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Abstract 

Synucleinopathies are a group of neurodegenerative diseases characterized by the presence of 

alpha-synuclein in the brain of the patient. Synucleinopathies are primarily composed of 

Parkinson’s disease (PD), dementia with Lewy body (DLB) and multiple system atrophies (MSA). 

Currently, there is no cure for any of the above-mentioned disorders. Since degeneration occurs 

before disease diagnosis, drugs and therapeutics slowing down or stopping disease progression are 

of crucial importance. Early diagnosis is important for patients to administer treatment before 

severe degeneration occurs. For example, REM-sleep behavior disorder (RBD) is considered one 

of the best predictors for synucleinopathies as more than 80% of patients phenoconvert to PD, 

DLB or MSA. 

Genetic studies have been conducted to characterize the genetic landscape of 

synucleinopathies. Familial PD revealed monogenic PD genes such as LRRK2, PRKN, PINK1, and 

DJ-1 and case-control studies identified PD risk factors such as GBA1. Genome-wide association 

studies (GWAS) nominated genes such as GBA1, SNCA and TMEM175 that were central to PD, 

DLB and RBD. Many other genes were found to be distinct for a certain disorder such as LRRK2 

in PD and APOE in DLB. Although GWAS nominated numerous novel loci, most of these loci 

have unknown causal genes due to a lack of additional biological evidence.  

In this thesis, I used bioinformatics and machine learning to characterize patients and 

identify novel genetic targets. In Chapter 2, I investigated the association of heterozygous PRKN 

single nucleotide variants (SNVs) and copy number variations (CNVs) with PD. While PRKN is 

an autosomal recessive PD gene, the role of heterozygous PRKN variants is controversial. Using 

targeted next-generation sequencing, we sequenced the coding and untranslated region of PRKN 
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in 2,809 PD patients and 3,629 healthy controls and performed CNV calling. After including both 

SNVs and CNVs, I examined the association between PD and heterozygous PRKN variants. The 

results from this study suggest that the frequency of heterozygous PRKN variants is similar 

between PD patients and control. These findings have applications in future clinical trials and 

precision medicine. For example, heterozygous carriers of PRKN variants should not be included 

in PRKN clinical trials but they may be included in other PD trials.  

In Chapters 3 and 4, I performed fine-mapping of the HLA locus in PD, DLB and RBD. 

Although neuroinflammation is involved in disease pathogenesis, the role of HLA is unclear. HLA 

was nominated by the PD GWAS with a protective effect. However, due to the complex linkage 

disequilibrium (LD) of the region, it is unclear which genes and alleles are causal. Using HLA 

imputation methods, I imputed HLA alleles and amino acids with high accuracy from genotyping 

data. In PD, our results suggest that the protective association is driven by three HLA-DRB1 gene 

residues in high LD: 11V, 13H and 33H. Meanwhile, HLA-DRB1 11:01 was associated with risk 

for RBD. No association was found in LBD. HLA genes could be potential therapeutic targets.  

In Chapter 5, I conducted a multi-omic study on the PD GWAS to prioritize genes for 

future functional studies. To create a machine learning model specific to PD, I selected datasets 

from brain tissues and dopaminergic neurons and trained a multi-omic model from genetic, 

transcriptomic, epigenetic and distance measures. Then, I performed post hoc analyses such as 

pathway enrichment analysis, rare variant burden tests and structural analysis on the top genes 

from each locus. IP6K2, ITPKB, PPIP5K2, INPP5F, SPNS1, and MLX are the top genes in their 

respective locus. The inositol phosphate biosynthetic process was suggested to be involved in PD. 



4 
 

This thesis identified variants, genes and pathways in synucleinopathies using 

bioinformatics and machine learning. These results can be applied to clinical trials, drug discovery, 

precision medicine and functional studies. 
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Résumé 

Les synucléinopathies sont un groupe de maladies neurodégénératives caractérisées par la présence 

d'alpha-synucléine dans le cerveau du patient. Les synucléinopathies sont principalement 

composées de la maladie de Parkinson (PD), de la démence à corps de Lewy (DCL) et des atrophies 

multisystémiques (AMS). Actuellement, il n'existe aucun remède pour l'un des troubles 

mentionnés ci-dessus. Étant donné que la dégénérescence se produit avant le diagnostic de la 

maladie, les médicaments et les thérapies ralentissant ou arrêtant la progression de la maladie sont 

d'une importance cruciale. Un diagnostic précoce est important pour que les patients puissent 

administrer un traitement avant qu'une dégénérescence sévère ne se produise. Par exemple, le 

trouble du comportement en sommeil paradoxal (RBD) est considéré comme l'un des meilleurs 

prédicteurs des synucléinopathies, car plus de 80% des patients phénoconvertissent en PD, DCL 

ou AMS. 

Des études génétiques ont été menées pour caractériser le paysage génétique des synucléinopathies. 

La PD familiale a révélé des gènes de PD monogéniques tels que LRRK2, PRKN, PINK1 et DJ-1, 

et des études cas-témoins ont identifié des facteurs de risque de PD tels que GBA1. Les études 

d'association pangénomique (GWAS) ont désigné des gènes tels que GBA1, SNCA et TMEM175 

qui étaient centraux pour la PD, la DCL et le RBD. De nombreux autres gènes se sont avérés 

distincts pour un certain trouble, comme LRRK2 dans la PD et APOE dans la DCL. Bien que les 

GWAS aient désigné de nombreux nouveaux loci, la plupart de ces loci ont des gènes causaux 

inconnus en raison d'un manque de preuves biologiques supplémentaires. 

Dans cette thèse, j'ai utilisé la bioinformatique et l'apprentissage automatique pour caractériser les 

patients et identifier de nouvelles cibles génétiques. Dans le chapitre 2, j'ai étudié l'association des 
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variants mononucléotidiques hétérozygotes (SNV) et des variations du nombre de copies (CNV) 

de PRKN avec la maladie de Parkinson (PD). Bien que PRKN soit un gène autosomique récessif 

de la PD, le rôle des variants hétérozygotes de PRKN est controversé. En utilisant le séquençage 

de nouvelle génération ciblé, nous avons séquencé la région codante et non traduite de PRKN chez 

2 809 patients atteints de PD et 3 629 témoins sains et avons effectué l'appel des CNV. Après avoir 

inclus les SNV et les CNV, j'ai examiné l'association entre la PD et les variants hétérozygotes de 

PRKN. Les résultats de cette étude suggèrent que la fréquence des variants hétérozygotes de PRKN 

est similaire entre les patients atteints de PD et les témoins. Ces résultats ont des applications dans 

les futurs essais cliniques et la médecine de précision. Par exemple, les porteurs hétérozygotes de 

variants PRKN ne devraient pas être inclus dans les essais cliniques PRKN, mais ils pourraient être 

inclus dans d'autres essais de PD. 

Dans les chapitres 3-4, j'ai effectué un mappage fin du locus HLA dans la PD, la DCL et le RBD. 

Bien que la neuroinflammation soit impliquée dans la pathogenèse de la maladie, le rôle du HLA 

n'est pas clair. Le HLA a été désigné par les GWAS de la PD avec un effet protecteur. Cependant, 

en raison de la liaison déséquilibrée (LD) complexe de la région, il n'est pas clair quels gènes et 

allèles sont causaux. En utilisant des méthodes d'imputation HLA, j'ai imputé les allèles et les 

acides aminés HLA avec une grande précision à partir des données de génotypage. Dans la PD, 

nos résultats suggèrent que l'association protectrice est entraînée par trois résidus du gène HLA-

DRB1 en LD élevé : 11V, 13H et 33H. Pendant ce temps, le HLA-DRB1 11:01 était associé au 

risque pour le RBD. Aucune association n'a été trouvée dans la DCL. Les gènes HLA pourraient 

être des cibles thérapeutiques potentielles. 

Dans le chapitre 5, j'ai mené une étude multi-omique sur les GWAS de la PD pour hiérarchiser les 

gènes pour de futures études fonctionnelles. Pour créer un modèle d'apprentissage automatique 
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spécifique à la PD, j'ai sélectionné des ensembles de données provenant de tissus cérébraux et de 

neurones dopaminergiques et j'ai entraîné un modèle multi-omique à partir de mesures génétiques, 

transcriptomiques, épigénétiques et de distance. Ensuite, j'ai effectué des analyses post hoc telles 

que l'analyse d'enrichissement des voies, les tests de charge de variants rares et l'analyse structurale 

sur les gènes principaux de chaque locus. IP6K2, ITPKB, PPIP5K2, INPP5F, SPNS1 et MLX sont 

les gènes principaux de leur locus respectif. Le processus de biosynthèse du phosphate d'inositol 

a été suggéré d'être impliqué dans la PD. Cette thèse a identifié des variants, des gènes et des voies 

dans les synucléinopathies en utilisant la bioinformatique et l'apprentissage automatique. Ces 

résultats peuvent être appliqués aux essais cliniques, à la découverte de médicaments, à la 

médecine de précision et aux études fonctionnelles. 
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Chapter 1: Introduction 

Neurodegeneration is characterized by the progressive loss of neuronal structure and cell death. A 

common pathological hallmark of neurodegenerative disorders is the accumulation of protein 

aggregates. For example, synucleinopathies are a group of diseases associated with the inclusion 

bodies of the protein alpha-synuclein.1 These neuronal inclusions can be found in the form of Lewy 

bodies or Lewy neurites (e.g., axon or dendrite). Synucleinopathies primarily consist of three 

diseases: Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple systems 

atrophy (MSA), which has non-neuronal inclusions.1 In this thesis, PD and DLB will be the focus, 

as MSA is a rare condition in comparison. 

Parkinson’s disease 

Epidemiology 

In 1817, James Parkinson first described PD in his work "An Essay on the Shaking Palsy."2 PD is 

a slowly progressing neurodegenerative disorder that affected more than six million people 

worldwide in 2016.3,4 PD is commonly diagnosed between the ages of 55 and 65.5 However, early-

onset PD (EOPD), with onset before the age of 50, may also occur in familial PD.6 Since 1990, 

the age-standardized prevalence rate of PD has rapidly increased by 21.7%.4 With the current rate 

of change in prevalence, the number of PD patients worldwide is likely to double between 2005 

and 2030.3 

Clinical symptoms  

PD can be diagnosed using the UK PD Society Brain Bank Diagnostic Criteria and the Movement 

Disorder Society PD Criteria.7,8 As shown in Figure 1, it includes the diagnosis of parkinsonism 

based on the manifestation of bradykinesia and two other essential motor symptoms: rigidity and 
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tremor at rest. Bradykinesia is characterized by a decline in the speed and amplitude of movements, 

especially in the limbs of patients. Rigidity refers to muscular rigidity of the neck and limbs of 

patients. Rest tremor is defined as a 4-6Hz tremor of a limb at rest. However, parkinsonism 

symptoms can also be caused by drugs, vascular conditions, brain damage, and viral infections, so 

these factors must not be present in PD patients.7 Some rare conditions such as progressive 

supranuclear palsy and frontotemporal dementia also have atypical parkinsonism symptoms.9 

PD is not solely characterized by motor symptoms. Patients can present with a range of 

non-motor symptoms, some of which can occur during the prodromal phase even before the onset 

of motor symptoms.10 These non-motor symptoms can greatly impact the quality of life of 

individuals with PD. Some common non-motor symptoms of PD include hyposmia (reduced 

ability to smell), constipation, isolated REM sleep behavior disorder (iRBD) and depression.10 

iRBD describes patients with RBD during the prodromal phase without parkinsonism. Meanwhile, 

RBD can also occur after PD disease onset. 

After diagnosis, the disease prognosis of patients will vary considerably over the next 10 

years, on average.11 In the early stage, most patients have milder motor symptoms and respond 

well to treatment.12 Patients at later stages may be affected by postural instability, cognitive decline 

and dementia.12 A previous systematic review showed that around 30% of PD patients develop PD 

with dementia.13 It can occur in 75% of PD patients who survived more than 10 years.13 Other 

patients may develop psychosis, sleep-wake cycle dysregulation and autonomic failure.11  
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Figure 1. Clinical symptoms and time course of Parkinson’s disease progression 

EDS=excessive daytime sleepiness. MCI=mild cognitive impairment. RBD=REM sleep 

behaviour disorder. Adapted from Kalia, et al., 2015. 

Neuropathology of Parkinson’ disease 

PD is caused by the progressive loss of dopaminergic neurons in the substantia nigra pars 

compacta.14 However, PD pathology is not restricted to the substantia nigra but may spreads across 

various brain areas and neuronal cell types.15 A previous study suggested a stage-based progression 

called the Braak hypothesis, using post-mortem brain tissue from PD cases with Lewy bodies and 

Lewy neurites.16 In stage 1, pathology starts in the olfactory bulb and the dorsal motor nucleus of 

the vagus nerve, and then it travels up the brainstem to the dorsal pons in stage 2. Next, in stage 3, 

it reaches the midbrain substantia nigra. Afterwards, the disease progresses to the thalamus and 

then the prefrontal cortex. At the last stage, stage 6, it affects the neocortex, an area involved in 

many cognitive processes. 

However, this system does not describe the complexity of PD. For example, many subjects 

in Braak's study with Braak stage 4 or higher did not have PD.17 Also, Lewy pathology is not an 
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indicator of PD, as many PD patients lack Lewy bodies, such as around half of the patients carrying 

LRRK2 mutations.18 

Environmental risk factors of Parkinson’s disease 

While the involvement of Lewy bodies is not well understood, many environmental risk factors 

are associated with PD. For instance, aging is the strongest risk factor for PD.19 Previous studies 

have shown an increasing disease prevalence in the older population.20 Although the underlying 

mechanism is not well understood, aging is associated with numerous physiological changes that 

can lead to impaired cellular function, such as lysosomal dysfunction, mitochondrial dysfunction 

and oxidative stress.21 This association suggests that aging predisposes individuals to PD through 

decades of accumulation of environmental exposure or genetic mechanisms. PD also affects males 

and females at a ratio of 3:2.22 Estrogen has been suggested to convey a protective effect for PD, 

as there is an increased risk of parkinsonism in women who have undergone ovary removal 

surgery.23  

In a meta-analysis, 11 environmental risk factors for PD were discovered.24 Pesticide 

exposure, head injury, rural living, beta-blocker usage, agricultural occupation, dairy and well-

water drinking were shown to increase the risk. Smoking, coffee, non-steroidal anti-inflammatory 

drug use, calcium channel blocker use, and alcohol consumption were associated with a decreased 

risk of PD. 

 

Treatment for Parkinson’s disease 

Current therapies are only available to treat PD symptoms. Levodopa, a dopamine precursor, is 

commonly prescribed for motor symptoms.25 Dopamine agonists and monoamine oxidase type B 
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inhibitors have also been shown to be beneficial.26,27 However, drug-induced adverse reactions can 

be debilitating and greatly affect the quality of life of patients. For example, long-term use of 

levodopa is associated with dyskinesia and motor fluctuations.28 Dopamine agonists can cause 

impulse control disorders and hallucinations.29 Despite advances in the drug industry since the 

discovery of PD, none of the drugs available are neuroprotective or disease-modifying. 

Prodromal Parkinson’s disease 

Since the loss of dopaminergic neurons may initiate decades before the onset of motor symptoms, 

early diagnosis to define the prodromal stage of PD is necessary.10 IRBD is currently one of the 

strongest predictors of synucleinopathies.10 Previous studies have shown that more than 80% of 

iRBD patients will convert mainly to PD and DLB after 10 years from disease onset.30 

Isolated REM sleep behavior disorder 

During REM sleep where dreaming occurs, muscle paralysis or muscle atonia prevents us from 

enacting our dreams. IRBD is a parasomnia characterized by the loss of muscle atonia.31 One of 

the characteristic symptoms of iRBD is the enactment of dreams using movement and vocalization 

during REM sleep.31 These movements may involve complex behaviors such as crying, kicking, 

and punching. 

Around 30% of PD, 50-80% of DLB, and 80-94% of MSA patients develop RBD 

symptoms after disease onset.32 However, even though 80% of iRBD patients phenoconvert, iRBD 

patients do not have parkinsonism symptoms at disease onset.31 

IRBD is diagnosed using video polysomnography (vPSG) to confirm that the motor events 

occur during REM sleep.31 However, vPSG is expensive, time-consuming, and not available at all 

clinical centers, making it difficult to estimate the prevalence of iRBD from epidemiological 
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studies. Other screening methods may misdiagnose other sleep conditions as RBD, such as 

sleepwalking and non-REM sleep parasomnia. Currently, the prevalence of iRBD is estimated to 

be around 1% in individuals above 60 years old.33–35 

Clonazepam, a medication for seizures, and melatonin can be prescribed to improve RBD 

symptoms.31 However, no treatment can prevent phenoconversion or slow down disease 

progression. 

Dementia with Lewy Bodies 

DLB is a synucleinopathy characterized by parkinsonism symptoms and cognitive fluctuations, 

such as attention deficit and executive dysfunction.26 In contrast to Alzheimer's disease (AD), 

visual hallucinations are more likely to manifest in DLB.36 The relationship between Parkinson's 

disease with dementia (PDD) and DLB has been a subject of controversy. DLB typically has milder 

motor symptoms that may worsen as the disease progresses.37 PDD is diagnosed when prominent 

motor symptoms are present, with cognitive symptoms developing in later stages. To distinguish 

between PDD and DLB, DLB is diagnosed when dementia occurs at least one year before 

parkinsonism.38,39 

Despite careful assessment, the accurate diagnosis of dementia due to AD, DLB, or PD has 

proven to be challenging due to the lack of strong biomarkers. 

Familial genetic risk factors of Parkinson’s disease  

SNCA 

The first genetic evidence for PD was found in 1997 by Polymeropoulos et al through the discovery 

of the SNCA p.A53T mutation.40 This mutation was identified in a large Italian family with 
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autosomal dominant PD. Subsequently, many other pathogenic mutations in the SNCA gene, such 

as p.A30P, E46K, and G51D, were discovered.41 

SNCA encodes alpha-synuclein, which is a major component of Lewy bodies, a 

pathological feature of PD. For instance, SNCA triplication has been found to cause PD in a large 

family from the Midwestern US.42 Additional studies have also discovered SNCA duplication as a 

genetic alteration associated with PD.43 SNCA copy number variations (CNV) have been linked to 

earlier age at onset, rapid disease progression, severe cognitive fluctuations, and Lewy body 

pathology compared to idiopathic PD. In cases of duplications, the clinical and pathological 

presentations tend to be milder than triplication with reduced penetrance.44 

While the biological function of SNCA remains unclear, overexpression of alpha-synuclein 

has been associated with protein aggregation and neuronal dysfunction.43 Alpha-synuclein has 

been implicated in various cellular pathways, including membrane interactions, protein 

degradation, synaptic vesicle function, dopamine release and transport, mitochondrial dysfunction, 

and the autophagy-lysosomal pathway.45 

According to the current disease model, alpha-synuclein monomers assemble into 

oligomers (e.g., tetramers), which then form fibrils.46 Alpha-synuclein fibrils are the predominant 

form found in Lewy bodies and Lewy neurites.47 However, the presence of incidental Lewy 

pathology (Lewy pathology in healthy individuals) and the lack of success in synuclein-targeted 

therapy challenge this model.48 

PRKN 

PRKN (also known as PARK2) is an autosomal recessive gene that is associated with early-onset 

Parkinson's disease (EOPD).49 It is the most common cause of familial PD, with biallelic PRKN 
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variants estimated to have a prevalence of 4.3% in sporadic EOPD cases and 15.5% in familial PD 

cases.50,51 While homozygous and compound heterozygous variants have been found to cause PD, 

the role of heterozygous variants has been controversial.52–61 However, many studies did not 

examine copy number variations (CNVs) in the PRKN gene. PRKN is located in a common 

chromosomal fragile site, making it prone to deletions and duplications.62 This region is often 

affected by chromosomal breaks due to collisions between replication and transcription complexes 

in large genes like PRKN, which spans 1.4Mb and produces a 4kb mature mRNA.63  

Parkin, the protein encoded by PRKN, is an E3 ubiquitin ligase involved in mitophagy.49 It 

interacts with PINK1 to activate the ubiquitin-proteasome system and promote the degradation of 

dysfunctional mitochondria through autophagy.64 PINK1 is another autosomal recessive cause of 

EOPD.65 Accumulation of reactive oxygen species (ROS) in mitochondria can induce mitophagy 

as a protective mechanism against ROS-mediated cellular damage.66 PRKN has also been 

suggested to play a role in the innate immune system.67 

Neuropathological studies of patients with biallelic PRKN variants have revealed distinct 

characteristics compared to idiopathic PD.68 For example, PRKN-PD patients lack Lewy bodies 

pathology.69 Neuropathology is limited to the substantia nigra and locus coeruleus.69 These 

patients also tend to have milder PD symptoms and a slow disease progression.70  

Despite the lack of current clinical trials specifically targeting PRKN, it is important to 

distinguish PRKN-PD patients from other PD patients due to differences in pathology and disease 

prognosis. Many PD patients who are carriers of PRKN heterozygous variants may carry cryptic 

variants that were not detected by next-generation sequencing (NGS) methods.71 Currently, 

multiplex ligation-dependent probe amplification (MLPA) is considered the gold standard for 
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detecting CNVs.72 Additional efforts are required to detect both single nucleotide variants (SNVs) 

and CNVs in clinical trials to minimize the risk of false negatives. 

