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Después de todo, todo ha sido nada,

a pesar de que un d́ıa lo fue todo.

Después de nada, o después de todo

supe que todo no era más que nada.

Grito “¡Todo!”, y el eco dice “¡Nada!”.

Grito “¡Nada!”, y el eco dice “¡Todo!”.

Ahora sé que la nada lo era todo,

y todo era ceniza de la nada.

No queda nada de lo que fue nada.

(Era ilusión lo que créıa todo

y que, en definitiva, era la nada.)

Qué más da que la nada fuera nada

si más nada será, después de todo,

después de tanto todo para nada.

− José Hierro

After all, all has been naught,

even though it once was it all.

After naught, or after all

I knew that all was but naught.

I shout “All!”, and the echo says “Naught!”.

I shout “Naught!”, and the echo says “All!”.

Now I know that the naught was it all,

and all was ash of the naught.

Naught is left of what was naught.

(It was delusion what I believed all

and that, ultimately, was the naught.)

What does it matter that the naught were naught

since more naught it shall be, after all,

after so much all for naught.

− José Hierro
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Abstract

We construct two M-Theory models and relate them to each other through a series of dualities.

In doing so, we provide a unifying scheme of the supergravity proposals by Ooguri-Vafa and

Witten to study knots and their invariants. Subsequently, we focus in the world-volume gauge

theory following from one of the constructed models. This is a four-dimensional, N = 4 Yang-

Mills theory with generic gauge group SU(N), in the presence of a boundary. We obtain

its Hamiltonian and, for time-independent field configurations, we find that the equations

of motion minimizing its energy are specific Hitchin integrable systems, along with certain

“consistency conditions”. All these results were first derived by Kapustin-Witten applying

localization techniques to the path integral formulation of the gauge theory. Hence, our model

provides a simplified scenario for calculations. Additionally, it allows for an interpretation

of all the parameters in the theory in terms of supergravity quantities. We also derive

the corresponding half-BPS boundary conditions. Upon a topological twist, we show that

the boundary physics is governed by a complexified Chern-Simons action, thus providing a

suitable subspace for the embedding of knots in our setup. Finally, we include knots in our

model. At the M-Theoretical level, this is achieved by adding a given M2-brane state to the

previously constructed model. In the bulk of the associated gauge theory, this M2-brane can

be understood as a surface operator, whereas in the boundary it appears as a Wilson loop.
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Abrégé

Nous construisons deux modèles de théorie M, que nous relions l’un á l’autre par une série

de dualités. Ce faisant, nous fournissons un cadre unificateur aux supergravités proposées

par Ooguri-Vafa et Witten pour étudier les noeuds et leurs invariants. Nous nous intéressons

ensuite à la théorie de jauge dans le volume d’univers qui découle de l’un des modèles con-

struits. Celle-ci est une théorie de Yang-Mills N = 4 quadridimensionnelle possédant comme

groupe de jauge SU(N) en présence d’un bord. Nous obtenons son hamiltonien et, pour

des configurations de champs indépendantes du temps, nous trouvons que les équations du

mouvement qui minimisent l’énergie sont des systèmes intégrables définis de Hitchin, accom-

pagnés de certaines “ conditions de validité”. Tous ces résultats ont été précédemment dérivés

par Kapustin et Witten en appliquant des techniques de localisation à la formulation de la

théorie de jauge en termes d’intégrale de chemin. Notre modèle apporte donc un scénario

de simplification des calculs. De plus, il permet une interprétation de tous les paramètres

de la théorie en termes de quantités de supergravité. Nous dérivons également les condi-

tions au bord semi-BPS correspondantes. Par une torsion topologique, nous montrons que

la physique au bord est régie par une action de Chern-Simons complexifiée, fournissant ainsi

un sous-espace propice à l’insertion des noeuds dans notre cadre. Enfin, nous incluons les

noeuds dans notre modèle. Au niveau de la théorie M, cela est réalisé par l’ajout d’un état

de M2-brane donné au modèle construit précédemment. Dans l’espace intérieur associé à la

théorie de jauge, cette M2-brane peut être vue comme un opérateur de surface, tandis qu’au

bord elle apparâıt comme une boucle de Wilson.
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having specific frameworks for computation hugely simplifies the approach to the complex
topic of figuring out the many roles that knots possibly play in theoretical physics. In this
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Together with M. Pandey, the author is also involved in the development of a super-
symmetric extension of the matrix model for SU(3) Yang-Mills theory first proposed in [3].
Additionally, the author is working with N. Acharyya, A. P. Balachandran and A. F. Reyes
Lega in a book preliminary entitled “Constrained Hamiltonian Dynamics”. The book in-
tends to cover a wide variety of topics, ranging from a review of the classical dynamics of
constrained systems to advanced topics related to the quantization of such systems, such as
boundary value problems.
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Chapter 1: Introduction

Knot Theory is the branch of Topology that studies knots. In this context, a knot is an
embedding of a circle in a three-dimensional Euclidean space, or in its compact analogue:
the three-sphere. Two such knots are said to be equivalent iff there exists an ambient isotopy
transforming one to the other. This formal definition of equivalent knots is, unfortunately,
insufficient in practice. To such a great extent that one of the main unresolved problems in
Knot Theory consists in distinguishing knots. That is, determining when two knots are (or
are not) equivalent. This is known as the Classification Problem of Knots. Very elaborate
algorithms exist to this end, yet the problem persists.

Another approach to the knot differentiation puzzle involves knot invariants: numbers,
polynomials or homologies defined for each knot which remain unchanged for equivalent knots.
Interestingly, invariants such as Khovanov and Floer homologies are capable of telling apart
the unknot from any other non-equivalent knot. Although this is a phenomenal achievement,
there is still much to be accomplished. So much so that, at present, it is not known whether
a knot invariant exists which is capable of distinguishing all inequivalent knots.

There are various ways to compute knot invariants. Mathematicians use recursive rela-
tions, known as skein relations, to compute the Conway [4, 5], Alexander [6] and Jones [7]
polynomials, among others. The first physics understanding of knot invariants appeared much
later, in the groundbreaking work [8]. In it, knot polynomials are obtained as expectation
values of the holonomy of a Chern-Simons gauge field around a knot carrying a representation
of the underlying (compact) gauge group. For instance, the Jones and HOMFLY-PT [5, 9]
polynomials follow from considering the defining representations of SU(2) and SU(N), re-
spectively.

Starting roughly at the same time and up to now, there have been a number of works that
address the study of knot invariants from the point of view of four-dimensional physics: [10–
16], to mention but a few. It is within this context that the present thesis attempts to
provide a unifying and neat scheme of the results obtained so far and contribute new insights.
Specifically, we will first establish a precise connection between the models in [14] and [11].
Then, we will reproduce the conclusions of [14] in the low energy supergravity description of
a given M-Theory model. As we shall see, our approach leads to a strikingly simple analysis
in the context of the usual classical Hamiltonian formalism. Last but not least, we will
explain in details how knots are to be embedded in our model. It bears emphasizing that the
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appearance of knots in physical theories is generally not clarified. Instead, knot invariants
are computed in setups that leave the reader wondering where the knot came from to begin
with.

This thesis, together with [1, 2], constitute the first step in the path towards a clear and
concrete derivation of knot invariants from M-Theory, compactified down to four dimensions.
The simplest knot invariant, the so-called linking number, was computed in [1]. We leave the
realization of more challenging invariants to the sequel(s).

Although the present thesis has knot invariants as its main (not yet achieved) motivation,
it touches upon a wide range of topics in theoretical physics that have recently gathered plenty
of attention. For example, we will discuss torsion classes, topological twists and surface
operators. We will also briefly mention a connection to Morse Theory. An extension of our
construction, currently under development, seems capable of bridging over to Seiberg-Witten
Theory [17, 18] and certain Theories of Class S [19, 20]. All this points to knots as objects
that play a plethora of vital roles in fundamental physics.

Beyond the theoretical realm of our interest, it should be noted that knots are not only
abstract mathematical objects. Rather, they are existing, physical entities that have been
observed in a wide variety of classical contexts. To mention some of the most relevant and
surprising scenarios, one can create and then detect knots in condense matter systems like
optical beams [21, 22] and nematic liquid crystals [23–25], but also in water [26] and even
in DNA [27]! Additionally, knots have recently been discovered in a quantum framework
involving Bose-Einstein condensates [28]. In short, knots are not only fascinating objects at
an abstract level, but also a hot topic of research at an experimental level −even though this
work shall not be concerned with the latter approach.

1.1 Organization of the thesis

As hinted by the title itself, the thesis is arranged in three parts. In part I, we construct two
distinct M-Theory configurations that have all the necessary features to harbor knots. We
refer to these as (M,1) and (M,5). Specifically, chapter 2 is devoted to the construction of
(M,1), starting from the well-known D3-NS5 system in type IIB String Theory considered
in [14]. The very same D3-NS5 system is also the basis for the construction of (M,5), presented
in chapter 3. It is worth pointing out that (M,1) is dual to the model in [14], whereas (M,5)
is dual to the resolved conifold in the presence of fluxes considered in [11].

Part II focuses on the study of the world-volume gauge theory that follows from appro-
priately compactifying model (M,1). In particular, chapter 4 deals with the derivation of its
action. The corresponding Hamiltonian is obtained in chapter 5, where we also minimize its
energy for static configurations of the fields. We thus find the BPS conditions of the gauge
theory. After the energy minimization process, the Hamiltonian reduces to an action in the
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three-dimensional boundary subspace, as proved in chapter 6. Further, a careful analysis of
the symmetries and physics of this boundary shows that knots can be consistently embedded
in its Euclidean version, after a certain topological twist is performed.

At last, part III shows how knots can be consistently included in the model. This is
achieved by entertaining a given M2-brane state in (M,1). In chapter 7 we consider a toy
model M2-brane that allows for explicit computations but yields incorrect results. Chapter
8 suitably reorients the toy model M2-brane so that, in the world-volume gauge theory, it
appears as a surface operator. The surface-operator-M2-brane sources a Wilson loop contri-
bution to the boundary action. The thesis concludes in chapter 9 with a summary of the
main results and a discussion of the challenging goals we intend to achieve through the model
here developed.

Due to the considerable length of the computational details and arguments presented,
we have included a graphical summary of the thesis. It works in the following manner. By
looking at the fifteen figures (and their captions) here shown, the reader can quickly grasp the
fundamental logic articulating each part and chapter. Additionally, most of the figures refer
to equations in the text: these constitute our main results. Hence, the figures can be used to
efficiently locate any particular information of interest within the text, as well as to gain a
bird’s eye view of the contents that follow. The graphical summary is further supplemented
by a brief recapitulation paragraph in italic typeface at the end of chapters 2-8.

3



Part I
Two M-theory models to study knots: (M,1) and (M,5)

As the title suggests, in this first part we will construct two different M-Theory configura-
tions that, as we shall show in due time, provide an appropriate framework for the study of
knots. We will refer to these configurations as (M,1) and (M,5). Both of them will be directly
obtained from the well-known type IIB system of a D3-brane ending on an NS5-brane con-
sidered in [14]. Chapter 2 contains the construction of (M,1) from the D3-NS5 system, while
chapter 3 derives (M,5). As will be argued towards the end of this first part, in section 3.2.2,
(M,5) is intimately related to the model in [11]. Consequently, this part lays the ground for
an explicit connection between the two seemingly different supergravity approaches in [11,14]
to study knots.

Before proceeding to the details, a word of warning: we will consider multiple intermediate
type IIA, IIB and M-Theory configurations on our way to (M,1) and (M,5). Figure 1 provides
a visual sketch of the overall logic in this part. Hence, the reader may find it clarifying to
come back to this image while reading through chapters 2 and 3.
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Chapter 2: Construction of (M,1) from the D3-NS5 system

As we just mentioned, the starting point of our analysis is the well-known type IIB String
Theory configuration of a D3-brane ending on an NS5-brane. In more detail, we consider
Minkowski spacetime R1,9, with mostly positive metric signature. We denote the coordinates
as (t, x1, x2, x3, θ1, φ1, ψ, r, x8, x9). (The identifications (x4 ≡ θ1, x5 ≡ φ1, x6 ≡ ψ, x7 ≡ r)
will shortly become sensible.) We take the D3-brane to stretch along (t, x1, x2, ψ) and the
NS5-brane along (t, x1, x2, x3, x8, x9). The U(1) gauge theory on the D3-brane has N = 4
supersymmetry and the intersecting NS5-brane provides a half-BPS boundary condition. The
world-volume gauge theory thus has N = 2 supersymmetry as a whole. This is, essentially,
the starting point of [14] as well. (The only difference is that, in [14], an axionic background
C0 is switched on. We will elaborate on this point in section 2.2.)

Next, we do three modifications to the above setup. These are depicted schematically in
figure 2 and discussed in the following.

• First, we introduce a second NS5-brane, parallel to the first one and which also intersects
the D3-brane. This means that ψ, the direction of the D3-brane that is orthogonal to the
NS5-branes, becomes a finite interval. The inclusion of the second NS5-brane halves the
amount of supersymmetry of the gauge theory on the D3-brane. However, we consider
the case when the ψ interval is very large (that is, the two NS5-branes are far from
each other). Then, near the original NS5-brane, effectively no supersymmetry is lost in
this step.

• Second, we do a T-duality to type IIA String Theory along x3. As a result, we now
have a D4-brane (instead of a D3-brane) between the same two NS5-branes of before.

• Third, we do a T-duality back to type IIB along ψ. The NS5-branes thus disappear and
give rise to a warped Taub-NUT space in the (θ1, φ1, ψ, r) directions. (This justifies
the coordinate relabeling above.) As argued in [29], because ψ is a finite interval, the
D4-brane converts to a D5/D5 pair which wraps the ψ direction and stretches along
the radial direction r.
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The geometry corresponding to this last configuration is known (in fact, the three mod-
ifications above were done only to be able to write the corresponding metric) and is given
by

ds2(B,1) =e
−φ(−dt2 + dx21 + dx22 + dx23) + eφF4(dx

2
8 + dx29)

+ eφ[F1dr
2 + F2(dψ + cos θ1dφ1)

2 + F3(dθ
2
1 + sin2 θ1dφ

2
1)], (2.1)

where e−φ is the usual type IIB dilaton. (Since we will consider many metrics in the ongoing,
we adopt the notation ds2(X,n). Here X = A, B, M stands for type IIA, type IIB and M-

Theory, respectively and n ∈ N is an index to label the different metrics that will occur.) We
consider, for simplicity, the following dependence of the warp factors and dilaton1:

Fi = Fi(r), F4 = F4(r, x8, x9), φ = φ(θ1, r, x8, x9), i = 1, 2, 3. (2.2)

The warped Taub-NUT space metric is, quite obviously, the second line in (2.1).
Let us temporarily move the D5-brane far away along the (x8, x9) directions (the Coulomb

branch) and consider only the D5-brane. This will simplify the flux discussion in the con-
struction of the M-Theory configurations (M,1) and (M,2). Later on, in section 4.2, we will
move this D5-brane back to its original location and appropriately account for its effects. We
will then see that the D5-brane plays an important, non-trivial role in our investigations.

It has been known for quite some time now that D-branes carry Ramond-Ramond (RR)

charges [30]. In this case that concerns us, the D5-brane sources an RR three-form flux F (B,1)
3

that can be computed as2

F (B,1)
3 = e2φ ∗ dJ(B,1), (2.3)

where J(B,1) stands for the fundamental form of the metric e−φds2(B,1) along the Taub-NUT

and Coulomb branch directions (θ1, φ1, ψ, r, x8, x9), which we call ds2(1):

ds2(1) ≡ F1dr
2 + F2(dψ + cos θ1dφ1)

2 + F3(dθ
2
1 + sin2 θ1dφ

2
1) + F4(dx

2
8 + dx29). (2.4)

Let us calculate F (B,1)
3 in details next.

1As made more precise in section 3.1, a definite choice of the warp factors and dilaton will in general not
preserve the N = 2 supersymmetry of the world-volume gauge theory. Consequently, any concrete choice one
may wish to consider must be checked to indeed preserve the desired amount of supersymmetry.

2For a review on how fluxes can be determined, see [31].
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We take the vielbeins of (2.4) to be

E
(B,1)
θ1

=
√
F3e

(B,1)
θ1

=
√
F3dθ1, E

(B,1)
φ1

=
√
F3e

(B,1)
φ1

=
√
F3 sin θ1dφ1,

E
(B,1)
ψ =

√
F2e

(B,1)
ψ =

√
F2(dψ + cos θ1dφ1), E

(B,1)
r =

√
F1e

(B,1)
r =

√
F1dr,

E
(B,1)
8 =

√
F4e

(B,1)
8 =

√
F4dx8, E

(B,1)
9 =

√
F4e

(B,1)
9 =

√
F4dx9.

(2.5)

These vielbeins can be used to compute the fundamental form J(B,1):

J(B,1) ≡E(B,1)
θ1

∧ E(B,1)
φ1

+ E
(B,1)
ψ ∧ E(B,1)

r + E
(B,1)
8 ∧ E(B,1)

9

=F3 sin θ1dθ1 ∧ dφ1 +
√

F1F2(dψ + cos θ1dφ1) ∧ dr + F4dx8 ∧ dx9. (2.6)

The exterior derivative of J(B,1) is given by

dJ(B,1) = (F3,r −
√

F1F2) sin θ1dr ∧ dθ1 ∧ dφ1 + F4,rdr ∧ dx8 ∧ dx9, (2.7)

where (F3,r, F4,r) stand for the derivatives of (F3, F4) with respect to r. The Hodge dual of
the above, with respect to the metric (2.4), can be easily checked to yield

∗dJ(B,1) = e−2φ [k2(dψ + cos θ1dφ1) ∧ dx8 ∧ dx9 + k1 sin θ1dψ ∧ dθ1 ∧ dφ1] , (2.8)

where we have defined

k1 ≡ e2φ
√

F2

F1

F3

F4
F4,r, k2 ≡ e2φ

√

F2

F1

F4

F3
(
√

F1F2 − F3,r). (2.9)

Further using the vielbeins (2.5), we obtain the desired result, the RR three-form flux F (B,1)
3 :

F (B,1)
3 = e

(B,1)
ψ ∧

(

k1e
(B,1)
θ1

∧ e(B,1)φ1
+ k2e

(B,1)
8 ∧ e(B,1)9

)

. (2.10)

It is important to note that this three-form is not closed: dF (B,1)
3 6= 0. This reflects the

presence of the D5-brane in this configuration.
Summing up, the type IIB configuration shown in figure 2D can be obtained directly from

the well-known D3-NS5 system. It has the metric (2.1), dilaton e−φ and an RR three-form
flux (2.10).

An essential ingredient that makes the study of knots using the D3-NS5 system possible
is the presence of a Θ-term in the D3-brane gauge theory. In the case of [14], this term is
sourced by an axionic background C0. In the following section, we will present an alternative,
computationally simpler way to source the required Θ-term: by further modifying the above
setup switching on a non-commutative deformation.
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2.1 Sourcing the Θ-term: a non-commutative deformation

The starting point in this section is, of course, the just discussed type IIB geometry in (2.1).
We will first T-dualize this to type IIA along ψ. (This means we will move from D to C
in figure 2.) Here, we will do the non-commutative deformation, which will only affect the
(x3, ψ) directions: (x3, ψ) → (x̃3, ψ̃). This will be followed by another T-duality along
ψ̃. At this point, we will have a type IIB configuration capable of sourcing the required
Θ-term in the U(1) world-volume gauge theory. Then, we will T-dualize along φ1 to type
IIA. Finally, we will lift the resulting configuration to M-Theory. Along the way, we will also
study the NS B-field, dilaton and fluxes associated to each geometry considered, which will
in turn shed some light into the connection between the non-commutative deformation and
the Θ-term. (The precise connection between these two will be shown early in section 5.2,
see (5.82).) Figure 3 summarizes the just described chain of modifications and points out the
most relevant equations in this section.

Let us go ahead and show in details the above outlined M-Theory construction. We start
by rewriting the metric (2.1) in a more convenient way for our present purposes:

ds2(B,1) = ds2(2) + e−φdx23 + eφF2(dψ + cos θ1dφ1)
2, (2.11)

with ds2(2) defined as

ds2(2) ≡ e−φ(−dt2 + dx21 + dx22) + eφ[F1dr
2 + F3(dθ

2
1 + sin2 θ1dφ

2
1) + F4(dx

2
8 + dx29)]. (2.12)

We recall that the dilaton here is

eφ(B,1) = e−φ (2.13)

and the RR three-form flux was given in (2.10).
T-dualizing along ψ3, we get the metric

ds2(A,1) = ds2(2) + e−φdx23 +
e−φ

F2
dψ2, (2.14)

with associated NS B-field and dilaton

B(A,1) = cos θ1dψ ∧ dφ1, eφ(A,1) = (e3φF2)
−1/2. (2.15)

3For a practical compendium of formulae regarding how to perform T- and S-dualities and how to go from
(to) type IIA to (from) M-Theory, see section 6.5 in [32].
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We take the relevant vielbeins associated to ds2(A,1) to be

e
(A,1)
θ1

= dθ1, e
(A,1)
φ1

= sin θ1dφ1, e
(A,1)
ψ = dψ + cos θ1dφ1,

e
(A,1)
r = dr, e

(A,1)
8 = dx8, e

(A,1)
9 = dx9.

(2.16)

As for the fluxes, the RR three-form flux in (2.10) now converts to an RR two-form flux:

F (A,1)
2 = k1e

(A,1)
θ1

∧ e(A,1)φ1
+ k2e

(A,1)
8 ∧ e(A,1)9 . (2.17)

Note that, for an arbitrary value of the warp factors and dilaton, the above flux is not closed:

dF (A,1)
2 6= 0. This is consistent with having a D4-brane as a source (see figure 2C). The NS

three-form flux is given by

H(A,1)
3 = dB(A,1) = − sin θ1dθ1 ∧ dψ ∧ dφ1. (2.18)

We will now deform the above type IIA configuration. The non-commutative deformation
(x3, ψ) → (x̃3, ψ̃) that we will consider is

ψ = cos θncψ̃, x3 = sec θncx̃3 + sin θncψ̃, (2.19)

where θnc ∈ [0, 2π) is the deformation parameter. Note that the (x3, ψ) directions in ds
2
(A,1)

form a square torus; that is, a geometry which is isometric to a square with opposite sides
identified. Hence, the non-commutative deformation simply inclines the torus. This same
deformation was considered in [33], albeit in a different context. Under this deformation, the
above type IIA metric changes to

ds2(A,2) = ds2(2) + e−φ

[

F̃2

F2
sec2 θncdx̃

2
3 +

cos2 θnc

F̃2

(dψ̃ + F̃2 sec
2 θnc tan θncdx̃3)

2

]

, (2.20)

where we have defined

F̃2 ≡
F2

1 + F2 tan2 θnc
(2.21)

and ds2(A,2) has been written in a form suitable for the T-duality along ψ̃ that will soon follow.
The NS B-field is also affected by the deformation and now takes the form

B(A,2) = cos θnc cos θ1dψ̃ ∧ dφ1. (2.22)

On the other hand, due to our simplifying choices in (2.2), the dilaton remains unchanged:
eφ(A,2) = eφ(A,1) . The RR two-form flux (2.17) is also not affected by this deformation, namely
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F (A,2)
2 = F (A,1)

2 , but the NS three-form flux in (2.18) changes to

H(A,2)
3 = dB(A,2) = − cos θnc sin θ1dθ1 ∧ dψ̃ ∧ dφ1. (2.23)

T-dualizing the metric (2.20) along ψ̃, one obtains the type IIB metric

ds2(B,2) = ds2(2) + e−φ
F̃2

F2
sec2 θncdx̃

2
3 + eφF̃2(

dψ̃

cos θnc
+ cos θ1dφ1)

2. (2.24)

The NS B-field and dilaton associated to ds2(B,2) are

B(B,2) = F̃2 sec
2 θnc tan θnc(dψ̃ + cos θnc cos θ1dφ1) ∧ dx̃3, eφ(B,2) =

√

F̃2/F2 sec θnce
−φ,

(2.25)

respectively. To the ds2(B,2) metric, we associate the following relevant vielbeins:

e
(B,2)

3̃
= dx̃3, e

(B,2)
θ1

= dθ1, e
(B,2)
φ1

= sin θ1dφ1,

e
(B,2)

ψ̃
= dψ̃ + cos θnc cos θ1dφ1, e

(B,2)
8 = dx8, e

(B,2)
9 = dx9.

(2.26)

In terms of these, it is not hard to see that the RR three-form flux F (B,2)
3 dual to F (A,2)

2 can
be written as

F (B,2)
3 = e

(B,2)

ψ̃
∧
(

k1e
(B,2)
θ1

∧ e(B,2)φ1
+ k2e

(B,2)
8 ∧ e(B,2)9

)

. (2.27)

Once again, it is important to note that the flux F (B,2)
3 is not closed: dF (B,2)

3 6= 0. This

implies that indeed there is a D5-brane in this setup. Determining H(B,2)
3 is also not hard.

Taking the exterior derivative of B(B,2) and using (2.21) and (2.26), we get

H(B,2)
3 = F̃2 sec θnc tan θnc

( F̃2F2,r

F 2
2

sec θnce
(B,2)
r ∧ e(B,2)

ψ̃
− e

(B,2)
θ1

∧ e(B,2)φ1

)

∧ e(B,2)
3̃

, (2.28)

which is a closed form by definition.
So far, all we have done in this section boils down to introducing an NS B-field to the

type IIB configuration that was our starting point (described in chapter 2 and depicted in
figure 2D). This NS B-field, in turn, sources the NS three-form flux we just determined. In
section 5.2, we will see how this NS flux sources the desired Θ-term in the world-volume
gauge theory. For the time being, however, let us focus on the construction of the M-Theory
configuration associated to this setup.

13



The following step in the duality chain outlined at the beginning of this section is to take
the T-dual along φ1 of (2.24). In order to make this step easy, we rewrite the aforementioned
metric as

ds2(B,2) =ds
2
(3) + eφ(F̃2 cos

2 θ1 + F3 sin
2 θ1)

(

dφ1 +
F̃2 cos θ1 sec θnc

F̃2 cos2 θ1 + F3 sin
2 θ1

dψ̃
)2
, (2.29)

where we have defined

ds2(3) ≡e−φ(−dt2 + dx21 + dx22 +
F̃2

F2
sec2 θncdx̃

2
3) + eφ

F̃2F3 sec
2 θnc sin

2 θ1

F̃2 cos2 θ1 + F3 sin
2 θ1

dψ̃2

+ eφ[F1dr
2 + F3dθ

2
1 + F4(dx

2
8 + dx29)]. (2.30)

T-dualizing along φ1, we obtain the type IIA geometry

ds2(A,3) =ds
2
(3) + e−φ

(dφ1 + F̃2 sec θnc tan θnc cos θ1dx̃3)
2

F̃2 cos2 θ1 + F3 sin
2 θ1

. (2.31)

The NS B-field associated to the ds2(A,3) metric is

B(A,3) =
F̃2 sec θnc

F̃2 cos2 θ1 + F3 sin
2 θ1

(F3 sec θnc tan θnc sin
2 θ1dψ̃ ∧ dx̃3 + cos θ1dφ1 ∧ dψ̃). (2.32)

The corresponding dilaton is given by

eφ(A,3) =

√

F̃2

F2

sec θnce
−3φ/2

√

F̃2 cos2 θ1 + F3 sin
2 θ1

. (2.33)

Coming to the fluxes, the type IIA two-form flux F (A,3)
2 dual to F (B,2)

3 in (2.27) can be easily
seen to be

F (A,3)
2 = k1 sin θ1dψ̃ ∧ dθ1 + k2 cos θnc cos θ1dx8 ∧ dx9. (2.34)

It is again important to note that, of course, this two-form flux is not closed: dF (A,3)
2 6= 0,

which reflects the presence of a D6-brane (dual to the D5-brane in the previous type IIB
configuration). Thus, if we denote as A1 the type IIA gauge field for this configuration, then

it follows that F (A,3)
2 can be written as

F (A,3)
2 = dA1 +∆, d∆ = sources. (2.35)
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The explicit expression of the d∆ = dF (A,3)
2 sources is

dF (A,3)
2 = k1,a sin θ1da ∧ dψ̃ ∧ dθ1 + (k2,a cos θnc cos θ1da− k2 cos θnc sin θ1dθ1) ∧ dx8 ∧ dx9.

(2.36)

We define A1 = A1(θ1, x8, x9) as

A1 ≡ A1θ1dθ1 +A18dx8 +A19dx9, (2.37)

We further define

α1 ≡
∂A19

∂x8
− ∂A18

∂x9
, α2 ≡

∂A1θ1

∂x8
− ∂A18

∂θ1
, α3 ≡

∂A1θ1

∂x9
− ∂A19

∂θ1
. (2.38)

Using the above quantities, the exterior derivative of A1 is

dA1 ≡ α1dx8 ∧ dx9 + α2dx8 ∧ dθ1 + α3dx9 ∧ dθ1. (2.39)

Since d(dA1) = 0, the α’s just introduced are subject to the constraint

∂α1

∂θ1
− ∂α2

∂x9
+
∂α3

∂x8
= 0. (2.40)

The definition (2.37) will become sensible in the M-Theory uplift that follows. But first let
us finish the flux discussion for this type IIA configuration. We note that the corresponding
NS three-form flux is given by the exterior derivative of B(A,3). This is

H(A,3)
3 = db ∧ (k̂1,bdψ̃ ∧ dx̃3 + k̂2,bdφ1 ∧ dψ̃), (2.41)

where we have defined

k̂1 ≡
F̃2F3 sec

2 θnc tan θnc sin
2 θ1

F̃2 cos2 θ1 + F3 sin
2 θ1

, k̂2 ≡
F̃2F3 sec θnc cos θ1

F̃2 cos2 θ1 + F3 sin
2 θ1

(2.42)

and b ≡ (θ1, r) are the only coordinates on which the above two functions depend, as a
consequence of our choices in (2.2).

Finally, we will uplift the above type IIA configuration to M-Theory. To this aim, we
rewrite the metric ds2(A,3) in (2.31) in a more convenient way. We first introduce the following
quantities:

H1 ≡ (H2H3)
−1/3, H2 ≡ (cos2 θnc + F2 sin

2 θnc)
−1,

H3 ≡ (F̃2 cos
2 θ1 + F3 sin

2 θ1)
−1, H4 ≡ H3F̃2F3 sec

2 θnc sin
2 θ1,

f3 ≡ F̃2 sec θnc tan θnc cos θ1.

(2.43)
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In terms of these, the metric ds2(A,3) can be written as

ds2(A,3) =
e−φ

H1

{
H1[−dt2 + dx21 + dx22 +H2dx̃

2
3 +H3(dφ1 + f3dx̃3)

2]

+ e2φH1 [F1dr
2 + F3dθ

2
1 + F4(dx

2
8 + dx29) +H4dψ̃

2]
}

. (2.44)

It is essential to note that the M-Theory uplift will only be able to capture the dynamics of
the type IIA theory in the strong coupling limit of the latter. For us, that means that we can
only rely on the M-Theory description when eφ(A,3) is of order one or bigger. However, we will
be interested in having a finite radius for the eleventh direction after we uplift. Therefore,
we will be careful to avoid the infinite coupling limit where

eφ(A,3) → ∞. (2.45)

From (2.33) it follows that the above is true when e−φ → ∞, for an arbitrary choice of
(F2, F3). Additionally, the infinite coupling limit also applies at two isolated points (p1, p2)
given by p1 = (θ1 = 0, r = r1) and p2 = (θ1 = π/2, r = r2) (for any value of the remaining
coordinates), where (r1, r2) are the values of the radial coordinate for which F2(r1) = 0 and
F3(r2) = 0, respectively.

The M-Theory metric corresponding to (2.44) is

ds2(M,1) =H1[−dt2 + dx21 + dx22 +H2dx̃
2
3 +H3(dφ1 + f3dx̃3)

2 + e2φ(F1dr
2 +H4dψ̃

2)]

+ e2φH1[F3dθ
2
1 + F4(dx

2
8 + dx29)] + e−2φH−2

1 (dx11 +A1)
2, (2.46)

where A1 is the type IIA gauge field defined in (2.37). We note that, due to (2.2) and
(2.37), for a fixed value of the radial coordinate, r = r0, the second line above describes a
warped Taub-NUT space in the (θ1, x8, x9, x11) directions. (Indeed, this is what motivated
the definition (2.37).) This is most easily seen by introducing

G1 ≡ e2φH1F3

∣
∣
∣
r=r0

, G2, G3 ≡ e2φH1F4

∣
∣
∣
r=r0

, G4 ≡ e−2φH−2
1

∣
∣
∣
r=r0

(2.47)

and writing the warped Taub-NUT metric as

ds2TN1
= G1dθ

2
1 +G2dx

2
8 +G3dx

2
9 +G4(dx11 +A1)

2. (2.48)

Note that, as we just explained,

Gi = Gi(θ1, x8, x9), i = 1, 2, 3, 4. (2.49)
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We take the vielbeins of (2.48) as

e
(M,1)
θ1

=
√

G1dθ1, e
(M,1)
8 =

√

G2dx8, e
(M,1)
9 =

√

G3dx9, e
(M,1)
11 =

√

G4(dx11 +A1).

(2.50)

To better understand this Taub-NUT space, recall that, before the M-Theory uplift, we
had a D6-brane in our type IIA configuration. The M-Theory uplift then converts this D6-
brane to geometry. In particular, we obtain the metric (2.46), where (2.48) is a single-centered
(warped) Taub-NUT space. In other words, in (2.48), G−1

4 = 0 occurs once and the coordinate
singularity at this point is the location of the D6-brane in the dual type IIA picture. This is
an important observation and essential to the G-flux computation that follows.

As we just hinted, the remaining of this section will be devoted to the determination
of the G-flux corresponding to this M-Theory configuration. As is well-known, there exists
a unique, normalizable (anti-)self-dual harmonic two-form ω associated to a single-centered
(warped) Taub-NUT space [34]. Using which, the G-flux for our M-Theory configuration is
given by

G(M,1)
4 = 〈G(M,1)

4 〉+ F ∧ ω, 〈G(M,1)
4 〉 = H(A,3)

3 ∧ dx11, F = dA, (2.51)

where 〈G(M,1)
4 〉 is the background G-flux, H(A,3)

3 was determined in (2.41 and A is the seven-

dimensional world-volume gauge field. Thus, in order to obtain the explicit form of G(M,1)
4 ,

we have only one task left: ω must be computed. We do so in the following.
We start by making the following ansatz for ω:

ω = dζ, ζ = g(θ1, x8, x9)(dx11 +A1) (2.52)

and then proceed to determine its precise value from the (anti-)self-duality requirement:
ω = ± ∗ ω, where the Hodge dual is taken with respect to the metric (2.48). Let us see this
in details. Using (2.39) and (2.50), ω can be written as

ω =g
( α1√

G2G3
e
(M,1)
8 ∧ e(M,1)

9 +
α2√
G1G2

e
(M,1)
8 ∧ e(M,1)

θ1
+

α3√
G1G3

e
(M,1)
9 ∧ e(M,1)

θ1

)

+
1√
G4

( 1√
G1

∂g

∂θ1
e
(M,1)
θ1

+
1√
G2

∂g

∂x8
e
(M,1)
8 +

1√
G3

∂g

∂x9
e
(M,1)
9

)

∧ e(M,1)
11 . (2.53)

Rather straightforwardly it follows that its Hodge dual with respect to (2.48) is

∗ω =
1√
G4

( 1√
G1

∂g

∂θ1
e
(M,1)
8 ∧ e(M,1)

9 +
1√
G3

∂g

∂x9
e
(M,1)
8 ∧ e(M,1)

θ1
+

1√
G2

∂g

∂x8
e
(M,1)
9 ∧ e(M,1)

θ1

)

+ g
( α1√

G2G3
e
(M,1)
θ1

+
α3√
G1G3

e
(M,1)
8 − α2√

G1G2
e
(M,1)
9

)

∧ e(M,1)
11 . (2.54)
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Imposing (anti-)self-duality of ω leads to three partial differential equations (PDEs):

1

g

∂g

∂θ1
= ±α1

√

G1G4

G2G3
,

1

g

∂g

∂x8
= ±α3

√

G2G4

G1G3
,

1

g

∂g

∂x9
= ∓α2

√

G3G4

G1G2
. (2.55)

Using (2.43) and (2.47) in the above, we can rewrite these equations in terms of the warp
factors and dilaton as

1

g

∂g

∂θ1
= ± e−2φα1

F4

√

F̃2F3

F2
sec θnc(F̃2 cos

2 θ1 + F3 sin
2 θ1)

−1/2

∣
∣
∣
∣
∣
∣
r=r0

, (2.56)

1

g

∂g

∂x8
= ± e−2φα3

√

F̃2

F2F3
sec θnc(F̃2 cos

2 θ1 + F3 sin
2 θ1)

−1/2

∣
∣
∣
∣
∣
∣
r=r0

= −α3

α2

1

g

∂g

∂x9
.

Solving the above set of PDEs generically is not easy. Consequently, we will do some more
simplifying assumptions. To begin with, let us consider

α1 = 0, α2 = β2(x9)f(θ1, r, x8, x9)
∣
∣
∣
r=r0

, α3 = β3(x8)f(θ1, r, x8, x9)
∣
∣
∣
r=r0

, (2.57)

where we have defined

f = f(θ1, r, x8, x9) ≡ e2φ
√

F̃2 cos2 θ1 + F3 sin
2 θ1. (2.58)

If we now choose the dilaton to be of the form

e2φ =
e2φ0Q(r, x8, x9)

√

F̃2 cos2 θ1 + F3 sin
2 θ1

, (2.59)

with φ0 some constant, then (α2, α3) become independent of θ1 (that is, functions of the
coordinates (x8, x9) only). Recall that the α’s were subject to the constraint (2.40). Hence,
Q = Q(r, x8, x9) above must satisfy

Q

(
dβ3
dx8

− dβ2
dx9

)

+ β3
∂Q

∂x8
− β2

∂Q

∂x9

∣
∣
∣
∣
r=r0

= 0. (2.60)

For notational convenience, we define

c0 ≡
√

F̃2

F2F3
sec θnc

∣
∣
∣
∣
∣
∣
r=r0

, (2.61)

18



which is a constant that only depends on the deformation parameter θnc. Inserting all our
choices and definitions in (2.56), these PDEs reduce to

1

g

∂g

∂x8
= ±c0β3(x8),

1

g

∂g

∂x9
= ∓c0β2(x9), (2.62)

where g is now independent of θ1 and thus g = g(x8, x9). It is finally easy to use separation of
variables to solve the above. Assuming g = g̃1(x8)g̃2(x9), we obtain two ordinary differential
equations,

dg̃1
g̃1

= ±c0β3(x8)dx8,
dg̃2
g̃2

= ∓c0β2(x9)dx9, (2.63)

which can readily be solved to yield

g = g0exp

[

±c0
(∫ x8

0
β3(x

′
8)dx

′
8 −

∫ x9

0
β2(x

′
9)dx

′
9

)]

, (2.64)

with g0 some integration constant. This completes the computation of ω in (2.52), which in
turn gives us the explicit form of the G-flux in (2.51). Together with (2.46), the latter fully
characterizes model (M,1).

2.1.1 Enhancing the world-volume gauge symmetry: tensionless M2-branes

It is an intrinsically interesting question to ask whether our first M-Theory construction above
can be generalized to account for non-abelian world-volume gauge theories (and not just the
particularly simple U(1) case discussed so far). The answer is yes and the way to do so is
discussed in [35]. Consequently, in this section we review and adapt the arguments in [35] to
our case.

But before we jump into the details of non-abelian enhancement in M-Theory, it is instruc-
tive to recall the well-known equivalent discussion in type IIA String Theory [36]. Consider
N parallel D6-branes (N = 2, 3, 4, . . .). Consider there are open strings stretched between
these D6-branes. In this case, the symmetry group of the corresponding world-volume gauge
theory is

U(1)× U(1)× . . .× U(1)
︸ ︷︷ ︸

N times

. (2.65)

In the limit when the open strings become tensionless, the D6-branes come on top of each
other, leading to N coincident D6-branes. Then, the symmetry group of the corresponding
world-volume gauge theory becomes SU(N).
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If we lift the above type IIA configuration to M-Theory, then the D6-branes convert to
geometry and we obtain the metric (2.46)4, with (2.48) a multi-centered (warped) Taub-NUT
space. Indeed, G−1

4 = 0 now occurs N times in (2.48), the coordinate singularities at these
points denoting the location of the D6-branes in the dual type IIA picture. As for the open
strings, they convert to M2-branes wrapping the independent two-cycles in the Taub-NUT
space (2.48). In the limit of tensionless M2-branes, the two-cycles vanish and the world-
volume gauge theory symmetry group becomes SU(N).

Let us see how the above discussion applies to our setup in details. The first step will be
to construct the independent two-cycles in the space (2.48). In order to do so, let us start by
rewriting the metric (2.48) in a more convenient way. Defining

U ≡ e2φH2
1

∣
∣
∣
r=r0

, d~x2 ≡ H−1
1 [F3dθ

2
1 + F4(dx

2
8 + dx29)]

∣
∣
∣
r=r0

, (2.66)

we can rewrite (2.48) as

ds2TN1
= Ud~x2 + U−1(dx11 +A1)

2. (2.67)

Recall that now this warped Taub-NUT space is a multi-centered one. Using (2.43) and
(2.59), U above can be written in terms of the warp factors and Q as

U = e2φ0Q(cos2 θnc + F2 sin
2 θnc)

2/3(F̃2 cos
2 θ1 + F3 sin

2 θ1)
1/6
∣
∣
∣
r=r0

. (2.68)

For simplicity, we will do two assumptions next: we will take the deformation parameter to
be sufficiently small (that is, θnc << 1) and we will consider

F2

∣
∣
∣
r=r0

= F3

∣
∣
∣
r=r0

. (2.69)

Then, expanding to first order around θnc = 0 and using (2.69), U becomes independent of
θ1:

Ũ = Ũ(x8, x9) ≡ lim
θnc→0

U = e2φ0Q(r, x8, x9)F
1/6
3

∣
∣
∣
r=r0

. (2.70)

Ũ = 0 has N solutions, which we denote as ~li = (x8i, x9i), with i = 1, 2, . . . , N . Consider two
such points ~li and ~lj (i 6= j) and a geodesic Cg in the (x8, x9) space joining them. Attaching
to each point in Cg a circle labeled by x11, we obtain a minimal area two-cycle Xij . We take
Xk,k+1 (for k = 1, 2, . . . , N − 1) as the minimal area independent two-cycles.

4Since we never determined our warp factors and Q function in (2.59), we can absorb the changes in the
geometry due to the inclusion of the D6-branes and open strings in these quantities.
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It is well-known that to each such two-cycle Xk,k+1, with k fixed, we can associate a
unique, normalizable, (anti-)self-dual two-form ωk. Obtaining the explicit form of ωk is
straightforward, in view of our earlier results. We only need to modify (2.52) to

ωk = dζk, ζk = gk(x8, x9)(dx11 +A1) (2.71)

and restrict the integrals in (2.64) to the Xk,k+1 two-cycle:

gk = g̃0exp

[

±c0
∫ ~lk+1

~lk

(β3 − β2)|d~lCg |
]

, (2.72)

where g̃0 is some integration constant and d~lCg denotes line element along the geodesic Cg
joining ~lk and ~lk+1.

Let us now compute the areas of the two-cycles Xk,k+1 and derive their intersection
matrix. It will soon be clear why we do so. As measured in the Taub-NUT metric, the area
of Xk,k+1 is given by

Sk,k+1 =

∫

Xk,k+1

(Ũ−1/2dx11)
(

Ũ1/2
√

F4

∣
∣
∣
r=r0

|d~lCg |
)

= β̃R11

∫ ~lk+1

~lk

√

F4

∣
∣
∣
r=r0

|d~lCg |, (2.73)

with β̃ a constant that avoids possible conical singularities along Cg and R11 the physical
radius of the x11 coordinate. It is easy to see that the self-intersection number for each
Sk,k+1 is two: the Sk,k+1’s self-intersect at ~lk and ~lk+1, with geodesics transversed in the same

direction. Sk,k+1 intersects Sk−1,k only at ~lk, their geodesics being transversed in opposite
directions. No other two-cycles’ areas intersect. Thus, the (N − 1) × (N − 1) intersection
matrix of the areas of the two-cycles Xk,k+1 is












2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2












. (2.74)

Or, written more compactly,

[Sk,k+1] ◦ [Sl,l+1] =

{

2δk,l

−δl,k−1

. (2.75)
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This is, of course, the Cartan matrix of the AN−1 algebra.
Recall that there are M2-branes in this configuration. They wrap the Xk,k+1 two-cycles

and thus their intersection matrix is (2.74). As previously explained, when the area of all
these two-cycles tends to zero, the limit of tensionless M2-branes sets in. This corresponds
to an AN−1 singularity, which in turn is responsible for enhancing the world-volume gauge
symmetry to SU(N), as shown in [37]. Figure 4 schematically depicts the above discussion
for N = 3, both in the type IIA and M-Theory pictures.

To finish this section, we use all the above results to write the G-flux of this non-abelian
enhanced M-Theory configuration as

G(M,1)
4 = 〈G(M,1)

4 〉+
N−1∑

k=1

Fk ∧ ωk. (2.76)

Here, Fk’s are the Cartan algebra values of the world-volume field strength F , the background

G-flux 〈G(M,1)
4 〉 is as earlier5 in (2.51) and the two-forms ωk were computed in (2.71).

2.2 Accounting for an axionic background: an additional RR B-field

Suppose we follow the prescription of [14] to source the Θ-term in the world-volume gauge
theory. That is, suppose we consider the type IIB D3-NS5 system with an axionic background
C0. How would that affect the results in the previous section 2.1, where C0 = 0?

Long story made short, we need to follow C0 along the modifications depicted in figure 2.
We note that C0 would not be affected while going from A to B in figure 2. However, on going
from B to C, C0 would dualize to a gauge field in the x3 direction. Finally, on going from C
to D, the gauge field would lead to an RR B-field in the (x3, ψ) directions. Schematically,

C0 Convert ψ to a large−−−−−−−−−−−−→
but finite interval

C0 T-duality−−−−−−→
along x3

C1 = (C1)3dx3 T-duality−−−−−−→
along ψ

C2 = (C2)3ψdx3 ∧ dψ. (2.77)

Thus, in our construction, switching on an axionic background in the usual type IIB D3-NS5
system of [14], shown in figure 2A, amounts to adding an RR B-field in the (x3, ψ) directions
to the type IIB configuration shown in figure 2D.

However, here we will see a different way in which we can obtain such an RR B-field in
the type IIB configuration before we uplift to M-Theory. This will involve another, distinct
(although similar) chain of dualities and modifications to the type IIB configuration of figure
2D to that considered before, in section 2.1. In the following, we make precise this idea.

5Remember, however, that the warp factors and Q function introduced in (2.59) are different from those
in the abelian case, due to the inclusion of the D6-branes and open strings in the dual type IIA theory.
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The starting point here is the starting point of section 2.1 as well: the last configuration
of section 2, schematically depicted in figure 2D. To this configuration we will associate an
RR B-field. We will then do an S-duality. The next step will be a T-duality along ψ to type
IIA, where we will do the same non-commutative deformation (x3, ψ) → (x̃3, ψ̃) that was
considered in section 2.1. Afterwards, we will consider a T-duality along ψ̃ back to type IIB,
followed by an S-duality. At this point we will have a type IIB configuration with an RR
B-field along (x̃3, ψ̃). Thus, effectively we will have accounted for the axionic background, as
we wished to do. The last T-duality will be along φ1 to type IIA. The resulting configuration
will then be lifted to M-Theory. As in section 2.1, the NS and RR B-fields, dilaton and fluxes
of all the above geometries will be determined. Figure 5 serves as a summary of the chain of
modifications just described and indicates the key equations in this section.

As just explained, we start by considering the type IIB geometry ds2(B,1) in (2.1), which

has a dilaton eφ(B,1) in (2.13) and an RR three-form flux F (B,1)
3 in (2.10). We will associate

the following RR B-field C(B,1)
2 to this setup:

F (B,1)
3 = dC(B,1)

2 + ∆̃, d∆̃ = sources 6= 0. (2.78)

Note that the sources above are required to keep consistent with the fact that F (B,1)
3 is not

closed. These sources, of course, refer to the D5-brane present in this configuration. For

concreteness and as a particularly simple case, we will assume that C(B,1)
2 is of the form

C(B,1)
2 = bθ1φ1dθ1 ∧ dφ1 + b89dx8 ∧ dx9, (2.79)

where (bθ1φ1 , b89) are functions of only a ≡ (θ1, r, x8, x9), in order to respect all isometries
in (2.1). It follows then that its exterior derivative is

dC(B,1)
2 =dθ1 ∧ dφ1 ∧

(∑

a

∂bθ1φ1
∂a

da
)

+
(∑

a

∂b89
∂a

da
)

∧ dx8 ∧ dx9. (2.80)

Using (2.5), (2.10) and the above in (2.78), ∆̃ can be easily checked to be

∆̃ =dθ1 ∧ dφ1 ∧
(

k1 sin θ1dψ −
∑

a

∂bθ1φ1
∂a

da
)

+
(

k2dψ + k2 cos θ1dφ1 −
∑

a

∂b89
∂a

da
)

∧ dx8 ∧ dx9. (2.81)
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S-dualizing the above, we obtain a type IIB configuration with metric, dipole and NS
B-field given by

ds2(B,3) = eφds2(B,1), eφ(B,3) = e−φ(B,1) , B(B,3) = C(B,1)
2 , (2.82)

respectively. The corresponding NS three-form flux is the exterior derivative of B(B,3), plus
sources coming from the NS5-brane (dual to the D5-brane before). Consequently, this is

H(B,3)
3 = dC(B,1)

2 + ∆̃ = F (B,1)
3 , (2.83)

not closed: dH(B,3)
3 6= 0. In other words, after the S-duality, the RR three-form flux becomes

an NS one. This is of course very convenient (and the reason to take the S-dual to begin
with): NS B-fields and fluxes are easier to deal with than RR ones.

