
HorsePower: An Array-based Optimization Framework for Query
Processing and Data Analytics

by
Hanfeng Chen

School of Computer Science
McGill University, Montreal

February 2021

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright © 2021 by Hanfeng Chen

2

Abstract

Relational database management systems (RDBMS) are operationally similar to
a dynamic language processor. They take SQL queries as input, dynamically generate
an optimized execution plan, and then execute it. In recent decades, the emergence of
in-memory databases, which use array-like storage structures to store the columns of
the database tables, shifted the focus towards CPU-bound query optimizations. The
similarity in the computational characteristics of such database workloads and array
programming language optimizations have so far been largely unexplored. We believe
that these database implementations can benefit from merging database optimization
techniques with dynamic array-based programming language approaches; even more
so, as database queries are more and more used together with analytics functions in
data science workflows. Therefore, we present HorsePower, a framework for optimiz-
ing both database queries and supporting advanced data analytics. The framework
employs a newly designed array-based intermediate representation, HorseIR, that re-
sides between database queries and programs written in high-level languages on the
one side, and compiled code on the other side. It provides translators to generate
HorseIR code from database execution plans and programs written in the popular
programming language MATLAB, an interpreter to execute HorseIR, and a compiler
that optimizes HorseIR and generates efficient CPU and GPU code. We compare
HorseIR with a relational database management system MonetDB and MATLAB, by
testing standard SQL queries, SQL queries with embedded analytics functions writ-
ten in MATLAB, and MATLAB benchmarks to show how our approach and compiler
optimizations improve the runtime of complex queries and analytics functions.

i

ii

Résumé

Les systèmes de gestion de base de données relationnelle (SGBDR) sont fonction-
nellement similaires à un processeur de langage dynamique. Ils prennent les requêtes
SQL en entrée, génèrent dynamiquement un plan d’exécution optimisé, puis l’exé-
cutent. Au cours des dernières décennies, l’émergence de bases de données en mémoire,
qui utilisent des structures de stockage de type tableau pour stocker les colonnes des
tables de base de données, a déplacé l’attention vers l’optimisation des requêtes liées
au processeur. La similitude des caractéristiques de calcul de ces charges de travail
de base de données et des optimisations du langage de programmation de tableaux
a jusqu’à présent été largement inexplorée. Nous pensons que ces implémentations
de base de données peuvent bénéficier de la fusion des techniques d’optimisation de
base de données avec des approches de langage de programmation dynamique basées
sur des tableaux ; d’autant plus que les requêtes de base de données sont de plus en
plus utilisées avec des fonctions d’analyse dans les workflows de science des données.
Par conséquent, nous présentons HorsePower, un cadre permettant d’optimiser les
requêtes de base de données et de prendre en charge l’analyse de données avancée. Le
framework utilise une représentation intermédiaire basée sur un tableau nouvellement
conçue, HorseIR, qui réside entre les requêtes de base de données et les programmes
écrits dans des langages de haut niveau d’un côté et le code compilé de l’autre côté.
Il fournit des traducteurs pour générer du code HorseIR à partir de plans d’exécu-
tion de base de données et de programmes écrits dans le langage de programmation
populaire MATLAB, un interpréteur pour exécuter HorseIR et un compilateur qui
optimise HorseIR et génère un code CPU et GPU efficace. Nous comparons HorseIR
avec un système de gestion de base de données relationnelle MonetDB et MATLAB,

iii

en testant des requêtes SQL standard, des requêtes SQL avec des fonctions d’analyse
intégrées écrites en MATLAB et des benchmarks MATLAB pour montrer comment
notre approche et les optimisations du compilateur améliorent le temps d’exécution
des requêtes complexes et des fonctions d’analyse.

iv

Acknowledgements

My first and special thanks give to my dear advisors Laurie J. Hendren and Bet-
tina Kemme. Completing my Ph.D. program in research would have been impossible
without their consistent encouragement and support. Laurie J. Hendren was a promi-
nent professor working on the cutting-edge research field of compiler tools. She was
also a keen person exercising her hobbies in music and sports. She inspired me to
continue exploring academic research and maintain an optimistic life attitude. I still
remember the day in 2014 I was invited to give a presentation in her lab. Later,
it turned out that I started my Ph.D. under her supervision in the following year.
Bettina Kemme is an incredible professor supervising me after I decided to extend
my research interests from programming languages to database query processing. I
appreciate her valuable feedback and guidance that broadened my understanding in
database research.

My second thanks go to people who used to collaborate with me directly in
research. In particular, I would like to thank Joseph Vinish D’silva, an excellent
teammate for sharing his expertise in database research; Alexander Krolik, a great
programmer and organizer for his contribution in clarifying the design and imple-
mentation issues of my research project; and Clark Verbrugge for his free walk-in
office hours for research discussions. I also thank other people: David Herrera, Erick
Lavoie, and Hongji Chen for their hard work in our paper collaborations.

My third thanks go to my labmates and friends. I remember that Prabhjot
Sandhu, another Ph.D. student, and I went to yoga classes in the university gym
for relaxing after intensive study in our first year. Other than that, I have other com-
mon memory for activities shared with Erick Lavoie, Joseph Vinish D’silva, Prabhjot

v

Sandhu, Alexander Krolik, David Herrera, Amir Bawab, Vincent Foley-Bourgon, Ak-
shay Gopalakrishnan, Duan Li, Zhening Zhang, Faiz Khan, Steven Thephsourinthone,
Yulan Feng, Hongji Chen, Yi Chang, and Yu Wang. It is definitely important to have
had all of you around for my study and life in Montreal in the past years.

My last thanks go to my lifelong mentor Wai-Mee Ching and my family. Wai-Mee
Ching played a vital role in my decision to pursue a Ph.D. degree after completing my
master. It was pleasant to discuss research ideas with him and received his insightful
feedback. Despite the fact that my parents and my sister have no idea about my
research, they fully supported me in the past years. Without their continuous mental
support, the research in this thesis could have not been carried out.

vi

Contents

Abstract i

Résumé iii

Acknowledgements v

Contents vii

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1
1.1 Objectives . 3
1.2 Approach Overview . 3
1.3 Contributions . 5
1.4 Publications . 6
1.5 Thesis Organization . 8

2 Background 9
2.1 Query Processing in Relational Database Systems 9

2.1.1 Relational Model . 10
2.1.2 Database Storage . 11

vii

2.1.3 Relational Algebra and SQL 11
2.1.4 Database Query Processing 14
2.1.5 User-defined Functions in Database Queries 15

2.2 Array Programming Languages . 19
2.3 Intermediate Representations . 23

3 Outline of HorsePower 25
3.1 HorseIR Design . 26
3.2 Front-end Design . 27
3.3 Back-end Design . 27
3.4 Built-in Functions . 29
3.5 Runtime Support . 29

4 HorseIR: the Core 31
4.1 Introduction and Design Principles 31
4.2 Program Structure . 32

4.2.1 Modules . 34
4.2.2 Methods . 34
4.2.3 Blocks and Scoping . 34

4.3 Types . 36
4.3.1 Base Types and Homogeneous Arrays 38
4.3.2 Advanced Heterogeneous Data Structures 39
4.3.3 A special type: wild-card . 43

4.4 Functions . 44
4.4.1 Vector-based Functions . 45
4.4.2 List-based Functions . 45
4.4.3 Database-related Functions 46
4.4.4 Auxiliary Functions . 46

4.5 Program Statements . 46
4.5.1 Expression Statements . 47
4.5.2 Assignment Statements . 47

viii

4.5.3 Control Statements . 47

5 Front-end: Compiling to HorseIR 51
5.1 HorseSQL: SQL-to-HorseIR Translator 52

5.1.1 Mapping Relational Algebra to HorseIR 52
5.1.1.1 Projection . 52
5.1.1.2 Selection . 53
5.1.1.3 Join . 54
5.1.1.4 Aggregation . 57
5.1.1.5 Group By . 57
5.1.1.6 Order By . 59

5.1.2 Code Generation Strategy . 60
5.1.3 Optimizations in Generating HorseIR Code 63

5.2 HorseMATLAB: MATLAB-to-HorseIR Translator 68
5.2.1 Mapping MATLAB to HorseIR 68
5.2.2 Example Code . 71

5.3 HorseUDF: UDF-to-HorseIR Translator 74

6 Back-end: Execution on HorseIR 77
6.1 HorseInterpreter . 78
6.2 HorseIR Compiler . 79

6.2.1 HorseCPU . 81
6.2.2 HorseGPU . 83

6.3 High-performance Built-in Function Library 85
6.3.1 Basic Built-in Functions . 85
6.3.2 Important Database-related Functions 86

6.4 Data Management . 92

7 Optimizations 93
7.1 Early Optimizations . 94
7.2 Type and Shape Analysis . 96

7.2.1 A Motivating Example . 96

ix

7.2.2 Type Propagation . 99
7.2.3 Shape Propagation . 100

7.2.3.1 Shape Analysis . 103
7.2.3.2 Shape Propagation Rules 105
7.2.3.3 Conformability Analysis 109

7.3 Code Generation Optimizations . 113
7.3.1 Automatic Loop Fusion . 114

7.3.1.1 Fusion Nodes . 114
7.3.1.2 Code Generation for Vectors 114
7.3.1.3 Generating Code for Lists 115
7.3.1.4 Further Fusion Opportunities 116

7.3.2 Fusing with Patterns . 116
7.4 Cross Optimizations . 121

8 Evaluations 123
8.1 Experiment Setup . 124
8.2 Experiments with a Database Query Benchmark 125

8.2.1 Benchmark Overview . 125
8.2.2 Complete Suite Results . 126

8.2.2.1 Results on sable-intel 126
8.2.2.2 Results on sable-tigger 134
8.2.2.3 Discussion . 137

8.2.3 Effect of Optimizations . 137
8.2.4 Scalability Study . 141
8.2.5 Compilation Time . 142

8.3 Experiments with an Array Language Benchmark 144
8.3.1 Experiment Results . 145

8.4 Experiments with a UDF Benchmark 147
8.4.1 TPC-H with UDFs . 148
8.4.2 UDF Derived from Black-Scholes 149

8.5 Experiments with a GPU Benchmark 155

x

8.5.1 Black-Scholes Results . 157
8.5.2 Morgan Results . 159
8.5.3 Discussion . 161

9 Related Work 163
9.1 Database Query Processing . 163

9.1.1 Traditional Query Engines . 164
9.1.2 Modern Query Compilers . 164

9.2 Array Programming Languages . 166
9.3 Data Analytics in Database Systems 168
9.4 Compiler Optimizations . 171

10 Conclusions and Future Work 173
10.1 Conclusions . 173
10.2 Future Work . 174

A HorseIR Language Specification 177
A.1 Language Grammar . 177
A.2 Value Ranges . 180
A.3 Built-in Functions . 182

B Plan-to-HorseIR Translator Specification 189

Bibliography 195

xi

xii

List of Figures

2.1 A primary key deptid in the table Department and a foreign key em-
pdeptid in the table Employee . 11

2.2 Example query derived from the TPC-H benchmark. 14
2.3 Example of execution plans for Figure 2.2 15
2.4 Support of an embedded UDF engine in database 16
2.5 Example query with a scalar UDF derived from Figure 2.2 17
2.6 Example query with a table UDF derived from Figure 2.2. 18
2.7 Examples of equivalent code in both array code and C code 20
2.8 Examples of unary and binary element-wise operations 21
2.9 Example of boolean selection . 21
2.10 Example of array indexing (z=y(x)) 22

3.1 Overview of the HorsePower framework 26

4.1 Overview of HorseIR program structure 32
4.2 Example of a HorseIR module (bottom) for an SQL query (top) which

returns the number of stores with relatively big discounts (50-80%). 33
4.3 Method name resolution when importing a module. 36
4.4 Example of list type . 40
4.5 Example of the enumeration type: containing target, source, and index 41
4.6 Overview of the table type: containing a list of symbols and vectors . 42
4.7 Overview of the keyed table type: containing two normal tables . . . 43
4.8 Table conversion between normal and keyed tables 43
4.9 Specialization of a wild-card type with base and advanced types . . . 44

xiii

4.10 Example of a list function . 45

5.1 Overview of HorsePower front-end which translates SQL queries,
MATLAB functions, and MATLAB UDFs embedded in SQL code into
HorseIR programs . 51

5.2 Example of projection in HorseIR . 53
5.3 Example of selection in HorseIR . 54
5.4 Example of join in HorseIR . 54
5.5 Illustration of the equal join operation in Figure 5.4 55
5.6 Example of an enumeration in a join with a pair of primary key (dep-

tid in the table Department) and foreign key (empdeptid in the table
Employee) . 56

5.7 Example of enumeration in HorseIR 57
5.8 Illustration of the group operation in HorseIR 58
5.9 Example of an SQL query for group by (top) and its HorseIR code

(bottom) . 58
5.10 Illustration of the HorseIR code in Figure 5.9 59
5.11 Example of an SQL query for order by (top) and its HorseIR code

(bottom) . 60
5.12 Illustration of the order operation in HorseIR 60
5.13 Example of the join transformation: scenario 1 64
5.14 Example of an SQL query (top) and its HorseIR code (bottom) for the

scenario 1 . 65
5.15 Example of the join transformation: scenario 2 65
5.16 Example of an SQL query (top) and its HorseIR code (bottom) for the

scenario 2 . 66
5.17 Example of the join transformation: scenario 3 67
5.18 Example of an SQL query (top) and its HorseIR code (bottom) for the

scenario 3 . 68
5.19 Generating HorseIR code from MATLAB within the McLab framework 68
5.20 Example of MATLAB . 72

xiv

5.21 Example of the MATLAB function with vectors as input 72
5.22 HorseIR code with a new method for the UDF in Figure 2.5 75

6.1 Overview of HorseIR back-ends . 77
6.2 Overview of HorseCompiler . 80
6.3 Overview of HorseIR working with GPUs 83
6.4 Example of OpenACC code . 84
6.5 Example of the compress function . 86
6.6 Design of array-lookup join . 87
6.7 Design of radix-based hash join . 88
6.8 Global table registration and fetching 92

7.1 Analysis and code generation overview. 94
7.2 Example query and its HorseIR program 97
7.3 Optimized C code for the IR code in Figure 7.2b 98
7.4 Type nodes for representing type information 99
7.5 Type rules for boolean binary functions with two parameters x and y 101
7.6 Generated fused C code . 103
7.7 Example propagating the scan shape 107
7.8 A fusible section for the HorseIR program in Figure 7.2b. The text

format on the right hand side is <statement>(<group>): <vari-

able>::<shape>. 113
7.9 Code generation for vectors. Rop: reduction operation; Rfinal: final

reduction step (e.g. divide by element count); z: accumulator/output
vector. 114

7.10 Code generation for lists. Rop: reduction operation; Rfinal: final
reduction step (e.g. divide by element count); t: cell accumulator; z:
output vector. 115

7.11 Code examples for fusing with patterns 116
7.12 Illustration for generating fused code with FP-1 117
7.13 Illustration for generating fused code for FP-2 118

xv

7.14 Illustration for generating fused code with FP-3 118
7.15 Illustration for generating fused code with FP-4 119
7.16 Patterns designed for FP-2 and FP-3 120
7.17 Dependence graphs for the example in Figure 5.22 to show that method

inlining helps explore more opportunities for automatic loop fusion. . 122
7.18 Generated C code after the cross-method optimization in Figure 7.17 122

8.1 Overview of experiments used to evaluate the performance of Horse-
Power . 123

8.2 TPC-H schema and its table sizes (row, column) on SF1. 126
8.3 (sable-intel) Performance comparison between MonetDB and Horse-

Power over all TPC-H queries with 1 GB input data (SF1) 128
8.4 (sable-intel) Results of individual queries and threads in terms of geo-

metric mean. 133
8.5 (sable-tigger) Performance comparison between MonetDB and Horse-

Power over all TPC-H queries with 1 GB input data (SF1) 135
8.6 (sable-tigger) Results of individual queries and threads in terms of

geometric mean. 136
8.7 Geometric mean execution time for HorseIR and MonetDB across five

different SFs on sable-intel. 141
8.8 Compilation time on both sable-intel and sable-tigger for TPC-H queries142
8.9 Base queries with scalar and table UDFs 152
8.10 Example queries of variation 1 with scalar and table UDFs 153
8.11 Example queries of variation 2 with scalar and table UDFs 154
8.12 Example queries of variation 3 with scalar and table UDFs 155
8.13 Performance breakdown in Black-Scholes for both the naive and opti-

mized versions. 158
8.14 Performance breakdown in Morgan for both the naive and optimized

versions. 160

xvi

List of Tables

4.1 List of HorseIR base types . 37
4.2 HorseIR advanced types . 39

5.1 Type mapping from MATLAB to HorseIR 71

7.1 Definitions of vector shapes . 103
7.2 Rules for binary element-wise Functions (E) 106
7.3 Rules for unary element-wise functions (E) 106
7.4 Rules for reduction functions (R) . 106
7.5 Rules for the scan function (S) . 107
7.6 Rules for array indexing (X) . 108
7.7 Rules for special boolean functions (B) 108
7.8 Conforming rules for two shapes . 110

8.1 Overview of machines used in experiments 124
8.2 Profiling data of all TPC-H queries: tables and the number of joins,

predicates, aggregations, groupbys, sorts, and return columns 127
8.3 (sable-intel) Performance speedups on SF1 over No-opt obtained by

various HorseIR optimizations for different queries. 138
8.4 (sable-tigger) Performance speedups on SF1 over No-opt obtained by

various HorseIR optimizations for different queries. 140
8.5 Compilation time breakdown in seconds and percentage 143
8.6 Speedup of HorsePower over MATLAB in execution time using Black-

Scholes (in milliseconds) . 146

xvii

8.7 Speedup of HorsePower over MATLAB in execution time using Morgan
(in milliseconds) . 146

8.8 Execution times and speedup (SP) of HorsePower over MonetDB using
the modified TPC-H benchmark with UDFs. 148

8.9 Black-Scholes execution time Python vs. HorseIR 149
8.10 Execution time and speedup (SP) of HorsePower (HP) compared to

MonetDB (MDB) for variations in Black-Scholes. 151
8.11 Overview of the portions for VersionCPU and VersionGPU 156
8.12 Black-Scholes: Performance comparison between VersionCPU and

VersionGPU for both the naive and optimized versions over multiple
threads (1 to 16). 157

8.13 Morgan: Performance comparison between VersionCPU and Ver-
sionGPU for both the naive and optimized versions over multiple
threads (1 to 16). 159

xviii

List of Abbreviations

AST abstract syntax tree
DB database system
IR intermediate representation
IMDB in-memory database system
JSON JavaScript object notation
RDBMS relational database management system
SQL structured query language
UDF user-defined functions

xix

xx

Chapter 1
Introduction

Two recent developments in the last decades have considerably shifted the focus
of query optimization for relational database management systems (RDBMS). First,
main memory has become consistently cheaper making it possible to have even large
databases reside in memory. Thus, research has shifted their focus on main-memory-
and CPU-based query optimization where the disk is no longer considered a bottle-
neck. Furthermore, the reorganization of the storage structure, where tables are no
longer stored on a per-row basis but instead each column is stored in an array-like
structure, has shown to have tremendous performance benefits for analytical work-
loads. As such, query execution has become much more like the execution of standard
programs, in particular, of programs written in array-based programming languages.
Given the rich set of compiler optimization techniques that have been developed for
such high-level languages, we see a great opportunity to exploit some of them for
query processing.

The database research community has started to look at compiler solutions in the
recent past. The “array like” nature of a table’s column in column-based RDBMSes,
especially its working data sets1, naturally led to a series of studies and optimization
strategies focused on the benefits of CPU caching [16, 46]. However, to the best of our
knowledge, beyond these excursions into exploiting CPU cache-based optimizations,

1The term working dataset is used to denote the copy of data that has been brought from the
disk to main memory for processing a request.

1

the database community at large is yet to benefit from more comprehensive optimiza-
tion techniques that the compiler community has amassed from its decades of research
on array programming languages. We believe that working datasets of column stores
are good candidates to apply array programming optimizations, as a column es-
sentially contains homogeneous data which maps nicely to array-based/vector-based
primitive functions.

In addition, in the era of Big Data, complex data analytics that goes well be-
yond SQL-only declarative queries, has become increasingly important. Although
the amount of data stored in traditional RDBMSes has been growing rapidly, the
by far most common current approach to perform such analytics is to take the data
first out of the database system and load it into stand-alone analytical tools, which
are often integrated programming language systems, such as Python, MATLAB [56],
and R [10]; or specialized scalable analytical platforms such as Map/Reduce [27] and
Spark [92]. Many of these programming languages support array programming, such
as Python/NumPy [6] and MATLAB. When needed, the results of such a database
system external analysis can be reintegrated into the database. However, as the size
of the data increases, the expensive data movement between database systems and
data analytics tools can become a severe bottleneck.

An alternative, that avoids such data movement, is to integrate the analytical
capabilities into the database system. The most well-known approach to do so is to
support user-defined functions (UDFs) written in a conventional, high-level program-
ming language, that are then embedded in SQL queries [72, 59, 90, 83]. For example,
MonetDB [72] allows users to include Python functions into their SQL queries. These
functions are then executed by a language interpreter (Python) that is embedded
inside the database system engine.

Although UDF implementations connect SQL queries and high-level programming
language functions, they still have separate execution and optimization environments:
one being the SQL execution engine, and the other the programming language exe-
cution environment. This can quickly lead to costly data format conversion between
the two environments. As such, we believe it is necessary to have an approach where
both the declarative query component and the analytical functions are optimized and

2

1.1. OBJECTIVES

executed in a holistic manner.

1.1 Objectives

The goal of this thesis is to develop an approach that allows us to exploit the rich
set of compiler optimizations that have been developed for array-based languages, to
be used for database queries and data analytics. Since database queries as well as
the underlying execution plans that implement these queries in current RDBMS look
very different than array-based programs, this thesis proposes an intermediate array-
based representation that is suitable to adequately represent query execution plans.
Its design also considers the high-level source languages that can support user-defined
functions. Therefore, it is also an intermediate representation that can be used for
various source languages in the context of programming languages. The focus of this
thesis lies in the design and implementation of this language and its compiler. By
employing a set of compiler optimizations for array-style code, we aim in generating
efficient target code for multiple platforms.

1.2 Approach Overview

In this thesis, we present a framework called HorsePower for the execution of database
queries and data analytics functions. In order to support database queries, we design
and implement a new array-based intermediate representation (IR), called HorseIR,
which is the core part of HorsePower. The idea of generating array-based code from
database queries is both novel and challenging. To the best of our knowledge, we
are the first to propose such a relatively high-level array-based IR that represents
database query processing and allows column-based in-memory database systems to
benefit from a whole range of compiler optimizations.

The core data structure in HorseIR is a vector (corresponding to columns in the
database tables) and the implementation has a rich set of well-defined high-level built-
in functions with clearly defined semantics. They are easy to optimize, and in the

3

1.2. APPROACH OVERVIEW

case of element-wise built-in functions, are easy to vectorize and parallelize. The
type system of HorseIR facilitates declaring variables with explicit types, as well as a
wild-card type and associated type inference rules. Important relational operations,
such as projection, selection, join, and aggregation, can be represented with one or
more HorseIR built-in functions. Rather than implementing complex operations such
as database join as one big function, HorseIR provides a repertoire of smaller built-
in functions that can be combined to achieve the same functionality. For example,
HorseIR has a function join_index which returns the indices of the joined columns
that can be further utilized by subsequent operations.

We believe that introducing a high-level IR might open a new research direction
for database query optimizations. However, introducing an IR may also result in
some overhead and must be considered along with the performance benefits that they
bring.

Other than database queries, HorseIR can represent MATLAB programs that
work on one-dimensional arrays. Some of the built-in functions designed for database
queries, such as sum for computing the total value, can be used for MATLAB pro-
grams as well. Furthermore, we have added some specialized functions common for
analytics, such as cumsum for computing cumulative sum. Thus, user-defined func-
tions (UDFs) written in MATLAB can be translated to HorseIR. Additionally, when
they are embedded in SQL queries, both the SQL and the MATLAB components are
translated together into a single HorseIR program facilitating holistic optimizations.

HorsePower has a set of facilities for generating and optimizing HorseIR code. We
provide automatic translators for generating HorseIR from SQL and MATLAB. For
SQL, we follow a layered approach that facilitates a wide range of compiler optimiza-
tions in a systematic way. It exploits and further builds upon the many optimizations
developed by the database community in terms of generating efficient execution plans
for declarative queries. Specifically, we propose an approach where SQL queries are
first translated into execution plans using standard database optimization techniques
that consider the operators in the query and the characteristics of the input dataset.
These database optimized plans are then translated to HorseIR. After generating Hor-
seIR code, proper compiler optimizations, such as fusion-based optimizations, can be

4

1.3. CONTRIBUTIONS

applied to HorseIR, and its code can be thereafter compiled to efficient target code
for multiple platforms, such as CPUs and GPUs, before generating executable files.
In addition, HorsePower has a data management component to support the execution
of the generated binary code on datasets stored in files.

1.3 Contributions

We summarize the contributions of our thesis as follows:

Design and implementation of HorseIR. We first identify the advantage of an
array-based IR for database query processing. We propose HorseIR, an array-
based IR, and implement the IR to represent both database queries and array
programming languages.

Automatic translator support for generating HorseIR. We deliver transla-
tors which can generate HorseIR code from database execution plans automat-
ically. This work is novel as we are the first bridging the gap between database
query and array-based languages, despite the large syntax difference between
the two languages. Moreover, we implement a translator for compiling MAT-
LAB, an array language, to HorseIR. The translator connects two array-based
languages, though they are designed for different domains.

UDF support with HorseIR. We support UDFs embedded in database queries
by compiling both the UDF and the SQL component to HorseIR code and
then integrate the two code snippets into one HorseIR program. Thus, the
challenging problem of optimizing database queries with UDFs is handled by
creating a single HorseIR program that can be optimized holistically.

Tailored optimizations. We identify and apply a set of compiler optimizations
for generating efficient target code from HorseIR. Thus, we improve database
query performance by applying techniques derived from array programming.
We perform a precise shape analysis on the built-in functions of HorseIR that

5

1.4. PUBLICATIONS

represent database operators. This allows us to collect accurate shape informa-
tion for subsequent loop-fusion based optimizations. Furthermore, we prepare
a set of pre-defined code patterns for generating efficient code.

Multiple-platform support. We build different back-ends in HorsePower with the
purpose of supporting target code generation for various parallel hardware, i.e.,
target C code that runs well on CPUs and GPUs, respectively. By having a
single IR we have the flexibility to cope with the rapid development of hardware
platforms.

Performance evaluation. We conduct experiments on standard database bench-
marks, statistical benchmarks, and query UDF benchmarks to show the effec-
tiveness of our techniques. We demonstrate performance benefits of compiler
optimizations, and compare the overall performance of our system with the
popular column store based RDBMS, MonetDB.

1.4 Publications
Content presented in this thesis has been previously published in the papers listed
below. There is no exact match to chapters as the thesis has been designed in a
holistic manner and the contributions of any of these papers is spread across several
chapters.

1. Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina
Kemme, and Laurie Hendren, HorseIR: Bringing Array Pro-
gramming Languages together with Database Query Pro-
cessing, Proceedings of the 14th Symposium on Dynamic Languages
(DLS’18), pp. 37-49, November 2018.

This paper is the foundation of this thesis and introduces the design and imple-
mentation of our array-based intermediate representation, HorseIR, for database SQL

6

1.4. PUBLICATIONS

queries. We provide a translator to generate HorseIR from execution plans generated
for SQL queries, and a compiler that optimizes HorseIR and generates efficient code
using some initial optimization mechanisms. As a main contributor to the paper,
I mainly worked on the design and implementation of HorseIR, the source-to-source
translator for generating HorseIR from execution plans, and the compiler for emitting
efficient target code. Experiments were conducted by me. Joseph Vinish D’silva and
Bettina Kemme joined the research with their expertise in database domains, and
provided important suggestions and feedback for experiments; Hongji Chen helped
with the initial design of HorseIR; and Laurie J. Hendren supervised this research,
joined discussions, and provided valuable feedback.

2. Hanfeng Chen, Alexander Krolik, Bettina Kemme, Clark Ver-
brugge, and Laurie Hendren, Improving Database Query Per-
formance with Automatic Fusion, Proceedings of the 29th In-
ternational Conference on Compiler Construction (CC’20), pp. 63-73,
February 2020. (Best paper finalist)

This paper presents a compiler approach to optimize execution plans that are
expressed in HorseIR. By analyzing the shape properties of programs, we employ a
novel data flow analysis in order to collect information for the subsequent optimization
phase, which fuses multiple operations to generate code with less loops, reducing the
need for separate computation and the storage of intermediate values. As the main
contributor of this paper, I designed and implemented this optimization strategy
and performed the experiments. I discussed with Alexander Krolik and received his
valuable feedback. He also helped clarify the research ideas and write the paper.
Bettina Kemme and Clark Verbrugge joined the discussion of the paper, provided
feedback, and helped with the paper writing. Laurie J. Hendren supervised this
paper and shared her insights in the optimization strategy in the early discussion
that played a vital role in the paper.

7

1.5. THESIS ORGANIZATION

3. Hanfeng Chen, Joseph Vinish D’silva, Laurie Hendren, Bettina
Kemme, HorsePower: Accelerating Database Queries for
Advanced Data Analytics, Proceedings of the 24th International
Conference on Extending Database Technology, (EDBT’21), pp. 361-
366, March 2021.

This paper proposes the extension of HorseIR to support database queries with
user-defined functions (UDFs) for data analytics. We first provide a translator which
translates MATLAB programs to HorseIR code. Furthermore, we extend our SQL
to HorseIR translation process to allow for SQL queries with embedded MATLAB
UDFs, and perform holistic optimizations. As the main contributor, I worked on the
design and implementation of the system, and conducted experiments. Joseph Vin-
ish D’silva shared his insightful feedback, gave suggestions on the system design and
implementation, and helped with writing the paper; Laurie J. Hendren joined at the
early stage of the research and provided valuable feedback; and Bettina Kemme con-
tributed her time to supervising the whole process of the research, including research
discussions and paper writing.

1.5 Thesis Organization
The rest of the thesis is organized as follows. We first introduce the background of
our research in Chapter 2. Next, we provide an overview of the HorsePower system in
Chapter 3. In the following chapters, we present the details of the system including:
the design and implementation of HorseIR in Chapter 4; the system front-end for
generating HorseIR from various source languages in Chapter 5; the system back-
end for generating multiple target code from HorseIR in Chapter 6; and compiler
optimizations in Chapter 7. After that, we show the evaluation of our experiments in
Chapter 8, and related work in Chapter 9. Finally, we conclude and discuss possible
future work in Chapter 10.

8

Chapter 2
Background

In order to bridge database query processing and array programming languages,
we need to understand a wide range of concepts from both research fields. We first
introduce SQL query processing and user-defined functions in relational database
systems in Section 2.1. Next, we present array programming languages in Section 2.2
in order to better understand the design behind HorseIR. Finally, we explain the
concept of intermediate representations in Section 2.3.

2.1 Query Processing in Relational Database Systems

Relational Database Management Systems (RDBMS) have been the primary data
management software of choice for organizations for decades. In this section we first
introduce the relational model used in RDBMS in Section 2.1.1; database storage
formats in Section 2.1.2; SQL, the de facto standard query language, and relational
algebra, on which SQL is based on, in Section 2.1.3; and the steps of processing an
SQL query in Section 2.1.4. Finally, we present the concept of user-defined functions
and how they can be embedded in SQL queries in order to enable data analytics
within a RDBMS in Section 2.1.5.

9

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

2.1.1 Relational Model

The relation model was first introduced by Edgar Codd [25]. It defines the organiza-
tion of data as relations, consisting of a set of tuples. A relation can be viewed as a
database table whose rows are the tuples and whose columns are the attribute values.
Using a vertical view, a database table contains a list of columns, each of which has
homogeneous data.

A relational database is a database whose data is organized following the relational
model. It may contain multiple tables that are connected via primary and foreign key
relationships. A primary key of a table consists of one or more attributes, such that
each tuple of the relation has different values in those attributes. That is, primary
key values are unique. A foreign key of a table is a set of attributes that refer to
a primary key in a different relation. Note that foreign keys are not required to be
unique. For instance, a relational database may have the following tables:

• Department (deptid, deptname)

• Employee (empid, empdeptid, empname)

Two tables are created for storing department and employee information. The
table Department has two columns: department ID (deptid) and name (deptname),
in which deptid is a primary key. Table Employee has a column with the employee
ID (empid) as its primary key, and two other columns indicating a department (em-
pdeptid) and a name (empname). The column empdeptid is a foreign key referring to
a specific department (i.e., its value is one of the values of the primary key deptid of
the department table). It refers to the department in which the employee works.

As can be seen in Figure 2.1, the employee “Sam” is associated with department
ID 76 which refers to the department “DeptJava”. Moreover, the employees “Kate”,
“John”, and “Fang” are from the same department “DeptC” because they share the
same department ID 14.

10

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

empid
1001
1002
1003
1004

Department

1005

deptid
14
76
46
54

deptname
DeptC
DeptJava
DeptGO
DeptPHP

Employee
empdeptid

14
14
46
76
14

empname
Kate
John
Paul
Sam
Fang

Figure 2.1 – A primary key deptid in the table Department and a foreign key empdeptid
in the table Employee

2.1.2 Database Storage

Most existing RDBMSes store tables in row format where all attributes of a row
are stored in contiguous space. In contract, more recent systems follow a columnar
storage format, where each column of the table is stored in contiguous space. Row-
based systems are better when queries access most of the attributes of the table and
also when there are many inserts and updates. Columnar systems have shown superior
performance for analytic workloads on large tables, where the data is seldom or not at
all updated, such as the historical data from the financial market. It should be noted
that a database system may support both formats in order to leverage the advantage
of these formats for applications under different scenarios, such as the commercial
database system SAP HANA [32].

2.1.3 Relational Algebra and SQL

In order to query and manage relational data, RDBMS support SQL (structured query
language) which is a domain-specific language based on relational algebra. SQL is a
very high-level language that provides a declarative way to write database queries.
The query describes what data should be retrieved without the need to know the
underlying database implementation.

RDBMS usually parse an SQL query into a relational algebraic representation [17],
as the latter has been known to be easier to optimize [79]. Relational algebra contains

11

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

a set of important operations, such as projection for loading columns from tables,
selection for filtering qualified rows with conditions, aggregation for grouping rows
with the same value, and join for merging two tables over columns with conditions.
Such relational algebra operators are unary or binary, in the sense, they accept one
or two tables as input. Their output is always a single table. In here we shortly
introduce each of them and show the SQL equivalent.

Projection. A projection operation is defined as Πc1,c2,...,cn(R) which takes the
records of table R as input and returns the same records but only the columns
of R with column names c1, c2, ..., cn. Projection refers to the SELECT clause of
an SQL query retrieving columns from tables, e.g., SELECT c1,c2,...,cn FROM

R. This returns a table that contains columns c1,c2,...,cn. If all columns
need to be projected, then one uses SELECT * FROM R;.

Selection. A selection operation is denoted as σP (R) where P is a collection of
selection predicates and R is a table. The selection returns those records of R
whose attribute values fulfill the condition P . Formally, P = (P1 < op1 > ... <

opn > Pn) where opi is either ∧ for a logical AND operation or ∨ for a logical
OR operation, and {P1, ..., Pn } are predicates on attributes. P is represented in
the WHERE clause of an SQL query e.g., SELECT * FROM R WHERE c1 < 100

AND c2 = 10;.

Join. A join operation takes two tables as input and connects records from the two
tables that fulfill certain conditions. Let R1 be a table with columns (ca1 , ..., can),
and R2 be another table with columns (cb1 , ..., cbm). Then, the join operation
returns a new table:

R1 ▷◁COND R2

where (COND ← (ca cond_op cb)∧ ...) and cond_op can, for instance, be any
of the operators for comparison, such as equal (=), not equal (̸=), less than (<),
or greater than (>). The new table contains the columns from both the tables
R1 and R2. A record r1 from R1 together with a record r2 from R2 build a
record in the new table, if r1 and r2 fulfill the conditions defined in COND. As

12

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

an example, assume COND ← (ca1 = cb2), this is expressed in SQL as SELECT

* FROM R1,R2 WHERE ca1=cb2;, and the join is called an equijoin as all (one)
conditions are equality comparisons.

Aggregation. An aggregation function takes a list of values as input and returns a
single value as output. Examples are sum (sum of values) and count (number
of values). A formal definition of aggregation is

AGGR F1(c1),F2(c2),...,Fm(cm) (R)

where (i) c1, c2, ..., cm are names of columns in R; and (ii) F1, F2, ..., Fm are
aggregation functions. For instance, AGGRSUM(c1)R is expressed as SELECT

SUM(c1) FROM R; in SQL.

Group by. Using a group by (referred to as groupby in this thesis) Gc1,c2,...,cn(R), all
tuples that have the same values in columns c1, c2, ..., cn are grouped and will
create one output tuple. The groupby can only be used in combination with
aggregation functions and projections on the attributes in the groupby clause,
for instance, Πc1,sum(c2)(Gc1(R)). In SQL notation, this is written as SELECT

c1, SUM(c2) FROM R GROUP BY c1;. The output is one tuple for each set of
tuples in R that have the same value in c1 and this value is returned together
with the sum of (probably different values) this set of tuples has in column c2.

Order by. An order by sorts all input tuples based on one or more particular columns
since a relation has no pre-defined ordering. A typical example in SQL is SELECT
c1,c2 FROM R ORDER BY c1 ASC; where the rows are sorted in ascending order
of column c1 and then c1 and c2 are returned. The sorting order for one column
can be either ascending or descending.

An SQL query can contain many selections, joins, aggregations, and projections.
We will see throughout the thesis more complex examples and we will discuss in detail
as we present them.

13

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

1 SELECT
2 SUM(l_extendedprice * l_discount) AS RevenueChange
3 FROM
4 lineitem
5 WHERE
6 l_discount >= 0.05;

Figure 2.2 – Example query derived from the TPC-H benchmark.

2.1.4 Database Query Processing

As the input of relational algebra operators are one or two tables, and the output
is always a table, it is easy to chain these operators into operator trees, also called
execution plans, where the output of one relational operator serves as the input of
another operator in order to solve complex SQL queries. Each of the operators can
be implemented in various ways. Modern RDBMS optimizers have a query re-write
subsystem that generates multiple semantically equivalent execution plans [42, 43] for
a given query. They might differ in the order of the operators and the implementations
of the individual operators. The performance of execution plans can vary widely and
depend on the input data. The overall cheapest execution plan is then chosen based
on cost models. In this aspect, one can think of an RDBMS as a dynamic language
processor which receives SQL queries as input and dynamically translates the SQL
query to an optimized execution plan that minimizes the execution cost of the query
and executes the plan.

Figure 2.2 presents a typical SQL query derived from the TPC-H benchmark [85].
It works on a table lineitem to get the total revenue change when discounts are
greater or equal than 0.05. Figure 2.3 shows the execution plan which contains
several operators, including a projection on the relevant columns l_discount and
l_extendedprice, a selection for finding qualified rows in which discounts are greater
or equal than 0.05, an aggregation operation SUM to compute the total revenue change,
and a final projection to retrieve the result in a column named RevenueChange.