LRRK2 

LRRK2 (leucine-rich repeat protein kinase-2) is another gene that has been discovered through 

familial studies and is associated with PD. It was first identified in 2004, and the LRRK2 p.R1441G 

variant was found to be the causal variant for autosomal dominant PD in Spain.73 In case-control 

studies, the LRRK2 p.G2019S variant has been identified as one of the strongest risk variants for 

PD in Europeans.74 This variant has been reported in approximately 4% of familial PD cases and 

1% of sporadic cases.75 In certain populations, such as North African Berbers and Ashkenazi Jews, 

the prevalence of the p.G2019S variant can be as high as 40% and 26%, respectively.76,77 The 

penetrance of this variant is estimated to be between 25-42% at age 80 in Europeans.78  

In addition to p.G2019S, many other pathogenic variants of LRRK2 have been discovered, 

such as p.N1437H, p.R1441G/C/H/S, and p.Y1699C.79,80 These variants have been found to 

increase the kinase activity of LRRK2. However, the specific kinase substrates of LRRK2 in PD 

are still not fully understood. Previous studies have also identified a common haplotype (LRRK2 

p.N551K-p.R1398H-p.K1423K) that is associated with decreased kinase activity and reduced risk 

for PD.81 

LRRK2 has been implicated in various pathways, including inflammatory pathways, 

lysosomal function, and autophagy.82,83 Many of these mechanisms are interconnected with the 

pathophysiology of PD. 

The clinical presentation of LRRK2-associated PD resembles sporadic PD, but with milder 

symptoms and slower disease progression. Hyposmia and RBD are also less frequently observed 
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in LRRK2-associated PD. However, individuals with LRRK2 mutations tend to have an earlier age 

at onset and are more prone to postural instability and gait difficulties. 

The neuropathology of LRRK2-PD differs considerably from sporadic PD. Only 62% of 

patients was reported with Lewy body pathology and 71% with tau pathology.84 

Genome-wide association study (GWAS) of Parkinson’s disease 

Performing GWAS has been instrumental in examining the genetic landscape of PD. GWAS 

involves testing the association of single nucleotide polymorphisms (SNPs) across the genome.85 

Given the large number of SNPs tested, multiple correction testing is essential, and meta-analysis 

of large population studies increases the statistical power to detect associations.85 

The largest PD GWAS to date, which included 37,688 cases, 18,618 proxy cases (healthy 

individuals with relatives with PD), and 1.4 million controls, identified 90 independent risk 

variants across 78 genomic risk loci.74 Notably, the PD GWAS identified genome-wide significant 

variants within the SNCA and LRRK2 loci. 

In the SNCA locus, the most statistically significant signal in the PD GWAS was found in 

SNPs located in the 3' untranslated region (UTR) of the gene. This highlights the importance of 

regulatory regions in the genetic susceptibility to PD. 

Regarding the LRRK2 locus, the main signal identified in the PD GWAS was the p.G2019S 

variant. However, another independent SNP (rs76904798) within the LRRK2 locus was also 

identified as associated with PD risk.74 

Despite the valuable insights provided by GWAS in nominating novel variants and loci 

associated with polygenic traits, there are several challenges that remain in the field. One of the 

challenges is that GWAS typically explain only a small fraction of the heritability of polygenic 
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traits.86 This is because GWAS primarily capture the effects of common variants, while rare 

variants, CNVs, and interaction effects can be missed.87 Additionally, the majority of the 

nominated variants are located in non-coding regions of the genome, making it unclear how these 

variants functionally contribute to the traits or diseases of interest and which genes they affect. 

Another challenge arises from the correlation between variants due to linkage 

disequilibrium (LD). While LD can be leveraged to identify novel loci associated with a trait, it 

becomes more difficult to discern the causal variants and genes within these loci.87 Fine-mapping 

methods have been developed to tackle this challenge by using GWAS summary statistics and LD 

structure to nominate causal variants.88,89 

In this thesis, I will further discuss these GWAS genes and their implications in the context 

of future chapters. Understanding the genetic factors and risk loci associated with PD can provide 

insights into disease mechanisms, potential therapeutic targets, and personalized approaches to 

treatment. Addressing GWAS limitation and incorporating more comprehensive and context-

specific functional data will be crucial for further unraveling the complex genetic architecture 

underlying polygenic traits and diseases. 

Genes nominated from Parkinson’s disease genome-wide association studies 

GBA1 

GBA1 (previously known as GBA) is a gene that is associated with the autosomal recessive form 

of Gaucher's disease (GD), which is a lysosomal storage disorder.90 Variants in the GBA1 gene 

have been found to be prevalent in different populations, ranging from 5% in Asians to 20% in the 

Ashkenazi Jewish population. Hundreds of GBA1 variants have been identified, including 

p.N370S, p.E326K, and p.L444P.91 
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The penetrance of GBA1 variants in PD is relatively low, estimated to be between 10-

30%.92 GBA1 variants are classified based on their association with the severity of Gaucher's 

disease, where severe variants are linked to the neuronopathic form of GD, and milder variants are 

associated with the non-neuronopathic form. In PD, carriers of severe GBA1 variants typically 

exhibit more severe PD symptoms and experience faster disease progression.93 

Compared to idiopathic PD, GBA1-PD tends to have earlier disease onset and faster 

cognitive decline.94,95 GBA1-PD is characterized by strong Lewy pathology, that is widespread 

across the brain.41 

The GBA1 gene encodes the enzyme Glucocerebrosidase (GCase), which is located in the 

lysosome and is responsible for the degradation of glycolipids. In PD, pathogenic GBA1 variants 

lead to a decrease in GCase activity and loss of function.96 Reduced GCase activity has been shown 

to contribute to the accumulation of alpha-synuclein, a protein associated with PD pathogenesis, 

and may also induce neuroinflammation.97 Additionally, the substrate of GCase is thought to 

interact with alpha-synuclein, promoting the formation of alpha-synuclein fibrils.98 

VPS13C 

VPS13C is one of the candidate genes from the PD GWAS. It has been implicated in the 

development of EOPD when rare homozygous or compound heterozygous variants are 

present.99,100 Patients carrying these variants typically experience rapid disease progression and 

early cognitive dysfunction.99 

The VPS13C gene is responsible for encoding a protein called vacuolar protein sorting 13C, 

which is partially localized in the mitochondrial membrane. Studies have shown that silencing of 
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VPS13C leads to mitochondrial dysfunction, which can disrupt cellular energy production and 

other mitochondrial functions.99 

Furthermore, VPS13C has been implicated in the process of mitophagy, which is the 

selective removal of damaged or dysfunctional mitochondria through the Parkin/PINK1 pathway. 

Dysfunction in this pathway has been associated with impaired clearance of damaged 

mitochondria, leading to their accumulation and subsequent cellular damage. Studies have 

demonstrated that the silencing of VPS13C can disrupt Parkin/PINK1-dependent mitophagy, 

further contributing to mitochondrial dysfunction and potentially contributing to PD 

pathogenesis.99 

MAPT 

MAPT encodes the microtubule-associated protein tau, which is a neuronal protein involved in the 

formation of misfolded tau aggregates known as tauopathies.101 Tauopathies can be found in 

conditions such as AD, PD, DLB, and MSA. More than half of AD autopsies have revealed the 

presence of Lewy bodies, and many PD patients also exhibit tau pathology.102,103 

The MAPT locus is characterized by two main haplotypes: H1 and H2.104 The H1 haplotype 

is present in all populations, while the H2 haplotype, which encompasses a 900kb inversion, is 

found in approximately 20% of Europeans and is associated with a reduced risk for PD.105,106 The 

association between MAPT haplotypes and disease risk has been well-established.107 However, the 

association of specific MAPT variants with disease remains unclear and has yielded controversial 

results in genotype-phenotype association studies.108 

It has been observed that tau and alpha-synuclein frequently coexist in neurodegenerative 

disorders.109 Tau pathology and alpha-synuclein may interact and co-localize, promoting the 
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misfolding of each other.110 Tau is known to play a role in microtubule assembly, neuronal polarity, 

and axonal functions.111 It is also involved in regulating neuronal plasticity, nucleolar organization, 

and providing DNA protection against oxidative stress.112 Soluble tau can aggregate in the 

cytoplasm, forming neurofibrillary tangles, which can lead to neuronal dysfunction and death by 

disrupting microtubule assembly and transport.113 

TMEM175 

TMEM175 is identified as one of the most significant risk loci in the PD GWAS.74 It encodes a 

transmembrane protein which functions as a lysosomal potassium or proton channel protein.114 In 

the GWAS, two specific variants of TMEM175 were highlighted: p.M393T as a risk variant and 

p.Q65P as a protective variant.115 

One study examined the structure and molecular activity of TMEM175 variants have 

provided insights into their functional implications.115 The p.M393T variant is associated with 

reduced activity of the enzyme GCase, impairing its assembly, maturation, or trafficking within 

the lysosome. GCase plays a crucial role in the degradation of glycolipids, and its dysfunction has 

been implicated in PD. 

On the other hand, structural analysis of the p.Q65P variant suggests that it leads to 

increased stability of the TMEM175 transmembrane protein.115 The exact mechanisms by which 

this variant confers a protective effect are not yet fully understood. 

GCH1 

GTP cyclohydrolase 1 (GCH1), is another candidate gene identified in the PD GWAS. GCH1 is 

the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, which is an essential cofactor for 

the production of dopamine.116 Mutations in the GCH1 gene can have implications for dopamine 
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synthesis and are associated with various disorders. In particular, rare mutations in GCH1 are also 

associated with PD.117 

HLA 

Human leukocyte antigens (HLA) are cell-surface proteins involved in antigen presentation.118 

These proteins are encoded by genes located in the major histocompatibility complex (MHC), 

which is a highly polymorphic locus. The MHC contains two main classes of proteins: class I and 

class II, which have different roles in the immune system. 

MHC class I proteins, encoded by HLA-A, HLA-B, and HLA-C genes, present foreign 

peptides derived from intracellular proteins to CD8+ T cells.119 These proteins are expressed on 

the surface of all nucleated cells. On the other hand, MHC class II proteins are primarily found on 

antigen-presenting cells such as dendritic cells and B lymphocytes. HLA-DPB1, HLA-DQA1, 

HLA-DQB1, and HLA-DRB1 are some of the highly polymorphic MHC class II genes. MHC class 

II proteins present antigens to CD4+ T cells, leading to T cell receptor activation and subsequent 

immune responses. 

The HLA locus has been identified as a candidate locus in PD GWAS.74 However, previous 

studies have yielded conflicting results, and the specific causal genes and variants within the HLA 

locus remain unclear.74,120,121 It is worth noting that the HLA locus has also been associated with 

other neurodegenerative disorders, such as AD and amyotrophic lateral sclerosis.122,123 

Further research is necessary to elucidate the role of HLA genes and their variants in the 

development and progression of PD, as well as their potential involvement in other 

neurodegenerative disorders. 
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Genetics of REM sleep behavior disorder and dementia with Lewy bodies 

Genetic studies focusing on RBD and DLB have been conducted on smaller cohorts compared to 

PD. Despite the smaller sample sizes, these studies have provided valuable insights into the genetic 

landscape of synucleinopathies and RBD. 

In a GWAS targeting LBD, which primarily included DLB patients and a smaller cohort 

of PD with dementia (PDD) patients, two novel risk loci were identified: TMEM175 and BIN1.124 

Other studies have also demonstrated associations between DLB and genes such as GBA1, APOE, 

and SNCA.125 

Genetic studies on RBD have revealed a partial genetic overlap between RBD and 

synucleinopathies. A RBD-specific GWAS identified associations between RBD and genes such 

as GBA1, SNCA, TMEM175, SCARB2, and INPP5F.126 However, it is important to note that while 

some genes and variants, such as LRRK2 and APOE, exhibited associations specific to PD and 

DLB, GBA1, TMEM175 and SNCA showed associations with all three disorders.127,128 

Furthermore, independent variants located at the 5' and 3' UTRs of SNCA were associated 

with different disorders. The 3' UTR variants were specifically associated with PD, whereas the 5' 

variants showed associations with DLB and RBD. 

These findings highlight the complex genetic landscape of synucleinopathies, RBD, and 

DLB, indicating both shared and distinct genetic factors contributing to these disorders. Further 

research is needed to fully understand the precise genetic mechanisms and implications of these 

associations in different synucleinopathies. 
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Biological pathways involved in synucleinopathies 

Autophagy lysosomal pathway 

The lysosome plays a crucial role in the autophagy-lysosomal pathway (ALP), which is 

responsible for the degradation of various cellular components, including proteins, lipids, and 

organelles.129 In PD, the ALP is particularly important for the degradation of alpha-synuclein, a 

protein whose accumulation is associated with the disease.130 

Several genes implicated in synucleinopathies are directly involved in the ALP. For 

instance, GBA1 encodes for GCase, a protein located on the inner surface of the lysosome. Reduced 

GCase activity can result in impaired clearance of alpha-synuclein, leading to its accumulation.131 

TMEM175, a lysosomal or proton potassium channel protein, has been suggested to 

regulate the pH level within the lysosome. Alterations in lysosomal pH due to TMEM175 variants 

could impact GCase activity and contribute to the pathogenesis of synucleinopathies.115 

Another gene, LRRK2, is known to interact with the ALP. LRRK2 is thought to be recruited 

to the lysosome, where it phosphorylates Rab proteins, which are involved in vesicular 

trafficking.132 Dysregulation of Rab proteins by LRRK2 mutations may disrupt lysosomal function 

and contribute to the accumulation of alpha-synuclein.133 

Overall, the autophagy-lysosomal pathway is central to the pathophysiology of 

synucleinopathies, including PD and related disorders such as RBD. Dysfunction in this pathway, 

including impaired lysosomal degradation and defective mitophagy, can lead to the accumulation 

of alpha-synuclein and contribute to disease progression. 
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Mitophagy 

Mitophagy is a cellular process that involves the degradation of dysfunctional or damaged 

mitochondria. 134 It is primarily associated with the Parkin/PINK1 pathway, although other genes 

such as LRRK2 and SNCA have also been implicated in its regulation.135 

In a healthy mitochondrion, PINK1 is imported into the outer mitochondrial membrane and 

subsequently cleaved and degraded by the proteasome.136 However, when mitochondria are 

damaged or depolarized, the import of PINK1 is inhibited, leading to its stabilization on the outer 

membrane.136 Stabilized PINK1 then recruits Parkin to the mitochondria, which results in the 

ubiquitination of various mitochondrial proteins.136 This ubiquitination serves as a signal for the 

selective recognition and targeting of damaged mitochondria for degradation via mitophagy. 

In PD, alpha-synuclein aggregates have been shown to bind to mitochondria, disrupting 

mitochondrial function and causing mitochondrial membrane depolarization.137 This can further 

impair the normal process of mitophagy. LRRK2 has complex interactions with the Parkin/PINK1 

pathway and has been implicated in the regulation of mitophagy.138 

In individuals with PD and mutations in the GBA1 gene, post-mortem analyses have 

revealed increased mitochondrial stress and impaired mitophagy.139 GBA1 mutations are 

associated with reduced GCase activity, which can disrupt lysosomal function and impair the 

clearance of dysfunctional mitochondria through mitophagy. 

Overall, mitochondrial dysfunction, disrupted mitophagy, and the interactions between 

genes such as Parkin/PINK1, LRRK2, SNCA, and GBA1 play major roles in the pathogenesis of 

PD. Understanding these processes and their interplay may provide valuable insights into the 

mechanisms underlying the development and progression of the disease. 
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Neuroinflammation 

Neuroinflammation in PD has been extensively studied and is characterized by the activation of 

microglia, which are immune cells in the central nervous system. This initial discovery of 

microglial activation in post-mortem brains of PD patients led to further investigations into the 

involvement of neuroinflammation in the disease.140 

Multiple studies have shown increased levels of proinflammatory cytokines in the blood, 

cerebrospinal fluid, and brain tissue of PD patients.141 These findings indicate a systemic and 

central nervous system inflammatory response in PD. 

Neuroinflammation has also been observed in animal models of PD and in experimental 

models where alpha-synuclein is overexpressed or injected.142 These models show increased 

microglial activation and production of proinflammatory cytokines, further supporting the role of 

neuroinflammation in PD. 

Genetic evidence has also implicated the immune system in PD. Variants in genes 

associated with immune function, such as those in the HLA locus, LRRK2, PRKN and potentially 

GBA1 have been found to contribute to neuroinflammation in PD.143 The HLA locus is involved 

in antigen presentation and immune response, while LRRK2 and PRKN have been linked to 

immune system dysfunction and microglial activation. 

The presence of neuroinflammation in PD suggests a complex interplay between the 

immune system and neurodegeneration. Chronic inflammation and sustained activation of 

microglia can lead to neuronal damage and contribute to the progression of PD. Understanding the 

mechanisms underlying neuroinflammation in PD may provide new therapeutic targets for 

intervention and disease modification. 
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Clinical interventions in Parkinson’s disease 

The failure of clinical trials in PD has highlighted the need for improvements in various aspects of 

trial design and patient selection. Future clinical trials should aim to address these challenges to 

increase their chances of success. 

One important consideration is the timing of intervention. PD is a complex and 

heterogeneous disease, and the underlying pathophysiological processes may vary among 

individuals. Identifying the optimal stage of disease progression for intervention is crucial. Early 

detection and intervention may be more effective in modifying the course of the disease, and 

clinical trials should aim to recruit patients at the right time to target specific disease mechanisms. 

Genetic screening is another consideration for future clinical trials. As our understanding 

of the genetic risk factors for PD expands, genetic screening prior to recruitment can help identify 

patients who may benefit from specific interventions or stratify patients into subtypes for more 

targeted treatments. Genetic screening can also aid in the identification of potential responders and 

non-responders to specific therapies, enabling more personalized and precise approaches. 

Precision medicine approaches, such as targeting specific genetic risk factors like GBA1 

and LRRK2, have been conducted in recent clinical trials.144 These targeted therapies hold potential 

for more effective and tailored treatments for subsets of PD patients. Incorporating precision 

medicine principles into future clinical trials can help identify new therapeutic candidates and 

improve treatment outcomes. 

In this thesis, exploring population applications and identifying new genetic candidates for 

future clinical trials across different chapters will contribute to the advancement of knowledge in 

this field. By investigating the broader population implications of genetic factors and identifying 
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potential therapeutic targets, this thesis can contribute to the development of precision medicine 

approaches in PD. 

 

Hypothesis 

I hypothesize that there are additional genetic risk factors in synucleinopathies that can be 

identified using bioinformatics and machine learning. 

 

Objectives 

Chapter 2: Investigating the Role of Heterozygous PRKN Variants in PD. In this chapter, the 

focus is on examining the risk associated with carrying heterozygous PRKN SNVs and CNVs in 

PD. The study aims to improve the selection criteria for clinical trials by understanding the impact 

of these variants on disease risk. Additionally, the chapter aims to provide a simple, fast, and cost-

effective method for detecting biallelic PRKN variants, which can aid in the identification of 

individuals who may benefit from specific interventions or targeted therapies. 

Chapter 3: Fine-mapping of the HLA locus in PD. This chapter involves the fine-mapping of 

the HLA locus in PD. Using bioinformatic methods, the study aims to impute HLA alleles with 

high accuracy, providing detailed information on the HLA allele, haplotype, or amino acid driving 

the association observed in the PD GWAS. By better understanding the role of HLA in PD, this 

research contributes to filling the knowledge gap regarding neuroinflammation in the disease. The 

findings may have implications for the development of new drug therapeutic possibilities targeting 

the HLA genes. 



41 
 

Chapter 4: Fine-mapping of the HLA locus in RBD and LBD. Similar to Chapter 3, this chapter 

focuses on fine-mapping the HLA locus, but in the context of two related synucleinopathies: RBD 

and LBD. The study examines HLA alleles, haplotypes, and amino acids across these disorders, 

aiming to identify any shared or distinct associations. By comparing the findings in HLA across 

these synucleinopathies, the chapter provides insights into the potential role of HLA in RBD and 

LBD, further enhancing our understanding of the immune component in these disorders. 

Chapter 5: Gene prioritization of PD GWAS loci. In this chapter, the focus is on gene 

prioritization of PD GWAS loci. The study employs fine-mapping techniques to nominate 

candidate genes within each locus using machine learning methods. By integrating genetic, 

transcriptomic, and epigenetic data from brain tissues and specifically dopaminergic neurons, a 

machine learning model is trained to prioritize genes for further analysis. The results of this study 

can potentially identify novel genes and pathways associated with PD, opening avenues for 

potential drug targets and genetic discoveries in the field. 

Overall, these chapters contribute to the understanding of PD genetics, and the identification of 

potential therapeutic targets. By investigating the role of PRKN variants, fine-mapping the HLA 

locus in PD, RBD, and LBD, and prioritizing candidate genes within the PD GWAS loci, these 

studies aim to advance our knowledge and pave the way for improved treatments and interventions 

in synucleinopathies.  
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Preface to Chapter 2 

In this chapter, the focus is on exploring the population applications of genetic studies for clinical 

trials in PD. The controversial role of heterozygous PRKN variants in PD is investigated. The 

chapter begins by conducting systematic sequencing of rare variants and CNVs within the PRKN 

gene. By analyzing these rare variants, the study aims to shed light on the potential impact of 

heterozygous PRKN variants on PD risk. 