A T-duality along ψ leads to the type IIA geometry

ds2(A,4) = eφds2(2) + dx23 +
e−2φ

F2
dψ2, (2.84)

with ds2(2) as in (2.12) and where the associated dilaton and NS B-field are given by

eφ(A,4) = (F2)
−1/2, B(A,4) = C(B,1)

2 + cos θ1dψ ∧ dφ1. (2.85)

The NS three-form flux is then

H(A,4)
3 = dB(A,4) = dC(B,1)

2 − sin θ1dθ1 ∧ dψ ∧ dφ1. (2.86)

Note that this NS three-form flux is closed: dH(A,4)
3 = 0. This is because, under the T-duality,

the NS5-brane sources turn to geometry, as is well-known (see, for example, [38]).
Under the non-commutative deformation in (2.19), the type IIA metric changes to

ds2(A,5) = eφds2(2) +
F̂2

F2
sec2 θncdx̃

2
3 +

e−2φ

F̂2

cos2 θnc
(
dψ̃ + e2φF̂2 sec

2 θnc tan θncdx̃3
)2
, (2.87)

where we have defined

F̂2 ≡
F2

1 + e2φF2 tan2 θnc
(2.88)

and ds2(A,5) has been written in a form that anticipates the T-duality along ψ̃ that we will

soon perform. Note the resemblance between F̂2 and F̃2, defined in (2.21). Due to our choices
in (2.2), the dilaton is not affected by the non-commutative deformation: eφ(A,5) = eφ(A,4) .
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Similarly, our choice in (2.79) ensures that C(B,1)
2 remains unchanged too. The NS B-field,

however, does change to

B(A,5) = C(B,1)
2 + cos θnc cos θ1dψ̃ ∧ dφ1, (2.89)

which in turn induces the NS three-form flux to change accordingly:

H(A,5)
3 = dB(A,5) = dC(B,1)

2 − cos θnc sin θ1dθ1 ∧ dψ̃ ∧ dφ1. (2.90)

Needless to say, this flux remains closed: dH(A,5)
3 = 0.

Upon a T-duality along ψ̃, we obtain the type IIB geometry

ds2(B,4) = eφds2(2) +
F̂2

F2
sec2 θncdx̃

2
3 + e2φF̂2 sec

2 θnc(dψ̃ + cos θnc cos θ1dφ1)
2, (2.91)

with dilaton

eφ(B,4) =

√

F̂2/F2 sec θnce
φ. (2.92)

The NS B-field B(A,5) dualizes to

B(B,4) = C(B,1)
2 + e2φF̂2 sec

2 θnc tan θnc(dψ̃ + cos θnc cos θ1dφ1) ∧ dx̃3, (2.93)

which contributes to the NS three-form flux

H(B,4)
3 =

tan θnc
cos θnc

[

k3,ada ∧ (
dψ̃

cos θnc
+ cos θ1dφ1)− k3 sin θ1dθ1 ∧ dφ1

]

∧ dx̃3 + sources,

(2.94)

where we have defined k3 ≡ e2φF̂2 and we recall that a ≡ (θ1, r, x8, x9). Notice that these
are the only coordinates on which k3 depends, as a consequence of our choices in (2.2). The
above flux is not closed, owing to the sources which denote the presence of an NS5-brane.
We do not determine the precise form of the sources here, for reasons that will soon become
clear.

Next, we do an S-duality. This changes the metric to

ds2(B,5) =
e−φ

sec θnc

√

F2

F̂2

[

eφds2(2) +
F̂2

F2
sec2 θncdx̃

2
3 + k3 sec

2 θnc(dψ̃ + cos θnc cos θ1dφ1)
2
]

.

(2.95)
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The corresponding dilaton is

eφ(B,5) =

√

F2/F̂2 cos θnce
−φ. (2.96)

The NS B-field now dualizes to an RR two-form flux given by

C(B,5)
2 = −B(B,5) = −C(B,1)

2 + k3 sec
2 θnc tan θncdx̃3 ∧ (dψ̃ + cos θnc cos θ1dφ1). (2.97)

The above contributes to an RR three-form flux as F (B,5)
3 = dC(B,5)

2 + sources, where

dC2 = −dC(B,1)
2 +

tan θnc
cos θnc

[

k3 cos θ1dθ1 ∧ dφ1 − k3,ada ∧ (
dψ̃

cos θnc
+ cos θ1dφ1)

]

∧ dx̃3 (2.98)

and the sources reflect the presence of a D5-brane (S-dual to the previous NS5-brane), thus

leading to dF (B,5)
3 6= 0.

All the modifications considered so far in this section have at this stage satisfied the
desired goal: to source an RR 2-form flux along (x̃3, ψ̃) in our type IIB configuration before
the uplift to M-Theory. As we explained in the beginning of the section, this is equivalent
to switching on an axionic background C0 in the usual D3-NS5 system. Having noted this
important point, let us proceed with the remaining dualities to obtain the M-Theory uplift
of the above configuration.

Upon a T-duality along φ1, the type IIB configuration above leads to a type IIA geometry
that can be conveniently expressed as

ds2(A,6) =
e−φ

H̃1

√

H̃2

{

H̃1

(

−dt2 + dx21 + dx22 + H̃2dx̃
2
3 + H̃3dφ

2
1

)

+e2φH̃1

[

F1dr
2 + F3dθ

2
1 + F4(dx

2
8 + dx29) + H̃4dψ̃

2
]}

, (2.99)

where we have defined

H̃1 ≡ (F3 sin
2 θ1 + F̂2 cos

2 θ1)
1/3H̃

−1/3
2 , H̃2 ≡ F̂2F

−1
2 sec2 θnc,

H̃3 ≡ H̃−3
1 , H̃4 ≡ F2F3 sin

2 θ1H̃
−3
1 .

(2.100)

The type IIA dilaton in this case is

eφ(A,6) =

(
F2

F̂2

)1/4( e−3φ sec θnc

F3 sin
2 θ1 + F̂2 cos2 θ1

)1/2

. (2.101)
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There is an NS B-field associated to this metric,

B(A,6) = k4dφ1 ∧ dψ̃, k4 ≡
F̂2 sec θnc cos θ1

F3 sin
2 θ1 + F̂2 cos2 θ1

, (2.102)

which gives rise to an NS three-form flux of the form

H(A,6)
3 = dB(A,6) = k4,ada ∧ dφ1 ∧ dψ̃. (2.103)

Note that, as a consequence of our choices in (2.2) and because F̂2 depends on φ (see (2.88)),

k4 = k4(a) with a ≡ (θ1, r, x8, x9). The RR three-form flux F (B,5)
3 dualizes to an RR

two-form flux. Using (2.80), this can be written as

F (A,6)
2 = dθ1 ∧

(∑

a

∂bθ1φ1
∂a

da
)

+
tan θnc
cos θnc

(k3,a cos θ1da− k3 sin θ1dθ1) ∧ dx̃3 + sources

(2.104)

and, of course, is not closed: dF (A,6)
2 6= 0, denoting a D6-brane source. This is dual to the

D5-brane sourcing F (B,5)
3 before. In terms of the type IIA gauge field Ã1 of this configuration,

we can further rewrite the above as

F (A,6)
2 = dÃ1 +∆′, d∆′ = sources, Ã1 = bθ1φ1dθ1 + k3

tan θnc
cos θnc

cos θ1dx̃3. (2.105)

At last, we will uplift the just obtained type IIA configuration to M-Theory. Again it
should be borne in mind that the M-Theory that follows only captures the dynamics of the
above type IIA theory in the strong coupling limit where eφ(A,6) is, at least, of order one.
Being once more interested in having a finite radius for the eleventh direction, we shall be
careful to avoid the eφ(A,6) → ∞ limit. This limit applies in the same cases as discussed in
(2.45) before. The corresponding M-Theory metric is

ds2(M,2) =H̃1

[
− dt2 + dx21 + dx22 + H̃2dx̃

2
3 + H̃3dφ

2
1 + e2φ(F1dr

2 + H̃4dψ̃
2)
]

+ e2φH̃1[F3dθ
2
1 + F4(dx

2
8 + dx29)] +

e−2φ

H̃2
1 H̃2

(dx11 + Ã1)
2. (2.106)

In analogy to (2.47) earlier, fixing r = r0 and defining

G̃1 ≡ e2φH̃1F3

∣
∣
∣
r=r0

, G̃2, G̃3 ≡ e2φH̃1F4

∣
∣
∣
r=r0

, G̃4 ≡ e−2φH̃−2
1 H̃−1

2

∣
∣
∣
r=r0

, (2.107)
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the last line in (2.106) is easily seen to be a warped Taub-NUT space with metric

ds2TN2
= G̃1dθ

2
1 + G̃2dx

2
8 + G̃3dx

2
9 + G̃4

(

dx11 + Ã1

∣
∣
∣
r=r0

)2
. (2.108)

The G-flux corresponding to this second M-Theory construction is very similar to that in
(2.51):

G(M,2)
4 = 〈G(M,2)

4 〉+ F̃ ∧ ω̃, 〈G(M,2)
4 〉 = H(A,6)

3 ∧ dx11, (2.109)

where 〈G(M,2)
4 〉 denotes the background G-flux, H(A,6)

3 is as in (2.103) and ω̃ is the unique,
normalizable (anti-)self-dual harmonic two-form associated to the single-centered (warped)
Taub-NUT space in (2.108). Here, F̃ stands for the seven-dimensional field strength of the
world-volume gauge theory.

It would not be hard to adapt the computation of ω in section 2.1 to the present case
and obtain the explicit form of ω̃. In fact, we could adapt the discussion of section 2.1.1
too and thus obtain a non-abelian enhancement of the world-volume gauge theory in this
setup. However, before doing any more computations, let us compare the two M-Theory
metrics: (2.46) and (2.106). They are very similar. In fact, they just differ in the warp
factors. It is important to note that both of them break the Lorentz invariance along the
(t, x1, x2) and the x̃3 directions. Moreover, both M-theories capture the dynamics of their
dual type IIA configurations in the same limit, as we noted a bit earlier. Since the supergravity
analysis that we will perform in parts II and III will only depend on the metric deformations,
the above noted similarities are enough to consider that, for our purposes, both M-Theory
configurations are equivalent. Nonetheless, it should be clear from our calculations so far
that the first M-Theory configuration is computationally simpler to handle. Indeed, as we
already anticipated, the non-commutative deformation by itself sources the required Θ-term
in the world-volume theory and that is all we will really need. The present section explicitly
has shown that (2.46) captures all the information needed from the type IIB configuration
in [14] to embed knots and study their invariants. Consequently, we will drop any further
study of the M-Theory configuration in (2.106) and instead carry all our investigations in
the configuration with metric (2.46). That is, the first M-Theory construction to study knot
invariants is (M,1) in figure 3. More precisely, we shall focus on its non-abelian enhancement,
which was described in section 2.1.1.

It is important to bear in mind that the configuration (M,1) has been obtained from the
D3-NS5 system of [14] using the well-defined chain of dualities depicted in figures 2 and 3
(along with figure 4, for the non-abelian enhanced case). Consequently, (M,1) is dual to the
model in [14], by construction.
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Part II will be devoted to the study of the physics following from (M,1). A special
emphasize will be made on what and why this is a suitable framework for the realization
of knots. Before proceeding in this direction, however, we shall first construct yet another
M-Theory configuration, which we will refer to as (M,5). The configuration (M,5) also follows
from [14], but is not dual to it, as we shall see. Instead, we will show that it is dual to the model
in [11] and thus provides a second, independent ultraviolet-complete physical framework for
the study of knots.

In chapter 2 we have constructed model (M,1). This is an M-theoretical model which has
all required features to host knots. In particular, it has N = 4 supersymmetry, subject to
half-BPS boundary conditions. Model (M,1) is dual to the non-abelian version of the D3-NS5
system proposed in [14] and is fully characterized by the eleven-dimensional metric (2.46)
and the four-form G-flux (2.76).
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Chapter 3: Construction of (M,5) from the D3-NS5 system

As was the case in chapter 2 and as schematically shown in figure 1, the starting point of
our analysis here too is the well-known type IIB String Theory configuration of a D3-brane
ending on an NS5-brane considered in [14]. For the time being, we will not consider an axionic
background: C0 = 0. The notation and orientation of the branes are exactly as before, but
with the further identifications (x8 ≡ θ2, x9 ≡ φ2), which will soon become sensible.

Next, we do five modifications to the above setup. Figure 6 schematically depicts them.
The modifications aim to ultimately make a precise connection between [14] and [11]. We
will discuss such connection later on, in section 3.2.2. For the time being, let us just describe
the modifications.

• First, we introduce a second NS5-brane, oriented along (t, x1 x2, x3, θ1, φ1) and which
intersects the D3-brane. In analogy to the first modification in chapter 2, this turns
the direction ψ of the D3-brane, which is orthogonal to both NS5-branes, into a finite
interval. The ψ interval in this case is taken to be not too large. Consequently, the
U(1) gauge theory on the D3-brane has only N = 1 supersymmetry now.

• Second, we do a T-duality to type IIA String Theory along x3, which results in the
D3-brane converting to a D4-brane. The NS5-branes are not affected by this T-duality.
This same duality was discussed at length in [39,40].

• Third, we introduce a large number of coincident D4-branes, so that we have a stack
of N (where N ∈ N and N >> 1) D4-branes between the two NS5-branes.

• Fourth, we do a T-duality along ψ back to type IIB. As a result, the NS5-branes
disappear and give rise to a singular conifold in the (θ1, φ1, ψ, r, θ2, φ2) directions,
which explains the coordinate relabeling above. The N D4-branes convert to N D5-
branes, which wrap the vanishing two-cycle of the conifold. This T-duality has been
carefully discussed in [29, 41]. Note that, unlike in chapter 2 (see figure 2D), there
are no D5-branes here. This is because there is no Coulomb branch in this setup (the
associated world-volume gauge theory is an N = 1 supersymmetric one).

• Finally, we blow up the two-cycle of the singular conifold and thus obtain a resolved
conifold. The metric on the resolved conifold is a non-Kähler one, as succinctly pointed
out in [41] and as discussed in details in [42].
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The geometry corresponding to this last configuration is known (which explains why the
above modifications were done) and is given by

ds2(B,7) = e−φ̃(−dt2 + dx21 + dx22 + dx23) + eφ̃ds2(4), (3.1)

where the metric of warped internal six-dimensional manifold is

ds2(4) ≡ F1dr
2 + F2(dψ +

2∑

i=1

cos θidφi)
2 +

2∑

i=1

F2+i(dθ
2
i + sin2 θidφ

2
i ). (3.2)

Here, e−φ̃ is the usual type IIB dilaton:

eφ̃(B,7) = e−φ̃. (3.3)

For simplicity, we assume that the warp factors and the dilaton only depend on the radial
coordinate r:

Fi = Fi(r), φ̃ = φ̃(r), i = 1, 2, 3, 4. (3.4)

Under such assumption and for a fixed value of the radial coordinate, namely r = r0, the
second line in (3.1) is the resolved conifold metric. As was the case in chapter 2, the D5-

branes in this configuration source an RR three-form flux F (B,7)
3 which can be computed

as

F (B,7)
3 = e2φ̃ ∗ dJ(B,7), (3.5)

where J(B,7) is the fundamental two-form associated to ds2(4). We determine F (B,7)
3 in the

following.
We start by defining the vielbeins associated to the internal metric (3.2) as

E
(B,7)
θi

=
√

F2+ie
(B,7)
θi

=
√

F2+idθi, E
(B,7)
φi

=
√

F2+ie
(B,7)
φi

=
√

F2+i sin θidφi,

E
(B,7)
ψ =

√
F2e

(B,7)
ψ =

√
F2(dψ +

2∑

i=1
cos θidφi), E

(B,7)
r =

√
F1e

(B,7)
r =

√
F1dr,

(3.6)

with i = 1, 2. Using these vielbeins, it is easy to write down the fundamental two-form of
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our interest:

J(B,7) ≡
2∑

i=1

E
(B,7)
θi

∧ E(B,7)
φi

+ E
(B,7)
ψ ∧ E(B,7)

r

=
2∑

i=1

F2+i sin θidθi ∧ dφi +
√

F1F2(dψ +
2∑

i=1

cos θidφi) ∧ dr. (3.7)

The exterior derivative of the above is

dJ(B,7) =
2∑

i=1

(F2+i,r −
√

F1F2) sin θidr ∧ dθi ∧ dφi, (3.8)

where, quite obviously, F2+i,r stands for the derivative with respect to r of F2+i (i = 1, 2).
The Hodge dual of the above, with respect to the metric (3.2), gives rise to the three-form
flux (3.5) we were looking for:

F (B,7)
3 = e2φ̃

√

F2

F1

2∑

i,j=1
i 6=j

F2+j

F2+i
(F2+i,r −

√

F1F2) sin θj(dψ + cos θidφi) ∧ dθj ∧ dφj . (3.9)

Note that, in good agreement with the previously pointed out presence of D5-branes in this

configuration, the above flux is not closed: dF (B,7)
3 6= 0.

Later on, in section 3.2.1, we will be interested in making a fully precise choice of the warp
factors and dilaton in (3.4). Accordingly, we note that not any such choice will eventually
lead to a world-volume gauge theory with N = 1 supersymmetry, as desired. The story is
in fact a bit more involved: the warp factors and dilaton must satisfy a particular constraint
equation so that we indeed have N = 1 supersymmetry. In the following section, we derive
this constraint equation.

3.1 Demanding N = 1 supersymmetry: torsion classes

The aforementioned constraint equation relating the warp factors and dilaton in (3.4) that
ensures N = 1 supersymmetry in the associated world-volume gauge theory is most easily
derived using the technique of torsion classes. A detailed yet concise review of the technique
and its applications to String Theory can be found in [43]. A more mathematical approach to
the same material is [44]. In this section, we review and adapt the results in these references
to the present case and thus obtain the desired constraint equation. This is, essentially, the
content of section 3.1 in [45] as well.

35



We start by noting that the type IIB configuration determined in the previous section has
an internal six-dimensional manifold, whose (Riemannian) metric was given in (3.2). This
manifold is equipped with a fundamental two-form, given in (3.7). In a more mathematical
language, we say that this is a six-dimensional manifold with a U(3) structure J . An SU(3)
structure is then determined by a real three-form Ω+, which we will soon compute. There
is an intrinsic torsion associated to each of these structures. For our purposes, only the
intrinsic torsion τ1 of the SU(3) structure will be relevant. τ1 belongs to a space which can
be decomposed into five classes:

τ1 ∈ W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5, (3.10)

according to its decomposition into the irreps of SU(3)

(1+ 1) + (8+ 8) + (6+ 6̄) + (3+ 3̄) + (3̄+ 3). (3.11)

We denote the component of τ1 in Wi as Wi for all i = 1, 2, 3, 4, 5.
Before proceeding further, let us introduce the so-called contraction operator y, which

will immediately become useful to us. Let (e1, e2, . . . , ei) be an orthonormal basis of the
cotangent space T ∗M of any i-dimensional manifold M . Given a j-form ω1 and a k-form ω2

in T ∗M , with i ≥ j ≥ k ≥ 0,

ω1 ≡ (ω1)12...j

j
∏

l=1

el, ω2 ≡ (ω2)12...k

k∏

l=1

el, (3.12)

the contraction operator y is a map from the pair (ω1, ω2) to a (j − k)-form given by

ω2 y ω1 ≡
1

j!

(
j
k

)

(ω1)
12...j(ω2)12...k

j
∏

l=k+1

el, (3.13)

with the convention that e1 ∧ e2 y e1 ∧ e2 ∧ e3 = e3, etc. Having introduced the contraction
operator, we now have all the ingredients required to derive the desired constraint equation.

The necessary and sufficient conditions to ensure N = 1 supersymmetry in the world-
volume gauge theory corresponding to the geometry (3.1) have long been known [46]6. These
conditions were then reformulated in [43] in terms of the torsion classes we just introduced in
(3.10). For the present case, they amount to demanding that the following should hold true:

2W4 +W5 = 0, (3.14)

6The conditions in [46] are actually a bit too stringent. Later on, examples of N = 1 supersymmetric
theories which did not satisfy all these conditions were found (see, for example [33]). For our case, however,
the list in [46] will suffice.
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with (W4, W5) defined as

W4 ≡
1

2
J y dJ, W5 ≡

1

2
Ω+ y dΩ+. (3.15)

The remaining of this section is devoted to the calculation of (3.14) in terms of the warp
factors and dilaton in (3.4).

In order to match the conventions in [45], where the interested reader can find an elab-
oration of the present discussion, we take the complex vielbeins of the internal six-manifold
of (3.1) as in there:

E(B,7)
1 = eφ̃(

√

F1e
(B,7)
r + i

√

F2e
(B,7)
ψ ), E(B,7)

1+i = eφ̃+iψ/2
√

F2+i(e
(B,7)
θi

+ ie
(B,7)
φi

), (3.16)

where the vielbeins e(B,7) where defined in (3.6) and i = 1, 2. In terms of these vielbeins, the
U(3) structure J of the internal space is given by

J ≡E(B,7)
1 ∧ E(B,7)

1 +
2∑

i=1

E(B,7)
1+i ∧ E(B,7)

1+i

=2ie2φ̃
(√

F1F2e
(B,7)
r ∧ e(B,7)ψ +

2∑

i=1

F2+ie
(B,7)
φi

∧ e(B,7)θi

)

, (3.17)

where the bar denotes complex conjugation. We also define the three-form Ω as

Ω ≡ E1 ∧ E2 ∧ E3 = e3φ̃+iψ
√

F3F4

(√

F1e
(B,7)
r + i

√

F2e
(B,7)
ψ

)

∧
2∏

i=1

(

e
(B,7)
θi

+ ie
(B,7)
φi

)

.

(3.18)

The SU(3) structure Ω+ of the internal space is just the real part of the above three-form:
Ω+ ≡ Re(Ω). Using Euler’s formula, it is not hard to show that

Ω+ =e3φ̃
√

F3F4

[(√

F1 cosψe
(B,7)
r −

√

F2 sinψe
(B,7)
ψ

)

∧
(

e
(B,7)
θ1

∧ e(B,7)θ2
− e

(B,7)
φ1

∧ e(B,7)φ2

)

−
(√

F1 sinψe
(B,7)
r +

√

F2 cosψe
(B,7)
ψ

)

∧
(

e
(B,7)
θ1

∧ e(B,7)φ2
+ e

(B,7)
φ1

∧ e(B,7)θ2

)]

. (3.19)

In order to obtain the exterior derivative of the two structures of our interest, (J, Ω+), it is
necessary to use the explicit form of the vielbeins in (3.6). Rather tedious algebra yields

dJ =2ie2φ̃
2∑

i=1

(√

F1F2 − F2+i,r − 2φ̃rF2+i

)

e(B,7)r ∧ e(B,7)θi
∧ e(B,7)φi

, (3.20)
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and the cumbersome looking four-form

dΩ+ = k′1e
(B,7)
r ∧ e(B,7)φ1

∧ e(B,7)φ2
∧

2∑

i=1

cot θie
(B,7)
θi

+ k′2e
(B,7)
r ∧ e(B,7)θ1

∧ e(B,7)θ2
∧

2∑

i=1

cot θie
(B,7)
φi

+ dψ ∧ e(B,7)r ∧
(
k′1e

(B,7)
θ1

∧ e(B,7)φ2
+ k′1e

(B,7)
φ1

∧ e(B,7)θ2
+ k′2e

(B,7)
θ1

∧ e(B,7)θ2
− k′2e

(B,7)
φ1

∧ e(B,7)φ2

)
,

(3.21)

where the subscript r, as before, denotes derivation with respect to the radial coordinate and
we have defined

k′1 ≡ e3φ̃
√

F2F3F4 cosψ
(

3φ̃r −
√

F1

F2
+

4∑

i=2

Fi,r

2Fi

)

, k′2 ≡ − tanψk′1. (3.22)

Using (3.13) and all the above in (3.15), it is a matter of care and patience to obtain the
relevant components of the intrinsic torsion of Ω+ as

W4 =
(

φ̃r +

4∑

i=3

Fi,r −
√

F1F2

4Fi

)

e(B,7)r , W5 =
1

2

(

φ̃r −
1

3

√

F1

F2
+

4∑

i=2

Fi,r

6Fi

)

e(B,7)r .

(3.23)

Finally, inserting these values of (W4, W5) in (3.14), the desired constraint ensuring N = 1
supersymmetry is obtained:

30φ̃r − 2

√

F1

F2
+

F2,r

F2
+

4∑

i=3

(

7
Fi,r

Fi
− 6

√
F1F2

Fi

)

= 0. (3.24)

At this point one may wonder if similar constraints should not have been worked out for
our configuration (M,1) with metric (2.1) in chapter 2 as well. Surely ifN = 1 supersymmetry
constrains the choice of warp factors and dilaton in (3.4), N = 2 supersymmetry should also
constrain our choices in (2.2). The resolution to this issue is, unfortunately, beyond the scope
of this work, as the powerful technique of torsion classes has not yet been generalized to the
case of N = 2 supersymmetry. Consequently, any specific choice for the warp factors in (2.2)
and Q in (2.59) that one may want to consider will require an explicit verification that it
indeed preserves the desired amount of supersymmetry7.

To sum things up, so far we have obtained from the well-known D3-NS5 system (with no

axion) of [14] the type IIB configuration with metric (3.1), dilaton e−φ̃ and an RR three-form
flux (3.9). In order for this configuration to lead to a N = 1 supersymmetric world-volume

7We will discuss how this is achieved in the gauge theory following from (M,1) in section 6.2 later on.
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gauge theory, the constraint (3.24) should be satisfied. However, we would like to consider a
type IIB configuration which, besides having an RR three-form flux, also has an NS three-form
flux. This is, in principle, not an easy task. However, the series of dualities first presented
in [41] and later on further studied in [42, 45], when applied to our above configuration,
precisely serves this purpose. In the following section, we explain these dualities in details
and obtain a type IIB configuration with both RR and NS fluxes. Such a generalization will
then, in section 3.2.2, allow us to establish a direct connection with the model to study knots
presented in [11].

3.2 Sourcing NS fluxes: a boost in M-Theory

We start this section considering the type IIB configuration described in chapter 3 and de-
picted in figure 6F. We will first perform three T-dualities, along (x1, x2, x3), to type IIA.
The resulting configuration will then be lifted to M-Theory, where we will perform a boost
along the eleventh direction: (t, x11) → (t̃, x̃11). This will be followed by a dimensional
reduction to type IIA. The last step will be to T-dualize along (x1, x2, x3) back to type IIB.
Of course, we will work out the NS B-field, dilaton and RR and NS fluxes associated to each
geometry considered along this chain of modifications. As we already pointed out, starting
from a type IIB configuration which only has RR fluxes, we will thus obtain a type IIB
configuration with RR and NS fluxes. As already said and as we shall show, the additional
NS fluxes are required in order to precisely reproduce the model in [11]. Figure 7 outlines
the just described chain of modifications and serves as a summary of the key results in the
present section.

As just mentioned, to the type IIB configuration shown in figure 6F we do three T-
dualities, along (x1, x2, x3). It is rather straightforward to see that the metric then becomes

ds2(A,7) = −e−φ̃dt2 + eφ̃(dx21 + dx22 + dx23 + ds2(4)), (3.25)

where ds2(4) was defined in (3.2). Coming to the dilaton, its changes can be summarized as
follows:

eφ̃(B,7) = e−φ̃
T-duality−−−−−−→
along x1

e−φ̃/2
T-duality−−−−−−→
along x2

1
T-duality−−−−−−→
along x3

eφ̃/2 = eφ̃(A,7) . (3.26)

39





The F (B,7)
3 flux will give rise to an RR six-form flux. This is because each T-duality will add

a leg to it along its corresponding Minkowskian direction (x1, x2, x3):

F (B,7)
3

T-duality−−−−−−→
along x1

dx1 ∧ F (B,7)
3

T-duality−−−−−−→
along x2

dx2 ∧ dx1 ∧ F (B,7)
3

T-duality−−−−−−→
along x3

dx3 ∧ dx2 ∧ dx1 ∧ F (B,7)
3 = F (A,7)

6 . (3.27)

This flux is not closed (dF (A,7)
6 6= 0), which is to be expected, since the three T-dualities

convert the N coincident D5-branes of the previous type IIB configuration to N coincident

D2-branes that source F (A,7)
6 . The Hodge dual of this six-form flux then gives us the more

convenient −from the point of view of the coming uplift− RR four-form flux of this type IIA
configuration:

F (A,7)
4 = ∗F (A,7)

6 = ∗F (B,7)
3 ∧ dt =

2∑

i=1

(F2+i,r −
√

F1F2) sin θidr ∧ dθi ∧ dφi ∧ dt, (3.28)

where the first Hodge dual is with respect to the full ten-dimensional metric (3.25), whereas
the second one is with respect to the internal metric in (3.2). The above result makes use of
(3.5), (3.8) and (3.27).

Lifting this type IIA configuration to M-Theory is quite effortless. We get the following
metric and G-flux:

ds2(M,3) = −e−4φ̃/3dt2 + e2φ̃/3(dx21 + dx22 + dx23 + ds2(4) + dx211), G(M,3)
4 = F (A,7)

4 . (3.29)

Note that the D2-branes now convert to N coincident M2-branes.
The key step in this chain of dualities comes next: we perform a boost in the eleventh

direction. Explicitly,

x11 = coshβx̃11 − sinhβt̃, t = − sinhβx̃11 + coshβt̃, (3.30)

with β the boost parameter. For brevity, we introduce the quantity

Υ ≡ sinh2 β(e2φ̃/3 − e−4φ̃/3). (3.31)

Using the above two equations in ds2(M,3), it is a matter of simple algebra to check that the
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boosted M-Theory metric is given by

ds2(M,4) =e
2φ̃/3(dx21 + dx22 + dx23 + ds2(4))−

e−2φ̃/3

Υ+ e2φ̃/3
dt̃2

+ (Υ + e2φ̃/3)
(
dx̃11 −

Υcothβ

Υ+ e2φ̃/3
dt̃
)2
. (3.32)

Writing the metric as we did above makes it clear that the boost has now generated a gauge
field in the M-Theory. On the other hand, the boosted G-flux can be easily seen to be

G(M,4)
4 = dJ(B,7) ∧ (coshβdt̃− sinhβdx̃11), (3.33)

with dJ(B,7) as in (3.8).
The next step in the chain of dualities outlined in the beginning of this section is to

dimensionally reduce the above to type IIA. The corresponding metric is

ds2(A,8) = − e−2φ̃/3

√

Υ+ e2φ̃/3
dt̃2 + e2φ̃/3

√

Υ+ e2φ̃/3(dx21 + dx22 + dx23 + ds2(4)) (3.34)

and the associated dilaton is

eφ̃(A,8) =
(

Υ+ e2φ̃/3
)3/4

. (3.35)

Coming now to the fluxes, we note that the M2-branes of the previous M-Theory setup now
convert to D2-branes, which source an RR four-form flux given by

F (A,8)
4 = coshβdJ(B,7) ∧ dt̃. (3.36)

The Hodge dual of the above will soon be useful. This is an RR six-form flux of the form

F (A,8)
6 = ∗F (A,8)

4 = coshβdx1 ∧ dx2 ∧ dx3 ∧ F (B,7)
3 , (3.37)

. where F (B,7)
3 was given in (3.9) This flux is clearly not closed, dF (A,8)

6 6= 0, as expected.
Additionally, the M-Theory gauge field generated by the boost (3.30), effectively converts to
a “D0-charge”. This D0-charge sources a closed RR two-form flux: the exterior derivative of
the just mentioned gauge field. Explicitly,

F (A,8)
2 = −d

( Υcothβ

Υ+ e2φ̃/3
dt̃
)

= cothβ
d

dr

( Υ

Υ+ e2φ̃/3

)

dt̃ ∧ dr, (3.38)

where we have used the fact that, as a consequence of our choices in (3.4), the gauge field
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only depends on the radial coordinate r (and the boost parameter β). To finish this flux
discussion, we note that the boost generates a closed NS three-form flux, just as we wanted:

H(A,8)
3 = − sinhβdJ(B,7). (3.39)

To finish this section, the only remaining task is to perform three T-dualities, along
(x1, x2, x3), back to type IIB. From (3.34), it follows that the geometry corresponding to our
final configuration is

ds2(B,8) =
e−2φ̃/3

√

Υ+ e2φ̃/3
(−dt̃2 + dx21 + dx22 + dx23) + e2φ̃/3

√

Υ+ e2φ̃/3ds2(4), (3.40)

with ds2(4) as in (3.2). The changes in the dilaton can be summarized as follows:

eφ̃(A,8)
T-duality−−−−−−→
along x1

e−φ̃/3
(
Υ+ e2φ̃/3

)1/2 T-duality−−−−−−→
along x2

e−2φ̃/3
(
Υ+ e2φ̃/3

)1/4 T-duality−−−−−−→
along x3

e−φ̃. (3.41)

Hence, the dilaton remains as in the beginning:

eφ̃(B,8) = eφ̃(B,7) = e−φ̃. (3.42)

It is rather obvious that, since the dualities are along diagonal directions of the metric, the
NS three-form flux will not be affected in this case:

H(B,8)
3 = H(A,8)

3 = − sinhβdJ(B,7). (3.43)

Regarding the F (A,8)
6 flux, we note that each T-duality will remove a leg to it along its

corresponding Minkowskian direction (x1, x2, x3). That is, we have the reverse process to
that earlier in (3.27):

F (A,8)
6 = coshβdx1 ∧ dx2 ∧ dx3 ∧ F (B,7)

3
T-duality−−−−−−→
along x1

coshβdx2 ∧ dx3 ∧ F (B,7)
3

T-duality−−−−−−→
along x2

coshβdx3 ∧ F (B,7)
3

T-duality−−−−−−→
along x3

coshβF (B,7)
3 = F (B,8)

3 . (3.44)

We thus obtain a non-closed RR three-form flux, an indication of the N coincident D5-branes

present in this configuration. Finally, the D0-charge previously sourcing F (A,8)
2 now converts

to a D3-charge. The D3-charge then sources an RR five-form flux which, in analogy to (3.27),

is given by F (A,8)
2 ∧ dx1 ∧ dx2 ∧ dx3, plus its Hodge dual (since the D3-charge is self-dual, the
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corresponding RR flux must be self-dual too). We get

F (B,8)
5 = cothβ(1 + ∗) d

dr

( Υ

Υ+ e2φ̃/3

)

dt̃ ∧ dr ∧ dx1 ∧ dx2 ∧ dx3, (3.45)

where the Hodge dual is, of course, with respect to the metric (3.40). As a consistency check,
one may verify that setting β = 0 (no boost), we recover the initial type IIB configuration
with only dilaton and RR three-form flux:

configuration (B, 8) −−→
β=0

configuration (B, 7). (3.46)

It is important to note that none of the modifications performed in this section affects the
supersymmetry of the starting configuration (B,7). In other words, the previously derived
constraint equation (3.24) is enough to ensure that the end configuration (B,8) is associated
to an N = 1 supersymmetric world-volume gauge theory too. We refer the interested reader
to section 3.2 in [45] for an enlightening discussion on the difficulties to derive this constraint
equation in the context of the configuration (B,8), where the internal 6-dimensional manifold
is not complex, unlike in the configuration (B,7).

3.2.1 Exact results: a specific choice of the warp factors

At this stage, we would like to make our discussion fully precise. To this aim, we choose our
warp factors as

F1 =
e−φ̃

2F
, F2 =

r2e−φ̃F

2
, F3 =

r2e−φ̃

4
+ a2, F4 =

r2e−φ̃

4
, (3.47)

where, in good agreement with our previous choices in (3.4),

F = F (r), a2 ≡ a20 + ã(r). (3.48)

The constant a20 is to be interpreted as the resolution parameter of the blown up two-cycle
in the resolved conifold. (This choice was already studied in [45] and [47].) In this section,

we work out three constraint equations that ultimately allow us to compute (F, eφ̃, a) above
and thereby fully determine our type IIB configuration in this case. We will do so for a
particularly simple case, as the most general scenario is computationally hard to handle.

The first constraint equation follows from demanding that the choice (3.47) leads to a
world-volume gauge theory with N = 1 supersymmetry. As we argued in section 3.1, this
amounts to requiring that (3.24) holds true. Using (3.47) in (3.24), it is quite straightforward
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to show that the first constraint can be written as

(

15 + 88
a2eφ̃

r2

)

φ̃r + 56eφ̃
a

r2
ar +

2

r
+
(4

r
+

1

F
Fr −

2

rF

)(

1 +
4a2eφ̃

r2

)

= 0, (3.49)

where (φ̃r, ar, Fr) stand for the derivatives with respect to the radial coordinate r of (φ̃, a, F ),
respectively.

For the second constraint equation, we will demand quantization of the magnetic charge
of the D5-branes in our configuration. Recall that, in spite of the duality chain of figure 7,
our D5-branes remain as in figure 6F: oriented along (t, x1, x2, x3) and wrapping the two-
cycle parametrized by (θ2, φ2). As is well-known

8, the D5-branes’ charge stems from the RR

three-form flux F (B,8)
3 . Accordingly, let us begin by giving the explicit form of this flux when

the warp factors are chosen as just mentioned. This amounts to inserting (3.47) in (3.44)
and further using (3.6) and (3.9). Rather easy and quick algebra then gives

F (B,8)
3 = −e

φ̃r3F

4
coshβ

(

k̃1e
(B,7)
θ1

∧ e(B,7)φ1
+ k̃2e

(B,7)
θ2

∧ e(B,7)φ2

)

∧ e(B,7)ψ , (3.50)

where we have defined

k̃1 ≡ φ̃r

(

1 +
4a2eφ̃

r2

)

, k̃2 ≡
r2φ̃r − 8aare

φ̃

r2 + 4a2eφ̃
. (3.51)

Now, the magnetic charge of the D5-branes in our setup can be calculated as the integral of
their RR three-form flux over the three cycle orthogonal to them:

qm =

∫

S3

F (B,8)
3 , (3.52)

with S3 the three cycle labeled by (θ1, φ1, ψ) and depicted in figure 6F. It is easy to see that
only the first term in (3.50) will contribute to the magnetic charge. Normalizing the three
cycle volume as

VS3 ≡
∫

S3

e
(B,7)
θ1

∧ e(B,7)φ1
∧ e(B,7)ψ = 1 (3.53)

and demanding qm ∈ Z, we obtain the second constraint equation:

c̃0 ≡
k̃1F

4
eφ̃r3 coshβ ∈ Z. (3.54)

8A succinct and clear review on charge quantization of D-branes can be found in [31].

45



The third and last constraint follows from d2F (B,8)
3 = 0. For simplicity, we will consider

the limit when (a, ar) are of the same order and sufficiently small, a ∼ ar << 1. Under this
assumption, we can expand k̃2 around a2 = 0 and obtain

k̃2 = φ̃r

(

1− 4a2eφ̃

r2

)

− 8aare
φ̃

r2
+O(a3). (3.55)

Further introducing the quantities

η3 ≡
(

e
(B,7)
θ1

∧ e(B,7)φ1
− e

(B,7)
θ2

∧ e(B,7)φ2

)

∧ e(B,7)ψ , G ≡ e2φ̃rF coshβ
(

2aar −
e−φ̃r2φ̃r

2

)

,

(3.56)

it is not hard to convince oneself that F (B,8)
3 can be written in the very suggestive way

F (B,8)
3 = −c̃0η3 +Ge

(B,7)
θ2

∧ e(B,7)φ2
∧ e(B,7)ψ , (3.57)

where we have used our first constraint (3.54). Note that η3 is a closed form (dη3 = 0). Con-
sequently, the exterior derivative of the above comes solely from the second term. Denoting
as Gr the derivative of G with respect to r, we obtain

dF (B,8)
3 = Gre

(B,7)
r ∧ e(B,7)ψ ∧ e(B,7)θ2

∧ e(B,7)φ2
−Ge

(B,7)
θ1

∧ e(B,7)φ1
∧ e(B,7)θ2

∧ e(B,7)φ2
, (3.58)

where we have made use of (3.6). Of course, the exterior derivative of the above must vanish
and this leads to our third constraint equation:

0 = d2F (B,8)
3 = −Gre(B,7)r ∧ e(B,7)θ1

∧ e(B,7)φ1
∧ e(B,7)θ2

∧ e(B,7)φ2
=⇒ Gr = 0. (3.59)

Having derived the three constraints of our interest, (3.49), (3.54) and (3.59), we will now
solve them under the assumption a ∼ ar << 1, keeping only terms up to order O(a). (Other
solutions to these equations are of course possible, but we will not attempt them here.) In
this case, (3.49) reduces to

rφ̃r +
r

15F
Fr −

2

15F
+

2

5
+O(a2) = 0 (3.60)

and (3.54) becomes

c̃0 =
eφ̃r3F

4
φ̃r coshβ +O(a2), (3.61)

which immediately ensures that (3.59) is satisfied in the limit here considered. Defining
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Z ≡ eφ̃ and ĉ0 ≡ c̃0/ coshβ, we can solve for F in the above

F =
4ĉ0
r3Zr

+O(a2). (3.62)

Substitution in (3.60) then yields

rZrr − 3Zr + r
( r2

2c0
− 15

Z

)

Z2
r +O(a2) = 0, (3.63)

with Zrr ≡ d2Z/dr2. One may easily verify that a solution to (3.63) is given by Z = 24ĉ0r
−2.

It follows then that

eφ̃ =
24ĉ0
r2

+O(a2), F = − 1

12
+O(a2) (3.64)

fully determines our choices in (3.47), up to order O(a2). The explicit form of the type IIB
configuration (B,8) in figure 7 can then be obtained by simply using (3.47) and (3.64) in
(3.40) and in (3.42)-(3.45).

3.2.2 Connection to the model in [11]

The present section is devoted to sketching how the configuration (B,8) of figure 7 is related
to the resolved conifold in the presence of fluxes considered by Ooguri and Vafa in [11]. Here,
we will clearly point out the modifications needed to obtain the model in [11] from (B,8).
These are depicted in figure 8, which serves as a graphical summary of the present section
too. Nonetheless, unlike in previous sections, we will not present a thorough derivation of
the geometries and fluxes for each intermediate configuration considered in the process. Such
exhaustive study is beyond the scope of this thesis and is deferred to the sequel(s) of [1,2]. In
such sequel(s), following [11], we also intend to explore knot invariants in the configuration
(M,5), which follows from (B,8) and which is constructed in details in section 3.3. For the
time being, we refer the interested reader to section 4.4 in [1] for a preliminary discussion of
the physics stemming from (M,5) and the realization of knots in this setup.

As we just mentioned, our starting point in this section is the configuration (B,8) summa-
rized in figure 7. Essentially, this is the same configuration as that drawn in figure 6F, but
in the presence of both RR and NS fluxes. In figure 8, this is shown in the top, left corner.
As can be seen, (B,8) consists of a large number N of D5-branes wrapping the two-cycle S2

of a non-Kähler resolved conifold. Let us start by making an observation that will soon be
relevant to us. From the orientation of the D5-branes shown in figure 6F it is clear that,
upon a dimensional reduction, we expect to obtain an SU(N) world-volume gauge theory
along the spacetime directions (t̃, x1, x2, x3).
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tively and show that the mirror picture consists of N D6-branes wrapping the three-cycle S3

of a non-Kähler deformed conifold. This is true only for energies higher than the inverse size
of the two-cycle S2 of the dual resolved conifold. As a consequence, we will restrict ourselves
in the ongoing to this energy regime9.

In the described mirror picture of our interest, the N D6-branes are oriented along the
seven-dimensional subspace S3

(E)×S3×R. The third and last modification required to obtain

the model in [11] is given by a flop operation, that exchanges S3
(E) and S

3: S3
(E) ↔ S3. Clearly,

this does not affect the orientation of the D6-branes, yet it transfers the physics from S3
(E)×R

to S3×R, thus yielding the D6-brane realization of the model in [11] depicted on the bottom,
left corner of figure 8.

A more well-known realization of the setup in [11] is obtained by simply taking the large
N dual (in other words, performing a geometric transition) of the above configuration. In
this case, the deformed conifold becomes a resolved one. The D6-branes disappear in the
dual picture, giving rise to fluxes. This configuration is precisely that shown on the bottom,
right corner of figure 8.

Alternatively, one may take the large N dual of (B,8) first and consider the mirror picture
afterwards. The result is the same: we obtain the deformed conifold with fluxes of [11]. This
equivalent procedure is depicted on the top, right corner of figure 8.

At this stage, we have argued that our configuration (B,8) is related to the model in [11]
by a simple chain of dualities. That is, (B,8) is dual to [11]. In the next section, we will build
an M-Theory configuration (M,5) from (B,8). As we shall see, (B,8) is dual to (M,5) and so
this will allow us to conclude that (M,5) is dual to [11] too.

3.3 Non-commutative deformation and M-Theory uplift

In this section we will obtain the second M-Theory construction where knot invariants can be
studied: (M,5). Clearly, the starting point will be the configuration (B,8) in figure 7. We will
first do a T-duality along ψ to type IIA, where we will perform the same non-commutative
deformation we considered in section 2.1: (x3, ψ) → (x̃3, ψ̃). As we argued in both sections
2.1 and 2.2, this deformation sources a Θ-term in the associated world-volume gauge theory,
which is crucial to allow for the embedding of knots in our model. Finally, we will uplift
the resulting configuration to M-Theory. As has been the case so far, the dilaton and fluxes
for each geometry considered will be worked out here too. Figure 9 provides a graphical
summary of this chain of modifications and indicates the main results in this section.

9As argued around (2.5) in [1], for energies lower than the size of S2, the mirror picture will lead to D4-
branes instead of D6-branes. Although such scenario may be interesting as well, it does not relate to the
model in [11] and thus we are presently not concerned with it.
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where we have defined

ds2t12 ≡ −dt̃2 + dx21 + dx22, ds2(5) ≡ F1dr
2 +

2∑

i=1

F2+i

(
dθ2i + sin2 θidφ

2
i

)
(3.67)

and, using Υ in (3.31), we have also introduced

h ≡ e4φ̃/3
(

Υ+ e2φ̃/3
)

. (3.68)

This has an associated NS B-field given by

B(A,9) = B(B,8) +
2∑

i=1

cos θidψ ∧ dφi. (3.69)

The dilaton for this type IIA configuration is, quite obviously,

eφ̃(A,9) = h−1/4
F

−1/2
2 e−φ̃. (3.70)

The NS three-form flux can be easily derived to be

H(A,9)
3 = dB(A,9) = H(B,8)

3 +
2∑

i=1

sin θidθi ∧ dφi ∧ dψ, (3.71)

with H(B,8)
3 as in (3.8) and (3.43). Coming to the RR fluxes now, we note that the T-duality

converts the D5-branes that wrap the two-cycle of the resolved conifold in the configuration
(B,8) to N coincident D6-branes that wrap the two-sphere parametrized by (θ1, φ1) in the
dual type IIA picture10. Consequently, the RR three-form flux (3.44) that was sourced by
the D5-branes now gives rise to the RR two-form flux

F (A,9)
2 = e2φ̃ coshβ

√

F2

F1

2∑

i,j=1
i 6=j

F2+j

F2+i
(F2+i,r −

√

F1F2) sin θjdθj ∧ dφj , (3.72)

10Actually, this T-duality is more subtle and can also lead to D4-branes. We discussed this important point
in section 3.2.2 already.
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as well as to the RR four-form flux

F (1)
4 = e2φ̃ coshβ

√

F2

F1

2∑

i,j=1

F2+j

F2+i
(F2+i,r −

√

F1F2) sin θj cos θidψ ∧ dφi ∧ dθj ∧ dφj .

(3.73)

Both are sourced by the dual D6-branes (and hence, dF (A,9)
2 6= 0 6= dF (1)

4 ). On the other
hand, the D3-charge that sourced the self-dual RR five-form flux in (3.45) converts to a D4-
charge after the T-duality. They now source RR four- and six-form fluxes, which are Hodge
dual to each other, with respect to the metric (3.66). Starting from (3.45) and using (3.68),
it is clear that the RR six-form flux is

F (A,9)
6 = cothβ

d

dr

(e2φ̃

h

)

dt̃ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dψ ∧ dr. (3.74)

However, its Hodge-dual four-form will become more convenient once we perform the uplift
to M-Theory, with views to computing the G-flux there. Since the metric (3.66) is diagonal,
it is not hard to show that the flux of our interest is given by

F (2)
4 = ∗F (A,9)

6 = − cothβ
d

dr

(e2φ̃

h

)

h2

√

F2

F1

2∏

i=1

F2+i sin θidθi ∧ dφi. (3.75)

The total RR four-form flux for this configuration is thus

F (A,9)
4 = F (1)

4 + F (2)
4 . (3.76)

We will now apply the non-commutative deformation (x3, ψ) → (x̃3, ψ̃) in (2.19) to the
above type IIA configuration. The metric (3.66) then changes to

ds2(A,10) = (eφ̃(A,9))2/3
(

F2e
2φ̃

h

)1/3[

ds2t12 +
( dx̃3
cos θnc

+ sin θncdψ̃
)2

+
cos2 θnc√
hF2

dψ̃2 + hds2(5)

]

.

