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Abstract

Qualitative coding is a content analysis method in which researchers read

through a text corpus and assign descriptive labels or qualitative codes to pas-

sages. To this day, it remains an arduous and manual process which human-

computer interaction (HCI) studies have shown could greatly benefit from assis-

tive methods powered by natural language processing (NLP) techniques. Yet,

previous attempts at introducing language technologies into the qualitative cod-

ing process have framed it as a fully automatable task. In this thesis, we study

a more human-centric approach to qualitative coding by defining the task of

qualitative code suggestion (QCS) in which a list of previously assigned qual-

itative codes, ranked by relevance, is suggested for an identified passage. In

addition to being user-motivated, QCS integrates previously ignored properties

of qualitative coding such as the sequence in which passages are annotated,

the importance of rare codes and the differences in annotation styles between

coders. We investigate the QCS task by creating a qualitative coding dataset,

CVDQuoding, consisting of interviews conducted with women at risk of cardio-

vascular disease and by modeling the QCS task with three paradigms: classifica-

tion, information-retrieval and zero-shot prompting. In addition, we conduct a

human evaluation to verify our experimental results and show that our systems

are able to consistently make relevant code suggestions.
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Résumé

Le codage qualitatif est une méthode d’analyse de contenu dans laquelle

des chercheurs lisent un corpus de texte et attribuent des étiquettes descrip-

tives, nommées étiquettes qualitatives, à des passages. À ce jour, cette méth-

ode d’analyse demeure un processus difficile et manuel qui, selon des études

faites dans le domaine d’intéraction humain-ordinateur, pourrait être facilitée

par des techniques de traitement automatique de la langue naturelle (TALN).

Or, les études qui ont déjà tenté d’introduire des technologies de traitement

de langue dans le processus de codage qualitatif l’ont fait en considérant ce

processus comme étant complètement automatisable. En revanche, dans cette

thèse, nous étudions une approche au codage qualitatif centrée sur l’utilisateur

en définissant la tâche de suggestion de code qualitatif (SCQ) dans laquelle une

liste des codes qualitatifs déjà attribués par un codeur est ordonnée par per-

tinence et suggérée pour un nouveau passage identifié par le codeur. En plus

d’être motivé par les désirs de codeurs qualitatifs, la tâche de SCQ intègre des

propriétés du codage qualitatif ignorées jusqu’à maintenant par la communauté

de codage automatique. Ces propriétés comprennent la séquence dans laquelle

des passages ont été codés, l’importance des codes rares et la différence de style

d’annotation entre codeurs. Nous étudions la tâche de SCQ en créant un en-

semble de données de codage qualitatif que nous nommons CVDQuoding qui

consiste d’entrevues avec des femmes à risque de maladies cardiovasculaires.

Par ailleurs, nous modélisons cette tâche en utilisant trois paradigmes de la

modélisation: la classification, la récupération d’information et la requête sans

exemple. Finalement, nous menons une évaluation humaine pour vérifier nos

résultats expérimentaux et nous démontrons que nos systèmes sont capables de

suggérer des codes qualitatifs pertinents.
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1
Introduction

In qualitative research, qualitative coding is a content analysis method that is used

to analyze textual corpora such as cultural and political texts, questionnaires and

interview transcripts (Elliott, 2018). First used in social science studies, qualitative

coding has become a universal method of analysis geared at providing researchers with

an in-depth understanding of their studied corpus (Elliott, 2018). It is now employed

in research disciplines such as education, psychology, and healthcare (Gough and

Scott, 2000; Smith and McGannon, 2018; Chapman et al., 2015). During the coding

process, a researcher carefully scans each document in their corpus, identifies passages

that are associated with their research question and assigns these passages descriptive

labels or qualitative codes.

For instance, in family medicine, researchers in Bousbiat et al. (2022) investigated

the current state of cardiovascular disease (CVD) prevention and management in

female patients in primary healthcare and the needs and required features of an AI

technology for CVD prevention. To explore their research questions, the authors

conducted interviews with 15 women at higher risk of cardiovascular disease (CVD).

Once these interviews were conducted, their transcripts were analyzed via qualitative

coding to answer the initial research question. In Figure 1.1, we show an excerpt from

one of the interviews with a woman at risk of cardiovascular disease along with the

annotations made by the researchers who conducted the qualitative coding. In this

1
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Figure 1.1: Excerpt from an interview transcript from Bousbiat et al. (2022) along
with the qualitative code annotations made by the qualitative researchers.

excerpt, the interviewer is asking the participant about the difficult decisions they

have had to make to manage their risk of cardiovascular disease. The participant’s

answer contains several components which were broken down through the qualitative

coding process. For example, their discussion of medications, “Well, I’m committed to

taking the medication”, is assigned the code “CVD Medications” while the discussion

of “drink[ing] less wine” is assigned the code “Life-style Modifications”. Ultimately,

this method of analyzing their transcripts allowed the researchers of this project to

make better recommendations on how to personalize CVD care for women.

Despite its widespread use and applicability, coding remains an arduous and time-

consuming process as it requires researchers to manually annotate their studied corpus

line by line. For instance, studies have shown that coding a 1-hour interview transcript

will typically take an experienced researcher between 4 to 8 hours of annotation (Miles

et al., 2019). In Bousbiat et al. (2022), it took 3 months for a single qualitative coder

to complete the qualitative coding of the study’s 15 1-hour interview transcripts.
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As a result, the time-consuming nature of qualitative coding can limit the number of

documents (e.g., interview transcripts) that are analyzed, which can in turn impact the

strength of the conclusions made by studies employing qualitative coding (Anderson,

2010; Roberts et al., 2019).

As a result, to increase coding efficiency (i.e., the rate at which codes are assigned)

and to reduce its cognitive load on researchers, practitioners from the natural language

processing (NLP) community have attempted to introduce language technologies into

the coding process. To do so, practitioners have primarily cast qualitative coding as

a fully automatable text classification task in which codes are automatically assigned

to passages without any additional human intervention (Crowston et al., 2012). How-

ever, as human-computer interaction (HCI) studies have shown (Rietz and Maedche,

2021), qualitative coders prefer receiving suggestions from assistive tools rather than

having the entire corpus automatically coded for them. This aversion towards a fully

automatic coding system may explain why, to this day, all available qualitative coding

tools are used solely as “electronic filing cabinets” (Fielding and Lee, 2002). That is,

as long as automatic coding is not approached and implemented in a user-oriented

manner, coding tools with automated features such as NVivo1 and MAXQDA2 will

continue to be used for their bookkeeping features only (Wiedemann, 2013; Marathe

and Toyama, 2018).

1.1 Thesis Outline

In this thesis, we take a more human-centric approach to qualitative coding by iden-

tifying properties of qualitative coding ignored in previous automatic coding studies

and by using these properties to build a user-oriented task which could assist quali-

tative coders’ workflow. In particular, one of the key properties of qualitative coding
1https://lumivero.com/products/nvivo/
2https://www.maxqda.com/qualitative-data-analysis-software

https://lumivero.com/products/nvivo/
https://www.maxqda.com/qualitative-data-analysis-software
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includes the saturation of qualitative code assignments, the phenomenon by which

most codes are discovered during the coding of the first few documents and are fre-

quently re-used thereafter. In addition, we also study the importance of rare codes

and the differences in qualitative coders’ annotation styles. These three properties,

which we show are important for a coding tool focused on assistance, are integrated

into the qualitative code suggestion (QCS) task which we propose. The task of QCS

requires a system to rank by relevance a list of previously assigned codes for a pas-

sage identified by a qualitative coder. The codes to rank only include those that have

already been used by qualitative coders in previous documents; this is what is meant

by previously assigned codes. In addition, since a passage may require an entirely new

qualitative code, QCS contains an additional novel code detection subtask in which

a passage must be labeled as ‘novel’ if it requires the creation of a new code or ‘not

novel’ otherwise.

In addition to being better aligned with the nature of qualitative coding and with

user preferences, QCS provides the NLP community with a new set of technical chal-

lenges which have remained unexplored in the field of automatic coding. For instance,

our task definition exposes the necessity to evaluate code suggestions based on the

sequence in which documents have been coded and the unsuitability of the commonly

used i.i.d.3 data distribution assumption. In addition, unlike other NLP tasks that use

human-sourced annotations, QCS expects differences in annotation styles and avoids

attempts to correct or homogenize these differences. Thus, although more challeng-

ing, we believe that this human-centric approach uncovers technical research avenues

which are better positioned to positively impact researchers’ qualitative coding work-

flow.

Along with proposing QCS, in this thesis, we create a dataset specifically tailored

for this task, we explore the use and development of several NLP techniques to provide

relevant code suggestions and we conduct additional human evaluations to verify
3independently and identically distributed
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our findings. The dataset we create, which we name CVDQuoding (short for CVD

qualitative coding), consists of the 15 transcripts of interviews with women at risk of

CVD conducted in Bousbiat et al. (2022) along with the qualitative code annotations

of 2 qualitative coders. Furthermore, we employ techniques from text classification,

information-retrieval and large language model (LLM) prompting to create models

which are able to make qualitative code suggestions as well as novel class detections.

In addition, we conduct a human evaluation to verify the results of our models. The

results of the human evaluation show that our modeling techniques are able to make

relevant code suggestions and that there are several promising research directions in

assisting qualitative coders with NLP in this human-centric manner.

1.2 Statement of Contributions

To summarize, in this thesis, we investigate the following research questions:

1. How can we formulate a human-centric task which better reflects the nature of

qualitative coding and addresses the pain points exhibited by qualitative coders?

2. How effective are current NLP techniques at handling the challenges present in

such a human-centric task, instantiated in this thesis as qualitative code sugges-

tion (QCS)?