An SQL query can be processed using two different execution models, the Volcano
iterator model [37] or the data-centric model [64]. The Volcano model represents

14

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

SQL

Execution
Plans

Result

Translate and
optimize

Execute

SELECT
SUM(l_extendedprice * l_discount)

AS RevenueChange
FROM

lineitem
WHERE

l_discount >= 0.05;

RevenueChange

3.59

𝜎𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 ≥ 0.05

lineitem

Π𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒,
					𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡

SUM (…)

Π𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐶ℎ𝑎𝑛𝑔𝑒

Figure 2.3 – Example of execution plans for Figure 2.2

the classical approach which fetches tuples through a set of chained operations in a
pipelined fashion. This avoids large intermediate results as the tuples are produced
as needed. The Volcano iterator model was developed with a row-based storage
in mind. In contrast, the data-centric model has gained recent attention with the
development of modern query compilers. This approach allows data to be pushed
through an operator completely. It is popular with columns storage systems, where
an operator, e.g., a selection, is executed on all elements of a column. To avoid
intermediate results, it is important to have an optimizer that is able to determine
groups of operators that can be grouped and merged to achieve better data locality
and reduce intermediate results. Although a direct comparison is absent, such data-
centric approaches promise to deliver better performance [76]. The design of HorseIR
is akin to the data-centric model where arrays of data are passed from one function
to the next, and its optimizer employs a fusion-based strategy that merges functions
to generate compact target code.

2.1.5 User-defined Functions in Database Queries

A user-defined function (UDF) is a high-level language function embedded within an
SQL statement. It can simplify the query by offloading some of the computation in a

15

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

Query
Engine

UDF
Engine

Database

Data

Communicate

Load

Figure 2.4 – Support of an embedded UDF engine in database

more concise language other than SQL, or it can provide additional functionality that
cannot be expressed by SQL alone. Some RDBMSes offer their own vendor-specific
SQL language extensions to write UDFs, such as Transact-SQL UDFs in Microsoft
SQL Server [73]. Moreover, many database systems provide interfaces for integrating
general-purpose programming languages into SQL queries, such as the embedded
Python interpreter in MonetDB [72]. As depicted in Figure 2.4, the embedded UDF
engine needs to communicate with the query engine of the database system in order
to get input data and write out the result. The cost of communication could be
expensive due to the data conversion between two different engines. For example,
Python can only operate on Python objects, requiring columns or rows to be counted
to Python objects. Nevertheless, using well-known programming languages for UDFs
has become a popular choice as it simplifies software development.

UDFs are often classified into subcategories depending on their expected interac-
tion with the SQL query. For the sake of brevity, we will focus only on Scalar UDFs
and Table UDFs, as these are the most commonly employed types of UDFs and also
the ones supported presently in HorsePower. A detailed discussion on the various
UDF categories can be found in [72].

Scalar UDFs A scalar UDF returns a single value (which could be a vector) and
can be therefore essentially used wherever a regular table column is used, such as
in the SELECT or the WHERE clause of SQL queries. Figure 2.5 shows a scalar UDF

16

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

FUNCTION calcRevenueChangeScalar(price,discount)
RETURN price * discount;

END

1 SELECT
2 SUM(calcRevenueChangeScalar(l_extendedprice,l_discount)) AS

RevenueChange
3 FROM
4 lineitem
5 WHERE
6 l_discount >= 0.05;

Figure 2.5 – Example query with a scalar UDF derived from Figure 2.2

which performs the multiplication that was originally part of the SELECT clause in
Figure 2.2. Although this is a simple example, outsourcing this computation to a
UDF extends its use across several queries, and allows for a simpler change of the
implementation or semantics of the UDF (and therefore, that of the queries using it).

In a row-based system, this query retrieves one tuple after the other from the
lineitem table, and if the condition in the WHERE clause is true, the values in the
l_discount and l_extendedprice attributes are given to the UDF, which performs
the multiplication. Thus, the UDF is executed for each row that fulfills the WHERE

clause.

In contrast, in a column-based system, and under the assumption that the pro-
gramming language used for the UDF can handle array-based data structures, the
execution is quite different. Let’s look at the execution within MonetDB. First, the
WHERE clause is executed on the entire l_discount column, returning a boolean vector
of the same size as l_discount with true values in the elements (rows) that fulfill the
condition. Then, MonetDB applies the corresponding boolean selection on columns
l_discount and l_extendedprice resulting in “compressed” columns only containing
the elements of l_discount and l_extendedprice for which the corresponding entry
in the boolean vector was true. These two compressed columns are then given to the
UDF as arrays, and the UDF performs an element-wise multiplication on these arrays
returning an array of the same size. This is then the input to the SUM operator. Thus,

17

2.1. QUERY PROCESSING IN RELATIONAL DATABASE SYSTEMS

compared to a row-based system, the UDF is only called a single time and works on
arrays instead of individual values.

FUNCTION calcRevenueChangeTable(price,discount)
mask = discount >= 0.05;
revenuechange = price[mask] * discount[mask];
RETURN TABLE("revenuechange", revenuechange);

END

1 SELECT
2 SUM(revenuechange) AS RevenueChange
3 FROM
4 calcRevenueChangeTable((SELECT l_extendedprice, l_discount FROM

lineitem));

Figure 2.6 – Example query with a table UDF derived from Figure 2.2.

Table UDF A table UDF returns a table-like data structure, and thus, is typi-
cally called within the FROM clause of an SQL statement, similar to regular database
tables. As such, it can return one or more columns at the end of its execution. Fig-
ure 2.6 shows a table UDF which is specifically designed for a column-based system.
The input for the table UDFs is the l_extendedprice and l_discount columns of
the lineitem table. Similar to the scalar UDF example, the database performs the
selection operation based on the value of the l_discount column. It then passes the
values of the l_extendedprice and l_discount columns for the selected rows to the
table UDF. As such, each input column to the table UDF is a vector of values for
the corresponding columns, equal in length to the number of selected records from
the lineitem table. The table UDF then performs the element-wise multiplication
function, and returns a table-like data structure with the result of this multiplication
as the column revenuechange. This resulting table-like data structure is then the
input of the surrounding SQL query, which uses it in its FROM clause and executes the
SUM operation on revenuechange.

Performance The main advantage of using UDFs is that the core computation
of the query is abstracted into a function. Whether to use a scalar or a table UDF

18

2.2. ARRAY PROGRAMMING LANGUAGES

depends on the expertise of the developer and task to be performed. In the case of
column-based systems and the use of programming languages that support operators
on arrays, such as MATLAB, R, or Python, column-based data can be exchanged
seamlessly between SQL and the embedded UDF, and efficient array operations can
be exploited within the UDF.

However, introducing UDFs into queries can result in performance issues. Firstly,
the overhead of possible data movement and conversion is non-negligible when data
materialization is required for the input of a UDF and as well when the return value
of a UDF is given back to the SQL statement. This is because often the data types
used by the two execution environments are not similar, requiring the implementation
to perform data conversion from one format to the other. In fact, MonetDB tries to
avoid this by employing a concept called zero-copy [54], whereby a high-level language
UDF can directly access the database system buffers of a column if the underlying
binary structures of the data types used in both the UDF and the database system
are compatible.

Apart from the data format issue, the fact that there is a large syntax gap between
SQL and the UDF language results in both parts of the query being executed as black
boxes to each other by two separate execution environments. In other words, there
is typically no cross optimization between the two components of the query. An
exception is the approach in Froid [73] having UDF code to be rewritten to SQL code
so that the query optimizer of the database system can optimize across the entire
rewritten query. This is possible with the examples that we discussed above, as the
tasks performed by the UDFs can be expressed as SQL operators. However, this is not
the case for all the tasks for which UDFs are currently used, such as those involving
non-relational operations on the data.

2.2 Array Programming Languages

Array programming is supported by a wide range of programming languages, such as
MATLAB, APL, and FORTRAN 90. The main characteristics of array programming

19

2.2. ARRAY PROGRAMMING LANGUAGES

are: (i) Array objects are the main data structure. An array object is able to represent
an arbitrary dimensional array. As a consequence, programming with arrays comes
with succinct and expressive code; and (ii) Array programming languages provide a
rich family of well-defined operators as built-in functions.

ID Array Code C Code

(1) z = (x + 0.5) * y;
for(i=0; i<size; i++){

z[i] = (x[i] + 0.5) * y[i];
}

(2) z = y(x);
for(i=0; i<size_x; i++){

z[i] = y[x[i]];
}

Figure 2.7 – Examples of equivalent code in both array code and C code

Figure 2.7 presents equivalent code snippets in array and C code for (1) basic
arithmetic operations on equal-length vectors; and (2) array indexing on the two
vectors returning a new vector with the same length as the vector x1. As can be seen,
the array code is more expressive than C code, and it is easy to generate C code from
the array code. The fundamental idea of array programming is to apply an operation
on all items of an array without an explicit loop. There are two important operations
in array languages: element-wise operation and boolean selection.

Element-wise operations apply a function to data stored in input arrays in an
element-wise manner. An element-wise operation may take one (unary) or two (bi-
nary) arguments depending on the function it implements. Examples are shown in
Figure 2.8. The unary operation abs processes each value in the array and generates
a new array as output containing corresponding absolute values; the binary operation
plus has more cases distinguishing whether both input arrays agree on the length or
one of them has a single element. Element-wise operations can be used for query
processing in column-store RDBMS when database operations should be applied to
a whole column. In terms of performance, they can be executed in parallel as they
are data dependency free. For instance, MATLAB’s element-wise built-in functions
are well-tuned for implicit data parallelism. We will provide more details when we

1 Array bounds checking will be required in actual C code.

20

2.2. ARRAY PROGRAMMING LANGUAGES

25

-6

-12

6

25

6

12

6

abs

-6

20

0

21

-5

22

3

25

plus

1

2

3

4

+

+
+
+

-6

20

0

21

-5

21

1

22

plus

1

+

+
+
+

-6

20

0

21

-5

21

1

22

plus

1

+

+
+
+

Figure 2.8 – Examples of unary and binary element-wise operations

introduce HorseIR’s element-wise built-in functions in Section 4.4.
A special concept in array programming is vectorization. It can take place in the

low-level hardware as well as the high-level programming language. Modern hardware
is actively adopting the concept of vectorization in their chip design. For instance,
Intel Advanced Vector Extensions (AVX) [41] is a hardware-based instruction set
designed for efficient vector operations. One instruction performs one operation on
multiple data items simultaneously. A software-based version of vectorization is the
source-level translation from a scalar form to a vectorized form to reduce the overhead
of explicit loop iterations [58, 21]. With vectorization, the performance of element-
wise functions can be further improved.

42 35 22 11 7 79

0 1 1 0 1 0

35 22 7 51

1 1

51 29

29

x
(bool)

y

result

Figure 2.9 – Example of boolean selection

21

2.2. ARRAY PROGRAMMING LANGUAGES

Boolean selection is another important operation in array programming. It takes
two parameters: a boolean array (often referred to as “mask”) and another equal-
length array, and returns the elements of this second array where the boolean vector
has in the same position a true value. As can be seen in Figure 2.9, the result is
determined by the “true” value (i.e., 1) in the boolean array, and the size of the result
is equal to the number of true elements in the boolean array. We will see that we can
use boolean selection for SQL queries when we perform a projection after a selection.
Different array programming languages may have different notations or names for this
operation. Our HorseIR provides a built-in function called compress for the boolean
selection.

3 1 2 7 1

42 35 22 11 7 79

11 35 22 29

51 29

35

y

x

z
(result)

0 1 2 3 4 5 6 7index /
row id

Figure 2.10 – Example of array indexing (z=y(x))

Array indexing is commonly used in array programming. As can be seen in Fig-
ure 2.10, given an array x consists of indices where x = {x0, x1, . . . , xn}, a new array
z is generated on the input array y as z = {y[x0], y[x1], . . . , y[xn]}. An index indicates
the “position” of the value which needs to be fetched. The size of the resulting array
is determined by the size of the indexing array. In database systems, such indices are
conceptually same to “row ids” as well. The row ids are implicitly existed and they
are critical for RDBMS to fetch new values from row ids. In particular, a column-
based RDBMS often first scans some columns in tables to find rows which fullfil given
conditions, and then returns new tables with all columns but only preserving these
qualified rows using row ids.

Built-in functions in array programming languages are also called primitive func-
tions, and represent a set of basic computations. It is common to have new built-in

22

2.3. INTERMEDIATE REPRESENTATIONS

functions for encapsulating new functionality. In fact, the number of built-in func-
tions in array languages can vary greatly with specific needs in their domains. One
performance problem for built-in functions is the intermediate results after each func-
tion invocation. For instance, the first array code in Figure 2.7 needs to be executed
in two steps: (i) t = x + 0.5 and (ii) z = t * y, where the variable t is a tem-
porary vector. Thus, the performance of the array code is slower than that of the C
code because the C code has no intermediate vector. To improve the performance
of array programming with built-in functions, it is common to have fusion-based op-
timizations, such as loop fusion, to reduce the number of loops generated for these
functions and eliminate intermediate results [47, 89].

2.3 Intermediate Representations

In compiler design, it is common to introduce an intermediate representation (IR)
as an intermediate layer between a source language and generated target code [61].
Having a common IR can reduce the complexity of supporting multiple source lan-
guages and target platforms since different source languages can be translated to the
IR, and different target code can be generated from the IR. In terms of abstraction,
the IR sits in the middle between source languages and target code. Different IRs
can vary greatly depending on their design purposes, such as the general-purpose
LLVM [11] for low-level code generation and the domain-specific TameIR [30] for rep-
resenting MATLAB programs. In order to design proper IRs and generate efficient
target code, the compiler research mainly focuses on the multiple levels of IRs and
their corresponding compiler optimizations [86].

A compiler needs to support the following code transformation with IRs. Firstly, it
translates source language code to an IR with only a few optimizations or without any
optimizations. This step mainly focuses on generating the correct IR code and passing
enough information, such as proper type information. Next, the IR code is compiled
to target code or another IR code using various compiler optimization techniques.
Program analyses are performed on the IR code to collect program information, such

23

2.3. INTERMEDIATE REPRESENTATIONS

as types, shape, data dependence, and function invocations. If there are multiple IRs,
such information can be used to generate the next level of IR code. The multi-level
IR design can benefit from different kinds of optimizations, however, it may introduce
extra compilation time cost and code complexity. The last level of IR code is compiled
with code generation optimizations to generate target code, such as assembly code or
C code. After that, the generated target code can be executed in an interpreter, for
example, in the Java Virtual Machine for executing optimized Java bytecode [86], or
further compiled by a compiler to generate efficient binary code. The IR approach
can support different hardware platforms by compiling the IR code to target code
that is suitable for the particular hardware. For example, when the target code is C
and should run on a CPU exploiting parallelism, then the compiler can compile the
IR code to sequential C code annotated with OpenMP directives [9]. This annotated
code can then be compiled by a C compiler which supports OpenMP, such as the
GCC compiler [2]. Similarly, if we want to use GPUs, we can generate C code with
OpenACC directives [8]. This C code can be then compiled by the NVIDIA PGI
compiler [7] to binary code for GPUs.

In recent years, IRs were exploited for query processing in order to exploit compiler
optimizations. For instance, HyPer [64] translates query execution plans to the low-
level IR LLVM which has an efficient compiler back-end. MonetDB has its own
IR, called MAL, which is then optimized [60]. However, MAL is not compiled to
target code but executed in an interpreter. While compiling SQL queries (via IRs) to
efficient executable code can have significant performance benefits, compilation and
optimization are time-consuming. Thus, the approach might not be beneficial for
ad-hoc queries that are only executed once, but promising for query templates that
are frequently used.

24

Chapter 3

Outline of HorsePower

In order to provide a holistic solution for database query processing, we propose
a new framework, called HorsePower. Its core is an array-based intermediate repre-
sentation, called HorseIR. With HorseIR, the query processing for a column-based
in-memory database can be mapped to a set of well-defined array operations. More-
over, additional analytics functions, which are integrated into SQL as user-defined
functions (UDFs), can be translated into HorseIR as well. HorsePower is able to pro-
vide effective optimizations for array operations in HorseIR programs generated from
SQL, analytics functions, or both. The framework also provides a data management
system for supplying data during the execution of the generated code.

The framework is depicted in Figure 3.1. At a high level, the framework consists of
two major components: HorseSystem and HorseRuntime. HorseSystem is responsible
for generating, optimizing, and executing HorseIR. There are three main components
outlined in the following sections: an array-based intermediate representation HorseIR
in Section 3.1, a front-end for HorseIR code generation in Section 3.2, and a back-end
for HorseIR compilation in Section 3.3. HorseRuntime is a runtime support system for
managing table I/O, relations, and metadata, that assists the execution of HorseIR
as outlined in Section 3.5.

25

3.1. HORSEIR DESIGN

Data

SQL +
UDF (M.)SQL MATLAB

HorseIR

Output

HorseSQL HorseMATLAB HorseUDF

HorseInterpreter

HorseRuntime

Back-end

Front-end

HorseSystem

(Managing
table I/O,
table relations,
table meta-
info., and
heuristics.)

HorseCPU HorseGPU

Figure 3.1 – Overview of the HorsePower framework

3.1 HorseIR Design

HorseIR is an array-based high-level intermediate representation, designed for query
processing on column-based in-memory relational data. It supports a rich set of types
to reflect the many types found in RDBMS. Moreover, it has two kinds of shapes:
vector for homogeneous data and list for heterogeneous data. A column in a database
can be treated as a vector in HorseIR, and the aggregated data in a query can be
treated as a list in HorseIR. In addition, HorseIR provides a set of well-defined built-in
functions for many basic array operations. The core relational algebra can be mapped
to these functions making the translation from an SQL query to HorseIR possible.
The design and implementation of HorseIR can be found in Chapter 4.

26

3.2. FRONT-END DESIGN

3.2 Front-end Design

The HorsePower front-end aims at mapping SQL queries and MATLAB programs to
HorseIR, and generating HorseIR code automatically. The front-end consists of the
following source-to-source translators: HorseSQL, HorseMATLAB, and HorseUDF.
The details of the front-end are presented in Chapter 5.

HorseSQL, introduced in Section 5.1, is a translator designed for generating Hor-
seIR code from SQL queries. We present the mapping from a set of core relational
algebra operations to array-based HorseIR operations. From there, we present our
strategies for translating full SQL execution plans to HorseIR. Finally, we provide a
complete translator for these execution plans.

HorseMATLAB, presented in Section 5.2, is a translator designed for translating
MATLAB programs to HorseIR programs. As a popular array-based language used
in the field of statistics and engineering, MATLAB is an interesting source language
for generating HorseIR programs as they both support array programming. In our
solution, we use the McLab framework [5] to first compile MATLAB to optimized
TameIR, which is an IR used in McLab. TameIR code is then translated to HorseIR.

HorseUDF, described in Section 5.3, is a translator designed for generating Hor-
seIR from SQL queries with UDFs. MATLAB is a suitable programming language for
writing analytical functions. Thus, HorsePower supports UDFs written in MATLAB.
Since the SQL queries and the embedded MATLAB functions can be both translated
to HorseIR, we can compile all in a holistic manner to target code. This approach has
the advantage of reducing the expensive data movement between the analytical and
the database system. It also brings more cross-method optimization opportunities as
the two kinds of HorseIR code can be optimized together.

3.3 Back-end Design

The HorsePower back-end is responsible for translating HorseIR code into executable
code, applying a wide range of optimization techniques during this process. The
back-end consists of the following components: HorseInterpreter, HorseCPU, and

27

3.3. BACK-END DESIGN

HorseGPU. The first provides an interpreter environment, the other two use a com-
pilation approach. They are built with Flex [1] and Bison [3], which are popular tools
for building interpreters and compilers. The back-end is described in Chapter 6.

HorseInterpreter is an execution engine providing an interpreter-based execution
environment for HorseIR. Many database systems currently do not compile SQL
queries into executable code but use an interpreter to execute the operations in ex-
ecution plans as to avoid the compilation of ad-hoc queries that might execute only
once. Thus, we also offer an interpreter environment. HorseInterpreter follows a stan-
dard interpreter design: it directly interprets input HorseIR programs, making calls
to a built-in library with a rich set of well-defined built-in functions. Interpreting,
rather than compiling, is effective when the input data is small and can be processed
fast with these efficient built-in functions. Details can be found in Section 6.1.

The compilation environments work in a two-step approach. A HorseIR program
is first transformed into C code, a target language, with a whole set of compiler
optimizations performed in this code transformation process. In a second step, the
C code is then compiled into executable binary code. By using C as our target code,
we can fall back to performant C compilers that can take the target hardware into
account, leading to a second round of optimizations.

HorseCPU is a compiler back-end generator which translates HorseIR code to
executable binary code for CPUs. A HorseIR program is first parsed to generate an
abstract syntax tree (AST), and then its type and shape information are propagated
to ensure all expressions obey proper type and shape rules before generating internal
AST nodes. These AST nodes are analyzed by an optimizer which constructs data de-
pendency graphs for further optimizations. In the optimizer, the optimization of loop
fusion plays a crucial role in optimizing array-based HorseIR programs. With loop
fusion, the aim is to generate fewer loops in order to reduce intermediate results. Fur-
thermore, database specific patterns are exploited in this optimization phase. Care is
taken to minimize interference between fusion-based and pattern-based optimization.
After these optimizations, parallel C code is generated. The C code is then compiled
using C compilers to generate CPU code. Details can be found in Section 6.2.

HorseGPU is another compiler back-end generator which translates HorseIR code

28

3.4. BUILT-IN FUNCTIONS

to executable binary code for both CPUs and GPUs. Since GPUs have a superior
performance for complex data computation on massive data with excellent support
for data parallelism, the compute-intensive operations of the HorseIR program are
translated to GPU code. The other part of the HorseIR program is still mapped to
CPU code. The first steps of the transformation of a HorseIR program are similar
to HorseCPU, and AST nodes are generated. From there, additional information is
analyzed to decide which portion of a program should be offloaded to GPU in order
to speed up the overall program. Therefore, it provides customized program analyses
and optimizations for generating parallel C code for GPU. Details can be found in
Section 6.2.

3.4 Built-in Functions

A HorseIR program may contain many built-in functions. For many of them, Horse-
Power provides efficient parallel C implementations as a built-in function library.
This library improves the execution performance of HorseInterpreter, and reduces
the compilation time for HorseCPU and HorseGPU. We present the most impor-
tant built-in functions and their implementations in Section 6.3. HorseCPU and
HorseGPU, during the optimization phase, have to determine whether they use these
implementations, in order to better exploit loop-based fusion, emitting C code instead
of calling built-in functions from the library.

3.5 Runtime Support

HorseRuntime provides runtime support in managing data and supporting heuristics.
HorseIR needs the support of a runtime system during the code execution in order
to load data and its metadata, which can be table metadata for columns of tables
and the primary/foreign key relationships. Thus, the data management is mainly
for (1) loading data into tables; (2) collecting the basic metadata of tables; and
(3) supporting possible logs and dumps. Moreover, HorseRuntime is designed for

29

3.5. RUNTIME SUPPORT

maintaining a set of heuristics which play an important role in making decisions for
determining optimized execution paths at runtime. The input of a heuristic function
takes many factors into accounts, including array sizes and types. The details of data
management in HorseRuntime can be found in Section 6.4.

30

Chapter 4
HorseIR: the Core

In this chapter we introduce in detail HorseIR, an array-based intermediate repre-
sentation. The design of HorseIR aims at representing the execution logic of database
queries on main-memory column-based database tables and programs written in the
array-based language MATLAB. We first introduce the design principles for HorseIR
in Section 4.1. We then present the language features of HorseIR, including program
structures in Section 4.2, types in Section 4.3, built-in functions in Section 4.4, and
program statements in Section 4.5.

4.1 Introduction and Design Principles
HorseIR is a typed three-address intermediate representation (IR) which supports
a set of modern language features, including modules, methods, static fields, local
variables, and statements1. The design principles of HorseIR are as follows:

High-level IR. With the purpose of supporting effective program analyses for op-
timization, HorseIR provides a concise set of data structures and a rich set of
array-based built-in functions. Data in HorseIR can be either a vector or a list,
and operations on the individual elements can be processed without explicit
loop iteration. In terms of level of abstractions, HorseIR is a high-level IR

1A clean HorseIR language specification can be found in Appendix A.1.

31

4.2. PROGRAM STRUCTURE

but still at a much lower level than user-facing programming languages, such
as MATLAB and SQL. Therefore, the translation from these higher-level lan-
guages can follow a clear methodology, and there are plenty of optimization
opportunities when HorseIR is translated to target code.

Extensibility. HorseIR follows the conventional design with a set of primitive func-
tions. Source languages may introduce new operations that need to be sup-
ported by new functions in HorseIR. Therefore, it is important to have a mech-
anism in HorseIR that allows the set of built-in functions to be easily extended
and optimized.

4.2 Program Structure

In order to ensure code quality, HorseIR follows the standard design for program
structures, organizing code into modules, methods, and blocks. As depicted in Fig-
ure 4.1, a HorseIR program may consist of multi-level blocks, various methods, and
different modules. Modules can be imported to share code with other modules, allow-
ing even relatively complex HorseIR code to be clearly structured. In the rest of this
section, we introduce modules in Section 4.2.1, methods in Section 4.2.2, and blocks
and scoping in Section 4.2.3. We explain them along the code example depicted in
Figure 4.2 which shows an SQL query and a corresponding HorseIR program.

Module

Method

Block

… <blocks>

… <methods>

Figure 4.1 – Overview of HorseIR program structure

32

4.2. PROGRAM STRUCTURE

1 SELECT COUNT(*) AS StoresWithBigDiscount
2 FROM stores
3 WHERE discount>=0.5 AND discount<0.8;

1 module BigDiscount {
2 import Builtin.*; // import all builtins
3 def main():table { // an entry method
4 // load table: stores
5 a0:table = @load_table(`stores:sym);
6 // load column discount from table
7 t1:f64 = check_cast(@column_value(a0,`discount:sym),f64);
8 // find all stores with discounts between [50%,80%)
9 t2:bool = @geq(t1, 0.5:f64);

10 t3:bool = @lt(t1, 0.8:f64);
11 t4:bool = @and(t2, t3);
12 // count the number of such stores
13 t5:i64 = @sum(t4);
14 // return table
15 t6:sym = `StoresWithBigDiscount:sym;
16 t7:? = @list(t5); // ? => list<i64>
17 t8:table = @table(t6, t7);
18 return t8;
19 }
20 }

Figure 4.2 – Example of a HorseIR module (bottom) for an SQL query (top) which
returns the number of stores with relatively big discounts (50-80%).

33

4.2. PROGRAM STRUCTURE

4.2.1 Modules

A valid HorseIR program consists of a set of modules, with each module defining
a collection of imports, static methods, and static fields. For example, Figure 4.2
shows the HorseIR module BigDiscount. In addition to named modules, there is a
pre-defined module Builtin, which implements the basic mathematical and database
operations, such as load_table, geq, lt, etc. If a module contains a method called
main, then this can be used as an entry point of a program. In the BigDiscount

example module, there is a main method that reads from the database table stores,
loads the column discount, and then executes the subsequent statements. Further,
a module can import one or more methods from another module using an import
statement.

With this simple module design, HorseIR provides a mechanism for modularizing
complex software and provides a flexible way of specifying reusable libraries, such as
the Builtin module [68].

A static field is defined in a module as a global variable, and a local variable is
defined in a method. Each static field and local variable must have a declared type.
A static field may be shared through the directive import.

4.2.2 Methods

A method has zero or more parameters and zero or one return value. Parameters
are passed by value, which simplifies program analysis, but also means that copy-
elimination is an important optimization, which is needed to efficiently execute MAT-
LAB [33]. Method calls preceded by the @ indicate user-defined or library built-in
function calls, whereas those without the @ are HorseIR system functions, such as
check_cast for checking whether an expression returns a designated type.

4.2.3 Blocks and Scoping

The scope of a declared name needs to be determined statically. A HorseIR program
contains the following scopes:

34

4.2. PROGRAM STRUCTURE

• Program scope is a root scope which contains all modules in the compilation
unit.

• Module scope includes methods and static fields in a module. Content can be
declared in any order.

• Method scope consists of parameters and local variables in a method. Variables
must be declared before use.

• Block scope considers blocks defined as part of control-flow structures that define
new scopes.

In order to be a valid HorseIR program, declarations within a scope must be
unique: (i) a module name in the program scope; (ii) a method name in a module;
and (iii) a static field name in a module. In addition, the use of an identifier may
conflict with another identifier that needs to be resolved. An order is defined to check
conflicts: (1) block scopes if existing; (2) method scope; (3) module scope; and (4)
imported content. It is acceptable for local variables to shadow global declarations
(i.e., static fields), and for static fields and methods to shadow imported content.
That is, if a local variable in a method and a static filed as a global declaration have
the same name, the use of the name refers to the local variable within the method.

When importing a module, the imported module content may optionally be used
without the module name if they have not been shadowed. For example, in Figure 4.3,
the call to the method foo in module A resolves to the local method A.foo. However,
another method bar resolves to B.bar because there is no local method bar. In order
to call the method foo of module B, one has to explicitly state B.foo. In the case of
shadowing, the fully qualified name is required. Both static fields and methods follow
the same rules, and local variables cannot be imported. When two imported modules
contain an element of the same name, the last import shadows the earlier import.

35

4.3. TYPES

1 module B {
2 def foo() : i32 { ... }
3 def bar() : i32 { ... }
4 }
5 module A {
6 import B.*;
7 def foo() : i32 { ... }
8 def main() {
9 ...

10 a:i32 = @foo(); // Resolves to A.foo
11 b:i32 = @bar(); // Resolves to B.bar
12 c:i32 = @B.foo(); // Resolves to B.foo
13 ...
14 }
15 }

Figure 4.3 – Method name resolution when importing a module.

4.3 Types

HorseIR provides a rich set of base and advanced types. Deciding on the type system
was a very important decision in the design of HorseIR. The key decision was that
HorseIR should be statically typed, but with a special wild-card type that allows for
the case when a static type is unknown, thus indicating where a static type inference at
compile time or a dynamic type check at runtime must be made. This tension between
static and dynamic typing is partly due to the fact that database tables have declared
types; thus, generating statically-typed HorseIR from queries should be possible, and
is preferred. Furthermore, it has been well established that static types and shapes
can lead to much more efficient array-based code, therefore one should aim for as
much static typing as possible [51]. However, many common array languages, such as
MATLAB, are dynamically typed, and by offering a wild-card type, it is possible to
generate HorseIR from programs or UDFs written in those languages. We introduce
base types and homogeneous arrays in Section 4.3.1, advanced heterogeneous data
structures in Section 4.3.2, and a wild-card type in Section 4.3.3.

36

4.3. TYPES

Table 4.1 – List of HorseIR base types

Name Alias Letter Byte Description
boolean bool B 1 0 (false) and 1 (true)
small i8 J 1 Half short integer
short i16 H 2 Short integer
int i32 I 4 Integer
long i64 L 8 Long integer
float f32 F 4 Single precision
double f64 E 8 Double precision
complex complex X 8 Complex numbers (2 floats)
char char C 1 Half short integer or char
symbol sym Q 8 Symbol, but stored in integer
string str S 8 String
month month M 4 Month (YYYY-MM)
date date D 4 Date (YYYY-MM-DD)
date time dt Z 8 Date and time
minute minute W 4 Minute (hh:mm)
second second V 4 Second (hh:mm:ss)
time time T 4 Time (hh:mm:ss.lll)

37

4.3. TYPES

4.3.1 Base Types and Homogeneous Arrays

HorseIR supports a rich set of base types for arrays as shown in Table 4.1 and includes:

• all the base types typically found in modern languages (boolean, char, short,
int, long, float, double, and complex);

• additional base types that are used in SQL (string, month, date, time, datetime,
minute, and second); and

• a special type symbol as an efficient representation of immutable strings that is
critical for query performance.

A base type is a common type shared in a collection of items. If a variable is
declared along with a base type, the variable refers to an array of items with this
type. If there is only one item, then it is represented as an array of size one. For
instance, a vector (12,25,39):i32 has an integer type with three numbers. The byte
size of a single unit of the base type can be found in Table 4.1. Moreover, each type
is denoted by a letter which is used to describe type rules in Section 7.2.2.

An underlying principle in array-based programming languages is that many built-
in operations are defined over homogeneous arrays. Since each homogeneous array can
be stored in a contiguous memory region, it is a cache-friendly design, as well as being
easily partitionable for parallelism. Thus, our declarations denote arrays, with each
array having an explicit base type, and an implicit extent (number of dimensions)
and shape (the size of all dimensions). Only the base type is declared, but the
extent and/or shape may sometimes be inferred. For our example in Figure 4.2, the
parameter declaration t1:f64 declares that t1 is a homogeneous array with a base
type of f64. Shape inference would be able to determine that it is a vector, based on
the output shape of the built-in function column_value. We will explain the shape
inference in detail in Section 7.2.3.

38

4.3. TYPES

Table 4.2 – HorseIR advanced types

Name Alias Letter Description
list list G Collection of items
dictionary dict N Key to value
enumeration enum Y Mapping
table table A A table without keys
keyed table ktable K A table with keys

4.3.2 Advanced Heterogeneous Data Structures

Although homogeneous arrays are excellent for core scientific computations, the data
stored in an SQL database is not always homogeneous, and may have columns with
different data types. Thus, HorseIR offers key heterogeneous data types to effectively
capture SQL-like data in a manner that interacts well with array-based primitives.
Furthermore, HorseIR supports many important built-in functions for dealing with
these data structures, and they are used extensively in the code generation strategies
for database queries described in Section 5.1. The collection of the advanced types
with heterogeneous data structure include: list, dictionary, enumeration, table, and
keyed table. They are shown in Table 4.2.

Advanced type: list
A list type is an advanced type which provides cells for holding different types.

Lists can be nested. Fundamental to list creation is the built-in function list which
takes an arbitrary number of arguments and returns a list with each argument saved
into a single cell. The length of the returned list is the number of cells. The formation
of a list type can be described as follows:

list_type ::= 'list' '<' cell_type '>'

;

cell_type ::= type { ',' type }

;

type ::= list_type | <any other type>

;

A specific cell type is associated with a list type when all cells of the list have the

39

4.3. TYPES

same cell type. For example, the variable t7 in Figure 4.2 is initially associated with
a wild-card (?) but later inferred as a list type list<i64> at compile-time. It stores
the value returned from the function list that has in this particular example only
one input parameter, namely t5, which is an array of type i64 (and in our example
this array happens to be of size 1 as it was created by the sum primitive). Therefore,
the type of the variable t7, list<i64>, means it is a list which has a set of cells (in
our case only one), all of which are homogeneous arrays with a base type of i64.

cell 0

“abc” 45

cell 1

9 72

(List)

Figure 4.4 – Example of list type

The cells of a list may also contain different types. Figure 4.4 shows an exam-
ple of a list with two cells holding data of different types, namely a string ("abc")
and an array containing three integers (45,9,92). This list can be represented as
list<str,i64> in which its cell types are string and integer types for the two cells,
respectively.

A list could be used to represent a database table. In this case, a table could be
formed as a list of column names and a list of column values (i.e., the variable t7),
where the number of column names is equal to the number of columns and all columns
agree on their sizes. It is possible that a list can be converted to a vector by using a
built-in function raze which flattens an input list (including nested lists), creating a
vector containing all of the leaf elements of the list. Note that raze expects all leaf
elements to be of the same type since vectors are homogeneous data structures.

Advanced type: enumeration
An enumeration enum<T> takes two input vectors a and b of the type T and indi-

cates for each element e in the vector b the position in the vector a in which e occurs.
The vector a is called the target and b is called the source. If there are duplicated
items in the target, the first position of the occurrence is returned. In case an item

40

4.3. TYPES

does not exist in the target, the length of the target is returned.
The example below show two integer vectors a and b. HorseIR’s built-in function

@enum is used to create an enumeration ab.
1 a:i32 = (42,7,35):i32;

2 b:i32 = (35,35,42,35,7):i32;

3 ab:enum<i32> = @enum(a, b);

As illustrated in Figure 4.5, the variable ab first stores the target a and the source b,
in which a is a base vector for items in the vector b. Then, it stores the indices as a
vector of integers [2,2,0,2,1] which represents for each element in the vector b the
position of the item in the target.

42 7 35

35 35 42 35 7

0 1 2

2 2 0 2 1

a

b

{
target: “a”,
source: “b”,
index : [2, 2, 0, 2, 1]

}

Figure 4.5 – Example of the enumeration type: containing target, source, and index

Advanced type: dictionary
A dictionary manages a list of pairs of keys and values with the type dict<k,v>.

Each key is associated with a value, and the key and value can be of any type. For
example, a key can be a string and the value can be a vector of integers. A valid
dictionary implicitly requires that the number of keys must be equal to the number
of values. For example, consider the below code snippet:
1 symbols:str = ("cityM", "cityT", "cityV"):str;

2 names:str = ("Montreal", "Toronto", "Vancouver"):str;

3 city:dict<str, str> = @dict(symbols, names);

The dictionary is created on two string vectors which contain city symbols and
names. As a result, the dictionary variable city stores the string mappings: {cityM
→ Montreal; cityT → Toronto; cityV → Vancouver} that enables fast search for city
names by given symbol names.

41

4.3. TYPES

HorseIR supports the built-in functions keys and values for fetching keys and
values from a dictionary. In this example, the keys of the dictionary city are stored
in the string array symbols and the values are stored in the string array names. On
the other hand, a dictionary can be used to handle the result of a database operation
group by (details can be found in Section 5.1.1.5) that its key part is a vector of
indices while its value part is a list, containing a list of integer vectors.

Advanced type: table and keyed table
A table is a special case of a dictionary as shown in Figure 4.6, and it is a HorseIR

type to which HorsePower translates database tables. Each key represents a column
name, and the associated value is an array representing the corresponding column of
the table. Thus, the values of all pairs in the dictionary have the same length, namely
the number of rows in the table.

Vn-1V1V0

S0 S1 … Sn-1

…
….
…
…
…
…

…
….
…
…
…
…

…

…
….
…
…
…
…

{
symbols:[S0, S1, ..., Sn-1],
values :[V0, V1, ..., Vn-1]

}

Figure 4.6 – Overview of the table type: containing a list of symbols and vectors

Figure 4.7 presents a keyed table which is a table with primary keys. This is
distinct from a normal table. A keyed table has a subset of columns as primary
keys. Thus, our implementation contains two sub-tables: columns that are part of
the primary key are grouped as one sub-table and the other columns are grouped as
another sub-table. This design simplifies our implementation by reusing the previous
implementation of a normal table. It should be noted that the two sub-tables may
contain a different number of columns, and at least one column is required for the
sub-table for primary keys.

Figure 4.8 shows the table conversion from a normal table to a keyed table, and
vice versa. At least one column from a normal table is selected as the primary key
to form a sub-table, and the remaining columns are formed to another sub-table in

42

4.3. TYPES

KVp-1KV0

KS0 … KSp-1

…
….
…
…
…
…

…

…
….
…
…
…
…

{
table-key: {
symbols:[KS0, ..., KSp-1],
values :[KV0, ..., KVp-1]

},
table-nonkey: {
symbols:[NS0, ..., NSq-1],
values :[NV0, ..., NVq-1]

}
}

(keys)

NVq-1NV0

NS0 … NSq-1

…
….
…
…
…
…

…

…
….
…
…
…
…

(non-keys)

Figure 4.7 – Overview of the keyed table type: containing two normal tables

the keyed table. In our implementation, the cost of the table conversion is minor as
this operation avoids actual content movement. Instead, either new list nodes are
created for distinguishing two sub-tables: keyed and non-keyed; or a keyed table with
two sub-tables are merged to one table. The table columns are then reorganized with
their table symbols by passing references.

