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Abstract 

This honours thesis aimed to create a high-resolution map of river reach baseflow indices 

(BFI) and review graphical baseflow separation methods. Results revealed that BFI is a 

useful metric for low-flow stability, but caution is needed in equating BFI with 

groundwater discharge. River reach BFI values are presented in a 15 arc-seconds 

resolution gridded dataset, developed using flow routing of a course-resolution global BFI 

from Beck et al. (2015). Validation against gauging stations showed strong agreement 

(adjusted R2 values of 0.64 and 0.658 for BFI2 and BFI3, respectively) despite 

uncertainties from source data and baseflow separation. The created BFI maps can be 

used for global hydrological models, such as temperature or stream chemistry for which 

baseflow is an important factor; assessing climate change impacts; and sustainability of 

anthropogenic withdrawals. These presented downscaled and flow-routed maps 

represent the first estimate of BFI in global river reaches, especially large rivers where 

graphical baseflow separation methods are not applicable. 
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Chapter 1 - Introduction 

1.1 – Streamflow Definitions 

Streamflow or river discharge is the volume of water that passes through a cross-section 

of a stream channel per unit time, often measured in m3/s (Fetter, 1988). A hydrograph 

is a record of discharge over time. Streamflow is derived from multiple sources 

including direct precipitation into the stream channel; (saturated or infiltration excess) 

overland flow and shallow subsurface flow, i.e., interflow, caused by a high-intensity 

rainfall event; snow- or ice-melt; and lakes, wetland, or groundwater discharge. Figure 

1.1 conceptually demonstrates the contribution of different sources. Although all 

sources of streamflow originate from precipitation, the length of time spent in storage 

before entering the stream and the interactions that the water may have with 

surrounding rocks or biological actors can alter the temperature and chemistry of water 

coming from different sources (e.g., Briggs et al., 2018; Reynolds et al., 1986; Peralta-

Tapia et al., 2015). These differences both enable the distinction of different sources and 

demonstrate the significance of separating the contributions from multiple sources to 

streamflow. 

Total river discharge, Q, can be partitioned into multiple components 

representing the different sources of water in the stream. Water stored in each source 

has a different residence time, i.e., the amount of time an average molecule of water 

spends in storage calculated using Equation 1.1, where Tr is the residence time, I is the 

inflow or outflow into the store, and V is the volume of storage. 

 
𝑇௥ =

𝑉

𝐼
 

1.1 

For instance, the residence time of groundwater may be several orders of magnitude 

greater than water that reaches a stream from saturated overland flow. Hydrograph 

separation is the process of partitioning the stream discharge and attributing a source to 

the separated components. Although many flow pathways contribute to river discharge, 

it is difficult to represent these components as individual curves on the hydrograph and 

further to specifically identify attribute the source of each curve. Therefore, hydrograph 

separation commonly refers to the division of discharge into two components. 
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The two sources of streamflow considered in hydrograph separation are called, 

quickflow, Qs, and baseflow, Qb. Quickflow, or event flow, is the non-baseflow 

component of river discharge derived from direct precipitation onto the stream channel, 

runoff over the land surface, and subsurface stormflow in the uppermost, high-

permeability soil layers. Baseflow — sometimes referred to as slow flow, percolation 

flow, or sustained flow (Hall, 1968) — has varying definitions in the literature. 

Groundwater discharge and baseflow are often used interchangeably (e.g. Fetter, 1988; 

van Dijk, 2010). More commonly, baseflow is operationally defined as the low variability 

portion of the hydrograph through hydrograph separation. According to this definition, 

baseflow composes groundwater and other delayed sources including, lakes, marshes, 

snow and ice, stream channel, bank, and temporary depression storage (e.g. Eckhardt, 

2005; Bierkens, 2015; Hall, 1968). Although groundwater is thought to be the dominant 

source of baseflow (Koskelo et al., 2012), in this paper, I will differentiate groundwater 

discharge and baseflow, such that baseflow is defined as a combination of groundwater 

discharge and other delayed sources of streamflow. In some settings, it may be 

appropriate to use baseflow as a proxy for groundwater discharge to streams, if other 

delayed sources are determined to be negligible (e.g., Miller et al., 2016). The baseflow 

index (BFI) is defined as the long-term average ratio of baseflow to streamflow. The BFI 

can be calculated for any period of interest, such as monthly, annually or for the entire 

duration of the streamflow record, as in this study. 

Figure 1.1 Conceptual diagram of contributions to streamflow from multiple sources. The water table is 
represented as a dashed line. Saturated overland flow occurs where the water table is at the ground 
surface. Overland flow on an unsaturated surface occurs when the infiltration capacity of the soil is 
exceeded by high-intensity rainfall. Inteflow is shallow subsurface flow caused by a storm event, often 
when a layer with lower permeability is present near the ground surface. Other sources are not 
illustrated, including lakes, wetlands and snow- and ice-melt (e.g., glaciers).  

groundwater 
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Hydrograph separation can be performed using a physical or chemical 

characteristic of the water, such as temperature, conductivity, or isotopic signatures, 

applying multi-component mixing equations. Using even the most advanced techniques, 

such as δ18O and δ2H isotope ratios, uncertainties are still present in assigning the 

source to each component, as there is often overlap in the isotope ratios from different 

sources, e.g., similarity in isotope ratios between groundwater-fed wetlands and direct 

groundwater discharge into the stream (Koskelo et al., 2012). Although the challenges in 

multi-component mixing increase the uncertainties related to isotopic and chemical 

hydrograph separation methods, they are still considered superior to baseflow 

separation methods for accurately determining the contributions from different sources 

to the stream. However, chemical mass balance methods are difficult to implement and 

prohibitively expensive at the scale needed for global hydrological studies (Lott & 

Stewart, 2016; Zekster & Loaiciga, 1993). Therefore, graphical and analytical baseflow 

separation methods have been developed for use in regional and global scale baseflow 

studies. Baseflow separation methods are a subset of hydrograph separation methods, 

as defined here for the purpose of this thesis, and are limited to graphical or analytical 

analysis of the hydrograph shape. The term hydrograph separation will be used for other 

forms of baseflow determinations, i.e., separation performed using the stream water 

characteristics or other catchment characteristics in addition to the hydrograph. In 

principle, baseflow separation methods assume that quickflow increases faster after a 

storm event and decreases faster, while baseflow is relatively constant throughout the 

season, with only minimal, and gradual increases due to a specific event. Longer 

residence times in groundwater, lake or snow storage, for example, cause attenuation of 

event peaks: the increase in storage caused by a storm event will be released slowly 

throughout the coming days, months, or years. Therefore, baseflow separation methods 

work by identifying peaks in the hydrograph and attributing flashy peaks to quickflow 

and the stable portion of the hydrograph to baseflow. Chemical hydrograph separation 

has been used to validate graphical and analytical baseflow separation methods with 

previous studies finding general agreement (Kissel & Schmalz, 2020; Stewart et al., 

2007). Therefore, large-scale studies generally use graphical or analytical baseflow 

separation methods to separate event-based discharge and stable, low-variability 

discharge. 
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1.2 – Significance of Baseflow 

The global river network serves as a critical freshwater resource for both aquatic 

ecosystems and human consumption. The role of baseflow in shaping rivers as viable 

aquatic ecosystems is noteworthy, as it regulates temperature patterns (Briggs et al., 

2018) and the chemical composition of streams (Reynolds et al., 1986; Peralta-Tapia et 

al., 2015). Compared to quickflow, delayed sources of discharge have more time to 

equilibrate with their temperature and geochemical surroundings. As a result, baseflow 

temperature tends to align more closely with seasonal or annual average temperature, 

while quickflow temperature reflects rainfall/air temperature during precipitation 

events. Furthermore, baseflow enhances streamflow stability, particularly during dry 

seasons, due to the longer residence times of baseflow sources. A study conducted by 

Miller et al. (2016) demonstrated that the Colorado River, which is considered the most 

overallocated river globally, relies heavily on baseflow to sustain flows during dry 

periods. Recharge to baseflow sources during rainy seasons can be released gradually 

throughout the year. The crucial role of baseflow in maintaining streamflow quality and 

quantity is highlighted by the role of baseflow in controlling temperature patterns and 

chemical composition of streams, and streamflow stability during dry periods. 

1.3 – Vulnerability of Baseflow 

The increasing pressures on freshwater resources from human overallocation to 

unpredictable climatic changes across all scales reinforces the significance of large river 

systems (Lehner & Grill, 2013). Groundwater and baseflow have specific vulnerabilities 

to anthropogenic effects and climate change. The groundwater discharge portion of 

baseflow in a river is sensitive to extraction from the underlying aquifer. Groundwater 

withdrawals can have unpredictable and non-linear effects on groundwater storage and 

discharge to streams. Increased anthropogenic discharge from an aquifer via human 

extraction is accommodated in the water balance by an increase in recharge to the 

aquifer where possible, a loss in groundwater storage, and/or a decrease in groundwater 

discharge to streams, contributing to a decrease in baseflow (Theis, 1940). Due to non-

linearity, a small change in aquifer storage can cause major changes to surface water 

sustainability through decreased baseflow (Alley, 2007), especially in semi-arid regions 

where dry season streamflow is composed primarily of groundwater discharge and/or 
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snow- and ice-melt. In humid regions, baseflow has been shown to be resilient to 

groundwater depletion as excess precipitation acts as rejected recharge which 

replenishes groundwater storage (Khan et al., 2022). The resilience of groundwater 

discharge to streams derives from the large storage capacity of aquifer systems and 

associated long residence times (Theis, 1940). In large non-artesian aquifer systems, 

extraction will at first have a localized effect. After an extended period of ongoing 

groundwater extraction will the entirety of the aquifer experience depletion causing a 

reduction in storage or discharge. Therefore, a thorough understanding of the baseflow 

contribution to the river network allows researchers to identify concerning changes in 

groundwater storage. A noticeable reduction in baseflow can signify that a large aquifer 

is affected by groundwater withdrawals. If there is no rejected recharge, this can 

indicate groundwater depletion. For example, baseflow reductions in the Ganges River 

have been linked to groundwater depletion (Mukherjee et al., 2018). These 

complications are likely to increase in the near future as communities look to alternative 

sources of water, including groundwater. Therefore, it is important to understand the 

baseflow contribution to global rivers to assess the impact of changing water resource 

demand through comparisons with the natural state. 

Understanding baseflow at the global scale can be used to predict the vulnerability of 

river systems to climate change and other anthropogenic effects. Climate change can 

lead to both increases and decreases in baseflow contributions. For example, increased 

precipitation caused by increasing temperatures in the mid-latitudes and (sub)arctic is 

expected to increase groundwater discharge to streams in areas without rejected 

recharge, i.e. groundwater recharge deficits (Zekster & Loaiciga, 1993). Baseflow has 

also been shown to be sensitive to temperature patterns, either decreasing due to 

increased evaporation from surface stores and groundwater or increasing due to 

changes in the meltwater cycle and rainfall/snowfall ratios (Tan et al., 2020). Human-

caused land use/land cover changes can also affect the rate and fractionation of water 

cycle components (Eagleson, 1986). For instance, afforestation has been shown to 

decrease groundwater recharge and therefore baseflow by increasing summer 

evapotranspiration and winter evaporation (Alley & Chapman, 2001). Even small 

changes can affect baseflow, such as a conversion of perennial crops to annual row crops 

which has been linked to an increase in baseflow in Iowa (Shilling & Libra, 2003). Dams 
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and infiltration of surface water redirected to irrigation can also increase baseflow by 

allowing surface water to infiltrate and become groundwater before re-entering streams 

downstream (Zekster & Loaiciga, 1993). These myriad changes to baseflow can be 

compared at the global scale in comparison with a baseline of natural baseflow in global 

rivers. 

