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Abstract

The design and analysis of low frequency electromagnetic devices on digital comput-

ers using the Finite Element Method (FEM) are computationally expensive and time-

consuming. In the past decade, assiduous efforts have been dedicated to exploring and

exploiting the parallelism of specific FEM kernels with the aim of enhancing their per-

formance on multi-core processors. Despite having proved advantageous in promoting

the speed of specific kernels, how this approach globally impacts the time duration

required for the completion of the design process remains unclear, so is the question of

whether such an approach takes full advantage of the capacity of multi-core processors.

We attempted to overcome these caveats by applying a holistic approach that focuses

on the parallel performance of key FEM components, mainly mesh generation, matrix

assembly and Preconditioned Conjugate Gradient (PCG).

Our investigation generated three main findings. First, we show that two factors,

namely the degrees and exploitation techniques of parallelism differ among the kernels

of the FEM solver component using PCG. This fact leads to low thread utilization and

a waste of computational resources. Second, contrary to the notion that fine-grained

multi-threaded algorithms, albeit involving much synchronization, do not affect the

time efficiency of multi-core processors, we show that fine-grained multi-threaded al-

gorithms can in fact be time costly in certain cases involving multi-core processors,

particularly so when the ratio of computation runtime to synchronization runtime is

relatively small. Third, we found the performance level of algorithms to be inversely

related to the size of the problem, suggesting that using domain decomposition tech-

niques to solve smaller problems is likely to pay off.

These findings support the argument that instead of exploring parallelism in single

components, a holistic approach focusing on the global design process would be more

valuable.
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Abrégé

La conception et l’analyse de systèmes électromagnétiques de basses fréquences sur

un ordinateur numérique utilisant la méthode des éléments finis (MEF) est d’un point

de vue informatique un processus onéreux qui demande du temps. Dans la dernière

décennie, des efforts assidus ont été consacrés à l’exploration et l’exploitation du par-

allélisme des Kernel MEF spécifiques dans le but d’améliorer leur performance sur

des processeurs multi-noyaux. Même s’il est avantageux de promouvoir la vitesse de

Kernel spécifiques, comment cette approche impacte globalement la durée nécessaire

à l’achèvement du processus de conception reste floue, c’est de même pour la ques-

tion si cette approche profite pleinement des avantages des capacités du processeur

multi-noyaux. Nous avons tenté de surmonter ces réserves en appliquant une ap-

proche holistique qui concentre sur la performance parallèle des Kernel MEF, surtout,

la génération de mailles, l’assemblage matriciel, la multiplication de vecteurs matriciels

parsemés et des techniques de préconditionnement fondées sur une factorisation LU

inachevée.

Notre enquête a généré trois conclusions principales. Premièrement, nous mon-

trons que deux facteurs, à savoir les degrés et les techniques d’exploitation de par-

allélisme, différent entre les composantes Kernel du MEF solveur utilisant PCG. Ce

fait mène à une faible utilisation du “thread” et à un gaspillage de ressources de cal-

cul. Deuxièmement et contrairement à la notion que les algorithmes multi-thread de

granularité fines, bien qu’ils impliquent beaucoup de synchronisation, n’affectent pas

l’efficacité du temps de processeurs multi-noyaux, nous montrons que ces algorithmes,

peuvent en fait être coûteux en temps dans certain cas impliquant des processeurs

multi-noyaux, particulièrement lorsque le rapport d’exécution du calcul de la synchro-

nisation d’exécution est relativement faible. Troisièmement, nous avons trouvé que le

niveau de performance des algorithmes était inversement proportionnelle à la taille du
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problème, ce qui suggère que l’utilisation des techniques de “domain decomposition”

sera advantageux.

Ces résultats appuient l’argument selon lequel au lieu d’explorer le parallélisme

dans les composants individuels, une approche holistique centrée sur le processus de

conception globale serait plus utile.
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Chapter 1

The Design Process Using Computer Aided-
Design Software

Contents

1.1 Introduction and Thesis Motivation . . . . . . . . . . . . . 1

1.2 Thesis Scope and Outline . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Computer-Aided Design Analysis Using the Finite Ele-

ment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Problem Context and History . . . . . . . . . . . . . . . . . 11

1.6.1 The Design Process . . . . . . . . . . . . . . . . . . . . . . 11

1.6.2 The Design Process of Low Frequency EM Devices . . . . . 12

1.6.3 Design Analysis: From Batch Computing to Desktop Com-

puter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Introduction and Thesis Motivation

Computer-Aided-Design (CAD) software have been widely used by a large number of

manufacturing industries and serve as one of the essential components comprising the

design process of those industries. In general, a CAD software provides one or more

functionalities such as design creation, design modification, design analysis and/or

design optimization. The virtualization of these activities on a computer has exerted

tremendous impact on the design process, particularly in terms of reducing the time
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and costs associated with the design and manufacturing processes as well as allowing

engineers to achieve better outcomes when dealing with complex designs that would

prove rather challenging to elucidate using the traditional methods.

Many CAD software tools are available, with each designed for the purpose of per-

forming analyses in specific domains (i.e. electromagnetic analysis, structural analysis

and fluid dynamics analysis) or sub-domains (i.e. low frequency electromagnetic de-

vice analysis). Nowadays, a number of CAD systems include a set of tools that are

combined together to provide the ability to draw, modify, analyze and optimize a

model. Recent advances enabled the incorporation of many physics disciplines, known

as multi-physics field solver. The analysis stage, which serves as the core of a CAD

system and the design process, has been shown to be time consuming and has been

therefore undergoing increasing investigation and research. In this thesis, the analysis

stage is often referred to as “field solver”, “electromagnetic (EM) field analysis” or

“Finite Element Analysis” (FEA).

The ability of CAD software to infiltrate the design process and to fulfill some of

the functionalities that would otherwise require massive efforts from engineers can be

partially but not exclusively attributed to the progress in increasing the computational

power of digital computers since their creation in 1945. The constellation of factors

involved in the computer eco-system, such as the costs associated with software and

hardware, the variability of prices between hardware components, computational mod-

els (batch processing, time sharing, desktop computer) and mainly the market using

the computer (i.e. business market) all represent driving forces that have shaped the

computer industry and, as a result, the CAD software industry as well.

The introduction of the multi-core processor has been perceived by domain ex-

perts as changing the landscape of computing [1]. Massive research has been geared

towards investigating parallelism in methods and kernels that are currently used and

implemented in CAD software. Most currently used parallelization and optimization

strategies mainly involve the tuning of algorithms and modification of problem struc-
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tures to fit into a particular processor architecture (i.e. general purpose multi-core

processors, GPU and IBM Cell Broadband). This approach of fine-tuning kernels

suffers from many issues:

• First, the set of problems used as testing cases to report the runtime performance

of an algorithm, be it sequential or be it parallel, is not representative of the

typical problems arising in a real life EM design process in terms of size and

structure. Tuning algorithms is largely dependent upon those parameters (i.e.

problem size and structure), rendering their application on relevant problems

rather essential.

• Second, it remains unclear which stage of the analysis exerts the greatest impact

on CAD runtime. Time and storage complexity and the degree of parallelism

are all indicators of the impact exerted by a kernel on the analysis’ runtime.

However, efficient implementation and exploiting parallelism remain challenging

to achieve.

• Finally, a large amount of research has been conducted with the aim of speeding

up the analysis stage of a design process given that is the most time consuming

step. The problem with this approach is that it uses all the resources of a desktop

computer to accomplish one task at a time. This computational model is akin

to that of batch computing in which a user - or a design engineer in this context

- waits for an analysis step to finish before proceeding to the next step in a

design process. A more suitable computational model is the one that allows an

engineer to run, monitor and interact with multiple simulations simultaneously.

This computational model better maps a design engineer’s approach to a design

process onto a desktop computer.
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1.2 Thesis Scope and Outline

This thesis presents an overview of the numerical techniques used when designing and

analyzing low frequency electromagnetic devices on a desktop computer equipped with

a multi-core processor. Of particular interest is the Finite Element Method (FEM)

since it has been widely used in this particular domain for its robustness in dealing

accurately with a large set of problems arising in this field. The parallel performance

of iterative solvers such as Conjugate Gradient (CG) and Gauss-Seidel (GS) in addi-

tion to preconditioning techniques, sparse matrix-vector multiplication (SMVM), mesh

generation and matrix assembly are investigated. The aim is not to fine tune these

algorithms for a specific processor architecture, but rather we are interested in under-

standing their fundamental building blocks, algorithmic time and storage complexity

and their scalability using fairly efficient sequential and parallel implementation.

The investigation of each stage of the design process serves to illustrate the bot-

tleneck in each stage and the problems faced exploring and exploiting its parallelism.

The long term goal of this work is to show that other types of parallelism should be

explored beyond that of fine-grained parallelism, which has been a goal of much re-

search effort aiming at maximizing the utilization of multi-core processors. One such

type of parallelism is to use coarse-grained parallelism (or multi-tasking) on a multi-

core processor. In this type of parallelism, a design engineer explores simultaneously

multiple designs, or investigates multiple variations of the same design, or performs

multiple design analyses as part of the optimization process.

Experimental Test-Bed All codes used in this thesis work have been written in

C++, compiled using GNU g++ version 4.4.3, and executed on Ubuntu 10.04 (x86 64

Linux kernel version 2.6.32-28).

The experiments have been executed on two generations of quad-core processors

that fundamentally differ in terms of architecture and performance. The first processor
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is the Intel i7-860 processor (code name Lynnfield) which contains 4 cores (based

on Intel’s Nehalem micro-architecture) clocked at 2.8 GHz. Each core has a 32 KB

private Level-1 (L1) data cache, 256 KB private Level-2 (L2) cache and all cores

shares an 8 MB Level-3 (L3) cache. Furthermore, this processor uses Intel’s Hyper-

Threading technology where certain parts of a processor are duplicated to store more

thread state resources beyond the available physical resources. It makes the processor

logically appear to the OS as having more available threads (i.e. 8 threads instead of 4

threads). The processor is connected to the DDR3/1333 memory sub-system allowing

a maximum theoretical bandwidth of 21 GB/s.

The second processor is the dual-socket dual-core AMD Opteron 2214 processor

which is an older generation of multi-core system where each core is clocked at 2.2

GHz, has a 64 KB private Level-1 cache and a 2 MB private Level-2 cache. Each

socket has its own memory controller to the shared DDR2 memory at a theoretical

bandwidth/core of 10.6 GB/s (aggregate of 21.2 GB/s for the dual socket system).

Cores from different sockets communicate using AMD’s HyperTransport technology.

The remainder of this chapter (§ 1.4 - § 1.6) briefly introduces the Finite Element

Method, gives an overview of the design process and also a brief history of the evo-

lution of the digital computer and its impact in shaping CAD software. Chapter 2

investigates the time and storage complexity of mesh generation. Chapter 3 examines

implementation issues in the matrix assembly stage in FEM and also serves to gener-

ate the matrix test sets used in the remaining part of the thesis. Chapters 4, 5, and 6

target the solver stage in CAD. Particularly, Chapter 4 experiments with a newly

developed variation of Gauss-Seidel based solver while Chapters 5 and 6 investigate

the performance of parallel sparse matrix-vector multiplication (SMVM) and parallel

preconditioning techniques respectively since they constitute the basic building blocks

of the state-of-the-art Conjugate Gradient (CG) based solvers. Finally, Chapter 7

lists the contributions of this work and provides a brief conclusion and future work

suggestions.
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1.3 Contributions

The contributions of this thesis to the field of electromagnetic device design on a

desktop computer can be summarized as follows:

• We investigated the characteristics of sequential and multi-threaded algorithms

of FEM, in terms of parallel granularity (e.g. fine- and coarse-grained granu-

larity), synchronization overheads and cache performance, independently of a

specific multi-core architecture.

• A holistic approach globally investigating FEM “processing” stage using first, a

single matrix storage structure and second, matrix test sets relevant to typical

problems in terms of size and structure. This investigation generated three main

findings:

– Two factors, namely the degrees and exploitation techniques of parallelism

differ among the kernels of the FEM solver component using PCG. This

fact leads to low thread utilization and a waste of computational resources.

– Although fine-grained multi-threaded algorithms enhance locality of data

reference, we show that in cases where the ratio of the computation runtime

to the synchronization runtime is relatively small, fine-grained parallelism

proves inefficient in that it generates synchronization overheads that prevent

the reduction of the final runtime.

– The performance level of algorithms to be inversely related to the size of the

problem, suggesting that using domain decomposition techniques to solve

smaller problems is likely to pay off.

• We developed a new parallel iterative solver based on a combination of Gauss-

Seidel and Jacobi (i.e. Sliding Windows Gauss-Seidel). We show that despite

having not proven advantageous in reducing the time duration required to solve
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Ax = b, our method reduced the cache misses occurring upon accessing matrix

A.

1.4 Computer-Aided Design Analysis Using the Finite

Element Method

In general, analyzing a design using CAD involves the following three stages: pre-

processing, processing and post-processing (Figure 1.1). The pre-processing stage is

considered the most critical for a successful analysis during which the design engineer

creates a simplified and computationally feasible model of the physical design. For

instance, the designer may choose at the beginning to work with a 2-dimensional de-

sign or analyze only part of the device while assuming the effect of the other parts be

known. Once the real model is projected into an artificial simplified model, its geom-

etry is plotted using a CAD drawing tool, material properties are set and a suitable

mathematical representation is used to model the simplified design. Next, the process-

ing stage consists of the actual steps involved in the Finite Element Method, the goal

of which is solving the governing partial differential equations over the input geometry

and finally during the post-processing stage, the results obtained in the previous step

are inversely mapped onto the simplified model so as to present a meaningful set of

results to the design engineer.

1.5 Maxwell’s Equations

The time dependent Maxwell’s equations in their differential form are given by

∇×H = J +
∂D

∂t
(1.1)

∇.B = 0 (1.2)
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Figure 1.1: Stages of a design analysis using CAD.

∇× E = −∂B

∂t
(1.3)

∇.D = ρ (1.4)

Where E is the electric field, H is the magnetic field, J is the transport current

density, D the displacement field, B is the magnetic induction field or flux density, ρ

is the free charge density and t is time.

D, E, B, and J are related by the following equations:

D = εE (1.5)

B = μH (1.6)

J = σE (1.7)

where ε, μ and σ are respectively the permittivity, permeability and conductivity

of the material.
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When working with electrostatic or magnetostatic problems (i.e. non time depen-

dent), Maxwell’s Equations 1.1 and 1.3 reduce respectively to the following:

∇×H = J (1.8)

∇× E = 0 (1.9)

Replacing D in Equation 1.4 by Equation 1.5 gives

∇.(εE) = ρ (1.10)

When solving for the electric potential ϕ in electrostatic problems (non time de-

pendent), Equation 1.10 reduces to Poisson’s equation of the form:

−∇.(ε∇ϕ) = ρ (1.11)

where

E = −∇ϕ (1.12)

(ϕ is called the electric scalar potential).

When solving for the magnetostatic field, the magnetic flux density B is first

represented using

B = ∇× A (1.13)

where A is called the magnetic vector potential. Subsequently, Equation 1.6 (B =

μH) can be rewritten as

∇× A = μH ⇐⇒ H =
1

μ
∇× A (1.14)

Finally, replacing Equation 1.14 in Maxwell’s Equation 1.8 results in the magne-

tostatic equation to be solved of the form:

∇× (
1

μ
∇× A) = J (1.15)
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The solution of these differential equations, Equation 1.11 for electrostatic problems

and Equation 1.15 for magnetostatic problems, usually involves imposing a boundary

condition, which is equivalent to setting a known solution on the boundary of the

geometric domain or setting the values as constraints; these problems are commonly

referred to as “boundary value problems” (BVP). The analytical solution of 1.11 or 1.15

is not possible for the majority of boundary conditions. Instead, there are many

numerical techniques that can solve these second order elliptic differential equations [2].

The focus of this thesis will be on the Finite Element Method, which has been used

with a great success in the design of low frequency electromagnetic analysis because

of its ability to deal with complex geometric shapes.

The solution of partial differential equations over a domain using the Finite Element

Method usually involves the following steps.

1. Discretize the domain using finite elements; triangular elements in 2D and tetra-

hedral elements in 3D are usually utilized when analyzing low frequency electro-

magnetic devices.

2. Choose appropriate interpolation functions (otherwise known as shape functions

or basis functions).

3. Obtain the corresponding linear equations for a single element by first deriving

the weak formulation of the differential equation subject to a set of boundary

conditions.

4. Form the global matrix system of equations through the assembly of all the

elements.

5. Impose boundary conditions (Dirichlet, Neumann and Cauchy).

6. Solve the linear system of equations using linear algebra techniques.

7. Calculate and visualize the values of interest from the solution obtained in 6.
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Most research, since the introduction of the multi-core processor, has focused on

speeding up the computationally costly steps of the Finite Element Method by using

multi-threaded algorithms. However, the steps shown above are usually executed many

times within a larger context, that is a design process. Hence, the next section will

overview the design process and will also briefly review the impact of the progress of

the digital computer on the design process and an engineer’s work.

1.6 Problem Context and History

1.6.1 The Design Process

There are many definitions of the design process, where each reflects its author’s view

on the process based on observation or experience. For instance, in a general context

design can be viewed as:

...the creative process which starts from a requirement and defines a con-

trivance or system and the methods of its realization or implementation, so

as to satisfy the requirement. It is a primary human activity and is central

to engineering and the applied arts [3].

In the context of engineering design,

...it is the use of scientific principles, technical information and imagina-

tion in the definition of a mechanical structure, machine or system to per-

form pre-specified functions with the maximum economy and efficiency [4].

Those definitions do no accurately describe the commonly used approach when de-

signing low frequency electromagnetic devices, however. In general, a design process

can be defined in terms of the activities that are usually implicitly present in it; the

authors in [5] defined it to be an iterative, incremental, exploratory, investigative,

creative, rational (logic based), decision making and interactive process.
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A design model depicts the designer’s or scientist’s approach to a design problem.

A classification of these models leads to what is referred to as design strategy which can

be, for example, problem- or solution-oriented [6]. In the problem-oriented approach

emphasis is placed upon abstraction and thorough analysis of the problem’s structure

before generating a range of possible solutions. In the solution-oriented approach,

an initial solution is proposed (e.g. by relying on past experience or past solutions),

analyzed and then repeatedly modified as the design space and requirements are ex-

plored together. It has been identified that both strategies are usually used within

the same design process. For instance, in the preliminary steps of a design process,

the problem-oriented approach is used. The set of initial possible solutions are usually

modeled so that they have less complexity than the real design. It is common to use

2-dimensional analysis where many design details and effects are ignored. Since the

preliminary designs are less complex and are less computationally intensive than a full

3-dimensional analysis, it is possible to execute their analysis simultaneously while

sharing many design properties and features, such as the material properties or a part

of the geometry.

1.6.2 The Design Process of Low Frequency EM Devices

The design process of low frequency electromagnetic (EM) devices usually encom-

passes the following: 1) the transformation of the requirements into performance and

functional specifications, 2) the elaboration of cost, resource and other critical con-

straints, 3) the mapping and converting of specifications into feasible design solutions,

4) the analysis and optimization of the solution [7]. Designing a set of potential solu-

tions (step 3) and the analysis of each of them (step 4) are the most time consuming

engineering design tasks.

The development of a design solution has several distinct phases. Four of these

phases are problem structuring, preliminary design, refinement and detailing. Prelim-

inary design is a classical case of a creative, ill-structured problem where alternatives
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are generated and explored. Refinement and detailing are more structured and the

steps to be performed can better be described [8]. For instance, in designing low

frequency electromagnetic devices, the solution search space is first explored in the

preliminary stage by investigating many different designs that are thought to meet

requirements and constraints. At this phase, many details of the design are eliminated

and usually a 2-dimensional (2D) analysis is sufficient. In contrast, detailed design is

performed using 3-dimensional (3D) analysis where a more accurate electromagnetic

field calculation is required. The requirements of these 2 phases (i.e. the preliminary

analysis using a 2D model and the detailed analysis using a 3D model) pose different

computational requirements. The first (i.e. preliminary design) is a highly multi-

tasking activity; the latter (i.e. detailed design) is more computationally intensive

and time consuming. In a simplistic form, this design process can be depicted as in

Figure 1.2. In this approach the design engineer analyses and re-iterates over a design

(i.e. a prototype) until the sought device meets requirements and constraints. This

process is repeated many times, whether by changing the computational model for the

same design, exploring other design solutions, or changing parameters for a specific

design.

In the era of desktop computers equipped with a single core processor, it was

natural to think of the iterative, multi-phase design process as a being a sequence of

ordered stages where the field simulation (e.g. finite element analysis) is the most time

consuming stage. Therefore, the focus of research and companies working on finite

element analysis tools has been to speedup the analysis stage by devising numerical

techniques which efficiently map onto desktop computers, thereby reducing the design

waiting time. Implementing sequential algorithms using the Von Neumann program-

ming model on single core microprocessors has been convenient for developing scalable

and usable CAD software. With every new microprocessor and larger faster memory,

the same CAD system is able to solve more complex problems.

On a multi-core processor, designing parallel algorithms has been the main chal-
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Figure 1.2: A simplistic form of a design process.

lenge for software development in general and for CAD software development in par-

ticular. First, the sequential algorithms that have been developed in the past to run

efficiently on a single core microprocessor must be revisited to explore their amenabil-

ity to parallelism. Second, even if parallelism can be explored in these algorithms,

ideally we want them to scale as the number of processors/cores increases. Third, the

performance of parallel algorithms is highly dependent on the multi-core architecture

and its programming model, in addition to computer parameters such as the bus speed

and the memory subsystem performance. Most of the research in design analysis ex-

ploits every new architecture by fine tuning already existing algorithms. There is little

understanding of how these algorithms map onto current multi-core systems or what

is their expected performance when the architecture changes. Furthermore, even if

linear speedup is being attained on some algorithms or methods, the effectiveness of

such work in reducing the overall time for the design process is not clear.

The gain in a specific kernel or method of the design analysis, although it might

seem beneficial in its own context, might not reflect a great gain in the overall time
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of the design process. This means, while efforts have been focusing on optimizing a

parallel algorithm on a specific architecture, other potentially more serious bottlenecks

could be left. This problem, while not apparent on a processor with a few cores, could

be a bottleneck as the core number increases and other system properties change, such

as cache speed, bus speed, etc.

1.6.3 Design Analysis: From Batch Computing to Desktop Computer

Many physical phenomena in science and engineering, such as the analysis of elec-

tromagnetic devices, can be modeled by partial differential equations (PDEs). The

use of computational tools to solve partial differential equations has been of interest

for engineers even before the invention of the digital computer in early 1940’s (i.e.

Colossus and the ENIAC1). It was common to use analog computers such as the dif-

ferential analyzer in the 1930’s - even until well into the 1970’s - for the solution of

differential equations arising in the field of electrical engineering [9] or the use of a

mechanical computer which uses springs, gears and other devices to solve structural

problems [10]. The differential analyzer was an electromechanical device which was

used by the military to solve the equations which for the motion of a projectile were

readily adaptable to these machines. However, the need for faster and more accurate

calculations compelled them to fund the creation of a digital computer [11]. Dur-

ing the 1950’s and soon after the introduction of the digital computer, the numerical

techniques field of study became popular and ultimately led to the introduction of

the Finite Element Method [12, 13]. It is worth noting that during the early days of

numerical computations, developed methods used more computations than storage;

this is in contrast to the techniques that had been used before the invention of the

digital computer (i.e. the differential analyzer) [13].

