to service a single user at a time, or it can he

designed with functionality in place for multiple users. The user(s) may require a constant

link to the system's components, or may only need to have access to the system

periodically to check on testing results. The user access to the system may he set up to

function only on a designated dedicated location or locations, or the user(s) may require

or desire access to the system from a range of possible locations. While these issues are

dealt with in the next section., it is important to mention them here since the decision as to

the exact style of control granted to the user interface impacts directly on the design of

the central controller.

If the user interface is designed to he constantly connected to the system and if the system

is designed to he accessed and controUed by only a single user at any given time, then it

is possible to build the controlling software into the user interface. In other situations,

- 21 -

•

•

•

3. Biglt-Levet Design aoel Design Theory

where either the system is designed for multiple users or the user interface is not designed

to he constantly in contact with the system, the user interface must he a separate system,

though there will he duplication in sorne of the information stored in the user interface

and the central software. This duplication arises from the common needs of both the user

and the central controlling hub to monitor the system, including the processing blacks

loaded onto the system.

3.2.3 User Interface

The previous section touched on sorne of the design choices that exist when designing a

user interface to control a multi-computer system such as the one proposed here. The

choice of design for the user interface is of paramount imPOnance in any multi-computer

system. It is a1so likely the least constrained design choice. The design of the central

controUer is by far the most constrained choice - as the previous section explained, ooly

two paradigms for central controUer design are reaUy valid, and of the two, ooly one is an

optimal solution. As for the software that runs on each computer within the multi­

computer system to interface, once the design of the central controUer is finalized, there

is little left to decide as far as the software requirements. AIl that remains is ta find a

suitable method for controlling the processing block. While there is more leeway in

selecting the format for writing the processing blacks than in making design choices for

the software that interfaces between the processing blacks and the central system, the

designer of a multi-computer system for vision a1gorithms has ta choose between

designing a customized format or making use of one that already exists. In terms of effon

and reliability, it is far more advantageous to make use of pre-existing software packages

that have already undergone rigorous testing, than to develop a new software package.

This is especially true in the case where the system's designer is not the ooly person who

will he writing software for the system. In that case, the availability ofdocumentation and

outside expertise ta aid other researchers in designing processing blocks using a pre­

existing package far outstrips the benefit of developing a proprietary package. As weil,

the availability of existing processing blocks on available software packages for such

things as data acquisition is an added bonus when deciding to use an existing software

- 22-

•

•

•

3. Digll-Levet Design and Design Theory

package rather than design a new one. This, of course, assumes that the pre-existing

packages are adequate to handle the types of algorithms that the researchers who plan to

use the system will require. Thus, if the assumption hoIds, the ooly real question in

design when it cornes to the processing blocks is selecting the most appropriate software

package and the most appropriate operating system platfonn (Linux, Windows) for the

system's loaded processing blocks to run on.

The design choices for the user interface are largely unconstrained by the choices made

for the other components, or by most other considerations. To an extent, the user

interface's appearance can he considered as depending on the information made available

to the central controUer and on the design of the structure of the processing blocks. On

the other hand, the case cao he made that the relationship between the these components

and the user interface's appearance is actually the reverse - the design choices for the

type of information available to the central controUer is dependant on the needs of the

user interface and the researchers who will use it to access the system. As for other

design choices vis-à-vis the user interface, the ooly real factor in determining the optimal

choice is the needs of the system's user(s).

For instance, the user interface can he designed to admit either ooly a single user or

multiple users. Restricting system access to a single user simplifies the system design. [n

a single user system, the central controUer does not need to go to any effort to stop one

user from ruining another's tests being run on the system. It merely must prevent any

users from logging in after one user has a1ready logged onto the system. This design

choice, however, can he dangerous. If anything were to happen to abruptly break the

connection between the user interface and the system, the user would he cut off from the

system but the system might still consider the user to he logged in. This means that were

the user interface not designed to he launched only from a dedicated console, the user

would not he able to log on to the system again, and neither would any other user. As

weU, a single user system would make it difficult for researchers to demonstrate their

work using the system. If ooly a single user could log onto the system at a time, any

demonstration of algorithms would have to take place at the location from ~here the

- 23-

•

•

3. Rigll-Level Design and Design Tbeory

researcher was accessing the system. Further, if the system were designed for access only

from a dedicated console, demonstrations of algorithms on the system at conferences or

at any remote locations such as other universities would be impossible without

reconfiguring the system to accept a new console as the dedicated log in console.

Multi-user systems have a different set of advantages and disadvantages. First, though,

one must define what is meant by a multi-user system. A system with a set number of

dedicated user interface consoles or a system that accepts input from a small pre­

determined number of users may function very similarly to a single user system. On the

other hand, a system that offers far more open access, will be of a different order than a

single user system. For the purpose of tbis chapter and those that foUow, a multi-user

system will he taken to mean a system that is open to a large number of users and is

designed to fonction while one or more of them are logged in to the system. Under such a

definition, the term "multi-user system" could still refer to a system that requires

dedicated consoles for user access, as long as there are many such consoles. The reason

for defining the term so loosely is simple - there are several possible design choices

when it cornes to designing the user interface for a multi-computer system such as the

one described in tbis chapter. One of those is the method of accessing the system, which

can range from dedicated access points to worldwide access. The decision on the method

of access is linked somewhat to the decision on the number of users the system is

designed to accommodate. However, these are two distinct criteria for determining the

type of user interface to design for a multi-computer system.

Figure 3.2-2: Single-user and Moiti-user systelDi with dalapath indicated for a single conunandlreply•

~,
(
1,
'~

- 24-

•

•

•

3. Rigll·Leve. Design and Design Tbeory

As mentioned before, a multi-user system designed for a small number of users can he

treated like a single user system. Basically, if only a small number of researchers have

access to the syste~ they will likely be able to resolve any differences or any disputes

over access ta the system themselves and are unlikely to roin each other's work on the

system. Thus, such a system could be treated like a single user system, allowing each user

full access to system commands without making restrictions to prevent tampering.

Further, on such a system, it may not even he necessary to assign different usemames to

each researcher, or to keep a log of the activities of ail users of the system.

A system designed for many users cannat be so tiberal in granting full access to ail users.

The assumption here is that there are too many researchers using the system for them to

take the time and resolve disputes over such things as allocation of system resources. In

these cases, either the user interface or, more likely, the central controUer, will need ta

take steps to insure that the users do not trample on each other's work inadvertently. For

instance, the system will need to employa mechanism ta prevent tampering with another

researcher's configured network of processing blocks. One method for doing tbis is for

the system ta keep a record for each processing block loaded on the system of the user

that loaded it onto the system. Once done, the system could restrict access to modify any

processing blacks to either the user who initially loaded a given block or the super-user.

Other users would be able to see the processing blacks running on the system, mostly for

the purpose of load balancing when loading their own processing blacks onto the system.

However, they would not he able to effect changes to other users' processing blocks.

Another approach is to restrict access to commands that modify the system's network of

processing blocks to one individual at a lime. This is not the same as employing a user

hierarchy, a concept that will he presented later in this section. Here, assuming no user

hierarchy is in place, any user would have the chance to he the system's controlling user

or "master user", with unimpeded access to the eotire system. Though tbis system is

inferior to the competing approach when it cornes to making full use of the system

available to as many users as possible, tbis approach is not without its advantages. Any

- 25-

•

•

•

3. Wgb.Level Design and Design Theory

multi-computer-based vision system, indeed any system that allows a user to access

remote computing resources for the purposes of computations and experiments, must

aIIow its users to access experimental results. Aside from writing results to files and

viewing them later, the possibility of having results available for the user to view from

hislher console as theyare heing produced is compelling. In vision systems, results often

come in the fonn of graphs and charts or images. In the case of images, each image can

he large, and thus require a large amount of bandwidth to transmit to the user's console.

While restricting each user to displaying results at a single node within hislher network of

processing blocks may he a fair restriction to place on users to save bandwidth, tbis

restriction may not he sufficient to prevent the overuse of system bandwidth if many

users attempt to display results at one node each. In a multi-user, single-master system,

the potential loss of bandwidth due to displaying of results, is ooly a fraction of the

POtentiai loss of bandwidth due to displaying of results on a multi-user system with full

privileges available to ail usecs.

As indicated hefore, aside from selecting the type of user access, there are other design

considerations to determine. One of these is the range of locations from where the system

can he accessed by users. As mentioned eartier, restricting system access to one or more

dedicated consoles cao simplify the design of the central controUer. Doing so a1so adds a

level of security to the system, since ooly authorized personnel will have access to the

dedicated interface console(s). However, placing this constraint on the system will reduce

the system's versatility. A system that requires user to access it from one or more

dedicated consoles cannot he effectively used as a demonstration platfonn to showcase

vision algorithms. As weil, restricting access to dedicated consoles ooly will severely

limit the numher of users who can access the system and may cause a problem in terms of

logistics. A multi-computer system can generally he scaled up by adding additional

computers to it in order to meet increased the demands on system resources that would

accompany an increase in the number of users of the system. If such a system were to use

socket protocols to make connections across a network between the central controUer and

the other computers in the system, then adding computers to the system is simply a mater

of copying necessary software onto the new system and establishing the socket

- 26-

•

•

•

3. Rigla.Leve. Design and Design Tbeory

connection. However, increasing the number of user interface consoles the central

controUer will accept may even require a minor rewriting of the central controller

software, necessitating a brief shutdown of the system each time such a change must he

made. This does not have to he the case. If the system is designed to use configuration

files, adding a dedicated console may he as simple as adding an IP address to a file and

then copying the user interface software onto the newly added dedicated console. Even

so, using dedicated consoles for system access prevents the system's user(s) from running

any tests on the system from any location other than the dedicated console(s).

There are, of course, other options for the method of accessing the system. Access can he

open to an entice workgroup. This opens the system up to a larger group of researchers,

depending on the size of the workgroup, and it impacts directly on the central controUer

design, since the central controller can no longer he designed with the assumption that

certain dedicated connections will always he available. However, as with the accessing

through a dedicated console, access is restricted to a certain localityand the user interface

software must he made available to each computer in the workgroup that MaY be used to

access the system.

User access can also he expanded to the eotice intranet of an organization - university or

business. As with full workgroup, LAN or WAN access, opening up system access to

more users' consoles entails greater security risks to the system, greater ability to use the

system as a demonstration tool amoog fellow researchers within the sarne organization,

increased demand on system resources and greater need to work out logistical problems

related to accessing the system's processing resources. Further, as user access is widened

to include a larger number of locations, it hecomes easier for researchers to access the

system while away from their principal office/research laboratories.

To make the widest possible access, using modem technology, available for a multi-user

system, the system must he accessible over the Internet. One of the advantages of making

the system accessible over the Internet or over an intranet is the immediate availability of

the user interface software on any console with system access, without the need to install

- 27-

•

•

•

3. Rigll.Level Design and Design Tbeory

the user interface software before accessing the system. Sites on the Internet and intranets

can he viewed using web browser software, and the user interface for multi-user systems

with Internet access can he designed to he accessible by standard web browser software.

This means that the user interface software does not need to he instaUed on a machine

prior to system access, and it also means that the system cao he accessed by any

computer, regardless of its type or operating system, as long as that computer can display

and access the user interface software.

The most common form of software applications designed to he embedded into an

Internet webpage, and accessed and run directly by web browser software is called an

Applet. WhiIe Applets can he written to function ooly on certain operating systems, they

cao also he written to function across ail platforms. The standard computer language for

writing Applets is Java, which was originally created by Sun Microsystems Inc. Though

proprietary software extensions to Java, such as Microsoft's Visual J++, provide

additional functional at the cost of ooly functioning on specific platforms, the standard

Java language designed by Sun Microsystems is platform independent. The ooly

drawback to accessing a multi-user system through an Applet, aside from the additional

increase in security risks and logistical issues that accompany any increase in the number

of POtential access points explained above, is the issue of establishing a connection

between an Applet an other software. One built-in security feature of Sun Microsystems'

Java is a total lockout of ail socket communication between the Applet and sockets on

any computer besides the one on which the Applet's software resides. Thus, the central

controUer and the user interface software must he present on the same computer and that

computer must have Web Server software installed and running on it for access via

Applet to function. It should he noted, however, that Applets are not the ooly type of

software that will function on the Internet, however they are the simplest to manage since

the users do not need to have the software on their console in order to access the system ­

they need only to access the applet using standard Internet browser software. The Java

language will he discussed in further detail in other sections that foUow.

- 28-

•

•

•

3. Higb.Level Design and Design Theory

Aside from the measures tbat must he taken to meet the constraints for using sockets on

Applets, Internet access to the system is simply a scaling up of the number of POtentiai

users. Using the Internet as the medium of access, of course, entails added security

precautions not necessary for in-house systems that cannot he accessed by anyone outside

the circle of researchers interested in the system and their colleagues. However, using the

internet also frees the researcher from transporting user interface software or even

computer hardware with himlher whenever he/she wants to showcase a1gorithms

developed on the system to people outside the area of system access. This can occur on

systems where access is more localized and a researcher travels to a technology showcase

or to investors or other researchers intent on showcasing hislher research.

Aside from determining how localized system access should he, another important

decision when designing a user interface to a multi-computer, multi-user system is

deciding what privileges each user should have. This notion was touched upon above

when the possibility of having a master user was discussed in relation to the logistical

problem of allocating system resources. However, aside from logistical issues, the

designer of a multi-user system must identify the needs of the researchers who will he the

users of the system and the privileges one should grant to them. The system can he

designed to treat ail users equally. Or, the system can he designed with a user hierarchy

that will grant certain users more control over the system than others. In certain cases,

such as the case of a system with a single controUing user at a time, referred to as the

master user, the system may require additiooal facilities, such as inter-user

communication protocols to ensure that the privileges gra.!lted to one user by the system

will oot trample on the research work of other researchers who are lower in the hierarchy.

The notion ofemploying a user hierarchy is discussed in Appendix I.

3.2.4 Displaying Results

As mentioned in the previous section, any computational system must provide sorne

means for users to view results and thereby verify or supervise the operation of the

algorithms running in processing blocks on the system. In the case of a computer vision

- 29-

•

•

•

3. Rigll.Levet DesIgn and Design Tbeory

or image processing syste~ results tend to come in the fonn of charts, graphs or images.

Given that the results are visual in nature, the natura! inclination is to display results as

images or video. While the question of whether the system itself should use sequences of

still images or streaming video is left to the next subsection, it is clear that whatever

choice is made about the type of data that the system will operate on will also affect the

decision on the type ofdata used in the displaying of results.

Aside from the question of what type of data to present to the user, the other major issue

surrounding the displaying of results is how should the system construct the display. The

display can he transmitted to the user(s) directly from the node that is producing it, or it

can he traosmitted to the central controUer and, from there, displayed to the user(s). The

display system cao display results at only one Dode al a time per user or multiple nodes

per user, though, as mentioned in preceding sections, displaying more than results at one

node Per user will severely reduce the transmission bandwidth available to the system's

computers. The displayed results can he transmitted directly as they are heing produced,

or they can he saved ioto files and accessed after a delay. FinaUy, the user interface can

he designed to display the results directly or a dedicated display program cao he designed

to display the results at anode selected on the user interface.

For these design choices, there are quite a Dumber of deciding factors. Unlike the other

aspects of the system where the design of one piece of the puzzle determines the structure

of the other parts, here there are several factors that must he cODsidered in the display

system's design. Further, the decisions for the various design choices are interdependent.

For instance, the question of where the display transmission should originate depends on

several aSPects of the user interface design as weil as the number of controUing users the

system will support, the central controUer design and the average eXPected transmission

latencies hetween the processing blacks and the central controUer. If the system is

designed to have only a single master user, then the privilege ta set displayed nodes cauld

he included among the master user' s privileges. In that case, the results at the node or

Dodes designated as displayed by the master user will Deed to he transmitted to ail of the

users on the system. If; however, either the system is not designed with a single master,

- 30-

•

•

•

3. Rigil-Levet Design and Design Tbeory

or if the system has a single master user but the privüege of setting nodes displayed is not

restricted to the master user, then each user should only he shown results at the nodes

he/she requested. In the tirst case, where an users will he shown the same results, it is

possible to have the display data transmitted to the users from the central controUer. The

decision on whether to do tbis or simply transmit the display from the location where it is

generated depends on the average expected transmission latencies between the processing

blocks and the central controUer and on the design of the central controUer, which would

have to he modified to accommodate the display data and would need to have enough

transmission bandwidth to he able to transmit aU display data to aU of the users and

continue to receive new display data from the processing blocks that are generating the

display data as weU as receive and transmit instructions.

In the second case, there is very little choice - the display data should he transmitted from

computer generating that result directly to the user who requested that result displayed.

Otherwise, the central controUer will have to keep track of each display and the user who

requested it, as weU as he able to handle a throughput greater than 2NMD, where N is the

maximum numher of users allowed on the system, M is the numOOr of nodes each user is

aIIowed to display and D is the expected data rate in bytes per second for the display.

