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Abstract

Literature proposes various ways to understand the corporate credit risk using different
financial assets. This thesis empirically verifies these practices, by studying the relations
between the credit and equity (derivatives) markets, as well as addressing the method-
ological issue in investigating such relations. The first essay studies methodologies in
computing CDS returns. While existing CDS return metrics in the literature are poor
proxies for the real CDS return, our novel metric has no less than 99% of the correlation
with the real CDS return. Our empirical evidence demonstrates the importance of this
metric in various empirical settings, such as evaluating a CDS investment strategy.

In the second essay, we examine the predictability between the CDS term structure and
equity returns. We find that the information set for the predictability can be significantly
improved by incorporating the term structure of CDS spreads. The sign of the predictabil-
ity is dependent on the shape of the term structure. A structural credit risk framework
shows that the term structure contains information on the endogenous default boundary
and the asset volatility. This information is tightly related to the equity risk premium.
Our work highlights the importance of incorporating the credit spread term structure
information in examining the relation between the equity and credit markets.

The third essay studies the integration between the option and CDS markets. By com-
paring the credit spreads implied from the option (IS) and the credit spreads observed
in the CDS market, we find significant short-lived price discrepancies between the IS and
CDS spreads. These price discrepancies are related to frictions associated with limits to ar-
bitrage, such as asset illiquidity, idiosyncratic risk, information uncertainty, as well as the
intermediary funding constraint. We develop a stylized intermediary based asset pricing

framework, which can rationalize the empirical findings.
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Résumé

La littérature propose différentes manieres de comprendre le risque de crédit des en-

treprises en utilisant différents actifs financiers. Cette these vérifie empiriquement ces
pratiques, en étudiant les relations entre les marchés du crédit et des actions (produits

dérivés), ainsi qu’en abordant la question méthodologique dans 1’étude de ces relations.

Le premier essai étudie les méthodologies de calcul des rendements CDS. Alors que les

mesures de rendement CDS existantes dans la littérature sont de mauvais indicateurs du
rendement réel des CDS, notre nouvelle mesure n’a pas moins de 99% de la corrélation

avec le rendement réel des CDS. Nos données empiriques démontrent I'importance de

cette mesure dans divers contextes empiriques, comme l’évaluation d"une stratégie d'investissement
CDS.

Dans le deuxiéme essai, nous examinons la prévisibilité entre la structure a terme du
CDS et les rendements des actions. Nous constatons que 1’ensemble d’informations pour
la prévisibilité peut étre considérablement amélioré en incorporant la structure a terme
des spreads de CDS. Le signe de la prévisibilité dépend de la forme de la structure a
terme. Un cadre de risque de crédit structurel montre que la structure a terme contient
des informations sur la limite de défaut endogene et la volatilité des actifs. Ces infor-
mations sont étroitement liées a la prime du risque des actions. Nos travaux soulignent
I'importance d’incorporer les informations sur la structure a terme de écart de crédit dans
I'examen de la relation entre les marchés des actions et du crédit.

Le troisieme essai étudie 1'intégration entre les marchés de 1'option et des CDS. En
comparant les spreads de crédit implicites de l'option (IS) et les spreads de crédit observés
sur le marché des CDS, nous constatons des écarts de prix de courte durée significatifs

entre les spreads IS et CDS. Ces écarts de prix sont liés aux frictions liées aux limites
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de l'arbitrage, telles que l'illiquidité des actifs, le risque idiosyncratique, I'incertitude de
I'information, ainsi que la contrainte de financement intermédiaire. Nous développons
un cadre stylisé de valuation des actifs basé sur des intermédiaires, qui peut rationaliser

les résultats empiriques.



Contribution of Authors

The first two essays are collaborative works. The first essay entitled “CDS Returns” is
in collaboration with Professor Patrick Augustin, from McGill University and Professor
Fahad Saleh, from Wake Forest University. I was responsible for programming, design-
ing and conducting empirical tests. The second essay entitled “Why does the CDS Term
Structure Predict Equity returns?” is joint work with Professor Patrick Augustin and Pro-
tfessor Jan Ericsson, from the finance department at McGill University. I was responsible
for designing and conducting empirical analysis, developing economic intuition, as well
as devising a theoretical framework. The third essay entitled “Are Option and CDS Mar-
kets Integrated?” is single authored work.

My main contributions go beyond doing empirical work. The first essay involves im-
plementing the novel CDS return metric in a variety of empirical settings to answer a
fundamental methodology question: what is the right CDS return metric to use under
different economic contexts. This provides further guidance on the return comparison
between the CDS and other asset markets. In the second essay, my empirical work con-
tributes to a recent debate in the literature on the predictability between the equity and
credit markets. Furthermore, I revisit the classic structural credit risk framework and pro-
vide novel implications on the relation between the credit spread term structure and eq-
uity returns. My third essay empirically verifies a fundamental assumption, on whether
option and credit markets are integrated, in a recent growing literature on using options
to implement credit risk models. My work provides important guidance on when we
might have bias inference using the option implied credit spreads.

Overall, all three essays of this thesis shed new light on the relation between CDS

and equity (derivatives) markets. This yields important implications on understanding
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the corporate credit risk based on various financial assets. This thesis thus constitutes

original work.
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Chapter 1

Introduction

Corporate credit risk is one of the main topics in financial markets, as the US corporate
debt outstanding increases tremendously over the past decade. It is important to under-
stand the credit risk at the individual firm level for credit risk management, which has
been more and more emphasized after the 2008 financial crisis.

To understand the credit risk, many studies use different corporate contingent claims
to extract credit spreads. Among credit claims, credit default swaps (henceforth CDS) are
documented to be more efficient in reflecting the firm'’s credit risk compared to corporate
bonds (e.g. Blanco, Brennan, and Marsh, 2005; Norden and Weber, 2009). Despite its
efficiency over the corporate debt market, to enrich the credit risk information set, many
studies start to use other corporate contingent claims to understand the credit risk of the
tirms, based on the structural models of credit risk (e.g. Merton, 1974; Vassalou and Xing,
2004; Hull, Nelken, and White, 2005; Carr and Wu, 2011; Culp, Nozawa, and Veronesi,
2018).

Given all these instruments in understanding the credit risk, to see which claim is
more effective in reflecting the credit risk, on the one hand, it is important to investigate
the lead-lag relation between the credit and equity markets. On the other hand, It is im-
portant to understand whether the credit risk is priced consistently among these markets,
empirically.

In the first chapter, to facilitate the investigation on cross-market relations, we start by

developing a novel cash flow based CDS return metric, since it is a fundamental economic



quantity, which can be directly compared across different markets. Despite the existence
of various CDS return metrics in the literature, the 2009 CDS reform significantly changes
the cash flow structure of the CDS contract. This might jeopardize the accuracy of the
traditional metrics. Furthermore, the real CDS return metric proposed by ISDA is difficult
to implement. To solve these problems, we construct a CDS return metric that is easy to
implement and has a correlation of no less than 99% with the real CDS return.

In the second chapter, we study the predictability between the CDS term structure
and equity returns. There has been a debate in the literature about whether the credit
market predicts the equity market or vice versa. However, most of these papers focus
exclusively on the credit spread level in examining the predictive relation. This inference
might omit a significant amount of information embedded in the term structure of the
credit spread. Therefore, we revisit the predictive evidence by focusing on the term struc-
ture of the credit spread. First, we find that the information set for the predictability can
be significantly improved by relying on the term structure. Second, we find that the sign
of the predictability is dependent on the shape of the term structure. A stylized structural
credit risk framework shows that the shape of the term structure contains important in-
formation on the asset volatility and endogenous default boundary of the firm, which are
crucial in understanding the equity risk premium.

In the third chapter, we explore the integration between the option and CDS markets.
Since an increasing number of studies extract the credit spread using the option data
based on the market integration assumption implied by the structural models of credit
risk, it is important to empirically verify whether the credit risk is priced consistently be-
tween the option and CDS markets in practice. By comparing the credit spreads implied
from the options (henceforth IS) and the credit spreads observed in the CDS market, we
find an existence of short lived price discrepancies between IS and CDS spreads. These
price discrepancies are closely associated with variables related to limits to arbitrage, such
as illiquidity, idiosyncratic risk, institutional ownership, and analyst coverage, as well as
the health of financial intermediaries. We provide a stylized intermediary asset pricing

framework which can rationalize the salient features of the empirical evidence and show



that the intermediary funding constraint is the main drivers of the time series dynamic of
the price discrepancy, compared to other frictions.

This thesis contributes to our understanding on the integration between the CDS and
other asset classes. First, we provide an innovative CDS return metric and highlight its
importance in evaluating an investment strategy involving buying or selling a CDS con-
tract. This facilitates the research on cross-market relation, such as constructing a cross-
asset arbitrage strategy. Second, we show that it’s important to incorporate the CDS term
structure in order to better understand the relation between the CDS and equity markets.
This could potentially resolve the conflicting evidence on the predictability between the
credit and equity markets in the literature. Third, our findings sheds light on the condi-
tions under which it is appropriate to extract and use credit spreads implied from option
prices under the structural framework. By understanding the patterns between CDS and
other financial markets, this thesis provides important guidance on the structural credit
risk model development, as well as the empirical implementation to extract credit spreads
using other corporate contingent claims, based on the joint market dynamics implied by
the theory.

This thesis is organized as follows. Chapter 2 provides a literature review. Chapter
3 constructs a novel CDS return metric for understanding the relation between CDS and
equity (derivatives) markets. Chapter 4 examines the predictive relation between the
CDS term structure and equity returns. In Chapter 5, I study the integration between the

option and CDS markets. Chapter 6 concludes.



Chapter 2

Literature Review

This thesis builds on the literature on structural models of credit risks. Dating back to
the seminal work of Merton (1974), a number of papers develop structure frameworks
in jointly pricing the equity and credit claims, as well as corporate decision making (e.g.
Black and Cox, 1976; Leland, 1994; Leland, 1998; Goldstein, Nengjiu, and Leland, 2001;
Du, Elkamhi, and Ericsson, 2019). Given the market integration implication from the lit-
erature, this thesis examines the relations between credit and equity markets both empir-
ically and theoretically, as well as addressing a methodological issue in comparing these
markets.

The first essay studies the methodologies in computing the CDS returns. It is related
to the literature on the usage of CDS returns. There are various CDS return metric in
the literature, such as simple spread changes (e.g. Ericsson, Jacobs, and Oviedo, 2009;
Augustin and Izhakian, 2020), percentage or log spread changes (e.g. Acharya and John-
son, 2007; Hilscher, Pollet, and Wilson, 2015), or duration based measure (e.g. Duarte,
Longstaff, and Yu, 2007; Berndt and Obreja, 2010; Bongaerts, De Jong, and Driessen, 2011;
Palhares, 2014; He, Kelly, and Manela, 2017; Kelly, Manzo, and Palhares, 2019). However,
these metrics do not take into account the new cash flow structure of the CDS contract
after the 2009 CDS Big Bang. This thesis provides a simple novel cash flow based CDS
return metric which takes into account such changes.

In the second essay, we study the predictive relation between the CDS term structure

and equity returns. It is related to the literature on the debate on the lead lag relation
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between the equity and credit market. Acharya and Johnson (2007) and Han, Subrah-
manyam, and Zhou (2017) find that the CDS market leads the equity market due to in-
formed trading in the CDS market. Ni and Pan (2020) also find that the credit market
predicts the equity market because of equity short selling constraints. On the contrary,
Hilscher, Pollet, and Wilson (2015) show that the equity market predicts the CDS market
and the informed trader prefers the equity market because of lower transaction cost. Sim-
ilarly, Norden and Weber (2009) provide statistical evidence that the equity market leads
the credit market. More recently, Lee, Naranjo, and Velioglu (2018) finds that the equity
market leads the CDS market unconditionally. However, the CDS market predicts the
equity market when the credit event takes place.

Most of these studies focus exclusively on the credit spread level. This is likely to omit
significant information embedded in the credit spread term structure, which might be
helpful in predicting the equity returns. This essay presents both theoretical and empirical
evidence to show that the credit spread term structure can reflect different combinations
of asset volatility and default boundary, even though these combinations might produce
the same credit spread level. Table A.1 summarizes the main differences between our and
the existing contributions.

Furthermore, this essay also relates to the cross-sectional stock return predictability.
On the one hand, some papers argue that the predictive power of firm characteristics,
such as size, book-to-market ratio, and momentum, results from rational expected re-
turns across firms (e.g. Fama and French, 1992; Fama and French, 1996; Jagannathan and
Wang, 1996; Zhang, 2005). On the other hand, many studies explain the stock predictabil-
ity based on investor irrationality or market imperfection (e.g. Shleifer and Vishny, 1997;
Jegadeesh and Titman, 1993; Lakonishok, Shleifer, and Vishny, 1994; Nagel, 2005). This
essay contributes to the former stream of literature in understanding the equity risk pre-
mium through the credit spread term structure.

In addition, many studies have shown that the term structure of different asset classes,
such as currencies, equity and dividend derivatives, inflation, U.S. government bonds,
and volatility, contains valuable information on the pricing of risk (e.g. Cochrane and Pi-

azzesi, 2005; Binsbergen, Brandt, and Koijen, 2012; Zviadadze, 2017; Fleckenstein, Longstaff,



and Lustig, 2017; Augustin, 2018; Gruber, Tebaldi, and Trojani, 2020). This essay con-
tributes to this literature by showing that the term structure of credit spreads contains
important information on the equity risk premium.

The third essay studies the integration between the option and CDS markets. It is
related to the literature on the integration among different corporate contingent claims.
There are a number of papers studying the integration between equity and credit markets
such as equity and bonds (Choi and Kim, 2018; Lewis, 2019; Sandulescu, 2020; among
others), equity and CDS (Acharya and Johnson, 2007; Das and Sundaram 2007; Kapadia
and Pu, 2012; Ni and Pan, 2020; Friewald, Wagner, and Zechner, 2014; Hilscher, Pollet,
and Wilson, 2015; Forte and Lovreta, 2015; Han, Subrahmanyam, and Zhou, 2017; Lee,
Naranjo, and Velioglu, 2018; Augustin, Jiao, Sarkissian, and Schill, 2019; among others).

In terms of the literature on the integration between option and CDS markets, a few
papers document the integration by showing the unconditional moments of the option
implied credit spreads and CDS spreads, such as unconditional averages or correlations
(Hull, Nelken, and White, 2005; Carr and Wu, 2011). Furthermore, recent studies focus
on the aggregate dynamics of the option and CDS. For example, Cremers, Driessen, and
Maenhout (2008) show that the option implied jump risk premium can explain the ob-
served level of credit spreads by ratings. Culp, Nozawa, and Veronesi (2018) show that
the pseudo credit spread constructed from the options closely matches the CDS spread
dynamic at the aggregate level. Forte and Lovreta (2019) examine the price discovery
between the CDS implied equity volatility index and the option implied volatility index.
Collin-Dufresne, Junge, and Trolle (2020) build a structural model to price the CDX and
SPX options and find that the credit and equity market are not fully integrated.

The SPX option and CDX do not have the same underlying basket. On the contrary, the
single name equity options and corporate credit claims share the exact same underlying
tirm value. Complementing these studies, this paper provides firm level evidence not
only on the unconditional relation but also the conditional short-run relation between the
IS and CDS spreads.

In addition, this essay relates to the large body of literature on the deviation of law

of one price. Most studies attribute the price discrepancy to asset spercific frictions and



the frictions associated with the market participants. On the asset-specific friction side,
a number of studies show that limits to arbitrage impact the law of one price (Shleifer
and Vishny, 1997; Gromb and Vayanos, 2010; among others). Empirically, Kapadia and
Pu (2012) document that arbitrage costs contribute to the price discrepancy between the
equity and CDS markets. Cao and Han (2013) find that the premiums of options increase
with the arbitrage cost. Complementing these empirical studies, we provide evidence on
the relation between the arbitrage costs and the price discrepancy between the option and
CDsS.

On the market participant side, financial intermediaries are documented to be impor-
tant market players in various asset classes. For example, a growing literature shows both
theoretically and empirically that the intermediary funding constraint is priced in vari-
ous asset classes (Adrian, Etula, and Muir, 2014; He, Kelly, and Manela, 2017; Haddad
and Muir, 2018; Hitzemann, Hofmann, Uhrig-Homburg, and Wagner, 2018; Andersen,
Duffie, and Song, 2019; among others), and the dealer’s risk bearing capacity is a priced
tactor (Kyle and Xiong, 2001; Garleanu, Pedersen, and Poteshman, 2009; Cao and Han,
2013; Barras and Malkhozov, 2016; Kondor and Vayanos, 2019; among others). Several
papers document that the intermediary funding constraint is responsible for the deviation
of law of one price (Gromb and Vayanos, 2002; Duffie, 2010; Garleanu and Pedersen, 2011;
Mitchell and Pulvino, 2012; Du, Tepper, and Verdelhan, 2018; Fleckenstein and Longstatff,
2020; Du, Hebert, and Wang, 2020; among others).

In addition, the wealth of the intermediary is shown to impact the premium of trading
costs. For example, Bongaerts, De Jong, and Driessen (2011) show that the zero net supply
assets can have either positive or negative liquidity premium depending on the buyer’s
and seller’s relative wealth and risk aversion.

Building on this literature, this essay provides significant evidence that the financial
intermediary health impacts the price discrepancy between the IS and CDS spreads, con-
tributing to the growing literature on whether the intermediary constraint is priced. This
essay also provides new insight on the relative impacts of financial intermediary health

on the dynamics of both the liquidity premium and the premium associated with the



intermediary margin type constraint, both shown to affect the price discrepancy in the
literature.

Furthermore, the essay contributes to the growing literature in using options to im-
plement credit risk models. Hull, Nelken, and White (2005) extend the Merton (1974)
model to price the equity option as a compound option of the firm value to extract the
default intensity from the options. In a similar fashion, Kuehn, Schreindorfer, and Schulz
(2017) estimate a structural model of credit risk with a representative agent with recursive
preferences and Markov-switching states using both the options and CDSs information.
Instead of building on the structural model, Carr and Wu (2009) extend the Merton (1976)
model to incorporate stochastic volatility and use options and CDSs to jointly extract the
parameters governing the firm underlying dynamic. Culp, Nozawa, and Veronesi (2018)
develop an empirical methodology to construct pseudo credit spreads from option prices
based on the Merton model. Carr and Wu (2011) establish a robust link between deep
out of the money (DOTM) put options and CDSs. This essay adopts the methodologies
from Culp, Nozawa, and Veronesi (2018) and Carr and Wu (2011) to study the integration
between option and CDS markets at the firm level. The evidence of options having su-
perior information over the CDSs for firms that are less transparent provides additional

incentives to use options in implementing credit risk models.



Chapter 3

CDS Returns

3.1 Introduction

What defines a financial return? At first reflection, this question seems trivial, especially
in the context of financial securities, such as stocks or bonds. But a more sincere assess-
ment evokes the sensation that the answer to this question is not as straightforward as it
may appear. The ambiguity surrounding the definition of a financial return is especially
pronounced in the context of credit default swaps (CDS), for which there exists signifi-
cant divergence in empirical applications. Surveying the literature, we find at least four
different methodologies to compute the return from buying or selling a CDS. Against the
backdrop of this disagreement, we show that results from academic research, both qual-
itative and quantitative in nature, largely depend on the type of definition used for the
computation of CDS returns. We find this important to highlight, especially given the
growing use of CDS time series in empirical research.

Our first objective is to clarify the concept of CDS returns, and to parallel the dif-
ferent computations applied in the literature. In that context, we provide a simple ap-
proximation to the true CDS return, using as inputs CDS prices, rather than the conven-
tionally quoted break-even credit swap spreads. This has become especially important
since the regulatory overhaul instigated by the 2009 Big and Small Bang Protocols, which
prescribes standardized insurance premium payments together with up-front cash flows

settled between protection buyers and protection sellers. The main concern is that the
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change in regulation has altered the cash flow structure of CDS transactions, which in-
creases the need for a cash flow-based return measure.

Our second objective is to illustrate that commonly used approximations of CDS re-
turns, such as simple changes in CDS spreads, or their log differences, poorly approxi-
mate true CDS returns. In fact, we show that the time series correlation between simu-
lated time series of approximated CDS returns and true CDS returns based on prices, are
often below 20%. The simple approximation of CDS returns we propose, on the other
hand, has a time series correlation of at least 99% with the true return series. Such stark
differences become of paramount importance in the examination of the relation between
returns on stocks and securities subject to credit risk (such as bonds, for example), for
which CDS are often used as a first best approximation. Thus, we illustrate that the re-
lation between stocks and CDS returns varies substantially across different CDS return
definitions, and such differences vary as a function of firm leverage and asset volatility.

Taken at face value, our comments indicate a criticism of prior empirical work. Does
this mean that earlier findings in the literature based on approximations of CDS returns
should be dismissed? Certainly not! However, our examination emphasizes an important
distinction that needs to be made among notions of CDS returns. The natural question
that is implied is about the appropriateness of various CDS return approximations in dif-
ferent contexts. In a third instance, we thus provide some guidance for when researchers
can rely on simple or percentage changes of CDS spreads, and when it is necessary to
compute true CDS returns. We argue that the computation of true CDS returns is par-
ticularly relevant for studies that examine investment strategies and return performance,
which critically depend on the cash flows attached to the underlying securities.

This paper is organized as follows. Section 3.2 describes the structure of a plain vanilla
CDS contract and parallels different methods for computing CDS returns. Section 3.3
introduces a practically useful metric that approximates true CDS returns. Section 3.4
examines the relation among simulated CDS return approximations, and their relation
with equity returns. In Section 3.5, we revisit the evidence from existing papers that use

CDS returns. Section 3.6 concludes.
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3.2 Existing Definitions of CDS Returns

We first describe the CDS contract and its payment structure before the 2009 Big Bang
Protocol. We then discuss existing metrics of CDS returns commonly used in the litera-
ture. We end with a discussion of how the standardization of contracts through the Big

Bang Protocol changed the cash flow structure of CDS contracts.

3.2.1 The CDS Contract before the Big Bang

A CDS contract represents a bilateral credit default insurance between a protection buyer
and a protection seller. The contract specifies a reference entity that may default on a
basket of eligible reference obligations, which are usually standard corporate bonds for
conventional plain-vanilla single-name contracts. In return for protection on a face value
N until a terminal date 7', the insurance buyer compensates the insurance seller by pay-
ing an insurance price. Historically, that price was quoted in terms of the “running” or
“break-even” spread (henceforth the break-even CDS spread), which would reflect the
annualized quarterly payment that the insurance buyer would make per unit of insur-
ance protection. This spread payment would be determined such that the present value
of the contract would be zero at initiation of the trade, hence the spread being referred to
as a break-even CDS spread.

Formally, we denote the break-even CDS spread at time ¢ by s,. The insurance pre-
mium is paid in regular intervals, typically quarterly, until the earlier of a credit event
trigger or the terminal date 7" of the contract, such that there are n payments at times
{t:}7_,. Prior to the Big Bang, each payment was proportional to the break-even CDS
spread and determined by the time interval (day count) A; = ¢; — t,_; between two pay-
ment periods, with the requirement that Vi,j € {1,...,n} : ¢ > j, we have that ¢, > ¢;.
Further, the final payment occurs at maturity (i.e., t, = 7)), and we define ¢, = ¢, with ¢
being taken to be the current date hereafter. Upon a default contingency, the protection
seller commits to compensate the protection buyer for any losses incurred in excess of the
recovery value R, which is also defined as a percentage of the contract’s face value. The

constant recovery rate is determined in a two-stage auction process through a dealer poll
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(Chernov, Gorbenko, and Makarov, 2013; Gupta and Sundaram, 2015; Du and Zhu, 2017).
Even though the ex-post recovery rate may vary across defaulted reference entities, it is
the convention to fix a constant recovery rate for pricing purposes. For additional regula-
tory details and explanations on the market structure, we refer to Chapter 2 in Augustin,
Subrahmanyam, Tang, and Wang (2014).

Prior to the Big Bang, a CDS contract had zero value at initiation. Thus, the break-
even CDS spread s; was chosen such that the present value of the expected payments
made by the protection seller equals the present value of the expected payments made by

the protection buyer:!

— +(u)du
BCle 0 "M my <)
St = P s (31)
n — [ r(u)du
EQ 26 0 AlI(T>t1)

where 7 (u) denotes the risk-free funding rate that applies between times ¢ and ¢ + u, Z is
an indicator function that takes the value one if the condition inside the brackets is met,
and 0 otherwise, and 7 defines the random default time. If default occurs in between
two payment dates, the insurance buyer is also liable for the fraction of the quarterly
insurance premium that has accrued since the last installment. While we take such ac-
crual payments explicitly into account in our empirical implementation, we omit them in
Equation (3.1) to simplify the exposition.

Assuming that interest rates and default are independent of each other, the CDS break-

even spread can be expressed as:

(1= R) Y DF, (b — ) [Qi (ti1 — ) — Q1 (t — )]
= , (3.2)
DF, (t; —t) Q¢ (t; — t) A,

St =

(2

LAll expectations are taken with respect to the time-t information set and the risk-neutral Q-measure,
unless otherwise stated.
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where DF; (s) defines the value at time ¢ of a contract paying $1 at time ¢ + s, and Q; (s)
defines the risk-neutral probability of survival at time ¢+ s conditional on the information

available at time ¢.

3.2.2 Existing CDS Return Definitions

The academic literature has used different metrics of CDS returns. Ericsson, Jacobs, and
Oviedo (2009), for example, use break-even CDS spread changes to test the explanatory

power of variables suggested by structural credit risk models. We refer to Rg fﬁ’l as:

CDS,1 _ —
Rt,t+1 = A8t+1 = Stt1 — S¢- (33)

Another metric, used by Hilscher, Pollet, and Wilson (2015), is based on percentage changes

of CDS spreads.? We refer to Ry ,}1” as:

RCDS,Q ASt+1 (3. 4)

tirl = )
7+ St

which can also be approximated using the differences of the natural logarithms of CDS

spreads, Rg %%, which is defined by the following expression:

S
REDT? = Alog sy = log ’;—:1 (3.5)

One other commonly used solution is to approximate returns using simple changes
in CDS spreads multiplied by the value of a defaultable annuity of appropriate matu-
rity (Duarte, Longstaff, and Yu, 2007; Berndt and Obreja, 2010; Bongaerts, De Jong, and
Driessen, 2011; Hilscher, Pollet, and Wilson, 2015). Palhares (2014), He, Kelly, and Manela
(2017), and Kelly, Manzo, and Palhares (2019) add the carry component of the return from
the CDS insurance payments. We adopt the implementation of He, Kelly, and Manela

(2017) and define a fourth metric, Rf 5%, which approximates the gain or loss from buy-

2In their appendix, Hilscher, Pollet, and Wilson (2015) also compute returns using the change in CDS
spreads multiplied by an annuity factor, similar to Bongaerts, De Jong, and Driessen (2011), and Berndt and
Obreja (2010).
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ing a CDS contract if the break-even CDS spread is paid continuously over 250 trading
days:

RODSA = _2‘% + As;o1RD,. (3.6)

RD, is called the risky duration and approximates the sensitivity of the CDS contract
value to changes in the break-even CDS spread. Following He, Kelly, and Manela (2017),
we let RD, = 1 jfg*t) e=i1/4e=301")/4 where 17/* is the risk-free rate for quarter j/4,

e~77/* is the corresponding survival probability extracted using the approximation v =

4log(1l + s¢:/4(1 — R)).

3.2.3 The CDS Contract after the Big Bang

Due to the involvement of over-the-counter (OTC) derivatives in the 2008/2009 global fi-
nancial crisis, regulators around the world encouraged the standardization of OTC prod-
ucts to facilitate central clearing. The regulatory push for standardization resulted in a
regulatory overhaul of the CDS market, referred to as the North America CDS Big Bang
Protocol, which started in April 2009. A similar standardization was instigated for Euro-
pean markets by the CDS Small Bang Protocol in June 2009. One major change brought
about by these new industry conventions is a standardization of the payment structure
of CDS contracts, whereby counterparties no longer pay the break-even CDS spread. In-
stead, investors pay a fixed annual coupon c. Specifically, North American single name
CDS contracts trade with a fixed coupon of 100 or 500 basis points (bps). Standard Euro-
pean corporates may trade with additional fixed coupons of 25bps and 1,000bps.
Because the coupon usually differs from the break-even CDS spread, the CDS contract
has non-zero value at initiation. We refer to that value as the upfront payment or price,
P,, of the CDS contract because it reflects the cash flow paid at initiation for the protec-
tion buyer to acquire the CDS contract. In practice, many CDS contracts are quoted in
terms of the break-even CDS spread, and CDS prices are then inferred from those quotes
using a standardized model provided by the International Swaps and Derivatives Asso-

ciation (ISDA). That standardized model (henceforth ISDA model) maps break-even CDS

14



spreads to CDS prices and vice versa. As such, while the CDS contract structure no longer
involves payments proportional to the break-even CDS spread, this spread nonetheless
maintains relevance as a quoting convention. We provide further detail regarding CDS
pricing following the Big Bang within Section 3.3.

Ignoring the price paid for a CDS contract may have a significant impact on the com-

putation of returns of any financial security, which in the most generic case is given by

CF,.., —CF
Ry = %7 (3.7)
t

where C'F; defines the cash flow payed at time ¢ (Cochrane, 2009).

3.3 CDS Prices and Cash Flow-Based CDS Returns

Computing a cash flow-based CDS return metric requires the computation of the CDS
price P,. The price P, is determined by the difference between the present value of all
expected future payments to be made by the protection seller, i.e., the contingent leg, 77,
and the present value of all expected future payments made by the protection buyer, i.e.,
the fee leg, 2. We define the contingent leg, the fee leg, and the CDS price in sequence.

The value of the contingent leg is given by:
m = (1—R)> DF (t: —t)[Q(tis — 1) — Qi (t; — 1], (3.8)
=1
and the value of the fee leg is given by:

™y = Ci DFy (t; — 1) Qq (ti — ) Ay, (3.9)

=1

such that the price of the CDS contract is determined by their difference:

P, =nf—m. (3.10)
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The computation of the CDS price is facilitated by the ISDA model, which allows for
the mapping between the break-even CDS spread s;, and the cash price P,.> Obtaining
a closed-form price for the CDS contract requires an assumption for the random default
time 7, which ISDA assumes to follow an exponential distribution with mean 1/);, where
A: represents a strictly positive default intensity A\ = lima; o+ Prob(t <7 <t+ At |7 >
t)/At (e.g., Lando, 2004). Assuming in addition that the timing of default is independent
of the interest rate environment, that the default intensity is constant, and that payments
are made periodically, then Equations (3.2), (3.8), (3.9) and (3.10) imply that the price of
the CDS contract is given by:

P, =(sy—c) Y DF,(t; —t) Ae ™), (3.11)
=1

Using this price, we can define a true cash flow-based measure of CDS returns, as sug-
gested by Equation (3.7). The return from buying a CDS contract on date ¢, and entering
into an offsetting trade at ¢ 4 1 is thus given by:

RERgS = =D (3.12)
where, for expositional simplicity, we have again omitted the accrual payments that arise
in the case of default in between two payment dates. While the computation of the CDS
price is straightforward, it is inconvenient to implement. The computation of the CDS re-
turn requires first a bootstrap of the hazard rate from the term structure of CDS spreads,
followed by a sizable summation that is expanding with the contract horizon, as indicated
by Equation (3.11). In addition, it requires the need to keep track of day-count conven-
tions, the timing of coupon payments, as well as the entire term structure of interest rates.
This can become computationally involved in the context of empirical analysis that in-
volves a long time-series and a large cross-section of assets.* A simplification of such

tedious computations could be particularly advantageous for Monte Carlo simulations

5The ISDA  model and the corresponding  documentation is  available at
http:/ /www.cdsmodel.com/cdsmodel/.

*Computation of CDS prices via our approximate metric, introduced in Equation (3.13), is approximately
one thousand times faster than direct computation of CDS prices in MATLAB.

16



and other risk management applications. We, therefore, provide a simple approximation
to the true cash flow-based CDS return that is easy to implement and has a correlation of
no less than 99% with actual CDS returns. This approximation invokes a single interest
rate, 7;, which we take to be the (T" — t)-year risk-free rate at time ¢. Our approximation of

the CDS upfront price, P, is given by:

~ S —cC —(ret 3 ) (T—1)
P=———(1- T-FR 3.13
= (1 ). (3.13)
which relies on directly available quantities.” Our approximation, therefore, is simpler
and significantly faster to implement in empirical applications.

With the simple approximation of the CDS price P, provided in Equation (3.13), we
define the approximated cash flow-based CDS return as:

By — P
RO = —t“ﬁ 3 (3.14)
t

Proposition 3.3.1 highlights in which sense P, approximates P,. P, equals P, exactly
if the CDS buyer makes payments continuously (i.e., A — 07) and if there exists a flat
term-structure of interest rates. We show below that, even in the absence of a flat term
structure of interest rates, our approximation captures true CDS returns with a correlation

of no less than 99%. We provide a formal proof of Proposition 3.3.1 in Appendix A.

Proposition 3.3.1.
If there exists a flat term-structure of interest rates characterized by a non-negative interest rate

level ry, then lima_,g+ P, = ﬁt with A = max A,.

3.4 CDS Return Correlations and CDS-Equity Relation

In Section 3.4.1, we parallel the different CDS return metrics and evaluate their suitabil-

ity in approximating the cash flow-based measures of CDS returns, including our simple

5Both the break-even CDS spread, s;, and the interest rate, r,, are available from market data. The
coupon, ¢, and contract terminal date, T, are parameters of a CDS contract. The recovery rate R is set by
convention for pricing purposes, typically at 0.4 for U.S. corporate CDS contracts.
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approximation. We elaborate on the underlying reason for the observed differences be-
tween existing metrics and cash flow-based measures of CDS returns in Section 3.4.2, and
extend all computations to take into account collateralization. In Section 3.4.3, we also
evaluate the impact of cash flow-based returns on the relation between credit and equity

markets.

3.4.1 CDS Return Correlations

We compare time-series correlations between the true CDS return series and each of the
CDS return approximations. We show that the time series correlations between exist-
ing approximations of CDS returns and cash flow-based CDS returns imputed from CDS
prices are often below 20%. The simple approximation of CDS returns we propose, on the
other hand, has a time series correlation of no less than 99% with the true return series.
We conduct this empirical exercise both for a sample of investment grade (IG) and high

yield (HY) firms.

Investment Grade Credit Analysis

We use 5-year USD denominated break-even CDS spreads from Markit for a sample of 25
U.S. IG firms. We use data from May 2009 until September 2016, given that the Big Bang
Protocol changed the payment structure of standard North-American single-name CDS
contracts in April 2009.

Table 3.1 provides basic summary statistics for our IG sample, which spans firms with
long-term Standard & Poor’s issuer credit ratings varying from AAA to BBB+. The av-
erage 5-year break-even CDS spread ranges from 24bps for Exxon Mobil to 145bps for
Goldman Sachs. There is also significant degree of heterogeneity in the volatility of break-
even CDS spreads, with sample standard deviations ranging from 5bps for Microsoft to
66bps for Goldman Sachs. To provide some additional information on the characteristics
of these firms, we report balance sheet information from the Chicago Center for Research
in Security Prices and Compustat. While annualized equity volatility, measured as the

annualized sample standard deviation of quarterly cum-dividend equity returns, ranges
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from 12% to 34% in the sample, quarterly leverage ratios can be as high as 93%, and as
low as 33%.

Table 3.2 reports time-series correlations between the various proxies for CDS returns
and the cash flow-based returns series based on Equation (3.12). Computing the cash
tlow-based CDS return metric requires the choice of a fixed coupon that will be exchanged
as compensation for default insurance. Coupons are generally 100bps for single-name IG
North-American contracts, while European names may trade with an additional coupon
of 25bps. We illustrate our analysis for coupons of both 25bps and 100bps.

Focusing first on Panel A, the time series correlation between cash flow-based CDS
returns and the commonly used approximations can work reasonably well in some in-
stances, as is demonstrated by the results for American Express (ticker AXP). The corre-
lation is 81% based on simple changes, while it is as high as 96% based on log changes.
Nonetheless, all measures perform significantly worse in approximating the true CDS re-
turn, compared with the simple approximation that we propose for the cash flow-based
return measure. In some instances, the differences are striking. For example, for Mi-
crosoft (ticker MSFT), the correlation between true CDS returns and simple break-even
CDS spread changes equals 2%, whereas the correlation between cash flow-based CDS
returns and our approximate CDS returns metric is at least 99% (and mostly close to
100%) for all CDS reference entities.

Overall, the patterns across firms suggest that, among those metrics used in the lit-
erature, simple changes, log percentage changes and the metric used by Palhares (2014)
and He, Kelly, and Manela (2017) exhibit similar correlation patterns with the benchmark
return measure, while correlations for simple break-even CDS spread changes are com-
paratively weaker. Importantly, they all are consistently lower, in a significant way, than
the correlations between the cash flow-based CDS returns and our suggested approxima-
tion of them.

One perhaps surprising fact among the results in Panel A is that correlations may even
be negative (see ticker PFE, for instance). This arises because the cash flow structure of
CDS transactions since the CDS Big Bang depends on the magnitude of the difference be-

tween the break-even spread and the fixed coupon. Thus, the up-front payment may have
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to be settled by either the protection seller or the protection buyer, depending on whether
the break-even spread is above or below the fixed coupon. The fact that the direction of
payments may change does, however, not undo the finding that existing metrics of CDS
returns poorly approximate cash flow-based measures of CDS returns. This is further
underscored in Panel B of Table 3.2, which illustrates the same results based on absolute
correlations. In Section 3.4.2, we generalize our results to collateralized CDS trades.
Panels C and D repeat the exercise reported in Panels A and B, assuming a fixed
coupon of 100bps. While the magnitudes of the correlations change, the finding that
existing metrics of CDS returns poorly approximate the cash flow-based measure of CDS
returns remains intact. In all cases, the simple approximation of CDS returns metric bears

a correlation with the true return series of no less than 99%.

High Yield Credit Analysis

To study high yield firms, we choose among the Markit universe of firms with a credit
rating BB+ or lower the 25 CDS reference entities with the largest market capitalization.
As for the investment grade analysis, we use 5-year USD denominated break-even CDS
spreads between May 2009 and September 2016. We report the credit ratings as of Septem-
ber 30, 2016.

Table 3.3 provides basic summary statistics for our HY sample, which spans firms
with long-term Standard & Poor’s issuer credit ratings varying from BB+ to D. The low-
est credit rating of D (i.e., default) is recorded for Peabody Energy, which filed for Chapter
11 bankruptcy protection in April 2016, with a subsequent credit event auction on May 4,
2016. The average 5-year break-even CDS spreads are substantially higher than in our IG
sample, ranging from 88bps for Yum Brands to 1371bps for Peabody Energy. The break-
even CDS spread volatility is also substantially higher, with sample standard deviations
ranging from 32bps for Ball Corporation to 3509bps for Peabody Energy. Annualized eq-
uity volatility, measured as the annualized sample standard deviation of quarterly cum-
dividend equity returns, ranges from 18% to 76% in the sample, and quarterly leverage

ratios range between 42% and 175%.
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Table 3.4 reports time-series correlations between the various proxies for CDS returns
and the cash flow-based returns series based on Equation (3.12) for the HY sample. While
the fixed coupons are generally 500bps for single-name HY North-American contracts,
counterparties may adopt a coupon of 100bps instead. We, therefore, illustrate our anal-
ysis for both coupons of 100bps and 500bps.

As for the IG analysis, we find that our approximate CDS returns metric consistently
outperforms other metrics. Our approximate return metric always produces at least a
99% correlation with the true return series. In contrast, each of the other metrics produces
widely varying correlations with cash flow-based returns, even generating near zero cor-

relations in some cases.

3.4.2 What Explains the Differences?

Our approximated CDS return metric matches the properties of the true cash flow-based
CDS returns series because our approximate CDS price, B, closely matches the true CDS
price, P,. Proposition 3.3.1 formalizes that assertion, even providing conditions under
which our approximation is exact. Other measures fail to adequately capture the cash
flow-based return because they fail to capture the CDS price, P..

Our analysis within Section 3.4.1 implicitly assumes no initial margin, but our reason-
ing holds regardless of that assumption. Section 3.4.2 elaborates on the case of no initial
margin, whereas Section 3.4.2 repeats our analysis with collateralization, corroborating

that our results hold even in that case.

The Case of No Initial Margin

Our analysis within Section 3.4.1 implicitly assumes that counterparties do not post initial
margins to collateralize CDS trades. This assumption was widely followed prior to 2016
for interdealer trades (Du, Gordy, Gadgil, and Vega, 2016). However, even today, initial
margins tend to be small. For contracts with maturities of five years or less, and with
differences of break-even CDS spreads over LIBOR of 300bps or less, the initial margin

does not exceed 7% of face value, according to FINRA rule 4240. The initial margins

21



imposed for CDS buyers are even lower and set to 50% of the requirements imposed for
CDS sellers.

For centrally cleared contracts, margin rules tend to be more standardized and are typ-
ically calculated at the portfolio level. Using a proprietary data set for contracts cleared
on one of the major CDS clearinghouses ICE Clear Credit, Capponi, Cheng, Giglio, and
Haynes (2019) report that 92.3% of their observations cluster around a mean ratio of initial
margin to net notional CDS exposure of 2.4%.

In the absence of margins, the leverage of the trade depends exclusively on the initial
price of the CDS contract, ;. As illustrated by Equation (3.11), this price approaches zero
as the break-even CDS spread, s;, approaches the fixed coupon, c. In turn, that leads to a
high volatility in the true cash flow-based CDS returns.® Since ]Bt approximates P, effec-
tively, P, also approaches 0 as the break-even CDS spread approaches the fixed coupon,
so that our metric captures the high volatility well and generates high correlations with
the true return. Other metrics do not capture the high volatility and correlate poorly with
true CDS returns.

Existing metrics perform poorly in approximating cash flow-based CDS returns in par-
ticular when the break-even CDS spread, s;, approaches the fixed coupon c. This insight
is demonstrated in Figures 3.1 and 3.2, which graphically illustrate, using scatterplots,
the relation between simulated time-series of cash flow-based (x-axis) and approximated
(y-axis) CDS return series, for five different return approximations. Figure 3.1 presents
the simulation of an IG CDS contract, whereas Figure 3.2 presents the simulation of a HY
CDS contract. Both figures are based on a simulation of a time series of CDS spreads that
is equivalent to 50 years of daily data, and it is assumed that the break-even CDS spread
s¢ at time ¢ follows the process As; = 0(u— s,) +0/5:61, where ¢, follows an i.i.d. standard
normal random variable, i.e., &, ~ N (0, 1). For Figure 3.1, we use the parameter values
6 = .005, p = .0125, and o = .002, and we set the fixed coupon c equal to 100bps. In the

rare occasion that a realization of the break-even CDS spread s, is negative, we replace

®In Appendix Tables C.1 and C.2, we provide descriptive statistics for each return metric. These com-
putations highlight that both the true cash flow-based returns, Rf’: fﬁ"l, and our approximation, th: g‘?’s,

exhibit higher return volatility than the other metrics.
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it with a value of 1 basis point. For Figure 3.2, we use the parameter values ¢ = .013,
= .06, and o = .004, and we set the fixed coupon c equal to 500bps.

Figures 3.1 and 3.2 show that there is an important non-linearity between the stan-
dard approximations of CDS returns and their cash flow-based counterparts, which have
become particularly relevant since the CDS Big Bang regulatory overhaul. As the break-
even spread s, moves closer to the fixed coupon ¢, the commonly used approximations
of the CDS return become less sensitive to the cash flow-based CDS returns, i.e., the fit-
ted line of the scatter plot flattens. Our proposed approximation does not exhibit the
same behavior, as the two return series are perfectly aligned, independently of the level
of spreads and the contract’s coupon. The approximation error ultimately depends on the
leverage implied by the CDS trade. As the break-even spread varies in response to firm-
specific and macroeconomic shocks, while the coupon remains fixed, the leverage varies,
so that the relation between true CDS return and standard CDS return approximations
varies. In contrast, our metric maintains an approximately one-to-one relation with true
CDS returns irrespective of the level of s;.

For robustness, we also simulate the CDS spread using the strictly positive ARG(1)
process of Gourieroux and Jasiak (2006). Hence, we assume that the break-even CDS
spread follows the autoregressive process s, 1 = v/ - ¢ + ¢s; + 1,41, where 1,41 represents a
martingale difference sequence. We use ¢ = 0.9998, ¢ = 5e — 8, and v = 50. Results, which

are similar, are provided in Figure 3.3.