The ENIAC was created in 1945 to perform mathematical computations faster than

previously available analog computers by taking advantage of electronics technology

1ENIAC: Electronic Numerical Integrator And Computer.



16

(vacuum tubes). It was not a memory based stored program computer, and setting it

up for a new job involved reconfiguring the machine by means of plugging and switch-

ing [14]. In 1949, UNIVAC I (UNIVersal Automatic Computer I) was created, setting

the principles of an instruction based computer. Instructions were saved in memory,

rather than being implemented through hard wiring. A few years afterwards, Von

Neumann demonstrated the usefulness and generality of these computers in solving

many problems, such as weather prediction, by devising the mathematical model of

the phenomenon [15].

A typical process for running finite element analysis on these computers was for the

design engineer to manually draw and mesh a model. Without graphics input/output

terminals, this step was very error-prone. A coding form with the applicable data

generated from this step would subsequently be given to a keypunch operator who

produced a deck of punched cards to be submitted for execution in a batch mode.

Upon completion, the design engineer would use the potential solution produced by the

computer to manually calculate the fields of interest and plot the data. It was obvious

that an end to end solution was needed for this operation to be appealing for business

aimed at saving man hours in designs, and this includes a better computational model

(i.e. time sharing) and graphics input/output terminals [10]. Until a better system

was in place, the finite element analysis using a digital computer remained a domain

of research in labs and universities (i.e. General Electric, McGill University, etc).

A key hardware development was the introduction of the IBM System 360 product

line in 1964 which included the Model 2250 refresh graphics terminals. Computers

based on this architecture were called mainframes and were used for data intensive

input/output processing. The IBM 360 architecture was successful since it had used

microcode in its processor technology leading to programs written for subsequent IBM

360 based architecture computers being backward compatible [16]. Many CAD soft-

ware tools emerged in this era and it was customary for engineering companies to lease

mainframes to perform analysis. There were many remaining issues in this computa-
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tional model. First, the price to lease a CAD seat was still expensive. Second, CAD

companies had to develop their own code to deal with graphics input/output.

To further reduce the costs incurred by using mainframes, minicomputers started

to emerge in the late 1960’s and early 1970’s. These computers were cheap enough

to be owned and hosted by engineering firms. Furthermore, they used a time sharing

computational model, which is more effective for problem-solving situations than the

batch computing model [17]. In this model users could simultaneously access the

computer via terminals. Meanwhile (i.e. after the introduction of the minicomputer),

operating systems (OS) included more functionality, such as open GL, X-Windows and

MOTIF, to deal with graphical Input/Output (I/O). Incorporating pre-processing and

post-processing in finite element analysis tools and the move from batch processing to

a time sharing computation model,in addition to decoupling the hardware from the

software by incorporating more functionalities from vendor software into the OS, were

all key points in turning CAD systems into usable and essential tools used in the design

process of companies [18, 19]. Furthermore, the decreasing price of storage relative to

processing price had changed the way algorithms were written. CAD companies which

did not cope with the changes that had been occurring since the invention of the first

digital computer did not survive [10].

The introduction of the microprocessor, the Intel 8008 in 1971 and later the Intel

8080 in 1975, was a turning point in the computer industry. Personal computers or

desktop computers were widely available, minimizing the need for minicomputers as

the microprocessor technology progressed. The implications of the desktop computer

on the CAD industry are notable in its ability to provide high user-computer interac-

tion at an affordable price. It released engineering firms and CAD software firms from

the high cost of previous generation computers due to its decentralized computational

model.

The discussion so far has emphasized the importance of the computational model

(time sharing), the use of graphics terminals for input/output and the dropping price
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of computers as determining factors in shaping CAD software. This has served as a

compelling reason to investigate the bottlenecks in current techniques used to leverage

the use of desktop computers equipped with multi-core processors in order to show

that there are many factors that support the need of a CAD software that work beyond

the traditional batch computing paradigm.
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Chapter 2

Finite Element Method Mesh Generation
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2.1 Introduction

The “processing” stage of the field analysis of an EM device using the Finite Element

Method has attracted much attention due to its computationally intensive nature. It

includes mesh generation, matrix assembly and the solution of linear equations. Mesh

generation serves as the focus of this chapter, which begins by reviewing a state-of-

the-art technique used to generate a quality mesh (i.e. Delaunay mesh generation

using incremental point insertion) by explaining each kernel involved in the sequential

mesh generation using this technique and the computational complexity associated

with each of them. Next, an optimized mesh generator developed by Shewchuk, called

Triangle [20], will be analyzed using Intel’s Vtune Analyzer [21] to investigate its
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cache performance and the number of processor cycles spent in each kernel. Finally,

a discussion on parallel mesh generation techniques will be presented.

2.2 2D Mesh Generation

Mesh generation refers to the technique utilized to discretize the geometric domain

Ω into non overlapping elements. In a 2D low frequency EM analysis, triangular

shapes are commonly, but not exclusively, used as the basic element, particularly when

irregular regions or domains are at play. Other element shapes are also possible (e.g.

rectangles). This thesis will refer to the vertices and sides of triangles as nodes and

edges, respectively. Figure 2.1 shows an example of an initial 2D mesh generation of

a brushless direct-current (DC) motor model using triangular elements. The triangles

share edges and nodes such that Ω =
⋃ne

i=1 Ei, where E denotes an element, and ne

denotes the number of elements.

Figure 2.1: Initial 2D mesh of a brushless DC (BDC) motor. The model was
obtained from the examples set provided by MAGNET (2D/3D electromagnetic field
simulation software by INFOLYTICA, www.infolytica.com) [22].

The discretization of a domain is a specific case of a more general problem encoun-
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tered in computational geometry, i.e. that of triangulation. Given a set of vertices

P = p1, p2, ..., pn, the triangulation T (P ) denotes the set of non overlapping triangles,

with corners on the input vertices, such that all vertices are covered. There can be

exponentially many triangulations that can be obtained from a point set P with widely

varying appearance. Mesh generation, on the other hand, is a triangulation problem

where quality measures are imposed on the shape of triangles, size of angles, edge

lengths and area (size) of a triangle, rendering it a rather challenging problem. Of

all domains utilizing meshing techniques (e.g. graphics, solid modeling), generating

meshes for numerical techniques such as FEM is perhaps the most challenging given

the stringent requirements it imposes on the mesh quality [23].

2.3 Delaunay Triangulations

The Delaunay triangulation DT (P ), introduced by Delaunay [24] in 1934, of a set of

vertices P = p1, p2, ..., pn is a triangulation T (P ) with a set of criteria imposed on

the quality of the triangles. One such criterion relates to maximizing the minimum

angle of every triangle, which has proven to be quite advantageous in terms of working

on meshes. In order to impose such a quality measure on triangulating a point set

P , the “inCircle” property, as illustrated in Equation 2.1, has to be preserved for

every triangle; each circumscribing circle of a triangle’s vertices should not contain a

vertex from another triangle. If inCircle(a, b, c, p) < 0 then p would fall within the

circumscribing circle of the triangle�(a, b, c), thereby violating the Delaunay criterion.

Figure 2.2 illustrates a Delaunay triangulation of 5 vertices.

inCircle(a, b, c, P ) = det

⎛
⎜⎜⎝

ax ay a2x + a2y 1
bx by b2x + b2y 1
cx cy c2x + c2y 1
px py p2x + p2y 1

⎞
⎟⎟⎠ > 0 (2.1)
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(a) (b) (c)

Figure 2.2: Initial Delaunay triangulation: Each triangle complies with the
Delaunay criterion. The circumscribing circle of each triangle does not contain a
vertex from another triangle.

Many techniques to create a Delaunay triangulation from a set of points are avail-

able, mainly the divide-and-conquer [25], plane-sweep [26] and incremental point in-

sertion [27, 28, 29] ones. All these algorithms have been proved to have a time com-

plexity of O(n log n) [30]. Shewchuk [20] has compared efficient implementations of

these techniques and found that the divide-and-conquer to be superior to all on the

DEC 3000/700 with a 225MHz Alpha processor. The performance of incremental point

insertion is poor, as most of its time is dedicated to “point location”. Nevertheless,

incremental point insertion algorithms are advantageous in that they are robust and

highly amenable to mathematical proof (algorithm termination and guaranteed mesh

quality).

2.4 Quality Mesh Generation using Incremental Point

Insertion

Incremental point insertion algorithms start with performing a simple triangulation of

a set of p points and continue to insert points and restructure the triangles following

each insertion to maintain the Delaunay properties. In order to attain a quality mesh

using the incremental point insertion technique, two primary steps are crucial. The

first step involves creating an initial mesh using a pre-defined set of input points

and edges. The input usually defines the boundary and the shape of the object being
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meshed in addition to defining additional points within that object. The second major

step is termed the Delaunay Mesh Refinement and involves adding additional points,

referred to as Steiner points, into the triangulation so that the final mesh meets to

user’s requirements in terms of triangle sizes (areas) and triangle quality (minimum

angle), while at the same time maintaining the Delaunay properties. The resulting

mesh typically contains n nodes, where n � p. In both steps, inserting a point requires

a restructuring of the mesh to maintain Delaunay criterion as illustrated in the next

section.

2.4.1 Structural Update

The structural update is defined as the set of operations aimed at re-triangulating part

of the mesh to preserve the Delaunay criterion following the insertion of a given point.

This can be performed using either Lawson’s [27] edge flip restructuring algorithm or

Bowyer/Watson’s [28, 29] cavity restructuring algorithm.

(a) Edge e non Delaunay compliant (b) Edge e is flipped to yield e′ which

is a Delaunay compliant edge

Figure 2.3: Edge flip algorithm: (a) If the circumscribing circle of a common edge
e between 2 triangles (Δabc and Δacd) contained a vertex of the mesh, then the edge
would not comply to Delaunay. (b) Eliminating this edge and subsequently connecting
vertices that are not yet connected to the quadrilateral formed by the triangles Δabc

and Δacd would yield a Delaunay compliant triangulation.

Lawson’s “edge flip” functions by “flipping” edges that are non Delaunay compliant

as illustrated in Figure 2.3. In (a), the common edge e between the two triangles, Δabc
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and Δacd, is non-Delaunay compliant since its circumscribing circle contains a vertex.

As shown in Figure 2.3b, eliminating this edge and subsequently connecting vertices

that are not yet connected of the quadrilateral formed by the triangles Δabc and Δacd

would yield a Delaunay compliant triangulation. Algorithms utilizing this technique to

re-triangulate meshes follow a point’s insertion function in the following manner: upon

the insertion of any point, a depth-first-search (DFS) or a breadth-first-search (BFS)

is conducted on all of the surrounding triangles and edges that are non-Delaunay

compliant are “flipped”. For instance, given the Delaunay triangulation previously

shown in Figure 2.2, a point that is inserted into triangle number 3 is connected to

each vertex in that triangle as shown in Figure 2.4a. In this example and following

the point insertion, two edges were “flipped” so that the triangulation maintains the

Delaunay criterion. The worst case scenario would occur when such an insertion affects

all existing triangles, that is when all edges of the triangulation have to be “flipped”.

An upper bound of time steps required in such a case is O(k), where k is the number

of triangles at the time of insertion. However, experimental findings have shown that

random point insertions would only affect a few edge flips, thus rendering restructuring

upon each point insertion to be easily considered to have a time complexity of O(1)

provided affected triangles have been found.
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2 
3 

1 

(a) Steiner point is in-

serted in the center of

the circumscribing circle

of triangle 3.

(b) Marked edge is non-

Delaunay compliant.

(c) The non-Delaunay

compliant edge is

“flipped”.

(d) Marked edge be-

comes non-Delaunay

compliant.

(e) The non-Delaunay

compliant edge is

“flipped”.

Figure 2.4: Lawson’s incremental point insertion: (a) a new Steiner point is
inserted in the center of the circumscribing circle of triangle 3 (i.e. a case of mesh
refinement). (b) each vertex of the containing triangle is connected to the Steiner
point. (c) (d) (e) show 2 edges that are “flipped” to maintain the Delaunay criterion.

Bowyer/Watson [28, 29] provided another restructuring technique in order to main-

tain Delaunay criterion upon point insertion. In this method, and as illustrated in

Figure 2.5, when a point is inserted into a triangle (triangle 3 in this example), trian-

gles, whose circumscribing circle contains this point, get destroyed (triangle 2 and 3,

but not triangle 1). Each of the vertices of the polygon cavity created from destroying

non-Delaunay compliant triangles becomes connected to the newly inserted point.
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(a) Insertion location of a

point.

(b) Two triangles lost

their Delaunay criterion

due to the newly inserted

point.

(c) The common edge(s)

of the non Delaunay tri-

angles due to a new point

insertion are eleminated

Figure 2.5: Bowyer/Watson incremental point insertion: (a) A pre-defined
point p is inserted into the triangulation (i.e. the case of initial mesh generation). (b)
Upon locating the triangle containing p (in this case triangle 3), the triangles whose
circumscribing circle contains p are destroyed, in this case triangles 2 and 3. (c) then
the newly inserted point is connected to each vertex of the cavity created.

2.4.2 Initial Mesh Generation

One of the major challenges encountered in the initial mesh generation is “point lo-

cation”. This is mainly due to the fact that the points to be inserted are already

pre-defined (i.e. their x and y coordinates are already set) on the geometry prior to

starting the triangulation. The challenge is related to identifying the triangle which

contains the point at the time of its insertion. If “point location” is implemented in

a naive way, a search over all triangles would be required for each point insertion (i.e.

O(n) for each point insertion) where for each triangle the counter-clock-wise (CCW)

test (Equation 2.2) is performed to determine whether or not a given point falls within

that triangle.

The Counter-Clock-Wise (CCW) test: in order to determine whether or not a

pi falls within the triangle (p1, p2, p3) using CCW, we need only obtain the directions

of rotation along the triplets (p1, p2, p), (p2, p3, p) and (p3, p1, p). The point is inside if

and only if the three directions are positive: D12 > 0, D23 > 0 and D31 > 0.
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D12 =

⎛
⎝ 1 x1 y1

1 x2 y2
1 xi yi

⎞
⎠ D23 =

⎛
⎝ 1 x2 y2

1 x3 y3
1 xi yi

⎞
⎠ D31 =

⎛
⎝ 1 x3 y3

1 x1 y1
1 xi yi

⎞
⎠ (2.2)

Many efficient algorithms have been devised to achieve n point insertions inO(n log n)

time [31, 32, 30]. One such algorithm is related to using a Directed Acyclic Graph

(DAG) to represent the history of every triangle that has been created throughout

the Delaunay triangulation. Each node in this graph represents a triangle [30]. The

root node represents the first triangle containing all p points to be inserted. When

a triangle is split into multiple triangles, its node is kept in the graph, gets labeled

as “destroyed”, and points to the nodes corresponding to the newly created triangles.

Despite the fact that a history of all created triangles is kept, the storage complexity

of the DAG is O(n) [33].

The construction of the DAG data structure is illustrated in Figures 2.6, 2.7 and

2.8. In Figure 2.6a, a node is inserted in the first triangle (triangle 1) which contains

all the p points to be inserted in the initial mesh generation process. The new point

divides the triangle into 3 triangles (numbers 2, 3 and 4) and the node in the DAG

corresponding to triangle 1 are grayed out to highlight the fact that its corresponding

triangle has been “destroyed”. The same process is repeated when a node is inserted

into triangle 4 (Figure 2.6b).

2 3 

4 

1 

2 3 4 

(a) New point is inserted in triangle

1.

5 6 7 

1 

2 3 4 2 3 

6 
7 

5 

(b) New point is inserted into triangle 4.

Figure 2.6: Point location using Directed Acyclic Graph (1): (a) Showing the
DAG after inserting a point in the main triangle which contains all the points p to be
inserted. (b) Showing the DAG after inserting a point into triangle 4.
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Restructuring the triangulation after inserting a point into triangle 4 is accom-

plished as such: assuming that the left edge of the main triangle is “constrained” or

a boundary segment (i.e. cannot be “flipped” or removed), then it is split at its mid-

point since its circumscribing circle contains vertex 4 causing triangle 2 to be divided

into triangle 8 and triangle 9 (Figure 2.7a). Vertex 4 is said to be encroaching upon

a boundary segment [34]. Furthermore, in order to maintain the Delaunay criterion,

Figure 2.7b shows an edge being flipped which causes triangle 5 and triangle 9 to be

replaced by triangle 10 and triangle 11.

1 

2 3 4 

5 6 7 8 9 

8 

3 

6 
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5 
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(a) The left edge of the main

triangle is split.
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3 

6 
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5 
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(b) Edge “flipping” to maintain Delaunay

criterion.

Figure 2.7: Point location using Directed Acyclic Graph (2): (a) Many tri-
angles lost their Delaunay criterion after a new point was inserted into triangle 4.
Assuming that the left edge of the main triangle is “constrained” (i.e. cannot be
“flipped” or removed), then it is split in it mid-point since its circumscribing circle
contains another vertex (vertex 4). Triangle 2 is replaced by triangles 8 and 9. (b)
Edge is flipped to maintain the Delaunay criterion causing triangles 5 and 9 to be
replaced by triangles 10 and 11.

Next, the process of traversing the DAG data structure to locate a point inserted

into triangle 11 is illustrated. Depending on the exact location of that point in triangle

11, there are two paths that can be traversed when locating the triangle. Those paths

are shown in Figure 2.8a and Figure 2.8b. In each possibility, the maximum nodes
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that are visited and tested using the counter-clock-wise test are highlighted in red.

Initial Delaunay triangulation of p points is not a time consuming process relative

to the time it takes to generate a quality mesh of n points since p 	 n, despite

the fact that “point location” performed for each of the p points during initial mesh

generation is more time consuming than when inserting a point upon refinement. Most

mesh generation time is usually spent in refining a mesh to meet a quality measure as

will be explained in the next section.
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2 3 4 

5 6 7 8 9 
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(a) Locating a point inserted

into triangle 11.
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11 

1 

2 3 4 

5 6 7 8 9 

10 11 

(b) Locating a point inserted

into triangle 11.

Figure 2.8: Point location using Directed Acyclic Graph (3): (a) Showing the
traversed nodes in the DAG (in red) to locate the triangle containing a newly inserted
point. Despite that in cases (a) and (b) the point is in triangle 11, the traversed DAG
path is different in each case. The location of the point relative to a destroyed triangle
(i.e. triangle 2) affects the path to be followed.

2.4.3 Delaunay Mesh Refinement

Creating a Delaunay triangulation from a set of points, p, does not result in a quality

mesh. Triangles may still be poorly shaped due to small or large angles despite the

fact that Delaunay triangulation maximizes the minimum angle. Small angles cause

poor conditioning and large angles cause discretization error. Other requirements for

a quality mesh are to impose user requirements on the area of the triangles and the
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ability to generate more elements (smaller elements) in regions where higher accuracy

is needed.

Generating a quality mesh by refinement of an initial Delaunay based triangulation

can be completed using Chew’s [35, 36] and Ruppert’s [37] algorithms. These algo-

rithms share many similarities, they tackle poorly shaped triangles or triangles that do

not fit into the user requirement by inserting Steiner points in the circumcenter1 of bad

triangles and re-triangulating, either by using Lawson’s edge flip or Bowyer/Watson

cavity expansion, to maintain the Delaunay criteria. In those algorithms, a quality

measure of a bad triangle is its B=circumradius2-to-shortest edge ratio.. Chew’s algo-

rithms [35, 36] consider a triangle with a B larger than 1 to be bad and guarantees a

mesh which will not have triangles with angles smaller than 30◦. Ruppert’s algorithm

sets this bound to be
√
2 leading to a mesh with no angles less than 20.7◦.

Shewchuk has implemented an optimized sequential 2D mesh generator that he

called Triangle [20] based on Chew’s and Ruppert’s algorithms, albeit with modifi-

cations [38]. It is considered by many to represent the fastest sequential 2D mesh

generator software and is used as a baseline to evaluate the speedup of parallel mesh

generators. Table 2.1 shows the duration in seconds required to refine an initial mesh

that has 12,032 vertices (23,968 triangles). The same mesh has been refined by impos-

ing different requirements on the maximum triangle area size. The most refined mesh

consumed a duration of approximately 27 seconds to be generated and has 9,202,654

nodes, suggestive of a large problem size (2GB of memory).

Shewchuk’s Delaunay mesh generation implementation in Triangle considers a tri-

angle to be the basic building block of a mesh; this is in contrast to an alternative

representation which considers an edge to be the basic building block of a mesh. Each

triangle is represented using 6 pointers. Three of which point to the triangle’s vertices

and 3 to the neighboring triangles. A search over neighboring triangles in this case is a

1Circumcenter of a triangle is the center of its circumscribing circle.
2Circumradius: the radius of the circumscribing circle
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depth-first-search [39] (or a breadth-first-search [40]) [41] that starts from the current

triangle, investigates neighboring triangles and so on. A total estimate of memory

required to represent a mesh, not taking into account the data structures required by

the algorithm (i.e. tree and queue data structures) is estimated in Equation 2.3.

Memory(bytes) = [number of nodes × (2 + k) × sizeof(double)]
+ [number of triangles × 6 × sizeof(pointer)]

(2.3)

where k is the number of attributes to be annexed to each node (e.g. material

properties).

Table 2.1: Delaunay mesh refinement times of an initial mesh (12,032 vertices and
23,968 triangles) of a brushless DC motor using Shewchuk’s Triangle 2D mesh gener-
ator.

Maximum
triangle
area size (mm2)

Number
of vertices

Number
of triangles

Time on i7-860
(seconds)

Time on AMD
(seconds)

0.01 736,637 1,470,964 0.898 2.155

0.005 1,473,761 2,944,521 1.816 4.322

0.002 3,681,377 7,357,461 4.696 9.886

0.001 7,361,041 14,715,479 8.939 20.770

0.0008 9,202,654 18,397,332 11.973 27.254

Next, the performance of Triangle was analyzed using Intel’s VTune Analyser [21]

for the case when the initial mesh of the brushless DC motor which contains 12,032

nodes (Figure 2.1) was refined to contain 9,202,654 nodes. The chart in Figure 2.9

shows the distribution of execution cycles spent on different kernels of the application.

Inserting a point, which involved searching for the triangles affected by the insertion

and re-triangulating (using Lawson’s edge ”flipping” technique) and in addition testing

for the “inCircle” property exhausted the largest amount of the application’s execu-

tion cycles (insertvertex=27.16%, ”incircle”=27.41%). Such a result has also been

reported in [40] which found that re-structuring, using the Bowyer/Watson cavity ex-

pansion technique, accounts for 58% of the mesh generation time. Despite that, those
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kernels exhibited data access locality since only 18% of the total application execution

cycles were spent retrieving long latency data (DRAM) due to misses on the last level

cache (Level-3) of an Intel i7-860 processor. On the other hand, kernels aimed at identi-

fying (testtriangle), queuing(enqueubadtriang), and dequeuing(dequeuebadtriang) bad

triangles suffered from close to 80% of L3 cache misses.