KVp-1KV0

KS0 … KSp-1

…
….
…
…
…
…

…

…
….
…
…
…
…

(keys)

NVq-1NV0

NS0 … NSq-1

…
….
…
…
…
…

…

…
….
…
…
…
…

(non-keys)

Vn-1V1V0

S0 S1 … Sn-1

…
….
…
…
…
…

…
….
…
…
…
…

…

…
….
…
…
…
…

(table)

Figure 4.8 – Table conversion between normal and keyed tables

4.3.3 A special type: wild-card

A variable must have a declared type. When its type is unknown, a wild-card (?)
is assigned. At compile time, the wild-card type is specialized to a concrete type.
Figure 4.9 describes how a wild-card type can be specialized showing that a wild-
card can represent all possible cases of the aforementioned types. It is possible that

43

4.4. FUNCTIONS

two different wild-card types specialize to the same type. For example, list<?> and
list<list<?>> can result in the same type list<list<i32>> when the first wild-
card type is eventually assigned to list<i32> and the second wild-card type to i32.
Once a wild-card type is specialized, it is fixed and can no longer be changed. After
the phase of type propagation, described in more detail in Section 7.2.2, all wild-
card types should have been specialized. Otherwise, this phase fails and terminates
the code compilation. A potential optimization to eliminate wild-cards is the type
specialization achieved by well-defined type inference. Wild-cards allow HorseIR to
handle array programming languages which lack static type information.

wild_type ::= base_type
| advanced_type

;
base_type ::= <any base type>
;
cell_type ::= wild_type {',' wild_type}
;
advanced_type ::= ('list'|'enum'|'dict') '<' cell_type '>'

| 'table'
| 'ktable'

;

Figure 4.9 – Specialization of a wild-card type with base and advanced types

4.4 Functions

HorseIR provides a rich set of built-in functions (or called primitive functions in ar-
ray languages) covering vector-based functions, list-based functions, database-related
functions, and auxiliary functions. A built-in function is designed to handle various
cases when input parameters have different types and shapes. A typical invocation in
HorseIR is the symbol @ with a function name, for example, @plus, which represents
the function for addition. The complete list of built-in functions can be found in
Appendix A.3.

44

4.4. FUNCTIONS

4.4.1 Vector-based Functions

There is a large set of built-in functions for vectors in HorseIR, including element-
wise functions, reduction functions, the compress and index functions as introduced
in Section 2.2.

4.4.2 List-based Functions

Since HorseIR also includes list-based data structures, it provides a variety of map-
like operations. List functions apply a function (@f) on cells individually and merge
the results into a new list. For example, the each function is shown in Figure 4.10.

1 // x:i32, y:i32 vectors; @f function
2 t0:list<i32> = @list(x, y);
3 t1:list<i32> = @each(@f, t0);
4 // t1 contains cells [@f(x), @f(y)]

Figure 4.10 – Example of a list function

• Function each applies function @f to each cell in a list and collects the results
in a list. Given the input shape list<L0, . . . , Ln−1> the output shape is thus
list<@f(L0), . . . ,@f(Ln−1)>.

• Function each_left takes three parameters: a function, a list, and a vari-
able of any type. The function is applied on each cell of the list and
the variable to form a new list with cells for each pairing. Given input
shapes list<L0, . . . , Ln−1> and A, the function produces a new list with shape
list<@f(L0, A), . . . ,@f(Ln−1, A)>.

• Function each_right takes three parameters: a function, a variable of
any type, and a list. The function is applied on the variable and each
cell of the list to form a new list with cells for each pairing. Given input
shapes A and list<L0, . . . , Ln−1>, the function produces a new list with shape
list<@f(A,L0), . . . ,@f(A,Ln−1)>.

45

4.5. PROGRAM STATEMENTS

• Function each_item takes a function and two lists of equal length as input
for evaluating the given function on each pair of cells to form a new list. Given
input shapes list<La> and list<Lb> the function returns a new list of shape
list<@f(La0, Lb0), . . . ,@f(La(n−1), Lb(n−1))>.

As an example of its use, we will see in Section 5.1.1.4 how the built-in function
each_right is used in the translation of an SQL query with aggregation and groupby
to HorseIR code.

4.4.3 Database-related Functions

HorseIR also supports database-related functions specialized for database operations.
Some functions are mainly used to simulate how a database manages columns and
tables. For example, the function load_table loads a database table into a HorseIR
table, and the function table takes column names in a vector and column values
in a list, and returns a table. Moreover, there are a couple of important functions
for representing operators in database queries. We describe several of them in detail
in Section 5.1, such as group for aggregating data into groups, and join_index for
joining columns with given specific conditions.

4.4.4 Auxiliary Functions

HorseIR provides auxiliary functions that supplement the aforementioned functions.
For example, the function len takes one argument and returns a one-element vector
which indicates the length of the argument: the number of elements in a vector or the
number of cells in a list; and the function range takes an integer N as input returns
a vector containing integers from 0 to N-1 in ascending order.

4.5 Program Statements

A HorseIR method consists of zero or more statements, including expressions, assign-
ment, and control statements.

46

4.5. PROGRAM STATEMENTS

4.5.1 Expression Statements

An expression statement has only an expression without assigning anything to target
variables. It evaluates to a value which can be a function call, a literal or an identifier.
This is helpful for functions without return values or with side effects. For example,
the function @print needs to print a message before returning its integer exit code
which sometimes can be discarded without storing the exit code to a variable.

4.5.2 Assignment Statements

An assignment statement consists of left-hand side target variables and a right-hand
side expression. In the case of multiple return values, more than one target variable
must be present. Target variables may either be declared with their respective types
or assigned.

When declaring a new variable in an assignment statement, it is allowed to have
a variable declaration with an associated type, for example, x:i32=<expr> where the
result of the expression is assigned to an integer variable x. Variable declaration may
also bind variable names to their associated type without an initialization expression.
For example, var x:i32; where the variable x is declared as an integer. The declared
new variable can be assigned in later statements.

4.5.3 Control Statements

Control statements exist in programming languages for manipulating code execution.
A control statement can be either conditional or unconditional. A conditional control
statement includes one or more blocks controlled by conditions, including if, while,
and repeat statements. A condition is an expression whose result determines which
block will be executed. It can be nested when a conditional control statement con-
tains another conditional control statement within a block. An unconditional control
statement simply redirects to a program point without having any conditions. The
following control statements are supported:

47

4.5. PROGRAM STATEMENTS

If-statement allows only one of two blocks to be executed depending on the result
of its conditions. The condition result must be a boolean one-element vector.

1 size:i64 = @len(A);

2 cond1:bool = @eq(size, 1:i64);

3 if (cond1){

4 ... // execute when size == 1

5 }

6 else {

7 cond2:bool = @gt(size, 1:i64);

8 if (cond2){

9 ... // execute when size > 1

10 }

11 else {

12 ... // execute when size < 1

13 }

14 }

While-statement defines a loop that executes its body until its condition is set to
false. The condition value must be a boolean one-element vector.

1 total:i64 = @sum(A);

2 cond:bool = @gt(total, 100:i64);

3 while (cond){ // enter when cond is true

4 ... // execute

5 cond = ...; // update cond

6 }

Repeat-statement is almost the same as the while-statement except the condition
result needs to be an integer that controls the specific number of iterations
inside the internal loop. It should be noted that the number of iterations is
initialized by the value of the condition at the beginning of the first iteration.

1 repeat (100:i64) {

2 ... // repeat 100 times

3 }

48

4.5. PROGRAM STATEMENTS

Unconditional control statements consist of break, continue, and return state-
ments. Both break and continue statements have to appear inside a loop. A
break statement exits a loop, whereas a continue statement jumps to the next
iteration. A return statement exits the function and optionally returns a list of
values to its calling context.

1 while(...){ // enter loop

2 ...

3 if(...){

4 break; // goto line 10

5 }

6 else {

7 continue; // goto line 1

8 }

9 }

10 return ...; // return values

49

4.5. PROGRAM STATEMENTS

50

Chapter 5
Front-end: Compiling to HorseIR

The front-end of HorsePower is in charge of transforming a program written in a
high-level language to a HorseIR program. HorsePower currently supports the trans-
formation for two source languages: SQL for database query processing and MATLAB
for array programming. Furthermore, it supports UDFs embedded in SQL statements,
as long as they are written in MATLAB. These three components are depicted in
Figure 5.1. In Section 5.1, we present HorseSQL which translates SQL queries to
HorseIR. Next, in Section 5.2, we show HorseMATLAB which translates stand-alone
MATLAB programs to HorseIR. Finally, in Section 5.3, we present HorseUDF which
translates SQL statements with embedded UDFs written in MATLAB into HorseIR.

MATLAB

SQL HorseIR

HorseIR

SQL

MATLAB

HorseIR

Translate

Translate

Translate

Translate

(1) HorseSQL

(2) HorseMATLAB
(3) HorseUDF

Figure 5.1 – Overview of HorsePower front-end which translates SQL queries, MAT-
LAB functions, and MATLAB UDFs embedded in SQL code into HorseIR programs

51

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

5.1 HorseSQL: SQL-to-HorseIR Translator

Code generation from SQL to HorseIR starts with the execution plan of the SQL
query. The execution plan consists of a tree of relational operations and is generated
by the SQL optimizer of a database system. Query optimizations have been exten-
sively studied in the research literature over the past decades. The generated plans
can be considered an optimized way to execute the original SQL queries. Thus, we
use these optimized plans instead of the original SQL query as a starting point, in
order to take advantage of all the optimizations already developed by the database
community. As such, we provide HorseSQL, a translator which translates execution
plans to HorseIR, and its specification can be found in Appendix B. In this section we
show first how the individual relational algebra operators that can be found in such
a plan and which have been introduced in Section 2.1.3, are mapped to HorseIR code
snippets. We then explain how HorseSQL parses the full execution plan, traverses it,
and generates comprehensive HorseIR code.

5.1.1 Mapping Relational Algebra to HorseIR

We have given an overview of relational algebra in Section 2.1.3. Mapping relational
algebra operators to HorseIR is more than a one-operator-to-one-built-in-function
mapping. Instead, relational operators can sometimes be translated to a sequence of
HorseIR functions.

5.1.1.1 Projection

Recall that a projection Πc1,c2,...,cn(R) returns a relation only containing the columns
c1 to cn from R, written in SQL as SELECT c1,c2,...,cn, FROM R. Figure 5.2 shows
the corresponding operations in HorseIR. As can be seen, the function column_value

loads a column given a table name. The column names are formed into a string or
symbol vector. Then, a new table is returned with the function table which takes
both column names and values.

This code snippet first loads a table R and saves it to the variable a0. Columns

52

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

1 ...
2 a0:table = @load_table(`R:sym);
3 c1:f64 = check_cast(@column_value(a0, `c1:sym), f64);
4 c2:i32 = check_cast(@column_value(a0, `c2:sym), i32);
5 ... // load more columns
6 cn:sym = check_cast(@column_value(a0, `cn:sym), sym);
7 table_name:sym = `c1`c2`...`cn:sym;
8 table_column:list<?> = @list(c1,c2,...,cn);
9 new_table:table = @table(table_name, table_column);

10 ...

Figure 5.2 – Example of projection in HorseIR

c1, c2, ..., cn in the table a0 are loaded. Next, we assign column names to the
variable table_name and column values to the variable table_column. Since columns
may have distinct types, we use a list type to indicate its cell types. Finally, a new
table is returned after calling the function @table with new table names and columns
as input.

5.1.1.2 Selection

Recall that a selection σP (R) returns only tuples from R that fullfil condition P,
where P = (P1 < op1 > ... < opn−1 > Pn) with any op ∈ {∧,∨} and Pi conditions
on attributes. In SQL, conditions are in the WHERE clause. HorseIR has unary
element-wise built-in functions for the typical comparison predicates, such as @lt for
“<” and @eq for “=”. They are executed on the full columns and return a boolean
vector. Furthermore, HorseIR has two built-in boolean functions and or or, again
returning a boolean vector. As in an SQL query a selection is always in connection
with other operators, like projection, the boolean vector of the selection is then input
for further processing. For instance, for the statement SELECT c3 FROM table WHERE

c1 < 100 AND c2 = 10, the corresponding HorseIR code is shown in Figure 5.3.
First, the selections on c1 and c2 result in two boolean vectors being input of the and

function. The final boolean vector mask is then input together with column c3 of the
built-in function compress which selects from c3 only the elements where the mask
vector has a 1. That is, the function compress connects selection and projection.

53

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

1 ...
2 t0:bool = @lt(c1, 100:f64); // c1 < 100
3 t1:bool = @eq(c2, 10:f64); // c2 = 10
4 mask:bool = @and(t0, t1);
5 newC:f64 = @compress(mask, c3);
6 ...

Figure 5.3 – Example of selection in HorseIR

5.1.1.3 Join

Recall that a join R1 ▷◁COND R2 connects the records from table R1 and R2 that
fullfil the conditions in COND.

General joins
When a join is based on conditions between columns of R1 and R2 that do not

reflect a primary or foreign key relationship, the join can be computed using the
built-in function join_index. This function supports many kinds of joins, including
on one or multiple columns, one or multiple conditions, and same or different types
of columns.

1 ...
2 t0:list<i64> = @join_index(@eq, c1, c2);
3 t1:i64 = @index(t0, 0:i64); // indices for c1
4 t2:i64 = @index(t0, 1:i64); // indices for c2
5 t3:? = @index(a, t1); // rows from a after join
6 t4:? = @index(b, t2); // rows from b after join
7 ...

Figure 5.4 – Example of join in HorseIR

Figure 5.4 introduces a HorseIR code snippet for implementing the SQL query
(SELECT R1.a,R2.b FROM R1,R2 WHERE R1.c1=R2.c2;) using the function join_index

to perform an equal join on the two columns c1 and c2 and then retrieving the proper
elements from columns a and b for projection. The implementation is depicted in
Figure 5.5. Both input integer arrays are on integers and the output index consists
of a list of two arrays of the same length. For instance, the first item (row 0) in the
array c1 is 17, which can be found in the array c2 two times with the row indices 1

54

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

49

17

15

35

29

17

17

15

17

35

⋈
c1 c2

0

0

1

2

1

5

2

1

0

1

2

3

0

1

2

3

4

5

2

3

5

3

t1(id) t2(id)row
id

t0

This

This

is

hello

hello

world

John

Amir

Paul

John

Amir

Sam

t3 t4row
id

This

is

hello

world

a

Kate

John

Paul

Sam

Fang

Amir

b

Figure 5.5 – Illustration of the equal join operation in Figure 5.4

and 5. This results in two pairs of indices (0,1) and (0,5) in the result list t0, being
the first two elements in the output arrays t1 and t2. The integer indices stored in t1
and t2 are later used to fetch the actual rows after the join, for example from arrays
a and b in our example code.

Note that the input parameters for the join, c1 and c2 in our example, can be
vectors for a one-column join or lists for a multiple-column join. In the second case,
the two lists must have the same number of arrays to match. A single join operator
@eq is for one or more columns, and different join operators for different columns
need to be explicitly defined; for example @eq@neq means the first column of each
of the lists will be connected with an equal condition and the second column with a
non-equal condition.

Enumeration as foreign keys

A special case for join in HorseIR is when two tables are joined with an equijoin
connecting the primary key in the table with the corresponding foreign key in the other
table. For that case, we exploit the primitive data type enumeration, introduced in
Section 4.3. We use the enumeration to maintain the mapping between primary key
and foreign keys by storing the index of the value in the primary column as part of
the value in the foreign key column. An example of enumeration for primary key and
foreign key mapping is depicted in Figure 5.6. The column deptid is the primary key

55

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

…col
row
iddeptid

…… 014
…… 176
…… 246
…… 354

Department

…empdeptid col
…14 …
…14 …
…46 …
…76 …

Employee

…14 …

…enumeration col
…0 …
…0 …
…2 …
…1 …

Employee

…0 …

The concept of Enumeration.
empdeptid of Employee table is
replaced by the index (row id) of
the corresponding value in the
Department table.

Tr
an

sf
or

m
ed

 to

14
14
46
76
14

(Index) (Source)

(Target)

Figure 5.6 – Example of an enumeration in a join with a pair of primary key (deptid
in the table Department) and foreign key (empdeptid in the table Employee)

in the table Department. The row id is simply the row index of a value in the deptid

column. The column empdeptid in the table Employee is a foreign key referencing
the department in which the employee works. Using enumeration, we transform the
table Employee and replace its column empdeptid. We do this transformation at
table storage time. That is, in a pre-processing step, the original Employee table is
transformed to one that contains the enumeration. The transformed table has no
longer an empdeptid column, but an enumeration that contains the original column
empdeptid as a source, the column deptid of the table Department as a target, and an
index array of the same length as the source empdeptid, pointing to the corresponding
row in deptid.

Figure 5.7 shows how HorseIR uses this enumeration format. It first loads the
column empdeptid from the table Employee, which now has an enumeration type
enum<i64>, into the variable dept. Then, the HorseIR function @values returns
the row id stored in the index component of dept, and another function @fetch

returns the source column empdeptid. Since both values are computed during the

56

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

1 ...
2 emp:table = @load_table(`Employee:sym);
3 dept:? = check_cast(@column_value(emp,`empdeptid:sym), enum<i64>);
4 dept_id:i64 = @values(dept);
5 dept_val:i64 = @fetch(dept);
6 ...

Figure 5.7 – Example of enumeration in HorseIR

transformation phase, the cost of invoking the two functions is small during the
execution of the HorseIR code. This is for a query SELECT deptname, empname from

Department, Employee WHERE deptid = empdeptid. We can create the result column
for department names by calling @index(deptname, dept_id).

5.1.1.4 Aggregation

Expressing a simple aggregation, such as SELECT SUM(revenue) FROM table, is easy in
HorseIR because it has equivalent reduction functions. For example, the aggregation
SUM can be represented as HorseIR function @sum, which takes an array as input and
returns an array of one element with the total value. Other reduction functions,
such as MIN, MAX, and COUNT, have their corresponding HorseIR functions, for
instance, @min, @max, and @count respectively.

5.1.1.5 Group By

The clause GROUP BY in SQL is designed for grouping one or more columns. In
order to express this, HorseIR provides a built-in function, called @group, which takes
an array or a list as input, and groups together the indices (positions) of the array or
list that have the same value. It returns a dictionary that there are as many keys as
there different values.

Figure 5.8 presents an example of the group operation with a single integer column
c1 as input, and a dictionary as output (i.e., dict<i64, list<i64>>). The dictionary
stores indices instead of the actual values from the input column as keys. Each first
occurrence of a unique value is stored as a key, and the value part is a list consisting

57

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

12

5

5

7

12

5

5

12

Dictionary

c1

0

1

2

3

4

5

6

7

id

0 0 4 7

1 1 2 5 6

33

key value

Figure 5.8 – Illustration of the group operation in HorseIR

of all the positions with the same value. That is the key and the first element of the
list have the same value.

1 SELECT SUM(c0)
2 FROM example_table
3 GROUP BY c1;

1 ...
2 t_list:list<i64> = @list(c1);
3 t_dict:dict<i64, list<i64>> = @group(t_list);
4 t_index:list<i64> = @values(t_dict);
5 t_val:list<i64> = @each_right(@index, c0, t_index);
6 t_sum:list<i64> = @each(@sum, t_val);
7 t_vector:i64 = @raze(t_sum);
8 ...

Figure 5.9 – Example of an SQL query for group by (top) and its HorseIR code
(bottom)

An example for group by can be found in Figure 5.9 having an SQL query and its
HorseIR code. This example uses the value part of the dictionary. By storing the first
position of each value in the vector c1 in the key, we can quickly retrieve the different
values. Grouping all positions with the same value in the values part is needed when
the clause GROUP BY is used together with aggregating on a different column, as

58

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

shown in our example.

0 4 7

1 2 5

3

6

a

b

b

c

a

b

b

a

c1

t_val:? = @each_right (@index, c1, t_index);

t_index

22 7 20

9 7 22

6

5

t_val

49

43

6

t_sum

49

43

6

t_vector

(line 5) (line 6) (line 7)
t_sum:? = @each(@sum, t_val); t_vector:? = @raze(t_sum);

22

9

7

6

7

22

5

20

c0

Figure 5.10 – Illustration of the HorseIR code in Figure 5.9

As depicted in Figure 5.10, the value part of the result dictionary (from line 4)
works with a list-based function each_right to perform array indexing on the vector
c0 (line 5), and calculate the sum in each group using the function @sum for each
vector in the value list (line 6). The return list can be flattened with the function
raze and a vector is returned (line 7).

5.1.1.6 Order By

The clause ORDER BY in SQL is for sorting a table based on one or more columns.
It can be expressed in HorseIR code by using built-in functions @order and @index.

Figure 5.11 shows an example of the order by operation on the column c1 from a
two-column table. As illustrated in Figure 5.12, it first sorts the column c1 with the
function @order and returns an index with the row ids of the sorted values. Then, it
fetches the tuples with the function @index, including the column c2, based on the
given row ids and returns a new table as result.

59

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

1 SELECT c1,c2 FROM example_table ORDER BY c1 ASC;

1 ...
2 t_index:i64 = @order(c1);
3 t_c1:i64 = @index(c1, t_index);
4 t_c2:str = @index(c2, t_index);
5 ...

Figure 5.11 – Example of an SQL query for order by (top) and its HorseIR code
(bottom)

20

5

3

16

c1

0

1

2

3

row
id

world

is

This

hello

c2

2

1

3

0

order by
c1 asc

3

5

16

20

c1

This

is

hello

world

c2

sort return

Figure 5.12 – Illustration of the order operation in HorseIR

5.1.2 Code Generation Strategy

In this section we show how a full execution plan is translated to HorseIR code. An
execution plan has a clearly defined order of operators. As we have just seen in
Section 5.1.1, each of the operators in an execution plan can be mapped into one or
more lines of HorseIR code. Our code generation is similar in concept to a compiler
back-end with code patterns. Therefore, translating an execution plan into a HorseIR
program is straightforward. Our translator supports the execution plans from two
database systems: HyPer [64] and MonetDB [40].1

HyPer generates optimized execution plans which are expressed as JSON objects.
However, its interface does not support UDFs. Thus, when there are UDFs in SQL
queries, we use MonetDB’s execution plans because MonetDB supports UDFs and
its execution plans contain the relevant UDF information, such as function names,

1We can access HyPer’s plan generator online, but HyPer’s execution engine is no longer publicly
available. See http://hyper-db.de/interface.html

60

http://hyper-db.de/interface.html

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

parameters and parameter types. As MonetDB’s execution plans follow a traditional
tree structure, HorsePower transforms this tree structure to a JSON object, which
can then be translated to HorseIR with the infrastructure for HyPer’s execution plans
with some extensions to handle UDF information. We describe these extensions in
Section 5.3.

We introduce our code generation strategy from an execution plan to a HorseIR
program as follows:

Traversal strategy. An optimized execution plan has a nested tree-based structure
(in the case of HyPer, it is in JSON format). Our code generator traverses
the tree using depth-first search (i.e., from leaf nodes up to finally the root),
generating code for each operator node. The code for each child is generated,
and then the results passed to the next operator. Finally, the root operator
returns the code for generating the result table.

Environment objects. Recall that the result of each operator is, in principle, a ta-
ble. Thus, we designed an environment object which plays an important role in
our code generation strategy. It stores the information of intermediate results
(i.e., the intermediate tables) after the code generation on each operator. Then,
it is passed to the parent operator. When an operator receives all environment
objects from all its children, it operates on these objects with the current oper-
ation. In our design, the object is similar to a table, but has some additional
elements for the purpose of delivering more information for optimizations at
this translation level. Therefore, the object consists of:

• table_name: a string for a table name (a unique name is assigned for a
temporary table);

• cols_names: a vector of strings for column names;

• cols_alias: a vector of strings for variables to represent the corresponding
columns (it has the same length as cols_names);

• cols_types: a vector of strings for the corresponding variable types (it
has the same length as cols_alias);

61

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

• mask: a variable used for boolean selection (or no boolean selection if its
value is empty or null);

• mask_a: a vector of variable names representing the corresponding columns
after boolean selection (it has the same length as cols_alias).

Expressions and types. Operator nodes may have expressions as their children
nodes. Some expressions, such as the less than (lt), correspond directly to
one HorseIR statement, whereas others, such as “between” require generating
several HorseIR statements.

While generating HorseIR code, we take care to generate the most efficient
types. For example, a string type may be generated as a symbol type in
HorseIR, if it corresponds to a read-only value. This results in more efficient
code.

Function generation. Each operator in a plan can be mapped to one or multiple
HorseIR built-in functions. Relational algebra represented in HorseIR has been
discussed in Section 5.1.1. In addition, other operators are supported in HorseIR
as well, such as the SQL case statement shown below.
1 CASE

2 WHEN <condition> THEN TrueResult

3 ELSE FalseResult

4 END;

Instead of generating an if-else statement, this statement is translated into
a vector form: (a) it first evaluates the condition for all cases and stores the
result into a boolean vector BoolVec; (b) it computes the true result as BoolVec
* TrueResult, and the false result as (~ BoolVec) * FalseResult; and (c) it
sums up the two results and returns the final result.
BoolVec = eval(condition) ;

result = BoolVec * TrueResult + (~ BoolVec) * FalseResult ;

The previous pseudo-code can be further optimized if TrueResult and FalseRe-

sult are a combination of 1 and 0, or 0 and 1.

62

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

BoolVec = eval(condition) ;

if (TrueResult == 1 and FalseResult == 0){

result = BoolVec ;

}

else if (TrueResult == 0 and FalseResult == 1){

result = ~BoolVec ;

}

It should be noted that the values of TrueResult and FalseResult can be two
single numbers that can be either constant or the result of expressions.

5.1.3 Optimizations in Generating HorseIR Code

Our HorseIR code generation is likely to produce redundant or inefficient code. There-
fore, we identify and implement the following optimizations in code transformation.

Eliminating dead code. HorseIR code is generated assuming that all results will
be needed. However, the final results table may contain only some columns,
and thus we only need to retain the code needed to compute those columns.
We use a backward slice [84] from the final result to identify the code that needs
to be retained, and eliminate all other code, as it is effectively dead code. This
is common in the execution plans generated from both HyPer and MonetDB.

Using code patterns for expensive database operations. Expensive database
operations, such as join and groupby, are common in SQL queries. It is critical
for performance to avoid large intermediate results between these operations
whenever possible. When generating HorseIR code from execution plans, we
implement optimizations using code patterns for such database operations. A
code pattern is prepared for a compiler that can recognize it within a code
snippet, then rewrite it into an equivalent but more efficient code. For example,
assume a self-join, which is a special case of the join operation when a table
is joined with itself, often on different columns. An example would be joining
an employee table with itself over the columns employeeid and managerid to

63

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

find who is the manager of an employee. When only aggregation operations
occur right after an inner self-join, we replace the join with a groupby which is
cheaper than join.

Implementing join transformation. Join transformation is used when a prima-
ry/foreign key join is pre-computed as discussed in Section 5.1.1.3 but we cannot
directly use it because there is first a selection we can still take advantage of it
in the following scenarios:

empid
1001
1002
1003
1004

Department

1005

deptid
14
76
46
54

deptname
DeptC
DeptJava
DeptGO
DeptPHP

Employee

empdeptid empname
Kate
John
Paul
Sam
Fang

0 14
0 14
2 46
1 76
0 14

(Index) (Source)

(Target)

Figure 5.13 – Example of the join transformation: scenario 1

(Scenario 1.) Figure 5.13 illustrates this example with two concrete tables:
Employee and Department, in which the column deptid is a primary key and
the column empdeptid is a foreign key. As discussed in Section 5.1.1.3, the
indices of deptid are already pre-computed in the Employee table.

Figure 5.14 shows an SQL query for this scenario and the corresponding Hor-
seIR program. There is a selection on department name selecting only the first
two columns. That is, there is a selection on the table with the primary key.
The selection generates the boolean mask t_dept_mask=(1,1,0,1,1). By now
deploying the index function on the index vector in empdeptid, we can get the
Employee rows that qualify (depicted in Figure 5.13). From there we can get the
corresponding employee names through a compress function. The correspond-
ing department names can be fetched by first deploying a boolean selection to
get the corresponding row ids, and then applying the indexing function to get
the actual values.

64

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

1 SELECT deptname, empname
2 FROM Department, Employee
3 WHERE deptid = empdeptid AND
4 deptname = "DeptC" AND deptname = "DeptJava";

1 ...
2 t_dept_mask:? = @member(deptname, ("DeptC","DeptJava"):str);
3 t_emp_index:? = @values(empdeptid);
4 t_emp_mask:? = @index(t_dept_mask, t_emp_index);
5 t_emp_name:? = @compress(t_emp_mask, empname); // empname
6 t_dept_index:?= @compress(t_emp_mask, t_emp_index);
7 t_dept_name:? = @index(deptname, t_dept_index); // deptname
8 ...

Figure 5.14 – Example of an SQL query (top) and its HorseIR code (bottom) for the
scenario 1

empid
1001
1002
1003
1004

Department

1005

deptid
14
76
46
54

deptname
DeptC
DeptJava
DeptGO
DeptPHP

Employee

empdeptid empname
Kate
John
Paul
Sam
Fang

0 14
0 14
2 46
1 76
0 14

(Index) (Source)

(Target)

Figure 5.15 – Example of the join transformation: scenario 2

65

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

(Scenario 2.) Figure 5.15 shows the scenario when a foreign key is selected
with conditions and its key stays the same. The join can be computed in the
following steps: (1) we first apply the conditions in the WHERE clause on the
table Employee to get a mask vector (1,1,0,0,1); (2) we then utilize the index
information stored in the enumeration empdeptid to probe qualified rows in the
table Department; (3) we finally obtain employee names using the boolean mask
vector, and the department names based on the updated row information from
the enumeration (i.e., (0,0,0)).

1 SELECT deptname, empname
2 FROM Department, Employee
3 WHERE deptid = empdeptid AND
4 empid = 1001 AND empid = 1002 AND empid = 1005;

1 ...
2 t_emp_mask:? = @member(empid, (1001,1002,1003):i64);
3 t_emp_index:? = @values(empdeptid);
4 t_emp_name:? = @compress(t_emp_mask, empname); // empname
5 t_dept_index:? = @compress(t_emp_mask, t_emp_index);
6 t_dept_name:? = @index(deptname, t_dept_index); // deptname
7 ...

Figure 5.16 – Example of an SQL query (top) and its HorseIR code (bottom) for the
scenario 2

Figure 5.16 shows the corresponding SQL query and its HorseIR code. We first
compute the mask in the table Employee (line 2) and fetch the index information
from the enumeration (line 3). We then use the mask to fetch employee names
(line 4) and department indices (line 5). Later, we retrieve department names
as the result of array indexing with the given indices (line 6).

(Scenario 3.) Figure 5.17 shows the scenario when a key and its foreign key both
are selected. By given the selected rows in the two tables, we need to find the
rows after an equijoin. The foreign-key column empdeptid is first updated to get
the qualified rows. Then, the information is passed to the primary-key column
deptid using the index information stored in the enumeration. Next, we can
know the first two rows should be selected while the primary-key column only

66

5.1. HORSESQL: SQL-TO-HORSEIR TRANSLATOR

empid
1001
1002
1003
1004

Department

1005

deptid
14
76
46
54

deptname
DeptC
DeptJava
DeptGO
DeptPHP

Employee

empdeptid empname
Kate
John
Paul
Sam
Fang

0 14
0 14
2 46
1 76
0 14

(Index) (Source)

(Target)

empid
1001
1002
1003
1004

Department

1005

deptid
14
76
46
54

deptname
DeptC
DeptJava
DeptGO
DeptPHP

Employee

empdeptid empname
Kate
John
Paul
Sam
Fang

0 14
0 14
2 46
1 76
0 14

(Index) (Source)

(Target)

Co
m
pu

te
d

(Before)

(After)

Figure 5.17 – Example of the join transformation: scenario 3

needs the 2nd and 4th rows. Thus, only the 2nd row should be returned. Finally,
the table Employee selects the 4nd row based on the updated information, and
the table Department selects the 2nd row.

This SQL query and its HorseIR code are depicted in Figure 5.18 that both
the primary-key and the foreign-key columns are applied with conditions to se-
lect qualified rows after join. We first compute boolean masks for both tables:
t_emp_mask and t_dept_mask (line 2 and 3) We then pass the mask informa-
tion from the table Department to Employee using the enumeration stored in
empdeptid (line 4 and 5). We next get a new mask for the table Employee and
the updated indices for the table Department (line 6 and 7). Finally, the result
of department names and employee names can be fetched using this mask and
indices (line 8 and 9).

67

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

1 SELECT deptname, empname
2 FROM Department, Employee
3 WHERE deptid = empdeptid AND
4 deptname = "DeptJava" AND deptname = "DeptPHP" AND
5 empid <> 1003;

1 ...
2 t_emp_mask_1:? = @neq(empid, 1003:i64);
3 t_dept_mask:? = @member(deptname, ("DeptC","DeptPHP"):str);
4 t_emp_index:? = @values(empdeptid);
5 t_emp_mask_2:? = @index(t_dept_mask, t_emp_index);
6 t_emp_mask:? = @and(t_emp_mask_1, t_emp_mask_2);
7 t_emp_index_new:? = @compress(t_emp_mask, t_emp_index);
8 t_empname:? = @compress(t_emp_mask, empname); // empname
9 t_deptname:? = @index(deptname, t_emp_index_new); // deptname

10 ...

Figure 5.18 – Example of an SQL query (top) and its HorseIR code (bottom) for the
scenario 3

5.2 HorseMATLAB: MATLAB-to-HorseIR Translator

In this section we discuss how programs written in MATLAB can be translated to
HorseIR by the HorseMATLAB component.

5.2.1 Mapping MATLAB to HorseIR

TamerMATLAB TameIR HorseIR
Generator HorseIR

Type & Shape
Information

McLab
(HorsePower)

Figure 5.19 – Generating HorseIR code from MATLAB within the McLab framework

Since MATLAB is a sophisticated dynamic language which provides numerous
flexible language features, it is challenging to build a MATLAB compiler from scratch.
Thus, we employ the McLab framework [5] which provides a complete solution for

68

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

parsing, analyzing, and optimizing MATLAB programs, and generating target code as
part of HorseMATLAB. Figure 5.19 shows the full workflow for compiling MATLAB
to HorseIR. The McLab framework translates MATLAB programs to its own internal
IR, called TameIR, which was specifically designed to enable optimization of MAT-
LAB programs. TameIR can be easily translated into various other programming
languages to build efficient executable code [55, 51]. Thus, we extend the McLab
framework to include a HorseIR generator that can translate TameIR to HorseIR
code.

The translation from MATLAB to TameIR, performed by the Tamer module, has
to handle MATLAB’s many dynamic features and the lack of strict typing. When
analyzing the program, the first set of type and shape information is derived from the
parameters of the entry MATLAB function. This information is then used to derive
the type and shape information for any further variables computed by the statements
in the rest of the program.

From there, classic program analysis and optimizations are performed, includ-
ing interprocedural value analysis, constant propagation and common subexpression
elimination to produce as output optimized TameIR code [30]. TameIR can represent
MATLAB’s matrix and high-dimension arrays, and currently supports an essential
subset of MATLAB array operations, such as matrix multiplication and inverse.

However, compared to HorseIR, TameIR lacks support for advanced types that
are needed for query executions, such as the table data type. Furthermore, it does
not provide the database-related functions that HorseIR supports. Thus, in order
to merge MATLAB programs and SQL queries, as shown in Section 5.3, we have to
further translate TameIR to HorseIR. As both TameIR and HorseIR are array-based
IRs, the translation is relatively straightforward.

So far, our translator supports a core subset of MATLAB features and built-in
functions as follows:

Functions. When compiling multiple MATLAB files, the first function is considered
an entry function, i.e., the main function. Since both MATLAB and HorseIR

69

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

support the pass-by-value parameter passing, the code generation is straight-
forward for parameters. However, HorseIR provides an optimization over the
default pass-by-value approach by internally employing a copy-on-write mech-
anism. In this approach, if it is determined that the function does not modify
a parameter that is passed to it, then such a parameter is provided through
pass-by-reference, saving any overhead associated with making data copies.

Control structures. The common control structures if-else and while are sup-
ported by both languages. When testing a condition in a control structure,
the result must be a single boolean element which can be a one-element vector.
While in MATLAB a condition check is also considered true when a condi-
tional expression evaluates to a non-empty set of elements, this is not allowed
for MATLAB programs that need to be translated to HorseIR as this is cur-
rently not supported in HorseIR.

Arrays. We support MATLAB programs in an array programming style without us-
ing the for-loop construct for loop iterations in MATLAB. Instead, programs
can use the MATLAB built-in functions which can operate on whole vectors.
We have already seen the functions @compress and @index in HorseIR. In MAT-
LAB, there is one function for this and vector types determine whether we have
to translate to a compress or index function. More precisely, given the MAT-
LAB code A(I) while both A and I are arrays, if I is an array of boolean values
of the same length as A, then this is called logical indexing and equivalent to the
function @compress in HorseIR. If I = (i0, i1, ...) is a vector of integer indices,
it can be represented with the built-in function @index in HorseIR, and results
in a new vector (A[i0], A[i1], ...) whose length is equal to that of I.

Types. As can be seen in Table 5.1, MATLAB has support for a rich set of types, that
are supported by the McLab framework. As HorseIR supports many types, it is
easy to find a mapping for each, including boolean, character, integer, float, and
double. For example, the floating-point value double in McLab is translated
to f64 in HorseIR. On the other hand, MATLAB and HorseIR have different

70

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

MATLAB Types HorseIR Types
logical bool
char char

single f32
double f64

int8 i8
int16 i16
int32 i32
int64 i64

Table 5.1 – Type mapping from MATLAB to HorseIR

type rules in some scenarios. For instance, integer + double returns integer in
MATLAB, but double in HorseIR. Therefore, we put restrictions on the type
rules to ensure the correctness of the code transformation. For example, the
same types are required for the input parameters of the function plus.

Shapes. Obviously, we support MATLAB arrays as they are essential components
for HorseIR to work on table columns. An array in MATLAB can be either a 1-

by-N or N-by-1 matrix where N is a positive integer greater than 1. We support
the 1-by-N vector as its data layout is more cache-friendly in MATLAB.

5.2.2 Example Code

Given two points (x0, y0) and (x1, y1) in a two-dimensional coordinate system, the
distance between the two points can be calculated using the following equation:

calcDistance(x0, y0, x1, y1) =
√

(x0 − x1)2 + (y0 − y1)2

This equation can be implemented as MATLAB code in Figure 5.20. We can see
the MATLAB function calcDistance takes four parameters (x0,y0, x1, y1) as input
and returns one variable z. All numbers should be floating-point though implicit type
information is not required in MATLAB because MATLAB is able to check types at
runtime.