(3.77)

The dilaton and RR two–form flux can be readily seen not to be affected by the deformation:

eφ̃(A,10) = eφ̃(A,9) , F (A,10)
2 = F (A,9)

2 . (3.78)
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However, the RR four-form flux and the NS three-form flux do change to

F (A,10)
4 =e2φ̃ coshβ cos θnc

√

F2

F1
dψ̃ ∧

(
ˆ̂
k1dφ1 ∧ dθ2 ∧ dφ2 + ˆ̂

k2dθ1 ∧ dφ1 ∧ dφ2
)

+ F (2)
4 ,

H(A,10)
3 =H(B,8)

3 + cos θnc

2∑

i=1

sin θidθi ∧ dφi ∧ dψ̃, (3.79)

where we have defined

ˆ̂
k1 ≡

F4

F3
(F3,r −

√

F1F2) sin θ2 cos θ1,
ˆ̂
k2 ≡

F3

F4
(F4,r −

√

F1F2) sin θ1 cos θ2. (3.80)

Once more, the RR two-form flux not being closed, we can rewrite it in a similar fashion to
what we did earlier in (2.35) and (2.105):

F (A,10)
2 = dÂ1 + ∆̂, Â1 ≡ coshβ

2∑

i=1

cos θidφi, d∆̂ = sources, (3.81)

with Â1 the type IIA gauge field for this configuration (A, 10). We will soon see that it is
opportune to define Â1 as we just did. Before we proceed, let us make one last observation:
the subsequent M-Theory uplift will only capture the dynamics of this type IIA theory when

eφ̃(A,10) is of order one, or bigger.
The M-Theory metric corresponding to (3.77) is

ds2(M,5) = (eφ̃(A,9))−2/3ds2(A,10) + (hF 2
2 e

4φ̃)−1/3(dx11 + Â1)
2. (3.82)

We note that, due to (3.4) and (3.81), for a fixed value of the φ1 coordinate, namely φ1 =
φ∗1, the metric along the directions (r, θ2, φ2, x11) describes a warped Taub-NUT space.
Introducing the quantities

Ĝ1 ≡ F1(h
2
F2e

2φ̃)1/3, Ĝ2 ≡
F4

F1
Ĝ1, Ĝ3 ≡ sin2 θ2Ĝ2, Ĝ4 ≡ (hF 2

2 e
4φ̃)−1/3,

(3.83)

which are only functions of the coordinates (r, θ2) and the boost parameter β, we can write
the metric for the Taub-NUT space as

ds2TN3
= Ĝ1dr

2 + Ĝ2dθ
2
2 + Ĝ3dφ

2
2 + Ĝ4(dx11 + Â∗

1)
2, (3.84)
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where we have defined

Â∗
1 ≡ Â1

∣
∣
∣
φ1=φ∗1

= coshβ cos θ2dφ2. (3.85)

To the metric (3.84), we associate the following vielbeins:

e(M,5)
r =

√

Ĝ1dr, e
(M,5)
θ2

=

√

Ĝ2dθ2, e
(M,5)
φ2

=

√

Ĝ3dφ2, e
(M,5)
11 =

√

Ĝ4(dx11 + Â∗
1).

(3.86)

As was the case in section 2.1.1, this is a multi-centered warped Taub-NUT space. Recall that
we had N D6-branes in the configuration (A, 10) prior to the uplift. Hence, Ĝ−1

4 = 0 happens
N times, leading to coordinate singularities that denote the location of the D6-branes in the
dual type IIA picture. Further, the D6-branes in (A, 10) were coincident and consequently we
are, by construction, at the non-abelian enhanced scenario discussed in 2.1.1: the symmetry
group of the associated world-volume gauge theory is SU(N). It follows then that the G-flux
for this M-Theory configuration is of the same form as that in (2.76):

G(M,5)
4 = 〈G(M,5)

4 〉+
N−1∑

k=1

F̂k ∧ ω̂k, (3.87)

where F̂k’s are the Cartan algebra values of the seven-dimensional world-volume field strength
F̂ , the ω̂k’s are the unique, normalizable, (anti-)self-dual two-forms associated to the minimal
area independent two-cycles in the space (3.84) and the background G-flux is given by

〈G(M,5)
4 〉 = F (A,10)

4 +H(A,10)
3 ∧ dx11. (3.88)

Explicitly,

〈G(M,5)
4 〉 =e2φ̃ coshβ cos θnc

√

F2

F1
dψ̃ ∧

(
ˆ̂
k1dφ1 ∧ dθ2 ∧ dφ2 + ˆ̂

k2dθ1 ∧ dφ1 ∧ dφ2
)

− cothβ
d

dr

(

e2φ̃

h

)

h2

√

F2

F1

2∏

i=1

F2+i sin θidθi ∧ dφi (3.89)

+

2∑

i=1

sin θidθi ∧ dφi ∧ dx11 ∧
[

sinhβ(F2+i,r −
√

F1F2)dr − cos θncdψ̃
]

.

It can be readily seen that the only quantities left to be computed are the ω̂k’s. We do so in
the following. The discussion is analogous to that in section 2.1.1, so we will be brief.
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We begin the computation of the ω̂k’s by constructing the minimal area independent two-
cycles of (3.84) to which they are associated. Note that Ĝ4 = Ĝ4(r). Thus, we can call the
N solutions to Ĝ−1

4 = 0 as r(i), where i = 1, 2, . . . , N . Consider two such solutions, r(i) and
r(j) (where i 6= j) and the straight line in the r direction connecting them, Cr. Attaching to
each point in Cr a circle labeled by x11, we obtain the corresponding minimal area two-cycle
Xij . We take the set of all Xk,k+1, for k = 1, 2, . . . , N − 1, as the independent minimal area
two-cycles where the ω̂k’s are defined and consider the following ansatze for them:

ω̂k = dζ̂k, ζ̂k = ĝk(dx11 + Â∗
1). (3.90)

Easy algebra then yields

ω̂k =
ĝk,r

√

Ĝ1Ĝ4

e(M,5)
r ∧ e(M,5)

11 − ĝk
√

Ĝ2Ĝ3

coshβ sin θ2e
(M,5)
θ2

∧ e(M,5)
φ2

,

∗ω̂k =
ĝk,r

√

Ĝ1Ĝ4

e
(M,5)
θ2

∧ e(M,5)
φ2

− ĝk
√

Ĝ2Ĝ3

coshβ sin θ2e
(M,5)
r ∧ e(M,5)

11 , (3.91)

where, obviously, the Hodge dual is with respect to the metric (3.84) and ĝk,r stands for
the derivative of ĝk with respect to the radial coordinate r. Using (3.83) and demanding
(anti-)self-duality of ω̂k we obtain the ordinary differential equation

1

ĝk

dĝk
dr

= ∓ coshβ
e−φ̃

F4

√

F1

hF2
, (3.92)

which can be effortlessly solved to give

ĝk = ĝ0exp
(

∓
∫ r(k+1)

r(k)

e−φ̃

F4

√

F1

hF2
dr
)

, (3.93)

with ĝ0 some integration constant where we have absorbed the contribution of coshβ. The
above fully determines the G-flux in (3.87).

We remind the reader that all the discussion so far in this section is subject to the
constraint (3.24) so as to ensure N = 1 supersymmetry in the corresponding world-volume
gauge theory.

The configuration (M,5) is the second and last model we construct for the study of knots
and their invariants, the first one being (M,1). In the remaining of this work, we will only
study the configuration (M,1). Indeed, in part II, we will understand in details the four-
dimensional gauge theory stemming from (M,1). In doing so, we will argue how and why
(M,1) provides a natural framework to realize knots. Part III will then exploit all the acquired
knowledge to show how knots are to be incorporate in model (M,1). All investigations of the
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embedding of knots in (M,5) are deferred to the sequel(s) of [1, 2].
Before proceeding further, it is important to emphasize that, in constructing (M,1) and

(M,5), we have already achieved a very major result in this thesis. Note that, as depicted
in figure 1, the configuration (M,1) is dual to the D3-NS5 system of [14]. On the other
hand, the configuration (M,5) follows from the very same D3-NS5 system and is dual to the
resolved conifold in the presence of fluxes considered in [11]. Hence, we have made explicit
the modifications that directly connect the seemingly very distinct models in [14] and [11].
In plain English, we have provided a unifying picture between the two existing approaches
to computing knot invariants in String Theory. Comparing figures 2B and 6B we see that
the Ooguri-Vafa and Witten proposals can be traced to a dual type IIB scenario of a D3
brane between two NS5-branes, where they only differ in the relative orientation between the
NS5-branes.

In chapter 3 we have constructed model (M,5). As (M,1) in the previous chapter, (M,5)
is an M-theoretical model that provides a suitable framework for the study of knots. Unlike
(M,1), the (M,5) model has N = 1 supersymmetry and is dual to the resolved conifold in the
presence of fluxes first suggested in [11]. It is important to note that in constructing (M,1)
and (M,5) we have shown a direct connection between the seemingly distinct supergravity
proposals of [11] and [14].
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Part II
The world-volume gauge theory of (M,1)

As hinted by the title itself, this second part focuses on the (non-abelian enhanced) M-Theory
configuration (M,1) constructed in chapter 2. The fundamental purpose here will be to show
that indeed (M,1) provides a suitable framework for the realization of knots. To this aim,
we shall derive and investigate the four-dimensional world-volume gauge theory associated to
(M,1). This is an N = 4 supersymmetric theory with gauge group SU(N) and we will subject
it to half-BPS boundary conditions. Such study is presented in three main steps. In chapter
4, we obtain the action of the aforementioned gauge theory. Chapter 5 is devoted to the
associated Hamiltonian and the minimization of its energy, which yields the BPS conditions
for the theory. This analysis naturally leads to a three-dimensional boundary subspace X3,
whose action is the main object of interest in chapter 6. As we shall see, the physics in X3

are governed by a complexified Chern-Simons action. Consequently, X3 or, more precisely,
its Euclideanization constitutes a suitable space where knots can be embedded.

Figure 10 provides a visual sketch of the overall logic and key results in this part. Given
the considerable length of the calculations involved, the reader may find it useful to keep
an eye in this image while reading through the following three chapters. In this way, the
underlying principal flow of ideas shall hopefully not be lost during the presentation of the
corresponding computational details.
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Chapter 4: Bosonic action for the world-volume gauge theory

In accordance to the plan above outlined, in this chapter we argue what the bosonic action
is for the SU(N) world-volume gauge theory along (t, x1, x2, ψ̃) that follows from the non-
abelian enhanced model (M,1). This gauge theory has N = 4 supersymmetry by construction
and we will impose maximally supersymmetric boundary conditions in due time. We will not
be interested in doing so here, but obviously supersymmetry could be used to obtain the
fermionic sector of the theory. In principle, one could explicitly write the eleven-dimensional
M-Theory action and then work out the desired four-dimensional reduction11. However, this
is more easily said than done. We will thus follow a different approach here: we will obtain
the total action as the sum of three distinct contributions, providing ample motivation for
each term.

The first two of these three terms directly stem from our construction of (M,1) in chapter
2 and are indeed initially written in terms of only quantities there defined. Rewriting these
terms as functions of the fields in the N = 4 vector multiplet is, however, far from trivial. In
achieving this task, we further split the two terms in many parts.

The third and last term is, unluckily, hard to present in such a manner. Consequently,
we start by directly writing it in terms of the aforementioned vector multiplet. Nonetheless,
the length and complexity of the term lead us to further divide it into smaller pieces too.

The present chapter is heavy on computation. To help the reader make sense of the
very many terms in the calculations that follow, we include figure 11. This figure provides a
graphical summary of the entire chapter 4, pointing out all the different contributions to the
total action and their origin.

A last important remark before jumping into computation. To avoid as much as possible
dragging long prefactors, we set the Planck length to one right from the onset: lp ≡ 1.

11For our case, compactification can be done via the G-flux (2.76) and metric (2.46), reduced over the
normalizable internal harmonic forms. These two-forms are associated to the Taub-NUT subspace and were
determined in (2.71).
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4.1 Kinetic term of the G-flux

The first contribution to the just described bosonic action we will consider is the kinetic term
of the G-flux (2.76). Our approach will be to work out in details this term for the abelian
configuration (M,1) of section 2.1 and then generalize the result to the non-abelian scenario
of section 2.1.1. With this aim in mind, let us first rephrase the main features of both the
abelian and non-abelian configurations (M,1) in a language suitable to such goals.

The geometry of the configuration (M,1) was given in (2.46), be it for the abelian or
non-abelian case. By simple inspection, it can be readily seen that the eleven-dimensional
manifold X11 on which this metric is defined naturally decomposes into three subspaces:

X11 = X4 ⊗ Σ3 ⊗ TN, X4 = X3 ⊗ R
+. (4.1)

Here, X4 is the four-dimensional subspace where we will define our gauge theory. This further
decomposes into X3 (the Minkowski-type three-dimensional subspace along (t, x1, x2)) and
R
+ (the half real line labeled by ψ̃). This second decomposition clearly denotes that there

is no Lorentz invariance along ψ̃. On the other hand, Σ3 is the three-cycle parametrized by
(x̃3, φ1, r) and TN stands for the warped Taub NUT space spanning (θ1, x8, x9, x11). For
the abelian (M,1), this is a single-centered Taub NUT, whereas for the non-abelian (M,1) it
is an N -times-centered one.

After the non-abelian enhancement, there are N coincident M2-branes oriented along
(x8, x9, x11) in the configuration (M,1), as depicted in figure 4B. Following the notation
of section 2.1.1, we denote as ~l1 the location of these M2-branes in the (x8, x9) plane. It
is around this point ~l1 that we shall determine the action of the non-abelian world-volume
gauge theory.

Coming to the fluxes, the G-flux for the non-abelian enhanced (M,1) was given in (2.76).

This G-flux consists of two pieces: the delocalized background flux 〈G(M,1)
4 〉 and the localized

contribution of
(N−1∑

k=1

Fk ∧ ωk
)

, sharply peaked around ~l1. As it is common practice in the

literature, we will assume the delocalized piece is such that its contribution around ~l1 is
negligible and restrict our attention to the localized piece only.

In the abelian case, the situation is essentially the same. The only difference being that
the G-flux is now given by (2.51). The Taub-NUT space has a unique singularity, whose
location we can denote as ~l1 as well. The G-flux again splits into delocalized and localized
parts. We assume the delocalized part’s contribution is inconsequential around ~l1.
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We will now use all the above remarks to obtain the first term for the U(1) world-volume
gauge theory action:

S(1) ≡
∫

X11

(

G(M,1)
4 ∧ ∗G(M,1)

4

)

, (4.2)

where the Hodge dual is with respect to the eleven-dimensional metric (2.46). Using (2.51)

and because we are interested in the gauge theory around ~l1, where 〈G(M,1)
4 〉 is negligible, the

above reduces to

S(1) =

∫

X11

(F ∧ ω) ∧ ∗ (F ∧ ω) , (4.3)

with F the seven-dimensional abelian field strength. By definition, ω is (anti-)self-dual and
is restricted to the subspace TN . For concreteness, we take it to be self-dual in the ongoing.
On the other hand, F spans X4 ⊗ Σ3. Then, we can rewrite S(1) as

S(1) =

∫

TN
ω ∧ ω

∫

X4⊗Σ3

F ∧ ∗F , (4.4)

where the Hodge duals are taken with respect to the subspaces of (2.46) indicated by the cor-
responding integrals. This drastic simplification where the Taub-NUT completely decouples
is not as trivial as we just made it sound. Hence, before proceeding further, let us carefully
show how this can be made to happen consistently.

Naively, the decoupling happens if the following two conditions are satisfied:

• The integral over TN above only depends on the (θ1, x8, x9, x11) coordinates.

• The integral over X4 ⊗ Σ3 is independent of these very same coordinates.

The first condition can easily be seen to hold true. The two-form ω was defined in (2.52),
with the gauge field A1 given by (2.37). It is clear from these expressions that the integrand
ω ∧ ω only depends on the Taub-NUT coordinates, as desired. The metric for the space
TN was given in (2.48) and, as pointed out there, only depends on (θ1, x8, x9, x11). This
implies the measure for the integral over TN will have the desired coordinate dependence as
well. The second condition, however, does not hold true a priori. An inspection of the metric
(2.46) along the directions of X4 and Σ3 leads us to conclude that the measure of the second
integral in (4.4) will depend on (θ1, x8, x9) −recall our choices for the warp factors in (2.2)
and for the dilaton in (2.59) to understand this last statement. Nevertheless, this desired
decoupling can be effectively made to happen. Let us see how.

A careful inspection of (2.46) restricted to X4 ⊗ Σ3 shows that the dependence of the
second integral in (4.4) on (x8, x9) comes solely from the dilaton (2.59). We can therefore
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remove this dependence by assuming that the dilaton is given, to leading order, by its constant
piece:

e2φ ≈ e2φ0 . (4.5)

Note that the above assumption is in excellent agreement to the strong coupling limit dis-
cussed around (2.45), required for our M-Theory configuration to be valid, as long as we
consider e2φ0 to be of order one. On the other hand, the θ1 dependence of the second integral
in (4.4) is not “removable”. Let us thus turn to the θ1 dependence of the first integral in
(4.4).

We will refer to the first integral in (4.4) as

c1
v3

≡
∫

TN
ω ∧ ω. (4.6)

Using (2.37), (2.50), the first equation in (2.57) and (2.64) in (2.53), it is a matter of easy
algebra to obtain the two-form ω as

ω =
9∑

i=8

∂g

∂xi
dxi ∧ (dx11 +A1θ1dθ1) +

( ∂g

∂x8
A19 −

∂g

∂x9
A18

)
dx8 ∧ dx9

+ g(α2dx8 + α3dx9) ∧ dθ1. (4.7)

Then, (g, α2, α3) being all functions of only (x8, x9), it follows that (4.6) is actually inde-
pendent of θ1:

ω ∧ ω = 2g
(
α3

∂g

∂x8
− α2

∂g

∂x9

)
dθ1 ∧ dx8 ∧ dx9 ∧ dx11. (4.8)

Consequently, choosing (4.5) and transferring the θ1 integral to the second integral in (4.4)
as an average, we can consistently decouple the contribution of the Taub-NUT space to S(1):

S(1) =
c1
v3

∫ π

0

dθ1
2π

∫

X4⊗Σ3

F ∧ ∗F , (4.9)

where this prefactor should be understood, in this abelian case, as

c1
v3

=

∫ R8

0
dx8

∫ R9

0
dx9

∫ R11

0
dx11 2g

(

α3
∂g

∂x8
− α2

∂g

∂x9

)

, (4.10)

with Ri denoting the radius of the xi direction (for i = 8, 9, 11). Note that (x8, x9) are
non-compact directions, while x11 is compact.
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At this point, it is easy to infer what the generalization of (4.9) is to the non-abelian case:

S(1) =
C1

V3
I(1), I(1) ≡

∫ π

0

dθ1
2π

∫

X4⊗Σ3

Tr(F ∧ ∗F), (4.11)

where F is now the non-abelian seven-dimensional field strength and the trace is taken in the
adjoint representation of SU(N). There are just two subtleties in going from (4.9) to (4.11)
that we better discuss.

The first one is regarding the prefactor (C1/V3). This prefactor is, of course, no longer
given by (4.10). Instead, it depends on the two-forms {ωk} in (2.71). Its explicit form is
rather tedious to work out and we will not attempt to compute it here. For our purposes,
it suffices to note that, by construction (see the details in section 2.1.1), we are guaranteed
its independence on the θ1 coordinate. So we can transfer the θ1 integral to the subspace
orthogonal to TN as an average and indeed obtain (4.11).

The second subtlety is regarding the appearance of the trace. (Note that the non-abelian
G-flux in (2.76) only involves the Cartan algebra values of F .) Let us try to shed some light
to this point by first recalling how the non-abelian enhancement was achieved in section 2.1.1
−perhaps it suffices to take a second look at figure 4B. There, we wrapped M2-branes around
the minimal area, independent two-cycles of the N -centered Taub-NUT space (2.48). The
two-cycles were then shrunk to zero size, making the M2-branes tensionless. From this point
of view, internal fluctuations of the Taub-NUT space are supposed to provide the Cartan
values of the field strength. Fluctuations of the M2-branes along the Taub-NUT directions
would then contribute the remaining roots and weights, thus leading to the full trace in
(4.11). A more detailed version of this argument may be found in [35–37] and references
therein. However, no rigorous proof of this conjecture exists. The argument between (3.91)
and (3.98) in [1] in terms of a sigma model may well be the most solid evidence for this claim.

The fact that the trace should be in the adjoint representation has a simple enough
heuristic explanation. Additionally, this very argument settles what the bosonic matter
content is in our non-abelian world-volume gauge theory. Recall figure 2B. There, to the usual
type IIB D3-NS5 system we added a second, parallel NS5-brane. The distance between the
two NS5-branes being large enough then allows for effectively retainingN = 2 supersymmetry
near the original NS5-brane. By the same logic, deep in the bulk of the D3-brane, far away
from both the NS5-branes, we expect N = 4 supersymmetry effectively. As is well-known,
any N = 4 supersymmetric gauge theory has a vector multiplet consisting of four gauge fields
and six real scalars, all of them in the adjoint representation. Certainly, this is the matter
content we expect in the bosonic sector for our D3-brane gauge theory too, far from the
NS5-branes. On the other hand, the bosonic matter content of any N = 2 supersymmetric
gauge theory is arranged in a vector multiplet of four gauge fields and two real scalars in the
adjoint representation and a chiral multiplet containing four real scalars in any representation.
Needless to say, this is the matter content we expect in the bosonic sector of our gauge theory
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nearby the NS5-branes. It then stands to reason that, if we are to reconcile these two limits
in our setup, we require the four scalars of the N = 2 chiral multiplet to be in the adjoint
representation. Therefore, the bosonic matter content of our SU(N) gauge theory is settled
to that of the N = 4 vector multiplet: four gauge fields and six real scalars, all of them in
the adjoint representation.

Subtleties clarified, we take (4.11) as our starting point and devote the remaining of this
section to writing I(1) in terms of the just discussed N = 4 vector multiplet, which spans
the spacetime directions (t, x1, x2, ψ̃). To begin with, we assume that the seven-dimensional
non-abelian field strength F only depends on these coordinates:

F = F(t, x1, x2, ψ̃). (4.12)

Secondly, and owing to the decomposition (4.1), we make a distinction between the compo-
nents along X4 and Σ3:

F = F (X4) + F (Σ3). (4.13)

Using such distinction in (4.11), we naturally split the first contribution to the non-abelian
action into two pieces:

S(1) =
C1

V3

(

I(1,1) + I(1,2)
)

, (4.14)

with

I(1,1) ≡
∫ π

0

dθ1
2π

∫

X4⊗Σ3

Tr(F (X4) ∧ ∗F (X4)), I(1,2) ≡
∫ π

0

dθ1
2π

∫

X4⊗Σ3

Tr(F (Σ3) ∧ ∗F (Σ3)).

(4.15)

Rather obviously, the Hodge dual in both I(1,1) and I(1,2) is with respect to the seven-
dimensional metric of X4 ⊗ Σ3.

Note that the crossed terms (F (X4)∧∗F (Σ3)) and (F (Σ3)∧∗F (X4)) are zero and thus have
not been included in (4.14). The argument for the vanishing of the first such term is as follows.
Each component of F (Σ3) spans two directions of Σ3. Consequently, the corresponding term
of ∗F (Σ3) is oriented along all four directions of Σ4 and the remaining direction of Σ3. As
the components of F (X4) span two directions of Σ4, the term (F (X4) ∧ ∗F (Σ3)) necessarily
contains the wedge product of two same X4 directions and thus yields zero. The argument
for the vanishing of the second crossed term is similar.

At this stage, the only quantities left to be determined to explicitly write S(1) are I(1,1)

and I(1,2), defined in (4.15). Their computation is quite long and involved. Consequently, we
will do so in separate sections. In the end, we will put together in (4.14) the integrals I(1,1)

and I(1,2) that we shall obtain.
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4.1.1 Determining I(1,1): the contribution of gauge field strengths

As the title suggests, this section is devoted to the computation of I(1,1) in (4.15) in terms
of the field strengths associated to the N = 4 vector multiplet. But before jumping into the
details of the calculation, let us introduce some quantities that will soon be useful.

We begin by taking a closer look at the seven-dimensional space X4 ⊗Σ3, where I
(1,1) is

defined. Its metric can be directly read from (2.46) to be

ds2X4⊗Σ3
= H1[−dt2 + dx21 + dx22 +H2dx̃

2
3 +H3(dφ1 + f3dx̃3)

2 + e2φ0(F1dr
2 +H4dψ̃

2)],
(4.16)

where we have made use of our assumption (4.5). For later convenience, we denote as g7 the
determinant of the above metric:

g7 ≡ det(ds2X4⊗Σ3
) = e4φ0F1H

7
1H2H3H4 = e4φ0F1H

4
1H4, (4.17)

where in the last step we have used the fact that H3
1H2H3 = 1, which follows from (2.43). It

will also come in handy to write the metric along the subspace X4, albeit in matrix form:

gab = H1diag(−1, 1, 1), gψ̃ψ̃ = e2φ0H1H4. (4.18)

Here, the subscripts (a, b) take values (0, 1, 2) and stand for the Lorentz-invariant directions
(t, x1, x2). Being diagonal, it is straightforward to see that the inverse of the X4 metric, in
matrix form, is given by

gab =
1

H1
diag(−1, 1, 1), gψ̃ψ̃ =

e−2φ0

H1H4
. (4.19)

Calling g4 the (absolute value of the) determinant of the X4 metric, this is

g4 ≡
∣
∣det(ds2X4

)
∣
∣ = e2φ0H4

1H4. (4.20)

Having introduced our notation, we may now proceed to the determination of I(1,1). First
of all, we explicitly write the wedge product

(
F (X4) ∧ ∗F (X4)

)
as

√
g7

2∑

a,b,c,d=0

gab
(

gcdFacFbd + gψ̃ψ̃Faψ̃Fbψ̃
)

=

√

F1

H4

(

e2φ0H4

2∑

a,b=0
a<b

F2
ab +

2∑

a=0

F2
aψ̃

)

. (4.21)
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Using the above in (4.15), we have that

I(1,1) = c11

∫

d4x

2∑

a,b=0
a<b

Tr(F2
ab) + c12

∫

d4x

2∑

a=0

Tr(F2
aψ̃
), (4.22)

where the integration is with respect to the spacetime coordinates (t, x1, x2, ψ̃) and where
we have defined the coefficients (c11, c12) as

c11 ≡ e2φ0
∫

d4ζ̃
√

F1H4, c12 ≡
∫

d4ζ̃

√

F1

H4
. (4.23)

As a short-hand notation that will keep appearing, we have introduced

∫

d4ζ̃ ≡
∫ R3

0
dx̃3

∫ 2π

0
dφ1

∫ ∞

0
dr

∫ π

0

dθ1
2π

(4.24)

too, with R3 the radius of the non-compact direction x̃3. Note that these coefficients have
been taken out of the integral over the world-volume coordinates in (4.22) because F1 and
H4 are only functions of the radial coordinate and θnc. To see this, recall our choices in (2.2)
and the definitions in (2.21) and (2.43). For this same reason, we can right away perform the
(x̃3, φ1) integrals above. Further using (2.43), we can express c11 and c12 as

c11 = 2R3e
2φ0 sec θnc

∫ ∞

0
dr

√

F1F̃2F3I(1), c12 = 2R3 cos θnc

∫ ∞

0
dr

√

F1

F̃2F3

I(2), (4.25)

where we have defined

I(1) ≡
∫ π/2

0

sin θ1dθ1
√

F̃2 cos2 θ1 + F3 sin
2 θ1

, I(2) ≡
∫ π/2

0
dθ1 csc θ1

√

F̃2 cos2 θ1 + F3 sin
2 θ1.

(4.26)

Since they will keep showing up, it is useful to introduce the functions

χ(θ1) ≡
√

F̃2 + F3 + (F̃2 − F3) cos 2θ1, χ̃(θ1) ≡
√

2(F̃2 − F3) cos θ1. (4.27)

Using these, the first of these integrals can be readily performed to yield

I(1) = − 1
√

F̃2 − F3

ln |χ(θ1) + χ̃(θ1)|
∣
∣
∣
∣
∣

θ1=π/2

θ1=0

=
J3

2
√

F̃2 − F3

, (4.28)
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where we have defined

J3 ≡ ln

∣
∣
∣
∣
∣

√

F̃2 +
√

F̃2 − F3
√

F̃2 −
√

F̃2 − F3

∣
∣
∣
∣
∣
, (4.29)

a quantity which will appear in the present analysis very often. It is clear that the above will
be real if and only if we require that F̃2 ≥ F3, for all values of (r, θnc). Thus, we will demand
this holds true in the ongoing. Using the above in (4.25), we obtain

c11 = R3e
2φ0 sec θnc

∫ ∞

0
dr J3

√

F1F̃2F3

F̃2 − F3

. (4.30)

It is important to note that the above coefficient is just a number. The numerical value of c11
depends only on the choice of warp factors one would like to consider in (2.2). This choice
is subject to the constraint F̃2 ≥ F3 and should be checked to preserve the desired N = 4
supersymmetry in the world-volume (later on reduced to N = 2 supersymmetry via half-BPS
boundary conditions).

Coming now to I(2), we start by defining the soon to be useful three quantities

b1 ≡
√

F3

F̃2 − F3

, b2 ≡
1

2

√

F1(F̃2 − F3)

F̃2F3

, b3 ≡
2

b

√

F3 + b2(F̃2 − F3)

F̃2 − F3

, b ∈ R
+ − {1}.

(4.31)

We can use b1 to rewrite the integral of our interest in the more convenient form

I(2) =

√

F̃2 − F3

∫ π/2

0
dθ1

√

b21 + cos2 θ1
1− cos2 θ1

. (4.32)

Under the change of variables

cos θ1 = z, dθ1 = − dz√
1− z2

, (4.33)

the above can be further rewritten as

I(2) =

√

F̃2 − F3

2

∫ 1

−1
dz

√

b21 + z2

b2 − z2
, (4.34)

where b as defined in (4.31) is a regularization factor that we have introduced by hand in
order to avoid the singularities of I(2) at z = ±1. In the same spirit of (χ(θ1), χ̃(θ1)) before,
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let us introduce two more functions that will come in handy repeatedly:

η(z) ≡ arctanh
(z

b

√

b21 + b2

b21 + z2

)

, η̃(z) ≡ ln

∣
∣
∣
∣
z +

√

b21 + z2
∣
∣
∣
∣
. (4.35)

Finally, all the above can be used to integrate over z in (4.34) and obtain

2I(2)

√

F̃2 − F3

=

√

b21 + b2

b
η(z)− η̃(z)

∣
∣
∣
∣
∣

z=1

z=−1

= b3J4 + J −1
3 , (4.36)

where we have defined the many times to occur quantity J4 as

J4 ≡ arctanh
(1

b

√

F3 + b2(F̃2 − F3)

F̃2

)

. (4.37)

Plugging our result in (4.23), the coefficient c12 may be expressed as

c12 = 2R3 cos θnc

∫ ∞

0
dr b2

(
b3J4 + J −1

3

)
. (4.38)

As was the case for c11 before, we want c12 to be a well-defined number for all choices of warp
factors in (2.2) satisfying the constraint F̃2 ≥ F3. It is not clear from our above result that
this should be the case in the following two limits:

• F3 → 0. This limit also includes the case (F̃2, F3) → 0 since, in order to be consistent
with the constraint F̃2 ≥ F3, we must demand that F3 approaches zero faster than
F̃2. Hence, the case (F̃2, F3) → 0 should be studied by first demanding F3 → 0 and
afterwards considering the F̃2 → 0 limit of the resulting expression.

• F̃2 → F3 9 0.

Let us thus study such subtle scenarios in details and show that c12 in (4.38) is indeed a finite
number even then.

To consider the first case, namely F3 → 0, we start by rewriting the argument of the
inverse hyperbolic tangent in (4.37) as

1

b

√

F3 + b2(F̃2 − F3)

F̃2

=

√

1 +

(
1− b2

b2

)
F3

F̃2

. (4.39)

Next, we note that in the logarithmic term of (4.38), namely J3 in (4.29), only the numerator
diverges as F3 → 0, while the denominator is well-defined in this limit. Hence, retaining only
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the divergent terms in the integrand of (4.38) and using (4.39), we focus on the study of

lim
F3→0

c12 ∼ lim
F3→0

[

b2b3 arctanh

(√

1 +

(
1− b2

b2

)
F3

F̃2

)

+ b2 ln

∣
∣
∣
∣

√

F̃2 −
√

F̃2 − F3

∣
∣
∣
∣

]

. (4.40)

From our definitions in (4.31) it follows that

lim
F3→0

b2 = lim
F3→0

√

F1

F3
= lim

F3→0
b2b3 (4.41)

which, used in (4.40), gives

lim
F3→0

c12 ∼ lim
F3→0

√

F1

F3

[

arctanh

(√

1 +

(
1− b2

b2

)
F3

F̃2

)

+ ln

∣
∣
∣
∣

√

F̃2 −
√

F̃2 − F3

∣
∣
∣
∣

]

. (4.42)

Applying L’Hôpital’s rule to the two terms above, it is easy to see that

lim
F3→0

√

F1

F3
arctanh

(√

1 +

(
1− b2

b2

)
F3

F̃2

)

= − lim
F3→0

√

F1

F3
ln

∣
∣
∣
∣

√

F̃2 −
√

F̃2 − F3

∣
∣
∣
∣
. (4.43)

That is, the divergent contribution to
(
lim
F3→0

c12
)
is zero. This implies that c12 takes some

finite numerical value when F3 → 0.
If we now turn our attention to the (F̃2, F3) → 0 case, the above still holds true. However,

the denominator the of logarithmic term of (4.38) is no longer well-defined and consequently,
we must study it. As already argued, we first should consider the F3 → 0 limit of this term
and then impose F̃2 → 0 there. Using (4.41) and applying L’Hôpital’s rule, this additional
divergent term can also be seen to vanish:

lim
F̃2,F3→0

c12 ∼ lim
F̃2,F3→0

1√
F3

ln

∣
∣
∣
∣
2

√

F̃2

∣
∣
∣
∣
= lim

F̃2,F3→0
−F

3/2
3

F̃2

= 0. (4.44)

Thus, c12 = 0 when (F̃2, F3) → 0.
Finally, we study the limit F̃2 → F3 9 0. From (4.31), it is not hard to work out the

following two auxiliary limits:

lim
F̃2→F3

b2 = 0, lim
F̃2→F3

b2b3 =
1

b

√

F1

F3
. (4.45)
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Inserting the above in (4.38), we obtain

lim
F̃2→F3

c12 = 2R3 cos θnc

∫ ∞

0
dr

1

b

√

F1

F3
arctanh

(
1

b

)

∼ arctanh

(
1

b

)

, (4.46)

which can be very large, yet is finite because the regularization factor satisfies b 6= 1 by
definition. This proves that c12 is also just some number as F̃2 → F3.

Summing up, I(1,1) is given by (4.22), with (c11, c12) as in (4.30) and (4.38), respectively.
Both of the coefficients are well-defined numbers for any choice of the warp factors one may
want to consider, as long as the constraint F̃2 ≥ F3 is respected.

4.1.2 Determining I(1,2): the contribution of three scalar fields

In this section we compute I(1,2) in (4.15) in terms of the N = 4 vector multiplet’s matter
content. As in the previous section 4.1.1, it is convenient to first introduce certain quantities,
which will be necessary in the subsequent calculation.

Let us begin by looking at the three-cycle Σ3, parametrized by (x̃3, φ1, r). Its metric can
be easily inferred from (4.16) to be

ds2Σ3
= H1H2dx̃

2
3 +H1H3(dφ1 + f3dx̃3)

2 + e2φ0H1F1dr
2. (4.47)

We take the vielbeins associated to the above metric as

e
(Σ3)

3̃
=
√

H1H2dx̃3, e(Σ3)
r = eφ0

√

H1F1dr, e
(Σ3)
φ1

=
√

H1H3(dφ1 + f3dx3). (4.48)

It is not hard to see that these vielbeins satisfy

∗e(Σ3)

3̃
= e(Σ3)

r ∧ e(Σ3)
φ1

, ∗e(Σ3)
r = e

(Σ3)
φ1

∧ e(Σ3)

3̃
, ∗e(Σ3)

φ1
= e

(Σ3)

3̃
∧ e(Σ3)

r , (4.49)

where the Hodge duals are with respect to the metric (4.47).
Let us now focus on F (Σ3) in (4.15). This field strength is related to the corresponding

three-dimensional non-abelian gauge field A(Σ3) in the usual manner

F (Σ3) = DA(Σ3) +A(Σ3) ∧ A(Σ3), (4.50)

where the covariant derivative is defined as

Da ≡ ∂a + i[Aa, ], Dψ̃ ≡ ∂ψ̃ + i[Aψ̃, ], (4.51)

with a = (0, 1, 2) labeling the Lorentz-invariant directions (t, x1, x2) and (Aa, Aψ̃) standing

for the world-volume gauge fields associated to the field strengths in (4.22). We define A(Σ3)
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as

A(Σ3) ≡ A3̃dx̃3 +Aφ1dφ1 +Ardr = α̂1e
(Σ3)

3̃
+ α̂2e

(Σ3)
r + α̂3e

(Σ3)
φ1

. (4.52)

In the last step above we have used (4.48) and the one-forms

α̂1 ≡
A3̃ − f3Aφ1√

H1H2
, α̂2 ≡

e−φ0Ar√
H1F1

, α̂3 ≡
Aφ1√
H1H3

. (4.53)

Because of (4.12), (A3̃, Aφ1 , Ar) are functions of only (t, x1, x2, ψ̃). Note that this also
explains our definitions in (4.51). On the other hand, from (2.2), (2.21) and (2.43), it is clear
that the {α̂i}’s, with i = 1, 2, 3, additionally depend on (θ1, r). A vital remark follows: from
the point of view of the four-dimensional gauge theory, (A3̃, Aφ1 , Ar) should be understood
as three real scalar fields, in the adjoint representation of SU(N).

Our above discussion settles the ground to determine I(1,2) in (4.15) in terms of the real
scalar fields (A3̃, Aφ1 , Ar). The integrand there is of the form

F (Σ3) ∧ ∗F (Σ3) =DA(Σ3) ∧ ∗
(
DA(Σ3)

)
+A(Σ3) ∧ A(Σ3) ∧ ∗

(
A(Σ3) ∧ A(Σ3)

)

+A(Σ3) ∧ A(Σ3) ∧ ∗
(
DA(Σ3)

)
+DA(Σ3) ∧ ∗

(
A(Σ3) ∧ A(Σ3)

)
, (4.54)

where all the Hodge duals are with respect to the seven-dimensional metric (4.16) and we
have made use of (4.50). Owing to the decomposition (4.1), it is easy to see that the last
line above vanishes. The reason is analogous to that given around (4.15) for the vanishing of
the there-called “crossed terms”. For example, consider the first such term. The two-form
DA(Σ3) spans one direction in X4 and another one in Σ3. Consequently, its Hodge dual
five-form is defined along the remaining three directions of X4 and two directions of Σ3. But,
since A(Σ3) ∧A(Σ3) stretches along two directions of Σ3, the wedge product of these two last
forms will necessarily contain the wedge product of one of the directions of Σ3 with itself.
Anti-symmetry of the wedge product then implies zero value for this first term. A similar
argument applies to the second term too. The decomposition (4.1) also allows for a drastic
simplification of the two non-vanishing terms in the first line above. Indeed, we can decouple
X4 and Σ3 completely and write

F (Σ3) ∧ ∗F (Σ3) =
√
g4 d

4x
[ 2∑

a=0

DaA(Σ3) ∧ ∗
(
DaA(Σ3)

)
+Dψ̃A(Σ3) ∧ ∗

(
Dψ̃A(Σ3)

)

+A(Σ3) ∧ A(Σ3) ∧ ∗
(
A(Σ3) ∧ A(Σ3)

)]

, (4.55)

where the Hodge dual on the left-hand side is with respect to the seven-dimensional met-
ric (4.16), whereas the Hodge duals on the right-hand side are with respect to the three-
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dimensional metric (4.47). We remind the reader that g4 was defined in (4.20) and that
(d4x ≡ dt dx1 dx2 dψ̃), as in (4.22). Inserting the above in (4.15), we can split the computa-
tion of I(1,2) into three pieces:

I(1,2) =

∫

d4xTr
(

I(1,2,1) + I(1,2,2) + I(1,2,3)
)

, (4.56)

where we have defined

I(1,2,1) ≡
∫ π

0

dθ1
2π

∫

Σ3

√
g4 A(Σ3) ∧ A(Σ3) ∧ ∗

(
A(Σ3) ∧ A(Σ3)

)
,

I(1,2,2) ≡
∫ π

0

dθ1
2π

∫

Σ3

√
g4

2∑

a=0

DaA(Σ3) ∧ ∗
(
DaA(Σ3)

)
, (4.57)

I(1,2,3) ≡
∫ π

0

dθ1
2π

∫

Σ3

√
g4 Dψ̃A(Σ3) ∧ ∗

(
Dψ̃A(Σ3)

)
,

Clearly, the Hodge duals here are with respect to (4.47). In the following, we determine all
these three terms separately.

Computation of I(1,2,1) in (4.57)

To begin with, we focus on I(1,2,1) in (4.57). Using (4.49) and (4.52), it is a matter or
quick and easy algebra to obtain

A(Σ3) ∧ A(Σ3) =[α̂1, α̂2]e
(Σ3)

3̃
∧ e(Σ3)

r + [α̂1, α̂3]e
(Σ3)

3̃
∧ e(Σ3)

φ1
+ [α̂2, α̂3]e

(Σ3)
r ∧ e(Σ3)

φ1
,

∗
(
A(Σ3) ∧ A(Σ3)

)
=[α̂1, α̂2]e

(Σ3)
φ1

− [α̂1, α̂3]e
(Σ3)
r + [α̂2, α̂3]e

(Σ3)

3̃
. (4.58)

The wedge product of the above two quantities is then

A(Σ3) ∧ A(Σ3) ∧ ∗
(
A(Σ3) ∧ A(Σ3)

)
=
(
[α̂1, α̂2]

2 + [α̂1, α̂3]
2 + [α̂2, α̂3]

2
)
e
(Σ3)

3̃
∧ e(Σ3)

r ∧ e(Σ3)
φ1

.

(4.59)

From the above, as well as our definitions in (4.20), (4.48) and (4.53), it follows without
excessive algebraic effort that I(1,2,1) in (4.57) can be rewritten as

I(1,2,1) = a1[Ar,Aφ1 −
a3
2a1

A3̃]
2 +

4a1a2 − a23
4a1

[A3̃,Ar]
2 + a4[A3̃,Aφ1 ]

2, (4.60)
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where we have defined, using (4.24),

a1 ≡
∫

d4ζ̃

√

H4

F1

(
1

H3
+
f23
H2

)

, a2 ≡
∫

d4ζ̃

√

H4

F1

1

H2
,

a3 ≡ 2

∫

d4ζ̃

√

H4

F1

f3
H2

, a4 ≡ e2φ0
∫

d4ζ̃

√
H4F1

H2H3
.

(4.61)

These coefficients can be easily written in terms of the warp factors using (2.43). Further,
remember our warp factor choices in (2.2), the definition of F̃2 in (2.21) and our assumption
of constant dilaton in (4.5). Then, it is clear that all the above coefficients only depend on
the (r, θ1) coordinates and so the (x̃3, φ1) integrals in (4.24) are trivial and can be carried
out right away. Altogether, we have that

a1 = R3 sec θnc

∫ ∞

0
dr

√

F̃2F3

F1

(

I(3) + F̃ 2
2 tan2 θnc(1 + F2 tan

2 θnc)I(4)
)

,

a2 = 2R3 sec θnc

∫ ∞

0
dr

√

F̃2F3

F1
I(1), a3 ∝ I(5), (4.62)

a4 = e2φ0R3 sec θnc

∫ ∞

0
dr

√

F1F̃2F3(cos
2 θnc + F2 sin

2 θnc)I(3),

where I(1) was defined in (4.26) and where we have further defined

I(3) ≡
∫ π

0
dθ1 sin θ1

√

F̃2 cos2 θ1 + F3 sin
2 θ1, I(4) ≡

∫ π

0

sin θ1 cos
2 θ1dθ1

√

F̃2 cos2 θ1 + F3 sin
2 θ1

,

I(5) ≡
∫ π

0
dθ1

sin θ1 cos θ1
√

F̃2 cos2 θ1 + F3 sin
2 θ1

. (4.63)

It is most interesting to note that a3 vanishes, since

I(5) ∝ 1−
√

F̃2 + F3 + (F̃2 − F3) cos 2θ1

F̃2 + F3

∣
∣
∣
∣
∣

θ1=π

θ1=0

= 0. (4.64)

This greatly simplifies I(1,2,1) in (4.60). Specifically, (4.64) implies that there are no crossed
terms for the interactions among the real scalars (A3̃, Aφ1 , Ar):

I(1,2,1) = a1[Ar,Aφ1 ]
2 + a2[A3̃,Ar]

2 + a4[A3̃,Aφ1 ]
2. (4.65)

In the ongoing, we shall focus on the determination of the remaining coefficients in (4.62)
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and show that they are well-defined numbers for any choice of the warp factors one may wish
to consider. With this aim in mind, we start by performing the integrals in (4.63).

Using our definitions in (4.27), we obtain for I(3)

I(3) = −1

4

(√
2 cos θ1χ(θ1) +

2F3
√

F̃2 − F3

ln |χ(θ1) + χ̃(θ1)|
)
∣
∣
∣
∣
∣

θ1=π

θ1=0

=

√

F̃2 +
F3J3

2
√

F̃2 − F3

,

(4.66)

where J3 was defined in (4.29). Similarly, Ĩ(4) ≡ (F̃2 − F3)I(4) yields

Ĩ(4) =
1

4

(

−
√
2 cos θ1χ(θ1) +

2F3
√

F̃2 − F3

ln |χ(θ1) + χ̃(θ1)|
)
∣
∣
∣
∣
∣

θ1=π

θ1=0

=

√

F̃2 −
F3J3

2
√

F̃2 − F3

(4.67)

after integration. We remind the reader that I(1) was determined in (4.28) already. Then,
substitution of these results in (4.62) immediately gives us the coefficients (a1, a2, a4) in the
desired form:

a1 = R3 sec θnc

∫ ∞

0
dr

√

F̃2F3

F1

(

ã+

√

F̃2 +
ã−F3J3

2
√

F̃2 − F3

)

(4.68)

a2 = R3 sec θnc

∫ ∞

0
dr ã2J3, a4 = R3 sec θnc

∫ ∞

0
dr ã4

(√

F̃2 +
F3J3

2
√

F̃2 − F3

)

,

where the new coefficients (ã±, ã2, ã4) appearing above are defined as

ã± ≡1± (F̃2 tan θnc)
2

F̃2 − F3

(1 + F2 tan
2 θnc), ã2 ≡ (cos2 θnc + F2 sin

2 θnc)

√

F̃2F3

F1(F̃2 − F3)
,

ã4 ≡e2φ0(cos2 θnc + F2 sin
2 θnc)

√

F1F̃2F3. (4.69)

Upon a careful inspection of the coefficients in (4.68), it is not hard to convince oneself that
these all are just numbers for any choice of the warp factors in (2.2). The only constraint is
that F̃2 ≥ F3 should hold true, as was the case for the other coefficients as well.

In short, I(1,2,1) is given by (4.65), with (a1, a2, a3) in (4.68) well-defined numbers for
any choice of warp factors satisfying F̃2 ≥ F3.
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Computation of I(1,2,2) in (4.57)

We now turn our attention to I(1,2,2) in (4.57). From (4.52), it is easy to obtain

DaA(Σ3) = (Daα̂1)e
(Σ3)

3̃
+ (Daα̂2)e

(Σ3)
r + (Daα̂3)e

(Σ3)
φ1

. (4.70)

The Hodge dual of the above with respect to the metric (4.47) is straightforward in view of
(4.49) and is given by

∗DaA(Σ3) = (Daα̂1)e
(Σ3)
r ∧ e(Σ3)

φ1
− (Daα̂2)e

(Σ3)

3̃
∧ e(Σ3)

φ1
+ (Daα̂3)e

(Σ3)

3̃
∧ e(Σ3)

r . (4.71)

The wedge product of the above two quantities is

(DaA(Σ3)) ∧ ∗(DaA(Σ3)) =
[
(Daα̂1)

2 + (Daα̂2)
2 + (Daα̂3)

2
]
e
(Σ3)

3̃
∧ e(Σ3)

r ∧ e(Σ3)
φ1

. (4.72)

Feeding the above to (4.57) and further using (4.20), (4.48) and (4.53), I(1,2,2) can be suc-
cinctly written as

I(1,2,2) =
2∑

a=0

[

ca3̃(DaA3̃ −
µ

ca3̃
DaAφ1)

2 + car(DaAr)
2 + caφ1(DaAφ1)

2

]

, (4.73)

where, making use of (4.24), we have defined the coefficients

ca3̃ ≡ e2φ0
∫

d4ζ̃

√
H4F1

H2
, µ ≡ e2φ0

∫

d4ζ̃
√

H4F1
f3
H2

,

car ≡
∫

d4ζ̃

√

H4

F1
, caφ1 ≡ e2φ0

∫

d4ζ̃

√
H4F1

H3
.

(4.74)

These coefficients can be written in terms of the warp factors using (2.43). Exactly as was
the case before with the coefficients in (4.61), the (x̃3, φ1) integrals are trivial here too. Thus,
we have that

ca3̃ = 2R3 sec θnc

∫ ∞

0
dr ã4I(1), µ ∝ I(5),

car = 2R3 sec θnc

∫ ∞

0
dr

√

F̃2F3

F1
I(1), caφ1 = e2φ0R3 sec θnc

∫ ∞

0
dr

√

F1F̃2F3I(3),

(4.75)

where (I(1), I(3), I(5), ã4) were defined in (4.26), (4.63) and (4.69), respectively.
In a similar fashion to what happened in the determination of I(1,2,1), the result in
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(4.64) makes µ vanish. This implies that there are no crossed terms for the kinetic terms of
(A3̃, Aφ1 , Ar). In other words, (4.73) reduces to

I(1,2,2) =

2∑

a=0

[
ca3̃(DaA3̃)

2 + car(DaAr)
2 + c̃aφ1(DaAφ1)

2
]
, (4.76)

with c̃aφ1 defined as

c̃aφ1 ≡ caφ1 +
µ2

ca3̃
,

µ2

ca3̃
= R3 sec

3 θnc tan
2 θnc

∫ ∞

0
dr ã4F̃2I(4). (4.77)

In writing the second equality above, we have made use of all (2.43), (4.24), (4.63), (4.69)
and (4.74). At this point, we are left with the task of computing (ca3̃, car, c̃aφ1) and showing
that they are all well-defined real numbers for any choice of warp factors in (2.2).