1.4 – Regional and Global Maps of Baseflow 

Maps of the BFI and the recession constant can be made bottom-up from physically 

based models or top-down from empirical relationships between environmental factors 

and the two parameters of interest using regionalization. Regionalization describes the 

process of estimating model parameters in ungauged catchments by correlating known 

catchment parameters with measurements  ̶  or often models  ̶  of climate, morphology, 

hydrogeology, soils, land use, or other environmental variables (van Dijk, 2010). Though 

both methods have advantages, top-down BFI maps using streamflow characteristics 

derived from gauged catchment hydrograph data are explored in this study.  

There are significant areas on the Earth’s surface that are ungauged or poorly 

gauged (Fekete & Vörösmarty, 2002). Regionalization enables investigators to use 

knowledge of gauged basins to understand hydrological processes in ungauged regions. 

The choice of climatic and physiographic variables and the baseflow separation or 

recession constant determination method affect the resulting maps of BFI and k. 

Baseflow has been previously mapped in various regions across the globe, with 

particular attention to areas where surface water resources are overallocated, such as 

the Upper Colorado River Basin (Miller et al., 2016), the state of Texas (Aboelnour et al., 

2021), and southern Italy (Longobardi & Villani, 2008). Regionalized BFI and k also 

exist for large regions. For instance, BFI regionalization has been performed for 

continental Europe (Schneider et al., 2007), the contiguous United States (Santhi et al., 

2008; Neff et al., 2005; Wolock, 2008), and Australia (Van Dijk, 2010). Pena-Arancibia 

et al. (2010) produced a map of k across the tropics. 

Beck et al. (2013, 2015) performed the first global-scale regionalization of BFI 

and the recession constant through regionalization. They first calculated BFI for over 

3,000 gauging stations using graphical and analytical baseflow separation methods. 

They then employed regionalization to relate catchment-specific BFI values and various 



 
 

7 
 

climatic and physiographic features to create the global maps. The gridded BFI and k 

maps are at 0.125° x 0.125° resolution (each cell represents about 190 km2 at the 

equator). The Beck et al. (2015) maps represent the local baseflow contribution from 

each cell (see section 3.1 for more information). Beck et al. (2013) suggest further 

validation of the global BFI and k maps is needed. 

1.5 – Applications of Global Baseflow Maps 

Beck et al. (2013) envisioned applications of their work in the diagnosis and 

parameterization of land surface schemes, global hydrological models, water resource 

assessments, and catchment classifications. Baseflow can be used as an input layer to 

global-scale hydrologic models, which have a wide variety of applications including 

studies on food systems, energy resources, biodiversity assessments, and hydro-

climatology (Bierkens, 2015). Baseflow models are also used to forecast low flows that 

occur during the growing season (Hall, 1968). These models can incorporate aspects of 

the complex coupled human-natural system to respond to future changes, where 

baseflow serves as a fundamental link between surface water and groundwater (Miller et 

al., 2016). Baseflow can also serve as input data for modelling watershed export of 

materials of interest that may be derived from groundwater or lakes and marshes, for 

example, sediment, contaminants, or geochemical compounds derived from aquifer 

solids (Koskelo et al., 2012).  

Global hydrology is needed because there are significant contributions to water cycle 

elements which are connected to processing occurring outside of the catchment in most 

climates (Eagleson, 1986), such as forest evapotranspiration driving distant 

precipitation (Ellison et al., 2017). Global hydrological models facilitate water 

management decisions, especially where free and high-resolution global-scale datasets 

are available. Early global hydrologic models did not account for baseflow, instead using 

rudimentary modelling of runoff processes without accounting for local geology and 

shallow subsurface interactions (Bierkens, 2015). It is necessary to account for the 

groundwater contribution to global water circulation to complete global water balance 

calculations (Zekster & Loaiciga, 1993).  

Baseflow determinations on a global scale are significant because they facilitate 

international water resource management and comparisons between different regions. 
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Most large aquifers span multiple jurisdictions and require transboundary efforts to 

manage sustainably (Richts et al., 2011). Global studies can account for these scenarios, 

where regional studies are often limited by political boundaries. Comparisons between 

regions can be uniquely facilitated by global studies, owing to the continuity of data 

quality and resolution. Beck et al. (2013) compared their global maps with a subset of 

previous regional studies as validation. They found general compatibility between the 

maps and attributed small differences to the choice of baseflow separation method. For 

this reason, a global map represents a significant step forward as these small systematic 

differences between regions are not compatible with global-scale comparisons. In this 

sense, it would be impossible to confidently attribute changes to actual stream 

conditions between regions. The differences between the maps could also derive from 

other factors, including the regionalization data and processes and the gauging station 

data quality and availability. 

1.6 – Flow Routing 

The existing global-scale and regional BFI maps are limited in their applicability to 

relatively small river systems and catchments, typically with upstream areas of less than 

10,000 km2, due to the constraints of graphical baseflow separation methods (as 

discussed in Chapter 2). Beck et al. (2013) suggest that the effects of river channel 

routing should be accounted for when using the maps for larger catchments. According 

to Lehner and Grill (2013), “routing refers to the simulation of transport processes over 

space and time”. Flow routing simulates the generation of streamflow from runoff, or 

the downstream movement of water in streams, by modelling the inflow and outflow 

from surface and sub-surface reservoirs using a land surface parameterization that is 

typically built upon a digital elevation model (DEMs) (Arora et al., 2001; Lehner & Grill, 

2013). There are two primary methods of flow routing: hydrodynamic routing, and 

hydrological routing. Hydrodynamic routing applies the Saint-Venant equations which 

describe the balance between input, storage, and output in a river using momentum 

equations (Arora et al., 2001). Hydrological routing methods rely on a simplified 

conceptual approach where water is modelled as accumulating downstream, i.e., water 

is passed to the next downstream storage ‘bucket’ (Weinmann & Laurenson, 1979). 
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Hydrological routing is often preferred because the former method is more complex and 

requires data that are difficult to obtain. 

In this study, I will use hydrological flow routing to determine the BFI along the 

river network, in every river reach. A river reach, according to a cartographic definition, 

is the river segment between two neighbouring confluences. Beck et al.’s (2015) BFI 

maps represent the local contribution of each cell to downstream BFI. Using 

hydrological routing, I will calculate the BFI of streamflow passing through each cell, 

considering the upstream and local contributions to baseflow. This map will serve as a 

first estimate the BFI in global river reaches and the first estimate of baseflow in rivers 

that are too large for the application of baseflow separation methods.  

  Flow routing using high-resolution input data and the coarse-resolution BFI 

maps from Beck et al. (2015) will facilitate downscaling of the BFI maps to 15 arc-second 

x 15 arc-second resolution. At the equator, a 15 arc-second square cell is approximately 

0.2 km2, the same area as Grand Central Station in NYC. The cell areas decrease away 

from the equator. This downscaling will serve as additional validation for the Beck et al. 

(2015) BFI maps. Most global scale hydrological data and models are available as low-

resolution gridded datasets, where each cell represents the average of each characteristic 

for the land surface that it represents. These models have been criticized for obscuring 

connectivity features, especially for use in aquatic ecosystem applications (Lehner & 

Grill, 2013). The downscaled BFI maps will be the first high-resolution, global maps of 

baseflow in rivers. The high-resolution format also allows the data to be usable at local 

or regional scales. The BFI maps emphasize hydrological connectivity due to the 

continuity of baseflow estimates along rivers, allowing the baseflow patterns to be 

examined along a river. 

1.7 - Objectives 

The overarching goal of this thesis is to determine the baseflow index of every river 

reach globally. To achieve this goal, it is divided into 3 supporting objectives: (1) 

evaluate the theoretical foundations of baseflow separation, (2) downscale the coarse-

resolution BFI maps from Beck et al. (2015) to create a high-resolution global map of 

BFI considering the upstream and local contribution to baseflow in each cell, and (3) 
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validate the high-resolution BFI map against BFI values calculated at almost 3,000 

gauging stations using graphical baseflow separation.  
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Chapter 2 – Review of Baseflow Separation 

Many baseflow separation methods have been developed in the past 150 years to 

determine the baseflow component of streamflow. Baseflow separation may be better 

described as an art than a science given the significant uncertainties in the process from 

the definition of baseflow itself to the underlying assumptions (Bedient et al., 2013). 

Baseflow separation is a theoretical or operational separation of quick and slow 

contributions to streamflow, i.e., quickflow and baseflow, respectively. Baseflow 

separation is theoretical as the hydrograph does not inherently contain differentiations 

of the components (van Dijk, 2010). Rather, the separation is determined by analyzing 

the shape of the hydrograph.  Regional baseflow studies and Beck et al. (2013, 2015), 

using a variety of baseflow separation methods, have found statistically significant 

relationships between BFI and catchment characteristics which suggests that the 

baseflow determination is at least linked to climatic and physiographic conditions, 

confirming that graphical and analytical baseflow separation methods capture at least 

some representative low-flow and stable-flow features of streams across large scales. 

2.1 – Boussinesq and Barnes Baseflow Equations 

The Boussinesq equation (Equation 2.1) was first proposed by Joseph Boussinesq in 

1903 and again, independently, by Edmond Théodore Maillet in 1905 (McMahon & 

Nathan, 2021) to mathematically explain the discharge of a large unconfined aquifer to a 

stream when there is no evapotranspiration, leakage to deeper groundwater, nor 

recharge (Tallaksen, 1995). In Equation 2.1, Q(t) is the discharge at time t, often 

measured in days; Q(0) is the discharge at the peak; and α is the recession rate. Many 

subsequent methods are based on the Boussinesq equation and rely on the same set of 

assumptions (see McMahon & Nathan, 2021, for a thorough review of Boussinesq-based 

baseflow separation methods). 

 𝑄(𝑡) = 𝑄(0)𝑒ିఈ௧ 2.1 

 𝑄(𝑡) = −𝑘𝑆(𝑡) 2.2 

where   

 𝑘 = 𝐶𝑒ିఈ௧ 2.3 

An alternative form of the Boussinesq equation (Equation 2.2), defines k as the 

recession constant in Equation 2.3 (Barnes, 1939), and S as the reservoir storage, 
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based on the assumption that aquifer discharge is linearly proportional to its storage 

and decreases exponentially during baseflow recession, and C is an arbitrary constant. 

This form implies the following relationship between baseflow on a given day during the 

hydrograph recession period, a period where there is no rainfall or recharge to baseflow 

source stores (Equation 2.3). 

 𝑄(𝑡) = 𝑄(𝑡 − 1)𝑒ି௞ 2.4 

The Boussinesq equation is a linear approximation to the solution of the non-linear 

differential equation which governs the unsteady flow from an idealized aquifer (Vogel 

& Kroll, 1996). Although groundwater discharge and the contribution from other 

delayed sources are non-linear, investigators commonly approximate baseflow 

processes as linear (McMahon & Nathan, 2021). Van Dijk (2010) showed that the 

baseflow estimates produced from a linear reservoir model were commensurate with a 

non-linear model, suggesting that linear approximation is an appropriate simplification 

for baseflow processes.  