To strengthen the findings, a meta-analysis of rare variants in PRKN is performed, pooling 

data from multiple studies. The chapter emphasizes the importance of genetic screening in the 

context of clinical trials. By understanding the genetic profile of individuals enrolled in clinical 

trials, researchers can improve participant selection criteria and enhance the precision of 

therapeutic interventions. 

Overall, this chapter contributes to our understanding of the controversial role of 

heterozygous PRKN variants in PD and highlights the significance of genetic screening in the 

design and execution of clinical trials. The findings have implications for the development of 

personalized treatment approaches and the identification of individuals who may respond 

favorably to specific interventions based on their genetic profile. 
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Abstract 

Background: Biallelic PRKN mutation carriers with Parkinson’s disease (PD) typically have an 

earlier disease onset, slow disease progression and, often, different neuropathology compared to 

sporadic PD patients. However, the role of heterozygous PRKN variants in the risk of PD is 

controversial. 

Objectives: We aimed to examine the association between heterozygous PRKN variants, including 

single nucleotide variants and copy-number variations, and PD. 

Methods: We fully sequenced PRKN in 2,809 PD patients and 3,629 healthy controls, including 

1,965 late onset (63.97±7.79 years, 63% men) and 553 early onset PD patients (43.33±6.59 years, 

68% men). PRKN was sequenced using targeted next-generation sequencing with molecular 

inversion probes. Copy-number variations were identified using a combination of multiplex 

ligation-dependent probe amplification and ExomeDepth. To examine whether rare heterozygous 

single nucleotide variants and copy-number variations in PRKN are associated with PD risk and 

onset, we used optimized sequence kernel association tests and regression models. 

Results: We did not find any associations between all types of PRKN variants and risk of PD. 

Pathogenic and likely-pathogenic heterozygous single nucleotide variants and copy-number 

variations were less common among PD patients (1.52%) than among controls (1.8%, false 

discovery rate-corrected p=0.55). No associations with age at onset and in stratified analyses were 

found.   

Conclusions: Heterozygous single nucleotide variants and copy-number variations in PRKN are 

not associated with Parkinson’s disease. Molecular inversion probes allow for rapid and cost-
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effective detection of all types of PRKN variants, which may be useful for pre-trial screening and 

for clinical and basic science studies specifically targeting PRKN patients. 

Introduction 

Parkinson’s disease (PD) is a common neurodegenerative disorder with a typical age at onset 

(AAO) ranging between 60-70 years.1 However, a subgroup of patients has early onset PD (EOPD), 

typically defined as AAO < 50 years.2 The most common genetic cause of EOPD are homozygous 

or compound heterozygous variants in the PRKN gene, found in 6.0-12.4% of individuals who 

present with PD symptoms before the age of 50.3-5 PRKN has a high rate of single nucleotide 

variants (SNV) and copy number variations (CNVs), since it is located in a genomic region prone 

to rearrangements.6, 7 PRKN encodes Parkin, an E3 ubiquitin protein ligase important in 

mitophagy.8 

Neuropathological studies have demonstrated that individuals with biallelic PRKN variants 

diagnosed with PD do not have the typical PD neuropathology, as Lewy bodies are absent in most 

cases, and the neurodegenerative process is limited to the substantia nigra.9, 10 It is therefore 

possible that patients with biallelic PRKN variants represent a distinct subgroup, or arguably a 

distinct disease with similar clinical features.10 Since we are moving towards therapies targeting 

specific genetic defects in PD (such as GBA and LRRK2-targeting therapies), or a-synuclein 

accumulation11 (which is mostly absent in PRKN-related patients),9 it is crucial to properly identify 

these patients. However, the role of rare heterozygous PRKN SNVs and CNVs in PD has not been 

clearly established by association studies,12 and it is currently controversial. For example, a 

previous study with 159 patients and 170 controls showed significant difference in heterozygous 

PRKN SNVs and CNVs between PD patients and controls, while larger studies suggested a lack 

of association.13-15 Additional studies have also shown contradictory results in familial PD, EOPD 
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and late onset PD (LOPD) using SNVs and/or CNVs.13-34 Therefore, the role of heterozygous 

PRKN variants remains controversial. Towards future clinical trials targeting PRKN, it will be 

crucial to determine whether heterozygous PRKN variants are associated with PD. 

To investigate the potential effect of rare heterozygous SNVs and CNVs in PD, we applied 

a simple, fast and cost-effective method to detect both types of variants. Using targeted next 

generation sequencing and bioinformatic approaches, we fully sequenced PRKN to identify both 

SNVs and CNVs in a large cohort of PD, including LOPD and EOPD. 

Methods 

Study Population 

A total of 2,809 unrelated and consecutively recruited PD patients and 3,629 controls from three 

cohorts were sequenced, including 1,965 LOPD patients (mean [SD], 63.97±7.79 years, 1,231 men 

[63%]) and 553 EOPD patients (mean [SD], 43.33±6.59, 374 men [68%]). Age and sex were not 

available for 291 patients, 88 controls and 22 patients, 4 controls, respectively. After excluding 

low sequencing quality samples and biallelic PRKN carriers, we performed statistical analysis on 

6,090 individuals: 2,627 patients and 3,463 controls. The three cohorts are detailed in Table 1 and 

include: a) a cohort of European ancestry, confirmed by principal component analysis, collected 

at McGill University, including French-Canadian (mostly recruited through the Quebec Parkinson 

Network)35 and French participants recruited in Quebec, Canada and Montpellier, France b) a 

cohort recruited at Columbia University, New York, as previously described,36 primarily 

composed of individuals of self-reported European origin and Ashkenazi Jews, and c) a cohort 

collected at the Sheba Medical Center, Israel, of self-reported Ashkenazi Jewish ancestry, as 

previously described.37 PD was diagnosed by movement disorder specialists according to the UK 

Brain Bank Criteria, without excluding patients with positive family history 38 or the Movement 
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Disorders Society Criteria.39 Study protocols were approved by the relevant Institutional Review 

Boards and all patients signed informed consent before participating in the study. 

Table 1. Study populations included in the analysis after quality control and exclusion of 

biallelic pathogenic/likely pathogenic PRKN SNV and CNV carriers. 

 McGill University Columbia 

University 

Sheba Medical 

Center 

Variable Patients 

(n=1,034) 

Controls 

(n=2,451) 

Patients 

(n=939) 

Controls 

(n=491) 

Patients 

(n=654) 

Controls 

(n=521) 

Age, ya,b (SD) 59.09 

(10.58) 

53.35 

(14.17) 

59.34 

(11.56) 

64.56 

(9.87) 

60.50 

(11.82) 

39.24 

(14.38) 

Early onset patientsc/total 

with available AAO data, 

No. (%) 

164/747 

(22%) 

NA 212/929 

(23%) 

NA 122/632 

(19%) 

NA 

Male, No. (%) 654 

(64%) 

1,160 

(47%) 

611  

(65%) 

177 

(36%) 

408 

(63%) 

306  

(59%) 

Ashkenazi Jewish 

ancestry, No. (%) 

0  

(-) 

0  

(-) 

210  

(22%) 

91  

(19%) 

654 

(100%) 

521 

(100%) 
a Data are presented as mean (SD).  

b Data for age and sex are missing for 321 (12%) patients and 246 (7%). 

c Early onset is defined as AAO < 50 years  controls. Difference of age and sex between patients 

and controls were adjusted in our analysis. 

Abbreviations: y, years; SD, standard error; AAO, age at onset; No, number; NA, not applicable;  

Genetic analysis 

PRKN sequencing 

All samples were sequenced at McGill University, Canada using the same method. A total of 50 

genes were captured using molecular inversion probes (MIPs) and sequenced as previously 

described.40 In brief, probes that specifically target the coding sequences of the genes of interest 

were designed, followed by capture and PCR amplification of the targeted regions. After adding 

barcodes, samples were pooled and sequenced at the McGill University and Génome Québec 
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Innovation Centre with Illumina HiSeq 2500/4000. The full protocol is available upon request. 

Alignment (GRCh37/hg19), quality control and variant calls were done using the Burrows-

Wheeler Aligner (BWA),41 Genome Analysis Toolkit (GATK v3.8),42 and ANNOVAR 43 as 

previously described.44 Only rare variants (minor allele frequency, MAF, < 0.01) according to the 

public database Genome Aggregation Database (GnomAD) 45 with a minimum coverage of 30x 

were included in the analysis. Samples with more than 10% missingness were excluded. The script 

for these analyses can be found at https://github.com/gan-orlab/MIPVar. We examined all rare 

exonic variants using the Integrative Genomics Viewer (IGV v 2.7).46 All variants were classified 

using Varsome 47 according to the American College of Medical Genetics and Genomics (ACMG) 

standards and guidelines into five categories: pathogenic, likely pathogenic, uncertain significance, 

likely benign and benign.  

Detection and validation of copy number variations  

There are four general types of methods to infer CNVs from next-generation sequencing.48 

Because MIPs target only a small portion of the genome, most CNV breakpoints will not be 

sequenced. Therefore, only read-depth based methods can be applied for MIPs since other types 

of methods utilize reads that span breakpoints. In order to detect CNVs, we examined two methods 

based on read depth for the MIP data, ExomeDepth v1.1.10 49 and panelcn.MOPS v1.4.0 in R.50 

When using ExomeDepth, each test sample is compared to the best set of reference samples out of 

3,629 controls, chosen by the software according to the correlation of the coverage for each probe 

between the test sample and the reference samples. A filter for samples with correlation above 0.97 

per the suggestion of the developer was applied to remove false positives. Panelcn.MOPS also 

selects the best set of reference samples according to correlation and includes several quality 

control (QC) steps, such as a minimum user defined depth of coverage per probe. Probes are 

https://github.com/gan-orlab/
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marked as low quality if their read count shows high variance across the test sample and selected 

references. To validate CNVs, we performed multiplex ligation-dependent probe amplification 

(MLPA) using the SALSA MLPA P051-D2 Parkinson probemix 1 kit according to the 

manufacturer instructions (MRC Holland), which is the gold standard for PRKN CNV detection. 

Quality Control of MIPs for CNV detection 

The highest performing parameters were achieved by excluding probes from genes in our library 

where the average coverage was below 100X in more than 15% of the coding and untranslated 

regions of the genes. Probes with average coverage below 100X, and samples with average 

coverage across all genes less than 50X were also excluded. Figure 1 details the numbers of 

patients and controls in each cohort after different stages of quality control.  

Statistical Analysis 

The associations between rare heterozygous SNVs (MAF < 0.01), heterozygous CNVs and PD 

were tested using optimized sequence kernel association tests (SKAT-O v1.3.2 in R)51 in all 

cohorts separately, adjusted for age, sex and ancestry as needed. The initial analysis was performed 

after excluding biallelic carriers of pathogenic and likely pathogenic mutations and adjusting for 

age, sex, ethnicity and the presence of GBA and LRRK2 variants (Figure 1, yellow). Rare variants 

were grouped by: a) CADD score (CADD>12.37), which represent the top 2% of variants 

predicted to be deleterious, b) functional variants, which include stop gain, nonsynonymous, 

splice-site and frameshift variants, c) nonsynonymous variants, and d) loss-of-function variants, 

which include frameshift, splice-site and stop gain variants. A meta-analysis of the results from 

the three cohorts was performed using MetaSKAT (MetaSKAT v0.80, R)52 for heterozygous 

SNVs, CNVs, and both combined, according to the five ACMG categories (pathogenic, likely 

pathogenic, uncertain significance, likely benign and benign). Since the age- and sex-adjusted 
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model removes samples without available data on age and sex, we also performed an unadjusted 

model to avoid this exclusion (Figure 1, blue). We have also repeated all analyses after several 

additional filtering and adjusting stages, including: adjusting for all GBA and LRRK2 

p.Gly2019Ser variant carriers (Supplementary Table 1), excluding these GBA and LRRK2 variant 

carriers, analyzing only samples with early onset PD (defined as AAO < 50 years), and excluding 

samples with CNVs in which phasing was not possible (n=8, for example, in a sample with a 

reported deletion of exons 3-4 the deletion could be on the same allele, or each exon can be deleted 

on a different allele, Figure 1, grey). The association between heterozygous SNVs, CNVs and 

AAO of Parkinson’s disease was also calculated using linear regression adjusted for sex and 

ancestry as needed in all cohorts separately. Here too, patients carrying GBA variants or the LRRK2 

p.Gly2019Ser variant (Supplementary Table 1) were excluded and all analyses were repeated. 

METAL 53 was used to performed fixed-effect meta-analysis on all cohorts in the AAO analysis. 

Since we have performed multiple interdependent analyses, we used a false discovery rate (FDR) 

correction for multiple comparisons with a FDR-corrected q<0.05 considered as statistically 

significant.  
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Figure 1. Flow chart of different analysis phases. The flow chart detail the total numbers of 

patients and controls included in different phases of the analysis. In red, the total number of 

samples sequenced. In green, the total numbers of samples which passed the quality control phase. 

In blue, the total numbers of samples after exclusion of 9 patients with biallelic pathogenic and 

likely pathogenic mutations in PRKN. In yellow, the total number of samples included in the 

analysis aadjusted for age, sex, ethnicity and the presence of GBA and LRRK2 variants. In grey, 

the total number of samples included in the analysis after excluding additional samples with 

potentially pathoigenic biallelic copy number variations that could not be phased, i.e. samples with 
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deletions of consecutive exons, for which we could not determine if they occur on the same allele 

or if they are biallelic.  

Results 

Identification of PRKN SNVs and CNVs 

The average coverage of PRKN (NM_004562) across all samples was 988X, with 98% of 

nucleotides covered at >30X, and 94% covered at >100X. We identified 199 rare SNVs in 237 

patients and 300 controls in the main analysis (Table 2), including nonsynonymous, frameshift 

deletions and splice site variants in PRKN across all cohorts (the specific variants are detailed in 

Supplementary Table 2). 

To identify CNVs, we first aimed to examine which calling method is best suited to 

properly call CNVs from our MIP targeted sequencing panel. For this purpose, we screened for 

CNVs in 510 samples using MLPA, the gold standard for CNV detection in PRKN. We specifically 

enriched these samples with EOPD patients to increase the chances to detect CNVs. Out of the 

510 samples, 46 carried CNVs in PRKN (32 patients and 14 controls). The 32 patients included 

four homozygous PRKN deletion carriers, 17 heterozygous deletion carriers and 11 duplication 

carriers. Subsequently, we have examined which method (ExomeDepth or panel.cnMOPS) has the 

highest performance. Except for one deletion for which the MIPs data did not pass QC due to low 

coverage call rate, deletions and duplications in PRKN were identified with 97% sensitivity and 

95% specificity using ExomeDepth. In contrast, using the best parameters, panel.cnMOPS had 98% 

sensitivity but only 54% specificity using samples that passed QC when compared to MLPA. The 

parameters and CNV call rates for each method are detailed in Supplementary Table 3. Due to its 

superior performance, we applied ExomeDepth on all cohorts, and identified a total of 62 carriers 
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of CNVs in patients and controls. Supplementary Table 4 details all carriers of CNVs, including 

heterozygous and bi-allelic carriers of other CNVs or other SNVs. 

Heterozygous PRKN SNVs and CNVs are not associated with Parkinson’s disease 

To examine the association of rare (MAF < 0.01) heterozygous SNVs and CNVs on risk of PD, 

we took two approaches. First, we performed a SKAT-O in each cohort to determine whether there 

is a burden of heterozygous PRKN variants of different types. “Pathogenic” variants included 

pathogenic and likely pathogenic variants, while “non-benign” variants included pathogenic, likely 

pathogenic and variants of uncertain significance. All CNVs were considered as pathogenic loss-

of-function variations. No statistically significant associations were found in any of the SKAT-O 

analyses (Table 2). Second, we performed a series of meta-analyses by collapsing in each cohort 

SNVs alone, CNVs alone, and combined. In these analyses too, adjusted for age, sex and ethnicity, 

no association between heterozygous carriage of PRKN mutations and PD was found (Table 2). 

Pathogenic and likely pathogenic variants were less frequent in patients (1.52%) than in controls 

(1.8%, p = 0.55, Table 2), suggesting lack of association with risk of PD. In order to avoid the 

possibility that the exclusion of samples without available data on age and sex had biased the 

results, we have also performed an unadjusted analysis including all samples. Additional analyses 

with and without GBA and LRRK2 p.Gly2019Ser variants, with and without CNVs of unknown 

phasing, and including only samples patients with AAO < 50 have also been performed. In these 

analyses too, there were no statistically significant differences between patients and controls 

(Supplementary Table 5-6).  
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Table 2. Rare PRKN heterozygous SNV and CNV analysis for risk of Parkinson’s disease 

using SKAT-O adjusted for age, sex, ethnicity and GBA and LRRK2 status. 

 Carriers in patients, No. 

(%) 

Carriers in controls, No. 

(%) 

P-valuea 

McGill University (n = 2964) 

SNV 91 (12.2) 230 (10.4) 0.594 

CNV 4 (0.537) 15 (0.676) 0.608 

SNV & CNV 93 (12.5) 238 (10.7) 0.621 

Patho SNV 11 (1.48) 22 (0.991) 0.675 

Patho SNV & CNV 15 (2.01) 37 (1.67) 0.675 

No Benign SNV 67 (8.99) 152 (6.85) 0.507 

No Benign SNV & CNV 69 (9.26) 160 (7.21) 0.552 

Columbia University (n = 1,420) 

SNV 101 (10.9) 45 (9.16) 0.614 

CNV 13 (1.4) 11 (2.24) 0.507 

SNV & CNV 109 (11.7) 52 (10.6) 0.588 

Patho SNV 5 (0.538) 5 (1.02) 0.507 

Patho SNV & CNV 18 (1.94) 16 (3.26) 0.502 

No Benign SNV 76 (8.18) 31 (6.31) 0.507 

No Benign SNV & CNV 85 (9.15) 38 (7.74) 0.507 

Sheba Medical Center (n = 1,139) 

SNV 45 (7.12) 25 (4.93) 0.507 

CNV 2 (0.316) 4 (0.789) 0.584 

SNV & CNV 46 (7.28) 27 (5.33) 0.507 

Patho SNV 0 (0) 1 (0.197) 0.679 

Patho SNV & CNV 2 (0.316) 5 (0.986) 0.584 

No Benign SNV 42 (6.65) 23 (4.54) 0.502 

No Benign SNV & CNV 43 (6.8) 25 (4.93) 0.507 

Meta-Analysis (n = 5,523) 

SNV 237 (10.3) 300 (9.35) 0.507 

CNV 19 (0.824) 30 (0.933) 0.507 

SNV & CNV 248 (10.7) 317 (9.84) 0.507 

Patho SNV 16 (0.695) 28 (0.87) 0.646 

Patho SNV & CNV 35 (1.52) 58 (1.8) 0.553 

No Benign SNV 185 (8.02) 206 (6.4) 0.461 

No Benign SNV & CNV 197 (8.54) 223 (6.93) 0.461 

Abbreviations: SNV―Single Nucleotide Variant; CNV―Copy Number Variation; 

Patho―pathogenic and likely pathogenic variants; No Benign―analysis excluding benign and 

likely benign variants. 

a P-values shown are after FDR correction (q value <= 0.05). 
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Heterozygous PRKN SNVs and CNVs are not associated with AAO of Parkinson’s 

disease  

The association between rare heterozygous SNVs and CNVs on AAO of PD was examined using 

linear regression in each cohort alone on the same groups of mutations mentioned in the previous 

association study. After adjusting for sex, ancestry, and the presence of GBA and LRRK2 variants, 

we found no association in any analyses. We also performed meta-analysis by collapsing each 

cohort which yielded no statistically significant results (Table 3). When examining CNVs, the 

meta-analysis shows an earlier AAO in heterozygous PRKN CNV carriers (3.6 years younger 

compared to non-carriers), but the association was not statistically significant after correction for 

multiple comparisons. This difference in AAO was mainly driven by an effect of CNVs in the 

Columbia cohort, which was almost 8 years younger in carriers of CNVs (average AAO of 51.85 

years) compared to non-carriers of CNVs (59.44 years). This difference was not statistically 

significant after correction for multiple comparisons as well. Larger studies for AAO of 

heterozygous PRKN carriers are needed to further study these findings. Association analyses 

between different types of heterozygous PRKN variants and AAO of PD, including with and 

without LRRK2 and GBA variant carriers, with and without ambiguous phasing (see methods), and 

in AAO < 50 can be found in Supplementary Tables 7-8. In all analyses, there were no statistically 

significant associations.  
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Table 3. Rare PRKN heterozygous SNV and CNV analysis for Age at Onset of Parkinson’s 

disease adjusted age, sex, ethnicity and GBA and LRRK2 status. 