To this end, grounded in HCI studies on automated coding assistance, we propose

the task of qualitative code suggestion (QCS) in which previously assigned codes are

suggested for passages identified by the qualitative researcher. To investigate QCS, we

create a qualitative coding dataset, named CVDQuoding, consisting of transcripts of

interviews with women at risk of cardiovascular diseases along with the annotations

of two qualitative coders. We experiment with classification, information-retrieval

and zero-shot prompting techniques to model QCS and conduct a human evaluation

which shows that our systems consistently make relevant code suggestions and that
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QCS is a promising way of introducing NLP into the qualitative coding process in a

human-centric manner.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides an overview of

qualitative coding including the different types of coding and their use cases and

describes previous work studying automatic qualitative coding techniques from com-

plete automation to more user-oriented and assistive techniques. Chapter 3 details

the properties of qualitative coding we focus on in this thesis and formalizes the qual-

itative code suggestion (QCS) task definition. Chapter 4 presents the CVDQuoding

dataset which we create to study QCS and describes its main characteristics in connec-

tion with the qualitative coding properties we study in this thesis. Chapter 5 presents

the data formatting and data modeling approaches we take to automate QCS. Chap-

ter 6 presents the experimental setup we use to test our modeling approaches, the

evaluation methods for our experiments and their results as well as an analysis of the

results in connection with our research questions. Finally, Chapter 7 summarizes the

findings of this thesis, presents some of its limitations and describes future work in

this direction.



2
Background

In this chapter, we present an overview of qualitative coding in the context of con-

tent analysis methods as well as an analysis of the studies from the NLP and HCI

communities which have aimed to introduce automation into the qualitative coding

process. In particular, in Section 2.1, we present a formal definition of qualitative cod-

ing in the context of content analysis which is a family of research techniques centered

around understanding the phenomena underlying text corpora. Furthermore, we de-

scribe the different characteristics of qualitative coding and its use cases in different

fields. In addition, in Section 2.2, we summarize studies which have considered how

automation can be introduced into the qualitative coding pipeline and what impact

automation has on researchers’ workflow. These studies range from presentations of

methods which aim to fully automate the coding process, effectively taking away some

- if not all - of the coding agency from the qualitative coder, to methods which aim

to directly assist the qualitative coder as they are coding. Studies focusing on com-

plete automation have mostly stemmed from the NLP community and have typically

cast qualitative coding as a text classification task. In contrast, studies which have

focused on assistive methods have mostly originated from the HCI community and

have instead aimed to understand the pain points of qualitative coders and to develop

coding tools with automated features which address those paint points.

7
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2.1 Qualitative Coding

In qualitative research, content analysis is defined as “a family of research techniques

for making systematic, credible, or valid and replicable inferences from texts and other

forms of communications” (Drisko and Maschi, 2016). These techniques range from

simple word count and keyword visualizations to more thorough qualitative-coding-

based studies. First used in the social sciences, qualitative coding has become a

popular and commonly-used tool of analysis across various areas of research (Macna-

mara, 2006). Though the steps taken in conducting qualitative-coding-based content

analyses can vary from one field to another, they all inevitably include two funda-

mental steps. The fist involves the qualitative researcher reading the studied content

multiple times to get themselves familiarized with their data. The second involves

extracting passages from the text that exhibit some idea relevant to the research ques-

tion and assigning these passages descriptive labels or qualitative codes as illustrated

in Figure 1.1 from Chapter 1. This latter step is often simply referred to as qualitative

coding and is more precisely characterized in the following paragraphs.

Firstly, we define the notion of a qualitative code and the manner in which qual-

itative codes are created by researchers. As it stands, the exact definition that is

given to a qualitative code may differ slightly from one qualitative researcher to an-

other. This diversity in definitions is a result of different research fields each favoring

slightly different variations of qualitative coding (Hsieh and Shannon, 2005). For

our purposes, we will use the definition proposed by Saldaña (2021) who defines a

qualitative code as “a word or short phrase that symbolically assigns a summative,

salient, essence-capturing, and/or evocative attribute for a portion of language-based

or visual data.” Moreover, codes can either be formed deductively or inductively.

In the deductive approach, the codes of the corpus are specified beforehand and are

based off some hypotheses the researchers already have. Coding is then used as a

means to validate (or invalidate) the stated hypotheses. In the inductive approach,
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the codes are not specified beforehand, but rather are generated directly from the

data. Therefore, in the case of inductive coding, the creation of qualitative codes is

more exploratory in nature.

Secondly, the creation of qualitative codes can be further distinguished based on

the relation between the words used to form the code and the words in its correspond-

ingly assigned text span(s). To qualify this relation, codes are generally described as

either being descriptive or in-vivo (Gibbs, 2007). Descriptive codes provide a high-

level description of what is being said in the highlighted passage and are closer to

passage headlines or summaries (Gibbs, 2007). On the other hand, in-vivo codes typ-

ically repeat some part of the extracted text verbatim (Gibbs, 2007). A qualitative

researcher may choose to use both descriptive and in-vivo codes throughout their

annotation process. This diversity of code types allows for complimentary informa-

tion to surface providing the researcher with a more well-rounded overview of their

data. For example, in Figure 2.1, on one hand, the code “Sharing Decisions with

Professionals” is more of an in-vivo code since it is an almost verbatim account of

the highlighted passage. On the other hand, the code “CVD Misconceptions” can be

classified as descriptive as it is much broader and tries to capture a higher-level idea

than what is mentioned in the passage.

Finally, another dimension of qualitative codes pertains to how long the text spans

associated with them tend to be and, thus, how much content is being captured by

a single code assignment (Saldaña, 2014, 2021). As Saldaña (2014) describes, codes

which cover more text will tend to lump similar or related low-level ideas together.

As a result, codes of this nature will typically categorize larger sections of documents

with broader descriptions. In contrast, codes which focus on shorter text spans such

as sentences or phrases will split a document into much more detailed categories

(Saldaña, 2014). Each approach has its advantages and disadvantages. Lumping

tends to generate fewer codes which might expedite both the coding phase and the

analysis phase. The downside of this approach is that the analysis might in turn
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Figure 2.1: An excerpt from an interview transcript from Bousbiat et al. (2022) along
with qualitative code annotations. The code “Sharing Decisions with Professionals”
(top) is considered in-vivo code while the coder “CVD Misconceptions” (bottom) is
considered descriptive.

overlook some important detail that could only be detected with a finer-grain coding

scheme. Splitting, on the other hand, demands a much higher level of scrutiny and

concentration from the researcher. However, this coding style decreases the chances

that an important detail is overlooked once the researcher begins to analyze and

aggregate their codes for insights. Therefore, a tradeoff exists between the cognitive

load required to code text spans and the level of coding detail. For example, in

Figure 2.2, we observe two distinct annotations for the same excerpt where the first

one exhibits a lumping effect while the second exhibits a splitting effect.

After the qualitative researcher has finished coding their corpus, they will conduct

several rounds of aggregation to distill their findings into more general themes con-

nected to their initial research question (Braun and Clarke, 2006; Terry et al., 2017).

The aggregation process occurs by examining the codes and the passages to which

they were assigned and grouping codes that exhibit commonalities, typically based on
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Figure 2.2: An excerpt from an interview transcript from Bousbiat et al. (2022)
along with qualitative code annotations of two coders. The annotation on the left
exhibits a “lumping” characteristic while the one on the right exhibits a “splitting”
characteristic.

what research question is being studied. These groups of codes will each be assigned

higher-level descriptions and this process will be repeated until the researchers believe

that they have formed a handful of well delineated themes. The primary difference

between a code and a theme is their relation with the studied corpus. While a code

will always be connected to some idea explicitly evoked in the studied document, a

theme should describe an underlying pattern evidenced by the studied corpus. That

is, a theme should not simply summarize some portion of the corpus. Rather, it

should make an analytic claim about the corpus using the codes and text spans as

evidence. For example, a code could be “Level of interest in tracking health infor-

mation” whereas a theme related to this code could be “Any type of information

tracking raises privacy concerns”. The themes that result from the researcher’s qual-

itative analysis will be used to argue a certain position with respect to their research

question(s). A visualization of this process can be observed in Figure 2.3 in which

codes are progressively aggregated into themes.
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Figure 2.3: An illustration of the process by which codes are aggregated into themes
(Saldaña, 2021).

Since its first uses in sociology and journalism (Drisko and Maschi, 2016), content

analysis in the form of qualitative coding has become a standard method of analysis

in multiple domains including education, psychology, and medicine. In education,

Górska et al. (2018) used qualitative coding to analyze undergraduate students’ thank

you letters to their teachers to understand the significance and the impact of teacher-

student interactions. The authors of the study discovered that undergraduates value

teachers with whom they can interact with on topics such as homework and test

feedback as well as career advice. In psychology, Grantham et al. (2015) aimed to

examine when and why therapists working with bilingual Spanish-English-speaking

Latino clients switched from speaking English to Spanish, and vice-versa. To do so, 9

Spanish-English speaking therapists with bilingual Latino clients were interviewed in a

semi-structured manner after which the interviews were transcribed and qualitatively

coded. The study concluded that therapists switch languages to establish a sense

of trust with their clients. In medicine, Santiago-Rivera et al. (2009) conducted a

meta-analysis of studies that used qualitative coding to analyze testimonials (e.g.,

transcribed semi-structured interviews) from people with dementia (PWD). The meta-

analysis showed that, in many cases, the qualitative coding of PWD testimonials

revealed that people strive to maintain continuity in their lives despite their diagnosis
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by engaging in social activities and by contributing to their households and their

communities.

2.2 Qualitative Coding and

Automation

Despite its ubiquity, content analysis using qualitative coding has remained a time-

consuming and expensive endeavour limiting both the breadth and the depth of stud-

ies employing this analysis technique (Patton, 2014; Bengtsson, 2016). As a result,

there has been a concerted effort from both the NLP and HCI community to develop

automated assistive coding techniques and study the impacts of these techniques on

qualitative coders’ workflow. In Section 2.2.1, we describe techniques which have been

proposed by NLP researchers to automate most, if not all, of the coding pipeline. In

Section 2.2.2, we describe work from the HCI community which leverage the inter-

action between the qualitative coders and the automated features to assist them in

their coding of corpora.

2.2.1 The Fully Automatable Perspective

Thus far, the NLP community has treated the process of qualitative coding as a

fully automatable task using traditional, as well as more advanced, text classification

techniques to assign pre-defined codes to text spans. We first discuss the most notable

and prominent work related to this perspective of automation and qualitative coding

and then briefly discuss why a lack of coder intervention is not necessarily a desirable

property in a coding system.