Based. on this, il is easy to arrive at the conclusion that to save on transmission

bandwidth, the oost design choices for a system involve designing a system where only a

single master user cao set only a single node to he displayed. However, the decision is not

so simple, since it impacts other elements of the design. For instance, if the user interface

is designed to access the system through the Internet or an intranet, transmitting directly

from any computer on the system to the user interface may not 00 possible. As noted in

section 3.2.3, Applets that are run frOID Internet browser software cannot communicate

with computers with the exception of the computer on which they reside. Thus, a system

that uses an Applet as its user interface cannot access display data on just any computer

on the system. And since, presumably, the central controUer will run on a dedicated

machine, only the central controller will he able to transmit data directly to the Applet.

- 31 -

•

•

•

3. Rigil-levet Design and Design Theory

There are severa! ways a system designer can get around tbis. One is to have the Applet

open another window in the Internet browser to access the data. This solution requires

that each computer on the system have software installed to make it an Internet server. Il

also requires that the computer generating the display compress the data in a way that it

can he accessed directly from Internet browser software. Installing Internet server

software on every machine in the system is usually dependant on permission from the

system administrator(s) responsible for the network(s) where each machine on the system

resides and may not he a possibility. As for the data compression. it is necessary since

Internet browsers are not able to download and display raw, headerless, uncompressed

video or image data. Once the decision to use data compression is made, a decision on

what data compression format to use is required. Sorne compression formats aIlow data to

he displayed as it is heing compressed. while others, such as the AVI format, cannot he

viewed until aIl data is written into a file. The decision will impact on the way the user' s

console will access the data, the expected delay between the time data is generated and

the time it will he displayed to the user and the amount of processing that the display

system will draw to compress data.

There is a further complication in the case where the system uses still images rather than

streaming video. In this case, the webpage that is used to access the display data must he

written to reloadlupdate itself on each new frame of data, typically severa! times a

second. Such a display will a1s0 appear jagged compared to one built using streaming

video. The issue of whether to the system should use still images or streaming video for

data interchange is discussed in section 3.2.6.

By now, l'm sure it is apparent how the various design choices vis-à-vis the display

system are inter-dependent and depend on multiple factors. When designing a display

system for a multi-user system, the design choices of each part within the multi-user

system have a direct impact on ail aspects of the display. Further, design decisions on the

display system have a tremendous impact on a multi-computer multi-user system. Aside

from displaying results, the type of system discussed in tbis chapter needs very little

transmission bandwidth to transmit data between the central controUer and the processing

- 32-

•

•

•

3. Higb-Level Design and Design Tbeory

blocks if a partly-decentralized architecture is used. As well~ data throughput

requirements between the system and the user interface~ aside from those of the display

system, are very low. Therefore, the design and constraints placed upon the display

system are cao he said to detennine the entire nature of the system's components.

3.2.5 Distributed Computing Resources

So far 1 have been discussing the design of a multi-computer system without fully

explaining the advantages and disadvantages of building a system that uses the combined

processing power and memory capacity of multiple computer systems. Simply put, using

a distributed architecture, an architecture that makes use of computing power that is

distributed among severa! computers, allows a single user to hamess more computing

power. For a vision system built run on a single microcomputer, if the system could not

supply enough processing power for a given researcher's needs, the only solution is to

purchase a more powerful microcomputer or to run the system on a large and expensive

mainframe. Were the same researcher to eXPerience a lack of processing power on a

distributed system, the solution would be far simpler and less costly - simply add one or

more computers to the multi-computer system.

Designing such a system is a non-trivial task, as my work in this field aod tbis document

will attest to. However, once done, tbis system would he a boan to researchers in need of

more processing power than a single microcomputer can provide. Presumably, a

distributed system is most useful for research that requires algorithms to run under real­

time constraints. Where these constraints are oot present~ researchers would, presumably,

he able to manage with a single microcomputer, and though a distributed system would

compute results more quickly, such a system, though desirable, would hardly be

necessary.

It should, however, he ooted that the processing power realistically available to a

researcher 00 a distributed system is not NP, where N is the oumber of computers on the

system and P is the average processor power in either MIPS or FLOPS. The distributed

- 33-

•

•

•

3. Higb·Le"el Design and Design Theory

systems that 1 have described here work oost if each machine on the system has locally

running software to control datatlow on the processing blocks loaded 00 that computer.

This software will draw sorne of the processing power away.

Further, there is no guarantee that another user will he using a giveo computer in the

system locally and thus reduce the processing power available to the distributed system.

As weU, even if measures are taken ta ensure that the machines that are part of the

distributed system are not used by any other, there is still a processing and bandwidth

cast to he paid whenever processing black on two differeot computers in the system are

connected. There is no way to get around tbis and still take advantage of the full

processing power of the system. Allow me to illustrate. Let us assume the overhead from

the local processor block managing software is minimal. Further, let us assume that each

computer in system is dedicated to the system - i.e. not for use by other users hesides

those using the system. If the system' s users decide not to connect any two processing

blocks that are on different computers in the system, then the processing power available

on the system is approximately NP. However, given that the system's users have decided

not to take full advantage of the fact that the processes running on the computers on the

system can be linked, then no test can that requires more processing power than Pean

ever he run on the system. Once a user decides to link processing blocks on two different

computers in the system, the processor power available to himlher is approximately 2P-T,

where T is the processing cost of transmitting a single data stream from one computer to

another in the system.

The processing cost for each connection between computers in the system depends on the

method in which the link is achieved. If raw data is transmitted between computers, then

the processing cost is low. At worst, if a user attempts to transmit compressed data on a

system that transmits ooly uncompressed data, the processing cost in transmitting the data

is the processing requirements of a single decompression processing block. It bears

reminding, though, that processing costs are not the ooly measure of the cost to a

distributed system of a transmission between computers. There are also costs in

bandwidth and memory, though the memory cost is negligible compared to the

- 34-

•

•

•

3. mgh.Level Design and Design Tbeory

bandwidth costs. Transmitting raw data requires more bandwidth than transmitting

compressed data of the same resolution. At ten frames per second, a system with

computers connected to a 1 Megabit per second channel cao he very overtaxed by a

single 160x120x24bits stream.

Eg. 160x120x24bits = 460,800 bits/frame, or 460,800 x 2 = 921,600 bits/frame if a computer

takes this image for input and output. At ten frames per second, the system would need a 10

Megabit per second channel for each computer.

Compression would reduce bandwidth requirements. However, video compressors cao he

quite computationally expensive. A distributed system that uses video compression for

transmissions between computers on the system might end up using half or more of its

processing power on video compression and decompression. There is no optimal solution

for tbis, short of equipping each computer on the system with video compression

hardware. Using compression is computationally expensive but relatively cheaper for

bandwidth. Using raw data is computationally cheap but highly expensive in terms of

bandwidth. There is one solution that 1 have to tbis - a compression technique 1 designed,

which 1 refer to as Foveal compression. Though it is a lossy compression, it is relatively

computationally inexpensive compared to standard compression techniques, provides up

to 20: 1 compression (15: 1 for standard 4:3 aspect ratio video), and is designed so that

sorne algorithms can even he run on the compressed data. This compression is discussed

in section 3.4.2.

Aside from the loss of processing power in the system due to overhead on data

transmissions between computers in the system, there is aIso the loss of processing power

due to transmission and generation of display data for results. Each node where data is

gathered for display to users must have its data converted to the format of the display

system and then transmitted to the user. If the display system transmits aIl data to users

from the central controUer, then each node whose results are heing displayed must

transmit data to the central controUer. In tbis case, the central controUer's computer must

have sufficient bandwidth for the maximum possible number of displayed nodes. Even if

the display data is not routed to the user through the central controUer, it must still he

- 35 -

•

•

•

3. High-Level Design and Design Tbeory

prepared for display and the computer generating the display will require processing

power both for converting the data to the display system's format and for the processing

block that transmits the data to the user(s).

From ail of this, it is clear that the total processing power available on a distributed

system is not simply NP. Users of a distributed system must he aware of this when

balancing the processor block load on each computer in the system. Designers of

distributed systems must take care in design ta ensure that the system can run reasonably,

with a reasonable resolution for the video streams.

3.2.6 Streaming Video vs. StiU Images

In a single computer system, as opposed to a multi-computer syste~ the choice between

streaming video and still images is heavily weighted in personal preference - that of the

designer. Only two other factors play a part in the decision. One is the desired range of

variability in available image resolutions. TypicaUy, devices that cao capture video can

ooly produce video streams with certain specified image resolutions. If more variability is

desired, use of still images is required.

The other factor that plays a part in the decision is the availability of software that can

operate on o"ne of the two types of data. For instance, in section 3.2.3, the notion of using

an existing software package for defining the processing block format and controlling the

processing blocks is discussed. If an existing software package is used, it may not accept

both still images and streaming video data, and so the choice of which to data type ta use

will be decided by the software package that the system's designer chose as a framework

upon which ta build the system. Further, if the designer chose a package that works with

both types of data, then the system can he designed in such a way to aUow researcher

using it to choose the type they prefer to use.

Multi-computer systems are somewhat different. Unlike single computer systems, which

present very few constraints, multi-computer systems must he able to contend with

- 36-

•

•

•

3.. Higb·Level Design and Design Tbeory

datatlow issues while passing data between processing blocks on different systems. A

system that uses still images to pass data between computers will have poorer results than

one that uses streaming video for an information interchanges over a network. This is due

to the need, in systems that use still images, for the processing block receiving data to

request new input data. While there exists no transmission latency between processing

blocks running on the same computer, the transmission latency between processing locks

on different computers is non-trivial. To work around tbis, the processing blocks

designed for a multi-computer system using still images would have to he designed to

constantly request new image data. Once tbis is done, the system will effectively fonction

like a streaming video system, though the video capture devices may become overloaded

with requests for new images.

The issue of video quality has been raised with me by other researchers. The basic

complaint put forward is that the quality of video streams produced by standard video

capture devices used on persona! computers, such as the standard quality Logitech

QuickCam, is very poor. This is often true. However, the suggestion overlooks the fact

that these same devices produce still images with the same low quality. There are video

input devices that can produce higher quality images than standard computer video

capture devices, and those that cao produce video streams, a1so produce better quality

streaming video than that of standard computer video capture devices. Further, these

devices do not experience a major decrease in image quality, between the still images

they produce and the streaming video they produce. Sorne produce steaming video with

the same or nearly the same quality as the still images they cao produce. Thus, while the

issue of image quality of the data used on the system is an issue of sorne importance in

detennining what type of data the system should use, it is important to note that the

image quality is dependant in large measure on the quality of the video capture devices

used on the system. If the quality of standard devices is insufficient, the problem will

likely manifest itself regardless of which mode - still images or streaming video - the

device is set to. Essentially the ooly difference, from the perspective of a video capture

device, between producing a video stream or producing a sequence of still images is the

header information and format of the data presented and, for the majority of video

- 37-

•

•

•

3. IDgh-Level Design and Design Tbeory

capture devices, each still image must he requested while the streaming data is produced

at whatever frame rate the device and the computer it is connected to can handle. Rather

than use video quality as a criteria for selecting one data tyPe over the other, in cases

where improved image quality is required, researchers should invest in better quality

video capture devices.

Another issue that has been raised by feUow researchers has been the low resolutions

available on streaming video. Lower resolutions are typicaUy used on streaming video

due to bandwidth considerations. Raising the resolution on a stream increases the

bandwidth requirements, which in tum may force the system to reduce the frame rate if

the required bandwidth is greater than the maximum throughput on the transmission

channel. Perhaps it is unknown to these researchers that the same issue exists when using

still images. The frame rate in a streaming video system is subject to the same constraints

that the frame rate in a still image system would he subject to if run on the same

machines. Thus, this is not a reason for preferring one data type over another.

3.2.7 Definitions

Before proceeding further, 1 feel there is a need, for the sake of clarity, to define certain

terms that will aid in understanding the sections and chapters that follow. The tirst of

these are upward and downward communications. Upward communications refers to

messages sent from the computers running processing blocks to the central controUer, or

from the central controller to the user interfaces. Downward communications refers to

messages sent from the user interface ta the central controUer or from the central

controUer to the locally running processing block controUers on each computer in the

system. CoUectively upwards and downwards communications are a1so at times referred

ta as vertical communications in tbis document.

- 38-

•
3. Bigll-Level Design and Design Tbeory

upward

Central Controler

downward

•

•

Figure 3.2-3: Upward and Downward directions in System description

The tenu system itself in tbis document refers to the central controUer and the computers

that run the processing blocks. The user interface is not considered part of the system for

the purpose of this document, nor is the user end of the display system in instances where

the two are separale pieces of software. Rather, the user interface is considered to he

logging into the system, whereas the various computers in the system are connecled to

the central controUer. In general, there is sorne room for leeway on whether or not to

include the user interface in the definition of the system, however, [have chosen not to

include il.

- 39-

3. Bigla-Level Design and Design Tbeory

•
Centrat Controler

}
} the System

}
}

•

•

Figure 3.2-4: Diagram indicating tbat the system comprises the local processing block controllers
(and the processing blocks ruDning on them) and the central cootroler

There are two exceptions to the use of the term system. One comes in the term display

system. This refers to the software that is part of the system and software that is run on

the user's console, either as part of the user interface or as separate software, which is

used to produce a display of results at one or more nodes in the system In effect, the term

cao he considered a shortened form of the term the system for producing and displaying

results.

The other exception to the usage of the term system occurs in the terms inter-system

connection and inter-system communications. Connections hetween processing blocks on

different computers are handled by processing blocks that act as intermediaries and

establish a connection over computer network between themselves. Such connections are

referred to in tbis document as inter-system connections. Communications over inter­

system connections are referred to as inter-system communications. Technically sPeaking

the term intra-system connections would he more accurate, however, using the standard

definition of the term system defined in tbis section, any connection between any two

processing blocks could he caUed an intra-system connection.

- 40-

•

•

3. Bigla-Level Design and Design Tbeory

The other possibility would he to use the term inter-computer connection. There is a

problem with this approach as weU. Vertical (upwards and downwards) communications

are also sent over inter-computer connections. For this reasony connections hetween

processing blocks on different computers are referred to as inter-system connectionsy and

the word "systemn is taken as shorthand for the phrase "computer systemn in this teern. 1

admit that tbis nomenclature is somewhat inaccurate. Stilly since inter-system

communications are quite important within a distributed systeiDy a teern needed to he

reserved to refer specificaUy to tbis type ofcommunications.

At timesy the term intra-system communications is used. Wherever it appearsy it refers to

connections between two processing blocks loaded on the same computer.

Intra-System cOlUlection
Illt~·Systauconnection

Local Processing
Block Controller

Machine 1 Machine 2

•

Figure 3.2-5: Dlustration or the difference between inter-system and intra-system connections

lntra-system connections refer to connections hetween two processing block loaded on

the same computer. These computers are running software 10caUy that provides ao

environment upon which the processing blocks cao he loaded. Since it runs locally, this

software isy at timesy referred to as local controUer softwarey to distinguish it from the

central controUer software. Local controller software is responsible to handle dataflow

issues between aU processing blocks loaded on the local computer.

- 41 -

•

•

•

3. Higb-Level Design and Design Theory

Local Processing Block ControlIer

Local Processilg Blocks an,h

Figure 3.2-6: Dlustration or Local Processing Blocks Controller, depictng local Processing Blocks
Graph

The collection of processing blacks loaded on a computer's local controlling software are

referred to by severa! names. They are referred to as the network of processing blacks,

processing blocks graph and system graph. Here, the word system in system graph refers

to the entire system as defined in tms section.

locaJ Proc:essing Block
Controler

Figure 3.2-7: Depiclioo or System Graph. The System Graph is the union or ail the local processing
block grapbs

- 42-

•

•

•

3. Higb.Level Design and Design Theory

In the discussion conceming the user interface, the term master user was presented. The

definition of tbis tenn is the user who is the ooly one who has control of the system's

resources. [n a system where there is a master user, ooly the master user can loadlunload

processing blocks from/to the system graph and ooly the master user can make or break

connections between processing blocks or issue commands that would change the

operating mode of the system graph.

The terms platfonn independent and platfonn specifie sbould a1so be defined. For the

purpose of tbis document, the "platform" referred to by these terms is the combination of

the type of microcomputer and the operating system running on it. For instance, a

Windows NT system is one platform - a microcomputer designed with a general-purpose

microprocessor built by either Intel Corp. or American Micro Devices (AMD) and

running the Windows NT operating system designed by Microsoft Corp. Software that is

platfonn independent cao he run from any microcomputer~ while p/atfonn specifie

software cao ooly he run on one or more platforms that meet a certain criteria.

Two more terms that require definitions are real lime and comp/ex. Both of these terms

are used extensively in technical publications, and several definitions of each term exist.

ln this publication, 1 often use the adjective complex in a differential mode, to indicate

that one item is more grand, complicated or more difficult to build, manage and maintain

than another. 1also use the term complex, as in complex commands, to differentiate these

from simple - single line commands.