It is outside the scope of this study to provide a review of all available baseflow 

separation methods. Thorough reviews of methods are provided by McMahon & Nathan 

(2021), Nathan & McMahon (1990), and Tallaksen (1995). Eckhardt (2005, 2008) 

provides a review of recursive digital filtering methods, a type of hydrograph-based 

analytical method. Recently, more complex graphical and analytical baseflow separation 

methods have become available. For instance, Koskelo et al. (2022) developed a coupled 

precipitation-streamflow method and Wang et al. (2023) combined a recursive digital 

filtering method with an analysis of the flow duration curve to separate the sources of 

baseflow in discontinuous permafrost regions. These special-purpose methods integrate 

external parameters and are designed to work in specific situations where data are 

available, such as very small catchments (<50 km2) for the former method. 

2.2 – Baseflow Separation Methods for Global Studies 

Many baseflow separation methods are not appropriate for application on a global scale 

for a variety of reasons. Beck et al. (2015) selected four baseflow separation methods to 

develop their global BFI maps. I have identified the following criteria that enable their 

methods to be applicable on a global scale. Beck et al. (2013, 2015) do not provide a 

justification for their choice of methods or any evaluation of the assumptions and 
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limitations of their selection. The methods must be automated, such that they can be 

applied easily for thousands of hydrographs each containing more than 10 years of daily 

data. The chosen methods must work well for all global climates for which there is gauge 

data. For example, methods must be suitable for hydrographs with zero flow days (or 

weeks, or months). The methods also must provide sufficient differentiation between 

regions to allow for regionalization. Beck et al. (2015) further limited their method 

selection to those that work with Q in mm/day and do not require additional data 

beyond daily streamflow, such as precipitation or soil parameterizations. The four 

methods that they selected are presented in Table 2.1. Figure 3.2 shows an example 

of baseflow separation using all four methods. Although only one of the four baseflow 

separation methods used by Beck et al. (2015) is directly derived from the Boussinesq 

equation, Equation 2.3 provides the theoretical foundation for most graphical and 

analytical separation methods including all selected methods used by Beck et al. (2015). 

Therefore, the underlying assumption of the four methods are explained in the previous 

section. 

Table 2.1 Baseflow separation methods used to develop local BFI maps by Beck et al., 
2015. The methods are described in detail in Chapter 3 – Methods. 
 Method Parameters Source 

1 Recursive Digital 
Filtering 

window = 5 days Van Dijk, 2010 

2 Local-Minimum 
(HYSEP) 

duration of surface runoff (N) = 5 days 
window = 11 days 

Pettyjohn and Henning, 
1979; 
Sloto and Crouse, 1996 

3 Sliding-Interval 
(HYSEP) 

duration of surface runoff (N) = 3 or 4 days 
window = 7 days 

Pettyjohn and Henning, 
1979; 
Sloto and Crouse, 1996 

4 Non-Overlapping 
Interval Local-Minimum 

window = 5 days Gustard et al., 1992 

2.3 –Recession Constant 

Many baseflow separation methods require at least one parameter, typically the 

baseflow recession constant, k. A recession period of a hydrograph represents the period 

of discharge decline after a storm event, while there is no additional precipitation or 

recharge of stores. While the hydrograph recession period is simply the length of time 

between recorded storm events, i.e., discharge peaks, quickflow and baseflow recession 

are determined by the properties of the catchment. Quickflow and baseflow recession 

periods are defined as the length of time between the event peak and the return to the 
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pre-event flow rate. Residence times are inversely related to the recession rates for 

quickflow and baseflow (Tallaksen, 1995). Quickflow peaks shortly after the storm event 

and diminishes rapidly from the peak in the following hours, days or weeks, depending 

on the size of the catchment and other climatic and physiographic factors (Fetter, 1988). 

Baseflow recession occurs more slowly than quickflow recession, indicating that the 

baseflow recession period is longer than the quickflow recession period. The hydrograph 

recession period may also be longer than the quickflow recession period. If this is the 

case, then the hydrograph will record a period where streamflow is entirely composed of 

baseflow. The recession constant is a measure of the baseflow recession rate (Equation 

2.3) 

Although Beck et al.’s (2013) map of the recession constant is not used in this 

thesis, the recession constant is a parameter for baseflow separation method 1. 

Therefore, the baseflow in river reaches using BFI1 is reliant on the recession constant 

as calculated by Beck et al. (2013, 2015) using Equation 2.4 during periods identified 

as a hydrograph recession for each gauge station following van Dijk (2010). Although 

the recession constant is often considered only in the context of baseflow defined as 

groundwater discharge, all delayed sources of streamflow should experience recession 

behaviour during the period of no recharge as precipitation slowly moves through the 

systems toward an outlet. Each baseflow source will have a different recession constant. 

The k value determined by the following procedure can be thought of as a weighted 

average of the recession constant for each component of baseflow.  

Equation 2.4 relies on the assumption that after a period of T days from a 

storm event, quickflow does not measurably contribute to discharge, i.e., T is the length 

of the quickflow recession period. Van Dijk (2010) used T=10 days, while Beck et al. 

(2013) used T=5 days. From day T+1 until the end of the hydrograph recession period, 

data pairs of Q and Q* were fit to Equation 2.5 to determine k. The end of the 

hydrograph recession period is marked by an increase in Q from one day to the next. 

 
𝑘 = −ln ൬

𝑄

𝑄∗
൰ 2.5 

where   

 𝑄 = exp൫ln (𝑄(𝑡 = 1,2,3, … ))തതതതതതതതതതതതതതതതതതതതതതതതതത൯  
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 𝑄∗ = exp൫ln (𝑄(𝑡 = 0,1,2, … ))തതതതതതതതതതതതതതതതതതതതതതതതതത൯  

The choice of T must balance the effect of remaining quickflow on the recession 

and the availability of long hydrograph recession periods in the hydrographs (van Dijk, 

2010). The number of hydrograph recession periods of at least a given length decreases 

quickly as the length increases. The recession constant derived from hydrographs is 

highly related to the length of the hydrograph recession period analyzed (Vogel & Kroll, 

1996). Analyzing individual hydrograph recession periods results in baseflow recession 

constants that vary by as much as 35% (Halford & Mayer, 2000). The choice of a small T 

maximizes the number of hydrograph recession periods that are analyzed. Errors in k 

estimation are thought to derive primarily from the finite and often short duration of 

hydrograph recession periods from a given hydrograph (Vogel & Kroll, 1996). This effect 

may be enhanced by the shorter T used in Beck et al. (2013, 2015) in comparison to 

other studies, as the recession lengths are biased toward short hydrograph recession 

periods. 

Any choice of T assumes that quickflow decreases to zero in a finite period of 

length T, which has not been verified (Halford & Mayer, 2000; McMahon & Nathon, 

2021). If this is the case, a selection of a shorter T for a global recession constant 

determination may increase the calculated recession rates if the true quickflow recession 

takes more than T days. The quickflow recession period, T, may also vary greatly across 

the globe or throughout the year. In addition, some investigators have predicted that the 

baseflow recession rate is generally faster in the summer than in the winter due to 

differences in evapotranspiration (Tallaksen, 1995), although this effect may be more 

pronounced in catchments with shallow water tables and abundant deeply rooting 

vegetation (Eckhardt, 2008).  The confounding effects of these influences lead to 

significant uncertainty in the recession constant. Beck et al. (2015) found the greatest 

variability in the k map compared to all other streamflow characteristics that they 

calculated. They also found the weakest correlation between k and the climatic and 

physiographic catchment characteristics. Therefore, BFI1, whose separation method 

relies on the recession constant assumes greater uncertainty due to the complications in 

determining k. 
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Chapter 3 – Methods 

3.1 – Local BFI Data 

Beck et al. performed the first global-scale regionalization of the baseflow index 

(BFI) and the recession constant in 2013 using data from 3,394 gauging stations located 

across the globe. BFI is defined as the long-term average baseflow to streamflow ratio 

and is represented as a number between 0 and 1, although the regionalization process 

used by Beck et al. (2015) results in some cells with extraneously high or low values. In 

2015, they produced three additional maps of BFI using different baseflow separation 

methods. Both studies define baseflow as the contribution of delayed sources to 

streamflow, i.e., including contributions from lakes, wetlands, or snow storage. Their 

global gridded maps are provided at 0.125° x 0.125° grid cell resolution. The 

regionalization was performed using various climatic and physiographic catchment 

characteristics which were associated with streamflow data using catchment boundaries 

produced by Lehner (2012). These characteristics were associated with BFI and k using 

an Artificial Neural Network and ten-fold (twenty-fold in Beck et al., 2015) cross-

validation of a random subset of the gauge stations to train and validate the model. An 

independent set of stations was used to determine the significance of the inputs for each 

of the model runs. The most significant predictors of BFI were the aridity index, 

precipitation, surface slope, snow cover, and topographic wetness index. The least 

significant of the investigated predictors were those related to geology and soils. Of this 

group, the percentage of clay had the greatest predictive power. Beck et al. (2015) note 

that although geology is known to affect baseflow, the data quality may limit the use of 

subsurface data for global-scale studies. The maximum catchment size considered was 

10,000 km2 (5,000 km2 in the most recent version available and used in this thesis to 

downscale BFI). They suggest that larger catchments may have inflated BFI due to 

channel routing effects and that the maps should not be used to understand BFI in 

larger rivers due to these effects. In this study, the global BFI maps from Beck et al. 

(2013, 2015) will be referred to as local BFI maps as the BFI for each cell represents the 

fraction of water derived from that cell that eventually reaches a stream as baseflow. The 

data are available at http://www.gloh2o.org/gscd/. 
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3.2 – Global Underpinning Hydrography Data 

Global underpinning hydrography data was sourced from HydroSHEDSv1, a collection 

of consistent and comprehensive gridded hydrological datasets developed to support 

regional and global watershed analyses, hydrological modelling, and freshwater 

conservation planning (Lehner et al., 2008). The core data layer of HydroSHEDSv1 is a 

conditioned digital elevation model derived from the Shuttle Radar Topography Mission 

(SRTM) (Farr & Kobrick, 2000) at a cell resolution of 3 arc-seconds and subsequently 

upscaled to resolutions of 15 and 30 arc-seconds (Lehner et al., 2008). More 

information on HydroSHEDS is provided at http://www.hydrosheds.org. In this study, I 

used the flow direction map with a resolution of 15 arc-seconds. This gridded dataset 

contains the most likely direction of flow from a cell to one of its eight neighbours. This 

layer is used for flow accumulation. 

Gridded runoff data was sourced from HydroATLAS, a database containing a 

uniform compilation of detailed hydro-environmental data for global catchments, 

presented at high spatial resolution (15 arc-seconds), including a sub-database of world 

rivers called RiverATLAS. HydroATLAS is part of the HydroSHEDS suite. Runoff data 

are based on long-term (1971–2000) average ‘naturalized’ discharge and runoff values 

provided by the globally integrated water balance model WaterGAP (Döll et al., 2003). 

The WaterGAP data were spatially downscaled from their original 0.5° cell resolution 

(~50 km at the equator) to the 15 arc-second (~500 m) resolution of the HydroSHEDS 

river network using geo-statistical techniques (Lehner & Grill, 2013). Gridded cell area 

data was also sourced from HydroATLAS and represents the area of each 15 arc-second 

cell in km2. 