71

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

1 % x0 , x1 , y0 , y1 : f64
2 function [z] = calcDistance(x0, y0, x1, y1)
3 z = ((x0 − x1) .^ 2 + (y0 − y1) .^ 2) .^ 0.5
4 end

Figure 5.20 – Example of MATLAB

x0 y0 x1 y1

0 0 3 4

1 1 2 2

… … … …

z

5

2

…

calcDistance

calcDistance

calcDistance

x0 y0 x1 y1

0 0 3 4
1 1 2 2
… … … …

z

5
2
…

calcDistance

Figure 5.21 – Example of the MATLAB function with vectors as input

Figure 5.21 shows the execution on scalars on the left and on vectors on the right.
If the input to the function are scalars, the function simply applies the formula using
the scalar values. Thus, when giving the input (0,0,3,4), MATLAB will return the
result 5. With multiple sets of input values, the function needs to be invoked for each
of them. On the other hand, this program is also able to take arrays as input, as long
as they all have the same length, because the built-in functions used in the program
(i.e., plus (+), minus (-), and power (.∧)) are element-wise functions that can work
on arrays. Here the calculation will be applied for each index of the arrays, and the
output is again an array.

Type and shape for parameters. Since explicit type and shape information are
not required in MATLAB source code, we need to supply this information to
the McLab framework for compiling MATLAB code. Different input type and
shape information may lead to different target code. In this example, we define
input type and shape information as follows

x0: DOUBLE&1*?&REAL
y0: DOUBLE&1*?&REAL
x1: DOUBLE&1*?&REAL
y1: DOUBLE&1*?&REAL

72

5.2. HORSEMATLAB: MATLAB-TO-HORSEIR TRANSLATOR

where, DOUBLE means the double-precision numeric data type which is the de-
fault type in MATLAB; 1*? is the shape of a vector with 1-by-N dimension;
and REAL defines the input should be real numbers but not complex numbers.

Type and shape propagation. After providing the type and shape information
of input parameters, the McLab framework propagates this information and
generates its intermediate TameIR code. The annotated TameIR code with
type and shape information is shown below:
1 function [z:(f64,1*?)] = distance(x0:(f64,1*?), y0:(f64,1*?), x1

:(f64,1*?), y1:(f64,1*?))
2 mc_t0:(f64,1*?) = minus(x0, x1);

3 mc_t1:(f64,1*?) = power(mc_t0, 2:(f64,1*1));
4 mc_t2:(f64,1*?) = minus(y0, y1);

5 mc_t3:(f64,1*?) = power(mc_t2, 2:(f64,1*1));
6 mc_t4:(f64,1*?) = plus(mc_t1, mc_t3);

7 z = power(mc_t4, 0.5:(f64,1*1));
8 end

As can be seen, type and shape information are propagated properly from the
input parameters to the return variable. Each variable in this program is asso-
ciated with the type and shape information. If any type or shape rule violation
occurs, the propagation process will be terminated with an error message.

HorseIR code generation. After the intermediate TameIR is generated and stored
as TameIR nodes in the McLab framework, a customized code generator trans-
lates these TameIR nodes to the HorseIR code below:
1 def distance(x0:f64, y0:f64, x1:f64, y1:f64) : f64 {

2 t0:f64 = @minus(x0, x1);

3 t1:f64 = @power(t0, 2:f64);

4 t2:f64 = @minus(y0, y1);

5 t3:f64 = @power(t2, 2:f64);

6 t4:f64 = @plus(t1, t3);

7 z:f64 = @power(t4, 0.5:f64);

8 return z; }

73

5.3. HORSEUDF: UDF-TO-HORSEIR TRANSLATOR

5.3 HorseUDF: UDF-to-HorseIR Translator

HorsePower supports SQL queries with embedded UDFs written in MATLAB through
its HorseUDF module. For that purpose and as discussed in Section 5.1.2, we use
the MonetDB execution plans to generate HorseIR code as the information of UDF
calls has been included in these plans. While MATLAB is currently not in the list of
languages supported by MonetDB for its UDF implementations, this is irrelevant for
generating the execution plans as only the hooks into the UDFs with their input and
output parameters are relevant. This is because MonetDB treats all UDF execution
environments as a black-box and generates the same execution plan, independent
of the language of the UDF implementation. Thus, we can directly use MonetDB’s
execution plan generator on SQL statements extended with UDFs, independently on
in which language the function is actually written. From there, we use the plan-
to-HorseIR translator for MonetDB’s execution plans, as introduced in Section 5.1,
to first generate HorseIR code from the plan with place holders for UDF method
invocations. That is, in the HorseIR code, the invocation of the UDF is simply
translated into a method invocation in HorseIR. Next, we generate a separate piece
of HorseIR code by translating the UDF written in MATLAB using the MATLAB-
to-HorseIR translator introduced in Section 5.2. Finally, the two segments of code
for SQL and UDFs are integrated into a single HorseIR program.

As discussed in Section 2.1.5, our current implementation supports two kinds of
UDFs, namely scalar and table UDFs. In order to conform the MATLAB functions
to the semantic form expected of these types of UDFs, we enforce the following re-
strictions on the implementation of such MATLAB functions. (1) A function must
have one return statement with either a single vector (for scalar UDFs) or a table-like
data structure (for table UDFs). (2) Executing the MATLAB function individually
on each scalar element of an array and returning the result set as an array should be
equivalent to executing the function on the full array as input (that is, f({x1,x2,..,xn})
is equivalent to {f(x1),f(x2),...,f(xn)}).

Figure 5.22 shows the HorseIR program for the example query in Figure 2.5 with
a scalar UDF. The HorseIR code consists of a module with methods: the query is

74

5.3. HORSEUDF: UDF-TO-HORSEIR TRANSLATOR

1 module ExampleQuery{
2 def calcRevenueChangeScalar(price:f64, discount:f64): bool{
3 x0:f64 = @mul(price, discount); // S5
4 return x0;
5 }
6 def main(): table{
7 ...
8 // compute revenue change
9 t3:bool= @geq(t2, 0.05:f64); // S0

10 t4:f64 = @compress(t3, t1); // S1
11 t5:f64 = @compress(t3, t2); // S2
12 t6:f64 = @calcRevenueChangeScalar(t4,t5); // S3
13 t7:f64 = @sum(t6); // S4
14 ...
15 }
16 }

Figure 5.22 – HorseIR code with a new method for the UDF in Figure 2.5

translated to the main method, and the UDF is translated to the method calcRev-

enueChangeScalar which takes two arrays of type float as input and returns the
resulting product. This integrated HorseIR code, which combines the SQL and the
UDF part, can now be further optimized. We will discuss the code optimization for
HorseIR generated from HorseUDF in Section 7.4.

75

5.3. HORSEUDF: UDF-TO-HORSEIR TRANSLATOR

76

Chapter 6
Back-end: Execution on HorseIR

Since HorseIR is an intermediate representation for database queries and array
languages, it needs to be executed directly or further compiled to low-level efficient
code. Figure 6.1 presents the overview of our design: HorsePower supports an in-
terpreter which executes HorseIR directly (Section 6.1); it provides a compiler which
compiles HorseIR to annotated C code, and the C code is then compiled using C
compilers to generate binary code for the CPU and GPU (Section 6.2); and execution
of the compiled binary code is further supported by a prepared library having a set
of pre-compiled high-performance built-in functions that can be integrated into the
interpreter and the compiled binary code (Section 6.3). Runtime support for manag-
ing data is also necessary as the code needs to run over the data stored in memory
(Section 6.4).

HorseIR

C Code
(OpenMP)

C Code
(OpenMP+
OpenACC)

Binary

Binary
Execute

Result

Result

Execute

Compile

Compile

Result
HorseInterpreter

HorseCPU

HorseGPU

Figure 6.1 – Overview of HorseIR back-ends

77

6.1. HORSEINTERPRETER

6.1 HorseInterpreter

HorseInterpreter is an interpreter-based engine for executing HorseIR. We have
mainly used it validate the correctness of the HorseIR code generated by the Horse-
Power front-end. With an interpreter-based design, HorseIR can be executed directly
after parsing without going through the code compilation for generating target code.
As an array-based language, a variable in HorseIR represents a collection of data,
such as vector and list, and a built-in function can be overloaded with different types
and shapes of input parameters. Therefore, the interpreter is designed to keep track
of these variables and offer a pre-compiled library to support these built-in functions.
The implementation strategy for these library functions can be found in Section 6.3.

The naive interpretation mode may introduce intermediate results at multiple
points during the execution. This may significantly influence performance because
program optimizations could enable the merge of two or more operations in HorseIR,
avoiding the need to explicitly generate and save an intermediate result. For example,
assume a vector of prices is multiplied with a vector of discounts in an element-wise
manner before total prices are calculated as follows:

1 ...

2 t0:f64 = @mul(price, discount); // get new prices after discounts

3 t1:f64 = @sum(t0); // get total prices after discounts

4 ...

Let price = < p0, p1, ..., pn−1 >, and discount = < d0, d1, .., dn−1 > be two
vectors of length n. Then, the variable t0, which is an intermediate vector, contains
< p0∗d0, p1∗d1, ..., pn−1∗dn−1 > after element-wise arithmetic multiplication of the two
input vectors price and discount. The variable t0 is later reduced in the function
sum to return the total price after discounts, saving the result in t1. When the number
of rows is small, the cost of having intermediate results is negligible even if the variable
t0 is only used once. However, it could become a severe performance bottleneck with
large vectors. Ideally, this overhead can be reduced by fusion-based optimizations,
which we will introduce in Chapter 7. In this example, the two statements can be

78

6.2. HORSEIR COMPILER

simplified into a math equation:

t1 =
n−1∑
i=0

pi ∗ di

which could be written in a single loop for accumulating the result after multiplication.
Such optimizations are not performed in the interpreter mode. Nevertheless, despite
the naive approach, HorseInterpreter presents a reliable system that outputs the
correct result of HorseIR programs.

It should be noted that HorseInterpreter at the current stage lacks sophisticated
techniques for an interpreter, such as automatic garbage collection and just-in-time
compilation support. This is due to the fact that HorseInterpreter was originally
designed as a prototype system without performance consideration as we handle op-
timizations in our compiler, presented in Section 6.2. However, there is still potential
future research for the interpreter, which executes code directly without the penalty
of compiling the generated code to binary code as a compiler does, which can improve
the response time of ad-hoc queries.

6.2 HorseIR Compiler

In order to improve the performance of HorseIR, we designed and implemented a
compiler to generate efficient target code for both the CPU and the GPU. The opti-
mizations integrated into our HorseIR compiler are specifically tailored for HorseIR
code generated from execution plans of database queries and MATLAB programs.

Figure 6.2 shows an overview of the HorseIR compiler. We follow a standard
design, which first parses the HorseIR source code and compiles it to an abstract
syntax tree (AST). A clean grammar for HorseIR can be found in Appendix A.1.
Then, a weeder is implemented to validate constant values. For example, the date
type requires the range of day to obey the rules defined in Appendix A.2, such as that
it is invalid to have a month which has more than 31 days. Next, after constructing
symbol tables and propagating type and shape information, the annotated AST nodes

79

6.2. HORSEIR COMPILER

HorseIR

Parser

Optimizer
HorseCPU HorseGPU

Code Generator

Code
Generator

Annotated
C Code

Figure 6.2 – Overview of HorseCompiler

have sufficient information to generate target code. Such directly generated code is
called naive code since it has little optimizations. Alternatively, the compiler can
pass these AST nodes to the next stages of optimizations and generate optimized
code. The HorseIR optimizer is designed for collecting precise program information,
such as type, shape, and data dependency, in order to generate efficient target code.
Finally, we have two code generators: HorseCPU for generating CPU code only, and
HorseGPU for generating hybrid code containing both CPU and GPU code. Both
generators create annotated C code with the support of OpenMP and OpenACC
separately for parallel computing.

The design of HorseIR enables simple parallelization and exposes information for
optimization generally, the HorseIR compiler generates target code with invocations
to pre-defined functions in the built-in function library. However, this is not always
the approach taken. In particular, parallelizing a single function is often inefficient
because an implied synchronization barrier introduced after each operation is expen-
sive. Thus, it is often beneficial to merge two or more functions by generating code
on which loop fusion based optimizations can be applied. Thus, at compile time,
depending on the available type and shape information, the compiler decides whether
to use the pre-compiled function code or it generates ad-hoc code that can then be
optimized via fusion to generate specialized C code as described in Chapter 7.

80

6.2. HORSEIR COMPILER

6.2.1 HorseCPU

HorseCPU is a code generator for generating CPU code only. It has two versions of
target code: the naive code without any optimizations, and the optimized code. The
naive code has almost the same performance as the HorseInterpreter as they employ
the same strategy by invoking pre-compiled built-in functions, and thus their perfor-
mance highly depends on the built-in function library. Furthermore, they both can
encounter the performance problem of having intermediate results generated between
function invocations. They mainly differ in compilation time, since HorseInterpreter
can execute HorseIR code once it is parsed, while the naive code needs to be com-
piled to binary before being executed. Therefore, we explore two general optimization
strategies for HorseIR to generate more efficient code.

• Fusion-based optimizations. This technique aims at fusing HorseIR state-
ments for array operations in order to generate compact code with fewer loops
and intermediate results. We implement both automatic loop fusion and
pattern-based fusion to merge various array-based operations as described in
Section 7.3.

• Source-level optimizations. Since HorseIR can be generated from various
sources, it is inevitable that HorseIR may contain “dead” code that is never
used in getting the final result. We implement backward slicing [84] to remove
such dead code in order to compact the code and reduce memory footprint. We
also consider method inlining [26] to merge methods, giving a larger codebase
for optimizations within methods. This is helpful when HorseIR methods are
generated from query and UDF sources that need such holistic optimization.
The details of source-level optimizations can be found in Section 7.1.

The generated optimized code is based on C code with OpenMP paral-
lel directives, which enables simple parallelization strategies based on ad-
ditional directives on the top of C code. Example code looks as follows:

81

6.2. HORSEIR COMPILER

1 #pragma omp parallel for simd reduction(+:total)

2 for(int i=0; i<n; i++){

3 total += x[i];

4 }

This code computes the total value of the vector x and stores the value in the
reduction variable total. The first line, which contains several keywords, annotates
the C code and tells compiler to generate parallel code. The keywords #pragma

omp parallel for presents a parallel loop construct; the keyword simd enables the
SIMD code generation if applicable; and the keyword reduction defines a reduction
variable total with the operator + (i.e., sum). The for-loop after the first line is
influenced by these parallel directives. The C compiler will generate parallel binary
code for the loop automatically. By using C macros, we can define a parallel for-loop
as follows:

1 #define STRINGIFY(x) #x

2 #define DOP(n, x, ...) {int i2=n; \

3 _Pragma(STRINGIFY(omp parallel for simd __VA_ARGS__)) \

4 for(int i=0;i<i2;i++) x;}

The macro DOP has two parts: the first line for OpenMP directives and the for-loop.
It uses another macro STRINGIFY to generate the string values for OpenMP directives
inside the macro _Pragma. An arbitrary number of arguments can be given with the
built-in keyword __VA_ARGS__. The for-loop is simple with a loop body stored in the
parameter x. Thus, the original C code can be written as:

1 DOP(n, total+=x[i], reduction(+:total));

Other than having these macros in the code generation, we use them to implement
our built-in function library, greatly reducing the amount of effort in writing parallel
code, and improving the quality of the code.

In the optimized code generation, we employ a hybrid strategy combining the
built-in function library and the generated C code with the purpose of lowering com-
pilation time: (1) when fusion is possible, multiple operators are fused to generate
fused C code; otherwise (2) each operator is compiled to an invocation to its built-in

82

6.2. HORSEIR COMPILER

function in the library. The details of parallel code generation strategies can be found
in Section 7.3.

6.2.2 HorseGPU

// HorseIR Code
...
// Execute GPU Code
...
// Execute CPU Code
...

CPU
Engine

GPU
Engine

Data

Host Device

Data Transmission

Send Code

Send Code

Data
Fetching

Figure 6.3 – Overview of HorseIR working with GPUs

HorseGPU is a code generator for generating hybrid CPU and GPU code. As
depicted in Figure 6.3, HorseGPU needs to handle the CPU code on the host side
and the GPU code on the device side. When executing code on the host (CPU), it can
fetch data from the memory. However, it is required to transmit data from the main
memory to GPU memory when the code needs to be executed remotely. Therefore,
the performance of the overall execution needs to consider the CPU time, the GPU
time (kernel execution time on the device), and the data transmission time.

The optimizer determines a set of HorseIR statements, which are selected to be
sent to the GPU. They are called the selected code. Executing the selected code
on the CPU is estimated to be more expensive than the combined time of the data
transmission and the kernel execution on the GPU. For the non-selected code it is,
in contrast, estimated to be cheaper and we should avoid deploying such execution
on the GPU. However, it is hard to precisely estimate when it is beneficial to use the
GPU. For our current system, we identify a set of expensive built-in functions that
are much slower on the CPU than the GPU, for example, math functions exp and

83

6.2. HORSEIR COMPILER

log. Thus, the cost of data movement becomes acceptable with much faster kernel
execution on the GPU.

We also look into the fusion-based optimizations developed for HorseCPU (Sec-
tion 6.2.1) even though they are mainly for the CPU architecture. The goal of fusion
is to reduce the intermediate results, and this also fits the idea of optimizations for
HorseGPU, i.e., reducing data movement between CPU and GPU. We introduce a
new strategy in the optimizer that leverages the fusion techniques and generates GPU
code for the fused statements when expensive built-in functions are involved.

Like HorseCPU, HorseGPU also has two versions of target code: the naive code
without any optimizations, and the optimized code. The optimized code is mixed
with OpenMP for CPU code and OpenACC for GPU code. We provide a GPU-
based library, which contains a parallel GPU implementation for a subset of built-in
functions. The code in Figure 6.4 is an example of OpenACC which copies the vector
x_ptr with the length n and returns the vector z_ptr. The core computation of the
code is executed on the GPU after the data copy finishes.

1 #pragma acc data copyin(x_ptr[0:n]) copyout(z_ptr[0:n])
2 {
3 #pragma acc parallel loop
4 for(int i=0; i<n; i++){
5 z_ptr[i] = exp(x_ptr[i]);
6 }
7 }

Figure 6.4 – Example of OpenACC code

As can be seen, OpenACC is similar to OpenMP in providing well-formed parallel
constructs. It also supports OpenACC-specific directives: the keyword acc defines
OpenACC directives; and the keyword copyin copies a specified size of the data from
the host (CPU) to the device (GPU); and the keyword copyout copies a specified size
of the data from the device (GPU) to the host (CPU). We extend our implementation
to support OpenACC code by explicitly adding the input and output of the data in
each block of computation. This is particularly convenient for code generation from
HorseIR, as it has many built-in functions.

84

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

6.3 High-performance Built-in Function Library
HorseIR provides a rich family of built-in functions, as we introduced in Section 4.4
and in Section 5.1. In this section, we present the implementation details of some of
these functions. HorseIR employs a single-function-multiple-implementation strategy
to embrace the various kinds of data from database systems. One built-in function
may have one or more implementations that are specialized to the correct base type,
or the size, or shape of the input data. We use OpenMP and OpenACC to implement
parallel C code with SIMD vectorization enabled in the library, and the efficient paral-
lel code generated by fusing element-wise built-in functions, as described in Chapter 7.
One built-in function may thus have both CPU and GPU implementations. At com-
pile time, our optimizer decides which implementation should be used. The list of
built-in functions in the library can be found in Appendix A.3.

6.3.1 Basic Built-in Functions

A large subset of built-in functions having parallel implementations are influenced
by array programming. Their parallel implementation strategies lie in the following
categories:

Embarrassingly parallel: We have a large set of functions which are designed for
embarrassingly parallel tasks, including element-wise functions, the pattern-
matching function like, and the searching function member. There is no de-
pendency or communication between parallel tasks. For instance, both unary
and binary element-wise operations maintain one-to-one correspondence with-
out data dependence. Thus, the HorseIR library implements a parallelized
version for each of them supporting different input types. The functions like,
member, and index are special because they have two inputs, one for matching
or searching, and another one for iterating. Still, they can be implemented with
an embarrassingly parallel strategy.

Reduction functions: The reduction result can be obtained by using the OpenMP
reduction clause. For example, the function sum for returning the total value

85

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

can be implemented with reduction(+:t) where the variable t is the reduction
variable storing the final result. A code example for returning the total value
of an input vector has been given in Section 6.2.1.

42 35 22 11 7 79

0 1 1 0 1 0

35 22 7 51

1 1

51 29

29

x
(bool)

y

result

Figure 6.5 – Example of the compress function

Boolean selection function: We show the parallelization of our boolean selection
function compress along an example. As can be seen in Figure 6.5, the function
compress takes two same-length vectors: a boolean vector x, and a vector y, and
it returns the values from y at the indices for which the corresponding indices
in x are true (i.e., 1). Assuming there are four threads, we first partition the
vector x into four sections (shown with different colours in the figure). We first
have to know the size of the output vector. For that, we compute (in parallel)
the number of true values in each section and get {1,1,1,2}. From there, we
can calculate the prefix sum starting from 0 and get {0,1,2,3}. These numbers
are the beginning positions of partitions for writing the final results. Therefore,
we can achieve parallel processing by partitioning vectors and computing prefix
sum.

6.3.2 Important Database-related Functions

For the database operations such as join_index and group, the concept of one-
strategy-fits-all is not always appropriate, as the implementation of database opera-
tions is greatly influenced by input data, considering the size, type, and range of the
data. Each of possible implementation has its own limitations so that the trade-off

86

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

between these strategies needs to be carefully considered. We present a couple of
strategies used in implementing our library as follows:

Join: The join_index operation takes two input parameters (left and right) and
returns a list containing two integer arrays as output as was described in Sec-
tion 5.1.1.3 and illustrated in Figure 5.5. Each parameter can consist of one
or multiple arrays and both arguments should agree on the number of arrays.
The join operation searches for values that can be found in both input parame-
ters. It then returns two equal-length integer arrays indicating the rows/indices
where the two inputs have the same value.

1

7

45

2

55

7

6

7

45

7

45

1

35

-1

0

…

1

0

1

…

2

…

7

…

45

Index Array (Size 46)(Step 1: Scan)
Range: [1 ,45]

(Step 2: Create an Array)

Array[2] is -1 (not found)

55 is not in [1,45] (not found)

Array[7] is 1 (found, index (1,2))

Array[6] is -1 (not found)

Array[7] is 1 (found, index (1,4))

Array[45] is 2 (found, index (2,5))

Array[7] is 1 (found, index (1,6))

Array[45] is 2 (found, index (2,7))

Array[1] is 0 (found, index (0,8))

Array[1] is -1 (not found)

0

1

2

3

4

5

6

7

8

9

0

1

2

1 2

1 4

2 5

1 6

2 7

0 8

Left
Column

Right
Column

Left Right

Result
(Indices)

(Step 3: Probe)

-12

Figure 6.6 – Design of array-lookup join

• Figure 6.6 presents an example execution using the array-lookup join im-
plementation, designed for equal joins when the left argument has one
integer array which contains unique data. First, we scan the left column

87

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

…

B0

B1

…

Bn-1

B01 B02 …

…

G0

(Hash group set: G0 G1 … G2"-1, where k	≥	0)

Size N0 N1 …

occurrences
Link to

additional indices
I0

Key value

I1
I2
…

(Contiguous)

Next

(Contiguous)

Figure 6.7 – Design of radix-based hash join

to get the range of the array, in the example from 1 to 45 inclusive. Fur-
thermore, we check whether the left column follows a strict ascending or
descending order (no equal neighbours). If not, we sort the data and check
again. In the example, the input left column is already sorted. Next, we
create an index array to cover the value range (initialized with -1) and as-
sign each index the position in the left input column that has this index as
its value. The corresponding indices from the left column are filled in the
array. After that, we probe each position in the right column to see if its
value is in the range, and if yes check whether the corresponding position
in the index array is non-negative. If this is the case the position indicated
in the index array and the current position in the right column are added,
and the value found in the intermediate integer as output values in the
result array as shown in the right bottom of Figure 6.6.

• Figure 6.7 depicts the design of the main data structure used in a radix-
based hash join implementation. The radix-based hash join algorithm [15]
is an efficient strategy for minimizing cache misses. The data structure is

88

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

a special hash table. Assume a column with integer values, the hash table
allows you to quickly find the indices of the column that hold a given
value. The hash table consists of a set of hash groups (G) and each of
them is a smaller hash table. Given an integer value, we can determine to
which group it belongs by looking at its lower bits. For example, when the
number of hash groups is 256, we only need to look at the lower 8 bits of an
integer. Each hash group consists of an array of contiguous buckets, and
each of them points to the next bucket if available. In a bucket, there is
another contiguous space storing “Size” for the number of used hash nodes,
and “Next” for connecting to the next bucket. A hash node keeps track of
all the indices of one unique integer value. As such, it stores the number
of times a value occurs in the input column, the first index in the input
column that holds the value, the link to a contiguous array for storing
all other indices, and the actual value of the integer. If a value occurs
only once, the number of occurrences is 1 and the pointer to the other
indices is set to NULL. As can be seen, the design of the hash table avoids
pointers, but uses contiguous arrays that can improve the performance of
hash tables by reducing cache misses during hash probing. In the actual
join operation, one column is parsed and the hash table is generated. Then
the other columns are parsed and for each row, the corresponding indices
are found in the hash table.

• Mergeable hashing is for input arrays which can be merged into a single
array. This is possible in some cases. For example, two arrays with the
type integer (32 bits) can be transformed into an array with the type long
(64 bits). Based on the data range of the new array, we then choose either
array-lookup or radix-based hashing for the actual join.

• Hybrid hashing is employed when equal and non-equal joins are both found
in multiple-column joins. We first perform the equal joins and then fetch
indices which are later used in the comparison for the other columns in-
cluding non-equal joins. This assumes that the equal join is usually more

89

6.3. HIGH-PERFORMANCE BUILT-IN FUNCTION LIBRARY

efficient than non-equal joins.

Sorting: Given an input array, sorting returns an output array [a0,a1,…,an−1] of the
same length containing the same values as the input array but the values are
sorted in ascending order (ai ⩽ ai+1) or descending order (ai ⩾ ai+1).

• Radix sort [91] is a fast sorting algorithm for integers. It scans a set of bits
of integers from lower bits to higher bits, and maintains enough buckets
to store these integers based on the currently scanned bits. After the scan
for all bits completes, the array of integers is sorted accordingly. The
advantage of radix sort is that the whole process avoids data comparison,
although the need to make a copy of the whole array is inevitable after
each round of scan.

• Quicksort [39] is a fast sorting algorithm for all types of data. It is im-
plemented to support non-integer input data, such as floating numbers
and compound data (i.e., multiple columns). Furthermore, it provides a
general interface for supporting multiple-column sorting with various or-
ders. For instance, the first column is ascending while the second column
is descending.

• Parallel merge sort is a variation of the basic merge sort by utilizing multi-
cores. The merge sort recursively divides the data into two parts, and
aggregates the two parts in proper order. We employ OpenMP parallel
constructs to implement parallel merge sort: parallel code for dividing
the data and synchronization for aggregating the parts. In addition, we
introduce radix sort into the merge sort: when the size of the current part
is less or equal than a threshold value, the radix sort operates on the entire
part. It also can work with other sorting algorithms, such as quicksort.

Groupby: The group operation takes one or multiple arrays as input and groups
the indices having the same value as described in Section 5.1.1.5 producing an
dictionary structure as illustrated in Figure 5.8. We currently implement sort-
based grouping that first performs sorting before scanning adjacent neighbours.

90

6.4. DATA MANAGEMENT

This is inexpensive when the size of input data is small. However, it could
be a performance bottleneck when the size grows larger. In particular, sorting
on multiple arrays is slow since all columns have to be sorted with poor cache
efficiency. Therefore, we also implement a hash-based algorithm for grouping
when the input data is large. In addition, we support efficient grouping imple-
mentations when the following specific kinds of input data are identified.

• If the input data is already sorted, the step of sorting can be omitted. A
scan on the input data is used to determine if the input data is ordered. If
ordered, we employ a parallel implementation: we first divide the data into
multiple segments based on the number of threads, and examine adjacent
items within each segment to collect the group information. Next, we
continue examining items across segments, i.e., checking the data at the
two ends of a segment, and update the group information. In the end, we
write out the final groups

• Mergeable data can be used for the grouping on multiple arrays, if these
arrays can be merged to a single array before the actual grouping occurs.
A typical example is the merge of two int arrays into a long array because
the type int has 32 bits and the type long has 64 bits. The cost of merg-
ing arrays is non-negligible, but the overall performance can be improved
because of better cache efficiency in later sorting.

• Special data has an integer type which represents a short range, such as
char (8 bits), small (8 bits), and short (16 bits). Instead of sorting the
whole data, we can maintain a table, which covers the range of data types,
that records all the indices with same value. With additional space cost,
we can achieve better performance for such integers without actual sorting.

91

6.4. DATA MANAGEMENT

ProgramLoad

Register

Table

T0 T1 … Tn ……

… = @load_table(T0)

……

Global
Tables

Figure 6.8 – Global table registration and fetching

6.4 Data Management
As a system designed for handling database query processing, HorsePower provides
facilities to manage data stored in memory and feed the data during program execu-
tion. It treats database tables, the most fundamental element in database systems,
as a table type. It needs to implement functions to register, load, and maintain
tables. Figure 6.8 shows that a raw table file is first loaded into main memory, then
registered into a global registry, and later loaded to the execution environment. If a
load request cannot find the table in the registry, an error is raised.

It should be noted that a temporary table can be generated during the execution
by using the built-in function table. This commonly exists in standard database
queries when a table needs to be returned as the result of a query. Since such tables are
considered as temporary tables, they are not registered, and the function load_table

is unable to identify them. An extra step of registration is needed if a temporary
table is to be recognized as a global table.

With the main design purpose of supporting data analytics, HorsePower is unable
to modify the content of an existing table, but it is allowed to create a new table.
This is different from the table conversion between tables with and without keys, as
described in Section 4.3.2, that only modifies table structure but leaves table content
unchanged. At the stage of data initialization before executing HorseIR programs,
we load data and create tables with primary and foreign keys as needed.

92

Chapter 7
Optimizations

HorsePower provides an optimizer that compiles HorseIR to efficient C code. It is
critical to have the optimizer since the design of HorseIR with three-address code in-
troduces additional intermediate results that can lead to poor performance in a naive
interpreter or compiler. The optimizer supports conventional static program analysis
and collects precise type and shape information for subsequent fusion-based optimiza-
tions to generate efficient target code with fewer intermediate results. Moreover, the
optimizer supports cross-method optimizations for the HorseIR code generated from
database queries with UDFs written in MATLAB.

An overview of the optimizer workflow can be found in Figure 7.1. We first gen-
erate HorseIR from optimized query execution plans, MATLAB programs, or both as
introduced in Chapter 5. Next, method inlining merges methods into a larger code-
base to explore further optimizations, and program slicing removes possible unused
code. We describe the details of these steps in Section 7.1. After that, type and
shape analysis is performed to process the HorseIR program and compute the type
and shape information at each expression. Types and shapes are propagated accord-
ing to rules defined for each built-in function. Using the generated shape information,
we then employ conformability analysis to identify fusible sections of code based on
a data-dependence graph. The details of this process are described in Section 7.2.
Lastly, in Section 7.3, we employ code generation optimizations by leveraging the set
of fusible sections to generate fused target C code. This is supplemented by using

93

7.1. EARLY OPTIMIZATIONS

patterns to exploit additional optimization opportunities that are frequently present
in SQL queries.

Build Data
Dependence

Graph
HorseIR

Method
Inlining

Backward
Slicing

Type & Shape
Analysis

Conformability
Analysis

Fuse Statements
with Fusion

Nodes

Generate Code
with Patterns

Optimized
C Code

(Early Optimizations) (Type and Shape Analysis) (Code Generation Opt.)

Figure 7.1 – Analysis and code generation overview.

7.1 Early Optimizations

The compiler for HorseIR follows the conventional compiler design for optimizing
HorseIR code, such as building data dependence graphs and providing dataflow anal-
ysis support. Thus, a variable or method in a statement knows its all definitions
in other statements in a use-definition chain (UD Chain), and a variable or method
definition in a statement knows its all uses in other statements in a definition-use
chain (DU Chain). Both chains can be constructed by using reaching definitions [62]
with the input of data dependency graphs.

As an intermediate language, HorseIR can represent programs from various source
languages, such as database queries and MATLAB. Even though the translators from
these languages can generate optimized HorseIR code individually, it is still possible
to introduce dead code or redundant code when combining HorseIR code from, for
example, database queries and MATLAB programs, as introduced in HorseUDF in
Section 5.3. This first optimization phase addresses this by using method inlining for

94

7.1. EARLY OPTIMIZATIONS

merging methods, and backward slicing for removing code that cannot contribute to
the final result.

Method inlining. When a method is inlined, the call of a method is replaced by the
corresponding code segments that constitute the method being called. Thus,
the caller method has now a larger codebase for exploring more optimization
opportunities so that the overall execution time can be improved [26], such as
by facilitating the elimination of unused computations or code fusion across
methods. Consider a scenario where a table UDF computes and returns two
columns as part of its invocation, but the enclosing SQL query itself uses only
one of those two columns. By having all the code in a method, this can be
detected through backward slicing to avoid the computation of the unused col-
umn in the table UDF. Moreover, method inlining bridges methods, which are
generated from SQL queries and UDFs, to explore more fusion opportunities.

While performing inlining, to respect the pass-by-value convention for param-
eter passing, a copy of an object used as a parameter will be generated if the
parameter is found to be modified inside the original callee method. This en-
sures that inlining does not result in any unintended data modifications to the
objects inside the method that was making the call. Further, if inlining results
in any variable name conflicts, they are resolved by assigning new but unique
variable names. Finally, an inlined method is removed if it can be inlined in all
the code locations where it is called.

We provide more details about this cross-optimization in Section 7.4, after we
cover the individual analysis and optimizations in Section 7.2 and Section 7.3.

Backward slicing. Program slicing [84] is a common compiler technique for finding
all related statements at a specific program point. Based on the use-definition
information, a statement can trace back all previous statements with the flow
to the current statement. Backward slicing is implemented to scan from the
final result to identify the code which needs to be retained, and eliminate all
other code, as it is effectively dead code.

95

7.2. TYPE AND SHAPE ANALYSIS

There are a couple of scenarios in which this technique can be particularly ef-
fective. One scenario is when HorseIR code is generated from a front-end which
lacks optimizations for removing such dead code. For example, in Section 5.1.2,
HorseIR code generated from execution plans may contain dead code for ma-
terializing columns that are never used later on. Thus, the code generating
these columns can be removed by using backward slicing. Another scenario is
when methods are inlined but the caller does not require all the functionality
the callee provides. Parts of the inlined code could then be eliminated as dead
code.

7.2 Type and Shape Analysis

Type and shape information is important for subsequent code optimizations to gen-
erate efficient code. Our optimizer supports type propagation (Section 7.2.2) and
shape propagation (Section 7.2.3) to collect precise type and shape information. Hor-
seIR provides around 100 built-in functions, and each built-in function has its own
type and shape rules. A complete list of built-in functions and the description of
these functions can be found in Appendix A.3. We will present a couple of typical
built-in functions to demonstrate how type and shape propagation works with these
pre-defined rules. Type and shape rules for more built-in functions are described in
our online documentation [4].

7.2.1 A Motivating Example

Figure 7.2a shows a simplified version of Query 6 of the TPC-H benchmark [85]
computing the change in total revenue given prices and discounts from the table
lineitem for all those items where the discount is at least 0.05 as we had already
seen in Figure 2.2. A basic translation of this query into a HorseIR program (prior to
performing any optimizations) is shown in Figure 7.2b. In the HorseIR program, the
function main defines the entry of the program and returns a table as the final result.

96

7.2. TYPE AND SHAPE ANALYSIS

1 SELECT
2 SUM(l_extendedprice * l_discount) AS RevenueChange
3 FROM
4 lineitem
5 WHERE
6 l_discount >= 0.05;

(a) Example query derived from the TPC-H benchmark.
1 module ExampleQuery{
2 def main(): table{
3 // load table
4 t0:table = @load_table(`lineitem:sym);
5 // load two columns
6 t1:f64 = check_cast(@column_value(t0, `l_extendedprice:sym), f64);
7 t2:f64 = check_cast(@column_value(t0, `l_discount:sym), f64);
8 // compute revenue change
9 t3:bool = @geq(t2, 0.05); // S9

10 t4:f64 = @compress(t3, t1); // S10
11 t5:f64 = @compress(t3, t2); // S11
12 t6:f64 = @mul(t4, t5); // S12
13 t7:f64 = @sum(t6); // S13
14 t8:sym = `RevenueChange:sym;
15 t9:list<f64> = @list(t7);
16 t10:table = @table(t8, t9);
17 return t10;
18 }
19 }

(b) HorseIR code for (a)

Figure 7.2 – Example query and its HorseIR program

97

7.2. TYPE AND SHAPE ANALYSIS

1 ...
2 revenue = 0;
3 length_t2 = ...;
4 for(i = 0; i < length_t2; i++){
5 if(t2[i] >= 0.05)
6 revenue += t1[i] * t2[i];
7 }
8 ...

Figure 7.3 – Optimized C code for the IR code in Figure 7.2b

It first obtains the reference to the table lineitem1 and then uses it to obtain the
references to the data sets of the columns l_extendedprice and l_discount (both
being vectors) in variables t1 and t2 respectively. Then, the predicate is evaluated
by invoking the built-in function @geq. This function returns a boolean vector of the
same length as t2 with a true value for each row where the corresponding t2 row
has a value of at least 0.05, and a false otherwise. Next, the function @compress in
lines 12 and 13 takes this boolean vector and t1 respective t2 as input, and returns
all rows from t1 respective t3 where the corresponding values in the boolean vector
are true. The length of the resulting vectors t4 and t5 is equal to the number of true
values in the boolean vector t3. Finally, the multiplication function in the SELECT

clause is executed on the two vectors in lines 14, and the summation in line 15. In
the end, in lines 16 to 19, a new table, with a single column named RevenueChange

and a single row for the total revenue change, is created and returned.

As can be seen, such an approach generates a fair number of intermediate results.
In particular, t3 to t6 are all intermediate vectors that are materialized. If lines
11 to 15 are translated to lower-level code independently, each of them generates
its own for loop over the corresponding arrays. However, array-based optimization
techniques, including loop fusion, and some pattern-based optimizations developed
specifically for the operator sequences found in SQL statements, allow the HorseIR
compiler to fuse these loops to just one loop to avoid materializing these intermediate
vectors. The resulting sequential C code after such optimizations is similar to the

1HorseIR runs in an in-memory system, where all the tables are primarily memory-resident.

98

7.2. TYPE AND SHAPE ANALYSIS

one depicted in Figure 7.3. The various optimization techniques will be discussed
in-depth in the rest of this chapter. Although the source code in Figure 7.3 does not
convey it explicitly, behind the scenes, HorseIR uses OpenMP to compile them into
a parallel implementation, as outlined in Section 6.2.

7.2.2 Type Propagation

HorseIR provides explicit type but implicit shape information. For instance, a vector
integer type i32 indicates a vector with the type integer and unknown length; two
variables having different types may hold the same length. The existence of the wild-
card type requires a proper type propagation to find out its specific type information
at compile-time.