As for the term real time, 1 use tbis term applied to a system. A system operates under

real time constraints if that system cao complete its computations on input data hefore the

next input sample is ready to he processed without forcing data to he dropped. This

measure is irrelevant in systems where computational blocks poIl input devices for data

when they are ready to process new data, unless the input devices grab data at a constant

frame rate aod drop data if no request for data is received.

- 43-

•

•

•

3. Higb-Level Design and Design Tbeory

FmaIly, 1 feel the need to define the term area of system access. This term refers to the

collections of locations from which a user cao access the system using the user interface

software. A system that has only a single, dedicated console for user access has a very

narrow area of system access, which encompasses only that one console. A system that

provides user access over the Internet has a very wide area of system access,

encompassing aIl computers with suitable Internet connections.

ln the sections and chapters that foUow, more new terms will need to he defined, and

sorne terms that will he used interchaogeably with those defined here will need to he

presented. When the need to define new tenns in this document arises, those new terms

will he presented and defined.

3.3 Design Goals and System Requirements

ln the previous section, 1 explained the components required by a distributed system such

as the one 1 am proposing. In so doing, 1 touched upon the various design considerations

that go into the design of each component. It should he cIear by now that, white sorne

design choices are easier to implement or provide more functionality to the user than

others, ultimately, the design goals set for a distributed system carry the most weight in

its design. The advantages and disadvantages associated with each design choice may

serve to guide the design towards attainable goals and may serve as a deciding factor

between two or more choices that fit the design goals. Once the design goals are set,

however, they determine the basic structure of the system, its components and its user

interface.

My initial design goal was to build a distributed system that would use streaming video

for dataflow, and alIow user access over the Internet. As explained above, choosing

streaming video over still images is very much based on user preference. 1 had experience

with using streaming video in the pasto Further, the streaming video software package

-44 -

•

•

•

3. Bigb.Level Design and Design Tbeory

that 1 had the most experience with, DirectShow, fit quite weil with the system's needs

for detinition of the processing blocks and local processing block control. 1 will detail the

relevant aspects of DirectShow in section 3.4.

As to the goal of building an Internet-accessible system, 1 saw several advantages. Ficst,

Internet accessibility wouId mean that 1 would not need to copy my entire user interface

onto each computer that 1 wanted to use as a console. Second and far more important, 1

would he able to access the system from anywhere. The system would, effectively, he ilS

own demonstration tool.

From my initial goals, and my study of distributed systems, 1 was able to arrive at certain

basic requirements for the interface and the componenls in the system.

3.3.1 User Interface Requirements

To provide Internet access, the user interface would he a Java Applet. To alIow the

Applet to communicate with the system, the Applet would use sockets. Due to the

restrictions placed on socket communication for applets, the Applet would reside on the

same computer as the central controUer.

The user interface would provide the user with a way to connect to the system and would

provide a graphical view of the processing blocks graph. Since Internet access opens the

system to certain security risks, the system would he password protected, and so the

Applet would need to provide a user logio interface with a password to prevent

unlicensed users from accessing the system. Other security measures for the user

interface were considered, however, since the focus of tbis system was not on security,

those issues were dropped and left for later implementation. A discussion of those issues

appears in Appendix 1, section 1.5.

Since the Applet would he the user's ooly entry point alIowing control of the system,

certain basic pieces of information would he required for il. For instance, aside from

- 45-

•

•

•

3. Bip·Level Design and Design Tbeory

providing a graphical representation of the processing blocks graph, the Applet would

have to display an itemized list of the processing blocks available on a given system. It

would need to provide the user with a means of loading and unloading processing blocks

and weU as connecting and disconnecting them. The Applet would need to warn the user

in the event that a major change occurred to the system, such as the addition or removal

of a computer from the distributed system As weU, the user would need to have control

of load balancing and so the Applet would need to he designed to allow the user to access

the individual computers on the system independently. This would allow the user to

determine where within the system each processing block should he loaded.

3.3.2 System Control Requirements

Given my experience with DirectShow and my decision to rely on it to provide local

control of processing blocks, the distributed system that l sought to design would have a

partly decentralized control structure. The central controUer would he responsible ta act

as the central hub of the system, relaying upwards and downwards communications while

keeping track of the system's processing blocks graph. Given the multi-user nature of the

system, the controUer would need the ability to route messages from one connection to

another or from one connection ta many others, so that ail of user interfaces connected to

the system would he updated when one user made a change to the system. The central

contraUer would also provide certain essential services to the users, such as issuing sets

of commands needed to make inter-system connections.

3.3.3 Processing Stock Requirements

The processing blocks are the lowest level within the distributed system. In a sense, they

are the foundation of the system. The properties and abilities of the processing block

format and the local managing software delineate the boundaries of the user's control of

the system.

For the system to function and perform in the manner l required, it would need to he able

to load and unload the processing blocks from the processing blocks graph on each local

- 46-

•

•

•

3. Higb-Level Design and Design Tbeory

controUer. It would also need the ability to initiate connections between locally loaded

processing blocks, handling all handshaking during connections, and break established

connections. In order to aid the user in selecting processing blocks to load, the local

controUing software would need the ability to locate the processing blocks stored on the

local computer and report back to the central controUer on the name and type of each

processing block available to it. Further, the processing blocks themselves would need

the ability to report the number and type of connections that were possible to the local

controUing software. As weU, the local control software would need to keep track of the

processing blocks locally loaded. Since 1 selected streaming video over still images, the

processing blocks format would need to he designed so that the processing blocks would

operate on streaming video, either frame by frame or severa! frames al a lime. FinaUy,

since inter-system connections are a requirement for the syste~ the format for writing

processing blocks must he open enough to allow the processing bl,?cks to make socket

connections and to aUow the local controUing software to set variable in the processing

blocks or, at the very least, to pass messages to the blocks.

As the next section will show, Microsoft corp.' s DirectShow met the requirements 1 had

set for the processing blocks.

3.4 DirectShow

3.4.1 A Quick Introduction to DirectShow and COM

DirectShow is one of a group of software packages designed by Microsoft corp. called

DirectX drivers. Il functions as the streaming multimedia driver for DirectX. Under

DirectShow, processing blocks are called Filters. Each Filter object is compiled as a

dynamically linkable piece of compiled code that may he linked to a process running on a

computer and configured. DirectShow Filters comply with the COM standard.

COM is the component object model, a binary standard for information interchange. It is

a binary standard that defines how objects are created and destroyed and, most

importantly, how they interact wilh each other. As long as applications foUow the COM

- 47-

•

•

•

3. Rigil-Levet Desip and Design Theory

standard, different applications from different sources cao communicate with each other

across process boundaries. Since COM is a binary standard, it is language independent.

Under DirectShow, Filters and Fi/ter Graph Managers - applications designed to manage

Filters - can he designed using Visual C++ and Visual Basic [9].

AIl processing blocks written under DirectShow, regardless of function, are called Filters,

yet they are not aIl true filters in the engineering sense. Filters can belong to one of many

categories and come in three types - Source Filters, Transform Filters and Renderer

Filters. Source Filters are a local source of streaming data. These include Filters that

access multimedia files stored on the local computers data storage drives or on remote

computers, Audio capture Filters, designed to capture audio input from a computer's

microphone and Video capture Filters, designed to capture video from local or remove

video capture devices. These Filters are the starting points in a COM applications' Filter

Graph, the DirectShow term for processing blocks graph.

Renderer Filters include aU Filters that render streaming data to output devices such as

the local computer screen, speakers or a socket. These FUters are end points in a COM

applications' Filter Graph. Transform Filters include ail Filters that run any form of

operation on a multimedia stream. While Source and Renderer Filters are not true filters

in the engineering sense, mast Transform Filters are. Researcher' s algorithms on the

distributed system would he designed as Transform Filters. Figure 3.4-1 shows a sample

Filter Graph.

MPEG video Video

U decompression - Renderer
MPEG Filter Filter

File or URL - splitter
Source Fitter Fitter

~ MPEG audio Audio
decompression - Renderer

Filter Filter

Figure 3.4-1: Black diagram or a Filler Grapb, depicting decompression and rendering 01an MPEG·
compressed stream of data.

- 48-

•
3. Rigll-Level Design and Design Tbeory

Ftlters have data entry and exit points called pins. Under DirectShow's specifications,

Filter pins are unidirectional. They are used to pass streaming multimedia data, audio or

video, compressed or uncompressed, from one Filter to another. Source Filters, typically,

have one or more output pins and no input pins. Renderer Filters typically have a single

input pin and no output pins. Transfonn Filters can have any number of input and output

pins.

Source output pin
Filter

in Transform output pin
~..........~---t Filter

in Renderer
~.................... Filter

•

•

Figure 3.4-2: Dlock diagram of a simple Filter Graph complete with Fitter pins

When a connection hetween one Filter's input pin and another Filter's output pin is

initiated in a Filter Graph manager, DirectShow handles the handshaking and attempts to

configure the downstream Filter - the Filter further from the Source Filter(s) - and

upstream Filter so that the two are using the same data type to transfer streaming data.

In addition to pins, Filters have another means of access, which is necessary to allow a

Filter Graph manager program to control them. Filter Graph Manager software accesses

Filters using COM interfaces. These interfaces, provided by DirectShow, allow the Filter

Graph Manager to retrieve information from the Filters and their pins, handle dataflow

hetween Filters and configure the Filter Graph. One group of these interfaces consists of

enumerators, which aUow a program to scan the local computer's registry for register

Filters.

Under Microsoft's suite of Windows operating systems, each computer contains a

software registry that stores information such as the location of certain program on that

computer's storage unÏts. DirectShow Filters and drivers for video and audio input and

output devices must he registered in the registry in order to he accessible. This is very

significant in that it fulfills one of the requirements of the distributed system - that a list

of the processing blocks available on a given computer in the system he accessible by the

system.

- 49-

•
3. Rigll-Level Design and Design Tbeory

Unknown to most personal computer users, DirectShow Fdters are found on ail Windows

computers. These include decompression software for standard multimedia compression

types, and Filters designed to access the compute sereen. As weil, DirectShow is able to

access standard drivers for video and audio input and output devices connected to the

local computer and make them appear to he standard Filters to Fiiter Graph Manager

software, complete with input or output pins. Thus, when using DirectShow to build an

application, a developer has access to an existing bank of Filters, including full access to

peripheral devices.

For a more detailed look al DirectShow, consult Microsoft' s website.

•
3.4.2 Previous DirectShow Experience: Foveal Compression

DirectShow is not new to me. My previous work in streaming video involved designing a

type of video compression for streaming video. The compression scheme, Foveal

compression, was designed somewhat along the functioning of the human eye. In short, it

took an image and ran a pixel-averaging scheme on it. The pixels close to the centre of

the image were left intact, while the red, green and blue values of those further out were

average in square regions consisting of 2x2, 4x4 or 8x8 pixels depending on how far from

the centre they were.

... ' . '.'. ~ , ' .' '.'
• J • ~ •• •• li • 1 • • _. • • • .. '

_:9: : .. ::141:': :: Jr:":' -::':"2':';
. . . -. ~

,',«:: ~;':~",~~-~::' '.:,-:::~:/~.<~.~-::~-
•• _• _ ~ • _ • li",."-,,. .. • ~ . JI ~ _....... , • .'\, j

l
•

.....f---- 320 pix els

Figure 3.4-3: Foveal compression. On the 1eR, the subdivision or a 320x320 pixels image into 3
annular regions with 64:1, 16:1 and 4:1 compression, with 1:1 compression in the centre. On the
right a depiction or the compressed data butTer. The resulting compressed output is 15,606 bytes,
compared to the 307,200 bytes in the uncompressed image.

- 50-

•

•

•

3. Hip..Level Design and Design Tbeory

My purpose in designing the distn"buted system was not tied to the work 1 had done on

the Foveal compression and the Fdters 1 had written to operate on Foveal-compressed

streams. Rather, 1 present tbis work for two reasons. First, my work with the Foveal

compression gave me a good understanding of DirectShow and ail its capabilities. This

experience led me to conclude that DirectShow could provide ail of the functionality

needed for the processing blocks in the distnbuted system.

Also, the Foveal compression could he useful in the distributed system for inter-system

connections. 1 would not impose a lossy compression, such as the Foveal compression, as

the standard compression to be used for inter-system connections in the distributed

system No doubt, many applications would suffer tremendously from the decreased

image quality. However, the Foveal compression is a very computationally inexpensive

compression, and the faet that operations such as edge detection can he run on the

compressed stream is an added bonus. In certain circumstances, tbis compression scheme

could he useful, since it considerably lowers transmission bandwidth requirements.

3.5 High-Ievel Design

3.5.1 OveraU System Design Objectives

Now that the purpose of tbis system has been defined, its high-Ievel design choices

discussed and explained and its basic requirements delineated, it is possible to begin the

task of explaining system's design. The overall design of the system, eonsisting of two

components, as weIl as the user interface and the display system are explained in the

subsections that foUow. Each component described follows the requirements set for il.

Aside from requirements, there were certain objectives 1 set and certain ideas 1 explored

in an attempt to optimize the system's operation as much as possible. Sorne of these were

implemented during the course of my work, while others were left to future work.

Chapter 6 in this document is a discussion of ideas for improvements to the system 1

designed that 1 have left to future implementation.

- 51 -

•

•

•

3. High-Level Design and Design Theory

One of my objectives in design was to reduce the transmission bandwidth requirements

as much as possible, especially for upwardsldownwards communication. Though the bulk

of the communications in this system was inter-system communications, it is the speed of

vertical communications that defines the time lag between the moment a user issues a

command and the moment aIl the connected user interfaces have been informed of its

execution. Since aIl users must be updated on system changes regardless of which user

issued the commands to make those, each user command sent downwards must generate

N replies, where N is the number of connected users. If many users are connected, tbis

can tax the system's central controUer greatly, especiaIly if each upward message

generates a downward message requesting additional information. By designing the

system's components to transmit ooly information that is necessary, the central controller

and the local processing block controllers would he able to update all users as quickly as

possible. Also, by designing the user interface to retain certain information that is

unlikely to change, the amount of data transmitted verticaIly through the system is

reduced.

Q
llnt~ace)

Figure 3.5-1: Datapath for a downward commaod and the upward system updates it generates

Another objective in design was to maximize the re-use of software code as much as

possible. The central controller software, in a sense, acts like a telephone operator,

routing messages from the user interfaces down to the appropriate local processing block

controllers and broadcasting updates from the local processing block controUers to the

connected user interfaces. For this reason, the fonn of upward and downward messages

between the central controUer and the local processing block controllers could easily be

re-used for upward and downward messages between the central controUer and the user

- 52-

•

•

•

3. Higb.Level Design and Design Tbeory

interfaces. Sïnce the central controller must maintain a record of ail system configuration

data in arder to perform such services as establishing inter-system connections, it must

contain software code to store any system update information it receives from the local

processing block controllers. This information is also required by the user interfaces in

order to present a graphical representation of the system to the users. Thus, re-use of data

types used to store the information and software code used to retrieve it from the upward

messages is possible and quite time saving. Care must he taken in re-using the code, since

ooly the design of the central controller can assume that it will be operating from the

moment the system is turned on, whereas the user interface is able to log in after the

system has a1ready been started. Of course, unhindered re-use of code, including data

types necessitates the use of the same programming language. The user interface's

programming language was selected by the necessity of having an Internet-based

interface. The central controUer's language was selected for the ease of code re-use.

Continuing a10ng the lines of my second objective, 1 found it was necessary to design the

format of upwards and downwards messages to alIow easy re-use of code. As weil, 1

decided ta make the vertical communications format as simple as possible to reduce the

amount of processing required to extract relevant data. Therefore, 1 designed the format

for vertical communications to look like STMP or Telnet protocols. AlI messages are sent

as an uncompressed stream of ASCII characters ending with a CR character and each

message that can he sent upwards or downwards in the system has an associated

command number. The details of the system's vertical communications are discussed in

chapter 4 and proposed future enhancements to these communications can be found in

Appendix I.

My third design objective was rooted in the design of the user interface. The interface

would serve as the entry point into the distributed system for the researchers that would

use the system. 1 wanted a design that was a simple as possible, while still offering

researcher aU the information and control they needed for the system to he useful to them.

- 53-

•

•

•

3. Rigll-Level Design and Design Tbeory

ln my previous experience with DirectShow, 1 made good use of GraphEdit, a Filter

Graph Manager program that is included as a utility with Microsoft's DirectShow.

GraphEdit is a developrnent program for testing DirectShow Ftlters and Filter Graphs. It

presents a graphical representation of a Filter Graph to the user, allowing the user to load

and unJoad registered Filters, connect and disconnect Filter pins and handle datatlow

issues. When 1 tirst began using GraphEdit, 1 was struck by how simple the program was

to learn and use. In designing the system, 1 decided ta take sorne ideas from GraphEdit's

grapbical representation and control features when trying to make the user interface as

easy to master as possible. Since the distributed system 1 was designing would use

DirectShow Filters as processing blocks, 1 felt that it was likely that the users of the

system would tirst test their Filters on a local computer using GraphEdit to insure that

tbey functioned correctly as DirectShow Filters. In tbis case, the more like GraphEdit my

system's user interface would he, the easier it would he for researchers to move between

the two. Though sorne GraphEdit features, sucb as providing access to Filter property

pages and allowing users to save Filler Graphs, were not included in my system, most of

the other functionality of GraphEdit was incorporated ioto the final product. Ta a great

extent, the system's user interface resernbles GraphEdit, though unlike GraphEdit, it is

able ta manipulate Filter Graphs on many computers at once remotely. Sorne of these

features are discussed in Appendix 1. Figure 3.5-2 shows a Filter Graph on GraphEdit.