The first attempts at introducing NLP techniques into the qualitative coding pro-

cess casted deductive qualitative coding as a text classification task and used rule-

based approaches to model this task. In Crowston et al. (2010, 2012), the authors ex-



CHAPTER 2. BACKGROUND 14

plored the effectiveness of rule-based NLP techniques to assist qualitative researchers

in the deductive coding of messages between developers working on open source soft-

ware projects. In total, 3011 segments of text were assigned codes from a list of 15

pre-specified codes. The text segments were then split into a training and testing set

and an NLP researcher was tasked with developing rules to match each text segment

with its correct code using features such as part-of-speech tags and keywords. In

Figures 2.4 and 2.5, we show an example of a hand-crafted rule for the “Agreement”

code and how it was used to match this code with a text segment. The authors mea-

sured their system’s performance using recall and precision scores and showed that it

did well for codes such as the “Formality” and “Appreciation” codes. However, their

system struggled on most of the other codes and the manual creation of classifica-

tion rules was a slow and unscalable process. As a result, in the next paragraph, we

present follow-up work which aimed to move away from rule-based text classification

approaches and towards supervised-learning-based approaches.

Figure 2.4: An example of one of the hand-crafted rules to match codes with text
segments from Crowston et al. (2012). This rule is for the “Agreement” code and uses
part-of-speech tags such as VBZ to indicate a verb (in the 3rd person singular form)
as well as variables to represent semantic classes of words such as $it which is meant
to capture function words such as ‘it’ and ‘this’.
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Figure 2.5: An example of a matching between a coded text segment from the test
set and the rule for the code “Agreement” (described in Figure 2.4) from Crowston
et al. (2012).

Follow-up studies to Crowston et al. (2010, 2012) continued to cast deductive

qualitative coding as a text classification task but used supervised learning to pre-

dict the correct code assignment for a given text span. In McCracken et al. (2014);

Liew et al. (2014), the authors shifted from crafting rules for each code to train-

ing a support vector machine (SVM) to predict the correct code assignments of text

spans. In particular, the authors used the same dataset as Crowston et al. (2012) and

framed the assignment of codes to text spans as a multi-label binary classification

task. The multi-label setting was needed because certain text spans were assigned

multiple codes. The authors trained a different SVM for each pre-specified code using

features like the unigram and bigram counts of text spans as well as the part-of-speech

tags present in the text spans. Using precision and recall scores, the authors showed

that supervised learning was more flexible than rule-based learning. However, the

former method struggled to match the performance of the latter method for codes

with a small number of training instances. In Scharkow (2013), the authors used

supervised text classification to automatically code German news articles and made

the same observations as McCracken et al. (2014) for Bayesian classifiers. Lastly, in

Kaufmann et al. (2020), the authors explored the use of semantic similarity scores be-
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tween codes and text spans computed using keyword overlap to automatically assign

codes to passages.

More recent work in automatic qualitative coding has investigated the use of neural

networks and large language models (LLMs) such as BERT (Devlin et al., 2018) and

GPT-3 (Brown et al., 2020) to automatically assign codes to text spans. In Grandeit

et al. (2020), the authors compared the performance of an SVM classifier with neural-

based classifiers such as BERT and DistilBERT which have been shown to perform

significantly better than SVMs on several text classification tasks (Kowsari et al.,

2019). For their study, social scientists qualitatively coded posts made on a German

parent counseling website using a pre-defined codebook of 50 codes. The coding of

these posts resulted in 10000 text spans annotated with one or more codes. Using

F1 scores to compare performance, the authors showed that a BERT classifier tends

to do better than an SVM classifier when classifying codes with a large number of

associated text spans. Furthermore, they showed that even if the labels predicted by

the BERT classifiers do not match the initial coder’s annotations the predictions made

by the models may still be relevant and, therefore, useful. In Xiao et al. (2023), the

authors used a prompt-based learning approach (Liu et al., 2023) to predict the code

assigned to a text span. More specifically, the authors created a dataset of curiosity-

driven questions asked by children which were coded by a team of psychologists. The

NLP researchers used the codebook defined by the psychologists as well as text spans

associated with each code in the codebook as a prompt for the GPT-3 model. The

researchers then used GPT-3 to generate the code predictions for each text span in

their test set. By using Cohen’s Kappa, the authors showed that GPT-3 was able to

achieve fair to substantial agreement with the psychologists’ coding decisions.

To summarize, the NLP community has geared most of its efforts towards fully

automatic (deductive) coding systems which, given some corpus to code, assign pre-

defined codes to spans of text with the help of a text classifier. Effectively, this removes

the researcher from the core coding process and shifts their responsibility to verifying
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the correctness of code assignments. This shift in the duties and responsibilities of the

coder is what characterizes this fully automatable perspective. One notable exception

to this view is work by Bakharia (2014); Bakharia et al. (2016) who build an interactive

topic model which allows qualitative coders to split and merge clusters of text spans

and associate them with different codes. In this case, the qualitative coders preserved

most of the coding agency and, as a result, created clusters of text spans which were

better aligned with their research questions than the clusters created using other non-

interactive methods. In fact, as we will discuss in the upcoming section, coders prefer

coding most of their corpus themselves and only desire automation under certain

conditions (e.g., the codes have become repetitive).

2.2.2 The Assistive Perspective

There has been extensive work, mostly from the HCI community, in understanding

how qualitative coders would like automation and artificial intelligence (AI) to as-

sist them during their coding process (Grimmer and Stewart, 2013; Muller et al.,

2016; Chen et al., 2018; Marathe and Toyama, 2018; Jiang et al., 2021a; Feuston and

Brubaker, 2021). In particular, several studies have shown that while qualitative re-

searchers desire automated assistance, they insist that any kind of assistance must

not take away their coding and analysis agency (Marathe and Toyama, 2018; Jiang

et al., 2021a; Feuston and Brubaker, 2021). That is, regardless of the sophistication

of the qualitative coding tool, researchers must remain the primary coders of their

corpus. This agency requirement can be explained by the fact that researchers do

not simply use qualitative coding as a means to create an aggregated view of their

corpus. Rather, researchers value the process of qualitative coding itself because it

cultivates their understanding of the phenomena underlying their corpus (Marathe

and Toyama, 2018; Jiang et al., 2021a; Feuston and Brubaker, 2021). For instance,

Jiang et al. (2021a) showed that the process of creating and assigning concise and
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reusable codes to passages forces researchers to constantly doubt their comprehen-

sion of their corpus’ most salient themes. The authors showed that this cultivation

and resolution of self-doubts is one of the objectives of qualitative coding as it often

improves the quality and conciseness of codes and, subsequently, themes. In light

of these findings, Marathe and Toyama (2018) showed that researchers desire assis-

tance but only once the researchers have become familiar with their dataset and have

annotated large portions of it.

As a result, several papers have taken a more assistive perspective to automatic

coding by favoring coder-in-the-loop systems which make suggestions, instead of deci-

sions, based on a coder’s previous code assignments and which allow coders to interact

with the system to improve suggestions (Chen et al., 2016, 2018). For example, in

Drouhard et al. (2017), the authors moved away from making code assignment pre-

dictions and, instead, moved towards suggesting ambiguous code assignments. In

their study, a code assignment was considered ambiguous either due to the linguistic

ambiguity of a text span or the subjective nature of coding (e.g., two coders with

different backgrounds understanding a text span differently). By using the disagree-

ment between coders as a proxy for ambiguity, the authors were able to create a

system that could learn from the disagreements of annotators and suggest ambiguous

passages that should be analyzed and discussed in more detail. Overall, this shift

towards detecting ambiguous code assignments broadened researchers’ understand-

ing of their corpus and allowed the qualitative coding tool to better “preserv[e] the

human-centered nature of qualitative analysis” (Drouhard et al., 2017). In another

human-AI collaborative system, Rietz and Maedche (2021) developed an interactive

machine learning (IML) system which used both user-defined rules as well as super-

vised learning (SL) to retrieve text spans related to a given code. Users could then

accept or reject suggested text spans which would further train the SL model and

could also modify the rule definition to refine the precision and recall of the retriever.

Although their experiments did not show improvements in coder efficiency, the quali-
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tative coders that tested the system reported that the quality of their codes improved

as the construction of rules forced them to carefully think about the meaning of their

codes.

In this thesis, we aim to take a similar assistive user-oriented approach to auto-

matic qualitative coding by defining a new task which incorporates several properties

of qualitative coding and which addresses several common coding pain points. We

discuss this further in Chapter 3.



3
The Qualitative Code Suggestion Task

In this chapter, we discuss the properties of qualitative coding which we use to define

the qualitative code suggestion (QCS) task. Specifically, in Section 3.1, we discuss

the saturation of qualitative codes, the existence and importance of rare codes and

the difference in qualitative coder annotation styles as being important properties to

consider for the task we define. In Section 3.2, we discuss the formalization of the

QCS task which consists of the main code ranking task in which previously assigned

codes are ranked, in order of relevance, for a highlighted passage and the novel code

detection subtask in which a highlighted passage is categorized as either requiring or

not requiring a novel code.

3.1 Properties of Qualitative Coding

In qualitative coding, researchers code their corpus to gain a deeper understanding

of a certain phenomenon related to their research question. As a result, in deduc-

tive and inductive coding, the first few documents that are coded are critical for the

researcher’s own understanding. Once the researchers have read through enough doc-

uments and have become familiar with their corpus, well-documented properties of

qualitative coding arise (van Rijnsoever, 2017; Saunders et al., 2018; Loslever et al.,

2019). Furthermore, as studies have illustrated (Marathe and Toyama, 2018; Rietz

20
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and Maedche, 2021), these properties should be considered when developing assis-

tive coding techniques. Thus, in the following paragraphs, we describe properties of

qualitative coding which have been under-explored in automatic qualitative coding

methods and which we integrate in the task definition of this thesis.

Data saturation. As noted in previous studies (Marathe and Toyama, 2018; Rietz

and Maedche, 2021), coders that carry out qualitative coding reach a personal point

of data saturation after which few new codes will appear (Saunders et al., 2018).