The Case of Collateralization

As described above, our previous results implicitly assume absence of collateralization
through the posting of initial margins. We next extend our analysis to account for collat-
eralization and show that our results hold nonetheless. In our extended set-up, we closely
follow the notation in Loon and Zhong (2014).

Specifically, we adjust our metrics of true and approximate cash flow-based CDS re-

turns, Rg ﬁf"‘ and Rf 5;?’5, respectively, to account for collateral and then repeat the previ-
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ous analysis. We define true and approximate collateralized CDS returns (CCDS) by

Py — P Py — P
Rgtifjl)SA: t+1¢ 3 Rgti[l)sﬁz%’ (3.15)

where ¢ € (0, 1] represents the extent of collateralization, as in Loon and Zhong (2014).

We do not define new expressions for the other three return metrics (i.e., we let RS, gff i =

RE D5 for i = 1,2,3) because those metrics do not explicitly incorporate the initial cash
flow and, therefore, they do not vary as a function of collateral.

Tables 3.5 and 3.6 report time-series correlations between the various proxies for CDS
returns and the true returns series when the CDS position is collateralized as in Equation
(3.15). Table 3.5 provides results for each IG reference entity, whereas Table 3.6 provides
results for each HY reference name. In both cases, we fix ¢ = 1, but this restriction is
without loss of generality, because correlations are invariant to scaling. As in the case
without collateralization, correlations between our approximate return metric and the
true CDS return are usually 100%, and hardly ever below 99%. Moreover, our metric
always produces greater correlations with true CDS returns than those obtained from
other metrics.

The ability of our approximate CDS return metric to capture the true cash flow-based
return depends on its ability to capture the non-linear behavior between CDS prices, F,,
and break-even CDS spreads, s;. That non-linearity can be seen from Equation (3.11)
because P, depends non-linearly upon \;, which, in turn, is implied from s; as part of the
ISDA Model'’s pricing. Proposition 3.3.1 also alludes to that non-linearity by establishing
the true CDS price as non-linear in s, under certain conditions.”

To underscore the aforementioned point, we provide in Figure 3.4 additional illus-
trations, similar to those in Figures 3.1 to 3.3. We report, using scatterplots, the relation
between simulated time series of fully collateralized true CDS returns (i.e., Rf 0% with

¢ = 1) and all other return metrics for two different levels of volatility, keeping all other

parameters constant. In Panel A, the simulated break-even CDS spread series have a low

"More precisely, Proposition 3.3.1 demonstrates that the CDS price equals P, under certain conditions,
and Equation (3.13) gives P; as a non-linear function of s;.
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degree of volatility (o = 0.004), while those in Panel B have a high degree of volatility
(0 = 0.04). Panel A of Figure 3.4 shows that when break-even CDS spread volatilities are
low, our metric performs best, but the other return proxies nonetheless perform modestly
well. This latter finding arises because movements in the break-even CDS spread are suffi-
ciently small that the non-linear relation between CDS prices and break-even CDS spreads
are not pronounced. On the other hand, when the volatility of break-even CDS spreads
is high, then that non-linear relation becomes more relevant, and standard CDS return
proxies deteriorate in their performance. Panel B demonstrates this point, showing the
poor correlation of standard CDS return proxies to true CDS returns for a high break-even
CDS spread volatility. In contrast, our approximate return metric closely tracks the non-
linear relation between CDS prices and break-even CDS spreads, resulting in an almost
perfectly linear relation with the true CDS return irrespective of the level of break-even
CDS spread volatility.

We validate this result empirically using our samples of 25 U.S. investment grade
and 25 U.S. high yield reference entities. For each series i € {1,2,3,4,6}, we com-
pute the correlation with the collateralized CDS return metric Rf Sff 4. We then regress
Corr(Rg fﬁ’i, Rf gf 54 against the sample volatility of CDS spreads. We report the results
in Table 3.7. We find a negative and statistically significant relation in columns (1) to (3),
corroborating our theory that correlations for standard return metrics decrease in break-
even CDS spread volatility. On the other hand, there is a statistically insignificant relation
in column (4), where we use the correlation between the collateralized true and approxi-
mated CDS return series. That lack of statistical significance arises because our approxi-
mate CDS return produces near perfect correlation with true CDS returns irrespective of
any other factor.

Taken at face value, the large differences in correlations across firms and across met-
rics suggest that existing research results may depend on the specific method applied to
compute CDS returns. We therefore examine another aspect of CDS returns that is of

common interest in the literature, i.e., the relation between CDS and equity returns.
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3.4.3 CDS-Equity Correlations

In light of the predictions of structural credit risk models going back to the Merton model
(Merton, 1974), a large literature is interested in understanding the relation between eq-
uity and credit markets (Collin-Dufresne, Goldstein, and Martin, 2001; Schaefer and Stre-
bulaev, 2008). The return on the corporate bond is often approximated using break-even
CDS spreads, as they allow for a more homogenous comparison across companies, given
the nature of constant maturity spreads with identical contract definitions for all refer-
ence entities (Acharya and Johnson, 2007; Hilscher, Pollet, and Wilson, 2015). As we have
shown that different CDS return metrics lead to different time series of CDS returns, we
examine potential differences in CDS-equity return correlations, perhaps to provide some
guidance on the interpretation of results in the literature. We do this by simulating eq-
uity and CDS returns for different assumptions of leverage and asset volatility, using the
Merton (1974) model.® We report the hedge ratios between equity returns and different
metrics of CDS returns, given by the sensitivity of CDS returns to changes in the value of
equity. This delivers tables similar to Table 5 in Schaefer and Strebulaev (2008).

More specifically, we simulate 1,000 time-series of 25-months of CDS and equity re-
turns, similar to Schaefer and Strebulaev (2008), and run time-series regressions for each
reference entity, which is defined in terms of initial leverage and asset volatility. We vary
initial leverage (quasi-market debt-to-asset ratios) from 50% to 90%, and asset volatility
ratios from 20% to 50%. The quasi-market value of debt is defined as the face value of
debt, which we discount at the constant riskless interest rate of 5%. The time to matu-
rity of the debt contract is assumed to be 10 years. Details of the simulation steps are
provided in Appendix B. Table 3.8 reports the mean hedge ratios with their correspond-
ing t-statistics (in parentheses), obtained from simple OLS regressions of CDS returns on

FE _ pE
equity returns, where the equity return is defined as th = %, and CDS returns
are defined as before. We examine four different CDS return metrics, namely break-even

CDS spread changes (Equation (3.3)), break-even CDS spread percentage returns (Equa-

8We use the zero-coupon bond spread under Merton’s model as the CDS spread, which we use to com-
pute the different CDS return metrics.
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tion (3.4)), cash flow-based CDS returns (Equation (3.12)), and the simple approximation
suggested in Equation (3.14). All simulations assume coupons of 25bps.

To highlight the validity of the simulations, we first report the results on hedge ratios
for bond returns in Panel A of Table 3.8, similar to the results in Table 5 of Schaefer and
Strebulaev (2008). We note that while the regression coefficients between equity and CDS
returns are negative, the sign for the regression coefficient with bond returns should be
positive. The top left panel of Figure 3.8 shows that the values are very close to those re-
ported in the aforementioned reference.” All other panels report the average regression
coefficients for estimations that use different metrics of CDS returns.!’ The differences
across the panels in Table 3.8 are quite striking. Taking for example the case of 50% asset
volatility and 90% leverage, the average simulated regression coefficient is about -0.11 for
the true CDS-equity relationship (Panel E), while the suggested approximation yields a
coefficient that is very close, i.e, -0.13 (Panel F). Panels B, C, and D, however, highlight
that the sensitivities based on other metrics can significantly deviate from these values.
In particular, for break-even CDS spread changes in Panel B, the average regression co-
efficient is -0.04, while it is -0.43 for the CDS return approximation based on break-even
CDS spread percentage changes (Panel C). Such differences are visible across all simu-
lations. Overall, our findings strengthen the conclusion that empirical regression results

significantly depend on the type of CDS return metric.

3.5 Guidance for Future Research

To provide guidance for future research, we revisit several papers from the CDS literature
and highlight the implications of our analysis for their work. We distinguish between
the usage of CDS return metrics as a proxy for credit risk and the usage of CDS returns
for the purpose of examining risk-and-return trade-offs. In the former case, standard

metrics such as changes in break-even CDS spreads are appropriate precisely because

Note that we report the results in percent instead of basis points. Thus, the coefficients in Table A
need to be multiplied by a factor of 100 to make them directly comparable to the results in Schaefer and
Strebulaev (2008).

1OWe omit Rg 5;?’4 from Table 3.8 because of space constraints. In unreported computations, we find that

DS 4 L DS,1
RE . +Sl’ produces results similar to RE ; ﬁ’ .
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such analysis seeks a proxy for credit risk rather than CDS returns per se. In the latter case,
standard return metrics are not appropriate when actual CDS trades are not collateralized
because such metrics overlook the trade leverage and, therefore, understate the volatility
associated with the trade. Section 3.5.1 examines CDS returns used as a proxy for credit

risk, whereas Section 3.5.2 examines risk-and-return profiles for CDS trading strategies.

3.5.1 CDS Returns and Credit Risk

We revisit the main findings of Ericsson, Jacobs, and Oviedo (2009), Acharya and Johnson
(2007), and Hilscher, Pollet, and Wilson (2015). Following Collin-Dufresne, Goldstein,
and Martin (2001), Ericsson, Jacobs, and Oviedo (2009) (henceforth EJO) examine the re-
lation between changes in CDS spreads and variables suggested by structural models
of credit risk. The key drivers of credit risk in these models is a firm’s leverage, equity
volatility, and the level of interest rates. In column (1) of Table 3.9, we report the main re-
sult from their Table 2. The reported estimates represent cross-sectional mean coefficient
estimates from firm-by-firm regressions. Consistent with economic theory, leverage and
equity volatility increase credit risk, while interest rates bear a negative relation to credit
risk.

We do not have access to the same data as EJO, who use prices from CreditTrade
between 1999 and 2002. We use the universe of Markit firms between January 2002 and
September 2016 and drop financial and utility firms, following EJO. After matching with
leverage data from Compustat and stock price information from CRSP, we are left with
a sample of 499 firms. In columns (2) to (4) of Table 3.9, we revisit the evidence using
the different return metrics. When we use break-even CDS spread changes, as in EJO, we
recover similar regression coefficients and statistical significance. The precise values are
slightly different due to a different sample composition and time period.

In column (3), we run the same regressions, but replace the dependent variable with
our approximation of the cash flow-based CDS return metric that takes into account up-
front payments. Strikingly, none of the regression coefficients bears statistical signifi-

cance. The reason is that the size of the upfront payment, which drives the leverage of the
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return position, is unrelated to fundamentals. The cash flow-based metric depends on the
upfront payment, which in turn depends on the magnitude of the distance between the
break-even CDS spread and the fixed coupon.

In column (4), we report results using the approximated CDS return metric when it
is fully collateralized (¢ = 1). Our results reveal that the fully collateralized returns
behave qualitatively similar to break-even CDS spread changes. This result arises be-
cause fully collateralized CDS returns always correlate postively with break-even CDS
spread changes. To see this, note that collateralized CDS returns are increasing in changes
in break-even spreads, so that collateralized CDS returns relate to firm fundamentals
in a qualitatively similar manner as break-even CDS spread changes. More formally,
Rf gffsﬁ > 0 if and only if As,y; > 0, because Rgtcffs 0 = % f;’:*l %ds. Then, Equa-
tion (3.13) implies that 88—}? > 0, and it follows immediately that Rf st’5 > (0 if and only if
Asy1 > 0.

The findings in Table 3.9 further support our previous conclusion that it is important
to account for the upfront payments in computing cash flow-based returns. This is neces-
sary when the objective is to examine the performance of investment strategies. However,
because the sign of the upfront payment is unrelated to firm fundamentals, it is not useful
to use the approximated CDS return metric to capture a relation between credit risk de-
terminants and changes in credit risk. For that purpose, break-even CDS spread changes
are appropriate, as are the fully collateralized version of our approximated CDS return
metric.

Both Acharya and Johnson (2007) and Hilscher, Pollet, and Wilson (2015) examine
the lead-lag relation between equity and credit returns. We revisit their evidence using
different metrics in Table 3.10. We report all results as in Tables 3 and 4 of Hilscher, Pollet,
and Wilson (2015) (henceforth HPW), as those results are based on larger and more recent
samples. Specifically, these regressions examine the lead-lag relation between credit and
equity returns. In Panel A, we provide the regression results of daily CDS returns on

contemporaneous and lagged equity returns as follows:
i,CDS _ 4i0 | i,EQ pi.EQ | 4i,CDS pi,CDS | i,CDS
Riyr” = +B8r CRT A By R, Teir
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where Riff % denotes firm i’s CDS return over day ¢ to T for T from 0 to 10 days, R;"“

denotes firm i’s equity return at time ¢. For horizons T" > 0, the regressions control for
the corresponding credit protection return. All regressions contain firm fixed effects, and
standard errors are adjusted for heteroskedasticity and clustered by date. In Panel B, we
provide the regression results of daily equity returns on contemporaneous equity and
lagged CDS returns as follows:
RAEQ — gi0 4 GiCDS RiCDS |y giFQRibQ | (i EQ

We source all Markit firms for which we can find both matching CDS price and equity
information from CRSP during the same sample period as in HPW, which ranges from
January 2001 until December 2007. We end up with a sample of 690 firms and run regres-
sions by rating groups, as in HPW. We only report results for firms rated A and above,
but results for other categories are qualitatively similar.

The findings in both Panels A and B of Table 3.10 echo those that we reported in Table
3.9. The first two rows in each panel report the coefficients from HPW and our replication
using the percentage changes as a measure of CDS returns. Unconditionally, HPW find
that the CDS returns are only contemporaneously related to equity returns, while lagged
equity returns have information for future CDS returns.

The third row in each panel corresponds to the regressions with our approximated
measure of cash flow based returns. In that instance, we find that none of the lead-lag
regression coefficients is statistically significant. Again, stock returns reflect changes in
fundamentals. On the other hand, the cash flow-based measure of CDS return depends
heavily on the magnitude of the trade leverage which is detached from fundamentals.
However, if we compute fully collateralized (¢ = 1) CDS returns, then the returns are
again better aligned with fundamentals. Recall that Rf Sffs )5 > 0 if and only if As;; > 0.
Then, since s; > 0, we have that As;; > 0 if and only if A‘Z—tt*l > 0 so that Rg Sf 5’5, Asyiq
and Ass—tt“ each correlate positively with each other and therefore co-move in a qualita-

tively similar fashion with respect to fundamentals. As a result, we restore the lead-lag
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relation found with CDS returns computed as percentage changes of the break-even CDS

spreads.

3.5.2 CDS Risk and Returns

In a final step, we implement a CDS trading strategy, for which accounting for cash flows
and a trade’s leverage is of significant importance for evaluating investment performance
through Sharpe ratios. Our application is inspired by capital structure arbitrage (CSA)
strategies studied in Duarte, Longstaff, and Yu (2007). CSA is a statistical arbitrage con-
vergence trading strategy that capitalizes on deviations from model-based prices of credit
and equity prices. Typically, the implementation of CSA is based on standard applica-
tions of structural credit risk models, the CreditGrades model being one example (Finger,
2002). The strategy tends to be implemented using break-even CDS spreads, as it is eas-
ier to take short credit positions through derivative contracts than through cash bonds
(Asquith, Au, Covert, and Pathak, 2013; Nashikkar, Subrahmanyam, and Mahanti, 2011).

As in Duarte, Longstaff, and Yu (2007), we use the CreditGrades model to evaluate
when break-even CDS spreads deviate from their model-based counterparts. For exam-
ple, if the break-even CDS spread is too large relative to that implied by the model, a long
credit risk position would be initiated by selling the CDS contract. When the break-even
CDS spread converges to its model-based counterpart, the position is closed. The off-
setting position involves a CDS contract of shorter maturity so that both contracts would
bear the same termination date, and to avoid any residual credit exposure. In contrast to
Duarte, Longstaff, and Yu (2007), we do not hedge the credit exposure with an equity po-
sition, financed through initial capital, as our goal is to emphasize the impact on Sharpe
ratios from the leverage associated with CDS trades.

For the trade to be worth the while, the deviation between observed and model-
implied spreads must be sufficiently large, i.e., ¢, > ¢}, where ¢; and ¢ refer to market
and model-implied spreads, respectively. Thus, the trade is initiated if ¢; > (1 + «) ¢,
and we evaluate this strategy using three different trading trigger levels a = 1, 1.5, 2.

The positions are liquidated when the market spread and the model spread converge or
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after 180 days, whichever occurs first. We consider mid prices, but apply a bid ask spread
equivalent to 5% of the CDS break-even spread when we open and close a position. Ac-
counting for transaction costs lowers the strategy’s realized returns uniformly across the
different return metrics, while having little impact on volatility. At each date, we compute
the equally-weighted return for all open trades as the trading strategy’s return index, and
then compound the daily returns to a monthly frequency. We subtract the Fama-French
risk free rate from the monthly return to get the trading strategy’s index excess return.
For months in which there are no open trades, the monthly excess return is set to zero.
We focus on investment grade companies during the same sample period as in Duarte,
Longstaff, and Yu (2007), that is January 2001 to December 2004 (2004Q4). We source all
firms with a minimum of 252 consecutive daily observations, and exclude financial and
utility firms. This leaves us with a sample of 219 firms.

We report the results in Table 3.11. For each strategy, we provide standard metrics,
such as Sharpe ratios and return volatilities for each return metric that we consider. Our
results indicate that, when using standard metrics, these trading strategies produce rela-
tively high Sharpe ratios. Nonetheless, when using cash flow-based CDS returns, which
account for a trade’s leverage, the return volatilities become significantly larger, and the
Sharpe ratios fall correspondingly. These results thus highlight that it is important to con-
sider cash flow-based CDS returns to evaluate trading strategies. Failure to do so may
lead to inflated Sharpe ratios, and could therefore overstate the risk-return profiles of

such trading strategies.

3.6 Conclusion

We show that commonly used metrics of CDS returns poorly approximate cash flow-
based measures of CDS returns. Based on both simulations and actual data, we show
that time-series correlations between CDS return series based on actual CDS returns and
their approximations are often below 20%. We propose a simple formula for CDS returns,
which is easy to implement and relies only on easily available information. This simple

approximation bears a correlation with true CDS returns of no less than 99%. Moreover,
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we show that the relation between CDS and equity returns largely depends on the choice
of CDS return metric. The discrepancies we emphasize have become particularly impor-
tant since the CDS regulatory overhaul that occurred in 2009, which changed the cash
flow structure of CDS transactions.

Our work provides two important insights for academic and applied research. First,
it is critical to distinguish between the notions of changes or percentage changes in CDS
spreads, as opposed to true cash flow-based CDS returns. This is an important nuance
that needs to be taken into account when evaluating the findings in empirical research ap-
plications. Moreover, as we point out, the nature of the CDS return metric may potentially
affect the interpretation of academic research findings. Second, while the computation of
simple or log returns of break-even CDS spreads may be acceptable to examine a change
in the relation with other empirical covariates, computing the cash flow-based measure
of a CDS return is necessary for evaluations of predictive return regressions and invest-
ment strategies, as these rely on the correct evaluation of cash flow streams. Failing to do
so may lead to erroneous conclusions regarding the factor structure of CDS returns and

investment alpha.
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This table provides summary statistics for a sample of 25 USD denominated 5-year U.S. investment grade
CDS spreads, based on the contract with the no-restructuring credit event clause. We report each reference
entity’s ticker, the company name, the number of observations N, the average sample CDS spread 5 (in
bps), the estimated CDS spread volatility 75 (in bps) measured as the sample standard deviation of CDS
spreads, the estimated cum-dividend equity volatility 65 (%, computed quarterly) measured as the annu-
alized sample standard deviation of quarterly cum-dividend equity returns, the average sample leverage
LVG (%, computed quarterly) measured as the the average book assets to book liabilities ratio, the Stan-
dard & Poor’s long-term issuer credit rating S& P as of September 30, 2016. Unless otherwise stated, all data
pertains to the period from May 2009 (2009Q2) until September 2016 (2016Q3). Sources: Markit, Center for

Table 3.1: Investment Grade Sample Statistics

Research in Security Prices, Compustat.

Ticker Company Name N 35 o, op LVG S&P
AXP American Express Co 1823 78 43 25% 88% BBB+
BA Boeing Co 1818 59 23 25% 93% A
CAT Caterpillar Inc 1821 77 31 34% 81% A
CSCO Cisco Systems Inc 1820 55 20 24% 45% AA-
CVX Chevron Corp 1822 30 13 19% 42% AA-
DD E.I Du Pont de Nemours & Co 1823 52 13 28% 75% A-
DIS Walt Disney Co 1822 31 13 21% 44% A

GS Goldman Sachs Group Inc 1817 145 66 30% 91% BBB+
HD Home Depot Inc 1821 48 19 19% 65% A
IBM Intl. Business Machines Corp 1819 38 7 16% 84% AA-
INTC Intel Corp 1819 41 10 20% 33% A+
JNJ Johnson & Johnson 1823 30 11 12% 45% AAA
JPM JPMorgan Chase & Co 1816 86 26 27% 91% A-
KO Coca-Cola Co 1823 37 10 24% 61% AA-
MCD McDonalds Corp 1820 27 10 14% 63% BBB+
MKCINC Merck & Co Inc 1687 47 13 15% 50% AA
MSFT Microsoft Corp 1814 37 5 23% 48% AAA
NKE Nike Inc 1823 45 12 34% 36% AA-
PFE Pfizer Inc 1820 46 17 20% 56% AA
PG Procter & Gamble Co 1822 40 12 13% 52% AA-
TRV Travelers Cos Inc 1815 68 30 18% 76% A
UNH UnitedHealth Group Inc 1816 85 45 19% 61% A+
VZW Verizon Wireless Inc 1653 61 16 16% 73% BBB+
WMT Wal-Mart Stores Inc 1819 36 13 18% 61% AA
XOM Exxon Mobil Corp 1822 24 10 18% 49% AA+
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Table 3.3: High Yield Sample Statistics

This table provides summary statistics for a sample of 25 USD denominated 5-year U.S. high yield CDS
spreads, based on the contract with the no-restructuring credit event clause. We report each reference
entity’s ticker, the company name, the number of observations NN, the average sample CDS spread 5 (in
bps), the estimated CDS spread volatility 75 (in bps) measured as the sample standard deviation of CDS
spreads, the estimated cum-dividend equity volatility 65 (%, computed quarterly) measured as the annu-
alized sample standard deviation of quarterly cum-dividend equity returns, the average sample leverage
LVG (%, computed quarterly) measured as the the average book assets to book liabilities ratio, the Stan-
dard & Poor’s long-term issuer credit rating S&P as of September 30, 2016. Unless otherwise stated, all
data pertains to the period from May 2009 (2009Q2) until September 2016 (2016Q3). We choose 25 firms
with the largest market capitalization among the universe of HY (credit rating BB+ or lower) Markit firms
with less than 10% of missing data during our sample period. Sources: Markit, Center for Research in
Security Prices, Compustat.

Ticker Company Name N 5 &, og LVG S&P
AES  Aes Corp 1863 349 125 45% 79% BB
ASH  Ashland Global Holdings Inc 1863 197 71 68% 65% BB
AVP  Avon Products Inc 1863 336 296 46% 89% B
BLL  Ball Corp 1862 163 32 18% 81% BB+
BTU Peabody Energy Corp 1740 1371 3509 56% 69% D
CHK Chesapeake Energy Corp 1863 696 975 42% 63% CCC+
CTL Centurylink Inc 1863 222 91 22% 64% BB
CVC Cablevision Systems Corp 1794 409 111 34% 175% BB-
DISH Dish Network Corporation 1863 302 66 30% 100% B+
DVA Davita Inc 1701 264 56 20% 68% BB
FTR  Frontier Communications Corp 1862 428 151 28% 79% BB-
GPS Gap Inc 1863 138 85 34% 57% BB+
GT Goodyear Tire & Rubber Co 1862 412 185 50% 85% BB
LB L Brands Inc 1843 191 40 32% 98% BB+
LEN Lennar Corp 1863 284 96 36% 61% BB

LVLT Level 3 Communications Inc 1862 619 443 51% 86% BB
MGM MGM Resorts International 1863 598 355 76% 72% BB-

MU  Micron Technology Inc 1804 313 38 56% 42% BB
NFX Newtield Exploration CO 1862 192 75 40% 61% BB+
OKE Oneok Inc 1863 150 112 39% 73% BB+
PHM Pulte Group Inc 1863 241 103 43% 60% BB+
TSO  Tesoro Corp 1863 294 109 43% 59% BB+
UHS Universal Health ServicesInc 1863 149 61 25% 57% BB+
WMB Williams Cos 1863 175 131 46% 67% BB
YUM Yum Brands Inc 1863 88 52 19% 81% BB
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Table 3.7: Relation between CDS Correlations and CDS Volatility

This table provides the regression results from a projection of the CDS return correlations with the true
collateralized CDS return metric Rf 533’4 and CDS volatility o,. We define p; ; = C’orr(Rg Sgs’i, RECLS)

tt+1

as the time series correlation between the CDS return times series 7 and j. th Sg 51 = St+1 — St, th Sff $2 —

Asyyq ccDS,3 _ St41 CcCDS4 s _ 14Tt —jy/4,—jrs /4 _

o Ry = log =, R,y = —5¢5 + Asi 1 RDy, where RD; = ZZj:1 eI/ e=iTs /4 N =
D Pio1—P, D Pip1—P, g . : .

4log(1 + s/4(1 — R)), ngrlsﬁ = 5 Rfﬁ_lsﬁ = —=5—. Volatility is reported in basis points and

measured as the sample standard deviation of CDS spreads. We use information from the sample of 25 U.S.
investment grade and high yield reference names. All data pertains to the period from May 2009 (2009Q2)
to September 2016 (2016Q3). We report t-statistics in parentheses. Sources: Markit, authors” computations.

(1) 2) 3) 4) (5)
P15 P25 P35 P45 P65
os | -1.453** -0.463** -0.383** -1.275*** 0.007
(-9.79) (-3.73) (-2.94) (-8.80) (0.94)
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Table 3.9: Ericsson, Jacobs, and Oviedo (2009) Merton Model Regressions

This table provides the Merton model regression results following Table 2 in Ericsson, Jacobs, and Oviedo
(2009), henceforth EJO. For each of the N firms in our sample, we project each CDS return metric on the
firm’s leverage ratio (Leverage), the firm’s realized annualized equity volatility computed using daily stock
returns within the previous month, and the 10 year constant maturity treasury rate (10-year yield). As in
EJO, we report the cross-sectional averages of the coefficient estimates and R? values. The t-statistics are
calculated from the cross-sectional averages of the coefficient estimates divided by the standard deviation

of the N estimates and scaled by v/N. The CDS return metrics are Rf Ot = s — s Rf D0 = Dl

B
and Rg tcﬁ) 56 = P,,, — P,. The upfront payment is computed based on a $1 notional. We use the uniV;rse
of Markit CDS firms, excluding financial and utility firms following EJO. The sample consists of senior
unsecured USD denominated 5-year CDS with the XR restructuring clause. We drop firms with less than 25
observations. After matching with stock and balance sheet data, we have a sample of 499 firms. Leverage is
defined as the ratio of the sum of book value of debt and the value of preferred equity to the sum of market
value of equity, book value of debt, and book value of preferred equity. Volatility is computed as the
annualized standard deviation of daily equity returns of the previous month. The data period ranges from
Jan 2002 (2002Q1) until September 2016 (2016Q3). We report t-statistics in parentheses. Sources: Markit,

Center for Research in Security Prices, Compustat, FRED, and authors’ computations.

1) (2) ) 4)

BIO R R R
Constant 0.005 0.000***  1.966™* 0.000**

0.87)  (5.68)  (2.14) (5.38)

Leverage 0.056"* 0.041"* -64.410  0.163"*
(6.0) (17.54)  (-148)  (16.67)

Equity volatility ~ 0.008**  0.002*** -12.089  0.008***
(458)  (11.83) (-1.22)  (10.31)

10-year yield -0.212**  -0.090*** -1358.511 -0.401***
(-4.49) (-10.36)  (-1.26) (-8.71)
R? 22.30% 1090%  2.70% 11.30%
No. of companies 78 499 499 499
Avg. no. of obs. 60 451 440 440
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Table 3.11: CDS Trading Strategy Based on CreditGrades Model

This table provides the summary statistics for the monthly CDS trading strategy’s index excess return based

: . DS,1 DS2 _ A DS, DS.4
on different CDS return metrics. RfHSl’ = Sp41 — St, thtﬁ’ = =, thtﬁs = log >, tht+51,

— 55+ Asy1 RDy, where RDy = 5 52107 e=71/4e=17s/4, oy = 4log(1+5/4(1 - R)), and Ry 7 = Pttt
n denotes the number of observations for the capital structure arbitrage return index. Trigger («) denotes
the ratio of the difference between the market spread and the CreditGrades model spread divided by the

model spread, above which the strategy is implemented. We implement the following trading strategy

for all obligors: if ¢; > (1 + a)c;, where ¢; and ¢, are the market and model spreads respectively, we
short the CDS with a notional amount of $1. The positions are liquidated when the market spread and
the model spread become equal or after 180 days, whichever occurs first. At each date, we compute the
equally-weighted return for all open trades as the trading strategy’s return index. We introduce 5% CDS
bid ask spreads in calculating the returns for the open and close positions only. We then compound the
daily return to a monthly frequency and subtract the Fama-French risk free rate from the monthly return
to get the trading strategy’s index excess return. For months in which there are no open trades, the excess
return is set to zero. The data period ranges from January 2001 (2001Q1) to December 2004 (2004Q4). We
drop financial firms and utility firms. For each firm, we search for the longest string of more than 252 daily
spreads that were no more than 14 calendar days apart and for which we also have the associated equity
and balance sheet information. This provides us with a sample of 219 firms. The strategy is implemented
on IG firms only. The ¢-statistics for the means are corrected for the serial correlation of excess returns using
Newey West with 2 lags. All returns are in %. Sources: Markit, Center for Research in Security Prices,
Compustat, FRED, and authors’ computations.

CDS Trading Strategy — 219 firms

Strategy Return Metrics Trigger n Mean t-Stat Std. Min Max Skew Kurtosis SR
CS1 REPT! 1.000 48 0059 2916 0125 -0.155 0.554 1.936  4.307 1.626
ROLS? 1.000 48 3904 2231 12211 -19.167 59.139 2156 7.289 1.108
REDSS 1.000 48 6782 2.873 17.137 -12.630 102.695 3.859 18671  1.371
RERSA 1.000 48 0305 3415 0537  -0.607 2373 1.813  3.668 1.969
REPTS 1.000 48 94315 1.042 631.288 -70.902 4370592 6.679 42752  0.518
CS2 REPY! 1500 48 0.025 0.786 0.190 -0.594 0.767 0544 6.646 0.463
REDS? 1.500 48 0968 0.691 8020  -20397 28571 0992 3.058 0.418
RCPYS 1500 48 2034 1.387 8367  -19.634 30.284  1.154 2932 0.842
ROLSA 1500 48 0.152 1.167 0736  -1.890 3.063 0.951  6.090 0.714
R{ESS 1500 48 0591 0150 31.364 -87.875 121.941 1263 5512 0.065
CS3 REPS! 2000 48 0.019 0944 0133  -0.571 0.555 -0.049 12013 0501
ROLS? 2000 48 1308 0935 8686  -17.588 33.841 1254 3.479 0.521
REDS3 2000 48 2375 1.644 8886  -16.117 35275 1335 3231 0.926
REPA 2000 48 0121 1363 0548  -1984 2454 0992 10368  0.766
REPTS 2000 48 4.892 0663 56.662 -87.545 335.747 4532 23532  0.299
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Appendix

A CDS Price Approximation

We prove Proposition 3.3.1 in two steps. First, we establish coherence of );, which in turn
ensures that P, defined in Equation (3.11), is well-defined. Then, we establish Lemmas

A.1 and A.2. Proposition 3.3.1 follows as a corollary of Lemma A.2.

A.1 Coherence of )\;

We assume that credit spreads, interest rates, and recovery are non-negative (i.e. s, >

0,7 : r,(7) > 0and R > 0). We also assume that R < 1. Further, we define the function

fi(z) as:

i—t

J re(w)du

filx)= (1—-R) i[ﬁ:@ [e o ] [e—x(ti,l_t) _ e_x(ti—t)]
i=1

- (A.1)
i ! re(u)du
5, > EC [e J o ] .
i=1
The fact that s; > 0 implies Equation (A.2):
" - tiitrt(u)du
fi(0) = =5, E?|e { A; <0. (A.2)
=1
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Moreover, the fact that V7 : r, (1) > 0 and R < 1 implies Equation (A.3):

fi (1 ftR> > 0. (A3)

Equations (A.2) and (A.3) imply the existence of a default intensity \; € | ] that

VTR
satisties Equation (A.4) by the Intermediate Value Theorem. Moreover, s, > 0 implies that

A¢ > 0. All references to ), are thus consistent with values that satisfy Equation (A.4).

t;—t ti
Tt (u)d

Sy ZH:EQ 6_ Of U ef)w(t t ZEQ 6— J r¢(u)du [ef)\t(tiflft) _ e*/\t(tz‘*t)} )

—t

(A.4)

A.2 Proofs

Lemma A.1. lim A\ = $%5.
A—0t

Consider any sequence of partitions {II;}°, = {U {tri}}32, of [t, T], such that 11m A(Ilg) =
0, with A (Hk) = Imax A (Hk)z/ and Vi € {1 nk} A (Hk) = Zf]w — tk’,z—l Z 0. In the fol-

lowing proof, we show that any convergent sub-sequence of { ), (Il;)}72, C [ | must

’1R

Let g : N — N be a strictly increasing function such that {); (Il,))}32, denotes
an arbitrary convergent sub-sequence of {\; (II;)}7°,. For exposition, we define L =
klim Ae(Hgky). We start with Equation (A.4) and then take limits on both sides. Apply-

—00

ing the assumed conditions yields Equation (A.5):

t t

T— T—
Jre(uw)du

/E ] e ¥dz=(1—-R L/IE

0 0

which in turn implies that lim )\, ( (k)) =

k—o00

f re(u)du
f ] e 1%dz, (A.5)

. T—t ZTt(u) du _Siiz
LemmaA.2. lim P, =(s;—c) [ E?|e e T-RAdz.
A—)0+ 0
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z

— [ri(u)du
Using DF; (z) = E? |e {r ] and taking limits on both sides of Equation (3.11)
yields Equation (A.6):
lim P, = lim (s;— C)iEQ e ?Tt(u)du e~ M=t A (A.6)
A—0t A—0t Y ‘

Then, invoking Lemma A.1and e™ € C I delivers the desired result.
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B Simulating CDS-Equity Return Regression Coefficients

This section describes the detailed steps for the simulation of hedge ratios between equity

and bond prices, approximated using CDS return metrics.

B.1 Simulation

We assume that the annualized interest rate r = 5%, the time to maturity is M = 10
years, the level of outstanding debt is equal to D = 1 (normalization), and the coupon
is ¢ = 25 bps. For the simulation parameters, we choose N = 1000 as the number of
simulation paths, and 7" = 25 (months) as the number of time steps per path. Across the
different paths, we vary initial leverage in the range L, € {50%, 60%, 70%, 80%, 90%}, and
annualized asset volatility in the range o4 € {20%, 25%, 30%, 35%, 40%, 45%, 50%}.

For the simulation procedure, we describe the initialization and the iterations. We
initialize each simulation path n for some fixed value of asset volatility, 04, and leverage,
Lo. The initial asset value is then computed as A} = L;'e "™, which derives from the
fact that Ly = PV (1) /PV (A%) & Lo = e "™ /Ay, The Value of equity at time ¢, E}', is
initialized by the equation E}} = Call (A}, 1,7, M,04), where Call (A, D, R, 7,0) denotes
the Black-Scholes-Merton implied price for a European call option with underlying asset
value A, strike price D, interest rate R, expiration 7, and underlying volatility o. The value
of debt at time ¢, D}, is initialized by the equation, Dj = Aj — Ei. The implied spread
at time ¢, s, is initialized by the equation, s = —M'log (Dy) — r. Assuming a fixed
coupon of ¢ bps and a fixed recovery rate of 40%, the approximate upfront cash-amount

to be paid when trading a CDS contract at time ¢, lgs”t is initialized by the equation

C/'b/sg (=) (1 — exp [— (T’ + %) M]) | B.1)

— C
0 567‘
"t 5.6

The true upfront cash-amount at time ¢, P, is initialized by the equation P}, = P (s, c,r, M),
where P (s, k, R, 7) is the ISDA up-front price for a CDS contract with spread s, coupon
k, time to maturity 7, and assuming a flat term structure of interest rates with level R. This

computation is based on the publicly available ISDA code (http:/ /www.cdsmodel.com/cdsmodel/).
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For the iterations, from ¢t = 0 to 7' — 1, we compute

n n r— %0124 oa,Lo,n 1

t+1 = A} exp 1 +0AE 11 | (B.2)
where Vo, Lo,n € {1,...,N},t € {0,...,T—1}: 5;’7?50’" 4 N(0,1). We note that the various
subscripts and superscripts indicate that a new innovation is drawn for each combination
of time-step (¢t € {0,...,T7" — 1}), simulated path (n € {1, ..., N}), asset volatility level (o),

and initial leverage value (Ly). For each simulation step, we compute

E} = Call (A, 1,7, M,04) (B.3)

D} = A} —E} (B.4)
n 1 n

st =~ log (D}') — r (B.5)
5 oy e[ () M))
Ps,t = (St - C) ST (B6)

T+ 0%

P!, = P(s{,c,r,M). (B.7)

Given the constant maturity nature of CDS contracts, we keep the debt maturity constant
throughout the simulations. We also do not change the notional of the debt maturity. For
each iteration, we compute the equity return, the spread change, the spread return, the

log spread change, the CDS return, and the approximate CDS return, defined as:

En En
P — B

PE? = B.8

tt+1 PtE,n ( )

Rl = st — st (B.9)

R, = Z% (B.10)
St

Rl = log(sty) — log(s}) (B.11)

Ry, = —’HP;Q t (B.12)

pr. . —pr

R, = % (B.13)

Ps,t
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B.2 Regression

For each path and for each metric, {Réfﬂ !, we estimate the model

“wno _ in iwn pE.n i,n
Rt,t+1 =y + o Rt,t+1 + Ui (B.14)

~i,n

using simple OLS regressions and retrieve a point estimate, &;", and the associated asymp-

totic z-statistic, z_:». For a given o4 and L,, we average across all simulation paths
1

to obtain a single point estimate, @} =

z|-

N
Y- ay" and a single asymptotic z-statistic,
n=1

2=

N
Z Zazi,n .

n=1

Z i
q
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C Summary Statistics of CDS Returns

Table C.1: Summary Statistics of CDS Returns - Investment Grade

This table provides summary statistics for a sample of 25 U.S. investment-grade daily CDS spread return
series computed using different return metrics. We use USD denominated 5-year CDS contracts with the no-
restructuring credit event clause. We report each reference entity’s ticker, the mean (in bps) and standard

. . . DS,1 DS,2 A D
deviation (in bps) for 5 CDS return metrics. Rf . Jj’ = St+1 — St, RE p +Sl’ = S;t“, RE . ﬁ’g = log —Szl,
CcDS,4 5 _ 14Tt /A —jrs /4 _ CDS,5 _
Ry 7" = 55 + Asey1 RDy, where RDy = 337,07 e7/7/%e371/%, 4 = dlog(1 + s/4(1 = R)), Ry ;17" =
P,11—P; pCDS6 _ Piy1—P, pCCDS,5 _ Piy1—P: pCCDS,6 _ Po1—P; _ CDS,5 CCDS,5
L AN 5’ Ry = ER Ry iq = P where ¢ = 1 Ry R

RE 3_31’6, and ng_[l)s 0 are computed using a coupon of 100 bps. All data pertain to the period from May

2009 (2009Q2) to September 2016 (2016Q3). Sources: Markit and authors’ computation.

Investment Grade

Tker  RET RO RLT RO R BRI RET R
mean std mean std mean std mean  std mean std  mean std mean std mean std
AXP -0.26 4.02 -10.70 337.40 -16.33 334.88 -1.58 19.29 1.27e+3 6.48e+4 1.26e+3 6.48e+4 -1.10 1822 -1.08 17.74
BA -0.10 1.86 -9.92 225.61 -12.43 22343 -0.74 898 36.61 1l.66e+4  37.68 1l.66e+4 -047 886 -046 8.64
CAT -0.10 297 -6.99 271.38 -10.66 270.63 -0.78 1424 1.37e+3 4.15e+4 1.37e+3 4.16e+4 -0.45 13.72 -043 13.35
CSCO -0.02 151 -056 26147 -398 261.76 -0.32 7.35 10.05 5.01e+3 10.12 5.02e+3 -0.09 741 -0.09 7.25
CVX -0.03 092 -577 23817 -8.58 236.63 -029 4.47 7.78 192.19 7.78 19295 -0.16 4.88 -0.15 4.79
DD -0.05 159 -292 27544 -6.58 268.85 -0.44 7.72 -12.07  2.69e+3 -11.86 2.69e+3 -0.22 7.83 -0.21 7.65
DIS -0.03 1.06 -391 27141 -7.58 27092 -0.27 5.12 7.28 215.97 731 21750 -0.14 542 -0.13 532
GS -0.11 759 0.07 41097 -8.11 40197 -1.17 36.74 1.43e+5 5.3%e+6 1.43e+5 5.37e+6 -0.51 32.84 -0.50 32.07
HD -0.06 156 -7.83 240.72 -10.66 236.57 -0.50 7.50 75.73  1.33e+4 7521 1.33e+4 -029 753 -029 735
IBM -0.01 1.08 090 274.79 -2.84 27290 -0.22 5.23 4.67 204.48 470 20694 -0.07 546 -0.06 537
INTC -0.02 191 3.74 41339 -3.18 363.76 -0.25 9.16 25.14  923.82 2529 928,64 -0.09 9.38 -0.08 9.16
JNJ -0.03 0.72 -6.27 211.21 -851 21239 -0.25 3.49 4.82 129.57 484 131.24 -0.13 3.89 -0.12 3.83
JPM -0.08 3.74 -1.40 375.71 -8.30 369.47 -0.76 18.14 -3.11e+14 1.17e+16 2.24e+5 9.32e+6 -0.39 17.76 -0.38 17.35
KO -0.03 0.75 -527 17755 -6.83 17690 -0.28 3.61 5.55 144.37 557 14622 -0.13 388 -0.12 3.83
MCD -0.02 0.81 -1.82 259.07 -5.11 255.68 -0.20 3.90 3.46 138.83 350 140.39 -0.08 4.30 -0.08 4.24
MKCINC -0.03 0.88 -6.02 163.16 -7.35 162.83 -0.35 4.27 824  237.58 828 23837 -0.14 447 -0.14 437
MSFT -0.00 095 337 28538 -0.57 279.17 -0.16 4.62 1.58 162.35 1.59 163.67 -0.01 5.09 -0.01 4.99
NKE -0.03 1.27 -329 220.18 -5.88 232.77 -0.32 6.15 13.05  468.97 13.04 46842 -0.13 645 -0.13 6.30
PFE -0.04 1.11 -5.83 223.18 -8.31 222.33 -0.38 5.35 14.16 344.19 1419 34513 -0.18 5.50 -0.18 5.38
PG -0.05 1.04 -659 22873 -9.19 22721 -0.40 5.06 18.18 266.99 1820 26823 -0.23 529 -022 5.17
TRV -0.06 229 -6.84 23893 -9.65 236.08 -0.60 11.11 378.56 2.42e+4 37853 2.42e+4 -0.29 10.89 -0.28 10.63
UNH -0.12 2.38 -10.55 19297 -1242 192.79 -0.95 11.41 -82.64 5.15e+3 -82.72 5.14e+3 -0.54 10.96 -0.53 10.67
VZW -0.03 330 620 507.42 -5.88 487.01 -0.41 16.04 -366.59 9.99e+3 -365.76 9.98e+3 -0.17 16.26 -0.16 15.85
WMT -0.04 099 -7.87 226.84 -10.44 226.00 -0.36 4.78 1143  237.07 1146 238.09 -0.20 5.05 -0.20 4.95
XOM -0.02 093 -4.16 303.33 -8.70 300.72 -0.22 4.50 4.62 160.50 463 16131 -0.11 5.09 -0.11 4.99
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Table C.2: Summary Statistics of CDS Returns - High Yield

This table provides summary statistics for a sample of 25 U.S. high-yield daily CDS spread return series
computed using different return metrics. We choose 25 firms with the largest market capitalization among
the universe of HY (credit rating BB+ or lower) Markit firms with less than 10% of missing data during
our sample period. We use USD denominated 5-year CDS contracts with the no-restructuring credit event

clause. We report each reference entity’s ticker, the mean (in bps) and standard deviation (in bps) for 5 CDS
CDS,1 CDS2 _ Asiys pODS.3

. — RSN CDS,4
return metrics. Ry, (7" = sep1— s, Ry 377 = =0, Ry =log =0 Ry = — 55 + Asipi RDy, where

4(T—t) _; i CDS P,.1—P, pCDS P, 1—P, »,CCDS
RDy = 152007 e=in/Aemits /4,y = dlog(1+5/4(1— R)), Ry 57 = P~ REDSS = %,Rmﬁ’ 5 _

P, 1—P, pCCDS6 _ P1—P; . CDS,5 pCCDS,5 pCDS,6 CcCDS,6 .
5 Ry = =, where ¢ = L. Ry, 77, Ry L7, Ry iy, and Ry are computed using a

coupon of 100bps (500bps) if the average sample CDS spread is 300bps or lower (higher). All data pertain to
the period from May 2009 (2009Q2) to September 2016 (2016Q3). Sources: Markit and authors’ computation.