- 54-

•

•

•

3. Rigla·Level Design and Design Theory

Figure 3.5-2: Sample GraphEdit application

The subsections that foUow do not discuss Cully the implementation of the components.

That discussion is left to chapter 4. Rather, the following subsection discusses the design

of each component from the point of view of high-Ievel design.

3.5.2 Central ControUer Design

In my design, the Central ControUer is the central hub of the system. It was written to

function as a server, and ail other software, either inside the system or accessing it, were

designed to connect to it via TCPIIP socket connections. 1designed the Central Controller

to fulfill five purposes:

1. Route upwards and downwards messages to their intended destinations.

2. Provide a central location so that each connected user interface could access the

eotice system through a single socket connection.

- 55-

•

•

•

3. Rigll.Level Design and Design Theory

3. Retain complete information on the entice system.

4. Provide essential services, such as cross-computer services, that could not he

provided by a local controUer, due to the local controUer's inability to access

other computers on the system.

5. AlIow only a single user to log on to the system as master and aIlow only a single

local processing block controUer per computer in the system.

Several models exist for servers. 1 chose to design the central controUer as a single thread

per client server. One thread Iistens for connections, and when a connection is attempted,

it spawns a new thread to handle that connection. Since the listening socket has no way of

discriminating between attempts to connect made by local processing block controUers

and those made by a user interface or user's display, the code designed to handle

connections is able to handle aIl expected types of connections. Once the connection is

made, the central controUer uses the logio message sent to it by the software attempting

the connection to distinguish between the various types of connections.

Since the central controUer was designed using a multi-threaded approach, and since it

was designed to he able to relay messages upwards or downwards, the central controller

was designed to use Inter-Client Message Handler, or ICMH, built with internaI pipes to

aIlow its threads to communicate with each other. The controUer was designed to store a

list of aU connections, including the name or IP address of the connecting computer and

the connection type. This list could he accessed whenever a thread needed to broadcast a

message to aU connections of a given type or when a message was intended to a specific

client accessed by type and index number. In the event of a disconnection, the central

controller was designed to send message to the threads to inform them of changes in their

index, as the connection at the end of the list took over the index of the disconnecting

client. In the event a processing block controlled disconnected, aU user interfaces would

he informed to aUow them to adjust their information about the system.

The CentraI ControUer was designed to retain aIl data about the system. In addition to the

connection list, 1 designed it to maintain an indexed list of the registered Filters on each

- 56-

•

•

•

3. Rigll-Level Design aad Design Tbeory

computer in the system, itemized by category, and a list containing a1l of Filters loaded

on the Filter Graphs of each computer on the system, including their local connections.

The Central ControUer a1s0 retains a central listing of Futers.

Since the Central ControUer was designed to route messages between the connected user

interfaces and the local processing block controUers, it required a means for converting

messages sent by one of these to the other. Though, as section 4.5 will explaïn, a very

similar convention was used for aU upwards and downwards communications regardless

of source and destination, sorne message format conversion was still required.

Not ail messages received by the central controUer were meant to he merely re-routed

after relevant data was stored. Sorne system services, such as setting up the display at a

node in the system's Filter Graph or setting up an inter-system connection, would be

difficult to accomplish from a decentralized point in the system. 1 designed the Central

ControUer to provide these system services.

The Central ControUer also acts as an arbiter, aUowing only a single user to be the

system's master. Since 1 did not design a hierarchy of users into the system, the Central

Controller was designed to grant master status to the tirst user to log on and to maintain

that status until that user logged off. When the user logged off, another connected user,

assuming another was available, would he selected to he the new master. Users connected

in View only mode, as opposed to Master mode, are restricted in their access to certain

commands on the system. 1 designed the Central ControUer to prevent View only mode

users from issuing any commands that could modify the system's Filter Graph, such as

loadinglunloading Filters, connectingldisconnecting Filter pins or startinglstopping the

dataflow of the local Filter Graphs.

The Central controUer was also designed to arbitrate within the system. Running multiple

local processing block controllers on the same computer in the system is redundant, and

so the Central ControUer was designed to prevent a local processing block controUer

- 57-

•

•

•

3. Rigll-Level Design and Design Tbeory

from connecting ta and joining the system from a computer that was a1ready part of the

system.

Since 1 wanted to maximize code re-use, and since more code was needed to process

upward signais, which contain Filter Graph and registry information, than downward

signais, which consist of single line commands, 1 chose to design the Central ControUee

using the same software language as the user interface. Since one of my goals for the

system was a user interface accessible by Internet web browser, the user interface was

designed as a Java Applet. For this reason, 1 chose to design the Central ControUer in

Java as weU. The JavaServer, as il has come to he known, and the user interface Applet,

have very similar code for handling updates. They share the same data structure that

keeps track of every Filter in the syste~ indexed by its local computer and its index

within the local processing block controUer's Filter Graph. They also share data

structures for listing every registered Filter on each computer in the distributed system,

indexed by its type and name. Unlike the Applet, the JavaServer was designed under the

assumption that any changes to the system's Filter Graph occurred after it went online,

since, without a central controUer, there is no system. Thus, only the JavaServer was in a

position to know such things as which Filters in the system were merely added to produce

the display at a given node or to establish an inter-system connection. The Applet was

designed so that these Filters would not he displayed to the user when viewing the entire

system and though they would appear on the Applet's screen when the user was viewing

only a single computer's Filter Graph, the Applet was designed to prevent the user from

modifying these Filters directly. These so-caUed undisplayed Filters will he discussed

further in section 3.5.4 and in chapter 4.

3.5.3 Local Processing BIMk ControUers

As previously stated, 1 chose to use Microsoft's DirectShow drivers for the local

processing blocks and so 1 designed the local processing block controUers as Filter Graph

Manager software. The software was designed to establish a connection to the Central

ControUer using a TCPIIP socket. After connecting up to the system, the local processing

- 58-

•

•

•

3. Higb·Level Design and Design Tbeory

block controUer software would wait for instructions from the Central ControUee. The

Central ControUer would inform the connected user interfaces of the presence of the new

computer on the system and then request data from the local processing block controUer

on the local Filter Graph and registry.

1 designed the local processing black controUee software to accept simple instructions

from the Central ConlroUer and reply with an update in the case of success or an error

message in the case of failure. The local controUers were designed to handle commands

requesting information on the local registry, the configuration of the local Filter Graph

and its current dataflow mode - running, waiting or stopped. They were also designed to

receive commands either to load or unload a Filter on the local Filter Graph, connect or

disconnect two Filter pins or ta modify the local Filter Graph' s current dataflow mode. [

refer to these instructions as Fi/ter Graph modifying instructions, since their purpose is to

request modifications he made to the Filter Graph' s configuration or its dataflow. The

Central ControUer aUows ooly one user, the master user, ta issue Filter Graph modifying

instructions. 1 also designed the local controUers to accept request for configuration

information needed to set up the Filters that transmit to and receive data from processing

blacks outside the local Filter Graph.

The local controUers store ail relevant data in data structures designed for that purpose. A

list of registered Filters is built once and unless there is a request to rebuild the list, the

local controller merely retains the list and transmits it, after sorne formatting, to the

Central ControUer upon request. The local controUers were also designed to retain a full

list of the locally loaded Filters, including the local connections between Filters.

ln keeping with my goal of reducing the data size of vertical transmissions, 1 initially

decided that the local controUers would reply with a short message indicating success

upon successful execution of a Filter Graph modifying instruction. As 1 began to design

and implernent the user interface, however, 1 found that tbis would not he feasible. 1

opted instead to have the local controUers issue updates on the Fillers and their

connections. To reduce upwards communications, 1 decided that the updates would

- 59-

•

•

•

3. Higb.Level Design and Design Tbeory

contain information only on the Filters tbat changed from the most recent instruction,

unless the Central Controller explicitly requested full information on the configuration of

the local Filter Graph.

3.5.4 User Interface Applet

As mentioned above, one of my objectives in designing the Java Applet that would serve

as the user interface to the distributed system was to design its front end to he simple yet

POwerful. 1 wanted the user to control the interface using simple point-and-click and

point-and-drag mouse commands, and reduce the user's reliance on the keyboard to a

bare minimum.

My expectation was that researchers using the distributed system would debug their tirst

Filter(s) using Microsoft's GraphEdit to ensure that they had properly assimilated the

knowledge on how to build proper Filters. For tbis reason, 1 used tried to give the Applet

the look and feel of GraphEdit.

Under my design, the Applet code was to reside on the same computer as the JavaServer,

which served as the Central ControUer for the system. This way, the Applet would he

able to connect to the JavaServer through a TCPIIP socket, since one of the security

features of Java prevents Java Applets from making socket connections to any computer

aside from the one on which they reside.

1 decided to give the user two viewing options when viewing the system. The tirst view,

known as the System Filter Graph view, was designed to present the user with a view of

the entire system as a single Filter Graph. In tbis view, Filters used to make inter-system

connections and those used to produce the display would not he displayed. 1 refer to those

Filters as undisplayed Filters.

The second view would aUow the user to see the entire Filter Graph on a single computer

in the system. This view would include undisplayed Filters, but they would he drawn

- 60-

•

•

•

3. High-Level Design and Design Tbeory

with greyed-out text and the user would not he alIowed to issue Filter Graph modifying

instructions directly affecting these Fdters.

1 decided that, regardless of the selected view, the user would need to select one

computer on the system at any given time to he the system locus, the computer that ail

Filter loading instructions would he directed al. The user would he able to switch the

system focus at any time. 80th views would present the user with a list of Filters

registered on the system focus.

Further, to prevent delays while waiting for updates after issuing eommands, the Applet

would he designed to operate (WO threads. The main thread was responsible for drawing

the graphies on the sereen and sending the user's instructions to the JavaServer. The

secondary thread was responsible for receiving updates from the JavaServer and issuing

sorne information requests if necessary.

3.5.5 User Display System

The user display, and indeed, the entire display system, presented a difficult challenge to

design. l deeided to allow ooly one node to he displayed to aIl users al any given time to

save on precious transmission bandwidth while still allowing all users to see the display

and thereby get sorne use out of the system even when not eonnected as the system's

master. However, my other decisions were not so easy to make. My original preference

was to use an Internet browser to view the displayed stream. [designed the user interface

to he a weh-accessible Applet, so it was safe to assume that the users on the system

would have access to Internet browser software. Typically, web browser software,

regardless of platform, can either display streaming multimedia data using browser plug­

in software or cao launeh proprietary software to display streams. Thus, it seemed logical

to access the display using a webpage launched by the Applet. Unfortunately, tbis was

not to he.

- 61 -

•

•

•

3. Rigll.Levet Design and Design Tbeory

Using a web browser for the display presented severaI question to he resolved. Frrst, there

was the question of which computer would provide access to the display stream. Would

the display he transmitted to the users' web browser windows directly from the computer

that was generating it or would that computer transmit it to the JavaServer for rebroadcast

to the users? There was also the question of the multimedia format that would be used

for compression of the display, since browsers cannot display raw video signais.

Giving each computer in the system the ability to set up and transmit the display required

each computer on the system to run web server software. Even if1 were inclined to do so,

the administrators in charge of the network where the system computer reside stroogly

requested that tms oot he done. This meant that the computer running the JavaServer

would aIso use its precious transmission bandwidth to receive the display stream,

compressed preferably, and then broadcast it to aIl the users' browser, or rather, make the

stream available on the web to any browser that connected to it. This could cripple the

system, by reducing the bandwidth available for upwardsldownwards communications.

This could aIso increase the transmission latency in the display system. The increase

could he significant if the user and the computer generating the display were c1ose-by

while the JavaServer was geographically far away. In this case, rather than making the

low latency transmission from the local Filter Graph to the user's console, usiog the

JavaServer would force the display to he routed through two high latency channels.

The question of video compression format was also a major issue. DirectShow Ftlters

cannot he used to publish a stream to the Internet. Further, DirectShow comes with a File

Writer Filter that can ooly write AVI compressed files. The trouble with the AVI format

is that its header contains information on the fuU file's size and thus an AVI file cannot

he accessed until it is completely written, unlike certain other formats that cao he

accessed frame by frame as they are heiog compressed. Thus, using the AVI format

would require the display system to save small portions of the stream ioto small files that

could he accessed. The larger the stored AVI files, the longer the delay between the onset

of the results beiog display and the moment the user would see them. Shorter files would

cut down on tbis time lag, but the local display system would need to store many of them

- 62-

•

•

•

3. Bigla-Level Design and Desip Tbeory

to insure that even users accessing the system from a very remote site, with a high latency

transmission channel would view the files in the sequence in which they were recorded.

The system would need to use the files like a circular buffer, overwriting older files, to

make sure that the generating computers did not run out of storage space. Increasing the

number of files would increase the frequency of discontinuities in the display

transmission, since 1 expected that there would he sorne discontinuity or pause between

the time the display hit the end of one file and the time it hegan ta show the start of the

next one. lising multiple files would also cause a micromanagement issue in the web

browser - the web browser would have to request the next file in the display hefore the

currently displayed one was completed.

Using other compression formats presented their own challenges, primarily because

DirectShow did not include software to write files in newer formats and because, unlike

decompressor Filters, compressor Filters are not commonly available on computers. 1

could select one of the video compressor Filters 1 had access to and use it for the display,

but these compressors used either non-standard MPEG or proprietary Microsoft formats,

and sa the goal of universal system access could not he accomplished by them and the

system would still he using up too much of the central Controller's transmission

bandwidth on the display.

Instead, 1 decided to build a separate program to view the displayed stream. The program

would he proprietary, using DirectShow Filters to receive the display stream and render it

ta the screen. The User's Display program would connect ta the JavaServer briefly to

query the server on the location - IP address and port numher - from where the display

stream was being transmitted. It would then connect ta the stream and render il. This was

far from an optimal solution, in that it would ooly work on Windows computers.

However, it would alleviate the drain on the Central Controller's transmission bandwidth

and reduce the latency in the display stream and would require installation and possible

registering of Filters. At a later time, a Linux-based equivalent could he designed to

display the video stream on computers running the Linux operating system. Altematively,

the solution proposed in Appendix f, section 1.3 could he implemented.

- 63-

•
4. Implementation or the Distributed System

Chapter 4. Implementation of the Distributed System

This chapter describes the implementation of the distributed vision system described in

the previous section, including relevant design choices made during the implementation

stage of the system. Wherever possible, 1 have tried not to repeat explanations from the

previous chapter. Sïnce the previous chapter touched on the high-level design of the

system in great detail, tbis chapter attempts to only address issues that arose during

implementation of the system' components.

•

Applet &
c~c~d . . .
IS'nCwer ..

. Applet Applet

"';. connected connecœd
IS vicwer

-~~ii!i... iN as Master

System Computers

Figure 4.1-1: View or the System

•

4.1 C++ Clients Implementation

4.1.1 An AppUcatioD to Manage Local DirectShow Filters

Given that 1 had chosen to use DirectShow for the processing block format design on the

system, local processing block controUer software would need to he written in a computer

language that could manipulate DirectShow Filters and their COM interfaces. Though

Visual 1++, Microsoft corp.'s extension to Sun Microsystems' Java, has the ability to

access sorne COM objects, ooly Microsoft's Visual Basic and Visual C++ can he used to

create Filter Graph Manager software. 1 therefore decided to use Visual C++ to write the

local processing block controUer software. Sïnce tbis software was designed to connect to

- 64-

•

•

•

4. Implementation 01 the Distributed System

the central controUer, as the client in client-server communication, 1 began referring to

the local controlling software as C++ clients.

4.1.2 List of Registered Filters

One of the major system requirements for the C++ clients is that they he able to provide a

list of aU the Filters registered locally to the system's Central ControUer. The C++ clients

use a COM enumerator interface to enumerate an of the Filters available on the local

computer by type.

There are eight Filter types recognized by the C++ clients. They are: Audio Capture

Sources, Audio Compressors, Audio Renderers, Deviee Control Filters, (Generic)

DirectShow Filters, Midi Renderers, Video Capture Sources and Video Compressors.

Incidentally, these are the same Filter categories that GraphEdit uses for locating Filters.

When a C++ client is brought on-line, it builds a full list of ail of the Filters on the

system. Whenever it receives a request from the JavaServer to transmit the local registry,

it transmits tbis Iist. Currently, the system does not alIow a user to download Filters to a

computer and have them registered there, and so there is 00 need to have the C++ clients

rebuild their registry lists. The possibility of adding tbis feature to the system is discussed

in Appeodix I, section 1.2.5.