3.58%
3.85%

4.92%
2.34%

9.71%

4.26%16.77%

27.41%

27.16%

 insertvertex
 incircle
 testtriangle
 splittriangle
 enqueuebadtriang
 dequeuebadtriang
 counterclockwise
 findcircumcenter
 maketriangle

 

 

Figure 2.9: Shewchuk’s Triangle performance evaluation. Distribution of
workload of a Delaunay refinement of an initial mesh of 12,032 nodes. The maximum
triangle area of the refined mesh was set to 0.00008mm2.

2.5 Parallel Mesh Refinement

Parallel mesh refinement aims at dividing the geometry into sub-domains and at the

simultaneous insertion of multiple Steiner points in each sub-domain. As discussed

earlier in § 2.4.1, each of the inserted points causes structural updates on one triangle or

more. Challenges are encountered when multiple point insertions affect common trian-

gles as illustrated in Figure 2.10. In this example, assuming that the Bowyer/Watson

cavity expansion algorithm is performed, the cavity expansion given the insertion of p1

has destroyed both triangles 1 and 2, whereas, the cavity expansion given the insertion

of p2 has destroyed triangles 2 and 3. The overlapping between cavities given triangle

2 being shared has been shown to be preventative of the simultaneous insertion of p1

and p2. Many techniques aimed at overcoming this barrier have been suggested. A
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survey of these techniques and the research progress up until 2005 can be found in [42].

In this survey, the author distinguished between two types of domain decomposition:

continuous and discreet domain decomposition. In the former, the geometry of the

prototype under investigation is broken down into sub-problems. In the latter, the

coarse mesh of the main problem is divided into sub-domains. The author has further

identified various parallel meshing techniques based on the coupling levels between

sub-domains (i.e. tightly coupled, decoupled and partially coupled domains)

p1 
p2 

1 

2 

3 

4 

(a) Edge e non Delaunay compliant

p1 p2 

(b) Conflicting cavities

Figure 2.10: Conflicting 2 points insertion into a mesh. The cavity created
from destroying Δ1 and Δ2 after inserting p1 overlaps with the cavity created from
destroying Δ2 and Δ3 after inserting p2.

Tightly coupled methods treat sub-domains as one whole entity even if they are

distributed across multiple processors (in the case of a multi-processor machine). Upon

the simultaneous insertion of Steiner points into each of the sub-domains, any form

of subsequent restructuring of a set of triangles would be permitted to propagate

to the other domains unless they are not restructuring the same triangles, in which

case conflicts between expanded cavities would arise. Commonly used tightly coupled

parallel Delaunay mesh generators utilize an “optimistic” approach, where multiple

points are concurrently inserted into the mesh without performing any pre-analysis of

a cavity conflict possibility [43, 44, 45]. Typically in an optimistic approach, threads

wishing to modify the locked structure must either acquire locks on each of the triangles

or vertices they wish to modify throughout the restructuring process. However, if a
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triangle or vertex was already locked by a thread then other threads must either

rollback their operations and insert points in different locations or wait for locks to

be released by the thread holding them. Either way, waiting to acquire a lock or

rollbacks, a loss of computational resources is unavoidable which is the reason why

many argue that tightly coupled methods are less efficient than are other parallel

meshing techniques (i.e. decoupled and partially coupled methods) particularly on

multi-processor machines where such fine-grained synchronization is computationally

expensive. Despite that, published results have shown that good performance can

be attained on both platforms (multi-core and multi-processors) provided there is an

efficient implementation of rollbacks and synchronization processes. For instance, on

a cluster of workstations (16 processors), six times speedup has been attained when

refining a 3D mesh where 20% of the processing time was spent on frequent polling

for asynchronous messages arriving from other domains. Kulkarni [44] has achieved a

three times speedup on four processors. Further, Batista [45] has modified an efficient

sequential 3D mesh generator (CGAL [46]) and was able to attain a speedup of five on

an eight cores processor. Chrisochoides and Nave [47, 48] reported O(log p) speedup

on p processors, where p � N and N is the number of sub-domains.

Decoupled mesh generator methods have been shown to be both advantageous as

well as appealing to CAD software in that they enable reusing the code of sequential

mesh generators. These methods rely upon continuous domain decomposition (or

geometric domain decomposition) in which the geometry is divided (prior to meshing)

into sub-domains, each of which is meshed and independently refined through the

use of sequential mesh generators. The interfaces between sub-domains, known as

“separators”, consist of triangles that are constructed prior to meshing and are made

Delaunay compliant. Separators should appear in the final triangulation when sub-

domains are joined together [49], a condition that is difficult to maintain when the

geometry under investigation is complex, making this method impractical in real life

problems. One of the reasons a separator cannot appear as is in a the final triangulation
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is that the angles created between the separator and the mesh are very small, producing

a bad quality mesh and in such a case, the separators are referred to as being Delaunay

inadmissible. Linardakis [50] obtained super-linear speedup by using parallel 2D mesh

generator based on decoupled methods. Also, he has laid out criteria that separators

should meet in order to be able to produce a quality mesh.

The partially decoupled method has been the method of choice since its emergence

as it utilizes discrete domain decomposition that takes place following the initial mesh

generation. Further, this method sets clear boundaries separating domains by choosing

triangle edges. Under this approach, the problem is reduced to one which is similar to

a constrained Delaunay triangulation (CDT) technique [51]. In CDT, it is not possible

for the constrained edges to be flipped or destroyed throughout the creation process

of the cavity, albeit they are susceptible to splitting (i.e. the case of an encroached

edge). Whenever a sub-domain splits an edge boundary, it has to communicate the

end nodes of the edge to be split to other sub-domains that are sharing the constrained

edge. Chernikov [52] implemented an asynchronous communication scheme between

sub-domains in which he aggregated multiple split messages into one to reduce com-

munication overhead on the condition that the order of splitting is maintained. He

reported O(p) speedup using this method where more than one billion triangles were

generated in less than 3 minutes on 100 processors.

An example of a mesh generator that combines both partially decoupled and tightly

coupled methods is the Parallel Constrained Delaunay Mesh (PCDM) [40, 53]. In

PCDM, coarse-grained parallelism is explored by decomposing a discrete mesh into

sub-domains to run on multi-processors. The sub-domains are partially decoupled

where only split messages are exchanged between sub-domains as explained above

and illustrated in Figure 2.11a. Medium-grained parallelism is explored within each

sub-domain using the optimistic approach in inserting multiple points as depicted in

Figure 2.11b. Furthermore, since cavity expansion accounts for 58% of the software

runtime, the author used multiple threads in order to work on expanding each of the
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cavities (i.e. fine-grained parallelism).

(a) Coarse-grained parallel mesh

generation

(b) Medium-grained parallel mesh

generation

Figure 2.11: Multigrain parallel mesh generation: (a) In coarse-grained paral-
lel mesh generation, Steiner points are inserted in each sub-domain simultaneously.
Sub-domains sharing edges need to communicate only when an a constrained edge is
split. (b) medium-grained parallelism works when multiple points are inserted into the
same sub-domain. Fine-grained parallelism is explored using more than one thread to
expand the same cavity. Reprinted with permission [40].

Another parallel mesh generation approach that is distinct from the above discussed

ones involves the pre-analysis of Steiner point independence and subsequent insertion

of points among which a conflict would be implausible. This approach appears to

be effective as well as valid given the high degree of parallelism exhibited by mesh

refinement [40]. Antonopoulos et al have conducted statistical analysis to estimate

the lower and upper bounds (i.e. degree of parallelism) of the number of concavities

amenable to concurrent expansion while the number of processors increased from 32 to

512. The authors reported that the extent of parallelism yielded was sufficient to enable

its execution on 512 threads. The only exception for that would be the case when the

refinement process reaches the last 1,000 cavities and most of the mesh conforms to

user’s set quality measures. Further, the author found that regardless of the structure

and size of the problem, the average number of triangles in a given cavity approximates

five. This argument also extends to three other distinct problems, each of which was

refined to 1 million and 10 millions triangles. Spielman et al [54, 55, 56] performed
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investigations, that serve as examples of parallel mesh generation, that explore the high

degree of parallelism in mesh generation. Steiner points were inserted concurrently

if their corresponding circumcircles do not contain each other centers. The resulting

parallel algorithm achieved O(logm) on m processors, where m is the output size.

2.6 Concluding Remarks

The state-of-the-art mesh generation research discussed in this chapter as well as

the experiments on Triangle provide compelling evidence supporting the performance

of sequential Delaunay mesh generators as key in attempting to elucidate efficient

parallel mesh generators, regardless of the nature of the utilized parallel techniques.

The performance of sequential Delaunay mesh generators is largely dependent upon

the underlying data structure that is used to store the mesh.

Generally, the mesh generation process has proven to be time efficient; efficient

sequential implementation has shown that it is feasible for mesh problems that are

considered to be large on a desktop computer in a duration that does not exceed one

minute. Clearly, such a duration, relative to the time duration consumed throughout

the overall design process, proves to be quite short [57]. On multi-processor machines,

parallel mesh generation has shown to scale even for a large number of processors.

Multi-core processors are considered advantageous when tightly coupled techniques

are utilized. This is primarily due to the fact that these methods involve extensive

use of synchronization primitives and rollbacks. Moreover, fine-grained parallelism

has been explored on a multi-core processor using dedicated multiple threads for the

purpose of expanding each cavity upon points insertions. However, the decoupled

technique (i.e. coarse-grained parallelism) and parallel mesh generation methods that

pre-analyze the domain to insert independent Steiner points do not take advantage of

the shared cache on multi-core processors. Those techniques naturally do not exhibit

temporal or spatial locality of access. In this case, the cache should be divided in such
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a way as to avoid cache contention and also false cache sharing.
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Chapter 3

Finite Element Matrix Assembly and Ma-
trix Test Sets
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3.1 Introduction

The process of discretization of a 2D space geometry and creating a mesh is an im-

portant geometric task that should enable the appropriate representation of the PDE

to be solved over the domain. The size of the mesh elements and the quality of the

triangles are of critical importance as they determine the accuracy of the solution.

However, solving the governing differential equation over the discretized domain is the

core of the Finite Element Method. This usually involves 4 steps: 1) discretize the
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PDE over the mesh, 2) assemble the discretized parts (elements) into a global matrix

A, 3) apply boundary conditions to obtain a system of equations Ax = b and 4) fi-

nally solve it. This chapter focuses on the assembly process (step 2) and subsequent

chapters investigate the solver part. Since the details of step (1) are beyond the scope

of this thesis, it will briefly described it in the remainder of this section and readers

seeking a detailed explanation are referred to the books [58, 59].

In low frequency EM device analysis, the goal is to solve the general elliptic second

order partial differential equation (Equation 3.1) over the discretized geometry. In the

case of static analysis, this equation reduces to solving Poisson’s equation∇.(ε∇ϕ) = ρ

(Equation 1.11). A new formulation of Equation 1.11, termed as the weak form, is

required to enable it to be discretized and applied on each mesh element separately

from the other elements.

∂

∂x
(αx

∂φ

∂x
) +

∂

∂y
(αy

∂φ

∂y
) + βφ = f (3.1)

Next, the goal is to approximate the solution within each element as a combination

of the unknowns within that element which depends on the type of FEM formulation

used. For instance, in a linear first-order nodal finite element analysis, the unknowns

are the nodes of the triangles (i.e. three unknowns φ1, φ2, φ3) per triangle and the

unknown function φ is approximated as:

φe(x, y) = ae + bex+ cey (3.2)

where a, b and c coefficients are to be determined. When a more accurate solution is

desired, more unknowns can be added to each element. For instance, adding nodes in

the middle of each edge would lead to quadratic element analysis (second-order) and

the function between the six unknowns becomes:

φe(x, y) = ae + bex+ cey + dex2 + eexy + f ey2 (3.3)

In both cases, and even with higher order elements, the process of matrix assembly
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remains the same. Equations 3.2 and 3.3 can be expressed as a sum of interpolation

functions as shown in

φe
j(x, y) =

u∑
j=1

N e
j (x, y)φ

e
j (3.4)

where u is the number of nodal points within an element. Equation 3.1 can now

be written in terms of these unknowns and integrated over all elements; this form is

known as the weak formulation and is given by

Ae
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e
j ) dxdy (3.5)

bei =

∫ ∫
Ωe

fN e
i dxdy (3.6)

where

[A]{φ} = {b} (3.7)

3.2 Matrix Assembly Data Structure

The process of matrix assembly is not considered to be time consuming. It is an O(n)

process, since it consists of iterating once over all mesh elements. For each element,

two operations are performed. The first is to approximate the solution of the field

within each element by applying Equation 3.5, which would result in a dense matrix

structure Le
u×u for each element e where u depends upon the formulation and the

number of unknowns in an element. The second operation is to map each entry of

the dense matrix Le
u×u to a global matrix A (Equation 3.7). This step constitutes a

significant portion of the total assembly cost mainly because the global matrix A is

sparse. Inserting and updating entries in a sparse matrix, even when its structure is

a priori known, is not trivial. Both sequential and parallel implementation details of

this step are explained and experiments are carried out to determine the efficiency of
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such a process.

The basic data structure for a finite element mesh consists of 3 arrays. The first

is an array P that holds the space coordinates of the nodes of the mesh, which, in

the case of a 2D analysis is an n× 2 array of double precision floating-point numbers

(i.e. Pn×2). The triangles are stored in a t × 3 array T where each row contains the

three nodes of each of the t triangles. Finally the edge data structure contains all the

boundary edges of the 2D geometry. This is usually an E(edge×2) matrix, where the

number of edges depends on the geometry. Typically, there exists a need for additional

information that is either part of the basic mesh data structure or organized in different

arrays. For instance, physical parameters related to the material properties of each

node or edge are stored as well as any boundary conditions.

Algorithm 3.1 Matrix assembly of a first-order nodal finite element formulation.

Input: Tt×3 stores the indices of nodes of each of the t triangles
Output: Sparse n× n matrix A
1: A = sparse(n, n) stores the contributions of all elements into an n× n matrix
2: for ele = 1 → t do
3: for i = 1 → 3 do
4: # Obtain the global row location iGlobalele of the nodes in Tele,−
5: iGlobalele := Tele,i

6: for j = 1 → 3 do
7: # Obtain the global column location jGlobalele of the nodes in Tele,−
8: jGlobalele := Tele,j

9: A(iGlobalele, jGlobalele) := A(iGlobalele, jGlobalele) + Lele
i,j

10: end for
11: end for
12: end for

Algorithm 3.1 and Figure 3.1 illustrate the assembly process of a first-order nodal

finite element analysis. Each node is considered to be an unknown, hence the contribu-

tion of each element e to the global matrix A is an Le
3×3 dense matrix, usually referred

to as the “local matrix”. Each entry of a triangle’s local matrix Le
ij, where i = 1, 2, 3

and j = 1, 2, 3, is then mapped to a location in the global matrix, AiGlobal,jGlobal where

iGlobal = T (i) and jGlobal = T (j). As shown in Table 3.1, T is a matrix that lists
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Figure 3.1: First-order nodal finite element assembly process of two ele-
ments. The assembly process of two elements (e = 2 and e = 5) into the global
matrix A. Each element produces a local 3 × 3 dense matrix which is mapped and
aggregated into the global sparse matrix A. One or more entries of the local matrices
can map into the same location in the global matrix (shown in green).

the global node number of each of the triangle’s nodes (i.e. node 1, node 2, and node

3). For instance, suppose that L5
3×3 is the local matrix of element e = 5 (i.e. Δ143). In

order to map the entry L5
13 to a location in the global matrix A, the local index 1 is

mapped to the global index 1 since T 5(1) = 1 and the local index 3 is mapped to the

global index 4 since T 5(3) = 4. Of note, the local matrix L is not explicitly calculated,

but instead two nested for-loops, each of size 3, are executed where in each iteration

an entry is aggregated into the global matrix A, as illustrated in Algorithm 3.1 (line

2 - line 11)
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Table 3.1: Connectivity table of a first-order nodal finite element formula-
tion. Table showing the connectivity matrix T which is used to map the index of an
entry of a triangle’s local matrix L to its corresponding index in the global matrix A.

Element
number

Node 1 Node 2 Node 3

e = 1 1 3 2

e = 2 1 2 6

e = 3 1 6 5

e = 4 1 5 4

e = 5 1 4 3

Algorithm 3.2 and Figure 3.2 illustrate the matrix assembly process of a second-

order nodal finite element analysis. The assembly process resembles that of a first-order

nodal analysis, except that additional nodes are inserted in the middle of each of the

edges of the mesh and the connectivity matrix T is augmented to accommodate the

new nodes (Table 3.2). Each element contains 6 unknowns (3 vertex nodes and 3

mid-edge nodes), hence the contribution of each element to the global matrix A is a

6× 6 dense matrix.

Algorithm 3.2 Matrix assembly of a second-order finite element nodal formulation.

Input: Tt×3 stores the indices of nodes of each of the t triangles
Output: Sparse n× n matrix A
K = sparse(n, n) stores the contributions of all elements into an n× n matrix
for ele = 1 → t do
for i = 1 → 6 do

# Obtain the global row location iGlobalele of the nodes in Tele,−
iGlobalele := Tele,i

for j = 1 → 6 do
# Obtain the global column location jGlobalele of the nodes in Tele,−
jGlobalele := Tele,j

A(iGlobalele, jGlobalele) := A(iGlobalele, jGlobalele) + Lele
i,j

end for
end for

end for
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Figure 3.2: Second-order nodal finite element assembly process of one el-
ement. The assembly process of element Δ143 into the global matrix A. Mid-nodes
are added into each edge of the triangulation.

Table 3.2: Augmented connectivity table of a second-order nodal finite
element formulation. Table showing the connectivity matrix T which is used to
map the index of an entry of a triangle’s local matrix L to its corresponding index in
the global matrix A.

Element
number

Node 1 Node 2 Node 3 Mid-node 1-2 Mid-node 2-3 Mid-node 1-3

e = 1 1 3 2 7 8 9

e = 2 1 2 6 9 10 11

e = 3 1 6 5 11 12 13

e = 4 1 5 4 13 14 15

e = 5 1 4 3 15 16 7
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3.3 Matrix Assembly Using The ELLPACK Sparse Storage

Format

Sparse storage schemes are powerful ways to save memory space when storing and

processing sparse matrices. Only non-zero entries in a matrix are stored which consti-

tutes a small fraction of the zero entries. Despite their effectiveness in saving storage,

they lead to algorithms that are more complex than those of a dense storage scheme,

both in terms of data structures and the flow of program control.

00 01 

11 14 

20 22 25 

32 33 35 

44 45 

50 51 55 

00 01 11 14 20 22 25 32 33 35 44 50 51 55 

0 1 1 4 0 2 5 2 3 5 4 0 1 5 

0 2 4 7 10 12 15 

 size= number or rows +1 

values 

col_index 

row_ptr 

45 

5 

Figure 3.3: Compressed Sparse Row Storage (CSR). The non-zero entries
of the matrix are stored in the values array. Each entry in the values array has a
corresponding entry in the col index array to indicate its column index in the matrix.
The row ptr array holds the index of the first non-zero of each row in the values array.

The Compressed Sparse Row storage format (CSR) is a simple and widely used

storage format that can store any matrix regardless of its structure. Figure 3.3 illus-

trates an example of the Compressed Sparse Row storage. Only the non-zero entries of

the matrix are stored in the values array. Since all non-zeros are stored contiguously

in the same array, The row ptr array holds the index of the first non-zero of a each row
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in the values array. For instance, row index[i] contains the index of the first non-zero

of row i in the values array, that is, values[row index[i]] returns the value of the first

non-zero of the ith row. Each entry in the values array has a corresponding entry in

the col index array to indicate its column index in the matrix.

When assembling a matrix without knowing its final structure, that is, when not

knowing the number of non-zeros in each row and their distribution, the Compressed

Sparse Row Storage, which stores all matrix entries in contiguous locations, becomes

difficult to use. Each new entry insertion into a matrix stored in CSR requires two

steps that can be completed in O(n) time where n is the number of non-zeros. The

first step, which can be preformed in O(1) time, is to locate the position in the values

array and the col index at which the new entry is to be inserted. The second step,

which can be performed in O(2n) time, is to expand values and col index arrays and

shift all the elements to the right of the newly inserted entry. This process is illustrated

in Figure 3.4 where a new entry, A02, was inserted in the first row. After locating the

position of the new entry in the values array (highlighted in red), the elements to its

right were shifted by one location. The same was applied to the col index array.
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Figure 3.4: Inserting a non-zero entry into a CSR storage.

In order to overcome the limitation encountered when incrementally adding entries

into a matrix stored in CSR, a variation of this storage, termed as “dynamic CSR”,

was developed in this thesis. Dynamic CSR creates a separate dynamic data structure

for each row in a matrix so that adding an entry in a row would not impact the other

rows. Not only does this storage work when the final data structure of the matrix

is not known, but also when the maximum number of non-zeros per row is also not

known. This case is encountered when developing preconditioners for the Conjugate

Gradient Method (Chapter 6). Fortunately, in the case of matrix assembly in FEM, the

maximum number of non-zeros of any row can be roughly estimated since it depends

on the FEM formulation used. In such a case, a more suitable choice of a sparse

storage than the dynamic CSR is to use the ELLPACK sparse storage [60].

The ELLPACK sparse format stores a N ×N sparse matrix into two N ×W dense

data structures (ELL values and ELL column ind) as shown in Figure 3.5. ELL values

stores the values of non-zeros in each row in a condensed form and pads the remaining

spaces with zeros. ELL column ind stores the column index of each corresponding non-
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zero in the ELL values and “-1” for the padded non-zeros. The size W corresponds to

the maximum number of non-zeros per row. When the number of non-zeros per row

is less than W , zeros are padded to fill the remaining locations.

Figure 3.5: The ELLPACK sparse storage format.

The ELLPACK sparse storage format resolves the issue encountered when using

the CSR storage, as discussed above, by pre-allocating a fixed amount of W entries

for each row, where w is equal to the maximum number of non-zeros per row of the

final matrix structure. However, this format has a disadvantage in that un-necessary

locations are filled with zeros when the number of non-zeros in a row is less than w,

those are known as fill-ins. Ideally, if the number of non-zeros in each row is W , then

no fill-ins occur. In the case of matrices generated from FEM or FDM, the maximum

number of non-zeros per row is low which makes the ELLPACK a suitable sparse

storage scheme for matrix assembly, hence it will be used when performing matrix

assembly experiments.

3.4 Parallel Matrix Assembly

Matrix assembly is a massively data-parallel process, as all elements can be processed

simultaneously. However, one arising challenge is the race condition; that is, when
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multiple threads are attempting to modify the same memory location of the global

matrix concurrently without synchronization. For instance, looking again at the ma-

trix assembly process of a first-order nodal FE formulation illustrated in Figure 3.1,

triangles Δ126 and Δ143 (elements e = 2 and e = 5 respectively) share node number 1.

If a thread is aggregating the entry L2
1,1 of the local matrix of e = 2 and another thread

is aggregating the entry L5
1,1 of the local matrix of e = 5, then there is a possibility

that a race condition could occur since both entries map to the same location in the

global matrix, that is A1,1.

