
Theory and Algorithms for Some Integer

Least Squares Problems

Xiaohu Xie

Doctor of Philosophy

School Of Computer Science

McGill University

Montreal,Quebec

November 2014

A thesis submitted to McGill University
in partial fulfilment of the requirements of the degree of

Doctor of Philosophy in Computer Science

c©Xiaohu Xie 2014

DEDICATION

To my beloved family

and especially

to my grandmother, Yan, Yuan-Ji

ii

ACKNOWLEDGEMENTS

I would like to give my foremost and deepest appreciation to my supervisor,

Professor Xiao-Wen Chang, who provided me with precious opinions and guidance

through my Ph.D studies. From him, I not only learned knowledge and research

skills, but also the rigorous attitude of an excellent scholar. The research experience

with him is an invaluable fortune of my life.

I would like to thank my wife Wanru Lin. She has been constantly helping and caring

me in various aspects of my life. Without her encouragement and support, it would

be much harder for me to finish my study and research. My life is only complete

with her being part of it.

I would like to thank my lab mates Mazen Al Borno, Stephen Breen, Sevan Hanssian,

Wen-Yang Ku, Milena Scaccia, David Titley-Peloquin, Yancheng Xiao and Jinming

Wen for all the inspiring discussions, helpful suggestions, and brilliant ideas in the

course work and research. I appreciate all the joyful time we shared together. I

would also like to thank my friends Lianxin He, Xu Li, Yanyan Mu, Shaowei Png

and Yuhong Zhang for their precious friendship and so many other professors and

fellow students of McGill University that offered me help.

Last but not least, I would like to thank my family for their support, love and always

being there for me.

iii

ABSTRACT

Integer least squares (ILS) is an important class of optimization problems in

both pure mathematics and practical applications. In this thesis, we are particu-

larly interested in the lattice reduction strategies, which can be used to improve the

efficiency of typical approaches to solving ILS problems, and the sphere decoding

approach, which is the most popular approach to solving ILS problems. We study

three types of ILS problems in this thesis: the ordinary ILS (OILS) problems, the

box constrained ILS (BILS) problems and the mixed ILS problems with box con-

straints on the real variables (MILSBR). For the OILS problems, we give a rigorous

proof to show that the cost of sphere decoding is reduced by applying the widely

used Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm. For the BILS prob-

lems, we first show that integer Gauss transformations (IGTs) can be used in the

reduction process as long as certain conditions are satisfied. Then, we propose algo-

rithms to compute an initial search radius and propose the restricted LLL (RLLL)

lattice reduction, which incorporates IGTs. Numerical test results indicate that the

RLLL reduction is very effective in improving the efficiency of sphere decoding and

the quality of some approximate solutions of the BILS problems. For the MILSBR

problems, we first show how to solve them using the lattice reduction-sphere decod-

ing framework and then we propose a method to find an initial search radius and

methods to compute lower bounds that are used to improve the efficiency of sphere

decoding. Numerical tests show that our new algorithms can be much more efficient

in solving the MILSBR problems than the CPLEX optimization studio.

iv

ABRÉGÉ

Les moindres carrés en nombres entiers (ILS) est une classe importante de

problèmes d’optimisation en mathématiques pures et dans les applications pratiques.

Dans cette thèse, nous sommes intéressés particulièrement par les techniques de

réduction des réseaux, qui peuvent être utilisés pour améliorer l’efficacité des méthodes

typiques à résoudre les problèmes ILS, et la méthode de décodage par sphères qui est

populaire pour résoudre les problèmes ILS. Nous étudions trois types de problèmes

ILS dans cette thèse: les problèmes ILS ordinaires (OILS), les problèmes ILS sous

constrainte de bôıte (BILS) et les problèmes ILS mixtes avec variables réelles sous

constraintes de bôıte (MILSBR). Pour les problèmes OILS, nous provons rigoureuse-

ment que le coût du décodage par sphères est réduit par l’application de l’algorithme

Lenstra-Lenstra-Lovász (LLL) pour la réduction des réseaux. Pour les problèmes

BILS, nous montrons tout d’abord que les transformations de Gauss avec coefficients

entiers (IGTs) peuvent être utilisés dans le processus de réduction pour autant que

certaines conditions sont satisfait. Ensuite, nous proposons des algorithmes pour cal-

culer un rayon initial de recherche et proposons l’algorithme LLL restreint (RLLL),

qui incorpore IGTs. Les résultats des tests numériques indiquent que la réduction

RLLL améliore l’efficacité du processus de décodage par sphères et la qualité des so-

lutions approximatives des problèmes BILS. Pour les problèmes MILSBR, nous mon-

trons comment les résoudre en utilisant le cadre de réduction des réseaux-décodage

par sphères. Ensuite, nous proposons une méthode pour trouver un rayon initial

de recherche et des méthodes pour calculer des minorants qui sont utilisés pour

v

améliorer l’efficacité du processus de décodage par sphères. Des tests numériques

montrent que nos algorithmes sont plus efficaces pour résoudre les problèmes de

MILSBR que CPLEX, un outil informatique d’optimisation.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xiii

LIST OF ABBREVIATIONS . xiv

1 Background . 1

1.1 Integer Least Squares Problems 1
1.2 Applications of ILS . 1

1.2.1 GPS positioning . 2
1.2.2 Digital communications . 5

1.3 Hardness of Solving ILS Problems 6
1.4 Lattice Reduction . 8

1.4.1 The Korkin-Zolotarev reduction 10
1.4.2 The Lenstra-Lenstra-Lovász reduction 11
1.4.3 Schnorr’s hierarchy of lattice reductions 13

1.5 Methods for Solving ILS . 13
1.5.1 The discrete enumeration algorithms 13
1.5.2 The Monte Carlo algorithms 15
1.5.3 The Voronoi cell based algorithms 15
1.5.4 The real relaxation branch-and-bound approach 15
1.5.5 Solving ILS problems in practice 16

1.6 Organization and Contributions 18

vii

1.7 Notation . 19

2 Effects of the LLL Reduction on the Efficiency of Sphere Decoding . . . 22

2.1 The Reduction of OILS Problems and the LLL Reduction Algorithm 22
2.2 Sphere Decoding Algorithms . 28
2.3 The LLL Reduction and the Cost of Sphere Decoding 31
2.4 Effects of δ on the Cost of Sphere Decoding 37

3 Box-Constrained Integer Least Squares Problems 42

3.1 Introduction . 42
3.1.1 Reduction algorithms for BILS problems 43
3.1.2 The AIP reduction algorithm 45
3.1.3 Sphere decoding for BILS problems 49

3.2 Inactive Constraints and Partially Open Box Constrained ILS
Problems . 52

3.2.1 Inactive constraints and POBILS problems 52
3.2.2 Using IGTs in the reduction of POBILS problems 55
3.2.3 Reduction of po-box constrained lattices 56
3.2.4 Reduction of the POBILS problem 62

3.3 Finding Inactive Constraints . 64
3.3.1 The level-1 inactive-set-finding (ISF-1) algorithm 64
3.3.2 The level-2 inactive-set-finding (ISF-2) algorithm 67

3.4 Computing an Initial Search Radius ρ 77
3.4.1 An OILS relaxation based method 77
3.4.2 A Babai point based method 78
3.4.3 A real relaxation based method 78

3.5 New Reduction Algorithms for BILS Problems 81
3.5.1 Extended size reduction . 82
3.5.2 Backward size reduction 85
3.5.3 The RLLL algorithm . 87
3.5.4 RLLL based reductions for BILS problems 89

3.6 Numerical experiments . 92
3.6.1 Effects of reductions on the efficiency of sphere decoding . 93
3.6.2 Effects of reductions on the quality of approximate solutions 104

4 Mixed ILS Problems With Box Constraints On The Real Variables . . . 113

4.1 Introduction . 113

viii

4.2 Reduction . 114
4.3 Sphere Decoding for MILSBR . 116
4.4 Computing an Initial Search Radius 119
4.5 Improving the Efficiency of Sphere Decoding using Lower Bounds 122

4.5.1 The vector norm based method to find a lower bound . . . 124
4.5.2 The component-wise method to find a lower bound 130
4.5.3 The second-order component-wise method to find a lower

bound . 132
4.6 Numerical Experiments . 136

5 Conclusion and Future Work . 145

References . 149

ix

LIST OF TABLES
Table page

2–1 Sphere decoding cost η̄ versus search radius ρ for Example 2–1 39

2–2 Number of runs in which η̄ increases when δ increases 41

3–1 Runtime statistics of the 200 instances 94

3–2 Average runtime to compute the approximate solutions 112

x

LIST OF FIGURES
Figure page

1–1 Closest lattice vector problem . 2

1–2 Lattice reduction . 10

1–3 The Voronoi cell of a lattice vector 16

2–1 Search tree . 31

2–2 Case 1: Average η̄ after the δ-LLL reduction 40

2–3 Case 2: Average η̄ after the δ-LLL reduction 41

3–1 BILS search region . 51

3–2 Example of inactive sets . 54

3–3 Example for ISF-1 . 65

3–4 Example for ISF-2 . 68

3–5 Case 1: σ = 0.35, k = 5 and n = 50 95

3–6 Case 2: σ = 0.35, k = 5 and n = 45 96

3–7 Case 1: σ = 0.35, k = 5 and n = 40 : 60 98

3–8 Case 1: n = 50, k = 5 and σ = 0.05 : 0.05 : 0.7 99

3–9 Case 1: n = 50, σ = 0.35 and k = 1 : 10 101

3–10 Case 2: σ = 0.35, k = 5 and n = 35 : 55 103

3–11 Case 2: n = 45, k = 5, and σ = 0.05 : 0.05 : 0.7 103

3–12 Case 2: n = 45, σ = 0.35 and k = 1 : 10 104

3–13 256-QAM, m = n = 8 . 110

xi

3–14 γ = 0.5, m = n = 8 . 110

3–15 256-QAM, γ = 0.5 . 111

3–16 256-QAM, γ = 0.5 . 112

4–1 Norm-wise lower bound . 128

4–2 Component-wise lower bound . 131

4–3 Second-order component-wise lower bound 136

4–4 Case 1, nr = 3, σ = 0.75, d = 0.25 . 139

4–5 Case 1, n = 20, nr = 3, d = 0.25 . 140

4–6 Case 1, n = 20, nr = 3, σ = 0.75 . 141

4–7 Case 2, nr = 3, σ = 0.5, d = 1 . 142

4–8 Case 2, n = 20, nr = 3, d = 1 . 143

4–9 Case 2, n = 20, nr = 3, σ = 0.5 . 143

4–10 nr = 3, σ = 0.5, d = 1 . 144

xii

LIST OF ALGORITHMS
Algorithm page

2–1 The LLL reduction . 27

3–1 The AIP reduction . 50

3–2 Compute l̂ and û . 66

3–3 ISF-1: level-1 inactive-set-finding algorithm 66

3–4 Compute L̃ and Ũ . 71

3–5 ISF-2: level-2 inactive-set-finding algorithm 76

3–6 Find an initial radius for a BILS problem 81

3–7 The restricted LLL algorithm . 89

3–8 Reduction based on RLLL and the OILS relaxation solution 91

3–9 Reduction based on RLLL and the Babai point 92

3–10 Reduction based on RLLL and the real relaxation solutions 92

4–1 The LLL reduction for MILSBR problems 116

4–2 Find an initial search radius for a MILSBR problem 121

4–3 Sphere decoding for solving MILSBR problems 125

xiii

LIST OF ABBREVIATIONS

AIP: all-information based permutation . 45

BILS: box-constrained integer least squares 42

CVP: closest vector problem . 1

ELLL: effective Lenstra-Lenstra-Lovász . 12

GSO: Gram-Schmidt orthogonalization . 24

IGT: integer Gauss transformation . 24

ILS: integer least squares . 1

ISF-1: level-1 inactive-set-finding algorithm 64

ISF-2: level-2 inactive-set-finding algorithm 64

KZ: Korkin-Zolotarev . 10

LLL: Lenstra-Lenstra-Lovász . 10

MILSBR: mixed integer least squares with box-constrained real variables . . . 113

MIMO: multiple-input and multiple-output 5

OILS: ordinary integer least squares . 1

PLLL: partial Lenstra-Lenstra-Lovász . 13

po-box: partially open box . 54

POBILS: partially open box constrained integer least squares 52

QAM: quadrature amplitude modulation . 5

RLLL: restricted Lenstra-Lenstra-Lovász . 82

xiv

RLS: real least squares . 37

RRBB: real relaxation branch-and-bound . 15

SDP: semi-definite programming . 17

SER: symbol-error-rate . 93

SNR: signal-to-noise ratio . 107

SQRD: sorted QR decomposition . 44

SVP: shortest vector problem . 11

V-BLAST: vertical Bell laboratories layered space-time 44

xv

CHAPTER 1
Background

1.1 Integer Least Squares Problems

An integer least squares (ILS) problem has the following form:

min
x∈Zn

‖y −Ax‖22 , (1.1)

where A ∈ R
m×n is a given real matrix, y ∈ R

m is a given real vector, and x ∈ Z
n

is an integer vector. In some applications, the integer vector x is subject to some

constraints. When there is no constraint, the problem (1.1) is referred to as an

ordinary ILS (OILS) problem, in which A is often assumed to have full column rank.