High Yield

Tiker R Ry BRI R R BT R R
mean std mean std mean std mean std mean std mean std mean std mean std

AES -0.28 9.95 -3.12 251.27 -6.27 25094 -2.72 4736 -6.95e+14 3.96e+16 4.0le+3 1.60e+5 -1.23 4220 -1.18 41.17

ASH -0.34 465 -8.19 15797 -9.44 157.80 -2.40 22.10 -6.65 380.48 -7.08 379.86 -1.19 1748 -1.18 17.04

AVP 035 1329 18.00 314.63 13.17 30856 0.34 62.68 -2.49e+3 9.5le+4 -2.49e+3 9.52e+4 152 47.78 1.52 46.93
BLL -0.07 259 -251 14224 -349 139.62 -097 1237  -153.11 6.26e+3 -153.83 6.27e+3 -0.27 11.84 -0.27 11.58
BTU 2849 44713 40.05 540.65 3043 401.64 96.11 1659.37 4484 1.03e+3 44,62 1.03e+3 595 69.09 596 68.85
CHK 099 11571 12.14 40695 4.20 39573 196 483.85  -487.54 9.58e+3 -487.75 9.58e+3 1.07 91.06 1.05 90.40
CTL 0.13 6.41 11.43 27495 7.70 27199 -0.27  30.93 -51.41 3.47e+3  -51.69 3.47e+3 0.62 2723 0.59 26.71
CcvC 017 11.24 6.16 26143 291 25228 -0.81 5359 -5.87e+3 2.60e+5 -5.87e+3 2.60e+5 0.63 46.44 0.63 45.43
DISH -0.00 853 3.60 26860 0.05 26588 -121  40.94 -88.03 7.72e+3  -88.47 7.72e+3 -0.09 39.48 -0.05 38.62
DVA  -019 883 -246 337.30 -7.94 330.66 -194 4275 1193 1.11e+3 1156 1.11le+3 -0.73 37.38 -0.74 36.66
FTR 0.12 1156 554 252.85 232 25473 -112 5522 -4.28e+3 1.40e+5 -4.29¢+3 1.40e+5 0.46 46.64 0.46 45.69
GPS 015 475 14.48 28453 10.50 280.67 0.17 2297 -77.82  6.41e+3  -78.20 6.41e+3 0.70 20.83 0.68 20.48

GT -033 1316 -473 265.76 -8.22 263.74 -320 6256 -1.53e+4 6.30e+5 -1.53e+4 6.30e+5 -1.48 51.40 -1.43 50.24
LB -0.05 490 056 22592 -1.97 22445 -098  23.51 8.89  480.52 8.51 481.19 -0.15 21.61 -0.16 21.07
LEN -0.13 820 -1.16 25496 -4.36 25243 -1.74  39.33 212 398.76 1.77  399.76 -0.43 3212 -045 31.42

LVLT -0.79 2294 -10.74 248.15 -13.84 24932 -6.16 105.66 220.65 8.17e+3  219.94 8.16e+3 -2.84 61.76 -2.78 60.37
MGM -1.07 2498 -8.18 267.67 -11.75 267.31 -7.28 11543 4199 2.94e+3 41.64 294e+3 -299 6756 -2.94 66.29
MU -0.00 1.07 -0.02 3640 -0.08 3591 -1.26 5.20 1.50 80.58 1.07 8264 -0.10 7.02 -0.06 7.02
NEX -0.02 10.05 870 507.05 -0.52 407.26 -0.82  48.50 -50.57 3.87e+3  -50.84 3.87e+3 -0.02 40.54 -0.03 39.80
OKE 0.14 510 10.34 240.84 7.62 229.84 0.08 2441 -83.81 8.04e+3  -84.22 8.03e+3 0.65 19.37 0.63 19.10
PHM -0.03 697 239 263.68 -1.04 26124 -1.10 33.54 13.42  553.07 13.06 553.77 -0.06 28.06 -0.08 27.43
TSO -0.10 891 140 27690 -237 273.65 -1.65  42.64 8.36  450.79 8.01 45177 -0.28 34.89 -0.30 34.13
UHS -0.02 393 093 23112 -1.65 22526 -0.69 1896 288.57 1.05e+4  287.80 1.05e+4 -0.07 17.36 -0.07 16.95
WMB  0.06 529 616 24212 3.42 23090 -042 2527 -2.69e+3 9.34e+4 -2.69e+3 9.35e+4 0.30 20.43 0.28 20.08
YUM 0.06 338 7.85 27553 433 260.84 -0.08 16.31 -99.26 8.74e+3  -99.80 8.74e+3 0.26 1542 0.26 15.12
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Chapter 4

Why does the CDS Term Structure
Predict Equity Returns?

4.1 Introduction

Structural models of credit risk (Merton, 1974) suggest that equity and credit claims are
driven by the same underlying firm’s values. In the absence of frictions, these claims
should be tightly linked to each other and should not contain superior information.

However, recent studies find that information is not revealed in these markets at the
same time. There has been a debate in the literature on whether the credit market or the
equity market is more informative (e.g. Acharya and Johnson, 2007; Hilscher, Pollet, and
Wilson, 2015, Lee, Naranjo, and Velioglu (2018)).

Despite the debate on whether the equity or credit market contains superior informa-
tion, most of these studies examine the relation between the equity and credit markets
focusing on the level of the credit spreads. Nevertheless, this inference omits a signifi-
cant amount of information embedded in the term structure of the credit spreads. To see
this, Figure 4.1 plots the credit spreads term structure of three different firms on 2008-04-
04. While the three firms have the same 5-year credit spread level (125 bps), they have

completely different shapes of the term structure.
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To fill this gap in the literature, this paper revisits the predictability between equity
and credit markets by focusing on the term structure of the credit spreads. We find that
the credit spread slope, defined as 10-year credit spread minus 1-year credit spread, has
stronger predictive power than the credit spread level in predicting cross-section of the
equity returns, consistent with the findings in Han, Subrahmanyam, and Zhou (2017).

Motivated by Figure 4.1, we further examine whether the credit spread slope has sig-
nificant predictive power on the equity returns conditional on the CDS level. We conduct
a double-sort analysis to form stock portfolios by sorting on the level of the credit spreads
and the slope. A long short portfolio formed on the CDS slope for the high (low) credit
quality firms category earns significant positive (negative) returns, indicating that the
CDS slope positively (negatively) predicts the equity returns for high (low) credit quality
tirms.

Furthermore, we conduct a panel regression by projecting the future equity returns
on the current CDS slope and its interaction with CDS spread level, as well as the high
or low CDS spread level indicator variables. We find that the CDS slope has a significant
positive (negative) effect on the future equity returns when interacting with low (high)
credit spread levels.

To check whether such predictability is generated by informed trading in the CDS
market, we perform the same panel regression by controlling for the firm'’s transparency
proxies, such as CDS depth, idiosyncratic risk, size, institutional ownership, and analyst
coverage, since the informed trading is likely to affect the equity predictability when the
tirm is less transparent. We show that the predictive power of the CDS slope is still signif-
icant conditional on CDS spread level, indicating that the predictive relation between the
CDS slope and equity returns conditional on the CDS level, is not driven by the informed
trading channel in the CDS market.

To understand the superior predictive power of the CDS slope compared to the CDS
spread level, we adopt the classic stuctural credit risk framework (Leland, 1994) to exam-
ine the determinants of the equity returns and credit spread slope. Based on the Leland
(1994) model, a firm’s underlying dynamics can be characterized by the firm’s default

boundary and the asset volatility. We study whether the credit spread slope reflects in-
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formation on the default boundary and the asset volatility by keeping the credit spread
level constant.

First, since both the asset volatility and default boundary increases the firm credit risk,
to produce the same credit spread level, an increase in the asset volatility corresponds to
a decrease in the default boundary and vice versa. These two forces have different im-
pacts on the long and short term credit spreads. For the long (short) term credit spreads,
the impact of the changes of the asset volatility (default bounday) dominates that of the
changes of the default boudnary (asset volatility), constrained on the same 5-year credit
spread level. Therefore, the steeper the term structure is, the higher the asset volatility
and the lower the default boundary is.

The cross-sectional difference of the default boundary and the asset volatility implied
by the credit spread term structure are informative on the equity risk premium. To see
this, we decompose the equity risk premium into the equity beta component and asset
risk premium component. We show that these two components have different impacts on
the equity risk premium conditional on firms with high (low) credit spread level, hence-
forth low (high) credit quality firms.

On the one hand, the equity risk premium of the high credit quality firm is mainly
driven by the asset risk premium. The high credit quality firm is likely to be far away
from default. In this case, the equity value is very close to the asset value, and the equity
beta is relatively much more stable than the asset risk premium. Since the asset risk
premium is crucially dependent on the asset volatility, the credit spread slope positively
predicts the equity returns.

On the other hand, the equity risk premium of the low credit quality firm is mainly
driven by the equity beta. The low credit quality firm is likely to be close to default.
Under this circumstance, the equity value is close to zero and the equity beta is much
more volatile than the asset risk premium. The higher (lower) the default boundary (asset
volatility) is, the smaller the equity value and the larger the equity beta is. Therefore, the
credit spread slope negatively predicts the equity returns.

To further justify that the economic channel in the model is responsible for the differ-

ent predictability between CDS slope and equity returns conditional on different types of
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tirms, we simulate the Leland (1994) model to generate a panel data. By replicating the
same double-sort and panel regression exercise as the empirical analysis, we find quali-
tatively similar results as the results based on the market data. This again supports our
conjecture that the predictive power of the CDS slope arises because the CDS slope re-
flects the additional information on the default boundary and asset volatility.

Our work contributes to the debate on the predictability between equity and credit
markets, by showing two different predictive relations between the credit spread term
structure and equity returns, conditional on high and low credit spread level. It highlights
the importance of focusing on the credit spread term structure in studying the relation
between these two markets.

This paper is organized as follows. Section 4.2 presents a preliminary analysis of the
predictability between the equity and credit markets. Section 4.3 documents the empirical
evidence on the predictive power of credit spread term structure conditional on the credit
spread level. In section 4.4, we provides a theoretical framework in understanding the
information content of the credit spread term structure and how it is related to the equity

risk premium. Section 5.7 concludes.

4.2 Preliminary analysis

In this section, we conduct preliminary analysis to understand the predictive relation
between the equity and credit market. First, we provide a data description. Second, we
study the predictability between the equity and credit market by focusing on both the

credit spread level and term structure.

4.2.1 Data

We obtain CDS quotes from MARKIT. Our sample period covers from January 2001 to
March 2018. We restrict our sample to consist only of US entities and non government

sectors. We keep only the US dollar-denominated CDS and the CDS observations belong-
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ing to the senior unsecured tier. Furthermore we drop any observations with missing
values of the CDS for the following maturities: 1, 2, 3, 5, 7, and 10 years.

We obtain stock monthly data from CRSP. We manually match the CRSP “PERMCO”
and MARKIT “REDCODE” company identifiers by checking the company names of the
two datasets. We also manually filter out the matchings such as parent-subsidiary match-
ing. For example, if the AT&T Inc. matches with AT&T Corp, we drop such matchings.

Table 5.1 documents the sample cross-sectional descriptive statistics. We first com-
pute the unconditional averages of the variables for each firm. We then generate the
cross-sectional summary statistics. Our sample contains 733 firms with 74,770 firm-month
observations from January 2001 to March 2018. The cross-sectional average 5-year CDS
spreads is 260 bps and the average of CDS slope, defined as 10-year CDS spreads minus
1-year CDS spreads, is 80 bps. The median firm in the sample has a leverage of 18.5%,
equity volatility of 0.3, log market capitalization of 8.7, and BBB rating. This is consis-
tent with the total Compustat sample median documented in the previous literature (e.g.
Feldhiitter and Schaefer, 2018), indicating that our sample is representative of the Com-

pustat universe.

4.2.2 The predictability between equity and credit markets

In this section, we revisit the predictability between the credit and equity market, using
the credit spread term structure in contrast to the credit spread level. As a first step, we
examine the unconditional relation between the credit spread slopes! and equity future
returns.

To study the cross-sectional predictability between the credit spread level (slope) and
equity returns, we document the stock portfolio one month ahead returns sorted by the
CDS spread level or slope. We first sort the stocks into 10 deciles based on the CDS slope,
defined as 10-year CDS spreads minus 1-year CDS spreads. Second, for each decile, we

! Although the CDS spread contains illiquidity component, Bongaerts, De Jong, and Driessen (2011) find
that such component is economically insignificant. Hence, we omit such effect for simplicity and introduce
CDS depth as a control variable for regressions. Nevertheless, the illiquidity might impact the long and
short term CDS spreads differently. It will be interesting to exclude the illiquidity noise embedded in the
CDS spread level and slope in a, e.g. reduced form manner, and to use this clean measure to study the
predictability between the equity and credit market. We leave this for future work.

63



compute the equal weighted equity one month ahead return. Lastly, we compute the low
slope - high slope long short portfolio return.

Table 4.2 reports the empirical results. We find that higher credit spread level (slope)
deciles have higher (lower) equity future returns than lower credit spread level (slope)
deciles on average. The low - high portfolio return is not significant for the portfolio
sorted by CDS spread level, but significantly positive at 10% confidence level without
being corrected by the Newey West method, for the portfolio sorted by CDS spread slope.
However, it is not significant after being corrected by the Newey west method. In this
exercise, we provide weak evidence that the credit spread slope negatively predicts the
equity returns, consistent with the findings in Han, Subrahmanyam, and Zhou (2017).
Furthermore, the credit spread slope exhibits more accurate predictive effect compared to
the credit spread level.

As an alternative test, we perform the following panel regression by projecting the one

month ahead equity returns on the CDS spread level and slope.

Rﬁsqﬁ =i+ v+ BVar, + Y By + i (4.1)

where Rf /% denotes the equity one month ahead return, Var, denotes either the CDS

spread level or slope, which is defined as 10-year CDS spreads minus 1-year CDS spreads,
«; denotes the firm fixed effect, v, denotes the year-month fixed effect, and Y; denotes the
tirm specific control variables. The firm specific controls include firm leverage ratio, log
market capitalization, annualized stock volatility, computed using the previous month
daily stock returns, rating, and stock daily return.

Table 4.3 reports the regression results. Columns (3) and (7) reports the results of
the same regression by substituting the year-month fixed effect into quarterly fixed effect
with additional macroeconomic controls. The macroeconomic control variables include
CBOE VIX index, 10-year treasury yield, treasury yield slope, defined as 10-year yield
minus 2-year yield, default spread, and TED spread.

The CDS spread level is not significant in predicting the equity returns while the CDS

spread slope is significant at 10% confidence level for all regression specifications. Fur-
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thermore, the encompassing regression (9) shows that the predictive effect of the credit
spread slope survives after controlling for the credit spread level. This again suggests that
the information set for the predictability between the credit and equity market improves
by incorporating the term structure information of the CDS spreads.

To understand why the credit spread slope has a more accurate prediction on the eq-
uity return as documented in the previous section, we examine the credit spread term
structures of three different firms with the same 5-year credit spread level at a given day.
Figure 4.1 shows that firms could have very different shapes of the term structure even
if they have the same credit spread level. These shapes might contain important infor-
mation on the equity risk premium. In the following section, we provide a theoretical
analysis on the information content of the CDS slope and how it relates to the equity

returns.

4.3 The predictive power of CDS slopes conditional on CDS

levels

To further justify that the CDS slope contains larger information set than the CDS level,
tirst, we perform both the double sort exercise and the panel regression analysis to study
the predictive power of the slope on the equity returns conditionl on the level. Second, we
perform several robustness checks to rule out the possible explanation of the predictive

relaion between the equity returns and CDS term structure.

4.3.1 Stock portfolios sorted on CDS levels and slopes

To examine the relation between CDS slopes and future equity returns conditional on
CDS levels, we perform a bivariate dependent-sort portfolio analysis (Engle, Bali, and
Murray, 2016).

At each month, we first sort the stocks based on the 5-year CDS spread level into
terciles. At each three terciles, we then sort the stocks based on the CDS slope, defined
as 10-year CDS spreads minus 1-year CDS spreads, into five quintiles. Third, for each
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group, we compute the equal-weighted one-month ahead portfolio’s returns. Fourth,
within each CDS tercile, we compute the low slope quintile minue high slope quintile
portfolio return. Finally, we compute the time series averages of these portfolio returns
and compute the t-statistics corrected under the Newey West method.

Figure 4.2 presents a visual summary of the double sort exercise and Table 4.4 reports
the statistical results. Visually, we see that conditional on low (high) credit spread level,
the future equity returns are increasing (decreasing) with the CDS slope. These patterns
are statistically significant. The long short portfolio, defined as low slope portfolio minus
high slope portfoilo, earns significantly negative (positive) returns, for the low (high) CDS
spread level tercile. This evidence suggests that the credit spread term structure contains
additional information beyond the credit spread level. The sign of the predictability be-
tween the CDS slope and equity returns are different conditional on high and low credit
spread level.

To further justify this pattern, we perform a panel regression by projecting the future
equity returns on the CDS slope and its interaction with high and low credit spread levels.

The regression specification is described below:

thqﬁ = a; + ¢ + BuSlope; + BcLevely x Slopey + fiLevel, + Y] By + €4 4.2)

where Rfﬂﬁ denotes the equity one month ahead return, Slope; denotes the CDS slope,

defined as 10-year CDS spreads minus 1-year CDS spreads, Level, x Slope; capture the

CDS slope predictive effect conditional on the CDS spread level. We specify Level; in 3
different forms, Dy;gncps,avg (DiowcDS,avg), Phighcps,5000p (Diowc Ds,300p), and 5y-CDS spreads,
where Dyigrhcps.avg (DiowcDs,avg) denotes the indicator variable which equals 1 if the firm’s
average CDS spreads level belonging to the top (bottom) half and 0 otherwise, and Dy;gncps,5008p
(Diowens.sop) denotes the indicator variable which equals 1 if the firm’s monthly CDS
spreads are larger (smaller) than 500 (30) bps and 0 otherwise. 3, and /. denotes the
unconditional and conditional effect of the CDS slope, respectively. «; denotes the firm
tixed effect, v, denotes the year-month fixed effect, and Y; denotes the firm specific control

variables. The firm specific controls include firm leverage ratio, log market capitalization,
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annualized stock volatility, computed using the previous month daily stock returns, rat-
ing, stock daily return, and 5-year CDS spreads.

Table 4.5 reports the regression results. The coefficients of Level, x Slope, under the
3 different specifications of Level; are significant. This indicates that the credit spread
slopes have significantly different predictive effects on the equity returns, conditional
on different credit spread levels. In particular, the coefficients of Dyighcps.ag X Slope
(DiowcpS,avg X Slope), Drighcpssoonp X Slope (Diowepssonp X Slope), and C'DSs, x Slope
are significantly negative (positive). This suggests that conditional on high (low) credit
spread level, the predictive effect of the CDS slope becomes more negative (positive).
Furthermore, 3, + f. is positive (negative) for firms with low (high) CDS spread level.
This again supports that the CDS slope positively (negatively) predicts the equity returns
for firms with low (high) CDS spread level.

Given such interesting patterns in the data, we discuss several economic mechanisms
which might give rise to such results. To begin with, CDS spreads are affected by variance
risk, which can be influenced by growth opportunities of a firm. Intuitively speaking, the
more idiosyncratic the firm is, the lower the credit spread slope is (Augustin, 2018). A firm
that possesses many growth opportunities is usually more idiosyncratic and hence subject
to lower equity risk premium. This can create a positive relation between the credit spread
slope and equity future returns for low credit spread firms. To account for such channel,
we incorporate firm size as a control variable to proxy growth opportunities, since a small
firm is likely to have more growth opportunities.”? The relation between the CDS slope
and equity return still remains.

Another potential channel for the result is that the CDS slope contains forward-looking
information about the downside risk of the equity market. Furthermore, equity returns
can be skewed based on its P-measure. This might also show up in the CDS slope infor-
mation content. To control these channels, we first incorporate a time fixed effect, which
will absorb any market risk. We then incorporate a number of firm specific controls such
as leverage, equity volatility, size, rating, etc, which proxy the equity P-distribution prop-

erty. Our result is robust given such controls.

?In an unreported result, we also introduce idiosyncratic risk as a control variable. The result remains.
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Furthermore, these results are not driven by the financial crisis period. During the
tinancial crisis, the Securities and Exchange Commission (SEC) issued an emergency ban
on short sale for all financial stocks. Literature documents that this can induce the in-
formed traders choosing the derivatives market to exercise their trades (Ni and Pan, 2020,
etc.), resulting in CDS slope predicting equity returns. Our similar empirical evidence re-
ported with and without financial crisis indicates that these predictive patterns are not
likely to be driven by stock short selling.

In sum, we find strong empirical evidence that the CDS slope has additional predic-
tive power on the equity returns conditional on the credit spread level. It positively pre-
dicts the equity returns for high credit quality firms but negatively predicts the equity
returns for low credit quality firms. Not surprisingly, due to these two opposite signs of
predictability, unconditionally, we find a weak predictabitive relation between the CDS

slope and equity returns documented in section 4.2.

4.3.2 Different slope definitions

The computation of credit spread slope is crucially dependent on our selection of the ma-
turity. To examine whether the empirical results are robust across different credit spread
slope definitions, we conduct the double-sort and panel regression exercises using the
CDS slope defined as 10-year CDS spread minus 2-year CDS spread, and 5-year CDS
spread minus 1-year CDS spread.

Table 4.10 reports the double-sort results and Table 4.11 reports the results of the panel
regression following Equation (4.2), based on the different credit spread slope definition.
We find robust results that the CDS slope positively (negatively) predicts the equity re-
turns conditional on firms with low (high) credit spread level. The results are highly
significant across different slope definitions. This suggests that the predictive relation
between the CDS slope and equity returns is not affected by the credit spread slope defi-

nition.
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4.3.3 The impact of informed trading

Acharya and Johnson (2007) shows that the CDS market is more informative than the
equity market, since the banks acquire non-public information through the lending rela-
tionship with debtors and use it in the trading of CDSs. Han, Subrahmanyam, and Zhou
(2017) documents that the predictive power of the CDS slope on the equity market can
also come from the informed trading behaviour in the CDS market. In particular, they
show that the predictive effect of the slope are stronger conditional on the firms with low
visibility. To examine whether the predictive power of the slope conditional on different
credit spread level is purely driven by the informed trading channel, we perform the same
regression following Equation (4.2) with an additional term by interacting the CDS slope
with the firm’s transparency proxies, such as the firm’s CDS depth, idiosyncratic risk
(Idiosyn), institutional ownership (I0), analyst coverage (# Analyst), and market capital-
ization

Table 4.12 documents the regression results. Both the coefficients of Dyigncps X Slope
and C'DS5, x Slope are significantly negative across different firm’s transparency proxies.
The coefficient of Dj,,cps x Slope is significantly negative. This indicates that control-
ling for the informed trading proxies, the CDS slope still has significantly more negative
(positive) predictive effect on the equity returns, conditional on high (low) credit spread
levels. Furthermore, the economic magnitudes of the coefficients are similar across all
regressions and similar to the regressions in Table 4.5. This suggests that the predictive
effect of the CDS slope conditional on different CDS levels is not completely driven by
the CDS informed trading.

4.3.4 The impact of industry effect

The CDS slope might contain not only the firm fundamental information content, but also
industry-wide effects, since an industry wide shock - related, for example, to technology,
collateral, supply chain, Covid led demand shocks etc. - can have diffused effects on

all firms. These industry-wide effects can also impact the equity risk premium. Hence,
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it is possible that the predictability of the equity returns comes from the industry wide
information content embedded in the CDS slope.

To rule out such explanation, we re-perform Regression (4.2) by introducing an ad-
ditional industry fixed effect, where the industry definitions are based on Fama-French
definition. Table 4.13 reports the results. All interaction variable coefficients have the
same signs and similar magnitude as those in Table 4.5. Furthermore, almost all interac-
tion variables are significant at 5% confidence level. Therefore, industry-wide effects are
not likely to be the main drivers of the predictive patterns between the CDS slope and

equity returns.

4.3.5 Corporate bond market

To examine whether the predictive relation between the credit spread slope and equity
returns only exists in the CDS market, we also perform the main analysis using the cor-
porate bond data.

We obtain the corporate bond yield data from WRDS Bond Returns. We interpolate the
yield curve to generate bond yields with 2, 5, and 10 years to maturity.® Figure G.1 plots
the time series of the aggregate CDS spreads and bond credit spreads for maturities of 1,
5, and 10 years. Quantitatively, the 2-year, 5-year, and 10-year bond credit spreads have a
correlation of 87%, 84%, and 90% with the CDS spreads, respectively. This indicates that
the credit spreads observed from the corporate bond market are similar to those observed
in the CDS market. We remove observations with missing values of bond yield with 2, 5,
10 years to maturity. This leaves us with an unbalanced panel data of 5,570 firm-month
observations with 153 firms. We define the credit spread slope as 10-year bond yield
minus 2-year bond yield. The results are qualitatively similar using other maturities.

Table 4.14 documents the double-sort results and Table 4.15 reports the panel regres-
sion results following Equation (4.2). Due to data limitation, we sort the firms into tercile
rather than quintile based on the slope. Qualitatively, the implication is consistent with

the empirical results in the previous sections. Not surprisingly, the results are statistically

3Since the corporate bond data is very illiquid for maturity below 1 year, we interpolate to generate
2-year bond yield instead of 1-year.
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weaker compared to the results based on the CDS data, since the corporate bond data
is much noisier than the CDS data. The long-short portfolio returns sorted by the bond
yield slope for the low credit quality firms are significant, but the long-short portfolio re-
turns for the high credit quality firms are not significant. Furthermore, the coefficients of
the Digwyiela X Slope and Dhghyield X Slope are weakly significant across most of the regres-
sion specifications. This suggests that the two different predictive relations between the
credit spread slope and equity returns conditional on high and low credit quality firms

are weakly supported by the corporate bond data.

4.4 Theoretical framework

In this section, we apply the classic Leland (1994) framework* to understand 1) the predic-
tive power of the credit spread slope on equity returns, conditional on the credit spread
level; 2) the different signs of the predictability conditional on high and low credit spread
level.

Following Leland (1994), we assume that the firm value is assumed to follow the fol-

lowing Geometric Brownian Motion:

d
W par + odWlf

Vi (4.3)
= rdt + odW2,

under the physical and risk neutral measure, respectively. u” = r 4+ Ao, where ) is the
market price of risk. Suppose that the firm issues a perpetual debt that pays a coupon C
per instant of time if the firm is solvent. The firm defaults when the asset value V; falls
below the default boundary V; for the first time. The firm enjoys tax benefits but is subject

to bankruptcy cost « at default. We denote the tax rate to be 7. Following Leland (1994),

*Although the Leland (1994) model does not provide finite maturity debt, one can think of finite maturity
bonds as STRIPS issued by an investment bank. Several papers study finite maturity credit claims using
Leland (1994) type of model (Du, Elkamhi, and Ericsson, 2019). Ultimately, the main goal of this paper is to
provide intuition on the mechanism behind the equity predictability. Hence we stick to the Leland (1994)
to provide more tractability. Additionally, the Merton (1974) model is a simpler form of the Leland (1994)
model which delivers similar intuition. However, the assumption that bonds can only default at maturity
is problematic in understanding the drivers of the term structure of the credit spread.
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the value matching and smooth pasting conditions imply that

1-nc ¢

= 4.4
Vo= e @9
where £ = — 2% is the negative root of the characteristic polynomial.
The equity value can be expressed as
- _ 3
E:V—(l T>C+((1 T)C'_Vc_l) (K) 45)
r r Vi

where the first part V' — @ is the firm value net of the debt value with additional tax
benefits from the debt, had there been no default. (%)E is the Arrow Debreu price of
default. The second part of the equation can be interpreted as the payoff received by the
equity holder at default. It loses the firm value V;; but is no longer required to pay for the
debt w at default.

Applying Ito’s lemma to the asset dynamic, we can express the equity risk premium
as

0E, V,

ERP, = ——0\. 4.6
RP, thEtU)\ ( )

Equation (B.4) shows that the equity risk premium can be decomposed into equity beta
and asset risk premium. The equity beta can be further expressed as the interaction be-
tween the equity delta and leverage effect. On the one hand, when equity delta is high,
the equity is more correlated with the firm’s risk, indicating a high equity beta. On the
other hand, when leverage is large, the equity value is small and it becomes riskier, lead-
ing to a high equity beta.

Next, we derive the credit spread expression. Under the assumption that the creditor
get a fraction of the price of the equivalent remaining maturity Treasury at default (“Re-
overy of Treasury”), the price of a zero coupon bond with 7 maturity can be expressed

as

B, = e "TEY My, >r + Iy, <p(1 — L)] (4.7)
= eirT(l — Lﬂ-t?ﬂ')’
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where L is the loss given default which is assumed to be constant, and wt% denotes the
risk neutral default probability. Therefore, the credit spread of this bond can be expressed
as

1
St = log(1 — L7(?,). (4.8)
Based on reflection principle, we have the following lemma:

Lemma 4.4.1. Suppose F'(T) = P(r < T), where 7 € inf{t > 0: W, +mt = b} withm > 0
and b < 0,

b
o 62mb
F(T) = "N (2 7

where N (-) denotes the standard normal cumulative distribution function.

+m\/_)—|—N( —mA/T), (4.9)

According to Lemma 4.4.1, wf?, can be expressed as

b
7TtQ = eQMbN(

- f+mf>+N<

= my/7), (4.10)

where m = — =log (%) /o.

4.4.1 Discussion

Fixing the credit spread level, the firm can have completely different underlying dynam-
ics. For instance, both the default boundary and asset volatility have positive impacts on
the credit risk of the firm. For firms with the same credit spread level, they can have a high
default boundary (asset volatility) but low asset volatility (default boundary). Simply fo-
cusing on the level of the credit spread, one cannot infer the cross-sectional variations of
the firm’s default boundary and asset volatility. Next, we discuss that the shape of the
term structure contains this useful information.

In the spirit of Merton (1974) and Leland (1994), the bond price is negatively related
to the value of the put option on the firm value. Therefore, the credit spread is posi-
tively related to this put option value. The option value is crucially dependent on the
asset volatility and the option moneyness, henceforth default boundary. Intuitively, con-

ditional on the same credit spread level, a higher volatility and a lower default boundary
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are likely to increase the long term credit spread. This is because the long maturity is
likely to dampen the impact of the default boundary due to the possibility of getting out
of the distress region over time. In the special case of Merton (1974), the bond price is a
function of the European put option on the firm value. Even if the firm value is lower than
the default bounday today, the default can only happen at maturity. For long maturity
bond, the firm has a long time to get out of the default region. This dampens the impact
of the default boundary. Therefore, the impact of the decrease in default boundary will
be dominated by the increase in asset volatility on the credit spread.

In the meantime, conditional on the same credit spread level, a higher default bound-
ary and a lower volatility are likely to increase the short term credit spread. This is be-
cause the short maturity reduces the impact of the volatility. If the maturity is 0, the total
option value is driven by the intrinsic value, which is tightly related to the moneyness of
the option. Based on this intuition, the steeper the slope is, the larger (smaller) the long
(short) term credit spread is, indicating the larger the asset volatility and the smaller the
default boundary is.

This information is especially important in understanding the equity risk premium.
According to Equation (4.5), the equity risk premium can be decomposed into the equity
beta 22¥ and the asset risk premium o). If we increase the asset volatility and decrease
the default boundary to keep the credit spread level constant, the asset risk premium
increases. However, the equity beta is likely to decrease. Intuitively, since the equity
is a call option on the asset value, when the asset volatility (default boundary) increases

(decreases), the equity value increases. This implies a decrease in the leverage ;, resulting

in a decrease in equity beta. Even though the equity beta also consists of the equity delta

oF

9%, the delta is likely to be much more stable than the leverage, since the equity delta 2 is

only able to vary between 0.5 to 1,° approximately. Changes in the firm fundamentals are
not likely to cause the equity delta to vary much in percentage term. However, they can
cause the leverage ¥ to vary a lot, especially when the firm is close to default and equity

value is close to 0. Hence, the equity beta is likely to be mainly driven by the leverage.

>The lower bound should be larger for perpetual option.
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Based on the above argument, the equity beta and asset risk premium counteract with
each other as the firm’s default boundary and volatility vary to keep the credit spread
level constant. The net effect depends on the credit worthiness of the firm. When the
firm is far away from default (henceforth, high credit quality firm), the equity beta is not
sensitive to the changes of the firm fundamentals, since the equity value is very close to
the asset value. Therefore, the equity risk premium is mainly driven by the asset volatility
(asset risk premium). A higher credit spread slope implies a higher asset volatility. This
indicates a positive relation between the credit spread slope and the equity risk premium.
When the firm is close to default (henceforth, low credit quality firm), the equity beta is
very sensitive to the leverage component, since the equity value is very small. Hence, the
equity risk premium is mainly driven by the equity beta. A higher credit spread slope
implies a smaller default boundary and a larger asset volatility, both resulting in a larger
equity value and smaller leverage ratio. This indicates a negative relation between the
credit spread slope and the equity risk premium.

In the following section, we provide a numerical analysis to justify the above economic
mechanism, which generates the predictability patterns between the credit spread slope

and equity returns, consistent with the data.

4.4.2 Numerical analysis

For either of the high or low credit quality firms, we first calibrate the Leland (1994) model
to match the same credit spread level. In particular, as shown in Table 4.7, we set the credit
spread level to be 50 (700) bps and the asset volatility ranges from 0.2 to 0.4 for the high
(low) credit quality firms according to Feldhiitter and Schaefer (2018). The sharpe ratio of
the firm value is set to be 0.2 (0.1) for the high (low) credit quality firms based on Chen,
Collin-Dufresne, and Goldstein (2009) and our computation for the equity sharpe ratio
based on our sample. The bond loss given default is set as 0.45 (0.55) for high (low) credit
quality firms based on Elton, Gruber, Agrawal, and Mann (2001) and Huang and Huang
(2012). Finally, we set the firm value to be 100 and the risk free rate to be 0.02.
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Second, based on these parameters, for each group of firms, we vary the asset volatil-
ity and back out the debt coupon value based on the target credit spread level. We then
compute the credit spread slope, the equity risk premium (ERP), and the default bound-
ary.

Figure 4.4 reports these quantities against asset volatility 0. As is indicated in Panel
(b), in order to produce the same level of credit spread, when the asset volatility o in-
creases, the firm’s default boundary decreases. Based on these capital structures of the
tirms, panel (a) plots the credit spread slope variations. For both of the high and low
credit quality firms, the credit spread slope becomes steeper as the volatility increases and
the default boundary decreases. Figure 4.5 reports the 1-year and 10-year credit spread
level for both the good and bad firms. The long (short) term credit spread is increasing
(decreasing) with the asset volatility. This implies that the long (short) term credit spread
is mainly driven by the asset volatility (default boundary). These figures demonstrate
that a steep slope corresponds to a higher (lower) volatility (leverage), consistent with the
conjecture in the previous section.

This information has important implications on the equity risk premium for the high
or low credit quality firms. Panel (c) shows that the equity risk premium (henceforth
ERP) is increasing with volatility for a high credit quality firm but decreasing with the
volatility for a low credit quality firm. To understand the dynamic of the ERP, Panels (d)
and (e) report the ERP components, namely the equity beta and the asset risk premium
(henceforth ARP). For both firms, the ARP (equity beta) is increasing (decreasing) with
asset volatility. However, the decrease in equity beta for a low credit quality firm is much
more rapid than for a high credit quality firm. As a result, the equity risk premium is
mainly driven by the asset risk premium for a high credit quality firm but driven by the
equity beta for a low credit quality firm.

To understand the driver of the equity beta, Figure 4.6 reports the dynamics of equity
beta components, namely equity delta (32) and leverage (3), against the asset volatility.
Visually, the equity delta is very stable but the leverage is changing much more rapid than
the equity delta. This implies that the equity beta is mainly driven by the leverage, which

is crucially dependent on the equity value of the firm. An increase in asset volatility and
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a decrease in default boundary increase the equity value since it is a call option on the
firm’s asset.

Therefore, as we increase the volatility and decrease the default boundary to keep
the credit spread level constant, the credit spread slopes becomes steeper and steeper.
On the one hand, the equity risk premium is increasing for a high credit quality firm,
because it is mainly driven by the asset risk premium, which is crucially dependent on
the asset volatility. This generates a positive relation between the credit spread slope and
the equity risk premium. On the other hand, the equity risk premium is decreasing for a
low credit quality firm, because it is mainly driven by the equity beta, which is crucially
dependent on the leverage and equity value of the firm. The equity value is increasing
with volatility and decreasing with default boundary. This leads to a negative relation

between the credit spread slope and equity risk premium.

4.4.3 Simulation

To further confirm the economic mechanism for the predictability between the credit
spread slope and equity returns, we simulate a set of panel data based on the Leland
(1994) model to perform the same empirical analysis as Section 4.3.

In particular, We set the initial firm value to be 100. We construct 900 firms with
volatilities ranging between 0.2 to 0.4 and default boundaries ranging between 10 to 50.
Based on the calibration in the previous section, we set the minimum default boundary
to be 10 and the upper bound to be 70. We set risk free rate to be 0.02, loss-given-default
to be 0.5, bankruptcy cost to be 0.15, tax rate to be 0.15, sharpe ratio to be 0.15. According
to Chen, Collin-Dufresne, and Goldstein (2009), we set the market price of risk to be 0.4.
We then compute the systematic volatility and idiosyncratic volatility based on the firm’s
sharpe ratio and the market price of risk. Finally, we simulate 10 years of daily data based
on these parameters, and aggregate the sample into monthly data.

First, we perform the double sort analysis as Section 4.3. Figure 4.3 and Table 4.8
reports the double sort results. Visually, for firms with low 5-year CDS spread level,

the future equity returns are higher for firms with larger CDS slope. On the contrary, for
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tirms with high 5-year CDS spread level, the future equity returns are lower for firms with
larger CDS slope. Statistically, the returns of the long-short portfolio, defined as the low
slope portfolio minus the high slope portfolio, is significantly negative for the high credit
quality firms but significantly positive for the low credit quality firms. This evidence is
consistent with the empirical evidence in Section 4.3. It also supports the model intuition
in the previous discussion.

Second, we perform the panel regression by projecting the future equity returns on
the current CDS slopes. Since the volatility is not time varying at the Leland model, we
discard the firm fixed effect in the panel regression to examine the cross-sectional patterns
between credit spread slopes and future equity returns. Table 4.9 reports the regression
results. When conditional on high (low) credit spread level, the conditional beta 3. is
significantly negative (positive), indicating that firms with high and low credit spread
levels have a distinct predictive relation between the credit spread slope and the equity
returns. In addition, 3, + . is negative (positive) for firms with high (low) credit spread
level, indicating that for low (high) credit quality firms, the credit spread slope negatively
(positively) predicts the equity returns. This is consistent with the previous empirical
evidence and discussion.

In sum, the classic Leland (1994) model is able to replicate the empirical findings in
the market data. Under the Leland (1994) framework, we show that by conditioning on
the same credit spread level, the credit spread slope contains information on the relative
magnitudes of the default boundary and asset volatility across firms, which is helpful in

understanding the equity risk premium for both high and low credit quality firms.

4.5 Conclusion

There has been a debate in the literature on the predictability between the equity and
credit markets. While most of these studies focus on the credit spread level, we revisit
the predictability incorporating the term structure of the credit spread. We find that con-
ditional on high (low) credit spread level, the CDS spread slope negatively (positively)

predicts the equity returns.
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To understand the superior predictive power of the term structure, we adopt the Le-
land (1994) framework in dissecting the credit spread slope and the equity risk premium
and study the interplay among the different components. We find that in theory, the credit
spread slope can reflect a different combination of the endogenous default boundary and
asset volatility even though the credit spread level remains unchanged. This information
is tightly related to the equity beta and the asset risk premium. For firms with high and
low credit spread level, the equity risk premium is driven by the equity beta and the asset
risk premium respectively. This results in different predictability between the CDS slope
and equity returns, because the slope is positively (negatively) related to the asset risk
premium (equity beta).

Our work highlights the importance of incorporating the credit spread term structure
in studying the lead lag relation between the credit and equity markets. While we mainly
focus on the cross-sectional predictability between the credit spread slope and equity re-
turns, the time series predictability also deserves great attention. It would be interesting
to extend the Leland (1994) and Du, Elkamhi, and Ericsson (2019) framework in jointly
capturing both the cross-sectional and time series predictability. We leave this for future

work.
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Figure 4.1: Credit spread term structures of Bear Stearns Cos Inc, Emulex Corp, and

Sunoco Inc.

In this figure, we report the credit spread term structures of Bear Stearns Cos Inc (BSC), Emulex Corp
(EMU), and Sunoco Inc (SUN) on 2008-04-04. Sources: Markit, authors’ computation.

300

J
u
=

[
=]
=]

e ==

-f--plat:oa-co-oq-aa-to-t.

Credit Spreads (bps)
H
[¥g]
L= ]

'..lt _.
100 .-._,..4__ -8
-
50 oo
0
1 2 3 4 5 6 7 8 9 10

Maturity

el BSC == @== EMU ++@e+SUN

82



Figure 4.2: Returns on stock portfolios sorted by CDS spread level and CDS spread slope.

In this figure, we report the stock portfolio one month ahead returns sorted by the CDS spread level and
slope. We first sort the stocks based on the 5-year CDS spread level into terciles. At each tercile, we then
sort the stocks based on the CDS slope, defined as 10-year CDS spreads minus 1-year CDS spreads. Finally,
we compute the time series averages of each portfolio returns. The data is at monthly frequency and the
data period ranges from January 2002 until April 2018. Sources: Markit, CRSP, authors’ computation.

0.0175

0.0150

0.0125

9

0.0100

ret_la

0.0075 A

0.0050 -

0.0025 -

0.0000 -

5y-CDS (low) 5y-CDS (median) 5y-CDS (high)
1 Slopel(low) 0 Slope2 11 Slope3 v Slope4d @@ Slope5(high)

83



Figure 4.3: Returns on stock portfolios sorted by CDS spread level and CDS spread slope
(Simulated Data).

In this figure, we report the stock portfolio one month ahead returns sorted by the CDS spread level and
slope using the simulated data based on the Leland (1994) Model. The initial firm value is set to be 100. We
simulate 10,000 firms with volatility ranging between 0.2 to 0.4 and default bounday ranging between 10 to
50. We set the minimum default boundary to be 10 and vary the upper bound such that the cross-sectional
average of the 5-year credit spreads is around 150 bps. We set risk free rate to be 0.02, loss-given-default
to be 0.5, bankruptcy cost to be 0.15, tax rate to be 0.15, sharpe ratio to be 0.15. According to Chen, Collin-
Dufresne, and Goldstein (2009), we set the market price of risk to be 0.4. We then compute the systematic
volatility and idiosyncratic volatility based on the firm’s sharpe ratio and the market price of risk. Finally,
we simulate 10 years of monthly data based on these parameters. At each month, we first sort the stocks
based on the 5-year CDS spread level into terciles. At each tercile, we then sort the stocks based on the
CDS slope, defined as 10-year CDS spreads minus 1-year CDS spreads. Finally, we compute the time series
averages of each portfolio returns. The data is at monthly frequency and the data period ranges from
January 2002 until April 2018. Sources: Authors’ computation.
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Figure 4.4: Credit spread slope and equity risk premium, and default boundary based on
the Leland (1994) framework.