3.3 – Gauging Station Data and Preparation 

Daily streamflow data used for validation of the BFI flow routing maps were sourced 

from the World Meteorological Organization Global Runoff Data Centre (GRDC) 

database. This database contains approximately 10,000 gauging stations of various data 

consistencies and record lengths. Each streamflow record had been previously quality 

checked through statistical and manual outlier detection and primarily regulated 

streamflow stations were excluded (see Messager et al., 2021). Each station had also 
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been geographically linked with a river reach in 

the RiverATLAS stream network. RiverATLAS 

contains a vector representation of every river 

reach including stream characteristics (Linke et 

al., 2019). The pre-filtered and geographically 

linked set of 6,722 gauging stations was used 

for this project.  

The GRDC data is provided in text file 

format including catchment data, such as the 

latitude and longitude, station altitude, and the 

range of dates provided. Daily data is provided 

in four columns, the date, original and 

calculated streamflow, and a flag column 

indicating whether the streamflow was 

corrected. The flag is rarely used, so I chose to 

ignore this column. I loaded the data from text 

file format into python as a dictionary of 

dataframes containing the daily streamflow 

data for each station (see Supplementary 

Materials for code, S1: Get Filenames 

Function, S2: Load Data Function). I then 

calculated the length of continuous data for 

each station. I limited the station selection to 

stations with continuous data for 10 years or 

more containing gaps no longer than five days 

with fewer than 10% missing data. I separated 

each continuous period for each station into a 

separate dataframe. By considering separate 

continuous periods from a single gauging 

station  ̶  each gauging station record may be 

composed of multiple periods of 10 or more 

Figure 3.1 Histograms of Catchment Size 
and Record Length. The top graphs in white 
are limited to catchments smaller than 
10,000 km2. While the bottom two figures in 
blue show all catchments. The Record Length 
indicates the entire period over which 
streamflow is available for a station, rather 
than the continuous period of data 
availability. 
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years of consecutive data  ̶  I ensured that as much usable data was kept as possible to 

reduce the bias in the data selection. A 10-year recording period may not account for 

changes in streamflow behaviour over time nor interannual variability. However, a 

longer threshold would eliminate much of the available data. The period of five missing 

days was chosen as the selected baseflow separation methods are tolerant to missing 

periods of five or fewer days. To simplify the BFI calculations, the data gaps were filled 

by linearly connecting the recorded data on either side of the gap (S3: Fill Gaps 

Function). The calculated BFI for the station is reported as the total baseflow divided by 

the total streamflow calculated continuously across the entire set of station data. This 

method allows stations with temporally heterogeneous reliability to be included if any 

period of sufficient length within the entire record meets the criteria. After selection 

criteria were applied, 2,941 stations were remaining.  

The selected gauging stations are mainly located in the Americas, Europe, and 

Australia (Figure 3.2). The upstream area represented by each gauging station was 

previously calculated by using flow accumulation weighted with the HydroATLAS cell 

area and extracting the upstream area at the gauging station locations. Approximately 

75% of gauge stations had an upstream area of less than 10,000 km2, and 62% had an 

upstream area of less than 5,000 km2 (Figure 3.1). 

 

Figure 3.2 Map of Selected Gauging Stations. Stations are represented as black circles; country borders 
are outlined in black. Stations are concentrated in North America, Europe and select countries (Brazil, 
South Africa, Australia, New Zealand, and Japan). Gauging stations cover a wide range of climate types. 
There are very few catchments located in the Arctic. 
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3.4 –Station BFI 

I calculated the BFI for 2,941 daily streamflow records using the baseflow separation 

methods selected by Beck et al. (2015). The descriptions of the four baseflow separation 

methods are presented below. An example of baseflow separation using each of the four 

methods is presented in Figure 3.3 from Beck et al. (2015). 

BFI1. The first baseflow separation method is a recursive digital filtering method 

adapted from the Boussinesq equation by van Dijk (2010). First, the recession constant 

is calculated using Equation 2.5. Then BFI1 is calculated by applying Equation 2.4 

to the streamflow time series both backwards and forwards. The backwards run 

considers Q(t), and Q(t+1) rather than Q(t-1), and Q(t) as in the forward run. Then, the 

decision tree presented in Figure 3.4 is used to assign either the backward or forward 

baseflow estimate. This algorithm effectively creates a window of length of 3 days. 

Baseflow increases on the second day of a streamflow peak then decays until the next 

storm event. The magnitude 

of the baseflow peak following 

a storm event is dictated by Q 

recorded on the second day of 

the streamflow peak and the 

rate of decay is governed by 

the recession constant (see 

section 2.3). The baseflow 

curve derived using this 

Figure 3.3 Time Series of Recorded Discharge from USGS Catchment 50145395 (Rio Casei 
above Hacienda Casei, Puerto Rico; catchment area is 19 km2) and Computed BFI1-4 (from Beck 
et al., 2015). 

Figure 3.4 Decision Tree used in BFI1 Calculation (from 
van Dijk, 2010). The selection of a baseflow value for each 
day in the time series is calculated using Equation 2.4, then 
determining whether the day has more or less streamflow 
than the previous day. 



 
 

21 
 

method closely follows the hydrograph curve during the recession period, as it is 

assumed that the quickflow recession period lasts 5 days (T = 5 days, see section 2.3). 

The recession constant is a highly uncertain value for record lengths shorter than 30 

years as there are too few long recession periods to constrain the fitted value. This 

reduces the streamflow records available for validation. This method also predicts a 

baseflow response on a much shorter interval than the other methods, making it 

unsuitable for larger catchments which constitute most of the available data; an increase 

of storage in baseflow sources should be attenuated, especially in a larger catchment 

such that a baseflow response occurs more than 1 day after the beginning of a storm 

event. This method is also more computationally intensive than separation methods 2-4 

and requires the calculation of the highly uncertain recession constant. Therefore, I 

chose not to calculate station BFI values using baseflow separation method 1. 

BFI2. The second and third baseflow separation methods were originally 

developed by Pettyjohn and Henning (1979) and are included in the HYSEP program 

from Sloto Crouse (1996). Both methods consider a period N, which represents the 

number of days after which surface runoff ceases. N is calculated using Equation 3.1 

where A is the drainage area in square miles. 

 𝑁 = 𝐴଴.ଶ 3.1 

An interval of 2N* is then calculated as the nearest odd-valued integer between 3 and 11 

to two times N. This interval is used to find minimums on the hydrograph. To calculate 

BFI2, Beck et al. (2015) selected a fixed N of 5 days. This method selects the local 

minimums within a period of length 2N*, 11 days, and connects the minima with 

straight lines; the baseflow is defined as the area beneath this curve (see the blue curve 

in Figure 3.3). The code used to calculate BFI2 is presented in Supplementary S4.  

BFI3. The third baseflow separation method is also calculated using a window of 

length 2N*. Beck et al., (2015) chose an interval length of 7 days, indicating that the 

chosen N value is between 3 and 4 days. The minimum value on a sliding interval is 

assigned as the baseflow component for the central value in the interval. The process is 

repeated across the length of the hydrograph by moving the interval forward in time. 

This method results in a baseflow curve defined by rectangles of different heights and 

widths under the hydrograph curve (see the green curve in Figure 3.3, note that they 
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have linearly connected the rectangles between days, this has no effect on the 

calculation). The code used to calculate BFI2 is presented in Supplementary S5. 

The HYSEP program was designed to facilitate automated baseflow separation 

and improve the consistency of the procedure compared with manual methods (Sloto & 

Crouse, 1996). Sloto and Crouse (1996) also presented a third baseflow separation 

method as part of the HYSEP program: the fixed-interval method. This method is 

calculated by first dividing the streamflow record into intervals of length 2N*. The 

minimum of the interval is assigned as the baseflow value for the interval duration. 

There is no guidance provided on how and when each of the three methods presented by 

Sloto and Crouse (1996) should be used. Beck et al. (2015) provide no discussion of their 

selection of methods 2 and 3 for their global maps, instead of the fixed-interval method 

of Sloto and Crouse (1996).  

BFI4. The fourth baseflow method applied by Beck et al. (2015) was developed 

by Gustard et al. (1992) to index the effect of geology on low flows in the United 

Kingdom. BFI4 is calculated by first determining the minimum Q for each 5-day, non-

overlapping period. Then, each minimum is compared to its neighbouring minima. If 

the central minimum is less than 0.9 times the adjacent minima, it is considered an 

ordinate for the baseflow separation. The ordinates are connected with straight lines 

across the entire length of the hydrograph. This method effectively combines the local 

minimum and sliding-interval methods of BFI2 and BFI3. First, flashy peaks are 

eliminated by determining the minimum of each short period. Then longer peaks are 

eliminated by comparing neighbouring minima. The resulting baseflow curve is very 

smooth but rises according to long-term changes in the streamflow. The length of the 

baseflow rise is defined by the structure of peaks and valleys during the streamflow 

recession (Figure 3.3). 

Baseflow separation method 4 is not suitable for application to streams with low, 

stable discharge and low-resolution records, for example, a stream whose daily values 

are recorded using integer values less than 10 during the dry season. In this example, it 

is unlikely for any local minimum to be less than 0.9 times its neighbouring minima. 

This results in entire sections of the hydrograph being counted as quickflow even when 

it is likely that low, stable discharge represents baseflow. Many small catchments would 

have erroneously low BFI4 due to their poor resolution. Therefore, I excluded this 
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method. Baseflow separation methods 1 and 3, and methods 2 and 4, respectively, 

produce similar BFI values. The selection of methods 2 and 3, therefore, covers nearly 

the same range of BFI values as the full set of BFI methods for each station. 

3.5 –Flow Routing 

I then downscaled the local BFI maps from Beck et al. (2015) to create high-resolution 

maps of BFI using ArcGIS Pro. I first calculated the total discharge volume (in units of 

1000 m3/year) originating in each cell by multiplying the gridded runoff values 

(mm/year) by the cell area (km2) using the raster calculator function. Then, I multiplied 

the discharge volume by the local BFI values from Beck et al. (2015). I repeated this step 

for maps of BFI2 and BFI3. During this step, I ensured that the larger cells of the local 

BFI maps aligned with the smaller cell values of the high-resolution discharge volume 

layer by setting the spatial extent of the calculated raster to exactly match the extent of 

the discharge volume layer and adjusting the parameter in ArcGIS Pro to snap the 

Figure 3.5 Diagram of flow accumulation in GIS. (a) is a digital elevation model (DEM) where each cell 
value represents the average elevation of the ground surface in the cell. Yellow-brown cells have a higher 
elevation than green-blue cells. (b) the arrows represent the direction of water flow. Water is modelled 
as flowing downhill into its lowest-valued neighbouring cell. (c) the value of the cell represents the 
cumulative number of cells that are upstream along the flow path of water, including itself. (d) The colour 
of the cell represents the amount of accumulated water in the cell, darker blue cells have a greater volume 
of accumulated water. In this example, two tributaries are formed and meet in the bottom right corner. 
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output raster to the high-resolution input layer. This ensures that the created baseflow 

volume layer has the same high resolution as the total discharge volume layer. This step 

accomplishes the direct downscaling of the local BFI maps.  

 Then, I used the flow accumulation function in ArcGIS Pro to calculate the 

streamflow and baseflow downstream. The flow accumulation function uses the flow 

direction map to count the upstream cells whose discharge passes through the cell along 

the flow path (Figure 3.5). Flow accumulation optionally takes a weight layer as input. 

To calculate streamflow, I used the discharge volume layer as the weight, such that the 

output layer cell values represent a sum of the discharge volume of the upstream cells. 