The lattice theory offers a geometric insight into the OILS problem. Let A =
[
a1 a2 . . . an

]
with full column rank. In lattice theory, the set defined by

Λ(A) = {Ax | x ∈ Z
n}

is referred to as the lattice generated by A, and {a1,a2, . . . ,an} is called the basis of

the lattice Λ(A). Solving an OILS problem (1.1) is actually to find a lattice vector in

Λ(A) closest to the given target vector y, see Figure 1–1. Thus OILS is also referred

to as a closest vector problem (CVP), see, e.g., [2, 71].

1.2 Applications of ILS

The OILS problems have many important applications in various fields includ-

ing combinatorial optimization [34], algorithmic number theory [61], cryptography

1

b

b

b

q

b

b

b

b

b

r
a1

a2

y

closest lattice pointb lattice points q

Figure 1–1: Closest lattice vector problem

and cryptanalysis [83, 4, 71, 72], GPS positioning [44, 54, 100], and wireless commu-

nications [78, 2, 77], etc. In the following, we use a few examples to illustrate how

ILS problems arise in some practical areas.

1.2.1 GPS positioning

In the GPS positioning system, the navigation satellites broadcast two carrier

signals: the L1 carrier signal (frequency = 1575.42 Mhz) and the L2 carrier signal

(frequency = 1227.60 Mhz). Information carried by those two signals are encoded in

two types of codes: the course-acquisition (C/A) code and the precision (P) code.

In the standard code measurement based GPS positioning, the receiver uses the

received code messages (containing the satellites clock time) to determine the transit

time of each message and computes its distance to each satellite by multiplying

the speed of light to the transit time. Because there are measurement errors, the

computed distances between the satellites and the receiver are referred to as the

code pseudoranges. For a specific satellite, the basic formula to compute the code

2

pseudorange p is [16]:

p = c(tr − ts),

where c is the speed of light, tr is the time when the signal is received, ts is the

time when the signal was transmitted. Once the code pseudoranges corresponding

to different satellites are obtained, a least squares problem is solved to estimate the

position of the receiver.

Another way to compute the distances is to use the total phase difference of

the transmitted signal and the received signal and multiply it by the wavelength,

which is about 0.19 meters for the L1 carrier. The phase of a particular cycle of

a carrier can be measured accurately with error less than 1% of a complete wave

cycle [110]. However, because the signals transmitted by a GPS satellite can be

thought of as pure sinusoidal waves, it is impossible to discriminate between different

signal cycles. Thus the number of complete signal cycles between a satellite and the

receiver remains unknown. This unknown integer component in the phase difference

is referred to as the integer ambiguity. Based on the phase measurement, a phase

pseudorange can be computed using the following formula

p =
(ϕ

2π
+N

)

λ,

where ϕ is the measured phase difference, N ∈ Z is the integer ambiguity and λ is

the wavelength of the signal. Now, in our system, we not only have a real unknown

position vector but also have integer unknown ambiguities. To resolve the integer

ambiguities and estimate the receiver’s position, one needs to solve a mixed ILS

problem. When the real variables in a mixed ILS problem is unconstrained, it can

3

be shown that this mixed ILS problem can be reduced to an OILS problem. If the

integer ambiguities are resolved correctly, this method reduces pseudorange error to

as small as 2 millimetres, in contrast to 3 meters for the regular transit time based

pseudorange measurement using the C/A code, and 0.3 meters using the P code [69].

As of November 2014, there are thirty-two satellites in the GPS constellation

[102] and there are about ten satellites visible from any point on the ground at any one

time. While using the widely employed double difference phase observation model

(see, e.g., [86, 88]), the number of integer ambiguities to be resolved (the dimension of

the OILS problem), which is twice the number of visible satellites on the sky, is about

twenty. However, as other global navigation satellite systems (GNSS), e.g., BeiDou,

GLONASS and Galileo, become available, and as the use of the triple difference

phase observable (see, e.g., [86]) becomes the trend, the number of visible navigation

satellites and the number of integer ambiguities we want to resolve increases rapidly.

In some specific positioning applications, the real variables in the mixed ILS

problem to be solved are subject to constraints. For example, in the GNSS compass

application, the real variables are subject to a baseline constraint (see, e.g., [101,

100]). In this application, one needs to solve a baseline constrained mixed ILS

problem. In some other applications, ranges of the real position of the receiver can

be obtained, e.g., on a bathymetric surveying boat where the real time altitudes can

be obtained from the tide-gauge readings [111]. In this case, we suggest solving a

mixed ILS problem with box constrained real variables (MILSBR). We propose an

efficient algorithm to solve MILSBR in this thesis (see Chapter 4).

4

1.2.2 Digital communications

In multiple-input and multiple-output (MIMO) wireless communications, mul-

tiple transmitters and receivers are used to transfer data at the same time. In a

narrowband flat fading MIMO system, the received signal vectors are given by linear

combinations of transmit symbol vectors corrupted by additive Gaussian noise. We

have

y = Hx+ v, (1.2)

where H ∈ C
m×n is the channel matrix, x is an n-dimensional transmitted symbol

vector where each transmitted symbol xi is a complex number chosen from a known

finite alphabet χ = {s1, s2, . . . , sM}, y ∈ C
m is the received signal vector and v ∈ C

m

is a zero-mean Gaussian noise vector. Furthermore, we assume that the transmitted

symbol vectors x in (1.2) are points in an M -QAM constellation where M = 4k for

some k ∈ Z
+. So that we have χ =

{
k1 + k2i | k1, k2 = ±1,±3, . . . ,±(2k − 1)

}
where

i2 = −1. The maximum-likelihood decoding approach to estimate the transmitted

x is to solve the following problem:

min
x∈χn

‖y −Hx‖22 . (1.3)

We let

ỹ =

[
yR

yI

]

, H̃ =

[
HR −H I

H I HR

]

, x̃ =

[
xR

xI

]

,

where the superscript “R” indicates the real part of a complex matrix or vector,

and the superscript “I” indicates its imaginary part. We further let x̄ = (x̃+ (2k −

1)12n)/2, H̄ = 2H̃ , and ȳ = ỹ + (2k − 1)H̃12n, where 12n denotes a 2n-vector with

all entries one (see Section 1.7). It is easy to see that x̄ ∈
{
0, 1, 2, . . . , 2k − 1

}2n
and

5

∥
∥y−Hx

∥
∥
2

2
=
∥
∥ỹ− H̃x̃

∥
∥
2

2
=
∥
∥ȳ− H̄x̄

∥
∥
2

2
. To solve (1.3), we just solve the following

box constrained ILS (BILS) problem (see, e.g., [30, 48, 24]):

min
x̄∈B

∥
∥ȳ − H̄x̄

∥
∥
2

2
, B =

{
x | x ∈ Z

2n;02n ≤ x ≤ (2k − 1)12n

}
.

The BILS problem is studied in Chapter 3. In MIMO, m and n are the number of

transmit antennas and receive antennas. In typical applications of MIMO, m and n

usually take values from 2 to 8 (see, e.g., [62]). However in massive MIMO, one of

the most recent developments of the MIMO technology, the number of antennas can

up to a few hundred (see, e.g., [87, 59]).

Other than MIMO, ILS problems arises in other areas of digital communications

including packing, quantization, and signaling for the additive white Gaussian noise

(AWGN) channel (see, e.g., [36, 95, 106]).

1.3 Hardness of Solving ILS Problems

The complexity of the general ILS problem has been studied by several re-

searchers. It was shown in [103] that it is an NP-hard problem; the simple proof

presented below was given in [70].

Consider a subset sum problem: given a set of integers C = {c1, . . . , cn} and an

integer number s, is there a non-empty subset of C whose sum is s? The problem

is an important NP-complete problem in complexity theory and cryptography. Now

6

we define a matrix A ∈ Z
(n+1)×n and vector y ∈ Z

n+1 as follows:

A =










c1 c2 . . . cn
2

2
. . .

2










, y =










s

1

1
...

1










.

Then for any x ∈ Z
n,

‖y −Ax‖22 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥










∑n
i=1 cixi − s

2x1 − 1

2x2 − 1

. . .

2xn − 1










∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

=

(
n∑

i=1

cixi − s

)2

+
n∑

i=1

(2xi − 1)2 ≥ n.

Assume that there exists a solution to the subset sum problem, i.e., there are xi ∈

{0, 1} such that
∑n

i=1 cixi = s. Then for this specific x, it is easy to verify that

‖y −Ax‖22 = n. Therefore, if x is a solution to the subset sum problem, then x is a

solution to the constructed ILS problem minx∈Zn ‖y −Ax‖22. On the other hand, if

x is a solution to the constructed ILS problem and ‖y −Ax‖22 = n, then it is easy

to see that x must be a solution to the subset sum problem; if x is a solution to

the constructed ILS problem and ‖y −Ax‖22 > n, then the subset sum problem has

no solution. Since the subset sum problem can be reduced to the ILS problem, we

can conclude that the ILS problem is NP-hard. This means all known algorithms for

solving (1.1) have exponential complexity.

Approximation of ILS is also difficult. Assume the optimal solution of (1.1)

is x∗. It is known that finding an approximate solution x̄ of (1.1) such that the

7

residual ratio ‖Ax̄− y‖ / ‖Ax∗ − y‖ (also known as the approximation ratio) is

upper-bounded by a constant is also NP-hard [9].

1.4 Lattice Reduction

Lattice reduction is a process of improving the “quality” of the lattice basis. It

is pervasively used as preprocessing to improve the efficiency of typical solvers for

ILS problems.

For any particular lattice Λ(A) with n > 1, the choice of basis is not unique,

i.e., we can find infinitely many Ā ∈ R
m×n such that Λ(A) = Λ(Ā). In the following,

we give the general relation between A and Ā when Λ(A) = Λ(Ā). To do that, we

will introduce some basic results with proofs, which will be used later.

Definition 1–1. A square matrix Z is unimodular if Z is an integer matrix, i.e.,

Z ∈ Z
n×n, and det(Z) = ±1.

Proposition 1–1. Given a matrix Z ∈ Z
n×n, Z is unimodular if and only if Z−1 ∈

Z
n×n.

Proof. Since Z ∈ Z
n×n, the adjugate matrix adj(Z) ∈ Z

n×n. If Z is unimodular,

then Z−1 = det(Z)−1 adj(Z) ∈ Z
n×n.

On the other hand, suppose Z−1 ∈ Z
n×n, then det(Z) , det

(
Z−1

)
∈ Z. But

det(Z) det
(
Z−1

)
= 1, so we must have det(Z) = det

(
Z−1

)
= ±1. Thus Z must be

unimodular, completing the proof.

Proposition 1–2. Given a matrix Z ∈ R
n×n, then Λ(Z) = Z

n if and only if Z is

unimodular.

8

Proof. Suppose Z is unimodular, then Z,Z−1 ∈ Z
n×n. For any z ∈ Λ (Z) =

{Zx | x ∈ Z
n}, it is obvious that z ∈ Z

n. Also, for any z ∈ Z
n, define x = Z−1z ∈

Z
n. Then z = Zx ∈ Λ (Z). Thus, we must have Λ(Z) = Z

n.