 AAO of 

carriers, y 

mean (SD) 

AAO of non-

carriers, y mean 

(SD) 

Coeff (95% CI) P-valuea 

McGill University (n=745) 

SNV 61.04 (10.54) 58.83 (10.56) 2.19 (-0.127,4.5) 0.49 

CNV 61.75 (14.31) 59.09 (10.56) 1.87 (-8.57,12.3) 0.91 

SNV & CNV 60.96 (10.71) 58.84 (10.54) 2.07 (-0.217,4.37) 0.52 

Patho SNV 57.73 (12.96) 59.12 (10.54) -1.27 (-7.57,5.02) 0.91 

Patho SNV & CNV 58.8 (12.94) 59.11 (10.53) -0.44 (-5.85,4.97) 0.96 

No Benign SNV 61.04 (10.29) 58.91 (10.59) 2.08 (-0.565,4.73) 0.55 

No Benign SNV & 

CNV 

60.93 (10.52) 58.91 (10.57) 1.94 (-0.678,4.55) 0.60 

Columbia University (n=929) 

SNV 59.2 (12.82) 59.35 (11.4) 0.22 (-2.15,2.59) 0.96 

CNV 51.85 (14.01) 59.44 (11.49) -6.68 (-12.9,-0.411) 0.43 

SNV & CNV 58.64 (13.02) 59.43 (11.36) -0.371 (-2.67,1.93) 0.92 

Patho SNV 60.4 (18.88) 59.33 (11.52) 1.21 (-8.87,11.3) 0.96 

Patho SNV & CNV 54.22 (15.43) 59.44 (11.46) -4.5 (-9.84,0.84) 0.52 

No Benign SNV 61.74 (11.99) 59.12 (11.5) 2.81 (0.126,5.49) 0.43 

No Benign SNV & 

CNV 

60.51 (12.67) 59.22 (11.44) 1.56 (-0.994,4.11) 0.67 

Sheba Medical Center (n=632) 

SNV 55.84 (14.12) 60.86 (11.57) -5.02 (-8.59,-1.46) 0.20 

CNV 71.5 (3.536) 60.47 (11.83) 11.3 (-5.13,27.7) 0.62 

SNV & CNV 56.13 (14.1) 60.85 (11.57) -4.72 (-8.25,-1.18) 0.20 

Patho SNV NA 60.5 (11.82) NA 0.84 

Patho SNV & CNV 71.5 (3.536) 60.47 (11.83) 11.3 (-5.13,27.7) 0.62 

No Benign SNV 56.12 (14.27) 60.82 (11.58) -4.69 (-8.38,-1) 0.21 

No Benign SNV & 

CNV 

56.42 (14.23) 60.8 (11.59) -4.37 (-8.02,-0.721) 0.25 

Meta-Analysis (n=2,306) 

SNV 59.17 (12.44) 59.62 (11.21) 0.122 (-1.41, 1.65) 0.96 

CNV 56 (14.57) 59.61 (11.3) -2.89 (-8.1, 2.32) 0.71 

SNV & CNV 58.72 (12.69) 59.65 (11.19) -0.122 (-1.63, 1.38) 0.96 

Patho SNV 58.56 (14.45) 59.59 (11.31) 0.506 (-1.33, 2.34) 0.86 

Patho SNV & CNV 57.17 (14.36) 59.62 (11.28) -1.8 (-5.57, 1.98) 0.78 

No Benign SNV 60.07 (12) 59.53 (11.26) 0.961 (-0.751, 2.67) 0.71 

No Benign SNV & 

CNV 

59.4 (12.4) 59.56 (11.23) 0.523 (-1.14, 2.19) 0.84 
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Abbreviations: SNV―Single Nucleotide Variant; CNV―Copy Number Variation; AAO―Age 

At Onset; Coeff―Regression Coefficient; CI―Confidence Interval; Patho―pathogenic and 

likely pathogenic variants; No Benign―analysis excluding benign and likely benign variants. 

NA―Not Applicable. 

a P-values shown are after FDR correction (q value <= 0.05). 

Table 4: Parkinson’s disease patients with biallelic pathogenic and likely pathogenic PRKN 

SNVs and CNVs. 

Sample SNV CNV Sex AAS AAO 

McGill cohort 

S29243 p.Gly430Asp Exon 9 duplication M 38 28 

S21069 p.Gln34ArgfsTer5, 

p.Arg42Pro 

 
F 73 29 

S06128 p.Gln34ArgfsTer5 Exon 3, 4 deletion M 44 39 

S29254 
 

Homozygous exon 3 

deletion 

M 57 NA 

S29263 p.Arg275Trp Exon 3 deletion F 41 NA 

Columbia cohort 

S23082 
 

Homozygous exon 3, 

4 deletion 

F 54 16 

S22919 p.Gln34ArgfsTer5 Exon 3, 4 deletion M 52 19 

S23324 p.Arg275Trp Exon 3 deletion F 70 28 

S33346  Homozygous exon 3, 

4 deletion 

M 37 37 

Sample are sorted by age at onset with one SNV or CNV per locus at each line. 

Abbreviations: SNV―Single nucleotide Variants; CNV―Copy Number Variation; AAS―Age 

At Sample; AAO―Age At Onset; M―Male; F―Female; NA―Not Available. 

Identification of PRKN-associated parkinsonism patients 

Overall, we were able to identify 9 patients with pathogenic or likely pathogenic homozygous and 

compound heterozygous PRKN SNVs and/or CNVs (Table 4). The most common pathogenic SNV 

in our cohort was p.Gln34ArgfsTer5 mutation, found in 3 (33%) PRKN patients, and the most 
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common CNV was heterozygous deletion of exon 3, found in 7 (77%) PRKN patients. The average 

AAO of PD in biallelic PRKN SNV/CNV carriers was 28.0 ±7.82 years old. 

Discussion 

In the current study, we found that the frequencies of heterozygous SNVs and CNVs in PRKN are 

similar in PD patients and controls. These results do not support a role for heterozygous PRKN 

variants in the risk of PD or its AAO. Of note, in one cohort (Columbia), the average AAO of 

CNV carriers was about 8 years younger compared to non-carriers (Table 3), yet in the other 

cohorts there was no difference between CNV carriers and non-carriers. Additional studies on 

AAO in heterozygous PRKN carriers are required to conclusively determine whether or not they 

are associated with earlier AAO. Since the PRKN region is prone to genetic variance,6 including 

multiple SNVs and CNVs, properly genotyping all types of PRKN variants could be challenging. 

Using a simple, fast and cost-effective method, we were able to successfully detect all CNVs, 

SNVs and indels. With MIPs, deep coverage can be achieved, and the probes always target the 

exact same region, as opposed to whole-exome or whole-genome sequencing where there is no 

full overlap between all the reads. When the coverage is high, it provides an advantage that allows 

for more accurate calls of CNVs as well as SNVs and indels. Using this approach, we have 

identified 199 rare PRKN variants and 62 participants with PRKN CNVs, with very high sensitivity 

and specificity (97% and 95%, respectively, when compared to the gold standard MLPA method). 

Our approach can therefore be used for large-scale screening of PD cohorts, with only validation 

of detected PRKN CNVs with MLPA, instead of fully screening all patients with MLPA. Of note, 

we identified 9 patients with pathogenic and likely pathogenic biallelic PRKN variants. This 

number of patients is lower than previously reported in EOPD. It is possible that in Ashkenazi 

Jewish Parkinson’s disease patients (comprising the entire Sheba cohort and a large portion of the 
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Columbia cohort), the frequency of PRKN variants is lower, as evident by the lack of such patients 

in the Sheba cohort. This is also supported by the Columbia cohort, in which all biallelic PRKN 

patients are of European ancestry and none among the Ashkenazi Jewish origin. 

There have been multiple studies analyzing the role of heterozygous PRKN mutations with 

conflicting results, shown in Supplementary Table 9. These conflicts may arise from different 

screening approaches. Some studies first sequenced all patients for rare SNVs and/or CNVs, then 

sequenced only for selected variants in controls. This approach will create a bias, as the controls 

may carry other pathogenic PRKN variants. Other studies sequenced all patients and controls for 

heterozygous SNVs and/or CNVs more systematically, and the majority of them were negative. 

Systematic analysis, as was done in the current study, will avoid misrepresenting the genetic 

landscape of the study population. Our results do not support an association between heterozygous 

SNVs and CNVs in PRKN and PD, which is supported by other systematic studies of PRKN as 

shown in Supplementary Table 9.14-17, 24, 33 These results also emphasize the need for determining 

the pathogenicity of different PRKN variants, as many variants are currently defined as variants of 

unknown significance. Having a reliable assay for Parkin activity, as previously suggested, would 

provide an experimental way to assess pathogenicity of PRKN variants.54 

To further study the potential effect of heterozygous PRKN variants, previous studies have 

compared the rate of 18F-dopa uptake in biallelic PRKN patients, asymptomatic heterozygous 

PRKN mutation carriers and healthy controls.55, 56 These studies have suggested that some PRKN 

heterozygous carriers may have reduced uptake of 18F‐dopa, especially in the caudate and putamen. 

A follow-up longitudinal study by one of these groups, however, suggested that this reduction is 

subclinical, and that the rate of progression is very slow and unlikely to lead to clinical 

parkinsonism manifestations.57 
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In recent years, treatments that target specific genes and proteins implicated by human 

genetic studies, such as SNCA (a-synuclein), GBA and LRRK2, are being tested in clinical trials.58 

Therefore, identifying patients that may benefit from these trials, or conversely, patients that are 

less likely to benefit, is crucial. Neuropathological studies on brains of patients with PRKN-

associated parkinsonism have demonstrated that the vast majority of patients with biallelic PRKN 

mutations do not have accumulation of a-synuclein and the typical Lewy bodies that are seen in 

PD.59 Since a-synuclein does not accumulate, it is likely that treatment targeting a-synuclein will 

not be efficient for these patients, who should therefore be excluded from these clinical trials. 

Furthermore, the neurodegenerative process in PRKN-associated Parkinsonism is limited to the 

substantia nigra and locus coeruleus, and does not spread to other brain regions.60 Since we did 

not detect an association between heterozygous PRKN variants and PD, we recommend that 

heterozygous carriers of PRKN variants should not be excluded from such trials, as it is likely that 

the presence of heterozygous PRKN variants in PD patients is due to chance. Clinically, patients 

with PRKN-associated Parkinsonism are also different, as they have early onset disease, slowly 

progressing and typically without or with very limited non-motor symptoms.59 Therefore, it is 

important to identify these patients, and our method for rapid and cost-effective detection of PRKN 

variants would be useful for pre-trial screening and for clinical and basic science studies 

specifically targeting PRKN patients. 

Although this study examined heterozygous mutations systematically, there are several 

limitations. The error rate of ExomeDepth CNV detection could affect the results of the association 

study because not all samples were analysed using MLPA. Furthermore, potentially pathogenic 

intronic variants have not been examined since intronic regions were not sequenced. In addition, 

our cohorts were not matched for age and sex. Our controls are on average younger and our patients 
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are predominantly composed of men, yet age and sex were adjusted for when possible. The missing 

age at onset of patients underpowers our AAO study, however, because data were missing at 

random, its effect on our results is likely minimal. Another limitation is that in a case-control set-

up, phasing cannot be performed, and patients with two variants are considered as compound 

heterozygous carriers. Since all patients with two mutations had AAO<50, it is likely that indeed 

they are all compound heterozygous, but we cannot rule out that they carry two variants on the 

same allele. In addition, individuals with CNVs in consecutive exons are considered as 

heterozygous carriers, while in fact they can have separate deletions of each exon in different 

alleles. To examine whether inclusion of these patients affected the results, we repeated the 

analysis after excluding them, which did not substantially change the results (Supplementary 

Tables 5-6). An additional limitation of our study is that it includes predominantly individuals of 

European and Ashkenazi Jewish ancestries. While we adjusted for ancestry in the analysis, studies 

in additional ancestries are required to determine if heterozygous PRKN variants may have a role 

in PD in other populations. 

To conclude, our findings do not support a role for heterozygous PRKN variants in PD, and 

additional large-scale studies are required for a definite conclusion. Our study and the methods we 

have used provide a framework and a cost-effective method for rapidly screening for all types of 

PRKN variants, which will be useful in future genetic and clinical studies, and for stratification or 

patient selection for clinical trials. 
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Preface to Chapter 3 

In Chapter 3, I performed genetic fine-mapping on the HLA locus in PD. The HLA locus has been 

the subject of controversial results in relation to PD, and this study aims to provide further insights. 

Fine-mapping involves analyzing genetic variations in a specific genomic region with a 

higher resolution, allowing for a more detailed examination of the genetic factors contributing to 

a particular trait or disease. By focusing on the HLA locus in PD, I aim to identify the specific HLA 

residues that are associated with the disease. This information can help in understanding the 

underlying mechanisms and potential therapeutic targets related to the HLA locus in PD. 

By conducting genetic fine-mapping on the HLA locus, this study aims to contribute to a 

better understanding of the role of HLA in PD and potentially uncover novel insights into the 

disease's etiology and progression. This research can provide valuable information for the 

development of targeted therapies and personalized treatment approaches based on an individual's 

HLA profile. 
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Abstract 

We fine mapped the leukocyte antigen (HLA) region in 13,770 Parkinson’s disease (PD) patients, 

20,214 proxy-cases and 490,861 controls of European origin. Four HLA types were associated 

with PD after correction for multiple comparisons, HLA-DQA1*03:01, HLA-DQB1*03:02, HLA-

DRB1*04:01 and HLA-DRB1*04:04. Haplotype analyses followed by amino acid analysis and 

conditional analyses suggested that the association is protective and primarily driven by three 

specific amino acid polymorphisms present in most HLA-DRB1*04 subtypes - 11V, 13H and 33H 

(OR=0.87, 95%CI=0.83-0.90, p<8.23x10-9 for all three variants). No other effects were present 

after adjustment for these amino acids. Our results suggest that specific HLA-DRB1 variants are 

associated with reduced risk of PD, providing additional evidence for the role of the immune 

system in PD. Although effect size is small and has no diagnostic significance, understanding the 

mechanism underlying this association may lead to identification of new targets for therapeutics 

development. 

Introduction 

Although Parkinson’s disease (PD) is primarily a neurodegenerative disorder, the role of the 

immune system in the pathophysiology of PD is increasingly recognized based on animal and 

human studies.1-3 The immune system can be involved in the initiation of PD, as well as in its 

progression, and that this involvement can be peripheral and central.3,4 

Neuropathological studies have shown evidence for microglia activation in brains of 

patients. However, it was initially unclear whether this activation was a part of the disease process, 

a consequence, or an epiphenomenon.5 Genetic evidence also links the immune system with PD, 

since genes such as LRRK2, the human leukocyte antigen (HLA) locus and possibly BST1, all 

associated with PD6 and have a role in the immune system.7-9 
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The HLA region on chromosome 6 includes genes that encode components of the major 

histocompatibility complex (MHC).8 Several genome-wide association studies (GWASs) have 

shown an association between the HLA locus and risk of PD. In the latest GWAS, an association 

with HLA-DRB5 has been reported, with a potential effect of the rs112485576 single nucleotide 

polymorphism (SNP) on the expression of HLA-DRB5.6 Previous studies have suggested different 

associations with HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5 and with 

haplotypes within the HLA region in Europeans.10-15 

In this study, we performed the largest HLA alleles, haplotypes and amino acid analyses in 

PD on 12,137 patients, 14,422 proxy patients and 351,953 controls. We further performed 

conditional analyses to fine map and identify specific drivers of the association with PD in the 

HLA region. 

Results 

Meta-analysis of HLA types in Parkinson’s disease suggests a single association 

After standard QC, a total of 12,137 patients, 14,422 proxy patients and 351,953 controls were 

included in the analysis (Supplementary Table 1). As shown in Figure 1A, our SNP-level meta-

analysis validated the previous association for SNP, rs112485576, in the HLA locus (In the current 

analysis: OR=0.87, 95% CI= 0.83-0.90, p=5.00x10-13, in the previous meta analysis: OR=0.85, 95% 

CI= 0.82-0.87, p=6.96x10-28).6 No residual HLA effects were found after adjustment of this SNP 

(Figure 1B, C), indicating that the association of this locus was primarily driven by a single genetic 

risk factor. We also validated previous associations for the SNPs rs17425622, rs2395163, 

rs3129882, rs9275326 in the HLA locus (Supplementary Figure 2-5). 
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Figure 1. Validation of previously associated top HLA locus SNP (rs112485576) in our cohort. 

a) Forest plot describing the effect size and 95% confidence interval of rs112485576 for each 

cohort and fixed-effect meta-analysis. b-c) Two LocusZoom plots highlighting the significant 

variants before (b) and after (c) the conditional analysis on rs112485576. Dashed lines correspond 

to the significance threshold. Linkage disequilibrium values are shown with respect to the most 

significant SNP in the locus.  

We next performed a meta-analysis association study of all HLA types with carrier 

frequency above 1%. After HLA imputation, a total of 141 different HLA types across 10 HLA loci 

were included (setting the Bonferroni corrected threshold for statistical significance on α=3.55x10-

4; 0.05/141). Following these analyses, we found four HLA alleles that were associated with PD 

(Table 1, results for other HLA alleles are detailed in Supplementary Table 5): HLA-DQA1*03:01, 

HLA-DQB1*03:02, HLA-DRB1*04:01, HLA-DRB1*04:04. These four alleles are all located 

within a small genomic segment and have similar odds ratio ranging between 0.84-0.89. Three of 

the four alleles have similar carrier frequencies, indicating that they could be part of the same 

haplotypes, with the fourth potentially representing a sub-haplotype (Table 1).   

HLA haplotype analysis  

For haplotype analysis, we allowed for up to three genes to be included in each haplotype, since 

including more than three genes generated multiple haplotypes with low allele frequency that could 

not be analyzed at the current sample size. A total of 84 different HLA haplotypes (Supplementary 

Table 6) with allele frequency >1% were identified, setting the cut-off Bonferroni corrected p 

value for statistical significance at α=5.95x10-4. Three different HLA haplotypes were associated 

with PD after correction for multiple comparisons: DQA1*03:01~DQB1*03:02, 

DRB1*04:01~DQA1*03:03 and DRB1*04:04~DQA1*03:01.  Upon further examination, this 
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association was found to be driven by several well-known sub-haplotypes, 

DRB1*04:04~DQA1*03:01~DQB1*03:02 and DRB1*04:01~DQA1*03:01/3~DQB1*03:01/2 

(Supplementary Table 6). Because both DQA1*03:01 and DQA1*03:03 as well as DQB1*03:01 

and DQB1*03:03 are present within the extended DRB1*04:01 haplotype, it is likely that these 

associations are driven by DRB1. 

Meta-analysis of the association of HLA amino acid changes with Parkinson’s disease 

To further identify the specific source of the association in the HLA locus, we performed an 

analysis of 636 amino acid changes in the HLA genes, setting the cut-off Bonferroni corrected p 

value for statistical significance at α=7.86x10-5. Ten amino acid changes were significantly 

associated with reduced risk of PD (Supplementary Table 7). The top three associated variants are 

linked amino-acids 11V, 13H and 33H (Table 3) present in all DRB1*04 subtypes, complementing 

the HLA haplotype analysis. Four other variants, 26S, 47Q, 56R and 76V, in the DQA1 gene, are 

in perfect LD with each other (r2=1, D’=1, Supplementary Table 7) and in partial LD (r2=0.38, 

D’=0.85) with the DRB1 variants. The association of these DQA1 variants is weaker than the DRB1 

variants in terms of both effect size and statistical association (Supplementary Table 7). Three 

other variants, 71T, 74E, and 75L, are in the DQB1 gene, are also in perfect LD with each other 

(r2=1, D’=1, Supplementary Table 7) and in partial LD (r2=0.16, D’=0.99) with DRB1 13H and 

33H. 
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Table 1. Meta-analyses of HLA alleles association 

Allele Freq Cases Freq Controls OR (95% CI) P-valuea Direction HetPVal 

DQA1*03:01 0.168 0.185 0.86 (0.81-0.90) 3.54e-08 --------- 0.85 

DQB1*03:02 0.182 0.199 0.87 (0.83-0.92) 7.62e-07 --------- 0.58 

DRB1*04:01 0.187 0.221 0.89 (0.84-0.94) 2.82e-05 --------- 0.87 

DRB1*04:04 0.068 0.082 0.84 (0.77-0.91) 8.21e-05 --------- 0.85 

Abbreviations. Freq Cases: Frequency of allele in patients; Freq Controls: Frequency of allele in 

controls; OR (95% CI): Odds ratio and 95% confidence interval; Direction: Direction of beta for 

each cohort; HetPVal: P-value of heterogeneity. a Bonferroni correction for multiple comparisons 

set the threshold for statistical significance to α=3.55x10-4. 
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Figure 2. Association of the HLA-DRB1 alleles and location of associated amino acids. a) The 

location of the HLA locus, alleles and amino acids associated with Parkinson’s disease in the 

current study. b) 3D model of HLA-DRB1 – HLA-DRA and the location of the 11V, 13H and 

33H amino acids associated with PD (highlighted by arrows). The model was generated with 

PyMol v. 2.4.1 (pdb 4is6). 