The computation part is straightforward, in view of our earlier results in (4.28), (4.66)
and (4.67). We thus obtain

ca3̃ = R3 sec θnc

∫ ∞

0
dr

ã4J3
√

F̃2 − F3

, car = R3 sec θnc

∫ ∞

0
dr J3

√

F̃2F3

F1(F̃2 − F3)
,

c̃aφ1 = e2φ0R3 sec θnc

∫ ∞

0
dr

√

F1F̃2F3

(

ã+

√

F̃2 +
ã−F3J3

2
√

F̃2 − F3

)

, (4.78)

where (J3, ã±, ã4) were defined in (4.29) and (4.69), respectively. On the other hand, the
issue of proving that all three coefficients above are numbers is also simple enough. Once
again, one must demand that F̃2 ≥ F3 to prevent the “blowing up” of these quantities.
However, any value of the warp factors in (2.2) satisfying this constraint can be readily seen
to yield a finite, real result when used in (4.78).

Consequently, we conclude that I(1,2,2) is given by (4.76), with the coefficients (ca3̃, car, c̃aφ1)
there appearing given by (4.78). These are well-defined numbers as long as the warp factors
are chosen such that F̃2 ≥ F3 everywhere.

Computation of I(1,2,3) in (4.57)

At last, we consider I(1,2,3) in (4.57). Its computation is very similar to that of I(1,2,2),
albeit algebraically more involved. In the following, we show all the relevant details. With
the aid of (4.49) and (4.52), it is easy to see that

Dψ̃A(Σ3) ∧ ∗
(
Dψ̃A(Σ3)

)
=
[(
Dψ̃α̂1

)2
+
(
Dψ̃α̂2

)2
+
(
Dψ̃α̂3

)2]
e
(Σ3)

3̃
∧ e(Σ3)

r ∧ e(Σ3)
φ1

. (4.79)
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With the above and the definitions (4.20), (4.48) and (4.53), one can write I(1,2,3) as

I(1,2,3) = cψ̃3̃
(
Dψ̃A3̃ −

ν

cψ̃3̃
Dψ̃Aφ1

)2
+ cψ̃r

(
Dψ̃Ar

)2
+ cψ̃φ1

(
Dψ̃Aφ1

)2
, (4.80)

where, making use of (4.24), we have defined

cψ̃3̃ ≡
∫
d4ζ̃

H2

√

F1

H4
, ν ≡

∫

d4ζ̃
f3
H2

√

F1

H4
, cψ̃r ≡ e−2φ0

∫
d4ζ̃√
H4F1

, cψ̃φ1 ≡
∫
d4ζ̃

H3

√

F1

H4
.

(4.81)

These coefficients can be expressed in terms of the warp factors in (2.2) by inserting (2.43)
in the above. It is again the case that the (x̃3, φ1) integrals are trivial and so we obtain

cψ̃3̃ = 2R3 cos θnc

∫ ∞

0
dr

b̃2I(2)

√

F̃2 − F3

, ν ∝ I(6),

cψ̃r = 4e−2φ0R3 cos θnc

∫ ∞

0
dr

b2I(2)

F1

√

F̃2 − F3

, cψ̃φ1 = R3 cos θnc

∫ ∞

0
dr

√

F1

F̃2F3

I(7),

(4.82)

Here, we have defined b̃2 as a slight variant of b2 in (4.31):

b̃2 ≡ (cos2 θnc + F2 sin
2 θnc)

√

F1(F̃2 − F3)

F̃2F3

, (4.83)

I(2) is as in (4.26) and the remaining integrals there appearing are defined as

I(6) ≡
∫ π

0
dθ1 cot θ1(F̃2 cos

2 θ1 + F3 sin
2 θ1)

1/2,

I(7) ≡
∫ π

0
dθ1 csc θ1(F̃2 cos

2 θ1 + F3 sin
2 θ1)

3/2.
(4.84)

In view of our earlier results for (a3, µ) in (4.62) and (4.75) respectively, it will come as
no surprise that ν above vanishes. To see this, we simply need to use b1 in (4.31) and the
change of variables in (4.33). Then, after regularization, I(6) vanishes by symmetry:

I(6) ∝
∫ 1

−1
dz
z(b21 + z2)1/2

b2 − z2
= 0, b ∈ R

+ − {1}. (4.85)

Therefore, (4.80) simplifies considerably, leading to no crossed terms between the kinetic
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terms of (A3̃, Aφ1 , Ar):

I(1,2,3) = cψ̃3̃
(
Dψ̃A3̃

)2
+ cψ̃r

(
Dψ̃Ar

)2
+ c̃ψ̃φ1

(
Dψ̃Aφ1

)2
, (4.86)

with c̃ψ̃φ1 defined as

c̃ψ̃φ1 ≡ cψ̃φ1 +
ν2

cψ̃3̃
,

ν2

cψ̃
= R3 sec θnc tan

2 θnc

∫ ∞

0
dr ã2

√

F̃2 − F3
F1F̃2

F3
I(8). (4.87)

In order to obtain the second equality above, the definitions in (2.43), (4.24), (4.69) and
(4.81) have been used and we have further introduced

I(8) ≡
∫ π

0
dθ1

cos2 θ1
sin θ1

√

F̃2 cos2 θ1 + F3 sin
2 θ1. (4.88)

At this stage, we are only left with the task of computing (cψ̃3̃, cψ̃r, c̃ψ̃φ1).

To do so, we first recall I(2) was already determined in (4.36) and so we still need to per-
form the integrals (I(7), I(8)). For I(7), it is convenient to do the same set of transformations
that we considered for I(2) between (4.32) and (4.36) earlier on. Namely,

I(7)

(F̃2 − F3)3/2
=

∫ 1

−1
dz

(b21 + z2)3/2

b2 − z2
=

(b21 + b2)3/2

b
η(z)− 3b21 + 2b2

2
η̃(z)− z

2

√

b21 + z2

∣
∣
∣
∣
∣

z=1

z=−1

=
b2

4
b33J4 −

3b21 + 2b2

2
J3 −

√

F̃2

F̃2 − F3

, (4.89)

where b ∈ R
+ − {1} is a regularization factor, (η(z), η̃(z)) were defined in (4.35) and in the

last step we have used (4.29), (4.31) and (4.37). In fact, we can do essentially the same for
I(8) and obtain

I(8)

√

F̃2 − F3

=

∫ 1

−1
dz z2

√

b21 + z2

b2 − z2
= b
√

b21 + b2η(z)− b21 + 2b2

2
η̃(z)− z

2

√

b21 + z2

∣
∣
∣
∣
∣

z=1

z=−1

=b2b3J4 −
b21 + 2b2

2
J3 −

√

F̃2

F̃2 − F3

. (4.90)

With all these results at hand, it is now a matter of substitution and easy algebra to obtain
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the desired coefficients:

cψ̃3̃ = R3 cos θnc

∫ ∞

0
dr b̃2

(
b3J4 + J −1

3

)
, c̃ψ̃φ1 =

∫ ∞

0
dr
(
a01J4 + b01J −1

3 − c01
)
,

cψ̃r = 2e−2φ0R3 cos θnc

∫ ∞

0
dr

b2
F1

(
b3J4 + J −1

3

)
. (4.91)

Recall that (F̃2, b2, b3, b̃2) were defined in (2.21), (4.31) and (4.83), respectively. The other
factors in c̃ψ̃φ1 are defined as

a01 ≡R3b
2b3(F̃2 − F3)

(

cos θncb
2
3

√

F1(F̃2 − F3)

4F̃2F3

+ ã2
tan2 θnc
cos θnc

F1F̃2

F3

)

,

b01 ≡
R3

2

√

F1

F3

(

cos θncf
(1)

√

F̃2 − F3

F̃2

+ ã2F̃2f
(2) tan

2 θnc
cos θnc

√

F1

F3

)

, (4.92)

c01 ≡R3(F̃2 − F3)

√

F1

F3

(

cos θnc + ã2F̃
2
2

tan2 θnc
cos θnc

√

F1(F̃2 − F3)

F̃2F3

)

,

with (f (1), f (2)) given by

f (1) ≡ 3F3 + 2b2(F̃2 − F3), f (2) ≡ f (1) − 2F3. (4.93)

In exactly the same way shown in the end of section 4.1.1 for c12, it follows that (cψ̃3̃, cψ̃r)

are just numbers for any choice of the warp factors satisfying F̃2 ≥ F3. The scenario is more
subtle in the case of c̃ψ̃φ1 , for it is not clear at all that this coefficient is finite when:

• F3 → 0. As discussed after (4.38), this limit also includes the case (F̃2, F3) → 0.

• F̃2 → F3 9 0.

However, it turns out that

lim
F3→0

c̃ψ̃φ1 = 0, (4.94)

the mathematical details precisely as in between (4.40) and (4.44) for c12 before. Conse-
quently, we will just show that c̃ψ̃φ1 is well-defined when F̃2 → F3. To do this, we call

ǫ2 ≡ F̃2 − F3 and take the ǫ→ 0 limit. Plugged in (b3, ã4), as given by (4.31) and (4.69), we
get

lim
ǫ→0

b3 ∼ lim
ǫ→0

1

ǫ
∼ lim

ǫ→0
ã2. (4.95)
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Then, feeding the above to (4.92), we obtain

lim
ǫ→0

a01 ∼ 1, lim
ǫ→0

b01 ∼ lim
ǫ→0

1

ǫ
, lim

ǫ→0
c01 = 0. (4.96)

We consider this very same limit for (J3, J4) in (4.29) and (4.37):

lim
ǫ→0

J3 = lim
ǫ→0

ln

∣
∣
∣
∣

1 + ǫ

1− ǫ

∣
∣
∣
∣
, lim

ǫ→0
J4 = arctanh

1

b
, (4.97)

which is finite, since b 6= 1 by definition. All the above can be used in (4.91). Retaining only
the divergent part, we have that

lim
ǫ→0

c̃ψ̃φ1 ∼ lim
ǫ→0

1

ǫ
ln

∣
∣
∣
∣

1 + ǫ

1− ǫ

∣
∣
∣
∣
= lim

ǫ→0

(
1

1 + ǫ
+

1

1− ǫ

)

= 2, (4.98)

where in the last step we have applied L’Hôpital’s rule. In other words, the seemingly
divergent part of c̃ψ̃φ1 is actually finite. Consequently, there is no need to introduce an new
constraint: c̃ψ̃φ1 is a well-defined number for any warp factors one may wish to consider, as

long as F̃2 ≥ F3.
Quickly summing up, I(1,2,3) si given by (4.86) and the coefficients (cψ̃3̃, cψ̃r, c̃ψ̃φ1) there

appearing are all well-defined numbers if F̃2 ≥ F3. Their explicit form is that in (4.91).
We can finally collect all our results so far into a quite simple form. First, we use (4.65),

(4.76) and (4.86) in (4.56) and write I(1,2) accordingly. Next, inserting such I(1,2) and (4.22)
in (4.14), the first term of the bosonic action for the SU(N) world-volume gauge theory along
(t, x1, x2, ψ̃) can be readily seen to be

S(1) =
C1c11
V3

∫

d4x
2∑

a,b=0
a<b

Tr(F2
ab) +

C1c12
V3

∫

d4x
2∑

a=0

Tr(F2
aψ̃
)

+
C1

V3

∫

d4xTr
{

a1[Ar,Aφ1 ]
2 + a2[A3̃,Ar]

2 + a4[A3̃,Aφ1 ]
2

+
2∑

a=0

[

ca3̃
(
DaA3̃

)2
+ car

(
DaAr

)2
+ c̃aφ1

(
DaAφ1

)2
]

+ cψ̃3̃
(
Dψ̃A3̃

)2
+ cψ̃r

(
Dψ̃Ar

)2
+ c̃ψ̃φ1

(
Dψ̃Aφ1

)2
}

. (4.99)

It is important to bear in mind that all the coefficients appearing in this first term of the
action have been shown to be real numbers for any choice of the warp factors satisfying
F̃2 ≥ F3. Without further delay, let us turn to the second term of the world-volume action.
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4.2 Mass term of the G-flux

In order to obtain the second term for the bosonic action of the world-volume gauge theory
associated to (M,1), we first need to brush up a bit the construction of this M-Theory model,
which we presented in chapter 2. In particular, we need to recall how we moved far away
along the Coulomb branch the D5-brane of figure 2D. (Bear in mind that, as depicted, these
branes stretch along the directions (t, x1, x2, x3, ψ, r).) In this manner, we managed to
effectively ignore the presence of the D5-brane in the configuration (B,1) of figure 3, thereby
simplifying the starting point of our quantitative derivation of (M,1). It is now time to study
the essential effects that the presence of this D5-brane has for the world-volume gauge theory.

Let us begin by bringing back to its original position the D5-brane. In other words, let
us consider that the D5-brane in the configuration (B,1) has right next to it a parallel D5-
brane. To prevent the D5/D5 pair from collapsing (thus giving rise to tachyons), we switch

on a small NS B-field B̃
(B,1)
2 along the directions (x3, r) in both the D5- and D5-branes. As

carefully explained in [29], the D5/D5 pair with such an NS B-field on it can alternatively be
interpreted as two fractional D3-branes spanning (t, x1, x2, ψ)

12. From this point of view,

it is easy to infer that we must also switch on a small RR B-field C̃(B,1)
2 along the same

directions (x3, r), so as to ensure the tadpole cancellation condition is satisfied13. As a
particularly simple and consistent choice, we will consider both these fields to only depend
on the (θ1, r) coordinates:

B̃
(B,1)
2 ≡ F (1)dx3 ∧ dr, C̃(B,1)

2 ≡ F (2)dx3 ∧ dr, F (i) = F (i)(θ1, r), i = 1, 2.
(4.100)

With the goal of understanding how these new B-fields will affect the configuration (M,1), in
the following we will subject them to the chain of modifications shown in figure 3.

For our present purposes, it turns out we need not do the whole analysis in details, as
in part I before. Further, we need not worry about the NS B-field either. Rather, it suffices
to note that, in going from (B,1) to (B,2), the above RR B-field will be affected by the non-
commutative deformation in (2.19) and will also receive additional contributions along other
directions. We shall not be interested in such additional terms, so we will consider simply

12Note that our choice of orientation of the NS B-field leads to the stretching of the fractional D3-branes
along precisely the spacetime directions.

13The tadpole condition is, essentially, the statement that the charge of the fractional D3-branes should
be conserved. It follows directly from the Bianchi identity and the equations of motion of the corresponding
fluxes. A neat derivation of the tadpole condition can be found in section 4.2 of [52].
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that

C̃(B,2)
2 = sec θncF

(2)dx̃3 ∧ dr + other terms. (4.101)

(The reader should not be worried at the drastic simplification in the analysis at this point,
since it will shortly become clear why one can consistently do so.) Then, in T-dualizing along
φ1 to the configuration (A,3), we obtain an RR three-form potential of the form

C̃(A,3)
3 = sec θncF

(2)dφ1 ∧ dx̃3 ∧ dr + other terms. (4.102)

Without loss of generality, the relevant part of C̃(A,3)
3 will be assumed to be of the form

C̃(A,3)
3 =

Nr sin 2θnc cos θncp(θ1)q(θnc)

2(cos2 θnc +N sin2 θnc)2
dr ∧ dx̃3 ∧ dφ1, (4.103)

with (p, q) periodic functions of (θ1, θnc) with period (π, 2π), respectively and N = N(r, θnc)
sufficiently small for all values of the radial coordinate and such that

lim
r→0

N = 0, lim
r→∞

N = 1. (4.104)

Quite obviously, Nr above stands for the derivative of N with respect to r. Finally, in the
uplift from (A,3) to (M,1), (4.103) will lead to the background G-flux in (2.51) receiving the
additional contribution

δ〈G(M,1)
4 〉 = dC̃(A,3)

3 . (4.105)

For completeness, let us just mention that the NS B-field B̃
(B,1)
2 will also add to the back-

ground G-flux of (M,1), as roughly dB̃
(B,1)
2 ∧ dx11. This is, however, inconsequential from

the point of view of the world-volume gauge theory.
Summing up, the inclusion of the D5-brane in such a way that tachyons are avoided affects

only the background G-flux of the abelian configuration (M,1). As already argued in section
4.1, the background G-flux does not contribute at all to the first term of the action (4.99).
Consequently, the D5-brane does not affect our results so far and so there is no need to make
more precise the above analysis.

However, the particular contribution (4.103) to the RR three-form potential of the con-
figuration (A,3) does play a key role. It sources a new term14 for the gauge theory action,

14Actually, this second term for our bosonic action is well-known and usually referred to as “anomalous
interaction term” in the literature. The interested reader can find a lucid review of its main features in section
4 of [53] and references therein.
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which one may view as a mass term for the G-flux of (M,1):

S(2) ≡
∫

X11

C̃(A,3)
3 ∧ G(M,1)

4 ∧ G(M,1)
4 , (4.106)

with G(M,1)
4 given by (2.51) in this abelian scenario and the eleven-dimensional manifold X11

was described around (4.1).
Moving on to the non-abelian enhanced case (constructed in section 2.1.1), our entire

discussion hitherto straightforwardly goes through. The only two differences are that we

have N number of D5/D5 pairs instead of just one and that G(M,1)
4 in (4.106) is now the

non-abelian G-flux in (2.76). Since the background G-flux in (2.76) is negligible and using
the non-abelian generalization of (4.6), the second term of the action reduces to

S(2) =
C1

V3

∫ π

0

dθ1
2π

∫

X4⊗Σ3

Tr
(

C̃(A,3)
3 ∧ F ∧ F

)

, (4.107)

with F the non-abelian seven-dimensional field strength of (M,1). As was the case with the
first term S(1) of the bosonic action, the trace is taken in the adjoint representation of the
gauge group, in this case SU(N). Also, note that we have transferred the θ1 integral (as an
average) to the X4 ⊗ Σ3 subspace of X11, to consistently decouple the contribution of the
Taub-NUT space to S(2). Relevant comments regarding the appearance of this trace and the
decoupling of the Taub-NUT subspace are as discussed before, between equations (4.4) and
(4.12).

The S(2) term in (4.107) is actually very simple. Note that C̃(A,3)
3 spans all three directions

of the three-cycle Σ3. Recall also the decomposition of F in (4.13). It is clear that F (Σ3)

cannot contribute to S(2), as it would then lead to a vanishing wedge product between two
same directions of Σ3. On the other hand, F (X4) does contribute, but is restricted to X4

and does not depend on the θ1 coordinate, both properties following by definition. Thus, the
integral over X4 ⊗ Σ3 naturally decomposes into independent integrals over X4 and Σ3 and
(4.107) is in fact just given by

S(2) = c2I
(2) I(2) ≡

∫

X4

Tr
(

F (X4) ∧ F (X4)
)

, c2 ≡
C1

V3

∫ π

0

dθ1
2π

∫

Σ3

C̃(A,3)
3 . (4.108)

It is important to highlight that this is Θ-term type of contribution to the action. For
the moment, the above form of I(2) will suffice. We will work on further rewritings of this
integral in due time, when the need arises. Consequently, let us focus on the only task left:
the determination of the coefficient c2.
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This too turns out to be quite easy. Using (4.24) and (4.103), we can rewrite c2 as

c2 =
C1

V3

∫

d4ζ̃
Nr sin 2θnc cos θncp(θ1)q(θnc)

2(cos2 θnc +N sin2 θnc)2
. (4.109)

Once more, the integrals over (x̃3, φ1) here are trivial. To simplify the notation a bit, we
absorb the contribution of the θ1 integral in the radius of the x̃3 non-compact direction as

R̃3 ≡
R3

2

∫ π

0
dθ1 p(θ1). (4.110)

Then, c2 can be checked to be

c2 =
C1

V3
R̃3 sin 2θnc cos θncq(θnc)

∫ ∞

0

Nrdr

(cos2 θnc +N sin2 θnc)2
= 2

C1R̃3

V3
sin θncq(θnc), (4.111)

where in the last step we have used the boundary values in (4.104). Our final expression for
c2 leaves no room for doubt: this coefficient is just some well-defined number. Without loss
of generality, one may set 2R̃3 = V3 and thus simply consider c2 as

c2 = C1 sin θncq(θnc). (4.112)

Written in this manner, C1 accounts for the dependence of the c2 coefficient on the non-abelian
version of the M-Theory configuration (M,1) of chapter 2. The factor sin θnc ensures that
θnc = 0 implies c2 = 0. This is a most vital remark, once we recall that θnc was introduced
to this aim precisely: sourcing a Θ-term in the world-volume gauge theory. Finally, q(θnc)
allows us to have as complex a dependence of c2 on θnc as one may wish.

4.3 Completing the N = 4 vector multiplet: third term for the action

In this section, we compute the third and last term S(3) that contributes to the bosonic
action of the world-volume gauge theory. As we already pointed out in the beginning of the
chapter 4, this third term is not easily derivable from the non-abelian M-Theory configuration
(M,1). In fact, there is no rigorous derivation of this type of term in the literature till date.
Nonetheless, all the knowledge we have gathered while deriving the first two terms, S(1) in
(4.99) and S(2) in (4.108), will now pay off and allow us to obtain the remaining third term.

Let us begin by recalling that in the end of section 4.1 we argued that the bosonic matter
content in the gauge theory must be exactly that in the N = 4 vector multiplet. That is,
in our action we must have four gauge fields and six real scalars, all of them in the adjoint
representation of SU(N). However, upon inspection of the already derived first two terms in
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the gauge theory action, we note that so far only the gauge fields (At, A1, A2, Aψ̃) and three
real scalars (A3̃, Aφ1 , Ar) have appeared in our analysis. Hence, what we are missing is the
contribution of the other three real scalars in the N = 4 vector multiplet. We will refer to
these as (ϕ1, ϕ2, ϕ3). Accordingly, S

(3) will capture the dynamics of these scalar fields.
Let us next note that the terms S(1) and S(2) originate from the G-flux of the non-abelian

configuration (M,1), which is given by (2.76). Further, these two terms exhaust all possible
contributions of the G-flux to the action. This statement is most clearly seen by looking
at the initial form of S(1) and S(2): that in (4.2) and (4.106), respectively. In consequence,
S(3) must emerge purely from the geometry of (M,1). In other words, we expect the scalar
fields ϕk (with k = 1, 2, 3) to stem from fluctuations of the eleven-dimensional supergravity
Einstein term of (M,1). In terms of our non-abelian scenario of figure 4B, this means that the
Taub-NUT space TN and the M2-branes wrapping its two-cycles fluctuate along X4 ⊗Σ3

15.
We will right away simplify the scenario and assume the fluctuations are restricted to X4

only, so that

ϕk = ϕk(t, x1, x2, ψ̃) ∀k = 1, 2, 3. (4.113)

We will further suppose that, in fluctuating along orthogonal directions of X11, TN itself
does not get back-reacted. Or, more accurately, that the back-reaction of TN is negligible
compared to the change that the metric of X4 ⊗ Σ3 experiences. This last key assumption
allows us to write S(3) as an integral over X4 ⊗Σ3 only. In the same vein as for the previous
two terms of the action, we will also average over the contribution of the θ1 coordinate.

Having shed sufficient qualitative light into the nature and content of S(3), we are now
ready to make this term in the action fully precise. Naturally, S(3) must contain the kinetic
terms and the self-interaction terms of (ϕ1, ϕ2, ϕ3), as well as their interaction terms with
the other scalar fields (A3̃, Aφ1 , Ar) in the theory. All in all, we have that

S(3) = S
(ϕ)
kin + S

(ϕϕ)
int + S

(Aϕ)
int , (4.114)

which is written in a form that mimics the well-known N = 4 vector multiplet’s action. In
the same spirit of (4.56)-(4.57), we can write the above as

S
(ϕ)
kin =

∫ π

0

dθ1
2π

∫

M7

Tr

3∑

k=1

[ 2∑

a=0

gaa(Daϕk)
2 + gψ̃ψ̃(Dψ̃ϕk)

2
]

, (4.115)

S
(ϕϕ)
int =

∫ π

0

dθ1
2π

∫

M7

Tr

3∑

k=1

[ϕk, ϕl]
2, S

(Aϕ)
int =

∫ π

0

dθ1
2π

∫

M7

Tr

3∑

k=1

(
[A(Σ3), ϕk] ∧ ∗[A(Σ3), ϕk]

)
,

15As a reminder, the subspaces (TN, X4, Σ3) of the full eleven-dimensional manifold X11 were introduced
and described around (4.1).
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where we have introduced M7 ≡ X4 ⊗ Σ3, (gaa, gψ̃ψ̃) are given by (4.19), the covariant
derivatives were defined in (4.51), A(Σ3) stands for (4.52) and the Hodge dual is with respect
to the three-dimensional metric of Σ3 in (4.47). In the following, we shall determine these
terms separately.

Computation of S
(ϕ)
kin in (4.115)

This kinetic piece is rather unchallenging to work out. Simply writing out explicitly

the integral over X4 ⊗ Σ3 there appearing and using (4.17), (4.19) and (4.24), S
(ϕ)
kin can be

expressed as

S
(ϕ)
kin =

∫

d4x Tr
3∑

k=1

[ 2∑

a=0

bak(Daϕk)
2 + bψ̃k(Dψ̃ϕk)

2
]

(4.116)

where, once more, d4x ≡ dtdx1dx2dψ̃ and the coefficients (bak, bψ̃k) are defined as

bak ≡ e2φ0
∫

d4ζ̃H1

√

F1H4, bψ̃k ≡
∫

d4ζ̃H1

√

F1

H4
. (4.117)

Further introducing (2.43) in the above and noting that the integrands are independent of
(x̃3, φ1), these coefficients considerably simplify to

bak = e2φ0R3 sec θnc

∫ ∞

0
dr (cos2 θnc + F2 sin

2 θnc)
1/3F

1/3
3

√

F1F̃2 I(9),

bψ̃k = R3 sec θnc

∫ ∞

0
dr (cos2 θnc + F2 sin

2 θnc)
1/3F

1/3
3

√

F1

F̃2

I(10),
(4.118)

with the integrals there appearing defined as

I(9) ≡
∫ π

0
dθ1

sin θ1

χ̂1/6
, I(10) ≡

∫ π

0
dθ1

χ̂5/6

sin θ1
, χ̂ = χ̂(θ1) ≡ 1 +

F̃2 − F3

F3
cos2 θ1.

(4.119)

These integrals are most easily performed after doing the by now familiar change of variables
in (4.33). For I(9) we obtain

I(9) =

∫ 1

−1
dz
(

1 +
F̃2 − F3

F3
z2
)−1/6

= z 2F1

(1

6
,
1

2
,
3

2
;
F3 − F̃2

F3
z2
)
∣
∣
∣
∣
∣

z=1

z=−1

= 2Θ12. (4.120)
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Similarly, using (4.33), introducing the regularization factor b ∈ R
+ − {1} in the same way

as in (4.34) previously and further changing variables z → ẑ = z2, the integral I(10) yields

I(10) =2

∫ 1

0

dz

b2 − z2

(

1 +
F̃2 − F3

F3
z2
)5/6

=

∫ 1

0

dẑ√
ẑ

1

b2 − ẑ

(

1 +
F̃2 − F3

F3
ẑ
)5/6

=
2
√
ẑ

b2
F1

(1

2
,−5

6
, 1,

3

2
;
F3 − F̃2

F3
ẑ;
ẑ

b2

)
∣
∣
∣
∣
∣

ẑ=1

ẑ=0

=
2

b2
Θ34, (4.121)

where (Θ12, Θ34) above stand for the following hypergeometric functions:

Θ12 ≡ 2F1

(1

6
,
1

2
,
3

2
;
F3 − F̃2

F3

)

, Θ34 ≡ F1

(1

2
,−5

6
, 1,

3

2
;
F3 − F̃2

F3
;
1

b2

)

. (4.122)

Putting everything together, we obtain

bak = 2e2φ0R3 sec θnc

∫ ∞

0
dr(cos2 θnc + F2 sin

2 θnc)
1/3F

1/3
3

√

F1F̃2Θ12,

bψ̃k = 2
R3

b2
cos θnc

∫ ∞

0
dr(cos2 θnc + F2 sin

2 θnc)
1/3F

1/3
3

√

F1

F̃2

Θ34.
(4.123)

Recalling the constraint F̃2 ≥ F3 of section 4.1, the reader will not have a hard time of
convincing herself/himself that the above two coefficients are well-defined numbers for any
choice of warp factors in (2.2).

Computation of S
(ϕϕ)
int in (4.115)

The determination of this self-interaction term is a simplified version of the computation
we just presented for the kinetic term. As in there, all boils down to explicitly writing the
integral over X4 ⊗ Σ3 in (4.115) with the aid of (4.17) and (4.24):

S
(ϕϕ)
int =

∫

d4x Tr
3∑

k,l=1

dkl[ϕk, ϕl]
2, dkl ≡ e2φ0

∫

d4ζ̃H2
1

√

F1H4 ∀k, l = 1, 2, 3,

(4.124)

with d4x ≡ dtdx1dx2dψ̃. With regards to the determination of the dkl coefficients, the first
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step is to use (2.43) and carry out the trivial (x̃3, φ1) integrals. We then find that

dkl = e2φ0R3 sec θnc

∫ ∞

0
dr(cos2 θnc + F2 sin

2 θnc)
2/3

√

F1F̃2F3I(11) ∀k, l = 1, 2, 3,

(4.125)

where we have defined

I(11) ≡ F
1/6
3

∫ π

0
dθ1 sin θ1χ̂

1/6, (4.126)

and χ̂ is as in (4.119). Given the similarity between the above and (I(9), I(10)) before, the
attentive reader may already have guessed that the easiest way to perform the above integral
is by doing the change of variables in (4.33):

F
−1/6
3 I(11) =

∫ 1

−1
dz
(

1 +
F̃2 − F3

F3
z2
)1/6

=
3z

4

(

1 +
F̃2 − F3

F3
z2
)1/6

+
z

4
2F1

(1

2
,
5

6
,
3

2
;
F3 − F̃2

F3
z2
)
∣
∣
∣
∣
∣

z=1

z=−1

=
Θ56

2F
1/6
3

, (4.127)

where Θ56 is

Θ56 ≡ 3F̃
1/6
2 + F

1/6
3 2F1

(1

2
,
5

6
,
3

2
;
F3 − F̃2

F3

)

. (4.128)

As a result, we can write the dkl coefficients as

dkl =
e2φ0

2
R3 sec θnc

∫ ∞

0
dr

√

F1F̃2F3(cos
2 θnc + F2 sin

2 θnc)
2/3Θ56 ∀k, l = 1, 2, 3,

(4.129)

which are all just some real number whatever choice of warp factors one may wish to consider
in (2.2).

Computation of S
(Aϕ)
int in (4.115)

The final term to be computed, namely the interaction term between the two sets of three
real scalars A(Σ3) and ϕk (k = 1, 2, 3), is mathematically more involved than its previous
two counterparts. Hence, let us first take a few preparatory steps. From (4.49) and (4.52) it
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follows that

[A(Σ3), ϕk] =[α̂1, ϕk] e
(Σ3)

3̃
+ [α̂2, ϕk] e

(Σ3)
r + [α̂3, ϕk] e

(Σ3)
φ1

,

∗[A(Σ3), ϕk] =[α̂1, ϕk] e
(Σ3)
r ∧ e(Σ3)

φ1
− [α̂2, ϕk] e

(Σ3)

3̃
∧ e(Σ3)

φ1
+ [α̂3, ϕk] e

(Σ3)

3̃
∧ e(Σ3)

r , (4.130)

the Hodge dual having been taken with respect to (4.47). The wedge product between the
above two quantities is then

[A(Σ3), ϕk] ∧ ∗[A(Σ3), ϕk] = ([α̂1, ϕk]
2 + [α̂2, ϕk]

2 + [α̂3, ϕk]
2) e

(Σ3)

3̃
∧ e(Σ3)

r e
(Σ3)
φ1

. (4.131)

Since H3
1H2H3 = 1, as a direct consequence of our definitions in (2.43), and reversing (4.48)

and (4.52), the above can be rewritten in the more convenient form K3̃rφ1
dx̃3∧dr∧dφ1, with

K3̃rφ1
given by

eφ0
√
F1

H1

{e−2φ0

F1
[Ar, ϕk]

2 +
1

H2
[A3̃, ϕk]

2 +
( f23
H2

+
1

H3

)

[Aφ1 , ϕk]
2 − 2f3

H2
[A3̃, ϕk][Aφ1 , ϕk]

}

.

(4.132)

This is nothing but the integrand of S
(Aϕ)
int in (4.115). Once we substitute it there and after

expanding the integral over X4⊗Σ3 as well as using (4.20) and (4.24), we get the interaction
term to be

S
(Aϕ)
int =

∫

d4x Tr
3∑

k=1

(
crk[Ar, ϕk]

2 + c3̃k[A3̃, ϕk]
2 + cφ1k[Aφ1 , ϕk]

2 − ckk[A3̃, ϕk][Aφ1 , ϕk]
)
.

(4.133)

The four coefficients above (and these are the very last ones of their kind) are defined as

crk ≡
∫

d4ζ̃ H1

√

H4

F1
, c3̃k ≡ e2φ0

∫

d4ζ̃
H1

H2

√

F1H4,

cφ1k ≡ e2φ0
∫

d4ζ̃ H1

√

F1H4

(
f23
H2

+
1

H3

)

, ckk ≡ 2e2φ0
∫

d4ζ̃
f3
H2

√

F1H4.

(4.134)

Introducing (2.43) and carrying out the trivial (x̃3, φ1) integrals, these coefficients simplify

90



notoriously to yield

crk =2R3 sec θnc

∫ ∞

0
dr F

1/3
3

√

F̃2

F1
(cos2 θnc + F2 sin

2 θnc)
1/3Θ12,

c3̃k =2e2φ0R3 sec θnc

∫ ∞

0
dr F

1/3
3

√

F1F̃2(cos
2 θnc + F2 sin

2 θnc)
4/3Θ12, (4.135)

cφ1k =e
2φ0R3 sec θnc

∫ ∞

0
dr

√

F1F̃2F3(cos
2 θnc + F2 sin

2 θnc)
1/3Π78

and ckk ∝ I(5), with I(5) defined in (4.63). Note that in the case of (crk, c3̃k) we have also
integrated over θ1, using to this aim (4.119), (4.120) and (4.122). Additionally, we have
defined Π78 as

Π78 ≡ Π̂78 + 3 sec2 θnc tan
2 θncF̃

2
2 (cos

2 θnc + F2 sin
2 θnc)Π̃78, (4.136)

with (Π̂78, Π̃78) depending on the χ̂ function in (4.119) as

Π̂78 ≡ F
5/6
3

∫ π

0
dθ1 sin θ1χ̂

5/6, Π̃78 ≡
1

3F
1/6
3

∫ π

0
dθ1

sin θ1 cos
2 θ1

χ̂1/6
. (4.137)

Once more, these integrals are most easily carried out after doing the change of variables in
(4.33). For Π̂78 we get

F
−5/6
3 Π̂78 =

∫ 1

−1
dz
(

1 +
F̃2 − F3

F3
z2
)5/6

=
3z

8

(

1 +
F̃2 − F3

F3
z2
)5/6

+
5z

8
2F1

(1

6
,
1

2
,
3

2
;
F3 − F̃2

F3
z2
)
∣
∣
∣
∣
∣

z=1

z=−1

=
3

4

( F̃2

F3

)5/6
+

5

4
Θ12, (4.138)

where in the last step we have made use of (4.122). Similarly, Π̃78 gives

F
−5/6
3 Π̃78 =

1

3F3

∫ 1

−1
dz z2

(

1 +
F̃2 − F3

F3
z2
)−1/6

=
z

8(F̃2 − F3)

[(

1 +
F̃2 − F3

F3
z2
)5/6

− 2F1

(1

6
,
1

2
,
3

2
;
F3 − F̃2

F3
z2
)]z=1

z=−1
=

(

F̃2/F3

)5/6
−Θ12

4(F̃2 − F3)
. (4.139)

91



The above two results, when used in (4.136), allow us to write Π78 as

Π78 =
3

4
F̃

5/6
2 +

5

4
F

5/6
3 Θ12 +

3

4

(tan θnc
cos θnc

)2
(cos2 θnc + F2 sin

2 θnc)(F̃
5/6
2 − F

5/6
3 Θ12)

F̃ 2
2

F̃2 − F3

.

(4.140)

As we saw in (4.64), I(5) = 0 and so the coefficient ckk vanishes. This reduces our interaction
term in (4.133) to its final form:

S
(Aϕ)
int =

∫

d4x Tr
3∑

k=1

(
crk[Ar, ϕk]

2 + c3̃k[A3̃, ϕk]
2 + cφ1k[Aφ1 , ϕk]

2
)
. (4.141)

For the very last time, we observe that the coefficients appearing above are, as a simple
inspection of their form in (4.135) suggests, well-defined numbers for any choice of the warp
factors one may wish to consider in (2.2). Just to make the entire analysis transparent, we
show that the only seemingly divergent term is actually finite. Defining ǫ ≡ (F̃2 − F3), we
have that

lim
F̃2→F3

Π̃78 = lim
ǫ→0

(F3 + ǫ)5/6 − F
5/6
3

4ǫ
≈ 5

24F
1/6
3

, (4.142)

a finite result as we advanced a little ago. Recall that F3 → 0 cannot be considered in this
case, as we explained after (4.38) earlier on.

It is now the time to collect all our results in this section. First, we introduce all (4.116),
(4.124) and (4.141) in (4.114). We then obtain the third and last term S(3) for our gauge
theory action. At last, adding such S(3) to S(1) in (4.99) and S(2) in (4.108), we obtain the
total bosonic action for the world-volume gauge theory in (4.143).

To finish this section, we include table 1. This is a quick guide to finding the explicit form
in terms of the warp factors in (2.2), the deformation parameter θnc in (2.19) and the constant
dilaton in (4.5) of the abundant coefficients on which our above action depends. These will
keep appearing all through the remaining of the thesis. Recall that we have explicitly shown
that all these coefficients are well-defined numbers for any choice of the warp factors, as long
as the constraint F̃2 ≥ F3 is satisfied, with F̃2 as in (2.21).

Before proceeding ahead in our analysis, it is worth noting that in the present work we
do not study the four-dimensional bosonic action stemming from the configuration (M,2) of
section 2.2. This is because (M,2) was shown to be equivalent to the configuration (M,1)
of sections 2.1 and 2.1.1 (see figure 1), the latter being computationally easier to handle.
However, this action is discussed in [1] and argued to be of the form (4.143), the only difference
being that the coefficients of table 1 would in that case change. We refer the interested reader
to [1] for the pertinent details.
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S =
C1c11
V3

∫

d4x
2∑

a,b=0
a<b

Tr(F2
ab) +

C1c12
V3

∫

d4x
2∑

a=0

Tr(F2
aψ̃
) + c2

∫

X4

Tr
(
F (X4) ∧ F (X4)

)

+
C1

V3

∫

d4xTr
{

a1[Ar,Aφ1 ]
2 + a2[A3̃,Ar]

2 + a4[A3̃,Aφ1 ]
2 +

2∑

a=0

[
ca3̃(DaA3̃)

2

+car(DaAr)
2 + c̃aφ1(DaAφ1)

2
]
+ cψ̃3̃(Dψ̃A3̃)

2 + cψ̃r(Dψ̃Ar)
2 + c̃ψ̃φ1(Dψ̃Aφ1)

2
}

+

∫

d4x Tr
{ 3∑

k=1

[ 2∑

a=0

bak(Daϕk)
2 + bψ̃k(Dψ̃ϕk)

2
]

+

3∑

k,l=1

dkl[ϕk, ϕl]
2

+
3∑

k=1

(
crk[Ar, ϕk]

2 + c3̃k[A3̃, ϕk]
2 + cφ1k[Aφ1 , ϕk]

2
)}

. (4.143)

(All the coefficients in blue depend on J3 in (4.29).)Coefficient Given in

c11 (4.30)

−→ Depends on (b, b2, b3) in (4.31) and J4 in (4.37).c12 (4.38) }

−→ Depend on (ã±, ã2, ã4) in (4.69).
a1, a2, a4 (4.68)

ca3̃, car, c̃aφ1 (4.78)

−→ Depend on all the above via (a01, b01, c01) in (4.92),
as well as b̃2 in (4.83) and (f (1), f (2)) in (4.93).

cψ̃3̃, cψ̃r, c̃ψ̃φ1 (4.91)

c2 (4.112)

−→ Depend on b in (4.31) and (Θ12, Θ34) in (4.122).bak, bψ̃k (4.123)

−→ Depends on Θ56 in (4.128).dkl (4.129)

−→ Depend on (Θ12, Π78) in (4.122) and (4.140).c3̃k, crk, cφ1k (4.135)

Table 1: List of coefficients appearing in the action (4.143), together with the equation numbers where

they are expressed in terms of only the warp factors in (2.2) and (2.21), the deformation parameter

in (2.19) and the leading constant term of the dilaton in (4.5). Note that we don’t compute (C1/V3)

explicitly. However, its abelian version (c1/v3) is given by (4.10). Note also that all the coefficients

in blue require F̃2 ≥ F3 to be finite. The colors in the table point to the origin of the coefficients:

in blue those stemming from S(1) discussed in section 4.1, in green that related to S(2) in section 4.2

and in yellow the coefficients of S(3) in section 4.3.
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In chapter 4 we have derived the four-dimensional physical action (4.143) following from
the low energy limit of the M-theory model (M,1) constructed in chapter 2. We have shown
that this action is well-defined everywhere under very mild constraints on the form of the
warp factors and dilaton that characterize the metric (2.46) of (M,1). The action (4.143)
depends on various coefficients, all of which can be expressed solely in terms of supergravity
parameters, as detailed in table 1.
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Chapter 5: The bulk theory

This chapter is devoted to the derivation of the BPS conditions for the N = 2, four-
dimensional gauge theory along (t, x1, x2, ψ̃) whose action we just obtained in (4.143). It
goes without saying that the BPS conditions follow from minimizing the energy of the system
with action (4.143), considering static configurations of the fields there. Hence, it is quite
clear that the first step towards achieving our aim will be to obtain the Hamiltonian associ-
ated to (4.143). The second and last step will be to minimize this Hamiltonian, under the
assumption that the gauge and scalar fields are all time-independent.

Yet once more, this is more easily said than done. Consequently, we will do the following.
First, we shall determine and minimize the Hamiltonian following from (4.143) in a particu-
larly simple limit: we will set c2 = 0 there. That is to say, we will begin by performing the
analysis when there is no Θ-term in the action. Then, we will use the insights thus gathered
to generalize the results to the c2 6= 0 case we are really interested in.

This procedure is depicted in figure 12, where we also make reference to the main results
in the present chapter. As such, the reader may find it useful to look at figure 12 as a guiding
map: it captures the main logic behind the computational details shown in the following.

5.1 Analysis for the case c2 = 0 in (4.143)

Obtaining the Hamiltonian associated to a given action is a well-defined problem in clas-
sical mechanics, which our readers surely know by heart. As such, after setting c2 = 0 in
(4.143), one could go ahead with the standard procedure: infer the conjugate momenta and
write the Hamiltonian as the Legendre transform of the Lagrangian. However, in view of
the length and complexity of the action (4.143), this procedure would be quite a long and
tiresome mathematical exercise for us. Therefore, we will use a different approach to obtain
the Hamiltonian: we will map our action to that in (2.1) in [54] and directly read off our
Hamiltonian from (2.4) in the same reference. As we will point out when due, it shall pay
off to develop such mapping for a number of other reasons as well.
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The Lagrangian density L of our theory can be directly inferred from the action (4.143),
since

S =

∫

d4x L. (5.1)

With c2 = 0, L in (4.143) is precisely of the form of the Lagrangian (2.1) in [54], up to relative
factors and under the following identifications:

xM → (t, x1, x2, ψ̃), φA → (A3̃,Aφ1 ,Ar, ϕ1, ϕ2, ϕ3), φ5 → A3̃. (5.2)

Note that our definitions for the covariant derivatives in (4.51) differ from the covariant
derivatives in [54]. This mismatch is rectified by replacing factors of (i) there by (−i) in
our case. Properly accounting for the additional prefactors in our theory as well, it is rather
simple to see that the different terms that compose the Hamiltonian (2.4) in [54] are, in the
language of the present paper, given by

∑

a

(Fa0 −Daφ5)
2 → T1,

∑

a

(D0φa + i[φ5, φa])
2 → T2, (D0φ5)

2 → T3,
1

2

∑

a 6=b

(Fab − ǫabcdDcφd + i[φa, φb])
2 → T4,

(∑

a

Daφa

)2
→ 0,

(5.3)

where we have defined (T1, T2, T3) as

T1 ≡ C1

V3

2∑

α=1

(
√
c11Fα0 −√

cα3̃DαA3̃)
2 +

C1

V3
(
√
c12Fψ̃0 −

√
cψ̃3̃Dψ̃A3̃)

2,

T2 ≡ C1

V3
(
√
c0rD0Ar − i

√
a2[A3̃,Ar])

2 +
C1

V3
(
√

c̃0φ1D0Aφ1 − i
√
a4[A3̃,Aφ1 ])

2

+

3∑

k=1

(
√

b0kD0ϕk − i
√
c3̃k[A3̃, ϕk])

2, T3 ≡
C1

V3
c03̃(D0A3̃)

2

(5.4)

and where T4 naturally splits into two, T4 = T (1)
4 + T (2)

4 , due to the decomposition of the
subspace X4 explained in (4.1):

T (1)
4 =

1

2

2∑

α,β=1

(
√

C1

V3
τ (1) + τ (2)

)2
, T (2)

4 =
1

2

2∑

α=1

(
√

C1

V3
τ (3) + τ (2)

)2
, (5.5)
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with (τ (1), τ (2), τ (3)) standing for

τ (1) ≡√
c11Fαβ −

√
cψ̃rǫαβψ̃rDψ̃Ar −

√

c̃ψ̃φ1ǫαβψ̃φ1Dψ̃Aφ1 −
√

V3
C1

3∑

k=1

√

bψ̃kǫαβψ̃kDψ̃ϕk,

iτ (2) ≡
√

C1a1
V3

[Ar,Aφ1 ] +
3∑

k,l=1

(√
crk[Ar, ϕk] +

√
cφ1k[Aφ1 , ϕk] +

√

dkl[ϕk, ϕl]
)

, (5.6)

τ (3) ≡√
c12Fαψ −√

cβrǫαψ̃βrDβAr −
√

c̃βφ1ǫαψ̃βφ1DβAφ1 −
√

V3
C1

3∑

k=1

√

bβkǫαψ̃βkDβϕk.

Putting everything together as in (2.4) in [54], we obtain the Hamiltonian associated to the
action (4.143) for c2 = 0:

H =

∫

d4xTr

{
3∑

i=1

Ti +
1

2

2∑

α,β=1

(
√

C1

V3
τ (1) + τ (2)

)2
+

1

2

2∑

α=1

(
√

C1

V3
τ (3) + τ (2)

)2
}

+QEM ,

(5.7)

where QEM denotes the sum of electric and magnetic charges in the theory. As is well-
known (for instance, see (2.5) in [54]), these charges are boundary terms. We will study
these boundary terms in exquisite detail in section 6.1, for the case where c2 6= 0 in (4.143).
Hence, for the time being, we shall not make them precise and instead we focus on the bulk
terms. Also, it should be noted that the above Hamiltonian incorporates the Gauss law in
it, as explained in [54]. Consequently, there are no constraints on the gauge and scalar fields
of our theory imposed by the Gauss law16.

According to the plan of action described in the beginning of this section, having obtained
the Hamiltonian for our gauge theory, we should now proceed to minimize it. It turns out,
however, that the minimization process simplifies considerably if we first rewrite (5.7) in a
certain manner. This is the first side-benefit of having mapped our setup to that in section
2 of [54]. Further, in section 5.1.2 we shall obtain important results from this rewriting!
Thus, we will presently simply rewrite the Hamiltonian (5.7) in a more convenient form and
postpone the minimization problem to section 5.1.1.

The rewriting we will carry out consists in introducing new, arbitrary coefficients in some
of the terms inside the sums of squares of (5.7) and, at the same time, adding new terms to
the Hamiltonian so that there is no change in its quadratic components. We shall not yet
make precise the additional crossed terms produced in this manner. But the reader should
not worry, the crossed terms will be determined meticulously in section 5.1.2. In fact, their

16The skeptical reader can alternatively be convinced of this last statement by the combination of (5.2) and
our later gauge choice in (5.35) and (5.40).
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study leads to the important results we were anticipating a little before. Perhaps a toy model
will make the rewriting we intend to perform most transparent. Consider the Hamiltonian

H(1) = (A+ B)2 + C. (5.8)

Introducing the arbitrary parameters (x̂, ŷ), the above can be rewritten as

H(1) = (A+ x̂B)2 + ŷB2 + C̃, (5.9)

as long as the constraints

x̂2 + ŷ = 1, C̃ = C+ 2AB(1− x̂), (5.10)

are enforced. Written in this language, our earlier statement of ignoring the “additional
crossed terms” simply means that the second constraint above shall not be studied presently,
but is rather postponed to section 5.1.2.

Actually, we shall only rewrite the term T4 and leave (T1, T2, T3) as they are. We do so

piecewise and first focus on the first three terms of T (1)
4 in (5.5):

1

2

2∑

α,β=1

(
√

C1c11
V3

Fαβ −
√

C1cψ̃r
V3

ǫαβψ̃rDψ̃Ar −
√

C1c̃ψ̃φ1
V3

ǫαβψ̃φ1Dψ̃Aφ1 + . . .
)2
. (5.11)

In the above, we introduce arbitrary coefficients in the second and third terms, which depend
on (α, β). Clearly, these must be antisymmetric in the mentioned indices, so as not to yield
zero due to the Levi-Civita symbols. We absorb the minus signs in the coefficients and also
transfer the factor of (1/2) inside the square. All in all, we rewrite the above as

2∑

α,β=1

(
√

C1c11
2V3

Fαβ +
√

C1cψ̃r
V3

s
(1)
αβǫαβψ̃rDψ̃Ar +

√

C1c̃ψ̃φ1
V3

s
(2)
αβǫαβψ̃φ1Dψ̃Aφ1 + . . .