On the other hand, suppose Λ(Z) = Z
n, we must have Zei ∈ Z

n for i =

1, 2, . . . , n, where ei is a unit vector whose i-th entry is one and other entries are zeros,

see Section 1.7. Then Z ∈ Z
n×n. Since ei ∈ Z

n = Λ(Z) for i = 1, 2, . . . , n. Thus

there must exist vectors hi ∈ Z
n such that ei = Zhi. Let H =

[
h1 h2 . . . hn

]
∈

Z
n×n, we have ZH = In×n. Thus H = Z−1. From Proposition 1–1, Z must be

unimodular.

Proposition 1–3. (see, e.g., [2]) Given two matrices A, Ā ∈ R
m×n which have full

column rank, then, Λ(A) = Λ(Ā) if and only if there exists a unimodular matrix Z

such that Ā = AZ.

Proof. We first prove that Λ(A) = Λ(AZ) if and only if Z is a unimodular ma-

trix. We can see that Λ(A) = {Ax | x ∈ Z
n} and Λ(AZ) = {Ax | x ∈ Λ(Z)}.

When A has full column rank, f(x) = Ax is a bijection. Thus {Ax | x ∈ Z
n} =

{Ax | x ∈ Λ (Z)} holds if and only if Λ (Z) = Z
n. Then, from Proposition 1–2, we

can conclude that Λ(A) = Λ(AZ) if and only if Z is a unimodular matrix.

Now if Λ(A) = Λ(Ā), we can always find a matrixZ ∈ R
n×n such that Ā = AZ,

completing the proof.

Given a lattice basis matrix A, the process of lattice reduction is to find a

unimodular matrix Z such that the column vectors of the new basis matrix Ā ≡ AZ

are short, i.e., more orthogonal to each other, see Figure 1–2.

9

Latice reductions have been studied for more than a century and many different

types of reductions have been proposed. The first rigorous definition of lattice reduc-

tion in arbitrary dimension was suggested by Hermite in [47] in 1850. Other types

of lattice reductions that are often considered in literature are the Korkin-Zolotarev

(KZ) reduction [56] proposed in 1873, the Minkowski reduction [74] proposed in

1896 and the Lenstra-Lenstra-Lovász (LLL) reduction [60] proposed in 1982. Next,

we briefly review the two most popular lattice reductions: the KZ reduction and the

LLL reduction, and then review Schnorr’s hierarchy of lattice reduction algorithms

that stretch from the LLL reduction to the KZ reduction.

b

b b

b b b

b

bb b b

b

b

b

a2 a1

ā2

ā1

Figure 1–2: Lattice reduction

1.4.1 The Korkin-Zolotarev reduction

A basis matrix A is KZ reduced if

i a1 is the shortest non-zero lattice vector in Λ(A) (see later);

ii For any 1 < k ≤ n,
∣
∣aT

1ak

∣
∣ ≤ ‖a1‖22/2;

iii The basis matrix formed by the orthogonal projections of
[
a2 a3 . . . an

]

onto the orthogonal complement of the space spanned by a1 is KZ reduced.

10

To find the shortest non-zero lattice vector in Λ(A), one needs to solve the following

problem:

min
x∈Zn\0

‖Ax‖22 . (1.4)

This problem, (1.4), is referred to as the shortest vector problem (SVP) in lattice

theory. The SVP is one of the two most fundamental problems in the lattice theory

(the other one is CVP), and it has drawn great attention from researchers. Solving

SVP is difficult (there is no polynomial-time solver yet). In [103], the SVP is con-

jectured to be NP-hard. Recently in [3], SVP is proven to be NP-hard under reverse

unfaithful random reductions. Though this does not prove the NP-hardness of SVP,

it implies the intractability of this problem. For more on solving SVP, we refer the

reader to the survey paper [42].

The computation of the KZ reduced basis of a given lattice involves solving a

series of SVP problems. Thus the KZ reduction is very expensive to compute.

1.4.2 The Lenstra-Lenstra-Lovász reduction

A breakthrough of the algorithmic study of lattice reduction was made in [60] in

which the LLL reduction was proposed. The greatest advantage of the LLL reduction

is that it can be computed efficiently in polynomial time (under certain conditions,

see [60] and [49]). And thus it has become the most widely employed lattice reduction

in practice.

As the LLL reduction is crucial for our later theoretical analysis and algorithm

design, the definition and the algorithm will be introduced in Section 2.1. For a

given lattice, the LLL-reduced basis is less orthogonal than the KZ-reduced basis.

A KZ-reduced matrix is also LLL-reduced, but the reverse does not hold. If A is

11

LLL-reduced, the first basis vector a1 offers an approximate solution to the SVP

problem. The ratio of ‖a1‖2 to the length of the shortest lattice vector is bounded

by 2n [80].

Many variants of the LLL reduction have been proposed in the literature. Note

that the original LLL algorithm uses integer/rational arithmetic and adopts Gram-

Schmidt orthogonalisation (GSO), see Section 2.1. Some of the variants follow the

tradition of using integer/rational arithmetic and aim at reducing the computational

complexity of the LLL reduction (see, e.g., [91, 79, 38, 82]). The problem is that

using exact arithmetic may lead to the use of very large integers, slowing down the

algorithm. A floating point LLL algorithm, named H-LLL, was proposed by Moreal,

Stehlé and Villard in [76]. This algorithm relies on the computation of the QR-

factorization of the basis using Householder’s algorithm. H-LLL computes floating

point approximations to the coefficients of the R-factor and uses them to perform

exact operations on the basis. It was shown that if the precision is large enough,

then H-LLL runs correctly. For some applications such as solving ILS problems, LLL

is used to accelerate the search process (see Section 1.5.1). In this situation, a nearly

LLL reduced basis is acceptable. So for solving ILS problems, one almost always

uses floating point arithmetic (fpa), see, for example, [31, 28, 64, 109].

In [64], Ling and Howgrave-Graham showed that when the LLL reduction is

used to improve the performance of the Babai point estimation [10], some steps of the

reduction are not necessary and, based on this, proposed the effective LLL (ELLL)

algorithm which is more computationally efficient. However, the ELLL algorithm can

have numerical stability issue, see [64, 109]. In [109], we addressed this problem and

12

further improved the computational efficiency by proposing the partial LLL (PLLL)

algorithm. An ELLL or PLLL reduced basis is not necessarily LLL reduced, but

in [109] we proved that ELLL and PLLL are equivalent to LLL in improving the

efficiency of Phost’s discrete enumeration approach (see section 1.5.1) for solving

(1.1).

1.4.3 Schnorr’s hierarchy of lattice reductions

Schnorr’s hierarchy of lattice reduction algorithms proposed in [90] compromises

the KZ reduction’s quality and the LLL reduction’s efficiency by treating every k

consecutive columns of A as a block. The KZ reduction is performed to reduce the

basis vectors within a block, and the inter-block reduction is handled in the LLL-

manner. The KZ reduction and the LLL reduction lie on the two opposite ends of

Schnorr’s hierarchy where the block size k equals to n and 2 respectively. Based on

Schnorr’s hierarchy of lattice reduction, the block KZ (BKZ) reduction was proposed

in [89].

1.5 Methods for Solving ILS

OILS has been investigated from different perspectives for decades and many

different algorithms for solving OILS have been developed. We refer the reader to

the surveys [2] and [42]. Below, we briefly review some of the important approaches

to solving OILS.

1.5.1 The discrete enumeration algorithms

Some of the earliest algorithms for solving OILS are the discrete enumeration

algorithms, which enumerate all possible lattice vectors in a given vicinity region of

the target vector y. By orthogonal triangularization (e.g., using the Gram-Schmidt

13

process) of the lattice basis, the discrete enumeration algorithms can recursively

bound the integer coordinates of the candidate solution. Distinguished by the dif-

ferent shapes of the search region, the enumeration-based solvers can be divided

into two main branches. One branch follows Phost’s approach [85, 35] which enu-

merates lattice vectors in a hyper sphere, and the other branch follows Kannan’s

approach [51, 52] which examines the lattice vectors in a parallelotope. An impor-

tant improvement of Phost’s approach was proposed by Schnorr and Euchner in

[89]. Schnorr-Euchner’s algorithm enumerates the lattice points in a hyper sphere

as Phost’s algorithm does, but in a more efficient order, see Section 2.2. In gen-

eral, Phost’s approach is more often used in practice and Kannan’s approach serves

more as a theoretical tool. The discrete enumeration algorithms following Phost’s

approach (which includes Schnorr-Euchner’s algorithm) are referred to as the sphere

decoding algorithms in communications [35]. In this thesis, we often use this term,

and the search process of a sphere decoder is referred to as a sphere decoding process.

A crucial parameter that affects the performance of the enumeration algorithms

is the initial size of the search region. Suggestions on choosing the initial search region

size can be found in, e.g., [78, 105] for Phost’s approach and in, e.g., [11] for Kan-

nan’s approach. The computational complexity analysis of the enumeration based

approaches was first given in [45, 52] and it was refined in [43], which showed that

a discrete enumeration based OILS solver has time complexity O(nn/2+o(n)) (using

Kannan’s approach). Space complexity of the enumeration approach is polynomial

in n (see, e.g., [42]).

14

1.5.2 The Monte Carlo algorithms

In [5, 6], nondeterministic algorithms have been proposed for solving the OILS

problem in a singly exponential time complexity. This algorithm was improved in

[17] later on. Those algorithms are Monte Carlo algorithms, which can find lattice

vectors that are no more than (1+ ǫ) times further away from the target vector than

the optimal solution is, for arbitrary ǫ > 0. The current best bound on the time and

space complexities of those algorithms are both (2 + 1/ǫ)O(n), see [42].

1.5.3 The Voronoi cell based algorithms

The deterministic algorithm that currently gives the best time complexity was

proposed in [73]. It solves OILS based on the computation of Voronoi cell of the

lattice [107]. The Voronoi cell V (t) of a lattice vector t ∈ Λ(A) is the set of real

vectors t̄ ∈ R
n whose closest lattice vector is t, i.e.,

V (t) = {t̄ | ‖t− t̄‖2 ≤ ‖t′ − t̄‖2 , ∀t′ ∈ Λ(A)}.

Figure 1–3 gives an example of a Voronoi cell. The Voronoi cells V (t) are transla-

tions of V (0), and they are convex polytopes which are symmetrical with respect to

reflection in t [95]. By computing the Voronoi cells of the lattice, OILS can be solved

in time O(22n+o(n)) and space 2n+o(n) [73].

1.5.4 The real relaxation branch-and-bound approach

The real relaxation branch-and-bound (RRBB) approach was first considered in

[57] for ILS problems and it was improved later in [8]. The RRBB approach is based

on the branch-and-bound paradigm commonly used in mixed-integer programming

(see, e.g., [14, 68]). In RRBB, an ILS is solved by solving a sequence of its real

15

b

b

b b b

b

bb

b

Figure 1–3: The Voronoi cell of a lattice vector

relaxations. It starts by solving problem P0, the real relaxation of (1.1):

min
x∈Rn

‖y −Ax‖22 ,

to obtain the real least squares solution x̌. If x̌ is an integer vector, then it is

returned as the solution to (1.1). Otherwise, the solver chooses i ∈ {1, . . . , n} such

that x̌i 6∈ Z, and creates two subproblems: P1 with additional constraint xi ≤ ⌊x̌i⌋,

and P2 with additional constraints xi ≥ ⌈x̌i⌉ + 1. Then the solver iterates on the

subproblems P1 and P2. Thus the RRBB process forms a binary search tree. By

exploring the search tree, the RRBB method finds the optimal solution of (1.1). In

the attempt to improve computational efficiency, the search tree is usually pruned

in the solving process using various strategies [8].

1.5.5 Solving ILS problems in practice

In terms of computational efficiency for currently handleable dimensions, the

Voroni cell based algorithms are known to be uncompetitive, and the Monte-Carlo

algorithms are outperformed by the discrete enumeration based algorithms, see [42].

Although the RRBB approach may be more efficient than the discrete enumeration

approach for some types of ILS problems, often the latter is more efficient than

16

the former, see [8]. The high popularity and high efficiency of discrete enumeration

algorithms in practice have led to some hardware implementations [32, 46].

Due to the NP-hardness of ILS, searching for the optimal solution of (1.1) may

become time-prohibitive when, e.g., A is ill conditioned, the ILS residual is large, or

the dimension of the problem is large [48]. So for some applications, an approximate

solution, which can be produced more quickly, is computed instead (see, e.g., [63]).