Abstraction for types. The abstraction of a HorseIR type needs to keep track of
a vector type with a main type, or a list-based type with a main type and cell
types. Therefore, we implement a type node for preserving all type information
as illustrated in Figure 7.4. A type node has three fields: the main type, a
pointer to a type node as a cell type, and a pointer to a type node as an
adjacent type. It is able to represent an integer when the two pointers are set
to null, and it is also flexible to represent lists with the pointer fields.

type

sub

next

list

sub

null

i32

null

null

list

sub

null

i32

null

next

list

sub

null

i32

null

next

f32

null

null

list<i32>

list<i32,list<i32,f32>>

node

i32

null

null

i32

Figure 7.4 – Type nodes for representing type information

99

7.2. TYPE AND SHAPE ANALYSIS

Initial types. Since HorseIR code reads data from tables in main memory and each
table has a set of well-defined columns with specific types, the optimizer gets the
initial types from these columns. For example, the below code loads a column
l_discount and checks if it is a column with the type f64.
1 t2:? = check_cast(@column_value(t0, `l_discount:sym), f64);

Thus, although the type of the assigned variable t2 is a wild-card (?) it can be
specialized with a type f64.

Type propagation. The abstract information of type information is propagated
through statements and methods. HorseIR provides pre-defined type and shape
rules for all built-in functions. Since HorseIR supports dozens of types, we use
the simple letters for types introduced in Table 4.1 and Table 4.2 to describe
type rules. For example, the letter B denotes the boolean type.

As an example, Figure 7.5 shows the type rules for boolean binary built-in
functions, such as equal (eq) and not equal (neq). If the input is any two real
types (B/J/H/I/L/F/E) or otherwise both inputs have the same specific types
(C/Q/S/M/D/Z/U/W/T) the result type is Boolean. An empty slot in the figure
represents an unhandled case, and a type error should be raised.

7.2.3 Shape Propagation

The abstraction of a HorseIR shape needs to understand the symbolic value of current
sizes. A shape may maintain different kinds of status: constant, non-constant, and
unknown. The HorseIR optimizer implements a symbolic system which can reduce
the number of kinds by merging non-constant and unknown shapes, because they can
be assigned with a unique symbolic value when an unknown shape occurs. However,
it depends on the precision of the symbolic system to provide shape information for
subsequent optimizations, such as fusion-based optimizations for merging loops with
the same iteration when generating C code from array-based built-in functions. The
below code example from Figure 7.2b shows how shape information can affect the
final code generation.

100

7.2. TYPE AND SHAPE ANALYSIS

x
y B J H I L F E C Q S M D Z U W T X G N Y A K
B B B B B B B B
J B B B B B B B
H B B B B B B B
I B B B B B B B
L B B B B B B B
F B B B B B B B
E B B B B B B B
C B
Q B
S B
M B
D B
Z B
U B
W B
T B
X
G
N
Y
A
K

Figure 7.5 – Type rules for boolean binary functions with two parameters x and y

101

7.2. TYPE AND SHAPE ANALYSIS

1 ...

2 t1:f64 = check_cast(load_column(t0, `l_extendedprice:sym), f64);

3 // array size: d0 (l_extendedprice)

4 t2:f64 = check_cast(load_column(t0, `l_discount:sym), f64);

5 // array size: d0 (l_discount)

6 ...

7 t3:bool = @geq(t2, 0.05:f64); // array size: d0

8 t4:f64 = @compress(t3, t1); // array size: d1

9 t5:f64 = @compress(t3, t2); // array size: d1 or d2

10 t6:f64 = @mul(t4, t5); // array size: d1 or d3

11 t7:f64 = @sum(t6); // array size: 1

12 ...

As can be seen, a symbolic number d0 is assigned to the number of rows in the table
lineitem. In order to keep it simple, a growing numeric id is adopted to represent
new and unique symbolic values. Two columns l_extendedprice and l_discount are
first loaded from a table lineitem. Therefore, the two columns have the same size
d0. Next, the column l_discount is input to the greater-than-or-equal-to function
geq to return a boolean vector of the same size indicating whether each discount is
greater than 0.05. Then, the result vector is used to select qualified discounts with
the function compress. The size of t4 is determined by the number of true elements
in the boolean vector t3. However, the actual size is only known at runtime. Thus,
a new symbolic size d1 is assigned to the vector t4. For the size of t5, there are
two cases: (1) d2, if the symbolic system naively assigns the next available symbolic
number; or (2) d1, if the optimizer understands the variable t3 which is used in the
previous statement. It should be noted that the size d1 is assumed always to be not
equal to d2. Furthermore, the size of t6 after multiplication may be either d3, a new
size, in case of (1); or d1 in case of (2). Finally, it returns the size 1 after computing
the total value of t6 with the function sum. In case (1), the optimizer is unable
to understand that the two statements for boolean selection share the same boolean
vector, whereas in case (2), the statements in lines 7-11 can be fused into a single loop
as they share the same loop iteration as shown in Figure 7.6. Hence, we introduce

102

7.2. TYPE AND SHAPE ANALYSIS

1 // . . . l oad columns t1 , t2
2 t7 = 0;
3 for(int i=0; i<n; i++){
4 if(t2[i] >= 0.05){
5 t7 += t1[i] * t2[i];
6 }
7 }
8 // . . . re turn t7

Figure 7.6 – Generated fused C code

a systematic shape analysis by defining precise shapes, setting up propagation rules,
and finding statements that can be fused.

7.2.3.1 Shape Analysis

Shape information is key to identifying fusible sections of built-in functions. In this
section we: (1) introduce our shape abstraction; (2) categorize built-in functions in
groups by shape behaviour; and (3) describe propagation rules for each group.

Shape Abstraction
Shapes describe the in-memory layout of data. HorseIR has two important shapes

used in queries: vectors and lists.

Vector. A vector shape describes a fixed-length one-dimensional array of homoge-
neous data. It is therefore characterized based on the number of elements as
shown in Table 7.1.

Table 7.1 – Definitions of vector shapes

Shape Description
V(1) Vector of constant size 1 (i.e., scalar)
V(c) Vector of constant size c where c ̸= 1
V(d) Vector of unknown static size (unique ID d)
Vs(a) Vector from boolean selection a

The number of elements may either be a compile-time constant, or a dynamic
value which is only known at runtime. We include a separate shape for scalar

103

7.2. TYPE AND SHAPE ANALYSIS

data as some built-in functions exhibit specialized behaviour depending on the
exact size.

Dynamic vector shapes describe objects that depend on runtime properties. Our
system assigns a unique ID to such vectors, so two vectors with the same ID
have the same shape. A specialized dynamic shape, Vs(a), describes the output
result of the boolean selection function compress with the boolean mask a. The
code generator uses this boolean selection shape for further fusion and avoids
storing intermediate results.

List. A list shape is composite, storing heterogeneous data in an ordered group of
cells. Each cell has its own shape, either a vector or a nested list.

list_shape ::= { cell_shape };
cell_shape ::= list_shape | vector_shape;

We denote a list shape as list<L0, L1, ...>, where Li is the shape of cell i. Note
that if the list is the representation of an SQL query, list cells are always vectors,
as they typically represent collections of columns or row indices.

Built-in Function in Groups
Built-in functions are categorized based on their pre-defined shape behaviours.

This simplifies later analyses which depend on the shape behaviour and not the exact
operation. For example, element-wise binary functions plus and mul share identical
structure and may therefore share a single set of shape propagation rules.

a:i32 = @plus(A, B);
b:i32 = @mul(A, B);

HorseIR built-in functions can be categorized into the following groups based on shape
behaviour:

Element-wise (E): unary and binary functions, including arithmetic, boolean, and
math. They are frequently used to represent the operators found in the WHERE
clause (selection) and the SELECT clause (projection);

104

7.2. TYPE AND SHAPE ANALYSIS

Reduction (R): reduction functions sum, avg, min, and max, which originate from
aggregation functions in SQL queries;

Scan (S): boolean selection function compress. After the selection, it retrieves the
relevant elements for the projection;

Indexing (X): indexing function index;

Special Boolean (B): functions that return a boolean vector without implicit data
dependency, such as like and member;

Each (H): list functions each, each_left, each_right, each_item, and raze. They
are often needed in SQL statements with a GROUP BY;

Others (O): all other functions.

Groups can be extended as needed with additional built-in functions as the language
and libraries evolve. Each group is also associated with an abbreviation that is used
in the following sections.

7.2.3.2 Shape Propagation Rules

Shape propagation rules are defined for each group of vector functions, list functions
each*, and other functions.

Vector Functions
For vector functions, the return shape can be: (1) a parameter shape; (2) a new

vector shape; (3) an error occurs due to a shape mismatch. For case 2, we introduce
notation I, that generates a new dynamic shape. While the new shape may be
identical to other shapes at runtime, our static analysis is conservative.

• Binary element-wise functions. Binary element-wise functions take two
vectors as input, perform an element-wise operation and produce a new vector.
If either operand is a scalar, the single value is broadcast. Table 7.2 presents
the shape propagation rules for binary element-wise functions.

105

7.2. TYPE AND SHAPE ANALYSIS

Statically known vector lengths provide exact shape propagation rules and can
throw errors at compile time. If one or more arguments are of dynamically
known shape, then the resulting shape is also dynamic. If both arguments have
the same unique ID or boolean mask, then the argument shape is propagated.
In all other cases, a new unique shape is generated.

Table 7.2 – Rules for binary element-wise Functions (E)

FB(x,y) x
y V(1) V(c0) V(d0) Vs(a0)

V(1) V(1) V(c0) V(d0) Vs(a0)
V(c1) V(c1) V(c0)1 I I
V(d1) V(d1) I V(d0)2 I
Vs(a1) Vs(a1) I I Vs(a0)3

1: if c0==c1 otherwise error
2: if d0==d1 otherwise I
3: if a0==a1 otherwise I

• Unary element-wise functions. Unary element-wise functions take a single
vector as input and produce a new output vector of the same size. Dataflow
rules for shape are the identity in this case. Table 7.3 presents the rules for
unary element-wise functions.

Table 7.3 – Rules for unary element-wise functions (E)

FU (x) V(1) V(c0) V(d0) Vs(a0)
Return V(1) V(c0) V(d0) Vs(a0)

• Reduction functions. Reduction functions take a vector as input and com-
pute a scalar output value. In all cases this produces a V (1) shape described in
Table 7.4.

Table 7.4 – Rules for reduction functions (R)

FR(x) V(1) V(c0) V(d0) Vs(a0)
Return V(1) V(1) V(1) V(1)

106

7.2. TYPE AND SHAPE ANALYSIS

• Scan function. The boolean selection function compress takes two vectors of
equal length: a boolean mask vector, and a values vector. The output vector
contains only those values with a corresponding TRUE flag in the mask. Table 7.5
describes the full shape rules where x is the mask and y the values vector.

Table 7.5 – Rules for the scan function (S)

FS(x,y) x
y V(1) V(c0) V(d0) Vs(a0)

V(1) I error I I
V(c1) error I1 I I
V(d1) I I Vs(x)2 I
Vs(a1) I I I Vs(x)

1: if c0==c1 otherwise error
2: if d0==d1 otherwise I

For constant sized vectors where the lengths agree, the output shape is deter-
mined at runtime. If the lengths differ a compile-time error is thrown. Dynamic
length vectors also generate new scan shapes parameterized on the boolean
mask. As multiple value vectors may be compressed using the same mask, we
internally map each boolean mask to its output shape. When propagating, this
map is first checked before generating a new unique shape. Figure 7.7 shows
an example of two vectors which have the same output scan shape.

1 // b:bool, x:i32, y:i32 (vectors of same length)
2 t0:i32 = @compress(b, x);
3 t1:i32 = @compress(b, y);
4 // t0 and t1 share the same scan shape

Figure 7.7 – Example propagating the scan shape

• Array indexing function. The array indexing function index takes two
vectors as input (values and indexes) and performs an indexed read. The output
vector therefore contains one element per index, and thus its shape is determined
by the shape of the index vector. Table 7.6 shows the rules for the array indexing
function where x contains the values, and y the indexes to fetch.

107

7.2. TYPE AND SHAPE ANALYSIS

Table 7.6 – Rules for array indexing (X)

FX(x,y) x
y V(1) V(c0) V(d0) Vs(a0)

V(1) V(1) V(1) V(1) V(1)
V(c1) V(c1) V(c1) V(c1) V(c1)
V(d1) V(d1) V(d1) V(d1) V(d1)
Vs(a1) Vs(a1) Vs(a1) Vs(a1) Vs(a1)

• Special boolean functions. Special boolean functions take a data vector as
input and return a boolean vector indicating adherence to a specified property.
For example, @like(x, y) checks if the data values x match search string
y. Functions in this group therefore return the shape of the first argument.
Full shape rules are found in Table 7.7, where x is the values and y the extra
parameter.

Table 7.7 – Rules for special boolean functions (B)

FB(x,y) x
y V(1) V(c0) V(d0) Vs(a0)

V(1) V(1) V(c0) V(d0) Vs(a0)
V(c1) V(1) V(c0) V(d0) Vs(a0)
V(d1) V(1) V(c0) V(d0) Vs(a0)
Vs(a1) V(1) V(c0) V(d0) Vs(a0)

List Functions
As introduced in Section 4.4.2, HorseIR supports one each function with a unary

operation, each(f,x), which applies a function f over all elements of list x, and three
each functions with a binary operation, each_item(f,x,y), each_left(f,x,y) and
each_right (f,x,y) where f is a binary function that takes two input values. For
the binary operations, the ith elements of the outputs are computed as f(x(i),y(i)),
f(x(i),y), and f(x,y(i)) respectively.

Function raze flattens a homogeneous list of vectors into a single vector, removing
cell divisions. For any list, the output shape is a dynamically sized vector V(d).

108

7.2. TYPE AND SHAPE ANALYSIS

Other Functions
For all other functions, a new dynamic shape (either list or vector depending on

the return type) is generated as the output shape. This is conservative, but correctly
prevents fusing any unknown or non-fusible function. Further optimization is possible
using pre-defined patterns as described in Section 7.3.2.

7.2.3.3 Conformability Analysis

Conformability analysis determines fusible statements of a HorseIR program for code
generation. Using the output of shape analysis, we partition the data dependence
graph into fusible sections and independent statements. Two statements are in the
same fusible section if they are conforming.

Fusible Sections. A fusible section is a subgraph of the program data dependence
graph. Let G = (V,E) represent the data dependence graph with statement
nodes and dependence edges. Note that for each statement there is one incoming
edge per parameter. The complete graph G can be divided into two parts:
fusible (ΓF) and non-fusible (ΓN) disjoint subgraphs. A fusible section will be
translated into one coherent code snippet by the code generator as discussed in
Section 7.3.

Conformability. Two statements are conforming if they may be fused in the gener-
ated code, thereby eliminating intermediate results. As with the shape analysis,
this check is conservative, fusing statements only if provably correct. Trivially,
element-wise functions operating on the same vector shape may be fused, but
we can also fuse both boolean selection and reductions. The basic rules for con-
formability are described in Table 7.8. In our approach, we check conformabil-
ity between statements and the definition statements of their input parameters
(predecessors in the data dependence graph).

Conformability analysis produces a list of fusible sections given the conformability
of the statements. It traverses bottom up on the dependency graph (reverse topo-
logical order), and recursively fuses definition statements that are conforming with

109

7.2. TYPE AND SHAPE ANALYSIS

Table 7.8 – Conforming rules for two shapes

V(1) V(c0) V(d0) Vs(a0)
V(1) ✓ × × ×
V(c1) × c0==c1 × cond(a0,c1)
V(d1) × × d0==d1 cond(a0,d1)
Vs(a1) × cond(a1,c0) cond(a1,d0) a0==a1

cond(a,y) is ✓ if a.size == y else ×

their uses. Each recursive call tree therefore forms a single fusible section that ends
when no more statements may be fused. In addition to conformability, we ensure
that reductions may only terminate fusible sections and not be internal nodes. This
restriction is due to the synchronization and implicit data-dependence introduced by
the reduction behaviour. Our algorithm for vector fusion is described in detail in
Algorithm 1 and subsequent sections.

Vector Conformability. Identifying fusible sections for vector functions is divided
into two passes. The first pass identifies the main fusible sections, while the
second pass corrects any data dependencies between sections. The algorithm
terminates when all statements have been visited.

1st pass: Finding all eligible statements for a fusible section verifies for type
and shape conformability.

Rule 1: candidate statements need concrete types (no wildcard or unknown
types) and have built-in functions belonging to groups {E,R,S,X,B}.

Rule 2: candidate statements must be conforming with the shape of the defini-
tion statements according to Table 7.8.

Each iteration of the algorithm identifies statements adhering to the first rule,
and recursively checks definition statements for both rules 1 and 2 as seen in
function findFusibleStmts. If the definition statement contains a reduction, a
new fusible section is started and processed in the function findFromReduction.

The function findFusibleSection traverses the built-in functions according to

110

7.2. TYPE AND SHAPE ANALYSIS

Algorithm 1: Finding fusible sections for vectors.
Input: Data dependence graph G
Output: A list of fusible sections
let ∅ be an empty vector;
allStmts ← reversed topological order of the graph G;
foreach stmt A in allStmts do

if isNotVisited(A) then
if getOp(A) is a reduction function then

section ← findFromReduction(A);
else

section ← findFusibleSection(A);
Function findFusibleSection(A):

if isNotVisited(A) then
setVisited(A);
if isGroupE_Binary(A) or isGroupS(A) then

list ← fetchFusibleStmts(A, A.first.parent);
list.append(fetchFusibleStmts(A, A.second.parent));

else if isGroupE_Unary(A) or isGroupB(A) then
list ← fetchFusibleStmts(A, A.first.parent);

else if isGroupX(A) then
list ← fetchFusibleStmts(A, A.second.parent);

else
list ← ∅;

return {A}.append(list)
return ∅;

Function fetchFusibleStmts((A,P)):
if isConforming(A, P) then /* Rule 2 */

return findFusibleSection(P);
return ∅;

Function findFromReduction(A):
setVisited(A);
return {A}.append(findFusibleSection(A.first.parent));

111

7.2. TYPE AND SHAPE ANALYSIS

their group: (1) traversing the parents of both parameters for binary element-
wise functions E and the scan function S; (2) traversing the parent of the first
parameter for unary element-wise functions E and special boolean functions B;
and (3) traversing the parent of the second parameter for indexing functions X.
Other functions leave the list of fusible sections unchanged.

2nd pass: Trimming sections that introduce dependencies.

The algorithm described in Algorithm 1 optimistically creates fusible sections,
assuming that intermediate results are not required for other computations.
If a definition is used in more than one successor and the successors are par-
titioned into separate fusible sections, a data dependence will exist between
sections. This dependency would require an intermediate result to be stored,
which negates the purpose of our approach. We therefore remove any statement
whose successors are in different fusible sections from the fusible section.

List Conformability. A fusible section of list-shaped code ends with the pairing of
a list reduction (e.g. @each(@sum,...)) and @raze. This combination produces
a vector with a single value per list cell. We then recursively expand the section
checking conformability between the current statement and predecessor @each*
calls as done for vectors. We additionally impose that the applied function in
the @each* calls has appropriate shape behaviour: @each_left requires either
group B or E, @each_right requires group X or E, and @each_item only group
E. Boolean selection functions (S) are not supported.

An Example
Given the HorseIR program in Figure 7.2b, our algorithm identifies a fusible sec-

tion shown in Figure 7.8. Initially, the columns t1 and t2 are assigned a dynamic
vector shape with a unique ID, V(d), as the exact size depends on the input table.
Next, the element-wise function in statements S9 propagates the vector shape V(d)

according to the shape rules. Both compression functions in S10 and S11 generate a
new shared scan shape Vs(t3) as they both use the same boolean mask. The follow-
ing binary function uses this equality to correctly infer its output shape. Finally, the

112

7.3. CODE GENERATION OPTIMIZATIONS

S9(E): t3::V(d)S9

S10 S11

S12

S13

S10(S): t4::Vs(t3)
S11(S): t5::Vs(t3)

S12(E): t6::Vs(t3)

S13(R): t7::V(1)

...

...

Figure 7.8 – A fusible section for the HorseIR program in Figure 7.2b. The text
format on the right hand side is <statement>(<group>): <variable>::<shape>.

reduction function @sum returns a vector with one element. Note that all functions in
the computed fusible section share the same loop range, V(d).

The code in Figure 7.6 shows the generated C code for the complete fusible section.
Note the if-condition for boolean selection and the accumulator for the reduction. The
code generation strategy for fusible sections will be introduced in Section 7.3.1.

7.3 Code Generation Optimizations

In this section, we first identify fusible sections after the conformability analysis in
Section 7.2.3.3, and generate fused code automatically in Section 7.3.1. HorseIR op-
timizer adopts a set of loop fusion based optimizations since loop fusion is a key
optimization for array-based languages [24, 47], and it is similarly important for Hor-
seIR. We then explore fusions/specializations based on patterns specific to HorseIR
code in Section 7.3.2.

113

7.3. CODE GENERATION OPTIMIZATIONS

7.3.1 Automatic Loop Fusion

When generating code for a fusible section, first each fusible section is associated with
a fusion node, the nodes are then optimized, and lastly the code is emitted.

7.3.1.1 Fusion Nodes

Each fusible section is associated with a fusion node, a collection of metadata used
for generating the loop. For each section, we traverse the statements and collect:
(1) loop bounds; (2) fused expressions; (3) boolean mask (if any); and (4) reduction
operation (if any). The set of properties determines which code generation pattern is
used.

7.3.1.2 Code Generation for Vectors

// reduction: YES
// boolean selection: YES
for(i=0; i<len; i++){

if(cond[i]){
z = z Rop expr_rhs;

}}
z = Rfinal(z);

(a) Case 0

// reduction: YES
// boolean selection: NO
for(i=0; i<len; i++){

z = z Rop expr_rhs;
}
z = Rfinal(z);

(b) Case 1

// reduction: NO
// boolean selection: YES
c = 0;
for(i=0; i<len; i++){

if(cond[i]){
z[c++] = expr_rhs;

}}

(c) Case 2

// reduction: NO
// boolean selection: NO

for(i=0; i<len; i++){

z[i] = expr_rhs;
}

(d) Case 3

Figure 7.9 – Code generation for vectors. Rop: reduction operation; Rfinal: final
reduction step (e.g. divide by element count); z: accumulator/output vector.

114

7.3. CODE GENERATION OPTIMIZATIONS

Code generation for fused vector operations follows 4 patterns depending on the
presence of reduction and boolean selection. Each iterates over the length of the list,
fuses the RHS expressions, and produces the appropriate output. Reduction nodes
accumulate a scalar value, while non-reduction nodes create a new vector. Rfinal

performs the final step of the reduction (e.g. dividing by the number of elements
to compute an average). In the case of compression, the condition is first evaluated
and the RHS computed if necessary. Figure 7.9 shows the variations of the code
generation patterns.

Note that when generating parallel code for Figure 7.9c, we employ a strategy
that: (1) counts the number of true elements in each segment and computes an offset
for each segment; and (2) divides the boolean vector into segments evenly based on
the number of cores. Each thread thus maintains a segment of the boolean vector
independently. For all other cases, typical parallel strategies are effective.

7.3.1.3 Generating Code for Lists

for(i=0; i<list.len; i++){ /* loop over cells */
cell = list[i]; /* fetch one cell */
/* init t */
for(j=0; j<cell.len; j++){ /* loop over content */

t = t Rop (cell[j])
}
z[i] = Rfinal(t); /* store final value */

}

Figure 7.10 – Code generation for lists. Rop: reduction operation; Rfinal: final
reduction step (e.g. divide by element count); t: cell accumulator; z: output vector.

List fusion nodes compute a single value per list cell and return a vector. Fig-
ure 7.10 shows the code generation pattern for lists. As seen in the figure, there are
two loops present: an outer loop iterating over cells and an inner loop computing the
reduction expression for each cell.

115

7.3. CODE GENERATION OPTIMIZATIONS

Name Code Examples Description

FP-1 t0:? = @compress(mask, k0);
t1:? = @compress(mask, k1);

Materialize columns
with the same condi-
tion

FP-2

t0:? = @lt(k0, k1);
t1:? = @compress(t0, k2);
t2:? = @len(k2);
t3:? = @vector(t2, 0:bool);
t4:? = @index_a(t3, t1, 1:bool);

Semi-join with a selec-
tion condition

FP-3
t0:? = @each_right(@index, k0, k1);
t1:? = @each(@unique, t0);
t2:? = @each(@len, t1);
t3:? = @raze(t2);

Return the number
of unique values after
group by

FP-4 t0:? = @index(k0, v0);
t1:? = @index(k1, v0);

Materialize columns
with a common vector
containing indices

Figure 7.11 – Code examples for fusing with patterns

Note that the ratio of list.len and cell.len may vary greatly. When parallel
code is generated, we may therefore parallelize the outer or inner loop depending on
the data. In our implementation, we use a simple runtime heuristic based on the size
ratio to choose which loop runs in parallel.

7.3.1.4 Further Fusion Opportunities

Fusible sections can be merged if: (1) they share the same loop head, and (2) there is
no data dependency between the loop bodies. This is particularly useful in column-
based IMDBs where data is fetched from multiple independent columns using a single
array of indices (e.g. the result of a join). It also reduces the number of parallel
synchronization barriers.

7.3.2 Fusing with Patterns

Fusing with fusion nodes is beneficial, but there are other optimization opportunities
for common patterns of array operations that occur specifically in the code generated

116

7.3. CODE GENERATION OPTIMIZATIONS

for database operators. Therefore, a set of patterns (FP), identified and adopted for
optimizing these situations, can be found in Figure 7.11. Patterns are designed for
merging statements and guiding our optimizer to generate efficient C code.

FP-1 This is a common pattern for materializing multiple columns after a selection
in SQL. As can be seen in Figure 7.12, this pattern tries to fuse two or more
statements containing the boolean selection function compress with a common
mask. The generated fused code has a single loop with one accumulator that
reduces the cost of synchronization for multiple loops when parallel code is
implemented.

c = 0;
for(int i=0; i<n; i++){
if(mask[i])
t0[c++] = k0[i];

}

c = 0;
for(int i=0; i<n; i++){
if(mask[i])
t1[c++] = k1[i];

}

t0:?=@compress(mask, k0);
t1:?=@compress(mask, k1);

c = 0;
for(int i=0; i<n; i++){
if(mask[i]){
t0[c] = k0[i];
t1[c] = k1[i];
c++;

}
}

(HorseIR code) (Naive C code) (Fused C code)

Figure 7.12 – Illustration for generating fused code with FP-1

FP-2 This is a HorseIR pattern that is the result of a SQL semi-join when a selection
is applied on one column and it works with enumeration. Translating FP-2 in
a coherent step to code results in fewer intermediate results, and thus, is more
efficient than a general join implementation. In Figure 7.13, we can see that
this pattern works when input vectors k0, k1, and k2 have the same length. The
comparison between k0 and k1 creates an intermediate vector t0 which is later
used in the boolean selection to create another vector t1. On the other hand,
t1 is used only once as the index in an array indexing function. Therefore,
statements can be fused in a loop without actually generating t0 and t1.

FP-3 SQL queries often group row based on a column and then perform aggregation
per group. We discussed the generated SQL code in Section 5.1.1.5. The

117

7.3. CODE GENERATION OPTIMIZATIONS

for(int i=0; i<n; i++){
t4[i] = 0;

}
for(int i=0; i<n; i++){
if(k0[i] < k1[i]){
t4[k2[i]] = 1;

}
}

t0:? = @lt(k0, k1);
t1:? = @compress(t0, k2);
t2:? = @len(k2);
t3:? = @vector(t2, 0:bool);
t4:? = @index_a(t3, t1, 1:bool);

Figure 7.13 – Illustration for generating fused code for FP-2

aggregation often follows the pattern shown in Figure 7.11 and performs list
indexing using each functions. In the example, there are two each functions
with different aggregation functions: @unique returns the indices of the first
unique items, and @len returns the length of an array. After the two aggregation
functions, each cell in the list t2 contains a single integer, indicating the number
of unique items in each cell. Finally, the list is flattened by the function raze and
a vector of integers is returned. All statements in this pattern can be efficiently
implemented without allocating additional space to store intermediate results
as depicted in Figure 7.14.

k0

k1
(indices)

t0

t1
(indices)

5 7 5 16

0 2 1 3

5 5 7 16

0 0 0

for(int i=0; i<n; i++){
for(int j=0; j<cell[i];j++){
// step 1: array indexing
// step 2: count unique items

}
// step 3: store

}

each_right
(index)

each
(unique)

t3 1 1 1

t2 1 1 1
each
(len)

Figure 7.14 – Illustration for generating fused code with FP-3

FP-4 It is similar to the pattern FP-1 to materialize columns with a boolean mask,
but with indices. After a join or groupby operation, HorseIR returns indices
(i.e., row ids) instead of actual values. Therefore, new columns are created
by retrieving the actual values using the index vectors. Materializing multiple

118

7.3. CODE GENERATION OPTIMIZATIONS

columns with the same index vector can be done in a fused manner as illustrated
in Figure 7.15.

for(int i=0; i<n; i++){
t0[i] = k0[v0[i]];

}

for(int i=0; i<n; i++){
t1[i] = k1[v0[i]];

}

t0:?=@index(k0, v0);
t1:?=@index(k1, v0);

for(int i=0; i<n; i++){
t0[i] = k0[v0[i]];
t1[i] = k1[v0[i]];

}

(HorseIR code) (Naive C code) (Fused C code)

Figure 7.15 – Illustration for generating fused code with FP-4

Algorithm 2 shows how patterns can be matched in a HorseIR program to gener-
ate efficient code. There are two directions for matching: (i) Top-to-Bottom needs the
information of how statements are used by looking up define-use chains (DUChain)
for FP-1 and FP-4; and (ii) Bottom-to-Top requires the information of definitions
of statements by searching in use-define chains (UDChain) for FP-2 and FP-3. Fig-
ure 7.16 shows that patterns are formed in a tree-based structure for Bottom-to-Top
matchings. Once a pattern is matched, all matched statements need to be set visited
and their information is saved for later code generation: (1) if a statement is only
marked as visited, the statement is skipped; (2) if a statement marked as visited
matches a Top-to-Bottom pattern and it matches the last statement of the pattern,
all statements matched are fused; (3) if a statement marked as visited matches a
Bottom-to-Top pattern and it matches the root of the pattern, it is translated with
a prepared template to optimized C code; and (4) if a statement is not marked as
visited, it is translated to an invocation to a library function which is written in C
(this statement was not found to be fusible with anything).

119

7.3. CODE GENERATION OPTIMIZATIONS

Algorithm 2: Identify patterns for fusion
Data: HorseIR statements, UDChain, and DUChain
foreach stmt in statements do

if stmt is assignment then
if isTopToBottom then /* FP-1 and FP-4 */

UseStmts ← DUChain(stmt);
// match if at least two statements in UseStmts contain:
// the function compress and share the same mask; or
// the function index and share the same index vector

else /* FP-2 and FP-3 */
if fetchFuncName(stmt) == target then

// 'raze' or 'index_a'
if matchPattern(stmt, pattern) then

// match!
Function matchPattern(stmt, pattern):

value ← fetchValue(pattern);
func ← fetchFuncName(stmt);
if value == func then

DefStmts ← UDChain(stmt);
if size(DefStmts) ̸= size(pattern.child) then

return False;
for i = 0 to size(DefStmts)-1 do

return matchPattern(DefStmts[i], pattern.child[i]);
if pattern.name == "?" OR pattern.name == func then

return True;
return False;

index_a

vector

len

compress

lt ?
(a) FP-2

raze

[each, len]

[each, unique]

[each_right, index]

(b) FP-3

Figure 7.16 – Patterns designed for FP-2 and FP-3

120

7.4. CROSS OPTIMIZATIONS

7.4 Cross Optimizations

Considering SQL statements with embedded UDFs, as we have seen in Section 5.3,
both the SQL and the UDF part are independently translated into HorseIR and
the resulting code then merged to create a main method which calls the method
representing the UDF. We discussed in Section 7.2 that we use method inlining to
move all code into one method. In here, we provide more details of the motive behind
this approach.

Our running example in Figure 5.22 shows the merged code with the clear sep-
aration of the SQL-based and the UDF-based parts. If we were to optimize both
parts independently using loop fusion and pattern-based fusion as just discussed, the
overall result would be sub-optimal. In fact, if we look at the dependence graph for
this program on the left side of Figure 7.17 (with S0 to S4 depicting the statements
in the code), we can see that the optimization opportunities are now separated into
three snippets: before, after, and in the method being called in the statement S3. The
snippets have to be optimized individually because the content of the statement S3

is invisible to the rest of the code. Thus, statements S1 and S2 of the main method
need to be evaluated and intermediate results t4 and t5 cannot be eliminated as
the method calcRevenueChangeScalar requires their actual values to be passed as
parameters. Furthermore, the return value of the method needs to be materialized to
be assigned to t6 which is then the input of statement S4. This means the potential
scope for fusion is significantly reduced leading to more intermediate results.

Therefore, we do not optimize the individual parts independently, but aim at
a holistic optimization. The idea to enable this cross-optimization using: method
inlining as outlined in Section 7.1. As mentioned, this involves replacing the method
calls within the main method by the corresponding code segments that constitute
the method that is being called. This modified version of the HorseIR program will
now have fewer method calls and is conducive to the fusion optimizations that we
discussed in Section 7.3.

For our example program in Figure 5.22 this means the code of calcRev-

enueChangeScalar can be inlined into the main method with the generated HorseIR

121

7.4. CROSS OPTIMIZATIONS

S0

S1 S2

S3

S4

S5

main

...

...

S0

S1 S2

S5

S4

...

...
calcRevenue
ChangeScalar

Fused
Nodes

Fused
Nodes

Single
Node

Single
Node

S0,1,2,4,5

...

...

Call

Return

Figure 7.17 – Dependence graphs for the example in Figure 5.22 to show that method
inlining helps explore more opportunities for automatic loop fusion.

being almost the same as the one in Figure 7.2 except for possibly different variable
names. As a result, a dependence graph can be built across the main method, as
illustrated on the right side of Figure 7.17, allowing for loop fusion across all state-
ments and generating a single loop of all tasks. In particular, the boolean predicate
statement (S0), the compress statements (S1 and S2), the multiplication statement
(S5), and the reduction statement (S4) can be fused together when generating the C
code in Figure 7.18. The core computational logic of the program is now consolidated
into a single loop which performs the tasks of selecting the relevant price and discount
values as well as calculating the net revenue change. This code is efficient compared
to the original version without method inlining, as it avoids the materialization of
any intermediate results introduced by UDF invocations.

1 ...
2 revenue = 0;
3 for(i = 0; i < numRows; i++){
4 if(discount[i] >= 0.05)
5 revenue += extendedprice[i] * discount[i];
6 }
7 ...

Figure 7.18 – Generated C code after the cross-method optimization in Figure 7.17

122

Chapter 8
Evaluations

We design and conduct experiments for evaluating the performance of HorsePower
in multiple ways as shown in Figure 8.1. We start this chapter by describing the
experimental setup that we use for all our experiments in Section 8.1. From there,
we analyze the performance of HorsePower while executing standard SQL queries for
the TPC-H benchmark, comparing with MonetDB in Section 8.2. Next, we study
the performance of HorsePower running standard array programs, comparing with
MATLAB in Section 8.3. After that, we evaluate the performance of HorsePower
when executing database queries with embedded UDFs in Section 8.4. Finally, we
test the performance of HorsePower executing HorseIR code on GPUs in Section 8.5.
Scripts and data used in our experiments can be found in our GitHub repository.1

Setup

Experiments:
Database Queries

Experiments:
Array Programs

Experiments:
Queries & UDFs

Experiments:
GPU Code

Figure 8.1 – Overview of experiments used to evaluate the performance of HorsePower

1https://github.com/Sable/chen-thesis-analysis

123

https://github.com/Sable/chen-thesis-analysis

8.1. EXPERIMENT SETUP

8.1 Experiment Setup

Item sable-intel sable-tigger
CPU E7-4850 @ 2.00 GHz i7-8700K @ 3.70 GHz

L1 Cache 32 KB 32 KB
L2 Cache 256 KB 256 KB
L3 Cache 24 MB 12 MB

Threads per Core 2 2
Cores per Socket 10 6

Sockets 4 1
Total Threads 80 12
Thread Scales T1/2/4/8/16/32/64 T1/2/4/8/16

RAM Size 128 GB 32 GB
GPU (No GPU) GeForce GTX 1080 Ti

Operation System Ubuntu 18.04.4 LTS

Table 8.1 – Overview of machines used in experiments

Machines. Since the performance of HorsePower can be influenced by different hard-
ware configurations, our experiments are conducted on two machines described
in Table 8.1: sable-intel is a multi-socket multi-core server equipped with 4 Intel
Xeon E7-4850 2.00GHz (total 40 cores with 80 threads) and 128 GB RAM run-
ning Ubuntu 18.04.4 LTS; and sable-tigger is a multi-core workstation equipped
with Intel i7-8700K 3.70GHz (total 6 cores with 12 threads), an additional GPU
(GeForce GTX 1080 Ti), and 32 GB RAM running Ubuntu 18.04.4 LTS.

Software. We use GCC v8.1.0 to compile C code with the optimization options -O3
and -march=native; MonetDB version v11.35.9 (Nov2019-SP1) and NumPy
v1.13.3 along with Python v2.7.17 interpreter for embedded Python support in
MonetDB; and MATLAB version R2019a. When compiling C-based GPU code
on sable-tigger, we use NVIDIA PGI compiler 19.10-0 with the optimization
option -O4.

Parallelism. In order to test the potential to exploit parallelism, we consider dif-
ferent thread scales for the two machines: T1/2/4/8/16/32/64 (T1 to T64) for

124

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

sable-intel and T1/2/4/8/16 (T1 to T16) for sable-tigger. These scales cover
the number of physical cores each of the machines has.

Execution plans. As mentioned in Section 5.1.2, HorsePower supports translation
from HyPer’s optimized execution plans as well as MonetDB’s non-optimized
execution plans. We use the optimized execution plans from HyPer for all
queries in the TPC-H benchmark in Section 8.2. On the other hand, as HyPer
lacks facilities to generate execution plans with UDFs, we use the non-optimized
execution plans of MonetDB to generate our HorseIR code in Section 8.4.

Methodology. In terms of execution time, we only consider the time once data
resides in main memory. It is measured only for the core computation, and does
not include the overhead for parsing SQL, plan generation, and serialization for
sending the results to the client. We only consider core computation, as this
is the main part where HorsePower provides new contributions. We consider
performance variance by running each test 15 times, measuring the average
execution time over the last 10 runs. After the first 5 runs, response time
stabilizes, reducing the impact of caching and initial data transfer.

8.2 Experiments with a Database Query Benchmark

In this experiment we analyze how well HorsePower executes database queries origi-
nally written in SQL by comparing it to a state-of-the-art columnar RDBMS, Mon-
etDB. Since MonetDB stores the columns of a table in contiguous space, its internal
structure is similar to an array. Furthermore, we provide a detailed analysis of the
impact of the compiler optimizations deployed.