In these figures, we report the credit spread slope, equity risk premium, and default boundary, produced by
the Leland (1994) framework, against asset volatility. We first calibrate the model to match the target credit
spread of a high credit quality firm and a low credit quality firm. In particular, we set the firm’s parameters
based on Table 4.7, and we vary the asset volatility within the volatility range to back out the firm’s coupon
rate. We then compute the credit spread slope, the equity risk premium (ERP), the ERP components 52
and 7, as well as the default boundary. Sources: Authors’ computation.
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Figure 4.5: Long and short term Credit spread against asset volatility based on the Leland
(1994) framework.

In these figures, we report the 10-year (long term) and 1-year (short term) credit spread, produced by the
Leland (1994) framework, against asset volatility. We first calibrate the model to match the target credit
spread of a high credit quality firm and a low credit quality firm. In particular, we set the firm’s parameters
based on Table 4.7, and we vary the asset volatility within the volatility range to back out the firm’s coupon
rate. We then compute the 10-year and 1-year credit spread levels. Sources: Authors’ computation.
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Figure 4.6: Equity beta components based on the Leland (1994) framework.

In these figures, we report the dynamics of equity beta components produced by the Leland (1994) frame-
work, against asset volatility. We first calibrate the model to match the target credit spread of a high credit
quality firm and a low credit quality firm. In particular, we set the firm’s parameters based on Table 4.7,
and we vary the asset volatility within the volatility range to back out the firm’s coupon rate. We then
compute the equity beta and its components, namely equity delta (32) and leverage (%). Sources: Authors’
computation.
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Table 4.1: Descriptive Statistics.

This table presents the cross-sectional descriptive statistics. We first compute the unconditional averages of
the variables for each firm. We then generate the cross-sectional summary statistics of the CDS spreads, CDS
spread slope, defined as 10-year CDS spreads minus 1-year CDS spreads, equity returns, leverage, equity
volatility, log market capitalization (MC), and rating. The data period ranges from January 2001 until March
2018. The data frequency is monthly. Sources: CRSP, Compustat, Markit, and authors” computations.

obs. #firms mean std min 25% 50% 75% max
1y-CDS 74,770 733 0.020 0.070 0.000 0.003 0.006 0.016 1.203
5y-CDS 74,770 733 0.026 0.066 0.002 0.006 0.012 0.028 1.143
10y-CDS 74,770 733 0.028 0.065 0.002 0.008 0.015 0.031 1.132
Slope 74,770 733 0.008 0.013 -0.137  0.004 0.007 0.012 0.046
Equity Return 74,770 733 0.008 0.032 -0.299  0.005 0.010 0.016 0.202
Leverage 67,271 656 0.249 0.195 0.001 0.109 0.185 0.330 0.945
Equity Volatility 74,770 733 0.338 0.166 0.019 0.237 0.301 0.394 2.308
MktCap 74,770 733 8.733 1.455 2.689 7.834 8.669 9.699 13.327
Rating 66,746 632 4.165 1.046 1.000 3.471 4.000 5.000 7.000
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Table 4.2: Returns on stock portfolios sorted by CDS spread level or slope. In this table,
we reports the stock portfolio one month ahead returns sorted by the CDS spread level
(panel A and B) or slope (panel C and D). We first sort the stocks in to 10 deciles based on
the CDS slope, defined as 10-year CDS spreads minus 1-year CDS spreads. Second, for
each decile, we compute the equal weighted equity one month ahead return. Lastly, we
compute the low slope - high slope long short portfolio return. The returns are in percent-
age term. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. The
data is at monthly frequency and the data period ranges from January 2001 until March
2018. Sources: Markit, CRSP, author’s computation.

Panel A: Sorted by CDS spread level (standard error not corrected by Newey West method)
1 (low) 2 3 4 5 6 7 8 9 10 (high) low - high

Average Return  0.63*  0.90** 0.96** 0.99** 0.94"*  0.91* 0.86* 1.09** 1.08 1.04 —0.42
t=213 t=293 t=318 t=272 t=293 t=214 t=194 t=203 t=161 t=122 t=-0.70

Panel B: Sorted by CDS spread level (standard error corrected by Newey West method)

Average Return  0.63**  0.90**  0.96™* 0.99** 094> 091" 0.86* 1.09** 1.08 1.04 —0.42
t=213 t=293 t=318 t=272 t=293 t=214 t=194 t=203 t=161 t=122 t=-061

Panel C: Sorted by CDS spread slope (standard error not corrected by Newey West method)
1 (low) 2 3 4 5 6 7 8 9 10 (high) low - high
Average Return  1.29* 099~ 1.07** 1.07** 0.79* 093" 086" 0.82**  0.95 0.61 0.68*
t=188 t=211 t=290 t=329 t=225 t=252 t=210 t=199 t=176 t=095 t=1.66
Panel D: Sorted by CDS spread slope (standard error corrected by Newey West method)

Average Return ~ 1.29* 0.99*  1.07** 1.07**  0.79** 0.93** 0.86** 0.82** 0.95* 0.61 0.68
t=188 t=211 t=290 t=329 t=225 t=252 t=210 t=199 t=176 t=095 t=1.55
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Table 4.3: Predicting equity returns based on CDS spread levels and slopes.
In this table, I report the results of the following predictive panel regression:

thqﬁ =ai+v+ BVar, + Y/ By + €y

where Rf tqfryl denotes the equity one month ahead return, Var, denotes either the CDS spread level or

slope, which is defined as 10-year CDS spreads minus 1-year CDS spreads, «; denotes the firm fixed effect,
~¢ denotes the year-month fixed effect, and Y; denotes the firm specific control variables. The firm specific
controls include firm leverage ratio, log market capitalization, annualized stock volatility, computed using
the previous month daily stock returns, rating, and stock daily return. Columns (3) and (7) reports the
same regression results by substituting the year-month fixed effect into year fixed effect with additional
macroeconomic controls. The macroeconomic control variables include CBOE VIX index, 10-year treasury
yield, treasury yield slope, defined as 10-year yield minus 2-year yield, default spread, and TED spread.
The data period ranges from January 2001 until March 2018. The data frequency is monthly. The standard
errors are clustered at both firm and date level. f statistics are reported in parentheses. *, **, and ***
denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s
computation.

VRN D - S, /) S/
Rif+y1 R Ri,tqﬁ Ri,tq+yl Ri,;1+y1 R’i,tq-ﬁ Ri,tqﬁ}{ Ri,tq+y1 Ri,fﬁ
5y-CDS 0.134 0.075 -0.034 0.035 0.009
(1.032) (0.892) (-0.246) (0.269) (0.073)
Slope -0.231* -0.329* -0.432* -0.433* -0.433*
(-1.896)  (-1.845) (-1.815) (-1.755) (-1.783)
Leverage -0.010* 0.022 0.014 -0.002 0.018 0.016 0.016
(-1.715) (1.143) (0.730) (-0.335) (0.949) (0.793) (0.782)
Equity Volatility 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.704) (0.632) (0.393) (0.743) (0.371) (0.107) (0.099)
MC -0.001**  -0.025***  -0.023*** -0.003***  -0.026***  -0.025***  -0.025***
(-2.065)  (-8.546) (-8.325) (-3.813) (-7.819) (-7.645) (-8.290)
BM 0.018 0.007 0.007 0.014 0.005 0.006 0.006
(1.204) (0.321) (0.345) (1.030) (0.269) (0.285) (0.285)
Equity Return -0.000 0.005 0.000 0.000 0.005 0.001 0.001
(-0.002) (0.198) (0.000) (0.013) (0.219) (0.047) (0.045)
VIX 0.004*** 0.004***
(2.802) (2.872)
10-year Yield -7.834*** -7.763***
(-3.903) (-3.868)
Yield Slope 1.636 1.607
(0.631) (0.621)
DEF 128.734 125.952
(0.237) (0.232)
TED -6.445* -6.416*
(-1.825) (-1.817)
_cons 0.007***  0.018* 0.397***  0.216**  0.012***  0.032***  0.412***  (0.238***  (0.237***
(3.199) (1.744) (3.831) (8.042)  (10.264) (4.954) (3.803) (8.257) (8.715)
Observations 74562 59924 59908 59908 74562 59924 59908 59908 59908
R? 0.239 0.242 0.124 0.260 0.239 0.243 0.125 0.261 0.261
Adjusted R? 0.237 0.239 0.114 0.250 0.237 0.240 0.115 0.251 0.251
Firm FE v v v v v
Year-Month FE v v v v v v v
Quarter FE v v
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Table 4.4: Returns on stock portfolios sorted by CDS spread level and CDS spread

slope. In this table, we reports the stock portfolio one month ahead returns sorted by the

CDS spread level and slope. We first sort the stocks based on the 5-year CDS spread level

into terciles. At each tercile, we then sort the stocks based on the CDS slope, defined as

10-year CDS spreads minus 1-year CDS spreads. Third, for each group, we compute the

equal weighted equity one month ahead return. Lastly, within each CDS tercile, we com-

pute the low slope - high slope long short portfolio return. The returns are in percentage

term. All the t-stats are corrected under the Newey West method. *, **, and *** denote

significance at the 10%, 5%, and 1% level, respectively. The data is at monthly frequency
and the data period ranges from January 2001 until March 2018. Sources: Markit, CRSP,

author’s computation.

1 (low slope) 2 3 4 5 (high slope) low - high
1 (low CDS) 0.69** 0.90*  0.97**  1.00** 0.98" —0.29*
t=257 t=311 t=324 t=3.22 t=295 t=-234
2 0.84* 097  0.82*  1.06™* 0.80* 0.04
t=2.25 t=259 t=197 t=267 t=1.95 t=0.23
3 (high CDS) 1.65 1.36 1.01 0.88 0.62 1.03*
t=2.05 t=193 t=160 t=1.43 t=0.82 t=2.19
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Table 4.5: Predicting equity returns based on CDS slopes conditional on CDS spreads

levels.

In this table, I report the results of the following predictive panel regression:

Rff_f_?{ = a; + V¢ + BuSlope, + B.Level,Slope, + By Level; + Yl’fﬂy +€it

where Rffﬁ denotes the equity one month ahead return, Slope; denotes the CDS slope, defined as 10-

year CDS spreads minus 1-year CDS spreads, Level, x Slope; capture the CDS slope predictive effect
conditional on the CDS spread level. We specify Level; in 3 different forms, Dpighcps,avg (DiowcDS,avg)s
Dhighcps,5000p (Diowc Ds,300p), and 5y-CDS spreads, where Dp,igncps,avg (DiowcDs,avg) denotes the indica-
tor variable which equals 1 if the firm’s average CDS spreads level belonging to the top (bottom) half and
0 otherwise, and Dpighc s, 5006p (Diowc Ds,306p) denotes the indicator variable which equals 1 if the firm’s
monthly CDS spreads are larger (smaller) than 500 (30) bps and 0 otherwise. 3, and . denotes the uncon-
ditional and conditional effect of the CDS slope, respectively, o; denotes the firm fixed effect, v; denotes
the year-month fixed effect, and Y; denotes the firm specific control variables. The firm specific controls
include firm leverage ratio, log market capitalization, annualized stock volatility, computed using the pre-
vious month daily stock returns, rating, stock daily return, and 5-year CDS spreads. The data period ranges
from Jan 2002 until April 2018. The data frequency is monthly. The standard errors are clustered at both
firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%,
and 1% level, respectively. Sources: Markit, CRSP, and author’s computation.

Full Sample Ex. Crisis
1 ) 3) “ ®) (6) ) (E§) (E?) (}EO)
be:rqfu RtEJrqlty RtEJrqlty RtEJrqlty Rtb:rqfu Rfffy Rgrqlt,u Rtffy Rquy Rquty
Slope -0.398 0.310 -0.343 -0.021 0.125 -0.523** 0.053 -0.474%* -0.222 -0.140
(-1.444) (1.053) (-1.261) (-0.114) (0.545) (-3.191) (0.221) (-2.939) (-1.442) (-0.740)
Dioweps,avg X Slope 0.709*** 0.577**
(2.787) (2.299)
DhighcDS,avg X Slope -0.709*** -0.577**
(-2.787) (-2.299)
Dlour(fDS‘Spr X Slope 1.967* 2.262**
(1.688) (2.202)
DhithDS,E)O()bp X Sl()p(i -0.639* -0.525**
(-1.940) (-2.306)
CDSs,y x Slope -9.604** -7.182*
(-2.069) (-1.951)
Observations 59908 59908 59908 59908 59908 52776 52776 52776 52776 52776
R? 0.261 0.261 0.261 0.262 0.261 0.226 0.226 0.226 0.227 0.226
Adjusted R? 0.251 0.251 0.251 0.251 0.251 0.215 0.215 0.215 0.215 0.215
Firm FE v v v v v v v v v v
Year-Month FE v v v v v v v v v v
Firm Control v v v v v v v v v v
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Table 4.6: The relation between the CDS slope and the firm fundamentals conditional
on the same CDS spread level.

In this table, I report the relation between the CDS spread slope and the default boundary proxy, leverage,
as well as the asset volatility. The asset volatility is computed as the volatility of the value-weighted port-
folio return, whose individual asset return is the firm’s operating industry’s value-weighted equity return,
following Armstrong and Vashishtha (2012). We first compute the unconditional averages of CDS spread
level and slope, as well as the firm fundamentals for each firm. Second, we search for firms in the entire
cross section with 5-year credit spreads that are no more than 1 bps away from each other. Third, for each
of these groups of firms with very close credit spread level, we compute the Spearman’s rank correlation
coefficient (p) between the CDS slope and default boundary proxy as well as the asset volatility. Finally, we
conduct a t-test on p to test whether it is significant different from 0, and we report the fraction of groups
with negative correlation. Sources: Markit, CRSP, Compustat, authors” computation.

. Average p T-Stats N  nesetive

Niotal

Leverage p -0.231"** 4669 163  66.9%
Asset Volatility '+ 0.100* 1.757 159  44.0%

93



Table 4.7: Model parameters.

In this table, I report the parameters for the Merton model simulation. The high (low) credit quality firms
refer to firms that are far away (close) to default. Sources: authors’ computation.

Parameters . High Credit Quality Firms Low Credit Quality Firms Sources

Target credit spread (5y) | 50 bps 700 bps Feldhiitter and Schaefer (2018)

Asset volatility range [0min, Omax) : [0.2,0.4] [0.2,0.4] Feldhiitter and Schaefer (2018)

Sharpe ratio SR 0.2 0.1 Chen, Collin-Dufresne, and Goldstein
! (2009) and authors’ computation

Loss given default L : 0.45 0.55 Elton, Gruber, Agrawal, and Mann
I (2001) and Huang and Huang (2012)

Tax rate (1) : 0.15 0.15 Du, Elkamhi, and Ericsson (2019)

Bankruptcy cost () 1 0.15 0.15 Du, Elkamhi, and Ericsson (2019)

Firm value V/ : 100 100

Risk free rate r 1 0.02 0.02
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Table 4.8: Returns on stock portfolios sorted by CDS spread level and CDS spread
slope based on simulated data. In this table, we reports the stock portfolio one month
ahead returns sorted by the CDS spread level and slope based on the simulated data
generated by the Leland (1994) model. We first sort the stocks based on the 5-year CDS
spread level into terciles. At each tercile, we then sort the stocks based on the CDS slope,
defined as 10-year CDS spreads minus 1-year CDS spreads. Third, for each group, we
compute the equal weighted equity one month ahead return. Lastly, within each CDS
tercile, we compute the low slope - high slope long short portfolio return. The returns are
in percentage term. All the t-stats are corrected under the Newey West method. *, **, and
“* denote significance at the 10%, 5%, and 1% level, respectively. The data is at monthly

frequency with a 10-year length. Sources: Author’s computation.

1 (low slope) 2 3 4 5 (high slope) low - high

1 (low CDS) 0.93*** 1.02%*  1.13"*  1.56*** 1.65"** —0.72%*
t=292 t=3.06 t=2.68 t=345 t=23.66 t=-3.01

2 1.58** 1.79*  1.81**  1.94** 2.04 —0.46
t=3.04 t=343 t=312 t=3.13 t=3.13 t=-1.50

3 (high CDS) 8.06™* 3.81™* 3.63** 2.92*** 2.79** 5.27*
t=7.10 t=3.88 t=4.08 t=3.55 t=3.29 t=8.97
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Table 4.9: Predicting equity returns based on CDS slopes conditional on levels of CDS

spreads using simulated data.

In this table, I report the results of the following predictive panel regression based on the simulated data
generated by the Leland (1994) model:
REMY =y + BuSlopes + Dhigneps + BeDnighepsSlope, + Y, By + €i4

where RF ff’l denotes the equity one month ahead return, Slope, denotes the CDS slope, defined as 10-year

CDS spreads minus 1-year CDS spreads, Dpigncps denotes the indicator variable which equals 1 if the
CDS level belonging the the top half and 0 otherwise. 3, and /. denotes the unconditional and conditional
effect of the CDS slope, respectively, v; denotes the year-month fixed effect, and Y; denotes the firm specific
control variables. The firm specific controls include firm leverage ratio, log market capitalization, and stock
daily return. Columns (2) and (4) reports the same regression results by substituting the year-month fixed
effect into macroeconomic control, namely the systematic Weiner process in the simulation. The data is at
monthly frequency with a 10-year length. The standard errors are clustered at both firm and date level.
t statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. Sources: Author’s computation.

1) ) ) (4)
RE mE i e
Slope -0.329***  -0.333***  0.108 0.246

(-11.037) (-10.024) (0.461)  (0.888)
DlowCDS X Slope 0.437* 0.579**
(1.825)  (2.036)

Dhighcps x Slope -0.437*  -0.579**
(-1.825) (-2.036)
Observations 105836 105836 105836 105836
R? 0.128 0.016 0.128 0.016
Adjusted R? 0.127 0.016 0.127 0.016
Year-Month FE v v
Firm Control v v v v
Macro Control v v
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Table 4.10: Double sort results based on different CDS slope definitions. In this table,
we reports the stock portfolio one month ahead returns sorted by the CDS spread level
and slope. The CDS slope is defined as 10-year CDS spreads minus 2-year CDS spreads
and 5-year CDS spreads minus 1-year CDS spreads. We first sort the stocks based on the
5-year CDS spread level into terciles. At each tercile, we then sort the stocks based on
the CDS slope. Third, for each group, we compute the equal weighted equity one month
ahead return. Lastly, within each CDS tercile, we compute the low slope - high slope long
short portfolio return. The returns are in percentage term. All the t-stats are corrected
under the Newey West method. *, **, and *** denote significance at the 10%, 5%, and 1%
level, respectively. The data is at monthly frequency and the data period ranges from

January 2001 until March 2018. Sources: Markit, CRSP, author’s computation.

Panel A: Slope = CDSloy — C.DSQy
1 (low slope) 2 3 4 5 (high slope) low - high

1 (low CDS) 0.72%* 0.90**  0.95**  0.97** 1.00*** —0.28"*
t=2.62 t=313 t=328 t=3.12 t=298 t=-2.06

2 0.89** 0.90*  0.93*  0.94* 0.83** 0.05
t=212 t=261 t=235 t=229 t=2.10 t=0.34
3 (high CDS) 1.69* 1.30* 1.16* 0.91 0.46 1.24"
t=1.99 t=179 t=177 t=1.43 t=0.66 t=2.73
Panel B: Slope = CDS5, — CDS4,
1 (low slope) 2 3 4 5 (high slope) low - high
1 (low CDS) 0.77+* 0.82**  0.96"*  0.95** 1.03** —0.26™

t=2.76 t=273 t=322 t=314 t=3.15 t=-212

2 0.90* 0.84 098  0.95* 0.81* 0.09
t=2.26 t=236 t=249 t=237 t=1.90 t=0.57

3 (high CDS) 1.71* 1.18* 1.03* 0.94 0.66 1.05**
t=2.01 t=170 t=185 t=151 t=0.83 t=221
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Table 4.11: Panel regression based on different CDS slope definitions.

In this table, I report the results of the following predictive panel regression based on different CDS slope
definitions:

thqf{ = @i + vt + BuSlope; + BeDhighcpsSlope, + Y] By + €iy

where Ffﬁ denotes the equity one month ahead return, Slope, denotes the CDS slope, defined as 10-year

CDS spreyads minus 2-year CDS spreads, or 5-year CDS spreads minus 1-year CDS spreads, Dyigrncps de-
notes the indicator variable which equals 1 if the CDS level belonging the the top half and 0 otherwise.
By and B, denotes the unconditional and conditional effect of the CDS slope, respectively, o; denotes the
firm fixed effect, v; denotes the year-month fixed effect, and Y; denotes the firm specific control variables.
The firm specific controls include firm leverage ratio, log market capitalization, annualized stock volatil-
ity, computed using the previous month daily stock returns, rating, stock daily return, and 5-year CDS
spreads. Columns (2) and (5) reports the same regression results by substituting the year-month fixed effect
into quarterly fixed effect with additional macroeconomic controls. The macroeconomic control variables
include CBOE VIX index, 10-year treasury yield, treasury yield slope, defined as 10-year yield minus 2-year
yield, default spread, and TED spread. The data period ranges from Jan 2002 until April 2018. The data
frequency is monthly. The standard errors are clustered at both firm and date level. ¢ statistics are reported
in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit,
OptionMetrics, and author’s computation.

Full Sample Ex. Crisis Full Sample Ex. Crisis
1 2 (©) 4) (©) (6) @) ®)
REY R R RN R R RN R
Panel A: Slope = CDSyoy — CDSs,
Slope -0.471 -0.441  -0.727**  -0.663*** 0.167 0.303 0.019 0.086

(-1.534) (-1437) (-3.950) (-3.583)  (0.544)  (0.993)  (0.070)  (0.326)
D_lowCDS x Slope  0.638**  0.745**  0.746**  0.749**
(2.190) (2.569)  (2518)  (2.594)

D_highCDS x Slope -0.638**  -0.745** -0.746** -0.749**
(-2.190)  (-2.569) (-2.518) (-2.594)

Observations 59908 59908 52776 52776 59908 59908 52776 52776

R? 0.125 0.261 0.136 0.227 0.125 0.261 0.136 0.227

Adjusted R? 0.115 0.251 0.125 0.215 0.115 0.251 0.125 0.215

Panel B: Siope = CDS5, — CDSyy

Slope -0.563*  -0.576* -0.710*** -0.654*** 0.301 0.258 -0.174 -0.189

(-1730) (-1.754) (-3.378)  (-3.100)  (0.696)  (0.594) (-0.517) (-0.573)
D_lowCDS x Slope  0.864*** 0.834**  0.536* 0.465
(2.629) (2512)  (1.688)  (1.490)

D _highCDS x Slope -0.864***  -0.834**  -0.536* -0.465
(-2.629)  (-2.512) (-1.688)  (-1.490)
Observations 59908 59908 52776 52776 59908 59908 52776 52776
R? 0.126 0.261 0.135 0.226 0.126 0.261 0.135 0.226
Adjusted R? 0.116 0.251 0.124 0.215 0.116 0.251 0.124 0.215
Firm FE v v v v v v v v
Year-Month FE v v v v
Quarterly FE v v v v
Firm Control v v v v v v N v
Macro Control v v v v
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Table 4.12: Predicting equity returns based on CDS slopes conditional on levels of CDS

spreads controlled for informed trading.
In this table, I report the results of the following predictive panel regression:

Rff_,t_?{ = a; + V¢ + BuSlope, + B.Level,Slope, + By Level; + }/;/fﬁy +€it

where Rfff“{ denotes the equity one month ahead return, Slope; denotes the CDS slope, defined as 10-year

CDS spreads minus 1-year CDS spreads, Level; x Slope; capture the CDS slope predictive effect condi-
tional on the CDS spread level. We specify Level; denotes Dyighcps,avg (Diowc DS,avg), OF 5y-CDS spreads,
where Dyighcps,avg (Diowc DS,avg) denotes the indicator variable which equals 1 if the firm’s average CDS
spreads level belonging to the top (bottom) half and 0 otherwise. /3, and . denotes the unconditional and
conditional effect of the CDS slope, respectively, o; denotes the firm fixed effect, v; denotes the year-month
fixed effect, and Y; denotes the firm specific control variables. The firm specific controls include firm lever-
age ratio, log market capitalization, annualized stock volatility, computed using the previous month daily
stock returns, rating, stock daily return, and 5-year CDS spreads. The data period ranges from Jan 2002
until April 2018. The data frequency is monthly. The standard errors are clustered at both firm and date
level. t statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. Sources: Markit, CRSP, and author’s computation.

(©)) ) 3) @) () (6) @) 8) ) (10) (11) (12) (13) (14) (15)
RAY RPN ORENY O REYOREY RAY RPN RERY RENY O RRY O REY REY O RENY R R
Slope -0.580* -0.389  -0.835**  -0.242 -1.324 0.101 0.322 -0.163 0.512 -0.768 -0.064 0.135 -0.311 0.375 -0.709
(-1.866) (-1.397) (-2.394) (-0.698) (-1.253)  (0.319) (1.096) (-0.466) (1.330)  (-0.676) (-0.194) (0.588) (-0.887)  (1.219)  (-0.674)
Dioweps % Slope  0.681***  0.711***  0.672***  0.754***  0.556**
(2.696)  (2.784)  (2.641)  (2.941) (2.220)
Dhighcps x Slope -0.681%**  -0.711***  -0.672*** -0.754*** -0.556**
(-2.696)  (-2.784)  (-2.641)  (-2.941) (-2.220)
CDSs5, x Slope -9.047*  -9.629** -8.054* -11.033** -7.345*
(-1.851)  (-2.071) (-1.669) (-2.378)  (-1.662)
Depth x Slope 0.028 0.028 0.025
(0.854) (0.854) (0.729)
Idiosyn x Slope -0.015 -0.015 -0.012
(-0.206) (-0.206) (-0.167)
10 x Slope 0.619% 0.619% 0.508
(1.737) (1.737) (1.372)
# Analyst x Slope -0.015 -0.015 -0.016
(-1.084) (-1.084) (-1.264)
MFktCap x Slope 0.119 0.119 0.092
(1.081) (1.081) (0.867)
Observations 59907 59908 59904 59761 59908 59907 59908 59904 59761 59908 59907 59908 59904 59761 59908
R? 0.261 0.261 0.262 0.262 0.261 0.261 0.261 0.262 0.262 0.261 0.261 0.261 0.261 0.262 0.261
Adjusted R? 0.251 0.251 0.251 0.252 0.251 0.251 0.251 0.251 0.252 0.251 0.251 0.251 0.251 0.252 0.251
Firm FE v v v v v v v v v v v v v v v
Year-Month FE v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v s 's v v
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Table 4.13: Predicting equity returns based on CDS slopes conditional on CDS spreads

levels (control for industry effect).
In this table, I report the results of the following predictive panel regression:

Rff_f_yl = ; + V¢ + dina + BuSlopey + B.LevelySlope; + By Level, + Yi/,tﬁY + €t

where Rffﬁ denotes the equity one month ahead return, Slope; denotes the CDS slope, defined as 10-

year CDS spreads minus 1-year CDS spreads, Level, x Slope; capture the CDS slope predictive effect
conditional on the CDS spread level. We specify Level; in 3 different forms, Dhighcps,avg (DiowcDS,avg)s
Dhighcps,5000p (DiowcDs,306p), and 5y-CDS spreads, where Dyigncps,avg (Diowc DS,avg) denotes the indica-
tor variable which equals 1 if the firm’s average CDS spreads level belonging to the top (bottom) half and
0 otherwise, and Dpighc s, 5006p (DiowcDs,306p) denotes the indicator variable which equals 1 if the firm’s
monthly CDS spreads are larger (smaller) than 500 (30) bps and 0 otherwise. 3, and . denotes the uncon-
ditional and conditional effect of the CDS slope, respectively, o; denotes the firm fixed effect, v; denotes
the year-month fixed effect, d;,4 denotes the industry fixed effect, where the industry definitions are based
on Fama-French definition, and Y; denotes the firm specific control variables. The firm specific controls
include firm leverage ratio, log market capitalization, annualized stock volatility, computed using the pre-
vious month daily stock returns, rating, stock daily return, and 5-year CDS spreads. The data period ranges
from Jan 2002 until April 2018. The data frequency is monthly. The standard errors are clustered at both
firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%,
and 1% level, respectively. Sources: Markit, CRSP, and author’s computation.

Full Sample Ex. Crisis
1) 2 3 4 (®) (6) (7) (8 ©) (10)
RE RN RV mgp RV RE R Ry R RED
Slope -0.385 0.324 -0.329 0.007 0.163 -0.502*** 0.058 -0.452**  -0.191 -0.112
(-1.383) (1.094)  (-1.204) (0.041) (0.713) (-3.073) (0.235) (-2.832)  (-1.242)  (-0.595)
DiowcDS,avg % Slope 0.709*** 0.560**
(2.717) (2.178)
Dhi_thDS,av_q X Slope -0.709*** -0.560**
(-2.717) (-2.178)
DlowCDS,SObp X Slope 1.769 2.108**
(1.547) (2.100)
DhighODS,SOObp X Slope -0660** —0538M
(-2.013) (-2.359)
CDSs,y x Slope -10.043** -7.271%
(-2.189) (-1.997)
Observations 59771 59771 59771 59771 59771 52640 52640 52640 52640 52640
R? 0.262 0.262 0.262 0.263 0.262 0.228 0.228 0.228 0.228 0.228
Adjusted R? 0.252 0.252 0.251 0.252 0.252 0.215 0.215 0.215 0.215 0.215
Firm FE v v v v v v v v v v
Year-Month FE v v v v v v v v v v
Industry FE v v v v v v v v v v
Firm Control v v v v v v v v v v
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Table 4.14: Returns on stock portfolios sorted by bond yield level and bond yield slope.
In this table, we reports the stock portfolio one month ahead returns sorted by the bond
yield level and slope. We first sort the stocks based on the 5-year bond yield level into
terciles. At each tercile, we then sort the stocks based on the bond yield slope, defined
as 10-year bond yields minus 2-year bond yields. Third, for each group, we compute the
equal weighted equity one month ahead return. Lastly, within each level tercile, we com-
pute the low slope - high slope long short portfolio return. The returns are in percentage
term. All the t-stats are corrected under the Newey West method. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively. The data is at monthly frequency
and the data period ranges from January 2001 until March 2018. Sources: Markit, WRDS,

author’s computation.

1 (low slope) 2 3 (high slope) low - high

1 (low CDS) 0.54 0.74* 1.06** —0.52
t=1.10 t=2.07 t=237 t=-1.14

2 1.23** 1.33* 0.99* 0.24
t=3.02 t=227 t=1.92 t=0.51

3 (high CDS) 2.16™ 0.34 0.64 1.53*
t=2.14 t=0.35 t=0.62 t=2.02
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Table 4.15: Predicting equity returns using bond yield slopes conditional on levels of
bond yields.

In this table, I report the results of the following predictive panel regression:

REPY = o + v + BuSlopes + BeDhignyiciaSloper + Y/, By + €y

where Rffﬁ denotes the equity one month ahead return, Slope; denotes the bond yield slope, defined as

10-year bond yields minus 2-year bond yields, Dyignyicia denotes the indicator variable which equals 1
if the bond yield level belonging the the top half and 0 otherwise. 8, and (. denotes the unconditional
and conditional effect of the CDS slope, respectively, o; denotes the firm fixed effect, 7; denotes the year-
month fixed effect, and Y; denotes the firm specific control variables. The firm specific controls include firm
leverage ratio, log market capitalization, annualized stock volatility, computed using the previous month
daily stock returns, rating, stock daily return, and 5-year bond yields. Columns (2) and (5) reports the same
regression results by substituting the year-month fixed effect into quarterly fixed effect with additional
macroeconomic controls. The macroeconomic control variables include CBOE VIX index, 10-year treasury
yield, treasury yield slope, defined as 10-year yield minus 2-year yield, default spread, and TED spread.
The data period ranges from Jan 2002 until April 2018. The data frequency is monthly. The standard errors
are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, WRDS, and author’s computation.

Full Sample Ex. Crisis Full Sample Ex. Crisis
1) (2) (3) ) ©) (6) @) ®)
R RV RAY REY OREY R REY RAY
Slope -0.828**  -0.898***  -1.050*** -0.992***  0.167 -0.306  -0.229  -0.161

(2.278)  (2.794)  (-2.838)  (-2731)  (0.479) (-0.999) (-0.720) (-0.593)
Diowyicid X Slope  0.996**  0.592 0.820  0.831*
(.121)  (1.399)  (1.740)  (1.877)

Dhighyiela X Slope -0.996**  -0.592  -0.820* -0.831*
(-2.144) (-1.399) (-1.740) (-1.877)
Observations 3976 3976 3687 3687 3976 3976 3687 3687
R? 0.162 0.355 0.174 0.301 0.162 0.355 0.174 0.301
Adjusted R? 0.119 0.300 0.130 0.241 0.119 0.300 0.130 0.241
Firm FE v v v v v v v v
Year-Month FE v v v v
Quarterly FE v v v v
Firm Control v v v Ve v v v v
Macro Control v v v v
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Appendix

A Studies on credit market and its relation with equity mar-

ket

Table A.1: Literature on the relation between credit and equity markets

Type Focus Economic mechanism
> S
© & 8
S & &
¢ F F ¢
g & & &
5 > s &
& 5 & 5 &

5 S N A A
Acharya and Johnson (2007) v v v
Hilscher, Pollet, and Wilson (2015) v v v v
Ni and Pan (2020) v v v
Lee, Naranjo, and Velioglu (2018) v v v
Norden and Weber (2009) v v
Han, Subrahmanyam, and Zhou (2017) v v v
The present study v v v v

Notes. This table summarizes the main studies on the relation between equity and credit markets. We
describe the type of study (empirical or theoretical), the focus of the paper (credit spread level or term
structure), and the main economic mechanism proposed by each study.
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B Merton (1974) model

We apply the Merton (1974) framework to understand the predictability between the

credit spread slope and equity returns. The firm value is assumed to follow

v = pr'dt + ocdW};
Vi (B.1)

= rdt + odWE,

under the physical and risk neutral measure, respectively. u” = r + Ao, where ) is the
market price of risk. Suppose that the firm issues a zero coupon debt with face value F
and maturity 7. The firm pays the debt face value F' at maturity and defaults when the
asset value V; at time 7' falls below the face value of the debt F'. Based on this dynamic,
the equity pays max(Ep—F, 0) at maturity 7'. This is equivalent to an European call option

written on the firm value. We can thus express the equity value as

E, = V,N(dy) — Fe ™" N(d»), (B.2)
where v L
o)+ (4 do))T
ovVT (B.3)
dy = dy — oV/T.

According to Ito’s lemma, we can express the equity risk premium as

OE, Vi Vi
ERP, = ——0\A= N(d))—=0o\ B.4
R t a%Eto- (I)Eto-’ ( )

Next, we derive the credit spread expression. The price of the bond with 7 maturity can

be expressed as

Btﬁ = e_rTEQ [HVT>F + ]IVT<F<1 - L)} (B 5)
e eirT(l - Lﬂ-t?ﬂ')’

where L is the loss given default which is assumed to be constant, and WST denotes the

risk neutral default probability. Therefore, the credit spread of this bond can be expressed
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as

1
s, = ——log(l — L2). (B.6)

T

Note that ’/th?,r = Prob (log (%) < O). Based on the firm value dynamic,

log <%> ~ N© <log (%) + (7’ — %2> T, 027'> : (B.7)

can be expressed as

ﬁiAf(I%x%)+<r_§>7). (B.8)

Q

t,T

Therefore, 7

oNT

C Leland (1994) model solution

Equity and debt are contingent claims written on the firm value V;,. We assume that the
assets are traded and replicable following Ericsson and Reneby (2005). Since V; follows a

geometric brownian motion process, the equity claim satisfy the following PDE:
EvrV + %EVVUQVQ —rE+V —-(1-7)C=0, (C.1)

where f (V') represents the equity or debt value. This PDE has a generic solution:
F(Vi) = ao + V¢ + axVF, (C2)

where ¢ and ¢ are the roots of the characteristic polynomial of the PDE: ;o2z(z — 1) +ra —

r = 0. Therefore, without loss of generosity, let ( =1 > 0and { = —2; < 0.
The debt value E(V}) is subject to boundary conditions Vlim E(V;) =V, and E(V;) = 0.
+t—>00
Based on these two boundary conditions, we can solve for ay, a;, and a; to be —w, 1,
a-nc
and —— " Therefore,
Vd
1- 1- Vi
By =v, - L=0¢ (( e v;) (—) | (C3)
r r Va

105



To find the default boundary expression, we use the smooth pasting condition:

8g(v‘f) T 0, (C.4)
which yields
v, — (1 —TT)(J5 f . 5)
D Proof of Lemma 4.4.1
Proof. Define ) 2
% — exp (—m? . th) . (D.1)

According to Girsanov theorem, Wt = W, + mt is a Brownian motion under Q. Applying

the change of measure,

F(T) =P(r < T) = Ep[L, 7] = Eg[L cpe™ "z +mW]
m2T > - (D.2)
=e 2 e™QWr € [u,u+dul, 7 <T).

—00

The reflection principle suggests for u > b,

Q(Wy € [u,u+du],7 < T) = Q(Wr € [2b—u—du, 2b—u],7 < T) = Q(Wr € [2b—u—du, 2b—u)).
(D.3)
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Therefore,

F(T) = e 2" (/b ™ Q(Wr € [u,u + du)) + /boo " Q(Wy € [2b — u — du, 2b — u])>

_m?T (/b L 2 +/"O L _(ufibﬁd )
—e 2 e e 2T du e e 2 U
oo V2T b \V2rT
b %)
]_ (u—nLT)2 1 (u—rnt—2b)2
= e~ T du-+ e2mb/ e~ 2 du
—oo V27T b V2nT
b—mT
o VT 1 2mb > 1 -
_/—oo \/2%6 sdy e /bm\/ﬂ%% 271'6 Ty
b b
= 2™ N (—+mﬁ) + N (——m T)
T VT
(D.4)
L]

To compute the risk neutral default probability ﬂfmu, we first adopt Ito’s Lemma to

the firm value V; and have
1
dnV;, = (r — 5aQ)dt + odWE. (D.5)

Define the default timet € {t > 0: V; = V,}.

o o

(D.6)

12 Q Q 7‘—%2 and
Vi=Vy <= InV, =V, <— 7“—50 t+oWy7 =V, <— W7+ t= )

Based on Lemma 4.4.1, setting m = ,_302 and b = Y4 we have Equation (4.10).

g

E Numerical analysis procedure

We first set the initial parameters for high and low credit quality firms based on Table 4.7.
For both high and low credit quality firms, the initial asset value is set to be 100. We also
set risk free rate to be 0.02, tax rate to be 0.15, and bankcrupcy cost to be 0.15. For the high
(low) credit quality firm, we set the 5-year bond yield to be 0.025 (0.09), sharpe ratio 0.2
(0.1), and loss given default 0.45 (0.55).
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Next, based on these parameters, we vary the asset volatility within the range of
[0.2,0.4], and back out the coupon value of the firm based on the Leland (1994) model.
In particular, we solve for the coupon by matching the 5-year credit spread of the bond.

Once we obtain the coupon value, we can then compute the equity value, equity beta,

and credit spread slope, etc.

F Simulation procedure

We set the initial asset value, risk free rate, loss given default, tax rate, bankcrupcy cost,
and sharpe ratio to be 100, 0.02, 0.5, 0.15, 0.15, and 0.15, respectively.

We construct a sample of firms with asset volatility taken from 30 evenly spaced num-
bers over [0.2,0.4], and default boundary taken from 30 evenly spaced numbers over
[10, 70]. In particular, we construct firms with all the combinations between the 30 volatil-
ity values and 30 default boundary values. Hence, there are 900 firms in total.

Based on the total asset volatility, market sharpe ratio \;;, and the firm i’s sharpe
ratio )\;, we compute the systematic and idiosyncratic volatility as o, = 2= and

A

Tidio = \/ Tpota1 — O 2ym- Based on the default boundary value, we obtain the coupon value

r(€=1)
(1-7)¢"

Next, we simulate 10 years of daily data. We set 360 days for a year, and 30 days

as Vy

each month, for simplicity. For each date, we update the newest firm value according to
Equation (4.3). We then compute the equity value, and credit spreads based on the new
tirm value. The formula for the equity value is shown as Equation (4.5), and the formula
for the credit spreads is shown as Equation (4.8).

Once we have the simulated 10-year daily panel data, we pick the month end value
to form a sample at the monthly frequency. We compute the one month ahead equity

returns based on the equity values and winsorize them at 2.5%, and 97.5% levels.

G CDS spread and bond yield
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Chapter 5

Are Option and CDS Markets
Integrated?

5.1 Introduction

Structural models of credit risk (Merton, 1974) suggest that equity, debt, and their deriva-
tives are claims on their underlying firm value. In the absence of frictions, these claims
should be closely related to each other, because they all depend on the same source of risk,
i.e. the asset value of the firm. Based on the tight link between equity options and credit
claims implied from structural models, many studies use options data to infer the credit
spread of the corresponding firm.! However, in practice, this link can be distorted due to
market imperfections even if the structural models are correct. It is unclear whether the
option and credit market integration assumption is empirically valid.

In contemporaneous work, Collin-Dufresne, Junge, and Trolle (2020) study the inte-
gration between option and credit markets using aggregate claims on the SP500 index
and a basket of credit derivatives. For these claims, the composition of the underlying
asset baskets is not identical, in contrast to single name equity options and credit claims,

which share the same underlying firm value.

Hull, Nelken, and White (2005), Carr and Wu (2009), Carr and Wu (2011), Culp, Nozawa, and Veronesi
(2018); among others.
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I test the integration between option and credit markets at the firm level by comparing
the credit spreads implied from a firm’s options, henceforth IS, and the credit spreads
observed from the credit default swap market, henceforth CDS spreads. I adopt two
methods in constructing the IS based on Carr and Wu (2011) and Culp, Nozawa, and
Veronesi (2018). I provide validation on these methods by conducting the Merton model
regression following Collin-Dufresne, Goldstein, and Martin (2001) and Ericsson, Jacobs,
and Oviedo (2009). I show that the IS from both methods are driven by theoretical credit
risk determinants, suggesting that it is suitable to use the IS as the credit spread proxy to
study the relation between option and CDS markets.

To test the integration between option and CDS markets, I focus on the co-movement
between the IS and CDS spreads. The co-movement of two series can be tested through
two different angles. First, the co-movement indicates an equilibrium relation between
the IS and CDS spreads. Second, it suggests that the two series move in the same direc-
tion, henceforth alignment. Therefore, I adopt two separate tests, focusing on these two
angles, to examine the integration between option and CDS markets.

To test whether the IS and CDS spreads converge to an equilibrium relation in the
long run, I adopt the co-integration test following Engle and Granger (1987). I find that
most firms have co-integrated IS and CDS spreads time series for both IS metrics. Given
the long-run equilibrium relation, the deviation between the two series at shorter hori-
zons, such as the daily or weekly frequency, should predict future IS and (or) CDS spread
changes. In the spirit of the error correction model, I find that the cross-market deviation,
defined as the IS minus CDS spreads, significantly predicts both the future IS and CDS
spread movements in the direction of convergence. The evidence suggests that the two
markets integrate well in the long run, but that they exhibit short-lived price discrepan-
cies.

In the market alignment perspective, I perform the non-parametric integration test
from Kapadia and Pu (2012), henceforth KP. I find significant misalignment between the
IS and CDS spreads at a daily or weekly frequency, and that the misalignment is associ-
ated with economically large IS and CDS spread movements. The frequency of misalign-

ment decreases with the investment horizon, and these patterns hold both for Investment
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Grade and High Yield firms. This again suggests the existence of short-lived price dis-
crepancies.

Given the existence of short-lived price discrepancies, I study their determinants by
examining frictions from two major sources motivated by the literature. First, I explore
asset-specific frictions, such as trading costs (e.g. Gromb and Vayanos, 2010; Kapadia and
Pu, 2012; Cao and Han, 2013; Han, Subrahmanyam, and Zhou, 2017). Second, I study
a friction associated with market participants, such as the health of financial intermedi-
aries (e.g. Garleanu and Pedersen, 2011; Bongaerts, De Jong, and Driessen, 2011; He and
Krishnamurthy, 2013; Du, Tepper, and Verdelhan, 2018).

For the asset-specific frictions, I test the relation between arbitrage costs and the price
discrepancy from the two co-movement perspectives discussed above. First, if the arbi-
trage costs are associated with price discrepancies, the two series will be more aligned
when the arbitrage costs are lower. Second, since the cointegration relation implies that
the price discrepancy predicts the future IS and CDS changes, the predictability of the IS
and CDS spread changes from the cross-market deviation will be stronger for firms with
high arbitrage costs.