4.1.3 Filter Graph Management and Issuing Updates

Aside from issuing an unprompted message when connecting ioto or disconnecting from

the syste~ the C++ client software is designed to send messages ooly when prompted to

by messages from the JavaServer. The C++ client waits for requests for information or

instructions on Filter Graph configuration or dataflow. Once an instruction is received,

the C++ client acts on it and then replies with either an update on its status in the case of

success or an error message explaining what went wrong in case of failure. A more

complete discussion on upward and downward communication, including the C++

client's responses to requests and instructions appears in section 4.5.

- 65-

•

•

•

4. Implementation of the Distributed System

The C++ client is able to load Filters to its Filter Graph, unload them or make or break

connections between Filters. 1 designed the C++ clients to he able to handle up to 200

Filters, under the assumption that no researcher would ever try to run more than 200

Filters on a single machine due to processing power limitations on microprocessors. It

keeps track of the entire local Filter Graph, including the names of the Filters, their pins

and the pin connections hetween Fl1ters. The C++ client also keeps track of the Ftlters

whose last-updated status has been transmitted to the JavaServer. This way, when

sending an update on the Filter Graph status in response to a successful execution of a

Filter Graph configuration instruction (Load 1 Unload 1 Connect 1 Disconnect), the C++

client is able to send information on ooly the Filters whose configuration information

changed in response to the last issued instruction. This measure reduces the amount of

upwards communication trafflc, since the typical configuration operation affects onlyone

to three Filters, and so information on ooly 1 to 3 Filters must be sent rather than

information on the entire local Filter Graph. The C++ client can handle over 100 Filters.

Aside for Filter Graph configuration, the C++ clients must aIso handle dataflow.

DirectShow aUows Filters to operate in one of three dataflow modes - Play, Pause and

Stop. Other dataflow issues, including buffering, transfer of data through shared memory

buffers, etc. are handled directly by DirectShow dataflow classes and do not need to he

controUed by the Filter Graph manager. In response ta any dataflow-related instruction,

whether it is a request for the current dataflow mode or an instruction to alter the

dataflow mode, the C++ client always replies with the dataflow mode. In the case where

an instruction to alter the dataflow mode is received, the C++ client tirst attempts to carry

out the instruction and then responds with the dataflow mode, which usually is the same

as the requested new mode.

4.1.4 Inter-System CORoection and Display Filters

In order for the system to function over multiple computers, several Filters were needed.

First, 1 designed a pair of Filters to transmit and receive data over a network connection.

- 66-

•

•

•

4. Implementatioo 01 the Distributed System

These were necessary to aUow inter-system connections. Sînce my aim in building this

system was to design a system for computer vision research, these Filters were designed

ooly to transmit video data, not audio data. In theory, 1 could build transmission and

reception Filters for audio data, and then the system could he used for video

conferencing. The Filter pair is able to transmit either uncompressed or compressed using

the Foveal compression. 1 chose not to include other types of compression due to the

general lack of compression Filters on computers - ooly decompression Filters are widely

available. The possibility of adding compressed video is discussed in section 1.1.7 of

Appendix 1.

Aside from the transmission pair, there were two other Filters that the system required.

One of these was a displaying Filter. This Filter was bullt out of the standard video

transmitter Filter described above. The difference between the two Filters is that this one

is able to broadcast to up to ten different locations. The other Filter is the NuLL Renderer.

The Nun Renderer is a Renderer Filter that accepts any type of input data and does not

render the data. Its main purpose is to serve as an end point for Filter Graphs. In order to

function properly, a Filter Graph needs to have starting point and end point for data. In

the absence end points, DirectShow will simply not allow dataflow to begin. While

DirectShow does come equipped with renderers, since the computers that are running the

C++ clients are not assumed to he within reach of the researchers using the system, it

would he inappropriate to render data to these remote computers. This is especially true

in view of the possibility that another individual might he using a computer that is

running the C++ client software to run other software. It would he most annoying for that

individual to have a video stream pop up on hislher computer screen. Further, were this

person to close the video window, the C++ client's Filter Graph would he stopped, an

effect that would he detrimental to the researcher using the system. To avoid this tug-of­

war scenario hetween the researcher logged in remotely and a local user, it would he far

simpler if the researcher had a renderer Filter that would serve as an end point but would

not disrupt any local users.

- 67-

•

•

•

4. Implementation of the Distributed System

4.2 JavaServer Implementation

The JavaServer is the Central Controller in the system. It is the central hub of the system

and the only component that must he running for the system to exist. This last detail is

important. Since the JavaServer is assumed to have been running since the system went

ooline. ooly the JavaServer is assumed to know which Filters are undisplayed, and which

node is the display system set to. One of the resPOnsibilities of the JavaServer is to

transmit three lists to any Applet receiving a Filter Graph update from any C++ client.

Since the JavaServer is the central hub and the point of system access for the user

interface, it is the ooly piece of software that knows when an Applet is being sent a

message, since ail upward messages must he sent through the JavaServer. The three lists

that the JavaServer sends to the Applets are (1) a list of the undisplayed Filters, which the

Applet will treat differently, (2) a list of Filter connection corrections for the Central

Filter Graph list and (3) the location of the displayed node.

Both the Applet and the JavaServer keep track of ail of the Filters in the system. Each

Filter is cross-referenced on two lists - a central listing and a listing indexed by C++

client. Whenever an Inter-System connection hetween two Filters is made, the transmitter

and receiver Filters as weil as any necessary intermediate Filters are set to undisplayed in

the central listing by the JavaServer. The JavaServer then adjusts the centrallist so that

the two Filters that are connected by the inter-system connection are listed as connected

to each other rather than the transmission pair. In order for the Applet to display tbis

connection, the JavaServer informs the Applet that the transmitter and receiver FUters are

to he left undisplayed for the Applet' s full system view, and a link should he drawn

connecting the two Filters that were connected over the network by the transmission pair.

Since the user can log off and log in at any time, the JavaServer always transmits the full

lists of corrections to the Applets. The displayed node's location is transmitted sa that the

Applet can draw a red circle over that node ta indicate ta the user that it is the designated

node for the display.

- 68-

•

•

•

4. ImplemeDtatioo 01 the Distributed System

The JavaServer has access to all of tms information because it is the point where these

special commands are issued. One of the services it provides is to Perfonn these complex

commands. When the user requests an inter-system connection through the Applet, the

JavaServer's thread which is handling the user's Applet receives the request and then

begins transmitting instructions to the threads handling the C++ clients to load the

necessary FUters and make the necessary connections. The JavaServer takes care of

setting up the receiver Filter so that it can access the transmitter Filter's listening port.

When the user requests that the displayed node he set or moved, the JavaServer also takes

over, issuing commands to load and connect the display FUter. It also keeps track of the

displayed node, for the henefit of the Applets, and the machine and port number where

the displayed stream can he accessed. If a user Display program logs in, the JavaServer

can then give it the IF address and port numher of the display stream so that it can access

the display.

Since the JavaServer is of multi-threaded design, and since its main function is to route

messages from Applets to C++ clients and back, the JavaServer required a method for

inter-thread communication. To that end, 1 implemented the ICMH or inter-client

message handler. Essentially, tbis is a Java class that all of the threads have access to. It

contains ail of the stored system data, as weU as a list of aU connected clients including

their name and type (C++ client, Applet connected as master, Applet connected as View

only, Display program) and a set of communication pipes. Each client-handling thread in

the JavaServer must listen to its input piPe as weU as its socket. The socket carries

messages from its client, whereas the piPe carries messages generated by another thread.

Among the capabilities of the ICMU is the ability to deal with the possibility of a

disconnecting client. Though the ICMH does not check for downed connections, a future

enhancement to the system discussed in Appendix l, section 1.1.5, the ICMH contains

code to handle the situation where when a client logs off from the JavaServer. For

Applets, cleaning up after a logging off means checking if the Applet was the system's

master user, and if so, selecting another connected user to he promoted to master status.

- 69-

•

•

•

4. Implementation 01 the Distributed System

ln the case of a C++ client Jogging off, the JavaServer has several things to do. It re­

indexes the list of connected C++ clients, wiping out the Filter Graph and Filter registry

listings for that C++ client and removes all Filters Joaded on that client from the Central

listing. Il also informs the AppJets that a C++ client has logged off so that they can take

similar actions. 1 have thought of another approach to resPOnding to C++ clients 10ggÏflg

off. It cao be found in section 1.1.5 of Appendix 1.

The ICMH is also used to inform connected AppJets that a new C++ client has connected

to the system. As weU, since the ICMH keeps track of the system's master user, the

JavaServer's Applet-handling threads consult the ICMH whenever they receive an

instruction over their socket that would change the configuration or dataflow of one or

more Filter Graphs on the system.

4.3 Applet Implementation

Since one of my goals was full Internet access to the system, 1 decided that ta irnplement

the Applet using standard Java, without any language extensions such as Microsoft's

Visual J++. This meant that aIl of the Applet's graphies had to he designed using Java's

Abstract Windowing Toolkit, or AWT. The AWT is a platform independent toolkit that

incJudes many Java classes that are useful for graphics generation, but Jacks a fair amount

of the functionality available when using platform-specific Java library extensions.

The Applet is of dual-threaded design. The main thread is responsible for handling

Jogging into the system and the Applet's graphical display, including transmitting user

commands to the JavaServer. The secondary thread is resPQnsible for receiving and

handling ail upwards messages. Just as the JavaServer's threads share access to the

ICMU, the Applet's two threads share access to the Applet's parent class - distribApplet

- which stores a full record of the system's status. This dual-threaded design allows the

Applet to continue to function after issuing an instruction without waiting for a resPOnse

from the JavaServer. When the response arrives, the Applet's information is updated and

its display changed to reflect the changes in the system.

-70 -

•

•

•

4. Implementation 01 the Distributed System

The Applet shares a significant portion of its code with the JavaServer. Most of the code

accessed by the secondary Applet's thread, which handles ail post-Iogin upward

communication, is almost identical to code in the JavaServer. As weB, the Applet uses

the same data structures as the JavaServer to store information on the registries and FiIter

Graphs of ail computers on the system.

4.3.1 The Applet's Graphical Display

The Applet's graphical display was designed for ease-of-use. Most instructions require

simple mouse point-and-click or point-and-drag operations. The ooly exceptions are the

login window, which requires the user to type hislher username and password, and the

remove/unload Filter and remove/disconnect Filter connection instructions, which require

the user to press the 'Detete' key when the object desired for removal has been removed.

The Applet presents users with a variety of information. The upper tab of the Applet

informs the user whether he/she is connected as the master user or note It also informs the

user on the system's dataflow mode and presents the user with a list of ail C++ clients

connected to the system, from which the user caR select one C++ client at a lime as the

locus, the C++ client where ail Filter loading instructions will he directed.

The Applet's right tab has two purposes. In Filter Insert mode, it allows the user to view

the registry of the current focus C++ client and select a Filter to he loaded. The list is

indexed by category and alphabetically sorted. The lower part of the right tab instructs

the user on how to use the Applet to insert a FiIter onto the Filter Graph.

The other function of the right tab is Display Node mode. In tbis mode, the user can

select anode to he the displayed node or stop the display. Once again, the bottom of the

right tab instructs the user on setting up or turning off the display.

The bottom of the Applet is a message log window. It presents certain messages to the

user, and will change the text colour for certain messages. For instance, messages

- 71 -

•

•

•

4. Implementation 01 the Distributed SysteDl

indicating a change in the system such as a new C++ client connecting are indicated in

blue. Error messages are shown in red. These colours are used to draw the user's

attention to important information. Unfortunately, lava's AWf is very restricted in its

graphical abilities to maintain compatibility with ail operating systems. Thus, when the

message log's text colour is changed, ail text in the message log is changed to that colour.

Though the bottom tab contains a HSave Log" button, this button as of yet, has no

functionality tied to it. The possibility of saving the log and later retrieving it is discussed

in Appendix 1, section 1.1.6.

Figure 4.3-1: Applet in Single Computer Graph view with the right tab in Filter Insert mode.
Compare witb Figure 3.5-1.

The Applet's left tab is used for switching between the different views available for the

centre of the Applet. The Network Latency view is part of a planned future enhancement

-72 -

•

•

•

4. Implementation 01 the Distributed System

discussed in section 1.1.1 of Appendix. 1. The other two views present Filter Graphs. The

System Filter Graph view presents ail of the Filters loaded on the entice system, except

the undisplayed ones, as a single Filter Graph. The Single Computer Filter Graph view,

shown in figure 4.3-1, presents the Filter Graph on the cucrent/oeus. This view iocludes

undisplayed Pilters loaded on the current/oeus.

4.3.2 InfonnatioD Request System

One of my design objectives was to reduce the amount of vertical communication trafflc

through the system. In a multi-user system, ail of the users must he updated on system

changes. Since 1 designed the JavaServer as a multi-threaded server, where no thread ever

waits for replies to its messages, the JavaServer aIways routes any infonnation update to

ail connected Applets, not just the Applet that issued the request. Every lime an Applet

requests information froID one of the C++ clients, ail of the Applets receive the reply. If

many unnecessary messages were to he issued, the operation of the JavaServer, which

generates ail of these messages, would he unnecessarily hampered.

1 decided to design the Applets so that they would never request any information they

already had. Each Applet would keep tabs on whether its information on the C++ clients'

Pilter registry lists, Pilter Graph configurations and Filter Graph modes was up-to-date.

Before aIlowing a user to access the system after a successful logio, the Applet would

pick up aU of the data it was lacking.

1 aIso did not want an Applet issuing more than one instruction at a time. In tbis way, 1

would keep the system frOID heiog overloaded by multiple identicaI requests from aIl

connected Applets in response to sorne occurrences such as a new C++ client connecting

to the system.

The Applet's information request system is invoked after any system update, Pilter

registry update or Filter Graph update message is received by the Applet. If the Applet is

lacking information, il determines its single most pressing lack of information and issues

-73 -

•

•

•

4. Implementation of the Distributecl System

a request for that information. ACter an Applet has logged in and finished updating itself

on the system, it ooly requests data whenever its focus is changed and the ooly other

upward conununication traffic in the system is issued by Filter Graph modifying

instructions issued to the system by the master user' s Applet.

4.4 Display System Implementation

There were two parts to the implementation of the display system. Ficst, there was the

work of setting up the display at a given Dode. The theory behind this was discussed in

chapter 3 and the implementation of this has been discussed along with the that of the

JavaServer and the Applet since tbis part of the display system was largely implemented

within the Applet and the JavaServer. Briefly, the master user is able to select a single

node to he displayed. If one is aIready selected, helshe can select a new node to he

displayed, and the JavaServer will take care of removing the display from the previously

displayed node. The JavaServer keeps track of the node that is displayed and transmits

tbis information to aU connected Applets. The Applets indicate the displayed node by

drawing a red circular dot on the Applet's graphical representation ofthat node.

4.4.1 User's Display Program

The second part of the Display system's implementation is the transmission and delivery

of the display stream. Unlike the display system set up, tbis part does not involve the

Applet at ail, and its involvement with the JavaServer is minimal. The lion share of the

implementation of tbis part of the display system is the implementation of the User's

Display Program.

The user's display program is designed to run on computers running one of Microsoft's

Windows operating systems. Since 1 designed it as a simple Filter Graph manager it aIso

requires DirectShow he installed to function. It is designed to operate two socket

connections. The Display program brietly opens a socket connection to the JavaServer.

Upon identifying itself as a Display program (as opposed to a C++ client or Applet

-74 -

•

•

•

4. ImplemeDtation 01 the Distributed System

connection), the JavaServer transmits a message through the socket identifying the

location of the display stream by IP address and port number and the display stream's

data type information. The JavaServer then terminates the connection.

Once the Display program has tbis information, it constructs a Filter Graph with a

receiver Filter, to pick up the stream, and a Video Renderer Filter to display the stream on

the local computer sereen. The display system transmissions, Iike the inter-system

connections, alIow streaming data to he either uncompressed or compressed with the

Foveal compression format. In the case of a Foveal compressed stream, the Display

Program places a Foveal decompressor hetween the receiver Filter and the renderer.

As mentioned in section 4.1.4, the Display Filter alIows a maximum of ten connections.

Thus, it is possible that a Display program's attempt to connect to the Display Filter will

he unsuccessful. However, the Display program will continue attempting to connect

indefinitely unless it is made aware of a new Display node. If the master user moves the

display to another node, all of the connected Applets will reOect this information on their

graphical display. The user can then redirect the Display program to the new node by

clicking on the 'Reload' button on the Display program. This will cause the Display

program to remove the Filters it has loaded in its Filter Graph and reconnect to the

JavaServer to restart the process of retrieving the display stream information and building

a new Filter Graph to connect to it and display it.

4.5 Inter-Program Interaction Protocols and Functionality

Chapter 3 explained the necessity of upwards and downwards communication in the

distributed system. Essentially, upwards and downwards communications transmit user

commands to the C++ clients residing on the computers in the system and update system

status information retained in the JavaServer and the Applets connected to il. In order to

handle information interchange, 1 devised a communication protocol for use in upwards

and downwards communications. The protocol itself consists of text messages, each with

an associated number and name, and has a resemblance to Telnet or SMTP protocols.