8.2.1 Benchmark Overview

Our tests use TPC-H [85], a widely used SQL benchmark suite for analytical data
processing. TPC-H mimics a Business to Consumer (B2C) database application. Its
data is synthetically created and can vary in size. A scale factor (SF) of 1 corresponds

125

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

to a database size of approximately 1 GB, with higher scale factors proportionately
increasing the size of the database. As can be seen in Figure 8.2, TPC-H has 8 tables
with pre-defined primary/foreign key relationships in its schema. For instance, table
partsupp has a foreign key ps_partkey referencing the primary key p_partkey in
table part. The benchmark contains a suite of 22 SQL queries that range from simple
queries to complex ones. Profiling data in Table 8.2 shows that these queries cover a
variety of performance impacting dimensions such as the number of input tables, joins,
condition predicates, aggregations, groupby operations, sorts, and output columns.

part
(P)

partsupp
(PS)

lineitem
(L)

supplier
(S)

orders
(O)

nation
(N)

region
(R)

customer
(C)

partkey (partkey, suppkey) orderkey

nationkey regionkey

nationkey
suppkey

custkey

(10K, 7) (25, 4) (5, 3) (150K, 8)

(200K, 9) (800K, 5) (6M, 16) (1.5M, 9)

Figure 8.2 – TPC-H schema and its table sizes (row, column) on SF1.

8.2.2 Complete Suite Results

For each of the 22 queries of the TPC-H benchmark, we took the execution plan
generated by HyPer and translated it to HorseIR as outlined in Section 5.1.2, followed
by the compiler optimizations and code generation indicated in Chapter 7. We then
ran the experiments using a scale factor of 1 (i.e., SF1) with both machines sable-

intel and sable-tigger as shown in Table 8.1.

8.2.2.1 Results on sable-intel

Figure 8.3 shows the execution times of HorsePower and MonetDB with an increasing
number of threads on sable-intel. We have the following observations.

126

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

ID Tables Join Predicate Aggregation Groupby Sort Return
1 L 0 1 8 2 2 10
2 P,S,PS,N,R 8 13 1 0 4 9
3 C,O,L 2 5 1 3 2 4
4 O,L 1 5 1 1 1 3
5 C,O,L,S,N,R 5 9 1 1 1 2
6 L 0 4 1 0 0 1
7 S,L,O,C,N 5 9 1 3 3 8
8 P,S,L,O,C,N,R 7 10 1 1 1 5
9 P,S,L,PS,O,N 5 7 1 2 2 6
10 C,O,L,N 3 6 1 7 1 8
11 PS,S,N 5 6 2 1 1 3
12 O,L 1 5 2 1 1 3
13 C,O 1 2 2 2 2 4
14 L,P 1 3 1 0 0 1
15 S,L 2 2 2 2 1 5
16 PS,P,S 2 6 1 3 4 5
17 L,P 3 4 2 0 0 2
18 C,O,L 3 3 1 5 2 7
19 L,P 1 21 1 0 0 1
20 S,N,PS,P,L 4 9 1 0 1 5
21 S,L,O,N 5 13 1 1 2 4
22 C,O 2 6 3 1 1 7

Table 8.2 – Profiling data of all TPC-H queries: tables and the number of joins,
predicates, aggregations, groupbys, sorts, and return columns

127

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

T1 T2 T4 T8 T16 T32 T64

0
50

0
10

00
15

00
20

00

q1

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
5

10
15

20
25

q2

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

0
20

0
30

0

q3

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

15
0

20
0

q4

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

15
0

20
0

25
0

q5

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32

0
20

40
60

80

q6

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

20
0

30
0

q7

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

15
0

20
0

q8

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

0
20

0
30

0
40

0
50

0

q9

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

15
0

25
0

35
0

q10

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
2

4
6

8
10

12
q11

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

15
0

q12

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

0
20

0
30

0
40

0
50

0

q13

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

20
30

40
50

60
70

q14

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

20
30

40
50

60
70

q15

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

15
0

q16

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
20

40
60

80

q17

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

0
20

0
30

0
40

0

q18

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
20

40
60

80
10

0

q19

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
50

10
0

20
0

30
0

q20

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
10

0
30

0
50

0
70

0

q21

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16 T32 T64

0
20

40
60

80
10

0

q22

(m
s)

MonetDB
HorsePower

Figure 8.3 – (sable-intel) Performance comparison between MonetDB and HorsePower
over all TPC-H queries with 1 GB input data (SF1)

128

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

Where we are clearly faster. HorsePower has distinct performance advantage
over MonetDB in queries 4, 5, 6, 8, and 22. The lines for HorsePower are
always clearly below the lines for MonetDB.

Queries 4, 6, and 22 benefit from the fusion of multiple statements involving
element-wise functions and fusion patterns. In particular, the main computation
of query 6 is fused into a single loop that greatly reduces the cost of intermediate
results.

Queries 5 and 8 benefit from our efficient array-lookup join, which is faster
than a general radix-based hash join when one column contains positive unique
integers.

Where we are faster for most thread numbers. HorsePower is overall faster
than MonetDB in queries 1, 2, 11, 12, 14, 16, and 18, but the difference depends
on the number of threads.

In queries 2, 11, 16, and 18, MonetDB has the best performance using a single
thread and performance gets worse with more threads. That is, it suffers from
poor parallelism. In contrast, HorsePower can exploit parallelism and improve
performance with increasing thread numbers. Thus, while it has worse perfor-
mance than MonetDB with one thread, it outperforms MonetDB with multiple
threads.

On the other hand, in queries 1, 12, and 14, HorsePower performs better than
MonetDB at small thread numbers, but both have similar performance as the
number of threads increases. That is both MonetDB and HorsePower can ex-
ploit parallelism. But on top of this, HorsePower can also perform well without
parallelism due to its compiler optimizations.

Where performance varies. In queries 7, 13, and 19, performance varies depend-
ing on the number of threads.

For query 7, HorsePower is better than MonetDB for small number of threads,
but worse for large number of threads. Query 7 has a join operation which dom-
inates the performance of the query. The implementation of the join operation

129

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

follows the array-lookup strategy as mentioned in Section 6.3.2. However, this
implementation cannot exploit parallelism well because the array construction
for lookup is expensive due to the large array size. However, it achieves good
performance already with a small number of threads. In contrast, MonetDB’s
join implementation can take advantage of parallelism but is unable to perform
well with a few threads. As far as we can see, the performance differences are
not due to optimization techniques, but are related to the particularities of the
join implementation.

Query 13 has a performance bottleneck in the like function, which is used
for string pattern matching. We adopted a simple algorithm tailored for SQL
like functions. We materialize the result of the like function, which exposes
great parallelism but still ends up slower than MonetDB with a small number
of threads.

For query 19, MonetDB can first take advantage of more threads, outperforming
HorsePower between 4 and 32 threads, because HorsePower contains more serial
code. However, MonetDB’s implementation has some performance issues with
a large number of threads that HorsePower does not exhibit.

Where we are much slower. HorsePower is slower than MonetDB in queries 3, 9,
10, 15, 17, and 21. Execution time of these queries are dominated by heavy joins
and groupby with little potential for compiler optimizations, and MonetDB’s
implementations for these database operators are generally more sophisticated
than the limited implementations we so far have developed for HorsePower. We
believe that by offering more specialized implementations, as most database
systems do, we can close this performance gap.

In query 3, the input size for the second groupby operation is about 3.2M and its
output size is about 830K. HorsePower so far does not fuse consecutive groupby.
Thus, it is expensive to write out the output tuples after the second groupby.

In query 9, there is a four-column equal join on two columns with sizes 43K
and 6M, and its result contains 320K rows. The performance of our strategy

130

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

for multiple-column joins depends on the selection of the first column, which is
sub-optimal for this particular query.

In query 10, the most expensive part is the groupby operation on seven columns
with types: <integer, symbol, floating, string, symbol, string, string>. We ini-
tially employed an sort-and-scan strategy that performs a linear scan after sort-
ing. We improve this by 1.6 times over by using hash-based groupby with the
general-purpose hash function MurmurHash3 [13]. It is still slower than Mon-
etDB, but we think HorsePower can be extended with further implementations
that can improve performance.

In query 15, the early materialization with the compress functions on three
columns takes about 45% of the whole query time in HorsePower. Putting
the materialization later would potentially improve performance. Thus, here is
something for which our compiler could potentially be extended.

In query 17, MonetDB has an extremely fast performance for one thread and
HorsePower approaches this value but with more threads. The query has two
joins with two input columns with row sizes 204 and 6M, but identical. That
means one join could be removed. However, our optimizer is unable to handle
this case currently. In our future work we hope to provide a smarter optimizer
for removing such kind of redundant code.

Query 21 is similar to query 19 but with a bigger fluctuation in the cases
of 4, 8, and 16 threads. When looking into query 21, we identify expensive
multiple-column joins with equal and non-equal operations. We first join the
equal column and then the non-equal column, and then introduces intermediate
results between the two operations, which is sub-optimal.

Preliminary Summary of Observations
Generally, for both HorsePower and MonetDB, the result of most queries follows

the pattern that the performance first improves with increasing number of threads
and later fluctuates with more threads. In HorsePower, the result of all queries has
this trend. However, MonetDB has a couple of outlier queries where the performance

131

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

of a single thread is the best or significantly faster than two threads. Thus, Mon-
etDB likely deploys a strategy that treats serial and parallel cases differently. Our
implementation may introduce overhead with a single thread as it considers paral-
lel constructs and algorithms, which aim at achieving better performance with more
threads. For instance, in query 11, MonetDB has the best performance with one
thread and no further improvement with more threads. However, HorsePower gains
better performance as the number of threads increases. More importantly, the best
configuration for HorsePower is faster than MonetDB in query 11. Furthermore, it
is more common in MonetDB than HorsePower where performance gets worse for a
large number of threads. This means it is different for MonetDB to configure the
system, i.e., choose the number of threads as the optimal number depends on the
query. In contrast, for HorsePower, choosing a relatively large number of threads for
all queries is a safe choice.

In general, we observe that about half of the 22 queries benefit from HorsePower’s
compiler-based optimizations. However, while HorsePower already has a relatively
efficient implementation for the most costly database operations, improvements are
still needed where these operators make up the largest part of the execution.

Geometric Mean

In order to have a clearer quantitative performance comparison between Horse-
Power and MonetDB, we use the geometric mean.

Figure 8.4a shows the results per TPC-H query. That is, for a given query,
if the execution times for each of the n threads for MonetDB and HorsePower are
(mt1 ,mt2 , . . . ,mtn) and (ht1 , ht2 , . . . , htn), respectively, then, we calculate the geo-
metric mean for this query as:

GeoMean(Query) =
n
√

mt1

ht1

· mt2

ht2

. . .
mtn

htn

(8.1)

Similarly, Figure 8.4b shows the results per thread. That is, for a given number of
threads, if the execution times for each of the n=22 queries for MonetDB and Horse-
Power are (mq1 ,mq2 , . . . ,mqn) and (hq1 , hq2 , . . . , hqn), respectively, then we calculate

132

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

1.38
1.08

0.34

2.74

1.9

3.52

0.7

1.97

0.56
0.29

1.59
1.26

0.99
1.32

0.48

1.1

0.35

2.02

0.87

0.28
0.6

5.1

0

1

2

3

4

5

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

G
eo

m
et

ri
c

M
ea

n
of

 S
pe

ed
up

(a) Geometric mean as a measure of speedup HorsePower vs. MonetDB for the 22 TPC-H
queries

0.88

1.25

1.02
0.91 0.89

1.08 1.12

0.0

0.5

1.0

1.5

T1 T2 T4 T8 T16 T32 T64

G
eo

m
et

ri
c

M
ea

n
of

 S
pe

ed
up

(b) Geometric mean as a measure of speedup HorsePower vs. MonetDB for each thread
level

Figure 8.4 – (sable-intel) Results of individual queries and threads in terms of geo-
metric mean.

133

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

the geometric mean for this thread level as:

GeoMean(Thread) =
n
√

mq1

hq1

· mq2

hq2

. . .
mqn

hqn

(8.2)

Values greater than 1 mean that MonetDB takes overall longer to execute queries
than HorsePower. Thus, we can use this geometric mean as a measure of the speedup
of HorsePower over MonetDB. As can be seen from Figure 8.4a, 10 queries are faster
in HorsePower than MonetDB, 4 queries are close, and 8 queries are slower. From
Figure 8.4b, we can see that HorsePower achieves better performance on T2/4/32/64,
while MonetDB has the best performance on T1.

8.2.2.2 Results on sable-tigger

The overall performance comparison between HorsePower and MonetDB on the TPC-
H benchmark on sable-tigger can be found in Figure 8.5 (detailed response time
per query and thread) and Figure 8.6 (geometric means). Compared with the results
on sable-intel in Section 8.2.2.1, sable-tigger has much better response times for both
HorsePower and MonetDB because its single core is more powerful than sable-intel. In
Figure 8.6a, we can see that HorsePower executes 15 queries faster than MonetDB, 1
query in almost the same time, and 6 queries slower. When we look into the detailed
results of Figure 8.5, we can see that the queries which are faster on both sable-
tigger and sable-intel have similar performance trends as described in Section 8.2.2.1.
However, there are a couple of queries which used to be significantly slower than
MonetDB on sable-intel, but are faster on sable-tigger (queries 7, 15, and 19) or as
fast on sable-tigger (query 9). As can be seen, the speedup change for query 9 is huge
from 0.56 to almost 1. In Figure 8.6b, we observe that MonetDB achieves the best
performance with a single thread, whereas HorsePower has better performance over
every other thread level.

Since sable-tigger supports additional instructions for vectorization (i.e., AVX and
AVX2) compared with sable-intel, we conduct additional experiments to compare
two versions of HorsePower with such instructions enabled (by default) and disabled
(-mno-avx and -mno-avx2). However, we cannot see any significant performance

134

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

T1 T2 T4 T8 T16

0
10

0
20

0
30

0
40

0
50

0
q1

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
5

10
15

q2

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80
10

0

q3

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

60

q4

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

60

q5

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40

q6

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80

q7

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

q8

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80

q9

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80

q10

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
2

4
6

8
10

12
14

q11

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

60

q12

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
50

10
0

15
0

q13

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
5

10
15

20
25

q14

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
5

10
15

20
25

q15

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

q16

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
5

10
15

20
25

30

q17

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80
10

0

q18

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

q19

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
20

40
60

80

q20

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
50

10
0

15
0

q21

(m
s)

MonetDB
HorsePower

T1 T2 T4 T8 T16

0
10

20
30

40
50

60

q22

(m
s)

MonetDB
HorsePower

Figure 8.5 – (sable-tigger) Performance comparison between MonetDB and Horse-
Power over all TPC-H queries with 1 GB input data (SF1)

135

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

2.04 2.15

0.44

3.13

2.28

3.05

1.7 1.85

1

0.4

4.55

1.58

0.64

1.55 1.38 1.2

0.63

1.79

1.23

0.42
0.75

4.81

0

1

2

3

4

5

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

G
eo

m
et

ri
c

M
ea

n
of

 S
pe

ed
up

(a) Geometric mean of speedup over queries for TPC-H queries in Figure 8.5

1.14

1.4 1.37 1.42

1.21

0.0

0.5

1.0

1.5

T1 T2 T4 T8 T16

G
eo

m
et

ri
c

M
ea

n
of

 S
pe

ed
up

(b) Geometric mean of speedup over threads for TPC-H queries in Figure 8.5

Figure 8.6 – (sable-tigger) Results of individual queries and threads in terms of geo-
metric mean.

136

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

change between the two versions. That implies that our implementation underutilizes
the hardware support for vectorization, given that options for SIMD instructions
have been enabled in the C compiler to generate binary code. A potential future
research could further improve the performance of the generated code by exploiting
vectorization as outlined, e.g., by Peloton [57].

8.2.2.3 Discussion

Based on the results on the two machines, we can see that HorsePower is now on
par with or better than MonetDB, a sophisticated database system that has been
developed over decades. The optimizations in HorsePower’s compiler are beneficial
for many queries. Its implementations of database operators are already quite efficient
but can still be improved. In addition, the performance of HorsePower can be affected
by different hardware configurations. A query that is faster in HorsePower on sable-
intel may be slower on sable-tigger, and vice versa.

Generally, MonetDB has better performance than HorsePower with a single
thread. In fact, for some queries, MonetDB has the best performance with a sin-
gle thread and more threads result in worse relative performance, such as in queries
3, 11, and 17. It is likely that MonetDB provides both serial and parallel versions of
implementation and MonetDB’s parallel version is slower for these queries, possibly
because of data synchronization across threads. Another possible reason is that its
implementation is quite efficient for serial code, but cannot be parallelized, and there-
fore, it requires a new parallelization strategy. Our HorsePower follows the design of
array programming with fusion-based optimizations that exploits possible data par-
allelism in or between array-based operations. Performance generally improves with
the number of threads and does not deteriorate with an increasing number of threads.

8.2.3 Effect of Optimizations

In order to study the effect of the different compiler optimizations implemented in
HorsePower, we tested queries with four different optimization options: (1) No opti-
mization (No-opt); (2) Automatic loop fusion only (FL-only); (3) Fusing with patterns

137

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

only (FP-only); and (4) All optimizations (All-opt). As can be seen in Section 8.2.2,
the best performance for HorsePower is achieved with 16 threads on sable-intel and
8 threads on sable-tigger. Thus, to evaluate the impact of these optimizations un-
der non-parallel and parallel environments, we tested with 1 and with 16 threads for
sable-intel, and with 1 and with 8 threads for sable-tigger.

Table 8.3 – (sable-intel) Performance speedups on SF1 over No-opt obtained by var-
ious HorseIR optimizations for different queries.

Query FL-only FP-only All-opt
1 th. 16 th. 1 th. 16 th. 1 th. 16 th.

q1 2.17 1.89 1.70 1.20 2.93 2.27
q2 1.10 1.00 4.10 131.5 7.85 182.0
q3 1.05 0.99 4.75 122.0 5.03 123.0
q4 1.08 1.19 2.15 6.38 2.58 6.70
q5 1.08 1.10 1.12 1.22 1.20 1.33
q6 8.44 8.45 1.04 1.19 8.00 7.17
q7 1.13 1.24 1.70 2.30 2.06 2.45
q8 1.09 1.06 1.26 1.46 1.38 1.41
q9 0.99 0.95 0.99 1.00 0.99 1.10
q10 1.05 0.99 1.60 8.02 1.61 8.35
q11 0.95 1.02 7.02 178.1 7.34 230.6
q12 2.13 1.22 0.98 1.04 2.15 1.22
q13 0.99 1.03 0.99 1.01 1.00 1.00
q14 1.32 1.14 1.37 1.65 2.07 1.59
q15 1.22 0.97 1.61 10.4 2.28 11.2
q16 1.05 0.99 1.53 13.5 1.66 13.8
q17 1.06 1.00 1.00 1.00 1.06 1.03
q18 0.97 1.07 9.02 517.3 9.02 530.6
q19 1.64 1.11 1.39 1.68 2.98 2.08
q20 0.96 1.00 3.76 121.0 4.17 129.3
q21 1.00 1.09 1.26 1.32 1.27 1.44
q22 1.02 1.14 1.01 1.07 1.01 1.14

GeoMean 1.26 1.20 1.79 5.62 2.41 6.74

Table 8.3 shows the speedup in execution time on sable-intel for the different
optimized configurations compared to running with no optimization enabled. A first

138

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

observation is that the impact of these optimizations varies quite a bit among the
different queries. For instance, for q2, FP has much more impact than FL, while
the opposite is true for queries 1, 6, and 12. Even though q6 has only one fusion
for element-wise and boolean selection functions, it is the longest fusion chain, which
fuses 13 statements. Some queries, however, barely benefit from any optimization,
such as queries 9, 17, and 22.

Using more than one thread to enable parallel execution is beneficial for most
queries. However, in q16, there are many small cells (18314 cells, average size 6.5)
and thus, our vector parallelization is underutilized. This is also the reason behind
other queries with huge single-threaded speedups in which more threads result in
much worse execution time. Computing the geometric mean over all the queries,
the speedup is 2.41 for 1 thread between no and all optimization enabled, which is
considerable, meaning the queries run in less than half the time with all optimizations
enabled. The speedup is 6.74 for 16 threads meaning the more threads are enabled,
the more can HorsePower benefit from the compiler optimizations.

Table 8.4 shows the speedup in execution time on sable-tigger with different op-
timizations enabled. Compared with sable-intel, the results show a similar overall
trend in that FP has more impact than FL. The performance speedup for FP is less in
sable-tigger because sable-tigger has a better non-optimized baseline. However, the
speedup for FL remains almost the same on the two machines. In terms of geometric
means for all queries over threads, the contribution of parallelism on sable-tigger has
less impact than on sable-intel because sable-tigger is a newer machine with a faster
CPU, and has less cores.

In summary, optimizations are critical to improving the performance of HorseIR.
Fusion-based optimizations across statements are beneficial in many cases. However,
there are two situations in which one has to be careful. Firstly, fusing all possible
statements might become sub-optimal. Although this has not been observed in our
work, a better strategy for loop fusion should consider multiple factors together, such
as data locality, parallelism, and register pressure [78]. In practice, heuristics could
determine a maximum number of statements to be fused. The second situation arises
when filtering conditions have a high selectivity, e.g., when only 10 out of a million

139

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

Table 8.4 – (sable-tigger) Performance speedups on SF1 over No-opt obtained by
various HorseIR optimizations for different queries.

Query FL-only FP-only All-opt
1 th. 16 th. 1 th. 16 th. 1 th. 16 th.

q1 1.64 1.74 1.64 2.20 2.62 2.85
q2 1.06 1.00 5.84 39.4 11.2 53.8
q3 0.97 1.05 8.17 34.3 8.47 38.6
q4 1.07 1.37 1.85 3.20 2.19 3.63
q5 1.03 1.05 1.05 1.07 1.41 1.21
q6 7.46 6.46 1.06 1.06 6.78 6.61
q7 1.20 0.81 2.33 1.41 2.86 1.77
q8 0.99 1.05 1.27 1.16 1.47 1.33
q9 1.05 0.95 1.04 0.97 0.90 1.07
q10 1.02 1.00 1.88 3.09 2.02 3.18
q11 1.01 1.01 10.5 66.2 11.4 74.3
q12 1.51 1.67 0.98 1.00 1.67 1.82
q13 1.00 1.05 1.00 1.04 1.03 1.09
q14 1.95 1.44 2.00 1.65 4.00 2.29
q15 1.36 1.10 1.89 3.76 3.03 5.02
q16 1.03 0.99 1.86 4.25 1.93 4.21
q17 1.09 1.07 1.01 0.99 1.08 1.07
q18 1.03 1.00 18.9 125.0 18.6 123.0
q19 1.61 1.56 1.39 1.52 2.87 2.91
q20 0.96 1.00 5.51 33.8 7.39 36.8
q21 0.99 1.26 1.46 1.56 1.52 1.64
q22 1.06 1.03 1.05 1.05 1.11 1.05

GeoMean 1.25 1.22 2.12 3.51 2.88 4.50

140

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

records qualify. In this case, the benefit of avoiding intermediate results is negligible,
while the overhead of code fusion might become a factor. With additional data
metrics, such unnecessary fusions could be avoided. Therefore, introducing runtime
optimizations is an interesting avenue for future research. Future work will also look
more closely at the fusion potential for join operations.

8.2.4 Scalability Study

In this section we look at the performance of HorsePower when data size in-
creases. We have selected a subset of queries from the TPC-H benchmark, namely
q1/4/6/12/14/16/19/22 for this experiments, omitting some of the queries where
HorsePower still lacks efficient database operator implementations. We run these
queries on sable-intel while increasing database scale factors from scale factor 1 to
16, while using T1/2/4/8/16/32/64 threads. Figure 8.7 shows that for both Horse-
Power and MonetDB, the geometric mean of the response times of all query/thread
combinations for a given scale factor. Both HorsePower and MonetDB show excel-
lent performance improvement in execution times when data size increases. In terms
of performance, HorsePower is overall better than MonetDB. This shows that our
approach can easily handle larger data sizes without any further tuning.

SF1 SF2 SF4 SF8 SF16

0
40

0
80

0
(G

eo
m

et
ric

 M
ea

n
T

im
e:

 m
s)

HorseIR
MonetDB

Figure 8.7 – Geometric mean execution time for HorseIR and MonetDB across five
different SFs on sable-intel.

141

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

8.2.5 Compilation Time

There are a couple of stages from compiling query plans to generating output. We
first compile query plans in a raw format to HorseIR code, then compile HorseIR code
to C code, next compile C code to binary code, and finally execute the binary code.
The first two compilation stages constitute a small portion of the whole pipeline since
they are merely code transformations as described in Chapter 5 and Chapter 6. On
the sable-intel machine, the compilation from the TPC-H query plans to HorseIR
takes up to around 9 ms and the compilation from HorseIR to C takes an average of
4.6 ms. On the other hand, the compilation from C to binary code takes an average
of 439 ms, that is about 97% of the whole compilation pipeline.

0

250

500

750

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

C
om

pi
la

ti
on

 T
im

e
(m

s) sable-intel sable-tigger

Figure 8.8 – Compilation time on both sable-intel and sable-tigger for TPC-H queries

Figure 8.8 presents this last step, i.e., the compilation time from the generated C
code to binary code, including the linkage to the pre-built libraries, on both sable-
intel and sable-tigger with the maximum compilation optimization -O3. Since the
compilation process only uses a single thread, sable-tigger is faster than sable-intel
because the processor is more powerful.

Compiling C code to binary consists of three parts: compilation setup, parsing,
and code optimizations. The first phase usually is fast. We present the times in
the other two phases in Table 8.5. As can be seen, almost all time is spent on the
two phases of parsing and optimizations. The time spent on parsing takes around

2This phase includes both code optimization and generation. The optimization takes most time.

142

8.2. EXPERIMENTS WITH A DATABASE QUERY BENCHMARK

Table 8.5 – Compilation time breakdown in seconds and percentage

Query sable-intel sable-tigger
Parsing Optimization2 Parsing Optimization

q1 0.13 (30%) 0.30 (68%) 0.09 (45%) 0.11 (55%)
q2 0.14 (22%) 0.48 (76%) 0.09 (35%) 0.17 (65%)
q3 0.13 (30%) 0.30 (68%) 0.08 (38%) 0.13 (62%)
q4 0.13 (54%) 0.11 (46%) 0.08 (67%) 0.04 (33%)
q5 0.14 (26%) 0.39 (74%) 0.08 (32%) 0.17 (68%)
q6 0.12 (63%) 0.06 (32%) 0.08 (80%) 0.02 (20%)
q7 0.14 (23%) 0.46 (75%) 0.08 (29%) 0.20 (71%)
q8 0.15 (23%) 0.50 (76%) 0.09 (30%) 0.21 (70%)
q9 0.14 (27%) 0.37 (71%) 0.11 (39%) 0.16 (57%)
q10 0.15 (23%) 0.48 (75%) 0.09 (36%) 0.16 (64%)
q11 0.14 (28%) 0.35 (70%) 0.11 (44%) 0.13 (52%)
q12 0.13 (32%) 0.26 (65%) 0.08 (42%) 0.11 (58%)
q13 0.13 (62%) 0.07 (33%) 0.08 (73%) 0.03 (27%)
q14 0.13 (36%) 0.23 (64%) 0.14 (61%) 0.08 (35%)
q15 0.14 (35%) 0.26 (65%) 0.10 (50%) 0.09 (45%)
q16 0.13 (31%) 0.28 (67%) 0.08 (38%) 0.12 (57%)
q17 0.12 (44%) 0.14 (52%) 0.08 (57%) 0.06 (43%)
q18 0.14 (30%) 0.31 (67%) 0.09 (37%) 0.14 (58%)
q19 0.14 (32%) 0.30 (68%) 0.09 (43%) 0.11 (52%)
q20 0.13 (27%) 0.34 (71%) 0.08 (40%) 0.12 (60%)
q21 0.14 (30%) 0.32 (68%) 0.08 (40%) 0.12 (60%)
q22 0.13 (37%) 0.21 (60%) 0.09 (53%) 0.08 (47%)

Average 0.14 (34%) 0.30 (64%) 0.09 (46%) 0.12 (53%)

143

8.3. EXPERIMENTS WITH AN ARRAY LANGUAGE BENCHMARK

one third to half of the total compilation time. If we compare the numbers with
the execution times in the Section 8.2.2.2 for a 1GB database, they are quite ex-
pensive. However, if queries are run many times, then this compilation time will be
amortized. Moreover, looking at the execution times on larger datasets, as depicted
in Section 8.2.5 we can see that compilation times play a much less role with large
database sizes. Furthermore, the phase of optimizations could be further tuned by
using customized optimizations with a reduced number of optimization passes while
achieving potentially similar performance. Finally, instead of using C as our target
code, we could consider lower-level code, such as LLVM [64], which would need less
time to be compiled to binary than C code.

8.3 Experiments with an Array Language Benchmark

In order to understand the performance implications of using HorsePower for exe-
cuting non-SQL based data analytics, we use the Black-Scholes algorithm from the
PARSEC benchmark suite v3.0 [14], and the Morgan algorithm [18]. In this experi-
ments, we analyze how well HorsePower performs in executing code originally written
in MATLAB. We run all experiments on the server sable-intel. The description of
these algorithms can be found below:

Black-Scholes: The Black-Scholes benchmark is used in finance to compute the price
variation of European options over time by using a partial differential equation
(PDE). This algorithm is fully vectorizable, and can be efficiently written using
array programming. The data can be represented as one table with 9 columns.
As the original implementation3 is in C, we reimplemented this algorithm as
MATLAB functions.

Morgan: The Morgan algorithm is also from a financial application. It contains a
main function morgan and another function msum. The entire algorithm can
be expressed in array operations without using any control structures. Instead

3 The complete PARSEC package is downloadable here http://parsec.cs.princeton.edu

144

http://parsec.cs.princeton.edu

8.3. EXPERIMENTS WITH AN ARRAY LANGUAGE BENCHMARK

of using matrices as input as is done in its original implementation, we adapt
it to using vectors which can represent two columns from one table. A third
parameter which contains a single integer controls the size of the input columns
for computation. We have set it to 1000. Since the original implementation is
in APL, we reimplemented this algorithm as MATLAB functions.

Recall that HorsePower first translates MATLAB code into TameIR using the
McLab framework, then translates the TameIR program into HorseIR, and then gen-
erates low-level C code that is finally compiled to binary execution. In our experi-
ments, we first execute the original MATLAB program using the MATLAB interpreter
with default settings. Secondly, we compile the HorseIR program, generated from the
MATLAB code, to C code without any of the optimizations that we mentioned in
Chapter 7, such as loop fusion. We refer to this C code version as HorsePower-Naive.
As such, it is likely to produce a similar number of intermediate results as the MAT-
LAB interpreter. Thirdly, we compile the HorseIR program into C code with all
optimizations enabled. We refer to this C code version as HorsePower-Opt.

8.3.1 Experiment Results

Black-Scholes Results
Table 8.6 shows the execution times for MATLAB and the two HorsePower ver-

sions with different sizes of the Black-Scholes table (from 1 to 8 million rows). We
also indicate the speedup of HorsePower over MATLAB in execution time for both
HorsePower versions. Note that the MATLAB interpreter does not allow control of
the number of threads and instead aims at using all physical threads (i.e., 40 threads
on sable-intel). For a fair comparison, the shown HorsePower results are also with 40
threads.

We observe that the execution times for MATLAB and HorsePower-Naive are
similar, with slightly better performance for MATLAB. Since there is no explicit loop
in this benchmark, the effect of just-in-time compilation in MATLAB is negligible. We
believe that MATLAB benefits from having more efficient library functions that work

145

8.3. EXPERIMENTS WITH AN ARRAY LANGUAGE BENCHMARK

Table 8.6 – Speedup of HorsePower over MATLAB in execution time using Black-
Scholes (in milliseconds)

Size MATLAB HorsePower
Naive Speedup Opt Speedup

1M 60.7 65.9 0.92x 6.5 9.34x
2M 145.0 136.5 1.06x 14.3 10.2x
4M 491.3 463.4 1.06x 48.5 10.1x
8M 1008.5 1384.1 0.73x 117.3 8.60x

well even in an interpreter mode. In contrast, MATLAB is significantly slower than
HorsePower-Opt. The reason is that HorsePower-Opt optimizations, in particular
loop fusion, are able to avoid many intermediate results, speeding up the computation
by an order of magnitude. For both comparisons, the size of the data set plays a minor
role.

Morgan Results
Table 8.7 shows the execution times for MATLAB and the two HorsePower ver-

sions with different sizes of the Morgan table (from 1 to 8 million rows). We also
indicate the speedup of HorsePower over MATLAB in execution time for both Horse-
Power versions. For HorsePower the results shown are again with 40 threads.

Table 8.7 – Speedup of HorsePower over MATLAB in execution time using Morgan
(in milliseconds)

Size MATLAB HorsePower
Naive Speedup Opt Speedup

1M 80.7 104.7 0.83x 28.9 3.01x
2M 245.0 186.6 1.31x 58.0 4.23x
4M 479.8 378.1 1.27x 128.5 3.73x
8M 1488.3 905.3 1.64x 323.0 4.61x

For this benchmark, the naive version of HorsePower has already performance ben-
efits compared to the MATLAB interpreter. HorsePower-Naive is slower than MAT-
LAB code only with the smallest input size, but has already considerable speedup

146

8.4. EXPERIMENTS WITH A UDF BENCHMARK

with 2M rows which then further increases with large sizes. This implies that the
code generated by HorsePower can achieve better parallelism for the built-in func-
tions used in Morgan than MATLAB. Recall that the compiler optimizations that
would fuse statements are not activated in HorsePower-Naive. Using HorsePower-
Opt, the speedup ranges from 3 to 4.6. Having a close look at the code, we observe
that loop-based fusion for fusing built-in functions plays a key role in the performance
speedup. However, the overall speedup for HorsePower-Opt in Morgan is not as high
as Black-Scholes.

Discussion

In summary, we can see that HorsePower is a promising approach to execute data
analytics tasks in an efficient manner. This is due to its data-centric IR that makes
it possible to exploit data-centric compiler optimization techniques. Even though
the language syntax gap between MATLAB and HorseIR is non-negligible, HorseIR
supports a relatively large set of core built-in functions which can be used in data
analytics.

8.4 Experiments with a UDF Benchmark

In this experiments we compare the performance of HorsePower and MonetDB in
executing SQL statements with embedded UDFs. We look at two benchmarks for
that purpose. In Section 8.4.1, we look at a modified TPC-H benchmark, proposed
by Froid [73], that rewrites the TPC-H queries to contain UDFs. In Section 8.4.2,
we present a set of SQL queries that we created and that integrate the Black-Scholes
algorithm in form of UDFs. In HorsePower, the UDF is written in MATLAB, for
MonetDB in Python using the NumPy library (as MonetDB does not support MAT-
LAB UDFs), with an effort to have similar code within the UDF so that the execution
for the individual UDFs are similar.

147

8.4. EXPERIMENTS WITH A UDF BENCHMARK

8.4.1 TPC-H with UDFs

Froid [73] proposed a whole range of queries derived from the TPC-H benchmark
in which part of the SELECT or WHERE clauses are outsourced into a UDF. In
all cases, these are scalar UDFs. Some of these UDFs have embedded SQL state-
ments. However, the McLab framework that we use to translate MATLAB programs
currently only supports pure MATLAB programs. Thus, we excluded those unsup-
ported queries and present results only for queries q1, q6, q12, q14, and q19. We
set the scale factor of the TPC-H benchmark to 8 (i.e., SF8) meaning the size of the
database is around 8GB. Thus, we have relatively large inputs for the computation
within the UDFs.

Table 8.8 – Execution times and speedup (SP) of HorsePower over MonetDB using
the modified TPC-H benchmark with UDFs.

Thread MonetDB (ms) HorsePower (ms)
q1 q6 q12 q14 q19 q1 SP q6 SP q12 SP q14 SP q19 SP

T1 16853 48832 137195 1040 69045 3799 4.44x 392 125x 900 152x 904 1.15x 858 80.5x
T2 11439 48930 140118 989 76153 2548 4.49x 220 223x 493 284x 558 1.77x 512 149x
T4 7304 48247 144962 846 75012 2897 2.52x 130 372x 340 426x 446 1.90x 346 217x
T8 5724 47775 143714 773 72124 3316 1.73x 56 853x 300 479x 396 1.95x 364 198x
T16 3549 46996 142819 764 69997 2620 1.35x 42 1124x 238 600x 318 2.40x 245 286x
T32 2502 44636 140438 750 64267 1883 1.33x 45 1000x 170 826x 216 3.48x 209 307x
T64 2227 N/A 138526 743 65603 2256 0.99x 26 N/A 141 984x 197 3.77x 199 329x

Table 8.8 shows the execution times of these queries with a different number of
threads using HorsePower and MonetDB, and presents the speedup of HorsePower
over MonetDB in execution time. For HorsePower the results show the execution
times after all optimizations have been performed.

When first looking only at MonetDB we can see that execution times are relatively
low for some queries and improve with an increasing number of threads considerably
(q1 and q14), but are high for others with little benefit of parallelization (q6, q12,
q19). The reason is that in these queries, the UDF is in the WHERE clause and
MonetDB has to perform costly data conversion when sending the entire database
columns as arrays to the Python interpreter in order to execute the UDF. MonetDB
is able to use zero-copy transfer for data types where the database system uses the

148

8.4. EXPERIMENTS WITH A UDF BENCHMARK

same main-memory representation as Python. But for strings, it needs to convert
the data to a different format as the database internal and the Python formats are
incompatible. This data conversion seems to not be parallelized to multiple threads,
making it the predominant factor of the execution. In q1 and q14, the UDFs are
in the SELECT clause (where data sizes are smaller as they got reduced due to the
selection that was already executed), and do not require any string conversions.

HorsePower has overall much better performance for all queries, being under 1
second for all queries except q1, and can improve execution times by increasing the
number of threads. As no data conversion is necessary, it is orders of magnitude faster
than MonetDB for queries q6, q12, and q19. We can observe here the advantage of
having a unified execution environment that has translated both the UDF part and
the SQL part to a single HorseIR program with its own data structures. But we
also observe significant improvements for q1 and q14. These are due to the unified
optimization across the HorseIR code generated from SQL and UDF.

8.4.2 UDF Derived from Black-Scholes

With the purpose of studying the performance of queries with embedded MATLAB
UDFs, we set up the benchmarks as follows:

HorsePower version. We translated the MATLAB implementation of Black-
Scholes to HorseIR, and then integrated it with the HorseIR code for the SQL
component of the query, thus having both the SQL and the analytics function
in the same IR.

MonetDB version. We implemented Black-Scholes as a Python UDF, and wrote
SQL queries to invoke these UDFs.

Table 8.9 – Black-Scholes execution time Python vs. HorseIR

Python HorsePower
(T1) Naive(T1) Speedup Opt(T1) Speedup
514.78 577.4 0.89x 247.9 2.08x

149

8.4. EXPERIMENTS WITH A UDF BENCHMARK

The Python UDF is implemented with the NumPy library using the same array
programming style as the MATLAB UDF. In our Black-Scholes benchmark, each ar-
ray operation in MATLAB has an equivalent array operation in NumPy. Table 8.9
shows the execution time of the Black-Scholes benchmark for the dataset in this sec-
tion both using a Python program and using HorseIR (both naive and optimized).
Execution is in one thread because NumPy does not support multi-threading for op-
erations in the benchmark. Similar to what we have seen with our analysis with
MATLAB, a naive usage of HorseIR provides similar execution time to Python; per-
forming optimizations achieves a speedup of approximately 2.