Two approaches to solve the problem of the race condition discussed above have

been identified. The first is to use a critical section1 when accessing entries in the

global matrix [61] and the second is to use a coloring technique where elements that

do not share nodes or edges are assigned the same colors [62, 63, 64, 65, 66] and are

processed simultaneously. All of these techniques are applicable on both multi-core

and many-core based processors. The matrix assembly experiments implemented in

this chapter follow the first approach.

A new approach that has been developed by [67] involves eliminating the matrix

assembly stage by utilization of the domain decomposition technique. Each element

of the mesh is considered to be a sub-domain that is solved independently of the other

elements. It is plausible to regard this approach as a non-overlapping additive Schwarz

domain decomposition technique [68], where the size of the domain is that of a mesh

element. However, it is important to be mindful of shortcomings from which this

approach suffers, including that of low convergence since it utilizes the Jacobi method

in addition to having sub-domains that are of a very small size which consequently

increase the number the Jacobi iterations.

1Critical section: a section or a piece of a code that can be accessed by only one thread or process
at a time.
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Figure 3.6: Synchronized ELLPACK storage. Each row in the global matrix
has a corresponding mutex object stored in “Mutex objects” array. A thread must
acquire a lock on the mutex object before it can modify the corresponding row in the
global matrix.

3.5 Matrix Assembly Experiments

Algorithm 3.3 Multi-threaded matrix assembly using the ELLPACK sparse storage
- First-order nodal finite element formulation.

Input: Tt×3 stores the indices of nodes of each of the t triangles
Output: ELLPACK sparse n× n matrix A
1: K = sparse(n, n) stores the contributions of all elements into an n× n matrix
2: for ele = 1 → t do
3: for i = 1 → 3 do
4: # Obtain the global row location iGlobalele of the nodes in Tele,−
5: iGlobalele := Tele,i

6: AquireLock( MutexObjects(iGlobalele) )

7: for j = 1 → 3 do
8: # Obtain the global column location jGlobalele of the nodes in Tele,−
9: jGlobalele := Tele,j

10: InsertOrUpdateELLPACK(iGlobalele, jGlobalele, value)
11: end for
12: ReleaseLock( MutexObjects(iGlobalele) )

13: end for
14: end for

In order to investigate the performance of parallel matrix assembly using critical
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sections on multi-core processors, Pthreads2mutex 3 objects have been used to synchro-

nize the access of multiple threads to the global matrix rows. For this purpose, an

array of n mutex objects was created where each object corresponds to a row in the

global matrix as shown in Figure 3.6. Typically, in order for a thread to add or modify

entries on a row of the global matrix, it must acquire a lock on the mutex object

corresponding to that row. After the thread finishes its modifications, it releases the

lock to make it available for other threads. For example, a thread that is assembling

an element of 3 unknowns (φ1, φ2, φ3) must aggregate the total of 3 × 3 entries in

the global matrix. Each 3 of these entries are added onto the same row of the global

matrix; hence, a total of 3 locks are required on 3 different mutex objects. This is

illustrated in Algorithm 3.3 (line 6).

2POSIX threads: a multi-threading library on Linux OS.
3Mutex: Mutual Exclusion is a synchronization primitive object for multi-threads.
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Figure 3.7: Parallel matrix assembly timings in seconds of an Intel quad-
core i7-860 processor. The horizontal lines show the sequential runtimes of each
matrix. The difference of runtimes between sequential execution and multi-threaded
execution using 1 thread highlights the cost of calling Pthreads API.

Figure 3.7 and Figure 3.8 show the runtimes in seconds of the parallel assembly

of 3 matrices using a first-order nodal finite element formulation on a quad-core Intel

i7 processor and an AMD Opteron dual-socket dual-core processor respectively. The

sequential runtimes are small (a few seconds) despite the fact that these matrices are

considered to be those of realistic average size problems. The runtimes were reduced

by more than 50% relative to 1-thread execution when the number of threads was 4.

Notice the difference in runtimes between sequential execution (no synchronization)

shown in horizontal lines and runtimes of 1 thread. This difference highlights the cost

of calling the Pthreads API4 3 × n times. The overhead of calling a Pthreads API

although it appears to be large in here, is not the main concern in multi-threaded

4API: Application Programming Interface.
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applications. Instead it is the wait time that could incur when a thread is waiting

for a mutex object to be released by another thread. In matrix assembly, this occurs

when threads are simultaneously processing mesh elements that share vertices and

edges. In the case of FEM, the possibility of threads waiting to acquire a lock is small

since the number of shared vertices or edges is low; it related to the average number

of non-zeros per row.
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Figure 3.8: Parallel matrix assembly timings in seconds of an AMD dual-
socket dual-core Opteron processor. The horizontal lines show the sequential
runtimes of each matrix. The difference of runtimes between sequential execution and
multi-threaded execution using 1 thread highlights the cost of calling thread API.

Synchronization and Cache Data Locality The time it has taken to complete

the matrix assembly process in the previous experiments was very small (only few

seconds), hence, it was not possible to accurately measure the total time spent on
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synchronization (i.e. calling Pthreads API and waiting to acquire a mutex lock).

Instead, Intel’s VTune analyzer was used to count the number of execution cycles

spent on synchronization. In the case of matrix assembly using 1 thread, this number

constituted around 9% of the total cycles spent on matrix assembly (see Figure 3.9a).

This number reflects only the time to call Pthreads API, since there was no time

or cycles wasted waiting to a acquire a lock (no other threads were competing to

acquire a lock). As anticipated, when using 4 threads, more cycles were halted during

synchronization, and in this case the percentage of time wasted increased to 24% (see

Figure 3.9b).

It is important to note that the cycles counted do not reflect the number of cycles

needed to complete a task. A large number of CPU cycles were wasted while the ap-

plication was waiting to retrieve data from the main memory (DRAM) due to misses

on the last level cache (i.e. Level-3 in the case of Intel i7-80 processor). The percent-

age of wasted cycles was close to 35% when assembling the matrix using sequential

code and this number increased to 40% when executing the matrix assembly using 4

threads indicating that the matrix assembly process is not cache optimal. Hence, the

synchronization cost of 24% when running 4 threads cannot only be attributed to the

fact that threads were waiting to acquire a lock, but also to the fact that more cache

misses incurred in this case.

The experiments presented so far were based on assembling a matrix using first-

order nodal finite element formulation. In this case and as it will be illustrated in the

next section, the average number of non-zeros per row of the final matrix is calculated

to be 7. This number reflects the level of interconnections between nodes of the mesh.

In other words, it means, that on average each node is connected to 7 other nodes.

The higher this number (i.e. 3D case or higher order FE formulation), the more it is

expected that threads will wait to acquire a mutex lock during matrix assembly.

The remainder of this chapter will list the matrix test sets used throughout this

thesis. As explained before, it was important to have a matrix set that is representative
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(a) Matrix assembly using 1 thread.
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(b) Matrix assembly using 4 threads.

Figure 3.9: Execution cycles wasted on Pthreads Lock/Unlock synchro-
nization primitives in matrix assembly. (a) 9% of cycles were spend on calling
Pthreads primitives when executing matrix assembly using 1 thread. (b) 24% of cy-
cles were spend on calling Pthreads primitives when executing matrix assembly using
4 threads.

of the type of workload that a design engineer deals with when using field analysis

software to design low frequency EM devices.

3.6 Matrix Test Sets

Speedup, scalability and cache performance of multi-threaded algorithms are all main

factors that determine the success and usability of a method on a multi-core processor.

However, these performance measures depend on the size and the structure of the input

problem. This thesis focuses on analyzing the performance of a specific set of problem

structures arising from commonly used FEM formulation techniques. Furthermore,

the sizes of the input problems were devised to investigate the impact of problem size

on cache behavior.

The remaining part of this chapter lists the matrix test sets used throughout this

thesis. The first sets (§ 3.6.1) are obtained from applying the Finite Element Method

on a 2D model of a brushless DC motor (BDC) (Figure 3.10) and a 3D model of

a transformer (Figure 3.11). The second set of matrices ( § 3.6.2) is obtained from

applying the Finite Different Method (FDM) on a parallel plate capacitor problem

and finally the last test set (§ 3.6.3) several matrices that have been widely used in
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recently published research papers which have investigated the performance of sparse

matrix-vector multiplication [69, 70, 71, 72, 73].

3.6.1 Finite Element Matrix Test Sets

The matrices in Table 3.3, Table 3.4 and Table 3.5 have been assembled from applying

first-order nodal, second-order nodal and edge finite element formulations respectively

on the same 2D problem (i.e. a brushless DC motor - BDC). First, the geometry of

the BDC model was initially meshed and refined many times by imposing an upper

bound on the element size each time. This led to many meshes of different sizes.

For each mesh size, matrices were assembled using the three formulations. This is to

highlight the changes in the matrix’s structure, the matrix’s degrees of freedom and

the number of non-zeros per row for different formulations of the same problem. The

names of the matrices are indicative of their size and the FEM formulation used to

assemble them. For instance, BDC-1-0.5 is a matrix generated from applying a first-

order nodal finite element formulation on a brushless DC mesh of maximum element

size of 0.5 mm. The maximum and average number of non-zeros per row listed for

each matrix are important for the analysis of the performance of sparse matrix-vector

multiplication (SMVM) preformed in Chapter 5. Also, they serve as an indicator as

to whether a matrix is suitable to be stored using the ELLPACK (explained earlier in

§ 3.3) or the HYBRID sparse storage formats which will be explained in Chapter 5.

It is important to note that boundary conditions and material properties were not

applied when generating these matrices. We are only interested in the size and the

structure of the arising matrices and not their convergence rate.
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Figure 3.10: 2D brushless DC motor. The model was obtained from the exam-
ples set provided by MAGNET (2D/3D electromagnetic field simulation software by
INFOLYTICA, www.infolytica.com) [22].

Figure 3.11: 3D transformer. The model was obtained from the examples set pro-
vided by MAGNET (2D/3D electromagnetic field simulation software by INFOLYT-
ICA, www.infolytica.com) [22].
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3.6.1.1 Brushless DC Motor Finite Element Formulations

Table 3.3: Brushless DC Motor - 2D first-order nodal finite element for-
mulation. The average number of non-zeros per row is 7. The number of non-zeros
in the majority of rows is 7. (NNZ = number of non-zeros)

Matrix
Degrees of
freedom

NNZ
Average
NNZ/row

Maximum
NNZ/row

CSR
storage size
(MB)

BDC-1-0.5 38,084 259,188 7 12 3.1115

BDC-1-0.3 95,518 662,286 7 13 7.9436

BDC-1-0.2 204,570 1,415,366 7 13 16.9741

BDC-1-0.1 632,883 4,409,973 7 16 52.8824

BDC-1-0.07 1,194,044 8,334,798 7 22 99.9391

BDC-1-0.04 3,152,216 22,000,128 7 33 263.7962
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(a) The number of non-zeros per row distribu-
tion for the matrix BDC-1-0.5.
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(b) The number of non-zeros per row distri-
bution for the matrix BDC-2-0.5.

Figure 3.12: First-order and second-order nodal finite element non-zeros
distribution: Histograms showing the distribution of non-zeros per row for the ma-
trices BDC-1-0.5 and BDC-2-0.5 assembled from the same mesh using first-order and
second-order nodal finite element formulations respectively.
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Table 3.4: Brushless DC Motor - 2D second-order nodal finite element
formulation. The average number of non-zeros per row is 9. The number of non-
zeros in the majority of rows is 7. (NNZ = number of non-zeros)

Matrix
Degrees of
freedom

NNZ
Average
NNZ/row

Maximum
NNZ/row

CSR
storage size
(MB)

BDC-2-3.66 48,031 407,733 9 37 4.8494

BDC-2-1 74,479 631,491 9 25 7.5110

BDC-2-0.5 156,669 1,327,737 9 23 15.7924

BDC-2-0.3 384,421 3,259,039 9 25 38.7632

BDC-2-0.2 817,701 6,937,023 9 25 82.5072

BDC-2-0.1 2,537,685 21,540,633 9 31 256.1935

BDC-2-0.07 4,787,651 40,664,669 9 43 483.6336

BDC-2-0.04 12,660,592 107,560,044 9 60 1279.2

Table 3.5: Brushless DC Motor - triangular finite element edge formulation.
The average number of non-zeros per row is 5 and the maximum number of non-zeros
per row is 5.

Matrix
Degrees of
freedom

NNZ
Average
NNZ/row

Maximum
NNZ/row

CSR
storage size
(MB)

BDC-1-1 55,772 278,168 5 5 3.3961

BDC-0-0.5 117,282 584,658 5 5 7.1383

BDC-0-0.3 287,841 1435413 5 5 17.5250

BDC-0-0.2 612,529 3,056,677 5 5 37.31

BDC-0-0.1 1,901,614 9,494,878 5 5 115.9143

BDC-0-0.07 3,589,051 17,931,763 5 5 218.90

BDC-0-0.04 9,492,389 47,437,511 5 5 579.01

3.6.1.2 First-Order Tetrahedral Finite Element Formulation

A 3D transformer model (Figure 3.11) has been meshed by imposing different upper

bounds on the element volume to create four different meshes. The first-order finite

element formulation is then applied to each mesh. The resulting assembled matrices

are shown in Table 3.6. Both the histogram of the number of non-zeros per row and the
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matrix structure of ET0-0.08 are shown in Figure 3.13. In general, matrices generated

from a first-order nodal finite element formulation are more suitable to being stored in

ELLPACK than those generated from a higher order nodal finite element formulation.

Table 3.6: 3D transformer - First-order tetrahedral finite element formulation.

Matrix
Degrees of
freedom

NNZ
Average
NNZ/row

Maximum
NNZ/row

CSR
storage size
(MB)

ET-1-0.08 38,234 549,047 15 26 6.42

ET-1-0.04 409,531 5,999,230 15 31 70.21

ET-1-0.01 1,975,427 28,927,159 15 39 338.58

ET-1-0.01R 2,666,039 39,535,927 15 33 462.62
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(b) Non-zeros sparsity of ET-0.08

Figure 3.13: Sparsity and non-zeros distribution of ET-0.008. (a) Sparsity of
ET-0.08 and (b) Histogram of the number of non-zeros per row.

3.6.2 Finite Difference Method Matrix Test Set

The matrices shown in Table 3.7 were obtained from applying the Finite Difference

Method on a problem composed of parallel plate capacitor. The matrices resulting

from this method are structured and have higher rate of convergence than the problems
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obtained from using the Finite Element Method. They will be used to investigate a

new multi-threaded Gauss-Seidel method for the solution of systems of linear equations

(Chapter 4).

Table 3.7: Parallel plate capacitor - Finite Difference Method. The maximum
and average number of non-zeros per row is 5.

Matrix
Degrees of
freedom

NNZ
Average
NNZ/row

Maximum
NNZ/row

CSR
storage size
(MB)

FDM-40K 40,000 199,200 5 5 2.4

FDM-122K 122,500 611,100 5 5 7.5

FDM-250K 250,000 1,248,000 5 5 15.2

FDM-1M 1000,000 4,996,000 5 5 61

FDM-4M 4,000,000 19,992,000 5 5 244

FDM-16M 16,000,000 79,984,000 5 5 976

FDM-49M 49,000,000 244,972,000 5 5 2,990
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Figure 3.14: Sparsity of FDM-40k matrix.

3.6.3 Matrix Market Miscellaneous Test Set

The following table includes a collection of matrices which were obtained from Matrix

Market [74]. The matrices have been widely used in recent research papers investigat-

ing the performance of SMVM. However, these matrices have different structure than
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the matrices obtained from applying the Finite Element Method. For instance, some of

them have high number of non-zeros per row which is advantageous when optimizing

SMVM. Furthermore, their sizes (DOF and CSR storage size) are small relative to a

realistic problem size.

Table 3.8: Miscellaneous matrix test set.

Matrix
Degrees of
freedom

NNZ
Average NNZ
per row

Maximum
NNZ
per row

CSR
storage size
(MB)

Protein 36,417 4,344,765 120 204 49.86

FEM/Sphere 83,334 6,010,480 73 81 69.1

FEM/Cantilever 62,451 4,007,383 65 78 46

Wind Tunnel 217,918 11,524,432 53 180 132.72

FEM/Harbor(CFD) 46,835 2,374,001 50 145 26.83

FEM/Shipsec 140,874 7,813,404 26 68 41.38

Economics 206,500 1,273,389 7 74 15.36

Epidemiology 525,825 2,100,225 4 4 26

Circuit 170,998 958,936 6 353 11.62

3.7 Concluding Remarks

The matrix assembly process has a time complexity of order O(n) and does not present

a bottleneck in the finite element analysis process. The runtime to assemble a matrix

of a large size problem takes only few seconds and this time was reduced by 40% when

using 4 threads.

The granularity of parallel matrix assembly can be considered to be medium.

Threads need only to synchronize access to a global matrix structure, but do not

depend on each other’s data. The level of interdependency between threads depends

on the finite element formulation used to assemble the matrix and on the problem

dimension (e.g. 2D or 3D). The higher the dimension of the problem and the higher

the order of the finite element formulation, the more matrix rows are interconnected.

However, in general, this dependency is low in matrices obtained from using the Finite
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Element Method and it can be quantified by the average number of non-zeros per row

and the maximum number of non-zeros in a row of the final matrix.

The work hereinafter focuses on the solver part of the Finite Element Method. Par-

ticularly, a new multi-threaded Gauss-Seidel technique is presented in the next chapter

(Chapter 4) followed by two chapters which investigate sparse matrix-vector multipli-

cation (Chapter 5) and Conjugate Gradient preconditioning techniques (Chapter 6)

respectively.
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Chapter 4

Sliding-Window Gauss-Seidel as a Solver for
Sparse Systems of Linear Equations

Contents

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Parallel Gauss-Seidel Techniques . . . . . . . . . . . . . . . 68

4.2 Sliding-Window Gauss-Seidel Methodology . . . . . . . . . 69

4.2.1 Multiple Threads Sliding-Window Gauss-Seidel . . . . . . . 72

4.2.2 SW-GS Floating-Point Operations . . . . . . . . . . . . . . 74

4.3 Multi-threaded Sliding-Window Gauss-Seidel: Scalabil-

ity and Convergence . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 FDM-1M and FDM-40K Experiments . . . . . . . . . . . . 76

4.3.2 BDC-1-0.1 Experiments . . . . . . . . . . . . . . . . . . . . 83

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Overview

Iterative solvers aim at solving a system of equations Ax = b (linear or non-linear)

where A is a large sparse matrix and x is the unknown vector to be calculated. They

do so by iterating a large number of times over the matrix A, hence a main goal of

research on iterative solvers has been to reduce the number of iterations required to

reach convergence (i.e. increase its convergence rate). The introduction of the Precon-

ditioned Conjugate Gradient (PCG) method [75] - precisely the incomplete Cholesky
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Conjugate Gradient (ICCG1) - has been a turning point in iterative solver techniques,

especially when it was widely adopted on microprocessors as a fast sequential iterative

solver. Despite that, the study of stationary iterative methods such as Jacobi, Gauss-

Seidel (GS) and Successive Over-Relaxation (SOR) remained an interesting field in

scientific computing. The introduction of many massively parallel multi-processor

machines in the late 1970’s and early 1980’s rejuvenated the work in stationary meth-

ods to explore their parallelism. The advances in the microprocessor technology, where

the speed was doubling every 18 months [76], and the introduction of the multi-grid

method [77], where Gauss-Seidel is a basic building block of this method (smoothing

operator) has attracted considerable research aimed at optimizing Gauss-Seidel on

microprocessors.

This chapter investigates a new cache efficient multi-threaded iterative solver which

combines Jacobi and Gauss-Seidel. On a multi-core processor, stationary based itera-

tive solvers such as Jacobi and Gauss-Seidel are appealing to use during the optimiza-

tion process. For instance, many optimization techniques analyze the same design

using different design parameters. A solution obtained from one design instance can

be reused as the initial solution of another design instance with slightly different pa-

rameters.

Stationary iterative solvers are also useful in design approaches that use Case

Based Reasoning (CBR) [78, 79, 80]. In CBR, a database of previous design solutions

is searched for one or more that closely matches the problem requirements. The set of

solutions are then adapted so that a new design is created that matches the problem

requirements. Furthermore, since a stationary iterative solver smooths and dampens

the error after each iteration, the design engineer can view the convergence towards the

solution at each step. This real-time solution tracking can assist the design engineer in

making a decision as whether to continue or abandon a running field analysis instance.

1ICCG: a Preconditioned Conjugate Gradient Method which uses a preconditioner, referred to as
incomplete Cholesky (IC), that has the same sparisty as the original matrix.
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Cache Optimization in Iterative Solvers Since iterative solvers iterate a large

number of times over the system of equations Ax = b, a large number of cache misses

are usually generated. A small reduction of the number of cache misses in each iteration

greatly reduces the solver’s runtime. This is especially true on a multi-core processor

since the gap between the slow data access due to a small cache relative to the high

number of flops available is higher on chip multi-core processor (CMP) than other

hardware architectures. Therefore, efficient cache management is critical to achieve

better performance.

At this point, it is worth identifying the three types of cache misses that could

occur on a microprocessor or a multi-core processor:

• Compulsory misses, intrinsic misses or cold misses are all terms to refer

to the misses that are due to the first access to data. The size of the cache and

the associativity have no effect. However, data prefetching either explicitly by

the application, or implicitly by the processor reduces this type of cache miss.

• Conflict misses (cross interference) are misses that depend on the cache-

memory associativity and the cache replacement policy. When two data are

associated with the same cache line, early eviction of the cache line could occur.

• Capacity misses (self interference) are misses that are due to the size of the

working data set relative to the cache size. They decrease with increased cache

size. When cache associativity increases, capacity misses will increase however

conflict misses will decrease.

Furthermore, on a multi-core based processor, two additional types of cache misses

could occur. The first is referred to as true cache sharing wherein, two cores modifying

the same data will invalidate each other’s private caches (L1 and L2 in the case of Intel

i7-860 processor). Cache invalidation can also happen when two cores are accessing

different data that happen to be on the same cache line in what is known as false

cache sharing.
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The work on optimizing iterative solvers has been on reducing the amount of

compulsory cache misses that are due to the irregular access to x in Ax = b especially

in the case when A is an unstructured matrix. Most of the work in the literature

on sequential and parallel Gauss-Seidel deals with structured problems arising from

the Finite Difference Method where cache optimization techniques such as loop tiling

and reordering have been applied [81, 82, 83, 84, 85]. Whereas this chapter’s work

experiments with both structured and unstructured matrices. It is important to note

that optimization to reduce cache misses used in SMVM and discussed in the next

chapter are also applicable to Gauss-Seidel since both have very similar operations.

4.1.1 Parallel Gauss-Seidel Techniques

GS and SOR are inherently sequential methods since the calculation of each com-

ponent depends on the latest update of other dependent components. However, the

Jacobi method is highly parallelizable since each component of the solution vector x

when solving Ax = b can be calculated simultaneously with the other components.

Nevertheless, GS and SOR are favored over Jacobi since they have higher convergence

rate.