-75 -

•

•

•

4. Implementation 01 the Distributed System

A secure system, complete with secure transmission protocols, was not one of the

objectives of tbis work on the distributed system. The work was more a proof of concept

than anything else. For tbis reason, 1 made no effort to add data encryption to the

upwards/downwards communication protocol. 1 did, however, include an identifier in

every message caUed the "authentication tag". In the cureent implementation of the

distributed system, tbis tag was constant, aIways indicating the point of origin of a

message - "JS" denoting the JavaServer, "CPPe" denoting a C++ client and "APPL"

denoting an Applet connection. However, tbis could he modified, at sorne future time,

such that the tag would change after each message was sent or received. Ideas for adding

security features to the system's communications are discussed in Appendix I.

The basic fonn of messages under the venical communication protocol is the same for

both upward and downward directions. The only commands that do not ohey the standard

fonn for messages are commands associated with connecting to and disconnecting from

the JavaServer. Other than tbis, messages sent between the JavaServer and Applets differ

from those sent between the JavaServer and C++ clients by a single tag indicating the

C++ client the message is intended for(downward) or is referring to(upwards). Here are

the message formats:

Format #1 <cmd#><auth><cmd name><parameters....•> (JavaServer - C++ client messages)

Format #2 <cmd#><auth><cmd name><cppc#><parameters....> (JavaServer-Applet messages)

where:

<cmd#> denotes the command number, a 3 digit number indicating the command

<auth> denotes the authentieation tag. "APPL", "JS" or "eppc" are acceptable tags.

<cmd name> denotes the eommand name.

<cppc#> indicates the index 0 the C++ client on the system that the message is intended

for or referring to (JavaServer - Applet messages: Fonnat 2 only). A negative value for

tbis identifier indicates that the message is intended for all C++ clients on the system.

<parameters ...> are additional message-specifie parameters

And each message must end in a CR character.

-76 -

•

•

•

4. ImplelDeDtatioo 01 the Distributed System

Under the system the JavaServer acts in part as a relay station. A messages sent from a

connected Applet and intended for the C++ clients is received by the JavaServer, then

converted from format #2 to format # l, with its authentication tag changed from "APPL"

to "JS". Then the message is retransmitted to the C++ client(s) indicated in the original

message's <cppc#> field. A message sent from a C++ client connected to the system is

received by the JavaServer. The JavaServer records any relevant data and then converts

the message from format #1 to format #2 by adding a tag identifying the C++ client

where the message originated, and then changes the authentication tag from "CPPC" to

"JS". Afterwards, the message is retransmitted to aIl of connected Applets.

Sorne messages sent between the Applet and JavaServer are not intended to he delivered

to the C++ clients. These messages, generally requests for special services offered by the

JavaServer such as initiation of inter-system communications between two filters running

on different C++ clients, are stopped by the JavaServer, which then performs sorne

processing on them rather than modifying and retransmitting them.

4.5.1 Downward Communications

Downward communications consists of commands and information queries sent down the

chain from an Applet to the JavaServer or from the JavaServer to a C++ client. Whenever

a message is sent downward from the Applet to the JavaServer, the JavaServer flfst

checks the rnessage's authenticity, by verifying the authentication tag and confirming that

the message numher and message name correspond. The basic commands required for

the distributed system to fonction are:

1. AddlLoad a Filter onto the Filter Graph

2. Connect a Filter to another Filter

3. Break a connection between two Filters

4. RemovelUnload a Filter from the system's Filter graph

5. Change system's Filter Graph mode (run/waitlstop mode)

-77 -

•
4. ImplementatiOll 01 the Distributed System

ln addition to the downward commands, there are severa! information queries messages

required for the downward communications. These are:

l. Requesting Filter Registry information

2. Requesting Filter Graph information

3. Requesting Filter Graph mode information

Finally, the list of messages in the downward communications protocols include severa!

error messages that cao be sent downwards in response to misunderstood commands in

upwards communications.

Command number Command name
001 ERR

004 ERR

100 CPPCconnected• 100 none
101 none
102 none
104 SYSUPDATE

110 REGDATA
111 REGDATA
120 GRAPHUPDATE
121 GRAPHUPDATE
122 GRAPHUPDATE

20X (200, 201) ADDFILTER

21X (210,211) ADDCON

•

220

251

252

ADDNETCON

FILEIO

FILEIO

Descriotion
Error: Unknown login (in response to an incorrect C++ client
login sequence)
Error: No space left (the JavaServer can handle a maximum
number of connections)
JavaServer confirming C++ client login attempt (JavaServer 10

C++ client only)
Applet login altempt beginning (Applet 10 JavaServer only)
Applet login: Usemame field
Applet login: Password field
Applet requesting system update including names of aIl
connected C++ clients and the size of their respective registries.
(Appiello JavaServer onIy)
Requesting information on full registrv
Requesting information on a single registrv entrv
Requesting information on Filter Graph changes since last update
Requesting information on entire Filter Graph
Requesting information on a single Filter loaded on the Filter
Graph
AddlLoad Filler to Filter Graph
200 - by name, 201 by index number in registrv
Connect two Filters on the same Filter Graph
210 - Filters and pins identified by name,
211 - Fillers and pins/pin type identified by index numbers on
Fi1ter Graph and Filler respectivelv
Connect two Filters on different CH clients through network
transmission filters. (Appiello JavaServer only)
Requesting port number used by a C++ client for Most recently
loaded network transmission Filter (JavaServer 10 C++ clienl
on/y)
Send information to C++ client to set up network receiving tiller
to connect to specified computer/pon number with specitied data
type. (JavaSen'er 10 C++ client only)

- 78-

•

•

•

4. Implementation of the Distributed System

30X (300.301) REMFllTER RemovelUnload Filter from Filter Graph
300 - by name. 301 - by index on Filter Graph

310 (310.313) REMCON Disconnect two Filters on same C++ client
310 - reCer to a single Filter and pin pair by name
311 - reCer to both Filter and pin pairs by name
312 - reCer to a single Filter and pin pair by index number on
Filter Graph and Filter respectively
313 - reCer to bath tilter and pin pairs by index number on Filter
Graph and Filter respectivelv

320 REMNETCON Disconnect two FiltersIBreak Filter connection on different C++
client (Applet to JavaServer on/y)

400 GRAPHMODE Place Filter Graphs in Stop mode
401 GRAPHMODE Place Filter Graphs in Wait mode
402 GRAPHMODE Place Filter Graphs in Run mode
403 GRAPHMODE Requesting current Filter Graph mode information
450 PING Network latency - function notJully implemented
475 DISPLAY Requesting system display he set al anode specified in the

messa2e lJarameters (Applet to JavaServer only)
500 QUIT Breaking connection

Table 4.5-1: Fuillist or downward messages

Table 4.5-1 contains a full list of all downward commands, listed by command number.

Note that since communication between the user's Display program and the JavaServer is

not considered part of upwards/downwards communications, messages sent between the

user's Display program and the JavaServer are not included in table 4.5-1 or in tbis entire

section of chapter 4.

4.5.2 Upward Communications

Upwards communications consists mainly of responses to downward requests and

commands. Unlike downward communications, wbich consists of single-line messages,

upwards replies are often compound messages. For instance, each full registry update

consists of one line indicating the total number of registered Filters, eight lines indicating

the number of Filters registered in each of the eight Filter categories and one line for each

registered Filter indicating its index number, category and Dame. Thus, a C++ client

running on a computer that has 130 registered Filters (typicaUy, computers have between

120 and 140), transmits a 139-line message every time it receives a request for its list of

registered Filters.

-79 -

•

•

•

4. Implementation 01 the Distributed System

As weB, each Filter Graph update includes one line indicating the number of Filters

loaded on the Fdter Graph and the number of Fdters whose information is included

within the update. There is a1s0 one line for each Filter in the update, indicating its name,

index and the number of input and output pins it hase As weU, there is one line for each

pin indicating its name, type (input/output), index, indices of Filter and pin it is connected

to (-1 if not connected) and the media type used between this pin and the one connected

to it for information interchange. Thus, a Filter Graph update consisting of two transform

Filters, each with a single input pin and single output pin, is seven Iines long. A fuU Filter

Graph update for a Filter Graph consisting of ten Filters CaQ easily exceed thirty Iines.

Typically, when responding to successful execution of a Filter Graph configuration

commands, the C++ clients only issue a short update, transmitting information on the

Filters that changed due to that commando

Most upward messages are received by the JavaServer from the C++ clients and then

slightly modified (see message formats above) and rebroadcast to aU connected Applets.

Sïnce both programs are written in Java, they share a fair amount of code used for

authenticating and deciphering upward messages. It should he noted that, though both the

JavaServer and the Applet contain a central listing for aIl Filters, the assumption that the

central listing on each connected Applet is identical to the central listing on the

JavaServer is false. Though the central listings on aU connected Applets contain the same

information as the one on the JavaServer, the indexing of the Filters on the central listing

may differ since the Applets do not need to he logged ioto the system at aIl times for the

system to function. Whereas the indexing for the individual C++ client Filter Graphs is

handle by the C++ clients themselves, the central listing's indexing is not fixed by any

one program. While the JavaServer's centrallist reflects the order in which Filters were

loaded and unloaded on the system's C++ clients. the indexing on the Applets is partly a

fonction the point during the system's operation when that user logged in. This means

that communication between the JavaServer and the Applets can never use a Filter's

index on a central listing.

- 80-

•

•

•

5. Experimental Results

Cbapter S. Experimental Results

5.1 Frame Rates and Throughput Results

Frame rates achieved on the system are really more a matter of DirectShow's

performance than the system's. The system provides a framework for controlling

nurnerous DirectShow-based Filter Graph Manager programs - the C++ clients - on

multiple computers. Still, it is useful to showcase the capabilities of the system. The tests

on throughput were run on GraphEdit using either an Axis 200+ NetCam connected

directly to the CIM network at McGill University io Montreal, Quebec, Canada or a

Logitech QuickCam VC computer camera (with a parallel port connection).

5.1.1 Single Computer Frame Rates

The tirst tests shown here were run on a single computer that is part of the syste~ with

no displayed node set. These results provide a baseline for the system. If multiple

computers are used or if a display is being transmitted ta one or more users, the results

shawn in this section would indicate the oost frame rates one could expect to achieve.

Table 5.1-1 shows results achieved using the QuickCam under various resolutions, while

table 5.1-2 shows results achieved using the Axis 200+ NetCam. Several points should he

noted. First, in 8 bits per pixel mode, the Logitech QuickCam provides a Greyscale

image. In 16 bits per pixel mode, the QuickCam must take a 24 bits per pixel colour

image and convert it to 16 bits per pixel, using RGB 555 format. Second, the Foveal

compression always tums image ioto a square image SxSx24 bits per pixel, where S is a

multiple of 32. Note a1so that the QuickCam's capture mode has a higher frame rate but

has a longer delay between capture and display. This difference is not apparent when the

image is merely being rendered directly, however it becomes acute when the signal is

operated on. In 640x480, with Foveal compression the delay in capture mode is -10-12

seconds long, whereas the delay in preview mode is -1-2 seconds long. The QuickCam's

maximum frame rate is 30 frames per second (fps).

- 81 -

s. Experimental Results

• Resolution

160x120, 8bits
160x120, 16bits
160x120, 24bits
320x240, 8bits
320x240, 16bits
320x240, 24bits
640x480, 8bits
640x480, 16bits
640x480, 24bits

Frame Rate Frame Rate Frame Rate Frame Rate
(preview (capture Foveal (preview Foveal

mode) mode) mode) (ca ture mode)
19.68 s 29.97 s 19.56 s 29.97 s
18.62 s 29.97 s 18.52 s 29.96 s
19.08 29.97 s 18.87 29.97 s
9.50 13.66 s 8.78 12.79
8.77 12.29 s 8.06 Il.53
9.09 12.95 s 8.48 12.23
9.03 12.92 s 4.00 5.69
8.27 Il.77 s* 3.79 5.51
7.92 II.60 s* 3.84 5.73

Table 5.1-1: Frame Rates achieved usiDg a Logitech QuickCamVC connected to a single computer in
the distributed system with no displayed node set.

Notes:
1. FPS =frames per second.
2. The Logitech QuickCam VC that 1 used was not stable in tests in capture mode at

resolutions of 640x480x16 bits per pixel and 640x480x24 bits par pixel without Foveal
compression.

The Axis 200+ NetCam is presented for comparison. It is a camera designed for

• connection directly to a network port. The NetCam captures single still images in JPEG

format. The Source Filter designed by one of my coUeagues accesses the NetCam and

creates a stream out of the still images. The resulting frame rates are rather low compared

to the QuickCam.

Resolution Intemal Frame Rate Frame Rate
Compression (uncompressed) (Foveal

Compression)
176xl44,24bits Low 0.50 fus 0.48 fps
176xl44,24bits Medium 0.52-fi)s 0.50 fps
176xl44,24bits Hi~h 0.52 fus 0.51 fps
352x288, 24bits Low 0.43 fus 0.39 fps
352x288, 24bits Medium 0.48 fus 0.45 fps
352x288,24bits Hi~h 0.49 fps 0.50 fps

Table 5.1-2: Frame Rates achieved usiDg an Axis 200+ NetCam accessed by a single computer on the
distributed system with no displayed node set.

•
- 82-

•
5. Experimental Results

5.1.2 Moiti-Computer Frame Rates and Inter-System Conoection Tbmugbput

Single computer frame rates are of limited use for the system. If a researcher wanted to

use ooly a single computer to avoid the detrimental effects of limited transmission

bandwidth, it would be far simpler to use Microsoft's GraphEdit. Table 5.1-3 indicates

the frame rates achieved on the system using a QuickCam. The data has been transmitted

from the computer with the QuickCam running GraphEdit to another computer also

running GraphEdit and then back to the original computer. For the Foveal-compressed

frame rates, the computer with the QuickCam was running both the Foveal compressor

and decompressor Filters.

Resolution Frame Rate
(preview

mode)

Frame Rate
(capture
mode)

Frame Rate
Foveal (preview

mode)

Frame Rate
Foveal

(ca ture mode)
15.03 s
10.55 s
4.92 s

11.71 s

3.40 s
5.86 s

17.02 s

11.51 s
12.00 s

12.78 s

6.59 s
7.13 s

160)(120, 24bits

640x480,24bits
320x240, 24bits

Table 5.1-3: Frame Rates acbieved using Logitech QuickCamVC data transmitted between two
computers in tbe distributed system.•
Theoretically, a C++ client running on a computer with a 100 Megabit per second

channel can transmit up ta 56.9 frames per second at 320x240x24bit, 14.2 frames per

second at 640x480x24bit and 227.55 frames per second at 160xI20x24bit. However, as

these results show, each inter-system connection (and each display connection) reduces

the system's Filter Graph frame rate.

•

5.1.3 Upward and Downward Transmission Bandwidth Requirements

The ail of messages transmitted down through the system and many of the possible

upward messages consist of single line messages. These messages are typically 50 bytes

in length or less. The majority of messages sent upwards in the system, however, involve

either the list of Filters registered on a C++ client's computer or updates on a C++

client's Filter Graph configuration or dataflow mode. Filter Graph dataflow mode updates

are single line messages, but Filter Graph configuration updates and Filter registry

- 83-

•

•

•

5. Experimental Resalis

information are always multi-line messages. In tests on the system, 1 measured the typical

length of Filter registry list information messages at 5 to 6 kilobytes. As weU, though

most Filter Graph configuration updates involve less than four Filters, with typical update

lengths of 50 to 400 bytes, transmission of a C++ client's full Filter Graph configuration

information can possibly exceed 100 kilobytes. It should he noted that tbis is not typical.

Based on limitations on computer processing power on microprocessors, the typical C++

client would have less than 20 Filters loaded at any given time. Under those

circumstances, a C++ client could transmit its entire FtIter Graph's configuration in less

than 2 kilobytes.

So far, 1 have referred only to the size of individual transmissions. While downward

messages are sent from one source and received at a single destination, upward

transmissions between the JavaServer and the Applets are broadcast to aIl connected

Applets, with few exceptions, such as error messages. Thus, the transmission bandwidth

required by the JavaServer to transmit a message upward is the message length multiplied

by the numher of connected Applets. The more Applets are connected to the JavaServer,

the longer it will take a large upward transmission to reach aIl of them.

5.2 Full System Tests

The results discussed thus far have been dealing with components of the system rather

than its overaU performance. Aside from measure MIPS or FLOPS, there is no true

quantifiable measure of a system's performance. In this system, given that the computing

power available is not fixed, these measures are meaningless and pointless to compute.