Conditional analyses confirm that DRB1*04 amino acid variants likely drive the 

association of the HLA locus with PD 

To further determine the specific genes or variants that drive these associations, we performed a 

set of conditional analyses, and re-analyzed the allele types, haplotypes and amino acid 

associations with PD. We conditioned the HLA type regression model on the following:  

rs112485576 (the top GWAS hit in the HLA locus), DQA1*03:01, DQA1*03:03 and the DRB1 

variant 13H. We have also adjusted for the PD PRS, to examine a potential polygenic effect 

(Supplementary Tables 5, 7). While the adjustment for the DRB1 variant 13H completely 

eliminated the associations in the DQA1 gene, adjustment for DQA1*03:01 and DQA1*03:03 did 

not completely eliminate the association of the DRB1 gene (Supplementary Table 5), again 

supporting this gene and these specific amino acids (11V, 13H and 33H, Table 3) as the drivers of 

the association in the HLA locus. Adjustment for PRS did not change the results. It is also worth 

noting that the DRB1 variants 11V (r2=0.96, D’=0.99), 13H (r2=0.99, D’=0.99), and 33H (r2=0.99, 

D’=0.99) are in LD with rs112485576. 
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Table 2. Meta-analyses of HLA haplotype association 

Haplotype Freq Cases Freq Controls OR (95% CI) P-valuea Direction HetPVal 

DQA1*03:01-

DQB1*03:02 
0.157 0.173 0.87 (0.82-0.93) 7.21e-05 +----+--- 

0.62 

DRB1*04:04- 

DQA1*03:01 
0.067 0.081 0.83 (0.76-0.91) 9.82e-05 +-------- 0.34 

DRB1*04:01- 

DQA1*03:03 
0.115 0.143 0.87 (0.81-0.94) 4.96e-04 +-------- 0.71 

Abbreviations. Freq Cases: Frequency of allele in patients; Freq Controls: Frequency of allele in 

controls; OR (95% CI): Odds ratio and 95% confidence interval; Direction: Direction of beta for 

each cohort; HetPVal: P-value of heterogeneity.  

a Bonferroni correction for multiple comparisons set the threshold for statistical significance to 

α=5.95x10-4. 

Table 3. Meta-analyses of HLA amino acid changes association. 

Amino Acid Freq Cases Freq Controls OR (95% CI) P-valuea Direction HetPVal 

DRB1 13H 0.289 0.331 0.87 (0.83-0.91) 4.32e-09 --------- 0.60 

DRB1 33H 0.289 0.331 0.87 (0.83-0.91) 4.32e-09 --------- 0.60 

DRB1 11V 0.302 0.342 0.87 (0.83-0.91) 8.22e-09 --------- 0.45 

Abbreviations. Freq Cases: Frequency of allele in patients; Freq Controls: Frequency of allele in 

controls; OR (95% CI): Odds ratio and 95% confidence interval; Direction: Direction of beta for 

each cohort; HetPVal: P-value of heterogeneity. P-value of heterogeneity.  

a Bonferroni correction for multiple comparisons set the threshold for statistical significance to 

α=7.86x10-5. 

Discussion 

In the current study, we performed a thorough analysis of the HLA region and examined its 

association with PD in the European population using a total of 12,137 patients, 14,422 proxy 
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patients and 351,953 controls. Following a series of regression models and conditional analyses, 

our results indicate that the drivers of the association in the HLA region are three amino acid 

changes specific of HLA-DRB1*04 subtypes, 11V, 13H and 33H (Figure 2). Two of these amino 

acid changes, 13H and 33H are in perfect LD, and 11V is in very strong LD with the other two 

variants. This study agrees with a smaller HLA sequencing study12 in 1,597 PD cases and 1,606 

controls which also observed a protective effect of DRB1*04 and the same amino acids, although 

it also reported additional associations with DRB1*01:01 and DRB1*10:01 which were not 

confirmed in the current study. Interestingly, the V-H-H motif at position 11V, 13H and 33H are 

central to the DRB1*04:01 heterodimer and contribute to peptide binding, notably through pocket 

P616 (Figure 2).  

Previous studies on the HLA genomic region in PD have reported associations of different 

genes and HLA types with PD, including HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1 and 

HLA-DRB5.10-15 The suggested association with HLA-DRB5 reported in the most recent PD 

GWAS is based on an expression quantitative trait locus (eQTL) analysis, as the top associated 

SNP in this region, rs112485576, was also associated with differential expression of HLA-DRB.6 

A previous study of 2,000 PD patients and 1,986 controls has implicated a non-coding variant 

(rs3129882) within HLA-DRA as driving the association with PD and suggested that this variant 

affects the expression of HLA-DR and HLA-DQ genes.11 Similarly, another study suggested that 

the same variant in HLA-DRA (rs3129882) is associated with differential expression of MHC-II 

on immune cells.17 While our study does not rule out this possibility, since the main variants 

driving the association are amino acid changes in DRB1*04 that will affect epitope binding ability, 

it is likely that the effect on PD risk is through these variants and not due to modified expression. 

Additional functional studies will be required to study this hypothesis.  
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The current study adds further support to the hypothesis suggesting an involvement of the 

peripheral and central immune system in PD. On top of the HLA locus, several other genes with 

potential roles in the immune system, including LRRK2 and potentially BST1,7,9 have been 

implicated in PD.6 In the periphery, there are notable changes in the immune system of PD patients 

compared to controls, as peripheral monocytes have differential expression of immune related 

proteins and markers.3 Whether these changes are drivers of the disease or a result of the disease 

is still undetermined, but accumulating evidence suggest that they can be part of the pathogenic 

process of PD. In the central nervous system, pathological studies suggest that microglia cells may 

have a central role in PD.18 Microgliosis is a prominent pathological finding in post-mortem brains 

of PD patients, and evidence suggest that microglia activation occurs early in the disease process 

and may be involved in the pathogenesis of PD.3 The specific contribution of HLA to these 

processes is still unclear and needs to be further studied.  

One intriguing possibility that may directly involve HLA with PD is the potential 

interaction of HLA-DRB1*04 with α-synuclein, notably an epitope surrounding p.S129. Recent 

data has shown that α-synuclein fragments can bind MHC and increase T cell reactivity.19 This 

activity is proinflammatory, involves both CD4 and CD8 cells and may occur before the onset of 

motor symptoms,19,20 suggesting an involvement of inflammation in early PD pathogenesis. 

Studying specific α-synuclein fragments has suggested that two major regions of α-synuclein may 

be associated with increased T cell reactivity in PD, with preferential CD4 activity: an N-terminal 

region involving amino acid p.Y39 and a C-terminal region surrounding amino acid p.S129, two 

important residues undergoing phosphorylation.19 The phosphorylation of p.S129 is particularly 

interesting as it is well known in promoting aggregation.21,22 Further analysis focused on the p.Y39 

region suggested an association with α-synuclein-specific p.Y39 T cell responses and HLA 
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DRB1*15:01 and DRB5*01:01 presentation. This association was abolished by phosphorylation, 

which reduced binding of p.Y39-phosphorylated α-synuclein.19,20 Other experiments by these 

authors have also suggested CD8+ T cells responses mediated by HLA-A11*01 presentation of 

epitopes in the same N-terminal region of α-synuclein. However, in the current study we could not 

confirm an association of these HLA types with PD.  

More interestingly in the context of our work, increased CD4+ T cell response to both 

p.S129 phosphorylated and unphosphorylated α-synuclein was also demonstrated, suggesting 

involvement of DQB1*05:01 and DQB1*04:02, as these alleles strongly bound these α-synuclein 

epitopes.19 These HLA alleles, however, are not associated with risk of PD in the current study. 

However, the authors reported in the supplementary data that DRB1*04:01 was also a selective 

and strong binder of the same α-synuclein epitope with p.S129, but only when the epitope was 

unphosphorylated.19 Notably, no other DRB1 alleles that were assayed in this study19  had 

increased binding affinity to α-synuclein epitope with p.S129, except for the DRB1*04:01 allele 

that was a strong binder only when unphosphorylated. Binding register analysis using Immune 

Epitope Database (IEDB) MHC-II Binding Prediction (http://tools.iedb.org/mhcii/) suggests that 

this epitope binds a 9 amino acid AYEMPSEEG core, with p.S129 at P6 position, a position 

postulated to be important based on our HLA-DR amino acid analysis presented above. As CD4+ 

T cell responses are generally stronger when epitopes are presented by HLA-DR versus HLA-

DQ,23 HLA-DRB1*04 responses to the p.S129 unphosphorylated form of α-synuclein could be 

dominant in individuals with HLA-DRB1*04, explaining the protective effect of this HLA subtype 

in PD. Additional experiments will be needed to further explore this hypothesis. 

Our study has several limitations. First, this study was performed on European populations, 

and the results may be limited to this population only. Additional studies in other populations are 
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required. Several studies on HLA types and PD have been performed in Asian populations,24-27 and 

the GWAS risk variant rs112485576 has a similar OR (0.85) in the largest Asian GWAS to date,28 

yet larger studies are required, as well as studies in other populations. An additional potential 

limitation of our study is its use of imputation rather than fully sequenced HLA types. Given the 

very high performance of the imputation tool when compared to full sequencing (Supplementary 

Table 2), the potential effect of imputation inaccuracies is likely small and should be diluted in our 

large sample size. In addition, we cannot rule out that other, rarer HLA types that were not included 

in the current analysis may also have a role in PD. An additional limitation of the current study is 

that by adjusting for sex we eliminate potential sex-specific effects. It is possible that specific HLA 

types are relevant in one sex more or less than the other, and this should be studied in larger, sex-

stratified cohorts.  

To conclude, our results suggest a role for the HLA-DRB1 gene in susceptibility for PD, 

and provide further evidence for the importance of the immune system in PD. Since the effect is 

small, it does not merit routine HLA typing in PD, but understanding the mechanism underlying 

this association may lead to better understanding of PD in general and offer new targets for future 

immune-related treatment. 

Methods 

Study population 

This study was designed as a meta-analysis of multiple cohorts, including a total of 13,770 PD 

patients, 20,214 proxy-patients and 490,861 controls, as detailed in Supplementary Table 1. In 

brief, we included cohorts and datasets from eight independent sources: International Parkinson's 

Disease Genomics Consortium (IPDGC) NeuroX dataset (dbGap phs000918.v1.p1, including 

datasets from multiple independent cohorts as previously described),29 McGill University 
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(McGill),30 National Institute of Neurological Disorders and Stroke (NINDS) Genome-Wide 

genotyping in Parkinson’s Disease (dbGap phs000089.v4.p2),31 NeuroGenetics Research 

Consortium (NGRC) (dbGap phs000196.v3.p1),11 Oslo Parkinson's Disease Study (Oslo), 

Parkinson's Progression Markers Initiative (PPMI), Vance (dbGap phs000394) and PD cases and 

proxy-cases from the UK Biobank (UKB). Proxy-cases are first degree relatives of PD patients, 

thus sharing ~50% of the patients’ genetic background and eligible to serve as proxies, as 

previously described.32 All cohorts were previously included in the most recent PD GWAS.6 Study 

protocols were approved by the relevant Institutional Review Boards and all patients signed 

informed consent before participating in the study. 

Pre-imputation genotype quality control 

In order to include only high-quality samples and SNPs, standard quality control (QC) was 

performed on all datasets individually using PLINK v1.9.33 Standard GWAS QC was done to filter 

out samples and SNPs with low call rate, heterozygote outliers along with gender mismatch as 

previously described.6 SNPs deviating from Hardy-Weinberg equilibrium were removed. Only 

samples of European ancestry clustering with HapMap v3 using principal component analysis 

were included as shown in Supplementary Figure 1. In order to exclude related individuals, we 

examined relatedness in each dataset separately, followed by relatedness test across all datasets 

combined, to exclude individuals who were included in more than one dataset. All individuals with 

pi_hat >0.125 were excluded using GCTA v1.26.0.34 

UK Biobank quality control 

For the analysis of the UKB data, unrelated participants of European ancestry (field 22006), with 

low missingness rate (field 220027) were included after exclusion of heterozygosity outliers as 

previously described.6. PD patients from the UK Biobank were included based on self-report (field 
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20002) or based on their International Classification of disease diagnosis code (ICD-10, code G20, 

field 41270). From the remaining participants, proxy-cases were defined as first degree relatives 

(parents or siblings, field 20112-20114) of patients with PD. Principal components were calculated 

using flashpca35 after excluding related individuals as described above. The control group was 

divided randomly to two groups of controls: one was included in the GWAS comparing PD 

patients from UKB and controls, and the second was included in the GWAS comparing proxy-

cases from UKB and controls. This division was done proportionally to the size of each GWAS. 

Imputation 

For SNP imputation of each dataset, we used the Michigan Imputation Server on the 1,000 

Genomes Project panel (Phase 3, Version 5) using Minimac3 and SHAPEIT v2.r790. Imputed UK 

Biobank genotyped data v3 were downloaded in July 2019. All variants with an imputation quality 

(r2) of >0.30 were labeled as soft calls and >0.80 were labeled as hard calls. Soft calls were only 

used together with the hard calls for polygenic risk score calculation (see below); hard calls were 

used for all other analyses. 

Association analysis of common variants on chromosome 6 

Prior to determining HLA types, we performed a simple association test of all SNPs located on 

chromosome 6, to verify that we identified the same hit in the HLA region as previously described.6 

For this purpose, we generated summary statistics of chromosome 6 for each dataset, and used 

logistic regression with an additive model adjusting for age at onset for patients and age at 

enrollment of controls, sex and population stratification (first 10 principal components) with 

PLINK v2.00a2LM (25 Oct 2019).33 The UK Biobank data was analyzed similarly using logistic 

regression adjusting for age, sex, the first 10 principal components and Townsend index to account 

for additional potential population stratification confounders. Finally, to harmonize effects in cases 
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and proxy-cases, summary statistics for proxy-cases were rescaled based on genome-wide 

association study by proxy (GWAX) as previously described.32 To meta-analyze the different 

datasets, we performed a fixed-effect meta-analysis using METAL with an inverse-variance-based 

model.36 

HLA locus analysis 

HLA imputation 

To impute specific HLA types for each individual, we inferred two field resolution HLA alleles 

using HIBAG v1.22.0, a statistical method for HLA type imputation in R.37 HIBAG was shown to 

be as accurate or more accurate in Europeans compared to other types of HLA imputation tools.38 

HIBAG provided a reference panel for Europeans (n = 2,572) with high imputation accuracy for 

HLA-A, HLA-B, HLA-C, class I genes, and HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1, 

class II genes. HLA-DRB3, HLA-DRB4 and HLA-DRB5 imputation models were trained using 

HIBAG37 on European origin sample training set (n = 3,267) genotyped on the Illumina Infinium 

PsychArray-24 chip and fully sequenced at 8-digit resolution for HLA loci. These models were 

validated in a test set (n=886) with high accuracy (Supplementary Table 2). Imputation accuracy 

for European DRB1*04 alleles was determined for DRB1*04:01 DRB1*04:02 DRB1*04:03, 

DRB1*04:04, DRB1*04:05, DRB1*04:07, DRB1*04:08. Alleles with an imputation probability of 

<0.5 were defined as undetermined and individuals with two or more undetermined alleles were 

excluded from the analysis (Supplementary Table 1 details the numbers included for each allele in 

each cohort after all quality control steps). To further examine imputation accuracy, the results of 

the DRB1 imputation were compared against high throughput HLA sequencing in 380 PD samples 

from Oslo. The combined frequency of seven different DRB1*04 alleles detected in sequence data 

was 0.15 with the 04:01 and 04:04 alleles being the most common (Supplementary Table 3). 
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Imputation accuracy for DRB1*04 alleles was very high at 2-digit resolution (Supplementary 

Table 4). 

Statistical analysis 

To examine the association of HLA alleles with PD, we used R v3.6 to perform logistic regression, 

adjusting for age at onset, sex and the first 10 principal components. The UK Biobank dataset was 

also adjusted for Townsend index. Haplotype analyses were performed using haplo.stats in R with 

logistic regression as stated above. Only haplotypes with posterior probability >0.2 and carrier 

frequency of >1% were included in the analysis. Amino acid association analyses were performed 

using HIBAG after converting P-coded alleles to amino acid sequences for exon 2, 3 of HLA class 

I genes and exon 2 of class II genes. Amino acid associations were tested using logistic regression 

as described above. A polygenic risk score (PRS) was calculated using PRSice v 2.2.11 without 

linkage disequilibrium (LD) clumping or P thresholding.39 The beta weights from the summary 

statistics of the 90 genome-wide significant variants in the latest PD GWAS6 were used in the PRS. 

To make sure that all possible variants were included in the PRS analysis, we also performed 

imputation using the Haplotype Reference Consortium panel (HRC) (Version r1.1 2016) with 

Minimac4 and Eagle v2.4. Ambiguous variant (rs6658353) and rs112485576 from the HLA region 

were excluded from the PRS calculation. To examine whether secondary hits exist in the HLA 

region, we adjusted for significant HLA variants, HLA alleles, HLA amino acid changes and PRS, 

by introducing significant findings from the first analyses as covariates in the regression models. 

Statistical analyses were only performed on alleles, haplotypes and amino acid changes with more 

than 1% carrier frequency. P value significance levels were adjusted using Bonferroni correction. 

Meta-analysis was performed as described above. All missing data were excluded from the 

analyses. 
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Code availability 

The scripts used in this analysis is available at https://github.com/gan-orlab/HLA_HIBAG/. 

Data availability  

Anonymized data will be shared by request from any qualified investigator. 

  

https://github.com/gan-orlab/HLA_HIBAG/
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Preface to Chapter 4 

In Chapter 4, I plan to investigate the role of the HLA locus in both RBD and DLB. Although the 

association between HLA and RBD and DLB is not yet clear, previous studies have indicated the 

presence of neuroinflammation in these conditions. 

Neuroinflammation, characterized by the activation of immune cells in the central nervous 

system, has been implicated in various neurodegenerative disorders, including RBD and DLB. The 

HLA locus, with its involvement in immune response and antigen presentation, is a potential 

candidate for further investigation in relation to these disorders. 

This study aims to conduct the largest HLA fine-mapping analyses of RBD and DLB to 

date. By analyzing the genetic variations within the HLA locus, there will be a better understanding 

of its potential role in RBD and DLB. The fine-mapping approach allows for a more detailed 

examination of specific HLA alleles, variants, or residues that may be associated with these 

conditions. 

Through this research, I aim to contribute to the current knowledge on the involvement of the HLA 

locus in RBD and DLB. By uncovering potential associations and identifying specific HLA 

variants or residues, we may gain valuable insights into the underlying mechanisms of 

neuroinflammation and its impact on these disorders. This information can potentially guide future 

studies, help develop targeted therapies, and improve our understanding of RBD and DLB 

pathogenesis. 
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Abstract 

Background and Objectives  

Isolated/idiopathic REM sleep behavior disorder (iRBD) and Lewy body dementia (LBD) are 

synucleinopathies that have partial genetic overlap with Parkinson's disease (PD). Previous studies 

have shown that neuroinflammation plays a substantial role in these disorders. In PD, specific 

residues of the human leukocyte antigen (HLA) were suggested to be associated with a protective 

effect. This study examined whether the HLA locus plays a similar role in iRBD, LBD and PD. 

Methods 

We performed HLA imputation on iRBD genotyping data (1,072 patients and 9,505 controls) and 

LBD whole-genome sequencing (2,604 patients and 4,032 controls) using the multi-ethnic HLA 

reference panel v2 from the Michigan Imputation Server. Using logistic regression, we tested the 

association of HLA alleles, amino acids and haplotypes with disease susceptibility. We included 

age, sex and the top 10 principal components as covariates. We also performed an omnibus test to 

examine which HLA residue positions explain the most variance.  

Results 

In iRBD, HLA-DRB1*11:01 was the only allele passing FDR correction (OR=1.57, 95% CI=1.27-

1.93, p=2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR=1.26, 

95%CI=1.12-1.41, p=8.76e-05), 70Q (OR=0.81, 95% CI=0.72-0.91, p=3.65e-04) and 71R 

(OR=1.21, 95% CI=1.08-1.35, p=1.35e-03). In HLA-DRB1, position 71 (pomnibus=0.00102) and 70 

(pomnibus=0.00125) were associated with iRBD. We found no association in LBD. 

Discussion 

This study identified an association between HLA-DRB1 11:01 and iRBD, distinct from the 

previously reported association in PD. Therefore, the HLA locus may play different roles across 
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synucleinopathies. Additional studies are required better to understand HLA's role in iRBD and 

LBD.  

Introduction  

Isolated/idiopathic REM sleep behavior disorder (iRBD) is a prodromal synucleinopathy 

characterized by enactment of dreams, vocalization and absence of muscle atonia during REM 

sleep.1 iRBD is one of the strongest predictors for certain neurodegenerative disorders, as 

approximately 80% of patients will convert to Parkinson's disease (PD), Lewy body dementia 

(LBD) or multiple system atrophy (MSA) after 10-15 years on average following iRBD diagnosis.2 

Previous evidence has shown that iRBD and synucleinopathies share a partial genetic 

overlap.3 While specific loci (SNCA, GBA, TMEM175) were shared between these traits, distinct 

loci such as LRRK2 and MAPT for PD and APOE LBD were also identified.3 Furthermore, while 

the SNCA locus is important in PD, LBD and iRBD, the association with SNCA is driven by 

different variants for the different traits.3 Similar phenomenon occurs in the SCARB2 locus, where 

different variants are associated with PD or RBD.3 Understanding the shared genes and pathways 

and the genetic differences will lead to better characterization of these disorders. For instance, 

microglial activation, a form of neuroinflammation, was found in all these disorders.4-6 However, 

the role of the immune system in their pathophysiology is poorly understood. 