This well-known property has been documented as a major pain point for qualitative

coders. As Figure 3.1 highlights, once qualitative coders reach their personal point

of data saturation they are no longer coding to deepen their understanding of their

corpus, but rather to gain more evidence for the observations they made during the

initial, more exploratory, coding phase (Marathe and Toyama, 2018).

Once participants gained a sense of what the data contained by going
through the process of codebook development, they found it tedious to
code the rest, as Rachel explains: “When you reach saturation, in those
last interviews, you’re like, ‘We know. We know. We got all this, cool, in
the bag.’ But you still have to code them. And there are so few interesting
nuggets... for the most part you’re seeing the same things.”

Figure 3.1: Excerpt from Marathe and Toyama (2018) which presents a user’s per-
spective on data saturation.

As studies have shown (Marathe and Toyama, 2018; Rietz and Maedche, 2021;

Jiang et al., 2021a; Feuston and Brubaker, 2021), qualitative coders desire automation

past this point of data saturation. For instance, coders desire systems which auto-

matically suggest several relevant codes for passages that they highlight as they code.

These suggestions could help the qualitative coder consider relevant code assignments

without needing to sift through irrelevant codes. At the same time, suggesting several

relevant codes reduces the shift towards complete automation which, as discussed in

Section 2.2.2, qualitative researchers do not desire.
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Rare codes. Even though new codes may be rare past the point of data satura-

tion, their occurrences remain possible and scientifically important to the coders (van

Rijnsoever, 2017). That is, the rarity of a code is in and of itself an important sci-

entific finding. Thus, while suggesting relevant codes may alleviate some of coding’s

cognitive load, detecting rare codes may be just as important. This property has

remained relatively unexplored in automatic coding with most technical approaches

framing rare codes as codes with few supporting examples and, therefore, “difficult”

to classify correctly (Crowston et al., 2012; Grandeit et al., 2020).

Annotation style. Since coding is meant to cultivate a particular researcher’s un-

derstanding of a corpus, no two coders will have the same annotation style (Loslever

et al., 2019). For instance, as discussed in Section 2.1, two qualitative coders may

have different ways of assigning codes to passages with one favoring a splitting style

and another favoring a lumping style. Thus, previous efforts to homogenize code

annotations, for instance by grouping similar codes from different coders together,

should be avoided. Although convenient for modeling purposes, this merging is not

supported by the user-oriented approach we take in this thesis.

3.2 Task Definition

Now that we’ve established the properties of qualitative coding which we believe

are fundamental in creating a user-centered task related to automatic coding, we

discuss the actual QCS task that we study and model in this thesis. The QCS task is

composed of the main code ranking task as well as the novel code detection subtask

and is suitable for both inductive and deductive qualitative coding.

Code ranking. The task of QCS mainly involves ranking previously assigned codes

for passages highlighted by a qualitative researcher in order of relevance. Formally,
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consider the setting in which a corpus is comprised of N documents D = {d1, d2, . . . , dN}.

Each document, di, is a set of text spans {tn}len(di)
n=1 which have been identified and

assigned codes by a qualitative coder. Now, suppose K ∈ {1 . . . N} is a particular

coder’s point of data saturation. In this case, we collect all the codes assigned to

text spans from documents d1 to dK and create a set of previously assigned codes

C = {c1, . . . , cm}. The main code ranking task that we define here consists of ranking,

in order of relevance, the set of codes in C with respect to every identified text span in

the set of documents past the point of data saturation, i.e. {t ∈ di : i = K + 1 . . . N}.

Novel code detection. In the novel code detection subtask, each passage high-

lighted by a qualitative coder must be categorized as either ‘novel’ or ‘not novel’.

Formally, a passage should be categorized as ‘novel’ if and only if one of its truly as-

signed codes1 does not belong to C. This subtask is necessary because QCS assumes

a sequential coding of the documents from 1 to N and, therefore, some rarer codes

may only surface in the test set portion of the corpus {dK+1, . . . , dN}. The addition

of this subtask addresses the property discussed in Section 3.1 that discovering rare

codes may be just as important as suggesting relevant ones.

Given that qualitative coders do not themselves annotate passages as ‘novel’ or

‘not novel’, we must design a heuristic which creates training and testing instances for

this subtask. To create training instances, QCS prescribes assigning the novel code

to all text spans in the training set that have been assigned a code with a training

frequency of 1. All of the text spans in the validation and test sets with at least one

assigned code that does not appear in the training set are assigned the novel code.

This implies that the number of novel code instances directly depends on the coder’s

annotation style e.g., if a coder rarely creates new codes then there may be very few

‘novel’ code instances.

1Recall that several codes may be assigned to the same text span.



4
The CVDQuoding Dataset

In this chapter, we describe the CVD qualitative coding dataset which we name

CVDQuoding and which we use to investigate the QCS task. We describe how it was

created and draw parallels between CVDQuoding and the properties of qualitative

coding we described in Section 3.1.

4.1 Dataset Creation

CVDQuoding is a dataset consisting of 15 transcripts of interviews conducted with

women at risk of cardiovascular diseases (CVDs) as well as annotations carried out

by two qualitative coders during their inductive coding of the corpus of transcripts.

These qualitative coding annotations consist of text spans identified by the qualitative

coders as well as the codes that were assigned to each text span. Since codes assigned

to a text span may change as the researchers review their work, we chose to extract

the final code assigned to each text span. Additional details about the dataset as

well as comparisons with previous qualitative coding datasets, which have all been

closed-source and thus could not be used for this thesis, can be found in Table 4.1. We

observe that previous studies have had access to a larger number annotations than

are available in CVDQuoding. This difference in dataset size might be attributed

to the fact that previous work has focused on deductive qualitative coding when

24
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Source Corpus size
(in number of words) Number of annotations Publicly available?

(Crowston et al., 2012) 84870 3011 No
(Grandeit et al., 2020) N/A 10000 No
(Xiao et al., 2023) N/A 668 No
CVDQuoding 63927 1175 Yes

Table 4.1: Comparative analysis of our dataset with previously closed-source datasets.
In this case, the number of words are counted using space separation and the number
of annotations refer to the number of text spans that have been assigned one or more
codes.

applied to many short documents such as instant messages and forum posts (Crowston

et al., 2012; Grandeit et al., 2020). However, in our case, there are only a few coded

documents with relatively longer lengths averaging 4262 words per transcript.

The annotations in CVDQuoding were originally created as part of a larger

project1 to investigate the needs of women Bousbiat et al. (2022) and primary care

providers Sandhu et al. (2023) in designing AI tools to manage and prevent CVDs

and were subsequently adapted for the QCS task. In the original work, 15 women

were interviewed and asked 20 scripted questions. These questions were related to

the health challenges they faced as well as their opinions about using AI tools to

help them manage their CVD risk. In Table 4.2, we provide a sample of the list of

questions asked throughout the interviews. Some of the questions were open-ended

such as questions 1 and 5 while other questions like question 10 were more narrow

and simply asked for the interviewee to state their level of interest in a certain feature

(For the full list of questions see Table A.1 in Appendix A).

For the purposes of this thesis, we extracted the transcripts corresponding to

the 15 interviews and tagged the text spans coded by each coder and the questions

asked by the interviewer using XML. In Figure 4.1, we present an excerpt from one
1https://rahimislab.ca/

https://rahimislab.ca/
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Question 1 How do you think cardiovascular diseases are generally described and
understood by the public?

Question 5 What do you think are some challenges and needs in preventing and
managing cardiovascular diseases (from your perspective as a woman
at risk of CVD)?

Question 10 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in a step-count feature?

Question 15 Would you like to be able to follow your progress and receive push-
notifications through the Xi-Care tool?

Question 20 Is there something else you’d like to add about ethical aspects in re-
gards to the Xi-Care tool that will be empowered by AI (Justice; Non-
maleficence; Autonomy; Beneficence; Explicability/Transparency)?

Table 4.2: Sample list of questions asked during the interviews of the CVDQuoding
dataset. Xi-Care is the name of the app being proposed to participants of the study
to help them control their risks of cardiovascular diseases (CVDs). The full list of
questions can be found in Table A.1.

<question_2>Interviewer: Have you ever been informed about your
cardiovascular health, and if so how have you been informed?</
question_2>

Participant 1: <code coder="2" value="Understanding of CVD">So, I’ve
been in cardiology since ’96. I used to work at the Montreal Heart
Institute before so <code coder="1" value="Sources of information">
I attended cardiac rounds and went to conferences and things like
that. I also like to read on health, so media, papers and then
conferences.</code></code>

Figure 4.1: Excerpt from Interview 1 of the CVDQuoding dataset with XML tags
to identify the question asked and the text spans that have been annotated. In the
code tag, the attribute coder identifies which qualitative coder was responsible for
the annotation and the attribute value identifies the code assigned to the text span.

of the interview transcripts along with the additional XML tags that we created to

represent the annotations of both qualitative coders. The excerpt shows how we

tagged the question asked by the interviewer and the annotations made by both

qualitative coders.
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4.2 Dataset Characteristics

CVDQuoding exhibits characteristics that are reflective of the properties of qualita-

tive coding presented in Section 3.1. In terms of data saturation, both coders create

many new codes in the first five interviews and this trend tapers off as they code more

transcripts (Figure 4.2). In addition, as can be observed from Figure 4.2, coder 1 finds

new rare codes in every transcript whereas coder 2 ceases to create new codes by inter-

view 7. Moreover, both coders clearly exhibit significantly different annotation styles

with coder 1 creating 207 codes with an average of 4 text spans per code and coder

2 creating 23 codes with an average of 19 text spans per code. This difference can be

attributed to the specificity of coder-2’s codes, which tend to be more abstract (e.g.,

“Health Measures Taken”) than coder-1’s codes (e.g., “CVD-related examinations,

tests or measures”). For additional details about CVDQuoding, including a sample

list of codes, see Section A.2 in Appendix A.
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Figure 4.2: Distribution of the number of new codes introduced per interview for each
coder.



5
Modeling QCS

In this chapter, we describe the different techniques we use to model the QCS task

which, recall, refers to both the main code ranking task as well as the code detection

subtask. To this end, in Section 5.1, we describe our data formatting decisions and,

in Section 5.2, we formally present the modeling paradigms we explore which include

classification, information-retrieval and zero-shot prompting.