To accumulate baseflow, I used the baseflow volume layer as the weight, creating an 

accumulated baseflow output for both baseflow methods, 2 and 3. After flow 

accumulation, I added the weight layer to the accumulated layer for streamflow and 

baseflow 2 and 3, as flow accumulation does not include a cell’s value in the summation 

of upstream cells. Therefore, a given cell’s contribution to streamflow must be added 

separately using the raster calculator function. Without this step, cells with no upstream 

contribution will have erroneous zero values.  

Then, I replaced all cells with true zero values (zero discharge) in the streamflow 

layer with an arbitrarily small value, here 1 x 108, such that the downscaled BFI  ̶  which 

is calculated by dividing baseflow by streamflow  ̶  would not result in null values where 

the denominator in the calculation is zero. This alteration has no effect on the resulting 

BFI, as the accumulated baseflow will have zero values in the same pixels, as the 

baseflow layer is produced through multiplication with the same discharge volume layer 

that contains zero flow values. I performed the BFI calculation using the raster 

calculator function to divide the accumulated baseflow in each cell by the corresponding 

accumulated streamflow value. I repeated this step to produce the routed, downscaled 

BFI layers for baseflow separation methods 2 and 3 (cartographic model presented in 

Supplementary S6). 

3.6 –Validation 

The computed BFI2-3 values, here called station BFI2-3, were compared to the BFI2-3 

values extracted from the gridded, flow downscaled BFI map, here called downscaled 

BFI2-3, and the local BFI2-3 extracted from the Beck et al. (2015) maps. After the 
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downscaled and local BFI2-3 values were extracted from the gridded datasets, I 

performed a linear regression analysis between station BFI2-3 and downscaled BFI2-3, 

and between the station BFI2-3 and local BFI2-3. The code used to complete the 

regressions is presented in Supplementary S7.  
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Chapter 4 – Results 

BFI was calculated for all global river reaches in a high-resolution gridded format from a 

local BFI gridded dataset using flow routing. The resulting map and validation data are 

presented below.  

4.1 –High-Resolution Global BFI Map 

The pattern of river reach BFI very closely resembles the local BFI maps from Beck et al. 

(2015) at a broad scale (Figure 4.1). BFI values are generally spread relatively evenly 

across latitudes. High BFI values are generally found in the equatorial region (~15°S-

10°N) and the high mid-latitudes (~45°N-65°N). High BFI values are also found in 

Figure 4.1 Global Maps of Downscaled, Flow Routed BFI2 and BFI3 on the unglaciated land 
surface. 
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mountain ranges, in the tropics, and the northern tundra zones. Within each river 

channel, the BFI is most similar to the upstream region and slowly changes with the 

addition of tributaries in a region with a different average BFI. Headwaters generally 

have more extreme BFI values which converge toward intermediate values progressing 

along the river channel. Figures 4.2 and 4.3a-h show the increased resolution 

achieved using flow routing. The river channel BFI is an average of the local BFI values 

of each cell in its catchment area, weighted by their contribution to river discharge. 

Therefore, stream channels are visible on the high-resolution map, as their BFI does not 

exactly match the local contribution of its floodplains. Figure 4.3a-h shows sections of 

the high-resolution, global river reach BFI map. The river reaches are visible when the 

river reach BFI is much higher or lower than the surrounding local BFIs of the 

catchment and floodplains. The course resolution local BFI values are reproduced in the 

high-resolution map in cells with little or no upstream contribution to streamflow. 

 

Figure 4.2 Selected region of southwestern Africa (Namibia and Angola) of the local BFI2
map (Beck et al., 2015) and the downscaled, flow routed BFI2 maps showing the similar 
pattern of BFI2. In the downscaled BFI map, streams are visible at high-resolution where the 
stream BFI is not equal to the surrounding local BFI. 

Local BFI Downscaled BFI 
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4.2 –Validation of Results 

Scatterplots of station BFI2-3 and downscaled BFI 2-3 vs. the log10 of the catchment 

area are shown in Figure 4.4a-d. Greater upstream catchment area is more related to 

large station BFI2-3 than downscaled BFI2-3. There is no trend in downscaled BFI2-3 

vs. catchment area, while there is an increasing trend in station BFI2-3 vs. catchment 

area. The 95th percentile of downscaled BFI2 is 0.74, and 0.82 for BFI3. The 95th 

percentile for station BFI2 is 0.87, and 0.94 for BFI3. Station BFI3 has a concentration 

of points with values between 0.75 and 0.95, especially for upstream catchment areas 

greater than 10,000 km2. Station and downscaled BFI2-3 are exclusively greater than 

0.5 for catchments larger than 100,000 km2. Station BFI3 is greater on average than 

station BFI2, with more points concentration above 0.7 and fewer points below 0.4. In 

contrast, the difference between downscaled BFI2-3 is less pronounced, although BFI3 

is generally slightly greater. 

Figure 4.4a-d Scatterplots of station BFI2-3 and downscaled BFI2-3 vs. Log of catchment 
area. The dashed black line in a, b, c, and d indicates the 95th percentile of downscaled BFI2-3
for comparison of the range of station and downscaled BFI2-3. 

a b 

c d 
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Scatterplots of station BFI2-3 vs. downscaled BFI2-3 and station BFI2-3 vs. local 

BFI2-3 are presented in Figure 4.5. The linear regression is indicated by a solid line 

and the 1:1 relation by a dashed line. Each data point represents a catchment (n=2,941). 

The scatterplots show the transformed BFI2-3 to ensure robust regressions for non-

normally distributed data. The slope of the regression of the station BFI2-3 on 

downscaled BFI2-3 are both near unity (BFI2 slope is slightly greater, BFI3 slope is 

slightly lower). The y-intercepts for all regressions are greater than zero, but the 

downscaled vs. station intercepts are closer to zero. The linear regression for 

downscaled vs. station is nearly parallel to the 1:1 relation but is shifted up slightly. The 

regression using downscaled values has more predictive power for station values than 

the local BFI from Beck et al. (2015). 

Figure 4.5a-d Comparison of regression of downscaled BFI2-3 on station BFI2-3 and 
regression of local BFI2-3 on station BFI2-3.  The red points represent gauging stations in 
catchments with an upstream area greater than or equal to 10,000 km2. The blue points 
represent gauging stations in catchments greater than or equal to 5,000 km2. The linear trend 
is shown as a black line. The 1:1 relation is shown as a dashed line. The equations, root mean 
square error (RMSE) and adjusted R2 are given for each regression in the upper or lower corner. 

a b 

c d 
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The residuals are heteroscedastic for the linear regression of downscaled BFI2-3 

on station BFI2-3 (Figure 4.6). The residuals are large and positive for downscaled 

BFI between 0.4 and 0.7 and are large and negative for downscaled BFI between 0 and 

0.4 for BFI2 and 0 and 0.55 for BFI3. Small positive and negative residuals are present 

for BFI2-3 less than 0.4 and BFI2-3 greater than 0.55, respectively. There are very few 

data points with BFI2-3 Estimated greater than 0.7. 

Figure 4.6 Scatterplot of Residuals of Regression of Downscaled BFI2-3 on Station BFI2-3 . 
Positive residuals indicate that a gauging station has a greater station BFI2-3 than predicted 

from its downscaled BFI2-3.
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Chapter 5 –Discussion 

5.1 – Evaluation of Selected Baseflow Separation Methods 

Every baseflow separation method relies on a set of assumptions about the 

catchment and/or hydrograph characteristics. The most significant of these 

assumptions is the definition of baseflow. As discussed in the introduction, a variety of 

definitions of baseflow are found in the literature. Many studies assume that baseflow is 

equivalent to groundwater discharge which can be determined from baseflow 

separation, including Van Dijk (2010), whose method is used to calculate BFI1. 

Groundwater discharge can be calculated using Equations 2.1 and 2.2 for an aquifer 

given the following assumptions: large, homogenous, uniform, isotropic and specifically 

bounded unconfined aquifer in a humid environment (Tallaksen, 1995). Halford and 

Mayer (2000) tested the fundamental assumptions of baseflow separation (see section 

2.1 for the assumptions). They suggest that due to the violation of these assumptions, 

the prevalence of groundwater discharge outside of rivers, such as evapotranspiration 

and leakage to deep aquifers, and the contribution of other delayed sources to 

streamflow, it is not possible to equate groundwater with baseflow calculated using 

graphical or analytical baseflow separation methods. Halford and Mayer (2000) 

specifically caution against using baseflow to understand catchment hydrogeologic 

properties. On a global scale, it is impractical to assess the concordance with the 

assumptions. Beck et al. (2013) define baseflow in the first line as “the slowly varying 

portion of streamflow, originating from groundwater storage and/or other delayed 

sources such as channel banks storage, lakes, wetlands, and melting snow and ice” (p. 

7843). This definition excludes applications specific to hydrogeology but still allows the 

stable portion of streamflow to be characterized and quantified on a global scale without 

violating the fundamental assumptions of analytical baseflow separation. It is 

theoretically possible to identify the contributions from multiple sources of baseflow, 

such as wetlands, lakes, groundwater, and snow- and ice-melt, using additional 

catchment characteristics, such as the area of wetlands within the catchment, but this is 

outside the scope of this study. 

 Another major assumption of graphical or analytical baseflow separation is that 

the streams analyzed are gaining streams along their entire length and throughout the 
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year, as BFI is always positive. Gaining streams strictly receive groundwater discharge, 

compared with losing streams which recharge groundwater. In general, perennial 

streams are thought to be gaining, while ephemeral streams may be losing (McMahon & 

Nathan, 2021). Losing streams are also found in arid regions and areas with highly 

permeable stream beds. Gaining streams may become losing in the dry season if the 

water table falls sufficiently, or during the flood stage (Fetter, 1988). Groundwater 

pumping near streams can also increase surface water infiltration by lowering the 

groundwater head. Globally, it is erroneous to assume that all streams are gaining. 

Although none of the selected separation methods can return a negative value, losing 

streams should have very low BFI estimates using all four methods. During flow routing, 

entering a river reach that is losing should reduce baseflow. However, the false positive 

BFI for these streams will result in additions to baseflow that increase throughout the 

losing sections rather than decreasing further. Along the length of the stream, the 

baseflow estimate will deviate further from the “true” value. 

 Beck et al. (2015) performed baseflow separation on daily gauge station data. 

Although daily timescales are thought to be appropriate for baseflow studies (McMahon 

& Nathan, 2021), there are other complications arising from the hydrograph data. Gauge 

stations may not be equipped to measure bed flow in streams causing systematic 

underestimation of streamflow, especially in streams with permeable channel beds. Low 

flow data quality is often limiting for hydrograph-based analyses (Tallaksen, 1995). The 

instrumentation used at the gauge stations may have a resolution that is not fine enough 

to record small streamflow values. On a global scale, the lower limit may not be 

consistent across the globe, leading to more anomalous zero flow days in some 

catchments than others. Many of the gauge stations have missing data on days, months, 

or years during the record. Baseflow methods 2, 3 and 4 can ignore short gaps of fewer 

than five days, while method 1 is impeded by one day of missing data. Method 1 is also 

the only method whose application is impacted by zero flow days which are not 

considered in the recession constant calculation.  
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5.2 –Evaluation of Source Data 

The source data used for flow accumulation each contain their own set of 

assumptions and limitations. The flow directions map is derived from SRTM elevation 

data that was upscaled from 3 arc-seconds. Imperfections in the underlying DEM will be 

transferred to the flow direction map and the downscaled BFI maps.  

Runoff data used to produce discharge estimates were tested against 

approximately 3,000 global gauging stations with good results for long-term averages. 