One often used approximate solution in communications is the Babai point,

produced by Babai’s nearest plane algorithm [10], which achieves a polynomial time

complexity O(n2) and an approximation ratio upper-bounded by 2
(
2/
√
3
)n
. The

Babai point is also the first integer point found by Schnorr-Euchner’s sphere decoding

algorithm. In communications, a method for finding this approximate solution is

referred to as a successive interference cancellation decoder. Lattice reduction can

be used to improve the quality of the Babai point, see, e.g., [63, 25].

Another approximation method is the semidefinite programming (SDP) ap-

proach which was first considered in [99]. The performance of this approach was

further analyzed in [55] where the optimality conditions for the SDP approach were

given. The SDP approach is based on a semidefinite relaxation of a given ILS prob-

lem, which can be solved efficiently using the interior point methods, and cutting

planes are introduced to strengthen the approximation [99]. The SDP approach

offers a near-optimal solution (under certain conditions) with a complexity that is

exponential in the worst case [55].

17

1.6 Organization and Contributions

In this thesis, we are mainly interested in solving the ILS problems exactly,

focusing on the lattice reductions and discrete enumeration algorithms.

The rest of this thesis is organized as follows. In Chapter 2, we study the

OILS problems. We first give details on the LLL reduction algorithm, which involves

column permutations and size reductions, and the sphere decoding approach for

solving OILS problems. Then, we discuss how the computational cost of the sphere

decoding algorithms will change in each step of the LLL reduction process and show

that the efficiency of sphere decoding is improved by the LLL reduction. It is well-

known that LLL can improve the efficiency of sphere decoding. But we are the first

to show it rigorously in theory. We also look at how will the value of δ, an important

parameter in the LLL reduction, affects the cost of sphere decoding. Part of this

chapter has been published in [25], which also includes other results that are not

covered by this thesis.

In Chapter 3, we study the BILS problems. It is widely believed that incorpo-

rating size reductions in the reduction process for the BILS problems would make

sphere decoding difficult. So only column permutations are used in the existing re-

duction algorithms. In this chapter, we introduce the concept of inactive set and

based on that, we show that size reductions can be used to transform the BILS prob-

lems without bringing any difficulty to sphere decoding as long as certain conditions

are satisfied. Then, we propose algorithms to find an inactive set for a BILS problem

based on a given initial search radius. To find an initial search radius for a given

BILS problem, we also propose some algorithms. Based on those algorithms, we

18

propose the restricted LLL (RLLL) reduction for the BILS problems which incorpo-

rates size reductions. Finally, results of numerical experiments are given to show the

potential of the RLLL reduction in improving the efficiency of the sphere decoding

approach and the quality of some approximate solutions. The main results given in

this chapter will appear in [27].

In Chapter 4, we investigate the mixed ILS problems with box constraints on the

real variables (MILSBR). We first show how the MILSBR problems can be solved

using lattice reductions and the sphere decoding approach. Then, we propose an

algorithm to compute an initial search radius which makes use of the information

in the box constraint. After that, we show how to use lower bounds to improve

the efficiency of sphere decoding, and propose algorithms to find the lower bounds.

Finally, we give numerical experiments to show that using the new algorithms, we

can solve the MILSBR problems much faster than the popular commercial software

package CPLEX does. The results of this chapter will appear in [26].

In Chapter 5, we conclude the whole thesis and give directions for future re-

search.

1.7 Notation

In the following, we define the notation used in this thesis.

Scalar: Scalars are represented by lower case Greek α, β, . . . , λ, µ, ν, or by lower

case Roman a, b, c, . . . (usually with subscripts, e.g., ai, aij).

19

Vector: Vectors are represented by bold lower case Roman a, b, c, Superscript

T indicates a transposition or a row vector, e.g.,

a =








a1
a2
...

am







= (ai)m, cT =

[
c1 c2 . . . cn

]
= (ci)

T

n .

We use ei to denote the i-th standard basis vector (column vector), i.e.,

ei =
[

︸ ︷︷ ︸

i− 1

0 . . . 0 1 0 . . . 0
]T

.

We use 1n to denote the n-dimensional vector with all 1’s, and 0n to denote

the n-dimensional vector with all 0’s, i.e.,

1n = (1)n, 0n = (0)n.

Matrix: Matrices are represented by bold upper case Roman A,B,C, . . . , e.g.,

A =
[
a1 a2 . . . an

]

︸ ︷︷ ︸

column partition

=






a11 a12 . . . a1n
...

...
...

...

am1 am2 . . . amn




 = (aij)m×n .

The transposition of a matrix A is denoted by AT. Given a matrix A, we use

ai:j,k to denote the vector formed by entries in column k and rows i to j of A

inclusively, i.e.,

ai:j,k =
[
ai,k ai+1,k . . . aj,k

]T
.

20

We useAi:j,p:q to denote a submatrix ofA, i.e.,Ai:j,p:q =
[
ai:j,p ai:j,p+1 . . . ai:j,q

]
.

The unit matrix of dimension n is denoted by In, e.g.,

In =
[
e1 e2 . . . en

]
=








1

1
. . .

1







.

The matrix with only 0’s is denoted by 0.

Rounding: The rounding of x ∈ R is represented by ⌊x⌉, which is the nearest

integer to x, i.e., ⌊1.6⌉ = 2. If two integers have the same the distances to x,

then the one that is closer to 0 is chosen, e.g., ⌊0.5⌉ = 0. When rounding is

applied to a vector or matrix, it rounds the vector or matrix entry by entry,

i.e., for a = (ai)n, we have ⌊a⌉ = (⌊ai⌉)n.

Boolean: Boolean variables are represented by lower case Roman in Fraktur font

a, b, Each Boolean variable can take one of the two values: 1 – true, and 0

– false. Boolean vectors are represented using the bold Fraktur font a,b,

Logical operations used in this thesis are: ∧ – logic and; ∨ – logic or; ¬ –

logic not; When a relational operator, e.g., <, is used in a Boolean context, it

returns a Boolean value to indicate whether or not the relation is true. When

a logical or comparison operator takes a vector/vectors as its operand(s), it

works on the operand(s) entry by entry, i.e.,

¬a = (¬ai)n, a ∧ b = (ai ∧ bi)n , a ≤ b = (ai ≤ bi)n .

21

CHAPTER 2
Effects of the LLL Reduction on the Efficiency of Sphere Decoding

The most efficient approach to solving an OILS problem in practice is Phost’s

discrete enumeration approach, which is also referred to as sphere decoding in dig-

ital communications (see Section 1.5). In this thesis, we often use the name sphere

decoding to refer to Phost’s discrete enumeration approach, and use sphere decoders

to denote sphere decoding algorithms. The LLL reduction is often used as prepro-

cessing (see Section 1.4). It is well-known that the LLL reduction can make sphere

decoders faster (see, e.g., [44, 2]). But to our knowledge there has been no rigorous

justification. In this chapter, we show rigorously that applying the LLL reduction

algorithm will reduce the computational cost of sphere decoders, which is measured

approximately by the number of nodes in the search tree in the literature. Finally,

we discussed how different values of δ, an important coefficient of the LLL reduction,

will affect the cost of sphere decoders. Part of this chapter was published in [25].

2.1 The Reduction of OILS Problems and the LLL Reduction Algorithm

For convenience, we rewrite the OILS problem here:

min
x∈Zn

‖y −Ax‖22 . (2.1)

To solve (2.1) using the sphere decoding approach, one usually transforms it to a

simpler form first. Typically, one computes the QRZ factorization of A (see, e.g.,

22

[23]):

QTAZ =

[
R

0

]

, (2.2)

where Q =
[

n

Q1
m−n

Q2

]
∈ R

m×m is orthogonal, R ∈ R
n×n is upper triangular (without

loss of generality, we assume its diagonal entries are positive throughout this thesis),

and Z ∈ Z
n×n is a unimodular matrix. Then we have

‖y −Ax‖22 =
∥
∥
∥
∥
QT

(

y −Q

[
R

0

]

Z−1x

)∥
∥
∥
∥

2

2

=
∥
∥QT

1y −RZ−1x
∥
∥
2

2
+
∥
∥QT

2y
∥
∥
2

2
.

Let ȳ = QT

1y and z = Z−1x. Then the ILS problem (2.1) can be transformed to

min
z∈Zn

‖ȳ −Rz‖22 . (2.3)

The transformation from (2.1) to (2.3) is also referred to as reduction in the literature.

Then we can apply a sphere decoder to find the solution of (2.3) (see Section 2.2).

Once the solution z∗ of (2.3) is found, the solution x∗ of the original problem (2.1)

can be computed using x∗ = Zz∗.

Different unimodular matrix Z in (2.2) will result in different R, making the

speed of search process by a sphere decoder different. It turns out that lattice

reductions can often make the search process faster. The widely used lattice reduction

for the ILS problem is the LLL reduction [60], which finds a QRZ factorization (2.2)

such that the upper triangular matrixR ∈ R
n×n satisfies the following two conditions

for k = 2, 3, . . . , n and i = k − 1, k − 2, . . . , 1:

size-reduction condition: |rik| ≤ rii/2, (2.4a)

Lovász condition: δr2k−1,k−1 ≤ r2k−1,k + r2kk, (2.4b)

23

where the parameter δ is a constant and δ ∈ (1/4, 1]. If R in (2.2) satisfies those two

conditions, then R and AZ are said to be δ-LLL reduced or simply LLL reduced.

The original LLL algorithm [60] first applies the Gram-Schmidt orthogonaliza-

tion (GSO) process to A, getting the initial triangular matrix R (more precisely,

to avoid square root computation, the original LLL algorithm gives a row scaled R

which has unit diagonal entries). Then R is updated by orthogonal transformations

from the left and unimodular transformations from the right to eventually form the

LLL-reduced upper triangular matrix in (2.2). All those unimodular transformations

form the factor Z. All the orthogonal transformations form the factor Q, which usu-

ally need not to be explicitly computed. Note that orthogonal transformations and

unimodular transformations do not change the absolute value of the determinant

of a matrix. Thus the product r11r22 . . . rnn is a constant throughout the updating

process. It is easy to show that r11r22 . . . rnn =
√

det
(
ATA

)
= det(R).

In the LLL reduction, two types of unimodular matrices are used: one is the

integer Gauss matrix and the other is the permutation matrix. In the following we

introduce these two types of unimodular matrices and the corresponding operations

when they are applied to R.

Integer Gauss Transformations: An integer matrix is called an integer Gauss

transformation (IGT) or an integer Gauss matrix if it has the following form

Zik = I − ζikeie
T

k , (2.5)

where ζik is an integer and i 6= k.

24

BecauseZ−1
ik = I+ζikeie

T

k , it is easy to verify thatZik is unimodular. Applying

Zik (with i < k) to R from the right gives

R̄ = RZik = R− ζikReie
T

k .

Thus R̄ is the same as R, except that

r̄jk = rjk − ζikrji, j = 1, . . . , i.

If we set ζik = ⌊rik/rii⌉, then applying Zik to R reduces |rik|. Specifically, we

have |r̄ik| ≤ r̄ii/2, i.e., the size-reduction condition (2.4a) is satisfied for this

specific r̄ik in R̄. Applying IGT Zik with ζik defined above to R is called a

size reduction on |rik|, and ζik is called the size-reduction coefficient.

Column Permutations: A column permutation is to interchange two consecutive

columns of R. When columns k − 1 and k of R are interchanged, the upper

triangular structure is no longer maintained. But we can apply GSO to update

rows k − 1 and k of R to bring it back to an upper triangular matrix. This

column permutation process can be described as

R̄ = Gk−1,kRP k−1,k, (2.6)

where P k−1,k is the permutation matrix and Gk−1,k is the orthogonal matrix.

In the original LLL algorithm, row scaling is used to avoid square root in the

GSO. For convenience, when we use the term “column permutation”, the whole

column permutation and orthogonalization process (2.6) is usually implied. It

25

is easy to show that after the column permutation, we have

r̄k−1,k−1 =
√

r2k−1,k + r2kk, r̄k−1,k =
rk−1,k−1rk−1,k
√

r2k−1,k + r2kk

,

r̄k,k =
rk−1,k−1rk,k
√

r2k−1,k + r2kk

.