5.1 Data Formatting

For all three modeling paradigms, we associate every contiguous text span t ∈ di that

was coded by one of the qualitative coders with its immediate context c. In the case

of CVDQuoding, we define the context c as being the question q asked right before t.

Thus, in our case, every model has access to a tuple (q, t) consisting of a question, q,

and a text span, t, highlighted by a qualitative coder. We use the previous question

as an approximation of the context as most coding decisions in CVDQuoding involve

considering a text span as the answer to a preset question. For example, the code

“Interest in AI tools” is assigned to “Very interested, yes” because it is the answer to

“Are you interested in using AI tools for CVD?”. The decision to augment text spans

with their neighboring context is supported by previous work (Marathe and Toyama,

2018) which found that coders’ assignment of codes to text spans is highly context

29
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dependent and that modeling this context is necessary to achieve acceptable levels of

precision and recall.

5.2 Modeling Paradigms

To model the QCS task, the methods we develop must both rank lists of codes by

relevance and detect novel codes from text spans. To this end, we choose to explore

three distinct modeling paradigms drawn from the NLP literature: classification,

information-retrieval and zero-shot prompting. The classification paradigm, which is

inspired by previous work (Crowston et al., 2012; Grandeit et al., 2020; Xiao et al.,

2023), assumes that the confidence scores of a multi-label classifier can be used to

both rank codes and classify novel code instances. The information-retrieval paradigm

assumes that codes can be treated as documents and that text spans are the queries

used to rank them. Finally, the zero-shot prompting paradigm assumes that the

descriptiveness of codes is sufficient for a generative LLM such as GPT-3 (Brown

et al., 2020) to rank them based on the text span. The advantage of the latter

two approaches over the traditional classification approach is they can leverage the

additional information found in the description of the codes to improve their relevance-

based ranking.

5.2.1 Classification Paradigm

We build a |C| + 1 multi-label binary classifier trained on the first K annotated

transcripts to predict the binary assignment of each code, including the novel code,

to a test text span. We use the scores produced for each code to sort the set of codes

C for a test instance (q, t) ∈ {(q, t) : t ∈ di, i = K + 1 . . . N} to create a ranked list

of codes. Furthermore, an instance is assigned the novel code only if it is given the

highest classification score among all codes.
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5.2.2 Information-retrieval Paradigm

In the information-retrieval paradigm, we treat an instance (q, t) as a query and use

two neural-retrieval architectures to rank the set of codes C with an additional step

for the novel code detection subtask.

For the main ranking task, we build two neural-retrieval architectures originally

presented by Reimers and Gurevych (2019): the bi-encoder and the cross-encoder.

In the bi-encoder, a representation is learned for the text span t, the previous ques-

tion q and the code c. The representations of the text span, ht, and the previous

question, hq, are max pooled together and a score is computed by applying a cosine

similarity between the pooled representation and the code representation, hc. In the

cross-encoder, representations are learned for the concatenations of the code with the

question, q [SEP] c1, and with the text span, t [SEP] c. The representations, hq [SEP] c

and ht [SEP] c are max pooled together and a classification head is placed on top of the

pooled representation to produce scores. In both cases, the code scores produced are

used to rank all but the novel code.

For the novel code detection subtask, a classification head is trained on top of the

vector of scores ŷi which consists of the scores computed between each code c ∈ C and

the input instance (q, t)i. Thus, if there are 10 codes in the training set (excluding

novel), then for every instance (q, t)i the classifier is passed a 10-dimensional vector

ŷi computed from either the bi-encoder or cross-encoder.

5.2.3 Zero-shot Prompting Paradigm

In the zero-shot prompting paradigm, we provide an autoregressive LLM M with a

prompt containing general instructions, the list of codes C and a text span t to code

along with its previously asked question q. In Figure 5.1, we show the template that

we use to prompt the LLM M . Upon generation, the suggested codes are extracted
1[SEP ] is a special separation token
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You are a helpful assistant that suggests qualitative codes for a qualitative
researcher. The coders you can suggest are: [AVAILABLE_CODES], and
None of the above. Which of the previous codes would you assign to the
following excerpt from an interview with a woman at risk of cardiovascular
disease (CVD): “Question: [QUESTION] Answer: [ANSWER]”

Figure 5.1: Template used to prompt a generative LLM M for a ranking of the codes
for a passage. [AVAILABLE_CODES] is a placeholder for the list of codes from C to
rank for an instance (q, t)i, [QUESTION] is a placeholder for the previous question q
and [ANSWER] is a placeholder for the text span t highlighted by one of the coders.

via an exact-match search and the order in which the codes are generated is used as

their predicted rank. Furthermore, the generation “predicts” the novel code either if

M generates the string “None of the above” first (which is included in the prompt

template) or if no exact matches are found in its generation.



6
Experiments and Results

We investigate our approaches to modeling the QCS task in order to determine the

ability of current NLP-based methods to allow for a more user-oriented approach to

qualitative coding. We discuss the experimental setup to test our modeling paradigms

in Section 6.1, the ways in which we evaluate our experiments in Section 6.2 and the

results and analysis of these results in Sections 6.3 and 6.4 respectively.

6.1 Experimental Setup

To experiment with each of the paradigms presented in the previous section, we sort

CVDQuoding by the order in which they were originally annotated which we refer

to as annotation-time, group it by coder and consider it at different possible points of

data saturation. More specifically, for each coder, we consider training on {d1, . . . , dK}

and testing on {dK+1, . . . , d15} for K = 1 . . . 14 where di is the ith annotated transcript

in annotation-time. We reserve 20% of each training set for validation. We summarize

our workflow in Figure 6.1.

33
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CVDQuoding 
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Figure 6.1: Visualization of the data formatting we apply to the raw annotations from
CVDQuoding to run our experiments with our different modeling paradigms.

We train and test models from each of our three modeling paradigms and for all of

the configurations discussed above. For the classification paradigm, we use |C|+1 SVM

classifiers as well as a single DistilBERT (Sanh et al., 2020) classifier with a multi-

label sequence classification head. We use DistilBERT due to the computational costs

of hyperparameter tuning over 2 × 14 = 28 individual datasets. For the information-

retrieval paradigm, we use DistilBERT as the encoder for the bi-encoder architecture.

For the cross-encoder, we experiment with both DistilBert and ConvBERT (Jiang

et al., 2021b). We use ConvBERT based on the intuition that text spans often contain

phrases which are lexically similar to a code’s description (e.g., in-vivo codes). If this is

the case, then ConvBERT’s span-based kernels may be better suited at soft matching

a code’s description in a text span than a fully attention-based masked language model

like DistilBERT. Moreover, ConvBERT has computational costs (e.g., GPU memory

requirements) in the same order of magnitude as DistilBERT. Finally, for our zero-

shot prompting paradigm, we use OpenAI’s GPT-3.5 Turbo (Brown et al., 2020)
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accessible through its API1. Additional hyperparameter configurations and training

details can be found in Appendix A.3.

In addition to the models discussed above, we use an information-retrieval base-

line commonly used in neural-retriever papers. We use the Okapi BM25 retriever

(Trotman et al., 2014) to compute scores between each code and instance (q, t). In

addition, we place a logistic regression model on top of the vector of scores to make

the novel class prediction.

6.2 Evaluation Methodology

We assess how well the models from each of our modeling paradigms do on the QCS

task by subjecting them to two distinct rounds of evaluations. In the first round of

evaluations discussed in Section 6.2.1, we evaluate how well our systems reproduce

the coding patterns of the qualitative coders whose annotations were used to create

CVDQuoding. For instance, to evaluate performance on the main code ranking task,

we measure how high our systems rank the codes originally assigned to the text

spans in the test set. We refer to this first round of evaluations as the “original

annotations” evaluation as the outputs of our systems are exclusively compared to

the original annotations of the qualitative coders. In the second set of evaluations

discussed in Section 6.2.2, we evaluate how well our systems provide relevant code

suggestions. To do so, we conduct a human evaluation in which a human evaluator

is presented with the rankings of our systems and is asked to determine which of the

most highly ranked codes are in fact relevant with respect to the text span. This

second round of evaluations is necessary because it is common for text spans to have

several alternative and relevant code assignments which the original coders may not

have considered. We refer to this round of evaluation as the “human” evaluation

as additional human annotations are sought in order to quantify the performance
1https://platform.openai.com/docs/api-reference

https://platform.openai.com/docs/api-reference
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of systems. We present a visualization of our two-phase evaluation methodology in

Figure 6.2.

Interview 

question 

Text 

Span 
Code(s) 

q₂ 

Code 

ranking 

c₁₂ c₂₅ c₄₂ c₃ …  

Original 

Annotations 

Evaluation 

Human 

Evaluation 

c₃ c₂₅ 

c₁₂ c₂₅ c₄₂ c₃ …  Relevant: 

c₂₅ c₄₂ c₃ 

Figure 6.2: The original annotations evaluation relies on the codes assigned to the
test text spans in CVDQuoding while the human evaluation asks judges to determine
which of the top-4 suggested codes are relevant (for a sample of test instances).

6.2.1 Original Annotations Evaluation

We evaluate the performance of our modeling paradigms in solving QCS’s main rank-

ing and novel code detection subtask with respect to the original annotations using

several automatic metrics. For the main ranking task, we compute the mean reciprocal

rank (MRR) score and a soft normalized discounted cumulative gain at k (sNDCG@k)

score. For the novel code detection subtask, we compute macro and micro F1 scores.

To compute the MRR, we consider the set of true codes, Ctrue
i , assigned to a text

span i as well as the predicted rank, predicted_ranki : C → {1, . . . , |C|}, assigned

to each code c ∈ C for text span i by one of our systems. In this computation,

we exclude the novel code as we are only interested in a system’s ability to suggest

previously assigned codes. The reciprocal rank, RRi, for a passage i is computed as
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the maximum predicted reciprocal rank across all true codes (recall that a text span

may be assigned multiple codes). That is,

RRi = max
c ∈ Ctrue

i

1
predicted_ranki(c)

The MRR is then computed by averaging across all test instances i with |Ctrue
i | ≥ 1.