The processing power available to the system's master, in terms of MIPS and/or FLOPS,

depends on too many varying factors. The tirst factors to consider are the number of

computers that are on the system and processing power available on each of them. These

values can yield a theoretical upper hound on the system's performance. However, they

do not teU the whole picture. The system Filter Graph's configuration also plays a role in

determining the available processing power. This is especially true in the case where the

number of inter-system connections is high and the display system has several connected

- 84-

•

•

•

5. Experimental Resulls

User Display programs. The system Fl1ter Graph configuration also influences the

effective MIPSIFLOPS available ta the user. In cases where there are many computers on

the system. it is entirely possible that sorne C++ clients may have no Filters loaded in

their local Filter Graphs, and so, though they are present on the syste~ they will not he

contributing ta the system's performance. This brings up another point. Though the

system cao he viewed as a single entity by the user, it is actuaIly a conection of separate

computers. Though the total processing power of the system may he in the range of

billions of operations per second, the actual processing power available on any given

computer in the system is far lower. Further, transmission costs, in terms of bath

processing power drain by transmitter and receiver Filters and transmission effects such

as latency and slow connection, can further slow down aIl Filter Graphs on the system,

and reduce the effective number ofoperations per second of the system.

Thus, the ooly type of system measure that is valid and meaningful is the successful or

failed results of tests on the entire system during typicai operations. During the course of

the implementation of the distributed system, the system was put through preliminary

testing of its functionality. The system was tested with up to three C++ clients connected

at a time, with multiple inter-system connections"running between them. These tests were

aIl successful once aU of the implementation issues were worked out. Due to a general

lack of vision a1gorithms among DirectShow's library of Filters, tests were usually

performed using the Filters 1designed to operate on Foveal-compressed video streams.

The display system a1so functioned weU. This result was expected since essentially, the

display Filter was aImost identicai to the inter-system connection Filters. Unfortunately,

though 1 would have Iiked to be able to test the effects of running the system with a user

viewing the display whiIe logged in on a slow Internet connection or a remote high-speed

connection, the logistics involved proved too onerous. For the slow connection, 1 could

have used my home computer network to log in, however, this would have necessitated

several trips per testing session between McGill and my home al a round trip time ofjust

under two hours. The remote high-speed option was aIso interesting, though it would

have required the outside assistance thal could not he guaranteed.

- 85-

•
6. Conclusion and Commenls

Coopter 6. Conclusion and Comments

6.1 Fulfilment of System Requirements

This thesis presents a new approach to the design of vision systems. Overall, the system

has met the requirements for a useful distributed vision system. The JavaServer fills the

role of system central controller weil, providing aIl of the functionality required of it. It

bears noting, though, that the JavaServer requires a fair amount of processing power to

function. Often, the JavaServer uses up much of the processing power and

communication bandwidth on the computer that is running it.

The C++ clients are also quite successful in their role as local processing block

controUers. They provide the system with aIl of the functionality required by the system's

specifications.

The Applet and Oisplay system are less than optimal, though. This is especially true for

• the display system, which presently cao only transmit video to users on Windows-based

machines. Though it is true that work is proceeding ta port OCOM over to Linux [5], it is

still unclear as to whether DirectShow software will he able ta run on the Linux version

of DCOM. Without a useable Linux version of OCOM, a Linux version of the User's

Display program will need to he designed. Further, even with a Linux version of the

Display program, the user will still need to download the Display software in order to use

it. This solution is far from optimal, yet given the available choices, and the objective of

minimizing communication traffic through the JavaServer, tbis was the best solution

possible.

The Applet also is lacking in important functionality. Much of this is discussed in

Appendix 1. The most pressing deficiency in the Applet is its lack of property page

support. Without property page support, researchers lose flexibility in fine tuning

algorithms on the system. This feature is discussed in section 1.2.2 of Appendix 1.

•
- 86-

•

•

•

6. Conclusion and Comments

6.2 Non-Standard Applications of the Distributed System

So far, 1 have discussed the possibility of using the system as a research tool to aid

researchers in testing algorithms under real-time constraints. Aside from reasearch and

development applications, the distributed vision system cao serve in a wide variety of

commercial and industrial applications. As weU, with sorne additional work, this system's

research capabilities could he expanded greatly. For the sake of brevity, 1 will only cite

one example for each.

With sorne additional work invested to design an equivalent to the C++ client for use on

other types of computers, the system could he expanded beyond Windows-based personal

computers. Section 1.1.8 of Appendix 1 discusses the possibility of designing a Linux

version of the C++ client software. This is not the only possible extension. A suitable

C++ client equivalent could he developed for mobile robotie systems connected to a

network using wireless network connections. This would allow the robots to gather data

and move about while offloading any computationally intensive decision making

algorithms to the computers on the system. In fact, designing a C++ client for the robotic

system is not even a necessity. A DirectShow Filter could be designed to interface with

the robotic system in the same way the current Axis 200+ NetCam Source Filter access

the NetCam's IP address and pulls data from the NetCam. Perhaps an even better model

is the Pan-Tilt Camera Source Filter and PTU Control Filter. Together, these Filters

access a video source and then transmit messages to its PTU, giving it instructions on

what direction to pan or tilt. A mobile robot connected to the distributed system in this

manner would require very little onboard processing capability and yet have access to

tremendous processing power. Further, the system would he very easy to debug.

The distributed system could a1s0 serve commercial purposes. One of the best examples

of this would he a security system. In an office setting, the distributed system could he set

up on aU of the computers. Each computer could have a video capture device, such as a

Logitech QuickCarn or Creative Webcam attached to it. The C++ client on each

computer could then either run a face recognition algorithm on the video input, or

- 87-

•

•

•

6. Conclusion and Comments

transmit the video data to another computer, perhaps compressing it tirst, which would

run the face recognition on the video input. In the case of an unrecognized face, the

system could either lock the computer or alert security by posting the video stream with

the unrecognized face on the computer screeR of the building's security guards. If tbis

solution is too consuming of processing power, the same solution could he implemented

using cameras mounted throughout the building.

In both cases, the distributed system could a1so serve a dual-purpose, and he used to

supplement the building's Right watchmen. During nighttime, the system could run the

input gathered from video sources through motion detector algorithms based on detecting

temporal differences between video frames.

6.3 Concluding Comments

Overall, the distributed vision system performs welle Aside from the property pages, it

essentially aIlows a user to control multiple computers as if a single GraphEdit session is

running on aIl of them. The system allows a user to configure it to run any vision

algorithm, including seriaVpipelined and parallel processing configurations.

One area of concem is network bandwidth used by the system. Currently, the system

offers very tinle in the way of video compression for transmissions, aside from the lossy

Foveal compression format. Though there are cases where transmission bandwidth is

relatively more expendable than processor power, the current system offers no choice to

the user on the method of data transmission. This is one situation that should he

remedied. The Appendix that foUows contains a large numher of ideas for improvements

to the system. It is my hope that many of these features he added to the system to

improve il.

- 88-

•
References

References

[1] Battaglia, M. P., "Parallelism for Imaging Applications." In Wescon '93

Conference Record, 1993, pp. 125-129.

[2] Messner, R. A. & Bloomfield J., "A Modular Advanced Pipelined Image

Processing Accelerator." In IEEE Aerospace Applications Conference, Vol. 4, 1996,

pp.407-422.

[3] Keahey, K. "A Brief Tutorial on CORBA", Advanced Computing Laboratory,

Los Alamos, NM, USA, hup://www.cs.indiana.edulhyplanlkksiazekltuto.html

[4] Brando, T.J., ''Comparing DCE and CORBA", MITRE Document MP 958-93

(March 1995). http://www.mitre.orglsupportlpapers/tech papers99 OO/brando domisl

• [5] Vepstas L., Linux DCE, CORBA and DCOM Guide, Copyright (c) 1996-2000.

http://www.linas.org/linuxtcorba.html

[6] Young, M., Argiro, D. & Kubica S., "Cantata: The Visual Programming

Environment for the Khoros System." Khoros Whitepaper, Kharal Research, Ine.,

January 18, 2000, pp. 1 - 9

[7] Van Reeth, E, Raymaekers, C., Trekels, P., Verkoyen, S. & Aerackers, E., "A

Distributed Video Retrieval System Utilising Broadband Networked PC's for

Educational Applications." In IEEE Proceedings on MuLtinzedia Modeling - MMM '98,

1998, pp. 47-48

[8] Excalibur Video Market Backgrounder, ooline white paper : Excalibur

Technologies Corp., 1999, http://www.excalibur.com/

• [9] "DirectShowand COM", Microsoft DirectShow help file. 1998.

- 89-

•

•

•

Appendix 1. Towanls the Future: A Discussion of Future Enbancements to the System

Appendix 1. Towards tbe Future: A Discussion of Future Enbancements

to tbe System

While defining the parameters and objectives of tbis thesis, 1 considered many ideas for

features of tbis system. Those that were deemed essential to the proper functioning of the

system were iocorporated ioto the work done of the thesis, while others were left for later

implementation. As weU, during the implementation stage, ideas for additional useful

features arose. Presented here is a discussion of the ideas for future improvements to the

system.

1.1 Potential Future System Features

1.1.1 Network Latency lnfonnatioD

The concept for this feature is to provide the user(s) of the system information on the

transmission latencies between computers tied in to the system. This would aUow the

user(s) to make more infonned choices when deciding wbich computers in the system

would host the processing blocks. Figure AI.l-l depicts my concept of how tbis

information would he presented to the user.

To get information on latency, two possible methods were arrived at, both of which rely

on ICMP protocol. Either the system focus C++ client would send out a ping to each

other CH client in the system or each C++ client in the system would send out a ping to

the system focus. The round-trip time of each ping would he divided in two to yield the

approximate unidirectional transmission latency that would then he reported to the user­

interface.

- 90-

AppeDdix L Towanls the Future: A Discussion 01 Future EnhaDcements to the System

•

•

. ~ -- .. ~ ... ~ -. _.;' ."

Figure AI.l-1: Network Latency viewon User Interface

~ ~ .""".t'--- .' - 'p, . ~ -. •

.:" ".:.~..."."' . ~ .

•

1.1.2 Computer Resource UtiUzation Infonnation

Hand-În-hand with network latency information, is information on the computer systems

where the C++ clients reside. Though the presumption exists that the system's master

user has knowledge of the computers that the system is running on - their processor

speeds, and memory capacity - tbis will not always he the case. Further, the user has no

way of seeing how much of each computer's resources are available to the C++ clients.

In sorne cases, the computers that run the C++ clients may actually he in use locally by

another user, and may he running other applications hesides the C++ client software.

Further, while the user may have sorne qualitative knowledge about the relative amount

of computer processing power consumed by each Filter, that knowledge is unlikely to

translate ioto an accurate estimate of the available processing and memory resources on

the computers În the system. Sïnce the user may he located far away from the system's

- 91 -

•

•

•

Appendix 1. Towards the Future: A Discussiœ of Future Enbancements to the System

computers that are performing the actual processing, the system must assume that the

user cannot simply walk over to the computers and use local software to determine the

computers' utilization of processor power and memory capacity.

A display in the user interface which gives the user an approximate estimate of a single

system's resource utilization would aid the master user's task of (oad balancing ­

balancing the processing load shouldered by each computer within the system. The most

difficult part of adding tbis feature to the system would he gaining access to system

information on resource utilization at the C++ client level. The task would he further

complicated by the workings of the various Microsoft operating systems. While the C++

client software runs equally weU on Windows '98, Windows NT and Windows 2000

platforms, access to system information is not handled identicaUy on those three

operating systems. Still, it should he relatively straightforward to give the user

information on each system computer's processor speed, memory capacity and the

relative utilization of both.

1.1.3 Automated Load Balancing on Computers in the System

In its present fonn, the system relies on a human user to balance the use of computer

processing resources on the system. Even after features such as network latency

information and computer resources information are added to the system, the system's

master user will still have the task of determining which FUters to load on each computer

within the system. One possible future enhancement to the system would he to design a

software add-on that would determine the most optimal way to balance the load on the

system's computers and would then shift Filters from one C++ client to another to re­

balance the loads on the system's computers.

This type of feature is not essential to the proper running of a system, but it would serve

to improve the performance of the system. Its main purpose would he to simplify the

work of the system's master user, allowing that user to concentrate on designing a system

that performs the actions he/she requires of it, and Ieaving the task of balancing the load

- 92-

•

•

•

Appendïx L Towards the Future: A Discussion of Future Enbancemenls to the System

to computer software, probably located in the Applet's code. This software would also

aUow the user to quicldy take advantage of any new C++ client that joined the system

after he/she designed the system's Ftlter Graph.

1.1.4 Detection of Unresponsive C++ CHents

While the JavaServer is currently able to eontend with dataflow issues and system

records in the event that a C++ client disconnects from the system, there is no provision

in the system currently to detect abrupt C++ client disconnections, where the C++ client

does not infonn the JavaServer that it is disconnecting. This type of disconneetion can

oceur during to system shutdowns on the local computer, or a eut to the C++ client

computer's power due to a power outage. It can al50 occur if the C++ client is terminated

from the Windows Task Manager. Further, even in cases where the C++ client does not

aetually shutdown, it is theoretically possible that the C++ client to become unresponsive

due to an unforeseen transmission error.

[n these cases, it would he useful for the JavaServer to keep track of aU client connections

- both C++ clients and Applet connections - and periodically verify that they are

functioning fine. One way of doing tbis would he to spawn another thread in the

JavaServer, whose sole responsibility would he to periodically check on each connected

system, by sending a request to those systems to respond that they are still alive. Dy using

a separate thread rather than building each client handler thread within the JavaServer to

perfonn a periodic check, the JavaServer is aIso to determine if one of its client handler

threads is misbehaving due to an improper message from the client it is handling.

Upon detection of an unresponsive C++ client or an unresponsive client handler thread

within the JavaServer, the JavaServer could simply shutdown the connection to that

client, using its currently existing ability to remove a client connection from its listing.

Alternatively, it could attempt to re-establish the connection, though that might not he

possible, especially in the case of a power failure affecting one or more computers

running C++ clients.

- 93-

•

•

•

Appendïx L Towards the Future: A Discl&ioo 01 Future Enhancements to the SysteDl

1.1.5 Quick Recovery in Response to Downed Computer Connections (Automated

or User-ControUed)

At present, the system is designed with CH clients disconnecting by simply excising ail

records of that client's Filter Graph and registry, and overwriting the data (see section 4.2

for further details). Unfortunately, tbis means that in the case where a C++ client

disconnects from the syste~ aIl information, including the Filters loaded on that system

and the interconnections hetween those Ftlters and other Filter Graphs would he totally

lost. This leaves the system's master user with the responsibility of reconfiguring the

Filter Graphs on the remaining C++ clients, loading Filters onto them to replace the

Filters that were loaded on the disconnected system. Without constant, or at least regular,

supervision, an accidentai disconnection of a C++ client may alter the system Filter

Graph to the point that the system will no longer he processing data in a manner that is

useful to the master user who originally set up the Filter Graph. This means that letting

the system process infonnation overnight without periodic supervision will he risky.

While the intention of this system is to test algorithms with human supervision, it must he

noted that the ability of the system to correct for foreseeable problems and thus allow it to

function alone without human supervision would he a welcome improvement.

In order ta accomplish tbis, the JavaServer would need to he slightly reprogrammed to

select one C++ client that would host all the Filters from the disconnecting C++ client.

Once that was done, the JavaServer would simply need to issue commands ta that C++

client ta load Filters and connect them up to each other, hefore engaging the current

client-shutdown recovery code.

Another feature that could he built upon tbis would he the ability ta allow the user to

select the C++ client(s) where the Filters would he reloaded. Rather than simply allowing

the JavaServer to select one C++ client on wbich ta load all of the Filters that were on the­

disconnecting C++ client, this would give the user an extra measure of control.

- 94-

•

•

•

Appendix L Towards the Future: A Discussion or Future Enhancements to the System

Both of these features would he easy to implement once the system's user interface has in

place the ability to move a Fl1ter from one C++ client's Filter Graph to another. This

feature is discussed in section 1.2.4 in tbis Appendix.

1.1.6 Saviog and Reloading System Logs and the System Filter Graph for a Quick

Restait of the System

One feature that is bound to he important to researchers hoping to use the system to

conduct vision research is the ability to save a Filter Graph configuration on the system.

Rather than rebuild the desired Filter Graph every time a user wants to test out a1gorithms

in design stages, a user would he able to save the set up to a file and then calI up the file

at a later time to restore the system to its desired configuration. The most logical place for

this information to he stored would be on the JavaServer's computer. Once the

JavaServer has the ability, described in section 1.1.5 above, to restore/reload Filters from

a disconnected C++ client to the rest of the system, restoring the system from saved files

should he quite simple.

1.1.7 Video Compression for Inter-System Transmissions and Display

As discussed in section 4.1.4, currently, the system's transmission Filters, used for inter­

system transmissions, can transmit either raw video frames or video that has been

compressed using the Foveal compression defined in section 3.4.2. The same is true of

the display broadcast. Inter-system transmissions are transmissions of data between two

C++ clients on the system. Unlike upwards and downwards data transmissions, which are

relatively infrequent and rarely amount to more than a few kilobytes during user login,

and perhaps as high as a single kilobyte per logged in user during standard system

operation, these transmissions are ongoing and very large. Transmission of a single

stream of raw video data, at 320x240 resolution, with a 24-bit colour depth, amounts to

225 kilobytes per frame. For a video stream produced by a Logitech QuickCam operating

al a modest 4 to 6 frames per second, this can amount to 1 Megabytes per second.