(2.7)

Note that Gk−1,k and P k−1,k do not change the diagonal entries of R, except

for rk−1,k−1 and rk,k, and do not change the determinant of the upper triangular

matrix.

In LLL, a column permutation operation is applied when the Lovász condition

(2.4b) does not hold for some k, i.e. δr2k−1,k−1 > r2k−1,k + r2kk. From (2.7) we

have

r̄2k−1,k−1 = r2k−1,k + r2kk < δr2k−1,k−1 = δ(r̄2k−1,k + r̄2kk). (2.8)

Since δ ≤ 1, (2.8) indicates that the Lovász condition is satisfied for (k− 1)-th

and k-th diagonal entries of R̄, i.e., δr̄2k−1,k−1 < r̄2k−1,k + r̄2kk. And, in this case,

it is easy to verify:

r̄k−1,k−1 < rk−1,k−1, r̄kk > rkk. (2.9)

The LLL algorithm checks and updates the initial upper triangular matrix R

column by column starting from column 2. Assume the LLL algorithm is currently

working on column rk, it first checks the size-reduction condition (2.4a) on rk−1,k.

If the condition is not satisfied, then the LLL algorithm applies Zk−1,k to reduce

rk−1,k. After that, the LLL algorithm checks the Lovász condition (2.4b). If the

Lovász condition does not hold, it performs the column permutation of columns

k − 1 and k to ensure that the condition is satisfied and then, if k > 2, it goes back

26

to column k − 1. Otherwise, the LLL algorithm checks the size-reduction condition

(2.4a) for rik for i = k − 2, k − 3, . . . , 1 and applies IGT Zik to reduce rik when

(2.4a) is not satisfied. After the size reductions, it goes to column k + 1. The LLL

algorithm starts from k = 2 and repeats the above process until k = n + 1. The

pseudocode of the LLL reduction algorithm is given in Algorithm 2–1. When δ < 1,

both the original rational-arithmetic-based LLL algorithm [60] and the floating point

arithmetic based LLL algorithm, see, e.g., [91], are polynomial time in the dimensions

m and n and the bit-length of the entries of A, see [96]. When δ = 1 whether a

polynomial time complexity can be reached is still unknown.

Algorithm 2–1 The LLL reduction

function [R,Z] = LLL(A)

1: apply GSO to obtain A = Q
[
R
0

]

;

2: let Z = In, k = 2;
3: while k ≤ n do
4: apply size reduction Zk−1,k to reduce rk−1,k: R = RZk−1,k;
5: update Z: Z = ZZk−1,k;
6: if δr2k−1,k−1 >

(
r2k−1,k + r2k,k

)
then

7: perform column permutation: R=Gk−1,kRP k−1,k;
8: update Z: Z=ZP k−1,k;
9: if k > 2 then

10: k = k − 1
11: end if ;
12: else
13: for i = k − 2, . . . , 1 do
14: apply size reduction Zik to reduce rik: R = RZik;
15: update Z: Z = ZZik;
16: end for
17: k = k + 1;
18: end if
19: end while

27

2.2 Sphere Decoding Algorithms

Let z∗ be the optimal solution of (2.3). Suppose we have ρ ∈ R
+ such that for

z = z∗ the following inequality holds:

‖ȳ −Rz‖22 < ρ2. (2.10)

Note that (2.10) represents an n-dimensional hyper-ellipsoid in terms of z ∈ R
n,

or a hyper-sphere in which the lattice point Rz lies. To find the optimal solution

for (2.3), a sphere decoder enumerates (part of) integer points within region (2.10).

The parameter ρ, which is called the radius of the search region, is crucial to the

performance of sphere decoders. On one hand, if ρ is too large, then the cost of

sphere decoding would be expensive. On the other hand, if ρ is too small, the

optimal solution might be excluded from (2.10). Methods for choosing ρ can be

found in, e.g., [105] and [78].

We partition ȳ, R and z such that (2.10) becomes

∥
∥
∥
∥

[
ŷ

ȳn

]

−
[
R̂ r̂

rnn

] [
ẑ

zn

]∥
∥
∥
∥

2

2

< ρ2, (2.11)

where R̂ ∈ R
(n−1)×(n−1), ŷ, r̂ ∈ R

n−1, and ẑ ∈ Z
n−1. From (2.11) it follows that

(ȳn − rnnzn)
2 < ρ2, (2.12a)

∥
∥
∥(ŷ − r̂zn)− R̂ẑ

∥
∥
∥

2

2
< ρ2 − (ȳn − rnnzn)

2. (2.12b)

A sphere decoder enumerates zn for all possible values that satisfy (2.12a). Then for

each of these values of zn, it enumerate possible values of ẑ according to (2.12b). No-

tice that (2.12b) is an (n−1)-dimensional hyper-ellipsoid when zn is known. Because

28

(2.12b) and (2.10) have the same structure, the enumeration of ẑ in (2.12b) can be

handled recursively as an (n − 1)-dimensional subproblem. When the enumeration

recursion reaches dimension 1 and finds a valid value for z1, then an integer point z

inside the hyper-ellipsoid (2.10) is found. This integer point z is called a candidate

solution of (2.3). The enumeration process stops when no more values of zn can

be found that satisfies (2.12a). After that, among all of the candidate solutions we

found in the enumeration process, we choose the one that minimizes (2.3) as the

optimal solution.

In the enumeration process, we can update the search radius ρ to ‖y −Rz‖2
every time a candidate solution z is found, and let the enumeration process continue

with this smaller ρ. This ρ updating strategy serves to shrink the search region in the

search process and it greatly improves the search efficiency. We refer to this strategy

as the shrinking strategy. When the shrinking strategy is employed, the initial value

for ρ can be set to ∞. The last candidate solution z found in the enumeration is the

optimal solution.

In the recursive process of sphere decoding described above, we define the enu-

meration process of zk as the k-th level enumeration. It can be seen that in the k-th

level of the enumeration process, every zk satisfies

(

ȳk −
n∑

j=k+1

rkjzj − rkkzk

)2

< ρ2 −
n∑

j=k+1

(

ȳj −
n∑

i=j

rjizi

)2

, (2.13)

29

where the value of zj is already fixed in the j-th level enumeration for all j =

n, n− 1, . . . , k + 1. To simplify the above inequality, we define cn = ȳn/rnn and

ck =

(

ȳk −
n∑

j=k+1

rkjzj

)

/rkk, k = n− 1, n− 2, . . . , 1. (2.14)

Then, (2.13) becomes

r2kk (zk − ck)
2 < ρ2 −

n∑

j=k+1

r2jj (zj − cj)
2 . (2.15)

Note (2.12a) is just (2.15) with k = n. The vector |ȳ −Rz| 1 is called the residual

vector of z. It can be seen that the left hand side of (2.15) is the square of the k-th

entry of the residual vector, i.e.,
(
eT

k (ȳ −Rz)
)2
.

Note that the left hand side of (2.15) increases if zk moves away from ck. In

Schnorr-Euchner’s sphere decoding algorithm [89], the enumeration of zk is executed

in the following specified order until (2.15) does not hold any more:

zk =

{⌊ck⌉ , ⌊ck⌉ − 1, ⌊ck⌉+ 1, ⌊ck⌉ − 2, . . . , if ⌊ck⌉ ≥ ck
⌊ck⌉ , ⌊ck⌉+ 1, ⌊ck⌉ − 1, ⌊ck⌉+ 2, . . . , if ⌊ck⌉ < ck

.

In this order, the enumeration of zk starts from the value that minimizes the left-

hand side of (2.15). This maximizes the chance of the point found early being

optimal. This can greatly benefit the search efficiency if the shrinking strategy is

used [2]. When the initial value for ρ is set to ∞, the first integer candidate found

1 |x| denotes the absolute vector of x, i.e., |x| = (|xi|)n.

30

in Schnorr-Euchner’s algorithm is

zB =
[
⌊c1⌉ ⌊c2⌉ . . . ⌊cn⌉

]T
, (2.16)

which is exactly the Babai point produced by Babai’s nearest plane algorithm [10].

It can be seen that sphere decoding is actually a depth-first search in a tree

of depth (n + 1). We let the root be at level n + 1 of the search tree, and let the

children of the level-(k + 1) tree nodes be at level k, see Figure 2–1 for an example

where n = 3. Then, each node at level k of the search tree corresponds to a value

assigned to zk in the k-th level sphere decoding enumeration, except the root of the

tree which is an artificial node in the sense that it does not correspond to any actual

step in the sphere decoding,

k = 3

k = 2

k = 1

Figure 2–1: Search tree

2.3 The LLL Reduction and the Cost of Sphere Decoding

The complexity results of sphere decoders given in the literature are often about

the cost of enumerating all integer points in the search region ‖ȳ −Rz‖22 < ρ2, see

(2.10). For simplicity, in the complexity analysis it is assumed that the shrinking

strategy is not used in the search process. A typical measure of the cost is the number

31

of nodes enumerated by sphere decoders, which is just the size of the search tree,

which we denote by η.

Recall that nodes at level k of the search tree correspond to the values of zk

satisfying (2.13) for different values of zj for j = k + 1, k + 1, . . . , n. Thus the total

number of tree nodes at level k is the total number of combinations of zk, zk−1, . . . , zn

that satisfies (2.13). Inequality (2.13) can be rewritten as

‖ȳk:n −Rk:n,k:nzk:n‖22 < ρ2. (2.17)

Thus the number of node at level k of the search tree is equal to the number of

lattice points in the (n − k + 1)-dimensional hyper-sphere defined by (2.17). For

k = n, n− 1, . . . , 1, define Ek as the number of integer points satisfying (2.17) (and

thus Ek is also the number of nodes at level k of the search tree), i.e.,

Ek =
∣
∣{zk:n ∈ Z

n−k+1 : ‖ȳk:n −Rk:n,k:nzk:n‖2 < ρ}
∣
∣ ,

where |·| denotes the number of elements in the set.

Via the Gaussian volume heuristic, the number of lattice points in a hyper-

sphere, Ek, can be approximated by the ratio of the volume of the hyper-sphere and

the volume of the Voroni cell of the lattice, see, e.g., [84]. Thus we have:

Ek ≈
Vn−k+1 ρ

n−k+1

|det(Rk:n,k:n)|
=

Vn−k+1 ρ
n−k+1

riirk+1,k+1 . . . rnn
,

where Vn−k+1 denotes the volume of an (n− k+ 1)-dimensional unit Euclidean ball.

This approximation becomes the expected value to Ek if ȳk:n is uniformly distributed

over some Voroni cells of the lattice generated by Rk:n,k:n (see [92]). Then we have

32

(see, e.g., [1, Sec 3.2] and [93]):

η =
n∑

k=1

Ek ≈ η̄(R) ≡
n∑

k=1

Vn−k+1 ρ
n−k+1

riirk+1,k+1 . . . rnn
.

To make the search process work, we can simply use the QR factorization of A

to transform (2.1) to (2.3), i.e., letting Z = I in the QRZ factorization (2.2). Even

though it has been well known that using the LLL reduction, instead of the QR

factorization, in the transformation can make the sphere decoding faster (see e.g.,

[44, 2, 65]), there was no theoretical proof given in the literature until we published

[25]. In this section, we rigorously show that transforming an ILS problem using the

LLL reduction algorithm given in Algorithm 2–1 reduces the computational cost of

sphere decoding for solving it, which is measured approximately by η̄.

Suppose (2.1) is transformed to (2.3) by the QR factorization of A, i.e., Z = I

in (2.2). Let the search region be

‖ȳ −Rz‖22 < ρ2. (2.18)

And suppose we have the QRZ factorization R̄ = Q̄
T
RZ̄, where Q̄ is orthogonal

and Z̄ is unimodular (from here until the end of this section, we do not assume that

R is LLL reduced unless we state otherwise). Then with ŷ = Q̄
T
ȳ and z̄ = Z̄

−1
z,

after the reduction, the search region (2.18) becomes

∥
∥ŷ − R̄z̄

∥
∥
2

2
< ρ2. (2.19)

33

As stated before, the cost of enumerating (2.18) and (2.19) can be measured approx-

imately by η̄(R) and η̄(R̄). In the following we look at how η̄(R) changes after some

specific transformation of R.

The following result shows that if the Lovász condition (2.4b) is not satisfied for

some k, the cost η̄(R) decreases after the column permutation of columns k− 1 and

k.