However, the authors note large uncertainties for snow, glacier, and wetland-dominated 

regions and (semi-)arid conditions (Lehner & Grill, 2013). In (semi-)arid regions, 

depicted streams may represent dry valleys for much of the year.  Further, the runoff 

values are meant to represent natural conditions. The high-resolution BFI maps can be 

used to investigate sources of anthropogenic manipulation of streamflow that affect 

baseflow by comparing current conditions with the maps. For instance, groundwater 

extractions near the river channel can decrease groundwater discharge to streams, 

leading to a reduced BFI from natural conditions (Theis, 1940), which may be 

identifiable by comparing BFI in a stream near extensive groundwater pumping to the 

downscaled BFI maps. The mismatch between natural and anthropogenically altered 

streamflow may account for some differences between the station BFI and local and 

downscaled BFI values. 

The zero-values in the discharge data result in downscaled BFI representing this 

zero-value due to the multiplication with the discharge volume layer. In the map of 

BFI3, the sharp line between zero BFI and intermediate BFI values, especially visible as 

a red vs. green divide in the northern Sahara is caused by the zero values. Although this 

region also has zero values in the BFI2 map, the surrounding BFI values are closer to 

zero, making the transition more gradual. Baseflow method 3 generally has higher 

values across the globe, therefore, the zero values are more obvious.  

5.3 – Evaluation of Local BFI Maps 

The global BFI maps from Beck et al. (2015) were used to represent the local BFI index 

for water derived from each cell. The maps were created by regionalizing catchment 

climatic and physiographic characteristics from over 3,000 gauging. However, 

catchments near the maximum area may still contain diverse sub-catchments with 
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varied baseflow ratios. Their selected catchments were also concentrated in the global 

north but excluded arctic regions. Therefore, uncertainties in the underlying local BFI 

layer are higher in South America, North Africa and South and Central Asia (Figure 

5.1).  

The four baseflow separation methods were developed for and/or tested in a set 

of catchments in a given region. The characteristics of the testing catchments cannot 

represent the diversity of global climates. Once applied to Beck et al.’s (2013, 2015) set 

of over 3,000 gauging stations, the methods are applied to catchment characteristics 

much different than the set of catchments that the methods were developed for, which 

may compromise the applicability in some regions. The most significant catchment 

characteristic is the upland area. Methods 2, 3, and 4 use local-minimum streamflow to 

separate flashy peaks from the stable portion of streamflow. Method 1 also calculates 

baseflow as the lower variability portion of streamflow by identifying the hydrograph 

recession period. Intuitively, these methods should be limited to small catchments; in a 

large catchment, storm runoff will take longer to reach the gauging station and will 

experience delays and transmission losses reducing the intensity of the quickflow peak. 

BFI1 was developed and tested on catchments between 51 and 1780 km2, much smaller 

than the 10,000 km2 maximum imposed by Beck et al. (2013, 2015). The limit of 11 for 

2N* suggests that method 2 is designed for catchments less than approximately 13,000 

km2. However, BFI3 is calculated with N between 3 and 4, suggesting a maximum 

Map 5.1 Uncertainty in local BFI mapsl (from Beck et al., 2013). The data represent 
the per-pixel standard deviation of the 10 transformed estimates (one for each cross-
validation iteration). 
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catchment area of 2,600 km2. I calculated these maximum areas using Equation 3.1 

and converted the areas into km2 from square miles. BFI4 was tested on 865 catchments 

in the United Kingdom with a maximum area of 8231 km2 and a mean area of 284 km2 

(Gustard et al., 1992). Therefore, the estimated BFI1-4 for a larger catchment may be 

inflated. Beck et al. (2013) also note this effect and the associated uncertainty in BFI 

estimates. The upper limit on catchment area in baseflow separation supports the 

importance of flow routing in this study. 

5.4 – Evaluation of High-Resolution BFI Maps 

Global maps of BFI at 15 arc-second resolution showed high BFI in humid regions and 

regions with poor soil drainage (i.e., tundra-taiga) and high mountain regions. Humid 

regions often have thick soils and available water to facilitate groundwater recharge that 

contributes to baseflow. Sub-arctic regions may have high baseflow contributions due to 

snow and ice melt preventing surface water from contributing to streamflow during the 

long winter months when deep groundwater feeds baseflow and snow- and ice-melt 

contribute to baseflow as delayed surface water contributions. Mountain block recharge 

is known to contribute significantly to downstream streamflow, which may explain high 

BFIs at high altitudes even in (semi-)arid regions (Markovich et al., 2019). Headwaters 

tend to have more extreme BFI values than downstream flows due to the averaging 

effect of multiple tributary catchments with different BFI ranges entering the stream. 

Intermediate BFI values in large rivers occur as their river basins span hundreds to 

thousands of square kilometres with diverse climatic and physiographic features leading 

to the averaging of extreme headwater BFIs. Streams derived from regions with very 

homogenous local baseflow contributions do not show this convergence to intermediate 

BFI values downstream (see Figure 4.3a).  

Further downstream along a river, areas directly adjacent to the main stem of the 

river may have a significantly different BFI than the main stem itself. The BFI of the 

main stem reflects the overall contribution area, whereas the surrounding floodplain 

reflects only the floodplain contribution to baseflow. The global map of BFI3 shows 

intermediate values in very arid regions, such as the Sahara desert surrounding the zero 

flow region with 0.0 BFI. Although it is possible for baseflow to contribute to streams in 

very arid regions, the contribution should be much lower, as there is no excess water 
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that is stored between rainfall events. Therefore, an intermediate BFI surrounding a 

region with zero discharge is unlikely and may be erroneous. 

Accounting for the many uncertainties in the source data, the local BFI maps, and 

the assumptions of graphical and analytical baseflow separation methods, the 

correlation between station BFI2-3 and downscaled BFI2-3 are good, with adjusted R2 

values of 0.64 and 0.658, respectively. Station BFI2-3 for large catchments were 

concentrated in the upper quartile of BFI values regardless of the catchment size or the 

corresponding downscaled BFI2-3 (Figure 4.4). The high BFI values calculated for 

large catchments are probably due to the attenuation of streamflow peaks during flow 

concentration toward the gauging station where discharge was recorded, resulting in a 

smoother hydrograph and higher calculated BFI values. The “true” baseflow ratio is 

therefore obstructed by streamflow stability from catchment size. Wetlands or surface 

water bodies present within the catchment may also increase the observed baseflow 

values using BFI separation methods 2 and 3. The mismatch between local BFI values 

from Beck et al. (2015) and station BFI can be attributed to the difference between 

average upstream BFI and predicted baseflow contributions from within the floodplains 

or an erroneous baseflow calculation from the daily discharge time series.  

For selected baseflow separation methods 2 and 3, the length of the period from 

which a local minimum is selected controls the predicted response time of the aquifer to 

changes in water availability. BFI3 is expected to be greater than BFI2 because of the 

shorter interval, i.e., a minimum value applies for a shorter section of the hydrograph. 

For peaks lasting more than 11 days (six days), the baseflow component will rise using 

method 2 (method 3). A faster aquifer response time may be related to the size of the 

catchment and the aquifer properties. Further research could investigate the 

appropriateness of different baseflow separation methods based on aquifer and 

catchment characteristics.  

The flow routing method used in this study does not consider transmission losses 

along the river network; all water that enters a stream is assumed to continue through 

the length of the river until its outlet. This may lead to overestimations of total 

streamflow, especially in (semi-)arid regions. 

The presented global BFI maps represent a single value averaged across all 

seasons. Baseflow may vary seasonally, especially in catchments dominated by 
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snowmelt. Although groundwater stores and other baseflow sources have longer 

residence times and are thought to have longer response times to surface hydrologic 

changes, seasonal or yearly recessions generally occur in climates where baseflow stores 

are replenished seasonally. Beck et al. (2013, 2015) make no mention of baseflow 

seasonality in the determination of their global BFI maps. The correlation between BFI 

and catchment climatic and physiographic features may be stronger considering 

monthly or seasonal BFI. Assessing BFI on shorter time intervals is possible using 

separation methods 2, 3, and 4 by averaging monthly/seasonal BFI values across every 

year of the streamflow record. Method 1 may require a monthly/seasonal recession 

constant to be calculated which may pose a challenge for catchments located in climates 

that experience daily rainfall in certain months. The annual BFI values presented in the 

global river reach BFI maps still represent a significant step forward toward greater 

spatial and temporal resolution baseflow determinations. Although the maps do not 

represent the full range of baseflow throughout the year, the high correlation between 

station BFI and downscaled BFI suggests that much of the baseflow attributes of the 

streams are represented and the maps can be used as a first estimate of global river 

reach BFI.  
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Chapter 6 – Conclusion 

The goal of this study was to determine the baseflow contribution to every river reach, 

globally and review baseflow methods. The primary outcomes of this study are: 

1. Evaluated the assumptions of baseflow separation for application on a global 

scale. BFI can be used to assess the stability of low flows in river reaches and the 

contribution of storm runoff to river reaches, but caution is needed in equating 

baseflow and groundwater discharge. 

2. Determined the baseflow ratio of river reaches in a gridded dataset with 15 arc-

second resolution using flow routing. BFI values for large rivers generally have 

intermediate values averaging out extreme headwater BFI values. 

3. Validated the river reach BFI maps against BFI calculated from almost 3,000 

gauging stations using graphical baseflow separation methods from Sloto and 

Crouse (1996). Relationship near unity with adjusted R2 values of 0.64 and 0.658 

for BFI2 and BFI3, respectively for regression of downscaled BFI2-3 on station 

BFI2-3. This is a good result given the many uncertainties, especially from the 

local BFI maps and other source data. 

Global river reach BFI maps can be used as input data for global climate and 

hydrological models, especially stream temperature and/or chemistry. To increase the 

efficacy of baseflow maps especially for temperature models, monthly or seasonal BFI 

indices could be calculated from long-term streamflow records. The created BFI maps 

can also be used to assess climate change and the sustainability of anthropogenic 

withdrawals from baseflow sources as the map models the pre-industrial, natural 

condition. This study could also be expanded by downscaling BFI methods 1 and 4 from 

Beck et al. (2015), despite the uncertainties of these method, the inclusion of more 

estimates of BFI in the river reaches would create a range of BFI values for each cell. The 

created maps of downscaled and flow downscaled BFI represent the first estimate of 

river reach BFI and especially of baseflow in medium to large rivers, where graphical 

and analytical baseflow separation methods are not applicable. 
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Supplementary Materials 

S1 – Get Filenames Function 
# import needed library 
import os.path 
 
def get_filenames(min: int, max: int): 
    ''' 
    method takes the minimum and maximum station IDs as input 
    returns a list of valid station IDs that serve as gauge station data filenames 
    ''' 
    filenames = range(min,max+1,1) # list of all possible station IDs between min and max 
    names = [] # list to store valid station IDs 
 
    # check each possible station ID to find valid station IDs 
    for file in filenames: 
        if (os.path.isfile(str(file)+'.txt')): 
            names.append(file) 
 
    # return the list of valid station IDs 
    return names 

S2 – Load Data Function 
# import needed  
import pandas as pd 
 
def load_data(filenames: list): 
    ''' 
    methods takes a list of station IDs as input 
    returns dictionary where each entry maps the  
    station number to a dataframe including the data 
 
    note: should be used in conjunction with get_filenames method 
    to avoid calling filenames that do not exist 
    ''' 
 
    data = {} # dictionary to store dataframes 
 
    # iterate over the filenames 
    for file in filenames: 
 
        # due to formatting error in station data 
        # streamflow data is stored in col 2, except for station IDs 
        # beginning with 5 
        if file >= 5000000 and file < 6000000: 
            col = 3 
        else: 
            col = 2 
 