Recently, a fine-mapping study of the human leukocyte antigen (HLA) locus in PD 

demonstrated a strong association of HLA-DRB1 amino acids 11V, 13H and 33H with reduced 

PD risk.7 Located on chromosome 6, the HLA locus is a highly polymorphic region with 

complicated linkage patterns. HLA plays an essential role in the adaptive immune system by 

presenting antigens to T-cells.  
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Since the role of the HLA locus is unknown in iRBD and LBD, this study aims to examine 

whether HLA variants may affect the risk for these disorders. We analyzed the association of 

different HLA alleles, haplotypes and amino acids in two cohorts of iRBD and LBD patients.  

Table 1: Study population after quality control. 

Variable Isolated REM sleep behavior 

disorder 

Lewy body dementia 

Patients 

(n = 1,072) 

Controls 

(n = 9,505) 

Patients 

(n = 2,604) 

Controls 

(n = 4,032) 

Age (years), (SD) 60.54 (11.06) 63.49 (16.59) 74.36 (11.76) 72.63 (16.99) 

Male, number (%) 860 (80.22) 4824 (50.75) 1656 (63.59) 1967 (48.78) 

SD, standard deviation; n, number 

Methods 

Study population 

iRBD and LBD cohorts from two previous genome-wide association studies (GWAS) were 

included in this analysis (Table 1).3,8 iRBD patients were diagnosed according to the International 

Classification of Sleep Disorders (2nd or 3rd Edition) with video polysomnography. LBD was 

diagnosed according to consensus criteria, as described elsewhere.8-10 The iRBD cohort is 

composed of 1,072 patients and 9,505 controls with genotyping data from the OmniExpress 

GWAS chip (Illumina inc.). The control group includes six publicly available cohorts: controls 

from the International Parkinson's Disease Genomics Consortium (IPDGC) NeuroX dataset 

(dbGap phs000918.v1.p1), National Institute of Neurological Disorders and Stroke (NINDS) 

Genome-Wide genotyping in Parkinson's Disease (dbGap phs000089.v4.p2), NeuroGenetics 

Research Consortium (NGRC) (dbGap phs000196.v3.p1), Parkinson's Progression Markers 

Initiative (PPMI) and Vance (dbGap phs000394).  
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The LBD cohort consisted of 2,604 patients and 4,032 controls with whole-genome 

sequencing data as described elsewhere.8 Study participants signed informed consent forms and 

the Institutional Review Board at McGill University approved the study protocol. 

Quality control 

We performed standard GWAS quality control steps for both cohorts using PLINK v1.90. We 

excluded variants that were heterozygosity outliers (|F| > 0.15), sample call rate outliers (<0.95) 

and samples failing sex checks were also excluded. We determined genetic ancestry by merging 

samples with HapMap3 and clustering with principal components analysis (PCA). We only 

selected samples of European ancestry. A relatedness check was performed with GCTA11 to 

remove third-degree relatives or closer ones. Then, we performed several variant-level filtrations, 

such as removing call rate outliers (<0.95) and variants with significantly different missingness 

between cases and controls (p<0.0001). We also excluded variants that failed PLINK –test-mishap 

(p<0.0001) and deviated from Hardy-Weinberg equilibrium (p<0.0001) in controls.  

HLA imputation 

Samples passing quality control were imputed on the Michigan Imputation Server with the four-

digit multi-ethnic HLA reference panel v212 using Minimac4 and phased with Eagle v2.4. This 

reference panel is composed of five global populations (n=20,349). Only alleles with imputation 

score (r2) above 0.8 were included.  We determined HLA haplotypes using haplo.stats R package 

(https://analytictools.mayo.edu/research/haplo-stats/), which employs an Expectation–

maximization (EM) algorithm. 

Power calculations 

We performed power calculations online for each cohort using CaTS to compute statistical power. 

(https://csg.sph.umich.edu/abecasis/gas_power_calculator/). We assumed a prevalence of 1% for 

https://csg.sph.umich.edu/abecasis/gas_power_calculator/
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iRBD13 and 4% for LBD14. In iRBD, we had enough statistical power (>0.8) to detect an 

association (p=0.0005) with an odd ratio of 1.6 with a minor allele frequency (MAF) of 0.05. In 

LBD, we had enough statistical power (>0.8) to detect an association (p=0.0005) with an odd ratio 

of 1.4 with a MAF of 0.05. 

Statistical analysis 

We performed logistic regression with an additive model on each HLA allele, haplotype and amino 

acid after adjusting for age at onset, sex and the top 10 principal components. We also performed 

an Omnibus test using the OMNIBUS_LOGISTIC module from HLA-TAPAS.12 All rare 

associations (carrier frequency < 1%) were excluded. A 5% false-discovery rate (FDR) for 

multiple testing was applied. 

Data availability 

Anonymized data not published within this article will be made available by request from any 

qualified investigator. 

Code availability 

All scripts used in this study can be found at https://github.com/gan-orlab/HLA_syn. 

Results 

After HLA imputation, we examined the association of HLA alleles, haplotypes and amino acids. 

HLA-DRB1*11:01 was the only allele passing FDR correction (OR=1.57, 95% CI=1.27-1.93, 

p=2.70e-05, Table 2). In addition, HLA-DRB1 70D, an amino acid present in DRB1*11:01, was 

associated with iRBD (OR=1.26, 95%CI=1.12-1.41, p=8.76e-05). We also found association with 

70Q (OR=0.81, 95% CI=0.72-0.91, p=3.65e-04 and 71R (OR=1.21, 95% CI=1.08-1.35, p=1.35e-

03). In HLA-DRB1, positions 71 (pomnibus=0.00102) and 70 (pomnibus=0.00125) were the most 

https://github.com/gan-orlab/HLA_syn
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associated with iRBD. DRB1*11:01 also tags three haplotypes: 

DQA1*05:01~DQB1*03:01~DRB1*11:01 (OR=1.40, 95%CI=1.16-1.70, p=5.17e-04), 

DQA1*05:01~DRB1*11:01 (OR=1.41, 95%CI=1.16-1.72, p=5.43e-04), 

DQB1*03:01~DRB1*11:01 (OR=1.36, 95%CI=1.13-1.64, p=1.04e-03).  

Table 2: HLA association in isolated REM sleep behavior disorder 

 MAF in 

cases 

MAF in 

controls 

OR 95% CI p p (FDR) 

Alleles 

HLA-DRB1*11:01 0.0726 0.0472 1.57 1.27-1.93 2.70e-05 2.75e-03 

Amino acids 

HLA-DRB1 70D 0.505 0.444 1.26 1.12-1.41 8.76e-05 2.09e-02 

HLA-DRB1 70Q 0.440 0.503 0.81 0.72-0.91 3.65e-04 4.41e-02 

HLA-DRB1 71R 0.545 0.496 1.21 1.08-1.35 1.35e-03 4.41e-02 

Haplotype 

DQA1*05:01~DQB1*03:01~DRB1*11:01 0.0924 0.0657 1.40 1.16-1.70 5.17e-04 2.85e-02 

DQA1*05:01~DRB1*11:01 0.0933 0.0652 1.41 1.16-1.72 5.43e-04 2.85e-02 

DQB1*03:01~DRB1*11:01 0.0989 0.0707 1.36 1.13-1.64 1.04e-03 3.64e-02 

MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; p, p-value; FDR, false 

discovery rate for each group 

When we repeated the analysis at one-field (two-digit) resolution, e.g., treating 

DRB1*11:01 and 11:04 as the same, the association of DRB1*11 was not significant (p=0.004, 

Supplementary Table #1), suggesting that it is specifically the DRB1*11:01 allele associated with 

RBD. For LBD, no association was statistically significant after correction for multiple 

comparisons. We also examined the association of HLA-DRB1 33H, which was previously 

reported to be associated with PD (Supplementary Table #3).7 The MAFs of HLA-DRB1 33H in 

iRBD cases and controls were 0.125 vs. 0.149, respectively (p=0.499). Meanwhile, the DRB1 33H 

allele frequency in both LBD cases and its controls was 0.145. 
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Discussion 

This study shows an association between DRB1*11:01, DRB1 70D, 70Q and 71R on iRBD. We 

also identified HLA-DRB1 positions 71 and 70 via an omnibus test, which suggests that residues 

at those positions explain a large amount of variance. HLA-DRB1 position 70-74 is a strong risk 

factor for rheumatoid arthritis and is referred to as a "shared epitope" (SE).15 The SE, in 

combination with DRB1 11V, was associated with a protective effect for PD.16 The SE is 

composed of a Q/R-K/R-RAA sequence with important antigen-binding grooves. However, 11:01 

does not have the SE and there was no association between alleles with the SE (01:01, 01:02, 04:01, 

04:04, 04:05, 04:08, 10:01)16 and iRBD. These findings indicate that the effects of position 70 and 

71 may be independent of the SE. Additional studies examining the role of HLA-DRB1 in PD and 

iRBD will be necessary. 

 In addition, DRB1 33H, a variant also associated with PD, was not significantly associated 

with iRBD or LBD. However, the difference in carrier frequency between iRBD cases and controls 

for DRB1 33H, similar to that seen in PD, suggests that our study may lack the power to detect 

this association in iRBD. A recent study has suggested a shared mechanism between PD, AD, 

amyotrophic lateral sclerosis and HLA-DRB1*04, harboring the 33H amino acid change.17 This 

subtype was associated with decreased neurofibrillary tangles in post-mortem brains. It also binds 

to a K311 acetylated Tau PHF6 sequence.17 These results exemplify the possibility of different 

HLA types with specific genetic variants that may affect the binding of substrates relevant for 

neurodegenerative disorders and activating inflammatory response. 

We could not replicate the association of a previous study of HLA antigens with 25 iRBD 

cases. This study showed a significant association between iRBD and DQB1*05 and DQB1*06.18 

The most likely explanation for the discrepancy is that the previous study had reduced power to 
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detect a true effect. Another study has suggested that HLA-DR expression was associated with 

iRBD.19 Fine-mapping and colocalization studies for these findings will be required once larger 

datasets of iRBD become available. Whether the mechanism underlying the associations with PD 

and iRBD is through functional effects of specific amino acid changes or due to different 

expressions of HLA genes in various brain tissues is still to be determined. 

Although the role of the immune system in synucleinopathies is still unclear, some 

potential mechanisms of effect may exist. The varying effects of HLA between prodromal and 

clinical stages could be associated with HLA presenting different antigens in different brain 

regions. In LBD 20 and iRBD 21, activated CD4+ T-cells were shown to be dysregulated and 

associated with neuronal damage.  

Another possibility is that the varying effects between iRBD and PD originate in the 

gastrointestinal tract.22 For example, constipation, a common symptom in the early stages of PD, 

can aggravate or be caused by gut inflammation. In iRBD patients, one study showed a prevalence 

of constipation between 18-41%.22 Gut bacterial antigens can be exposed from aging-related 

depletion of the gut lining. 23 HLA alleles may induce an immune response to self-proteins from 

these antigens.  

Our study has several limitations. First, future replication studies with larger cohorts would 

be needed to increase statistical power since we do not have a replication cohort. Note that we used 

the most extensive available cohorts for iRBD and LBD.3,8 Due to the polygenicity of the HLA 

locus, various populations have different HLA allele frequencies. This study was done only on 

samples with European ancestry, and multi-ancestry analysis could provide more refined evidence 

on the role of HLA in synucleinopathies. The cohorts used in the study were also not matched for 

age and sex. However, we adjusted for these variables in the analysis. 
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To conclude, we found an alternative HLA association of iRBD compared to PD and LBD. 

More experimental evidence is necessary to characterize the genetic landscape of 

synucleinopathies and the role of the immune system. 
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Preface to Chapter 5 

In Chapter 5, I nominated candidate genes within each PD GWAS locus. While current PD studies 

often focus on well-established genes, this study takes a different approach by utilizing a machine 

learning model to prioritize genes from lesser-studied loci. 

To accomplish this, I collected and integrated various types of data, including genetic, 

transcriptomic, and epigenetic information. This diverse dataset was used to train a machine 

learning model capable of predicting the most likely candidate genes within the PD GWAS loci. 

By combining multi-omic data, I aimed to improve the accuracy and reliability of the predictions. 

Post hoc analyses were conducted to validate the identified candidate genes and pathways. 

These analyses involved assessing the functional relevance of the nominated genes, investigating 

their expression patterns, and exploring their potential involvement in biological pathways and 

processes associated with PD. By performing these additional analyses, I aimed to strengthen the 

validity of the nominated genes and provide further insights into their potential roles in PD. 

By incorporating machine learning techniques and integrating various omics data, this 

study aimed to shed light on lesser-studied genes within the PD GWAS loci. The identification 

and validation of candidate genes and pathways within these loci have the potential to expand our 

understanding of the underlying mechanisms of PD and contribute to the development of novel 

therapeutic targets. 

It is worth noting that the success and significance of the study's findings will depend on 

the quality and representativeness of the data used for training the machine learning model, as well 

as the rigor of the post hoc analyses conducted to validate the nominated genes and pathways. 
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Abstract 

There are 78 loci associated with Parkinson’s disease (PD) in the most recent genome-wide 

association study (GWAS), yet the specific genes driving these associations are mostly unknown. 

Herein, we aimed to nominate the top candidate gene from each PD locus, and identify variants 

and pathways potentially involved in PD. We trained a machine learning model to predict PD-

associated genes from GWAS loci using genomic, transcriptomic, and epigenomic data from brain 

tissues and dopaminergic neurons. We nominated candidate genes in each locus, identified novel 

pathways potentially involved in PD, such as the inositol phosphate biosynthetic pathway (INPP5F, 

IP6K2, ITPKB, PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved 

in PD, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol 

biosynthetic pathway are associated with PD. Functional studies are needed to further study the 

involvements of these genes and pathways in PD. 

Introduction 

Genome-wide association studies (GWAS) have nominated many variants associated with 

complex traits. In Parkinson’s disease (PD), the most recent GWAS revealed 90 independent risk 

variants across 78 genomic loci. 1 Although many single-nucleotide polymorphisms (SNPs) are in 

novel genomic loci, well-established PD genes discovered decades ago, such as LRRK2, PINK1, 

PARK7, SNCA, GBA1, PRKN and MAPT still account for the vast majority of research on 

Parkinson’s disease.  

Several disadvantages of GWAS limit additional functional analyses. First, above 90% of 

GWAS significant SNPs are in noncoding regions. 2 These SNPs are often passenger variants due 

to complex linkage disequilibrium (LD). Second, the causal gene associated with the causal SNPs 

remains unclear in most GWAS loci. Downstream GWAS analyses were developed to overcome 
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these challenges by prioritizing causal genes at GWAS loci. For example, fine-mapping and 

colocalization methods aim to nominate causal SNPs, and methods such as transcriptome-wide 

association studies nominate gene-trait association. These models use LD structure, and gene 

expression panels to discover causal SNP/genes.3-5 Although these methods suggest causal variants 

and genes, additional biological evidence is often required to pair causal variants with causal genes. 

Multi-omic analyses can integrate a diverse range of comprehensive cellular and biological 

datasets such as genomic, transcriptomic and epigenetic datasets. Using this approach, platforms 

such as Open Target Genetics performed systematic analyses of gene prioritization across all 

publicly available GWASs.6 However, Open Target Genetics lacks relevant disease-specific 

tissues such as dopaminergic neurons and microglia for PD. Using a similar approach, we may 

discover additional pathways and genetic targets involved in PD.  

In this study, we leveraged disease-relevant multi-omic datasets relevant to PD in our 

machine-learning model (Figure 1). We trained this model on well-established PD genes to 

nominate causal genes from PD GWAS loci. 
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Figure 1: Workflow summary. 

This figure describes the analyses performed in this study.  

Results 

Machine learning model nominates PD-associated genes in each PD locus 

We used well-established PD-associated genes from the PD GWAS (GBA1, LRRK2, SNCA, GCH1, 

MAPT, TMEM175, VPS13C) as positive labels, and the other genes from the same loci (n=205) 

were used as negative labels (i.e. genes that are unlikely to be involved in PD). The machine 

learning model identified the best predictive features, and then each gene received a probability 

score to be the gene driving the association in each locus (Supplementary Table 1). Overall, after 



114 
 

removing the redundant features, the model performance increased from 0.66 to 0.82. We used 

average precision as an evaluation function to maximize the sensitivity of the model. We then 

nominated the top-scoring genes in each locus (Supplementary Table 1, Figure 2). Two genes, 

MAPT and TOX3, were nominated twice in neighboring loci that harbor them, bringing the total 

number of genes nominated in this model to 76 genes in 78 loci. 48 of the 76 genes (63%) had a 

probability score higher than 0.75. Of note, five genes (NEK1, FDFT1, PSD, BAG3 and SLC2A13) 

that were ranked second in their respective loci also had a probability score > 0.75. However, the 

nominated genes in their loci (CLCN3, CTSB, GBF1, INPP5F and LRRK2, respectively) all had 

probability scores >0.94. In seven other loci the top nominated genes had an especially low 

probability score (<0.3), including RBMS3, HIST1H2BL, TRIM40, EHMT2, RPS12, MICU3 and 

ITGA8.  

 

Figure 2: Probability score of the Parkinson’s disease GWAS candidate genes 

The probability score from the machine learning model for each locus in the Parkinson’s disease 

sorted in descending order. For each gene, the top non-distance feature was used to color the 

data. Variant severity is calculated from the Variant Effect Predictor (VEP) IMPACT rating 
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which is based on the classification of the severity of the variant consequence. SOX6 GFRA2, 

SOX6 AGTR1, CALB1 PPP1R17 correspond to gene expression from subclusters nominated by 

Kamath et al. 

 

Figure 3: Feature importance for the Parkinson’s disease GWAS gene prioritization model 

A) Bee-swarm plot of feature importance using SHAP values along with the distribution of genes 

based on feature value B) Heatmap of feature importance using SHAP value for the top 

candidate gene in each locus. The plot at the top represents the probability score of each gene. 

The bar plot on the right shows the relative importance of each feature. Abbreviations for each 

feature can be found in Supplementary Table 2. 
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Gene expression in specific PD-associated dopaminergic neuron subtypes is an important 

feature predicting PD-relevant genes 

Next, we sought to determine which features of the model contributed the most to the prediction, 

by using Shapley Additive exPlanations (SHAP) values.7,8 SHAP values provide, for each gene, 

the relative contribution of each feature to the selection of that gene. The most important features 

for the scoring of each gene are shown in Figure 3A. Distance-related features, such as distance 

from the top-associated SNP in the locus to the transcription start site or distance to the beginning 

of the gene, were the most important features in our model, as expected.6 Then, the next most 

important feature was the Variant Effect Predictor (VEP) value, followed by additional distance 

measures. Interestingly, the following top features were expression is a specific dopaminergic cell 

subtypes, marked by the expression of the genes GFRA2 and AGTR1. The latter is a specific 

subtype of dopaminergic neurons shown by Kamath et al. to be selectively degenerated in brains 

of PD patients.9 The remaining features include expression in other dopaminergic cell 

subpopulation, expression quantitative trait loci (eQTLs) and others. Epigenetic features were not 

predictive in our model. As shown in Figure 3B, all nominated genes had at least one of the 

distance features contributing to their selection. Among the candidate genes in each locus, 

missense SNPs contributed to the score of two candidate genes: SPNS1 (p.L563V, rs7140) and 

MLX (p.Q139R, rs665268), on top of the known contribution of missense variants in GBA1, 

LRRK2 and GCH1. SPNS1 and MLX have not been previously implicated in PD, and the important 

features for these two genes are shown in Figure 4. 
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Figure 4: Waterfall plots for Parkinson’s disease GWAS candidate genes 

Importance of the top 10 features using SHAP values for different candidate genes. E[f(x)] is the 

base score for each gene. f(x) is the final score after accounting for all features. Abbreviations for 

each feature can be found in Supplementary Table 2. 
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Differential gene expression of genes from the inositol phosphate biosynthetic pathway and 

MLX1 in PD 

To further establish the importance of the nominated genes in PD, we examined whether they 

could be differentially expressed in PD, using expression data from single-cell RNAseq and bulk 

RNAseq datasets from Kamath et al9 and FOUNDIN-PD.10 of the genes of interest, INPP5F 

(average log fold change[FC] = −7.22, p = 2.90e-31) and MLX (average log FC = -1.80, p = 2.23e-

4) were associated with PD in the data from Kamath et al (Supplementary Table 3).9 In FOUNDIN-

PD10, we found differential expression of INPP5F (average log FC = 0.070, p = 1.89e-19) and 

IP6K2 (average log FC = −0.076, p = 1.35e-35) in scRNA data from dopaminergic neurons by 

comparing PD and control (Supplementary Table 4). Results from the bulk RNAseq analysis can 

be found in Supplementary Table 5.  