From the perspective of market misalignment, I project the Kendall correlation metric
from KP onto a number of arbitrage cost variables. I find that the IS and CDS spreads are
more misaligned when the assets have higher arbitrage costs, such as high illiquidity, high
idiosyncratic risk, low institutional ownership, and low analyst coverage. The economic
impacts of CDS illiquidity and firm’s transparency proxies are largest among all arbitrage
costs. The results are not driven by the misalignment between equity and CDS markets
as documented in the literature (e.g. Kapadia and Pu, 2012; Augustin, Jiao, Sarkissian,
and Schill, 2019).

In the perspective of the IS and CDS spread changes predictability through the cross-
market deviation, I find that the cross-market deviation has stronger predictive powers
for the IS or CDS spread changes when the assets have higher illiquidity. This indicates
that the price discrepancy is associated with arbitrage costs. Furthermore, the predictabil-

ity of IS (CDS spread) changes is weaker (stronger) for firms with low institutional own-
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ership and analyst coverage, suggesting that the options contain more timely information
than the CDSs for firms that are less transparent.

For the frictions tied to market participants, the health of financial intermediaries is
shown to create a divergence for risk premiums and prices of two identical assets. I con-
duct panel regressions of both the contemporaneous cross-market spread basis, defined
as IS minus CDS spreads, and the future cross-market return basis, defined as the IS re-
turn minus the CDS return,” onto the financial intermediary health proxies, such as the
intermediary capital ratio from He, Kelly, and Manela (2017), broker dealer leverage ra-
tio from Adrian, Etula, and Muir (2014), TED spread, LIBOR-OIS spread, and default
spread. The financial intermediary health has both economically and statistically signifi-
cant impact on the contemporaneous spread basis and it significantly positively predicts
the future return basis.

To rationalize the relation between the financial intermediary health and the price
discrepancy, I provide a stylized intermediary asset pricing framework building on He,
Khorrami, and Song (2019). Different from the previous literature, this framework incor-
porates both asset transaction costs and an intermediary margin type constraint with two
zero net supply assets. I analyze the impact of the financial intermediary health on the
price discrepancy through both the asset-specific friction and the financial intermediary
friction.

Under this framework, I show that an increase in the intermediary’s wealth will de-
crease the asset risk premium through relaxing the intermediary constraint, but will in-
crease the asset risk premium through an increase in compensation for the illiquidity cost.
The net effect of these two channels depends on the relative magnitudes of the risk aver-
sion of intermediary and its counterparty. I show that the intermediary constraint channel
(illiquidity channel) dominates when the intermediary is much more (less) risk tolerant
than its counterparty.

As the liquidity provider, the intermediary is likely to be more risk tolerant than its

counterparty. Under that assumption, the intermediary constraint channel dominates.

2] adopt 3 return metrics in the literature, the simple spread changes, the log spread changes, and the
metric from Augustin, Saleh, and Xu (2020).
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When the intermediary has a long (short) position in the asset, the asset risk premium de-
creases (increases) with the financial intermediary health. Therefore, if the intermediary
is a net buyer (seller) of the CDS (option), the financial intermediary health positively pre-
dicts the future return basis. In contrast, if the intermediary is a net buyer or seller in both
markets, the sign of the return basis predictability by the financial intermediary health is
determined by the relative magnitudes of the transaction costs. Since the CDS is traded
in the over-the-counter market and the option is traded on an organized exchange, the
CDS transaction costs are expected to be higher. In this case, the positive return basis pre-
dictability from the health of the financial intermediary can arise when the intermediary
is a buyer in both markets.

Some studies provide evidence suggesting that intermediaries are net buyers of the
CDS (Carey, Stulz, Allen, and Gale, 2013; Siriwardane, 2019; Cetina, Paddrik, and Ra-
jan, 2018; Augustin and Izhakian, 2020; Czech, 2020) while others argue that they are
net sellers (e.g. Junge and Trolle, 2015). In the option literature, some papers suggest
that intermediaries are net buyers of short-term equity options, but net sellers of long
term equity put options (Garleanu, Pedersen, and Poteshman, 2009; Cao and Han, 2013;
Christoffersen, Goyenko, Jacobs, and Karoui, 2018). According to the theoretical frame-
work, the empirical evidence that the financial intermediary health positively predicts
the future IS and CDS return basis is consistent with the view that intermediaries are net
buyers of CDSs and sellers of long term equity put options.

In sum, my analysis suggests that market integration may be impeded by market im-
perfections, such as limits to arbitrage and the financial intermediary constraint. While
structural models of credit risk can jointly price all corporate contingent claims on the
same underlying perfectly without frictions, empirically, the models might perform poorly
because of market imperfections. My work, therefore, sheds light on the conditions under
which it is appropriate to extract and use credit spreads implied from option prices under
the structural framework.

This paper is organized as follows. Section 5.2 describes the methodologies in con-
structing the option implied credit spreads. Section 5.3 describes the data and conducts

preliminary analysis. Section 5.4 examines the integration between the option and CDS
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markets at both short and long horizons. In Section 5.5, I study the determinants of the
price discrepancy between option implied credit spreads and CDS spreads motivated by
the literature. Section 5.6 provides a stylized intermediary based asset pricing framework

to rationalize the empirical findings. Section 5.7 concludes.

5.2 Methodology

To study the relation between the option and CDS markets, I obtain the credit spreads im-
plied from the options, and the credit spreads observed from the CDS market for the same
firm. I construct option implied credit spreads based on the recent literature.®> The liter-
ature has proposed many ways to extract credit risk information from the option market
(Hull, Nelken, and White, 2005; Carr and Wu, 2011; Culp, Nozawa, and Veronesi, 2018;
among others). In particularly, I adopt the methodology based on Carr and Wu (2011)
and Culp, Nozawa, and Veronesi (2018). In this section, I first outline two methodologies
in computing the option implied credit spread. Next, I provide additional discussion on

the other methodologies related to constructing the IS at the end of the section.

5.2.1 Carr and Wu (2011) option implied credit spread

Carr and Wu (2011), henceforth CW, provide a simple link between deep out of money
put options and CDS spreads. This approach depends on the dynamic of a firm’s equity
value around the default event based on the classic Merton (1974) framework. In this
framework, the firm value is the sum of its equity value and debt value. Merton (1974)
assumes that the firm value follows a continuous dynamic and the firm defaults as soon
as its value falls below the value of its debt. Since the firm value is continuous, its equity
value reaches zero right before the default and stays at zero afterwards. However, the
tirm value might not follow a continuous dynamic especially around the default event.

For example, a firm might default before its value falling below its debt value due to

3The literature tends to use return metrics to study the relation between two markets. However, there are
a lot of institutional details in computing CDS returns which are absent from the option return computation.
Augustin, Saleh, and Xu (2020) show that such institutional details can create large distortion of the CDS
returns.
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strategic default.* Accordingly, the stock value might be positive before the default and
jump to zero afterwards. Merton (1976) also build a reduced form model capturing this
phenomenon.

Building on this insight, CW assume that the stock price stays above a strictly positive
barrier B before default but drops below a lower barrier A after default, thus generating
a default corridor [A, B] that the stock price can never enter. Based on this assumption,
a put option with strike price X' € [A, B] will only be exercised at default with payoff
K — A. The stock price is commonly assumed to be zero after default (Merton, 1976). CW
also sets A = 0 in their analysis. Therefore, the put option with + position will earn 1
dollar at default. This closely relates to the payoff structure of a CDS contract. Based on
this nice feature of the put option struck within the default corridor, one can estimate the
default intensity of the firm in a much simpler way.

Suppose the price of the deep out of the money (DOTM) put option struck within the
default corridor is P,(K,T). Assuming that the risk free rate and hazard rate is constant,

CW show that the DOTM put price has the following expression:

(5.1)

PAK.T) = K (/\Ql _ e—(r—i-)\Q)(T—t))
t ) = )

r+ M@

where A\ is the option implied risk neutral default intensity.> Equation (5.1) offers a
direct one to one mapping between the put option price and the default intensity. Using
the constant option implied default intensity, I can compute the 7" — ¢t maturity option
implied credit spread, henceforth 1.5, following Hull, Nelken, and White (2005) (HNW)
and Chen, Collin-Dufresne, and Goldstein (2009) (CCG):

IS(t,T) = — log(1 — e T, (5.2)

T—t

where L is the loss given default, which is assumed to be constant.®

4See Carr and Wu (2011) for detailed discussion.

>The proof of the formula can be found in Carr and Wu (2011), which is also presented in the appendix
J in this paper.

®As stated in HNW), this formula is based on the assumption that the creditor get a fraction of the price
of the equivalent remaining maturity Treasury at default (“Reovery of Treasury”).
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5.2.2 Culp, Nozawa, and Veronesi (2018) pseudo credit spread

Building on the classic Merton (1974) framework, Culp, Nozawa, and Veronesi (2018),
henceforth CNV, construct a pseudo firm whose asset is a firm’s equity with value S.
This firm issues a zero-coupon debt with face value K and maturity 7. At maturity, the
payoff to the pseudo bond holders is min(K, St) = K —max(K — Sr,0). This is exactly the
payoff of the risk-free debt K minus the payoff on the equity put option. The no-arbitrage

value of the pseudo bond att < T'is
B(K,T) = Ke " — PF™"W(K,T), (5.3)

where 7 is the risk free rate, and P/ K,T) is the value of the equity put option at ¢
with strike price K and maturity 7'.

To construct the pseudo bond to be comparable to the real bond, CNV match the firm’s
default probability with the pseudo firm’s default probability. The firm’s default proba-
bility is implied from the Moody’s credit rating. The pseudo firm’s default probability is
implied from the historical distribution of the stock returns.”

In a slight departure from CNV, I estimate the default intensity from the pseudo bond
based on the following risk neutral pricing formula following HNW and CCG:

BU(K,T)=e¢"T(P?RK + (1 =P)K) = e ""K(1 — (1 — e 7L, (5.4)

where P% denotes the risk neutral default probability, R denotes the recovery, L denotes
the constant loss given default, and A9 denotes the risk neutral default intensity. With
the risk neutral default intensity, I can obtain the option implied credit spread with any

maturity using Equation (5.2).8

"Details can be found in appendix K.

8The results in this paper is not driven by the “Recovery of Treasury” assumption nor the constant
default intensity assumption. The results are robust when I directly compute the yield from the 2-year
pseudo bond as CNV without recovery or intensity assumption and compare it with the 2-year CDS spread
without extrapolating the term structure.
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5.2.3 Additional discussion

Besides the two methodologies outlined above, a number of other studies develop dif-
ferent methodologies in extracting credit spreads from option prices. For example, some
papers develop structural or reduced form credit risk models with multiple factors in
estimating the firm’s underlying parameters governing the default risk using both the
options and CDSs (Du, Elkamhi, and Ericsson, 2019; Carr and Wu, 2009; Kuehn, Schrein-
dorfer, and Schulz, 2017). While such models provide relatively accurate estimates of
the credit spread dynamics, the estimation usually involves using information from eq-
uities or CDSs besides the options.” Furthermore, the computation of such methods are
rather complicated. A simpler approach by Kelly, Manzo, and Palhares (2019) construct
the credit implied asset volatility, which can be used to compare with the option implied
asset volatility based on a compound option structural model developed in Geske (1979),
Toft and Prucyk (1997) and Hull, Nelken, and White (2005). However, these methods also
use information from the equity market as model input.

The CW and CNV methods have two important advantages relative to other ap-
proaches to extract synthetic credit spreads from option prices. First, it does not rely on
the compound option feature to infer the default intensity based on the structural model.
This largely simplifies the inference process. Second, the CW IS are completely derived
from the DOTM put options struck within the default corridor. While the CNV method
uses the historical distribution of stock returns to select the appropriate options in con-
structing the pseudo firm, the IS are computed purely from the selected option prices.
Since this paper tries to examine the integration between the option and CDS markets,
using information from other asset markets might bias the inference.

However, one critical caveat of the CW methodology is that we cannot observe the
default corridor. If the option I pick is struck outside the default corridor, the IS com-
puted using this method will include a non-default component. On the contrary, the CNV

method does not suffer from this problem. One caveat of the CNV method is that there

9There is extensive literature discussing the segmentation between equity and credit markets. This paper
studies the segmentation between option and credit markets beyond the equity credit market discrepancy.
Hence I resort to other methodologies to compute the IS.

118



is no theory that guarantees the equivalence between the CNV IS and the CDS spreads.
However, this issue is less severe when the firm has low leverage, since the equity has
very little optionality and can be viewed as the firm’s asset. In sum, these two methods
complement each other.

In addition, the observed CDS spread is likely to include a premium for illiquidity.
This might generate additional noise, which leads to inaccurate comparison between IS
and CDS spreads. However, I emphasize that the goal of this paper is not to use options
to perfectly match the CDS spread levels. Similar to Blanco, Brennan, and Marsh (2005)
and Kapadia and Pu (2012) in studying the co-movement between other assets, I provide
integration evidence using the IS and CDS spreads through the co-movement angle. As
long as the credit risk is the main driver of the CDS spreads', the co-movement analysis
is appropriate. Similarly, The IS metric is a non-linear transform between existing option
prices and default information. As long as the default risk is the main driver of these
metrics, it is also appropriate to study the co-movement between option and CDS markets
using such metrics. Furthermore, I focus on the time series dynamics of the cross-market
return deviation in studying the time series determinants of the integration. The levels
of the IS and CDS spreads are not likely to matter much and additional noise will be

controlled for in the empirical analysis."

5.3 Preliminary analysis

In this section, I first describe the data used in this paper and provide summary statis-
tics of different credit spread metrics. Second, to verify that the observed and synthetic
credit spreads are similar and indeed related to variables suggested by structural credit
risk models, I implement the Merton model regressions for both series, following Collin-
Dufresne, Goldstein, and Martin (2001), henceforth CGM, and Ericsson, Jacobs, and Oviedo
(2009), henceforth EJO.

19Bongaerts, De Jong, and Driessen (2011) show that the illiquidity component embedded in the CDS
spread is economically insignificant.

For example, the CW and CNV methodology assumes constant recovery. Following Blanco, Brennan,
and Marsh (2005), I introduce the S&P500 index return as a proxy of the debt recovery in the following
regressions.
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5.3.1 Data

I obtain daily CDS data from MARKIT. The sample period ranges from January 2002 to
April 2018. The MARKIT database contains CDS quotes across different countries, tiers,
denominations, sectors, and restructuring clauses etc.. I restrict the sample to contain only
the senior unsecured USD denominated CDS contracts of the non-government sector with
the MR restructuring clause.!? Since 5-year CDSs are the most liquid contracts, I focus on
this tenor for my analysis."

The option data is obtained from OptionMetrics. First, I prepare for the option data to
construct the IS based on CW. The CW method requires options struck within the default
corridor. I eliminate the following put option series based on CW: (1) options with non-
positive open interests; (2) options with strike prices greater than $5; (3) options with
negative bid prices; (4) options with deltas smaller than -0.15. After applying these filters,
if there are more than one option for a particular firm date combination, I choose only 1
contract by applying the filters in the following order: highest open interest, smallest
strike, and largest delta. After applying the filters and matching with the Markit CDS,
I am left with a sample of 325 firms with unbalanced panel data at a daily frequency
ranging from January 2002 until April 2018. Figure B.1 documents the histograms of the
selected options” moneyness, defined as strike price over spot price, delta, and maturity.
Most of the moneyness of the options is around 0.4 — 0.5, and most of the deltas are very
close to 0. Furthermore, almost all the moneyness is under 0.7 and the deltas are above
-0.15. This suggests that the options I pick are all DOTM put options and very likely to be
struck within the default corridor. Similar to CW, I pick the maturity of the options greater
than 365 days to mitigate maturity mismatch because the most liquid CDS contract has a

maturity of 5 years.

12The CDS “Big Bang” in April 2009 changed the standard for CDS contracts. As a result, the standard
restructuring clause for US CDS is Modified Restructuring (MR) prior to the “Big Bang” and No Restructur-
ing (XR) after. For robustness, I also restrict the sample to only contain the CDS contracts with the standard
restructuring clause. The results are robust.

3Since options are usually traded up to 2-year maturity, I also use 2-year CDSs for the following analysis.
The results are virtually the same. The key element in my analysis is the co-movement between IS and CDS
spreads. Figure B.2 shows that 2-year CDS spreads and 5-year CDS spreads have extremely high correlation
with each other. The pair wise correlation is over 96% in the sample, indicating that the dynamics of the
2-year CDS spreads is similar to the 5-year CDS spreads. Thus, I focus on the 5-year CDS spreads for higher
liquidity.
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Second, I prepare for the option data to construct the CNV IS. I remove the option
series with non-positive open interests or negative bid prices. Furthermore, based on Sec-
tion 5.2.2, the options are chosen such that the pseudo firm’s default probability matches
with the real firm’s default probability. After constructing the CNV IS and matching it
with the MARKIT CDS data, I am left with a sample of 458 firms with unbalanced panel
data at a daily frequency ranging from January 2002 until April 2018.

Due to data availability, the CW and CNV methods provide different sample compo-
sitions. In this paper, I focus on the overlapping sample provided by these two methods.
However, all the analysis in this paper exhibits similar results when using the separate
full sample based on the CW or CNV method as shown in the appendix. Table 5.1 doc-
uments the summary statistics of the overlapping sample. The unbalanced panel data
ranges from Jan 2002 to April 2018. It consists of 78,493 firm-day observations with 240
tirms in total. Panel A reports the descriptive statistics by rating. The sample averages
of CDS spreads, CW IS, and CNV IS are 464.48, 323.55, and 609.26, respectively. The
high level of sample averages is likely because firms with DOTM put options available
are usually riskier. Most firms are rated around BB rating. All the credit risk metrics
show similar magnitudes across different rating categories. The bid-ask spreads of the
options selected based on the CW method and the CNV method are similar for the IG
tirms but the CW bid-ask spreads are higher than the CNV bid-ask spreads for the HY
firms.™ This is because the CNV methods pick options more near the money as the firm’s
rating decreases. The CNV moneyness is similar to the CW moneyness for the IG firms
but becomes significantly higher for the HY firms. Panel B reports the firm fundamentals
summary statistics. The sample average leverage ratio is 40%, indicating most firms are
low rated firms. The average market capitalization, book-to-market ratio, institutional
ownership values are 15.39, 0.1, and 0.71, as opposed to the averages of the Compustat
universe 14.87, 0.08, and 0.49. This suggests that my sample consists of a large proportion

of value firms.

4Due to concerns of the liquidity issue associated with long term DOTM put options, I also perform
the main tests in this paper using both the bid price and offer price, or filtering out zero trading volume
contracts. All the results remain.
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Table B.1 and B.2 in the appendix provides the descriptive statistics of the separate
tull sample provided by the CW and CNV methods, respectively. For the CW sample,
the 5-year CDS spreads and IS have a mean of 464.67 bps and 373.15 bps respectively.
A majority of firms in the sample are High Yield firms. The 5-year CDS spreads for the
Investment Grade firms are high. The average CDS spread for A rated firms is around
200 bps. Similar to the above discussion, the high level of credit spreads are likely due to
the riskier nature of firms with DOTM put. For the CNV sample, the sample mean of the
CDS spreads and IS are 165.39 and 274.96 bps respectively. This is similar to the average
CDS level documented in the literature (EJO). Most of the firms are rated round BBB.
For robustness, I also provide the integration analysis in the following sections using the

separate samples.

5.3.2 Are option-implied credit spreads reflecting credit risk?

Before conducting the integration analysis using IS, it is essential to validate whether the
IS from the two methods are close proxies for the firm’s credit risk.

Figure 5.1 plots the aggregate IS and CDS time series. All three series shoot up during
recession and stay low during calm periods. Figure 5.1 shows that visually these three
series move almost one to one to each other, indicating that they have similar time series
dynamics. Panel D in Table 5.1 reports the pairwise correlations among CDS, CW IS, and
CNV IS. Quantitatively, the CDS spreads have a correlation of 0.79 with the CW IS and
0.77 with the CNYV IS. Furthermore, the CW IS and CNV IS have a correlation of 0.85
with each other. This suggests that all three metrics have close time series dynamics in
aggregate, consistent with the evidence provided in Culp, Nozawa, and Veronesi (2018).

To further justify that the IS are driven by the credit risk information, I examine
whether the IS time series dynamics are explained by the Merton model variables. I
perform the Merton model regression following Collin-Dufresne, Goldstein, and Mar-

tin (2001) and Ericsson, Jacobs, and Oviedo (2009). The regression specifications are as
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below:

S,f = ﬁé + ﬂilevf + ﬁ%voli + ﬁért,
ASf = ﬁé + ﬁiAlevZ + ﬁéAvolf + 5§Art,

(5.5)

where S € {CDS,1S}. Similar to the previous literature, for each of the N firms in my
sample, I regress both the CDS spreads and IS on the firm’s leverage ratio (Leverage), the
tirm’s realized annualized equity volatility computed using daily stock returns within the
previous month, and the 10 year constant maturity Treasury rate (10-year yield). Since the
leverage data is not available at a daily frequency, I perform the regression at a weekly
frequency similar to EJO. In Table 5.2, I report the cross-sectional averages of the coeffi-
cient estimates and R? values. Columns (3) to (5) report the results of the level regression
and columns (6) to (8) report the results of the difference regression. The t-statistics are
calculated from the cross-sectional averages of the coefficient estimates divided by the
standard deviation of the N estimates and scaled by v/N. Leverage is defined as the ratio
of the sum of book value of debt and the value of preferred equity to the sum of market
value of equity, book value of debt, and book value of preferred equity. I interpolate the
book value of equity to compute weekly leverage ratios. Volatility is computed as the
annualized standard deviation of daily equity returns of the previous month.

Columns (3) and (6) in Table 5.2 provide similar results as the Merton model regres-
sions in EJO. The precise values are slightly different due to a different sample composi-
tion and time period. Columns (4), (5), (7), and (8) report the Merton model regressions
using CW IS and CNV IS as the dependent variable. If the IS time series dynamic is
driven by Merton model variables, the signs of the coefficients should be consistent with
what the theory predicts. Table 5.2 shows that the signs of all Merton variable coefficients
in the IS regression are consistent with the theory. The results are consistent across both
CW and CNV IS . Compared with the coefficients of the CDS regression, even though
the IS regression coefficient magnitudes are slightly different from the CDS regression
coefficients, the signs of the coefficients are almost all identical across both regressions.

In Table C.1 in the appendix, I report the augmented Merton model regressions in-

cluding yield curve slope, 10-year yield squared, S&P 500 index returns, and S&P 500 in-
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dex option implied volatility smirk slope. Except different signs of some Treasury yields
variables due to collinearity, most of the other variables show the same signs across the
CDS spreads and IS regressions and the signs are consistent with the theory predictions.
This provides additional support that IS are closely related to the theoretical credit risk

determinants and that the IS and CDS spreads have similar time series dynamics.

5.4 The integration between option and CDS markets

In this section, I provide evidence on the integration between option and CDS markets
focusing on the co-movement of the IS and CDS spread time series. The co-movement
can be tested through two different angles. First, the co-movement indicates an long-run
equilibrium relation between the two series. Second, it suggests that the two series move
in the same direction, i.e. aligned.

To provide intuition of these two angles, Figure 5.2 plots the IS and CDS spread weekly
time series of the Cox Communication Inc.. Panel (a) shows that these two series clearly
establish a close long-run trend visually. This suggests the existence of an equilibrium
relation between IS and CDS spreads. However, at shorter horizons, these two series do
not move in the same direction at different periods, as indicated by the grey areas in the
figure. To document the short-run dynamics more clearly, panel (b) plots these time series
during a relatively short horizon in September 2002. The solid lines indicate that the two
series move in the same direction and the dotted lines indicate that the two series move
in the opposite directions. Visually, although these two series have similar trends, they
move in the opposite directions between September 1st to September 7th and September
14th to September 21st.

In the following sections, I formally test the co-movement through both the equilib-

rium relation and the market alignment angles.
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5.4.1 Equilibrium relations

To examine the long-run integration, I perform a cointegration test. If the IS and CDS
spreads are cointegrated, there exists a  such that 1.5, — SCDS, is stationary. If the IS
are the exact proxies of the firm’s credit risk, one would expect 5 = 1 if the two markets
integrate with each other. However, 8 might deviate from 1 if the model assumption is
not perfect in constructing the IS. One possible scenario could be that the two methods
assume an exogenous bond recovery. The credit spreads can be approximated as A(1 —
R) where A denotes the default intensity and R denotes the recovery. If the true bond
recovery is different from the recovery I exogenously pick, the 3 could be different from
1. However, at the minimum, there should exist 3 > 0 such that 1.5, — 5C DS, is stationary,
if the option and CDS market integrate with each other.

I perform the cointegration test following the Engle-Granger two-step method (Engle
and Granger, 1987).° The first step of the Engle-Granger procedure is to estimate 3 by
regressing IS onto CDS spreads:

]S@t =o; + 6ICDSM + €it- (56)

The second step is to perform a unit root test on the residual using Augmented Dickey-
Fuller (ADF) test. I perform the cointegration test on each firm and count the fraction of
tirms having cointegrated IS and CDS spreads with 3; > 0.

Table 5.3 reports the fraction of firms having cointegrated IS and CDS series. Panel A
shows that about 81% (80%) of the firms have cointegrated IS and CDS series for the CW
(CNV) IS, indicating that the IS and CDS spreads integrate well in the long run. Appendix
E provides further discussion and robustness checks using different samples. The results
remain the same.

Furthermore, since IS is computed using options data with maturity around 2 years
while the CDS spread has maturity of 5 years, I provided the same cointegration analysis

using 2-year CDS spread and 2-year IS, the result remains the same.

1>Before conducting this method, I perform the unit roots test for both the IS and CDS spread time series
for each firm to keep only the non-stationary series.
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Despite the long-run equilibrium relation between IS and CDS spreads, there could be
price discrepancies at shorter time horizons. The cointegration relation predicts that such
divergences should have predictive power for the future movement of the cross-market

basis. I thus conduct a panel regression in the spirit of the error correction model:

AIS;, Q18 VISt B1S,Dev
Tl = + T+ Deviy 1 +Y] By +

ACDS;; a; cDS YeDS,t Beps,Dev €,CDS,t

€ISt

, (5.7)

where Dev; ;1 = 1S;41-1 — CDS, -1, oy denotes the firm fixed effect, 7; denotes the time
tixed effect, and Y; denotes the vector of firm specific control variables. To account for pos-
sible model misspecification in constructing IS, I introduce firm specific controls including
tirm leverage ratio, log market capitalization, annualized stock volatility computed using
the previous month daily stock returns, rating, stock daily return, and stock market beta
computed using the previous month daily stock returns.!® For robustness, I also substi-
tute time fixed effects into year-month fixed effects with macroeconomic control variables
including S&P 500 index returns, CBOE VIX index, 10 year Treasury yield, the Treasury
yield slope defined as 10 year yield minus 2 year yield, and default spread.

If there is a positive shock in the option (CDS) prices, Dev; ;_; increases (decreases) and
AILS;; (ACDS;;) should decrease. Therefore, B;s pev (Bcps,pev) should be significantly
negative (positive) if the IS and CDS spreads are cointegrated. Table 5.4 reports the panel
regression results for different regression specifications. I find that 8;s pey (Bops,pev) 1S
significantly negative (positive) across all specifications in regressions based on both the
CW and CNV IS. In addition, the daily integration result might be mechanically driven
by the measurement error when constructing IS. To mitigate this concern, I perform the

same regression using weekly data. The results are also robust in the unreported table.

1®The relationship between put options and CDS is tied to underlying spot and bond positions, as the
dealers are likely to hedge using spot positions. A four-variable VAR model consisting of IS, CDS spreads,
stock returns and bond returns would be an appropriate model. I introduce stock and bond return determi-
nants, such as leverage, equity volatility, size, etc, as controls to avoid model misspecification. For further
research, I will introduce bond return, and employ VAR impulse response and variance decomposition
techniques to tease out the relative contribution of each component in affecting the IS and CDS spreads.
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In sum, I provide firm level evidence that the option and CDS markets integrate well
with each other in the long run, complementing the integration evidence in the literature,

but there exists short-run price discrepancies between the IS and CDS spreads.

5.4.2 Market misalignment

I next examine whether the IS and CDS spreads are aligned at shorter time horizons. I
test the existence of price discrepancy following Kapadia and Pu (2012). KP provide a
non-parametric integration metric in their paper (Equations (2) and (3)) to measure the
misalignment between two time series.

Following KP, I define AIS], and ACDS], as the changes in IS and CDS spreads for
firm ¢ over non-overlapping period 7, respectively. Since both the IS and CDS spreads are
proxies for a firm’s default risk, any shocks of the firm will drive the two spreads moving
in the same direction. In other words, the IS and CDS spreads are considered aligned if
AIST,ACDS], > 0, misaligned if AIST, ACDS], < 0, and neither aligned nor misaligned
if AIST,ACDS], = 0. The KP metric for firm i is defined as

i,kT 1,kr<0}

Zk:l {AIST, ACDST
Ki = )
T;

(5.8)

where T; is the total observations with AIST,ACDS], # 0 of firm :.7 This metric is
closely related to the Kendall correlation. I use the term KP metric and Kendall correlation
interchangeably for the rest of the paper.

To gauge the level of price discrepancies across the full panel observations, I aggregate

the kendal correlation across each firm following KP. More specifically, the sample price
YOS D Iiarsy, acpsy, <o
Zf‘vzl T

the number of firms in the whole sample. Table 5.5 describes the results for both the CW

. . . . . }
discrepancy for time horizon 7 is defined as , where N denotes

and CNV metric. I find significant price discrepancy between the option and CDS mar-
kets. There are 46.09% (45.70%), 40.76% (42.15%), 35.18% (36.30%), and 26.51% (31.73%)

7In the original KP metric, T; is the total observations within a given window including AISACDS =
0. To avoid counterfactual inference due to stale prices at short horizons, I compute the fraction of
AIST,ACDS], > 0and AIST,ACDS], < 0 categories among the total observations with AISACDS # 0
for both CW and CNV IS. /
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of observations establish price discrepancy at daily, weekly, monthly, and quarterly fre-
quency respectively for the CW (CNV) IS. The magnitude of the misaligned fractions is
comparable to those in KP.

In addition, the misalignment is associated with economically large movements of
both IS and CDS spreads. The discrepancies over daily frequency occur with an average
absolute change in IS of 11.13 (11.64) bps and an average absolute change in CDS spreads
of 24.04 (37.81) bps in the wrong directions for the analysis based on CW (CNV) meth-
ods. These magnitudes are economically significant. This evidence demonstrates that it is
important to understand what drives the misalignment between the IS and CDS spreads.

The price discrepancy «; decreases as the horizon increases. The patterns hold across
both investment grade (IG) and high yield (HY) categories for both the CW and CNV met-
rics. In sum, the evidence again indicates the existence of short-run price discrepancies

between the IS and CDS spreads.'®

5.5 The determinants of the short-run price discrepancy

In this section, I explore the determinants of the short-run price discrepancy. The seminal
work by Shleifer and Vishny (1997) shows that limits to arbitrage create price anomalies.
Gromb and Vayanos (2010) provide a comprehensive review on the literature on limits
to arbitrage. Most frictions contributing to the impediments to arbitrage can be grouped
into two categories: the frictions in trading assets and frictions of market participants. On
the asset-specific friction side, there are a number of studies document that high arbitrage
costs result in asset prices deviating from their fundamental values (Kapadia and Pu,
2012; Cao and Han, 2013; Han, Subrahmanyam, and Zhou, 2017; among others).

On the market participant friction side, a growing literature shows that the interme-
diary financial constraint drives the price discrepancy among assets (Garleanu and Ped-

ersen, 2011; Barras and Malkhozov, 2016; Du, Tepper, and Verdelhan, 2018; Fleckenstein

8The long-term (quarterly) misalignment fraction should be interpreted with caution. Appendix F sim-
ulates the IS and CDS time series which are cointegrated with cointegration vector [1,-1,0.005] and 7 days of
half-life. The simulation shows that even though the two series cointegrated in the long-run, the long-run
misalignment fraction might be significantly different from zero when the short-term price discrepancy is
volatile.
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and Longstaff, 2020; among others). Besides the limits to arbitrage channel, financial in-

termediary health can also impact the asset prices through demanding higher or lower

compensation of bearing illiquidity cost (Bongaerts, De Jong, and Driessen, 2011).
Motivated by the literature, I test whether the asset-specific frictions and financial

intermediary health is related to the price discrepancy between the IS and CDS spreads.

5.5.1 Asset-specific frictions

To study the asset-specific frictions, I focus on the two co-movement angles examined in
the integration analysis. In particular, I test whether the IS and CDS spreads are more mis-
aligned when the asset-specific frictions are larger. Furthermore, since the cointegration
between the IS and CDS spreads implies that the price discrepancy predicts the future
changes of the IS and CDS spreads. I test whether the price discrepancy is related to the
asset-specific frictions by studying how the predictive power of the price discrepancy is

affected by the frictions.

The impact on market misalignment

Both the option and CDS are claims written on the firm value. If there are no frictions, the
arbitrageurs will fully take advantage of any arbitrage opportunities between the option
and CDS. Since the IS and CDS spreads are driven by the same sources of risk, both the IS
and CDS spreads should move in the same direction. However, impediments to arbitrage
might cause anomalous movements of the two credit spreads. Hence, I formulate the

following hypothesis:

Hypothesis 1. The directional misalignment between the IS and CDS spreads is stronger when

the impediments to arbitrage are more severe.

As a first step, I sort the full sample into three subsamples based on the average ar-
bitrage cost of each IS and CDS pair. I then obtain the misalignment fraction of each
subsample to examine the patterns across different subsamples. Figure 5.3 plots these

fractions (y-aixis) on the Low, Median, and High tercile (x-axis). Visually, the misalign-
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ment frequency is increasing with the CDS and option illiquidity, as well as the stock
idiosyncratic risk. This is consistent with Hypothesis 1.

To test Hypothesis 1 formally, I follow KP to project the Kendall correlation onto a
number of proxies for arbitrage costs. To increase the data availability, I construct the
Kendall correlation based on a weekly window with daily data and perform the panel
regression at the weekly frequency. Since the half-life of the cointegration analysis is
approximately a week, according to Table 5.3, the weekly Kendall correlation should cap-
ture the short-run price discrepancy and thus be suitable for the analysis in this section.
The KP metric is computed as x; = % Zg;l Ia IS7, ACDS], <0} — 1 where T} denotes the
number of business days with non-zero daily CDS spread changes within a week."”

According to the definition of the KP metric, x;; € [—1,1] and the higher the x;, is,
the more misaligned the two series are. Table D.1 in the appendix reports the summary
statistics of the Kendall correlations computed based on the CW IS and CNV IS. The mean
and median of the ;; are both negative. This indicates that a majority of the observations
have aligned IS and CDS spreads. Panel B reports the correlations between «;; and other
tirm specific and macroeconomic variables. Not surprisingly, the CW and CNV &, have
high correlation with each other. Interestingly, «;, is negatively related to leverage, equity
volatility, 5y CDS spreads, VIX, and default spreads, suggesting the IS and CDS spreads
are more aligned when the firm’s credit condition or the macroeconomic condition wors-
ens. While this seems counterintuitive at first glance, I extend the theoretical framework
in this paper in Appendix N and show that if the credit risk component is more volatile
than the transitory component, i.e. frictions, the IS and CDS spreads can be more aligned

since they are driven by the same credit risk component.

14k
1-k

I apply Fisher’s z transformation on «; to obtain a stationary KP metric (< = 5 log

as the dependent variable following KP. The general panel regression specification is:

Ri,t = Q4 + Vi + Bvarvari,t + YZtﬁYy (59)

YThis formula is slightly different from Equation (5.8) because this formula standardize the Kendall
correlation between -1 to 1.
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where «; refers to the firm fixed effect, ~; refers to the time fixed effect,  is the transformed
Kendall correlation, Var is the variable of interest, and Y; is the vector of firm specific
control variables.

Following KP, I introduce the option bid-ask spread and volume as the option illig-
uidity and liquidity proxies and CDS depth and “Spreadzero”, computed as the ratio of
zero daily spread changes to the total number of non-missing daily CDS spread changes
over the week, as CDS liquidity and illiquidity proxies. I introduce the idiosyncratic risk
variable as the ratio of the idiosyncratic volatility to the total volatility for each stock. The
idiosyncratic volatility is the standard deviation of the residual from the Fama-French
three-factor (FF3) model. It can be shown that the idiosyncratic volatility ratio can be ex-

pressed as 1 — R? where R? is the R-square of the FF3 regression (Ferreira and Laux, 2007).

1-R2

I compute the log transformation of idiosyncratic volatility ratio as log 75

following KP.

Apart from the arbitrage cost variables introduced in KP, I include proxies for the in-
formation transparency of the firms. Similar to Han, Subrahmanyam, and Zhou (2017),
the arbitrageurs might face higher arbitrage cost if the firms are less transparent. I ob-
tain analyst coverage (# Analyst) and institutional ownership (/O) variables to proxy the
transparency of a firm. /O is computed as the fraction of common shares owned by insti-
tutions based on Thomson 13F filings.

I also introduce firm specific control variables including firm leverage ratio, log market
capitalization, and annualized stock volatility computed using the previous month daily
stock returns. For robustness, I also substitute time fixed effects into year-month fixed
effects with macroeconomic control variables including S&P 500 index returns, CBOE
VIXindex, 10 year Treasury yield, the Treasury yield slope defined as 10 year yield minus
2 year yield, and default spread.

Tables 5.6 reports the panel regression results for both the CW and CNV metrics. All
specifications in both tables include firm fixed effects, time fixed effect, and firm spe-
cific controls to control for permanent and transitory firm specific factors, as well as the
systematic variations. To mitigate the autocorrelation and heteroskedasticity concern, I

cluster the standard error by firm and date.
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Columns (1) — (8) reports the effects of CDS and option liquidity on the option and CDS
market alignment. The signs of all four liquidity proxies of option and CDS in both tables
are consistent with Hypothesis 1. In addition, the depth and bid-ask spread coefficients
are statistically significant in the regression based on both CW and CNV k. Columns (9)
and (10) report the effects of idiosyncratic risk on IS and CDS spread alignment. The sign
of the idiosyncratic risk variable is consistent with Hypothesis 1. It is highly statistically
significant in the regression based on CNV IS but not significant in the regression based
on CW IS. Columns (11) — (14) report the effect of firm’s transparency on the market
alignment. The coefficients of both institutional ownership and analyst coverage have
the correct signs. The IO coefficient is significant in the regression based on CNV IS and
the # Analyst coefficient is significant in the regression based on CW IS. Columns (15)
and (16) perform regressions including all variables. All variables have qualitatively and
quantitatively similar coefficients as the ones in specification (1) — (14).

To understand the economic significance of the variables, I focus on columns (15) and
(16) of Tables 5.6 since they have the highest R? among the CW and CNV regressions,
respectively. The standard deviation of the average Kendall correlation & across firm
is about 0.162 (0.165) for the CW (CNV) metrics. A change of one standard deviation
of CDS depth and option bid-ask spread explains 12.9% (8.6%) and 6.3% (11.8%) of the
Kendall correlation variation for the CW (CNV) metric, respectively. A change of one
standard deviation of idiosyncratic risk, institutional ownership, and analyst coverage
explains 3.9% (7.7%), 6.8% (11.3%), and 12.3% (12.3%) of the Kendall correlation variation
for the CW (CNV) metric, respectively. All variables are economically significant. In
particular, the CDS illiquidity and the analyst coverage have large economic impacts on
market integration among all the other variables.

For robustness, Table G.6 in Appendix G documents the regression results control-
ling for the CDS - equity Kendall correlation to understand whether the misalignment
between CDS and option markets is purely driven by the misalignment between the CDS
and equity markets. Not surprisingly, the CDS - equity Kendall correlation also explains a
large proportion (16%) of variation of the &, since the option and equity are closely related

in theory. However, the IS and CDS spreads misalignment is still significantly related to
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the asset-specific arbitrage cost variables. The magnitudes of the coefficients of all the
arbitrage costs remain similar as the regression results in Table 5.6. The economic impacts
of these arbitrage costs on the misalignment between IS and CDS spreads are comparable
to the economic impact of the price discrepancy between the CDS and equity markets.
This again highlights the importance of these arbitrage costs and the importance of the
price discrepancy between IS and CDS beyond the price discrepancy between the equity
and CDS markets.

In addition, Appendix G reports the same regressions using the separate full samples
based on the two methods. Furthermore, it also reports the regression results using 2-
year IS and 2-year CDS spreads as input. Finally, I also compute the IS based on bid and
offer quotes of the options and perform the same analysis. While the significance of some
arbitrage cost variables reduces in a few specifications, most results are consistent with
Hypothesis 1.

In sum, I provide cross-sectional evidence that the misalignment between the option
and CDS is stronger for assets with high arbitrage costs such as high illiquidity, high

idiosyncratic risk, low institutional ownership, or low analyst coverage.?’

The impact on cross-sectional predictability

Due to limits to arbitrage, the asset-specific frictions might create price discrepancies be-
tween the two credit spreads. Based on the cointegration relation, these price discrep-
ancies should predict the future IS or CDS spread movements. While the cointegration
indicates the two credit spreads should converge to each other, it is an empirical question
on whether one market leads the other markets. Next, I discuss the impact of the fric-
tions studied in the previous section on the predictability between the option and CDS
markets.

The option (CDS) illiquidity mainly impacts the price discovery of its own market.
For firms with high option (CDS) illiquidity, if the arbitrageurs are unlikely to engage

in arbitrage trades due to high transaction costs, the cross-market deviation, defined as

20While it is interesting to analyze whether the basis between IS and CDS spreads across firms presents
arbitrage opportunities, the IS are computed based on certain assumptions and thus might not reflect the
actual credit spread level, which makes it hard to infer which firm presents higher arbitrage opportunity.
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IS minus CDS spreads, should have stronger predictive power on the IS (CDS spread)

changes than that of firms with low asset illiquidity.

Hypothesis 2. Conditional on high option (CDS) transaction costs, the predictive power of the
cross-market deviation, defined as 1S — C' DS, is stronger for the future IS (CDS spread) changes.

The information transparency of a firm could impact both the options and CDSs of the
corresponding firm. For less transparent firms, if the option (CDS) market contains more
timely information over the other market, and the arbitraging activities are not effective
due to the information transparency, the cross-market deviation should have a stronger
predictive power on the CDS spread (IS) movements than that of the transparent firms.
Similarly, the cross-market deviation should have a weaker predictive power on the IS

(CDS spread) movements.

Hypothesis 3. If either the option or CDS market contains more timely information over the
other when the firm is less transparent, conditional on firms with low information transparency

proxies, one should observe one of the following two patterns:

1. Option market leads CDS market: The predictive power of the cross-market deviation is

weaker for IS, but stronger for CDS spread changes, or

2. CDS market leads option market: The predictive power of the deviation is weaker for the

CDS spread changes, but stronger for the IS change.

To test these two hypothesis, I perform the error correction regression by interacting
the cross-market deviation with the asset-specific arbitrage cost variables. The regression
specification is

AIS; 111 _ [ iasen N VIS¢ N Bi's.pev + Bis pevDet Devyy + Y6y + €i,1S,t

ACDS; Qi.CcDS,t YeDSs,t Béps.pev + Béps, pevDet €i,CDS,t

(5.10)
where D, ; denotes the condition indicator variable, 3" and 8¢ denotes the unconditional
and conditional effect of cross-market deviation.

Table 5.7 reports the regression results. Panel A (B) reports the regression results

of AIS; ;11 (ACDS,4+1). If the predictive power of the cross-market deviation Dev is
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stronger (weaker) conditional on high arbitrage costs, the conditional beta should have
the same (opposite) sign compared to the unconditional beta.

Columns (1) to (4) document the predictive effect of Dev conditional on firms with
high CDS or option illiquidity. Depsiiiguia (Doptiontiiquia) €quals 1 if both the CDS depth
(option volume) belonging to the bottom tercile and the Spreadzero (option bid-ask spreads)
belonging to the top tercile. Columns (3) and (4) in panel A shows that in the regression
predicting IS, the beta of Dcpsiuiquia ¥ Dev is strongly significant and negative, same as
the unconditional beta. Columns (1) and (2) in panel B shows that in the regression pre-
dicting CDS, the beta of Dopiioniniquia * Dev is strongly significant and positive, same as
the unconditional beta. This indicates that conditional on high CDS illiquidity, the option
and CDS with high illiquidity has stronger predictability through the cross-market devia-
tion, consistent with Hypothesis 2. Furthermore, the magnitude of the interaction beta is
larger than the unconditional beta. For example, in column (3) of panel A, conditional on
high option illiquidity, a one standard deviation increase in the cross-market deviation
results in the change of CW IS to decrease almost 2 times more than the unconditional
effect, indicating the conditional effect is economically significant.