Techniques to explore parallelism in GS and SOR can be divided into two broad

categories. The first explores parallelism in Gauss-Seidel by identifying the nodes of

the mesh, grid, or elements of the solution vector x that are independent of each other.

Parallel Jacobi is then applied on each set of independent nodes (i.e. simultaneously

solving all nodes within a set). This parallel technique preserves the order of update

on the x vector leading to results similar to sequential Gauss-Seidel. One way to label

independent nodes is to use coloring techniques, which assign the same color to inde-

pendent nodes. When Ax = b arises from a five-point finite difference approximation,

then two colors (e.g. red-black) are used to group independent nodes [86, 87]. Nodes
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of the same color are then divided on a multiprocessor (SIMD2 or MIMD3) where

Jacobi style sweeps are executed on each node. A second sweep is required to handle

the black color. The 2 sweeps are equivalent to one Gauss-Seidel iteration. For higher

order discretization, more colors are needed, thus increasing the number of sweeps re-

quired per iteration. Synchronization and communication is required after each sweep.

For a review on multi-color SOR on both vector and multiprocessors refer to [88].

The second category of techniques is a combination of Jacobi and Gauss-Seidel,

hence the end result does not lead to the same number of updates or order of updates

as the original Gauss-Seidel. The goal of these techniques is to balance the benefit of

Jacobi and Gauss-Seidel. On a multi-processor machine, equations or nodes are divided

into blocks that are distributed on processors. Each processor executes Gauss-Seidel

on its working set, while blocks synchronize results at the end of each iteration. In

order to reduce the number of synchronization points and communication overheads,

asynchronous parallel Gauss-Seidel schemes have been introduced. In these techniques,

a processor when executing the ith iteration can use a value of x calculated by other

processors in the ith − s iteration, where 1 ≤ s ≤ k and k is a predefined fixed

integer. In the specific case when k = 1, this method would be identical to Jacobi’s,

wherein the solutions of all processors are synchronized following each iteration. A

survey on these techniques can be found in [89]. Pipelining thread techniques have

been used to maintain data locality [90, 91] on Symmetric Multiprocessors machines

(SMP). A survey of the implementation of the above techniques on vector and arrays

of processors can be found in [92].

4.2 Sliding-Window Gauss-Seidel Methodology

In order to increase the convergence of Gauss-Seidel and maximize data reuse, a new

multi-threaded Gauss-Seidel method has been developed in this thesis’s work, which is

2SIMD: Single-Instruction Multiple-Data.
3MIMD: Multiple-Instructions Multiple-Data.
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called “Sliding-Window Gauss-Seidel” (SW-GS). This novel method has been recently

utilized by another research group that modified it with the aim of better fitting a

GPU based processor for the purpose of image processing [93]. It has been particularly

useful on a GPU since it reduces the amount of costly memory transfers from-and-

to the GPU. Furthermore, the author of [94] improved the performance of SW-GS

through register data reuse and loop unrolling techniques. Finally, it is important

to mention that optimization techniques which are applied on SMVM (e.g. cache

blocking) and discussed in the next chapter are applicable to SW-GS.

SW-GS shares many commonalities with the pipelined parallel Gauss-Seidel devel-

oped for shared-memory multiprocessors [91] (Sequent Balance 210004). Both methods

will be explained and the differences will be highlighted.

Let EW(u,v) (Execution Window) be a set of W = v − u contiguous rows of the

matrix A, where u and v represent the indices of the first and last row of this working

set respectively. Let GaussSeidel(EW(u,v)) be the terminology to represent applying

Gauss-Seidel’s Equation 4.1 on the rows of EW(u,v).

xi
k+1 =

1

aii
(bi − (

i−1∑
j=u

aijx
j
k+1 +

v∑
j=i+1

aijx
j
k)) i = u, ..., v. (4.1)

Using this terminology, the sequential Gauss-Seidel represented in Equation 4.2 can

be written as GaussSeidel(EW(1,N)), where N is the degrees of freedom (DOF) of A.

Furthermore, the sequential Gauss-Seidel is equivalent to the successive execution of

Gauss-Seidel on contiguous, non-overlapping k blocks of rows each of size W ; EW(1,W ),

EW(W+1,2W ), ..., EW(kW+1,N) as illustrated in Figure 4.1 (Gauss-Seidel).

xi
k+1 =

1

aii
(bi − (

i−1∑
j=1

aijx
j
k+1 +

n∑
j=i+1

aijx
j
k)) i = 1, ..., n. (4.2)

Sliding-Window Gauss-Seidel is an extension of the original Gauss-Seidel in which the

4Sequent Balance 21000: 12-processor 16 Mbyte shared-memory multiprocessor released in 1986.
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Execution Window EW(u,v) of size W rows, slides by S rows where S <= W , that

is, if a thread executes GaussSeidel(EW(u,v)) at iteration k, the same thread will

execute GaussSeidel(EW(u+S,v+S)) at iteration k + 1 as shown in Figure 4.1 (pass #

1 of Sliding-Window-Gauss-Seidel). Furthermore, a thread does not view the matrix

as starting at row 1 and ending at row N , but rather a continuous circular buffer

of rows. Thus, an Execution Window can include rows from both the end and the

beginning of the matrix. When W > S, a thread re-iterates over part of the rows

again so as to lower the cache misses that are due to capacity misses and reuse the

entries in the matrix A while present in the cache. In this case, a single pass over the

system of linear equations using SW-GS updates each element of the solution vector

x W/S times, leading to a lower number of iterations for the system to converge, at

the cost of increasing execution time per iteration. The choices of W and S should

be balanced so that the total working set present at any time fits the cache size. This

depends on the storage used by W rows and the number of threads. It can be noted

that when W = S, each element x is updated once per iteration, which is the case of

a regular Gauss-Seidel.

Sliding Block Size

Window Size  

n nA
Gauss-Seidel 

Pass # 1 of Sliding Window Gauss-Seidel 
(1 threads) 

W

S

Figure 4.1: One thread Sliding-Window Gauss-Seidel.
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4.2.1 Multiple Threads Sliding-Window Gauss-Seidel

An iteration of a multi-threaded SW-GS proceeds in the following way. Initially,

available threads are assigned to contiguous, non-overlapping Execution Windows as

shown in step 1 of Figure 4.2, where four threads T4, T3, T2 and T1 are assigned

to EW(1,W ), EW(W+1,2W ), EW(2W+1,3W ) and EW(3W+1,4W ) respectively. Each thread

executes Gauss-Seidel on its corresponding working set and stores its solution in a local

vector xLocal of size W . During simultaneous Gauss-Seidel execution, all threads have

read-only access to a global solution vector xGlobal which holds the solution from the

previous step k−1. When a thread finishes executing Gauss-Seidel, it waits at a barrier

for the remaining threads to finish executing before proceeding to the synchronization

stage. In this stage, all threads update the global solution vector by mapping their

partial solution xLocal to their corresponding location in the global vector. Once the

synchronization step is completed, all threads slide their working set by S rows to

perform step k + 1. For instance, T1 which executed GaussSeidel(EW(1,W )) at step

k, proceeds to execute GaussSeidel(EW(u+S,v+S)) at step k + 1.

Sliding Block Size 

Window Size  

n nA

Pass # 1 of Sliding Window Gauss-Seidel 
(4 threads) 

W

S

Thread 1 
Thread 2 
Thread 3 
Thread 4 

7 2 10 9 3 4 5 6 1 8 

Figure 4.2: Four threads Sliding-Window Gauss-Seidel.
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This pipelining of threads has proven to be effective on a SMP machine [91]. The

difference between SW-GS and the one developed by [91] is that in the latter, each

process holds its own solution vector of size N where synchronizations between all

copies of the solution vectors takes place whenever a new value of a solution xi is

calculated. This poses significant synchronization overhead as it requires N synchro-

nizations for each iteration and performs T updates on each element of x, whereas

SW-GS requires N/S synchronizations for each iteration and performs T × (W/S)

updates on x. Both methods are similar when W = S = 1. When W > S > 1, SW-

GS becomes a combination of Jacobi (inter-thread) and Gauss-Seidel (intra-thread).

Gauss-Seidel Equation 4.1 can be re-written to reflect such a change as

xi
k+1 =

1
aii
(bi −

v∑
j=u
j �=i

aijxLocal
j
k+1 +

u−1∑
j=1

aijxGlobaljk +
v∑

j=v+1

aijxGlobaljk)

i = u, ..., v.

(4.3)

4.2.1.1 Multi-Thread Sliding-Window Gauss-Seidel Implementation

When calculating a new value xi
k+1 using Gauss-Seidel (i.e. Equation 4.2), a vector

inner-product of all entries of row i of matrix A (i.e. A(i,−)) and all elements of the

solution vector xk is required, except for the diagonal entry A(i, i). To avoid using

a conditional if statement to exclude the diagonal entry when performing the inner-

product, the original CSR storage scheme has been modified to store the diagonal

entries in a separate array (i.e. diagonal) from the array that stores the non-zero

elements (i.e. values) as shown in Figure 4.3.
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00 01 

11 14 

20 22 25 

32 33 35 

44 45 

50 51 55 

01 14 20 25 32 35 45 50 51 

1 4 0 5 2 5 5 0 1 

0 1 2 4 6 7 9 

 size = number or rows +1 

values 

col_index 

row_ptr 

00 11 22 33 44 55 diagonal 

Figure 4.3: Modified CSR storage scheme. The diagonal entries are stored
separately from the non-diagonal entries of A.

Despite the optimization discussed above, multi-threaded SW-GS has implemen-

tation drawbacks. Algorithm 4.1 shows the execution steps followed by each thread,

however for illustration purpose, it does not detail the implementation of using CSR

storage, but assumes a dense storage. Only the diagonal entries are stored in a sep-

arate array to highlight the optimization discussed in the previous paragraph. It can

be seen that two synchronization barriers are needed. The first is when all threads

wait after finishing executing Gauss-Seidel (line 22) so that they update the global

solution from their local copy of the solution. The second is when threads modify

their working set (i.e. W and S) (line 24). Furthermore, line 13 shows that there is

a conditional if statement in the inner loop of the inner-product. Furthermore, since

SW-GS is a combination of Gauss-Seidel and Jacobi, threads access solution elements

either from a previous iteration xGlobalk−1 or solution elements from the partial solu-

tion vector xLocalk according to the modified Gauss-Seidel Equation 4.3. This adds

a conditional if statement in the inner loop of the inner-product as shown in line 13

of Algorithm 4.1.

4.2.2 SW-GS Floating-Point Operations

The number of floating-point operations of a single iteration of sequential Gauss-Seidel

is 2 × number of non-zeros (NNZ), where 2× (NNZ−N) are performed on the sum
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Algorithm 4.1 Execution flow of a thread in SW-GS showing two synchronization
barriers.

1: Ax = b: system of linear equations to be solved.
2: N : the degrees of freedom of Ax = b.
3: E(i,j): the execution window of Gauss-Seidel.
4: W : the number of rows in Ei,j.
5: S: the sliding window size.
6: xLocal: array of size W .
7: xGlobal: array of size N .
8: diag: array which stores the diagonal elements of matrix A.
9: repeat
10: for row = i → j do
11: aii ← diag(i)
12: for column = 1 → n do
13: if column < i or column > j then
14: x ← xGlobal(column)
15: else
16: x ← xLocal(column mod i)
17: end if
18: sum ← sum+ x× aij
19: end for
20: xLocal(row mod i) ←

(
b(i)−sum

aii

)
21: end for
22: Gauss Seidel barrier
23: xGlobal ← xLocal
24: Synchronization barrier

25: Increase i and j by S rows
26: until r = A× xGlobal/b ≤ error tolerance

part of Equation 4.2, and 2×N operations are to subtract the right hand side vector

and to divide by the diagonal entries. In the case of SW-GS, the number of floating-

point operations per iteration depends on the window size, block size and the number

of threads. It can be easily verified that this number is given by Equation 4.4.

FLOPiteration = T × (W/S)× (2×NNZ) (4.4)
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4.3 Multi-threaded Sliding-Window Gauss-Seidel: Scalability

and Convergence

A number of experiments have been carried out on the FDM-1M, FDM-40K and BDC-

1-0.1 matrices. The first two matrices were obtained from a finite difference problem

(Chapter 3 - Table 3.7). FDM-1M (DOF=1,000,000 NNZ=4,996,000) occupied 61 MB

when stored in CSR format and FDM-40K (DOF=40,000 NNZ=199,200) occupied 2.4

MB (i.e. it fits in the last level cache of the processors used in the experiments). On the

other hand, BDC-1-0.1 (DOF=632,883 NNZ=4,409,973) is a non structured matrix

obtained from a finite element problem and occupied 51 MB (Chapter 3 - Table 3.3).

Overall, the use of a small window size W and a sliding-window S where S < W

did not reduce the execution times of SW-GS relative to the execution time when using

W = S. Although usingW < S decreased the amount of capacity cache misses relative

to usingW = S, synchronization overheads and convergence inefficiency resulting from

usingW < S over-shadowed the performance gain due to the reduction of cache misses.

The following experiments in this section will illustrate these results.

4.3.1 FDM-1M and FDM-40K Experiments

4.3.1.1 FDM-1M

Multi-threaded SW-GS was first applied on FDM-1M (DOF=1,000,000 CSR=61MB)

by using different values of window sizes (W ) and block sizes (S) which were empirically

chosen. Runtime results on both an Intel i7-860 processor (Figure 4.4a) and an AMD

Opteron 2214 dual-socket dual-core processor (Figure 4.4b) have shown that there

were no significant differences in performance relative to the choices of different values

of W and S.
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Figure 4.4: FDM-1M Sliding-Window Gauss-Seidel execution times.
Sliding-Window Gauss-Seidel of FDM-1M (DOF=1,000,000 NNZ=4,996,000 CSR
size=61 MB). Relative residual error = 10−3.

A further investigation of these results revealed the reason of the similar perfor-

mance of SW-GS experiments despite using different values of windows sizes W and

block sizes S. Figure 4.4c shows the total number of iterations by all threads for

every experiment. It has been noted that when S 	 W , the total number of passes

over the system of linear equations was much lower than the number of passes when

W = S, hence reducing capacity cache misses. However, it is important to note that
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the reduction of the number of passes does not mean that convergence of SW-GS was

better when S < W than when using S = W or better than the convergence of a

sequential Gauss-Seidel, in fact, it is the opposite. Reducing the block size S relative

to the window size W and increasing the number of threads led to a method that

is a combination of Gauss-Seidel and Jacobi. The number of updates that a SW-GS

performs on each element of the solution vector x depends on the number of threads

and the sizes of W and S. For i iterations, the total number of updates on each entry

of x, uSW−GS, can be calculated using Equation 4.5.

uSW−GS = iSW−GS × T × W

S
(4.5)

Since SW-GS is a combination of Gauss-Seidel and Jacobi, its convergence is always

less than that of a sequential Gauss-Seidel, from which it can be deduced that SW-GS

would require, at least, to update the solution vector x as many times as a sequential

Gauss-Seidel in order to reach the same solution; i.e. uSW−GS ≥ uGS. One way to

quantify the convergence efficiency of SW-GS relative to a sequential Gauss-Seidel is

to divide the total number of updates on the vector x by Gauss-Seidel to the number

of updates of SW-GS on x for a given solution error tolerance which I will refer to as

“Iterations efficiency” and is given in Equation 4.6.

ξiteration =
uGS

uSW−GS

× 100% (4.6)

In the case of a sequential Gauss-Seidel which is equivalent to a Sliding-Window

Gauss-Seidel (T = 1 and W = S), the number of updates uGS is equal to the number

of iterations iGS, i.e. uGS = iGS. Equation 4.6 can be rewritten as

ξiteration =
iGS

iSW−GS × T × W
S

× 100% (4.7)

For the same FDM-1M problem, the efficiency of iterations using different values

of windows sizes (W ) and block sizes (S) are shown in Figure 4.4d. Despite the
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fact that those experiments resulted in a similar execution runtimes (Figure 4.4a),

their iteration efficiencies were different (ranging between ≈ 87% and ≈ 100%). The

lower a window size W and the higher the ratio W
S
, the less the iteration efficiency

was. An example of this observation is for the experiments (W=5,000 S=1,000) and

(W=50,000 S=10,000) where both had W
S

= 5. The fact that these experiments had

such a low iteration efficiency and similar execution times to all other experiments

can only lead to the following conclusion: using a smaller window size (W )and higher

W
S

ratio reduces capacity misses by reducing the number of the overall iterations over

the coefficient matrix A. However, this cache locality enhancement is canceled by

two sources of execution overheads. The first is related to the convergence of SW-GS

(which is related to the values of W , S and the number of threads). The iteration

efficiency is an indicator of the convergence properties of SW-GS. The second execution

inefficiency is due to the fact that more synchronization barriers are executed in SW-

GS for lower values of W and higher W
S

ratio. The number of synchronization barriers

executed for i SW-GS passes is given in Equation 4.8 which is similar to the number

of updates on an element of the solution x (Equation 4.5).

nbarriersi = 2× i× T × W

S
(4.8)

4.3.1.2 FDM-40K

To further validate the conclusion of the effect of W and S on cache data locality and

convergence, SW-GS was applied on FDM-40K. This matrix has a CSR storage size

(CSR=2.4 MB) smaller than the size of the last level cache of an Intel i7-860 processor

and an AMD Opteron processor. Since the matrix fits in the cache, no capacity misses

occurred and there was no advantage from using SW-GS with low values of W and

high W
S

ratio. For example, in the case of W = 500 and S = 100, the efficiency per

iteration of SW-GS was lower and the number of synchronization barriers were higher

than when using larger window size W and higher W
S

ratio. This explains the end
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results which showed a discrepancy in the execution times as shown in Figure 4.5 for

Intel i7-860 and AMD Opteron processors.
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Figure 4.5: FDM-40K Sliding-Window Gauss-Seidel execution times.
Sliding-Window Gauss-Seidel of FDM-40K (DOF=40,000 NNZ=199,200 CSR size=2.4
MB). Relative residual error = 10−6.

4.3.1.3 FDM-1M Scalability

The scalability of SW-GS was also investigated for the FDM-1M matrix . The speedup

of SW-GS when compared to 1 thread execution showed scalability on both an Intel

and AMD processor as shown in Figure 4.6a and Figure 4.6c respectively. However,

the speedup of a SW-GS when compared to a sequential implementation of Gauss-

Seidel was lower than when compared to a single thread SW-GS. The fact that a

multi-threaded SW-GS performs poorly relative to a sequential Gauss-Seidel highlights

the overheads of synchronization. The magnitude of this overhead is illustrated in

Figure 4.6b (Intel i7-860) and Figure 4.6d (AMD Opteron 2214) by showing SW-GS

speedup graph when calculated relative to a 1 thread and relative to a sequential

Gauss-Seidel.
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The source of synchronization overheads in a multi-threaded application depends

on two factors. The first is due to the amount of data to be synchronized and ex-

changed between threads and the second is due to the time a thread spends waiting

at synchronization barriers. The cost of these overheads has been calculated for the

case of FDM-1M (W = 100, 000 and S = 100, 000) and is reported in Figure 4.7. the

grey box shows the percentage of time SW-GS is executing, the blue box shows the

percentage SW-GS is spending synchronizing data among threads and finally, the red

box shows the time SW-GS threads are waiting at a barrier. As anticipated, most of

the overhead in synchronization was due to data synchronization. The fact that there

were no overheads due to threads waiting at a barrier indicates that balanced thread

execution (i.e. data are partitioned equally among threads). One exception to this

observation is the fact that there was barrier overhead when running 8 threads on a

quad-core AMD Opteron processor due to the limited thread resources (i.e. 4 threads).

Although, the Intel i7-860 has physically 4 cores, its Hyper-Threading technology made

it possible to run 8 threads.
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Figure 4.7: FDM-1M: SW-GS threads utilization. The percentage of
runtime SW-GS is spending on thread execution and synchronization (FDM-1M
DOF=1,000,000 NNZ=4,996,000 CSR size=61 MB).

4.3.2 BDC-1-0.1 Experiments

SW-GS was applied on BDC-1-0.1 (DOF=632,883 NNZ=4,409,973 CSR=52.88 MB),

which is a non-structured matrix having the same size as FDM-1M (CSR=61 MB)

analyzed in the previous section. In both cases (i.e. BDC-1-0.1 and FDM-1M), the

SW-GS convergence rate was degraded due to using low values of W and high W
S

ratios. In the case of FDM-1M, this degradation of performance was balanced by a

decrease of cache misses leading to similar SW-GS runtimes regardless of the W and

S values used. However, in the case of BDC-1-0.1, the degradation of the SW-GS

convergence rate was severe. This has led to more discrepancy in SW-GS runtimes

with varying W and S sizes as shown in Figure 4.8). The degradation of convergence

has been quantified by evaluating the iteration efficiency of each experiment on BDC-

1-0.1. For instance, the iteration efficiency decreased to 20% when running SW-GS

using 4 threads and setting W = 50, 000 and S = 10, 000 while the worst iteration



84

efficiency in the case of FDM-1M was 88%.
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Figure 4.8: BDC-1-0.1 Sliding-Window Gauss-Seidel execution times.
Sliding-Window Gauss-Seidel of BDC-1-0.1 (DOF=632,883 NNZ=4,409,973 CSR=51
MB). Relative residual error = 10−3.

The speedup and scalability of SW-GS was also investigated in the case of BDC-1-

0.1. Overall, the runtime and speedup results (Figure 4.9) show the same trend of SW-

GS scalability as when applied to FDM-1M as the number of threads increased, but

the maximum achievable speedup was less than that of the FDM-1M. The main reason
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is that not only did BDC-1-0.1 have low convergence rate, but also thread utilization

was reduced due to the un-even workload distribution among threads. BDC-1-0.1 is

an unstructured matrix, hence the number of non-zeros in a given thread’s working set

(i.e. W rows) differs from other threads. This fact is validated in Figure 4.10 which

shows the time spent by threads waiting at a barrier (shown in blue).
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4.4 Concluding Remarks

Iterative solvers incur large amounts of cache misses. A large percentage of those

misses are due to the limited capacity of the size of the cache memory relative to the

size of the coefficient matrix A. They are known as “capacity misses”. However, in

this chapter, it has been shown that it is possible to decrease the capacity cache misses

caused by the size of matrix A. This has only been made possible by the fact that

iterative solvers based on Jacobi and Gauss-Seidel (i.e. often referred to as stationary

based iterative solver) do not impose stringent requirements on the order of execution

of rows. Hence, a variation of these two methods has led to the SW-GS presented in

this thesis, which allowed multiple threads to re-iterate over parts of the coefficient

matrix A, hence maximize its usage while present in the cache.

The success of SW-GS in reducing capacity misses did not translate into a gain in

reducing the overall iterative solver runtime, since it decreased the convergence effect
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of Gauss-Seidel and also it increased the number of synchronization points. This raises

the question as to whether current multi-core processors are suitable to being used for

fine-grained parallelism.

The granularity of a multi-threaded algorithm is the level at which a problem is

divided into subcomponents p. The number of components is positively correlated

with the number of synchronizations required. If we consider the cost of executing

an algorithm on a component p to be E(p) and the cost of synchronization to be

S(p), then the ratio of ξg = Ep

Ep+Sp
would be a better way to quantify efficiency of a

multi-thread algorithm for a specific granularity level.