Structural analysis of SPNS1 and MLX 

Since nonsynonymous variants in SPNS1 and MLX were identified as major contributors to their 

selection as the nominated genes in their loci, we aimed to examine the potential consequences of 

these variants by performing in silico structural analyses. SPNS1 encodes a transporter for 

phospholipids at the lysosome membrane.11 It mediates the efflux of lysophosphatidylcholine and 

lysophosphatidylethanolamine out of the lysosome. The SNP rs7140 is located in the 3’-

untranslated region (UTR) of the canonical splice variant 1 transcript, which produces the 528 a.a. 

isoform that has been investigated functionally11 (Uniprot #Q9H2V7). This canonical isoform has 

also been observed in numerous proteomics datasets in gpmDB 

(https://gpmdb.thegpm.org/index.html). However, six other potential isoforms generated by 

alternative splicing have been predicted, including a 538 a.a. fragment with an alternative C-

terminus where the rs7140 SNP is located within the coding region (Uniprot #H3BR82). The 
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rs7140 variant results in the p.L512M mutation in this isoform. To determine the impact of this 

mutation on the function of this SNPS1 isoform, we inspected the 3D structure model generated 

by AlphaFold.12 Leu512 is located in the unstructured C-terminus of this membrane-bound protein, 

on the lumenal side of the membrane (Figure 5A). The role of the C-terminus in this isoform of 

SPNS1 remains unclear, and thus the impact of the p.L512M mutation is unknown. 

The Max-like protein (MLX) is at the heart of a transcriptional network pathway involved 

in energy metabolism and cell signalling.13,14 It interacts with at least 6 other related proteins 

including the MAD family of transcriptional repressors and the Mondo family of transcriptional 

activators. These proteins contain basic/helix-loop-helix/leucine zipper (bHLHZ) domains that 

form heterodimers and interact with DNA carrying the CACGTG E-box motif. To understand the 

impact of the p.Q223R MLX mutation on its activity, we modeled the structure of MLX 

heterodimers with both the MAD and Mondo families using AlphaFold. MLX dimerizes with 

MAD1,14 and thus we superposed its bHLHZ domain on the MAD1-MAX-DNA complex crystal 

structure15 to generate the ternary complex models. The model shows that Gln223 in MLX is at 

the end of the dimerization “zipper” helix (Figure 5B). The mutation p.Q223R induces the 

formation of a salt bridge with Glu139 in MAD1, which could strengthen the interaction. This 

could then downregulate the interaction of MAD1 with MAX through competition, and thus affect 

the extent of the transcriptional repression. Glu139 is not conserved in other MAD-related proteins 

such as MXI1 and MAD3/4. Furthermore, the model of MLX interacting with MLXIP, a protein 

of the Mondo family also known as MondoA,16 shows that the mutation may negatively affect the 

formation of this heterodimer by introducing a charge next to a hydrophobic sidechain (Figure 5C). 

The nuclear localization of Mondo proteins is dependent on their interaction with MLX,13 and thus 
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the mutation may down regulate activation by the Mondo family while strengthening repression 

via MAD1. 

 

Figure 5: Structural analysis of SPNS1 p.L512M and MLX p.Q223R 
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A) Alphafold prediction of the structure of the lysophospholipid transporter SPNS1 (alternative 

isoform, Uniprot #H3BR82). The mutation p.L512M would take place in the lumen of the 

lysosome. B) AlphaFold model of the MAD1-MLX heterodimer superposed on the structure of 

the MAD1-MAX-DNA complex (PDB 1NLW). The inset is a zoom on the MLX p.Q223R 

mutation, displaying the effect that the mutation may have on the interaction with the MAD1 

protein. C) AlphaFold model of the MLXIP-MLX heterodimer superposed on the structure of the 

MAD1-MAX-DNA complex, as described above. Note that AlphaFold also predicts an interaction 

between the C-termini of MLXIP and MLX (but not MAD1 and MLX).  

Gene enrichment nominates the inositol phosphate biosynthetic pathway as a novel 

pathway involved in PD 

We further aimed to examine if the nominated genes highlight specific pathways and mechanisms 

that may be involved in PD. We performed a pathway enrichment analysis by examining over-

representation of the nominated genes in biological processes and cellular components using the 

top genes in each locus. Among the biological processes passing false discovery rate (FDR) 

correction, the inositol phosphate biosynthetic process (GO:0032958) and polyol biosynthetic 

process (GO:0046173) were strongly enriched (Figure 6A). Inositol is associated with 4 candidate 

genes: ITPKB, IP6K2, PPIP5K2 and INPP5F. Feature importance of ITPKB, IP6K2, PPIP5K2 

and INPP5F are shown in Figure 4. Cellular components such as exocytic vesicle (GO:0070382), 

and dendritic tree (GO:0097447) were also identified in the gene enrichment analysis (Figure 6B). 
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Figure 6: Volcano plots of Gene Ontology biological processes and cellular components.  

Volcano plots of gene-set enrichment analysis using WebGestalt showing the log of the FDR 

versus the enrichment ratio. P-value are calculated using a hypergeometric test. All named 

pathways after significant after FDR correction. 
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Pathway specific polygenic risk score of the inositol phosphate biosynthetic pathway is 

associated with PD  

To further study the association between the putative, novel PD pathways and PD status, pathway-

specific polygenic risk scores (PRS) were calculated. The association between these PRS and PD 

was examined in six PD cohorts, followed by a meta-analysis as detailed in the Methods section. 

One outlier cohort was excluded due to heterogeneity. The pathway specific PRS were first 

calculated using all the genes in that pathway. Then, to further validate that the specific pathway 

is indeed important in PD, we excluded the genes nominated by our machine learning pathway 

and re-calculated the PRS. By removing these genes, that has GWAS significant signals, we could 

examine the residual effect of the remaining of the pathway. The inositol phosphate biosynthetic 

pathway was associated with PD even after excluding the genes nominated in our analysis (OR 

1.06, 95% CI 1.03-1.09, p=7.01E-05), as well as other related pathways (Table 1). Forest plots of 

pathway specific PRS can be found in Supplementary Figure 1.  

Table 1: Meta-analyzes of pathway-specific polygenic risk scores 

Pathway-specific PRS OR 95% CI P Het P 

POLYOL_BIOSYNTHETIC_PROCESS 1.20 1.17-1.24 2.07E-42 1.91E-05 

INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS 1.15 1.12-1.18 2.36E-25 1.97E-02 

POLYOL_BIOSYNTHETIC_PROCESS_filtered 1.09 1.06-1.12 1.04E-09 1.12E-02 

INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS_filtered 1.06 1.03-1.09 1.31E-05 1.45E-01 

PRS: Polygenic risk score, OR: odds ratio, CI: confidence interval; P: p-value, Het: 

Heterogeneity, filtered: excluded Parkinson’s disease top gene, 

GOBP_INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS: GeneOntology inositol 

phosphate biosynthetic process (GO:0032958), 

GOBP_POLYOL_BIOSYNTHETIC_PROCESS: GeneOntology polyol biosynthetic process 

(GO:0046173).  
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Table 2: Meta-analysis of rare variant analysis of putative causal genes 

Set P FDR P 

GBA_Rarefunctional 2.04E-12 6.22E-10 

GBA_Rarenonsyn 3.38E-11 5.15E-09 

GBA_RareLOF 1.22E-06 1.24E-04 

GBA_RareCADD 2.32E-06 1.77E-04 

LSM7_RareLOF 3.69E-06 2.25E-04 

KCNIP3_RareLOF 1.12E-05 5.69E-04 

GCH1_RareLOF 2.02E-05 8.80E-04 

LRRK2_RareCADD 6.07E-05 2.31E-03 

Polyol_Rarefunctional 1.59E-04 5.38E-03 

Polyol_Rarenonsyn 2.86E-04 8.74E-03 

NUCKS1_RareCADD 4.13E-04 1.14E-02 

Polyol_RareLOF 1.54E-03 3.91E-02 

SYT17_Rarenonsyn 4.61E-03 9.37E-02 

P2RY12_RareLOF 4.38E-03 9.37E-02 

CYLD_RareLOF 4.48E-03 9.37E-02 

SYT17_Rarefunctional 7.39E-03 1.38E-01 

LCORL_RareLOF 7.66E-03 1.38E-01 

CAMK2D_RareLOF 8.62E-03 1.46E-01 

FBRSL1_RareLOF 1.12E-02 1.80E-01 

CTSB_RareLOF 1.20E-02 1.82E-01 

KPNA1_RareCADD 1.35E-02 1.96E-01 

ASXL3_RareLOF 1.52E-02 2.10E-01 

KPNA1_RareLOF 1.76E-02 2.33E-01 

LRRK2_Rarefunctional 2.57E-02 3.14E-01 

MICU3_RareLOF 2.56E-02 3.14E-01 

VAMP4_Rarenonsyn 2.93E-02 3.43E-01 

MBNL2_RareCADD 3.04E-02 3.43E-01 

LRRK2_Rarenonsyn 3.28E-02 3.57E-01 

KPNA1_Rarefunctional 3.46E-02 3.64E-01 

LSM7_Rarefunctional 3.58E-02 3.64E-01 

HIP1R_Rarenonsyn 3.93E-02 3.87E-01 

KPNA1_Rarenonsyn 4.23E-02 3.91E-01 

HIP1R_Rarefunctional 4.22E-02 3.91E-01 
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Set: variant set across genes/pathway, P: p-value, FDR P: false discovery rate p-value, 

Rarefunctional: rare functional variants, Rarenonsyn: rare nonsynonymous variants, RareLOF: 

rare loss-of-function variants, RareCADD: rare variants with CADD score above 15. 

Association of rare variants with nominated PD genes 

In order to further establish the potential role of the nominated genes in PD, we performed rare 

variant burden tests in all the genes nominated by our model. As expected, genes that are known 

to harbor rare PD coding mutations including GBA1, LRRK2 and GCH1 were associated with PD 

(Table 2, Supplementary Table 6). Three additional genes, including two genes that have not been 

previously implicated in PD (KCNIP3 and LSM7) showed burden of rare variants after FDR 

correction for multiple comparisons. We then examined the genes from the polyol biosynthetic 

pathway and found that rare variants in this pathway were also associated with PD (SKAT-O 

p=1.58E-04), further supporting its role in PD.  

Discussion 

In this study, we nominated genes that potentially drive the associations with PD for each of the 

78 PD GWAS loci, using multi-omic data and machine learning. Our nominated genes include 

many genes that have not been studied in the context of PD, as well as genes with coding variants 

such as SPNS1 and MLX that could be further studied. Furthermore, our gene enrichment, pathway 

specific PRS and rare variant analyses strongly support an involvement of the inositol phosphate 

biosynthetic pathway in PD.  

Four genes nominated by our machine learning model belong to the inositol phosphate 

biosynthetic pathway: ITPKB, IP6K2 and PPIP5K2 and SNCA,17 showing a strong enrichment of 

this pathway. In addition, INPP5F is another gene nominated by our analysis that is involved in 

inositol processing through a parallel pathway. Our findings that the PRS of this pathway, even 



126 
 

after excluding the aforementioned genes, is associated with PD, and that rare variants in genes 

from this pathway are also associated with PD, provide additional support for the importance of 

this pathway in PD. ITPKB encodes for a ubiquitous kinase that phosphorylates inositol 1,4,5-

trisphosphate (IP3) to inositol 1,3,4,5 tetrakisphosphate (IP4) using a Ca2+/Calmodulin-dependent 

mechanism. IP3 is a secondary messenger that stimulates calcium release from the endoplasmic 

reticulum (ER). In primary neurons, ITPKB expression change was shown to increase or reduce 

levels of a-synuclein aggregation.18 ITPKB knockdown also leads to the accumulation of calcium 

in mitochondria which can inhibit autophagy. ITPKB mRNA levels were also shown to be 

correlated with SNCA expression in cortex and a-synuclein protein levels in A53T or A30P 

mutants.19 IP6K2 and PPIP5K2 interact with similar molecules. IP6K2 converts inositol 

hexakisphosphate (IP6) to 5-diphosphoinositol pentakisphosphate (5-IP7) or 1-diphosphoinositol 

pentakisphosphate (1-IP7) to bis-diphosphoinositol tetrakisphosphate (1,5-IP8) while PPIP5K2 

convert 5-IP7 to 1,5-IP8 and IP6 to 1-IP7. 20 IP6K2 was implicated in cell death, apoptosis and 

neuroprotection.21 In mice, IP6K2 was found to regulate mitophagy through interaction with 

PINK1.21 PPIP5K2 has not been previously implicated in PD. It was associated with hearing loss 

and colorectal carcinoma.22,23 INPP5F is involved with a different inositol pathway, it encodes 

Sac2, which converts phosphoinositides such as PI(4,5)P2 to phosphatidylinositol during 

endocytosis.24  

Inositol phosphate has been suggested to be involved in obesity, insulin resistance and 

energy metabolism.25 [3H]Inositol 1,4,5-trisphosphate binding sites were found to be reduced in 

certain brain regions of PD patients such as the caudate nucleus, putamen, and pallidum.26 

Additionally, IP6 was shown to be associated with PD. IP6 has a neuroprotective effect on 

dopaminergic cells by preventing 6-OHDA-induced apoptosis.27 IP6 inhibits the activity of β-
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secretase 1 (BACE1), an enzyme that cleaves amyloid-β precursor protein into toxic Aβ peptides.28 

Paraquet-induced neurodegeneration in Drosophila was suggested to also be mediated by inositol 

phosphates.29 Previous studies have also suggested that different stereoisomers of inositol such as 

scyllo-inositol can inhibit PD30 or decrease myoinositol in PD patients.31,32 Recent studies on 

inositol investigated the effect of SYNJ1, an autosomal recessive form of early-onset 

parkinsonism.33 SYNJ1 is a lipid phosphatase of phosphatidylinositol-3,4,5-trisphosphate 

(PIP3).34 SYNJ1 knockout cell models were associated with an increase of a-synuclein and PIP3 

levels. PIP3 dysregulation was suggested to promote a-synuclein aggregation and the risk of PD. 

Based on the evidence from the candidate inositol genes and previous work on inositol, inositol 

could potentially be a therapeutic target for PD. In 1999, a clinical trial on inositol was conducted 

on nine PD patients.35 The treatment with inositol compared with placebo did not improve clinical 

outcomes. However, we cannot rule out inositol and inositol phosphates as potential therapeutic 

targets as only nine patients were recruited for this trial. 

SPNS1 and MLX were found to be the top causal gene in their respective locus with putative 

causal missense SNPs: rs7140 and rs665268. Rs7140 corresponds to p.Leu563Val on the SPNS1 

transcript variant X1. We found that SPNS1 is also associated with lower expression in 

SOX6_ATGR1 dopaminergic cell subpopulation. This subcluster was previously highlighted to be 

the most susceptible to neurodegeneration in PD.9 SPNS1 encodes a sphingolipid transmembrane 

transporter in the lysosome. The autophagy-lysosomal pathway has been well-established to be 

crucial in PD pathogenesis, especially the lysosomal sphingolipid metabolism pathway, which 

includes well established PD-associated genes such as GBA1, GALC, SMPD1 and others.36,37 

SPNS1 deficiency results in lipid accumulation in the lysosome and impaired lysosomal function.11 
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MLX encodes a Max-like protein X which belongs to a family of transcription factors 

regulating glucose metabolism. Rs665268 is a missense variant (p.Gln139Arg) that was found to 

be associated with Takayasu’s arteritis, an autoimmune systemic vasculitis.38 MLX was also 

reported to be associated with age at onset of Alzheimer’s disease in females.39 This variant was 

suggested to affect two important PD pathways by increasing oxidative stress and suppressing 

autophagy in immune cells. Although SPNS1 and MLX have not been previously implicated in PD, 

the role of SPNS1 and MLX in PD needs to be further studied. 

There are several limitations to this study. The GWAS on which this analysis is based on 

is of European populations, therefore our results are potentially restricted to this population only. 

In addition, the training set for the machine learning model is limited to a small set of known or 

highly likely PD genes with the assumption of one causal gene per locus. The study also lacked 

samples for a testing set due to the previous issue. Since these limitations may introduce some bias, 

we used different strategies such as controlling for an imbalanced dataset and choosing balanced 

accuracy as an evaluation function to maximize the performance of the model. Lastly, the meta-

analysis of rare variants can also be somewhat biased due to case/control imbalance. Larger studies 

will be required to validate our findings. 

Our results nominate multiple genes that have not been thoroughly studied in PD and 

provide foundation for future functional studies of these genes. As larger PD GWASs will 

nominate more SNPs and loci, prioritizing causal genes will be crucial to understand the 

underlying biological mechanisms and disease pathophysiology through additional studies. Future 

gene prioritization studies will also be able to leverage larger datasets with more positive labels as 

new PD genes get discovered, and therefore increase the accuracy of the predictions. 
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Methods 

General structure of the study 

Figure 1 depicts the design of the study. In brief, we aimed to nominate the most likely gene to be 

involved in PD from each GWAS locus from the most recent PD GWAS.1 To do so, we first 

defined all the genes and SNPs that are within these loci (detailed in the next paragraph). Then, in 

order to nominate the top genes in each locus, we used a machine learning approach. Using a 

literature search and a consensus between the authors of the paper, we identified seven genes from 

different loci that are well-established in PD (GBA1, LRRK2, SNCA, GCH1, MAPT, TMEM175, 

VPS13C) and very likely to be the driving gene in their respective loci. We then acquired data for 

multiple features, including different distance measures from top SNPs, different QTLs, 

expression in relevant tissues and cell types and predictions of variant consequences (78 features 

were used after removal of redundant features). Using the seven well-established PD genes which 

received positive labels, and 212 genes in the same loci that received negative labels (i.e. not likely 

to drive the association with PD, since the PD-driving gene is already well-established), we trained 

the machine learning model, and created a prediction score for each gene in each locus. The top-

score gene in each locus is the nominated gene to be associated with PD. We then performed 

multiple post hoc analyses to further validate and explore our results: burden tests for rare variants 

in the top-scoring genes, pathway enrichment and pathway PRS analyses, differential expression 

analyses and structural analyses for candidate coding variants.  

Definition of loci and genes within each locus 

Following the definition by Nalls et al,1 all loci were defined based on the 90 independent risk 

variants (Supplementary Table 1). Variants within 250 kb were merged into a single locus which 

leaves us with 78 loci. All protein coding genes within 1 Mb of the risk variants were included in 
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the model. To exclude non-causal variants, echolocatoR was used as a comprehensive fine-

mapping model.40 This method leverages statistical and functional fine-mapping tools as well as 

epigenomic data to create posterior probability for each SNP in a locus.40 We included SNPs 

nominated by echolocatoR in the credible sets and the 90 independent SNPs from the PD GWAS 

for downstream analysis.  

Feature preprocessing 

To leverage multi-omic data for the machine learning algorithm, we integrated a comprehensive 

list of datasets (Supplementary Table 2) which includes SNP functional annotation, expression and 

splicing quantitative trait loci (QTL), single-cell RNA sequencing (scRNA) and chromatin 

interaction. Since distance was previously shown to be the most predictive feature in about 60-70% 

of GWAS loci, the distance from each SNP to each gene in the locus and the distance to the 

transcription start site were included in the model.41 To predict the severity of variant consequences, 

we used Variant Effect Predictor (VEP)42 and Polyphen-2.43 The SNP2GENE function on the 

FUMA platform was used to perform functional mapping of SNPs to expression QTLs (eQTLs).44 

In the FUMA settings, we chose the UKB release2b 10k European reference panel, a maximum 

distance of 1000kb from SNPs to gene, and included the MHC region. All other FUMA settings 

were kept as default. eQTL and 3D chromatin interaction mapping were performed using brain 

tissues, whole blood, FANTOM and GTEx datasets. Using scRNA datasets from Kamath et al,9 

we included gene expression from all ten subpopulations of dopaminergic neurons from 

postmortem brains of 10 PD and 10 control donors. A complete list of all datasets can be found in 

Supplementary Table 7.  
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Neighborhood scores 

To integrate the concept of locus and LD in the model, we calculated the neighborhood scores for 

each feature by transforming the data relative to the best-scoring gene within each locus.6 This 

allows, for example, the model to find the highest expressed genes across each locus. For example, 

if the feature is “maximum gene expression in blood”, the gene with the highest expression in each 

locus would have a score of one while the score of the remaining genes in the locus would be 

calculated following expression of gene divided by the expression of highest expressed gene in the 

locus. To avoid having the closest gene as the smallest value, we used negative log transformation 

to keep the closest gene as the highest score. 

Machine learning model to prioritize genes 

We used XGBoost45 to train the machine learning model. We selected well-established genes from 

Parkinson’s disease loci for the training dataset (GBA1, GCH1, LRRK2, MAPT, SNCA, TMEM175, 

VPS13C). These genes were labeled as positive labels, and the remaining genes from these same 

loci were labeled as negative labels. In total, the training set was composed of 212 genes (7 positive 

labeled and 205 negative labeled). To address the imbalanced dataset, we set the scale_pos_weight 

parameter in XGBoost to the ratio of negative to positive labels. The model was trained once to 

remove redundant features and then to create the final training model. We performed 

hyperparameter tuning and five-fold cross-validation on both models. Mean average precision was 

used as an evaluation function to maximize the correct positive predictions made. Out of the total 

284 features, 78 features passed feature selection for the final training model.  

Functional enrichment analysis 

To examine whether specific pathways may be involved in PD, based on the genes nominated in 

each locus, we performed an over-representation analysis using WebGestalt (WEB-based GEne 



132 
 

SeT AnaLysis Toolkit) on January 25, 2023.46 We included the top candidate gene from each locus, 

and examined biological processes, cellular components and molecular functions from the Gene 

Ontology data. We set the reference gene list to “genome protein-coding”, and pathways were 

considered to be associated with PD after FDR correction. 