)2

+
C1cψ̃r
V3

s(1)(Dψ̃Ar)
2 +

C1c̃ψ̃φ1
V3

s(2)(Dψ̃Aφ1)
2 + χs, (5.12)

where χs contains the additional crossed terms created by the inclusion of the (s
(1)
αβ , s

(2)
αβ)

coefficients and we demand the constraints

2(s
(i)
12 )

2 + s(i) = 1, ∀i = 1, 2 (5.13)

hold true, so as to ensure the quadratic pieces remain the same. In exactly the same way,
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the first three terms of T (2)
4 in (5.5), namely

1

2

2∑

α=1

(
√

C1c12
V3

Fαψ̃ −
√

C1cβr
V3

ǫαψ̃βrDβAr −
√

C1c̃βφ1
V3

ǫαψ̃βφ1DβAφ1 + . . .
)2
, (5.14)

can be rewritten as

2∑

α=1

(
√

C1c12
2V3

Fαψ̃ +

√

C1cβr
V3

t(1)α ǫαψ̃βrDβAr +

√

C1c̃βφ1
V3

t(2)α ǫαψ̃βφ1DβAφ1 + . . .
)2

+
C1cβr
V3

t(1)(DβAr)
2 +

C1c̃βφ1
V3

t(2)(DβAφ1)
2 + χt, (5.15)

where χt takes into account the additional crossed terms created by the inclusion of (t
(1)
α , t

(2)
α )

and we impose the constraints

2∑

α=1

(t(i)α )2 + t(i) = 1, ∀i = 1, 2, (5.16)

which guarantee the squared terms are not affected in the rewriting.

With the very same idea in mind, we look at the fifth terms in both T (1)
4 and T (2)

4 next:

1

2

2∑

α,β=1

(

. . .− i

√

C1a1
V3

[Ar,Aφ1 ] + . . .
)2

+
1

2

2∑

α=1

(

. . .− i

√

C1a1
V3

[Ar,Aφ1 ] + . . .
)2
. (5.17)

We introduce antisymmetric (in their indices) coefficients in both terms, add squared terms
that make sure we do not alter that part and encompass the new crossed terms in χ4, which
we do not presently determine. We also pull in the factor of (1/2), as before. Explicitly, the
above becomes

2∑

α,β=1

(

. . .− ig
(4)
αβ

√

C1a1
V3

[Ar,Aφ1 ] + . . .
)2

+

2∑

α=1

(

. . .− ih
(4)

αψ̃

√

C1a1
V3

[Ar,Aφ1 ] + . . .
)2

+
C1a1
V3

q(4)[Ar,Aφ1 ]
2 + χ4, (5.18)

where we require that the following must be satisfied:

2(g
(4)
12 )

2 +

2∑

α=1

(h
(4)

αψ̃
)2 − q(4) = 1. (5.19)
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The relative difference in signs between (5.19) and the previous constraints (5.13) and (5.16)
is a consequence of the overall factors of (−i) in the terms of the action presently being

considered. Similarly, the last terms in T (1)
4 and T (2)

4 ,

1

2

2∑

α,β=1

(

. . .− i
3∑

k,l=1

√

dkl[ϕk, ϕl]
)2

+
1

2

2∑

α=1

(

. . .− i
3∑

k,l=1

√

dkl[ϕk, ϕl]
)2
, (5.20)

are rewritten in the form

2∑

α,β=1

(

. . .− i
3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl]
)2

+
2∑

α=1

(

. . .− i
3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl]
)2

+

3∑

k,l=1

q
(1)
kl dkl[ϕk, ϕl]

2 + χ1, (5.21)

with the constraint

2(g
(1)
12kl)

2 +
2∑

α=1

(h
(1)

αψ̃kl
)2 − q

(1)
kl = 1, ∀k, l = 1, 2, 3, (5.22)

where g
(1)
αβkl has been defined to be antisymmetric in (α, β) and in (k, l). Analogously, we say

that h
(1)

αψ̃kl
is antisymmetric in (α, ψ̃) and in (k, l) by definition. We do an identical rewriting

of the sixth and seventh terms of T (1)
4 and T (2)

4 too. That is, we rewrite the aforementioned
terms,whose original form can be directly read from (5.5) and (5.6) or even simply inferred
from the subsequent equation, as

2∑

α,β=1

(

. . .− i
3∑

k=1

g
(1)
αβk

√
crk[Ar, ϕk]− i

3∑

k=1

g
(2)
αβk

√
cφ1k[Aφ1 , ϕk] + . . .

)2

+
2∑

α=1

(

. . .− i
3∑

k=1

h
(1)

αψ̃k

√
crk[Ar, ϕk]− i

3∑

k=1

h
(2)

αψ̃k

√
cφ1k[Aφ1 , ϕk] + . . .

)2

+

3∑

k=1

q
(1)
k crk[Ar, ϕk]

2 +

3∑

k=1

q
(2)
k cφ1k[Aφ1 , ϕk]

2 + χ2 + χ3. (5.23)
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We also demand the following constraints

2(g
(i)
12k)

2 +

2∑

α=1

(h
(i)

αψ̃k
)2 − q

(i)
k = 1, ∀i = 1, 2, ∀k = 1, 2, 3. (5.24)

Here, g
(i)
αβk has been defined to be antisymmetric in (α, β) and h

(i)

αψ̃k
in (α, ψ̃), for both

i = 1, 2.

The only two terms left, namely the fourth terms of T (1)
4 and T (2)

4 in (5.5), will be
rewritten in a slightly trickier way. Essentially, we will first “mix” them and then multiply
those mixed terms with new coefficients. Again, we will make sure that the squared terms are
not affected in the rewriting by subjecting the coefficients introduced to constraint equations.
For the time being, we will not determine the additional crossed terms thus produced. To
make the idea more precise, let us first consider a toy model to illustrate how we will proceed.
Consider the Hamiltonian

H(2) =
1

2
(Â+ B̂)2 +

1

2
(Ĉ+ D̂)2 =

1

2
(Â2 + B̂

2 + Ĉ
2 + D̂

2) + crossed terms. (5.25)

We will “mix” the terms (B̂, D̂) in the above. To this aim, we define Ê ≡ B̂ + D̂. Next, we
insert inside the squares the factors of (1/2) and introduce the arbitrary coefficients (û, v̂).
All these changes allow us to rewrite the toy Hamiltonian as

H(2) = (
Â√
2
+ ûÊ)2 + (

Ĉ√
2
+ v̂Ê)2 =

1

2
(Â2 + Ĉ)2 + (û2 + v̂2)(B̂2 + D̂

2) + crossed terms.

(5.26)

If we demand that the squared terms in (5.25) and (5.26) match, then it is clear that (û, v̂)
must satisfy the following constraint:

û2 + v̂2 =
1

2
. (5.27)

Coming back to the fourth terms in T (1)
4 and T (2)

4 that motivated the just explained toy
model, these are given by

1

2

2∑

α,β=1

(

. . .−
3∑

k=1

√

bψ̃kǫαβψ̃kDψ̃ϕk + . . .
)2

+
1

2

2∑

α=1

(

. . .−
3∑

k=1

√

bβkǫαψ̃βkDβϕk + . . .
)2
.

(5.28)
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Following the logic above exposed, we introduce δ ≡ (α, ψ̃) and rewrite (5.28) as

2∑

α,β=1

(

. . .+

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk + . . .

)2
+

2∑

α=1

(

. . .+

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk + . . .

)2
,

(5.29)

plus some extra crossed terms which we shall refer to symbolically as χm. The dot products
appearing above will be made precise soon enough, in section 5.1.1. The new coefficients
above must satisfy

2∑

i=1

(m
(i)
δk )

2 =
1

2
, ∀δ, k = 1, 2, 3, (5.30)

which makes sure the quadratic terms have not been changed during the rewriting. Note
that there is no antisymmetry relating the indices of these coefficients, unlike in all previous
cases.

We are now ready to collect results and present the Hamiltonian following from the
action (4.143), with c2 = 0, in the most convenient form for our subsequent investigations.
Appropriately summing (5.12), (5.15), (5.18), (5.21), (5.23) and (5.29) we obtain the desired
rewriting of T4 in (5.5). As a short-hand notation, let us introduce (y2, y3) ≡ (r, φ1) and

χT ≡ χs + χt + χ4 + χ1 + χ2 + χ3 + χm. (5.31)

That is, χT accounts for all crossed terms produced when rewriting T4 as just explained. χT
will be the main object of study of section 5.1.2, but presently we shall not shed light into it.
If to the rewritten T4 we further add (T1, T2, T3) as given by (5.4), then the Hamiltonian in
(5.7) can be expressed as (5.32).

We remind the reader that most of the notation used in (5.7) was introduced in chapter
4. In particular, table 1 provides a quick guide to find the explicit form of the prefactors
that have a supergravity interpretation in terms of the warp factors in (2.2) and (2.21),
the deformation parameter θnc in (2.19) and the leading term of the dilaton in (4.5). For
clarity and completeness, we include table 2, which summarizes the form and properties of
the new coefficients introduced in going from (4.143) to (5.32). Note that these coefficients
do not admit a supergravity interpretation. Instead, the constraint relations we demanded
they satisfy should be regarded as their defining equations. These are (5.13), (5.16), (5.19),
(5.22), (5.24) and (5.30). Nearly all coefficients with indices in table 2 fulfill antisymmetry
properties. Nonetheless, note that the {m(i)}’s are not constrained by any such requirement.

103



H = QEM +

∫

d4x Tr

{

C1

V3

[
2∑

α=1

(
√
c11Fα0 −√

cα3̃DαA3̃)
2 + (

√
c12Fψ̃0 −

√
cψ̃3̃Dψ̃A3̃)

2

+(
√
c0rD0Ar − i

√
a2[A3̃,Ar])

2 + (
√

c̃0φ1D0Aφ1 − i
√
a4[A3̃,Aφ1 ])

2 + c03̃(D0A3̃)
2

]

+
3∑

k,l=1

[

(
√

b0kD0ϕk − i
√
c3̃k[A3̃, ϕk])

2 + q
(1)
kl dkl[ϕk, ϕl]

2 +
3∑

γ=2

q
(γ−1)
k cyγk[Ayγ , ϕk]

2

]

+
2∑

α,β=1

(
√

C1c11
2V3

Fαβ +
√

C1cψ̃r
V3

s
(1)
αβǫαβψ̃rDψ̃Ar +

√

C1c̃ψ̃φ1
V3

s
(2)
αβǫαβψ̃φ1Dψ̃Aφ1

−ig(4)αβ

√

C1a1
V3

[Ar,Aφ1 ]− i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl]− i

3∑

k=1

3∑

γ=2

g
(γ−1)
αβk

√
cyγk[Ayγ , ϕk]

+
3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk

)2
+

2∑

α=1

(
√

C1c12
2V3

Fαψ̃ +

√

C1cβr
V3

t(1)α ǫαψ̃βrDβAr

+

√

C1c̃βφ1
V3

t(2)α ǫαψ̃βφ1DβAφ1 − ih
(4)

αψ̃

√

C1a1
V3

[Ar,Aφ1 ]− i
3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl]

−i
3∑

k=1

3∑

γ=2

h
(γ−1)

αψ̃k

√
cyγk[Ayγ , ϕk] +

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk

)2
+
C1

V3

[

cψ̃rs
(1)(Dψ̃Ar)

2

+c̃ψ̃φ1s
(2)(Dψ̃Aφ1)

2 + cβrt
(1)(DβAr)

2 + c̃βφ1t
(2)(DβAφ1)

2 + a1q
(4)[Ar,Aφ1 ]

2

]

+ χT

}

.

(5.32)

Coefficient Given in

s
(i)
αβ , s

(i) (5.13)

t
(i)
α , t(i) (5.16)

with: α, β, i = 1, 2 and k, l, δ = 1, 2, 3,

(s
(i)
αβ , g

(4)
αβ , g

(1)
αβkl, g

(i)
αβk) antisymmetric in (α, β),

(h
(4)

αψ̃
, h

(1)

αψ̃kl
, h

(i)

αψ̃k
) antisymmetric in (α, ψ̃) and

(g
(1)
αβkl, h

(1)

αψ̃kl
, q

(1)
kl ) antisymmetric in (k, l).

g
(4)
αβ , h

(4)

αψ̃
, q(4) (5.19)

g
(1)
αβkl, h

(1)

αψ̃kl
, q

(1)
kl (5.22)

g
(i)
αβk, h

(i)

αψ̃k
, q

(i)
k (5.24)

m
(i)
δk (5.30)

Table 2: List of coefficients appearing in the Hamiltonians (5.32) and (5.88) that do not have a

supergravity interpretation, their defining relations and their antisymmetry properties.
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5.1.1 Minimization of the Hamiltonian

Having written the Hamiltonian of our theory as (5.32), we now make the following simple
yet crucial observation: this is a sum of squared terms, plus boundary terms QEM and
“crossed terms” χT . Ignoring momentarily (QEM , χT ), it is clear that in order to minimize
the energy of the system each such squared term must vanish separately. In this section, we
enforce the just described minimization and thus obtain the bulk equations of motion for the
world-volume gauge theory.

Let us start by setting to zero the first six squared terms in (5.32). These are the terms
stemming from (T1, T2, T3) in (5.4) and that experienced no change in the previous section.
Since we wish our discussion to be as general as possible, we assume that the coefficients
C1/V3 and c03̃ do not vanish. Then, we obtain the following:

(
√
c11Fα0 −√

cα3̃DαA3̃)
2 = 0, (

√
c12Fψ̃0 −

√
cψ̃3̃Dψ̃A3̃)

2 = 0,

(
√
c0rD0Ar − i

√
a2[A3̃,Ar])

2 = 0, (
√

c̃0φ1D0Aφ1 − i
√
a4[A3̃,Aφ1 ])

2 = 0,

(
√

b0kD0ϕk − i
√
c3̃k[A3̃, ϕk])

2 = 0, D0A3̃ = 0,

(5.33)

which should hold true ∀α = 1, 2 and ∀k = 1, 2, 3. Recall now that both the gauge fields
(Aa, Aψ̃) (with a = 0, 1, 2) and the real scalars (A3̃, Aφ1 , Ar) (in the adjoint representation

of SU(N)) depend only on the coordinates (t, x1, x2, ψ̃). As we pointed out in the beginning
of chapter 5, not only are we interested in obtaining the minimum energy configuration for
the aforementioned fields, but we also want them to satisfy BPS conditions. Hence, we search
for static solutions to (5.33). This implies we will consider in the ongoing that the fields only
depend on (x1, x2, ψ̃) and thus, using (4.51), the above reduces to

(
√
c11DαA0 −√

cα3̃DαA3̃)
2 = 0, (

√
c12Dψ̃A0 −

√
cψ̃3̃Dψ̃A3̃)

2 = 0,

(
√
c0r[A0,Ar]−

√
a2[A3̃,Ar])

2 = 0, (
√

c̃0φ1 [A0,Aφ1 ]−
√
a4[A3̃,Aφ1 ])

2 = 0,

(
√

b0k[A0, ϕk]−
√
c3̃k[A3̃, ϕk])

2 = 0, [A0,A3̃] = 0,

(5.34)

valid again ∀α = 1, 2 and ∀k = 1, 2, 3.
To proceed further, we need to choose a gauge. We shall make the following gauge choice:

A0 = A3̃. (5.35)

This follows from our earlier identifications in (5.2), where the scalar field A3̃ was singled
out from the other two scalars (Aφ1 , Ar). One could certainly single out Aφ1 or Ar instead
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and appropriately modify the above gauge choice. We will not entertain these options in the
present work, as they do not lead to further physical insight. However, the interested reader
can find enough detail on the A0 = Ar gauge choice in (3.178)-(3.182) in [1]. Essentially, all
our conclusions will be valid in such a gauge as well, but A3̃ and Ar would then exchange
roles. Although this is not a proof that our conclusions are gauge-independent, it strongly
points towards such a possibility. We regard this as yet another advantage of relating our
model to that in [54]. Anyhow, for our choice (5.35), the set of equations in (5.34) reduces to

(
√
c11 −√

cα3̃)
2(DαA3̃)

2 = 0, (
√
c12 −

√
cψ̃3̃)

2(Dψ̃A3̃)
2 = 0,

(
√
c0r −

√
a2)

2[A3̃,Ar]
2 = 0, (

√

c̃0φ1 −
√
a4)

2[A3̃,Aφ1 ]
2 = 0,

(
√

b0k −
√
c3̃k)

2[A3̃, ϕk]
2 = 0, ∀α = 1, 2, ∀k = 1, 2, 3.

(5.36)

Note that the last equation in (5.34) does not appear here, since it is trivially satisfied by
our gauge choice.

All the equations in (5.36) admit the trivial solution A3̃ = 0. Another possible solution
would be to simultaneously have that

c11 = cα3̃, c12 = cψ̃3̃, c0r = a2, c̃0φ1 = a4, b0k = c3̃k, ∀α = 1, 2, ∀k = 1, 2, 3. (5.37)

Let us explore this option by using the explicit form of the above coefficients, summarized
in table 1. From (4.30), (4.69) and (4.78), we immediately see that the first equation will be
satisfied iff

cos2 θnc + F2 sin
2 θnc = 1. (5.38)

Similarly, using (4.31), (4.38), (4.83) and (4.91) in the second equation, one can right away
conclude (5.38) is required so that c12 = cψ̃3̃. The same deduction follows from introducing
(4.68), (4.69) and (4.78) in c0r = a2. On the other hand, using these same results in c̃0φ1 = a4,
one finds that, besides (5.38), it is also necessary to impose

(F̃2 tan θnc)
2

F̃2 − F3

(1 + F2 tan
2 θnc) = 0. (5.39)

Finally, from (4.123) and (4.91) it follows that b0k = c3̃k iff we demand (5.38). Summing up,
to ensure (5.37) we must enforce both (5.38) and (5.39). But in doing so, we do not wish to
constraint our setup by choosing a particular form for the warp factors. On the contrary, we
want to keep our M-Theory configuration (M,1) of part I as general as possible. Hence, we
conclude that the second possible solution to (5.36) is given by θnc = 0.

Between A3̃ = 0 and θnc = 0, there is a preferred solution to (5.36). Recall section 2.1:
θnc was introduced as an alternative and computationally simpler way to account for the
axionic background of [14], which was there shown to be an essential ingredient to study
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knots using the D3-NS5 system. As we will show in section 6.3, in our approach too θnc shall
play a key role and allow us to construct a three-dimensional space capable of supporting
knots. Accordingly, we set to zero the first six squared terms in the Hamiltonian (5.32) via

A3̃ = 0, (5.40)

along with the gauge choice in (5.35)17. Also, bear in mind all fields are time-independent in
the ongoing.

Let us next turn our attention to the final five terms, as well as the last two terms in the
third line of the Hamiltonian (5.32). These are the squared terms we introduced to make sure
that while rewriting the Hamiltonian (5.7) as (5.32) all quadratic terms remain unaffected.
Minimization of the energy requires them all to vanish which, for (C1/V3) 6= 0, means that

s(1)(Dψ̃Ar)
2 = 0, s(2)(Dψ̃Aφ1)

2 = 0, t(1)(DβAr)
2 = 0, t(2)(DβAφ1)

2 = 0,

a1q
(4)[Ar,Aφ1 ]

2 = 0, q
(1)
kl dkl[ϕk, ϕl]

2 = 0, q
(γ−1)
k cyγk[Ayγ , ϕk]

2 = 0,

(5.41)

for all β = 1, 2, all k, l = 1, 2, 3 and all γ = 2, 3. If we consider that, generically, all the
coefficients appearing above are not zero, then satisfying (5.41) implies

DδAr = DδAφ1 = [Ar,Aφ1 ] = [Ar, ϕk] = [Aφ1 , ϕk] = 0, (5.42)

∀δ = 1, 2, ψ̃ and ∀k = 1, 2, 3. On the other hand, if we do not wish to trivialize the system, we

cannot conclude that most generically all q
(1)
kl ’s are non-zero. Observe that this would imply

[ϕk, ϕl] = 0 for all (k, l). Hence, as the simplest non-trivial case, we will consider only one

such (independent) coefficient vanishes. We choose q
(1)
12 = 0. Then, we impose

[ϕ1, ϕ2] 6= 0, [ϕ1, ϕ3] = [ϕ2, ϕ3] = 0. (5.43)

In this manner, we have enforced (5.41).
In our minimization of the Hamiltonian (5.32), we next focus on the squared term between

the fourth and sixth lines and demand its vanishing:

√

C1

V3

(
√
c11
2
Fαβ +

√
cψ̃rs

(1)
αβǫαβψ̃rDψ̃Ar +

√

c̃ψ̃φ1s
(2)
αβǫαβψ̃φ1Dψ̃Aφ1 − ig

(4)
αβ

√
a1[Ar,Aφ1 ]

)

− i
3∑

δ,k,l=1

(

g
(1)
αβkl

√

dkl[ϕk, ϕl] +
3∑

γ=2

g
(γ−1)
αβk

√
cyγk[Ayγ , ϕk] + i

√

bδkǫαβ ·m(1)
δk Dδϕk

)

= 0,

(5.44)

17This implies A0 = 0, known as the Weyl gauge or also as the axial gauge.
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which should be true for all α, β = 1, 2. Needless to say, minimization of the energy requires
all squared terms to vanish simultaneously. This implies the choices previously made to set
to zero other squared terms must now be enforced as well. Thus, inserting (5.42) and (5.43)
in the above, our equations reduce to

√

C1c11
2V3

Fαβ − 2ig
(1)
αβ12

√

d12[ϕ1, ϕ2] +
3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk = 0, (5.45)

again true ∀α, β = 1, 2 and where we have used the fact that g
(1)
αβ12 = −g(1)αβ21 by definition

and d12 = d21, as can be seen from (4.129). Since (5.45) is antisymmetric in (α, β), we
can restrict our attention to the case where (α = 1, β = 2). Following the normalization
convention that ǫ12 = 1, noting that (4.123) tells us that b12 = b21 and choosing

g
(1)
1212 = m

(1)

ψ̃3
= m

(1)
12 = −m(1)

21 =
1√
2
, m

(1)
11 = m

(1)
22 = m

(1)
13 = m

(1)
23 = m

(1)

ψ̃1
= m

(1)

ψ̃2
= 0,

(5.46)

it is a matter of minor algebra to obtain

F12 +

√

V3
C1c11

(

− 2i
√

d12[ϕ1, ϕ2] +
√

b12(D1ϕ2 −D2ϕ1) +
√

bψ̃3Dψ̃ϕ3

)

= 0. (5.47)

Note that the dot product in (5.45) has been interpreted as a usual scalar product in this
case.

The above is the first BPS equation following from the minimization of the energy of the
Hamiltonian (5.32). Notice that, schematically, our BPS condition is of the form

F +Dϕ+ [ϕ,ϕ] = 0. (5.48)

The well-versed reader will of course be familiar with the Bogomolny [55], Hitchin [56] and
Nahm [57] equations, which we can sketch as follows:

Bogomolny: F +Dϕ = 0, Hitchin: F + [ϕ,ϕ] = 0, Nahm: Dϕ+ [ϕ,ϕ] = 0.
(5.49)

Written in this manner, it is evident that our BPS condition is just some linear combination
of all Bogomolny, Hitchin and Nahm equations. Collecting initials into an acronym, we will
refer to (5.47) as the first BHN equation.

Before proceeding ahead, let us pause for a moment and study what are the consequences

following from the choices of coefficients made so far. These choices are q
(1)
12 = 0 and (5.46).

As can be checked in table 2, these coefficients are required to satisfy the constraint equations
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(5.22) and (5.30). So, combining our choices and the constraints, we are led to conclude that

2
(

g
(1)
12kl

)2
+

2∑

α=1

(

h
(1)

αψ̃kl

)2
− q

(1)
kl = 1 ∀k, l = 2, 3, h

(1)

αψ̃12
= −h(1)

αψ̃21
= 0 ∀α = 1, 2,

m
(2)
ψ3 = m

(2)
12 = m

(2)
21 = 0, m

(2)
11 ,m

(2)
22 ,m

(2)
13 ,m

(2)
23 ,m

(2)

ψ̃1
,m

(2)

ψ̃2
= ± 1√

2
(5.50)

must hold true in the following.
The last step in the minimization of the energy of our system with Hamiltonian (5.32) is

to demand the vanishing of the squared term between its sixth and eighth lines. This must
be done in a consistent manner to all previous choices made in this section. The necessary
vanishing we just mentioned is

√

C1

V3

(
√
c12
2
Fαψ̃ +

√
cβrt

(1)
α ǫαψ̃βrDβAr +

√

c̃βφ1t
(2)
α ǫαψ̃βφ1DβAφ1 − ih

(4)

αψ̃

√
a1[Ar,Aφ1 ]

)

− i

3∑

δ,k,l=1

(

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl] +

3∑

γ=2

h
(γ−1)

αψ̃k

√
cyγk[Ayγ , ϕk] + i

√

bδkǫαψ̃ ·m(2)
δk Dδϕk

)

= 0,

(5.51)

for all α, β = 1, 2. Using (5.42), (5.43) and (5.50) in the above, we have that

√

C1c12
2V3

Fαψ̃ +
3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk = 0 ∀α = 1, 2. (5.52)

Here, δ = 3 should be understood as making reference to the bulk direction ψ̃. Without loss
of generality, we take the definition of the dot product above to be

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk ≡ −6

3∑

δ,k=1

√

bδkǫ[αψ̃m
(2)
δk]Dδϕk +

√

bψ̃αǫαψ̃m
(2)

ψ̃α
Dψ̃ϕα, (5.53)

with the indices of the first term on the right-hand side necessarily different from each other.
This seemingly involved term is not so complicated and, using the antisymmetry of the epsilon
tensors, is explicitly given by

− 1

2

3∑

δ,k=1

√

bδk

[

ǫαψ̃(m
(2)
δk −m

(2)
kδ ) + ǫδψ̃(m

(2)
αk −m

(2)
kα) + ǫδk(m

(2)
α3 −m

(2)

ψ̃α
)

+ǫαk(m
(2)
δ3 −m

(2)

ψ̃δ
) + ǫαδ(m

(2)
k3 −m

(2)

ψ̃k
) + ǫkψ̃(m

(2)
αδ −m

(2)
δα )
]

Dδϕk. (5.54)
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In good agreement with (5.50), we now implement the second line there, choosing the plus
sign for all the m(2) coefficients in the last equality. In this manner, the above reduces
considerably to

−1

2

3∑

δ,k=1

√

bδk[ǫδkm
(2)

ψ̃α
+ ǫαkm

(2)

ψ̃δ
+ ǫαδm

(2)

ψ̃k
]Dδϕk. (5.55)

As we said, the dot product is taken by definition such that all indices in this term should
be different from each other. In other words, δ = 1(2) if α = 2(1) and k = 3. This leads to

−1

2

√

bβ3[ǫβψ̃m
(2)

ψ̃α
+ ǫαψ̃m

(2)

ψ̃β
+ ǫαβm

(2)

ψ̃3
]Dβϕ3 =







√

b23
2
D2ϕ3 if α = 1, β = 2,

√

b13
2
D1ϕ3 if α = 2, β = 1,

(5.56)

where the normalization convention used is ǫ1ψ̃ = ǫ2ψ̃ = 1. Finally, plugging the above in
(5.52), it is a matter of minor algebra to obtain the remaining two BHN equations as

Fαψ̃ +

√

V3
C1c12

(√

bψ̃αDψ̃ϕα +
√

bα3Dαϕ3

)
= 0, ∀α = 1, 2. (5.57)

Collecting thoughts, in this section we have shown that the vanishing of the different
squared terms in the Hamiltonian (5.32) for static configurations leads to the BHN equations
(5.47) and (5.57). The name BHN simply denotes that these are a combination of the well-
known Bogomolny, Hitchin and Nahm equations. In obtaining such BHN equations, we chose
the gauge (5.35) and further demand that the gauge and scalar fields in the bosonic sector
of the theory satisfy (5.40), (5.42) and (5.43). Additionally, we made the coefficient choices

q
(1)
12 = 0, (5.46) and (5.50) −selecting the plus sign in the last equality there. One can easily
check that all our choices respect the defining equations of the coefficients, summarized
previously in table 2. However, this analysis completely ignored the (QEM , χT ) terms in
(5.32). In the next section, we start to shed light in this direction by studying χT .

5.1.2 Consistency requirements and advantage of rewriting (5.7) as (5.32)

We already pointed out the crucial fact that the electric and magnetic charges QEM in the
Hamiltonian (5.32) are not yet specified boundary terms. That is, the Hamiltonian as a
whole is defined in the X4 space (the bulk) but the terms QEM are defined solely in X3 (the
boundary). We remind the reader that the spaces X4 and X3 were defined in (4.1). The goal
in this section is to ensure that χT in (5.32) does not contribute to the boundary terms QEM .
Further, we want to ensure that χT is in good agreement with the bulk energy minimization
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performed in the previous section. Anticipating events, we will see that such consistency
leads to new constraints on the scalar fields of our gauge theory. In this manner, we shall be
able to focus on the study of the boundary theory only, since the bulk theory will by then
be set to zero by requiring that the fields satisfy (5.40), (5.42) and (5.43), together with the
BHN equations (5.47) and (5.57) and the new constraints we shall presently find.

But let us take a step back first: what is χT to begin with? In order to determine χT
precisely we will compare the Hamiltonians (5.7) and (5.32), i.e. the Hamiltonians before and
after the inclusion of the coefficients in table 2. By definition, χT is simply the collection of
all crossed terms produced during this rewriting. To make our task computationally easier,
we will make use of all the equations above mentioned, which guarantee that the bulk theory
is minimized. That is, our analysis will be valid on shell.

Explicitly, using (5.40), (5.42) and (5.43) in (5.7), the on shell Hamiltonian before the
rewriting is given by

H =

∫

d4x Tr
[1

2

2∑

α,β=1

(
√

C1c11
V3

Fαβ −
3∑

k=1

√

bψ̃kǫαβψ̃kDψ̃ϕk − i

2∑

k,l=1

√

dkl[ϕk, ϕl]
)2

+
1

2

2∑

α=1

(
√

C1c12
V3

Fαψ̃ −
3∑

k=1

√

bβkǫαψ̃βkDβϕk − i
2∑

k,l=1

√

dkl[ϕk, ϕl]
)2]

+QEM . (5.58)

Let us for the time being ignore QEM . We already said and it can be clearly seen from (4.129),
that d12 = d21. However, [ϕ1, ϕ2] = −[ϕ2, ϕ1]. Hence, when summing over k, l = 1, 2 in the
pertinent terms above, these will vanish unless they are squared. In other words, the non-zero
crossed terms in our Hamiltonian (5.58) are just two:

ζ1 ≡ −1

2

√

C1c11
V3

2∑

α,β=1

3∑

k=1

√

bψ̃kǫαβψ̃kTr{Fαβ ,Dψ̃ϕk},

ζ2 ≡ −1

2

√

C1c12
V3

2∑

α=1

3∑

k=1

√

bβkǫαψ̃βkTr{Fαψ̃,Dβϕk}.
(5.59)

Simply carrying out the sums above and noting that (4.123) implies that bψ̃k and bak are the
same for all values of a = 1, 2 and k = 1, 2, 3, we get

ζ1 =

√

C1c11bψ̃3
V3

Tr
{

F12,Dψ̃(ϕ1 + ϕ2 + ϕ3)
}

,

ζ2 = −1

2

√

C1c12b12
V3

Tr
[{

F2ψ̃,D1(ϕ1 + ϕ2 + ϕ3)
}

−
{

F1ψ̃,D2(ϕ1 + ϕ2 + ϕ3)
}]

,

(5.60)
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with the normalization convention ǫ12kψ̃ = 1 for all k = 1, 2, 3. On the other hand, using

(5.40), (5.42), (5.43) and the choices q
(1)
12 , h

(1)

αψ̃12
= 0 (for all α = 1, 2) in (5.32), the on shell

Hamiltonian after the rewriting is

H =

∫

d4x Tr
[ 2∑

α,β=1

(
√

C1c11
2V3

Fαβ +
3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk − i

2∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl]
)2

+
2∑

α=1

(
√

C1c12
2V3

Fαψ̃ +
3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk

)2
+ χT

]

+QEM . (5.61)

We know that the squared terms of this and the previous Hamiltonian are the same, provided
the coefficients above satisfy the constraints in table 2, as already discussed in the previous
section. Hence, let us just focus on the crossed terms. There are four of them:

ζ ′1 ≡ −i
√

2C1c11d12
V3

2∑

α,β=1

g
(1)
αβ12 Tr{Fαβ , [ϕ1, ϕ2]},

ζ ′2 ≡
√

C1c11
2V3

2∑

α,β=1

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Tr{Fαβ ,Dδϕk},

ζ ′3 ≡ −2i
√

d12

2∑

α,β=1

3∑

δ,m=1

g
(1)
αβ12

√

bδmǫαβ ·m(1)
δm Tr{[ϕ1, ϕ2],Dδϕm},

ζ ′4 ≡
√

C1c12
2V3

2∑

α=1

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Tr{Fαψ̃,Dδϕk},

(5.62)

where we have used the (anti)symmetry properties d12 = d21 and g
(1)
αβ12 = −g(1)αβ21 to carry

out the sums over k, l in the first and third terms. In this language, χT is

χT =

2∑

i=1

ζi −
4∑

i=1

ζ ′i. (5.63)

On our way to determine χT , let us first focus on ζ ′4. Using the coefficient choices in
(5.50) for the plus sign in all cases, the dot product definition in (5.53), the result (5.56) and
further summing over α, it is easy to see that

ζ ′4 =
1

2

√

C1c12
V3

Tr
(

{F1ψ̃,
√

bψ̃1Dψ̃ϕ1 +
√

b23D2ϕ3}+ {F2ψ̃,
√

bψ̃2Dψ̃ϕ2 +
√

b13D1ϕ3}
)

,

(5.64)
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where the normalization convention employed is once again ǫ13 = ǫ23 = 1. With the aid of
the BHN equations in (5.57), ζ ′4 can be seen to be a squared term, not a crossed term:

ζ ′4 = −C1c12
2V3

2∑

α=1

Tr(Fαψ̃)2. (5.65)

The conclusion that ζ ′4 is not a crossed term of course implies that it does not contribute to
QEM , as we wished in the first place. Further, since ζ ′4 is a squared term, it can be absorbed
by an appropriate relabeling of the coefficients in table 2, where the defining equations remain
unaltered. Consequently, ζ ′4 does not contribute to χT and we need not worry over it in the
ongoing.

We turn our attention to ζ ′1, ζ
′
2 and ζ ′3 next. As before, we interpret the dot product in ζ ′2

and ζ ′3 as a regular scalar product, we use our coefficient choices in (5.46) and sum over α, β
in (5.62). In the process, one must not forget the antisymmetric properties of the coefficients
summarized in table 2. The described computation is not hard and yields

ζ ′1 = 2i

√

C1c11d12
V3

Tr
{

F12, [ϕ1, ϕ2]
}

,

ζ ′2 =

√

C1c11
V3

Tr
{

F12,
√

b12(D1ϕ2 −D2ϕ1) +
√

bψ̃3Dψ̃ϕ3

}

,

ζ ′3 = 2i
√

d12 Tr{[ϕ1, ϕ2],
√

b12(D1ϕ2 −D2ϕ1) +
√

bψ̃3Dψ̃ϕ3}.

(5.66)

It can be easily checked that, further introducing the first BHN equation (5.47) in the above,
the following holds true:

ζ ′1 + ζ ′2 = −2C1c11
V3

Tr(F12)
2, ζ ′3 = 8d12 Tr[ϕ1, ϕ2]

2 − 2i

√

C1c11d12
V3

Tr{[ϕ1, ϕ2],F12}.
(5.67)

The same observation we made for ζ ′4 should be invoked presently too: the squared terms can
be absorbed by a relabeling of the coefficients in table 2. They do not contribute to QEM
and do not affect the bulk minimization of section 5.1.1. In other words, we can consistently
conclude that they do not contribute to χT and simply ignore them in the following. The
only term which contributes to χT from the above is

ζ ′3 = −2i

√

C1c11d12
V3

Tr{[ϕ1, ϕ2],F12}. (5.68)
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Putting everything together, we say that

χT = ζ1 + ζ2 − ζ ′3, (5.69)

which must either be set to zero or reduced to a sum of squared terms −which would then be
accounted for by an inconsequential redefinition of the coefficients in table 2. In this manner,
the Hamiltonian (5.32) will lead to a boundary theory determined by QEM solely, while a
consistent bulk energy minimization is ensured via BHN and other constraining equations
on the gauge and scalar fields. What is more, it is evident that ζ1 − ζ ′3 and ζ2 will have to
satisfy this condition separately, as the BHN equations (5.47) and (5.57) do not mix F12 with
(F1ψ̃, F2ψ̃). For this very same reason, we must demand right away

Dψ̃ϕ1 = Dψ̃ϕ2 = D1ϕ3 = D2ϕ3 = 0. (5.70)

We will refer to these as the first set of consistency requirements we mentioned in the title of
the present section. Implementing the above and using (5.47), ζ1 in (5.60) and ζ ′3 in (5.68),
we get

ζ1 − ζ ′3 = −2C1c11
V3

Tr(F12)
2 −

√

C1c11b12
V3

Tr{F12,D1ϕ2 −D2ϕ1}. (5.71)

It goes without saying that the first term on the right-hand side above is squared and thus
does not contribute to χT . That is not the case with the second term, though. To make it
vanish, we will demand

D1ϕ2 −D2ϕ1 = 0, (5.72)

another consistency requirement. The attentive reader won’t take long staring at ζ2 in (5.60)
in combination with the two relevant BHN equations in (5.57) to realize that yet one last
consistency requirement is needed:

D1ϕ1 +D2ϕ2 = 0. (5.73)

Then, ζ2 simplifies to

ζ2 =
1

2

√

C1c12b12
V3

Tr
[{

F2ψ̃,D1(ϕ1 + ϕ2)
}

+
{

F1ψ̃,D1(ϕ1 − ϕ2)
}]

. (5.74)

We cannot make squares of the above, so it better vanish. Fortunately, this is indeed zero, as
can be seen from the combination of the requirements (5.70) and the BHN equations (5.57),
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which lead to

F1ψ̃ = F2ψ̃ = 0. (5.75)

The other BHN equation, namely (5.47), also reduces in view of our consistency requirements
and is now given by

F12 +

√

V3
C1c11

(

2i
√

d12[ϕ1, ϕ2] +
√

bψ̃3Dψ̃ϕ3

)

= 0. (5.76)

Finally, we note that χT has by now been converted to some sum of squared terms which
does not affect our analysis and definitely does not contribute to QEM , as was our goal in
the beginning of this section.

In conclusion, for the gauge choice (5.35), the energy of the Hamiltonian (5.32) is mini-
mized when all (5.40), (5.42), (5.43), (5.70), (5.72) and (5.73) are satisfied, together with the
BHN equations (5.75) and (5.76). In this case, χT is zero. More precisely, χT is absorbed by
an immaterial redefinition of coefficients, as already explained. Then, we are only left with
the boundary terms QEM to be considered.

To finish this section, let us clarify what is the advantage of rewriting the Hamiltonian
(5.7) as (5.32). The so-called consistency requirements (5.70), (5.72) and (5.73) that we
obtained in this section to ensure no crossed terms were produced in the aforementioned
rewriting are actually vital results in our analysis. They simplify the BHN equations and,
together with them, are known to be directly related to knot invariants (for example, see
section 3.2 in [14]). We will discuss such relation at length in part III. For the time being,
we will devote the coming section to the generalization of all the results so far in chapter 5
to the case that really concerns us: c2 6= 0 in (4.143). This will in turn directly lead us to
the study of the corresponding boundary theory in chapter 6.

5.2 Generalization to the case where c2 6= 0 in (4.143)

We have by now gained considerable insight into the bulk physics of the theory with action
(4.143) but with no topological term (i.e. c2 = 0 there). The inclusion of this topological
term is, however, far from trivial, both conceptually and computationally. To relax a bit the
computational difficulties, we will begin this section by doing the following approximation:
we will in the ongoing consider that

c11 = c12 (5.77)
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in (4.143). Looking at the definitions of these coefficients in (4.23), we see that this amounts
to requiring that e2φ0H4 = 1. Further using (2.43), our simplification reduces to a constraint
equation on the so far completely arbitrary warp factors (2.2) and (2.21) and constant leading
value of the dilaton in (4.5):

e2φ0F̃2F3 sec
2 θnc sin

2 θ1

F̃2 cos2 θ1 + F3 sin
2 θ1

= 1. (5.78)

Clearly, this is not too stringent a constraint, as there is ample freedom of choice to satisfy
it. For a physical interpretation of our assumption, one should look at the metric of the M-
Theory configuration (M,1) in (2.46). We then see that (5.77) implies that (t, x1, x2, ψ̃) are
now Lorentz invariant directions. In other words, our approximation leads to a restoration
of the Lorentz symmetry along ψ̃ in the spacetime X4, defined in (4.1).

Having made this simplification, we proceed to show an intermediate result, which will
immediately prove useful in deriving the Hamiltonian following from the action (4.143) with
c2 6= 0. This consists in working out a convenient component form of the integrand of this
topological term in the action:

F (X4) ∧ F (X4) ≡
∑

µ<ν, ρ<λ

FµνFρλdxµ ∧ dxν ∧ dxρ ∧ dxλ = d4x
∑

µ<ν

Fµν ∗ Fµν , (5.79)

where, as usual, the Hodge dual of the field strength is defined as

∗Fµν ≡ 1

2

∑

ρ,λ

ǫµνρλFρλ, (5.80)

d4x is the volume element of the now Minkowskian spacetime X4 and xµ refers collectively
to its coordinates (t, x1, x2, ψ̃).

Using the approximation (5.77), (5.79) and recalling (4.112), we are ready to write the
first line in the action (4.143) of our theory, which we denote as SL1, in the following suitable
manner:

SL1 =

∫

d4x Tr
∑

µ<ν

(
C1c11
V3

FµνFµν + C1 sin θncq(θnc)Fµν ∗ Fµν

)

. (5.81)

The reader will of course right away notice that SL1 is precisely Maxwell’s action with a
Θ-term (see, for example, in (2.1) in [58]). The correlation becomes fully apparent once we
identify our coefficients, which only depend on supergravity variables, with the Yang-Mills
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coupling and gauge theory Θ-parameter as

C1c11
V3

≡ 4π

g2YM
, C1 sin θncq(θnc) ≡

Θ

2π
. (5.82)

The above makes concrete the long standing promise of section 2.1. There, we claimed that
introducing the non-commutative deformation labeled by the parameter θnc would lead to
a Θ-term in the four-dimensional gauge theory associated to the M-Theory configuration
(M,1). From (5.82) it is clear that θnc = 0 would lead to no Θ-term in the gauge theory,
so the deformation is indeed successful in replacing the axionic background of [14] to source
this topological term. Later on, in section 6.3, we shall see that this topological term is
a fundamental ingredient to convert the boundary X3 of X4 into a suitable space for the
embedding of knots. This is because such term allows us to define a topological theory in
X3. But let us not get ahead of ourselves. It is standard to combine the Yang-Mills coupling
and the Θ-parameter into a single complex coupling constant τ as

τ ≡ Θ

2π
+ i

4π

g2YM
= C1

(
sin θncq(θnc) + i

c11
V3

)
, (5.83)

where the last equality follows from our prior identification (5.82).
The Hamiltonian associated to SL1 can be directly read from (2.2) in [58]. Note however

that we must do an overall sign change, since we work in the opposite Minkowski signature
convention. We must also account for the different overall normalization too. All in all,

HL1 =

∫

d4x Tr
( 2i

τ − τ̄
ΠiΠi + i

τ + τ̄

τ − τ̄
ΠiBi +

i

2

τ τ̄

τ − τ̄
BiBi

)

=
2i

τ − τ̄

∫

d4x Tr
(

Πi +
τ

2
Bi
)(

Πi +
τ̄

2
Bi

)

, (5.84)

where i = x1, x2, ψ̃ spans the spatial coordinates of X4 and the canonical momenta and
magnetic field in our case are given by

Πi =
C1c11
V3

F0i, Bi = 2ǫijkFjk. (5.85)

That is, we get the Hamiltonian

HL1 =
2i

τ − τ̄

∫

d4x Tr
(C1c11

V3
F0i + τǫijkFjk

)(C1c11
V3

F0i + τ̄ ǫilmF lm
)

, (5.86)

where τ̄ denotes the complex conjugate of τ . An uncomplicated yet very useful rewriting of
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this Hamiltonian is

HL1 =

∫

d4x Tr
[τ − τ̄

2i

3∑

i=1

(F0iF0i) +
4i|τ |2
τ − τ̄

2∑

α,β=1

(FαβFαβ) +
8i|τ |2
τ − τ̄

2∑

α=1

(Fαψ̃Fαψ̃)

+ (τ + τ̄)

3∑

i,j,k=1

ǫ0ijk(F0iF jk)
]

, (5.87)

which the reader may verify quite effortlessly.
At this point, we are ready to write the full Hamiltonian following from (4.143), topological

piece included:

H =

∫

d4x Tr
{ 2∑

α=1

(
√

τ − τ̄

2i
Fα0 −

√
C1cα3̃
V3

DαA3̃

)2
+
(
√

τ − τ̄

2i
Fψ̃0 −

√

C1cψ̃3̃
V3

Dψ̃A3̃

)2

+
C1

V3

[

(
√
c0rD0Ar − i

√
a2[A3̃,Ar])

2 + (
√

c̃0φ1D0Aφ1 − i
√
a4[A3̃,Aφ1 ])

2 + c03̃(D0A3̃)
2
]

+
3∑

k,l=1

[

(
√

b0kD0ϕk − i
√
c3̃k[A3̃, ϕk])

2 + q
(1)
kl dkl[ϕk, ϕl]

2 +
3∑

γ=2

q
(γ−1)
k cyγk[Ayγ , ϕk]

2
]

+
2∑

α,β=1

(
√

2i|τ |2
τ − τ̄

Fαβ +
√

C1cψ̃r
V3

s
(1)
αβǫαβψ̃rDψ̃Ar +

√

C1c̃ψ̃φ1
V3

s
(2)
αβǫαβψ̃φ1Dψ̃Aφ1

−ig(4)αβ

√

C1a1
V3

[Ar,Aφ1 ]− i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl]− i

3∑

k=1

3∑

γ=2

g
(γ−1)
αβk

√
cyγk[Ayγ , ϕk]

+
3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk

)2
+

2∑

α=1

(
√

4i|τ |2
τ − τ̄

Fαψ̃ +

√

C1cβr
V3

t(1)α ǫαψ̃βrDβAr

+

√

C1c̃βφ1
V3

t(2)α ǫαψ̃βφ1DβAφ1 − ih
(4)

αψ̃

√

C1a1
V3

[Ar,Aφ1 ]− i

3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl]

−i
3∑

k=1

3∑

γ=2

h
(γ−1)

αψ̃k

√
cyγk[Ayγ , ϕk] +

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk

)2
+
C1

V3

[

cψ̃rs
(1)(Dψ̃Ar)

2

+c̃ψ̃φ1s
(2)(Dψ̃Aφ1)

2 + cβrt
(1)(DβAr)

2 + c̃βφ1t
(2)(DβAφ1)

2 + a1q
(4)[Ar,Aφ1 ]

2
]

+ χ̃T

+(τ − τ̄)
3∑

i,j,k=1

ǫ0ijkF0iF jk
}

+ Q̃EM .

(5.88)
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All that we have done in writing the above is to couple the Hamiltonian (5.87) to the real
scalar fields (Ar, Aφ1 , A3̃) and {ϕk}’s, with k = 1, 2, 3. Our prior meticulous analysis of the
c2 = 0 case made this task almost trivial. In details, keeping the last term in (5.87) separate,
we coupled the scalar fields as in (5.32). The only difference is that, in the present case, the
prefactors for the terms involving field strengths were different, matching the ones in (5.87).
Of course, the coefficients that do not have a supergravity interpretation remain constrained
as summarized in table 2. Note that the terms (χ̃T , Q̃EM ) are now written with a tilde to
denote they are not the same as those appearing in (5.32), although they still stand for the
crossed terms related to the coefficients of table 2 and the electric and magnetic charges in
the theory, respectively. Note the close resemblance between the above and the Hamiltonian
for the c2 = 0 case in (5.32). Essentially, they are the same up to prefactors in the terms
containing field strengths, but there is an all important additional term now: that in the last
line of (5.88).

The similarity between the c2 = 0 Hamiltonian and the c2 6= 0 one allows us to easily
generalize the results in section 5.1 to the present and relevant case. In particular, it is
remarkably simple to minimize the energy of (5.88) for static configurations. That is, to find
the BPS conditions for our gauge and scalar fields. Let us nevertheless show a few steps
in the process for clarity, since we will not minimize the energy in exactly the same way as
before.

Again, we choose to work in the gauge (5.35) and demand that (5.40) and (5.42) hold
true. This time, instead of ensuring the vanishing of the seventh squared term via (5.43), we
will choose

q
(1)
kl = 0, ∀k, l = 1, 2, 3. (5.89)

This choice leads to a richer dynamics of the scalar fields {ϕk}’s than that considered in
the c2 = 0 case). As we shall see, the above will play an important role in the study of
the boundary theory in section 6.3. For the time being, the mentioned choices reduce the
Hamiltonian to

H =

∫

d4x Tr
{ 2∑

α=1

(
√

4i|τ |2
τ − τ̄

Fαψ̃ − i
3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl] +
3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk

)2

+

2∑

α,β=1

(
√

2i|τ |2
τ − τ̄

Fαβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] +

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk

)2

+(τ + τ̄)

3∑

i,j,k=1

ǫ0ijkF0iF jk + χ̃T

}

+ Q̃EM .

(5.90)
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In section 5.1, we did many coefficient choices to simplify the computation as much
as possible. On this occasion, we wish to keep our coefficients arbitrary for as long as
possible, because this freedom of choice will be beneficial once we look at the boundary
theory. Consequently, we will take as our BHN equations the following:

√

4i|τ |2
τ − τ̄

Fαψ̃ − i
3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl] +
3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk = 0,

√

2i|τ |2
τ − τ̄

Fαβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] +

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk = 0,

(5.91)

for all α, β = 1, 2. In view of the detailed computation in section 5.1.2, it is not hard to
infer that on this occasion too we will be able to absorb X̃T through a meaningless renaming
of coefficients by imposing certain consistency requirements to our scalar fields {ϕk}’s. The
conditions there derived, namely (5.70), (5.72) and (5.73), are completely independent of the
prefactors in the various terms of the Hamiltonian. Hence, the only alteration needed in
that calculation consists in accommodating the choice (5.89) instead of (5.43). The attentive
reader will surely be easily convinced that the consistency requirements generalize to

D1ϕ2 −D2ϕ1 = D1ϕ3 −Dψ̃ϕ1 = D2ϕ3 −Dψ̃ϕ2 = D1ϕ1 +D2ϕ2 +Dψ̃ϕ3 = 0 (5.92)

in the present case. Once the energy has thus been minimized, the Hamiltonian reduces to

H = (τ + τ̄)

∫

d4x

3∑

i,j,k=1

ǫ0ijkTr(F0iF jk) + Q̃EM . (5.93)

In the following chapter, we will devote quite some effort to the study of the above Hamilto-
nian. But before jumping into the pertinent details, let us briefly review the main contents
of the present chapter.