In order to test the two different types of programming approaches that databases
support, we created two variants of the SQL function, implemented as UDFs. In one
variant, we created a scalar UDF that returns just the computed optionPrice to the
calling SQL.

1 CREATE SCALAR UDF bScholesUDF(spotPrice, ..., optionType)

2 {

3 import blackScholesAlgorithm as bsa

4 return bsa.calcOptionPrice(spotPrice, ..., optionType)

5 };

Next, we implemented the solution as a Table UDF, which returns in table form
the computed optionPrice along with the associated spotPrice and optionType

which are columns from the original input table.

1 CREATE TABLE UDF bScholesTblUDF(spotPrice, ..., optionType)

2 {

3 import blackScholesAlgorithm as bsa

4 optionPrice = bsa.calcOptionPrice(spotPrice, ..., optionType)

5 return [spotPrice, optionType, optionPrice]

6 };

In order to have a broad set of tests and comparisons, we first integrated these
two UDF versions into a straightforward base query. From there we created three
significant variations of this base query that had different columns in the SELECT and
WHERE clauses. Further, for each of the variations, we modified the values associated

150

8.4. EXPERIMENTS WITH A UDF BENCHMARK

with the conditional predicates in the selection (WHERE clause), so that the selectivity
varies between high, low, and medium. In a highly selective condition, only a few of
the input records fulfill the condition and thus are in the output result. A query with
low selectivity returns most of the input records. Thus, our entire test case consists
of 10 queries.

Table 8.10 – Execution time and speedup (SP) of HorsePower (HP) compared to
MonetDB (MDB) for variations in Black-Scholes.

UDF Selectivity
Table UDF (ms) Scalar UDF (ms)

T1 T64 T1 T64
MDB HP SP MDB HP SP MDB HP SP MDB HP SP

bs0_base 100.0% 927.5 249.8 3.71x 774.0 7.09 109x 670.0 249.5 2.69x 696.5 7.06 98.6x
bs1_high 0.2% 926.4 256.2 3.62x 818.0 7.62 107x 6.10 0.32 19.1x 6.55 0.13 50.4x
bs1_med 50.9% 914.7 262.4 3.49x 794.2 12.2 65.0x 308.6 86.6 3.57x 272.2 2.51 108x
bs1_low 99.8% 929.7 266.4 3.49x 832.9 14.6 57.0x 725.4 169.6 4.28x 645.4 4.90 132x
bs2_high 0.2% 895.6 4.67 192x 791.5 0.70 1131x 4.29 4.59 0.93x 3.52 0.63 5.59x
bs2_med 50.9% 912.5 8.24 111x 811.6 4.22 192x 13.4 8.20 1.63x 4.16 4.29 0.97x
bs2_low 99.8% 916.4 11.0 83.7x 820.4 6.64 124x 15.9 10.95 1.45x 5.11 5.95 0.86x
bs3_high 10.0% 911.8 259.0 3.52x 824.4 10.1 81.6x 673.8 179.3 3.76x 623.2 7.69 81.0x
bs3_med 49.5% 906.5 263.7 3.44x 831.6 13.3 62.7x 678.9 184.1 3.69x 631.6 11.3 56.1x
bs3_low 90.0% 879.1 262.5 3.35x 793.6 13.7 57.8x 685.4 182.6 3.75x 641.7 12.8 50.1x

Table 8.10 shows the selectivity for variations derived from Black-Scholes, covering
low, medium, and high selectivity, and the execution time and speedup of HorsePower
compared to MonetDB for both table and scalar UDFs. The result for 1 thread (T1)
and 64 threads (T64) are presented.

Base query. Figure 8.9 depicts the base query bs0_base, which selects all the data
from the database table and passes it to the UDF and returns all the data produced
by the UDF.

We can first observe that for MonetDB multi-threading has little impact on its
performance. In contrast, HorsePower benefits a lot. Thus, when looking at one
thread, HorsePower has around 3x to 4x speedup compared to MonetDB, while it
has a speedup of around 100x with 64 threads. The main reason is that a large part
of the execution is in the Black-Scholes algorithm due to the large data input in this
query, and Python is not multi-threaded, i.e., this part of the execution in MonetDB
always runs within one thread. In contrast, HorsePower can create optimized parallel

151

8.4. EXPERIMENTS WITH A UDF BENCHMARK

1 −− Base query , bs0_base , Sca lar UDF
2 SELECT spotPrice, optionType,
3 bScholesUDF(spotPrice,...,optionType)
4 AS optionPrice
5 FROM blackScholesData;
6
7 −− Base query , bs0_base , Table UDF
8 SELECT spotPrice, optionType, optionPrice
9 FROM bScholesTblUDF

10 ((SELECT * FROM blackScholesData));

Figure 8.9 – Base queries with scalar and table UDFs

code.
However, the speedup with one thread is already significant. In fact, with one

thread, the execution time with 249.8 ms is basically equivalent to executing the
Black-Scholes algorithm alone, without the SQL part, which is 247.9ms as shown
in Table 8.9. For MonetDB, executing the algorithm within an SQL statement in
the form of a Python UDF is with 927.5 ms nearly double as long as executing the
Python function in standalone mode with 577.4 ms. As the SQL part of this query
is straightforward, the reason for this performance penalty in MonetDB must be the
communication between its SQL engine and the Python UDF interpreter.

Variation 1. The first variation bs1_* applies a predicate condition on spotPrice,
a column which is actually part of the input database table. Figure 8.10 shows
the example queries of variation 1 with scalar and table UDFs, as well the high
selectivity. The objective of this test case is to analyze if the systems can intelligently
avoid performing the UDF computation on records that will not be in the result set,
by discarding records from the input that do not fulfill the predicate condition and
only execute the UDF on the records that qualify. In contrast, a system following
an inefficient approach will first compute the UDF over all the input records before
applying the predicate.

Looking at the performance numbers, we can see that for one thread, HorsePower’s
speedup over MonetDB is at least 3.5x for both scalar and table UDFs, and for 64
threads at least 50x.

152

8.4. EXPERIMENTS WITH A UDF BENCHMARK

1 −− Query , bs1_high , Sca lar UDF
2 SELECT spotPrice, optionType,
3 bScholesUDF(spotPrice,...,optionType)
4 AS optionPrice
5 FROM blackScholesData
6 WHERE spotPrice < 50 OR spotPrice > 100;
7
8 −− Query , bs1_high , Table UDF
9 SELECT spotPrice, optionType, optionPrice

10 FROM bScholesTblUDF
11 ((SELECT * FROM blackScholesData))
12 WHERE spotPrice < 50 OR spotPrice > 100;

Figure 8.10 – Example queries of variation 1 with scalar and table UDFs

For the SQL using scalar UDF, MonetDB can infer that the conditions are placed
on the input column and then discards the records that do not qualify before process-
ing the UDF. This approach follows the traditional database optimization technique
of applying high selectivity operations first. As HorsePower relies on MonetDB for
database execution plans, it is similarly impacted by the plans generated by Mon-
etDB for table UDF based queries. This results in HorsePower’s own table UDF based
queries costing more than its scalar versions. However, unlike MonetDB, HorsePower
benefits from being able to avoid data copies and conversions as well as from gen-
erating parallelized code for UDFs, thus expanding this performance gap when the
number of threads increases.

Variation 2. In the next variation, bs2_*, the SQL does not include the computed
column optionPrice in the final result. Figure 8.11 shows the example queries of
variation 2 with scalar and table UDFs, with the high selectivity. A smart system
should be able to analyze the semantics of the request and avoid processing the UDF
all together. As can be seen in the performance numbers, HorsePower achieves only
a speedup of at most 2x with one thread and at most 5.5x with 64 threads for the
scalar UDFs, but has a scale-up of at least 83x with table UDFs, going up to over
1000x for one UDF with 64 threads.

We can see that MonetDB is able to do the optimization when the SQL query is
using the scalar UDF, avoiding the computation of the optionPrice column that is

153

8.4. EXPERIMENTS WITH A UDF BENCHMARK

1 −− Query , bs2_high , Sca lar UDF
2 SELECT spotPrice, optionType
3 FROM (
4 SELECT spotPrice, optionType, bScholesUDF(spotPrice, ..., optionType)

as optionPrice
5 FROM blackScholesData
6) AS tableBS
7 WHERE spotPrice < 50 OR spotPrice > 100;
8
9 −− Query , bs2_high , Table UDF

10 SELECT spotPrice, optionType
11 FROM bScholesTblUDF
12 ((SELECT * FROM blackScholesData))
13 WHERE spotPrice < 50 OR spotPrice > 100;

Figure 8.11 – Example queries of variation 2 with scalar and table UDFs

not included in the final result. Similarly, HorsePower, being an integrated system,
can avoid the computation of optionPrice by using a backward slice. However, with
a table UDF, MonetDB is unable to avoid this computation as there is no way for
it to pass this optimization information to the UDF interpreter. On the other hand,
HorsePower uses method inlining and backward slicing to remove this computation,
offering a huge advantage.

Variation 3. The last variation, bs3_* applies a predicate condition on option-

Price. Figure 8.12 shows the example queries of variation 3 with scalar and table
UDFs, with the high selectivity. As this is a column computed by the UDFs, both the
systems have to process the UDFs across all input records before discarding records
that do not qualify, providing limited opportunities for optimization.

Looking at the performance numbers, we can see that HorsePower has speedups of
around 3.5x for both scalar and table UDFs with one thread and between around 50x
and 80x for 64 threads. In this scenario, both execute the full UDFs before applying
the condition. HorsePower has better performance than MonetDB simply because
HorsePower can save the data movement between the UDF and the query while it is
mandatory for MonetDB to have data conversion between the database and the UDF
engine (Python). With more threads, the performance becomes worse since the data
movement is sequential and takes most of the time in the whole execution pipeline.

154

8.5. EXPERIMENTS WITH A GPU BENCHMARK

1 −− Query , bs3_high , Sca lar UDF
2 SELECT spotPrice, optionType
3 FROM (
4 SELECT spotPrice, optionType, bScholesUDF(spotPrice, ..., optionType)

as optionPrice
5 FROM blackScholesData
6) AS tableBS
7 WHERE optionPrice > 15;
8
9 −− Query , bs3_high , Table UDF

10 SELECT spotPrice, optionType
11 FROM bScholesTblUDF
12 ((SELECT * FROM blackScholesData))
13 WHERE optionPrice > 15;

Figure 8.12 – Example queries of variation 3 with scalar and table UDFs

In summary, we observe that while modern RDBMS implementations provide a
convenient way to integrate UDF usage into database queries, their resulting exe-
cution plans are often sub-optimal due to their black-box integration with the UDF
language’s execution environment. On the other hand, our advanced analytical sys-
tem HorsePower optimizes both SQL and statistical language implementations using
a common IR based environment. This capability also allows HorsePower to opti-
mize complex analytical tasks that include both SQL and UDF in a holistic manner,
providing better performance than popular RDBMS approaches.

8.5 Experiments with a GPU Benchmark

In this section, we describe a set of experiments that evaluate the performance of
the hybrid CPU and GPU code generated by HorseGPU. Since a GPU is a power-
ful accelerator for data analytics, we mainly focus on database queries with UDFs,
especially with UDFs that represent analytics tasks (Section 8.4.2) as they contain
more complex computations than the ones derived from pure database queries (Sec-
tion 8.4.1). The UDFs of these queries contribute a large part to the execution time
of the queries. Thus, it is worth exploring performance acceleration with the help
of executing the UDFs on GPUs. In particular, we look at the MATLAB programs

155

8.5. EXPERIMENTS WITH A GPU BENCHMARK

Black-Scholes and Morgan, described in Section 8.4.2.

We ran all experiments on the machine sable-tigger. The size of input for the two
benchmarks is 8 million, and we use an increasing number of threads (from 1 to 16).
We observe an expensive one-time cost in initializing GPU devices that is excluded
from our performance results. This one-time cost takes an average of 283 ms and 286
ms for Black-Scholes and Morgan, respectively.

Table 8.11 – Overview of the portions for VersionCPU and VersionGPU

Version Name Description

VersionGPU
GPU:Host Computation on the CPU side
GPU:Kernel Computation on the GPU side
GPU:Data Data transfer time between the CPU and the GPU

VersionCPU CPU:Selected Selected computation for the GPU but on the CPU
CPU:Base Computation remained on the CPU side

It should be noted that we have the following distinct versions: (1) VersionCPU
is a CPU-based version with C code annotated by OpenMP; and (2) VersionGPU is
a hybrid version with C code annotated by OpenMP (for CPU) and OpenACC (for
GPU). In order to compare the two versions, we further break down the execution
time into smaller portions, as shown in Table 8.11. VersionGPU has three portions,
namely the execution on the CPU (GPU:Host), the data transmission (GPU:data),
and the execution on the GPU (GPU:Kernel). VersionCPU has two portions, namely
the computation of the parts that are executed on the GPU for VersionGPU referred
to as CPU:Selected, and the part that always stays on the CPU for both versions,
referred to as CPU:Base.

We measure the execution time for all portions in VersionCPU and Version GPU.
It should be noted that CPU:Base and GPU:Host are the same if the same number
of threads is given and the same optimization strategy is applied. In addition, we
consider both unoptimized (i.e., naive) and optimized code to see how our compiler
optimizations can affect the decision to use GPUs.

156

8.5. EXPERIMENTS WITH A GPU BENCHMARK

Table 8.12 – Black-Scholes: Performance comparison between VersionCPU and Ver-
sionGPU for both the naive and optimized versions over multiple threads (1 to 16).

Size Naive Optimized
8M VersionCPU VersionGPU Speedup VersionCPU VersionGPU Speedup
T1 1118 879.7 1.27x 332.6 175.1 1.90x
T2 819.1 733.1 1.12x 189.5 165.6 1.14x
T4 736.8 714.7 1.03x 89.9 174.2 0.52x
T8 722.7 726.4 0.99x 82.9 172.9 0.48x
T16 726.6 742.4 0.98x 69.9 183.6 0.38x

8.5.1 Black-Scholes Results

Table 8.12 presents the full execution time of Black-Scholes for both VersionCPU and
VersionGPU on different configurations. Overall, VersionGPU has an advantage in
the naive and optimized versions, but it becomes smaller with an increasing number
of threads, and VersionGPU is worse than VersionCPU with many threads and op-
timizations enabled. By looking into the breakdown of the execution in Figure 8.13,
we find that the naive and optimized versions have distinct results.

We can see in Figure 8.13a, for the naive version, around 28% of the computation
of the VersionCPU is selected to be executed on GPUs once available, when there
is one thread (T1). When using VersionGPU, the execution of this part is much
faster, but data transmission takes time. In VersionGPU (T1), the GPU kernel exe-
cution time (GPU:Kernel) is about 3.6 ms while executing the same code on the CPU
(CPU:Selected) is about 310.3 ms. As the number of threads increases, VersionCPU
runs faster with the benefit of data parallelism, even though its performance on the
selected portion is still slower than executing it on the GPU. This is due to the over-
head in the data transmission that hinders the overall performance of VersionGPU.
With 8 or more threads, the execution on the CPU is faster than outsourcing the
compute-intensive parts to the GPU.

In Figure 8.13b, the selected portion (CPU:Selected), which is the one that is
considered to be selected to be executed on the GPU, dominates the computation for
VersionCPU (T1). We find that the computation in Black-Scholes can benefit from

157

8.5. EXPERIMENTS WITH A GPU BENCHMARK

0

250

500

750

1000

1250

Vers
ionCPU (T

1)

Vers
ionGPU (T

1)

Vers
ionCPU (T

2)

Vers
ionGPU (T

2)

Vers
ionCPU (T

4)

Vers
ionGPU (T

4)

Vers
ionCPU (T

8)

Vers
ionGPU (T

8)

Vers
ionCPU (T

16)

Vers
ionGPU (T

16)

E
xe

cu
ti

on
 T

im
e

(m
s)

GPU:Exec

GPU:Data

GPU:Host

CPU:Selected

CPU:Base

(a) Black-Scholes: the naive version.

0

250

500

750

1000

1250

Vers
ionCPU (T

1)

Vers
ionGPU (T

1)

Vers
ionCPU (T

2)

Vers
ionGPU (T

2)

Vers
ionCPU (T

4)

Vers
ionGPU (T

4)

Vers
ionCPU (T

8)

Vers
ionGPU (T

8)

Vers
ionCPU (T

16)

Vers
ionGPU (T

16)

E
xe

cu
ti

on
 T

im
e

(m
s)

GPU:Exec

GPU:Data

GPU:Host

CPU:Selected

CPU:Base

(b) Black-Scholes: the optimized version.

Figure 8.13 – Performance breakdown in Black-Scholes for both the naive and opti-
mized versions.

158

8.5. EXPERIMENTS WITH A GPU BENCHMARK

our fusion-based optimizations that fuse many statements and generate fewer for-
loops, thus avoiding intermediate results. This fused code is the one selected for the
GPU. However, it leads to more data transmission between the CPU and the GPU.
Therefore, once multi-threading is enabled, the CPU can be better: VersionCPU is
faster and outperforms VersionGPU once there are 4 or more threads.

8.5.2 Morgan Results

Table 8.13 – Morgan: Performance comparison between VersionCPU and VersionGPU
for both the naive and optimized versions over multiple threads (1 to 16).

Size Naive Optimized
8M VersionCPU VersionGPU Speedup VersionCPU VersionGPU Speedup
T1 1255 644.3 1.95x 353.9 368.3 0.96x
T2 828.6 555.7 1.49x 246.0 310.7 0.79x
T4 630.9 537.4 1.17x 209.1 291.9 0.72x
T8 617.8 567.3 1.09x 211.6 294.7 0.72x
T16 575.1 556.9 1.03x 210.0 296.8 0.71x

Table 8.13 presents the complete execution time of Morgan for both VersionCPU
and VersionGPU under different configurations. Overall, VersionGPU performs bet-
ter than VersionCPU for the naive version but it declines as the number of threads
increases, and VersionGPU is always slower than VersionCPU in the optimized ver-
sion. By looking into the breakdown of the execution in Figure 8.14, we observe that
the naive and optimized versions have again quite different results.

Figure 8.14a shows the breakdown of the execution time for the naive version
of Morgan. As can be seen in VersionCPU (T1), around 56% of the computation
is selected (CPU:Base) and sent to the GPU for execution. The cost of data trans-
mission is relatively small and the performance of GPU execution is significantly
faster than CPU. By increasing the number of threads, the performance gap between
CPU:Selected and GPU:Data + GPU:Kernel shrinks.

Figure 8.14b presents the breakdown of the execution time for the optimized

159

8.5. EXPERIMENTS WITH A GPU BENCHMARK

0

500

1000

Vers
ionCPU (T

1)

Vers
ionGPU (T

1)

Vers
ionCPU (T

2)

Vers
ionGPU (T

2)

Vers
ionCPU (T

4)

Vers
ionGPU (T

4)

Vers
ionCPU (T

8)

Vers
ionGPU (T

8)

Vers
ionCPU (T

16)

Vers
ionGPU (T

16)

E
xe

cu
ti

on
 T

im
e

(m
s)

GPU:Exec

GPU:Data

GPU:Host

CPU:Selected

CPU:Base

(a) Morgan: the naive version.

0

500

1000

Vers
ionCPU (T

1)

Vers
ionGPU (T

1)

Vers
ionCPU (T

2)

Vers
ionGPU (T

2)

Vers
ionCPU (T

4)

Vers
ionGPU (T

4)

Vers
ionCPU (T

8)

Vers
ionGPU (T

8)

Vers
ionCPU (T

16)

Vers
ionGPU (T

16)

E
xe

cu
ti

on
 T

im
e

(m
s)

GPU:Exec

GPU:Data

GPU:Host

CPU:Selected

CPU:Base

(b) Morgan: the optimized version.

Figure 8.14 – Performance breakdown in Morgan for both the naive and optimized
versions.

160

8.5. EXPERIMENTS WITH A GPU BENCHMARK

version of Morgan. VersionCPU is faster than VersionGPU because of compiler op-
timizations, especially fusion-based optimizations. There are about six large vectors
with almost 8 million floating numbers copied from or to the GPU. This overhead
in data transmission takes the overall performance down, while VersionCPU is free
from any data movement. Also, the execution of this highly fused code is only slightly
faster on the GPU than the CPU with few threads and even worse with many threads.
Thus, parallelism on the CPU works so well that it outperforms GPU execution.

8.5.3 Discussion

Based on the results of the two benchmarks, Black-Scholes and Morgan, we can see
the advantage of having GPUs as accelerators as a means to improve the performance
of data analytics functions. With the support of GPU, array programs can achieve
significantly less kernel execution time. However, due to the constraint of the current
GPU architecture, data transmission may need a large amount of time, slowing down
the overall performance. In our experiments, we identify fusion-based optimizations
work better on the CPU than on the GPU because they introduce more complex
expressions that result in more data movement, and the benefit of eliminating inter-
mediate results is less than the penalty of the data movement. Nevertheless, we are
still optimistic about the integration of GPU for analytical functions, but the research
direction should lie in exploring optimizations to identify expensive computations, es-
timate the cost of these computations on both CPU and GPU including the transfer
cost, and decide which portions should be sent to the GPU.

161

8.5. EXPERIMENTS WITH A GPU BENCHMARK

162

Chapter 9
Related Work

Research in array programming languages and database systems has compre-
hensively studied how to improve the performance of both language processors and
database query engines. In both contexts, domain knowledge has been employed in
their optimizers to have a better understanding of how to optimize different codebases.
The work on array programming languages has been mainly focused on array-based
computation, as commonly found in compute-intensive applications, and this moti-
vates research interests in designing, implementing, and optimizing high-performance
built-in functions. Array programming is widely adopted in the fields of engineering,
finance, and numeric computation. Optimization in database systems has focused
on SQL queries which provide a high-level programming scheme and a rigid struc-
ture. The database community has started to embrace in-memory database systems
to further improve system performance. Research in query compilers prevails be-
cause compiling database queries to efficient low-level code has become practical for
in-memory database systems.

9.1 Database Query Processing
A database query can be processed in a traditional query engine with an interpreter-
based environment, or a modern query compiler with a compiler-based environment.
Both have been the subject of interesting prior work.

163

9.1. DATABASE QUERY PROCESSING

9.1.1 Traditional Query Engines

Traditional database systems have interpreter-based query engines following the de-
sign of the iterator model [37]. Executing an execution tree from leaves to the root,
a node retrieves records from its children nodes as needed. This avoids generating
large intermediate results and helps reduce memory footprint because of the small
number of tuples processed at a time. This model works well when the I/O cost is
expensive and dominates the overall performance of the query because I/O processing
can overlap with processing records that are already fetched. Typical examples are
the popular database systems PostgreSQL [80] and MySQL [63].

However, these traditional execution engines do not offer optimal plans anymore
when most of the data can reside in memory. Thus, a new generation of database
systems has been developed with the capability of storing the data entirely in memory
with the purpose of removing the expensive overhead in I/O to improve query perfor-
mance [35, 38, 70]. Well-known examples are the database systems SAP HANA [32]
and VoltDB [87].

9.1.2 Modern Query Compilers

Compiling an SQL query has become more common, and typically means compiling
SQL queries to an intermediate representation before generating machine code, rather
than compiling to machine code directly. A query compiler usually prefers a data-
centric model that employs operator fusion when generating efficient target code.

HyPer [64] a column-based RDBMS, aims at improving the query performance by
compiling SQL to LLVM, exploiting LLVM’s compiler optimization mechanisms. It
first compiles an SQL query to an optimized execution plan which contains algebraic
expressions. When compiling expressions of the tree to an imperative program, HyPer
follows a data-centric model to generate query execution code. It focuses on the data
rather than the operator and defines a pipeline breaker to occur when the data is
moved out of CPU registers. The data usually is pushed from one pipeline breaker
to another pipeline breaker. Furthermore, it introduces the produce/consume schema
for code generation: the produce function pushes the result of the operator towards

164

9.1. DATABASE QUERY PROCESSING

the consume function. Thus, this scheme allows the generated code to have fewer
intermediate results. This is akin to our fusion-based optimizations that fuses built-in
functions. Additionally, HyPer’s optimizer also offers a wide range of database-centric
optimizations between relational algebra operators, such as merging adjacent joins.
Similar to HyPer, MemSQL [22], a commercial database system, provides a fast SQL
compiler for LLVM-based code generation. We use HyPer’s execution plans as input
to our HorseSQL translator as outlined in Section 5.1. In terms of optimizations,
HorsePower is less database centric, focusing mainly on loop fusion, but also enables
source database patterns for fusion.

Other than LLVM code, there are multiple choices for the generated code.
DBToaster [12] targets high-performance delta processing in data streams by compil-
ing SQL to C++ code. LegoBase [48] first compiles execution plans to Scala code,
then compiles the Scala code to C code using the Light Modular Staging (LMS)
compiler, and finally compiles the C code to the binary code. DBLAB [77, 81] pro-
poses multiple IRs for implementing an efficient query compiler using a high-level
programming language. These IRs are various Domain-Specific Languages (DSL)
developed on Scala. The input execution plan is compiled through these IRs with
specific domain-specific optimizations in each IR before generating the target C code.
The generated C code is further compiled by a traditional C compiler. A different
choice for the generated code is Java bytecode which can be later optimized in the
Java Virtual Machine with the support of just-in-time compilers [74]. These sys-
tems rely on a generic compiler for generating optimized target code. Even though
these compilers excel at optimizing procedural code, they know little about what a
query does at a conceptual high-level. HorseIR can optimize queries with a relatively
high-level view by representing queries as array-based programs with less code but
with more information about the queries themselves that it then exploits for compiler
optimizations.

Voodoo [69] is a declarative intermediate algebra designed with a set of vector
operators. These operators are similar to HorseIR built-in functions, such as arith-
metic and comparison operations, but with a lower-level design having more control
over operators. An SQL query is first compiled to Voodoo code in a database, for

165

9.2. ARRAY PROGRAMMING LANGUAGES

example, MonetDB [40]. Then, the Voodoo code is compiled to efficient parallel GPU
code. HorseIR plays a similar role as Voodoo in representing code generated from
database queries with vector-based data structures. Additionally, HorseIR can han-
dle code from other source programming languages, not only SQL. HorseQC [34] is
an experimental system for compiling database queries to the GPU. With a different
hardware layout on the GPU, it uses a compiler approach to process entire vectors for
database operators instead of the traditional tuple-at-a-time approach. It generates
both CUDA and OpenCL code directly for different kinds of GPUs. This is different
from our HorseGPU that generates a higher-level C code annotated with OpenACC
which later can be compiled to various platforms.

MonetDB [40] first compiles SQL queries into its low-level IR, MAL, which pro-
vides a set of operations for the objects designed for column-based database sys-
tems. Its MAL optimizer generates optimized MAL code which is later sent to an
interpreter-based engine for execution without further optimizations. HorseIR is dif-
ferent from MAL as it provides additional back-end support that further compiles
HorseIR to efficient low-level code with sophisticated code optimizations.

9.2 Array Programming Languages

Our HorseIR is influenced by languages supporting array programming: ELI [19],
an array-based language which mimics SQL queries; Q [53], an array-based query
language supported in its database system KDB+; and Q’Nial [44], a language for
powerful array computations. In particular, KDB+, which has been adopted in fi-
nancial domains, is designed for fusing SQL and array programming languages. Its
database system was implemented in the array programming language Q, which is
a scripting language executing on an interpreter-based environment. It provides an
SQL interface as a form of a wrapper on top of the language Q. The system internally
manages the data, while seamlessly supporting array programming for data analyt-
ics. However, with an interpreter-based design, its performance heavily relies on hand
optimizations rather than systematic compiler optimizations.

166

9.2. ARRAY PROGRAMMING LANGUAGES

In terms of language performance, popular array programming languages, such
as MATLAB [56] and R [82], are often considered inefficient as their code is usu-
ally executed on interpreter-based systems. Therefore, programmers need to write
code intelligently and avoid inefficient code patterns [36], such as using a highly-
tuned built-in function instead of an explicit for-loop. This relies on the experience
of programmers and requires manual inspection that may lead to poor performance.
Mc2Mc [21] provided an automatic solution by introducing a source-to-source trans-
lator which transforms inefficient loop patterns into efficient built-in functions with
the support of vectorization.

With the support of compiler optimizations, the performance of an array language
can be improved significantly. However, having a compiler for an array language is
challenging as the array language usually lacks explicit type and shape information.
Prior research in the performance improvement of array languages for data analytics
lies in compiling them to efficient low-level code directly. For example, a research
compiler from MATLAB to FORTRAN 90 [75] showed significant speedup of the
compiled code compared to the MATLAB program. This compiler employed static
analysis with type, shape, and value propagation. Furthermore, it had symbolic value
inference for shape propagation to get precise shape information. A compiler for ELI
to C code [18] showed that array languages can have a sophisticated compiler which
can achieve bootstrapping. Bootstrapping defines that a language’s compiler written
in this language can compile the code base of the compiler. That is, an ELI-to-C
compiler written in ELI can be compiled to a binary, which can translate the ELI
program to C code. This research demonstrated that array languages are competent
at complex programming tasks, including writing a compiler. These compilers can
generate efficient target code directly without using any customized IR.

On the other hand, as array languages are high-level programming languages, it is
common to introduce an array-based IR with the purpose of supporting various back-
ends and exploring further optimization opportunities on the IR level. Octave [65],
an open-source version of MATLAB, addressed the performance issue by providing a
compiler for static type and shape inference to generate efficient code. McSAF [28]

167

9.3. DATA ANALYTICS IN DATABASE SYSTEMS

provided a compiler toolkit for static analysis on MATLAB and scientific program-
ming that helped programmers write program analyses easily. Tamer [30], another
compiler toolkit, designed Tame IR for representing dynamic MATLAB programs and
supported advanced value analysis for collecting precise information, such as MAT-
LAB types and call graphs. A use case of Tamer is Mc2FOR [55], a compiler tool
built on Tamer for compiling MATLAB to FORTRAN, which shows that even the
performance of a dynamic scripting language can be improved with a compiler. We
use TameIR in our HorseMATLAB translator as outlined in Section 5.2. Other than
MATLAB, research in the array programming language APL explored compiler sup-
port using an IR as well. A typed IR [31] showed the usefulness of the IR to generate
efficient compiled code. MIX10 [51] presented the code compilation from MATLAB
to an IR before generating large-scale parallel code. Our HorsePower can handle a
subset of MATLAB programs while introducing code optimizations considering both
MATLAB and database queries.

HorseIR relies on many optimizations specifically developed for array program-
ming languages to generate efficient parallel code, such as loop fusion known from
array-based APL [24] and FORTRAN 90 [47]. However, focusing on code that rep-
resents SQL queries, these optimizations had to be adapted to the specific HorseIR
context which goes well beyond a pure array programming language.

9.3 Data Analytics in Database Systems

When integrating data analytics into a database system, a direct approach is to extend
SQL syntax to support data analytics by adding new features, such as the support of
array programming. For example, SciQL [93] provides array-based extensions to SQL
for scientific computing, and ArrayUDF [29] introduces a customized UDF system
allowing user-defined operations on adjacent cells of an array. They use the array
design to improve the performance of SQL queries and offer the possibility of mixing
SQL queries and array programming. Compared to HorseIR in HorsePower, they
support more general arrays targeted at specific domains, while HorseIR keeps vector

168

9.3. DATA ANALYTICS IN DATABASE SYSTEMS

and list as primary data structures for efficient core SQL support. GraphScript [67],
as a domain-specific graph query language tailed for graph analysis tasks, is built on
top of the commercial database SAP HANA. It introduces specific types for graph
data stored in relational tables and implements graph-specific optimizations. We
provide a more general solution for data analytics in database query processing by
combining database queries and array languages via HorseIR and performing fusion-
based optimizations for array operations.

An alternative to extending existing database systems is to introduce a third-
party system to process the data offloaded from the database system. An example
is VoltDB [87], an in-memory database system that provides a subsystem that can
fan out data to a third-party analytical tool. Thus, subsets of data stored in the
database can be selected and then exported to be processed in a UDF outside the
database. However, this introduces a performance problem due to the expensive
data movement between independent systems. We introduce a different approach by
integrating database queries and UDFs into the same intermediate layer to avoid such
expensive data movement.

Froid [73] presents an approach which has some similarities with our HorsePower
in executing SQL statements that include UDFs. They provide a holistic optimization
solution for data analytics in database systems by adopting the UDF facilities pro-
vided by the Microsoft SQL Server and rewriting the UDFs with SQL statements to
relational code. In order to translate UDFs using imperative statements to relational
code, they explore a set of imperative statements allowed in relational algebraic ex-
pressions. For example, the relational code SELECT CASE WHEN ... THEN ... ELSE

END ...; is able to represent the if-else statement if(...) ... else ...;. Af-
ter the relational code is generated, it is optimized with the existing query optimizer.
However, this approach is limited as not all UDFs are translatable to a relational oper-
ator. HorsePower is more flexible in this aspect, as it can also translate non-relational
operations written in conventional languages such as MATLAB.

Weld [66] is a common runtime environment that allows code generation from
its functional IR (WeldIR) exploiting different libraries, such as C and relational li-
braries. For example, the NumPy library [6] has many low-level functions written in C

169

9.3. DATA ANALYTICS IN DATABASE SYSTEMS

that can be implemented in WeldIR, including the direct access to NumPy’s internal
data representation, such as NumPy arrays. WeldIR can handle various data pro-
cessing tasks, including relational operators and functional APIs like Spark [92]. Its
optimization strategy follows the operator fusion logic that fuses a chain of database
operators to generate a single loop. Thus, optimizing the code from different kinds of
source code becomes possible. However, in the code generation, WeldIR implements
a rule-based optimization strategy for element-wise and common-loop-head fusion,
while HorsePower employs automatic fusion along with pattern-based fusion. Even
though WeldIR is a common IR for many languages, it is challenging to generate it
automatically from these languages, such as generating WeldIR automatically from
the lower-level programming language C. In contrast, HorsePower provides trans-
lators that can automatically generate HorseIR from database execution plans and
MATLAB programs.

Lara [52] is a domain-specific language (DSL) tailored to relational algebra and
UDFs that are used in the preprocessing prior to training a machine learning model.
Its code is first compiled to an IR which is able to inspect UDFs by collecting necessary
information from UDFs, including variable types, and read and write accesses to the
data. This can be achieved in Lara because it is a quotation-based DSL. Similar to
reflection in Java, Lara allows access to the entire ASTs of UDFs written in general-
purpose programming languages. Thus, Lara can optimize such transparent UDFs
together with its IR code. This is different from HorsePower which compiles database
queries and UDFs to its common IR with holistic optimizations enabled.

Finally, the most popular approach has been to integrate an execution environ-
ment for popular analytical tools and languages inside database systems. This “black-
box” approach is what MonetDB provides with an embedded Python interpreter and
UDF constructs [72, 71]. However, as we saw in the evaluations, the data movement
from a database system to Python is expensive due to the data copy and conversion
between two different systems. Further, as also demonstrated in our evaluations, such
a black-box implementation results in sub-optimal execution plans, reducing the op-
timization opportunities across the database system engine and the UDF execution
environment. Being a unified system that is capable of translating both SQL and the

170

9.4. COMPILER OPTIMIZATIONS

analytical languages used for UDFs into a common IR, HorseIR can overcome these
hurdles, providing a holistic optimization and execution environment.

9.4 Compiler Optimizations

Fusion techniques are popular due to their success in reducing the number of loops
with fewer intermediate results. This is true for compiled environments that easily
allow code fusion.

In the MATLAB-to-FORTRAN compiler [75], shape and size information can
be obtained from a conformability analysis with a set of well-defined conforming
operators for scalar, vector, and matrix. However, no further operator fusions after
conformability analysis are provided.

In the R programming language, a vectorizer is proposed for the built-in function
Apply [88]. The function Apply is similar to our list-based functions, which takes a
function and a list of data inputs as parameters and repeatedly applies the function.
Their vectorizer involves both code and data transformation while we focus on code
optimizations. Additionally, we explore a wider set of built-in functions rather than
only a single list-based function.

Ju et al. [45] investigate built-in function fusion in a pure array-based program-
ming language, APL. Array-based functions are classified based on the features and
present a new approach to help generate parallel code. Ching et al. [24] use simple
techniques to fuse arithmetic functions when compiling APL to parallel C code. In
contrast, our work is aimed at array-based programs generated from SQL queries,
considering functions important to database operators.

Similar to optimizations for arrays [51, 33], we exploit the type and shape infor-
mation of arrays to generate efficient code. But due to the high-level semantics of
HorseIR programs, we avoid complicated vectorization techniques [58, 21].

Loop fusion has been exploited for query execution, and has been typically
achieved through a fixed set of complex pre-defined rules. The DBLAB query com-
piler [77] provides rules for different loop fusion algorithms to generate optimized

171

9.4. COMPILER OPTIMIZATIONS

code [76]. HorseQC [34] needs to chain a list of operators for the fusion before send-
ing code to be executed on the GPU. This is better than the kernel-at-a-time approach
in that the transmission of the intermediate results can be avoided. HIQUE [49] is
a prototype system designed for compiling database queries to generate optimized
query- and hardware-specific code. Both HorseQC and HIQUE adopt a rule-based
fusion strategy. However, like the patterns in HorseIR [20], rules are challenging to
generalize.

Peloton [57] considers operator fusion, mixed pipelined tuple-at-a-time processing
and vectorization, for operators within a pipeline. Stream-fusion [76] needs to define
extra fusion-related constructs for collections. By contrast, our fusion strategy is a
systematic approach that collects precise shape information on a well-defined array-
based language for automatic fusion.

Other than in the domain of database query processing, there are many
performance-oriented systems that adopted fusion-based optimization strategies to
improve system performance. TVM [23], a system designed for deep learning, intro-
duces operator fusion for graph operators when generating efficient GPU code. Their
approach is limited, as the fusion rules are fairly simple with specific patterns. We
provide a more sophisticated fusion approach that considers more groups and defines
systematic data-flow analysis to identify fusion opportunities. LIFT [50] shows a dif-
ferent approach by defining complex functional patterns with precise descriptions for
generating efficient code for parallel devices such as an FPGA, as its input code can
come from various domains beyond the domain of database queries.

172

Chapter 10
Conclusions and Future Work

In this thesis we presented HorsePower, a compiler-driven system to efficiently
execute SQL queries and data analytics programs. The main contributions of this
thesis are (i) the design and implementation of HorsePower; (ii) the exploration of
marrying database query processing and array programming languages; and (iii) the
thorough experiments for validating the effectiveness of the system.

10.1 Conclusions
By adding the support of HorseIR, a newly designed array-based IR for database
queries and array programming languages, HorsePower is capable of handling
database queries as well as integrating analytic functions writing in array program-
ming languages into database queries. HorseIR is an array-based intermediate repre-
sentation tailored for database queries in column-based in-memory database systems,
and array programming languages. Our system HorsePower supports effective opti-
mizations of HorseIR programs generated from various source languages to generate
efficient target code.

HorsePower provides automatic translators for generating HorseIR code from ei-
ther the execution plans of database queries or MATLAB programs, or both of them.
After a HorseIR program is optimized, multiple back-ends can compile the optimized
HorseIR code to generate efficient target code for various platforms.