A suitable granularity level would be the one that maximizes ξg, which can clearly

be achieved by reducing the synchronization time Sp and increasing the execution time

Ep through efficient multi-threaded implementation, which is hindered by the fact that

the synchronization and execution times are positively correlated. Further discussion

on fine-grained parallelism is presented in § 7.1.3
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5.1 Introduction

Sparse matrix-vector multiplication (SMVM) is an essential and widely used kernel

arising in many scientific computational problems. It is of particular importance for

the computational electromagnetic community, since it serves as a building block for

many iterative solvers of sparse systems of equations such as those that are based on

the Conjugate Gradient (CG) Method [95, 96]. Algorithm 5.1 shows a basic imple-

mentation of a CG algorithm, where during each iteration, one SMVM (line 7, Ad),

two inner-products (line 8 and 12) and three vector updates (line 9, 10 and 14) are

executed.

Algorithm 5.1 Conjugate Gradient Method

1: i ⇐ 0
2: r ⇐ b− Ax
3: d ⇐ r
4: δnew ⇐ rT r
5: δold ⇐ δnew
6: while ‖r‖/‖b‖ < error tolerance do
7: q ← Ad
8: α ← δnew

dT q

9: x ← x+ αd
10: r ← r − αq
11: δold ← δnew
12: δnew ← rT r
13: β ← δnew

δold
14: d ← r + βd
15: end while

For large realistic problems, especially those which produce systems of equations

that are badly conditioned, the number of iterations required by an iterative solver to

converge to the solution is high. Within each iteration, sparse matrix-vector multipli-

cation is the most time consuming step relative to the other kernels (i.e. inner-products

and vector updates), hence a large amount of research has been directed towards op-

timizing this kernel.

It is well established that matrix-vector multiplication (Y = A×X) exhibits a low
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floating-point operations (FLOP) count to memory access ratio, regardless of whether

A is dense or sparse [97, 98]. The number of floating-point operations for SMVM

is 2 × number of non-zeros (NNZ) in A; each non-zero in A is multiplied by the

corresponding entry in X and the result is added to the corresponding entry in Y .

The number of memory operations for each non-zero is three. This corresponds to

12 bytes of memory transfer when single floating-point precision is used and 24 bytes

when double-floating precision is used. This low ratio of FLOP/BYTE makes SMVM a

memory bandwidth limited problem requiring the use of optimization techniques which

efficiently use the memory hierarchy system (main memory, caches and registers).

The experiments conducted and presented in this chapter aim at analyzing both the

effectiveness and the limitation of the commonly used SMVM optimization techniques

when applied on the matrix set described in Chapter 3. These matrices were obtained

by applying different finite element formulations used in FEM analysis for typical

problems.

A brief overview on SMVM optimization techniques and the attained performance

results will be presented in § 5.3. § 5.4 will present the sparse storage schemes used in

this chapter. Next, the effect of cache misses on SMVM performance when accessing

the vector X in Y = A × X will be analyzed in § 5.5. Furthermore, since the ma-

trices resulting from using FEM have low number of non-zeros per row, the effect of

such a property on the loop setup overhead in SMVM is reported in § 5.6. Finally,

experiments on parallel SMVM and the impact of using multiple threads on cache

performance is shown in § 5.8.

5.2 Complexity Analysis of Conjugate Gradient Kernels

The runtime complexities of kernels executed within a single CG iteration are shown

in Table 5.1. Those complexities assume that p processors are available, where p � N

(in the case of SMVM) and p ≥ N (in the case of vector update and inner-product
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kernels). N being the number of the degrees of freedom of a system of equations

Ax = b.

Table 5.1: Complexity and parallel complexity of CG kernels.

Kernel Sequential Parallel

Vector update O(N) O(1)

Inner-product O(N) O(log2N)

SMVM O(N) O(log2N)

The runtime complexities presented above are not applicable to multi-core based

processors where the number of processor cores or threads is less than the number of

degrees of freedom (i.e. p 	 N). In this case, parallel vector update has a complexity

of O(N
p
) and parallel inner-product and SMVM complexities will be derived as such:

Inner-Product The inner-product of two vectors each of size N can be completed

in N sequential steps (i.e. O(N)). When p ≥ N , the inner-product can be performed

in O(log2 N) steps since each of these “reduction” steps, as shown in Figure 5.1, can be

executed in parallel. However, when p 	 N , each reduction step will require a number,

SS, of sub-steps; thus the total number of runtime steps is calculated according to

Equation 5.1

log2(N)∑
k=0

SS (5.1)
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Figure 5.1: Parallel inner-product.

The number of operations in each sub-step, SS, is related to the number of threads,

p, and the “reduction” step, k, according to Equation 5.2

SS = N/p
2k

(5.2)

Replacing Equation 5.2 into Equation 5.1 gives rise to Equation 5.3.

log2(N)∑
k=0

N/p
2k

= N
p

log2(N)∑
k=0

1
2k

(5.3)

Given that a geometric series of the form
∞∑
k=0

r−k is equal to 1
1−r

, the worse case

scenario of Equation 5.3 can be re-written as

N
p

log2(N)∑
k=0

1
2k

= N
p

log2(N)∑
k=0

2−k � 2× N
p

(5.4)

Hence, the complexity of parallel inner-product on p processors, where p 	 N is

O
(
N/p

)
.

SMVM SMVM requires O(η(A)) operations, where η(A) is the number of non-zeros

of A. In the case of the Finite Element Method, the number of non-zeros can be roughly

related to the average number of non-zeros per row ϑ and the degrees of freedom N .

In this case, SMVM complexity is O(ϑN). Parallel SMVM can be easily parallelized
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into O(
N

p
log2 ϑ) where p is the number of processors. Note that it is assumed in here

that the inner-product of ϑ can be completed in parallel.

5.3 SMVM Optimization Techniques on Multi-core

Processors

SMVM optimization techniques work on reducing the number of main memory fetches

by reordering the computations and using more condensed storage techniques to avoid

cache misses. For example, register blocking and cache blocking [99, 98] are two impor-

tant optimization techniques which increase the temporal and spatial locality of using

processor registers and cache memory respectively. Computational re-ordering also in-

creases contiguous and regular memory accesses which are useful for compiler and low

level (processor) tuning techniques such as vectorization (using SIMD instructions),

loop unrolling and memory prefetching [69, 71].

The extent of the success of these techniques varies depending upon the matrix

structure and processor architectures [100, 71]. Matrix structure refers to the set of

matrix properties, such as the non-zeros distribution, the average number of non-zeros

per row and sparsity. These properties affect the choice of sparse storage and thus

the SMVM algorithm to be used. On a multi-core based processor, the effectiveness

of SMVM optimization varies greatly, mainly due to the architectural difference be-

tween all available multi-core processors. The difference stems from using different

processing cores (Cell processor vs Intel/AMD processors) and different topologies in

building a shared memory hierarchy (Intel vs AMD). Many studies have investigated

the performance of SMVM on different multi-core architectures [69, 101, 100, 71].

They attempted to qualitatively understand the obtained performance on each of the

processors and with the large set of test matrices used in the experiments. Their em-

pirical results provided some optimization guidelines on multi-core and shared cache

based processors. For instance, matrices with a small average number of non-zeros per
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row - a case that occurs in matrices obtained from FEM - showed little performance

gain on both an AMD quad-core Opteron 2356 (Barcelona) and an Intel quad-core

Xeon E5354 (Clovertown) architecture. This observation was consistent on a GPU

architecture (GeForce GTX 280).

To further understand the effect of each of the known limitations in SMVM on

multi-core based processors, many studies performed experiments by singling out each

of the factors that are believed to be limiting the performance of SMVM (e.g. indirect

memory access, short row length, matrix structure). For instance, reference [101], by

removing the effect of irregular memory access on X, found that only 30% of the test

matrices exhibited more than a 10% speedup; this means that the irregular access is

not the prevailing bottleneck. However, the irregular access can have a greater impact

when the matrix used has short row lengths; this is due to the backward jumps in

memory fetches from the vector X (short row lengths also degrade performance due

to loop overheads). Using a similar technique, the effect of indirect memory references

has been found to pose the greatest performance degradation (i.e. a 50% performance

degradation when compared a dense matrix-vector multiplication) [102].

5.4 SMVM using CSR and NVIDIA’s HYB Sparse Storage

Many storage schemes have been investigated with the goal to enhance the perfor-

mance of SMVM, each proved to be efficient for certain types of problems (i.e. matrix

structure) or processor architecture (for a review on sparse matrix storage schemes,

refer to [103, 104]). Of particular interest when working with SMVM is the CSR and

NVIDIA’s hybrid (HYB) sparse storage schemes.

5.4.1 SMVM Using CSR Sparse Storage

The Compressed Sparse Row storage format (CSR), as explained in Chapter 3 § 3.3, is
a simple storage format that can store any matrix regardless of its structure. Figure 5.2
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and Algorithm 5.2 illustrate examples of the Compressed Sparse Row storage and a

naive implementation of SMVM using CSR, respectively.
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32 33 35 
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0 2 4 7 10 12 15 
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col_index 

row_ptr 

45 

5 

Figure 5.2: Compressed Sparse Row Storage (CSR)

The CSR storage format does not make any assumptions about the structure of the

matrix and hence it is widely used when the matrix structure is not known a priori,

as it balances efficiency and applicability.

Algorithm 5.2 Naive implementation of a SMVM using CSR sparse storage.

Input: Matrix A stored in CSR format
Input: Vector X
Output: Vector Y = A×X
1: N ⇐ degrees of freedom of matrix A.
2: for i = 1 to N do
3: row start = row ptr[i]
4: row end = row ptr[i+ 1]
5: for j = row start → row end do
6: column = col index[j]
7: sum ← sum+X[column]× values[j]
8: end for
9: end for
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5.4.2 SMVM Using NVIDIA’s Hybrid Sparse Storage

NVIDIA’s hybrid sparse storage scheme (HYB) is a combination of the ELLPACK [60]

sparse storage format and the Coordinate list format (COO). As explained in Chap-

ter 3, the ELLPACK sparse storage scheme stores a N × N sparse matrix into two

N × W dense data structures (ELL values and ELL column ind) as shown in Fig-

ure 5.3. The size W corresponds to the maximum number of non-zeros per row. When

the number of non-zeros per row is less than W , zeros are padded to fill the remaining

locations. ELL values stores the values of non-zeros in each row in a condensed form

and pads the remaining spaces with zeros. ELL column ind stores the column index

of each corresponding non-zero in the ELL values and “-1” for the padded non-zeros.

The ELLPACK format is well suited for vector processing (GPU) since the rows have

a fixed length which permit warps (groups of 32 threads on a GPU that execute the

same kernel simultaneously) to be aligned with the data structure. For matrices that

have high discrepancy in their number of non-zeros per row, the number of padded

zeros can be large; thus inducing additional useless storage space, floating-point and

memory operations. To overcome this disadvantage of the ELLPACK for these type of

matrices, NVIDIA’s implementation of SMVM on a GPU (cusp-library) [105] uses a

hybrid matrix storage format (HYB), which is a combination of the ELLPACK format

and the Coordinates list format (COO), as illustrated in Figure 5.4. The advantage

of the HYB format over the ELLPACK is that it reduces the amount of padded zeros;

it does so by using the COO storage to handle the non-zeros that do not fit in the

optimal ELLPACK storage.
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Figure 5.3: The ELLPACK sparse storage format.

A COO format stores a matrix into three separate arrays. One array is used to store

the matrix’s non-zeros and the other two arrays store the row index and the column

index of each non-zero respectively. This format is rarely used since the operation

to randomly access and retrieve a non-zero entry has a complexity of O(n) steps.

However, in the case of HYB storage, COO is used to store a very small number of

non-zeros of the matrix. An example of this storage is shown in Figure 5.4 where only

few non-zeros of the matrix where stored using COO.

Preliminary investigations have been conducted to compare the performance of

SMVM when using the Hybrid and CSR storage format. In our implementation of

HYB on a CPU, the “-1” value in ELL column ind, which is used to denote a padded

zero in ELL values, has been replaced by a valid column number (i.e. “0”) in order to

avoid the use of a conditional if statement which checks for a ”-1” column in the inner

loop of the SMVM implementation as shown in Algorithm 5.3 line 10. The results in

Figure 5.5 shows that the performance of SMVM using HYB storage and SMVM using

CSR storage are similar for FEM matrices. HYB was more advantageous than CSR

for small matrices generated from using first-order nodal FEM (2D and 3D) (i.e. ET-1

and BDC-1 respectively). For the set of miscellaneous matrices, CSR’s performance

was superior to that of HYB, mainly due to the large difference in the number of
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non-zeros per row in these matrices.

Figure 5.4: Modified Nvidia’s Hybrid sparse format. Nvidia’s Hybrid sparse
format stores entries in an ELLPACK storage and COO. In this thesis, the original
ELLPACK storage scheme has been modified by setting the column index of fill-ins
as “0” instead of “-1”.
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Algorithm 5.3 SMVM using NVIDIA’s Hybrid (HYB) sparse storage.

Input: Matrix A stored in NVIDIA’s hybrid storage
Input: Vector X
Output: Vector Y = A×X
1: N : degrees of freedom of matrix A.
2: ELLvals: N ×W matrix.
3: ELLcols: N ×W matrix.
4: nCOO: the number of elements in the COO storage
5: row width: the maximum row width of
6: for r = 1 → N do
7: sum = 0
8: for c = 1 → W do
9: column = ELL column ind[r][c]
10: if column not equal −1 then
11: sum ← sum+ ELL values[r][c]×X[column]
12: end if
13: end for
14: Y [r] ← sum
15: end for
16: for i = 1 → nCOO do
17: value ← COOvals[i]
18: rowind ← COOrow[i]
19: colind ← COOcol[i]
20: Y [rowind] ← Y [rowind] + value×X[colin]
21: end for
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Figure 5.5: Performance comparison (GFLOPS) of SMVM using CSR and HYB
sparse storage (single-precision floating-point).
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5.5 Cache Blocking Optimization

5.5.1 Cache Blocking Using Dense Storage

The goal of a cache blocking technique in matrix-vector multiplication is to reduce the

cache misses incurred when reading from the X vector and writing to the Y vector.

First, the source for cache misses will be illustrated for the case when A is a dense

matrix. For a naive implementation of a matrix-vector multiplication, where A is a

dense N × N matrix (Algorithm 5.4), the memory access pattern on X is shown in

Figure 5.6a.

Algorithm 5.4 Naive implementation of dense matrix-vector multiplication.

1: N : degrees of freedom of matrix A.
2: Y = A×X: system of equations of size N .
3: for i = 1 → N do
4: sum ⇐ 0
5: for j = 1 → N do
6: sum ← sum+ A[i][j]×X[j]
7: end for
8: Y [i] ← sum
9: end for

Y 

X 

A 

(a) Without cache blocking

A Y 

X 

(b) With cache blocking

Figure 5.6: Memory access pattern on X and Y in SMVM (where A is a
dense matrix). a) With cache blocking and b) Without cache blocking.

In this naive implementation, X is traversed for each outer loop iteration. This

memory access pattern has low temporal locality of access on X. Each element of X
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is accessed once by the end of each outer iteration. This non optimized data locality

access will cause many cache misses to occur especially when the size of the system (A,

Y and X) is larger than the size of the cache memory. As illustrated in Figure 5.6b,

reordering the computations by dividing the matrix into blocks that fit the cache will

induce an alteration in the access pattern on X so that elements are reused multiple

times during each outer loop before they are evicted from the cache. The same logic

applies to Y .

5.5.2 Cache Blocking Using Sparse Storage

When a memory location is fetched from the main memory into the cache, the mem-

ory system actually retrieves a cache line which contains the data in memory spaces

contiguous to that of the requested datum. This fact is advantageous when the matrix

A is dense due to the spatial locality of memory accesses on X. In the case of a sparse

A, especially for unstructured matrices, the spatial locality of memory accesses to X

is less than that when the matrix is dense. Furthermore the predictable access pat-

tern of X, in the case of a dense A, allows for the prefetching feature of most current

processors to retrieve data that are likely to be needed. In the case of a sparse A,

pre-fetching will not be accurate due to indirect addressing.

One approach to using cache block optimization is reordering the non-zeros and

storing the matrix as a logical block by using the Block Compressed Sparse Row

storage (BCSR), which is an extension of CSR, as shown in Figure 5.7. Figure 5.8

demonstrates the changes occurring in the access pattern on X when using cache block

optimization for this particular example.
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Figure 5.7: Block Compressed Sparse Row Storage (BCSR).
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Figure 5.8: SMVM memory access pattern when using block CSR (BCSR)
sparse storage.

5.5.3 Analyzing the Effect of Cache Blocking Techniques on SMVM

Performance

In order to evaluate the magnitude of the impact exerted by accessing X on SMVM

performance, the multiplication by X[column] was replaced by X[i] (Algorithm 5.5,

line 7). Although this multiplication yielded an incorrect result, the aim was to show

an upper bound on performance gain in cache blocking (i.e. no cache misses on X).

Since the variable column (line 6) is not used elsewhere in the code, the compiler will
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not execute it. However, in order to force the compiler to execute this statement (line

6) a simple print statement of column at the end of SMVM (line 10) can force the

compiler to evaluate line 6.

Algorithm 5.5 Modified SMVM to eliminate the effect of cache misses on X.

1: N : degrees of freedom of matrix A.
2: for i = 1 → N do
3: row start ← row ptr[i]
4: row end ← row ptr[i+ 1]
5: for j = row start → row end do
6: column ← col index[j]
7: sum ← sum+X[i]× values[j]
8: end for
9: end for
10: print column
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Figure 5.9: BDC-1: SMVM performance when using cache blocking the
access on X (single-precision floating-point).

Eliminating the cache misses of X has increased the performance of SMVM sig-

nificantly (as anticipated) when the matrix was unstructured (i.e. BDC-1) as shown
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in Figure 5.9 (Natural ordering). To further validate the results, the set of matrices

in Table 3.3 (BDC-1) were reordered to reduced their bandwidth using the Reverse

Cuthill-McKee (RCM) technique [106] (e.g. Figure 5.10 shows BDC-1-1 reordered us-

ing RCM). When the matrices were reordered using RCM, the performance of SMVM

using cache blocking was close to the performance of SMVM without cache blocking

(Figure 5.9), since cache misses were less due to the ordered access pattern on X.
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Figure 5.10: Reordered BDC-1-1 using Reverse Cuthill-McKee.

5.6 Loop Setup Overhead and Loop Unrolling

As discussed in the introduction, the matrix structure affects the performance of an

SMVM kernel and the attainable GFLOPS. One of the factors that has been argued

to be contributing to reducing the performance of SMVM is the low number of non-

zeros per row [71]. For each row of the matrix A, the inner loop of the SMVM code,

whether using the CSR storage or using the HYB storage as shown in Algorithm 5.2

and Algorithm 5.3 respectively, iterates over the row’s non-zeros and multiplies them

by the correspond entries in X. When only a few non-zeros are present, the inner

loop setup overhead time would dominate the calculation time and would not be able

to be amortized over the short calculation time of a few non-zeros. Since the set of

FEM matrices used in this work falls within this category (i.e. low NNZ per row)
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a test examining the degradation of the SMVM performance due to the inner loop

setup overhead has been carried out by replacing the inner loop of SMVM with a

set of instructions which explicitly multiply each element of A by its corresponding

element in X; this technique is often referred to as “loop unrolling”. “Loop unrolling”

has been made possible by the use of the ELLPACK (or Hybrid) sparse format since

the number of non-zeros per row is fixed, hence the number of times an inner loop

executes its inner instruction is fixed. In such a case, the inner loop can be eliminated

and the instruction within the inner loop can be replaced by explicitly writing the set of

instructions that would have been executed by the inner loop. Algorithm 5.6 illustrates

a sparse matrix-vector multiplication using the ELLPACK storage. Assuming that the

width W of the ELLPACK storage is 7, the inner loop which multiplies the non-zeros

of a row by the corresponding locations in X is replaced by seven instructions. The

effect of this technique on the performance of SMVM when applied on BDC-1 matrix

test set is shown in Figure 5.11. It can be seen that while loop unrolling did increase

SMVM performance, it was not as significant as the performance gain obtained from

eliminating cache misses on X.

Algorithm 5.6 SMVM loop unrolling using NVIDIA’s Hybrid (HYB) sparse storage.

Input: Matrix A stored in NVIDIA’s hybrid storage
Input: Vector X
Output: Vector Y = A×X
1: N : degrees of freedom of matrix A.
2: ELLvals: N × 7 matrix.
3: ELLcols: N × 7 matrix.
4: for r = 1 → N do
5: sum = 0
6: sum ← sum+ ELL values[r][1]×X[ELL column ind[r][1]]
7: sum ← sum+ ELL values[r][2]×X[ELL column ind[r][2]]
8: sum ← sum+ ELL values[r][3]×X[ELL column ind[r][3]]
9: sum ← sum+ ELL values[r][4]×X[ELL column ind[r][4]]
10: sum ← sum+ ELL values[r][5]×X[ELL column ind[r][5]]
11: sum ← sum+ ELL values[r][6]×X[ELL column ind[r][6]]
12: sum ← sum+ ELL values[r][7]×X[ELL column ind[r][7]]
13: Y [r] ← sum
14: end for
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Figure 5.11: BDC-1 Loop unrolling and cache blocking (single-precision floating-
point).

5.7 Memory Bandwidth

In order to test the performance of SMVM in relation to the processor’s capabili-

ties, the results obtained from the STREAM benchmark [107] were compared to the

attainable bandwidth (MB/s) of SMVM when applied on the BDC-1 matrix set.

5.7.1 The STREAM Benchmark

The theoretical peak performance of a computer’s memory subsystem mainly depends

on two factors. The first is the transfer rate between the memory and the processor,

the second is the number of bits that can be transmitted during each transfer cycle (i.e.

bus width). Roughly, this is given by Equation 5.5. Additional technological enhance-
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ments can boost such performance, by increasing the number of interfaces between

the memory and the processor and increasing the number of memory transfers per

clock cycle. In this case, the theoretical memory bandwidth is given by Equation 5.6.

This peak performance only measures the transfer rate of the physical layer of the

memory’s subsystem and assumes that data are exchanged between the processor and

the memory in burst mode, that is, data is always available to be transferred and no

other factors that are interfering, such as waiting for other operations.

BW (Mbit/s) = Memory Clock Frequency (Mhz) × BusWidth (bits) (5.5)

BW (Mbit/s) = Memory Clock Frequency × (transfers per cycle)
× (BusWidth ) × (number of channels)

(5.6)

Alternatively, the STREAM benchmark [107] has been widely used as a realistic

measure of the sustainable memory bandwidth. It works by applying four kernels on

an array of data that do not fit in the cache. Table 5.2 shows the sustainable memory

bandwidth of the processors used in this thesis’s experiments.

Table 5.2: STREAM benchmark kernel operations.