Columns (7) and (8) report the predictive power of the cross-market deviation condi-
tional on firms with low transparency. Dr,ansparency €quals 1 if both the IO and #Analyst
belong to the bottom tercile. Panel A shows that in the regression predicting IS, the beta
of Dpransparency * Dev is strongly significant and positive, opposite to the unconditional
beta. Panel B shows that in the regression predicting CDS, the beta of Dyyansparency * Dev
is positive for both CW and CNV metrics, same as the unconditional beta. It is strongly
significant for the regression based on CNV metrics as shown in column (8). Interestingly,
the conditional effect in column (8) drives out the significance of the unconditional effect,
suggesting most of the CDS predictability comes from the firms with less public informa-
tion. The evidence indicates that conditional on firms that are less transparent, the options
contain more timely information over the CDSs. The economic impact of the information
transparency is large. For example, column (7) in panel A shows that conditional on low

transparency, a one standard deviation increase in the cross-market deviation increases
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the future changes of the CW IS about 42% compared to the unconditional effect, indicat-
ing the conditional effect is economically significant.

When conducting the same analysis using the separate sample, or the 2-year IS and
CDS spreads, bid or offer quotes as input, I find similar evidence as Table 5.7.

One concern in interpreting the result is that options and CDSs are derivatives writ-
ten on stocks and bonds. Since bonds are dealer intermediated OTC market products,
the speed of the information diffusion in the bond markets is likely to be slower than
the stock market due to the presence of information frictions (Hong and Stein, 1999; Jos-
tova, Nikolova, Philipov, and Stahel, 2013, etc.). The underreaction of the bond market
compared to the stock market might contribute to the underreaction of the CDS mar-
ket compared to the option market. To mitigate such concern, Regression (5.10) includes
lagged equity return as a control variable to subsume the information spillover between
stock and credit markets. My result hence does not appear to be driven by the informa-
tion diffusion between the stock and credit markets. The lead lag relationship is driven
by the information diffusion between option and CDS markets due to limits to arbitrage
frictions.

Overall, the evidence suggests that the IS and CDS spreads predictabilities through
the cross-market deviation are stronger when they have high illiquidity. However, the
option market contains more timely information than the CDS market for firms that are

less transparent.

5.5.2 Market participant related frictions

Starting from Allen (2001) and Duffie (2010), intermediaries have been receiving increas-
ing attention in the literature. They serve as market-makers for equity options to provide
liquidity to end-users by taking the other side of the end-user net demand (Garleanu,
Pedersen, and Poteshman, 2009). They are also influential market players in the CDS
market (Augustin, Subrahmanyam, Tang, and Wang, 2014). He, Kelly, and Manela (2017)
tind that banks are the marginal investors for a number of asset markets including option

and CDS markets.
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The health of the financial intermediary impacts the financial asset risk premiums, as
it can amplify the premiums associated with asset-specific frictions such as transaction
costs, or premiums associated with the financial constraints of intermediaries. Bongaerts,
De Jong, and Driessen (2011) show that the wealth and risk aversion of the intermediary
impact the sign of the liquidity premium. Garleanu and Pedersen (2011) demonstrate
theoretically that the financial intermediary margin constraint can generate deviation be-
tween the risk premiums of two assets with identical payoff structures. An increasing
number of studies document empirically that the financial intermediary health predicts
the asset returns (Adrian, Moench, and Shin, 2010; Haddad and Muir, 2018).

Motivated by the literature, the price discrepancies between IS and CDS spreads can
be caused by their risk premium (price) deviation impacted by the financial intermedi-
ary. As a first step, I plot the weekly time series of the average cross-market deviation
between IS and CDS spreads, defined as log(1.5) —log(C'DS), and the proxies of the finan-
cial interemdiary health, as shown in Figure 5.4. The proxies include the intermediary
capital ratio from He, Kelly, and Manela (2017), TED spread, LIBOR-OIS spread, and de-
fault spread. Visually, these financial intermediary health proxies co-move strongly with
the aggregate cross-market deviation.

Next, I test empirically whether the financial intermediary health relates to the con-
temporaneous IS and CDS spread deviation, as well as whether it predicts the return
deviation between the IS and CDS spreads. I approximate the IS and CDS returns using
simple spread changes, log spread changes, and the return metric based on Augustin,
Saleh, and Xu (2020).?! Since the CNV IS are an empirical construction of the credit risk
proxy rather than an equivalent counterpart of the CDS spread, to avoid counterfactual
inference, I use the CW IS to study whether the risk premium (price) deviation is related

to the financial intermediary.*?

211 et s denote the CDS spread, the return metric in Augustin, Saleh, and Xu (2020) is ATE where 1315 =
—u=e (1- e (= R)(T-1)
Bang” and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral which is set to 1.

22Even though the CNV IS might not be exactly equivalent to the CDS spread, I still find similar evidence
by conducting the following analysis and the results are especially stronger when the firms are highly rated
as shown in Appendix I, because the firm’s equity behaves more similarly to the asset and the CNV IS
resemble to the CDS spreads more in this case.

), ¢ denotes the coupon payment which is set to the s;_; prior to the “Big
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I conduct both the contemporaneous panel regression and the predictive panel regres-
sion. For the contemporaneous regression, the dependent variable is log(1S)—log(C'DS).?
For the predictive regression, the dependent variable is the lag return deviation between
the IS and CDS spreads. The independent variables of both regressions are the finan-
cial intermediary health proxies, including the intermediary capital ratio variable from
He, Kelly, and Manela (2017) (HKM), the broker-dealer leverage ratio from Adrian, Etula,
and Muir (2014) (AEM), TED spread, LIBOR-OIS spread, and default spread to proxy the

financial health of the intermediary. The panel regressions are specified as follow:

SH = i + Yy, + Breanhealthy + Y/ By + €y
t y it (5.11)

RO = o + Yy + Bheaunhealthy + Y, By + €5y

where SP* = log(1S;,) —1og(CDS;,), RO = RIE, — RGES, health, denotes the financial
intermediary health proxy, o; denotes the firm fixed effect, +;,,, denotes the year-month
tixed effect, and Y; denotes the firm specific control variables. The firm specific controls
include firm leverage ratio, log market capitalization, annualized stock volatility, com-
puted using the previous month daily stock returns, rating, stock daily return, option bid
ask spreads, and CDS depth.

Table 5.8 reports the contemporaneous regression result. Except for the AEM leverage
ratio, all variables have signs suggesting that the financial intermediary health negatively
related to S}}¢,. Since the AEM leverage ratio is at the quarterly frequency and the test
here is performed at the daily frequency, the AEM ratio does not have enough variability
to account for the variation of the return basis, resulting in counterfactual inference. All
other proxies for financial intermediary health variables are significant.

The impact of financial intermediary health on the S/* is economically significant,
especially for the HKM-ICR variable. The average change of HKM-ICR is 6.6 bps per
day. This translates to about 35 bps changes of the credit spread deviation S/;”. Given
the daily log spread deviation changes are about 330 bps on average, the average change

of HKM-ICR explains over 10% of the average movement of daily log spread deviation,

ZSince there is noise associated with the IS construction, I adopt the log(1.S) — log(CDS) to mitigate the
noise in the regression analysis.
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suggesting that the financial intermediary is an important factor in understanding the
deviation between IS and CDS spreads.

Table 5.9 shows the predictive regression results. Similar to the contemporaneous re-
gression results, all variables have signs suggesting that the financial intermediary health
positively predicts R/}, except AEM leverage ratio. All variables establish different de-
grees of significance across the three return metrics. The HKM intermediary capital ratio
variable is the most robust and significant. In addition, the significance of the HKM cap-
ital ratio survives in the regressions including all financial intermediary health variables.
Hence, I focus on the HKM metric, henceforth ICR, in the following robustness analysis.

Table 5.10 reports the results of regressions using different subsamples and regres-
sion specifications. All specifications include firm fixed effects to control for unobserved
tirm specific variations. In addition, specifications (1), (4), and (7) include the year-month
tixed effect to control for the unobserved systematic factors. Specifications (2), (5), and
(8) further introduce firm specific controls to eliminate the potential bias caused by firm
specific factors or model misspecifications. Lastly, specifications (3), (6), and (9) intro-
duce macroeconomic controls including S&P 500 index returns, CBOE VIX index, 10 year
Treasury yield, the Treasury yield slope defined as 10 year yield minus 2 year yield, TED
spread, and default spread to reduce the bias caused by other macroeconomic variables.

Panel A in Table 5.10 documents the regression results using the full sample. I find that
the ICR coefficients are highly significantly positive across all specifications. The magni-
tudes of the coefficients remain almost the same regardless of whether more controls are
added. Different from ICR economic magnitude in the contemporaneous regression, the
magnitudes of ICR in these predictive regressions are economically small. According to
columns (2), (5), and (8), the average change of ICR explains about 1% to 3% of the move-
ment of the future return deviation. The results are robust across both IG and HY samples
as shown in panel B and C. Panel D shows that the result is not driven by the crisis. The
results are also not driven by IS or CDS stale price since the regression is performed on
the sample excluding stale prices. In an unreported regression, I find that the results are
still highly robust with data at the weekly frequency. For other robustness, I perform the

same analysis using separate full samples, IS implied from option bid or offer quotes, and
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2-year IS and CDS spreads. As shown in appendix I, all results are strongly statistically

significant with the positive signs.

5.6 A simple intermediary based asset pricing framework

In this section, I provide an intermediary based asset pricing framework that can rational-
ize why the financial intermediary health is strongly positively related to the future return
basis. In particular, I extend the model by He, Khorrami, and Song (2019) to incorporate
both the friction in the asset, such as transaction costs, and friction in the intermediary,
such as intermediary constraint. This framework aims at studying how the health of the
financial intermediary impacts these two frictions, and how the interaction between these
two channels give rise to the positive return basis predictability documented in the pre-
vious section.

Suppose there are two periods 1 and 2. I assume that there are 2 risky assets in the
economy, namely CDS and put option.** Suppose these two assets have identical payoffs.
There is a risk-free saving technology with return 1. The price of CDS (put option) at
period 2 is pegs (Ppur) With mean picqs (ppur). To simplify notation, I denote the quantity at
period 2 with “7”. The equilibrium price of CDS (put option) at time 1 is p.4s (Pput)-

There are two agents in the economy, an intermediary and a residual investor.” Both
the intermediary and the residual investor have exponential utilities?® with absolute risk
aversion v/ (W) and ~#(W¥%), respectively.”” 1 assume that the intermediary and the
residual investor are endowed with 6! and 6% units of credit insurance inventories at pe-

riod 2 (Bongaerts, De Jong, and Driessen, 2011; Kondor and Vayanos, 2019; He, Khorrami,

#Since CDS and bond are both OCT contracts with zero net supply, switching CDS with bond in this
model will not generate additional predictions. However, switching option with equity will, since equity
is in positive net supply. In the latter sections, I show that the option prices are affected by the relative
magnitudes of the risk aversion of intermediary and its counterparty. Due to positive net supply, equity
prices will be affected by the aggregate risk aversion of the economy instead.

BThe intermediary corresponds to the holding company of the primary dealer of both markets including
all its subsidiaries. The residual investor includes other financial institutions such as insurance companies
and retail investors.

26The exponential utility assumption is for tractability reasons and the qualitative implications remain if
I substitute it with power utility.

1 follow He, Khorrami, and Song (2019) to introduce the dependence of wealth of the agent’s risk
aversion. In particular, wealth is negatively related to risk aversion.
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and Song, 2019).?® The credit inventory has price p. and standard deviation o.. Since both
the CDS and the put option are proxies for the credit risk, I assume the variance of the
CDS and the put option to be 2.

Following Bongaerts, De Jong, and Driessen (2011), I introduce transaction cost c.4s
(cput) for CDS (put option). For simplicity, I assume that the transaction cost at period 2 is
idiosyncratic with mean 0 and variance o.,, i € {cds, put}.*’ Lastly, I assume that the CDS
and option have additional idiosyncratic noise. For ease of notation, I denote the total
variance of asset i to be o2 4+ o7 where o; incorporates both the transaction cost variance
and other idiosyncratic noises.

The exponential preference implies that the agents choose a mean-variance portfolio.®

The agents maximize the following objective function:

max ]E(Qids (,ﬁcds - (pcds + 6stccd8)) + egmt (ﬁput - (pput + 5gutcput)) + Ogﬁc)
Bf:ds’ezjnﬂf
) (5.12)
- vTvar(egdsﬁcds + Hg;utﬁput + Qﬁﬁc%

where ¢/ is the sign of the holding position of asset i. It captures the idea that the agent

always pays ¢; transaction cost no matter if he buys or sells the asset.
Following Garleanu and Pedersen (2011), I assume that the intermediary faces a mar-
gin type of constraint. Different from the usual margin constraint, I introduce transaction

cost in the constraint:

(mcds + Ccds) }0£d5| + (mput + Cput) ‘Hp{ut| S WI? (513)

28 A negative position in the credit insurance inventory is identical to a positive exposure to credit risk.

¥Bongaerts, De Jong, and Driessen (2011) and Choy and Wei (2020) document empirically that the lig-
uidity risks of options and CDSs are economically small. For simplicity, I assume that the transaction cost at
period 2 is idiosyncratic and the expected transaction cost to be 0. Changing it to be non-zero value won'’t
impact the following analysis.

% As demonstrated in the objective function, the agents maximize the mean and minimize the variance
of their portfolio holdings.
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where m.q, and m,,, is the dollar value of the margin requirement for the CDS and put
option, respectively. For ease of exposition, I set m;,i € {cds,put} to be 0 for the rest of
my analysis.’!

When the constraint is slack, the FOCs of both agents imply

6I+62)02 Twh—l—yRWE
Hput — Pput = 71(w1()71+71)2(wR)—1 + 115W1§71+1REWR§ 5putcput 514
(OL+08)02 Y WH AR w ! (-19)

Heds = Peds = A WH=THyR(WR)—1 + FYBWI)~ T4~ E(WER)— 1(Scdsccdsa

where 7/(W7)™" = 355, 7 € {B, R}. The risk premium of both assets can be decom-
posed into two components. The first component corresponds to the credit risk premium
earned by hedging credit inventory risk. The second component corresponds to the illig-
uidity compensation. Similar to Bongaerts, De Jong, and Driessen (2011), if the inter-
mediary is less risk averse or has more wealth than the residual investor, the illiquidity
component will be positive provided that the intermediary is the net buyer of the as-
set. In other words, the compensation for illiquidity cost will be earned by whoever has
lower risk aversion or higher wealth. Due to this feature, the illiquidity compensation is

increasing with the intermediary wealth and decreasing with its risk aversion.

When the constraint is binding, the risk premiums become

N 77301 L0 ot L o ! P U G . VL 1
Hput = Pput = JTOWT) T4y RWR)-T T AT(W1)— 1+7 putCput T TV T R(WR)—T
_ (0146802 W)ty (WR) ! VW1 68]y Ceds
Feds = Peds = JTO0T)-1 4ROV R)1T + ABWI) Ty R(WER)= 5Cdsccds + AW T4 R(WR)—T

(5.15)
where ¢ is the shadow cost of the constraint. Compared to Equation (5.14), (5.15) has an

extra component generated by the binding constraint > ,(IZ,I I()VYI i;l,f)(%jvc,i),l. The higher the
shadow cost of the constraint is, the larger the magnitude of this component is. The sign
of this component is dependent on the sign of the intermediary position. If the interme-
diary is a buyer of the asset ¢, he will demand a higher premium if the constraint is more
binding, i.e. the shadow cost is larger.

Similar to He, Khorrami, and Song (2019), the intermediary wealth W7 is a proxy for
the intermediary health in this model. To understand the relation between the health of fi-

31Setting the margin requirement to be zero and symmetric across long and short positions is for simplic-
ity reason. It won’t impact the following model implications without such assumptions.
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nancial intermediaries and the future return basis in the empirical evidence, it is essential
to understand the relation between the intermediary wealth and the risk premium basis,
defined as option risk premium minus CDS risk premium. To do so, I need to understand

how the shadow cost of the constraint ¢ moves with the intermediary wealth.

Proposition 1. Suppose the intermediary constraint is binding.

9¢
oW1

<0. (5.16)

Proposition 1 demonstrates that the shadow cost of intermediary constraint is decreas-
ing with the intermediary’s wealth. This is intuitive since the higher the intermediary
wealth is, the less likely the constraint will bind. The cost of the constraint reduces ac-
cordingly. Based on proposition 1, I can establish the relation between the intermediary

financial wealth and the risk premium basis.

Proposition 2. The risk premium basis between the option and CDS defined as (fipur — Pput) —

(,ucds - pcds) iS:

* put Cput — 0t Ceds)- (5.17)

(LS NS L S e TV
,yI(WI)—l + ’}/R(WR)_l ’VI(WI)_l + ’}/R(WR)_l

Suppose the intermediary constraint is binding, and ~"(W*) > AT (W), If 6] ,cpur < 0L4sCcas

the cross-market risk premium deviation (fipu — Pput) — (Heds — Peds) 1S increasing with W1,

Proposition 2 demonstrates two important implications from the model. First, the

model shows that there are two offsetting impacts of the financial intermediary health.

,YI(WI)flivR(WR)—I

On the one hand, TV T R T is increasing with /. This term measures the rel-

ative aggressiveness of the intermediary and the residual investor in determining who
earns the illiquidity compensation. The higher the intermediary wealth is, the higher
compensation it requires from its counterparty to bear the illiquidity cost. This is consis-
tent with the argument in Bongaerts, De Jong, and Driessen (2011). On the other hand, a

higher intermediary wealth relaxes the intermediary constraint and reduces its incentive
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,},I(WI)—lf»yR(WR)—l

to increase the risk premium. If /®(WE) > ~/(W7)32 W TR T

can be approx-
imated to be 1. This means that the intermediary gets full compensation on the illig-
uidity cost if its risk aversion is small enough compared to that of the residual investor.
Thus, an increase in the intermediary wealth will not increase the illiquidity compensa-
tion much further. However, an increase in the intermediary wealth will largely decrease
the shadow cost of the intermediary constraint to 0. Therefore the cross-market basis dy-
namic is driven by ¢. In other words, the intermediary constraint force dominates the

former force in affecting the risk premium basis when v#(W %) > ~/(W?'). Similarly, if

FYRWE) < ~T(WT), - (ngi(ﬂ:;%_(;v,z),l will be approximated to be 0. This term captures
the importance of the intermediary constraint through the relative risk aversions of both
agents. In this case, the intermediary constraint is trivial and the illiquidity channel dom-
inantes. Since the intermediary is served as a liquidity provider and is likely to be more
risk tolerant than its counterparty, the scenario where the intermediary constraint channel
dominates is more likely to happen.

Second, the sign of the risk premium basis depends on the sign of the intermediary po-
sition 67 and the relative magnitudes of the asset transaction costs ¢;. To generate positive
predictability of the return basis from the intermediary health, 6/ ,,¢,.: need to be smaller
than 6, c.q; under the assumption that v*(W*#) > ~/(W'). In other words, the following
three scenarios can generate the positive predictability: 1) the intermediary is a net buyer
of the CDS but a net seller of the DOTM equity put options;® 2) the intermediary is a net
buyer of both the CDS and the DOTM equity put options, and the option trading cost is
smaller than the CDS transaction costs; 3) the intermediary is a net seller of both the CDS
and the DOTM equity put options, and the option trading cost is larger than the CDS
transaction costs.>*

A number of studies document that the intermediary is a net buyer of the CDS (Carey,

Stulz, Allen, and Gale, 2013; Siriwardane, 2019; Cetina, Paddrik, and Rajan, 2018; Au-

32 A special case will be that the intermediary is risk neutral. This corresponds to the case in He, Khorrami,
and Song (2019).

3This scenario happens if there are two residual investors with comparative advantages in trading op-
tions and CDSs. The extension of the model is in Appendix P and the key insights remain the same.

3Since the options are mostly traded on the organized exchange and the CDSs are traded in the Over-
The-Counter (OTC) market, the trading cost of options is likely to be smaller than the trading cost of CDSs.
Hence, scenario 3) is not likely to be the case in reality.
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gustin and Izhakian, 2020; Czech, 2020). Furthermore, several studies document that the
dealers are net buyers of single name equity options for shorter maturity and sellers of
DOTM put options for longer maturity (Garleanu, Pedersen, and Poteshman, 2009; Carr
and Wu, 2011; Cao and Han, 2013). Based on the assumption that the intermediary is a
net seller of DOTM long term put options but buyer of the CDS, the model is able to gen-
erate the positive predictability of the return basis from the financial intermediary health

provided that the intermediary is much less risk averse than its counterparty.

5.7 Conclusion

An increasing number of studies extract credit spreads from options data under the as-
sumption of market integration implied from various structural models of credit risk. It
is important to empirically validate this assumption for future research along this direc-
tion. By constructing option implied credit spreads following the literature, I find that
most firms have cointegrated IS and CDS spreads in my sample, suggesting that the IS
and CDS spreads converge to a long-run equilibrium relation. However, the IS and CDS
spreads time series exhibit a lack of synchronicity at shorter horizons such as the daily or
weekly frequency, according to the non-parametric integration test developed in Kapadia
and Pu (2012).

To understand the determinants of the short-lived price discrepancy, I explore both
the asset-specific frictions and market participants related frictions motivated by the liter-
ature. In the asset-specific friction dimension, I find that the IS and CDS spreads co-move
less for assets with higher arbitrage costs such as high illiquidity, high idiosyncratic risk,
low institutional ownership, or low analyst coverage. The cross-market deviation, de-
tined as the difference between the IS and CDS spreads, predicts both the IS and CDS
spreads future changes in the direction of convergence. The predictability diminishes
for assets with lower arbitrage costs. Furthermore, the predictability of IS (CDS spreads)
changes is weaker (stronger) for firms with low institutional ownership and analyst cov-
erage, suggesting that the options contain more timely information than the CDSs for

firms that are less trasparent. In the market participants related friction dimension, this
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paper finds that the financial intermediary health significantly relates to both the level
and return deviation between the IS and CDS spreads.

A simple intermediary asset pricing framework demonstrates that if the intermedi-
ary is constrained and is much less risk averse than its counterparty, an increase in the
intermediary wealth will relax the constraint more than the increase in the demand for
compensation for illiquidity costs. If the intermediary is a net buyer of the CDS but a
net seller of the DOTM long term equity put option, the model shows that the financial
intermediary health significantly positively predicts the return basis, defined as IS return
minus CDS return.

Overall, the evidence suggests that it is appropriate to use equity options to infer a
firm’s credit spreads. For firms that are less transparent, options might contain more
timely information compared to CDSs and have more advantages over the CDSs to gauge
the firms’ credit risk. However, special care needs to be taken when there are significant
impediments to arbitrage or when the financial intermediary is constrained. This paper
also sheds light on the tension regarding the accuracy of the structural model of credit
risk. While a lot of attempts have been made in reducing the model error to improve the
model empirical performance, extending the credit risk models by incorporating frictions
such as limits to arbitrage and financial intermediary constraint can be another interesting

research avenue. I leave this for future work.
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Figure 5.1: Aggregate CDS Spreads and Option Implied Credit Spreads Time Series Plot

In this figure, I report the weekly time series of aggregate 5 year CDS spreads (red line, in bps), the option
implied credit spreads computed based on Carr and Wu (2011) (CW IS, black line, in bps), and the option
implied credit spreads computed based on Culp, Nozawa, and Veronesi (2018) (CNV IS, grey line, in bps).
The aggregate time series is computed as cross sectional averages of the CDS and option implied credit
spreads. The sample consists of firms with both non-missing 5 year CDS spreads and option implied credit
spreads. The data period ranges from January 2002 until April 2018. Sources: Markit, OptionMetrics,
author’s computation.
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Figure 5.2: Cox Communications IS and CDS Spreads Time Series Plot

In this figure, I report the weekly time series of the IS (black line, in bps), and the CDS spreads (red line, in
bps), of the Cox Communications company. The IS are computed based on Carr and Wu (2011). Panel (a) re-
ports the IS and CDS spread time series for a long horizon ranging from August 2002 until November 2003.
The grey area corresponds to the periods when the IS and CDS spreads move in the opposite directions.
Panel (b) reports the time series for a shorter horizon ranging from September 1st 2002 to September 28th
2002. The solid lines indicate that the two series move in the same direction and the dotted lines indicate
that the two series move in the opposite direction. Sources: Markit, OptionMetrics, author’s computation.
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Figure 5.3: Misalignment fraction of samples sorted by arbitrage cost variables

In this figure, I report the fraction of observations with misaligned IS and CDS, i.e. AISACDS < 0, ata
weekly frequency of the samples sorted by different arbitrage cost variables. The sample is sorted into 3
subsamples (Low, Median, and High) based on the average arbitrage cost of each IS and CDS pair. The
x-axis corresponds to the subsamples and the y-axis is the misalignment frequency of the corresponding
subsample. The arbitrage cost variables include CDS depth, CDS Spreadzero, option volume, option bid-
ask spread, and stock idiosyncratic risk. The CDS Spreadzero is computed as the ratio of zero daily spread
changes to the total number of non-missing daily CDS spread changes over the sample. The stock idiosyn-
cratic risk is computed as the ratio of the idiosyncratic volatility to the total volatility for each stock. Sources:

Markit, OptionMetrics, author’s computation.
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In this figure, I report the daily time series of the average cross-market deviation, defined as log(/.S) —
log(CDS), and the proxies of the financial intermediary health. The proxies include the intermediary capital
ratio from He, Kelly, and Manela (2017) (ICR), log TED spread (LnTed), defined as the difference between
3-month LIBOR and 3-month T-bill rate, log LIBOR-OIS spread (Log LIBOR-OIS), defined as the difference
between 3-month LIBOR and 3-month overnight indexed swap rate, and default spread, defined as the
difference between BAA and AAA-rated corporate bond yields. All variables are computed as the simple
20-day moving averages. The data period ranges from January 2002 until April 2018. Sources: Markit,

Figure 5.4: Cross-market deviation and financial intermediary health

OptionMetrics, FRED, Bloomberg, author’s computation.
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Table 5.1: Descriptive Statistics.

This table presents the descriptive statistics of the overlapping sample. In panel A, I report the averages
of the IS, CDS, CDS depth, the bid ask spreads, and the option moneyness, defined as the strike price over
the spot price, of selected options from the CW and CNV methodologies respectively by rating. Panel B
reports the summary statistics of the firm fundamentals, including log market capitalization (MC), book-to-
market (BM), leverage ratio, and institution ownership computed as the fraction of common shares owned
by institutions based on Thomson 13F filings. Panel C reports the correlations among the 5 year CDS, CW
IS, and CNV IS. The sample consists of firms with both non-missing 5 year CDS spreads and IS. The data
period ranges from Jan 2002 until April 2018. The data frequency is daily. Sources: Markit, OptionMetrics,
and authors’ computations.

Panel A: IS and CDS Descriptive Statistics by Rating

Rating #firms Obs. 5y 5y IS 5y IS Depth Bidask Bidask Money Money
CDS (CW) (CNV) (CW) (CNV) (CW) (CNV)

AAA 2 151 66.10 5194 7876  3.38 0.86 1.06 0.16 0.12

AA 2 160 80.24 9456  164.80 7.03 0.81 0.60 0.13 0.15

A 43 7397 13094 14623 251.19 6.37 0.64 0.65 0.24 0.24

BBB 49 7404 21548 189.38 30845 7.36 0.72 0.75 0.27 0.27

BB 58 20591  386.04 263.11 47142 6.36 0.63 0.55 0.35 0.40

B 79 38212 568.54 385.82 748.59 6.45 0.60 0.46 0.40 0.52

CCC- 7 4578 917.01 596.16 1164.29 5.26 0.44 0.28 0.41 0.64

Full Sample 240 78493  464.48 32355 609.26 6.43 0.61 0.52 0.36 0.44

Panel B: Firm Fundamentals Descriptive Statistics

mean std min 25% 50% 75% max
MC 15.39 1.41 10.51 14.46 15.30 16.31 19.77
BM 0.10 0.11 0.00 0.04 0.07 0.11 1.80
Leverage 0.39 0.24 0.00 0.20 0.37 0.55 0.98
10 0.71 0.27 0.00 0.60 0.76 0.88 1.50

Panel C: Correlations

5y CDS 5y IS (CW) 5y IS (CNV)
5y CDS 1.00
5yIS(CW) 079 1.00
5y IS (CNV)  0.77 0.85 1.00
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Table 5.2: Merton Model Regression.

This table provides the Merton model regression following Collin-Dufresne, Goldstein, and Martin (2001)
and Ericsson, Jacobs, and Oviedo (2009). Column 3 to 5 report the results of the level regression and column
6 to 8 report the results of the difference regression. For each of the N firms in my sample, I regress both CDS
and IS on the firm’s leverage ratio (Leverage), the firm’s realized annualized equity volatility computed
using daily stock returns within the previous month, and the 10 year constant maturity Treasury rate (10-
year yield). I report the cross-sectional averages of the coefficient estimates and R? values. The last column
reports the difference of the coefficients between CDS and IS regressions. The ¢-statistics are calculated
from the cross-sectional averages of the coefficient estimates divided by the standard deviation of the N
estimates and scaled by v/N. I drop firms with less than 25 observations. The data period ranges from Jan
2002 until April 2018. The data frequency is weekly. Leverage is defined as the ratio of the sum of book
value of debt and the value of preferred equity to the sum of market value of equity, book value of debt,
and book value of preferred equity. I interpolate the book value of equity to compute weekly leverage ratio.
Volatility is computed as the annualized standard deviation of daily equity returns of the previous month.
t statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. Sources: Markit, OptionMetrics, Center for Research in Security Prices, Compustat, FRED,
and author’s computation.

Level Regression Difference Regression
Expected CDS CWIS CNVIS CDs CWIS CNV IS
Sign
Constant -0.042***  -0.025***  -0.014 -0.000 -0.000***  -0.000***
(-3.63) (-3.78) (-1.47) (-0.93) (-3.41) (-3.74)
Leverage + 0.179***  0.153***  0.199***  0.132***  0.213***  0.182***
(10.76) (11.86) (9.11) (8.54) (12.9) (4.19)
Equity volatility ~ + 0.020***  0.025***  0.030***  0.003***  0.002* 0.003*
(7.79) (11.95) (10.81) (2.96) (1.89) (1.77)
10-year yield - 0.076 -0.376***  -0.425***  -0.198***  -0.317***  -0.234**
(0.49) (-3.92) (-3.26) (-2.86) (-5.95) (-2.33)
R? 68.7% 67.2% 61.5% 22.4% 23.8% 16.1%
No. of companies 147 147 147 137 137 137
Avg. no. of obs. 116 116 116 113 113 113
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Table 5.3: The long-run integration between CDS and IS.

In this table, I report the results of the Engle and Granger cointegration test on each firm’s CDS spreads
and the corresponding option implied credit spreads (IS). HalfLife denotes the median half life for the
cointegrated series. N;q,; denotes the number of firms in the sample. T,,, denotes the average number of

days across all series. Neeintearated Jongtes the percentage of firms with cointegrated IS and CDS among the
y N, p g g g

tal

total number of firms. For each firm, I search for the longest string of more than 250 daily non-missing IS
and CDS that were no more than 5 business days apart. The data period ranges from Jan 2002 until April

2018. The data frequency is daily. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Overlapping Sample

Ncointegrated

HalfLife Tavg Niotal Niotal
CWIS 649 450 32 81.25%
CNVIS 7.01 444 35 80.00%
Panel B: Separate Sample

HalfLife Tung Niotal Seogtearated
CWIS 943 493 72 75.00%
CNVIS 9.69 554 137 70.80%
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Table 5.4: Predicting future market movements based on current cross-market devia-

tions.

In this table, I report the results of the panel regression below:

ALISi+ \ [ st V1S,t B13,Dev A y / € 1St
(ACDSi,t> B (Oti,CDs,t) * ('YC’DS,t) * (5CDS,DeU> Devie—1 + Xebx + Yoy + (fz’,CDS,t)
where «; denotes the firm fixed effect, v; denotes the time fixed effect, X denotes the macroeconomic con-
trol variables, and Y; denotes the firm specific control variables. Panel A reports the regression results based
on the CW IS and panel B reports the results based on the CNV IS. The firm specific controls include firm
leverage ratio, log market capitalization lag changes, annualized stock volatility lag changes, computed us-
ing the previous month daily stock returns, rating, stock lag daily return, and stock market beta, computed
using the previous month daily stock returns. The macro controls include SP 500 index return, CBOE VIX
index (VIX) changes, 10 year Treasury yield changes, Treasury slope changes, defined as 10 year yield mi-
nus 2 year yield, and default spread changes. The data period ranges from Jan 2002 until April 2018. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the

10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: CW IS

AIS (t) ACDS (t)
D (2) 3) 4) ®) (6) @) 8

Dev -0.015***  -0.019*** -0.016*** -0.021*** 0.005*** 0.005*** 0.005***  (0.005***

(-6.523) (-7.990) (-6.357) (-8.161) (4.689) (5.438) (5.179) (5.608)
Observations 65555 58656 64410 57630 65555 58656 64410 57630
R? 0.204 0.223 0.104 0.122 0.223 0.233 0.044 0.058
Adjusted R? 0.153 0.167 0.098 0.115 0.173 0.178 0.038 0.051
Panel B: CNV IS

AIS (t) ACDS (t)
D (2) ®3) 4) ®) (6) @) )

Dev -0.020***  -0.025***  -0.022***  -0.027***  0.002***  0.003***  0.002***  (0.003***

(-7.307) (-8.926) (-7.105) (-8.789) (2.603) (3.762) (2.853) (3.897)
Observations 65555 58656 64410 57630 65555 58656 64410 57630
R? 0.203 0.218 0.116 0.129 0.221 0.232 0.042 0.057
Adjusted R? 0.152 0.161 0.110 0.122 0.171 0.176 0.035 0.050
Firm FE v v v v v v v v
Day FE v v v v
Year-Month FE v v v v
Firm Control v v v v
Macro Control v v v v
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Table 5.5: Kapadia and Pu (2012) price discrepancy.

In this table, I report the misalignment between individual IS and CDS, AISACDS < 0, as a propor-
tion (Fraction) of total observations with AISACDS # 0 measured over non-overlapping daily, weekly,
monthly, and quarterly time intervals following Kapadia and Pu (2012). Column 3 to 5 reports the mis-
alignment statistics based on the CW metric and column 6 to 8 reports the misalignment statistics based on
the CNV metric. Obs. denotes the number of dates with non missing observations in the full sample. A|IS|
and A|CDS)| represents the mean absolute changes of IS and CDS. The data period ranges from Jan 2002
until April 2018. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

CWIS CNV IS
Freq. Obs. Fraction(%) A|IS)| A|CDS|  Obs. Fraction(%) A|IS)| A|CDS]|
(bps) (bps) (bps) (bps)
daily 73722 46.43 11.13 24.04 73722 45.96 11.64 37.81
weekly 13972 40.95 21.17 36.09 13972 42.26 21.85 61.33
monthly 2747 35.68 4421 59.38 2747 36.48 58.32 91.57
quarterly 531 25.80 114.06 73.40 531 30.51 98.43 142.68
Panel B: Investment Grade
CWIS CNV IS
Freq. Obs. Fraction(%)A|LS]| A|CDS|  Obs. Fraction(%)A|IS| A|CDS]
(bps) (bps) (bps) (bps)
daily 14354 46.64 5.13 18.50 14354 46.75 5.31 28.70
weekly 2615 40.73 11.32 32.71 2615 40.65 10.91 54.40
monthly 481 33.89 19.37 45.01 481 35.55 20.76 75.25
quarterly 93 29.03 34.65 70.39 93 32.26 33.90 118.95
Panel C: High Yield
CWIS CNV IS
Freq. Obs. Fraction(%) A|IS)| A|CDS|  Obs. Fraction(%)A|IS)| A|CDS]|
(bps) (bps) (bps) (bps)
daily 59368 46.38 15.18 27.78 59368 45.77 15.93 43.99
weekly 11357 41.00 27.40 38.23 11357 42.63 28.81 65.74
monthly 2266 36.05 54.37 65.26 2266 36.67 74.17 98.46
quarterly 438 2511 139.06 74.35 438 30.14 117.68 149.76
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Table 5.6: The relation between arbitrage costs and the integration between the option
and CDS markets.

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage
cost proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity
and illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyn-
cratic volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional owner-
ship (I0) and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control vari-
ables include firm leverage ratio, log market capitalization, and annualized stock volatility computed

using the previous month daily stock returns. The KP metric is computed as #; = 3log it:i where

K = % ij:l Iiarsr, acpsr, <oy — 1 and N denotes the number of business days with non zero daily
CDS spread changes within a week. Spreadzero is computed as the ratio of zero daily spread changes to

the total number of non-missing daily CDS changes over the week. Idiosyn is computed as log %, where
R? is the R-square of the Fama-French three-factor regression of stock returns. The data period ranges from
Jan 2002 until April 2018. The data frequency is weekly. All independent variables are winsorized at 0.1%
and 99.9% level. The standard errors are clustered at both firm and date level. t statistics are reported in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit,
OptionMetrics, Fred, Kenneth R. French data library, and author’s computation.

o o 0 @ © 6 0 & © o  a G @ 0 0 05

A A L A A A P P L L L

Lndepth -0.039*  -0.027* -0.037** -0.025
(-2570)  (-1.660) (2473)  (-1.504)

Spreadzero 0123 0.299** 0.100 0.286**
(1.047) (2.415) (0.850)  (2.288)
Bidask 0.043**  0.066*** 0.040*  0.064***
(2.736)  (4.384) (2553)  (4.285)

Volume -0.000 -0.000 -0.000 -0.000
(-0.581)  (-1.030) (-0.460)  (-0.765)
Idiosyn 0.009 0.016*** 0.008 0.016***
(1507)  (3.038) (1470)  (3.105)
10 -0.039  -0.083** -0.048  -0.080**
(-1.258)  (-2.358) (1615)  (-2.343)

#Analyst -0.032**  -0.030  -0.034**  -0.034*

(-1991) (-1.585) (-2.071) (-1.883)
Observations 8888 9008 8888 9008 8888 9008 8888 9008 8888 9008 8888 9008 8888 9008 8888 9008

R? 0.169 0.128 0.169 0.129 0.170 0.130 0.169 0.128 0.169 0.129 0.169 0.129 0.169 0.128 0.171 0.132
Adjusted R? 0.076 0.031 0.075 0.032 0.076 0.033 0.075 0.031 0.075 0.032 0.075 0.032 0.075 0.031 0.077 0.035
Firm FE v v v v v v v v v v v v v v v v
Week FE v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v
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Table 5.7: Predicting future market movements based on current cross-market devia-

tions for different conditions.

In this table, I report the results of the panel regression below:

. . u c D. ,
( ALS; 111 ) _ < Q.18 ) n ( VIS¢ ) " ( Bi's.pev + Bis.pevDet )Devi’t + Y] By + ( €i,18,¢ )

ACDS; 41 ®i,CDS,t YeDs,t Béps,pev T Béps, pevDet €,CDS,t

where D, denotes the condition indicator variable, 8“ and 8¢ denotes the unconditional and conditional
effect of cross-market deviation, a; denotes the firm fixed effect, v, denotes the time fixed effect, and Y; de-
notes the firm specific control variables. Panel A (B) reports the regression results of AIS; ;11 (ACDS; 141).
Columns (1), (3), (5), and (7) correspond to the regressions based on CW IS and the rest columns correspond
to the regressions based on CNV IS. The firm specific controls include firm leverage ratio, log market cap-
italization lag changes, annualized stock volatility lag changes, computed using the previous month daily
stock returns, rating, stock lag daily return, and stock market beta, computed using the previous month
daily stock returns. D¢ psiiiiquid (DoptionIitiquid) €quals 1 if both the CDS depth (option volume) belonging
to the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the top tercile, and 0 other-
wise. Dygiosyn €quals 1 if the idiosyncratic risk variable belongs to the top tercile. Dryansparency €quals 1 if
both the IO and #Analyst belong to the bottom tercile. The data period ranges from 2002/01 until 2018/04.
The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clus-
tered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance
at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

O] @ ) @) ©) (6) @) ®)
cw CNV cw CNV cw CNV cw CNV

Panel A: IS predictability

LSO, AISQAY AISGY,  AISQNY  AISON,  AISCNY  AISQY,  AISGYY

Dev -0.017*** -0.025*** -0.013*** -0.022%** -0.019*** -0.026*** -0.019*** -0.028***
(-7.109) (-8.800) (-6.198) (-8.241) (-7.572) (-8.344) (-6.998) (-8.475)
Depsiitiquia * Dev 0.002 -0.005
(0.621) (-1.499)
Doptionitiquid * Dev -0.025* -0.029**
(-5.831) (-5.968)
Drdiosyn * Dev 0.005*** 0.000
(2.868) (0.013)
Drransparency * Dev 0.008*** 0.009**
(2.647) (2.324)
Observations 58833 58610 58833 58610 58833 58610 58833 58610
R? 0.221 0.217 0.224 0.220 0.222 0.217 0.222 0.218
Adjusted R? 0.165 0.161 0.168 0.163 0.165 0.161 0.166 0.161

Panel B: CDS spreads predictability
ACDSit+1 ACDSj1 ACDS;p1 ACDSip1 ACDSjie1 ACDS;pp1 ACDSi ACDS; 14

Dev 0.004*** 0.002*** 0.004*** 0.002** 0.004*** 0.003*** 0.004*** 0.002
(3.643) (2.746) (3.566) (2.597) (3.349) (3.280) (3.391) (1.535)
Depsiitiquid * Dev 0.006*** 0.004***
(3.017) (2.772)
Doptiontitiquid * Dev -0.001 0.002**
(-0.824) (2.206)
Didiosyn * Dev -0.000 -0.001
(-0.241) (-0.829)
Divamsparency * Dev 0.001 0.003**
(0.297) (2.001)
Observations 58833 58662 58833 58662 58833 58662 58833 58662
R? 0.224 0.228 0.224 0.228 0.224 0.227 0.224 0.228
Adjusted R? 0.168 0.172 0.168 0.172 0.168 0.172 0.168 0.172
Firm FE v v v v v v v v
Day FE v v v v v v v v
Firm Control v v v v v v v v
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Table 5.8: The relation between financial intermediary health and the level deviation
between IS and CDS spreads.

In this table, I report the results of the following panel regression using 5 different proxies for financial
intermediary health:

Silf)tev = a; + Y, + Bheattnhealthy + YittBY + €t

where Sﬂe” = log(1S;+) —log(CDS;+). health; denotes the financial intermediary health variable, o; de-
notes the firm fixed effect, v;,,, denotes the year-month fixed effect, and Y; denotes the firm specific control
variables. The 5 financial intermediary health variables include the dealer leverage ratio from Adrian, Etula,
and Muir (2014) (AEM-LV), the intermediary capital ratio from He and Krishnamurthy (2013) (HKM-ICR),
the ted spread (TED), the LIBOR-OIS spread (LIBOR-OIS), and default spread (DEF). The IS are computed
based on CW. The firm specific controls include firm leverage ratio, log market capitalization, annualized
stock volatility, computed using the previous month daily stock returns, rating, stock daily return, option
bid ask spreads, and CDS depth. IS are computed using the CW method. The data period ranges from
Jan 2002 until April 2018. The data frequency is daily. All variables are winsorized at 1% and 99% level.
The standard errors are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **,
and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and
author’s computation.

1) 2) 3) 4 (©) (6)
AEM-LV -0.000
(-0.857)
HKM-ICR -5.819*** -5.370***
(-4.154) (-3.826)
TED 16.717*** 4.787**
(6.983) (2.229)
LIBOR-OIS 27.555%** 21.232***
(7.242) (5.201)
DEF 1669.753***  421.520
(4.371) (1.023)
Observations 70593 69682 68693 69268 70044 61965
R? 0.545 0.620 0.617 0.617 0.617 0.630
Firm FE v v v v v v
Year-Month FE v v v v v v
Firm Control v v v v v v
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Table 5.9: The relation between financial intermediary health and lag return deviation
between IS and CDS spreads.