Lemma 2–1. Suppose that δr2k−1,k−1 > r2k−1,k + r2kk for matrix R in (2.18) and

some k. After the permutation of columns k − 1 and k, R becomes R̄, i.e., R̄ =

Gk−1,kRP k−1,k (see (2.6)). Then the cost η̄(R) of the search process decreases after

the transformation, i.e.,

η̄(R) > η̄(R̄).

Proof. Since r̄ii = rii for i 6= k − 1, k, r̄k−1,k−1r̄kk = rk−1,k−1rkk, and r̄kk > rkk (see

(2.9)) we have

η̄(R)− η̄(R̄) =
n∑

i=1

Vn−i+1 ρ
n−i+1

riiri+1,i+1 . . . rnn
−

n∑

i=1

Vn−i+1 ρ
n−i+1

r̄iir̄i+1,i+1 . . . r̄nn

=
Vn−k+1 ρ

n−k+1

rkkrk+1,k+1 . . . rnn
− Vn−k+1 ρ

n−k+1

r̄kkrk+1,k+1 . . . rnn

=

(
1

rkk
− 1

r̄kk

)
Vn−k+1 ρ

n−k+1

rk+1,k+1 . . . rnn
> 0,

completing the proof.

We can see that applying size reductions alone does not change the diagonal

entries of R and thus does not change η̄(R). Suppose the Lovász condition (2.4b)

does not hold for a specific k and furthermore |rk−1,k| > rk−1,k−1/2. The next lemma

34

shows that the size reduction on rk−1,k performed before the permutation operation

can help to decrease the cost η̄(R) further.

Lemma 2–2. Suppose that in (2.18), matrix R satisfies δr2k−1,k−1 > r2k−1,k+ r2kk and

|rk−1,k| > rk−1,k−1/2 for some k. Let R̄ be defined as in Lemma 2–1. Suppose a size

reduction on rk−1,k is performed first and then after the permutation of columns k−1

and k and triangularization, R becomes R̂, i.e., R̂ = Ĝk−1,kRZk−1,kP k−1,k. Then

η̄(R̄) > η̄(R̂). (2.20)

Proof. By the same argument given in the proof of Lemma 2–1, we have

η̄(R̄)− η̄(R̂) =

(
1

r̄kk
− 1

r̂kk

)
Vn−k+1 ρ

n−k+1

rk+1,k+1 . . . rnn
.

To show (2.20) we need only to prove r̄kk < r̂kk. Suppose that after the size reduction,

rk−1,k becomes r̃k−1,k. We have |r̃k−1,k| ≤ |rk−1,k|. From (2.7), we have

r̂k−1,k−1 =
√

r̃k−1,k
2 + r2kk <

√

r2k−1,k + r2kk = r̄k−1,k−1.

Since r̄k−1,k−1r̄kk = r̂k−1,k−1r̂kk and r̂k−1,k−1 < r̄k−1,k−1, we have r̄kk < r̂kk, complet-

ing the proof.

From Lemmas 2–1 and 2–2 we immediately obtain the following result.

Theorem 1. Suppose that R̄ is obtained by applying the LLL reduction algorithm

(Algorithm 2–1) to R, then

η̄(R) ≥ η̄(R̄),

35

where the equality holds if and only if no column permutation occurs during the LLL

reduction process. Any size reductions on the superdiagonal entries of R which is

immediately followed by a column permutation during the LLL reduction process will

reduce η̄. All other size reductions have no effect on η̄.

Now we make some remarks on Theorem 1. Recall that in the LLL reduction

(Algorithm 2–1), when the Lovász condition for two consecutive columns is not

satisfied, then a column permutation takes places to ensure the Lovász condition to be

satisfied. From Lemma 2–1, this column permutation strategy ensures that that the

LLL reduction given in Algorithm 2–1 always reduces η̄. If there is another reduction

algorithm that LLL reduces the given matrices, but performs column permutations

differently, e.g., the algorithm permutes two columns that are not consecutive or

permutes two consecutive columns but the corresponding Lovász condition is not

satisfied after the permutation, then we cannot guarantee this specific reduction

algorithm will reduce η̄ even though the resulting matrix is LLL reduced.

Note that size reductions do not change the diagonal entries ofR and thus do not

affect η̄. This result is consistent with a result we gave in [109], which shows that all

the size reductions on the off-diagonal entries above the superdiagonal of R and the

size reductions on the superdiagonal entries of R which are not followed by column

permutations do not have any effect on the search speed of the sphere decoders.

This observation leads to the partial LLL (PLLL) algorithm, which avoids some

unnecessary size reductions in the LLL reduction and has good numerical stability.

The result given here is also consistent with [7] where we showed what the re-

duction process should try to achieve to make the sphere decoding fast and corrected

36

some common misconceptions in the literature. For example, we explained why nei-

ther decreasing correlation coefficients of real least squares (RLS) estimates of the

integer parameter vector x nor decreasing the condition number of the covariance

matrix of the RLS estimate should be an objective of the reduction process.

2.4 Effects of δ on the Cost of Sphere Decoding

We know that with different values of δ, the LLL reduction algorithm given in

Algorithm 2–1 generates different δ-LLL reduced matrices R for the same matrix A.

Suppose R1 and R2 are obtained by applying Algorithm 2–1 to A with δ = δ1 and

δ = δ2 respectively, and δ1 < δ2. A natural question to ask is: what is the relation

between η̄(R1) and η̄(R2)? In the following, we try to address this question. First,

we give the result for n = 2.

Theorem 2. Suppose R1 and R2 are obtained by applying Algorithm 2–1 to A with

δ = δ1 and δ = δ2 respectively, and δ1 < δ2. If n = 2, then

η̄(R1) ≥ η̄(R2). (2.21)

Proof. Note that only two columns are involved in the reduction process and the

value of δ only determines when the process should terminate. In the reduction

process, the upper triangular matrix either first becomes δ1-LLL reduced and then

becomes δ2-LLL reduced after some more permutations or becomes δ1-LLL reduced

and δ2 -LLL reduced at the same time. Therefore, by Lemma 2–1, the conclusion

holds.

Now, let us consider the cases when n ≥ 3. Note that when δ1 < δ2, R2 must

be δ1-LLL reduced, but R1 may not be δ2-LLL reduced. If R2 can be obtained by

37

applying the Algorithm 2–1 (with δ = δ2) to R1, then, by Theorem 1, we have (2.21).

Otherwise, (2.21) may not hold. We use an example to illustrate this.

Example 2–1. Let

A =







0.9675 0.4328 0.0935 0.9477

0.5879 0.6792 0.4456

0.4295 0.0549

0.0853






. (2.22)

Applying Algorithm 2–1 to A with δ = δ1 = 4/9 and δ = δ2 = 25/36, we obtain the

δ1-LLL reduced R1 and the δ2-LLL reduced R2, respectively:

R1 =







0.4852 0.0678 −0.0232 −0.1236

0.3485 0.0578 −0.1235

0.3413 −0.0990

0.3612






,

R2 =







0.5549 −0.2591 0.1280 −0.0001

0.3845 −0.1278 −0.0855

0.2960 −0.0996

0.3299






.

Note that R1 is not δ2-LLL reduced. Applying Algorithm 1 to R1 with δ = δ2, we

obtain δ2-LLL reduced R̂2:

R̂2 =







0.3550 0.0523 −0.1448 0.0926

0.3429 −0.0889 −0.0470

0.3767 −0.1346

0.4544






.

In Table 2–1, we give the values of η̄(R1), η̄(R2), η̄(R̂1) with different values of

ρ. It can be seen that η̄(R2) > ¯η(R1) > η̄(R̂2) for different choices of ρ.

To give a general n-dimensional example, define A(n) =

[
αIn−3

A

]

with A

given in (2.22). When |α| is small enough, the LLL reduction will not change the

38

Table 2–1: Sphere decoding cost η̄ versus search radius ρ for Example 2–1

ρ 0.2500 0.5000 0.7500 1.0000 1.2500

η̄(R1) 5.4264 36.1325 134.5629 365.3632 815.3802

η̄(R2) 6.1943 39.8179 144.6296 386.5897 853.8591

η̄(R̂2) 4.2876 30.5105 118.6606 330.9310 751.7156

first n− 3 rows and columns of A(n). In this case, it is easy to see that we still have

η̄
(
R

(n)
2

)
> η̄
(
R

(n)
1

)
where R

(n)
1 and R

(n)
2 are obtained by applying Algorithm 2–1 to

A with δ = 4/9 and δ = 25/36 respectively.

Although the aforementioned example shows that larger δ may not guarantee

to produce smaller η̄ when n ≥ 3. With a larger δ, we can expect that the chance

of getting a smaller η̄ is much higher than getting a larger η̄. Here, we give some

numerical tests to show in general, how will δ affect η̄. We consider two cases where

the matrix A are generated differently, as explained below.

• Case 1: A = randn(n, n), where randn(n, n) is a MATLAB built-in function

to generate a random n× n matrix with independent, identically distributed

(i.i.d.) entries following a normal distribution N (0, 1), i.e., with zero-mean and

unit variance.

• Case 2 (moderately ill conditioned): we first generate A0 = randn(n, n) and

compute the singular value decomposition A0 = UDV T. Then, we construct

diagonal matrix D̄ with d̄11 = 15, d̄nn = 0.005 and d̄ii = dii for i = 2, 3, . . . , n−

1. Finally, we form A = UD̄V T. The condition number of A is at least 3000.

In the tests for each case, we use 1000 runs to generate 1000 different matrices A

for a fixed dimension n = 30. Figure 2–2 and 2–3 represent the average η̄ over 1000

39

runs against different values of δ for cases 1 and 2, respectively. The three curves in

the figures correspond to different values of ρ.

From Figure 2–2 and 2–3, we can see that the value of δ in the LLL reduction

has a significant effect on η̄. Figure 2–2 and 2–3 show that as δ increases, on average

η̄ decreases almost exponentially. But we point out that for tests in both case 1 and

case 2, sometimes a larger δ results in a larger η̄ in the tests. This phenomenon is

more often observed in case 2. Table 2–2 gives the number of times out of those 1000

runs in which η̄ increases when δ increases from t to t+ 0.1 for t = 0.3 : 0.1 : 0.9. In

our tests, we tried various dimension sizes n and other types of A, and observed the

same phenomenon.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
101

102

103

104

105

106

δ

av
er
ag
e
η̄
(R

)
ov
er

10
00

ru
n
s

ρ = 3.5
ρ = 3.0
ρ = 2.5
ρ = 2.0

Figure 2–2: Case 1: Average η̄ after the δ-LLL reduction

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
101

102

103

104

105

106

δ

av
er
ag
e
η̄
(R

)
ov
er

10
00

ru
n
s

ρ = 3.5
ρ = 3.0
ρ = 2.5
ρ = 2.0

Figure 2–3: Case 2: Average η̄ after the δ-LLL reduction

Table 2–2: Number of runs in which η̄ increases when δ increases

Case 1 Case 2

δ

ρ
2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5

0.3–0.4 21 22 24 24 77 86 87 92

0.4–0.5 42 46 48 56 91 97 103 108

0.5–0.6 64 64 67 69 108 108 113 116

0.6–0.7 53 61 65 66 96 97 96 98

0.7–0.8 50 50 52 63 101 99 90 87

0.8–0.9 60 60 63 70 92 85 87 92

0.9–1.0 53 56 62 72 90 85 89 102

41

CHAPTER 3
Box-Constrained Integer Least Squares Problems

In this chapter, we consider the box-constrained integer least squares (BILS)

problems. The sphere decoding approach for the OILS problems we described in

Section 2.2 can easily be modified to solve the BILS problems, and this approach

is commonly used in practice (see, e.g., [24]). In Lemma 2–2, we showed that size

reductions can help to decrease the cost of sphere decoding. However, size reductions

are usually not used in the reduction process for a BILS problem because they tend

to make the constraints of the problem too complicated to handle in sphere decoding

(see, e.g., [108, 30, 98, 24, 20]). In this chapter, by introducing the concept of inactive

constraints, we propose a novel reduction algorithm for BILS problems, which is able

to incorporate size reductions without causing any difficultly to sphere decoding. The

main results obtained in this chapter will appear in [27].