Name Kernel
Bytes/
iteration

FLOPS/
iteration

Intel i7-860
(MB/s)

AMD Opteron 2241
(MB/s)

COPY a(i) = b(i) 16 0 10165.69 2963.51

SCALE a(i) = q * b(i) 16 1 8878.59 2925.34

SUM a(i) = b(i) + c(i) 24 1 8968.57 2400.48

TRIAD a(i) = b(i) +q * c(i) 24 2 9675.90 3140.33

5.7.2 SMVM Memory Bandwidth

Memory bandwidth of four SMVM optimization techniques (i.e. loop unrolling - nat-

ural ordering, loop unrolling and cache blocking - natural ordering, loop unrolling -

Reverse Cuthill-Mckee ordering, loop unrolling and cache blocking - Reverse Cuthill-

Mckee ordering) are shown in Figure 5.12 when executed on an Intel i7-860 processor
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and in Figure 5.13 when executed on an AMD Opteron processor. In general, a version

of SMVM that does utilize cache blocking optimization would work well below 50% of

the STREAM benchmark sustained memory bandwidth, while an optimized SMVM

(with cache blocking) only attained 70% of the STREAM benchmarks.
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Figure 5.12: BDC-1 sustainable memory bandwidth (MB/s) on Intel i7-860
processor.
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Figure 5.13: BDC-1 sustainable memory bandwidth (MB/s) on an AMD
Opteron 2241 dual-socket dual-core processor.

5.8 Parallel SMVM

Sparse matrix-vector multiplication operations can be easily parallelized since each

row of the matrix can be multiplied by X independently of the remaining rows. Let

T be the number of threads where T 	 n (n is the number of rows in the matrix A),

each thread can be assigned a block of rows of the matrix to be multiplied by X as

shown in Figure 5.14a. This thread distribution technique is referred to as “scalar”

SMVM. One drawback of “scalar” SMVM on a multi-core processor is that threads

can create cache contention and cache conflicts especially if all threads are executing

simultaneously on a large data set. On a GPU, the limitation of this thread distribution

is that threads (warps) are not aligned to access contiguous memory locations. A

different distribution of threads, known as “vector” SMVM, assigns a group of threads

to perform computations within the same row as shown in Figure 5.14b. This method
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however also has many drawbacks, one of which is that the inner-product between a

row and X requires parallel reduction to add all multiplied entries. The reduction

will render some threads idle and synchronization is required at each reduction step.

The “vector” SMVM is suited for execution on a GPU due to the coalescent access

on a GPU. In general, “vector” SMVM has been the method of choice on GPU, while

“scalar” SMVM is used on a CPU.

On a multi-core processor, assigning one thread per matrix row (i.e. “scalar”

SMVM) is a better choice than assigning multiple threads per row for matrices arising

from FEM due to the low number of non-zeros per row. The small number of non-zeros

are usually fetched into 1 cache line. Having multiple threads working on the same

cache line (i.e. “vector” SMVM) leads to false cache sharing among threads which

causes cache line invalidation; thus causing cache misses.

(a) Scalar parallel threads (b) Vector parallel threads

Figure 5.14: Parallel SMVM: Scalar and Vector thread distribution tech-
niques. Showing different techniques to map threads onto a matrix data set.
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The runtime results, expressed in GFLOPS, of sequential SMVM and parallel

“scalar” SMVM for a large set of matrices stored using the HYB sparse storage scheme

are shown in Figure 5.15. In general, matrices that are structured (i.e. banded), such

as most of those obtained from matrix market, had higher GFLOPs than the un-

structured matrices devised in Chapter 3 by applying FEM on EM problems (BDC-0,

BDC-1, BDC-2 and ET matrices). An exception to this is matrices Circuit and Eco-

nomics which had low GFLOPs mainly due to the large amount of fill-ins caused by

using HYB storage. On the other hand, the Epidem matrix, like the matrices obtained

from applying edge finite element formulation (BDC-0), attained low GFLOPs due to

the low number of non-zeros per row. Those results re-confirm that optimizing SMVM

to reduce the cache misses that occur when accessing the X vector in Y = A×X has

the greatest effect on increasing SMVM performance.

More analysis has been carried on BDC-1-0.04 (DOF=3,125,216 NNZ=22,000,128

CSR=263.7962 MB) and ET-0.01R1 (DOF=2,666,039 NNZ=39,535,927 CSR=462.62

MB) to understand the attained GFLOPs when running sequential and parallel SMVM

on each. Despite the fact that BDC-1-0.04 matrix has a smaller storage size and more

efficient HYB storage (i.e. less fill-ins) than ET-0.01R, the latter exhibited higher

GFLOPs. The percentage of execution cycles that were halted due to misses on the

last level cache (L3) was larger than 60% in the case of BDC-1-0.04 and close to

35% in the case of ET-0.01R1. The access pattern to the vector x in ET-0.01R1 was

more coalesced and exhibited more locality than the access pattern to the vector X in

BDC-1-0.04.

In both cases, the number of execution cycles that were halted due to cache misses

was reduced to 10% when using multiple threads (i.e. 4 threads). When a thread

fetches data from the main memory (causing L3 cache misses), subsequent threads

can take advantage of the data and reuse it if their temporal access to the datum is

high; such is the case of the access pattern on X. This “true cache sharing” among

threads did not cause invalidation on the low level private caches (L1 and L2) mainly
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because X is a read-only vector. This observation implies that read-only data that are

frequently accessed in multi-threaded applications enhance cache performance when

compared to a single threaded application.

5.9 Concluding Remarks

SMVM is an important kernel in Krylov based iterative solvers. Its main limitation

is that it is a memory bandwidth limited problem since it has a low floating-point

operations (FLOP) count to memory access ratio. Hence, in order to increase SMVM

performance, it is important to resort to optimization techniques that enhance cache

performance. Particularly, it has been re-confirmed in this chapter that optimization

techniques which aim at reducing the number of cache misses, especially when access-

ing X in Y = A × X, have been found to have the greatest effect on increasing the

performance of SMVM. This can be accomplished by either re-ordering SMVM compu-

tations by using sparse storage techniques such as blocked CSR (BCSR) or re-ordering

the matrix A using RCM to reduce its bandwidth. However, as it will be discussed

in the next chapter, RCM decreases the convergence rate of preconditioned conjugate

gradient (PCG) and reduces the degree of parallelism of the backward/forward solve

within each PCG iteration.

SMVM optimization techniques on multi-core and GPU processors mainly focus

on devising storage techniques which fit the processor’s architecture. Basically, most

research devises sparse storage where rows are combined and padded with zeros to

have a block size that fits a processor’s hardware specifications such as cache line size

and warp size (in a GPU). Ideally, a matrix where the number of non-zeros in each of

its rows are closely clustered is more amenable to be transformed into a suitable sparse

storage; such is the case of matrices obtained from FEM problems. Although, the work

in this chapter did not demonstrate the power of ELLPACK or similar storage schemes

(except by using loop unrolling), its purpose was to show that it was possible to use
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such storage without incurring a great amount of overhead.

The SMVM kernel generally took advantage of using multi-threads which reduced

the amount of cache misses due to the frequent access to a read-only shared data struc-

ture (i.e. the X vector). All threads (processor cores) were efficiently utilized leading

to a reduction in SMVM runtime although the attainable GFLOPs was small relative

to a processor’s theoretical peak performance. However, many arising challenges are

still present mainly due to the fact that SMVM is executed within each CG iteration

along other kernels such as the inner-product and backward/forward solve (in the case

of the Preconditioned Conjugate Gradient method). Those kernels have less degree

of parallelism than SMVM and do not take advantage from using all processor cores.

Hence reserving all resources for SMVM might not benefit the whole PCG process,

even in the presence of an efficient SMVM implementation.
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Chapter 6

Parallel Preconditioning Techniques on Multi-
Core Processors
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6.1 Introduction

Preconditioning of a system of linear equations Ax = b roughly speaking is the in-

troduction of a new matrix M such that the resulting system M−1Ax = M−1b has a

better “condition number1” than the original system. In a different way, the quality

of a preconditioner is how well M−1 approximates A−1. In the cases we deal with,

the preconditioner is usually implicitly applied as part of the iteration of the Con-

jugate Gradient Method by backward/forward solving a system of the form Ms = r

(i.e. s = M−1r) within each iteration of a Preconditioned Conjugate Gradient (PCG)

algorithm (line 13 of Algorithm 6.1). PCG aims at reducing the number of iterations.

1The condition number of a matrix is the ratio of its largest eigenvalue to its smallest eigenvalue.
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However, this is not enough to reduce the solver time if the cost to set up the pre-

conditioner (line 1 of Algorithm 6.1) and to apply it (line 13 of Algorithm 6.1) within

each iteration is high. Hence, a preconditioner must be fast to set up, fast to apply

and must reduce the number of iterations.

Algorithm 6.1 Preconditioned Conjugate Gradient Method.

1: M = L̂Û : Preconditioner setup
2: ε: Error tolerance
3: i ⇐ 0
4: r ⇐ b− Ax
5: d ⇐ M−1r
6: δnew ⇐ rT r
7: δold ⇐ δnew
8: while ‖r‖/‖b‖ < ε do
9: q := Ad
10: α := δnew

dT q

11: x := x+ αd
12: r := r − αq

13: s := M−1r
14: δold := δnew
15: δnew := rT s
16: β := δnew

δold
17: d := s+ βd
18: end while

There are many classes of preconditioners each of which can be subdivided into

many sub variants. Polynomial preconditioners for Krylov subspace methods were

popular for some applications in the early stages of the preconditioning studies [108].

Preconditioners based on Jacobi, SOR (or SSOR for symmetric matrices) and block

Jacobi are old techniques that are still in use [109, 103]. Currently, preconditioners

that are based on approximate inverse and incomplete LU decomposition (ILU) are a

popular choice. This chapter focuses on ILU based preconditioners, mainly due to the

fact that the incomplete Cholesky preconditioner IC(0), which is a special case of ILU,

has been the state-of-the-art preconditioner for iterative solvers running on desktop

computers.
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First, in § 6.2, incomplete Cholesky IC(0), will be applied on a set of matrices

selected from Chapter 3. The aim of this step is to show the efficiency of setting up

IC(0) preconditioner using an “in-place” factorization algorithm. It has been possible

to use this algorithm in the case of IC(0) since the sparsity of the resulting precondi-

tioner is priori-known. When devising an ILU preconditioner, the sparsity of the final

preconditioner cannot be a priori-known unless “symbolic factorization” is applied first

which is only applicable for ILU preconditioner technique that drops fill-ins based on

their location. In this case, the bottleneck to rapidly generating a preconditioner lies

in the “symbolic factorization” step. This step will be investigated in section § 6.4.

Another essential and time consuming step when using preconditioning techniques

is the cost of applying a preconditionerM within each PCG iteration by backward/forward

solving a system of the form s = M×r. The degree of parallelism that can be obtained

in this step will be examined in § 6.5.

The remainder of this section § 6.1.1.1 will overview LU factorization which is

used in direct solvers and from which the idea of incomplete LU stems. Furthermore,

the impact of matrix re-ordering before applying LU or ILU factorization will also be

discussed in § 6.1.1.2.

6.1.1 Overview

In theory, a Conjugate Gradient Method converges in at most N iterations in the

absence of round-off errors (i.e. on an infinite precision machine), where N is the

number of degrees of freedom of the system of linear equations Ax = b. However in,

practice, it is desired to perform a number of iterations i so that the ratio of the norm

of the solution error at the ith iteration ‖ei‖ and the norm of the initial solution error

‖e0‖ is small, i.e. ‖ei‖ ≤ ε ‖e0‖. The maximum number of iterations i required to

reduce the norm of the error by ε is given by Equation 6.1 [110]. This number of

iterations is related to the condition number κ of the matrix A which is defined as the
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ratio of the largest eigenvalue λmax to the smallest eigenvalue λmin, i.e. κ = λmax/λmin.

i ≤
⌈
1

2

√
κ

(
2

ε

)⌉
(6.1)

The error of a solution at iteration i, ei = xi − xsolution cannot be calculated since it

requires the solution of the system of equations, xsolution. Instead, one way to measure

the progress of the convergence of a CG iteration is to use the norm of the residual

r instead of the norm of the error e since the residual of a solution ri = b − Axi is

related to the error ri = −Aei. In this case, ‖ri‖ ≤ ε ‖r0‖ ↔ ‖ri‖ ≤ ε ‖Ax0 − b‖.
When the initial solution vector x0 of a CG is set to zeros, the stopping criterion of a

CG becomes ‖ri‖ / ‖b‖ ≤ ε (CG Algorithm 6.1 - line 6) .

A condition number of 1 minimizes the upper limit of the number of iterations in

Equation 6.1, hence the closer a matrix’s condition number to 1, the fewer iterations

it requires to converge. Furthermore, CG converges faster when the eigenvalues are

clustered within the limits [λmin, λmax] than when they are irregularly distributed.

Matrices obtained from applying FEM on low frequency EM problems are usually

large and ill-conditioned (κ � 1) mainly due to the disparity in the magnitude of the

matrix entries which are related to the physical material properties. An ill-conditioned

system of linear equations has slow convergence, hence preconditioning the system of

equations becomes essential to reduce the number of iterations.

6.1.1.1 Incomplete LU Factorization Overview

The incomplete factorization methods were first introduced by Varga [111], then later

used as a preconditioner for the Conjugate Gradient Method [112]. They are a vari-

ation of the factorization technique that is commonly used in direct solvers during

which a matrix A is decomposed into a lower L and an upper triangular matrix U

such that A = LU or A = LLT for symmetric matrices. In this case (direct solvers),

the exact decomposition of A into LU results in a system of the form LUx = b which
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is then solved in two steps: forward substitution Ly = b and backward substitution

Ux = y. Despite the fact that direct solvers that are based on this method are robust,

they are not useful for large systems since the triangular matrices L and U lose their

sparsity, as zero entries in the coefficient matrix A turn into non-zero entries (referred

to as fill-ins) in L and U which require a large amount of operations and storage.

Figure 6.1 shows a matrix A and the decomposed factor U that has a large number

of non-zeros. Algorithm 6.2 shows a sample code of LU factorization assuming that

matrix A is stored in a dense data structure.

Symbolic factorization is usually performed prior to LU decomposition (or ILU

decomposition) so that the locations of fill-ins are determined to pre-allocate memory.

This significantly reduces the factorization time. Symbolic factorization is usually

carried by parsing an elimination tree, which is a data structure that depicts the order

of factorization and dependency between the matrix’s rows. Hence its usage is also

important to explore parallelism in the factorization stage [113].
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(a) Matrix A (b) Upper triangle factor U

Figure 6.1: LU factorization. (a) Symmetric matrix NNZ=70,088 and (b)
Upper triangular factor U obtained from decomposing A into an LU factors
(NNZ=11,954,965).
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Algorithm 6.2 Fan-out down-looking LU factorization using dense storage.

Input: U : the upper triangle to be factored
Output: U : factored upper triangle
1: # Iterate over each row in the upper triangle

2: for k = 0 → N − 1 do
3: # Square root the diagonal entry of row k

4: Ukk :=
√
Ukk

5: # Modify each entry of row k other than the diagonal entry

6: for i = k + 1 → N − 1 do
7: Uki := Uki/Ukk

8: end for
9: # Modify each entry of the remaining rows i < k

10: for i = k + 1 → N − 1 do
11: for j = i → N − 1 do
12: Uij := Uij − Ukj × Uki

13: end for
14: end for
15: end for

In the case of iterative solvers, the decomposed system is used as a preconditioner,

hence the decomposition of matrix A into a product of a lower triangular matrix

and an upper triangular matrix need not be exact, that is A = L̂Û , where L̂ and

Û are approximations of L and U respectively obtained by allowing many fill-ins

to be dropped. Many strategies exist to control the number and locations of fill-

ins. For dropping strategies which eliminate fill-ins based on their locations, symbolic

factorization is used to pre-determine their locations before factorization.

There is a commonality between LU decomposition used in direct solvers and ILU

used as a preconditioner in iterative methods. Many parallelization techniques used in

LU factorization are used in incomplete LU factorization. However, it is important to

draw the differences between the two. In the case of a direct solver, the LU factorization

step is the most time consuming step. It has a complexity of O(n3) as opposed to O(n2)

for backward/forward solve (in the case of a dense matrix). Since each of these steps

is executed once, a plethora of research has been geared to optimize and parallelize

the more expensive stage (i.e. the factorization stage). It has been established that

the factorization stage is more amenable to parallelization than the solve stage. On a
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multi-core processor, Hogg [114] established the fact that despite the solve stage taking

fewer operations than the factorization, it has higher memory traffic and reported that

98% of the floating-point operations were performed by the factorize phase, but 20%-

40% of the Level-2 cache misses were in the solve phase. Those results could have a

more negative impact on the performance of PCG when using ILU as a preconditioner

since the backward/solve is executed within each PCG iteration.

6.1.1.2 Ordering Techniques, Convergence and Parallelism

Minimum degree (MD) and Nested dissection (ND) orderings represent classes of or-

dering techniques that aim at reducing the number of fill-ins when factoring a matrix

A into LU . MD reorders matrix columns in such a way that columns with the fewest

number of non-zeros are eliminated first. Multiple Minimum degree (MMD) [115]

and Approximate Minimum Degree (AMD) [116] are examples of the state-of-the-art

heuristics of the MD-ordering technique. On the other hand, Nested dissection (ND)

based ordering uses the divide-and-conquer approach by recursively subdividing the

matrix’s adjacency graph into disjoint subgraphs. One such heuristic is the multilevel

nested dissection [117] implemented in the METIS [118] library. Another important

advantage of these orderings is that they increase the degree of parallelism of the elim-

ination process (i.e. LU factorization) since they increase the amount of independent

nodes. The degree of parallelism can be depicted by constructing the elimination tree

of the factorization process. Tree nodes of the same level can be eliminated simulta-

neously, hence it is desired to have an elimination tree that has a small height (i.e.

less elimination steps) and larger number of leaves on each level (i.e. degree of paral-

lelism). For instance, Figure 6.2 shows the sparsity of matrix BDC-1-1 before ordering

and its corresponding elimination tree. The height of this tree is 10,603. After re-

ordering BDC-1-1 using Minimum Degree (MD) and Nested dissection (ND) ordering,

the heights of the corresponding elimination trees for each ordering were reduced to

424 and 311 as shown in Figure 6.3 and Figure 6.4 respectively.
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Figure 6.2: Natural ordering and LU factorization. (a) Symmetric matrix
NNZ=114,655. (b) A = LU factorization, NNZ=52,458,397. (c) Elimination tree
with height=10,603.
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Figure 6.3: Approximate Minimum degree ordering and LU factorization.
(a) Symmetric matrix NNZ=114,655. (b) A = LU factorization, NNZ=568,599. (c)
Elimination tree with height=424.
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Figure 6.4: Nested Dissection ordering and LU factorization. (a) Symmetric
matrix NNZ=114,655. (b) A = LU factorization, NNZ=575,395. (c) Elimination tree
with height=311.

Reverse Cutill-McKee ordering (RCM) described in Chapter 5 reduces the amount

of fill-ins by reducing the matrix’s bandwidth as shown in Figure 6.5. Despite its

advantage in reducing the amount of cache misses in SMVM, it does not lead to an

elimination tree with minimum height. Little parallelism can be extracted in both the

factorization and backward/forward solve using RCM.
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Figure 6.5: Reverse Cuthill-McKee ordering and LU factorization. (a) Sym-
metric matrix NNZ=114,655. (b) A = LU factorization, NNZ=6,248,837. (c) Elimi-
nation tree with height=15,144.

The advantages of the ordering techniques discussed above in both reducing fill-ins

and increasing parallelism are essential to LU factorization in direct solvers. However,

in the case of iterative solvers (i.e. PCG), reordering A before ILU factorization leads
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to a preconditioner L̂′Û ′ that has different effect on the convergence of PCG than

that obtained without ordering (i.e. L̂Û). It has been established that ordering to

reduce fill-ins or increase parallelism reduces the quality of the preconditioner and

leads to more PCG iterations. Duff and Meurant [119] were the first to investigate

such an effect by exhaustively performing experiments using many ordering techniques

on the incomplete Cholesky - Conjugate Gradient Method (ICCG)2. They concluded

that ordering increases the number of iterations, however, this was not related to

the fact that ordering reduced the number of fill-ins, but rather to the norm of the

“remainder” matrix R = M − A, where M = L̂Û . This provides a good measure of

convergence. However Chow and Saad [120] and Benzi et al. [121] have shown that for

non-symmetric problems R may be an insufficient characterization of the convergence

of the preconditioned iterative methods [122]. A large of body of research has since

then attempted to understand the trade-off between convergence and parallelism [119,

123, 124, 125, 126, 127, 128]. Most results found an overall gain in reducing the

solver’s runtime by optimizing the ILU parallel implementation to compensate for the

increased number of iterations. Saad [129] found that ILUT converges better using

RCM than any other ordering.

6.2 Incomplete Cholesky Factorization

One of the dropping strategies during ILU factorization is to drop all fill-ins so that the

sparsity of L̂ and Û matches that of the original matrix A. This dropping rule gives

rise to an ILU(0) or IC(0) (incomplete Cholesky in the case of symmetric matrices)

preconditioner [112], where the zero denotes that no fill-ins are allowed. Incomplete

Cholesky with no fill-ins has been the preconditioner of choice on a desktop computer

mainly due to its ability to reduce the number of iterations of a PCG while being

inexpensive to produce and to compute on a desktop computer. The structures of the

2ICCG: a Preconditioned Conjugate Gradient Method which uses IC(0) as a preconditioner.
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factors L̂ and L̂T are a priori known, making it easy to pre-allocate the storage require-

ment, without the need for symbolic factorization. An efficient implementation would

be to duplicate the lower part of A and then perform an in-place factorization by going

in an ordered manner over the entries of each row. The most efficient implementation

is given by Algorithm 6.3, which is also found in SparseLib++ library [130].

Algorithm 6.3 Fan-out in-place incomplete Cholesky factorization with no fill-ins
IC(0)

Input: The upper triangle matrix stored in CSR (values, col ptr and row ptr)
Output: The factored upper triangle matrix stored in CSR
1: # Iterate over each row in the upper triangle

2: for k = 0 → N − 1 do
3: # Square root the diagonal entry of row k

4: d := row ptr[k]
5: z :=

√
values[d]

6: # Modify each non-zero entry of row k other than the diagonal entry

7: for i = d+ 1 → row ptr[k + 1] do
8: values[d] := values[d]/z
9: end for
10: # For each non-zero entry of row k, get its column index and jump to row j=colmn

index

11: for i = d+ 1 → row ptr[k + 1] do
12: z := values[i]
13: h := col index[i]
14: g = i
15: for j = row ptr[h] → row ptr[h+ 1] do
16: # For each non-zero entry of row j with column index c, find the entry in row k

that has the same column index

17: while g < rowPtr[k + 1] and col index[g] ≤ col index[j] do
18: if col index[g] == col index[j] then
19: values[j] := values[j]− z ∗ values[g]
20: end if
21: g := g + 1
22: end while
23: end for
24: end for
25: end for

The results of Table 6.1 shows the execution times of incomplete Cholesky when

applied on matrices obtained from 2D and 3D problems. The execution times are
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relativity small compared to a PCG solver execution time.

Table 6.1: Incomplete Cholesky factorization timings on an Intel i7-860
processor. Execution times of incomplete Cholesky when applied on matrices ob-
tained from 2D and 3D problems. The execution times are relativity small compared
to a PCG solver execution time.