We have shown that the action (4.143) is associated to the Hamiltonian (5.88). Both
of them are defined in the spacetime X4. A consistent minimization of the energy of (5.88)
for static configurations of the fields, working in the gauge (5.35), is obtained by imposing
the constraints (5.40), (5.42) and (5.92). We also require that the BHN equations in (5.91)
be satisfied. In this energy minimization process, the coefficients of table 2 remain mostly
arbitrary. The only choice made is that in (5.89). The on shell Hamiltonian then reduces to
(5.93), which is defined in the boundary X3 ⊂ X4.

In chapter 5 we have obtained the four-dimensional Hamiltonian (5.88) associated to the
action (4.143) derived in chapter 4. This Hamiltonian depends on two kinds of coefficients:
some that admit a supergravity interpretation and others that have no physical meaning. The
first set already appeared in the action (4.143) and was summarized in table 1. The second,
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new set of coefficients is succinctly defined in table 2. Note that the Hamiltonian is of the form
sum of squared terms, plus a three-dimensional boundary contribution. We have then obtained
a consistent minimization of the energy of (5.88), for static configurations of the fields and
working in the axial gauge (5.35), by setting to zero each squared term independently. This
leads to the constraints (5.40), (5.42) and (5.92). We also require that the BPS equations in
(5.91), which are generalized monopole equations, be satisfied. The Hamiltonian then reduces
to the boundary piece (5.93).
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Chapter 6: The boundary theory

As we just mentioned, the minimization of the energy of the Hamiltonian stemming from the
M-Theory configuration (M,1) presented in section 5.2 leads to (5.93). In the present section,
we will first show that (5.93) is defined only in X3, the boundary of X4.

This realization then requires us to find suitable boundary conditions for all the fields
in the gauge theory. Of course, we are referring to half-BPS boundary conditions: ones
that break the N = 4 supersymmetry of the theory to N = 2. Although so far we have
insisted that by construction the configuration (M,1) is N = 2 supersymmetric, it is only at
this stage that we shall be able to make this claim fully precise. As we shall see, this desired
amount of supersymmetry requires of no constraint on the parameters that characterize (M,1)
summarized in table 1 but is enforced by appropriate boundary conditions instead.

Finally, we shall note that, if the configuration (M,1) is to be useful for the study of knots,
the theory in X3 better be topological. In this manner, it will be possible to embed the knots
−which are topological objects− in X3 consistently. To this aim, we will present the notion of
topological twist and show that, upon twisting, our gauge theory indeed becomes a suitable
framework for the realization of knots.

A graphical summary of the main results of chapter 6 is as shown in blue in figure 10.
From this schematic point of view, section 6.1 can be understood as the derivation of the
boundary action (6.11). Similarly, section 6.2 contains the details on the half-BPS boundary
conditions (6.19)-(6.22) and sections 6.3 and 6.3.1 deal with the technicalities involved in
topologically twisting all previously cited results.

6.1 First steps towards determining the boundary theory

In this section, we have one very concrete goal: to rewrite the Hamiltonian of our gauge
theory after its energy has been minimized, i.e. (5.93), as an integral over X3 instead of X4.
Once more, we remind the reader that these spaces were defined and described around (4.1).
In other words, we want to show that, for the gauge choice (5.35) and after imposing the
BPS conditions (5.40), (5.42), (5.91) and (5.92), the total Hamiltonian (5.88) reduces to a
boundary Hamiltonian. As a matter of fact, this does not involve any conceptual hurdle, so
let us jump into computation right away.
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After having left the electric and magnetic charges Q̃EM unspecified for the whole of
chapter 5, we finally take it upon us to specify them. As we already hinted previously, we
will do so by comparing our Hamiltonian (5.88) to that in (2.4) in [54] and then inferring
Q̃EM from (2.5) in that same reference. Obviously, one could do the computation explicitly.
However, this won’t give us any further insight into our theory and so we do not attempt
such approach here. From our identifications in (5.2) and our choice (5.40), it is clear that
the electric charge vanishes in our case:

Q̃EM ≡ Q̃E + Q̃M , Q̃E = 0. (6.1)

It is also easy to see that the magnetic charge is of the form

Q̃M =

∫

d4x ∂ψ̃qM =

∫

d3x qM , d3x ≡ dtdx1dx2, (6.2)

where we have ignored terms which are total derivatives along the unbounded directions
(t, x1, x2), since they do not affect the physics of our theory and where we have rewritten
Q̃M as a boundary term, defined in X3 instead of the whole of X4. Of course, this comes as
no surprise: we have long been anticipating that the electric and magnetic charges would be
restricted to X3 only. Further using (5.2) and noting that (5.88) is exactly (2.4) in [54] up
to prefactors, it is clear that qM is given by

qM =
3∑

k,l,m=1

Tr

[
2∑

α,β=1

d1ǫkαβϕkFαβ + ǫklm

( id2
3
ϕk[ϕl, ϕm] + d3ϕkDlϕm

)
]

, (6.3)

where (d1, d2, d3) are coefficients that account for the difference of prefactors between our
Hamiltonian and that in [54]. Their determination is not straightforward, so let us work
them out in details.

Simply looking at our Hamiltonian (5.88), it is evident that the field strength Fαβ picks up

the additional prefactor
√

2i|τ |2/(τ − τ̄) for all α, β = 1, 2, as compared to [54]. Similarly, for

fixed values of (l, m), it follows that to Dlϕm we must associate the prefactor
√
blmm

(1)
lm

18.
Actually, the only non-trivial prefactors are those that we should attach to [ϕl, ϕm]. To
establish what they are, we first note that

2∑

α,β=1

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] = 4
√

d12

(

g
(1)
1212[ϕ1, ϕ2] + g

(1)
1213[ϕ1, ϕ3] + g

(1)
1223[ϕ2, ϕ3]

)

, (6.4)

where we have used that g
(1)
αβkl is antisymmetric in (α, β) and in (k, l) by definition (see

18To fully understand this prefactor, the reader may find it useful to recall that the dot product appearing
in the relevant term of the Hamiltonian was taken to be the usual scalar product around (5.47).
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table 2) and dkl is independent of (k, l) due to (4.129). From the above it follows that to

the [ϕl, ϕm] term we must associate the factor 4
√
dlmg

(1)
12lm. The next subtlety consists in

how to relate the (
√

2i|τ |2/(τ − τ̄),
√
blmm

(1)
lm , 4

√
dlmg

(1)
12lm) prefactors to (d1, d2, d3). Let us

address this issue next.
From (2.4) and (2.5) in [54] it can be readily seen that the magnetic charge simply

ensures the vanishing of the crossed terms within the BHN-like equations squared of the bulk
Hamiltonian. Schematically, if after gauge fixing the bulk Hamiltonian is of the form

∫

X4

(
F +Dϕ+ [ϕ,ϕ]

)2
, (6.5)

then the magnetic charge will be roughly as

∫

X3

(
ϕF + ϕ[ϕ,ϕ] + ϕDϕ

)
. (6.6)

Here, the first two terms follow from the (F · Dϕ) and (Dϕ · [ϕ,ϕ]) type of crossed terms
after integration by parts using the covariant derivative D. For its part, the last term follows
from the (F · [ϕ,ϕ])-like crossed term after expressing the field strength as a commutator of
covariant derivatives and using these to integrate by parts. Our discussion implies

d1 =

√

2i|τ |2
τ − τ̄

√

bψ̃km
(1)

ψ̃k
, d2 = 4

√

bψ̃kdlmg
(1)
12lmm

(1)

ψ̃k
, d3 = 4

√

2i|τ |2
τ − τ̄

√

dlmg
(1)
12lm,

(6.7)

which fully specifies the magnetic charge in our theory. Note that the indices of these coeffi-
cients are to be contracted with the appropriate terms in (6.3).

Once we have the explicit form of Q̃EM in (5.93), we can focus on the only other term in
this Hamiltonian, namely

Htop ≡ (τ + τ̄)

∫

d4x

3∑

i,j,k=1

ǫ0ijkTr(F0iF jk). (6.8)

Recall that (i, j, k) stand for the spatial directions of X4: (x1, x2, ψ̃). Recall also that, after
our simplifying assumption in (5.77), X4 is now a Lorentz-invariant space. A quick exercise
of opening indices in both (5.79) and the above allows us to rewrite Htop as

Htop = (τ + τ̄)

∫

X4

Tr
(
F (X4) ∧ F (X4)

)
. (6.9)
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It is well-known that the above can be rewritten as a Chern-Simons type of boundary integral,

Stop = (τ + τ̄)

∫

X3

Tr
(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (6.10)

which is gauge-invariant iff (τ + τ̄) is an integer multiple of 2π. We will discuss this subtlety
shortly, in section 6.3. For the time being, however, we will just collect our results so far.
Using (6.2) and Htop in (5.93), we can indeed write the Hamiltonian of our theory, after its
bulk energy has been minimized, as a boundary action, the way we wanted:

Sbnd ≡ Q̃M + Stop =

∫

d3x qM + (τ + τ̄)

∫

X3

Tr
(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (6.11)

with qM as in (6.3) and the gauge and scalar fields in the theory satisfying the constraint
and BHN equations mentioned at the end of the previous chapter.

At this stage, we have been able to minimize the energy of the four-dimensional gauge
theory defined in X4 that follows from the M-Theory configuration (M,1) of part I. By
construction, this bulk theory has N = 4 supersymmetry. After such minimization, we have
just found out that we are left with a theory whose action is given by (6.11). That is, we
have a theory defined on the three-dimensional boundary X3 of X4. All through parts I
and II, we have insisted that the presence of this boundary provides a half-BPS condition
to the full four-dimensional theory, thus reducing the amount of supersymmetry to N = 2.
But, of course, this does not happen naturally: in general, arbitrary boundary conditions on
the fields break all supersymmetry. In the next section, we derive the constraints required
to ensure the desired maximally supersymmetric boundary conditions. In this way, we will
finally make precise what we mean when we say that the warp factors in (2.2) and (2.21) and
the dilaton in (4.5) should be chosen such that N = 2 supersymmetry is ensured19.

6.2 Ensuring maximally supersymmetric boundary conditions

Whether boundary conditions that preserve some amount of supersymmetry are possible in a
four-dimensional, N = 4 Yang-Mills theory coupled to matter and, if so, what these look like
are fundamental questions that were answered in [59]. In this section, we review the relevant
results in this work and adapt them to our own model. As we shall see, ensuring that the
boundary theory (6.11) previously derived has N = 2 supersymmetry is indeed possible and
only requires a mild constraint be satisfied by our supergravity parameters.

19We remind the reader that, presently, such supergravity parameters’ choice is solely constrained by (5.78),
owing to our simplifying assumption in (5.77).
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As a first step towards obtaining the much desired N = 2 boundary conditions, we must
first understand the symmetries of our M-Theory configuration (M,1). As was explained in
chapter 2 and as sketched in figure 1, (M,1) is dual to the D3-NS5 system in type IIB. The
non-abelian enhanced scenario amounts to considering N number of superposed D3-branes,
as argued in section 2.1.1. In the following, we will use this duality to our advantage and
discuss the spacetime symmetries of (M,1), in its non-abelian version, in the simpler scenario
of the multiple D3’s ending on an NS5 system. We remind the reader that the underlying
metric and orientations of both the multiple D3-branes and the single NS5-brane in this
setup were introduced right at the beginning of chapter 2 and are graphically summarized
in figure 2A. It is also worth bearing in mind that, upon dimensional reduction, the four-
dimensional gauge theory in the world-volume of the D3-branes has SU(N) as its gauge group
and N = 4 supersymmetry. Having refreshed a bit our memory, it is easy enough to argue
what symmetries are present in the D3-NS5 system.

Consider the usual type IIB String Theory. This is defined in R
1,9. We will label the

corresponding coordinates as xI , with I = 0, 1, . . . , 9. The associated metric is simply
ηIJ = diag(−1, 1, . . . , 1). Hence, the spacetime symmetry group is SO(1, 9). As is well-
known, SO(1, 9) is generated by Gamma matrices ΓI , which satisfy the usual Clifford algebra

{ΓI ,ΓJ} = 2ηIJ , (6.12)

and has 16 as is its irrep. Here, we consider a ten-dimensional gauge field and Majorana-Weyl
fermion, related to each other by their supersymmetry transformations. We denote as ε the
supersymmetry generator. This is a Majorana-Weyl spinor that satisfies

Γ̄ε = ε, Γ̄ ≡ Γ0Γ1 . . .Γ9 (6.13)

and consequently it transforms in the 16 of SO(1, 9). Here, Γ0Γ1 . . .Γ9 stands for the anti-
symmetrized product of (Γ0, Γ1, . . . , Γ9).

The inclusion of multiple, coincident D3-branes breaks SO(1, 9) to SO(1, 3)×SO(6), the
SO(1, 3) oriented along the same directions as the D3’s. The NS5-brane further breaks the
symmetry group to

U ≡ SO(1, 2)× SO(3)× SO(3). (6.14)

This is most easily understood in two steps. First, the NS5-brane restricts one of the spatial
coordinates of the D3-branes to take only non-negative values. In our notation: ψ ≥ 0, as
can be seen in figure 2A. Demanding that Lorentz transformations leave the boundary ψ = 0
invariant, SO(1, 3) breaks down to SO(1, 2). On the other hand, the NS5-brane also breaks
SO(6) to SO(3) × SO(3). One of these SO(3)’s acts on the three-dimensional subspace
spanned by the NS5-brane which is orthogonal to the directions shared with the D3’s. In the
language of figure 2A, it acts on (x3, x8, x9). The other SO(3) then acts on the remaining
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spacetime directions. These are the directions labeled by (θ1, φ1, r) and suppressed in figure
2A. We denote as V8 the irrep of U : the (2,2,2) tensor product.

Having established U in (6.14) as the symmetry group of the D3-NS5 system, it follows
that U is the symmetry of the configuration (M,1) too. However, caution is needed: some of
the dualities required to obtain (M,1) from the D3-NS5 system are non-trivial. For example,
consider the T-duality relating figure 2C to 2D. Consequently, for our coming analysis to hold
true, any specific choice of the warp factors in (2.2) and (2.21) and constant dilaton in (4.5)
should be checked to not only enforce the constraint (5.78), but should also be U -invariant.

Focusing on the case where (M,1) is indeed U -invariant, we can precisely reproduce the
results in [14]. Let us see how. As we saw in chapter 4, the scalar fields associated to the
directions on which the SO(3)’s of U act are (A3̃, ϕ1, ϕ2) and (ϕ3, Aφ1 , Ar), respectively. In

the language of [14, 59], these are collectively referred to as ~X and ~Y :

~X ≡ (A3̃, ϕ1, ϕ2), ~Y ≡ (ϕ3,Aφ1 ,Ar), (6.15)

an identification that will soon prove useful to us.
Let us make yet one more observation before we determine the desired half-BPS boundary

conditions. We note that the 16 of SO(1, 9) naturally decomposes as

16 = V8 ⊗ V2, (6.16)

where V2 is a 2-dimensional real vector space. The natural elements that act on V2 are the
even elements of the SO(1, 9) Clifford algebra that commute with U . It follows then that the
supersymmetry generator ε can be decomposed as

ε = ε8 ⊗ ε2, ε8 ∈ V8, ε2 ∈ V2. (6.17)

In order for ε to be U -invariant, ε2 must be a non-zero, fixed element of V2. On the other
hand, ε8 is just some arbitrary element of V8. Again following [14,59], we choose

ε2 =

(
−a
1

)

, (6.18)

with a a real parameter. The above is precisely the last ingredient we needed to finally discuss
half-BPS boundary conditions in the four-dimensional gauge theory following from (M,1).

It is well-established (for example, see [60]) that boundary conditions preserve some de-
gree of supersymmetry iff they ensure that the normal (to the boundary) component of the
corresponding supercurrent vanishes. This in turn constrains the associated supersymmetry
generator too. Thanks to the above discussion and, in particular, to our identifications (6.15),
we can directly read off from [14, 59] the boundary conditions and constraint on ε2 thus ob-
tained. We refer the interested reader to [59] for a detailed derivation of the results we now
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quote. The boundary conditions on the fields are as follows. The scalar fields (ϕ3, Aφ1 , Ar)
must all vanish at ψ̃ = 0:

ϕ3 = Aφ1 = Ar = 0. (6.19)

The remaining scalar fields must satisfy

Dψ̃A3̃ −
2a

1 + a2
[ϕ1, ϕ2] = 0, Dψ̃ϕ1 −

2a

1 + a2
[ϕ2,A3̃] = 0, Dψ̃ϕ2 −

2a

1 + a2
[A3̃, ϕ1] = 0

(6.20)

at the boundary. Due to our choice (5.40), the above further simplifies to

[ϕ1, ϕ2] = Dψ̃ϕ1 = Dψ̃ϕ2 = 0, (6.21)

for a general value of the parameter a. At ψ̃ = 0, the gauge fields are required to obey

Fψ̃µ +
a

1− a2
ǫµνλFνλ = 0, ∀µ, (6.22)

where (µ, ν, λ) label the spacetime directions (t, x1, x2, ψ̃). As for the constraint on the
supersymmetry generator, it relates the parameter a in (6.18) to the Yang-Mills coupling and
gauge theory Θ-parameter as

Θ/(2π)

4π/g2YM
=

2a

1− a2
. (6.23)

Owing to our prior identifications in (5.82), we can give a supergravity interpretation to a:

V3 sin θncq(θnc)

c11
=

2a

1− a2
→ a =

√

1 +
( c11
V3 sin θncq(θnc)

)2
− c11
V3 sin θncq(θnc)

. (6.24)

Yet another way to express the same relation follows from using (4.112) and (5.82) in (6.23):

c2 =
4π

g2YM

2a

1− a2
. (6.25)

Now that our boundary theory in (6.11) is N = 2-supersymmetric, we still need to over-
come one more difficulty. If our M-Theory configuration (M,1) and the four-dimensional
gauge theory stemming from it through dimensional reduction are to be of use in the study
of knots and their invariants: what is the three-dimensional space where knots should be
realized? Undoubtedly, X3 spanned by (t, x2, x2). Or more precisely, its Euclidean ver-
sion. Now, since knots are topological objects, it is clear that the theory in X3 ought to be
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topological too. At least, this should be the case for our construction to be an appropriate
framework to support knots. However, a quick look at our action (6.11) immediately tells
us that this is not the case in our setup. The second, Chern-Simons term in the boundary
action is indeed topological, but the presence of the magnetic charge adds a non-topological
contribution that naively seems undesirable from our point of view. The resolution to this
puzzle was first worked out in the well-known work [61] and it consists in performing a so-
called topological twist to our four-dimensional gauge theory. In the following, we summarize
the basics of this technique and apply it to our own model.

6.3 Obtaining a Chern-Simons boundary action: topological twist

We begin this section by introducing the concept of topological twist. Following which, we
shall show that topologically twisting our gauge theory, its corresponding boundary action is
Chern-Simons-like.

If we momentarily ignore the fact that ψ̃ ≥ 0, then the symmetry of our M-Theory
configuration (M,1) is as in (6.14), but with SO(1, 2) replaced by SO(1, 3). In this case,
the topological twist consists in extending the Lorentz symmetry SO(1, 3) acting along
(t, x1, x2, ψ̃) to a new symmetry S′. S′ rotates the (t, x1, x2, ψ̃) subspace and, simulta-
neously, the (x̃3, θ1, x8, x9) subspace too. It is not hard to see that this new symmetry
necessarily leads to the reinterpretation of the scalar fields (A3̃, ϕ1, ϕ2, ϕ3) associated to the
new rotation directions as a one-form:

Φ =
∑

µ

Φµdx
µ, (Φ0,Φ1,Φ2,Φ3) = i(ϕ3, ϕ1, ϕ2,A3̃). (6.26)

There should be no confusion regarding notation. As introduced in (5.79) and used through
all the previous section, xµ refers to the spacetime coordinates (t, x1, x2, ψ̃). The precise
identification between the components of this one-form and our scalars suggested above is such
that we match the notation in [14]. However, other identifications could also be entertained.
In fact, we will do so later on, in section 6.3.1.

As a short aside, it will soon prove useful to introduce some notation. Following [14], we
combine the real scalar fields (Aφ1 , Ar) associated to the directions (φ1, r) not affected by
S′ into a complex scalar field:

σ ≡ Ar + iAφ1 , σ̄ = Ar − iAφ1 . (6.27)
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In the same spirit, we shall topologically twist our gauge fields to

A =
∑

µ

Aµdx
µ, Aµ = iAµ, ∀µ. (6.28)

The corresponding field strengths are then

F = dA+A ∧A =
∑

µ,ν

Fµνdx
µ ∧ dxν , Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (6.29)

Clearly, this demands that we define new covariant derivatives, which happen to match the
ones used so far and introduced earlier in (4.51):

Dµ ≡ ∂µ + [Aµ, ] = ∂µ + i[Aµ, ] ≡ Dµ, ∀µ. (6.30)

Of course, the above topological twist must be made compatible with the fact that ψ̃ ≥ 0
in our setup, before we can apply it to our four-dimensional gauge theory. What is more, it
must also be made compatible with having N = 2 supersymmetric boundary conditions on
the fields. In other words, before proceeding further, all the results in section 6.2 must be
extended to the case where the gauge theory is twisted. Such generalization was first done
in [14, 61], where the reader may find all the computational details. In the following, we
simply review the main pertinent results in these works, while adapting them to our present
construction.

We begin by making the supersymmetry generator ε in (6.13) compatible with the new
symmetry S′. That is, we demand

(Γµν + Γµ̃ν̃)ε = 0, ∀µ, ν = t, x1, x2, ψ̃, ∀µ̃, ν̃ = x̃3, θ1, x8, x9, (6.31)

so that ε is S′-invariant. This condition has a two-dimensional space of solutions. If we
denote as (εl, εr) the basis of solutions, then the supersymmetry generator can be written as
a linear combination of them both:

ε = εl + t̂εr, t̂ ∈ C, (6.32)

where the hat on t̂ is meant to differentiate the above complex variable from the time coordi-
nate t. At this point, one repeats the same procedure as in the previous section: one requires
that the component of the supercurrent associated to ε above that is normal to the ψ̃ = 0
boundary vanishes. In this manner, we reproduce the same boundary conditions (6.19)-(6.22)
as before, but in the twisted case:

σ = σ̄ = Φ0 = [Φ1,Φ2] = Dψ̃Φ1 = Dψ̃Φ2 = Fψ̃µ −
i

2

t̂2 + 1

t̂2 − 1
ǫµνλF

νλ = 0, ∀µ. (6.33)
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Comparing the last boundary condition above with its untwisted counterpart in (6.22), it
follows that the parameters a and t̂ are related to each other. Since a is additionally related
to the gauge theory parameters (g2YM , Θ), so must t̂ be. These relationships also follow
from studying the constraint imposed on the supersymmetry generator by demanding the
vanishing of the normal component of its supercurrent. In this latter approach, as shown
in [14], the constraint that ε in (6.32) must satisfy turns out to be the exact same constraint
that ε2 in (6.18) has to satisfy in the untwisted case, which then led us to (6.23). Either of
the two approaches yields

t̂ = −i1 + ia

1− ia
. (6.34)

The above can be rewritten in many suggestive ways. For example, using (6.23), we
can write t̂ as a function of the Yang-Mills coupling and Θ-parameter of our gauge theory:
t̂ = t̂(g2YM ,Θ). Further using (5.82), we can express t̂ in terms of supergravity parameters
of our M-Theory configuration (M,1): t̂ = t̂(c11, V3, θnc). A particularly neat result follows
from considering (5.83) as well:

t̂ = ±|τ |
τ
, (6.35)

which the reader can verify without excessive algebraic effort. The above is interesting
because it is not obvious a priori that the two complex parameters (τ, t̂) that characterize
the twisted gauge theory should be related to one another. Additionally, it is surprising that
they should have such a mathematically simple relation.

Having introduced the topological twist and verified its consistency with all the (su-
per)symmetries in our setup, we can proceed to twist the boundary action (6.11). As antici-
pated, this will give rise to a topological theory in X3. Let us see how exactly.

Using (6.26)-(6.30) in (6.11), we verify that the boundary theory after twisting becomes

S
(t)
bnd = −

∫

d3x q
(t)
M − (τ + τ̄)

∫

X3

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
. (6.36)

From (6.3), the twisted magnetic charge density q
(t)
M can be easily seen to be

q
(t)
M =

2∑

a,b,c=0

Tr
[ 2∑

α,β=1

d1ǫaαβΦaFαβ + ǫabc

(d2
3
Φa[Φb,Φc] + d3ΦaDbΦc

)]

, (6.37)

with (d1, d2, d3) as in (6.7), albeit the indices there need to be appropriately reinterpreted. As
we will soon open up all indices and make explicit their meaning, the reader should not worry
too much over notation at this stage. It is perhaps worth mentioning that, in the last term,
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Dψ̃ does not appear, unlike in the untwisted case (6.3). This is simply because the boundary
conditions (6.33) guarantee no such contribution occurs. On the other hand, although (5.35)
and (5.40) also force D0Φ = 0, we shall carry these vanishing terms around because they will
make the coming derivation of the topological boundary action more transparent. It goes
without saying that one can do the same calculation without them too.

It turns out, however, that (6.36) is not quite the correct twisted boundary theory. One
more term, proportional to the Chern-Simons term in (6.36), must be added to the above:

S
(t)
bnd,tot = S

(t)
bnd + b2

∫

X3

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
, b2 ∈ C. (6.38)

This additional term is required to ensure that all observables and states on the twisted gauge
theory are invariant under the supersymmetry generated by ε in (6.32). Upon including such
term, one more striking observation can be made: not only are τ and t̂ related to each other,
but also all physics of the twisted theory depends solely on a particular combination of the
two parameters:

Ψ ≡ τ + τ̄

2
+
τ − τ̄

2

t̂− t̂−1

t̂+ t̂−1
. (6.39)

Ψ is usually referred to as the canonical parameter and it appears in the correct boundary
theory as

S
(t)
bnd,tot = −

∫

d3x q
(t)
M + iΨ

∫

X3

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
. (6.40)

Note that this allows us to determine the value of b2, the coefficient of the required extra
piece in the boundary action, since

−(τ + τ̄) + b2 = iΨ =⇒ b2 =
τ + τ̄

2
(2 + i) + i

τ − τ̄

2

t̂− t̂−1

t̂+ t̂−1
. (6.41)

Of course, none of the statements in the above paragraph are obvious. Their proofs were
worked out in exquisite detail in sections 3.4 and 3.5 of [61]. Unfortunately, a review of these
derivations is beyond the scope of the thesis. Nonetheless, the reader should find no difficulty
going through the cited reference, as we have carefully made our notation coincident with
the one employed there.

Having established (6.40) as the twisted boundary action, showing its topological nature
amounts to appropriately rewriting it. We will do so in a few steps, the first consisting in

expressing the twisted magnetic charge density q
(t)
M in differential geometry language. To this
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aim, let us first introduce the exterior covariant derivative of the twisted scalar fields (6.26):

dAΦ ≡ dΦ+ [A,Φ]. (6.42)

If we restrict dAΦ to X3 (where ψ̃ = 0 and thus dψ̃ = 0 too) and since Φ3 = 0 due to (5.40)
and (6.26), the above can be explicitly written as

dAΦ =
2∑

a,b=0

(∂Φb
∂xa

dxa ∧ dxb + [Aadx
a,Φbdx

b]
)

(6.43)

= (D0Φ1 −D1Φ0)dt ∧ dx1 + (D0Φ2 −D2Φ0)dt ∧ dx2 + (D1Φ2 −D2Φ1)dx1 ∧ dx2.

Then, we can use (6.43) to introduce three more quantities, defined in X3, that will soon
become relevant to us:

Φ ∧ F =
( 2∑

a=0

Φadx
a
)

∧
( 2∑

α,β=1

Fαβdx
α ∧ dxβ

)

= 2Φ0F12d
3x,

Φ ∧ Φ ∧ Φ = (Φ0[Φ1,Φ2]− Φ1[Φ0,Φ2] + Φ2[Φ0,Φ1])d
3x, (6.44)

Φ ∧ dAΦ = [Φ0(D1Φ2 −D2Φ1)− Φ1(D0φ2 −D2Φ0) + Φ2(D0Φ1 −D1Φ0)]d
3x.

We remind the reader that d3x = dt∧dx1∧dx2 is the normalized volume element of X3. Note
that, in the above, we did not take into account the whole twisted field strength introduced in
(6.29). The reasons are similar to those which led us to (6.43). Specifically, F0µ = 0 for all µ,
due to the constraint (5.35) and our gauge choice (5.40). Also, ψ̃ = 0 at the three-dimensional
boundary X3 of our spacetime X4, implying dψ̃ = 0 there and thus no field strength stretches
along this direction.

To appreciate the benefit of having calculated (6.44), let us now carry out the sums in
(6.37). In doing so, we shall use (6.7) and, through explicit computation, clear any doubt
regarding index notation, as previously promised. The first sum can be easily seen to yield

2∑

a,b,c=0

2∑

α,β=1

d1ǫaαβΦaFαβ = 2

√

2i|τ |2
τ − τ̄

√

bψ̃3m
(1)

ψ̃3
Φ0F12, (6.45)

with the normalization convention ǫ012 = 1. The second sum gives

2∑

a,b,c=0

d2ǫabcΦa[Φb,Φc] = 8
√

bψ̃3d12m
(1)

ψ̃3
(g

(1)
1212Φ0[Φ1,Φ2]−g(1)1232Φ1[Φ0,Φ2] +g

(1)
1231Φ2[Φ0,Φ1]),

(6.46)
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where we have used the fact that dkl in (4.129) is independent of (k, l) to take d12 as common
factor. The third and last sum appearing in the twisted magnetic charge density is

2∑

a,b,c=0

ǫabcd3ΦaDbΦc =4

√

2i|τ |2
τ − τ̄

√

d12

[

g
(1)
1212Φ0

(
D1Φ2 −D2Φ1

)
− g

(1)
1232Φ1

(
D0Φ2 −D2Φ0

)

+ g
(1)
1231Φ2

(
D0Φ1 −D1Φ0

)]

. (6.47)

Recall that, so far, we have only made the choice of coefficients in (5.89). We shall now make
further choices. In particular, we want to impose

g
(1)
1212 = g

(1)
1232 = g

(1)
1231. (6.48)

It is important to note that our choices are in good agreement with the defining relation

(5.22), since we have the full spectrum of {h(1)
αψ̃kl

}’s unfixed to satisfy those equalities. Now,

comparing our prior auxiliary quantities in (6.44) with the sums (6.45)-(6.47), it follows that

q
(t)
M in (6.37) can be written in the very convenient form

∫

d3x q
(t)
M = −

∫

X3

Tr
(
2D1Φ ∧ F +

2

3
D2Φ ∧ Φ ∧ Φ+D3Φ ∧ dAΦ

)
, (6.49)

where we have defined the coefficients (D1, D2, D3) as

D1 ≡ −1

2

√

2i|τ |2
τ − τ̄

√

bψ̃3m
(1)

ψ̃3
, D2 ≡ −4

√

bψ̃3d12m
(1)

ψ̃3
g
(1)
1212, D3 ≡ −4

√

2i|τ |2
τ − τ̄

√

d12g
(1)
1212.

(6.50)

Using the above in our boundary action (6.40), we obtain

S
(t)
bnd,tot =

∫

X3

Tr
(
2D1Φ ∧ F +

2

3
D2Φ ∧ Φ ∧ Φ+D3Φ ∧ dAΦ

)

+ iΨ

∫

X3

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
. (6.51)

The second step required to rewrite (6.51) as a topological action consists in suitably
fixing (D2, D3). Specifically, we require

D2 =
D3

1

(iΨ)2
, D3 =

D2
1

iΨ
. (6.52)

From (6.50) it follows that, in terms of the coefficients of tables 1 and 2 (the first ones having
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a supergravity interpretation and the second ones lacking it), the above constraints are

1 =
bψ̃3

32
√
d12g

(1)
1212

(
m

(1)

ψ̃3

iΨ

)2
(2i|τ |2
τ − τ̄

)3/2
, 1 = −

bψ̃3

16
√
d12g

(1)
1212

(
m

(1)

ψ̃3

)2

iΨ

√

2i|τ |2
τ − τ̄

. (6.53)

Of course, we would rather not constrain our model (M,1) by demanding that the warp
factors (2.2) and constant dilaton (4.5) appearing in its metric (2.46) are obliged to satisfy
the above. Instead, we prefer to choose our coefficients of table 2 in such a way that (6.53) is

true. Clearly, there is just enough freedom of choice for us to do so: we thus fix (m
(1)

ψ̃3
, g

(1)
1212).

Note that these coefficients must fulfill (5.22) and (5.30), where we have already chosen (5.89)

and (6.48). This is possible and simply fixes (m
(2)

ψ̃3
, h

(1)

1ψ̃12
) as well. In this case and after some

easy algebra, we obtain

S
(t)
bnd,tot =iΨ

∫

X3

Tr
(

A ∧ dA+
2

3
A ∧A ∧A+ 2Φ′ ∧ dA+ 2Φ′ ∧A ∧A

+
2

3
Φ′ ∧ Φ′ ∧ Φ′ +Φ′ ∧ dΦ′ +Φ′ ∧ [A,Φ′]

)

, (6.54)

where we have used (6.29) and(6.42) and where Φ′ is just the one-form Φ in (6.26) rescaled
in the following manner:

Φ′ ≡ D1

iΨ
Φ. (6.55)

A couple of trace identities come in handy at this stage. These shall allow us to further
rewrite the boundary theory in what will soon become a particularly enlightening form. The
identities in question are

Tr(Φ′ ∧ [A,Φ′]) = 2Tr(Φ′ ∧A ∧ Φ′), Tr(A ∧ dΦ′) = Tr(Φ′ ∧ dA), (6.56)

which the reader may easily verify through explicit computation with the aid of (5.35), (5.40),
(6.26), (6.28) and (6.29). The second identity holds up to a total derivative only. However,
since these terms are defined in X3, the three-dimensional space labeled by the unbound
directions (t, x1, x2), the total derivative term does not affect the physics following from

S
(t)
bnd,tot and so we ignore it in the ongoing. Combining (6.54) and (6.56), we obtain

S
(t)
bnd,tot =iΨ

∫

X3

Tr
(

A ∧ dA+
2

3
A ∧A ∧A+ 2A ∧ dΦ′ + 2Φ′ ∧A ∧A

+
2

3
Φ′ ∧ Φ′ ∧ Φ′ +Φ′ ∧ dΦ′ + 2Φ′ ∧A ∧ Φ′

)

. (6.57)
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The third and last step on our way towards a topological boundary theory consists in
defining a modified gauge field, which is a linear combination of the twisted gauge and scalar
fields (6.26) and (6.28):

AD ≡ A+Φ′. (6.58)

In fact, AD is the complexification of A. It is a matter of simple algebra to check that

AD ∧ dAD =A ∧ dA+Φ′ ∧ dA+A ∧ dΦ′ +Φ′ ∧ dΦ′,

AD ∧AD ∧AD =A ∧A ∧A+A ∧ Φ′ ∧ Φ′ +Φ′ ∧A ∧A+Φ′ ∧ Φ′ ∧ Φ′

+A ∧A ∧ Φ′ +A ∧ Φ′ ∧A+Φ′ ∧A ∧ Φ′ +Φ′ ∧ Φ′ ∧A. (6.59)

Since the trace of a product is invariant under cyclic permutations of the terms in that
product and also due to (6.56), it is easy to see that, as promised, indeed (6.57) defines a
topological field theory in X3, albeit in terms of the just introduced modified gauge field AD:

S
(t)
bnd,tot =iΨ

∫

X3

Tr(AD ∧ dAD +
2

3
AD ∧AD ∧AD). (6.60)

The above complexified Chern-Simons satisfies the goal stated at the beginning of the present
section. Yet, before proceeding ahead, there are a couple of issues worth mentioning.

First, we note that in (6.60) there is still one free parameter: D1. Recall that Ψ is given
by (6.39). Hence, it depends only on (τ, t̂). These two parameters have an interpretation
in terms of our supergravity parameters, i.e. the warp factors and dilaton of the M-Theory
configuration (M,1). As such, they are fixed when a specific model (M,1) is considered. It
turns out that D1 can also be determined. As argued in [14], supersymmetric Wilson loop
operators can be associated to the boundary theory with action (6.60) iff the Chern-Simons
gauge field AD is invariant under the supersymmetry generated by ε in (6.32). Schematically,
we can express this as

δAD = δ(A+Φ′) = δ(A+
D1

iΨ
Φ) = 0, (6.61)

where we have made use of (6.55) and (6.58). As our notation is now such that it precisely
matches the one used in [14], the interested reader should have no difficulty in following the
discussion in section 2.2.4 of that same reference. In it, the reader shall find the proof that
the above constraint sets the value of D1 to

D1 = iΨ
t− t−1

2
=
i

4
(t− t−1)

[

τ + τ̄ + (τ − τ̄)
t̂− t̂−1

t̂+ t̂−1

]

, (6.62)

where the second equality follows from (6.39). As we just said, (τ, t̂) are fixed for a
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given model (M,1). However, from (6.50), we see that D1 depends on various coefficients:

(τ, bψ̃3, m
(1)

ψ̃3
). As given by (4.123), bψ̃3 is also fixed once a particular model (M,1) is chosen

via warp factors and constant dilaton. We remind the reader that m
(1)

ψ̃3
was already chosen

to take the value that renders the first equality in (6.53) true. Consequently, on this occasion
we have no way out but to constrain the model (M,1) by demanding that from the very
beginning it is defined in such a way that D1, understood as in (6.50), satisfies (6.62).

Second, we must refer to the point already mentioned in passing in section 6.1. Namely,
the fact that the non-abelian Chern-Simons theory (6.60) is gauge-invariant iff (iΨ) is an
integer multiple of 2π20. In other words, a path integral formalism associated to the action
(6.60) is only well-defined when

(−2πi)−1)Ψ ∈ Z. (6.63)

From its very definition in (6.39), we see that Ψ does not necessarily satisfy such a property.
Perhaps this observation is even more evident from (5.83) and (6.35), expressing Ψ only in
terms of coefficients with a supergravity interpretation, which depend only on the specific
choice of M-Theory model (M,1):

Ψ = C1 sin θncq(θnc)−
C1c

2
11

V3 sin θncq(θnc)

V3 sin θncq(θnc)− ic11
V3 sin θncq(θnc) + ic11

. (6.64)

The conclusion from both perspectives is one and the same: we must impose some constraints
on the warp factors (2.2) and (2.21) dilaton in (4.5) if our topological boundary is to have a
path integral representation. (See table 1 for a guide to the equations linking the coefficients
in (6.64) and the just mentioned warp factors and dilaton.) Given that in the present work
we wish not study a concrete model (M,1), we will not elaborate on the required constraints
here. However, it should be noted that our present analysis is only valid for the subset of
M-Theory configurations (M,1) that satisfy (6.63).

The reader should not get disheartened, though. These are, hopefully, passing short-
comings. Once we consider the truly relevant scenario in part III (that is, the scenario that
allows us to discuss knots embedded in a ultraviolet-complete physical model), we shall be
able to fulfill (6.62) without constraining model (M,1). We shall adopt an optimist attitude
with respect to (6.63): once topological M-Theory is formulated, we should have no need to
impose this constraint to begin with!

20 As the lucid work [62] shows, an appropriate analytical continuation of (6.60) would allow for a path
integral formalism in case that the requirement (6.63) is not met. This is hard to realize in our M-Theory
construction of model (M,1), since it would require a (to date) nonexistent formalism: topological M-Theory.
Needless to say, a careful study of such scenario is beyond the scope of the thesis and we shall not proceed in
this direction. The interested reader can gain more insights from the discussion around (3.346)-(3.350) in [1].

137



6.3.1 Twisting the bulk

In order to understand our next goal, let us briefly refresh our memory. In part I, we con-
structed the M-Theory model (M,1). In the present part II, we derived the Hamiltonian
(5.88), defined in the bulk X4 and associated to (M,1). Then, a consistent minimization of
its energy, for static configurations of the fields, led to the Hamiltonian (5.93). We further
rewrote this as the action (6.11), which is defined in X3: the boundary of X4. Upon topolog-
ically twisting (6.11), we obtained the Chern-Simons action (6.60): a suitable framework for
the realization of knots in our setup. Quite evidently, our analysis shall be consistent only
when we also topologically twist the bulk energy minimization equations that allowed us to
obtain (6.11) to begin with. Doing so is the aim of the present section.

The set of energy minimization equations we must twist are (5.40), (5.42), (5.91) and
(5.92), as already pointed out at the very end of section 5.2. Before twisting, however, we
make the following observation: the various coefficient choices made so far in order to obtain
a topological boundary theory considerably simplify the BHN equations (5.91).

To be precise, consider the third term in the second BHN equation for (α = 1, β = 2) and
interpret the dot product there appearing as a usual scalar product, in the same spirit as we
did earlier in (5.45). Once more, we work with the normalization convention that ǫ12 = 1.
Then, this term can be written as

3∑

δ,k=1

√

bδkm
(1)
δk Dδϕk =

√

b12

( 2∑

α=1

3∑

k=1

m
(1)
αkDαϕk

)

+
√

bψ̃1

( 3∑

k=1

m
(1)

ψ̃k
Dψ̃ϕk

)

, (6.65)

where we have used the fact that b1k = b2k for all k = 1, 2, 3 and the same is true for bψ̃k, as

can be seen from (4.123). We will now fix the coefficients (m
(1)
13 , m

(1)
21 , m

(1)
23 , m

(1)

ψ̃1
, m

(1)

ψ̃2
) to

g
(1)
1212

g
(1)
1213

m
(1)
13 = −m(1)

21 =
g
(1)
1212

g
(1)
1223

m
(1)
23 = −

∣
∣
∣
∣
∣
∣

√

bψ̃1
b12

∣
∣
∣
∣
∣
∣

g
(1)
1212

g
(1)
1213

m
(1)

ψ̃1
= −

∣
∣
∣
∣
∣
∣

√

bψ̃1
b12

∣
∣
∣
∣
∣
∣

g
(1)
1212

g
(1)
1223

m
(1)

ψ̃2
= m

(1)
12 ,

(6.66)

with m
(1)
12 not yet fixed to any particular value. Further, we shall set the till now arbitrary

parameters (m
(1)
11 , m

(1)
22 , m

(1)
12 ) to

m
(1)
11 = m

(1)
22 = m

(1)
12 = m

(1)

ψ̃3

√

bψ̃1
b12

, (6.67)
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with m
(1)

ψ̃3
such that the left-hand equation in (6.53) is true. Then, we obtain

3∑

δ,k=1

√

bδkm
(1)
δk Dδϕk =

√

b12m
(1)
12

[(
D1ϕ1 +D2ϕ2 +Dψ̃ϕ3

)
+
(
D1ϕ2 −D2ϕ1

)

+
g
(1)
1213

g
(1)
1212

(
D1ϕ3 −Dψ̃ϕ1

)
+
g
(1)
1223

g
(1)
1212

(
D2ϕ3 −Dψ̃ϕ2

)]

. (6.68)

Written in this manner, it is straightforward to see that the consistency requirements (5.92)
set to zero each term between brackets on the right-hand side above. Further, since the BHN
equation of which this term is part of is antisymmetric under the exchange of (α, β), the
above holds true for all allowed values of these indices. That is,

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk Dδϕk = 0, ∀α, β = 1, 2. (6.69)

In much the same way, one can show that the third term in the first BHN equation (5.91)
also vanishes:

3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk Dδϕk = 0, ∀α = 1, 2. (6.70)

If one interprets the dot product above as the usual scalar product, the proof is exactly as
before. In more details, one must obtain the values of them(2) coefficients from (5.30), (6.53),
(6.66) and (6.67). Also, one must realize that b12 = bψ̃1 owing to our approximation (5.77),

which implies e2φ0H4 = 1 in (4.117). However, if one would like to consider the more general
scenario where (5.77) is not imposed, (6.70) can still be enforced by simply entertaining more
elaborated interpretations of the dot product, in the vein of (5.53) earlier on.

All in all, the conclusion is that our choices of the coefficients in table 2 reduce the BHN
equations in (5.91) to

√

4i|τ |2
τ − τ̄

Fαψ̃ − i

3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl] = 0,

√

2i|τ |2
τ − τ̄

Fαβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] = 0,

(6.71)

for all α, β = 1, 2. As explained around (5.49), the above are just Hitchin equations! This is a
remarkable result: in our setup, the BHN equations naturally decouple to Hitchin equations,
together with and a set of consistency conditions on the scalar fields there appearing. Such
result becomes even more relevant in view that Hitchin equations are precisely the starting
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point in the study of knots and their invariants in [13]. The very same Hitchin and consistency
equations are also related to a number of other interesting topics, such as the Geometric
Langlands Program [63–67] or Ngô’s fundamental lemma for Lie algebras [68, 69].

However exciting these directions may be, let us get back on track: currently, our aim is
to twist all energy minimization equations. To this aim and as already anticipated in section
6.3, it is convenient to consider a different mapping between our scalar fields and their twisted
one-form counterpart. In particular, instead of the boundary map (6.26), we would like to
consider the bulk identification

Λ =
∑

µ

Λµdx
µ, (Λ0,Λ1,Λ2,Λψ̃) = i(A3̃, ϕ1, ϕ2, ϕ3). (6.72)

All other twisted fields remain as previously explained in (6.27)-(6.30). In this manner, the
twisted version of (5.40) and (5.42) is

Λ0 = Dησ = Dησ̄ = [σ, σ̄] = [σ,Λk] = [σ̄,Λk] = 0, ∀η = x1, x2, ψ̃, ∀k = 1, 2, 3. (6.73)

Similarly, the twisted version of the Hitchin equations in (6.71) is given by

Fαψ̃ − ℵ√
2

3∑

k,l=1

h
(1)

αψ̃kl
[Λk,Λl] = 0, Fαβ − ℵ

3∑

k,l=1

g
(1)
αβkl[Λk,Λl] = 0, ∀α, β = 1, 2.

(6.74)

where we have defined ℵ as the following constant:

ℵ ≡
√

d12(τ − τ̄)

2i|τ |2 . (6.75)

The above definition uses the fact that, as can be seen from (4.129), all dkl coefficients have
the same value. Note that, from (5.83) and the equations mentioned in table 1, it follows that
ℵ depends entirely on supergravity parameters only. That is, parameters that characterize
the M-Theory model (M,1).

At this stage, the only equations left to be twisted are those in (5.92). These become

D1Λ2 −D2Λ1 = D1Λψ̃ −Dψ̃Λ1 = D2Λψ̃ −Dψ̃Λ2 = D1Λ1 +D2Λ2 +Dψ̃Λψ̃ = 0. (6.76)

Our identifications (6.72) allow us to further rewrite the above in a very concise manner in
the language of differential geometry. To do so, we first compute a few auxiliary quantities.
We begin with the Hodge dual of Λ. Since (6.73) sets the time component of this one-form
to zero, we can carry out this computation in the three-dimensional subspace spanned by
(x1, x2, ψ̃). As we already explained, the simplifying assumption (5.77) converts this to a
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Euclidean space. Consequently, the calculation is trivial and yields

∗Λ = Λ1dx2 ∧ dψ̃ − Λ2dx1 ∧ dψ̃ + Λψ̃dx1 ∧ dx2. (6.77)

Making use of the exterior covariant derivative introduced in (6.42) and in much the same
way as earlier in (6.43), it is easy to see that

dAΛ = (D1Λ2 −D2Λ1)dx1 ∧ dx2 +
2∑

α=1

(DαΛψ̃ −Dψ̃Λα)dxα ∧ dψ̃,

dA ∗ Λ = (D1Λ1 +D2Λ2 +Dψ̃Λψ̃)dx1 ∧ dx2 ∧ dψ̃.
(6.78)

Upon comparing the above with (6.76), it is clear that this last set of constraint equations
can be succinctly written as

dAΛ = 0 = dA ∗ Λ, (6.79)

which completes the twisting of all energy minimization equations in X4.
Hereupon, we have gathered a good amount of knowledge about the four-dimensional

gauge theory following from the M-Theory configuration (M,1), dual to the model in [14]. In
the following, we rephrase our findings in such a way that their merit is made most visible.

Appropriately compactifying (M,1), we have obtained its associated four-dimensional ac-
tion (4.143), defined in the space X4. Then, we have derived the corresponding Hamiltonian
and written it in the particularly convenient form (5.32). By construction, the coefficients
appearing in the Hamiltonian can be expressed only in terms of the supergravity parameters
of (M,1). Minimization of the energy of this Hamiltonian for static configurations of the fields
led to a series of BPS and consistency conditions on these gauge and scalar fields. For the
gauge choice (5.35), they are given by (5.40), (5.42), (5.91) and (5.92). It turns out that all
these are the same equations mentioned in [14] and derived using localization techniques for
path integrals in [61]. Consequently, we have reproduced the results of [14], but we have done
so in the well-known, conceptually easy classical Hamiltonian formalism. In the process, we
have established a precise mapping between the usual gauge theory parameters (gYM , Θ, τ)
and the parameters that characterize model (M,1): (5.82) and (5.83). In other words, we
have given a concrete, simple procedure to reproduce [14] and simultaneously provided a
supergravity interpretation for it.

After the minimization process above described, the non-vanishing part of the Hamilto-
nian was rewritten as the action in (6.11). This is defined in the three-dimensional space
X3, the boundary of X4. Of course, if our construction is to be a suitable framework for
the study of knots, these should be embedded in X3. Hence, the boundary action should be
topological for our goals to be achievable. Upon a topological twist, this was proven to indeed
be the case: (6.11) converts to the Chern-Simons action (6.60). Note that the Chern-Simons
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gauge field is a linear combination of the twisted gauge and scalar fields, as given by (6.58).
Further, N = 2 supersymmetry was made compatible with this construction, requiring only
appropriate boundary conditions for the twisted fields, stated in (6.33).