To compute the sNDCG metric, we approximate a suggested code’s c relevance

score for a text span i, reli(c), in order to carry out the standard NDCG computation.

The relevance score, reli(c), is computed by using the BERTScore (Zhang et al.,

2019) as the approximation for the affinity between suggested and true codes. More

specifically, the relevance score rel i(c), for a code c ∈ C and a text span i is

rel i(c) = max
c′ ∈ Ctrue

i

BERTScore(c, c′)

Once all the relevance scores are computed, we use them in the standard NDCG

computation. To do so, we sort the list of relevance factors (reli(c) : c ∈ C) to compute

the true_rank_scores list for a text span i. In addition, the predicted_rank_scores

for a text span i is computed as the list of relevance factors sorted by the model’s

scores for each code. We can then compute the sNDCG score for the rankings made

by our system for text span i as

sNDCGi = sDCGi

sIDCGi

sIDCGi =
∑

i ∈ 2...|C|+1

true_rank_scores[i]
log(i)

sDCGi =
∑

i ∈ 2...|C|+1

predicted_rank_scores[i]
log(i)

Finally, we add a cutoff k to sNDCG as is usually done in standard NDCG to

account only for the top k results creating sNDCG@k. For our purposes, we use

k = 4 as the CVDQuoding dataset has at most 4 code assignments per text span.
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6.2.2 Human Evaluation

In addition to using CVDQuoding’s original annotations to compute automatic met-

rics, we conduct a human evaluation to gather additional annotations to directly

ascertain the relevance of our systems’ code suggestions. As discussed previously, this

additional evaluation step is necessary as automatic metrics computed using the orig-

inal annotations may not handle well the possibility that multiple codes could fit a

text span. As a result, in this section, we first discuss the setup of this human evalua-

tion and then detail the automatic metrics used to measure our systems’ performance

relative to the newly gathered annotations.

6.2.2.1 Evaluation Setup

To conduct this additional human evaluation, we hire two human evaluators, both

with experience in qualitative research, and ask them to judge the relevance of our

systems’ code suggestions. In particular, we randomly sample 32 instances from the

annotations of coders 1 and 2 at the same point of data saturation of K = 10 and

assign a human evaluator to each sample. We extract the top-4 suggestions of each

model described in Section 6.12 and ask the evaluator to judge whether each suggestion

is “Relevant” or “Irrelevant” based on the question and the text span. Again, we use

the top-4 suggestions because, in the CVDQuoding dataset, there are at most 4

codes which are assigned to the same text span. We randomly shuffle the selected

codes and remove any duplicates. In addition, we always included the codes from the

original coding annotations to avoid having the evaluator mark all codes as irrelevant.

An example of a question and its corresponding highlighted text span from coder 1’s

annotations as well as a list of codes (truncated due to space constraints) used to

gather human relevance judgments is shown in Figure 6.3.
2We do not consider the Okapi BM25 baseline suggestions due to their poor quality.
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Figure 6.3: An example of a question and a text span from coder 1’s annotations
shown to the human evaluator. We truncate the list of codes shown due to space
constraints.
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6.2.2.2 Automatic Metrics

We use the annotations from the human evaluation to recompute the rank-based

automatic metrics presented in Section 6.2.1. That is, for a sampled instance i, Ci
true

becomes the set of codes selected as “Relevant” by the evaluator. In addition, we

also compute the precision at 4 (P@4) of each system using the human evaluator’s

annotations. That is, let N@4 be the number of relevant codes, as indicated by the

human evaluators’ annotations, in the first 4 suggested codes. Then the P@4i for a

text span i is computed as

P@4i = N@4

4

We then average the instance-level precision scores over all 32 sampled test instances

to get P@4.

6.3 Results

We present the results of our experiments for both rounds of evaluations.

6.3.1 Original Annotations

Using the original annotations as the gold standard labels, we present the MRR and

sNDCG@4 scores for the main ranking task of QCS as well as the macro and micro F1

for the novel code detection subtask. In particular, we show the MRR and sNDCG@4

scores for the main code ranking task at K = 10 for coders 1 and 2 in Table 6.1 and

the F1 scores for the novel code prediction task at K = 5 in Table 6.2. Additional

results for all points of data saturation, presented using scatter plots, can be found in

Appendix A.4.

For the main ranking task, we observe that the information-retrieval paradigm,

modeled through the ConvBERT cross-encoder, and the zero-shot prompting paradigm,

modeled through GPT-3.5, achieve the highest MRR and sNDCG@4 scores across
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MRR sNDCG@4
Coder 1 Coder 2 Coder 1 Coder 2

Okapi BM25 0.15 0.53 0.70 0.79
SVM 0.51 0.75 0.80 0.85
DistilBERT 0.55 0.75 0.70 0.79
Bi-Encoder 0.48 0.74 0.80 0.86
Cross-Encoder
(DistilBERT) 0.55 0.64 0.81 0.82

Cross-Encoder
(ConvBERT) 0.59 0.77 0.83 0.86

GPT-3.5 0.57 0.73 0.74 0.83

Table 6.1: Results of the models’ performance on QCS’ main ranking task. The
MRR and sNDCG@4 scores are computed based on the original annotations from the
CVDQuoding dataset and using K = 10 as the point of data saturation.

both coders for most data saturation points. While GPT-3.5 achieves the highest

MRR in most cases for coder 1 (11 out of 14), ConvBERT obtains the largest number

of maximal MRR scores for coder 2 (7 out of 14). In addition, the sNDCG@4 scores

are dominated by the ConvBERT model. This latter result may be a side-effect of

using a BERT-derived metric to evaluate BERT-based models. For the novel code

detection subtask, performances are relatively poor with the Okapi BM25 baseline

model achieving the highest macro and micro F1. These poor novel classification

scores are reflective of the inherent difficulty of detecting rare codes and consistent

with previous work (Crowston et al., 2012; Grandeit et al., 2020).

6.3.2 Human Evaluation

Using the human evaluation annotations as the gold standard labels, we present the

results for the same rank-based metrics and contrast them with the results in the

previous section. Consistent with the automatic metrics computed using the origi-

nal annotations, we observe that the information-retrieval and zero-shot prompting

paradigm achieve the highest MRR and sNDCG@4 (Table 6.3). In addition, we

observe relatively saturated sNDCG@4 scores. This saturation is a result of the cu-
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Macro F1 Micro F1
Coder 1 Coder 2 Coder 1 Coder 2

Okapi BM25 0.56 0.57 0.59 0.80
SVM 0.32 0.30 0.44 0.30
DistilBERT 0.55 0.45 0.59 0.80
Bi-Encoder 0.36 0.45 0.57 0.80
Cross-Encoder
(DistilBERT) 0.51 0.46 0.59 0.78

Cross-Encoder
(ConvBERT) 0.36 0.57 0.57 0.79

GPT-3.5 0.41 0.44 0.53 0.80

Table 6.2: Novel class detection subtask results. Macro and micro F1 scores are
computed using K = 5.

mulative nature of the NDCG computation combined with the increase in the number

of relevant codes identified by the human evaluators. Indeed, while the human evalu-

ators have a recall with respect to the original annotations of 0.94 and 0.95 for coders

1 and 2 respectively, they identify, on average, 3 times more relevant codes than in

the original annotations.

In addition to the saturation of the sNDCG@4 metric and the increase in number

of relevant codes, we observe a statistically significant jump between the MRR and

sNDCG@4 scores computed on the sample of 32 text spans using the original anno-

tations and the human evaluation annotations. On average, the human-evaluation-

derived MRR is 66% and 34% higher than the MRR computed using the original

annotations for coders 1 and 2, respectively. In fact, in the case of coder 2, the recom-

puted MRR for GPT-3.5 is 1. This jump is less drastic for the sNDCG@4 metric with

relative increases of 40% and 19% for coders 1 and 2 respectively. Thus, these results

suggest that additional human evaluations are necessary as they provide interpreta-

tions for codes which were highly ranked by our systems but which the qualitative

coders may not have originally considered in their code assignments. This latter claim

is also supported by the relatively high P@4 scores across all models - above 0.5 in all

cases - indicating that, on average, several previously assigned codes may be relevant
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MRR sNDCG@4 P@4
Coder 1 Coder 2 Coder 1 Coder 2 Coder 1 Coder 2

SVM 0.80 0.93 0.970 0.978 0.40 0.55
DistilBERT 0.72 0.91 0.969 0.975 0.41 0.65
Bi-Encoder 0.86 0.90 0.972 0.979 0.50 0.66
Cross-Encoder
(DistilBERT) 0.78 0.93 0.965 0.982 0.46 0.68

Cross-Encoder
(ConvBERT) 0.87 0.95 0.973 0.987 0.51 0.56

GPT-3.5 0.74 1.00 0.973 0.989 0.32 0.53

Table 6.3: MRR, sNDCG@4 and P@4 scores computed from the annotations collected
during the human evaluation.

for a newly highlighted passage.

6.4 Analysis

6.4.1 Model Comparison

We further discuss the differences in model performance by comparing the predictions

made by the models from each of the three modeling paradigms. In particular, we

show sample model outputs for the SVM, the Cross-Encoder (implemented using Con-

vBERT) and GPT-3.5 along with the original code annotations and the annotations

made during the additional human evaluation for both coders in Tables 6.4 and 6.5.

We characterize the differences in model performance with respect to the original

coder annotations as well as the additional human evaluation annotations. On one

hand, when considering the original coder annotations, we observe that the SVM and

the CrossEncoder implemented with the ConvBERT consistently rank the original

codes higher than GPT-3.5. This discrepancy in performance, which at first could

seem surprising given GPT-3.5’s superior capacity to generalize, is observed for both

coders and is explained by the fact that both the SVM and the CrossEncoder were fine-

tuned and, thus, have already been exposed to the coding style of both coders. As a
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result, while GPT-3.5 is able to make relevant code suggestions, the fine-tuned models

are better at retrieving the coder’s preferred codes which in principle should already

be relevant. For instance, because the fine-tuned models have been exposed to terms

such as “difficulty” and “Xi-Care” co-occuring with the code “Level of difficulty of

integrating Xi care tool”, they perform better when similar examples occur at test time

(Table 6.4). In contrast, GPT-3.5 has not been exposed to these training examples

and therefore proposes more generic codes such as “Additional comments about app

related support”3. On the other hand, when considering the additional annotations

made by human evaluators, this discrepancy in performance is more nuanced. The

SVM and CrossEncoder models still perform better at ranking relevant codes for coder

1, however, for coder 2, this trend is reversed and GPT-3.5 always ranks relevant codes

first. We believe that GPT-3.5’s improved performance under this latter evaluation

setting is due to the interaction between its generalizability capacities and the fact

that many alternative relevant codes may exist for a given passage. In this setting,

when a test time example does not resemble any training examples, GPT-3.5 is better

suited at suggesting relevant codes than the fine-tuned models which, by replicating

the coder’s coding style, might provide unrelated code suggestions.