Single-cell and bulk RNAseq analyses 

To examine whether genes nominated by the machine learning model may be differentially 

expressed in PD relevant models, we used publicly available single-cell and bulk RNAseq data 

from FOUNDIN-PD10 and Kamath et al.9 FOUNDIN-PD scRNA data includes 80 induced 

pluripotent stem cell (iPSC) lines collected after 65 days.10 We then performed differential gene 

expression analyses between PD cases and controls. For scRNA, we used the MAST47 package 

after adjusting for covariates such as age, sex and batch. For bulk RNAseq, we used DESeq248 

while adjusting for the same covariates. 

Pathway polygenic risk score analyses 

Pathway-specific PRS analysis can further support a role for specific pathways in PD.49 Using 

PRSet,50 pathway-specific polygenic risk scores (PRS) were calculated for pathways nominated 

by gene set analysis on 14,828 PD cases and 13,283 controls from seven cohorts (McGill, 

Parkinson's Progression Markers Initiative (PPMI), Vance (dbGap phs000394), International 

Parkinson's Disease Genomics Consortium (IPDGC) NeuroX dataset (dbGap phs000918.v1.p1), 

National Institute of Neurological Disorders and Stroke (NINDS) Genome-Wide genotyping in 

Parkinson's Disease (dbGap phs000089.v4.p2), NeuroGenetics Research Consortium (NGRC) 

(dbGap phs000196.v3.p1) and UK Biobank). The number of cases and control for each cohort is 

described in Supplementary Table 8. Participants were unrelated individuals of European ancestry 

and were not gender mismatched. Rare SNPs (minor allele frequency < 0.01) with p-value < 0.05 
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were excluded from the analysis. LD clumping was performed using r2=0.1 and 250kb distance. 

Permutation test with 10000 label permutation was performed to generate empirical p-value for 

each gene set after adjusting for a prevalence of 0.005, age at onset for cases, age at enrollment for 

control, sex and top 10 principal components. Vance cohort was excluded from the meta-analysis 

due to significant heterogeneity. 

Rare variant burden analyses 

To examine whether there is association between rare variants in the genes nominated by the 

machine learning model and PD, we used MetaSKAT51 to perform a meta-analyses of rare variants. 

We used whole exome sequencing (WES) available for 602 PD patients, 6,284 proxy patients and 

140,207 controls from UK Biobank (n=147,093) and 2,600 PD patients, 3,677 controls from 

Accelerating Medicines Partnership Parkinson's Disease (AMP-PD)52 datasets (n=6277). 

Additional selection criteria for UK Biobank and AMP PD were reported previously.53,54 We 

performed the analysis on several groups of rare variants (allele frequency < 0.01): loss of function 

variants, nonsynonymous variants, potentially deleterious (CADD>20) variants and functional 

(including nonsynonymous, frame-shift, stop-gain, and splicing) variants. Pathway-specific rare 

variant analysis was performed by combining PD genes from the pathways nominated previously. 

All analyses were adjusted for age at onset for cases, age at sample for control and sex.  

Structural analysis 

We then set to examine the potential structural effects of candidate coding variants nominated by 

our analysis. The atomic coordinates of SPNS1 (Uniprot #H3BR82) were retrieved from the 

AlphaFold server (https://alphafold.ebi.ac.uk/). The structures of MLX-MAD1 and MLX-MLXIP 

were generated using AlphaFold-Multimer version 3, as implemented in ColabFold.55,56 The 

ternary complex with a DNA duplex was generated by superposing the heterodimers on the crystal 
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structure of the MAD1-MAX-DNA complex (PDB 1NLW). The figures were generated using 

PyMol v.2.4.0. 

Data availability 

The data used for this study can be accessed on: FUMA https://fuma.ctglab.nl/; Cuomo et al. 2020; 

Bryois et al. 2021; SMR https://yanglab.westlake.edu.cn/software/smr/; and Kamath et al 2021. 

Code availability 

The scripts used for this study can be found on GitHub: github.com/gan-orlab/gene_prio 
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Chapter 6: General Discussion 

Synucleinopathies, including RBD, pose significant challenges and burdens to the global 

population. Unfortunately, current clinical trials have not provided effective solutions for these 

disorders. Researchers are confronted with various obstacles, including the lack of early diagnosis 

methods, the need for more reliable biomarkers, and the importance of genetic screening. 

In this thesis, the importance of genetic screening in clinical trials is extensively explored. 

Specifically, the focus is on investigating the role of heterozygous PRKN variants, which have 

been subject to debate and controversy in relation to PD. By conducting thorough investigations, 

including systematic sequencing of rare variants and CNVs, and performing meta-analyses, the 

study aims to shed light on the potential impact of these PRKN variants in PD and 

synucleinopathies. 

Furthermore, the thesis delves into the exploration of novel biomarkers and genetic targets 

for future therapeutic interventions. This is achieved through fine-mapping of the HLA locus, a 

genetic region associated with neuroinflammation, and the prioritization of candidate genes within 

the PD GWAS loci. By integrating genetic, transcriptomic, and epigenetic data, as well as 

employing machine learning approaches, the study aims to identify promising biomarkers and 

potential genetic targets for the development of future therapeutics in PD. 

In Chapter 2, I found no evidence of association between heterozygous PRKN variants and 

PD. Our results got validated by the findings from other studies, which included a larger meta-

analysis with a substantial number of patients with whole genome sequencing and participants 

from the UK Biobank.145,146 
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Functional studies provide evidence that "cryptic" PRKN mutations, such as deep intronic 

variants and exon inversions, do not contribute significantly to missed second mutations.71 

Furthermore, it was observed that cryptic PRKN mutations account for a considerable proportion 

(44%) of early-onset PD patients with monoallelic PRKN mutations. These findings highlight the 

importance of characterizing pathogenic PRKN variants for accurate diagnosis and management 

of PRKN-PD patients. 

Although clinical trials targeting PRKN have not been successful thus far, one study 

suggests that enhancing mitophagy could potentially be a therapeutic approach for PRKN-PD 

patients.147 Natural occurring PRKN variants, such as p.V224A, as well as structure-guided 

designer variants (p.W403A, p.F146A), have shown the ability to rescue common pathogenic 

PRKN variants, indicating the potential for targeted interventions. 

While this study focused on participants of European ancestry, PRKN CNVs were found 

in more than 0.5% of all UK Biobank patients, regardless of ancestry.146 The observation of distinct 

lengths of deletions in PRKN suggests independent origins, highlighting the diverse range of CNVs 

in different populations. The identification of biallelic PRKN variants through screening in clinical 

trials is crucial for precise drug. 

In Chapter 3, I identified HLA-DRB1 11V, 13H, and 33H as variants potentially driving 

the association with PD. A previous study by Hollenbach et al suggested an interaction between 

smoking history, the "shared epitope," and HLA-DRB1 11V in rheumatoid arthritis.148 They found 

that a positive smoking history combined with the presence of one or two shared epitope alleles 

and HLA-DRB1 11V had a greater effect size in PD risk compared to considering HLA-DRB1 

alone. Smoking-induced citrullination of proteins, the conversion of arginine to citrulline, may 
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lead to the development of antibodies to citrullinated protein antigens, potentially affecting HLA 

binding affinity for alleles protective in PD.149 

Hollenbach et al suggested an association between HLA-DRB1 01:01 and PD risk, although 

the association was borderline significant (p=0.02).148 However, in this study with a larger cohort 

of 12,137 patients and 14,422 proxy patients, HLA-DRB1 01:01 was not significant after meta-

analysis. The larger sample size in this study provides more robust evidence compared to the 

smaller cohort in the study by Hollenbach et al. 

Another recent study, in which I am a co-author, proposed a shared mechanism between 

PD, AD, and amyotrophic lateral sclerosis involving HLA-DRB1*04, which carries the 33H amino 

acid change.150 This variant was associated with decreased neurofibrillary tangles in postmortem 

brains and exhibited binding to a K311 acetylated tau PHF6 sequence. While the involvement of 

smoking and other proteins cannot be excluded, the selective reactivity of CD4+ T cells toward 

K311 acetylated tau may play a role in facilitating early clearance of toxic tau aggregates. The 

study suggested that antibody therapy targeting K311 acetylated tau could be an interesting avenue 

to explore in future clinical trials.150 

In Chapter 4, I nominated the potential implication of the HLA locus in iRBD. HLA-

DRB1*11:01 was suggested to be associated with risk for iRBD. No association was found in LBD. 

Larger studies will be necessary in iRBD and LBD to have more power to detect association with 

HLA. For instance, my study did not have the power to examine the association of HLA-DRB1 

33H, which was associated in PD, in iRBD and LBD.  

Large reference panels are important for accurate HLA imputation and fine-mapping 

studies due to the extreme polymorphism and complex LD structure of HLA genes and the MHC 
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locus.151 The extensive diversity in HLA genes is driven by an evolutionary pressure to bind to a 

wide range of foreign antigens, allowing for effective detection of various foreign substances 

throughout our lifetime.152 

In Chapter 5, I focused on gene prioritization of PD GWAS loci using machine learning. 

During the analysis, the most likely causal genes from the PD GWAS were nominated, but some 

loci had two or more genes with high probability scores. For example, CLCN3 and NEK1 had high 

scores of 0.98 and 0.92, respectively. Although only one causal gene per locus was selected in the 

training set, it is possible that some GWAS loci may contain multiple causal genes. This could be 

due to the presence of multiple independent variants within the same locus. However, it's important 

to interpret these findings with caution, as independent variants can also affect the same gene. 

Additionally, it's possible that the model is unable to accurately determine the causal gene, 

resulting in multiple genes with high probability scores. 

Interestingly, the top genes in some loci, such as HLA, had low probability scores. This 

could be attributed to the complex LD structure, which leads to many weak eQTLS as the variants 

in LD are associated with multiple genes. The model may struggle to accurately predict the causal 

gene in such cases. Furthermore, the number of samples used in statistical testing of features, such 

as eQTLs and enhancer-promoter interactions, is relevant to the training of the model. Features 

generated from studies with smaller sample sizes may contain more missing data and are more 

likely to be excluded from the model. For example, although enhancer-promoter interaction data 

was part of the training features, it may not have been considered important for most variant-gene 

pairs. 

While distance between variants and genes is a strong predictor in the model, it's important 

to note that not all top genes can be predicted based on distance alone. 13 out of the 78 genes were 
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not the closest genes based on distance from the gene to the top GWAS SNPs, and 25 based on 

distance to the transcription start site. The model only includes features from tissues and cell types 

that are relevant to the training data. Therefore, if the majority of causal genes in the training data 

are not associated with microglia, for example, microglia data may not be considered important in 

the model. Although many PD-relevant tissues and cell types were included, some causal genes 

may have been missed because the model prioritized tissues and cell types associated with genes 

from the training data. As more well-established PD genes are identified in the future, leveraging 

additional data types may improve the model's performance. 

Additional studies can be performed on lesser-studied genes associated with PD. For 

example, we can generate knockout and overexpression iPSC lines for the nominated genes and 

grow them into midbrain organoids. The midbrain organoids will be profiled using targeted 

phenotypic assays related to known PD mechanisms, including α-synuclein accumulation, 

mitochondrial dysfunction, and lysosomal/GBA1 function. 

Parkinson’s disease genes nominated by machine learning 

Several genes nominated by the model are associated with known PD pathways, such as 

the ALP. One of the top nominated genes, CLCN3, which scored 0.98 in its respective locus, 

encodes a chloride voltage-gated channel that is present in all cell types.153 CLCN3 has been 

identified in endosomes and on the vesicles of the lysosome. Loss-of-function variants in CLCN3 

have been shown to be associated with neurodevelopmental disorders.153 

Another interesting finding is the nomination of NEK1 as the second gene (score = 0.92) 

in the CLCN3 locus. NEK1 encodes a neuronal kinase that is involved in cell cycle regulation. 

NEK1 has previously been implicated in amyotrophic lateral sclerosis.154 NEK1 deficiency has 

been associated with lysosomal dysfunction due to reduced glucose uptake and mitochondrial 
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dysfunction. Furthermore, mice neurons with NEK1 deficiency have shown the presence of alpha-

synuclein, a protein associated with PD pathology.155 

Another interesting gene nominated by the model is TMEM163. TMEM163 encodes a zinc 

ion transporter located in the synaptic vesicle membrane.156 Zinc plays a vital role in various 

cellular processes, including immune response activation. However, excessive zinc accumulation 

can lead to the generation of ROS and subsequent mitochondrial dysfunction.156 

The association of zinc transporters with several diseases, such as AD, cancer, and diabetes, 

suggests their potential involvement in disease mechanisms.156 Dysregulation of zinc homeostasis 

has been implicated in the pathology of these diseases. TMEM163's role in zinc transport may 

contribute to its association with intracranial injury and possibly other neurological conditions. 

The SCARB2 locus has been identified in GWAS as being associated with both PD and 

RBD. Interestingly, the variants within the SCARB2 locus that are associated with PD and RBD 

were independent. Furthermore, these SCARB2 variants have the potential to affect gene 

expression differently in various brain regions.126 SCARB2, also known as lysosomal integral 

membrane protein-2 (LIMP-2), plays an essential role in the transport of GCase from the Golgi 

apparatus to the lysosome. Studies have shown that knockout of LIMP-2 in mice leads to a 

reduction in GCase levels across various tissues.157 The association of the SCARB2 locus with PD 

and RBD suggests that variations in SCARB2 may influence GCase transport and lysosomal 

function. 

Progranulin, encoded by the GRN gene, is a gene nominated by the model as a potential 

candidate gene for PD. Progranulin is a protein that undergoes cleavage by serine proteases to 
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generate smaller peptides called granulins.158 It has been implicated in various neurodegenerative 

disorders, including PD, AD, and amyotrophic lateral sclerosis.159 

Heterozygous loss-of-function variants in the GRN gene are known to be associated with a 

specific form of frontotemporal dementia, a neurodegenerative disorder characterized by 

progressive cognitive and behavioral changes.160 This suggests that GRN plays a crucial role in 

neuronal function and maintenance. 

Progranulin is a key neuronal gene involved in multiple cellular processes. It is involved 

in the development, survival, and maintenance of neurons and microglia, the immune cells of the 

central nervous system.158 Progranulin is also implicated in regulating lysosomal biogenesis, 

inflammation, tissue repair, stress response, and aging processes within the brain. 

Decreased expression of progranulin has been associated with neuroinflammation and an 

increased risk for various neurological diseases.159 Importantly, progranulin exhibits anti-

inflammatory properties, while the granulin peptides derived from its cleavage process can have 

pro-inflammatory effects.161 This suggests that the balance between progranulin and granulin 

levels may be critical for maintaining proper immune responses in the brain. 

In mice, progranulin has been found to bind to GCase and recruit heat shock protein 70 

under stress conditions.162 The interaction between progranulin and GCase, along with the 

recruitment of heat shock protein 70, suggests a potential role for progranulin in modulating 

cellular stress responses and proteostasis. 

Progranulin can be a potential therapeutic target. By knocking out sortilin, a receptor that 

regulates the trafficking of progranulin to the lysosome, increased progranulin levels can be 
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achieved.163 This approach holds potential for augmenting progranulin levels and potentially 

modulating its anti-inflammatory and neuroprotective effects in neurodegenerative diseases. 

GALC, which encodes galactosylceramidase, is a gene involved in the breakdown of 

galactosylceramide and galactosylsphingosine in the lysosome.164 While GALC mutations have 

been linked to an increased risk for PD, the specific role of GALC in PD pathogenesis is not yet 

well understood.74 Interestingly, one study have shown that GALC knockout does not significantly 

affect the activity of GCase. GCase activity and α-synuclein accumulation in induced pluripotent 

stem cell (iPSC)-derived neurons were not altered by GALC knockout.165 

These findings suggest that GALC may have a distinct role in PD, possibly independent of 

GCase activity and α-synuclein accumulation. However, further studies are needed to uncover the 

specific mechanisms by which GALC may contribute to PD pathology.  

CTSB, which encodes for Cathepsin B, is a gene that belongs to the family of lysosomal 

cysteine proteases.166 Cathepsin B and other cysteine cathepsins play crucial roles in various 

physiological processes, including protein processing, MHC class II-mediated antigen 

presentation, and apoptosis.167 Additionally, the cysteine cathepsin gene family has been 

implicated in cancer, inflammation, and neurodegenerative diseases. 

CTSB has been found to be highly expressed in neocortical and hippocampal neurons. 

Microglia-induced neuronal apoptosis has been associated with CTSB, suggesting its involvement 

in the neuroinflammatory response.167 Studies in transgenic mice carrying the SNCA A53T 

mutation, which is associated with familial forms of PD, have shown that CTSB can cleave α-

synuclein.168 This cleavage of α-synuclein by CTSB may have implications for the aggregation and 

accumulation of α-synuclein in Parkinson's disease. 
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Furthermore, a specific intronic variant of CTSB, rs1293298, has been found to be 

protective for individuals who carry mutations in the GBA1 gene and have PD or DLB. This variant 

is also associated with a lower age at disease onset.169 Interestingly, this protective effect may be 

attributed to increased CTSB expression in the brain, potentially due to the activation of GCase, an 

enzyme involved in the breakdown of glucosylceramide, through the cleavage of prosaposin into 

saposin C by CTSB. 

While its probability score may not be high, P2RY12, which encodes for a G protein-

coupled receptor, has been associated with PD in previous studies.170 P2RY12 is known to be a 

marker of nonactivated microglia, which are immune cells in the brain.171 Upon activation, 

microglia downregulate P2RY12 expression. Some evidence suggests that P2RY12 is involved in 

facilitating the migration of microglia towards sites of injury, where they can contribute to tissue 

repair and maintenance, such as maintaining the integrity of the blood-brain barrier.172 

Clopidogrel, a drug commonly used as an antiplatelet agent, has been shown to inhibit 

P2RY12. However, it is important to note that while clopidogrel may affect P2RY12 signaling and 

function in platelets, there is currently no evidence supporting its direct effect on Parkinson's 

disease.173 The potential role of P2RY12 in PD pathogenesis and its modulation by clopidogrel or 

other agents in the context of the disease requires further investigation. 

TOX3, which encodes for TOX high-mobility group box family member 3, has been 

nominated in both PD and restless leg syndrome (RLS) in genetic studies with opposite direction 

of effect.174 TOX3 is a nuclear transcription regulation factor that is expressed in the brain and is 

also involved in breast cancer.175 
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TOX3 has been implicated in the regulation of estrogen receptor-mediated gene 

expression.175 Estrogen receptors play important roles in various physiological processes, 

including neuronal function. The exact mechanisms by which TOX3 may contribute to PD or RLS 

are not yet fully understood. 

RLS is a common motor disorder characterized by an uncontrollable urge to move the legs, 

typically occurring during periods of rest or inactivity, particularly in the evening or at night.176 

Although RLS can occur independently, it has been observed that a higher percentage of 

individuals with PD also experience RLS symptoms compared to the general population.176 

However, the association between RLS and PD is complex and not fully elucidated.  
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Chapter 7: Conclusions and Future Directions 

Synucleinopathies are a group of neurodegenerative diseases without disease-modifying 

treatments. Using precision medicine, we can develop treatment for targeted patient. This thesis 

focuses on methods to isolate specific populations for clinical trials and identify novel genetic drug 

targets. Genetic imbalance between randomized arm can confound true therapeutic effects. For 

example, PRKN-PD patients are known to have different disease progression and brain pathology 

compared to idiopathic PD. This study addressed the lack of evidence supporting the association 

between rare heterozygous PRKN variant carriers and PD. By highlighting this gap, this study 

contributes to enhancing inclusion criteria in therapeutic trials. 

To discover potential genetic risk factors, I nominated HLA-DRB1 variants and alleles 

within the HLA locus for PD and RBD. Further studies are needed, particularly for RBD, as HLA 

allele frequencies can significantly vary across populations and subpopulations. Exploring non-

European populations is crucial for understanding HLA in RBD and LBD. 

Given the relative obscurity of RBD, many cases likely go unreported. This is further 

compounded by the limited availability of vPSG in many countries. Consequently, alternative 

diagnostic methods, such as accurate biomarkers, play a vital role in patient recruitment. 

Identifying biomarkers for disease conversion is also valuable for diagnosing PD, DLB, and MSA. 

In addition to exploring the HLA locus, an important aspect of my research involved 

performing gene prioritization of genes identified in the PD GWAS. This approach aimed to 

promote and stimulate further investigations into lesser-studied PD genes, which have not received 

as much attention in previous research. 
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By nominating these lesser-known PD genes for prioritized study, we can open up new 

avenues of research and expand our understanding of the complex mechanisms underlying PD. 

These genes can shed light on the disease's etiology, disease onset, progression, and even disease 

severity. 

Moreover, investigating the lesser-known PD genes may reveal previously unrecognized 

subtypes or phenotypes of PD. This knowledge can contribute to the development of personalized 

medicine approaches, where treatment strategies can be tailored to specific genetic profiles or 

disease subgroups. By unraveling the unique characteristics associated with these genes, we may 

gain a more comprehensive understanding of the heterogeneity observed within PD. 

As more genes are discovered, additional PD subtypes can be identified, leading to the 

development of targeted therapeutics. Currently, clinical trials are targeting GBA1 and LRRK2 

patients. It is advisable to examine patients who are genetically or clinically similar to GBA1 and 

LRRK2 carriers, as they are most likely to benefit from treatments targeting these specific targets. 
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