173

10.2. FUTURE WORK

Various kinds of experiments were conducted for HorsePower. The first experi-
ment showed that the performance of HorsePower is comparable and even superior
to a state-of-the-art database system with the standard database benchmark TPC-
H. With running on multiple threads and scales, the capabilities of parallelism and
scalability were confirmed. The second experiment tested that HorsePower is able
to manage pure array programming code and generate well-optimized code. Two
array-based benchmarks written in MATLAB were compiled to HorseIR. The third
experiment suite tested that database queries that have integrated user-defined func-
tions can be handled and optimized in a holistic manner in HorsePower. Two kinds of
user-defined functions were created, one derived from standard queries, the other from
our MATLAB benchmarks. The results of this experiment showed that HorsePower
provides an efficient system for handling and optimizing mixed code in a united way.
The last benchmark scenario tested HorsePower’s capability of executing both on the
CPU and the GPU in a united manner. We show that execution compute-intensive
code on the GPU is beneficial but data transfer between CPU and GPU can be a
bottleneck.

The research in this thesis is a first step in exploring how to improve the perfor-
mance of database query processing using HorseIR, which was designed to represent
both database queries and general array programming programs in the context of
in-memory column-based database systems. HorsePower, as a system, provides nec-
essary components to complete the translation from source languages to target C code
generation via HorseIR. Thus, the performance of database query processing can be
improved using compiler optimization techniques. In addition, our experiment results
have shown the potential to support the applications which need high performance
in data analytics along with database queries.

10.2 Future Work

HorsePower is an extensible and growing system. We believe there are many possible
future research directions that could be followed. We outline some of them here.

174

10.2. FUTURE WORK

• One research direction is to enable a customized system for domain-specific
purposes. Other than an optimizing system for database queries and array
programming languages, different contexts can be supported by adding more
data types and built-in functions to support applications from new domains,
such as scientific computation and machine learning. This brings additional
challenges in providing a general-purpose optimization strategy for optimizing
array-based programs precisely.

• HorsePower relies on optimized execution plans for database queries and on
MATLAB to provide already optimized TameIR code. To be independent
from such work and also to further support other languages where such “pre-
optimizations” are unavailable, HorsePower could be extended to provide more
commonly used dataflow analyses, such as constant propagation and common
sub-expression elimination.

• Research in offering new back-ends is encouraging because of the recent emer-
gence of new parallel hardware for compute-intensive programs. Since many of
these hardware designs follow the scheme of data parallelism, legacy code from
database queries and array programming languages can be deployed to such
hardware swiftly and efficiently.

• HorsePower so far focuses on query processing. But it has already the ba-
sic components to also support other database functionality. Still, significant
extensions are needed to support the first phase of query optimizations, i.e., exe-
cution plan generation, as well as offering more sophisticated code management
(data definition and transaction management).

175

10.2. FUTURE WORK

176

Appendix A
HorseIR Language Specification

In this appendix we introduce the HorseIR language specification in Appendix A.1,
the value ranges of HorseIR numeric types in Appendix A.2, and brief introduction
of HorseIR built-in functions in Appendix A.3.

A.1 Language Grammar

1 letter = 'a' ... 'z' | 'A' ... 'Z' ;
2 digit = '0' ... '9' ;
3 nzdigit = '1' ... '9' ;
4 digits = digit { digit } ;
5 ascii_character = /* All valid ASCII */ ;
6 escape_sequence = "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v" ;
7 Identifier = (letter | '_') { letter | digit | '_' } ;
8
9 Values = ValueList ':' Type

10 ValueList = Value | '(' Value { ',' Value } ')'
11 Value = IntValue | FloatValue | BoolValue | ComplexValue |
12 CharValue | StringValue | SymbolValue | CalendarValue

;
13
14 Sign = '+' | '-'
15 Integer = '0' | nzdigit { digit } ;

177

A.1. LANGUAGE GRAMMAR

16 Float = Integer '.' [digits] | '.' digits ;
17
18 IntValue = [Sign] Integer ;
19 FloatValue = [Sign] Float ;
20 BoolValue = '0' | '1' ;
21
22 CharValue = "'" ascii_character "'" ;
23 StringValue = '"' { ascii_character } '"' ;
24 SymbolValue = '`' (Identifier | StringValue) ;
25 ComplexValue = FloatValue [Sign Float] 'i' ;
26
27 CalendarValue = DateTimeValue | MonthValue | DateValue |
28 MinuteValue | SecondValue | TimeValue ;
29
30 // Must correspond to valid dates within range, see the type

declarations
31 MonthValue = Integer '-' Integer ;
32 DateValue = Integer '-' Integer '-' Integer ;
33 MinuteValue = Integer ':' Integer ;
34 SecondValue = Integer ':' Integer ':' Integer ;
35 TimeValue = Integer ':' Integer ':' Integer '.' Integer ;
36 DateTimeValue = DateValue 'T' TimeValue ;
37
38 // Module
39 Module = "module" Identifier '{' ModuleContents '}' ;
40 ModuleContents = { ImportDirective | FunctionDeclaration |

GlobalDeclaration } ;
41
42 // Import directives
43 ImportDirective = "import" Identifier '.' ImportList ';' ;
44 ImportList = '*' | Identifier | '{' Identifier { ',' Identifier } '}'

;
45
46 // Function declarations
47 FunctionDeclaration = FunctionKind Identifier '(' Parameters ')'
48 [':' ReturnTypes] Block ;
49

178

A.1. LANGUAGE GRAMMAR

50 FunctionKind = "def" | "kernel" ;
51
52 Parameters = [Parameter { ',' Parameter }] ;
53 Parameter = Identifier ':' Type ;
54
55 ReturnTypes = Type { ',' Type } ;
56
57 Type = Wildcard | BasicTypes | ListType |
58 DictType | EnumType | TableTypes ;
59 Wildcard = '?' ;
60 BasicTypes = "bool" | "i8" | "i16" | "i32" | "i64" |
61 "f32" | "f64" | "complex" | "char" | "str" |
62 "sym" | "dt" | "date" | "month" | "minute" |
63 "second" | "time" ;
64 ListType = "list" '<' Type { ',' Type } '>' ;
65 DictType = "dict" '<' Type ',' Type '>' ;
66 EnumType = "enum" '<' Type '>' ;
67 TableTypes = "table" | "ktable" ;
68
69 Block = '{' { Statement } '}'
70 ControlBlock = Statement | Block
71 Statement = AssignStmt | ControlStmt | ExpressionStmt | VarDecl ;
72
73 AssignStmt = VarList '=' Expression ';' ;
74 VarList = Var { ',' Var } ;
75 Var = Identifier [':' Type] | Identifier '.' Identifier ;
76
77 ControlStmt = IfStmt | WhileStmt | RepeatStmt | ReturnStmt |
78 BreakStmt | ContinueStmt ;
79 Condition = Operand ;
80
81 IfStmt = "if" '(' Condition ')' ControlBlock ["else"

ControlBlock]
82 WhileStmt = "while" '(' Condition ')' ControlBlock ;
83 RepeatStmt = "repeat" '(' Condition ')' ControlBlock ;
84 ReturnStmt = "return" [{ Operand { ',' Operand }] ';' ;
85 BreakStmt = "break" ';' ;

179

A.2. VALUE RANGES

86 ContinueStmt = "continue" ';' ;
87 ExpressionStmt = Expression ';'
88 VarDecl = "var" Identifier [{ ',' Identifier }] ':' Type ';' ;
89
90
91 // Expressions
92 Expression = FunctionCall | Operand | Cast ;
93 FunctionCall = FunctionId '(' [Operands] ')' ';'
94 FunctionId = '@' Identifier ['.' Identifier] ;
95 Operands = Operand { ',' Operand } ;
96 Operand = Identifier ['.' Identifier] | Literal ;
97 Literal = FunctionLiteral | VectorLiteral ;
98
99 FunctionLiteral = FunctionId [':' "func"] ;
100 VectorLiteral = Value ':' Type | '(' Value { ',' Value } ')' ':'

Type ;
101 Cast = "check_cast" '(' Expression ',' Type ')' ;

A.2 Value Ranges

Numeric types have value ranges following standard C conventions and all are signed
types.

boolean (bool)
0 (False) or 1 (True)

small (i8)
−27 to 27 − 1

short (i16)
−215 to 215 − 1

int (i32)
−231 to 231 − 1

180

A.2. VALUE RANGES

long (i64)
−263 to 263 − 1

float (f32)
1.2e−38 to 3.4e+63

double (f64)
2.3e−308 to 2.3e+308

complex (complex)
consists of two floating point numbers (f32)

date - year (YYYY)
1000 to 9999

date - month (MM)
01 to 12 (two digits required)

date - day (DD)
01 to 28/29/30/31 (depends on month and year)

• January - 31 days

• February - 28 days (common year) and 29 days (leap year)

• March - 31 days

• April - 30 days

• May - 31 days

• June - 30 days

• July - 31 days

• August - 31 days

• September - 30 days

• October - 31 days

• November - 30 days

181

A.3. BUILT-IN FUNCTIONS

• December - 31 days

date - hour (hh)
00 to 23

date - minute (mm)
00 to 59

date - second (ss)
00 to 59

date - millisecond (lll)
000 to 999

A.3 Built-in Functions

1. Unary Built-in functions (Element-wise)

abs(x), neg(x), conj(x)
One takes a numeric parameter and returns its absolute, negated, or conjugate
value.

ceil(x), floor(x), round(x)
One takes a numeric parameter and returns its ceiling, flooring, or rounding
value.

recip(x)
One takes a numeric parameter and returns its reciprocal value (i.e., 1/x).

sigsum(x)
One takes a numeric parameter and returns {0 if x==0, -1 if x<0, 1 if x>0}.

pi(x)
One takes a numeric parameter and returns (x * π).

182

A.3. BUILT-IN FUNCTIONS

not(x)
One takes a boolean parameter and returns its negated value.

log(x), log2(x), log10(x)
One takes a real parameter and returns its log value as ln(x), log2(x), and
log10(x).

sqrt(x), exp(x)
One takes a real parameter and returns its sqrt (

√
x) and exponential (ex)

value.

date(x), date_year(x), date_month(x), date_day(x)
One takes a date parameter and returns its partial value.

time(x), time_year(x), time_month(x), time_day(x)
One takes a time parameter and returns its partial value.

sin(x), cos(x), tan(x), asin(x), acos(x), atan(x)
One takes a numeric parameter, computes with a trigonometric function, and
returns its result.

sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh(x)
One takes a numeric parameter, computes with a trigonometric function, and
returns its result.

2. Unary Built-in functions

unique(x)
One returns the unique items in the input data.

len(x)
One returns the length of the input data.

range(x)
One returns a list of consecutive numbers from 0 to x-1, inclusive.

183

A.3. BUILT-IN FUNCTIONS

fact(x)
One returns the factorial of the input number.

rand(x)
One takes an integer x as an range and returns a random integer from 0
(inclusive) to x (exclusive).

seed(x)
One takes an integer and set it as a global seed. (Default: 16807)

where(x)
One returns the indices of elements where their values are true.

group(x)
One groups the input data and returns the indices of grouped items.

sum(x), avg(x), min(x), max(x)
One takes a numeric parameter and returns its total (sum), average (avg),
minimum (min), or maximum (max) value.

3. Binary built-in functions (Element-wise)

lt(x,y), gt(x,y), leq(x,y), geq(x,y), eq(x,y), neq(x,y)
Comparison functions for less than (lt), greater than (gt), less than equal (leq),
greater than equal (geq), equal (eq), and not equal (neq).

plus(x,y), minus(x,y), mul(x,y), div(x,y)
Arithmetic functions for addition (plus), minus (minus), multiplication (mul),
and division (div).

power(x,y), logb(x,y), mod(x,y)
Math functions for power (xy), logarithm (logx(y)) and modulo (y mod x).

and(x,y), or(x,y), nand(x,y), nor(x,y), xor(x,y)
Boolean functions for logical and (and), or (or), nand (nand), nor (nor), and
xor (xor).

184

A.3. BUILT-IN FUNCTIONS

4. Binary built-in functions

append(x,y)
One appends all items in y to x and returns a new vector or list.

like(x,y)
One finds all matched items in x based on the pattern y and returns a boolean
vector.

compress(x,y)
One takes two same-length vectors and selects items from y based if the corre-
sponding positions in the boolean vector x are true.

index_of(x,y)
One finds each item from x in y, and returns the position if found, otherwise
the length of y.

order(x,y)
One sorts x based on the orders in y and returns the indices after sorting.

member(x,y)
One finds items from x in y (x ∈ y) and returns a boolean vector indicating
found (True) or not (False).

vector(x,y)
One initializes a vector by replicating the value y with x times.

5. List-based built-in functions

list(...)
One returns a list containing an arbitrary number of arguments as its cells.

tolist(x)
One takes a parameter and returns a one-cell list in which the cell is the
parameter.

185

A.3. BUILT-IN FUNCTIONS

raze(x)
One returns a vector containing the value in each cell in the input list x.

each(fn, x)
One applies the function fn on the each cell of x and returns a new list.

each_item(fn,x,y), each_left(fn,x,y), each_right(fn,x,y)
One applies the function fn on each cell (x[i],y[i]), left cell only (x[i],y), or right
cell only (x,y[i]), and returns a new list.

6. Database-related built-in functions

enum(x,y), dict(x,y), table(x,y), ktable(x,y)
One returns an enumeration (enum), dictionary (dict), table (table), keyed
table (ktable), based on input data.

keys(x), values(x)
One fetches the information of keys (keys), values (values) for enumeration,
dictionary, table, or keyed table.

keys(x), values(x), meta(x)
One returns the meta information for table.

load_table(x)
One loads a table by a given name.

column_value(x,y)
One loads a column from x by a given name y.

fetch(x)
One fetches the original value from an enumeration.

join_index(op,x,y)
One takes join operators, a list of vectors as the left side of the join, and
another list of vectors as the right side of the join, and returns a list of two
vectors indicating the indices of joined items from the left and right sides.

186

A.3. BUILT-IN FUNCTIONS

7. Miscellaneous built-in functions

index(x,y)
One fetches values from x by given indices in y.

index_a(x,y,v)
One updates the vector x with the given indices in y and the new values in v.

sub_string(x,a,n)
One returns the substrings of strings in x with a given range [a, a+ n).

print(x)
One prints the value x.

187

A.3. BUILT-IN FUNCTIONS

188

Appendix B
Plan-to-HorseIR Translator Specification

In order to have a better understanding of the design and implementation of the
translator for generating HorseIR from database plans, we create a specification of the
plan-to-HorseIR translator introduced in HorseSQL Section 5.1. The translator takes
a HyPer’s plan in the JSON format as input, and emits a HorseIR program as output.
As the input is a JSON object rather than a stream of tokens, we simplified key and
value pairs in JSON by using the key as a leading literal string token, and the value
as a terminal or non-terminal. Then, we can have the specification described using
the extended Backus-Naur form (EBNF) with the following list of useful notations:

• {…} for repeating terminals or non-terminals,

• […] for optionally selecting terminals or non-terminals,

• | for choosing one from terminals or non-terminals, and

• "…" for a literal string token.

The details of the specification can be found as follows:
1 /*
2 * Basic terminals:
3 * Integer, String, StringList , *Id
4 */
5 Plan = PlanHeader PlanBody ;

189

6 PlanHeader = "header" { NameId AliasId } ;
7 PlanBody = "plan" Input ;
8 PlanCommon = "operatorId" Integer ["cardinality" Integer] ;
9 Input = PlanCommon SubInput ;

10 SubInput = "operator" "tablescan" ScanTableScan
11 | "operator" "tempscan" ScanTempScan
12 | "operator" "groupbyscan" ScanGroupbyScan
13 | "operator" "groupby" ScanGroupby "input"

Input
14 | "operator" "sort" ScanSort "input"

Input
15 | "operator" "map" ScanMap "input"

Input
16 | "operator" "select" ScanSelect "input"

Input
17 | "operator" "earlyprobe" ScanEarlyProbe "input"

Input
18 | "operator" "temp" "input"

Input
19 | "operator" "join" ScanJoin "left"

Input "right" Input
20 | "operator" "groupjoin" ScanGroupJoin "left"

Input "right" Input
21 | "operator" "leftantijoin" ScanLeftAntiJoin "left"

Input "right" Input
22 | "operator" "rightantijoin" ScanRightAntiJoin "left"

Input "right" Input
23 | "operator" "leftsemijoin" ScanLeftSemiJoin "left"

Input "right" Input
24 | "operator" "rightsemijoin" ScanRightSemiJoin "left"

Input "right" Input ;
25 ScanGroupby = "values" Values "aggregates" Aggregates ;
26 ScanSelect = "condition" Condition ;
27 ScanTableScan = "segment" Integer "from" TableId \
28 "values" Values "tid" Iu "tableOid" IuSpecial \
29 "tupleFlags" StringList "restrictions" Restrictions \
30 ["residuals" Residuals] ;

190

31 ScanSort = "criterion" Criterion ["count" Count] ;
32 ScanMap = "values" Values ;
33 /* scans */
34 ScanJoin = "method" Method \
35 "singleMatch" SingleMatch \
36 "condition" Condition ["magic" Magic] ;
37 ScanLeftSemiJoin = ScanJoin ;
38 ScanRightSemiJoin= ScanJoin ;
39 ScanLeftAntiJoin = ScanJoin ;
40 ScanRightAntiJoin= ScanJoin ;
41 ScanGroupJoin = "leftKey" expressions "rightKey" Expressions "

compareTypes" Types \
42 "leftExpressions" Expressions "rightExpressions"

Expressions \
43 "leftCollates" StringList "rightCollates"

StringList \
44 "leftAggregates" Aggregates "rightAggregates"

Aggregates \
45 "semantic" "outer" ;
46 CommonScan = "source" Integer "output" Output ;
47 ScanTempScan = CommonScan ;
48 ScanGroupbyScan = CommonScan ;
49 ScanLeftOuterJoin= "condition" Condition "magic" Magic ;
50 ScanLeftMarkJoin = "condition" Condition ;
51 ScanEarlyProbe = "values" StringList "builder" Integer ;
52 /* expressions */
53 Values = { Value } ;
54 Value = Expressions
55 | "iu" Iu "name" TargetId
56 | "iu" Iu "value" Expressions ;
57 Iu = Id [type] ;
58 IuSpecial = Id "RegClass" ;
59 Aggregates = { AggrItem } ;
60 AggrItem = "source" Integer "operation" Operation "iu" Iu ;
61 Restrictions = { RestrictCell } ;
62 Restrict_cell = "attribute" Integer "mode" Mode "value" Value ["

value2" Value] ;

191

63 Expressions = "expression" "comparison" "mode" Mode "left"
Expressions "right" Expressions

64 | "expression" "quantor" "mode" "=some" "arguments" {
Expressions }

65 | "expression" ExprArgn "arguments" { Expressions }
66 | "expression" ExprArg2 "left" Expressions "right"

Expressions
67 | "expression" "const" "value" ConstValue
68 | "expression" "lookup" "input" VarValue "values"

ConstValue
69 | "expression" "isnotnull" "input" VarValue
70 | VarValue ;
71 ConstValue = "type" Type "value" StringValue ;
72 VarValue = "expression" "iuref" "iu" Iu ;
73 Criterion = "nullFirst" isNullFirst "descending" isdesc "value"

Value ;
74 Residuals = { Expressions } ;
75 Condition = Expressions ;
76 Magic = Input ;
77 Output = { SourceTarget } ;
78 SourceTarget = "source" Id "target" Iu ;
79 /* constants */
80 Types = { Type } ;
81 Type = TypeBasic ["nullable"] ;
82 TypeBasic = "Char1"
83 | "Char" Integer
84 | "BigInt"
85 | "Varchar" [Integer]
86 | "Integer"
87 | "Date"
88 | "Numeric" Integer Integer
89 | "Bool" ;
90 Operation = "keep"
91 | "count"
92 | "sum"
93 | "avg"
94 | "min"

192

95 | "max"
96 | "any"
97 | "countdistinct" ;
98 Method = "indexnl"
99 | "hash"
100 | "bnl" ;
101 Mode = "="
102 | "[)"
103 | "[]"
104 | "(]"
105 | ">"
106 | "<"
107 | "<>"
108 | "=some"
109 | ">="
110 | "<=" ;
111 ExprArgn = "and"
112 | "or"
113 | "like"
114 | "substring"
115 | "between" ;
116 ExprArg2 = "mul"
117 | "sub"
118 | "div" ;
119 /* Basics */
120 letter = 'a' ... 'z' | 'A' ... 'Z' ;
121 digit = '0' ... '9' ;
122 nzdigit = '1' ... '9' ;
123 digits = digit { digit } ;
124 ascii_character = /* All valid ASCII */ ;
125 Id = (letter | '_') { letter | digit | '_' } ;
126 NameId = Id ;
127 AliasId = Id ;
128 TableId = Id ;
129 TargetId = Id ;
130 Integer = '0' | ('+' | '-') nzdigit {digit} ;
131 StringValue = '"' { ascii_character } '"' ;

193

132 StringList = '[' [StringValue { ',' StringValue }] ']' ;

194

Bibliography

[1] Flex: Lexical Analyser Generator. https://github.com/westes/flex. [Last
accessed in October 2020].

[2] GCC, the GNU Compiler Collection. https://gcc.gnu.org. [Last accessed in
October 2020].

[3] GNU Bison: A General-purpose Parser Generator. https://www.gnu.org/
software/bison. [Last accessed in October 2020].

[4] HorseIR Online Documentation. http://www.sable.mcgill.ca/~hanfeng.c/
horse/docs/horseir/functions/. [Last accessed in October 2020].

[5] McLab: A Framework for Dynamic Scientific Languages. http://www.sable.
mcgill.ca/mclab/. [Last accessed in October 2020].

[6] NumPy Project. https://numpy.org. [Last accessed in October 2020].

[7] NVIDIA PGI Compilers. https://www.pgroup.com. [Last accessed in October
2020].

[8] OpenACC: Open Accelerators. https://www.openacc.org. [Last accessed in
October 2020].

[9] OpenMP: Open Multi-Processing. https://www.openmp.org. [Last accessed in
October 2020].

195

https://github.com/westes/flex
https://gcc.gnu.org
https://www.gnu.org/software/bison
https://www.gnu.org/software/bison
http://www.sable.mcgill.ca/~hanfeng.c/horse/docs/horseir/functions/
http://www.sable.mcgill.ca/~hanfeng.c/horse/docs/horseir/functions/
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/
https://numpy.org
https://www.pgroup.com
https://www.openacc.org
https://www.openmp.org

BIBLIOGRAPHY

[10] R Project. https://www.r-project.org. [Last accessed in October 2020].

[11] The LLVM Compiler Infrastructure. http://llvm.org. [Last accessed in Octo-
ber 2020].

[12] Y. Ahmad and C. Koch. DBToaster: A SQL Compiler for High-Performance
Delta Processing in Main-Memory Databases. PVLDB, 2(2):1566–1569, 2009.

[13] Austin Appleby. MurMur3 Hash. https://github.com/aappleby/smhasher.
[Last accessed in October 2020].

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques,
pages 72–81, 2008.

[15] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. In M. P. Atkinson, M. E. Orlowska,
P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, Proceedings of 25th Inter-
national Conference on Very Large Data Bases (VLDB’99), pages 54–65. Morgan
Kaufmann, 1999.

[16] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In Second Biennial Conference on Innovative Data Systems
Research, Online Proceedings, (CIDR’05), pages 225–237, 2005.

[17] S. Ceri and G. Gottlob. Translating SQL Into Relational Algebra: Optimization,
Semantics, and Equivalence of SQL Queries. IEEE Transactions on Software
Engineering, 11(4):324–345, 1985.

[18] H. Chen, W. Ching, and L. J. Hendren. An ELI-to-C Compiler: Design, Imple-
mentation, and Performance. In Proceedings of the 4th ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages, and Compilers for Array Programming,
(ARRAY@PLDI’17), pages 9–16, 2017.

196

https://www.r-project.org
http://llvm.org
https://github.com/aappleby/smhasher

BIBLIOGRAPHY

[19] H. Chen and W.-M. Ching. ELI: a simple system for array programming. Vector,
the Journal of the British APL Association, 26(1):94–103, 2013.

[20] H. Chen, J. V. D’silva, H. Chen, B. Kemme, and L. Hendren. HorseIR: Bringing
Array Programming Languages Together with Database Query Processing. In
Proceedings of the 14th ACM SIGPLAN International Symposium on Dynamic
Languages, (DLS’18), pages 37–49, 2018.

[21] H. Chen, A. Krolik, E. Lavoie, and L. J. Hendren. Automatic Vectorization for
MATLAB. In Languages and Compilers for Parallel Computing, (LCPC’16),
pages 171–187, 2016.

[22] J. Chen, S. Jindel, R. Walzer, R. Sen, N. Jimsheleishvilli, and M. Andrews. The
MemSQL Query Optimizer: A modern optimizer for real-time analytics in a
distributed database. PVLDB’16, 9(13):1401–1412, 2016.

[23] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An Automated End-
to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation, (OSDI’18), pages 578–594,
2018.

[24] W. Ching and D. Zheng. Automatic Parallelization of Array-oriented Pro-
grams for a Multi-core Machine. International Journal of Parallel Programming,
40(5):514–531, 2012.

[25] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[26] J. Davidson and A. Holler. Subprogram Inlining: A Study of Its Effects on Pro-
gram Execution Time. IEEE Transactions on Software Engineering, 18(2):89–
102, 1992.

197

BIBLIOGRAPHY

[27] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In 6th Symposium on Operating System Design and Implementation,
(OSDI’04), pages 137–150, 2004.

[28] J. Doherty and L. J. Hendren. McSAF: A Static Analysis Framework for MAT-
LAB. In Proceedings of the 26th European Conference on Object-Oriented Pro-
gramming, (ECOOP’12), pages 132–155, 2012.

[29] B. Dong, K. Wu, S. Byna, J. Liu, W. Zhao, and F. Rusu. ArrayUDF: User-
Defined Scientific Data Analysis on Arrays. In Proceedings of the 26th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
(HPDC’17), pages 53–64, 2017.

[30] A. W. Dubrau and L. J. Hendren. Taming MATLAB. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA’12, pages 503–522, 2012.

[31] M. Elsman and M. Dybdal. Compiling a Subset of APL Into a Typed Inter-
mediate Language. In Proceedings of the 2014 ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, (AR-
RAY’14), pages 101–106, 2014.

[32] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP
HANA Database: Data Management for Modern Business Applications. SIG-
MOD Record, 40(4):45–51, 2011.

[33] V. Foley-Bourgon and L. J. Hendren. Efficiently Implementing the Copy Seman-
tics of MATLAB’s Arrays in JavaScript. In Dynamic Languages Symposium,
(DLS’16), pages 72–83, 2016.

[34] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner. Pipelined Query Pro-
cessing in Coprocessor Environments. In Proceedings of the 2018 International
Conference on Management of Data, (SIGMOD’18), pages 1603–1618, 2018.

198

BIBLIOGRAPHY

[35] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An Overview.
IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516, 1992.

[36] P. Getreuer. Writing Fast MATLAB Code, 2006.

[37] G. Graefe. Volcano - An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994.

[38] J. Gray. Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King. Gong
Show Presentation at CIDR, pages 231–242, 2007.

[39] C. A. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[40] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
MonetDB: Two Decades of Research in Column-oriented Database Architectures.
IEEE Data Engineering Bulletin, 35(1):40–45, 2012.

[41] Intel. Introduction to Intel® Advanced Vector Exten-
sions. https://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions, 2011.

[42] Y. E. Ioannidis. Query Optimization. ACM Computing Surveys, 28(1):121–123,
1996.

[43] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Com-
puting Surveys, 16(2):111–152, 1984.

[44] M. A. Jenkins. Q’Nial; A Portable Interpreter for the Nested Interactive Array
Language, Nial. Software: Practice and Experience, 19(2):111–126, 1989.

[45] D. Ju, C. Wu, and P. R. Carini. The Classification, Fusion, and Parallelization
of Array Language Primitives. IEEE Transactions on Parallel and Distributed
Systems, 5(10):1113–1120, 1994.

[46] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In Proceedings of the

199

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

BIBLIOGRAPHY

27th International Conference on Data Engineering, (ICDE’11), pages 195–206,
2011.

[47] K. Kennedy. Fast Greedy Weighted Fusion. International Journal of Parallel
Programming, 29(5):463–491, 2001.

[48] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building Efficient Query Engines
in a High-Level Language. PVLDB’14, 7(10):853–864, 2014.

[49] K. Krikellas, S. Viglas, and M. Cintra. Generating Code for Holistic Query Eval-
uation. In Proceedings of the 26th International Conference on Data Engineering,
ICDE’10, pages 613–624, 2010.

[50] M. Kristien, B. Bodin, M. Steuwer, and C. Dubach. High-level Synthesis of
Functional Patterns with LIFT. In ARRAY@PLDI’19, pages 35–45, 2019.

[51] V. Kumar and L. J. Hendren. MIX10: compiling MATLAB to X10 for high
performance. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA’14, pages
617–636, 2014.

[52] A. Kunft, A. Katsifodimos, S. Schelter, S. Breß, T. Rabl, and V. Markl. An Inter-
mediate Representation for Optimizing Machine Learning Pipelines. PVLDB’19,
12(11):1553–1567, 2019.

[53] kx. KDB+ Database System. https://www.kx.com/. [Last accessed in October
2020].

[54] J. Lajus and H. Mühleisen. Efficient Data Management and Statistics with
Zero-Copy Integration. In Conference on Scientific and Statistical Database
Management, (SSDBM’14), pages 12:1–12:10, 2014.

[55] X. Li and L. J. Hendren. Mc2FOR: A Tool for Automatically Translating
MATLAB to FORTRAN 95. In Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering, (CSMR-
WCRE’14), pages 234–243, 2014.

200

https://www.kx.com/

BIBLIOGRAPHY

[56] MathWorks. MATLAB. https://www.mathworks.com. [Last accessed in Octo-
ber 2020].

[57] P. Menon, A. Pavlo, and T. C. Mowry. Relaxed Operator Fusion for In-Memory
Databases: Making Compilation, Vectorization, and Prefetching Work Together
At Last. PVLDB’17, 11(1):1–13, 2017.

[58] V. Menon and K. Pingali. A Case for Source-Level Transformations in MATLAB.
In Domain-specific Languages, (DSL’99), pages 53–65, 1999.

[59] T. Miller. Using R and Python in the Teradata Database. White paper, Teradata,
2016.

[60] MonetDB. MonetDB Optimizer Pipelines. https://www.monetdb.
com/Documentation/SQLReference/PerformanceOptimization/
OptimizerPipelines. [Last accessed in October 2020].

[61] S. S. Muchnick. Advanced Compiler Design and Implementation. chapter 4:
Intermediate Representations, pages 67–104. Morgan Kaufmann, 1997.

[62] S. S. Muchnick. Advanced Compiler Design and Implementation. chapter 8.10:
Du-Chains, Ud-Chains, and Webs, pages 251–252. Morgan Kaufmann, 1997.

[63] MySQL. MySQL Database. https://www.mysql.com. [Last accessed in October
2020].

[64] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB’11, 4(9):539–550, 2011.

[65] K. Olmos and E. Visser. Turning Dynamic Typing into Static Typing by Program
Specialization in a Compiler Front-end for Octave. In The 3rd IEEE International
Workshop on Source Code Analysis and Manipulation, (SCAM’03), pages 141–
150, 2003.

[66] S. Palkar, J. J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam, P. Negi,
A. Shanbhag, M. Schwarzkopf, H. Pirk, S. P. Amarasinghe, S. Madden, and

201

https://www.mathworks.com
https://www.monetdb.com/Documentation/SQLReference/PerformanceOptimization/OptimizerPipelines
https://www.monetdb.com/Documentation/SQLReference/PerformanceOptimization/OptimizerPipelines
https://www.monetdb.com/Documentation/SQLReference/PerformanceOptimization/OptimizerPipelines
https://www.mysql.com

BIBLIOGRAPHY

M. Zaharia. Evaluating End-to-End Optimization for Data Analytics Applica-
tions in Weld. PVLDB’18, 11(9):1002–1015, 2018.

[67] M. Paradies, C. Kinder, J. Bross, T. Fischer, R. Kasperovics, and H. Gildhoff.
GraphScript: Implementing Complex Graph Algorithms in SAP HANA. In
Proceedings of The 16th International Symposium on Database Programming
Languages, (DBPL’17), pages 13:1–13:4, 2017.

[68] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, 1972.

[69] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo - A Vector Algebra for
Portable Database Performance on Modern Hardware. PVLDB’16, 9(14):1707–
1718, 2016.

[70] H. Plattner. A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, (SIGMOD’09), pages 1–2, 2009.

[71] M. Raasveldt. Integrating Analytics with Relational Databases. In Proceedings of
the VLDB 2018 PhD Workshop co-located with the 44th International Conference
on Very Large Databases, (VLDB’18)), 2018.

[72] M. Raasveldt and H. Mühleisen. Vectorized UDFs in Column-Stores. In Proceed-
ings of the 28th International Conference on Scientific and Statistical Database
Management, SSDBM’16, pages 16:1–16:12, 2016.

[73] K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C. A. Galindo-Legaria,
and C. Cunningham. Froid: Optimization of Imperative Programs in a Relational
Database. PVLDB’17, 11(4):432–444, 2017.

[74] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled Query Execution
Engine using JVM. In Proceedings of the 22nd International Conference on Data
Engineering, ICDE’06, page 23, 2006.

202

BIBLIOGRAPHY

[75] L. D. Rose and D. A. Padua. Techniques for the Translation of MATLAB Pro-
grams into Fortran 90. ACM Transactions on Programming Languages and
Systems, (TOPLAS’99), 21(2):286–323, 1999.

[76] A. Shaikhha, M. Dashti, and C. Koch. Push versus pull-based loop fusion in
query engines. Journal of Functional Programming, 28:e10, 2018.

[77] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch.
How to Architect a Query Compiler. In Proceedings of the 2016 International
Conference on Management of Data, (SIGMOD’16), pages 1907–1922, 2016.

[78] S. Singhai and K. S. McKinley. A Parametrized Loop Fusion Algorithm for
Improving Parallelism and Cache Locality. The Computer Journal, 40(6):340–
355, 1997.

[79] J. M. Smith and P. Y. Chang. Optimizing the Performance of a Relational
Algebra Database Interface. Communications of the ACM, 18(10):568–579, 1975.

[80] M. Stonebraker and G. Kemnitz. The postgres next generation database man-
agement system. Communications of the ACM, 34(10):78–92, 1991.

[81] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How to Architect a Query
Compiler, Revisited. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 307–322, 2018.

[82] R. C. Team. R: A Language and Environment for Statistical Computing. http:
//www.R-project.org/, 2014.

[83] The PostgreSQL Global Development Group. Procedural Languages. In Post-
greSQL 10.0 Documentation, 2017.

[84] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming
Languages, 3(3), 1995.

[85] Transaction Processing Performance Council. TPC Benchmark H, 2017.

203

http://www.R-project.org/
http://www.R-project.org/

BIBLIOGRAPHY

[86] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. Soot
- a java bytecode optimization framework. In Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative Research, (CASCON’99),
page 13, 1999.

[87] VoltDB. VoltDB Technical Overview. https://www.voltdb.com/wp-content/
uploads/2017/03/hv-white-paper-voltdb-technical-overview.pdf, 2016.

[88] H. Wang, D. A. Padua, and P. Wu. Vectorization of Apply to Reduce Interpre-
tation Overhead of R. In OOPSLA’15, pages 400–415, 2015.

[89] M. Wolfe. Optimizing Supercompilers for Supercomputers. Research mono-
graphs in parallel and distributed computing, chapter 5: Loop Fusion and Loop
Scalarization, pages 89–96. Pitman, 1989.

[90] B. Woody, D. Dea, D. GuhaThakurta, G. Bansal, M. Conners, and T. Wee-
Hyong. Data Science with Microsoft SQL Server 2016. Microsoft Press, 2016.

[91] M. Zagha and G. E. Blelloch. Radix Sort for Vector Multiprocessors. In Pro-
ceedings of the 1991 ACM/IEEE conference on Supercomputing, pages 712–721,
1991.

[92] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. In 2nd USENIX Workshop on Hot Topics
in Cloud Computing, (HotCloud’10), volume 10, page 95, 2010.

[93] Y. Zhang, M. L. Kersten, and S. Manegold. SciQL: Array Data Processing Inside
an RDBMS. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, (SIGMOD’13), pages 1049–1052, 2013.

204

https://www.voltdb.com/wp-content/uploads/2017/03/hv-white-paper-voltdb-technical-overview.pdf
https://www.voltdb.com/wp-content/uploads/2017/03/hv-white-paper-voltdb-technical-overview.pdf

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Objectives
	Approach Overview
	Contributions
	Publications
	Thesis Organization

	Background
	Query Processing in Relational Database Systems
	Relational Model
	Database Storage
	Relational Algebra and SQL
	Database Query Processing
	User-defined Functions in Database Queries

	Array Programming Languages
	Intermediate Representations

	Outline of HorsePower
	HorseIR Design
	Front-end Design
	Back-end Design
	Built-in Functions
	Runtime Support

	HorseIR: the Core
	Introduction and Design Principles
	Program Structure
	Modules
	Methods
	Blocks and Scoping

	Types
	Base Types and Homogeneous Arrays
	Advanced Heterogeneous Data Structures
	A special type: wild-card

	Functions
	Vector-based Functions
	List-based Functions
	Database-related Functions
	Auxiliary Functions

	Program Statements
	Expression Statements
	Assignment Statements
	Control Statements

	Front-end: Compiling to HorseIR
	HorseSQL: SQL-to-HorseIR Translator
	Mapping Relational Algebra to HorseIR
	Projection
	Selection
	Join
	Aggregation
	Group By
	Order By

	Code Generation Strategy
	Optimizations in Generating HorseIR Code

	HorseMATLAB: MATLAB-to-HorseIR Translator
	Mapping MATLAB to HorseIR
	Example Code

	HorseUDF: UDF-to-HorseIR Translator

	Back-end: Execution on HorseIR
	HorseInterpreter
	HorseIR Compiler
	HorseCPU
	HorseGPU

	High-performance Built-in Function Library
	Basic Built-in Functions
	Important Database-related Functions

	Data Management

	Optimizations
	Early Optimizations
	Type and Shape Analysis
	A Motivating Example
	Type Propagation
	Shape Propagation
	Shape Analysis
	Shape Propagation Rules
	Conformability Analysis

	Code Generation Optimizations
	Automatic Loop Fusion
	Fusion Nodes
	Code Generation for Vectors
	Generating Code for Lists
	Further Fusion Opportunities

	Fusing with Patterns

	Cross Optimizations

	Evaluations
	Experiment Setup
	Experiments with a Database Query Benchmark
	Benchmark Overview
	Complete Suite Results
	Results on sable-intel
	Results on sable-tigger
	Discussion

	Effect of Optimizations
	Scalability Study
	Compilation Time

	Experiments with an Array Language Benchmark
	Experiment Results

	Experiments with a UDF Benchmark
	TPC-H with UDFs
	UDF Derived from Black-Scholes

	Experiments with a GPU Benchmark
	Black-Scholes Results
	Morgan Results
	Discussion

	Related Work
	Database Query Processing
	Traditional Query Engines
	Modern Query Compilers

	Array Programming Languages
	Data Analytics in Database Systems
	Compiler Optimizations

	Conclusions and Future Work
	Conclusions
	Future Work

	HorseIR Language Specification
	Language Grammar
	Value Ranges
	Built-in Functions

	Plan-to-HorseIR Translator Specification
	Bibliography