Effectively, the evaluation-setting-based differences in performance of the models

suggest that the modeling paradigms, fine-tuning, via classification or information-

retrieval, and zero-shotting, via prompting, may serve different and complementary

purposes under QCS. Using a classification or information-retrieval approach to fine-

tune models for QCS is necessary to create a system which captures the coding style

of a coder and therefore provides personalized code suggestions. In contrast, using

prompting to zero-shot QCS’s main ranking task serves as a way to provide the coder

with alternative points of view which they may not have otherwise considered. To-

gether, the code suggestions of these two systems could provide a coder with a way to

efficiently sift through possible code assignments while considering “unconventional”
3“app” is short for application
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code alternatives.

6.4.2 Connection with the Research Questions

We discuss the implications of our results in relation to our two initial research ques-

tions. To do so, we first discuss the connections we observe between our empirical

results and the three properties of qualitative coding which we identified at the begin-

ning of this thesis and integrated into our task definition. In addition, we discuss the

implications of our results on the effectiveness of current NLP techniques at handling

these properties and, by extension, this human-centric approach to qualitative coding.

Firstly, across both coders and all models, we observe a steady rise in our sys-

tems’ ability to make code suggestions consistent with the original annotations of

CVDQuoding (See MRR and sNDCG@4 scatter plots through annotation-time in

Appendix A.4). This poor performance for small values of K is consistent with in-

ductive coding which, for the first documents, is exploratory and unpredictable by

nature. In fact, the moment at which the rise in automatic metrics (MRR, sNDCG)

plateaus may be a helpful signal to identify when a coder has reached their personal

point of data saturation and, thus, when code suggestions could start to be beneficial.

Secondly, across all saturation points and for both coders, we observe relatively poor

performance in detecting novel codes. This difficulty suggests that the “catch-all”

bucket method we used in this thesis is inappropriate and that more sophisticated

representations of novelty need to be learned to properly detect rare codes. Finally,

we notice that, on average, our systems’ MRR and the sNDCG@4 calculated using

coder 2’s annotations are 58% and 7% higher respectively than when calculated using

coder 1’s annotations. This result is natural given coder 2’s annotation style of as-

signing high-level codes to larger text spans (i.e., lumping) is much more amenable to

machine learning techniques. Thus, in the future, methods that are able to identify

annotation styles and incorporate them in their modeling, for example through some
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Question/Text Span Top-4 Code Suggestions
QUESTION: “And what do you think are
some of the challenges or needs in terms of
managing cardiovascular diseases from your
perspective? Do you find there’s a lack of re-
sources or guidance on how to maintain car-
diovascular health?” ANSWER: “I mean, I
think the doctor said losing weight is a good
idea. Stuff like that. I do exercise a lot al-
ready. But no, other than that, I’m not sure
what what to do in terms of managing it.”

SVM: Lack of knowledge, CVD misconcep-
tions, Life-style modification, Importance
of preventive measures
CrossEncoder: Importance of preventive
measures, Life-style modification, Ten-
dency for not seeking medical attention from
family doctor, Workout routine and sources
GPT-3.5: Lack of knowledge, CVD miscon-
ceptions, Interest in the use of the app, Level
of interest in weight tracking feature

QUESTION: “From one to five, with one be-
ing very difficult to five being very easy, how
easy or difficult do you think it will be for you
to use the Xi-Care tool in your daily life?”
ANSWER: “The question is whether I will
be consistent with it. It’s not whether the
app will be good. The the app will be good.
It’s whether I will stay engaged with the app
that might be a problem. That’s a personal
thing. If it’s engaging and I feel it’s making
a difference, or I am engaged in it, then I will
probably use it. I do for other apps. Can I
integrate it in? Absolutely. Will I be consis-
tent with it? That’s a personal thing.”

SVM: Level of difficulty of integrating
Xi care tool, Increasing trust in the tool,
Additional comments about explainability,
Needs to assure data confidentiality and se-
curity
CrossEncoder: Additional comments about
facilitating integration of Xi-Care tool,
Level of difficulty of integrating Xi care
tool, Visualization of progress, Level of trust
in recommendations
GPT-3.5: Additional comments about app
related support, Need to know where data
is stored, Automatic capturing apps and
devices, Favouring step-count features over
workouts

QUESTION: “What would facilitate its inte-
gration into your daily life activities? So how
could we make it so you’re able to use them
more often?” ANSWER: “I think it has to
be a quick tool. In other words, it has to be
seamless, it’s hard, that’s why that’s why I
would say forget the computer.”

SVM: Additional comments about facil-
itating integration of Xi-Care tool, App
prompts, Increasing trust in the tool, Level
of difficulty of integrating Xi care tool
CrossEncoder: Additional comments
about facilitating integration of Xi-
Care tool, Enthusiastic about technology,
Integration of inter-related tools, Level of dif-
ficulty of integrating Xi care tool
GPT-3.5: Preference of tool being supported
by different devices, Hectic daily life and
responsibilities, Integration of inter-related
tools, Accessibility of the tool to target pop-
ulations

Table 6.4: Top-4 code suggestions for the SVM, CrossEncoder and GPT-3.5 model (as ordered by the
model) for 3 question-text span pairs sampled from the K = 10 split for Coder 1. The codes in bold
are the ones the coder originally assigned to the passages while the underlined codes are the ones that
were determined to be relevant by the human evaluators.
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Question/Text Span Top-4 Code Suggestions
QUESTION: “Do you see any challenges
with the integration of the tool in your daily
life in terms of ethics? Keep in mind the ta-
ble that we presented earlier. Do you see any
type of challenges when you use or you inte-
grate this tool in your life in terms of ethics?”
ANSWER: “I am not sure. You mean like my
data being shared, in that sense like? I’m not
that concerned about that no.”

SVM: Ethical Concerns, Transparency,
Data Confidentiality, Technical Support
CrossEncoder: Ethical Concerns, Data
Confidentiality, Challenges, Trust and Re-
liability
GPT-3.5: Data Confidentiality, Technical
Support, Diet Recommendations, CVD Pre-
sentation feature

QUESTION: “Would you like to be able to
follow your progress and receive push noti-
fication through Xi-Care tool?” ANSWER:
“Definitely. Yes.”

SVM: Data Monitoring, Notification
Preferences, Transparency, Trust and
Reliability
CrossEncoder: Notification Preferences,
Data Monitoring, Cardiovascular Health
Information, Health Measures Taken
GPT-3.5: Notification Preferences,
Health Measures Taken, Tool Automaticity
and Data Collection, Diet Recommendations

QUESTION: “And in terms of educational
modules on cardiovascular health, how help-
ful would that be in your opinion?” AN-
SWER: “I was just basing that on some web-
sites like Mayo clinic where you can go in and
say what your symptoms are, click on parts
of the body, and it narrows it down to a few
different options and then it gives you all the
information about each option.”

SVM: Educational Models, Cardiovascular
Health Information, Decisions Made, Trust
and Reliability
CrossEncoder: Educational Models, Cardio-
vascular Health Information, Technology for
CVD care, Accessibility
GPT-3.5: Educational Models, Technical
Support, Diet Recommendations, CVD Pre-
sentation

Table 6.5: Top-4 code suggestions for the SVM, CrossEncoder and GPT-3.5 model (as ordered by the
model) for 3 question-text span pairs sampled from the K = 10 split for Coder 2. The codes in bold
are the ones the coder originally assigned to the passages while the underlined codes are the ones that
were determined to be relevant by the human evaluators.
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prior, may be more suitable at handling drastic differences in annotations styles.

In addition, the ranked-based metrics computed using human judgments point to

a promising future for the downstream viability of QCS systems. The recomputed

MRR and P@4 metrics show that not only are our systems able to correctly rank

relevant codes, but they are also likely to highly rank more than one relevant code,

potentially forcing the coder to further reflect on their coding decisions without need-

ing to consider irrelevant codes. This suggests that this approach to qualitative coding

is quite promising and, given that it is supported by users’ desires, may be able to

assist researchers in their qualitative coding.



7
Conclusion

In this thesis, we approached qualitative coding in a novel user-oriented manner and

showed that this approach gives rise to technical subtleties related to automatic coding

which have not been previously investigated. These subtleties, which were directly

integrated into the QCS task we studied, included the importance of considering a

coder’s personal point of data saturation, the difficulty of detecting rare codes and

the necessity to avoid homogenizing different annotation styles. We showed that

each of these properties is reflected in both the CVDQuoding dataset we introduced

and the experimental results of our modeling of QCS. Lastly, our human evaluation

showed that solely relying on automatic metrics computed with respect to the original

annotations made by the qualitative coders is insufficient and may underestimate

systems’ performance. The results derived from our human evaluation showed that

QCS systems can consistently provide several relevant code suggestions and, thus,

that this human-centric approach to qualitative coding may be able to truly assist

researchers in their study of textual corpora.