- 95-

•

•

•

Appendix 1. Towanls the Future: A Discussioo 01 Future Enbancements to the System

Transmissions of Foveal-compressed streams are not quite so costly. The same stream

compressed using the Foveal compression uses up 15.2 kilobytes per frame or 61-91

kilobytes per second at 4-6 frames per second. Of course, as discussed in section 3.4.2,

the Foveal compression is a lossy compression, and it is assumed that the users of tbis

system would not want the system to use the Foveal compression for inter-system

transmissions unless the user had aIready compressed the data using the Foveal

compression.

The same issues are true for the display. When displaying a the results at anode within

the system's Filter Graph, the display Filter would be transmitting 225 kilobytes per

frame per display viewer for raw video or 15.2 kilobytes per frame per user for display

resolution in the example above. Despite the limitation on the number of Display clients

the system will alIow the display Filter to connect to (see sections 4.1.4 and 4.4.1), this

could cause severe reductions in the frame rate for the Filter Graph on a given C++ client

in the system, since the Filter Graph will have to wait for these data transmission Filters

to complete the task of transmitting before picking up a new frame from the source.

One possible solution to tbis that has been examined is the use of video compression

Filters to compress the video data and reduce the need for transmission bandwidth. The

basic requirements for the compression Filters are:

(a) widespread availability of the chosen compressionldecompression Filter software

and

(b) header information either within each frame or a fixed size packet (such as the

Foveal compression)

Widespread availability of the compression and decompression software is important. If

the compression algorithm selected to replace transmissions of standard raw video is not

available on most Windows computer systems, then each computer system that runs a

C++ client will need to have the software installed and registered. Also, sorne

compression formats that are very well designed for information interchange, such as

Microsoft's ASF format, are not open fonnats, and so while the decompression software

- 96-

•

•

•

Appendix 1. Towards the Future: A Discussion of Future Enbancements to the System

is available, the compression software is not, and neither is information on the file format

needed to replicate the compression software. Further, if the decompression Filter

software of the selection compression format is not widely available, then any user who

wants to use the display Filter will need ta install the decompression Filter in the system

registry of hislher computer system in order to view the data.

Header information is also important. Unless the Filter at the receiving end knows how

large the next incoming frame will he, it will not he able to determine where one received

frame ends and the next one hegins. Sorne compression schemes, such as AVI, include

header information at the start of a file. Unfortunately, these compression schemes

require the header to include the entire file size, and thus, are not useful when attempting

to transmit a stream of indeterminate totallength.

Compressing video streams prior to transmission is a1so not without its drawbacks.

Compression a1gorithms are often very computationally expensive. Running one or more

instances of a video compression FUter cao tax a computer's resources. Using

compression algorithms will significantly improve the performance of the system if all of

the C++ clients are being run on powerful computers with low transmission rates (such as

computers that use standard modems to connect to the network). However, for less

powerfu1 computers with higher available transmission bandwidth, the use of

compression Filters for inter-system transmissions becomes less important, which is why

tbis feature was not considered a necessity in building the system.

1.1.8 LinuxlUnix Extension

There has been sorne interest expressed by feUow researchers in designing software to

aUow computers running the Linux operating system to he used in the system. Currently,

the C++ clients can oruy be run on microcomputers that run a Microsoft operating

system, and have Microsoft's DirectShow drivers installed.

- 97-

•

•

•

Appendix 1. Towanls the Future: A DiscœsiOli 01 Future Enhancemenls to the System

A Linux version of the C++ client would he on a totaUy different order than the current

Windows implementation. Without access to DirectShow or even COMIDCOM, the

software designed for the Linux client would have to he written from scratch in most

cases, and handling of handshaking and information interchange hetween processing

block would have to he completely the responsibility of the Linux client. AIs0 , without

DirectShow drivers, each processing block would have to he designed such that it would

appear to the system as the Filters appear under DirectShow - Le. a processing block,

with input and output entry points and a point to query for information functioning in a

manner similar to the DirectShow interfaces.

Under a Linux client, each processing black would likely he a stand-atone program,

unlike the DirectShow Filters, which cannat he run without a COM environment. The

Linux client would have access to a listing, by directory, of available processing blocks,

and he able ta run and control those programs as processes. Il would also need to he able

to make interconnections hetween processes using UDix piPeS, instruct the processing

blocks on such things as buffer allocation, gatber information from the processes and

handle the dataflow Still, the idea of a Linux client is intriguing, though it would take

thousands of man-hours to complete and he proven reliable in testing.

1.2 Future Improvements to the AppletIUser Interface

Among the features that could he foreseeably added to the system are several

enhancements to the systems user interface.

1.2.1 Data Type Infonnation

When the system was originally designed, it was designed with this feature in mind. As

mentioned in section 4.2, at present, the information about the input and output data types

for every Filter are stored in both the JavaServer and the Applets. While tbis information

is not essential to a user, it would he convenient to have, and since the information is

- 98-

•

•

•

Appendix L Towards the Future: A Discussion of Future Enbanœments to the System

already available, aIl that remains is to construct a viewing panel in the Applet to display

tbis information.

1.2.2 Filter Property Pages

The system that has been described here is pattemed after GraphEdit. One of the features

available in GraphEdit is the ability to set FUter properties al runtime, often while a FUter

is running. There are several ways to access FUters, but property pages are usually the

best choice. A system user does not need to know much about a Filter to set is property

page values, wbich is not the case for passing messages to Filter through files. Further,

any attempt to pass messages to a FUter from the system's user interface would require

information about that Filter to he stored within either the JavaServer or the Applet's

code. None of tbis is necessary if read/write access to FUter property pages is

incorporated into the system. Though DirectShow is not designed to transmit property

page Jayout information to remote computers, DirectShow does contain COM interfaces

that will allow the local software, in tbis case the C++ clients, to access information about

the Filter properties that can he modified in a given Filter's property page(s) and then

transmit that infonnation upwards to user interface. The user interface cao also be

modified to provide a suitable view of the Filter properties that can be modified by a

given Filter's property page(s).

1.2.3 Chat Feature

The chat feature seems, at tirst glance, to be the least needed feature for a system

designed to test computer vision systems. However, tbis feature might actually prove to

he more important to the smooth operation of the system than most of the other features

described in tbis chapter. The system is designed to allow multiple users to access it,

view the FUter Graphs on each individual computer within the system, view the displayed

node set by the master user and receive information from the system. The users access the

system through a web-based interface that grants them access from any location acound

the world. As weU, the user interface does not provide users with any information about

the other users logged in to the system. The ooly information available to users that cao

- 99-

•

•

•

Appendix f. Towards the Future: A Discussion of Future Enhancements to the System

help ascertain whether or not others are logged on to the system is the part of the user

interface that keeps track of whether the applet is in master or view only mode. Thus,

there is absolutely no reason to expect that the users will he able to contact each other in

the event that one user logged in without master privileges, requires master privileges on

the system to run an experiment.

At present, the system has no hierarchy (see section 1.4.2) to allow a more senior/more

important user to take precedence over a less important user and replace a user of lesser

ranking as the system's master user. As weU, at present there is only a single usemame

accepted on the system (see section 1.4.1). Even if the system were modified to accept

several different usemames and a user hierarchy, there is still the possibilitYthat a lesser­

ranked user might need access to the system. The simplest way to this would he to build a

simple chat function into the system. The chat feature would allow such a user to contact

other users on the system and request access. The chat feature would he simple and

would not need to have the ability to direct messages at only a single user. When a user

would send a chat message to the other users, they would get a message in their log box

informing them that a new chat message had arrived. They could then switch their applets

to Chat view - selectable from the left tab like all the other views - and read the message.

The chat feature could a1so he helpful in another way. [t would allow multiple users to

have a chat-session conference discussing the results of an algorithm heing tested by the

master user.

1.2.4 AbiUty to Move Filters from Machine to Machine

Sometimes, to balance the load on the computers in the system, the master user may

decide that one or more Filters should he moved from one C++ client to another one.

Generally, the Filters available on any one C++ client are available on aIl C++ clients

within the system, so the issue of the availability of the Filter on its new C++ client host

is not as relevant (and it is addressed in section 1.2.5). Rather than forcing the master user

to go to the trouble of tirst removing a Filter frOID one C++ client, then loading the same

- 100-

•

•

•

Appendix 1. Towanls the Future: A Discœsion 01 Future Enbancements to the System

Filter on another C++ client and then re-establishing the connections between that Filter

and the other Filters it used to he connected to, il might be simpler to just give the system

the ability to shift a Filter from one system to another. Once thaCs done, the user

interface could he modified to grant the user the ability to select a Filter and l110ve it to

another C++ client within the system. As noted in section 1.1.5, the ability to shift a Filter

from one C++ client to another will have other positive implications as weil.

1.2.S Downloading and Registering Filters to C++ COents

As noted in section 1.2.4, generally, the Filters available on any one C++ client are

available on ail C++ clients within the system. This is not always the case. One feature

that was considered for this system early on was the ability to download a Filter to a C++

client and have the client register the Filter and then update it registry listing. This would

ensure that any processing block could he placed and run on any computer within the

system and would allow the master user to concentrate on other matters than optimizing

the system given then location where the desired Filters are registered. This would also

allow a researcher to develop parts of an a1gorithm locally using local DirectShow

software, such as GraphEdit, and then test the full algorithm by dowoloading the FUters

he/she had designed to C++ clients on the system, make connections and then test the

Filters together. This would save the researcher the time and trouble of manually

copyingluploading and registering FUters onto the computers running the C++ clients on

the system.

[n order to accomplish this, the user interface would have to he redesigned to display a

full list of ail the FUtees available on the C++ clients on the syste~ rathee than the

current system of displaying ooly the FUters registered on the C++ client that is the

current system focus. [f a Filter selected to he added to a C++ client's Filtee Graph by the

user did not exist in the registry of that C++ client's computer, then the Filter would he

downloaded from another C++ client either through the JavaServer or through an FrP

connection.

- 101 -

•

•

•

Appendix L Towards the Future: A Discœsioo 01 Future Eabancements to the System

1.2.6 Smart Accessing of Filters

One alternative to allowing Filters to he uploaded from one C++ client and downloaded

to another would he a method of loading a Fdter on the C++ client where it resides, and

setting up connections to it ail with a single command issued from the applet. In general,

tbis alternative is less preferable than aUowing the system to download Filters. However,

in the case where a researcher wants to graot others access to bislher software without

allowing bislher software to he downloaded by others, tbis rnethod might he preferable.

As with the previous section, here the user interface would need to he redesigned to

inform the user of ail the Filters available on ail the C++ clients on the system.

It might actuaUy he possible to combine tbis idea with that of downloading Filters, if a

flag could he set within the JavaServer identifying sorne Filters are "do not download"

Filters that must he run from their native C++ client.

1.3 Future Improvements to the Display System

1.3.1 Publishing Streams to the Internet

In the current system, the master user cao select a single node to he rendered and

displayed. Once the display is set up, the user must access it using a separate displaying

program. The only version available for the displaying program is a program wriuen for

Windows-based 0Perating systems using DirectShow Filters. So, though the Applet cao

he viewed and the system configured from any computer with a Java-capable browser,

only a user with a Windows-based Personal computer and a copy of the displaying

software including the necessary DirectShow Filters can make full use of the system.

For the system to acbieve its goal of being fully accessible across aU platforms, the

display function must also he viewable from any platfonn. Since most browsers-equipped

machines contain software to display certain multimedia formats taken from on-line

sources, replacing the current system requiring a dedicated program to render the display

- 102-

••

•

•

Appendb 1. Towams the Future: A DiscœsiOIl 01 Future Enbancements to the System

with a browser-based solution whereby the user would simply access a webpage for the

display would seem to be io order.

Several possible solutions a10ng these lines have been examined. One of these, likely the

MOst ambitious, caUs for the publishing of a live stream (as opposed to a pre-recorded

one) to the internet, where a standard web browser will be able to access it. Another, far

less ambitious solution would he to save the display information ioto short media files,

which could then he accessed by a web browser. Both of these solutions require access to

video compression software, fIle writing ability and the ability to transmit the data from

the C++ client where it was being produced to the JavaServer's computer for publishing

and redisplay. However, there are sorne significant differences between the two

approaches.

Publishing live streams would produce a better display. The ooly delay in transmission

would he the delay in transmitting the video data between the C++ client and the

JavaServer's computer and then in retransmitting the published stream to the user's

computer. This option requires the ability to compress video using compression formats

that retain information on the size and resolution of a given frame or group of frames.

Not aU video compression formats retain tms information, and the compression software

for those that do are oot part of the standard bank of Filters that are available on a

Windows-based system, though the decompression software ofteo is available for popular

multimedia formats. This requires either writing a Filter to perform the compression of a

raw video stream into a standard compressed video format or obtain such a Filter

elsewhere. Of course, such software could a1so he used to compress data in inter-system

transmissions (see section 1.1.7). However, at present, DirectShow does not come

equipped with a Filter designed to publish a stream of video data to the Internet or to

write compressed video data, other than video compressed in the AVI format, to a file.

And it should he noted, that the AVI format would not he suitable for tbis solution since

it has a header that includes information on the entire file size and thus, an AVI­

compressed fIle must he completely written hefore it cao he viewed.

- 103-

•

•

•

Appendïx L Towanls the Future: A Discussion of Future Enbancements to the System

As for the other solution, the software is avallable - a standard AVI compressor is

available with DirectShow - however, tbis solution has less desirable effects. In order to

function, the system must use several files as a circular buffer, overwriting one at a time

in a fixed order with new display data. The length in milliseconds of each file would he a

key determinant in the delay between the capture of video data and the displaying of that

data to the user. However, the total amount of video time represented by ail of the files

must he long enough to handle the possibility of long transmission latency between the

node producing the video data an the user's browser. For example, if each AVI

compressed file contains 50 ms of data, and the transmission latencies hetween the

JavaServer's computer and the user's computer is 500 ms respectively, then ucircular

buffer" of compressed data files must contain at least Il files long so that the user sees

the entire AVI file before it is overwritten. Sïnce transmission latencies may, in sorne

cases, stretch inta several seconds, the number of files necessary to contend with tbis

possibility is very large. As weU, there must he a system in place to inform the browser to

begin displaying the next AVI file. Since JavaServer-to-user latency may he long tbis will

mean that the user will only get a display half of the time, unless the timing can he set up

elsewhere. The browser can he set up to automatically switch from one file to another and

request the next file in time to receive il. However, tbis is unlikely to improve the display

and there will still be delays as the user's computer sets up for each new display.

Lengthening the AVI files will reduce the numher of delays, but it will also increase the

delay between video capture and video display.

Bath of these solutions would simplify the work of the user ta view video data at the

displayed node. However, since the emphasis of tbis thesis' work is on harnessing the

processing power of the distributed computing resources available, and since the current

display fits the thesis parameters of alIowing the user to investigate the processing at any

Dode in the system (and with lower transmission delay than either of the two solutions

presented here, 1 might add) the work of publishing the displayed stream to the Internet

will have to remain for future implementation.

- 104-

•

•

•

Appendix 1. Towanls the Future: A Discussion of Future EnhancelDeDts to the System

1.4 Future Improvements to Applet - JavaServer interaction

1.4.1 List of VaUd UsemamesIPasswords for LoggiDg ioto the System

At present~ the system is hard-coded with accepted usernameslpasswords. This works

weU when ooly a few researchers are accessing the system. However~ as the number of

users of the system increases~ a proper list of users would serve to keep track of who was

using the system and how often. As weU, it would ensure that ooly authorized users

would log onto the system, and that users no longer authorized to use the system would

be prevented from doing so.

1.4.2 User Hierarchy

Continuing a10ng these lines, a hierarchy of users would a1so he beneficial. Such a system

would grant ooly viewing privileges to sorne users, and then rank the other users' priority

on the system. If a more important user than the current master logs onto the system~ the

system would suspend the current master' s master privileges and transfer them to the

higher-ranking user. This way a super-user identity could he set up to deal with the

system in the event of error in the JavaServer thread that was handling the previous

master.

1.5 Future Improvements to upwardldownward data transmission security

I.S.l Varying Authentication Tags

The current transmission protocols include an authentication tag that is meant to

authenticate the message's sender. Sïnce addressing aU of the security concems was not

part of the thesis' objectives, the authentication tags were left as simple, constant tags. To

improve security, the system's components could vary these tags according to an

encoding scheme. This would help prevent any tampering with upwardldownward

communication.

- 105-

•

•

•

Appendix 1. Towanls the Future: A Discussion of Future Enbancements to the System

I.S.2 Message EncryptioD

Another measure that would aid security in upwardldownward communication would he

encrypting entire messages. [nstead of merely using a system of varying authentication

tags as described in section 1.5.1, the messages themselves could he encrypted. In order

for the message encryption to he effective, the fonn of encryption key itself should he

selected such that no message gets encrypted the same way twice.

- 106-