3.1 Introduction

A BILS problem has the following form:

min
x∈B

‖y −Ax‖22 , B = {x | x ∈ Z
n; u ≤ x ≤ l}, (3.1)

where A ∈ R
m×n is a given matrix, y ∈ R

m is a given vector, and l,u ∈ Z
n with

l < u are given integer vectors which define the boundaries of x. Here, B is a box.

(In geometry, a box refers to a rectangular parallelotope with edges parallel to the

coordinate axes. We abuse the notation a little bit here to refer to the set of integer

42

points in a conventional box). In this Chapter, we consider only the case that A has

full column rank. And in this case, (3.1) is also referred to as an overdetermined

BILS problem.

3.1.1 Reduction algorithms for BILS problems

Unlike the LLL reduction for OILS problems that uses both size reductions

and column permutations (see Section 2.1 for details), the reduction process for

BILS problems usually does not involve size reductions because the geometry of

the constraint box would become complicated to make the search process difficult.

Generally, applying a unimodular matrix Z which involves size reductions transforms

the shape of the domain from a box {x | l ≤ x ≤ u} to a skewed parallelotope

{z | l ≤ Zz ≤ u}. In the process of sphere decoding for solving BILS (see later),

it is easy to enumerate xk in [lk, uk], but it is much more difficult to enumerate zk

because all entries of z are entangled.

Thus, reduction strategies in the literature for BILS problems usually only do

column reordering. In other words, for a BILS problem (3.1), the unimodular matrix

Z in the QRZ factorization (2.2) is chosen to be a permutation matrix P ∈ R
n×n,

so we have

AP = Q1R. (3.2)

Define

ȳ = QT

1y, z = P Tx, l̄ = P Tl, ū = P Tu. (3.3)

Then problem (3.1) can be transformed to

min
z∈B̄

‖ȳ −Rz‖22 , B̄ =
{
z | z ∈ Z

n; l̄ ≤ z ≤ ū
}
. (3.4)

43

After we get the solution z∗ of (3.4), we can then get the solution x∗ of (3.1) using

x∗ = Pz∗.

Different column reordering strategies for BILS problems can be found in [108,

30, 98, 24, 20]. In [30], the well-known V-BLAST (vertical Bell laboratories layered

space-time) strategy originally introduced in [37] for getting good performance of

the Babai point was proposed to reduce (3.1) for improving the efficiency of sphere

decoding. The V-BLAST strategy determines the columns of the final R from last

to first. When determining column k, V-BLAST chooses the column that maximizes

rkk from the columns that have not been chosen before. In [24], the sorted QR

decomposition (SQRD) algorithm originally introduced in [108] was also proposed

to determine P . In contrast to V-BLAST, SQRD determines the columns of the

final R from first to last. When determining column k, it seeks a column from

the not-yet-chosen columns to minimize rkk. Both SQRD and V-BLAST use only

the information in A, and both of them can be computed efficiently in O(n3) flops

(SQRD costs less than V-BLAST). However the V-BLAST reduction is more effective

in reducing the cost of sphere decoding, see, e.g., [25].

In [98], Su and Wassell considered the geometry of the BILS problem and, from

this point of view, proposed a new column reordering algorithm which uses not only

the information in A, but also the information in y and B of the BILS problem

(3.1). Independently, in [24] Chang and Han proposed another column reordering

algorithm. Their algorithm also uses all information of (3.1) and the derivation is

based on an algebraic point of view. In [20], Breen and Chang showed that the

reduction strategy given in [98] is essentially the same as the one given in [24], in

44

the sense that they will always give the same column reordering. The cost of the

former is less than the cost of the later if the former is implemented in an efficient

way. In [20], another reduction algorithm (which will be referred to as the all-

information based permutation (AIP) algorithm for the sake of convenience) that

is mathematically equivalent to the above two reduction algorithms but faster was

proposed by combining the best part from each of the two reduction algorithms.

This approach is more sophisticated than SQRD and V-BLAST and provides the

best known result in speeding up sphere decoding for solving BILS problems.

3.1.2 The AIP reduction algorithm

In the following, we briefly review the process of the AIP reduction which will be

used in this chapter. The AIP reduction first computes the QRP factorization (3.2)

with initial P = In, getting initial R, ȳ, l̄ and ū in (3.4). The AIP reduction then

determines a new order for the columns of R from right to left and returns the AIP

reduced BILS problem and the updated permutation matrix P . In the following, we

describe how the last column rn is determined in the AIP reduction. Subsequent

steps of determining other columns are the same but are applied to subproblems

with smaller dimensions.

Let matrix F = R−T. It is easy to see that F is a lower-triangular matrix.

Define ž = (ži)n = F Tȳ. Let zr =
(
zri
)

n
where zri is the closest integer to ži in the

interval [l̄i, ūi], i.e., z
r
i = median

(
⌊ži⌉ , l̄i, ūi

)
1 , for i = 1, 2, . . . , n. Let zs =

(
zsi
)

n

1 median (a, b, c) denotes the median value of a, b and c.

45

where zsi is the second closest integer to ži in [l̄i, ūi], i.e.,

zsi =

{
zri + 1 if zri = l̄i or z

r
i < ži

zri − 1 if zri = ūi or z
r
i ≥ ži

i = 1, 2, . . . , n. (3.5)

For an i ∈ {1, 2, . . . , n}, assume we interchange columns i and n of R (thus entries i

and n in the vector z and zs are also swapped), and return R to upper-triangular by

a series of Givens rotations applied to R from the left. The same Givens rotations

are also applied to ȳ. To avoid confusion, we denote the new R by R̂, the new z by

ẑ, the new zs by ẑs and the new ȳ by ŷ. This process can be described as:

R̂ = GTRP in, ŷ = GTȳ, ẑ = P inz, ẑs = P inz
s (3.6)

where P in is the permutation matrix that interchanges columns i and n of R, and G

is an orthogonal matrix representing the product of the Givens rotations that bring

RP in back to upper-triangular. Without loss of generality, we also assume that the

diagonal entries of R̂ are positive. For this new problem, define

di = r̂2nn (ẑ
s
n − ŷn/r̂nn)

2 , (3.7)

which is the n-th residual squared when ẑn = ẑsn, corresponding to column i. To

determine the new last column of R, the AIP reduction finds all d1, d2, . . . , dn and

choose column j = argmaxi di to be the new last column.

Quantity di can be computed efficiently. From (3.6), we have ẑsn = zsi and

ŷn/r̂nn = eT

nR̂
−1
ŷ = eT

n

(
GTRP in

)−1
GTȳ = eT

nP inR
−1ȳ = eT

i ž = ži.

46

Define F̂ = R̂
−T

. Then we have F̂ = GTR−TP in = GTFP in. Let column n of F̂ be

f̂n. Since F̂ is lower-triangular, f̂n = f̂nnen. This indicates that f̂
T

n r̂n = f̂nnr̂nn = 1.

Recall that r̂nn > 0. We have

r̂−1
nn = f̂nn =

∥
∥f̂n

∥
∥
2
=
∥
∥F̂ en

∥
∥
2
=
∥
∥GTFP inen

∥
∥
2
= ‖Fei‖2 = ‖f i‖2 .

Thus, di in (3.7) can be computed using the following equation.

di =
(zsi − ži)

2

‖f i‖22
. (3.8)

After j is found, the AIP reduction algorithm interchanges column j and column

n ofR and update ȳ correspondingly (for convenience, we removed the hats). Then it

interchanges entries j and n of l̄ and ū respectively, and updates F by interchanging

columns j and n of F and applying to it the same Givens rotations that are used

to update R, so that F = R−T still holds. After that, the AIP reduction algorithm

fixes zn = zB

n = median
(
⌊ȳn/rnn⌉ , l̄n, ūn

)
, which is just the original zrj, and updates

ỹ = ȳ−rnz
B

n. Later, we will see that this z
B

n is the n-th entry of the box-constrained

Babai point of the AIP reduced BILS problem. To determine the order of columns

of R1:n−1,1:n−1, the AIP reduction algorithm recursively apply the above process to

the following (n− 1)-dimensional subproblem:

min
z1:n−1∈B̄n−1

∥
∥ỹ1:n−1 −R1:n−1,1:n−1z1:n−1

∥
∥
2

2
, (3.9)

where B̄n−1 =
{
z1:n−1 | z̄ ∈ Z

n−1; l̄1:n−1 ≤ z1:n−1 ≤ ū1:n−1

}
. Because F 1:n−1,1:n−1 =

(R1:n−1,1:n−1)
−T, the inverse does not need to be recomputed for the subproblem.

47

Here we propose an improvement to the AIP reduction. Notice that in the

AIP reduction, we need to compute ‖f i‖22 in (3.8) for i = 1, 2, . . . , n. Then in

the reduction of the (n− 1)-dimensional subproblem (3.9), we need to compute the

column vector norms
∥
∥f 1:n−1,i

∥
∥
2

2
using the updated F . Assume after we compute

‖f i‖22 for i = 1, 2, . . . , n, we store the values in the vector f̌ , i.e., f̌ =
(∥
∥f i

∥
∥
2

2

)

n
.

When we interchange columns of F , we interchange entries of f̌ accordingly to

keep consistence. Note that when we apply Givens rotations to update F , ‖f i‖22
will remain unchanged. Then in the (n − 1)-dimensional subproblem, instead of

computing
∥
∥f 1:n−1,i

∥
∥
2
from scratch, we can simply update f̌ i = f̌ i − f 2

ni for all i. In

this way, we have
∥
∥f 1:n−1,i

∥
∥
2
= f̌ i. By recursively updating f̌ in the subproblems, the

cost to compute (3.8) for the k-dimensional subproblems is then reduced from O(k)

to O(1). Note that the above strategy is similar to what is used in the computation

of the QR factorization of a matrix with standard column pivoting, see, e.g., [41,

Sec. 5.4.2].

As stated, when determining the last column, the AIP reduction pursues a maxi-

mum n-th residual squared r̂2nn (ẑn − ŷn/r̂nn)
2 with ẑn = ẑsn (see (3.7)) or equivalently

(zi − ži)
2/‖f i‖2 with zi = zsi (see (3.8)). Following the description in [20], the moti-

vation of doing this is to make the sphere decoding radius (i.e., ρ2 − (rnn(zn − žn))
2,

see (3.11b)) for the (n − 1)-dimensional sub-BILS-problems small, and at the same

time make rnn large (we have stated why we want large rnn in OILS, see Section

2.3). Using zsi to compute di in (3.8) is because that |zsi − ži| is never less than 0.5

and usually also not very large. This means that, if we choose column j to be the

new column n where dj is large, then the resulting rnn is likely to be large as well

48

and the requirement to have large rnn is met. Using zri , instead of zsi , to compute di

in (3.8) would not be a good choice because |zri − ži| might be very small or even 0.

This means that a column i that leads to a large rnn after the column permutation

might correspond to a very small di. On the contrary a column j corresponding to

a large dj might have large
∣
∣zrj − žj

∣
∣ and a small rnn.

The pseudocode of the AIP reduction is given in Algorithm 3–1. We can see

that the last column of F is not used in the computation of the subproblem (3.9). In

the implementation, instead of doing a column permutation, it simply drops column

j of F to improve efficiency. After F is brought back to upper-triangular by the

Givens rotations, the last row of F is dropped as well to bring it back to a square

matrix.

3.1.3 Sphere decoding for BILS problems

Sphere decoding algorithms (see Section 2.2 for more details) can be modified to

search for the optimal solution of a reduced BILS problem (3.4) (see, e.g., [30, 18, 24]).

A sphere decoder for BILS searches for the optimal solution within the following

region:

‖ȳ −Rz‖22 < ρ2, (3.10a)

l̄ ≤ z ≤ ū, (3.10b)

where ρ denotes the search radius. In geometry, (3.10) represents the intersection of

a hyper-ellipsoid and a box, as exemplified in Figure 3–1 for the case n = 2. We can

49

Algorithm 3–1 The AIP reduction

function [R, ȳ, l̄, ū,P , zB] = AIP(A,y, l,u)

1: apply the QR factorization to obtain A = [Q1,Q2]
[
R
0

]

and ȳ = QT

1y;

2: initialize l̄ = l and ū = u, let ỹ = ȳ;
3: compute F = R−T and set P = In;
4: compute f̌ = (‖f i‖22)n;
5: for k = n to 2 do
6: ž = F Tỹ ∈ R

k;
7: let zsi be the second closest integer in [l̄i, ūi] to ži, for i = 1, . . . , k; ⊲ See (3.5)
8: di = (zsi − ži)

2 /f̌ i for i = 1, 2, . . . , k;
9: let j = argmaxi=1,2,...,k di;

10: zB

k = median
(
⌊ži⌉ , l̄i, ūi

)
.