The careful analysis of the theory in X3 showed that it has all required features to host
knots. What is more, additional support to this claim followed from this very same analysis
in the following manner. Overall coherence required us to twist the energy minimization
conditions in the bulk if we were to focus on the twisted boundary theory. We then noted that,
in obtaining (6.60), we were forced to make certain choices for the coefficients summarized
in table 2. Aptly translating such choices to our BPS conditions revealed that these were
simplified to precisely the set of equations that are the starting point for the study of knots
and their invariants in [13]! Note that [13] is just a symbolic reference here, one that helps us
make our point. In part III, we will cite many more works that elaborate on the connection
between our bulk equations and knots. For completeness, we remind the reader that the
twisted BPS bulk equations are those in (6.73), (6.74) and (6.79).

In chapter 6 we have studied the three-dimensional boundary contribution (5.93) to the
four-dimensional Hamiltonian (5.88) obtained in chapter 5. In particular, we have shown
that, upon performing a topological twist to the gauge theory, the boundary physics is captured
by a complexified Chern-Simons action. Consequently, this boundary constitutes a suitable
space for the embedding of knots. On the other hand, the twist simplifies the four-dimensional
BPS equations (5.91) into a Hitchin integrable system given by (6.74) and (6.76).
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Part III
Inclusion of knots in (M,1)

In this third and last part, we will render useful to knot theory the contents of the previous
two parts. In other words and as the title advances, we will embed knots in (M,1). We will do
so by entertaining certain M2-brane states in (M,1). Because our goal is easier to postulate
than to achieve, we will proceed in two steps. First, we will consider a toy model M2-brane
in chapter 7. This hugely simplifies the analysis because it allows for explicit computations.
Once sufficient insight has been gained through the toy model, we will study the knot-
embedding M2-brane of interest in chapter 8. In this latter case and at the world-volume
gauge theory level, knots will appear as Wilson loops localized at the three-dimensional
boundary X3 and as surface operators in the spacetime X4 as a whole.

For the convenience of the reader, we have included a graphical summary of the contents
in this part. Figure 13 points out the main equations in the discussion that follows and
depicts the logic that connects them to one another.
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Chapter 7: A wrong but instructive realization of knots

Let us start by considering once more the configuration (M,1). We remind the reader that,
for the non-abelian enhanced scenario, (M,1) was fully characterized by its metric (2.46) and
its associated G-flux (2.76). It is also worth bearing in mind that the eleven-dimensional
manifold X11 on which (2.46) is defined naturally decomposes into three subspaces: the
physical spacetime X4 −with a three-dimensional boundary X3−, a three cycle Σ3 and a
multi-centered, warped Taub-NUT space TN , as described around (4.1). To this setup we
will now add an M2-brane, oriented along the (t, x1, ψ̃) directions of X4. This additional M2-
brane should not be confused with the M2-branes wrapping the two-cycles of the Taub-NUT
subspace that we included in section 2.1.1 with the goal of enhancing the gauge symmetry
group underlying the configuration (M,1). The just described setup is schematically depicted
in figure 14. As we shall show in this section, the newM2-brane clarifies how one should embed
any arbitrary knot in the model (M,1) and thus sets the ground to address the interesting
and challenging question of understanding knots in a theoretical physics context.

7.1 Elucidating the new action

In this section, we will argue what the four-dimensional action associated to the M-Theoretical
configuration in figure 14 looks like. In other words, we shall review the contents of chapters
2 and 4 in the light of the newly added M2-brane state. We shall begin our discussion at the
M-Theoretical level and then dimensionally reduce to the usual four-dimensional physical
scenario. In particular, we shall first discuss how the novel M2-brane affects the inherent
symmetries of the (M,1) model by explaining why we have chosen it to stretch along precisely
(t, x1, ψ̃).

The choice of orientation of the new M2-brane will become increasingly sensible as we
proceed. However, a fundamental observation should be highlighted already: the orientation
is such that this M2-brane does not break any of the supersymmetries in our setup. For
simplicity, let us explain this claim in the context of a type IIA dual picture. For just a mo-
ment, consider the scenario with no new M2-brane. In particular, consider the configuration
(A,3) summarized in figure 3. As a quick reminder, (A,3) is the dimensional reduction on the
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Let us now understand how the new M2-brane affects the action of the configuration
(M,1). Once again momentarily placing ourselves in the configuration (A,3), we note that
the new D2-brane there is, of course, a carrier of RR charge and so it naturally couples to
an RR three-form potential oriented along its world-volume Y3. As explained in section 4.2,
(A,3) already has an associated RR three-form potential (4.103). In order to not confuse
both RR potentials, we shall refer to the former as

∆C̃(A,3)
3 = (∆C̃(A,3)

3 )t1ψ̃ dt ∧ dx1 ∧ dψ̃. (7.2)

In the most general possible case, this RR potential will depend on various parameters.
Firstly, it will depend on the non-commutative deformation parameter θnc that we introduced
in (2.19)21. Secondly, it will depend on all the non-compact coordinates of the D6-branes’
world-volume where it is embedded. Finally, it will also depend on θ1, the only coordinate
transverse to the D6-branes that does not specify their location −recall the discussion in the
beginning of section 4.1 to this respect. All in all, we have that

∆C̃(A,3)
3 = ∆C̃(A,3)

3 (θnc, t, x1, x2, ψ̃, r, θ1). (7.3)

Next, observe that the presence of this D2-brane makes the N coincident D6-branes in which
it is embedded develop a world-volume field strength expectation value 〈F〉, oriented along
the orthogonal directions to the D2-brane: 〈F〉 ∈ Σ4. Further, since the D2-{D6} system is
translation invariant along Y3, it follows that 〈F〉 = 〈F〉(x2, x̃3, φ1, r)22. Lastly, recall that
after an uplift to the M-Theory model (M,1) and in its supergravity limit, (4.103) led to
the contribution (4.107) to the bosonic four-dimensional gauge theory action. Similarly, the
newly added brane sources the following novel term to the world-volume action:

S(4) =
C1

V3

∫ π

0

dθ1
2π

∫

X4⊗Σ3

Tr
(

∆C̃(A,3)
3 ∧ 〈F〉 ∧ 〈F〉

)

. (7.4)

Before proceeding ahead, it is perhaps worth refreshing the memory of the reader by
pointing out where exactly all subtleties involved in deriving (7.4) can be found. Let us first
note that (C1/V3) is the (θ1-independent) non-abelian generalization of (4.6), as discussed
below (4.11). Since (7.4) is a topological term (i.e. no measure appears in this integral), it is

clear that the average over θ1 only affects the new RR potential ∆C̃(A,3)
3 . The trace is taken

in the adjoint representation of SU(N), for the reasons given between (4.11) and (4.12).

21It should be borne in mind that we require θnc 6= 0, so that the usual topological Θ-term is present chapter
6, this topological piece is in turn essential so that a complexified Chern-Simons action governs the physics in
X3, where ultimately we shall place knots.

22 The situation is a higher dimensional analogue to the well-known electromagnetic setup where an infinitely
long line of electric charge sources an orthogonal electric field that only depends on transverse coordinates.
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Last but not least, in posing (7.4) as an analogue to (4.107), we have omitted comparison
to the latter’s root equation (4.106). Such comparison allows us to understand the new M2-

brane as additional contributions ∆G(M,1)
4 to the already present G-fluxes (2.76) in (M,1).

Mathematically,

S(4) =

∫

X11

Tr
(

∆C̃(A,3)
3 ∧∆G(M,1)

4 ∧∆G(M,1)
4

)

. (7.5)

As argued in section 4.1, the background G-flux 〈G(M,1)
4 〉 part of (2.76) is delocalized and so

we assume that it does not affect the corresponding four-dimensional physics. For identical

reasons, we can neglect the new M2-brane’s contribution to 〈G(M,1)
4 〉 and understand it simply

as a novel localized G-flux in (M,1).
Recapitulating, to the non-abelian enhanced M-Theory model (M,1) we add an M2-brane

along Y3. This does not break the amount of supersymmetry of (M,1), which remains to
be N = 4 with half-BPS boundary conditions. However, the new M2-brane sources a novel
contribution, that in (7.4), to the action (4.143) following from (M,1). Our next goal is to
explain what the total action, (4.143) plus (7.4), looks like. We shall do so in a simplified
scenario following quite stringent assumptions. The reader should not fear loss of generality,
though. This is just for the sake of clarity, so that we can explicitly write down intermediate
formulae as we argue. The total action we shall ultimately write holds true in the unsimplified
case of interest too.

In order to understand the total action (4.143) plus (7.4), we begin by looking only at
its new contribution (7.4). As warned, let us momentarily postulate unnecessary simplifying
assumptions. In particular, let us postulate the following separations of variables:

∆C̃(A,3)
3 = fa(θnc, t, x1, x2, ψ̃) fb(θ1) fc(r) dt ∧ dx1 ∧ dψ̃,

〈F〉 ∧ 〈F〉 = ga(x2) gb(x̃3) gc(φ1) gd(r) dx2 ∧ dx̃3 ∧ dφ1 ∧ dr,
(7.6)

with {f, g} arbitrary smooth functions. In this case, (7.4) reduces to

S(4) =
C1

V3

∫

d4xTr (κ fa · ga) , (7.7)

where d4x ≡ dt dx1 dx2 dψ̃ as in previous occasions, κ is a constant defined as

κ ≡ −
(∫ R3

0
dx̃3 gb

)(∫ π

0

dθ1
2π

fb

)(∫ 2π

0
dφ1 gc

)(∫ ∞

0
dr fc · gd

)

(7.8)

and we have suppressed the arguments of the {f, g} functions for brevity. In the spirit of
our detailed computations in chapter 4, the above will only be a sensible term in the total
action iff κ is well-defined everywhere. This means that we must demand that the integral
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of (gb, fc · gd) does not diverge at either (R3, r → ∞) nor (R3, r = 0), respectively. Further,
the functions (fb, gc) should not be (π, 2π)-periodic, since this would make κ vanish and
we would end up in the perplexing, if not forthwith nonsensical, scenario where the new
M2-brane in (M,1) plays no physical role whatsoever! Supposing all these conditions are
satisfied and hence κ ∈ R − {0}, let us turn our attention to the (fa · ga) piece in (7.7).
By definition, ga is some function of (〈A2〉, 〈A3̃〉, 〈Aφ1〉, 〈Ar〉) that only depends on the
spacetime coordinate x2. Then, fa provides an additional dependence over the remaining
spacetime coordinates (t, x1, ψ̃)

23. Without loss of generality, we can further absorb C1κ/V3
in (fa · ga), which simply rescales this integrand. Consequently and from the point of view of
the matter content in the world-volume gauge theory studied in part II, we see that the effect
of the new M2-brane amounts to sourcing a non-zero expectation value for the A2 component
of the gauge field as well as for the (A3̃, Aφ1 , Ar) real scalars in the adjoint representation of
SU(N). Effectively, we thus conclude that the total action (4.143) plus (7.7) is of the form
(4.143), but with the following replacements:

Ax → A(tot)
x ≡ 〈Ax〉+Ax, ∀x = 2, 3̃, φ1, r. (7.9)

It should be rather obvious that, as we advanced a little ago, our conclusion holds true for
the total action (4.143) plus (7.4). That is, when we do not postulate (7.6) with appropriate
constraints on the {f, g} functions, the total action remains exactly as in (4.143), but with the
replacements in (7.9). Explicit computations that prove this claim are not possible because

we do not know the exact form of the RR potential ∆C̃(A,3)
3 . However, it is in principle always

possible to carry out the integrals along (x̃3, θ1, φ1, r) and, under the conjecture that these
integrals neither vanish nor blow up, we would end up inferring that the net effect of (7.4) is
precisely to switch on the expectation values suggested in (7.9).24

7.2 The bulk theory revisited

Having established (4.143) subject to the replacements in (7.9) as the physical action cor-
responding to the configuration in figure 14, it is now time to show how the contents of
chapter 5 vary in the presence of the new M2-brane. In other words, in this section we will
explore how the BHN equations (5.91) change in the present context. Before starting this
task, maybe a few caution words are due. The present section amounts to a computationally
pretty strenuous exercise, with little supplementary physical insight compared to chapter 5

23It provides dependence over the parameter θnc as well, but this is not important at the moment.
24Any reader who remains skeptical to our conclusion may find it reassuring to know that, sooner than

later, we shall be able to reproduce equations known to encode numerous knot invariants from precisely the
just argued total effective action. This result may well be taken as confirmation of our conjecture.
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before. Consequently, readers wishing to skip technical details are welcome to jump to the
last paragraph in the section, where the results here obtained are summarized. Nevertheless,
this is an important section from the point of view of maintaining a mathematically rigorous
analysis throughout the text and its omission would make it hard to reproduce the concluded
equations. Therefore, in the following, we shall advance steadily and reliably on our way
towards understanding knots in a physical context.

Acceptance of (4.143) modified by (7.9) as the action for (M,1) in the presence of the
new M2-brane automatically implies that the Hamiltonian for this configuration is given by
(5.88), as long as we carry out the replacements in (7.9). Let us recall that in posing such total
effective Hamiltonian there are a few underlying assumptions. On the one hand, we considered
the warp factors appearing in the metric of (M,1) to be as in (2.2), we further simplified to
a constant dilaton in (4.5), later on we required the warp factors to satisfy F̃2 ≥ F3 (with
F̃2 defined in (2.21)) and finally a Minkowski-like spacetime was assumed, which means the
warp factors are constrained to also satisfy (5.78). On the other hand, tables 1 and 2 provide
all information about the coefficients in the total effective Hamiltonian of interest. The only
coefficient not accounted for in the tables is τ , which was defined in (5.83).

We are now at the point where we can start minimizing (5.88) subject to (7.9). First of
all, let us fix a gauge. Specifically, let us modify our previous gauge choice in (5.35) to

A0 = A(tot)

3̃
. (7.10)

Let us also restrict ourselves to time-independent fields, so that we can study BPS configu-
rations. As shown earlier in section 5.1.1, the only sensible way to make the first six squared
terms in the Hamiltonian vanish in this case consists in setting

A(tot)

3̃
= 0. (7.11)

In order to allow for richer dynamics of all the fields in the gauge theory, instead of an apt
modification of (5.42) to the present case, this time we will relax our simplifying assumptions
to

Dψ̃A
(tot)
φ1

= Dψ̃A(tot)
r = 0. (7.12)

The above in turn forces us to a more constraining initial choice on some of the coefficients
summarized in table 2. Specifically, we choose

q
(1)
kl = q

(i)
k = t(i) = q(4) = 0 ∀k, l = 1, 2, 3, ∀i = 1, 2. (7.13)
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All these choices reduce our total effective Hamiltonian to

Ĥ =

∫

d4xTr
{ 2∑

α,β=1

(
√

2i|τ |2
τ − τ̄

F (tot)
αβ − ig

(4)
αβ

√

C1a1
V3

[A(tot)
r ,A(tot)

φ1
]− i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl]

−i
3∑

k=1

3∑

γ=2

g
(γ−1)
αβk

√
cyγk[A(tot)

yγ , ϕk] +

3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk D

(tot)
δ ϕk

)2
+

2∑

α=1

(
√

4i|τ |2
τ − τ̄

F (tot)

αψ̃

+

√

C1cβr
V3

t(1)α ǫαψ̃βrD
(tot)
β A(tot)

r +

√

C1c̃βφ1
V3

t(2)α ǫαψ̃βφ1D
(tot)
β A(tot)

φ1

−ih(4)
αψ̃

√

C1a1
V3

[A(tot)
r ,A(tot)

φ1
]− i

3∑

k,l=1

h
(1)

αψ̃kl

√

dkl[ϕk, ϕl]− i
3∑

k=1

3∑

γ=2

h
(γ−1)

αψ̃k

√
cyγk[A(tot)

yγ , ϕk]

+
3∑

δ,k=1

√

bδkǫαψ̃ ·m(2)
δk D

(tot)
δ ϕk

)2
+ χ̂T + (τ − τ̄)

3∑

i,j,k=1

ǫ0ijkF (tot)
0i F (tot)

jk

}

+ Q̂EM ,

(7.14)

where (χ̂T , Q̂EM ) are the soon to be written explicitly appropriate modifications of their
tilde counterparts in (5.88), which were described below the aforementioned equation. Here,

F (tot)
αβ stands for the field strength associated to the (A1, A(tot)

2 ) gauge fields, in a similar

fashion to (4.50) before. Likewise, D(tot)
α is related to these same gauge fields as in (4.51).

We remind the reader that (y2, y3) ≡ (r, φ1) is simply a short-hand notation.
At this point, our goal is to see how the BHN equations in (5.91) get modified due to the

presence of the new M2-brane 25. These modified BHN equations shall follow from requiring
that the squared terms in (7.14) vanish. To the extent that it is possible, we shall choose the
coefficients of table 2 in such a way that we retain the form of (5.91). Let us start with the

BHN equation associated to the (F (tot)
12 ) component of the field strength. Following our just

explained strategy, we choose

g
(γ−1)
αβk = g

(4)
αβ = 0 ∀α, β = 1, 2, ∀k = 1, 2, 3, ∀γ = 2, 3. (7.15)

Then, our first BHN equation is precisely of the desired form:

√

2i|τ |2
τ − τ̄

F (tot)
αβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] +
3∑

δ,k=1

√

bδkǫαβ ·m(1)
δk D

(tot)
δ ϕk = 0, (7.16)

25It is perhaps convenient to refresh the memory of the reader a bit: we understand as a BHN equation
any relation of the form suggested in (5.48). Besides, it will soon be useful to recognize a Hitchin equation as
indicated in (5.49).
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where α, β = 1, 2. However, the above result is only possible due to a drastic reduction of
the parameter space for the coefficients of table 2. Due to (7.12), we need not worry about
satisfying the defining relation (5.13). But (5.16), (5.19), (5.22) and (5.24) get constrained
to

2∑

α=1

(
t(i)α
)2

=
2∑

α=1

(
h
(4)

αψ̃

)2
= 2
(
g
(1)
12kl

)2
+

2∑

α=1

(
h
(1)

αψ̃kl

)2
=

2∑

α=1

(
h
(i)

αψ̃k

)2
= 1, (7.17)

for all k, l = 1, 2, 3 and i = 1, 2. None of our choices so far affect the relation (5.30).
Nevertheless, it is most convenient to further choose all the m(1) coefficients −except for

m
(1)
12 , which we will presently take to be the arbitrary coefficient in terms of which all the

rest get fixed− as in (6.66) and (6.67). As shown around (6.69), these choices together with
the enforcement of the consistency requirements (5.92)26 make the last term in (7.16) vanish

and so, the (F (tot)
12 )-related BHN equation decouples to a Hitchin equation:

√

2i|τ |2
τ − τ̄

F (tot)
αβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕk, ϕl] = 0, ∀α, β = 1, 2. (7.18)

The defining relation (5.30) can then be satisfied with an appropriate choice of the relevant
m(2) coefficients. Additionally, the enforcement of (5.92) sets χ̂T = 0 in our total effective
Hamiltonian (7.14). Section 5.1.2 proves this last claim, as the heedful reader may recall.

Turning our attention to the (F (tot)

2ψ̃
)-related BHN equation, we will first do two coefficient

replacements in (7.14):

t(1)α ǫαψ̃βr → t
(1)
βr ǫαψ̃, t(2)α ǫαψ̃βφ1 → t

(2)
βφ1

ǫαψ̃. (7.19)

The advantage of such replacements consists in increasing the number of different values the
index β can take in the above terms: for α = 2, now β can be equal to either 1 or 2, whereas
before antisymmetry of the Levi-Civita symbol forced us to consider only β = 1. In exchange,
we must modify the first constraint in (7.17) as follows:

2∑

α=1

(
t(i)α
)2

= 1 →
2∑

β=1

(
t
(1)
βr

)2
=

2∑

β=1

(
t
(2)
βφ1

)2
= 1. (7.20)

No other changes apply. Hence, we can go ahead and do a few convenient coefficient choices:

t
(1)
1r = t

(2)
1φ1

= h
(1)

2ψ̃12
= h

(1)

2ψ̃13
= h

(1)

2ψ̃1
= h

(2)

2ψ̃1
= 0, t

(1)
2r = t

(2)
2φ1

= 1. (7.21)

26Strictly speaking, we consider (5.92) after imposing the replacement D2 → D(tot)
2 .
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Working in the ǫ2ψ̃ = 1 normalization convention and interpreting the dot product as the
usual scalar product, the second squared term in the Hamiltonian (7.14), for α = 2, gives
rise to the following BHN equation:

√

4i|τ |2
τ − τ̄

F (tot)

2ψ̃
+

√

C1

V3

(√
c2rD(tot)

2 A(tot)
r +

√

c̃2φ1D
(tot)
2 A(tot)

φ1

)

− ih
(4)

2ψ̃

√

C1a1
V3

[A(tot)
r ,A(tot)

φ1
]

− 2ih
(1)

2ψ̃23

√

d23[ϕ2, ϕ3]− i

3∑

k,γ=2

h
(γ−1)

2ψ̃k

√
cyγk[A(tot)

yγ , ϕk] +

3∑

δ,k=1

√

bδkm
(2)
δk D

(tot)
δ ϕk = 0,

(7.22)

where we have used the fact that d23 = d32, as can be seen from (4.129). What is more, the
last term above has already been proven to vanish: see (6.70). As there shown, such vanishing

only requires us to choose all m(2) coefficients −except m
(2)
12 − in a manner compatible with

both our earlier m(1) choices and with the defining relation (5.30). The proof also uses
the consistency conditions (5.92), suitably adapted to the present case where there is an
additional M2-brane in the configuration (M,1). The above may not look too enlightening
right away, but as it turns out, we can bring it into a most suggestive form with just some
uncomplicated algebra. Let us see how in details.

In appropriate generalization of (6.27) before, let us introduce

σ(tot) ≡ A(tot)
r + iA(tot)

φ1
, σ̄(tot) = A(tot)

r − iA(tot)
φ1

. (7.23)

In terms of the above complex scalar fields, the BHN equation (7.22) takes a far simpler form.
In details, one can easily check that

3∑

k,γ=2

h
(γ−1)

2ψ̃k

√
cyγk[A(tot)

yγ , ϕk] = 2

√

4i|τ |2
τ − τ̄

Re
(
γ1[σ̄

(tot), ϕ2] + γ2[σ̄
(tot), ϕ3]

)
,

ih
(4)

2ψ̃

√
a1[A(tot)

r ,A(tot)
φ1

] =

√

4i|τ |2
τ − τ̄

√

V3
C1
γ3[σ̄

(tot), σ(tot)], (7.24)

√
c2rD(tot)

2 A(tot)
r +

√

c̃2φ1D
(tot)
2 A(tot)

φ1
= 2

√

4i|τ |2
τ − τ̄

√

V3
C1

Re
(
γ5D(tot)

2 σ(tot)
)
,

where {γ} are a set of new constants, defined as certain linear combinations of the constants
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we are already familiar with:

γi ≡
1

2

√
τ − τ̄

4i|τ |2
(

h
(1)

2ψ̃(i+1)

√
cr(i+1) + ih

(2)

2ψ̃(i+1)

√
cφ1(i+1)

)

, γ3 ≡
1

2

√
τ − τ̄

4i|τ |2
√

C1a1
V3

h
(4)

2ψ̃
,

γ4 ≡
1

2

√

d23(τ − τ̄)

4i|τ |2 h
(1)

2ψ̃23
, γ5 ≡

1

2

√
τ − τ̄

4i|τ |2
√

C1

V3

(√
c2r − i

√

c̃2φ1
)
, (7.25)

with i = 1, 2. The cumbersome looking prefactors, along with the still unused γ4 constant,

are about to pay off: using (7.24) in (7.22), the (F (tot)

2ψ̃
)-related BHN equation becomes

F (tot)

2ψ̃
+ 2Re

(
γ5D(tot)

2 σ(tot)
)
= iγ4[ϕ2, ϕ3] + 2iRe

(
2∑

i=1

γi[σ̄
(tot), ϕ(i+1)]

)
+ γ3[σ̄

(tot), σ(tot)].

(7.26)

But we can do better. Let

ϕ̂2 ≡ ϕ2 + 2Re
(γ2σ̄

(tot)

γ4

)

, ϕ̂3 ≡ ϕ3 − 2Re
(γ1σ̄

(tot)

γ4

)

. (7.27)

Then, it does not take much effort to show that the commutator of the above two fields yields

[ϕ̂2, ϕ̂3] = [ϕ2, ϕ3] + 2Re
(

2∑

i=1

γi
γ4

[σ̄(tot), ϕ(i+1)]
)
+ 2iIm

(γ1γ̄2
γ24

)

[σ̄(tot), σ(tot)], (7.28)

where γ̄ denotes the complex conjugate of γ. In other words, this commutator is proportional
(with proportionality constant (iγ4)

−1) to the right-hand side of the BHN equation (7.26),
as long as we demand that

γ3 = −2Im
(γ1γ̄2
γ4

)

(7.29)

holds true. If we use the equalities cr2 = cr3 and cφ12 = cφ13 following from (4.135), together
with the {γ}’s definition in (7.25), the above can be rewritten exclusively in terms of the
coefficients in tables 1 and 2:

h
(4)

2ψ̃
h
(1)

2ψ̃23

h
(1)

2ψ̃3
h
(2)

2ψ̃2
− h

(1)

2ψ̃2
h
(2)

2ψ̃3

= −2

√

cφ12cr2V3
a1d23C1

. (7.30)

Here, we have arranged the result so that the coefficients with (without) supergravity in-
terpretation appear on the right-hand (left-hand) side of the equation. Since we wish to
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constrain the M-Theory model (M,1) as less as possible, we shall choose to satisfy the above

by suitably fixing the h
(1)

2ψ̃3
coefficient. In this case, the (F (tot)

2ψ̃
)-related BHN equation reads

F (tot)

2ψ̃
− iγ4[ϕ̂2, ϕ̂3] = −2Re

(
γ5D(tot)

2 σ(tot)
)
, (7.31)

which we shall consider to be its final form for now. Note that, as was the case with the
(
F (tot)
12

)
-related BHN equation in (7.18), the above is a Hitchin equation too. However, this

time the Hitchin equation is sourced.
To finish our discussion regarding this second BHN equation, let us collect all coefficient

choices made in deriving it and write down the constraints that the still undetermined coef-
ficients are subjected to. To begin with, we no longer need to worry about the constraints in
(7.20), since the coefficient choices in (7.21) satisfy them leaving no degree of freedom. On
the other hand, those same choices used in (7.17) lead to

2∑

α=1

(
h
(4)

αψ̃

)2
= 2
(
g
(1)
1223

)2
+

2∑

α=1

(
h
(1)

αψ̃23

)2
=
(
h
(i)

1ψ̃1

)2
=

2∑

α=1

(
h
(i)

αψ̃2

)2
=

2∑

α=1

(
h
(2)

αψ̃3

)2
= 1, (7.32)

valid for all i = 1, 2, together with the constraint

2
(
g
(1)
12kl

)2
+
(
h
(1)

1ψ̃kl

)2
= 1, (7.33)

which applies when (k, l) = {(1, 2), (1, 3)}. Note that we have already taken into account
the enforcement of (7.30) too. Lastly and as explained in the text, in order to set to zero the
last terms in (7.16) and (7.22) we have almost exhausted the defining relation (5.30), which
now is simply given by

(
m

(1)
12

)2
+
(
m

(2)
12

)2
=

1

2
. (7.34)

We consider the (F (tot)

1ψ̃
)-related BHN equation next. This follows from the vanishing of

the second squared term in the Hamiltonian (7.14), for α = 1. Self-consistency of our analysis
requires us to implement the coefficient replacements in (7.19), together with the relevant
choices in (7.21). Additionally, we already argued that the result in (6.70) applies to the
present case. If we further consider that

h
(1)

1ψ̃12
= h

(1)

1ψ̃23
= h

(1)

1ψ̃2
= h

(2)

1ψ̃2
= 0 (7.35)
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and working in the ǫ1ψ̃ = 1 normalization convention, the BHN equation of interest is

√

4i|τ |2
τ − τ̄

F (tot)

1ψ̃
+

√

C1

V3

(√
c2rD(tot)

2 A(tot)
r +

√

c̃2φ1D
(tot)
2 A(tot)

φ1

)

− ih
(4)

1ψ̃

√

C1a1
V3

[A(tot)
r ,A(tot)

φ1
]

− 2ih
(1)

1ψ̃13

√

d13[ϕ1, ϕ3]− i
∑

k=1,3

3∑

γ=2

h
(γ−1)

1ψ̃k

√
cyγk[A(tot)

yγ , ϕk] = 0. (7.36)

In much the same way as before, rewriting the above in terms of the (σ(tot), σ̄(tot)) complex
scalar fields introduced in (7.23) is convenient. The result this time looks as follows:

F (tot)

1ψ̃
+ 2Re

(
γ5D(tot)

2 σ(tot)
)
=iγ̃4[ϕ1, ϕ3] + 2iRe

(
γ̃1[σ̄

(tot), ϕ1] + γ̃2[σ̄
(tot), ϕ3]

)

+ γ̃3[σ̄
(tot), σ(tot)], (7.37)

where γ5 is as in (7.25) and we have defined

γ̃1 ≡
1

2

√
τ − τ̄

4i|τ |2
(

h
(1)

1ψ̃1

√
cr1 + ih

(2)

1ψ̃1

√
cφ11

)

, γ̃3 ≡
1

2

√
τ − τ̄

4i|τ |2
√

C1a1
V3

h
(4)

1ψ̃
,

γ̃2 ≡
1

2

√
τ − τ̄

4i|τ |2
(

h
(1)

1ψ̃3

√
cr3 + ih

(2)

1ψ̃3

√
cφ13

)

, γ̃4 ≡
1

2

√

d13(τ − τ̄)

4i|τ |2 h
(1)

1ψ̃13
.

(7.38)

At this stage, it should not come as a surprise that the above BHN equation can be brought
into a more suggestive form. To this aim, we now define

ϕ̂1 ≡ ϕ1 + 2Re
( γ̃2σ̄

(tot)

γ̃4

)

(7.39)

and note that the commutator between this field and ϕ̂3 in (7.27), namely

[ϕ̂1, ϕ̂3] = [ϕ1, ϕ3] + 2Re
(γ1
γ4

[σ̄(tot), ϕ1] +
γ̃2
γ̃4

[σ̄(tot), ϕ3]
)

+ 2iIm
(γ1γ̃2
γ4γ̃4

)

[σ̄(tot), σ(tot)], (7.40)

is exactly (iγ̃4)
−1 times the right-hand side of (7.37) iff the following two equalities are

imposed:

γ̃1 =
γ1γ̃4
γ4

, γ̃3 = −2Im
(γ1γ̃2
γ4

)

. (7.41)

In view of (7.25) and (7.38) and considering separately the real and imaginary parts of the
first constraint above, we can write these equalities in terms of the coefficients of tables 1
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and 2 as

h
(1)

2ψ̃2
h
(1)

1ψ̃13

h
(1)

1ψ̃1
h
(1)

2ψ̃23

= 1 =
h
(2)

2ψ̃2
h
(1)

1ψ̃13

h
(2)

1ψ̃1
h
(1)

2ψ̃23

,
h
(4)

1ψ̃
h
(1)

2ψ̃23

h
(1)

1ψ̃3
h
(2)

2ψ̃2
− h

(1)

1ψ̃2
h
(2)

1ψ̃3

= −2

√

cr2cφ12V3
a1d23C1

, (7.42)

where we have also used d12 = d23 and (cr1 = cr2, cφ11 = cφ12) following from (4.129) and

(4.135), respectively. We shall satisfy the rightmost equality by suitably fixing h
(4)

1ψ̃
. The

implementation of the other two equalities will be done in an a priori strange fashion, which
will turn out to be most useful not much later on:

h
(1)

1ψ̃1
= h

(1)

2ψ̃2
= h

(2)

1ψ̃1
= h

(2)

2ψ̃2
= 1, h

(1)

1ψ̃13
= h

(1)

2ψ̃23
. (7.43)

Putting everything together, we find that the (F (tot)

1ψ̃
)-related BHN equation decouples to the

following sourced Hitchin equation:

F (tot)

1ψ̃
− iγ4[ϕ̂1, ϕ̂3] = −2Re

(
γ5D(tot)

2 σ(tot)
)
. (7.44)

Notice that here we have used the fact that γ̃4 = γ4 after choosing (7.43), as can be checked
from their definitions in (7.25) and (7.38). This equality combined with (7.41) also implies
that γ̃1 = γ1, which will soon come in handy. It is pretty straightforward to check that the
coefficient choices made in deriving this Hitchin equation reduce the possible values that the
still arbitrary parameters in (7.32) and (7.33) can take. Specifically, they are now required
to satisfy the very stringent conditions

2
(
g
(1)
1223

)2
= 2
(
g
(1)
1213

)2
= 1−

(
h
(1)

1ψ̃13

)2
, 2

(
g
(1)
1212

)2
= 1 =

2∑

α=1

(
h
(2)

αψ̃3

)2
. (7.45)

Conversely, the constraint (7.34) is not affected.
It will certainly not look any nicer, but in anticipation to the boundary analysis to come,

we must rewrite our (F (tot)
12 )-related Hitchin equation (7.18) in terms of the hatted complex

scalar fields (ϕ̂1, ϕ̂2, ϕ̂3) defined in (7.27) and (7.39). This amounts to a straightforward yet
tedious algebraic exercise. Hence, let us show a few intermediate results before stating the
end result:

√

2i|τ |2
τ − τ̄

F (tot)
αβ − i

3∑

k,l=1

g
(1)
αβkl

√

dkl[ϕ̂k, ϕ̂l] = −
3∑

k=1

Re
(
κk[σ̄

(tot), ϕk]
)
− κ4[σ̄

(tot), σ(tot)], (7.46)
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where α, β = 1, 2 and we have defined the {κ} constants as

κ1 ≡ −4i
√
d12
γ4

(γ2g
(1)
αβ12 − γ1g

(1)
αβ13), κ2 ≡

−4i
√
d12

γ4
(γ̃2g

(1)
αβ12 − γ1g

(1)
αβ23),

κ3 ≡
4i
√
d12
γ4

(γ̃2g
(1)
αβ13 + γ2g

(1)
αβ23), κ4 ≡ 4i

√

d12

( γ̄2γ̃2 − ¯̃γ2γ2
γ24

)

g
(1)
αβ12.

(7.47)

Here, we have taken into account that dkl in (4.129) is the same for all (k, l). The last
subtleties employed when defining the above {κ} constants amount to implementing γ̃i = γi
for i = 1, 4, as just explained. Once again making use of the definitions in (7.27) and (7.39),
one can verify that

3∑

k=1

Re
(
κk[σ̄

(tot), ϕk]
)
=

3∑

k=1

Re
(
κk[σ̄

(tot), ϕ̂k]
)
− i

γ4
Re
(
κ1 ¯̃γ2 + κ2γ2 + κ3γ1

)
[σ̄(tot), σ(tot)].

(7.48)

Consequently, we can introduce a last κ constant,

κ5 ≡ − i

γ4
Re
(
κ1 ¯̃γ2 + κ2γ2 + κ3γ1

)
+ κ4, (7.49)

and rewrite the Hitchin equation (7.18), for (α = 1, β = 2), in what shall soon be seen to be
its most convenient form:

√

2i|τ |2
τ − τ̄

F (tot)
12 − i

3∑

k,l=1

g
(1)
12kl

√

dkl[ϕ̂k, ϕ̂l] = −
3∑

k=1

Re
(
κk[σ̄

(tot), ϕ̂k]
)
− κ5[σ̄

(tot), σ(tot)]. (7.50)

Summing up, in the case where we add an M2-brane oriented along (t, x1, ψ̃) to the
configuration (M,1), the energy associated to the corresponding world-volume Hamiltonian
is minimized when the Hitchin equations (7.31), (7.44) and (7.50) are satisfied27. It is note-
worthy to emphasize that these all are sourced Hitchin equations. This is true for the gauge
choice (7.10)-(7.11), for time-independent field configurations and when the consistency re-

quirements (5.92) are met −after the replacement D2 → D(tot)
2 . Moreover, the energy mini-

mization process restricts enormously the values that the coefficients of table 2, which appear
in the Hamiltonian, can take. Among those coefficients, the ones that have not yet been ap-
propriately fixed must fulfill both (7.34) and (7.45).

27To fully make sense of these Hitchin equations in terms of variables introduced prior to this section, the
reader will need to see the definitions in (7.25), (7.27), (7.38), (7.39), (7.47) and (7.49), as well as set γ̃i = γi
for i = 1, 4.
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7.3 The boundary theory revisited

Now that we know the BPS equations that govern the four-dimensional gauge theory following
from the configuration depicted in figure 14, it is time to investigate what the boundary action
is. That is, the present section is devoted to the adaptation of the contents in sections 6.1
and 6.2 to the present case, where an M2-brane along (t, x1, ψ̃) is added to the model (M,1).
By the end of this section, we will be ready to topologically twist the theory. As was the case
before in part II, this twist will hugely clarify the situation and (finally!) open the possibility
for an exciting physical interpretation of the new M2-brane. However, for the time being,
the reader must remain patient: the computations in this section are the last ones required
to reach such a climactic point in our discussion.

The first thing we will do in this section is work out the generalization of (6.11) to the case
where we include the new M2-brane of figure 14. To this aim, we will proceed in the short-cut
manner used before: by comparison to [54]. However, the comparison is only possible after
we rewrite the Hamiltonian (7.14) using the sourced Hitchin equations (7.31), (7.44) and
(7.50). In doing so, we must take into account that these Hitchin equations imply χ̂T = 0,
as explained below (7.18). All in all, the total effective Hamiltonian can be written as

Ĥ =
4i|τ |2
τ − τ̄

∫

d4xTr
{ 2∑

α=1

(

F (tot)

αψ̃
− iγ4[ϕ̂α, ϕ̂3] + 2Re

(
γ5D(tot)

2 σ(tot)
))2

+
(

F (tot)
12 − i

√
τ − τ̄

2i|τ |2
3∑

k,l=1

g
(1)
12kl

√

dkl[ϕ̂k, ϕ̂l] +
3∑

k=1

Re
(
κ̃k[σ̄, ϕ̂k]

)
+ κ̃5[σ̄, σ]

)2}

+

∫

d4xTr
{

(τ − τ̄)

3∑

i,j,k=1

ǫ0ijkF (tot)
0i F (tot)

jk

}

+ Q̂EM .

(7.51)

It is perhaps worth mentioning a few details regarding the overall prefactor in the bulk
Hamiltonian part, i.e. the first two lines above. The first squared term follows from (7.31)
for α = 2 and (7.44) for α = 1 in a slightly tricky way. On the one hand, we must remember
that we suppressed the above appearing overall prefactor (actually, its square root) when
going from (7.22)/(7.36) to (7.26)/(7.37) before obtaining (7.31)/(7.44), respectively. On the
other hand, the seemingly arbitrary choices in (7.43) here pay off again: they set γ4 = γ̃4,
as can be seen from their definitions in (7.25) and (7.38) after noting that d13 = d23 due to
(4.129). Compared to (7.50), the second squared term above is the result of summing over
α, β = 1, 2 and exploiting antisymmetry over these indices before taking the common factor
out of the bulk integral. The {κ̃} constants are therefore just a rescaled version of the {κ}’s
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in (7.47) and (7.49), for (α = 1, β = 2):

κ̃x =

√
τ − τ̄

2i|τ |2 κx
∣
∣
∣
∣
α=1,β=2

∀x = 1, 2, 3, 5. (7.52)

With these subtleties in mind, the suggested Hamiltonian should make perfect sense. Addi-
tionally, it is written in a manner that allows us to directly compare it to (2.4) in [54].

Note that, by definition, we should understand the last term Q̂EM in the Hamiltonian
(7.51) as an apt modification of (6.1) and (6.2). Namely, our gauge choice (7.10)-(7.11)
together with the time-independence of all fields in the theory set the electric charge to zero.
At the same time, the magnetic charge contributes to the theory at the boundary X3 of the
spacetime X4, since total derivatives along the unbound directions (t, x1, x2) do not affect
the physics under study. Mathematically,

Q̂EM ≡ Q̂E + Q̂M , Q̂E = 0, Q̂M =
4i|τ |2
τ − τ̄

∫

d4x ∂ψ̃ q̂M =
4i|τ |2
τ − τ̄

∫

d3x q̂M , (7.53)

where, quite evidently, d4x ≡ dtdx1dx2dψ̃ while d3x ≡ dtdx1dx2. Let us turn towards the
precise form of q̂M next. It is necessary for the reader to recall the paragraph containing
equations (6.5) and (6.6) before. In view of what is there explained, it should be easy to
recognize that the second line in the Hamiltonian (7.51) does not contribute to the magnetic
charge Q̂M . Briefly, there are only (F , [ϕ,ϕ]) type of terms in this squared BHN equation,
so they will contribute (ϕDϕ)-like terms to the magnetic charge. However, since this field
strength is associated to only the unbound directions (x1, x2), the integration by parts will
render such contributions to the boundary physics negligible: we can set them to zero by
the usual convention that all fields vanish at spatial infinity. Contrarily, the first line in the
Hamiltonian (7.51) does contribute to Q̂M : both the (F · Dϕ) and the (F · [ϕ,ϕ]) crossed
terms lead to non-trivial terms in the magnetic charge. Note that this is not true for the
(Dϕ · [ϕ,ϕ]) crossed term, since the covariant derivative is along the unbound direction x2 in
this case. Putting everything together while following [54], we can write q̂M as

q̂M ≡
2∑

α=1

Tr
[

2A(tot)
α Re(γ5D(tot)

2 σ(tot))− iγ4(ϕ̂αD(tot)
α ϕ̂3 − ϕ̂3D(tot)

α ϕ̂2)
]

. (7.54)

This fully specifies the magnetic charge in the theory. What is more, the Hamiltonian (7.51)
is now completely described as well.

In precisely the same way as that pointed out around (6.8)-(6.10) earlier on, we can
convert the first term in the last line of the Hamiltonian (7.51) to a boundary action. This
means that, once on shell −i.e. the first two lines in (7.51) are set to zero−, the generalization
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of the boundary action (6.11) we were looking for is given by

Ŝbnd =
4i|τ |2
τ − τ̄

∫

d3x q̂M + (τ + τ̄)

∫

X3

Tr
(
A(tot) ∧ dA(tot) +

2i

3
A(tot) ∧ A(tot) ∧ A(tot)

)
,

(7.55)

with q̂M as defined in (7.54). What we will do next is “massage” the above until we bring it
into its most convenient form for our later purposes.

As we argued at the very beginning of section 7.1, the new M2-brane does not alter the
supersymmetry of model (M,1). Consequently and as long as the replacements in (7.9) are
carried out, the boundary conditions previously derived are still valid when the M2-brane is
present. In particular, we want to focus on the following appropriate modifications of the
boundary conditions in (6.19) and (6.21):

ϕ3 = A(tot)
φ1

= A(tot)
r = [ϕ1, ϕ2] = Dψ̃ϕ1 = Dψ̃ϕ2 = 0 at ψ̃ = 0. (7.56)

These boundary conditions, when taken into account simultaneously with the suitably mod-

ified (D2 → D(tot)
2 ) consistency requirements in (5.92) and with the definitions (7.23), (7.27)

and (7.39) imply that

D(tot)
2 ϕ3 = Dψ̃ϕ2, D1ϕ3 = Dψ̃ϕ1, ϕ̂k = ϕk ∀k = 1, 2, 3 and at ψ̃ = 0. (7.57)

Such observations are pertinent because they are just now going to help us rewrite q̂M in
(7.54) in the form of qM in (6.3) and in this manner exploit previous computations. The
idea is to add and subtract terms that are identically zero until q̂M ∼ qM . More concretely,
because ϕ̂3 = ϕ3 = 0 at X3, we can simply go ahead and add

γ6Tr
(

2∑

α,β=1

ϕ̂3F (tot)
αβ

)
, γ7

3∑

k,l,m=1

ǫklmTr
(
ϕ̂k[ϕ̂l, ϕ̂m]

)
, −iγ4Tr

(
ϕ̂3D(tot)

2 ϕ̂1

)
(7.58)

to q̂M without any repercussion. Here, (γ6, γ7) are some arbitrary real constants while γ4
was defined in (7.25). Similarly, because of (7.57), it is also possible to add the following
terms to q̂M without the slightest consequence:

−iγ4Tr
(
ϕ̂αD(tot)

β ϕ̂3

)
, −iγ4Tr

(
ϕ̂αDψ̃ϕ̂β

)
∀α, β = 1, 2 with α 6= β. (7.59)

The last of these type of manipulations we wish to do amounts to subtracting

−iγ4Tr
(
ϕ̂αD(tot)

α ϕ̂3

)
, iγ4Tr

(
ϕ̂3D(tot)

2 ϕ̂2

)
∀α = 1, 2 (7.60)

from q̂M . In conclusion, the most beneficial form for the boundary action remains as in
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(7.55), but with the magnetic charge density q̂M written as

q̂M =

2∑

α,β=1

3∑

k,l,m=1

Tr
[
γ6ǫkαβϕ̂kF (tot)

αβ + ǫklm
(
γ7ϕ̂k[ϕ̂l, ϕ̂m]− iγ4ϕ̂kD(tot)

l ϕ̂m
)

+ 2A(tot)
α Re

(
γ5D(tot)

2 σ(tot)
)]

(7.61)

instead of as in its defining form in (7.54).
Even tough (7.55) and (7.61) constitute the results we were seeking in this section, it is

worth pausing for a moment before continuing our way to the promised topological twist.
Indeed, it is quite enriching to reflect upon the differences between the two magnetic charge
densities considered so far: (6.3) in the absence of the new M2-brane of figure 14 and (7.61)
in its presence. We can divide their dissimilarities into three classes, from less to more
important:

1. Differences in the coefficients. Although the magnetic charges take a similar form in
both cases, all the terms are separately rescaled. In more detail, we find that the
following coefficient changes are required to try to establish a biconditional statement
QM ↔ Q̂M :

d1 ↔
4i|τ |2
τ − τ̄

γ6,
id2
3

↔ 4i|τ |2
τ − τ̄

γ7, d3 ↔ −i4i|τ |
2

τ − τ̄
γ4, (7.62)

where we have taken into account the global prefactor difference following from com-
paring (6.2) and (7.53). We remind the reader that τ was defined in (5.83), (d1, d2, d3)
in (6.7), γ4 in (7.25) and (γ6, γ7) are arbitrary real parameters. All (τ, d1, d2, d3, γ4)
admit a supergravity interpretation in terms of the warp factors and constant dilaton
that characterize the M-Theory model (M,1).

2. Differences in the fields. As already discussed, the new M2-brane forces us to consider
new contributions to the gauge and scalar fields (A2, σ, σ̄), after gauge fixing −see
(7.9). These changes do not alter the form of the terms to which the above rescaling
applies, but they compel us to consider

Fαβ ↔ F (tot)
αβ , D2 ↔ D(tot)

2 , ϕk ↔ ϕ̂k ∀α, β = 1, 2 and ∀k = 1, 2, 3 (7.63)

when mapping QM ↔ Q̂M . It is perhaps worth reminding the reader that {ϕ̂} are
certain linear combinations of the ϕ and (σ, σ̄) scalar fields in the gauge theory, as can
be seen from their definitions in (7.27) and (7.39).
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3. Appearance of a new term. There is a new term in Q̂M that is not present in QM and
that spoils an easy relation of the form QM ↔ Q̂M :

2
4i|τ |2
τ − τ̄

2∑

α,β=1

Tr
[

A(tot)
α Re

(
γ5D(tot)

2 σ(tot)
)]

, (7.64)

with γ5 a constant given by (7.25). This term will soon become crucial to understand
the essential role of the new M2-brane in realizing knots in (M,1). For the time being, it

is important to note that this term is proportional to (A1, A(tot)
2 ). That is, proportional

to those components of the gauge field that are oriented along the boundary X3 and
that are not set to zero by our gauge choice (7.10)-(7.11).

7.4 The topological twist revisited: making sense of the new M2-brane

We are finally ready to perform the topological twist described in section 6.3, but applied to
this present scenario where we have a novel M2-brane in (M,1). From the point of view of the
bosonic matter content in the world-volume gauge theory following from the configuration
in figure 14, the topological twist we wish to consider amounts to a suitable adaptation
of equations (6.26)-(6.30) and (6.72) to the current case. Specifically, we must entertain a
certain rescaling of the gauge fields:

Â =
∑

µ

Âµdx
µ, Âµ = iA(tot)

µ ∀µ, (7.65)

with xµ labeling the spacetime directions (t, x1, x2, ψ̃). We will refer to the twisted field
strength and covariant derivative associated to the above twisted gauge field as F̂ and D̂µ,

where F̂ = −iF (tot) and D̂µ = D(tot)
µ as a direct consequence of the above. In sections 6.3 and

6.3.1, we learnt that the topological twist affects some of the scalar fields in the theory via
a certain rescaling and rearrangement into a one-form. We also learnt that it is convenient
to consider such rearrangement differently for boundary and bulk. Consequently, for the
boundary we will consider an appropriate modification of (6.26):

Φ̂ =
∑

µ

Φ̂µdx
µ, (Φ̂0, Φ̂1, Φ̂2, Φ̂3) = i(ϕ̂3, ϕ̂1, ϕ̂2,A(tot)

3̃
), (7.66)
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whereas for the bulk we will generalize (6.72):

Λ̂ =
∑

µ

Λ̂µdx
µ, (Λ̂0, Λ̂1, Λ̂2, Λ̂3) = i(A(tot)

3̃
, ϕ̂1, ϕ̂2, ϕ̂3). (7.67)

It should be noted that the complex scalar fields (σ(tot), σ̄(tot)) are not affected by the twisting
process when they appear by themselves. However, when they are part of the {ϕ̂} scalar fields,
they do “feel” the twist.