In this table, I report the results of the following panel regression using 5 different proxies for financial
intermediary health:

Pl = i+ Ve, + Breannhealthy + Y/ By + €4
where RPfY, = R, — RERS, where R[§, | and RYRY is computed based on the following 3 metrics:
As,;, Alog sy, and % based on Augustin, Saleh, and Xu (2020) where B = i (1 — e_(”J’liitR)(T_t)),
1-R

s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_; prior to the Big Bang and 100
(500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral which is set to 1. IC' R, denotes
the financial intermediary health variable, o; denotes the firm fixed effect, +;,,, denotes the year-month
fixed effect, and Y; denotes the firm specific control variables. The 5 financial intermediary health variables
include the dealer leverage ratio from Adrian, Etula, and Muir (2014) (AEM-LV), the intermediary capital
ratio from He and Krishnamurthy (2013) (HKM-ICR), the ted spread (TED), the LIBOR-OIS spread (LIBOR-
OIS), and default spread (DEF). The IS are computed based on CW. The firm specific controls include firm
leverage ratio, log market capitalization, annualized stock volatility, computed using the previous month
daily stock returns, rating, stock daily return, option bid ask spreads, and CDS depth. IS are computed
using CW method. The data period ranges from Jan 2002 until April 2018 excluding financial crisis. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

1) 2 3) @) 5) (6) 7) ®) 9) (10) an (12) (13) (14) (15) (16) a7 (18)
As  Alogs AP As Alogs ar As Alogs AP As Alogs AP As Alogs ar As Alogs AL
AEM-LV 0.000  0.000  0.000
(0.550) (0.767)  (0.276)
HKM-ICR 0.034* 2251 0.204"** 0.036*  2157°**  0.199"**
(2139)  (5.098)  (3.979) (1.944)  (4.405)  (3.362)
TED -0.064*  -1.571 -0.265" 0.004 0333 -0.045
(-1.688) (-1.565) (-2.009) (-0.063)  (0.168)  (-0.208)
LIBOR-OIS 0.151% 4128 -0.602** 0121 2025  -0315
(-1.935)  (2.004) (-2.141) (-1.000)  (-0.537) (-0.714)
DEF 8.064 -322444* 3612 14809 95493  29.164

(1438)  (-1.840) (0.188) (2502) (0.534) (1.469)
Observations 52444 52444 51996 51653 51653 51205 50938 50938 50490 51432 51432 50984 51974 51974 51526 46633 46633 46200
R? 0003 0004 0003 0006 0007 0006 0006 0006 0006 0006 0006 0006 0006 0006 0006 0008 0008  0.007

Firm FE v v v v v v v v v v v v v v v v v v
Year-Month FE v v v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v v v
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Table 5.10: The relation between intermediary capital ratio and lag return deviation
between IS and CDS spreads.

In this table, I report the results of the panel regression below:

Pl = i+ Yey + Breaunhealthy + Y/ By + €4

where Rffﬁl = Rrsi+1 — Repsi+1, where Rig,y1 and Rcopsi+1 is computed based on the fol-

lowing 3 metrics: As;, Alogs,;, and ATE based on Augustin, Saleh, and Xu (2020) where JSt =

ﬁ (1 — e (et %’R)(T’t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. The data period ranges from Jan 2002 until April 2018.
The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clus-
tered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance

at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alog s AT?

1) ) ©) (4) ©) (6) ) (8) ©)

ICR 0.072°*  0.063*** 0.053*** 2478 2575%* 2240*** 0306*** 0.292*"* 0.254"**
(3.805) (3.744) (2.609) (5.993) (6.039) (4117) (4.844) (5269)  (3.533)
Observations 66279 59075 53293 66279 59075 53293 65769 58622 52856

R? 0.005 0.007 0.008 0.005 0.007 0.009 0.005 0.008 0.009
Panel B: IG Sample
ICR 0.072***  0.073***  0.052***  4.264"** 4.499*** 3.623*** 0.306** 0.315***  (0.222***

(3559)  (4457)  (2.726)  (5.608)  (5.885)  (4.236)  (3.923) (4.779)  (2.853)
Observations 14395 13673 12236 14395 13673 12236 14287 13574 12140

R? 0.018 0.023 0.025 0.011 0.014 0.017 0.018 0.024 0.026
Panel C: HY Sample
ICR 0.073***  0.060***  0.053**  1.854*** 1.842*** 1.731*** 0.308*** 0.285"** 0.262***

(3.069) (2907)  (2.080)  (4417) (4352) (2961) (4.035) (4272)  (3.012)
Observations 51883 45401 41055 51883 45401 41055 51481 45047 40714
R? 0005 0008 0009 0004 0007  0.009 0004 0008  0.009

Panel D: Excluding Financial Crisis

ICR 0.038*  0.034**  0.040*  2.086*** 2251*** 2061** 0201 0.204* 0.206***
(2386)  (2.139) (1.915) (4.982) (5.098) (3.529) (3.731)  (3.979)  (2.867)
Observations 57952 51653 46633 57952 51653 46633 57452 51205 46200

R? 0.004 0.006 0.008 0.004 0.007 0.008 0.003 0.006 0.007
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v
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Appendix

A Definitions of key variables

e IS: Option implied credit spread.

e CW and CNV IS: IS computed by Carr and Wu (2011) and Culp, Nozawa, and
Veronesi (2018) method.

e Leverage ratio: ratio of the sum of book value of debt and the value of preferred
equity to the sum of market value of equity, book value of debt, and book value of

preferred equity

e Volatility: the annualized standard deviation of daily equity returns of the previous

month.

e Log market capitalization (MC): log of the product of equity price and outstanding
shares of the equity.

e Book-to-market (BM): Following Fama-French procedure.
e Rating: S&P rating of a firm.

e Stock market beta: beta coefficient of the Fama-French 3 factor regression using the

previous month daily stock return.

e institution ownership: fraction of common shares owned by institutions based on

Thomson 13F filings.

e #Analyst: analyst coverage computed as the number of analyst.
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e Kapadia and Pu (2012) (KP) metric: computed as ; = 3 log % where k; = 2 SV Liazsr, acpsr,

i,kT

1 and N denotes the number of business days with non zero daily CDS spread

changes within a week.

e Spreadzero: computed as the ratio of zero daily spread changes to the total number

of non-missing daily CDS changes over the week.

e Idiosyn: computed as log 1}—1;2, where R? is the R-square of the Fama-French three-

factor regression of stock returns.

o Dcpsiiiquid (Doptiontiiiquid) €quals 1 if both the CDS depth (option volume) belonging
to the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the

top tercile, and 0 otherwise.
® Digiosyn €quals 1 if the idiosyncratic risk variable belongs to the top tercile.
® Drransparency €quals 1 if both the IO and #Analyst belong to the bottom tercile.
o AEM-LV: dealer leverage ratio from Adrian, Etula, and Muir (2014)
e HKM-ICR: intermediary capital ratio from He and Krishnamurthy (2013)
e TED: ted spread
e LIBOR-OIS: LIBOR-OIS spread

e DEF: default spread computed as the difference between BAA and AAA-rated cor-
porate bond yields.

e Treasury slope: 10 year Treasury yield minus 2 year Treasury yield.

B Summary statistics
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Figure B.1: The Histogram of Selected Option Features

In these figures, I report the histograms of moneyness, defined as the strike price over the spot price, delta,
and maturity of options used to construct the option implied credit spread. Following Carr and Wu (2011), I
select put options based on the following criteria: 1) positive open interest; 2) strike price smaller than $5; 3)
positive bid price; 4) delta greater than -0.15. After applying the filters, if there are more than one option for
a particular firm date combination, I choose only 1 contract by applying the filters in the following order:
highest open interest, smallest strike, and largest delta. The sample consists of firms with both non-missing
5 year CDS spreads and option implied credit spreads. The data period ranges from Jan 2002 until April
2018. The data frequency is daily. Sources: Markit, OptionMetrics.
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Figure B.2: 2 year CDS Spreads and 5 year CDS Spread Time Series Plot

In this figure, I report the scatter plot of log 2 year CDS spreads and log 5 year CDS spreads across the full
overlapping sample. The x axis corresponds to log 2 year CDS spreads and the y axis corresponds to the

5 year CDS spreads. The data period ranges from Jan 2002 until April 2018. The data frequency is daily.
Sources: Markit, OptionMetrics, author’s computation.
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Table B.1: Descriptive Statistics of CW Full Sample.

This table presents the descriptive statistics of the CW separate full sample. In panel A, I report the aver-
ages of the IS, CDS, CDS depth, the bid ask spreads, and the option moneyness, defined as the strike price
over the spot price, of selected options from the CW methodologies by rating. Panel B reports the sum-
mary statistics of the firm fundamentals, including log market capitalization (MC), book-to-market (BM),
leverage ratio, and institution ownership computed as the fraction of common shares owned by institu-
tions based on Thomson 13F filings. Panel C reports the correlations between the 5 year CDS and CW IS.
The sample consists of firms with both non-missing 5 year CDS spreads and IS. The data period ranges
from Jan 2002 until April 2018. The data frequency is daily. Sources: Markit, OptionMetrics, and authors’
computations.

Panel A: IS and CDS Descriptive Statistics by Rating

Rating #firms Obs. 5y CDS 5y IS Depth Bidask Money
AAA 2 278 38.68 232.78 3.45 0.57 0.24
AA 5 2616 145.70 171.38 5.15 0.63 0.24
A 51 15476 200.97 261.28 6.92 0.53 0.29
BBB 84 30664 324.94 318.20 7.55 0.60 0.38
BB 72 42940 447 41 346.75 6.52 0.57 0.40
B 71 46874 653.21 468.17 6.07 0.57 0.43
CCC- 2 846 602.25 381.48 4.43 043 0.50
Full Sample 325 153097 464.67 373.15 6.44 0.58 0.39
Panel B: Firm Fundamentals Descriptive Statistics

mean std min 25% 50% 75% max
MC 15.41 1.41 9.59 14.44 15.31 16.34 19.77
BM 0.10 0.10 0.00 0.04 0.07 0.12 1.80
Leverage 0.40 0.25 0.00 0.20 0.37 0.57 1.00
IO 0.71 0.26 0.00 0.61 0.76 0.88 1.94

Panel C: Correlations

5y CDS 5y IS
5y CDS 1.00
5y IS 0.76 1.00
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Table B.2: Descriptive Statistics of CNV Full Sample.

This table presents the descriptive statistics of the CNV separate full sample. In panel A, I report the
averages of the IS, CDS, CDS depth, the bid ask spreads, and the option moneyness, defined as the strike
price over the spot price, of selected options from the CNV methodologies by rating. Panel B reports the
summary statistics of the firm fundamentals, including log market capitalization (MC), book-to-market
(BM), leverage ratio, and institution ownership computed as the fraction of common shares owned by
institutions based on Thomson 13F filings. Panel C reports the correlations between the 5 year CDS and
CNV IS. The sample consists of firms with both non-missing 5 year CDS spreads and IS. The data period
ranges from Jan 2002 until April 2018. The data frequency is daily. Sources: Markit, OptionMetrics, and
authors’ computations.

Panel A: IS and CDS Descriptive Statistics by Rating

Rating #firms Obs. 5y CDS 5y IS Depth Bidask Money
AAA 5 675 32.20 59.56 3.84 0.64 0.38
AA 4 747 47.02 86.81 8.54 0.78 0.29
A 129 146418 50.26 137.49 7.66 0.52 0.50
BBB 133 98430 92.89 167.24 7.78 0.67 0.51
BB 111 96316 249.21 365.76 6.63 0.51 0.53
B 71 60652 407.49 599.44 5.95 0.45 0.57
CCC- 5 4737 464.39 821.90 3.61 0.19 0.72
Full Sample 458 407975 165.39 274.96 7.14 0.54 0.52
Panel B: Firm Fundamentals Descriptive Statistics

mean std min 25% 50% 75% max
MC 16.51 1.36 10.37 15.59 16.62 17.48 20.42
BM 0.06 0.07 0.00 0.03 0.04 0.07 1.80
Leverage 0.22 0.20 0.00 0.08 0.15 0.30 0.98
IO 0.75 0.20 0.00 0.67 0.78 0.86 1.56

Panel C: Correlations

5y CDS 5y IS
5y CDS 1.00
5y IS 0.80 1.00
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C Augmented Merton model regression

Table C.1: Augmented Merton model regression.

This table provides the augmented Merton model regression following Collin-Dufresne, Goldstein, and
Martin (2001) and Ericsson, Jacobs, and Oviedo (2009). Column (3) - (5) report the results for the level
regression, and column (6) - (8) report the results for the difference regression. For each of the NV firms in
my sample, I regress both CDS and IS on the firm’s leverage ratio (Leverage), the firm’s realized annualized
equity volatility (Equity volatility), the 10 year constant maturity Treasury rate (10-year yield), the Treasury
yield curve slope (Yield curve slope), the square of 10 yield yield (Sq. 10-year yield), S&P 500 index returns
(S&P 500), and the slope of the smirk on S&P 500 index options (Smirk slope). I report the cross-sectional
averages of the coefficient estimates and R? values. The last column reports the difference of the coefficients
between CDS and IS regressions. The t-statistics are calculated from the cross-sectional averages of the
coefficient estimates divided by the standard deviation of the N estimates and scaled by v/N. I drop firms
with less than 25 observations. The data period ranges from Jan 2002 until April 2018. The data frequency is
weekly. Leverage is defined as the ratio of the sum of book value of debt and the value of preferred equity to
the sum of market value of equity, book value of debt, and book value of preferred equity. I interpolate the
book value of equity to compute weekly leverage ratio. Volatility is computed as the annualized standard
deviation of daily equity returns of the previous month. The yield curve slope is defined as the 10 year
yield minus 1 year yield. The smirk slope is defined as the -20 delta implied volatility of the S&P 500 index
option with 30 days maturity minus the -50 delta implied volatility. ¢ statistics are reported in parentheses.
*,**,and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics,
Center for Research in Security Prices, Compustat, FRED, and author’s computation.

Level Regression Difference Regression
Expected Sign CDS CW IS CNVIS CDS CW IS CNVIS
Constant -0.048 -0.014 -0.019 -0.000 -0.000 -0.000*
(-1.39) (-0.78) (-0.6) (-0.66) (-1.63) (-1.85)
Leverage + 0.180***  0.156***  0.185*** 0.116*** 0.175*** 0.115**
(10.58) (12.5) (10.18) (6.75) (11.69) (2.15)
Equity volatility + 0.013***  0.018***  0.021***  0.003*** 0.002* 0.003
(6.02) (10.34) (8.49) (3.07) (1.9 (1.61)
10-year yield - 2.801 -0.295 0.816 -1.361 0.728 2.973
(1.09) (-0.31) (0.53) (-1.47) (0.46) (1.4)
Yield curve slope - -2.158**  -0.754***  -0.953** 0.110 -0.009 0.041
(-2.29) (-3.5) (-2.41) (0.6) (-0.05) (0.16)
Sq. 10-year yield - -28.239 2.475 -12.739  18.770* -8.074 -32.716
(-0.79) 0.2) (-0.65) (1.66) (-0.45) (-1.37)
S&P 500 - 0.031* 0.014***  0.023***  -0.011*  -0.023*** -0.032***
(1.66) (2.72) (312)  (-1.75)  (-356)  (-3.64)
Smirk slope + 0.101**  0.126***  0.189***  -0.001 0.031** 0.058***
(2.42) (7.18) (5.96) (-0.11) (2.5) (3.46)
R? 79.5% 75.7% 71.4% 30.2% 32.5% 24.5%
No. of companies 143 143 143 132 132 132
Avg. no. of obs. 114 114 114 112 112 112
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D Kendall correlation summary statistics

Table D.1: Descriptive Statistics of Kendall correlations.

This table presents the descriptive statistics of Kendall correlations computed based on CW and CNV IS. In
panel A, I report the summary statistics of Kendall correlations. In panel B, I report correlations between
the IS and macroeconomic and firm fundamental variables. The macroeconomic variables include S&P
500 index returns (SP500), CBOE VIX index (VIX), 10-year Treasury yield (r1¢,), Treasury yield curve slope
(Slope) defined as 10-year yield minus 2-year yield, and default spreads (DEF). The firm fundamental vari-
ables include leverage (Lev), equity volatility (Eqty Vol), log market capitalization (MC), and 5-year CDS
spreads (5y CDS). The data period ranges from Jan 2002 until April 2018. The data frequency is weekly.
Sources: Markit, OptionMetrics, FRED, Compustat, and authors’ computations.

Panel A: IS and CDS Descriptive Statistics

obs. mean std min 10% 50% 90% max
CW ki 4 11079 -0.07 0.48 -1.00 -0.60 -0.20 0.60 1.00
CNV ;¢ 11079 -0.08 0.46 -1.00 -0.60 -0.20 0.60 1.00

Panel B: Correlations

Cw CNV  Lev Eqty MC S5y SP500 VIX T10y Slope DEF

Rt Kit Vol CDS
CWkiy  1.00
CNVk;; 051 1.00
Lev -0.06  -0.02 1.00
Eqty Vol -0.08 -0.05 0.25 1.00
MC 0.04 0.02 -0.28  -0.35 1.00

5yCDS -0.06 -0.03 043 0.45 -047  1.00
SP500 0.10 0.06 -0.00 -0.00 0.02 -0.03  1.00

VIX -0.09 006 -0.08 046 0.11 0.04 -0.20  1.00

T'10y 0.07 0.03 -0.12  -0.05 0.02 -0.10 -0.01 -0.05 1.00

Slope -0.02  0.02 0.00 0.05 0.10 -0.00 0.04 0.28 -0.14  1.00

DEF -0.04 -002 -0.08 043 0.11 0.04 -0.00 0.82 -013 012 1.00
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E Further discussion on the cointegration analysis

Since the cointegration test requires sufficient long continuous time series data for both
the IS and the CDS, this test is only applicable to a subset of the firms. To increase the
size of the testing sample, I also perform the same analysis using the separate full sample
produced by the CW and CNV methods, respectively. Panel B reports the cointegration
results for the separate samples. Both the CW and CNV test sample increase significantly
compared with the overlapping test sample.*® Nevertheless, about 75% (71%) of the firms
in each sample have cointegrated IS and CDS series for the CW (CNV) IS. This again
indicates strong integration between the option and CDS markets in the long run.

The average number of days across all firms is 450 (444) in the overlapping sample
and 493 (554) in the separate sample with the CW (CNV) metric. One legitimate concern
about the cointegration analysis is that the sample period might not be long enough to
study the long-term integration. However, Hakkio and Rush (1991) provide evidence that
the power of the cointegration test is related to the ratio of the length of the sample to the
half-life of the cointegrating vector rather than the sample length itself. A higher ratio
indicates a higher power of the cointegration test. Among all the samples, the smallest
ratio is about 52.% This suggests that the cointegration tests in this paper have stronger
power than many purchasing power parity cointegration tests in the literature, with half-

life around 3 years and less than 100 years of data.

%The reason why the two metrics produce different samples for the cointegration analysis is because
some firms have integrated CW IS but not CNV IS or vice versa. The cointegration analysis requires both
IS and CDS to be I(1) series.

%Blanco, Brennan, and Marsh (2005) documents that the half-life of bond yield and CDS spreads in their
cointegration analysis is 6 days and their sample period is about 360 daily data. The ratio is about 60, which
is similar to the ratios in most of the samples in this paper. Even though the smallest ratio is 52, it requires
over 156 years of data for the purchasing power parity cointegration analysis to reach the same test power.
This suggests that my analysis on the shorter sample has stronger testing power than many cointegration
analysis in the literature with longer samples.
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Table E.1: The long-run integration between 2-year CDS and 2-year IS.

In this table, I report the results of the Engle and Granger cointegration test on each firm’s 2-year CDS
spreads and the corresponding 2-year option implied credit spreads (IS). Hal f Li fe denotes the median half
life for the cointegrated series. Nyt denotes the number of firms in the sample. T,,, denotes the average

number of days across all series. W denotes the percentage of firms with cointegrated IS and CDS
among the total number of firms. For each firm, I search for the longest string of more than 250 daily non-
missing IS and CDS that were no more than 5 business days apart. The data period ranges from Jan 2002

until April 2018. The data frequency is daily. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Overlapping Sample

W Tavg Niotal NCO;G::f;amd
CWIS 6.14 451 31 83.87%
CNVIS 6.63 461 31 83.87%
Panel B: Separate Sample

HalfLife Tang Niotar Reotpteqrated
CWIS 7.67 476 71 81.69%
CNVIS 888 510 124 70.97%

175



F Further discussion on KP test on misalignment

This section simulates the IS and CDS time series which are cointegrated with cointe-
grating vector [1,—1,0.005], i.e. IS — CDS — 0.005 is stationary,” and half-life of 7 days.
The data generating process for the true credit spread resembles the square root process:
Asyyq = 0(p—s) +0+/5i€041. The data generating process for the short-lived price discrep-
ancy due to the frictions is n41 = pn + 0,441, where p is -0.099, which can be deduced
from the half-life. 6 and p are taken from Augustin, Saleh, and Xu (2020) (henceforth,
ASX), which are 0.013 and 0.06, respectively. Based on the volatility value of the CDS
spreads data generating process (0.004) in ASX, I divide this volatility into ¢ and o, in my
exercise. In particular, I set 0 = 0.015 and o,, = 0.001. Finally, I set I.S5; = s, — 0.517, — 0.005
and CDS, = s; + 0.5n,. I simulate 1,000 days of observations. Figure F.1 reports the time
series of simulated IS and CDS spreads (panel (a)), true credit spreads (panel (b)), and the
price discrepancy between IS and CDS spreads (panel (c)).

Figure E1: Simulated IS and CDS spreads time series

In this figure, I report the time series of simulated IS and CDS spreads (panel (a)), true credit spreads (panel
(b)), and the price discrepancy between IS and CDS spreads (panel (c)). The IS and CDS are cointegrated
with cointegrating vector [1,-1,0.005] and half-life of 7 days. The data generating process for the true credit
spread resembles the square root process: As;11 = 0(n — s¢) + 0/St€+4+1. The data generating process for
the short-lived price discrepancy due to the frictions is n¢ 1 = pn: + 01441, where p is -0.099, which can be
deduced from the half-life. § and p are taken from Augustin, Saleh, and Xu (2020), which are 0.013 and 0.06,
respectively. o = 0.015 and 0, = 0.001. In addition, I set 1.S; = s, — 0.57; — 0.005 and CDS; = s; + 0.5n;. 1
simulate 1,000 days of observations. Sources: Author’s computation.
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Visually, these two credit spreads co-move strongly with each other, consistent with

the data generating process. Following the same methodology in KP and the main text

%The stationary basis 0.005 is for the visual purpose when plotting the simulated time series. It also
corresponds to the potential data error or model misspecification in practice.
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of this paper, I compute the fraction of misalignment of these two credit spreads at daily,
weekly, monthly, and quarterly frequency. Table F.1 reports the misalignment fractions
between the simulated IS and CDS. The fractions are decreasing with the data frequency
but the fraction is significantly different from 0 at the long horizon, i.e. quarterly. This
is mainly driven by the volatile short-lived price discrepancy between the IS and CDS
spreads, which can be seen from panel (b) and (c) from Figure F.1. Therefore, the posi-
tive value of the long-run misalignment fraction should not be simply interpreted as the

existence of long run segmentation between the two markets without further evidence.

Table F.1: Kapadia and Pu (2012) price discrepancy (Simulation)

In this table, I report the misalignment between the simulated IS and CDS, AISACDS < 0, as a propor-
tion (Fraction) of total observations with AISACDS # 0 measured over non-overlapping daily, weekly,
monthly, and quarterly time intervals following Kapadia and Pu (2012). Sources: Author’s computations.

Daily =~ Weekly Monthly Quarterly
Fraction | 68.77% 43.50% 37.78%  20.00%
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G Additional regressions of IS and CDS spreads misalign-

ment on arbitrage costs

Table G.1: The relation between arbitrage costs and the integration between the option

and CDS markets (CW IS separate full sample).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage cost
proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity and
illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyncratic
volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional ownership (10)
and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control variables include
firm leverage ratio, log market capitalization, and annualized stock volatility computed using the previous
month daily stock returns. Macroeconomic control variables include S&P 500 index returns, CBOE VIX
index (VIX), 10 year Treasury yield, and the Treasury yield slope defined as 10 year yield minus 2 year
yield. The KP metric is computed as <; = %log }f—:i where k; = % Zivzl Liarsr, acpsr, <oy — 1 and N
denotes the number of business days with non zero daily CDS spread changes within a week. Spreadzero
is computed as the ratio of zero daily spread changes to the total number of non-missing daily CDS changes

over the week. Idiosyn is computed as log 1;—?2, where R? is the R-square of the Fama-French three-factor
regression of stock returns. The data period ranges from Jan 2002 until April 2018. The data frequency is
weekly. All independent variables are winsorized at 0.1% and 99.9% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, Fred, Kenneth R. French data library,

and author’s computation.

@) 2) ®) ) ©) (6) @) ®) ©)

Lndepth -0.035*** -0.033**  -0.041***
(-2.708) (-2.593)  (-3.496)
Spreadzero 0.108 0.090 0.030
(1.205) (1.017)  (0.351)
Bidask 0.058*** 0.057***  0.068***
(5.489) (5.380)  (6.338)
Volume -0.000 0.000 0.000
(-0.061) (0.169)  (0.109)
Idiosyn 0.008** 0.008**  0.013***
(1.973) (2.022)  (3.367)
I0 -0.023 -0.025 -0.025
(-1.171) (-1257)  (-1.182)
#Analyst -0.019 -0.018 -0.022*

(-1.613) (-1.441)  (-1.797)
Observations 16746 16746 16746 16746 16746 16746 16746 16746 16630

R? 0.124 0.123 0.125 0.123 0.123 0.123 0.123 0.126 0.053
Adjusted R? 0.069 0.069 0.071 0.069 0.069 0.069 0.069 0.071 0.037
Firm FE v v v v v v v v v
Week FE v v v v v v v v

Year FE v
Firm Control v v v v v v v v v
Macro Control v
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Table G.2: The relation between arbitrage costs and the integration between the option
and CDS markets (CNV IS separate full sample).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage cost
proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity and
illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyncratic
volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional ownership (IO)
and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control variables include
firm leverage ratio, log market capitalization, and annualized stock volatility computed using the previous
month daily stock returns. Macroeconomic control variables include S&P 500 index returns, CBOE VIX
index (VIX), 10 year Treasury yield, and the Treasury yield slope defined as 10 year yield minus 2 year
yield. The KP metric is computed as #; = 3 log {5 where x; = % Sy Iiarsr, acpsr, <oy — 1and N
denotes the number of business days with non zero daily CDS spread changes within a week. Spreadzero
is computed as the ratio of zero daily spread changes to the total number of non-missing daily CDS changes
over the week. Idiosyn is computed as log 1;%1;2 , where R? is the R-square of the Fama-French three-factor
regression of stock returns. The data period ranges from Jan 2002 until April 2018. The data frequency is
weekly. All independent variables are winsorized at 0.1% and 99.9% level. The standard errors are clustered
at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, Fred, Kenneth R. French data library,

and author’s computation.

(1) 2) ®) @) ©) (6) ) ®) ©)

Lndepth -0.022*** -0.023***  -0.018***
(-3.211) (-3.324)  (-2.605)
Spreadzero 0.051 0.036 0.052
(1.103) (0.772) (1.093)
Bidask 0.033*** 0.032***  0.030***
(4.995) (5.007) (4.608)
Volume -0.000 -0.000 -0.000
(-1.467) (-1.173)  (-1.632)
Idiosyn 0.006*** 0.006***  0.008***
(2.826) (2.751) (3.680)
10 -0.036** -0.033* -0.034*
(-2.083) (-1.931)  (-1.940)
# Analyst 0.002 0.003 0.005

(0.281)  (0.387)  (0.575)
Observations 51376 51376 51376 51376 51376 51376 51376 51376 50920

R? 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051 0.024
Adjusted R? 0.028 0.028 0.029 0.028 0.028 0.028 0.028 0.029 0.015
Firm FE v v v v v v v v v
Week FE v v v v v v v v

Year FE v
Firm Control v v v v v v v v v
Macro Control v
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Table G.3: The relation between arbitrage costs and the integration between the option

and CDS markets (IS computed based on option bid prices).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage
cost proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity
and illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyn-
cratic volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional owner-
ship (I0) and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control vari-
ables include firm leverage ratio, log market capitalization, and annualized stock volatility computed
using the previous month daily stock returns. The KP metric is computed as £; = 3log 115 where

i

K = % ij:l Iiarsr, acpsr, <oy — 1 and N denotes the number of business days with non zero daily
CDS spread changes within a week. Spreadzero is computed as the ratio of zero daily spread changes to

the total number of non-missing daily CDS changes over the week. Idiosyn is computed as log %, where
R? is the R-square of the Fama-French three-factor regression of stock returns. The data period ranges from
Jan 2002 until April 2018. The data frequency is weekly. All independent variables are winsorized at 0.1%
and 99.9% level. The standard errors are clustered at both firm and date level. t statistics are reported in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit,
OptionMetrics, Fred, Kenneth R. French data library, and author’s computation.

oy D ©® ® 06 © o ® 0O am o @ @ G G 0

Koy MY AR A ¢ M. A ¢ SR A ¢ AR, A M VA A A A

Lndepth 200397 -0.026" 20035 -0.024"
(2.033)  (-1.769) (-1.776)  (-1.655)

Spreadzero 0103  0.234* 0079 0.224*
(0.867)  (1.892) (0.662)  (1.806)
Bidask 0036 0.060"** 0.035  0.057
(2451)  (3.658) (2408)  (3.453)

Volume 20.000  -0.000 -0.000  -0.000
(-0.333)  (-0.985) (-0.262)  (-0.683)

Idiosyn 0.005  0.006 0005  0.006
(0.898)  (1.295) (0.906)  (1.288)
10 0019 -0.107*** 0.015  -0.099"*
(0.468)  (-2.798) (0.360)  (-2.559)

#Analyst 0026 -0000 0025  -0.006

(1.307)  (-0.004) (1.294)  (-0.316)
Observations 8818 8986 8818 8986 8818 8986 8818 8986 8818 8986 8818 8986 8818 8986 8818 8986

R? 0.185 0.143 0.185 0.143 0.185 0.144 0.185 0.143 0.185 0.143 0.185 0.143 0.185 0.143 0.186 0.145
Adjusted R? 0.092 0.047 0.092  0.047  0.093 0.048 0.092 0.047 0.092  0.047 0.092 0.048 0.092 0.047 0.093 0.049
Firm FE v v v v v v v v v v v v v v v v
Week FE v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v
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Table G.4: The relation between arbitrage costs and the integration between the option

and CDS markets (IS computed based on option offer prices).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage
cost proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity
and illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyn-
cratic volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional owner-
ship (I0) and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control vari-
ables include firm leverage ratio, log market capitalization, and annualized stock volatility computed
using the previous month daily stock returns. The KP metric is computed as £; = 3log 115 where

i

K = % ij:l Iiarsr, acpsr, <oy — 1 and N denotes the number of business days with non zero daily
CDS spread changes within a week. Spreadzero is computed as the ratio of zero daily spread changes to

the total number of non-missing daily CDS changes over the week. Idiosyn is computed as log %, where
R? is the R-square of the Fama-French three-factor regression of stock returns. The data period ranges from
Jan 2002 until April 2018. The data frequency is weekly. All independent variables are winsorized at 0.1%
and 99.9% level. The standard errors are clustered at both firm and date level. t statistics are reported in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit,
OptionMetrics, Fred, Kenneth R. French data library, and author’s computation.

[@) 2 [©F (4) 6] (6) @ ®) © (10) 1 (12) (13) (14) (15 (16)
Lndepth -0.027  -0.034* -0.024 -0.032*
(-1.644) (-1.742) (-1420)  (-1.655)
Spreadzero 0.137  0.200 0.123 0.179
(1214)  (1.536) (1.062)  (1.356)
Bidask 0.050***  0.066"*** 0.048***  0.066"**
(3.019)  (4.137) (2.894)  (4.130)
Volume -0.000 0.000 -0.000 0.000
(-1.489)  (0.115) (-1.291)  (0.434)
Idiosyn 0.004 0.011* 0.004 0.011*
(0.670)  (1.889) 0.692)  (1.924)
10 -0.011  -0.018 -0.018 -0.012
(-0.309)  (-0.432) (0512)  (-0.296)
#Analyst -0.021 -0.002 -0.020 -0.004
(-1.238) (-0.098) (-1.208)  (-0.234)
Observations 8861 8963 8861 8963 8861 8963 8861 8963 8861 8963 8861 8963 8861 8963 8861 8963
R? 0.192 0.145 0192  0.145 0.193 0.147 0192 0145 0192 0145 0192 0.145 0.192 0.145 0.194 0.148
Adjusted R 0.100 0.050  0.100  0.049 0.102 0.051 0.100  0.049 0100 0.050  0.100 0.049 0.100 0.049 0.102 0.052
Firm FE v v v v v ' v v v v v ' ' v v v
Week FE v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v
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Table G.5: The relation between arbitrage costs and the integration between the option
and CDS markets (2-year IS and 2-year CDS spreads).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage
cost proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity
and illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyn-
cratic volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional owner-
ship (I0) and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control vari-
ables include firm leverage ratio, log market capitalization, and annualized stock volatility computed

using the previous month daily stock returns. The KP metric is computed as #; = 3log it:i where

K = % ij:l Iiarsr, acpsr, <oy — 1 and N denotes the number of business days with non zero daily
CDS spread changes within a week. Spreadzero is computed as the ratio of zero daily spread changes to
the total number of non-missing daily CDS changes over the week. Idiosyn is computed as log %, where
R? is the R-square of the Fama-French three-factor regression of stock returns. The data period ranges from
Jan 2002 until April 2018. The data frequency is weekly. All independent variables are winsorized at 0.1%
and 99.9% level. The standard errors are clustered at both firm and date level. t statistics are reported in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit,
OptionMetrics, Fred, Kenneth R. French data library, and author’s computation.

[ @) ®) @ (&) () @ ®) © (10) an (12) 13 14 1s) (16)

Lndepth -0.009 -0.007 -0.008 -0.010
(-0.600)  (-0.412) (-0.486)  (-0.585)

Spreadzero -0.100  -0.200* -0.103  -0.208*
(-0.780)  (-1.731) (-0.787)  (-1.807)

Bidask 0.047***  0.038** 0.047+**  0.037**
(2.755)  (2.189) (2.662)  (2.124)

Volume 0.000 -0.000 0.000 0.000
(0.461)  (-0.103) (0.614)  (0.092)

Idiosyn 0.010*  0.007 0.010* 0.007
(1.815)  (1.378) (1.799)  (1.410)

10 -0.001  -0.069* -0.006  -0.067*
(-0.023)  (-1.922) (-0.162)  (-1.871)

# Analyst -0.026 -0.012 -0.023 -0.014

(-1.339) (-0.630) (-1.193) (-0.736)
Observations 8425 8542 8425 8542 8425 8542 8425 8542 8425 8542 8425 8542 8425 8542 8425 8542

R? 0.155 0.129 0.155 0.129 0.157 0.129 0.155 0.129 0.156  0.129 0.155 0.129 0.156 0.129 0.157 0.130
Adjusted R? 0.056 0.028 0.056 0.028 0.058 0.028 0.056 0.028 0.057  0.028 0.056 0.028 0.056 0.028 0.058 0.029
Firm FE v v v v v v v v v v v v v v s v
Week FE v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v
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Table G.6: The relation between arbitrage costs and the integration between the option

and CDS markets (Controlling for equity and CDS misalignment).

In this table, I report the results of the panel regression of Kendall correlation on different arbitrage cost
proxies. The arbitrage cost proxies include log depth (Lndepth) and Spreadzero for CDS liquidity and
illiquidity, option bid ask spread (Bidask) and volume for option illiquidity and liquidity, idiosyncratic
volatility ratio (Idiosyn) for potential arbitrage cost in holding the positions, institutional ownership (IO)
and analyst coverage (#Analyst) for the transparency of the firm. The firm specific control variables include
firm leverage ratio, log market capitalization, annualized stock volatility computed using the previous
month daily stock returns, and the Kendall correlation between the equity and CDS (keqty,cps). The KP
metric is computed as #; = 3 log ﬁ—zl where k; = % Zszl Iiarsr, acpsr, <oy — 1 and N denotes the
number of business days with non zero daily CDS spread changes within a week. Spreadzero is computed

as the ratio of zero daily spread changes to the total number of non-missing daily CDS changes over the
week. Idiosyn is computed as log 1}—?&, where R? is the R-square of the Fama-French three-factor regression
of stock returns. The data period ranges from Jan 2002 until April 2018. The data frequency is weekly. All
independent variables are winsorized at 0.1% and 99.9% level. The standard errors are clustered at both
firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% level, respectively. Sources: Markit, OptionMetrics, Fred, Kenneth R. French data library, and
author’s computation.

1) (2) (3) 4) 5) (6) 7) (®) ) (10) 11 (12) (13) (14) (15) (16)

M M A L ¢ A A M VA ML AR A ¢ M. A A

Lndepth 20.031°  -0.015 20.029"  -0.013
(-1.905)  (-0.934) (-1.794)  (-0.778)

Spreadzero 0.068  0.281** 0050  0.273*
(0579) (2.151) (0.424)  (2.119)
Bidask 0.048**  0.059*** 0.045*  0.057**
(3.028)  (3.672) (2797)  (3.576)

Volume 20.000  -0.000 20.000  -0.000
(-0.806)  (-1.495) (-0.686)  (-1.339)
Idiosyn 0.009  0.019*** 0009  0.019**
(1497)  (3.133) (1455)  (3.175)

10 0039 -0.066* 0049  -0.061
(-1126)  (-1.674) (-1428)  (-1.588)

#Analyst 20.037°  -0.030 -0.038"*  -0.033

(2197)  (-1421) (2212) (-1.609)
Observations 7943 8028 7943 8028 7943 8028 7943 8028 7943 8028 7943 8028 7943 8028 7943 8028

R? 0.196 0.153 0.196 0.153 0.197 0.154 0.196 0.153 0.196 0.154 0.196 0.153 0.196 0.153 0.198 0.157
Adjusted R* 0.094 0.046 0.094 0.047 0.095 0.048 0.094 0.046 0.094 0.048 0.094 0.046 0.094 0.046 0.096 0.050
Firm FE v v v ' v v v v v v ' ' v v v v
Week FE v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v
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H Predictability

Table H.1: Predicting future market movements based on current cross-market devia-

tions for different conditions (IS computed based on option bid prices).

In this table, I report the results of the panel regression below:

AlSii11 \ _  ugse VIS¢ Bis.pev T Bis.pevDet , / €IS,
(ACDSi,tJrl) B <ai,CDS,t> * ('YCDS,t) * (5g'DS,Dev + 58DS,Dech,t> Devie +;,by + (Q‘,CDS,t)
where D, denotes the condition indicator variable, 8“ and 8¢ denotes the unconditional and conditional
effect of cross-market deviation, a; denotes the firm fixed effect, v; denotes the time fixed effect, and Y; de-
notes the firm specific control variables. Panel A (B) reports the regression results of AIS; ;11 (ACDS; ¢41).
Columns (1), (3), (5), and (7) correspond to the regressions based on CW IS and the rest columns correspond
to the regressions based on CNV IS. The firm specific controls include firm leverage ratio, log market cap-
italization lag changes, annualized stock volatility lag changes, computed using the previous month daily
stock returns, rating, stock lag daily return, and stock market beta, computed using the previous month
daily stock returns. D¢ psriiguid (DoptionIitiquia) €quals 1 if both the CDS depth (option volume) belonging
to the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the top tercile, and 0 oth-
erwise. Drgiosyn €quals 1 if the idiosyncratic risk variable belongs to the top tercile. Dr,ansparency €quals
1 if both the IO and #Analyst belong to the bottom tercile. The data period ranges from Jan 2002 until
April 2018. The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard
errors are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** de-
note significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s

computation.

O] @ ®3) @) ) (6) @ ®)
cw CNV cw CNV cw CNV cw CNV
Panel A: IS predictability
AISE,  AISGEY A, AISGEY  AISEY,  AISGEY  AISEH, AISGEY
Dev -0.019*** -0.033*** -0.012*** -0.024*** -0.022** -0.034*** -0.023*** -0.037***
(-6.893) (-9.809) (-5.000) (-7.744) (-7.140) (-8.575) (-6.805) (-9.915)
Depsiuiquia ¥ Dev -0.001 -0.007
(-0.271) (-1.360)
Doptiontitiquia * Dev -0.026*** -0.025**
(-6.909) (-4.835)
Digiosyn * Dev 0.006*** 0.002
(2.966) (0.804)
Drransparency * Dev 0.010*** 0.012**
(3.042) (2.348)
Observations 58833 58702 58833 58702 58833 58702 58833 58702
R? 0.216 0.221 0.225 0.226 0.216 0.221 0.216 0.222
Adjusted R? 0.159 0.165 0.169 0.171 0.159 0.165 0.160 0.165

Panel B: CDS spreads predictability
ACDS;11 ACDS 41 ACDS;31 ACDS; iy ACDS;141 ACDS; iy ACDS; 141 ACDS;

Dev 0.003*** 0.001** 0.004*** 0.002** 0.004*** 0.002** 0.003*** 0.001
(3.739) (2.023) (3.685) (1.991) (3.137) (2.401) (3.614) (1.178)
D¢ psiuiquid * Dev 0.006*** 0.004***
(3.063) (3.025)
Doptionnitiquid * Dev -0.002 0.001
(-1.426) (0.744)
Drdiosyn * Dev -0.000 -0.001
(-0.111) (-0.824)
Drransparency * Dev 0.001 0.002
(0.318) (1.307)
Observations 58833 58746 58833 58746 58833 58746 58833 58746
R? 0.224 0.226 0.224 0.226 0.224 0.226 0.224 0.226
Adjusted R? 0.168 0.170 0.168 0.170 0.168 0.170 0.168 0.170
Firm FE v v v v v v v v
Day FE v v v v v v v v
Firm Control v v v v v v v v
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Table H.2: Predicting future market movements based on current cross-market devia-

tions for different conditions (IS computed based on option offer prices).

In this table, I report the results of the panel regression below:

ALSiiv1 \ [ st VIS¢ Bi's.pev + Bis.pevDet , / €i,15,t
(ACDSi,t-H) N <ai,CDS,t) + (’YCDS,t) + (55,957,361, + ﬁéps,pech,t) Devie + Y54y + (Q,CDS,t)
where D, denotes the condition indicator variable, 8“ and 8¢ denotes the unconditional and conditional
effect of cross-market deviation, a; denotes the firm fixed effect, v, denotes the time fixed effect, and Y; de-
notes the firm specific control variables. Panel A (B) reports the regression results of AIS; ;11 (ACDS; 141).
Columns (1), (3), (5), and (7) correspond to the regressions based on CW IS and the rest columns correspond
to the regressions based on CNV IS. The firm specific controls include firm leverage ratio, log market cap-
italization lag changes, annualized stock volatility lag changes, computed using the previous month daily
stock returns, rating, stock lag daily return, and stock market beta, computed using the previous month
daily stock returns. D¢ psiiiiquid (DoptionIitiquid) €quals 1 if both the CDS depth (option volume) belonging
to the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the top tercile, and 0 oth-
erwise. Digiosyn €quals 1 if the idiosyncratic risk variable belongs to the top tercile. Dryansparency €quals
1 if both the IO and #Analyst belong to the bottom tercile. The data period ranges from Jan 2002 until
April 2018. The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard
errors are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** de-
note significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s

computation.

@ @ ©3) @) ) (6) @) ®)
cw CNV CwW CNV Ccw CNV cw CNV

Panel A: IS predictability

AISCN,  AISTNY  AIsQE, AISGYY AIsGY,  AISGYY  AISQY, A

Dev -0.027*** -0.038*** -0.021*** -0.031*** -0.030*** -0.040*** -0.032%** -0.042***
(-7.864) (-9.850) (-7.186) (-9.078) (8271)  (-10048)  (7702)  (-10.198)
Depsiiguia * Dev -0.000 -0.006
(:0.037) (-1.416)
Doptionritiquid ¥ Dev -0.040"** -0.040***
(-6.486) (-9.198)
Didiosyn * Dev 0.007 0.004
2.822) (1.397)
Drvansparency * Dev 0.014% 0.015"
(3.175) (2.594)
Observations 58833 58448 58833 58448 58833 58448 58833 58448
R? 0.235 0.240 0.241 0.246 0.236 0.240 0.236 0.241
Adjusted R? 0.180 0.185 0.186 0.191 0.181 0.185 0.181 0.186

Panel B: CDS spreads predictability
ACDS;141 ACDS;111 ACDS;ip1 ACDS;y1 ACDSip1 ACDS 141 ACDS; 110 ACDS; 4

Dev 0.004*** 0.003*** 0.004*** 0.003*** 0.004*** 0.003*** 0.004*** 0.002***
(3.459) (4.191) (3.379) (4.070) (3.411) (4.774) (3.091) (2.910)
D_CDSIlliquid x Dev 0.006*** 0.004**
(2.903) (2.473)
D _OptionIlliquid * Dev -0.001 0.000
(-0.797) (0.786)
D _Idiosyn x Dev -0.001 -0.001
(-0.317) (-0.787)
D _Transparency * Dev 0.001 0.003*
(0.357) (1.911)
Observations 58833 58518 58833 58518 58833 58518 58833 58518
R? 0.224 0.231 0.224 0.231 0.224 0.231 0.224 0.231
Adjusted R? 0.168 0.175 0.168 0.175 0.168 0.175 0.168 0.175
Firm FE v v v v v v v v
Day FE v v v v v v v v
Firm Control v v v v v v v v
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Table H.3: Predicting future market movements based on current cross-market devia-

tions for different conditions (2-year IS and 2-year CDS spreads).