7.1 Limitations and Future Work

This work includes a few limitations which we leave as future work. Firstly, this work

does not investigate the use of our QCS systems in an applied setting. This lack of

49
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downstream experiments prevents us from determining the full impact of automat-

ically providing code suggestions to qualitative coders. For instance, an automatic

QCS system may remove more agency from the coder than anticipated if they begin

to blindly trust suggestions. In addition, our human evaluation, which was meant

to act as a proxy for downstream performance, makes assumptions which do not di-

rectly align with how qualitative coding is conducted. This misalignment stems from

the limited context given to the evaluators to judge the relevance of suggestions. In

particular, since the evaluators did not code any of the transcripts themselves, they

may have lacked some of the intuition needed to make code relevance judgments. As

a result, future work should consider exploring more holistic methods of evaluating

qualitative code suggestions. Secondly, despite our best efforts, our work falls short

of investigating all possible technical avenues to solving QCS. For instance, we do

not investigate fine-tuning sequence-to-sequence models as the preliminary experi-

ments we ran showed poor performance. In addition, we do not explore the full range

of abilities offered to us by LLMs such as GPT-3.5. For instance, using GPT-3.5 to

generate synthetic annotations may have helped the performance of our larger neural-

based models which are known to perform poorly in data scarce settings. Finally, the

scope of CVDQuoding dataset prevented us from exploring the QCS task on other

types of textual corpora (e.g., questionnaires, focus groups) and on other language

domain (i.e., beyond the CVD-related vocabulary). We believe that the creation of

more datasets is needed to truly understand the applicability of the QCS task to the

qualitative coding endeavour.
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A.1 CVDQuoding Questions

Question 1 How do you think cardiovascular diseases are generally described and
understood by the public?

Question 2 Have you ever been informed about your cardiovascular health? How?
Question 3 What are the most frequent and important decisions you face related

to your cardiovascular health?
Question 4 What is your usual role in making decisions about your cardiovascular

health and preventing CVD?
Question 5 What do you think are some challenges and needs in preventing and

managing cardiovascular diseases (from your perspective as a woman
at risk of CVD)?

Question 6 Have you ever considered a decision support system to help you in any
decisions related to your cardiovascular health?

Question 7 What are your thoughts on using digital technology (e.g., mobile apps,
AI systems/robots) to make decisions in relation to your cardiovascular
health?

Question 8 How would you like us to design and develop this Xi-Care tool that is
useful, helpful and effective for women at risk of CVD (e.g. no risks to
users)?

Question 9 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in monitoring tools that track
health data over time?

Question 10 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in a step-count feature?

Question 11 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in a weight tracking feature?

Question 12 On a scale of 1 to 5 with 1 being not at all interested and 5 being
very interested, what is your level of interest in educational modules on
cardiovascular health?

Question 13 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in guided exercise activities?

Question 14 On a scale of 1 to 5 with 1 being not at all interested and 5 being very
interested, what is your level of interest in diet recommendations?

Question 15 Would you like to be able to follow your progress and receive push-
notifications through the Xi-Care tool?

Question 16 How difficult/easy do you think it will be for you to integrate the Xi-
Care tool into your daily life?

Question 17 To what extent would you trust or rely on the Xi-Care tool to make
assessments about your cardiovascular health and prevent and manage
CVD?

Question 18 Do you foresee any challenges with integrating the Xi-Care tool in your
daily life in terms of ethics? Could you please describe these challenges?

Question 19 In terms of transparency, how important is it for you to be able to
understand how the Xi-Care tool works?

Question 20 Is there something else you’d like to add about ethical aspects in re-
gards to the Xi-Care tool that will be empowered by AI (Justice; Non-
maleficence; Autonomy; Beneficence; Explicability/Transparency)?

Table A.1: List of questions asked during the interviews of the CVDQuoding dataset.
Xi-Care is the name of the app being proposed to participants of the study to help
them control their risks of cardiovascular diseases (CVDs).



APPENDIX A. APPENDIX 62

A.2 Additional Dataset Details
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Figure A.1: Frequency of code assignment counts.



APPENDIX A. APPENDIX 63

1 3
9

2
4

5
8

8
9

1
4

6

9
5

2
3

7

3
3

3
8

9
0

1
3

2

2
1

9

1
8

7

1
1

1

2
6

2

[1, 2]

[3, 4]

[5, 8]

[9, 16]

[17, 32]

[33, 64]

[65, 128]

[129, 256]

[257, 512]

[513,]

0

50

100

150

200

Coder 2

Coder 1

Distribution of the length of the text spans (whitespace separation)

Text spans length bins

N
u
m

b
e
r
 o

f 
t
e
x
t
 s

p
a
n
s

Figure A.2: Distribution of the length of text spans.
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Coder List of codes
Coder 1 Life-style modification, Needs to assure data confiden-

tiality and security, Increasing trust in the tool, Lack of
knowledge, Additional comments about diet recommen-
dations, CVD misconceptions, Level of interest in track-
ing information and prompts, Level of interest in educa-
tional modules, Additional comments about educational
modules, Level of interest in transparency and explain-
ability, Enthusiastic about technology, App prompts,
Frequency of push-notifications, Level of interest in per-
sonalized workouts, Additional comments about explain-
ability

Coder 2 Technology for CVD care, Cardiovascular Health Infor-
mation, Accessibility, Decisions Made, Additional Fea-
tures Suggested, Understanding of CVD, Challenges,
Trust and Reliability, Transparency, Decision Involve-
ment, Weight Tracking, Educational Models, Technical
Support, Data Monitoring, Pedometer

Table A.2: List of 15 codes created by coders 1 and 2 sorted by frequency over the
entire CVDQuoding dataset.

A.3 Hyperparameter Configurations

We provide additional hyperparameter and architecture details for all our models.

A.3.1 Baseline

Okapi-BM25. We use an open-source implementation of the BM25 algorithm1. We

use the Okapi implementation with its default parameters k1 = 1.5, b = 0.75, ε = 0.25

and a tokenizer with space separation and lowercasing.

A.3.2 Classification Paradigm

SVM. We use the SVM implementation from sklearn2. We transform all inputs to

tf-idf features with separate encodings for the question and text span. We use the
1https://github.com/dorianbrown/rank_bm25
2https://scikit-learn.org/stable/

https://github.com/dorianbrown/rank_bm25
https://scikit-learn.org/stable/
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standard radial basis function kernel and tune the regularization parameter C using

the values {0.001, 0.01, 0.1, 1, 10}. A class weight parameter is computed for each code

as well as for the novel code and is inversely proportional to the class frequencies in

the training set.

DistilBERT. We use the DistilBERT implementation from Hugging Face3. In par-

ticular, we use DistilBERT’s tokenizer and its DistilBertForSequenceClassification

module which accepts a variable number of labels, |C| + 1 in this case. We tune the

learning rate using values {1 × 10−5, 2 × 10−5} with a weight decay of 0.01. We use

a batch size of 8 and train for 25 epochs with early stopping on the validation loss

with a patience of 5 epochs. We also compute a class weight inversely proportional

to the class frequencies in the training set and apply it to the cross entropy loss. All

our experiments consistently show that using class weights benefits performance.

A.3.3 Information-retrieval Paradigm

Along with hyperparameter details, we provide additional architecture details about

both the bi-encoder and cross-encoder.

Bi-Encoder. In the bi-encoder, we create representations for the code c, the text

span t and the previous question q with three distinct BERT encoders, Et, Eq and

Ec. In our case, we use DistilBERT as the encoder for all three inputs. We pass each

input whose start is truncated to the model’s 512 token input limit to its respective

encoder and extract its CLS token representation.

ht = Et(t), hq = Eq(q), hc = Ec(c)

We use a component-wise max pooling method max(·, ·) to aggregate ht and hq to-

gether.

hpool = max(ht, hq)
3https://huggingface.co/

https://huggingface.co/
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Finally, a cosine similarity is applied between the pooled representation, hpool, and

the code representation, hc, to generate a score. A class weighted mean-squared error

loss is then computed and backpropagated through the three encoders. For the novel

code detection subtask, a linear classifier is placed on top of the vector of encoder

scores. For the training of the linear classifier, we use another class weighted cross

entropy loss and keep the three encoders frozen.

We tune the learning rate using the values {1 × 10−5, 2 × 10−5} with a weight

decay of 0.01. We use a larger batch size of 32, since training sets now have a size

of |C| × N where N is the number of coded text spans. We train for 25 epochs with

early stopping on the validation loss set with a patience of 5 epochs.

Cross-Encoder. In the cross-encoder, we create representations for the concate-

nation of codes with the question and the text span. That is, for every code c in

the training set, the text span t and the previous question q are each independently

concatenated with the code c using the special [SEP] token. Both concatenations are

passed to different encoders Et and Eq to obtain a contextual representation. Trun-

cation is applied to the start of both t and q to comply with the encoder’s maximum

token input length.

ht [SEP] c = Et(t [SEP] c)

hq [SEP] c = Eq(q [SEP] c)

The representations are pooled using a component-wise max pooling method

max(·, ·)

hpool = max(ht [SEP] c, hq [SEP] c)

We place a classification head on top of hpool identical in architecture to the Dis-

tilBERT classification head. We compute a class weighted cross entropy loss and

backpropagate it through both encoders. For the novel code detection subtask, we a
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linear classifier is placed on top of the vector of encoder scores, which, in this case, are

logits. We use a class weighted cross entropy loss and keep the two encoders frozen.

In this case, we experiment with DistilBERT and ConvBERT. In both cases, we

tune the learning rate using the values {1 × 10−5, 2 × 10−5} with a weight decay of

0.01. We use a batch size of 32 and train for 30 epochs with early stopping on the

validation loss set to have a patience of 5 epochs. We train for more epochs because

we noticed that the cross-encoders took longer to converge.

A.3.4 Zero-shot Paradigm

We use OpenAI’s GPT-3.5 API to generate LLM responses to our zero-shot prompt.

In particular, we use the model checkpoint gpt-3.5-turbo-0301 with a temperature

of 1. The question and the text span are truncated to allow for a 64 token generation.

At the time of our experiments, this version of GPT-3.5 allowed for 4096 tokens.
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A.4 Additional Results
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Figure A.3: Plot of MRR for coder 1 across K = 1 to K = 14 computed using original
annotations.
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Figure A.4: Plot of MRR for coder 2 across K = 1 to K = 14 computed using original
annotations.
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Figure A.5: Plot of sNDCG@4 for coder 1 across K = 1 to K = 14 computed using
original annotations.
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Figure A.6: Plot of sNDCG@4 for coder 2 across K = 1 to K = 14 computed using
original annotations.
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