        # read the file into the data frame 
        df = pd.read_csv( 
            filepath_or_buffer= open(str(file)+'.txt','r'),  
            delimiter = ';', 
            header = 40, # skip 40 lines of header text in input files 
            usecols = [0,col], 
            parse_dates = [0], 
            infer_datetime_format = True, 
            ) 
        df.columns = ['Date','Original'] # column names 
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        # add dataframe to dictionary with station ID as key 
        data[file] = df 
 
    return data 

S3 – Fill Gaps Function 
def fill_gaps(d): 
    '''  
    method takes a dataframe of streamflow as input 
    returns a list of continuous periods of streamflow as dataframes 
 
    streamflow records must have at least 10 years of consecutive data 
    with gaps of five days or shorter, making up less than 10% of the data period 
    ''' 
    data = [] # list of consecutive data periods 
     
    c = 0 # number of consecutive days 
    n = 0 # number of NaNs 
     
    beg = [] # index of first day in the consecutive data period 
    end = [] 
 
    thresh = 10 # years of consecutive data needed 
     
    prev_val = float('nan') # last non-NaN value 
    prev_i = -1 # last non-NaN index 
     
    # data gaps are linearly interpolated, the values to update are stored here 
    values = [] # values to update 
    ind = [] # indices to update 
 
    # iterate over each line in the datafram 
    # i is the row index, r is the row values (date,discharge) 
    for i,r in d.iterrows(): 
        # if not the first row in the dataframe 
        if r['Original'] >= 0: 
             
            # if no previously stored value 
            if prev_i == -1:  
                prev_val = r['Original'] # set previously value to current value 
                prev_i = i 
                c += 1 
                 
                beg.append(i) # set current index to the beg of period 
                continue # move to next row 
            
            # if there are NaNs between the previous and current values 
            if i > prev_i + 1 and prev_i != -1: 
                diff_i = i - prev_i # number consecutive NaN values 
                 
                # if 5 or fewer NaN values in a row 
                if diff_i < 7:  
                    # linearly interpolate the missing values 
                    slope = (r['Original'] - prev_val)/(diff_i) 
                    while diff_i > 1: 
                        n += 1 
                        c += 1 
                        diff_i -= 1 
                         
                        # values are stored to be updated in the data frame later 
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                        ind.append(prev_i + diff_i) 
                        values.append(prev_val + slope*diff_i) 
                 
                # if more than 5 NaNs in a row 
                else: 
                    # if there are already 10 years of continuous data 
                    # with less than 10% NaNs 
                    if c > 365*thresh and n <= round(c*0.1): 
                        end.append(prev_i) # record end of continuous period 
                        prev_i = i 
                        prev_val = r['Original'] 
                        c = 1 
                        n = 0 
                        beg.append(i) # record start of new continuous period 
                        continue # move to next row in datafram 
                     
                    # if there are not yet 10 years of continuous data 
                    else: 
                        beg.pop(len(beg) - 1) # remove recorded beg of continous period 
                        prev_i = i 
                        prev_val = r['Original'] 
                        c = 1 
                        n = 0 
                        beg.append(i) # record start of new continous period 
                        continue # move to next row in datafram 
             
            # if there are no NaNs between previous and current row 
            prev_val = r['Original'] 
            prev_i = i 
            c += 1 
         
        # skip first row 
        else: 
            continue 
     
    # if final data period meets the criteria 
    if c > 365*thresh and n <= round(c*0.1): 
        end.append(prev_i + 1) # record end of consecutive data period 
     
    # if final data period does not meet the criteria 
    else: 
        beg.pop(len(beg) - 1) 
     
    # fill data gaps 
    if len(beg) > 0: 
        for x in range(len(ind)): 
            d.at[ind[x],'Original'] = values[x] 
 
    # if suitable consecutive data periods were found, 
    # add them to the list of consecutive data periods to be returned 
    for j in range(len(beg)): 
        data.append(d.iloc[beg[j]:end[j]].reset_index(drop=True)) 
    return data # return list of consecutive data periods as dataframe 
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S4 – Baseflow Separation Method 2 
# load functions from external files 
from get_filenames import get_filenames 
from load_data import load_data 
from fill_gaps import fill_gaps 
 
# load isnan method from math library 
from math import isnan 
 
# call function to get list of stations IDs, used as filenames 
stations = get_filenames(1104150,6997200) 
 
# call function to load station data to dataframe format 
# stations stored in a dictionary with key as station name 
ad = load_data(stations) 
 
# BFI2 data for stations is stored to a csv file 
outputfile = "bfi2_final_v2.csv" 
f = open(outputfile, 'a') 
 
# for each station in the dict, s is the number index of the station ID in station name list 
for s in range(len(stations)): 
    station = stations[s] # station ID 
     
    # 'data' is station data, stored as list of dataframes for each consecutive period of data 
    data = ad.get(station) 
 
    # call function to fill short gaps and break data into continuous periods 
    # 'data' is corrected dataframe with station data 
    data = fill_gaps(ad.get(station))  
     
    # if there are no periods of data of acceptable length 
    if len(data) == 0:  
        # f.write(str(station) + ',NaN\n') # optionally write 'NaN' to .csv 
        continue # go to the next station 
 
    # baseflow and streamflow totals are calculated continously across all data periods 
    bflow = 0 
    sflow = 0 
 
    # for consecutive period of data within the streamflow record 
    for d in data: 
 
        lm_val = float('nan') # local minimum value, initiated as NaN 
        lm_i = 0 # local minumum index, initiated as 0 
        window = [] # list of streamflow values to store consideration period to find local min 
        period = [] # list of streamflow values to store values btw local mins before processing 
 
        # for day in streamflow record, row of dataframe 
        # each row has the date and observed streamflow 
        for i,r in d.iterrows(): # i is the index of the row, r is the row values 
             
            # add the first 11 values to the window to find the first local minumum 
            if i < 11: 
                window.append(r['Original']) 
                continue 
             
            # if there is no previous local minimum 
            if isnan(lm_val): 
                # if the middle day of the 11 day window is the local minumum 
                if window[5] == min(window): 
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                    lm_val = window[5] # set middle-day value as the local minumum 
                    lm_i = i - 6 # set the middle-day index as the local minumum index 
                     
                    bflow += window[5] # add the local minumum amount to the baseflow total 
                    sflow += window[5] # and the streamflow total 
                     
                    # shift the window to the next day 
                    window.append(r['Original'])  
                    window.pop(0) 
                 
                # if the middle-day is not the local minimum 
                else: 
                    # shift the window to the next day 
                    window.append(r['Original']) 
                    window.pop(0) 
             
            # if there is a previously stored local minimum 
            # add baseflow and streamflow to totals from between past and current local mins 
            else: 
                # if the middle day of the 11-day window is the local minuum 
                if window[5] == min(window): 
                    diff_i = i - lm_i - 6 # count the number of days between local mins 
                    diff_value = window[5] - lm_val # difference btw past and current local mins 
                    slope = diff_value/diff_i # rate of inc/dec of baseflow between local mins 
                     
                    # if last local min was not previous day 
                    while diff_i > 1: 
                        diff_i -= 1 # reduce the counter variable 
                        cur_val = period[-1] # consider value at the end of period btw local mins 
                         
                        # baseflow is linearly interpolated between local mins 
                        # baseflow cannot be greater than streamflow on a given day 
                        bflow += min(lm_val + (slope*diff_i), cur_val) 
                        sflow += cur_val 
                         
                        period.pop(-1) # this data point has been accounted for 
                    
                    lm_val = window[5] # set middle day to local min 
                    lm_i = lm_i = i - 6 # set middle day index to local min index 
                     
                    # add current value to baseflow and streamflow totals 
                    bflow += window[5]  
                    sflow += window[5] 
 
                    # shift the window 
                    window.append(r['Original']) 
                    window.pop(0) 
                 
                # if the middle day is not a local minimum 
                else: 
                    period.append(window[5]) # add middle day to list of values btw local mins  
                     
                    # shift the window 
                    window.append(r['Original']) 
                    window.pop(0) 
 
    # if the bfi has been successfully calculated 
    if sflow != 0: 
        f.write(str(station)+","+ str(bflow/sflow) + '\n') 
        print(station) # print to terminal to record processing progress 
     
    # if the bfi has not been successfully calculated 



 
 

49 
 

    else: 
        print(station) # print to terminal to record processing progress 
 # f.write(str(station) + ',NaN\n') # optionally record failure  

# of station as 'NaN' in .csv output  
f.close()   

S5 – Baseflow Separation Method 3 
# load functions from external files 
from get_filenames import get_filenames 
from load_data import load_data 
from fill_gaps import fill_gaps 
 
# call function to get list of stations IDs, used as filenames 
stations = get_filenames(1104150,6997200) 
 
# call function to load station data to dataframe format 
# stations stored in a dictionary with key as station name 
ad = load_data(stations) 
 
# BFI3 data for stations is stored to a csv file 
outputfile = "bfi3_final.txt" 
f = open(outputfile, 'a') 
 
# for each station in the dict, s is the number index of the station ID in station name list 
for s in range(len(stations)): 
    station = stations[s] # station ID 
     
    # 'data' is station data, stored as list of dataframes for each consecutive period of data 
    data = ad.get(station) 
 
    # call function to fill short gaps and break data into continuous periods 
    # 'data' is corrected dataframe with station data 
    data = fill_gaps(ad.get(station)) 
 
    # if there are no periods of data of acceptable length 
    if len(data) == 0: 
        f.write(str(station) + ',NaN\n') # optionally write 'NaN' to .csv 
        continue # go to the next station 
     
    # baseflow and streamflow totals are calculated continously across all data periods 
    bflow = 0 
    sflow = 0 
 
    # for consecutive period of data within the streamflow record 
    for d in data: 
 
        # list of streamflow values to store period of consideration to locate local minimum 
        window = [] 
         
        for i,r in d.iterrows(): 
            # i is the index of the row 
            # r is the row values 
            if i == 0: # first row 
                # prev_date = r['Date'] 
                window.append(r['Original']) 
                continue 
             
            # add the first 7 rows to the window 
            if len(window) < 7: 
                window.append(r['Original']) 
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                # once the window is full 
                # baseflow is the window minimum for each day 
                if len(window) == 7: 
                    bflow += min(window) 
                    sflow += window[3] 
                continue # move to next row 
             
            # shift window 
            window.append(r['Original']) 
            window.pop(0) 
 
            # baseflow is the window minimum for each day 
            bflow += min(window) 
            sflow += window[3] 
     
    # if BFI calculation was successful 
    # record BFI3 in .csv 
    if sflow != 0: 
        f.write(str(station)+","+ str(bflow/sflow) + '\n') 
        print(station) # print to terminal to report progress 
     
    # if BFI calculation was not successful 
    else: 
        f.write(str(station) + ',NaN\n') # optionally record NaN value in .csv 
        print(station) # print to terminal to report progress 
     
f.close() 
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S6 – Cartographic Model 
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S7 – Regression and Figures 
%% Load Data 
 
stationsBFI2 = load('BFI2.mat').stationsBFI2; 
BFI2_calc = stationsBFI2(:,28); 
BFI2_map = stationsBFI2(:,30); 
BFI2_area = stationsBFI2(:,7); 
BFI2_local = stationsBFI2(:,31); 
BFI2_yrs = stationsBFI2(:,6); 
 
stationsBFI3 = load('BFI3.mat').stationsBFI3v2; 
BFI3_calc = stationsBFI3(:,28); 
BFI3_map = stationsBFI3(:,30); 
BFI3_local = stationsBFI3(:,31); 
BFI3_area = stationsBFI3(:,7); 
 
x = [0 1]; 
y = [0 1]; 
 