In this section, we will start by implementing the above twist in the boundary action
(7.55), with q̂M as in (7.61). Then, we will twist the bulk BPS equations (7.31), (7.44)
and (7.50), together with the consistency requirements (5.92), subject to the replacements in
(7.9). For both boundary and bulk, we will ponder over the thus obtained results so as to
fully grasp the importance and connection to Knot Theory of the new M2-brane in figure 14.

Twisting the boundary

The first of the just described tasks, namely twisting (7.55) and (7.61), is straightforward
in view of the above exposed. The result is

Ŝ
(t)
bnd = −4i|τ |2

τ − τ̄

∫

d3xq̂
(t)
M − (τ − τ̄)

∫

X3

Tr
(
Â ∧ dÂ+

2

3
Â ∧ Â ∧ Â

)
, (7.68)

with the twisted magnetic charge density q̂
(t)
M given by

q̂
(t)
M =

2∑

α,β=1

2∑

a,b,c=0

Tr
[

γ6ǫaαβΦ̂aF̂αβ − iǫabc
(
γ7Φ̂a[Φ̂b, Φ̂c] + γ4Φ̂aD̂bΦ̂c

)
+ 2iÂαRe

(
γ5D̂2σ

(tot)
)]

.

(7.69)

Another way to obtain this twisted boundary action is by comparison with the previously
performed topological twist, where (6.11) and (6.3) transformed to (6.36) and (6.37), respec-
tively. The comparison is possible thanks to the enumeration that concluded the preceding
section, with special emphasis on equations (7.62) and (7.63). As already happened with
(6.36) before, the above is not quite the correct twisted boundary action because it is not
compatible with the amount of supersymmetry we require: N = 4 with half-BPS boundary
conditions. The proof for this claim and an elegant way out can be found in the bril-
liant work [61], sections 3.4 and 3.5. The interested reader may also find worth browsing
through [70], which contains an illuminating discussion on how subtle and difficult it is to
correct this shortcoming, as well as a different yet equivalent procedure to fix the situation.
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Here, we shall limit ourselves to the postulation of the correct twisted boundary action:

Ŝ
(t)
bnd,tot = −4i|τ |2

τ − τ̄

∫

d3xq̂
(t)
M + iΨ

∫

X3

Tr
(
Â ∧ dÂ+

2

3
Â ∧ Â ∧ Â

)
, (7.70)

where q̂
(t)
M remains as in (7.69) and the so-called canonical parameter Ψ was defined in (6.39).

Note that all the comments on Ψ previously made remain true now as well, most significantly
equation (6.41). Also well worth mentioning, the above is the counterpart to (6.40) before.

At this stage, we have fulfilled the promise of establishing the twisted action governing
the physics at the boundary X3. However, (7.70) and (7.69) are not a priori enlightening and
some algebraic effort is needed to bring these into a physically meaningful form. In fact, the
effort is minimal, since we can exploit previous computations to our advantage. There is a
“but”. As already advanced in the end of the previous section, the term ∼ (ÂD̂2σ

(tot)) in
the magnetic charge is somewhat special and does not admit a clear mapping to the simpler
scenario of parts I and II where no M2-brane was present in the spacetime directions. We
will, for the time being, keep this term singled out and only get back to it in the very end
of the section, when it will fit in place perfectly. Proceeding in this cautious manner, all we
need to do is carry out the sums in (7.69). This is an easy enough task, specially in view
of the earlier sums in (6.45)-(6.47). Indeed, a substitution (A, Φ) → (Â, Φ̂) in (6.42)-(6.44)
immediately allows us to express the twisted magnetic charge in the language of differential
geometry as

4i|τ |2
τ − τ̄

∫

d3x q̂
(t)
M =−

∫

X3

Tr
(

2D̃1Φ̂ ∧ F̂ +
2

3
D̃2Φ̂ ∧ Φ̂ ∧ Φ̂ + D̃3Φ̂ ∧ dÂΦ̂

)

− 8|τ |2
τ − τ̄

∫

d3x Tr
[

ÂαRe
(
γ5D̂2σ

(tot)
)]

, (7.71)

where we have defined

D̃1 ≡ −1

2

4i|τ |2
τ − τ̄

γ6, D̃2 ≡ 3i
4i|τ |2
τ − τ̄

γ7, D̃3 ≡ i
4i|τ |2
τ − τ̄

γ4. (7.72)

Following the same logic as that between (6.51)-(6.60), we demand

D̃2 =
D̃3

1

(iΨ)2
, D̃3 =

D̃2
1

iΨ
(7.73)

and define a new gauge field: a linear combination of the original twisted gauge field and the
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one-form in (7.66), given by

ÂD ≡ Â+
D̃1

iΨ
Φ̂. (7.74)

Then, the twisted action in X3 following from the configuration depicted in figure 14 can be
written as a topological, complexified Chern-Simons action plus an additional contribution
that we will discuss in the end of the section:

Ŝ
(t)
bnd,tot =iΨ

∫

X3

Tr(ÂD ∧ dÂD +
2

3
ÂD ∧ ÂD ∧ ÂD) +

8|τ |2
τ − τ̄

Tr

2∑

α=1

∫

d3x
[

ÂαRe
(
γ5D̂2σ

(tot)
)]

.

(7.75)

A few more comments are due before we move from the boundary X3 to the bulk X4.
To begin with, note that the constraints in (7.73) actually don’t constrain us at all! We can
satisfy them by conveniently choosing the arbitrary constants (γ6, γ7). On the other hand,
there are two more constraints we did not mention yet: the apt modification of (6.62) given
by D̃1 = iΨ(t̂− t̂−1)/2, with t̂ introduced in (6.32), and the very same (6.63). As previously
explained, these constraints follow form supersymmetry and gauge invariance requirements,
respectively. Let us see how we go about satisfying those:

• Because of the constraint (7.73), D̃1 is related to D̃3. Then, looking at the definition
of D̃3 in (7.72), we note that this parameter depends on γ4, which in turn was defined

in (7.25). γ4 depends one of the coefficients, h
(1)

2ψ̃23
, that is listed in table 2 and that

does not have any physical meaning. As can be seen from (7.43) and (7.45), h
(1)

2ψ̃23
has

not yet been fixed. Consequently, we can choose its value such that the supersymme-
try constraint is satisfied without imposing any condition on our model (M,1). For
concreteness, the just described calculation yields the following choice:

h
(1)

2ψ̃23
=

Ψ

2

t̂− t̂−1

√
d23

√
τ − τ̄

4i|τ |2 . (7.76)

Notice that this means fixing (h
(1)

1ψ̃23
, g

(1)
1223, g

(1)
1213) as well, up to an irrelevant sign.

But even more importantly, notice that this is in sharp contrast to what happened
in section 6.3 before, where we (unfortunately) needed to narrow down the family of
M-Theoretical configurations (M,1) to fulfill (6.62)!

• Against this background, (6.63) still requires us to impose conditions on the model (M,1)
to hold true. However, as pointed out in both footnote 20 and at the end of section
6.3, this is more of a structural trouble than a limitation of our own construction.
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Twisting the bulk

We will now generalize the contents of section 6.3.1 to the case where a new M2-brane
along (t, x1, ψ̃) is added to the model (M,1). After doing so we will be able to give a most
interesting four-dimensional interpretation to this new M2-brane. Just to get the ball rolling,
let us advance that such interpretation will finally land us in the exciting discipline of Knot
Theory. On the not-so-bright side, it will be an “emergency landing”, where things will not
fully work out. Like the phoenix, we shall profit from the ashes of the present section to
resurrect in the next chapter and, then yes, correct course to land with the elegance that is
due in the fascinating discipline of Knot Theory.

We will start with the consistency requirements in (5.92), subject to D2 → D(tot)
2 . First of

all, we note that these are written in terms of the unhatted scalar fields (ϕ1, ϕ2, ϕ3), unlike
the boundary action we just discussed and the Hitchin equations we shall turn to after. We
fix this situation by using (7.27) and (7.39) to rewrite the consistency requirements as

D1ϕ̂2 −D(tot)
2 ϕ̂1 =

2

γ4
Re
(
γ2D1σ̄

(tot) − γ̃2D(tot)
2 σ̄(tot)

)
,

D(tot)
α ϕ̂3 −Dψ̃ϕ̂α = − 2

γ4
Re
(
γ1D(tot)

α σ̄(tot)
)

∀α = 1, 2,

D1ϕ̂1 +D(tot)
2 ϕ̂2 +Dψ̃ϕ̂3 =

2

γ4
Re
(
γ̃2D1σ̄

(tot) + γ2D(tot)
2 σ̄(tot)

)
,

(7.77)

where we have used γ̃4 = γ4 ∈ R, as explained below (7.44), together with Dψ̃σ
(tot) = 0 =

Dψ̃σ̄
(tot), which readily follow from considering both (7.12) and (7.23). We are now ready to

topologically twist the consistency requirements. It is not hard to see that, under (7.65) and
(7.67), the above equations read

D̂1Λ̂2 − D̂2Λ̂1 =
2i

γ4
Re
(
γ2D̂1σ̄

(tot) − γ̃2D̂2σ̄
(tot)

)
,

D̂αΛ̂3 − D̂ψ̃Λ̂α = − 2i

γ4
Re
(
γ1D̂ασ̄

(tot)
)

∀α = 1, 2,

D̂1Λ̂1 + D̂2Λ̂2 + D̂ψ̃Λ̂3 =
2i

γ4
Re
(
γ̃2D̂1σ̄

(tot) + γ2D̂2σ̄
(tot)

)
.

(7.78)

Consider the replacements Λ → Λ̂ and D → D̂ in (6.78). It is then easy to see that the left-
hand side of the first two lines above amounts to the different components of dÂΛ̂. Similarly,

the left-hand side of the last equation above is the only component of dÂ ∗ Λ̂. What we are
hinting at here is that perhaps a generalization of (6.79) can accommodate the new M2-brane.
But to write the consistency equations in such a concise manner, we need to put some effort
into the right-hand sides. This is our next goal.
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Uncomplicated calculations allow us to rewrite the right-hand sides of these consistency
equations as (2i/γ4) times

Re(γ2)Re
(
D̂1σ̄

(tot)
)
− Im(γ2)Im

(
D̂1σ̄

(tot)
)
− Re(γ̃2)Re

(
D̂2σ̄

(tot)
)
+ Im(γ̃2)Im

(
D̂2σ̄

(tot)
)
,

Im(γ1)Im
(
D̂ασ̄

(tot)
)
− Re(γ1)Re

(
D̂ασ̄

(tot)
)

∀α = 1, 2,

Re(γ̃2)Re
(
D̂1σ̄

(tot)
)
− Im(γ̃2)Im

(
D̂1σ̄

(tot)
)
+Re(γ2)Re

(
D̂2σ̄

(tot)
)
− Im(γ2)Im

(
D̂2σ̄

(tot)
)
,

(7.79)

respectively. Be warned: the next equation is crucial, so let us motivate it meticulously.
We observe that the right-hand sides of all these consistency equations depend solely on the
dynamics of the complex scalar fields (σ(tot), σ̄(tot)). When no new M2-brane was present,
these same fields were denoted (σ, σ̄). By definition, the difference between these two sets
of fields is that, in the former, we have switched on expectation values for the fields −recall
(7.9) and (7.23). Further refreshing our memory, (σ, σ̄) were really “useless” all along part
II, in the absence of this new M2-brane. So much so, that we completely trivialized their
dynamics in (5.42)28. Consequently, when the M2-brane is present, it is perfectly possible to
reinterpret (σ(tot), σ̄(tot)) as their expectation values (〈σ〉, 〈σ̄〉), after demanding that (5.42)
holds true. This does not lead to any hurdle. For concreteness, the reader may choose to
do so, for example, at the level of the Hamiltonian (7.14). The take-home message is this:
we can identify the new M2-brane of figure 14 as the one and only source for the dynamics
of (σ(tot), σ̄(tot)). Such being the case, these scalar fields must be oriented orthogonal to the
M2-brane, which in this case means that they are oriented along the spatial direction x2. In
other words, (σ(tot), σ̄(tot)) are localized along x2 if we impose (5.42). Yet another way to put
it is to say that these scalar fields behave as delta functions in the direction orthogonal to
the new M2-brane state:

σ(tot), σ̄(tot) → 〈σ(tot)〉, 〈σ̄(tot)〉 ∼ δM2. (7.80)

Having clearly established the key identification (7.80), our job of rewriting (7.78) as some
sort of extension of (6.79) hugely simplifies. We start by noting that, in this case,

[σ̄(tot), σ(tot)] = 0, D̂ασ
(tot), D̂ασ̄

(tot) ∼ δM2 ∀α = 1, 2. (7.81)

In the limit when

D̂ασ̄
(tot) → (1 + i)δM2 ∀α = 1, 2 (7.82)

28The attentive reader will surely note that this equation was posed when we were working in the oversim-
plified scenario where no topological piece was present in the action of the four-dimensional gauge theory, i.e.
when c2 = 0 in (4.143). However, (5.42) was chosen in the c2 6= 0 case of interest too, as pointed out above
(5.89).

168



in (7.79), we have that the right-hand sides of (7.78) considerably reduce to yield (2iδM2/γ4)
times

Re(γ2 − γ̃2)− Im(γ2 − γ̃2), Im(γ1)− Re(γ1), Re(γ2 + γ̃2)− Im(γ2 + γ̃2), (7.83)

respectively. We can then demand that the first two quantities equal each other, namely

Re(γ2 − γ̃2)− Im(γ2 − γ̃2) = Im(γ1)− Re(γ1). (7.84)

Using (7.25) and (7.38), the above can be rewritten in terms of the coefficients listed in tables
1 and 2 as

√
cr2
(
h
(1)

2ψ̃3
− h

(1)

1ψ̃3
+ 1
)
+

√
cφ13

(
h
(2)

1ψ̃3
− h

(2)

2ψ̃3
− 1
)
= 0, (7.85)

where we have used cr2 = cr3 and cφ12 = cφ13, as can be seen from (4.135). The above can

be satisfied by setting h
(2)

1ψ̃3
to whatever value makes it hold true. Then, by virtue of the last

constraint in (7.45), the parameter h
(2)

2ψ̃3
becomes fixed too29. Putting everything together,

we find that the consistency requirements in (7.78) can be brought to the concise form we
sought:

dÂΛ̂
∣
∣
∣
‖M2

= 0, dÂΛ̂
∣
∣
∣
⊥M2

=
2i

γ4

[
Re(γ2 − γ̃2)− Im(γ2 − γ̃2)

]
δM2,

dÂ ∗ Λ̂ =
2i

γ4

[
Re(γ2 + γ̃2)− Im(γ2 + γ̃2)

]
dv ∧ δM2, (7.86)

where dv stands for a three-form defined in the directions spanned by the new M2-brane and
measures its volume element. When evaluated orthogonal (parallel) to the M2-brane, dÂΛ̂
consist of all the terms on the left-hand sides of (7.78) that contain (exclude) 〈A2〉, since this
is orthogonal to the M2-brane itself: 〈A2〉 ∼ δM2, as explained below (7.3) and in (7.9). As
an initial naive comment, we can note that this is a very fortunate form for the equations.
It reminds us of what happened to the (still not twisted) Hitchin equations: they developed
sources in the presence of the new M2-brane. Similarly, the consistency requirements for no
M2-brane in (6.79) now acquire sources due to the M2-brane. As a second, more down to
earth, comment: the left-hand sides of the last two lines above are a two- and a three-form

29At this stage, the reader may appreciate an update on the status of the coefficients of table 2 that have
not yet been fixed. We have that the {g(1)}’s must satisfy

g
(1)
1212 = ± 1√

2
and g

(1)
1223 = ±g

(1)
1213, with |g(1)1213| = fixed.

Besides, (7.34) should be true.
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respectively whereas the right-hand sides correspond to a one- and a four-form respectively.
This makes all alarms ring: we are for the first time noting the wrongness of our approach.
Anyway, this should not be too shocking, since the title of the chapter already warned us.
The reader will need to bear with these nonsensical equations a bit longer: we still have more
to learn from them.

Let us now turn to the BPS equations to finish our analysis of the twisted bulk in the
presence of the new M2-brane. Topologically wisting the sourced Hitchin equations in (7.31),
(7.44) and (7.50) according to the prescription in (7.65) and (7.67) we get

F̂αψ̃ − γ4[Λ̂α, Λ̂3] = −2iRe
(
γ5D̂2σ

(tot)
)

∀α = 1, 2,
√

2i|τ |2
τ − τ̄

F̂12 −
3∑

k,l=1

g
(1)
12kl[Λ̂k, Λ̂l] = i

3∑

k=1

Im
(
κk[σ̄

(tot), Λ̂k]
)
− iκ5[σ̄

(tot), σ(tot)].
(7.87)

As a reminder, all the coefficients appearing above can be expressed solely in terms of the
coefficients of tables 1 and 2. We did so for τ in (5.83) and for (γ4, γ5) in (7.25). The reader
who is eager for more computation can use all (7.25), (7.38), (7.47) and (7.49) to express
all {κ}’s above in this manner. However, what we want to do is consider the limit (7.82) in
these twisted, sourced Hitchin equations. To this aim, we first work out the two non-vanishing
terms on the right-hand sides. It is easy to see that the first one is

Re
(
γ5D̂2σ

(tot)
)
= Re(γ5)Re

(
D̂2σ

(tot)
)
− Im(γ5)Im

(
D̂2σ

(tot)
)
→ [Re(γ5)− Im(γ5)]δM2.

(7.88)

On the other hand, we have that

[σ̄(tot), Λ̂k] → [(1 + i)δM2, Λ̂k] = i(1 + i)

N2−1∑

a,b,c=1

fabcδ
a
M2Λ̂

b
kT

c ≡ KkδM2 ∀k = 1, 2, 3,

(7.89)

with T c and fabc standing for the generators and structure constants of the gauge group
SU(N), respectively. Consequently, the second and last non-zero term is

Im
(
κk[σ̄

(tot), Λ̂k]
)
= Re(κk)Im

(
[σ̄(tot), Λ̂k]

)
+ Im(κk)Re

(
[σ̄(tot), Λ̂k]

)

→ [Re(κk)Im(Kk) + Im(κk)Re(Kk)]δM2. (7.90)

Unfortunately, the left-hand sides are not to work out smoothly in the wrong approach of
this chapter. Ideally, we would like to recognize them as the components of the differential
geometrical quantity (F̂ − γ4Λ̂ ∧ Λ̂), but there are two difficulties that prevent us from
establishing such an identification. The first one is that the prefactors of the Λ̂ commutator
terms do not match between the (αψ̃)- and the (αβ)-oriented equations. The second obstacle
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amounts to the appearance of the terms [Λ̂α, Λ̂3] in the (αβ)-oriented equation. The resolution
to this situation is presented in the next chapter. For the time being and just momentarily,
let us ignore the aforementioned complications and claim that, when (7.82) is true, (7.87)
takes the form

F̂ − γ4Λ̂ ∧ Λ̂
∣
∣
∣
‖M2

= 0, F̂ − γ4Λ̂ ∧ Λ̂
∣
∣
∣
⊥M2

∝ δM2. (7.91)

Now comes the time to make some sense of the new M2-brane in figure 14. The fact is
that our bulk equations orthogonal to the M2-brane in (7.86) and (7.91) strongly resemble the
defining equations for a surface operator, see for example [13,14,65,71,72]. For concreteness,
let us reproduce (6.8) in [14]:

F − φ ∧ φ = 2παδK , dA ∗ φ = 2πβds ∧ δK , dAφ = 2πγδK . (7.92)

Here, K stands for an arbitrary knot, (α, β, γ) are parameters that characterize K, ds is a
line element along K and δK is a delta function two-form that is Poincaré dual to K. On the
other hand, (F, φ) are the field strength and the twisted scalar fields of a four-dimensional,
time-independent N = 4 Yang-Mills theory. It thus follows that simply identifying (Â, F̂ , Λ̂)
in the left-hand sides of (7.86) and (7.91) with (A, F, φ) in [14], we can reproduce the left-
hand sides above. The right-hand sides are clearly impossible to match, but the crux of the
matter is clear by now: we want to interpret the new M2-brane as a surface operator from the
point of view of the four-dimensional gauge theory. Further, we want this surface operator
to correctly implement any arbitrary knot in our setup. In the next chapter, we will discuss
surface operators and make the stated wishes come true by a suitable reorientation of the
new M2-brane. But, before doing so, it is instructive to quickly observe what the limit (7.82)
−the very same limit that brought our bulk equations so close to the defining equations for
surface operators− yields when implemented in the twisted boundary action (7.75).

Back to the boundary

The twisted boundary action that we derived in (7.75) contains two terms: a complexified
Chern-Simons term and an additional term. The limit (7.82) in which we wish to consider
the action (7.75) clearly leaves the Chern-Simons piece unaltered. However, it affects the
integrand of the extra piece in the following manner:

Re
(
γ5D̂2σ

(tot)
)
= Re(γ5)Re

(
D̂2σ

(tot)
)
− Im(γ5)Im

(
D̂2σ

(tot)
)
→ [Re(γ5)− Im(γ5)]δM2.

(7.93)
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Plugging the above in (7.75) and integrating over x2, we see that in this case the topological
boundary theory is supplemented by

8|τ |2
τ − τ̄

[Re(γ5)− Im(γ5)]Tr

2∑

α=1

∫

dtdx1 Âα

∣
∣
∣
‖δM2

. (7.94)

Let us verbalize the above, omitting prefactors. Consider the twisted connection Â. Evaluate
it parallel to the M2-brane and integrate it in the corresponding plane. Finally, take its trace
in the adjoint representation. Surely enough, this rings a bell: this sounds exactly like a two-
dimensional generalization of a Wilson loop action, given by the holonomy of the connection
Â around a knot K. Our suspicions seem to be further encouraged by the mismatch between
δM2 and δK that prevented us from mapping our bulk equations to the surface operator
definition (7.92). Indeed, if we could somehow replace δM2 → δK in (7.93), we would have
obtained the boundary action to be exactly Chern-Simons in the presence of a Wilson loop.
We owe the connection between such an action and knot theory to [8]. There, it was shown
that, for the gauge group SU(2), the vacuum expectation value of the holonomy of the gauge
field around a knot K traced in the fundamental representation of SU(2) yields the Jones
polynomial. Other knot invariants follow from considering different ranks and irreps of the
gauge group.

So close yet so far! In the next chapter, we will see how one can easily fix the situation
and reach the picture we are but scratching with our fingers here.

In chapter 7 we have worked out in details a toy-model inclusion of knots in the M-
theoretical model (M,1) of chapter 2. Our incorrect approach helps build intuition on the
delicate issue of knot embedding, since we work in a simplified (albeit unrealistic) scenario
where explicit calculations are possible.
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Chapter 8: The correct realization of knots

As we advanced just a moment ago, our primary task in this chapter will be to make suitable
changes to the new M2-brane of figure 14 so as to be able to interpret it as a surface operator
from the four-dimensional gauge theory point of view. This should fix all the troubles we
were facing before, namely:

• The degree of the differential forms in the consistency conditions should match for left-
and right-hand sides.

• The sourced Hitchin equations should admit a rewriting of the form (7.91), for some
constant γ4.

• All the above bulk equations should admit a unique and sensible map to the surface
operator defining equations (7.92), in an appropriate limit. A most interesting conse-
quence of establishing such a map would then be to obtain a supergravity interpretation
of the (α, β, γ) parameters that label any knot K.

• At the three-dimensional boundary, the surface-operator-M2-brane should then con-
tribute a Wilson loop term to the complexified Chern-Simons action.

It turns out that the task is not particularly thorny and simply amounts to a careful
reorientation of the new M2-brane in the previous chapter. Instead of along the spacetime
directions (t, x1, ψ̃), an M2-brane that admits a surface-operator interpretation in X4 must
be oriented along either (K, ψ̃, x̃3) or (K, ψ̃, r). We shall here choose the first option. This
is schematically depicted in figure 15.

We shall begin our discussion in section 8.1 with a lightning overview of surface operators.
We shall then argue why an additional M2-brane in (M,1) along either (K, ψ̃, x̃3) or (K, ψ̃, r)
constitutes a surface operator from a spacetime perspective. Afterwards, we will explain
where the two possibilities originate from and why the first one is a better choice in our case.
Once these basic aspects have been clarified, in section 8.2 we will resolve all the four items
listed above and bring this thesis to an end.
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possible to have co-dimension one operators. An example that has recently gained plenty of
attention is that of domain walls. On the other hand, attending to their positive description,
it is customary to differentiate between electric and magnetic type of operators. Electric
operators are constructed directly from the fields, as an additional term in the action of
the field theory. Let the previously mentioned Wilson operator stand as an example. On
their part, magnetic operators require a modification on the space of fields in the theory for
their construction. For instance, consider t’Hooft operators, which are typically defined via a
change in the measure of the path integral formulation of the field theory. In general, surface
operators are magnetic, in the sense that they are introduced by requiring that the fields
present prescribed singularities on the support of these operators.

Just in the light of the above shallow overview, we can right away discard the M2-brane
of figure 14 as a surface operator in X4: this is a co-dimension one object from the point of
view of the world-volume gauge theory! If we insist on converting it into one, we must begin
by at the very least “pushing” one of its “legs” out of X4 and into the internal directions.
As pointed out in the beginning of section 7.1, in order to not break the supersymmetry of
the M-Theory model (M,1), the internal leg must be along either of the directions of the
three-cycle Σ3: (x̃3, φ1, r). Of course, φ1 is a compact direction and hence is not suited to
host the surface-operator-M2-brane’s internal leg. We are thus left with the unbound, radial
directions (x̃3, r) as feasible choices.

Exceptionally memorious and attentive readers may right away understand these two
possibilities from a four-dimensional perspective as well, even applaud our particular selection
of x̃3 over r. In general, however, it bears repeating at this juncture where such freedom of
choice comes from after compactification. Briefly, we must recall the discussion after (5.35).
In more detail, in chapter 4 we derived the four-dimensional Lagrangian (4.143) associated
to (M,1). In chapter 5 we inferred the corresponding Hamiltonian by comparison to [54]. To
this aim, we singled out the scalar field A3̃ −see (5.2). We could have equally well singled out
Ar. Then, instead of (5.35) and (5.40), the most convenient gauge choice would have been
A0 = Ar = 0. As a matter of fact, this latter gauge choice was explored in [1] and seen to
be equivalent to the one here considered, under an exchange of the roles played by the scalar
fields (A3̃, Ar). At present and in order to benefit from the explicit computations in the
previous chapters, it stands to reason that the internal leg for the surface-operator-M2-brane
is chosen along x̃3.

Coming now to the other two legs, we note that these are fixed if the aim of including
the new M2-brane is to realize knots in the configuration (M,1). By definition, a knot is an
embedding of a circle in three-dimensional Euclidean space. After a Wick rotation30, the
boundary X3 governed by a complex topological action is the suitable space to host the knot
K. Hence, we use one of the M2-brane’s legs as a knot K ∈ X3. Then, the other leg must
be along the bulk direction ψ̃. This explains the new M2-brane’s orientation in figure 15.

30In our time-independent gauge theory, this is a formal step rather than a practical one.
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It is important to note that such M2-brane is a co-dimension two object in X4, as well
as in X3. Further, if we can indeed bring our BPS and consistency equations to the form
(7.92), this will provide an electric description of the object in X4. This is very interesting
because, as noted a moment ago, surface operators are generally introduced magnetically in
the literature (for example, see [13,14]), which obscures their origin. In fact, we shall regard
this as one of the main results in the thesis: in the next and final section, we provide a
detailed account of the supergravity emergence of the surface operator in the world-volume
gauge theory.

8.2 Solving it all: the new M2-brane as a knot embedding surface operator

In this section, we will be able to use all the computations in chapter 7 as a basis from which
we can quickly infer the action, Hamiltonian, bulk equations and boundary action associated
to the M-theory configuration of figure 15. It is important to highlight why the present section
is the punch-line of the thesis. That in figure 15 is a concrete model for the study of knots
in an ultraviolet-complete physical context. The equations we shall state in this section lay
the foundations for future research in this direction, since they pave the way for the explicit
computation of knot invariants in a physics language. In a field as subtle and complex as
the intersection of knot and gauge theories, the advantages of having a concrete scheme for
calculations are not to be discarded too quickly. Note for example that our construction is
valid for a general gauge group SU(N), whereas most of the literature discusses only SU(2)
and little is known about the highly non-trivial generalization to a higher rank. In addition,
a process of quantization is natural in our approach and can potentially shed light into the
notion of quantum knots at the fundamental theoretical level.

Following the very same logic as that in section 7.1 before, it is easy to see that the four-
dimensional action associated to (M,1) in the presence of a new M2-brane along (K, ψ̃, x̃3)
is effectively given by (4.143) under the replacements

Ax → A(tot)
x ≡ 〈Ax〉+Ax, ∀x = 0, 1, 2, φ1, r, (8.1)

where all fluctuations 〈Ax〉’s depend on only spacetime coordinates and are oriented orthog-
onal to K in two-dimensional slices X2 which are parallel to X3 for all fixed values of the
bulk direction ψ̃ = ψ̃0 ≥ 0. That is, all 〈Ax〉’s are supported on two-dimensional subspaces
X2 ⊂ X4. The Hamiltonian is then (5.88) subject to the above replacements. Clearly, the
most convenient gauge choice is a suitable modification of (7.10) and (7.11) to the present
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scenario:

A(tot)
0 = A3̃ = 0. (8.2)

To be able to focus on BPS configurations, we demand all fields be time-independent in the
following. We shall choose the coefficients of table 2 exactly as in chapter 7. In this case,
the difference between the configurations in figures 14 and 15 consists in considering (7.9) or
(8.1), respectively. Regarding the topological twist, we will adjust (7.65)-(7.67) to31

χ̃ =
∑

µ

χ̃µdx
µ, ∀χ = A,Φ,Λ, (8.3)

where xµ labels the spacetime directions and where

Ãµ = iA(tot)
µ , (Φ̃0, Φ̃1, Φ̃2, Φ̃3) = i(ϕ̂3, ϕ̂1, ϕ̂2,A3̃), (Λ̃0, Λ̃1, Λ̃2, Λ̃3) = i(A3̃, ϕ̂1, ϕ̂2, ϕ̂3),

(8.4)

with A(tot) as in (8.1). In view of the detailed computations in chapter 7 −in particular
(7.75)−, it can be readily inferred that the twisted boundary action for the configuration in
figure 15 is

S̃
(t)
bnd,tot =iΨCSD +

8|τ |2
τ − τ̄

Tr

2∑

α=1

∫

d3x
[

ÃαRe
(
γ5D̃2σ

(tot)
)]

, (8.5)

where for brevity we have defined

CSD ≡
∫

X3

Tr(ÃD ∧ dÃD +
2

3
ÃD ∧ ÃD ∧ ÃD). (8.6)

Here, the traces are taken in the adjoint representation of the gauge group SU(N), the
constants (τ, Ψ, γ5) were defined in (5.83), (6.39) and (7.25), respectively and the field σ(tot)

is as in (7.23). Regarding the Chern-Simons gauge field ÃD and in analogy to section 6.3,
this is defined as a complexification of the usual gauge field:

ÃD ≡ Ã+
D1

iΨ
Φ̃, (8.7)

with the constant D1 fixed to make ÃD compatible with N = 4 supersymmetry with half-
BPS boundary conditions. Turning to the bulk X4, the twisted consistency conditions in

31This is mostly for the convenience of the reader: a change from hatted to tilde fields is meant as a reminder
that we are presently dealing with a different, novel configuration that should not be confused with any prior
model.
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(7.78) now become

D̃1Λ̃2 − D̃2Λ̃1 =
2i

γ4
Re
(
γ2D̃1σ̄

(tot) − γ̃2D̃2σ̄
(tot)

)
,

D̃αΛ̃3 − D̃ψ̃Λ̃α = − 2i

γ4
Re
(
γ1D̃ασ̄

(tot)
)

∀α = 1, 2,

D̃1Λ̃1 + D̃2Λ̃2 + D̃ψ̃Λ̃3 =
2i

γ4
Re
(
γ̃2D̃1σ̄

(tot) + γ2D̃2σ̄
(tot)

)
,

(8.8)

where the constants {γ, γ̃} were defined in (7.25) and (7.38), respectively. Similarly, the
twisted BPS equations are given by a sourced Hitchin integrable system which is nothing but
an apt modification of (7.87):

F̃αψ̃ − γ4[Λ̃α, Λ̃3] = −2iRe
(
γ5D̃2σ

(tot)
)

∀α = 1, 2,
√

2i|τ |2
τ − τ̄

F̃12 −
3∑

k,l=1

g
(1)
12kl[Λ̃k, Λ̃l] = i

3∑

k=1

Im
(
κk[σ̄

(tot), Λ̃k]
)
− iκ5[σ̄

(tot), σ(tot)],
(8.9)

with the constants {κ} given by (7.47) and (7.49).
In the following, we will bring all the above results to an enlightening form. That is,

to a differential geometrical form that makes explicit the connection of the configuration in
figure 15 to Knot Theory. The easiest way to do so is to start with the twisted consistency
requirements (8.8). As was the case with (7.78) before, the left-hand sides of the first two
lines above capture the different components of dÃΛ̃, while the left-hand side in the last line

corresponds to the only component of dÃ ∗ Λ̃, with the Hodge dual taken with respect to

the Euclidean space32 labeled by (x1, x2, ψ̃). As for the corresponding right-hand sides, the
observation we made after (7.79) remains true: (σ(tot), σ̄(tot)) can be regarded as localized
fields, oriented within X4 but orthogonal to the new M2-brane in figure 15. That is, these
scalar fields behave as delta functions in any plane X2 labeled by (t, x1, x2) and orthogonal
to K. Note that there exists one such plane for every fixed value ψ̃0 of the bulk coordinate
ψ̃. Mathematically, we can say that

σ(tot), σ̄(tot) → 〈σ(tot)〉, 〈σ̄(tot)〉 ∼ δK ∀ ψ̃ = ψ̃0 ≥ 0. (8.10)

Note that δK is in this case a two-form supported on the two-dimensional knot complement
X2, not a one-form as in (7.80). It follows immediately that

[σ̄(tot), σ(tot)] → 0, D̃ασ
(tot), D̃ασ̄

(tot) ∼ δK ∀α = 1, 2. (8.11)

32The spacetime X4 is Minkowskian since the approximation (5.77).
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In particular, we wish to consider the very special limit when

D̃ασ
(tot), D̃ασ̄

(tot) → (1 + i)δK ∀α = 1, 2. (8.12)

This limit acts like a restriction map in the sense that it is such that δK takes values in the
Lie algebra t of the maximal torus T of the gauge group:

δK =
∑

a

δaKU
a, δaK ∈ t, Ua ∈ T ⊆ SU(N). (8.13)

As can be inferred from our computations in (7.79)-(7.85), the above limit allows us to rewrite
(8.8) in precisely the form we were wishing for:

dÃΛ̃
∣
∣
∣
‖K

= 0, dÃΛ̃
∣
∣
∣
⊥K

=
2i

γ4

[
Re(γ2 − γ̃2)− Im(γ2 − γ̃2)

]
δK ,

dÃ ∗ Λ̃ =
2i

γ4

[
Re(γ2 + γ̃2)− Im(γ2 + γ̃2)

]
dl ∧ δK ,

(8.14)

where dl stands for a one-form alongK that measures its line element. Let us clarify notation,
since these are some of the most relevant equations in the entire thesis. Evaluation orthogonal
to K means we only consider terms proportional to either 〈Ã1〉 or 〈Ã2〉, both defined in X2.
This is because such fluctuations are orthogonal to the new M2-brane of figure 15 in exactly
the same sense as that in (8.10) for the case of the scalar fields (σ̄(tot), σ(tot)). Conversely,
when we evaluate parallel to the knot we are left with all the terms that do not involve neither
〈Ã1〉 nor 〈Ã2〉. Notice that powers of these fluctuations vanish, so these two options exhaust
all the terms in the consistency conditions. It is worth mentioning that the degrees of all
differential forms above are perfectly coherent, which implies we have just fulfilled the first
of the objectives stated at the beginning of this chapter 8.

This is certainly encouraging, but not enough to allow us to identify the reoriented M2-
brane as a knot embedding surface operator in our gauge theory. Hence, let us proceed
towards establishing this fact. We shall now focus on the limit (8.12) of the BPS Hitchin
equations in (8.9). First of all, we should note that this limit only applies for fixed values of the
bulk coordinate: ψ = ψ0 ≥ 0. This means that, for all α = 1, 2, the (αψ̃)-oriented equations
in (8.9) become trivially satisfied in this case (i.e. they yield 0 = 0). Conversely, their (12)-
oriented counterpart does admit the consideration of the limit (8.12). In differential geometric
language, (8.3) and (8.4) tell us Λ̃3 is associated to the differential dψ̃. Consequently, there
is no contribution from this component to the limit we seek. No other subtlety applies and,
in view of our earlier calculations in (7.88)-(7.90), it is easy to infer the following result:

F̃ − K̂Λ̃ ∧ Λ̃
∣
∣
∣
⊥K

= i

√
τ − τ̄

2i|τ |2
2∑

k=1

[Re(κk)Im(Kk) + Im(κk)Re(Kk)]δK , (8.15)
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where Kk was defined in (7.89) for all k = 1, 2 and we have introduced the new constant

K̂ ≡ 2g
(1)
1212

√
τ − τ̄

2i|τ |2 . (8.16)

The above is of the desired form in (7.91) and consequently we can consider achieved the
second of the objectives stated at the beginning of this chapter 8.

The third objective we set for ourselves was to be able to determine a meaningful single
map from our bulk equations (8.14) and (8.15) to the surface operator defining equations
(7.92). This is not too complicated and essentially boils down to establishing the coefficient
identifications

αa ≡ i

2π

√
τ − τ̄

2i|τ |2
2∑

k=1

[Re(κk)Im(Kk) + Im(κk)Re(Kk)]U
a, (8.17)

βa ≡ i
√

K̂
πγ4

[
Re(γ2 + γ̃2)− Im(γ2 + γ̃2)

]
Ua, γa ≡ i

√

K̂
πγ4

[
Re(γ2 − γ̃2)− Im(γ2 − γ̃2)

]
Ua,

so that our twisted fields
(
Ã, Λ′ ≡

√

K̂Λ̃
)
can be recognized as (A, φ) in (7.92). Explicitly,

F̃ − Λ′ ∧ Λ′
∣
∣
∣
⊥K

= 2παδK , dÃ ∗ Λ′ = 2πβdl ∧ δK , dÃΛ
′
∣
∣
∣
⊥K

= 2πγδK , (8.18)

where we have omitted the color indices. These equations are truly important in the context
of Knot Theory, since their moduli space is known to encode multiple knot invariants. For
example, see [73,74] for mathematical references and [14,75] for more physics oriented ones.
Perhaps at this point we should highlight the work of A. Shende as a whole, which makes
him one of the leading figures equating algebra-geometric invariants associated to equations
like (8.18) with topological invariants of knots. At this stage, we can make further sense of
(8.13). Viewing the moduli space of (8.18) −away from the singularities generated by K−
as the space of flat complex connections, the requirement (8.13) ensures that we consider
the maximal compact and connected component of such connections. It is precisely in this
subspace that the knot invariants are defined [62].

It bears emphasizing that (8.17) provides a supergravity interpretation to the Lie-algebra
valued parameters (αa, βa, γa) labeling the surface operator. This is because all the right-
hand sides there can be explicitly traced to the parameters appearing in the Hamiltonian
(5.88) and summarized in table 1. As there noted, all these coefficients are defined as cer-
tain integrals of the warp factors (2.2) and constant dilaton (4.5) that characterize the M-
Theoretical model (M,1).

At this stage, the bulk equations have demonstrated that we can indeed regard the new
M2-brane of figure 15 as a surface operator after compactification from eleven to four di-
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mensions. It is important to call the reader’s attention to the fact that, contrary to the
overwhelming majority of the literature (starting with the pioneering mathematical refer-
ence [76] and all the way to the most recent physical works such as [65] or [72]), we have
here introduced surface operators in an electric formulation, thus exploiting the Hamiltonian
formalism developed in parts I and II. The equivalent magnetic description would consist of
considering the bulk equations of part II, when no surface-operator-M2-brane was present in
model (M,1) and postulating the twisted fields present singularities of the form

Â = αdθ + . . . , Λ̂ = β
dr

r
− γdθ + . . . (8.19)

in the planes X2 orthogonal to the surface operator, which are here being parametrized
by polar coordinates (r, θ). The ellipses stand for other possible, less singular terms. Al-
though correct, the magnetic description would not have shed any light on the origin of the
singularity-producing surface operator. It would also not have allowed for a rewriting of its
defining parameters (α, β, γ) in terms of supergravity quantities as in (8.17). In our opinion,
this is one of the most appealing features of our construction: it allows for an easy to grasp,
almost tangible manner to introduce surface operators in the Hitchin system that minimizes
the energy of N = 4 Yang-Mills BPS states.

The only task left is to demonstrate that the “knot-leg” of the surface-operator-M2-brane
in figure 15 correctly incorporates any knot K in the boundary X3, as expected. In other
words, we must check the fourth and last goal in the beginning of chapter 8. To this aim,
we must consider the action (8.5) and show that, in the limit (8.12), the second term is
nothing but the trace of the twisted gauge field transported along K. Based on our earlier
calculations (7.93) and (7.94), this is rather straightforward. Rather unsurprisingly at this
stage, the result is given by the desired integral:

8|τ |2
τ − τ̄

[Re(γ5)− Im(γ5)]Tr

2∑

α=1

∫

d3x ÃαδK ∝ Tr

2∑

α=1

∫

d3x Ãα

∣
∣
∣
∣
∣
‖K

= Tr

∮

K
Ã. (8.20)

Hence, the twisted boundary action is

S̃
(t)
bnd,tot =iΨCSD +

8|τ |2
τ − τ̄

[Re(γ5)− Im(γ5)]Tr

∮

K
Ã, (8.21)

with CSD defined in (8.6).
Much like the bulk equations (8.18) before, the above boundary action is also source to

diverse knot invariants. In fact, bulk and boundary are intimately related, beyond stem-
ming from the same Hamiltonian in our particular construction. The last issue we would
like to call the reader’s attention to is precisely this bulk-boundary interrelation. In the
case where no new M2-brane is present in (M,1), it is well-known that the (bulk) Hitchin
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equations can be rewritten in the language of Morse Theory. In this way, their relation to
the complexified Chern-Simons (boundary) action becomes apparent [15]. The interested
reader can find a concise yet clear review of this claim in section 5.3.2 of [14], for instance.
More concretely, regarding the complexified Chern-Simons functional as a Morse function,
its Morse flow equation is equivalent to the Hitchin integrable system, for a suitable choice
of metric. Consequently, we expect the sourced Hitchin equations we obtained in (8.18) to
be expressible as the Morse flow equation associated to regarding the boundary functional
(8.21) as a Morse function, for some appropriate metric.

In chapter 8 we have shown how knots are to be embedded in the M-theoretical model
(M,1) of chapter 2: one must include a carefully oriented M2-brane state in (M,1), with one
of its legs in the form of a knot. We have then repeated the analysis performed for (M,1) in
chapters 4-6, but taking into account the effect of the knot-embedding M2-brane. Namely, we
have obtained the eleven-dimensional low energy limit supergravity action for this M-theory
configuration, reduced it to four dimensions, Legendre transformed it into a Hamiltonian,
minimized the energy of the Hamiltonian for static configurations of the fields in the axial
gauge thereby obtaining a three-dimensional boundary action and we have performed a topo-
logical twist. In the four-dimensional spacetime, we thus obtain BPS equations that are given
by a sourced Hitchin integrable system (8.18) that defines surface operators and that is known
to encode multiple knot invariants (for example, see [72]). In the three-dimensional space-
time, we recover the topological Chern-Simons action, together with a Wilson loop term. As
shown in the seminal work [8], such action is also known to capture various knot invariants.
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Chapter 9: Summary, conclusions and outlook

In the first part I of the thesis, we have constructed two M-Theory models: (M,1) and (M,5).
They have both been obtained from the D3-NS5 system in type IIB String Theory considered
in [14] by means of well-defined chains of dualities and modifications. As depicted in figure
1, (M,1) has been proven to be dual to the aforementioned system in [14], while (M,5) has
been argued to be dual to the resolved conifold with fluxes in [11]. An apparent indication
of the seeming unrelatedness between our models −and hence between [14] and [11]− is their
supersymmetry: N = 2 for (M,1) and N = 1 in the case of (M,5). However, we have been
able to trace all dissimilarities to a difference in the orientation of an NS5-brane in a dual type
IIB picture: compare figures 2B and 3B. We have thus showed that, although distinct, [14]
and [11] are intimately related, much more than one would suspect a priori.

In the second part II, we have derived and studied in depth the world-volume gauge theory
of (M,1). This gauge theory is defined in the four-dimensional spacetime X4. In chapter 4,
we have obtained its action. In chapter 5 we have written the corresponding Hamiltonian in a
particularly enlightening form: as a sum of squared terms, plus contributions from the three-
dimensional boundary X3 ⊂ X4. We have then minimized the bulk energy by setting each
squared term to zero independently. For static configurations of the fields, we have thus found
BPS conditions that match the “localization equations” of [14, 15, 61], which were obtained
via elaborate techniques of localization of certain path integrals. This correspondence implies
that our approach reproduces all the results in [14], but in a much simpler formalism. Further,
our construction has enabled us to map all the parameters in [14] to variables of the low energy
limit of (M,1). In this manner, we have been able to give a supergravity interpretation to all
the findings in [14].

In the last chapter 6 of part II, we have focused on the boundary theory. We have shown
that, upon a topological twist, a complexified Chern-Simons action captures the physics in
X3. Additionally, we have obtained the appropriate half-BPS boundary conditions for all
the fields, which ensure that the theory in X4 as a whole is indeed N = 2 supersymmetric.
It follows that the space X3 has all required features to host knots. In other words, after
Euclideanization, knots can consistently be embedded in X3 and studied in the framework
of the previously described world-volume gauge theory.

The last part III of the thesis has been devoted to precisely the incorporation of an
arbitrary knot K in X3. Specifically, we have included a carefully oriented, knot embedding
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M2-brane state in (M,1). The M2-brane has led to the presence of sources in the localization
equations in X4, while it has contributed a novel term to the topological action governing
X3. After twisting and in a certain, well-defined limit, the bulk equations have been shown to
reproduce the surface operator defining relations, supported on a two-dimensional subspace
X2 ⊂ X4 orthogonal to the M2-brane state. In the very same limit, we have been able to
understand the extra term in the boundary action as a Wilson loop around K. Both the
surface operator bulk equations and the complexified Chern-Simons action in the presence
of a Wilson loop in the boundary are known to encode a wide variety of knot invariants.
Additionally, it is most reasonable to conjecture that we should be able to relate them to one
another using Morse Theory. A particularly noteworthy merit of our model in this part is
having provided an electric description of the surface-operator-M2-brane.

There are many interesting future directions. In fact and as pointed out in the preface,
the two references on which the present thesis is based, namely [1, 2], form the first volume
in a series of papers to appear that will attempt to cover a good deal of them. We are partic-
ularly captivated by explicit computations of knot invariants. On the one hand, turning our
attention to model (M,5), we see that most of the analysis is pending. Most notoriously, the
details on its connection to [11] through a flop transition, the derivation of its pertinent four-
dimensional gauge theory and the suitable embedding of knots in it. Once this is done, a wide
range of possibilities unfolds. Two such are the computation of HOMFLY-PT polynomials,
along the lines of [77] and the study of A-polynomials, as in [16].

On the other hand, we have not yet exploited most of the immense potential of model
(M,1) and its world-volume gauge theory. Although it was not included here, section 3.3 in [1]
computes the linking number of any arbitrary knot in the abelian version of the configuration
in figure 15. In chapter 8 of the thesis, we have worked out the corresponding non-abelian
extension, so we are ready to attempt the derivation of more challenging knot invariants from
(M,1). The first one in mind is the A-polynomial. What is more, we conjecture that in our
model the zero locus of the surface operator equations (8.18) is itself the A-polynomial of
whatever knot K one embeds in the boundary X3. An easy way to motivate our conjecture
is, for example, by comparison to the Simple Harmonic Oscillator toy model discussed in [78].
Remarkably, we are exceptionally well-equipped for this goal, since we work in a framework
with a generic gauge group SU(N), while the vast majority of the physics oriented literature
restricts attention to the SU(2) case.

Given a Hamiltonian and its classical equations of motion, any physicist will surely think
of quantization as a logical next-step. We are no exception and quantization is one of the
crucial topics we would like explore in the sequel(s) to [1, 2]. In the quantum realm, the
connection to knot invariants becomes even more appealing. For concreteness, let us mention
our favorite first candidate, Khovanov homology. Khovanov homology arises naturally from
a four-dimensional gauge theory in the presence of surface operators, just like ours. It is
particularly interesting to note that Khovanov’s invariants categorify the all-famous Jones
polynomial and are stronger than it when addressing the knot classification problem [79]. In
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fact, the puzzle of why the coefficients of the Jones and related polynomials should be integers
was resolved in the pioneering work [80], in terms of Khovanov homology. What is more,
following indications in [12], Witten argues [14] that Khovanov homology should appear as
observables in a four-dimensional Topological Quantum Field Theory, in a higher dimensional
analogue to the Jones polynomial case in three-dimensional Chern-Simons theory. It would
certainly be a most significant result to confirm this hypothesis in our model.

Besides the captivating but demanding goal of calculating knot invariants, the model pre-
sented in this thesis offers other lush possibilities. One on which we have already made some
progress consists in further exploiting the brane configurations in part I. We are presently
trying to figure out the exact modifications one would need at the String Theory level so as
to extend our construction and include a direct connection to Seiberg-Witten theory [17,18]
and to Theories of Class S [19, 20], at least to the subset of such theories that admits a
Lagrangian description. On the other hand, we have shown that the bosonic sector of the
world-volume gauge theory explored in part II captures a wide range of mathematical and
physical results in a unifying, simple and ultraviolet-complete formalism. It is then natural
to speculate that a careful investigation of its fermionic sector is likely to yield interesting
results as well. Finally and as already mentioned at the end of part III, we would like to
better understand the relation between the boundary action and the bulk equations of the
configuration in figure 15. That is, we would like to establish the precise Morse flow equation
relating them both, following the prescription in [15].
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