In this table, I report the results of the panel regression below:

ALSiiv1 \ [ st VIS¢ Bi's.pev + Bis.pevDet , / €i,15,t
(ACDSi,t-H) N <ai,CDS,t) + (’YCDS,t) + (55,957,361, + ﬁéps,pech,t) Devie + Y54y + (Q,CDS,t)
where D, denotes the condition indicator variable, 8“ and 8¢ denotes the unconditional and conditional
effect of cross-market deviation, a; denotes the firm fixed effect, v, denotes the time fixed effect, and Y; de-
notes the firm specific control variables. Panel A (B) reports the regression results of AIS; ;11 (ACDS; 141).
Columns (1), (3), (5), and (7) correspond to the regressions based on CW IS and the rest columns correspond
to the regressions based on CNV IS. The firm specific controls include firm leverage ratio, log market cap-
italization lag changes, annualized stock volatility lag changes, computed using the previous month daily
stock returns, rating, stock lag daily return, and stock market beta, computed using the previous month
daily stock returns. D¢ psiiiiquid (DoptionIitiquid) €quals 1 if both the CDS depth (option volume) belonging
to the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the top tercile, and 0 oth-
erwise. Digiosyn €quals 1 if the idiosyncratic risk variable belongs to the top tercile. Dryansparency €quals
1 if both the IO and #Analyst belong to the bottom tercile. The data period ranges from Jan 2002 until
April 2018. The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard
errors are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** de-
note significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s

computation.

(1) (2) 3) (4) ®) (6) (7) (®)
CwW CNV CwW CNV CwW CNV CW CNV
Panel A: IS predictability
Arsgly  AISNY  arsgl,  AISENY  AISE, AISCNY  AISEY, AISEYY
Dev -0.018*** -0.038*** -0.014*** -0.035*** -0.022%** -0.039*** -0.021*** -0.041**
(-6.722) (-10.456) (-5.708) (:9.937) (-7.381) (-10.549) (-6.371) (-10.959)
Depsiitiquia * Dev 0.006 -0.005
(1.261) (-0.882)
Doptiontitiquia ¥ Dev -0.040*** -0.029***
(-6.141) (-5.023)
Drdiosyn * Dev 0.009*** 0.002
(2.891) (0.597)
Drvansparency * Dev 0.009** 0.009*
(2.359) (1.704)
Observations 56820 56597 56820 56597 56820 56597 56820 56597
R? 0.217 0.219 0.221 0.221 0.218 0.219 0.217 0.219
Adjusted R? 0.159 0.161 0.163 0.162 0.159 0.161 0.159 0.161

Panel B: CDS spreads predictability
ACDSi 141 ACDS; 111 ACDS; 441 ACDS; 141 ACDS; 41 ACDSi 41 ACDS; 111 ACDS; 41

Dev 0.004*** 0.003*** 0.004*** 0.003*** 0.004*** 0.003*** 0.004*** 0.002***
(3.459) (4.191) (3.379) (4.070) (3.411) (4.774) (3.091) (2.910)
Dev 0.004** 0.001 0.004** 0.001 0.004*** 0.002*** 0.004*** 0.001
(2.428) (0.838) (2.368) (0.724) (2.745) (3.161) (2.623) (0.511)
Depsritiquia * Dev 0.008*** 0.003
(2.910) (1.598)
DoptionIitiquid * Dev 0.002 0.003*
(0.887) (1.719)
Drgiosyn * Dev -0.001 -0.002**
(-0.341) (-2.303)
Drransparency * Dev -0.000 0.001
(-0.118) (0.716)
Observations 56539 56369 56539 56369 56539 56369 56539 56369
R? 0.163 0.163 0.163 0.164 0.163 0.164 0.163 0.163
Adjusted R? 0.101 0.100 0.100 0.101 0.100 0.101 0.100 0.100
Firm FE v v v v v v v v
Day FE v v v v v v v v
Firm Control v v v v v v v v
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Table H.4: Predicting future market movements based on current cross-market devia-

tions for different conditions (Separate sample).

In this table, I report the results of the panel regression below:

ALSiiv1 \ [ st VIS¢ Bi's.pev + Bis.pevDet , / €i,15,t
(ACDSi,t-H) N <ai,CDS,t) + (’YCDS,t) + (55,957,361, + ﬁéps,pech,t) Devie + Y54y + (Q,CDS,t)
where D, denotes the condition indicator variable, 8“ and 8¢ denotes the unconditional and conditional
effect of cross-market deviation, a; denotes the firm fixed effect, v, denotes the time fixed effect, and Y; de-
notes the firm specific control variables. Panel A (B) reports the regression results based on CW IS (CNV IS).
Columns (1), (3), (5), and (7) correspond to the regressions of AIS; ;11 and the rest columns correspond to
the regressions of ACDS; ;1. The firm specific controls include firm leverage ratio, log market capitaliza-
tion lag changes, annualized stock volatility lag changes, computed using the previous month daily stock
returns, rating, stock lag daily return, and stock market beta, computed using the previous month daily
stock returns. D¢ psritiguid (Doptiontiliquid) €quals 1 if both the CDS depth (option volume) belonging to
the bottom tercile and the Spreadzero (option bid-ask spreads) belonging to the top tercile, and 0 otherwise.
D1diosyn equals 1 if the idiosyncratic risk variable belongs to the top tercile. Dryansparency €quals 1 if both
the IO and #Analyst belong to the bottom tercile. The data period ranges from Jan 2002 until April 2018.
The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clus-
tered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance

at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

D (2 3) (€] ®) 6) 7) ®)
AIS;y1  ACDS. 1 AISy1 ACDS,1  AISy1  ACDSi  AISyy1  ACDSi

Panel A: CW IS

Dev -0.012%** 0.003*** -0.010*** 0.003*** -0.015*** 0.003*** -0.014*** 0.004***
(-7.026)  (3.016)  (-6571)  (3.238)  (-8279)  (3.153)  (-6.932)  (5.543)
D¢ psriiquia ¥ Dev 0.002 0.007***
(0.677) (4.985)
DoptionIltiquid * Dev -0.015%** -0.000
(-5177)  (-0.262)
D1giosyn * Dev 0.005*** -0.000
(3979)  (-0.275)
D ransparency * Dev 0.007***  -0.003""
(3226)  (-2172)
Observations 110459 110459 110459 110459 110459 110459 110459 110459
R? 0.215 0.191 0.217 0.190 0.216 0.190 0.216 0.190
Adjusted R? 0.186 0.160 0.187 0.159 0.186 0.159 0.186 0.160
Panel B: CNV IS
Dev -0.025***  0.001***  -0.022***  0.001***  -0.025***  0.001***  -0.025***  0.001***
(-17.489)  (4208)  (-16921)  (4747)  (-17.158)  (5.826)  (-17.549)  (4.400)
Depsiutiquia * Dev -0.001 0.001**
(-0.365)  (2.426)
Doptionrttiquid ¥ Dev -0.021*** 0.000
(-8.148) (0.695)
Drdiosyn * Dev 0.000 -0.000**
0.119)  (-2.031)
Drransparency * Dev 0.002 0.001*
(0.795) (1.695)
Observations 328383 328383 328383 328383 328383 328383 328383 328383
R? 0.170 0.153 0.171 0.153 0.170 0.153 0.170 0.153
Adjusted R? 0.159 0.142 0.160 0.142 0.159 0.142 0.159 0.142
Firm FE v v v v v v v v
Day FE v v v v v v v v
Firm Control v v v v v v v v
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I Financial intermediary health and cross-market basis

Table I.1: The relation between intermediary capital ratio and lag return deviation be-

tween IS and CDS (CW IS separate full sample).

In this table, I report the results of the panel regression below:

Etijl = i + Yty + Bheatenhealthy + Y7 By + €y

where R?ﬁr’l = Rrst+1 — Repsi+1, where Rrgir1 and Repsi+1 is computed based on the fol-

lowing 3 metrics: As;, Alogs;, and %{3‘ based on Augustin, Saleh, and Xu (2020) where f’t =

ﬁ (1 — et 1itR)(T_t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. The data period ranges from Jan 2002 until April 2018.
The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clus-

tered at both firm and date level. t statistics are reported in parentheses. *, **, and *** denote significance
at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alogs %ﬁ
1 (2 3 @ ®) (6) ) (8 ©)

ICR 0.099%**  0.091** 0.062*** 2.586"** 2.638** 2.103*** 0372 0367°** 0.262°*
(4.857)  (4482) (2671) (7.224) (7.157) (4703) (5582) (5.569)  (3.343)
Observations 129294 107750 98769 129294 107750 98769 128347 106955 98001

R? 0.005 0.008 0.009 0.005 0.008 0.010 0.005 0.009 0.011
Panel B: IG Sample
ICR 0.106***  0.110***  0.080***  3.268*** 3.352*** 2.821*** 0.395*** 0.408*** 0.305***

(4.287) (4731) (2.883)  (6.782)  (6.847)  (4.677) (4792) (5.126)  (3.137)
Observations 46590 41038 37633 46590 41038 37633 46257 40743 37347

R? 0.011 0.015 0.019 0.008 0.011 0.014 0.012 0.016 0.019
Panel C: HY Sample
ICR 0.095***  0.079***  0.053*  2.056*** 1.991*** 1.530*** 0.358*** (0.337*** (.243***

(971)  (3.184) (1916) (5.675) (5.169) (3.334) (4.812)  (4438)  (2.738)
Observations 82704 66712 61136 82704 66712 61136 82090 66212 60654
R? 0004 0007 0009 0004 0008 0009 0004 0008  0.010

Panel D: Excluding Financial Crisis

ICR 0.054°*  0.048***  0.046% 2115 2210 2.013*** 0231°* 0233 0211
(3.878) (3270) (2.347)  (6.135)  (6.130)  (4732)  (4.815) (4787)  (3.261)
Observations 104788 87216 79867 104788 87216 79867 103902 86471 79143

R? 0.003 0.005 0.007 0.004 0.007 0.008 0.003 0.006 0.007
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v
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Table I.2: The relation between intermediary capital ratio and lag return deviation be-

tween IS and CDS (IS computed based on option bid prices).

In this table, I report the results of the panel regression below:

Pl = i+ Yey + Breaunhealthy + Y/ By + €4

where th‘i’l = Rrsi+1 — Repsi+1, where Rig,y1 and Rcopsi+1 is computed based on the fol-

lowing 3 metrics: As;, Alogs,;, and ATE based on Augustin, Saleh, and Xu (2020) where JSt =

ﬁ (1 — e (et %’R)(T’t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. IS are computed using CW method. The option data
is taken from the OptionMetrics bid quotes. The data period ranges from Jan 2002 until April 2018. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the

10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alog s AT?
©) 2 (©) (4) ©®) (6) @) ®) (&)
ICR 0.062***  0.035*  0.043* 3.187*** 2.233*** 2.772** (0.285*** (0.199*** 0.236***

(2.828)  (1.948) (1.931) (5.192) (3.702)  (3457) (3.807) (3.237)  (2.905)
Observations 66279 59075 53293 66279 59075 53293 65760 58622 52856

R? 0.004 0.045 0.046 0.003 0.078 0.079 0.003 0.056 0.057
Panel B: IG Sample
ICR 0.080***  0.051***  0.035* 6.387*** 3.622*** 3.608*** 0.356*** 0.224***  0.157*

(3.995)  (3.002) (1.741) (5.543) (3.097)  (2.660)  (4.420) (3.245)  (1.879)
Observations 14395 13673 12236 14395 13673 12236 14287 13574 12140

R? 0.014 0.067 0.070 0.009 0.100 0.103 0.014 0.072 0.075
Panel C: HY Sample
ICR 0.056** 0.031 0.046  2.043***  1.434** 2345 0.262*** 0.191*"  0.262**

(2.010)  (1.396) (1.608) (3.217)  (2.228) (2.574) (2.815)  (2.570)  (2.602)
Observations 51883 45401 41055 51883 45401 41055 51481 45047 40714
R? 0004 0049 0050 0003 0080 0081 0003 0061  0.063

Panel D: Excluding Financial Crisis

ICR 0022 0009 0034 2486 1987*** 2916 0150  0.113*  0.199*
(1269)  (0.488) (1.310) (3.851) (3.039) (3.159) (2.396) (1.846)  (2.167)
Observations 57952 51653 46633 57952 51653 46633 57452 51205 46200

R? 0.003 0.045 0.047 0.002 0.078 0.079 0.002 0.056 0.058
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v
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Table I.3: The relation between intermediary capital ratio and lag return deviation be-

tween IS and CDS (IS computed based on option offer prices).

In this table, I report the results of the panel regression below:

Pl = i+ Yey + Breaunhealthy + Y/ By + €4

where th‘i’l = Rrsi+1 — Repsi+1, where Rig,y1 and Rcopsi+1 is computed based on the fol-

lowing 3 metrics: As;, Alogs,;, and ATE based on Augustin, Saleh, and Xu (2020) where JSt =

ﬁ (1 — e (et %’R)(T’t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. IS are computed using CW method. The option data
is taken from the OptionMetrics offer quotes. The data period ranges from Jan 2002 until April 2018. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the

10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alogs %

) @ ®) 4) ©) (6) @) ®) )

ICR 0.076"**  0.082***  0.060™ 2.178"** 2.680*** 2.060*** 0.299*** (0.349***  (.265"*
(3.843)  (4172) (2457) (5.292)  (6.015) (3.795)  (4556)  (5.366)  (3.185)
Observations 66276 59072 53291 66276 59072 53291 65766 58619 52854

R? 0.004 0.016 0.016 0.004 0.021 0.021 0.004 0.018 0.018
Panel B: IG Sample
ICR 0.064***  0.091***  0.066*** 3.600*** 4.833*** 3.709*** 0.271*** 0.386™** 0.273***

(.777)  (4450) (2712) (4.813) (6.085) (4.005) (3.086) (4.709)  (2.784)
Observations 14395 13673 12236 14395 13673 12236 14287 13574 12140

R? 0.013 0.040 0.038 0.009 0.039 0.037 0.013 0.041 0.038
Panel C: HY Sample
ICR 0.083*** 0.081***  0.056*  1.690*** 1.958*** 1.511*** 0.313*** 0.336*"**  0.255**

(3408)  (3.323)  (1.899)  (4.152)  (4.594)  (2.756)  (4.069)  (4.365)  (2.609)
Observations 51880 45398 41053 51880 45398 41053 51478 45044 40712
R? 0004 0016 0016 0004 0020 0020 0004 0018 0018

Panel D: Excluding Financial Crisis

ICR 0.053°*  0.058***  0.049**  1.924°* 2363 1830*** 0227 0273 (.225*
(2903) (3.147) (2.163) (4574) (5.175) (3.240) (3.822)  (4.648)  (2.917)
Observations 57949 51650 46631 57949 51650 46631 57449 51202 46198

R? 0.004 0.015 0.015 0.004 0.021 0.021 0.003 0.018 0.017
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v
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Table I.4: The relation between intermediary capital ratio and lag return deviation be-

tween 2-year IS and 2-year CDS spreads.
In this table, I report the results of the panel regression below:

Pl = i+ Yey + Breaunhealthy + Y/ By + €4

where th‘i’l = Rrsi+1 — Repsi+1, where Rig,y1 and Rcopsi+1 is computed based on the fol-
lowing 3 metrics: As;, Alogs,;, and % based on Augustin, Saleh, and Xu (2020) where JSt =

Tt‘f%ft (1 — e’(”ﬂif‘a)(T’t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
1—R

prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. The data period ranges from Jan 2002 until April 2018.
The data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clus-
tered at both firm and date level. ¢ statistics are reported in parentheses. *, **, and *** denote significance
at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alog s ATﬁ

M @ ®) 4) ©) (6) @) (®) )

ICR 0.102°*  0.088*** 0.076*** 2.202%* 2335*** 2225%* (385 (0360*** 0.318***
(4.068)  (4.088) (2.706)  (4.853)  (4.882)  (3.672)  (4.639)  (4.999)  (3.316)

Observations 63252 56121 50653 63252 56121 50653 62769 55690 50239

R? 0.005 0007  0.008 0.005 0007  0.008 0.005 0.008 0.009

Panel B: IG Sample

ICR 0.090%** 0.091*** 0.066*** 4.101*** 4353** 3736*** 0381*** 0396"* 0.285"*
(3.921)  (4.869) (3.020) (4.829) (5.024) (4.142) (4262) (5.127)  (3.198)
Observations 13698 12993 11651 13698 12993 11651 13598 12899 11560

R? 0.022 0.027 0.028 0.012 0.014 0.017 0.022 0.027 0.028
Panel C: HY Sample
ICR 0.107***  0.089***  0.076**  1.649*** 1.577*** 1.675" 0.386™** 0.345*** 0.319***

(3421)  (3298) (2.182) (3.310) (3.233) (2.556) (3.818)  (3.936)  (2.724)
Observations 49553 43127 39000 49553 43127 39000 49170 42790 38677
R? 0.005 0007  0.009 0.004 0007  0.008 0.005 0.008 0.010

Panel D: Excluding Financial Crisis
ICR 0.059***  0.054**  0.055*  1.651*** 1.782*** 1.816"** 0.244"* 0.243"*  0.244**

(2.726)  (2493)  (1.874) (3462) (3577) (2.854) (3.378)  (3.495)  (2.501)
Observations 55204 48961 44212 55204 48961 44212 54730 48535 43802

R? 0.004 0.006 0.007 0.004 0.006 0.007 0.003 0.006 0.007
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v
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Table I.5: The relation between intermediary capital ratio and lag return deviation be-
tween IS and CDS (CNYV IS).

In this table, I report the results of the panel regression below:

Pl = i+ Yey + Breaunhealthy + Y/ By + €4

where th‘i’l = Rrsi+1 — Repsi+1, where Rig,y1 and Rcopsi+1 is computed based on the fol-
lowing 3 metrics: As;, Alogs,;, and % based on Augustin, Saleh, and Xu (2020) where JSt =

ﬁ (1 — e (et %’R)(T’t)), s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_;
prior to the Big Bang and 100 (500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral
which is set to 1. IC'R; denotes the intermediary capital ratio, o; denotes the firm fixed effect, ~;,,, denotes
the year-month fixed effect, X denotes the macroeconomic control variables, and Y; denotes the firm spe-
cific control variables. The IS are computed based on CW. The firm specific controls include firm leverage
ratio, log market capitalization, annualized stock volatility, computed using the previous month daily stock
returns, rating, stock daily return, option bid ask spreads, and CDS depth. The macro controls include SP
500 index return, CBOE VIX index (VIX), 10 year Treasury yield, Treasury slope, defined as 10 year yield
minus 2 year yield, default spread, and TED spread. IS are computed using CW method. The option data
is taken from the OptionMetrics offer quotes. The data period ranges from Jan 2002 until April 2018. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the

10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

Panel A: Full Sample

As Alogs AP

M ® ®) 4) ©) (6) @) ®) ©)

ICR 0.070%**  0.071*** 0.052** 1.285** 1.443** 1235* 0240"** 0255 0.205"*
(3.291)  (3.570) (2.006) (3.786)  (3.970)  (2.695)  (3.664)  (3.923) (2.456)
Observations 66056 58874 53115 66056 58874 53115 65547 58422 52679

R? 0.004 0.006 0.006 0.004 0.005 0.006 0.005 0.006 0.007
Panel B: IG Sample
ICR 0.091***  0.100*** 0.069** 2.875*** 3.108*** 2.964*** 0.358*** 0.394*** 0.301**

(3297)  (4.092) (2.128) (4398) (4582)  (3.984) (3.637)  (4360)  (2.496)
Observations 14394 13672 12235 14394 13672 12235 14286 13573 12139

R? 0.016 0.021 0.021 0.010 0.012 0.013 0.016 0.021 0.020
Panel C: HY Sample
ICR 0.063**  0.061**  0.043  0.718**  0.806** 0.591  0.201*** 0.201***  0.162*

(2.485)  (2.582) (1416) (2.156) (2267) (1.283)  (2.685)  (2.735) (1.771)
Observations 51661 45201 40878 51661 45201 40878 51260 44848 40538
R? 0004 0005 0006 0004 0004 0005 0004 0005  0.006

Panel D: Excluding Financial Crisis

ICR 0027  0031* 0037 0729* 0905 0972**  0.105*  0.125**  0.154*
(1464)  (1.740) (1.481) (2.129) (2.440) (2.030) (1.842) (2.147) (1.971)
Observations 57746 51469 46469 57746 51469 46469 57247 51022 46037

R? 0.003 0.003 0.004 0.004 0.004 0.005 0.003 0.004 0.005
Firm FE v v v v v v v v v
Year-Month FE v v v v v v v v v
Firm Control v v v v v v
Macro Control v v v

192



Table 1.6: The relation between financial intermediary health and the level deviation
between IS and CDS spreads.

In this table, I report the results of the following panel regression using 5 different proxies for financial
intermediary health:

Silf)tev = a; + Y, + Bheattnhealthy + YittBY + €t

where Sﬂe” = log(1S;+) —log(CDS;+). health; denotes the financial intermediary health variable, o; de-
notes the firm fixed effect, v;,,, denotes the year-month fixed effect, and Y; denotes the firm specific control
variables. The 5 financial intermediary health variables include the dealer leverage ratio from Adrian, Etula,
and Muir (2014) (AEM-LV), the intermediary capital ratio from He and Krishnamurthy (2013) (HKM-ICR),
the ted spread (TED), the LIBOR-OIS spread (LIBOR-OIS), and default spread (DEF). The IS are computed
based on CNV. The firm specific controls include firm leverage ratio, log market capitalization, annualized
stock volatility, computed using the previous month daily stock returns, rating, stock daily return, option
bid ask spreads, and CDS depth. IS are computed using the CNV method. The data period ranges from
Jan 2002 until April 2018. The data frequency is daily. All variables are winsorized at 1% and 99% level.
The standard errors are clustered at both firm and date level. ¢ statistics are reported in parentheses. *, **,
and *** denote significance at the 10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and
author’s computation.

1) 2) 3) 4 (©) (6)
AEM-LV -0.000
(-0.617)
HKM-ICR -4 . 572%** -4.204***
(-2.846) (-2.678)
TED 13.510*** 3.459*
(5.331) (1.790)
LIBOR-OIS 22.598*** 16.952***
(5.616) (4.235)
DEF 1708.933***  671.190
(4.274) (1.583)
Observations 70378 69489 68482 69056 69831 61797
R? 0.583 0.647 0.644 0.644 0.644 0.654
Firm FE v v v v v v
Year-Month FE v v v v v v
Firm Control v v v v v v
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Table I.7: The relation between financial intermediary health and lag return deviation
between IS and CDS spreads (CNV IS).

In this table, I report the results of the following panel regression using 5 different proxies for financial
intermediary health:

Pl = i+ Ve, + Breannhealthy + Y/ By + €4

where R, = R’ ;z .1 — RCRS, where R[S, | and R is computed based on the following 3 metrics:
As,;, Alog sy, and % based on Augustin, Saleh, and Xu (2020) where P, = =5 (1 — e_(”J’liitR)(T_t)),
1R

s is the IS or CDS, ¢ denotes the coupon payment which is set to the s;_; prior to the Big Bang and 100
(500) bps for IG (HY) firms after the Big Bang, and ¢ denotes the collateral which is set to 1. IC' R, denotes
the financial intermediary health variable, o; denotes the firm fixed effect, +;,,, denotes the year-month
fixed effect, and Y; denotes the firm specific control variables. The 5 financial intermediary health variables
include the dealer leverage ratio from Adrian, Etula, and Muir (2014) (AEM-LV), the intermediary capital
ratio from He and Krishnamurthy (2013) (HKM-ICR), the ted spread (TED), the LIBOR-OIS spread (LIBOR-
OIS), and default spread (DEF). The IS are computed based on CW. The firm specific controls include firm
leverage ratio, log market capitalization, annualized stock volatility, computed using the previous month
daily stock returns, rating, stock daily return, option bid ask spreads, and CDS depth. IS are computed
using CW method. The data period ranges from Jan 2002 until April 2018 excluding financial crisis. The
data frequency is daily. All variables are winsorized at 1% and 99% level. The standard errors are clustered
at both firm and date level. f statistics are reported in parentheses. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. Sources: Markit, OptionMetrics, and author’s computation.

(Y] [e2) 3) 4) (5) 6) @) ®) ) (10) (11) (12) (13) (14) (15) (16) 17) (18)
As Alog s % As Alog s A—,,P As Alogs % As Alog s % As Alog s % As Alog s AP
AEM-LV 0.000*  0.000  0.000
(1.662) (1.570) (1.314)
HKM-ICR 0.031*  0.905** 0.125** 0.035 0.986™ 0.142°*
(1.740)  (2.440) (2.147) (1.636)  (2.478) (2.141)
TED -0.084  -0921  -0.265 -0.094  -0.494  -0.251
(-1.467)  (-0.960) (-1.348) (-1.302) (-0.343) (-1.001)
LIBOR-OIS -0.063  -1.451 -0.265 0.090 0.379 0.202
(-0.592) (-0.759) (-0.735) (0.642)  (0.139)  (0.431)
DEF 3.870 -42515 12.233 9.673 74.438 33.029

(0.591) (-0.294) (0.586) (1.417) (0.487) (1.496)
Observations 52220 52229 51782 51469 51469 51022 50728 50728 50281 51221 51221 50774 51761 51761 51314 46469 46469 46037

R? 0.001 0.002 0.002  0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.004 0.004 0.005 0.005
Firm FE v v v v v v v v v v v v v v v v v v
Year-Month FE v v v v v v v v v v v v v v v v v v
Firm Control v v v v v v v v v v v v v v v v v v
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J Proof of (5.1)

If the interest rate » and the default intensity A is constant,

P(K,T) =E2(e7"" (K — R,)I,<7)

T
:/ AQe”\Qse”"s(K — Ae’T(T’S))ds

t

_ o= (r A (Tt
=K ()\Ql e )> — Ae7 (1 — e_)‘Q(T_t)).

(L1)

r+ A

K Pseudo firm default probability estimation

To compute the pseudo firm’s default probability, CNV construct the historical distribu-
tion of equity shocks: ¢, = (In(S¢y+/St) — pier)/0tr fe+ is the 7 year ahead stock return
estimates computed as the unconditional average stock return In(S,,/S:) withu + 7 < ¢.
0+ is the stock volatility estimate computed using the EGarch model. Therefore, the de-
fault probability of the pseudo firm is p,; = P[S;, < K;|F| = Ple, < X, :|F:] where
Xit = (In(K;/S:) — pe.r)/oe-. Assuming that the shocks are i.i.d. across the panel, one
can use the full panel up to time ¢ to back out the corresponding K; such that the pseudo

firm’s default probability matches the firm’s default probability.>®

L Optimal number of contracts when the constraint is slack

The optimal number of contracts are:

0[ o YW= (pput *Pput)*(eids +61)02 *‘%utcput'YI (wih)—1
e oo (K.1)
0[ _ 'YI(WI)_l(,U*cdsfpcds)7(‘9£ut+9g)012:76£dsccd571(WI)_1 )
s = Ao, 7

with 0Ff = —0!,i € {cds, put}.

The optimal number of contracts consists of 3 components. The first component %

represents the standard CAPM component. The second term — (67, +6!) for put option or

cds

3For detail procedure in matching the default probability between the pseudo firm and real firm, please
refer to CNV p461 and their online appendix C.1.
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(6!

put

diary has large credit net exposure including the inventory and the CDS, i.e.

+ 61) for CDS demonstrates the hedging component. For example, if the interme-

(ecds + ‘9‘{),

the more option the intermediary demands to hedge the credit risk. The third component

o2+o?

is the liquidity component. If the intermediary is a buyer of the asset i, i.e.

6! = 1, the larger the transaction cost is, the less the intermediary will demand for the

asset 1.

M Proof of proposition 1

Proof. The FOCs of both agents are:

7

5putCPUt

R ) ecdsac + eza%ut(o- + Uep t) + 9R02 + (WR)

,uput p ‘put

2

)

Heds = Peas) 57ty ) = OLag (02 + 02, + 01,402 + 0102 & <ol et
) (v

) (v

(
(
(
(

Heds = Peds )9m@+0)+wm+yw+§W%

Market clearing implies:

(9£+6§)U?+7I T;VI (Sputcput‘f' Tl %/VI T TRavEY %/VR 6putcput
_ v (W) YW A )
Hput — Pput = ~BWEB)~T1AR(WE)—1

- i (eg"'_ef)o'g'i_mécdsccds'i' W_m)écdsccds
Heds Peds = FBWBY—T A E(WE)—T 9

Based on (L.1) into (L.2),  have

I (2 2 I 2. gl 2 ¢ ST 61 4sCeds
0cds<0-c + Oecds) + eputo-c + 90 O, + ~I(WT) 5cdsccds ,YCI (SWI)

(0L + 6F)o2 + %(%@Ccds + (71(114/1) - ,YR({l/VR,)> OcdsCeds
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Mput — Pput ( I(WI)) ecdsac + ezl;ut(ag + ngut) + 9£02 + I(WI)5p“tcpm T P AT (WT)

- Ij(Llfl)J

utCPUi

cds Ceds

(W)

(L.1)

(L.2)

(L.3)



where ['(W7) = W Therefore,

71(w1) 1+’yR(WR) 1

I
1 5.3 sCcds
F(WI)((%*@?)UE’L(%(WI)_wR<x1zvR>)‘5cdsccdS> e (126

— 6!

02+02 cds
¢ = YW (0? + 2),)
r ( WR) 5Cd$ Ceds ‘ ot
—9!
(eids slack 60ds> ut;lackz =
) g +Ue cds I I 2 2
= v (W)(og + 0css)
r (WR> 5cds Ceds ‘ ot
(L.4)
rwi) ((%"‘95)02"'(W‘W)ﬂds%ds) —(0 Slack‘i'@g)f’g—%

The last equality is due to 6., .0 = s S > : !

c cds

0171 .
— 0L+ —pégﬂ:'; 2 has the same sign
Te cds

I
cds,slack

from (K.1). If the constraint is binding, (¢

-or . .
QCdS) + put slack put is de_

as ¢.,.. In terms of the magnitude, the nominator (6 oTtor

cds,slack

creasing with W/, since 6,, — 0,45 s1aer, and qut

more, I((WI)) = LWyt (WR)(W,(W,) + WR(WR))’ which is decreasing with W/. Therefore,
< 0. [

= Oput stack When W1 increases. Further-

BWI

N Relation between arbitrage costs and market misalign-

ment

Without loss of generality, suppose there is a supply shock e.q4s of the CDS in the econ-
omy. The baseline model outlined above can be seen as the unconditional case where the
economy is stationary. In particular, the two agents’ asset holdings add up to 0. With a
supply shock, the market clearing condition becomes 6/, + 6%, = ¢.4,. Furthermore, €.4;
is assumed to slowly converge to 0, the stationary level. This could be justified as investor
inattention (Duffie (2010)).
Under this scenario, the asset risk premiums become
VW) 6o pcput

5putcput+ TWH-T44R(WR)-1

(5 Y (WI)71¢6£dsccds
vdsCeds T AW T R(WR)—T

(01+0 tee s) i (WI) - R(WR)
Hput = Pput = STO7N LT+ ST T (-
01 +0F e . I—1_~ R R
Heds — Peds = (( —)’_ 1_:_,YRd(V)VR) T+ ’YIE%I; 1_,_31«22%12;

1
1
1
1

+ €cdsT Eds
’yI(WI)_l—I-’yR(WR)_I

(M.1)
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Compared with (5.15), both the put option and CDS risk premium in (M.1) contains

2
€cdsOc

Ty~ R(WR

an extra term —rpm =T This term represents the additional credit risk the agents

need to take apart from their own background inventory risk. The CDS risk premium

2
€cdsT s

’yI(WI)_1+’yR(WR)_1 .

contains an additional term This component represents the additional
CDS idiosyncratic risk the agents need to take. The idiosyncratic risk can be seen as the
arbitrage cost. The sign of these two terms depends on the sign of the supply shock. If

the supply shock is positive, the agents will demand a positive premium to absorb the

supply. If the supply shock |e.| < |6] + 67|, the sign of the supply shock will not im-

(01 +6F +ecas)o?
WI)—I_;'_,YR(WR)—l

pact - in both the option and CDS risk premium. In other words, the

sign of the .4, will not impact the dynamics of the option price. However, the sign of
ECdso.(z:(is

T4 R ()=

6Cd503ds

AW T4y R(WE) -1

€cas Will impact r in the CDS risk premium. When the idiosyncratic vari-

ance large, will dominate the other terms in driving the dynamics of the
CDS prices. Since €45 is random, p.4s and p,,,; are likely to be more misaligned when the

idiosyncratic variance is high. This justifies the KP regression test in table ?? and ??.

2
On the other hand, when the credit variance is large, the TGV ,)Eff‘ic;cgs(w =1 in the CDS
01 4+0F 4 q,)02 .
T iy This

premium will not impact the CDS price since it it dominated by
implies that the two assets will be more aligned when the credit risk variance is larger
than the idiosyncratic variance. This justifies why the Kendall correlations are high when
the firm has worse credit conditions or when the macroeconomic conditions worsen, as

shown in table D.1.
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O Relation between arbitrage costs and asset predictabil-
ity

Suppose the expected price of option and CDS is constant, based on (M.1), the cross-

market deviation between the option and CDS prices is

I I\—1 R R\—1
(W) =) Y I I
Pput — Peds = (’)/I(WI)_l T ’YR(WR)_l + ( ) 7 (WR) (5cdsccd5 - (Sputcput)
2
€cdsOcds
—+ (//Lput - Mcds) (W]) (WR)_l

(N.1)
When the arbitrage cost, i.e. the idiosyncratic variance, is large, the dynamics of py.. —
Peds 18 driven by WI(W,)E,'“’fiﬁ%?WR),l. Based on (M.1), the CDS price is also driven by

. All else equal, the change of the CDS prices between two consecu-

2
€cdsO.gs

W) R R

A€eds (U +chs )

tive tlme iS — AW T4~R(WE)-1

. If €45 is mean reverting to 0 as discussed in appendix
N, A€.qs = —kecas + 1) where k > 0. Therefore, p,,. — peis is positively related to Ap,gs.
Similarly, if there is a supply shock in the option market and the option arbitrage cost is

large, pcis — pput i positively related to Ap,., i.e. ppur — Deas is Negatively related to Ap,..

P A general framework

This section provides a general framework which nests the framework in the main text.
This general framework can generate different combinations of the signs of the interme-
diary derivative positions. In this framework, there are two identical residual investors
A and B with risk aversion v#(W#). In the spirit of Gromb and Vayanos (2002), [ assume
that investor A specializes in trading the CDS while investor B specializes in trading the
option. In other words, I assume an extra cost of trading option (CDS) for investor A (B)
tobe M.% If M = 0, this framework boils down to the scenario in the main text. Investors

A and B are endowed with credit insurance inventory 02" and 65, respectively. The FOCs

¥Setting the costs the same between investor A and B is for simplicity reason.

199



of these two agents are:

2 2 A 2 put(CPUt+M)
(,uput o pPUt) < > ecdsa + eput(ac + Jsput) 9 ¢t ~R(WER)
A 2 R_ 2 cdsCed
(Heds = Peds) ( T ) = Ocasl02 + 00,,) + V0 + 007 + Rd<v§Rs) (0.1)
2, 2 B 2 putcput '
(:uput - pput) ('yR WR)) ecdsa + eput(ac + Osput) 9 O, + ~yRE(WER)
2 2 R,2 (ccas+M)
(,ucds _pcds) < R(WR ) chs(o-c + U€cds) + ‘9 utO + 0 (o + m(—WR)
The optimal portfolio holdings for A and B are:
(
QA — 1 (lu‘cds luput)g +iu‘cds put+6put(M+Cp“t) 2 6ﬁisCCd5(02+U§Ut) (WR)GA Z%Ut
cds ’YR(WR) (02+0put) cds+000127Ut
eB — 1 (:u‘cds /LLput)U +iu‘cds put cds(M—"_CCdS)(U +UPUt)+6PUthutU — (WR)GB Zut
cds ’YR(WR) (G2+Uput)gcd5 +Cr2(fp'u,t (O 2)
eA _ 1 7(#g$si'u‘;ﬁt)o +uputacda §Put (M+CP“t)(U +Ucda)+6£isCCdSUgivR(WR)9?a'3ds )
put - ’YR(WR) (02+Uput) cds+g€aput
QB — 1 (‘u'cds ‘U‘PUt)a +'u‘cols cds+6cds(M+CCds)U pUth“‘t(U +O-Cds) (WR)GB st
\ put ’YR(WR) (02+Uput) cdS+UCUput ’

where 1§* = pu; — p;, i € {cds, put}. Next, I discuss a case where investor A has positive
credit insurance inventory and investor B has negative credit insurance inventory. This
case can give rise to different signs of the CDS and option positions of the intermediary. To
see this, from Equation (O.2), if the residual investor inventory position is large enough,
the sign of the CDS or option position is determined by the sign of the inventory position.
Under this assumption, 6%, < 0, 05, < 0,02 > 0,and 65, > 0. To infer the position of
the intermediary, I aggregate the positions of the two residual investors:

2(#‘cds iu‘put)g +2iu‘cds put —Mo? _M(G +Uput) Y (WR)(0A+0B) put

( 2+Gput) cds+UCGput (O 3)
_2(“235_1“‘;215)0 +2p‘putacd5+MU +M(0 +gcd5) 2 (WR)(0A+0B) Ocds

04 4 9B — _ 1
put + Uput = SO (02+02,)0%,, 40302,

ecds + ecds = fyR({l/VR)

cds+UCU

Note that the risk premiums for both assets are:

I
I pA L gBy 2., Shuteput | SputtCput
o OO0t T T ey SRy
:uput pput I (W)—142+R (WR)—l (O 4)
1 .
I AL B2 SedsCeds | SeqsPCeds M
(6c+9¢: +9¢: )Uc+ 'yI(WI) + I(WI) + R(WR)

Heds = Peds = AW~ T2, R(WE)—1
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If 4 and 62 have similar magnitudes and 6! is small, say 02 = —67 and 6! = 0 for

simplicity,** then

2B (WE)~1 M o2 2 2R (WH)" Moy, 2 W71l ceas(14+9) 2
o o gp L grovn e — 2Mos s — Moyt Srwm g m v T
cds cds ’YR(WR) (O.g+o.2 ) cds+0-c gut
2y (W)~ 1A R(WE) 1) M2 YV WHTMep,, 2 (W)L cas(149) o
_ 1 L o L o G L 2 i U Tput
VR(WR) (02 + Uput) cds + Uc put

(0.5)

When M is big enough, the first two terms in the numerator dominate the last term,

resulting in a negative 0/, + 65,_. This implies that 6/, > 0. By the same logic, 6!

cds put

Based on the position signs of all the agents, the risk premium basis becomes

w e _ Y wH N Y whH (s — o)
Foput — Heds FH(WI)=L 4 2yR(WER)=1 * 4 I(W1)-1 4 24R (WR) put cds ©06)
W) ~2M '

,}/I(WI)—I + 27R(WR)—1

w1
W)~ 42y RO

Similar to the proof in Appendix M, one can show 52, < 0 and

— 1S
decreasing with W'. Proposition 2 still applies in this framework. Interestingly, the Equa-

YEWE)- 12M
W’) L2y R(W

tion (O.6) contains an addtional term — compared to Equation (5.17). This
term demonstrates the premium caused by the segmentatlon between the option and CDS
markets. The higher the cost (1/) of trading CDS (option) by investor B (A) is, the more
segmented the markets are. In the extreme when the cost M = oo, agent A (B) only trades
in the CDS (option) market. An increase in the wealth of the intermediary reduces the
segmentation premium, resulting in a smaller risk premium basis. This also offsets the
illiquidity channel where an increase in the wealth of the intermediary increases the risk

premium basis. It’s easy to see that when 2M > ¢, + c.q5, the segmentation channel

dominates and when 2M < ¢, + c.qs, the illiquidity channel dominates.

*0This coincides with the scenario in Gromb and Vayanos (2002).
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Chapter 6

Conclusion and Direction for Future

Research

6.1 Conclusion

This thesis explores the relation between the credit and equity (derivatives) markets, in
order to facilitate the understanding of corporate credit risk using various corporate con-
tingent claims.

Since return is a common metric to be compared across different markets, the first
essay provides a novel cash flow based CDS return metric to address the difficulty in the
return computation in the CDS market. This metric is directly linked to the stochastic
discount factor of the marginal investor, who also trades the other asset classes, provided
market integration. Thus, our metric is useful for studying the relation between the CDS
and equity (derivatives) markets.

The second essay provides innovative insights on the efficiency between the equity
and credit markets. We show that the CDS market predicts the equity market when in-
corporating the CDS term structure. A frictionless structural framework replicates the
empirical results. This finding raises the importance of credit markets compared to the

equity market in understanding the corporate credit risk.
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The third essay studies the integration between the CDS and option markets. We show
that the credit spreads extracted from these two markets co-integrate in the long-run but
exhibit short-lived price discrepancy. These price discrepancies are related to limits-to-
arbitrage frictions. Thus, this essay sheds light on the condition under which one might
have bias inference using the option implied credit spread in evaluating a firm’s credit

risk.

6.2 Directions for future research

The first essay proposes a novel yet simple-to-compute CDS return metric, which has no
less than 99% of correlation with the real CDS return metric proposed by ISDA. However,
the real CDS return metric is based on several assumptions, such as constant default in-
tensity. There are some disagreements in practice about such assumptions. In principle, if
the goal of the exercise is to obtain a return metric that has a very high correlation with the
true CDS return instead of matching the level, our return metric is likely to provide use-
ful application. Along the same line, there are other practical issues in applying the CDS
return metric, such as regulatory capital requirement. In the present essay, we examine
how full collateralization affects different metrics.! It will still be interesting to apply our
metric in some trading strategies by accounting all practical issues. One exciting applica-
tion would be applying our metric to the state-of-the-art high frequency trading strategy
and studying its return dynamics.

The second essay shows that the CDS slope helps disentangle the underlying firm dy-
namics, leading to equity return predictability. Similarly, option skew is likely to identify
different firm’s dynamics. It is then interesting to explore how option skew predicts eg-
uity return. Relatedly, one can use the option to study how the presence of CDS contracts
have a first impact on the level of risk for the underlying stocks, which is a more fun-

damental economic question to answer related to this essay. One can divide the sample

'We do not introduce collateral for metric 1 to 3 since the computation does not make sense with collat-
eral.
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based on firms with and without CDS contracts, and study whether the predictability
between the option skew and equity returns changes. We leave this for future research.

In addition, the model in the second essay so far is a static trade-off model. However,
firms infrequently adjust their leverage to the optimal level over time. A natural next step
is to extend the Leland (1994) model into a more realistic Goldstein, Nengjiu, and Leland
(2001) model to account for the leverage dynamics and study how such dynamics impact
the credit spread level and slope, which might provide predictive power to equity return.

The third essay tests the integration between the option and CDS markets, and ex-
plores the drivers of such integration. Several channels deserve further attention. To
begin with, it is important to identify the institutional traders in both markets. The short-
term deviation between the two markets can be caused by the non-institution noise trad-
ing. By identifying the main traders, we can further justify whether the short-term devi-
ation is caused by informed traders’ preference on certain markets.

Furthermore, the present essay mainly explores how asset and market participant re-
lated frictions impact the price discrepancy. It is also interesting to study which market
responds to the credit shock faster. Option market has lower trading cost but the CDS
market mainly consists of institutional traders. It is equally plausible that either market
responds to credit shock before the other and this question deserves further attention.

Finally, options are mainly traded in the short horizon and CDS is traded mostly at
5-year maturity. It is interesting to construct the basis between short term IS and long

term CDS spread to explore the cross market term structure effect.
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