%% Translation 
 
%translate all of the BFI 
BFI2t_calc = BFI2_calc.*BFI2_calc; 
BFI2t_map = BFI2_map.*BFI2_map; 
BFI2t_local = BFI2_local.*BFI2_local; 
 
BFI3t_calc = BFI3_calc.*BFI3_calc; 
BFI3t_map = BFI3_map.*BFI3_map; 
BFI3t_local = BFI3_local.*BFI3_local; 
 
%% Compare BFI map and BFI calc (catchment <= 10000 km^2) 
 
% BFI2 calc vs. BFI2 map (catchment <= 10000 km^2) 
figure(1) 
 
subplot(2,2,1) 
BFI2_m2 = fitlm(BFI2t_map(BFI2_area <= 10000), BFI2t_calc(BFI2_area <= 10000)) 
BFI2_m2_p = polyfit(BFI2t_map(BFI2_area <= 10000),BFI2t_calc(BFI2_area <= 10000),1); 
% y = 1.0076x + 0.043284 
% RMSE = 0.124 
% R^2 = 0.601 
plot(BFI2t_map(BFI2_area <= 10000), BFI2t_calc(BFI2_area <= 10000),'r+','MarkerSize',3), hold on 
plot(BFI2t_map(BFI2_area <= 5000), BFI2t_calc(BFI2_area <= 5000),'b+','MarkerSize',3) 
plot(x, y*BFI2_m2_p(1)+BFI2_m2_p(2),'k') 
plot([0 1],[0 1],'--k'), hold off 
ylim([0 1]), xlim([0 1]) 
xlabel('Downscaled BFI2','FontSize',16) 
ylabel('Station BFI2','FontSize',16) 
title('Station BFI2 vs. Downscaled BFI2','FontSize', 22) 
legend('Catchment Area >= 10,000 km^2','Catchment Area >= 5,000 km^2','Linear Trend','1:1 
Relation','Location','southeast') 
 
% BFI3 calc vs. BFI3 map (catchment <= 10000 km^2) 
subplot(2,2,2) 
BFI3_m2 = fitlm(BFI3t_map(BFI3_area <= 10000), BFI3t_calc(BFI3_area <= 10000)) 
BFI3_m2_p = polyfit(BFI3t_map(BFI3_area <= 10000),BFI3t_calc(BFI3_area <= 10000),1); 
% y = 0.99471x + 0.044134 
% RMSE = 0.13 
% R^2 = 0.64 
plot(BFI3t_map(BFI3_area <= 10000), BFI3t_calc(BFI3_area <= 10000),'r+','MarkerSize',3), hold on 
plot(BFI3t_map(BFI3_area <= 5000), BFI3t_calc(BFI3_area <= 5000),'b+','MarkerSize',3) 
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plot([0 1],[0 1],'--k') 
plot(x, y*BFI3_m2_p(1)+BFI3_m2_p(2),'k'), hold off 
ylim([0 1]), xlim([0 1]) 
xlabel('Downscaled BFI3','FontSize',16) 
ylabel('Station BFI3','FontSize',16) 
title('Station BFI3 vs. Downscaled BFI3','FontSize', 22) 
 
% BFI2 Local vs BFI2 Estimated (catchments <= 10000 km^2) 
subplot(2,2,3) 
BFI2_m7 = fitlm(BFI2t_local(BFI2_area <= 10000), BFI2t_calc(BFI2_area <= 10000)) 
BFI2_m7_p = polyfit(BFI2t_local(BFI2_area <= 10000),BFI2t_calc(BFI2_area <= 10000),1); 
% y = 0.6122x + 0.15934 
% RMSE = 0.163 
% R^2 = 0.314 
plot(BFI2t_local(BFI2_area <= 10000), BFI2t_calc(BFI2_area <= 10000),'r+','MarkerSize',3), hold 
on 
plot(BFI2t_local(BFI2_area <= 5000), BFI2t_calc(BFI2_area <= 5000),'b+','MarkerSize',3) 
plot([0 1],[0 1],'--k') 
plot(x, y*BFI2_m7_p(1)+BFI2_m7_p(2),'k'), hold off 
ylim([0 1]), xlim([0 1]) 
xlabel('Local BFI2','FontSize',16) 
ylabel('Station BFI2','FontSize',16) 
title('Station BFI2 vs. Local BFI2','FontSize', 22) 
 
% BFI2 Observed vs. BFI2 Local(catchments <= 10000 km^2) 
subplot(2,2,4) 
BFI3_m7 = fitlm(BFI3t_local(BFI3_area <= 10000), BFI3t_calc(BFI3_area <= 10000)) 
BFI3_m7_p = polyfit(BFI3t_local(BFI3_area <= 10000),BFI3t_calc(BFI3_area <= 10000),1); 
% y = 0.67002x + 0.15872 
% RMSE = 0.167 
% R^2 = 0.404 
plot(BFI3t_local(BFI3_area <= 10000), BFI3t_calc(BFI3_area <= 10000),'r+','MarkerSize',3), hold 
on 
plot(BFI3t_local(BFI3_area <= 5000), BFI3t_calc(BFI3_area <= 5000),'b+','MarkerSize',3) 
plot([0 1],[0 1],'--k') 
plot(x, y*BFI3_m7_p(1)+BFI3_m7_p(2),'k'), hold off 
ylim([0 1]), xlim([0 1]) 
xlabel('Local BFI3','FontSize',16) 
ylabel('Station BFI3','FontSize',16) 
title('Station BFI3 vs. Local BFI3','FontSize', 22) 
 
%% Plot Residuals BFI calc vs BFI map (catchment <= 10,000) 
 
figure(2) 
subplot(1,2,1) 
plot(BFI2t_map(BFI2_area <= 10000), ... 
    (-1).*(BFI2t_map(BFI2_area<=10000).*BFI2_m2_p(1)+BFI2_m2_p(2))+BFI2t_calc(BFI2_area <= 
10000), ... 
    'r+','MarkerSize',3), hold on 
plot(BFI2t_map(BFI2_area <= 5000), ... 
    (-1).*(BFI2t_map(BFI2_area<=5000).*BFI2_m2_p(1)+BFI2_m2_p(2))+BFI2t_calc(BFI2_area <= 5000), 
... 
    'b+','MarkerSize',3) 
plot([0 1],[0 0],'k') 
xlabel('Downscaled BFI2','FontSize',16) 
ylabel('Residuals','FontSize',16) 
title('Residuals of Station BFI2 vs. Downscaled BFI2','FontSize', 17) 
legend('Catchment Area >= 10,000 km^2','Catchment Area >= 5,000 km^2','','Location','southeast') 
 
subplot(1,2,2) 
plot(BFI3t_map(BFI3_area <= 10000), ... 
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    (-1).*BFI3t_map(BFI3_area<=10000).*BFI3_m2_p(1)+BFI3_m2_p(2)+BFI3t_calc(BFI3_area <= 10000), 
... 
    'r+','MarkerSize',3), hold on 
plot(BFI3t_map(BFI3_area <= 5000), ... 
    (-1).*BFI3t_map(BFI3_area<=5000).*BFI3_m2_p(1)+BFI3_m2_p(2)+BFI3t_calc(BFI3_area <= 5000), 
... 
    'b+','MarkerSize',3) 
plot([0 1],[0 0],'k') 
xlabel('Downscaled BFI3','FontSize',16) 
ylabel('Residuals','FontSize',16) 
title('Residuals of Station BFI3 vs. Downscaled BFI3','FontSize', 17) 
 
%% BFI vs Catchment Area 
 
% observed BFI2 vs catchment area 
figure(3) 
subplot(2,2,1) 
plot(log10(BFI2_area),BFI2_calc,'b+','MarkerSize',3), hold on 
plot([0 7],[0.75 0.75],'--k'), hold off 
%title('BFI2 Observed vs. Log of Catchment Area','FontSize',16) 
xlabel('Log of Catchment Area (km^2)','FontSize',16) 
ylabel('Station BFI2','FontSize',16) 
title('BFI2','Fontsize',20) 
 
% observed BFI3 vs catchment area 
subplot(2,2,2) 
plot(log10(BFI3_area),BFI3_calc,'b+','MarkerSize',3), hold on 
plot([0 7],[0.85 0.85],'--k'), hold off 
%title('BFI3 Observed vs. Log of Catchment Area','FontSize',16) 
xlabel('Log of Catchment Area (km^2)','FontSize',16) 
ylabel('Station BFI3','FontSize',16) 
title('BFI3','Fontsize',20) 
 
% estimated BFI2 vs catchment area 
subplot(2,2,3) 
plot(log10(BFI2_area),BFI2_map,'b+','MarkerSize',3), hold on 
plot([0 7],[0.75 0.75],'--k'), hold off 
ylim([0 1]) 
%title('BFI2 Estimated vs. Log of Catchment Area','FontSize',16) 
xlabel('Log of Catchment Area (km^2)','FontSize',16) 
ylabel('Downscaled BFI2','FontSize',16) 
 
% estimated BFI2 vs catchment area 
subplot(2,2,4) 
plot(log10(BFI3_area),BFI3_map,'b+','MarkerSize',3), hold on 
plot([0 7],[0.85 0.85],'--k'), hold off 
%title('BFI3 Estimated vs. Log of Catchment Area','FontSize',16) 
xlabel('Log of Catchment Area (km^2)','FontSize',16) 
ylabel('Downscaled BFI3','FontSize',16) 
 
%% Data Histograms 
 
text_size = 10; 
 
% catchment size (catchments <= 10000 km^2) 
figure(4) 
subplot(4,1,1) 
h = histogram(log10(BFI3_area(BFI3_area <= 10000)),'FaceColor','w'); 
h.BinWidth = 0.5; 
title('Catchment Area < 10,000 km^2','FontSize',12) 
ylabel('Num. of Catchments','FontSize',text_size) 
xlabel('Log of Catchment Area (km^2)','FontSize',text_size) 
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ylim([0 650]) 
 
% record length (catchments <= 10000) 
subplot(4,1,2) 
h = histogram(BFI2_yrs(BFI2_area <= 10000),'FaceColor','w'); 
h.BinWidth = 10; 
% title('','FontSize',16) 
ylabel('Num. of Catchments','FontSize',text_size) 
xlabel('Record Length (yrs)','FontSize',text_size) 
xlim([10 150]) 
ylim([0 650]) 
 
% catchment size (all catchments) 
subplot(4,1,3) 
h = histogram(log10(BFI3_area),'FaceColor','#ADD8E6'); 
h.BinWidth = 0.5; 
title('All Catchments','FontSize',12) 
ylabel('Num. of Catchments','FontSize',text_size) 
xlabel('Log of Catchment Area (km^2)','FontSize',text_size) 
ylim([0 650]) 
 
% record length (all catchments) 
subplot(4,1,4) 
h = histogram(BFI2_yrs,'FaceColor','#ADD8E6'); 
h.BinWidth = 10; 
% title('','FontSize',16) 
ylabel('Num. of Catchments','FontSize',text_size) 
xlabel('Record Length (yrs)','FontSize',text_size) 
xlim([10 150]) 
ylim([0 650]) 