Matrix
Degrees of
freedom

Upper triangle
NNZ

CSR storage size
(MB)

IC(0) time
on i7-860 (sec.)

BDC-1-0.5 38,084 147,636 1.846 0.0275

BDC-1-0.1 632,883 2,521,428 31.2697 0.4987

BDC-1-0.04 3,152,216 12,576,171 155.94 2.594

ET-0.08 38,234 293,643 3.5 0.1359

ET-0.04 409,531 3,204,372 38.233 1.554

ET-0.01R 2,666,039 21,100,983 251.65 10.3244

6.3 Complexity Analysis

The complexity of a zero fill-in incomplete LU is calculated as follows. For each

matrix’s row i, η(i) operations are performed on that row where η(i) represent the

number of non-zeros of the ith row. Using the fan-out algorithm, the row being elimi-

nated causes η(i) number of fan-outs (i.e. causes η(i) rows to be modified), hence the

number of operations for each row elimination is η(i)+ η(i)× 2 ∗ η(i) = O(η(i)2). The

total complexity to eliminate all matrix rows is O(N ∗ η(i)2).
There are two types of parallelism that can be explored in ILU. The first is to

perform the operations when eliminating a specific row in parallel (fine-grained par-

allelism). The degree of parallelism in this case is limited to the average number of

non-zeros of the matrix factor η(i). ILU complexity becomes O(Nη(i)). Additional

parallelism can be explored by eliminating many rows simultaneously (coarse-grained

parallelism). In this case, the maximum attainable degree of parallelism is equal of

the number of leaves in the elimination tree. This is maximized when the elimination

tree is balanced and has a small height h (using MD ordering). The best case parallel
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time complexity provided p ≥ tree leafs is Ω(η(i)h) where p is the number of available

processors or threads. For small number of threads, a good scheduling strategy would

be to use threads at the beginning of the elimination process for coarse-grained paral-

lelism (multiple rows elimination) and switch to fine-grained parallelism (parallelism

within a row) as the elimination progresses.

6.4 Incomplete Factorization With Fill-ins

In order to improve the convergence rate of PCG beyond that provided by using the

IC(0) preconditioner, much research has focused on extending the idea of the incom-

plete Cholesky preconditioner by allowing fill-ins to occur. There are two heuristics

used to control the amount of fill-in. The first is based on a drop tolerance criterion,

known as the Incomplete LU Threshold (ILUT) through which entries are dropped if

their values are below a preset threshold. The second is based on the level of fill-in

known as ILU(�), where symbolic factorization, using graph theory, is carried out to

identify the locations of the fill-ins and their level in the graph. The fill-in entries that

exceed a given level are dropped. Matrix elements are assigned a level 0, hence IC(0)

discards all fill-ins and the resulting factorized matrix has the same sparsity pattern

as the original matrix.

ILUT algorithms perform row-by-row, upward-looking factorizations, discarding

elements that are smaller than a given value. Perhaps the most popular formulation

is ILUT(τ ,p) [129], which employs a dual-dropping strategy. The first parameter τ

is the dropping threshold, while the second parameter, p, limits the amount of fill in

any row of the matrix. If a row in the original matrix A has r nonzero entries, then a

maximum of r+p entries are permitted in the corresponding row of the preconditioner.

The limit p is sometimes applied separately to upper and lower triangular portions of

the row. As with other ILU algorithms, both symmetric and non-symmetric variants

exist.
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6.4.1 Parallel Symbolic Factorization of ILU(�)

ILU(�) is an incomplete factorization technique in which a fill-in is discarded when

its level is larger than a pre-specified value �. The level of a fill-in (e.g. level(Uij))

depends on the level of the entries that caused it (e.g. level(Ukj) and level(Uki) ),

that is, level(Uij) = f(level(Ukj), level(Uki)). Hysom [131] presented many rules that

can be used to determine such dependency. One such is the “sum” rule, in which the

level of an element is calculated according to Equation 6.2. It simply states that the

level of a new fill-in is the sum of the levels of the causal elements incremented by one.

Since a fill-in may be updated many times, its level is always the smallest number of

all calculated levels. The ultimate goal of this rule is to discard fill-ins that are small.

level(i, j) = min
1≤k<min{i,j}

{level(i, k) + level(k, j) + 1} (6.2)

The choice in this thesis to adopt the “sum” rule is because it gives rise to a sym-

bolic factorization method that can be applied on each row independently. This can be

done according to Hysom’s method described in [131] and shown here in Algorithm 6.4.

This algorithm takes as an input the adjacency list of the matrix A. An adjacency list

adj(i) of a matrix’s row i contains the rows numbers dependent on i. Since the CSR

storage is used to store the matrix A, then the adjacency list of A is the col index of

the CSR. The output of Hysom’s algorithm is the adjacency list adj′ which contains

the locations of the entries in each row of the ILU preconditioner. The dynamic CSR

storage was used in this thesis to store adj′ of ILU as illustrated in Figure 6.4. The

choice to use dynamic CSR was to allow each thread to apply the algorithm on each

row and update the row’s structure independently. When all threads finish parallel

symbolic factorization, the adjacency of each row is then combined to create the CSR

storage of the preconditioner ILU in O(N) steps. By the end of this step, the values

of ILU would all be set to zeros. Finally, the upper triangle A entries are copied to

ILU followed by executing an efficient in-place Cholesky factorization.
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Algorithm 6.4 Hysom row-structure symbolic factorization

Input: The adjacency list adj(A) of A, the row number i and the level of fill-in �
Output: The adjacency list of the upper factored matrix adj′(i).
1: Enqueue(Q, i)
2: length[i] := 0
3: visited[i] := i
4: while Q �= ∅ do
5: h := Dequeue(Q)
6: for t ∈ adj(h) with visited[t] �= i do
7: visisted[t] := i
8: if t < i and length[h] < � then
9: Enqueue(Q, t)
10: length[t] := length[h] + 1
11: else if t > i then
12: insert t in adj′(i)
13: end if
14: end for
15: end while

Figure 6.6: Dynamic CSR adjacency list. The adjacency list adj′ is stored using
dynamic CSR storage where each row can be dynamically allocated and expanded
with little overhead.

Table 6.2 illustrates the amount of incurred fill-ins when creating ILU(1), ILU(2)

and ILU(3) preconditioners. The amount of fill-ins when using natural ordering is

high. One important observation is that the time it took to create the symbolic
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factorization for different ILU levels of the same problem was very close despite the

difference in the number of fill-ins. This means that the DOF of a problem has the

greatest impact on the execution time and not the operations involved in adding entries

into the dynamic CSR. Such results might suggest that a higher level of ILU should

be used to have a better preconditioner. However, problems might arise due to the

decrease of parallelism when forward/backward solving the preconditioner, as will be

investigated in the next section.

Table 6.2: Percentage of fill-ins of ILU(1), ILU(2) and ILU(3). The percentage
of fill-ins relative to the number of non-zeros of the upper triangular matrix.

Matrix IC(0) ILU(1) ILU(2) ILU(3)

BDC-1-0.5 148,636 225,244 (51%) 321,101 (116%) 429,566 (189%)

BDC-1-0.1 2,521,428 3,848,266 (52%) 5,544,448 (120%) 7,380,933 (193%)

ET-0.08 293,643 700,914 (139%) 1,368,930 (366%) 2,555,737 (770%)

ET-0.04 3,204,372 7,927,979 (147%) 15,963,746 (398%) 30,758,154 (860%)

The multi-threaded implementation of Hysom’s algorithm in this thesis also exhib-

ited high scalability as shown in Figure 6.7. The fact that a speedup of 6 was attained

beyond 4 threads (i.e. 8 threads) means that this algorithm is not memory bound but

CPU cycles bound; the more execution threads can run in parallel, the more speedup

can be attained. These results were consistent regardless of whether threads were

assigned to different blocks of the matrix’s rows (Figure 6.8a), or whether working

threads executed on contiguous rows (Figure 6.8b).

6.5 Parallel Backward Solve

Backward/forward solve is an inherently sequential step in the case of dense matrices.

Fortunately, this is not the case when the matrix is sparse due to less dependency be-

tween rows (or columns). When using ILU as a preconditioner, the backward/forward

solve is executed once per PCG iteration. Investigating parallelism in this step is
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Figure 6.7: Execution times of parallel symbolic factorization of BDC-1-0.5
and BDC-1-0.1. The results demonstrate that the multi-threaded implementation
of Hysom’s algorithm is highly scalable.

important. In this thesis, a method (Algorithm 6.5) has been devised to investigate

the dependency between rows. In this approach, rows of a matrix are assigned levels

so that those that have the same level can be solved simultaneously. This approach

is very similar to the “level scheduling” methods described in [132, 133]. Figure 6.9

illustrates an example of an upper triangular preconditioner Û and the corresponding

row dependency levels.

Without loss of generality, this section focuses on the backward substitution phase

since the result of Algorithm 6.3 is an upper triangular matrix. Backward substitution

is used to solve Ux = y, where y is obtained during the forward solve Ly = b.

Equation 6.3 shows the operations in the backward solve. This is similar to one

iteration of Gauss-Seidel.

For i = N, N − 1, ..., 1

xi =
bi−

i−1∑

k=1
Ui,kxk

Ui,i

(6.3)
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(a) Assigning threads to blocks of rows (b) Assigning threads to inter-
leaving rows

Figure 6.8: Threads assignment on each of the matrix rows in Hysom’s al-
gorithm. Both thread assignment techniques resulted in a similar performance sug-
gesting that the multi-threaded implementation is CPU cycles bound and not memory
bound.

Algorithm 6.5 Backward solve dependency list

Input: Û : upper triangular incomplete Cholesky
Input: N: degrees of freedom
Output: Rows and Levels: lists rows numbers in Rows and their corresponding level

in Levels
1: # Initialize Levels to 1

2: Levels[N ] := 1
3: # Initialize Rows from 1 to N

4: Rows[N ] := 1...N
5: for r = N → 1 do
6: for p = rptr(r) → rptr(r + 1) do
7: j = col(p)
8: # If diagonal entry skip current loop

9: if r == j then
10: continue
11: end if
12: if Levels(j) ≥ Levels(r) then
13: Levels(r) = Levels(j) + 1
14: end if
15: end for
16: end for
17: Sort(Rows,Levels) by ascending order of Levels.

To illustrate how rows of a matrix are assigned levels, Figure 6.9 shows an upper

triangular matrix and its corresponding scheduling levels. Since it is a backward solve,

the first row to be solved is 10. Then both rows 8 and 9 can be solved simultaneously
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as both depend on row 10 but are independent of each other. Row 10 has been assigned

“level 1” and rows 8 and 9 have been assigned “level 2”. The same logic applies to

the remaining rows leading to the rows dependency list shown in Figure 6.9b. The

fact that the number of levels assigned in this example is 6, means that the backward

solve can be achieved in 6 steps. The maximum degree of parallelism attainable is 2

since at any solve step, a maximum of 2 rows can be solved simultaneously.
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(a) Upper triangular matrix
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(b) Rows dependency list

Figure 6.9: Rows dependency lists of a backward solve. (a) Upper triangular
factor U . (b) The corresponding rows dependency lists.

The next step is to investigate the degree of parallelism that can be attained when

backward solving a preconditioner obtained from 2D and 3D finite element problems.

Particularly, the rows dependency lists will be calculated for ILU(1) and ILU(3) of the

BDC-1-0.5 (a 2D finite element problem) and the ET-0.08 (a 3D finite element prob-

lem) matrices. Since it is not possible to draw the rows dependency list for ILU(1) and

ILU(3), instead, a histogram will be used to depict the maximum degree of parallelism

and the number of steps required to backward solve each of the preconditioners. The

x-axis shows the number of steps required to backward solve a matrix, and the y-axis

of the histogram shows the number of rows that can be solved simultaneously at a

given step.
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Figure 6.10 shows the rows dependency histograms of ILU(1) and ILU(3) of the

matrix BDC-1-0.5. This matrix which was obtained from a 2D first-order nodal finite

element formulation exhibited a high degree of parallelism. The maximum degree of

parallelism of ILU(1) was 1,151 and the number of steps required to backward solve

the preconditioner was 196. On the other hand, the ILU(3) preconditioner of the same

problem had a maximum degree of parallelism equal to 453 and 399 steps were required

to backward solve it. As anticipated, the more fill-ins that existed in a preconditioner,

the less parallelism could be exploited.
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(a) BDC-1-0.5 - Degree of parallelism of ILU(1)
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(b) BDC-1-0.5 - Degree of parallelism of ILU(3)

Figure 6.10: BDC-1-0.5 - Degree of parallelism of backward solving ILU(1)
and ILU(3) preconditioners. The maximum degree of parallelism of ILU(1) was
1,151 and the number of steps required to backward solve is 196. On the other hand
the ILU(3) preconditioner of the same problem had a maximum degree of parallelism
= 453 and it required 399 steps to complete the backward solve.

Backward/Froward solving a preconditioner obtained from a 3D problem is less

amenable to parallelism than that obtained from a 2D problem. For instance, an

ILU(1) preconditioner obtained from ET-0.08 (3D transformer problem) can be solved

in 12,559 steps where the maximum number of rows that could be solved simultane-

ously is only 16 and an ILU(3) preconditioner of the same problem can be solved in

24,125 steps where the maximum attainable degree of parallelism is only 16. As in-

vestigated in the previous section, a 2D problem that has the same number of degrees
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of freedom as ET-0.08 (i.e. BDC-1-0.5) was more amenable to parallelism.
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Figure 6.11: ET-0.08 (Natural ordering) - Degree of parallelism of backward
solving ILU(1) and ILU(3) preconditioners. The maximum degree of parallelism
of ILU(1) was 16 and the number of steps required to backward solve is 12,559. On the
other hand, the ILU(3) preconditioner of the same problem had a maximum degree of
parallelism = 16 and it required 24,559 steps to complete the backward solve.

Since the preconditioner obtained from the 3D transformer problem exhibited a low

degree of parallelism, approximate minimum degree (AMD) and Reverse Cuthill–McKee

(RCM) orderings were first applied on the ET-0.08 matrix before generating the ILU(1)

and ILU(3) preconditioners. The number of non-zeros in the upper triangle precon-

ditioner, the maximum degree of parallelism and the backward solving steps of both

preconditioners ILU(1) and ILU(3) using different orderings are summarized in Ta-

ble 6.3 and Table 6.4 respectively. The histogram of the degree of parallelism is also

shown in Figure 6.12 for ILU(1) and in Figure 6.13 for ILU(3). As anticipated, the

AMD ordering resulted in a relatively higher parallelizable backward solver than the

Natural and RCM orderings. However, as discussed before, this ordering might de-

grade PCG convergence. On the other hand, RCM ordering exhibited a similar degree

of parallelism to that of the Natural ordering but required less solve steps. This implies

that there is a balance in the degree of parallelism among steps, which will translate

into a balanced threads utilization.
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Table 6.3: ILU(1) of ET-0.08-Degree of parallelism of backward/forward
solve using different orderings. Showing the effect of ordering on the number of
non-zeros, degree of parallelism and the number of steps to perform backward/forward
solve.

NNZ
Max. degree
of parallelism

Solving steps

ILU(1)-Natural ordering 700,914 69 12,559

ILU(1)-AMD ordering 673,511 207 569

ILU(1)-RCM ordering 585,646 36 3,401

Table 6.4: ILU(3) of ET-0.08-Degree of parallelism of backward/forward
solve using different orderings. Showing the effect of ordering on the number of
non-zeros, degree of parallelism and the number of steps to perform backward/forward
solve.

NNZ
Max. degree
of parallelism

Solving steps

ILU(3)-Natural ordering 2,555,737 16 24,125

ILU(3)-AMD ordering 1,937,345 119 1,690

ILU(3)-RCM ordering 1,984,093 12 10,548
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Figure 6.12: ET-0.08 (AMD ordering) - Degree of parallelism of backward
solving with ILU(1) and ILU(3) preconditioners. The maximum degree of
parallelism of ILU(1) was 207 and the number of steps required to backward solve
is 569. On the other hand, the ILU(3) preconditioner of the same problem had a
maximum degree of parallelism = 119 and it required 1,690 steps to complete the
backward solve.
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Figure 6.13: ET-0.08 (RCM ordering) - Degree of parallelism of backward
solving with ILU(1) and ILU(3) preconditioners. The maximum degree of
parallelism of ILU(1) was 36 and the number of steps required to backward solve is
3,401. On the other hand, the ILU(3) preconditioner for the same problem had a
maximum degree of parallelism = 12 and it required 10,548 steps to complete the
backward solve.
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6.6 Concluding Remarks

Applying an ILU preconditioner in a PCG method incur two types of overheads. The

first occurs during the preconditioner setup stage where an incomplete factorization is

performed on the matrix A, where A is the coefficient matrix of a system of equations

Ax = b. The second overhead occurs when backward/forward solving the precondi-

tioner obtained in the first stage withing each PCG iteration.

The incomplete Choleksy IC(0) preconditioner has been the state-of-the-art pre-

conditioner, hence, the work in this thesis considers that a factorization problem that

can be reduced to that of an IC(0) to be efficient. Subsequently, the focus was to elu-

cidate a parallel symbolic factorization technique to know the locations of non-zeros

in the preconditioner so that efficient in-place incomplete Cholesky factorization can

be preformed. The parallel symbolic factorization implemented has been shown to be

scalable and its execution time to be dependent of the problem size, but not on the

level of fill-ins of a preconditioner. However, the overall time to setup an ILU precon-

ditioner remains high relative to a PCG iterative solver. More efficient multi-threaded

implementation is required to optimize this process.

The preconditioner solve stage within each PCG iteration has been shown to be a

bottleneck as the problem size increases where in such a case, less parallelism can be

explored. Among the ordering techniques investigated, Reverse Cuthill-McKee (RCM)

has been shown to be a good overall choice to decrease the execution time of a PCG

method. Although it does not increase the degree of parallelism in the preconditioner

solve stage, it does however balance the parallel backward/forward solve workload in

a multi-threaded application. That in addition to its advantage over other ordering

techniques as it increases the convergence rate of PCG and decreases the cache misses

in SMVM.



141

Chapter 7

Conclusion and Future Work

7.1 Discussion and Conclusion

7.1.1 Inter-Compatibility of FEM Kernel Optimization Techniques

This thesis predominantly emphasizes speedup analyses of a given kernel in terms

of the effect it exerts on the whole analysis process. It thereby places considerable

focus on investigating the possibility of utilizing the same sparse storage scheme in all

analyzed kernels and methods.

Given the dependency of the sparse storage upon the problem structure, it is

important to devise matrix test sets that are relevant to the problem domain (i.e.

low frequency electromagnetic analysis using the Finite Element Method). The fact

that matrices resulting from FEM do not have a large discrepancy in the number of

non-zeros per row makes it possible, as has been previously shown, to use the HYB

storage (ELLPACK + COO storage) in most kernels – with the exception of the ILU(�)

symbolic factorization cases.

The time duration required for a kernel in the analysis stage (SMVM, matrix

assembly, mesh generation, etc.) to complete run is typically short (a few seconds).

However, problems arise during the analysis of a design, when these kernels are called

for execution more than once. For instance, a typical field analysis software refines

a mesh and solves it, using iterative solvers such as CG, a number of times during

a single call to a design analysis. Furthermore, the CG algorithm iterates a large

number of times over kernels such as SMVM, vector update and inner-products. This

fact (i.e. short kernels runtime) renders kernel optimization (by altering the sparse

data structure or thread re-distribution) an ineffective process since it incurs a large
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overhead.

7.1.2 Different Types and Degree of Parallelism

7.1.3 Issues in Fine-Grained Parallelism on Multi-Core Processors

Finite Element Method sequential algorithms and their implementations serve as the

basic building block of multi-threaded algorithms being optimized for multi-core pro-

cessors. As such, the optimization of these sequential algorithms is of great importance

when enhanced performance on multi-core processors is desired.

Assuming that sequential algorithms used in FEM are amenable to parallelization

that exhibits a large degree of parallelism, which is in fact the case for most kernels

with the exception of the preconditioner and backward/forward solve, two important

challenges should be overcome in order to achieve performance gain in multi-threaded

algorithms. The first challenge is synchronization cost and the second is the effect of

running multiple threads on cache performance. Those two concerns are depicted in

Figure 7.1 which is a typical execution flow of a fine-grained multi-threaded algorithm

- such as the Sliding-Window Gauss-Seidel method.
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Figure 7.1: Exploring and Exploiting Parallelism in a typical fine-grained
multi-threaded algorithm.

The effect of synchronization on the performance of multi-threaded algorithms can

be further divided into two aspects: the first is the number of times a thread has

to wait at a barrier or wait to enter a critical section (i.e. stages “B” and “D” of

Figure 7.1), and the second is the amount of work involved in synchronizing data

between threads (i.e. stage “C”). The latter is less critical for multi-core processors

than for multi-processors due to cache sharing. The former, on the other hand, has

been shown to degrade performance particularity when the number of synchronization

points increases with the problem size and the execution runtime of threads (stage

“A”) is small relative to the synchronization stage (stage “D”).

Cache sharing among threads is advantageous in that it allows fast synchronization

among threads, however, in the case where multiple threads modify a read-write data

structure simultaneously (i.e. matrix assembly and symbolic factorization), true or
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false cache sharing can occur. On the other hand, cache misses have been reduced

when multiple threads shared a read-only data structure; such as the case of the

SMVM kernel (i.e. accessing the read-only matrix A and vector X in Y = A×X).

7.2 Future Work

7.2.1 Design Optimization Using Coarse-Grained Parallelism

The design process is an optimization process wherein a multi-dimensional search

space is explored to yield improved performance of a multi-objective function. Any

instance of a design – or point in the search space - requires a call to a “field analysis”

tool; a rather time-consuming step. Reducing the number of calls has been widely

investigated employing many strategies that use either a stochastic (i.e. evolutionary

strategy [134, 135], neuro-fuzzy [136], surrogate modeling [137, 138, 139, 140], etc) or

deterministic approach (i.e. minimal function calls ) [141, 142].

The work in this thesis has demonstrated that in the attempt to gain speed in

every kernel of the field analysis, various challenges are encountered before an overall

gain in the design process is accomplished. This raises a question of whether it would

be more productive - in terms of reducing the design process time - for a design

engineer to use coarse-grained parallelism through which multiple design instances are

investigated simultaneously (i.e. exploring the design space simultaneously). In such

computational model, many design models can share a read-only structure, such as

part of a device or material properties which are common among many designs.

7.2.2 Analysis Post-Processing and Visualization

This thesis investigates many kernel operations in the “processing” stage of FEM;

a stage that remains the most time consuming one in field analysis. The “post-

processing’ stage is beyond the scope of this thesis but this should not imply that it

is less important that its precedent; it involves inverse mapping the solution obtained
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from the “processing” stage and plotting the results on the design model and it is

relatively time efficient when one field analysis is considered at a time. However, since

the work in this thesis, and the conclusion, advocate for the simulation of multiple

designs simultaneously during which a design engineer could be visualizing the result

of some designs, while other analysis are executing in the background, it would be

important to analyze the computational resources required by the “post-processing”

stage involving running multiple design result evaluations and visualizations.
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