11: ỹ = ỹ − rjz
B

k ;
12: remove column j of F and entry j of f̌ ;
13: if i 6= k then
14: interchange column j and k of R;
15: interchange entry j and k of l̄ and ū;
16: interchange columns j and k of P ;
17: use Givens rotations to bring R back to upper triangular;
18: apply the same Givens rotations to update F , ȳ and ỹ;
19: end if
20: update f̌ i = f̌ i − f 2

ki for i = 1, 2, . . . , k;
21: remove row k in F and remove entry k in ỹ; ⊲ s.t. F ∈ R

k×k ȳ ∈ R
k

22: end for

partition (3.10a) like (2.11) and reorganize (3.10) to

(ȳn − rnnzn)
2 < ρ2, l̄n ≤ zn ≤ ūn, (3.11a)

∥
∥ (ŷ − r̂zn)− R̂ẑ

∥
∥
2

2
< ρ2 − (ȳn − rnnzn)

2 , l̂ ≤ ẑ ≤ û, (3.11b)

where l̂ = l̄1:n−1 and û = ū1:n−1. From (3.11a), we have:

max(l̄n, ⌊(ȳn − ρ)/rnn⌋+ 1) ≤ zn ≤ min(ūn, ⌈(ȳn + ρ)/rnn⌉ − 1). (3.12)

50

For each possible integer value of zn in (3.12), the n-dimensional search space (3.10)

reduces to an (n−1)-dimensional search space (3.11b). The overall process of sphere

decoding for a BILS problem is similar to the sphere decoding for the OILS problems

described in Section 2.2.

l̄1 ū1

l̄2

ū2

z1

z2

‖ȳ −Rz‖22 < ρ2

l̄ ≤ z ≤ ū

Figure 3–1: BILS search region

As in section 2.2, let ck =
(
ȳk−

∑n
j=k+1 rkjzj

)
/rkk. The Schnorr-Euchner sphere

decoder for BILS enumerates the integer values of zk satisfying (3.12) in ascending

order with respect to their distances to ck. At level k of the recursive decoding

process, the first integer to be enumerated for zk is median
(
⌊ck⌉ , l̄k, ūk

)
, which is

the nearest integer in [l̄k, ūk] to ck. Similar to the Babai point of an OILS problem

(see (2.16)), for a reduced BILS problem we can define the box-constrained Babai

point zB = (zB

i)n where

zB

k = median
(
⌊ck⌉ , l̄k, ūk

)
, k = n, n− 1, . . . , 1. (3.13)

51

In (3.13), ck is computed using (2.14) with zj = zB

j for j = k + 1, k + 2, . . . , n. We

can see that the AIP algorithm computes the box-constrained Babai point in the

reduction process, see Algorithm 3–1.

3.2 Inactive Constraints and Partially Open Box Constrained ILS Prob-
lems

In this section, we first introduce the concepts of inactive constraints for a BILS

problem, and how to reduce a BILS problem to a partially open box constrained ILS

problem (POBILS). Unlike the reduction of regular BILS problems where only col-

umn permutations are allowed, we show that for a POBILS problem, size reductions

can be incorporated in the reduction. In the end of this section, we give the general

rule on the reduction of POBILS problems.

3.2.1 Inactive constraints and POBILS problems

Definition 3–2 (Inactive Constraints). Given a BILS problem, if the interval con-

straint on a variable can be removed without altering the optimal solution, then we

say this interval constraint is an inactive constraint. If a set of interval constraints

can be removed from a BILS problem without altering the optimal solution, then we

say this set is an inactive set of constraints.

An example of an inactive constraint can be found in Figure 3–1. Removing the

interval constraint on z1 does not change the search region of the sphere decoder, the

intersection of the box and the ellipse. Thus it does not alter the optimal solution

either. From Definition 3–2, the interval constraint l̄1 ≤ z1 ≤ ū1 is inactive, and

itself forms an inactive set of the BILS problem.

52

One problem we are interested in is to find a large inactive set of constraints for

a given BILS problem (see Section 3.2.3). However, finding the largest inactive set

of a given BILS is generally difficult. To better understand the structure of inactive

sets of a BILS problem, we give the following properties:

i Any subset of an inactive set of a BILS problem is also an inactive set of this

BILS problem;

ii The empty set Φ is an inactive set for any BILS problem;

However, the inactive sets of a BILS problem do not possess the augmentation prop-

erty, i.e., for two different inactive sets A and B, there may not be such an element

in A such that adding it to B gives an inactive set larger than B. This can be seen

using the example shown in Figure 3–2, where
[
4 3

]T
is the optimal solution of the

given BILS problem. Removing either the interval constraint on x1, or the interval

constraint on x2 will not introduce new integer point into the search region, and thus

will not alter the optimal solution. So, each constraint itself forms an inactive set of

this problem. However, adding the two inactive sets does not give a valid inactive

set because when both of the interval constraints are removed, the optimal solution

is then changed to
[
3 2

]T
. Because of the lack of the augmentation property, the

inactive sets of a BILS problem do not form a matroid. This implies that generally

the problem of finding the largest inactive set of a given BILS problem cannot be

solved by greedy algorithms.

For an inactive set of constraints, we will use I to denote the set of the corre-

sponding indices. For convenience, I is also referred to as an inactive set. Define

J ≡ Ic. Removing the interval constraints in the inactive set from the box B in

53

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 x1

x2

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

‖y −Ax‖22 < ρ2

l ≤ x ≤ u

Figure 3–2: Example of inactive sets

(3.1) gives us a constraint-reduced BILS problem:

min
x∈P

‖y −Ax‖22 , (3.14)

where

P = {x | x ∈ Z
n; li ≤ xi ≤ ui, ∀i ∈ J } (3.15)

is a partially open box (we call it po-box for short). The constraint-reduced BILS

problem (3.14) is also referred to as the po-box constrained ILS (POBILS) problem.

Recall that for B in (3.1), we always have the strict inequality li < ui. If this

condition holds for a po-box P , then we call this P a non-degenerate po-box. In a

POBILS problem (3.14), P is always non-degenerative. For a po-box P , we always

assume either li 6= −∞ or ui 6= ∞ for all i ∈ J . If this is not the case for some i,

we can simply remove i from J without changing the box. We can regard a regular

54

BILS problem as a special case of of POBILS problem, i.e., J = {1, 2, . . . , n}, and

regard a OILS problem as another special case of POBILS problem, i.e., J = Φ.

For a po-box P , define a subset of lattice Λ(A):

ΛP(A) = {Ax | x ∈ P}. (3.16)

Note that ΛP(A) is a constrained lattice. If J = φ, then P = Z
n and ΛP(A)

becomes the regular lattice Λ(A). It is easy to see that solving (3.14) is actually to

find the closest lattice point in ΛP(A) to the given vector y.

3.2.2 Using IGTs in the reduction of POBILS problems

Recall that in the reduction process for the BILS problem (3.1), usually the

unimodular matrix Z in the QRZ factorization (2.2) is chosen to be a permutation

matrix P ∈ R
n×n, see (3.2). Other types of unimodular matrices are not used because

they skew the constraint box, making sphere decoding difficult. In this subsection,

we show that for the POBILS problem (3.14), however, when certain conditions

are satisfied, IGTs can be used in the QRZ factorization of A without skewing its

constraints. This indicates that size reductions can be incorporated in the reduction

of POBILS problems.

Recall that an IGT has the following form:

Zij = I − ζijeie
T

j , ζij ∈ Z, i 6= j,

and its inverse is

Z−1
ij = I + ζijeie

T

j . (3.17)

55

Let Ā = AZij and x̄ = Z−1
ij x, so Ax = Āx̄. From (3.17), we have

x̄ = Z−1
ij x = (I + ζijeie

T

j)x = x+ ζijxjei,

leading to

x̄i = xi + ζijxj, x̄k = xk, ∀k 6= i. (3.18)

This indicates that only the i-th element of x is changed by the IGT, and other

elements are not. Now suppose the i-th interval constraint li ≤ xi ≤ ui is inactive

(i.e. i ∈ I), then xi is not interval-bounded in P in (3.14). From (3.18), it is easy to

see that for any x ∈ P , we still have x̄ ∈ P , and vice versa. Without complicating

the interval constraints, IGT Zij can be applied to transform (3.14) to

min
x̄∈P

∥
∥y − Āx̄

∥
∥
2

2
.

From the above we can see that if a BILS problem has a non-empty inactive set

I, then we can remove the i-th interval constraint of this problem for all i ∈ I to

form a POBILS problem. For the POBILS problem, IGT Zij can then be applied

when i ∈ I.

3.2.3 Reduction of po-box constrained lattices

In this section, we consider the reduction of constrained lattices (3.16). Recall

that in the regular lattice reduction, we use a unimodular matrix Z to reduce the

lattice basis A to AZ without changing the lattice, i.e., Λ(A) = Λ(AZ) (see Section

1.4). In the constrained lattice reduction, we want to find a matrix Z ∈ R
n×n such

that

ΛP(A) = ΛP̄(AZ), (3.19)

56

where P̄ is a po-box and the lattice basis AZ is reduced. Here P̄ is required to be a

po-box so that sphere decoders can enumerate integer points in P̄ efficiently. Next,

we show what conditions Z should satisfy so that there exists a po-box P̄ making

(3.19) hold.

Lemma 3–1. Given a matrix A ∈ R
m×n with full column rank and a matrix Z ∈

R
n×n, for any po-boxes P and P̄, ΛP(A) = ΛP̄(AZ) if and only if P = ΛP̄(Z).

Proof. It is easy to see that ΛP̄(AZ) =
{
AZx | x ∈ P̄

}
= {Ax̄ | x̄ ∈ ΛP̄(Z)}.

When A has full column rank, f(x) = Ax is a bijection. Thus {Ax | x ∈ P} =

{Ax̄ | x̄ ∈ ΛP̄(Z)} if and only if P = ΛP̄(Z).

Lemma 3–2. Given a non-degenerate po-box P as in (3.15), if there exists another

po-box P̄ and a matrix Z ∈ R
n×n such that P = ΛP̄(Z), then Z is unimodular.

Proof. To prove Z is unimodular, we first prove that Z is invertible and Z−1 is an

integer matrix. Construct a vector x = (xi)n where

xi =

{
li when i ∈ J
0 otherwise

. (3.20)

Recall that in a non-degenerate po-box P , li < ui for i ∈ J . From (3.15), it is easy

to see that

x ∈ P ; (x+ ei) ∈ P , i = 1, 2, . . . , n. (3.21)

Thus there must exist vectors x̄ ∈ P̄ and x̄′
i ∈ P̄ for i = 1, 2, . . . , n such that

Zx̄ = x, (3.22a)

Zx̄′
i = x+ ei. (3.22b)

57

Define hi = x̄′
i − x̄. Subtracting (3.22a) from (3.22b) gives us Zhi = ei. Define

H =
[
h1 h2 . . . hn

]
∈ Z

n×n. We have ZH = I, and thus Z−1 = H and it is an

integer matrix.

Write P̄ as

P̄ =
{
x̄ | x̄ ∈ Z

n; l̄j ≤ x̄j ≤ ūj ∀j ∈ J̄
}
.

Next we prove that P̄ is also non-degenerate, i.e., l̄j < ūj for all j ∈ J̄ in P̄ . Assume

that there exists j ∈ J̄ such that l̄j = ūj. Then, it can be seen that eT

j x̄ = l̄j for any

x̄ ∈ P̄ . For the vector x defined in (3.20), from (3.21) and (3.22) we have Hx ∈ P̄

and H(x+ei) ∈ P̄ for i = 1, 2, . . . , n. Let hT

j be the j-th row of H , i.e., hT

j = eT

j H .

We then have

hT

j x = l̄j, (3.23a)

hT

j (x+ ei) = l̄j, i = 1, 2, . . . , n. (3.23b)

Subtracting (3.23a) from (3.23b) gives hT

j ei = 0 for all i = 1, 2, . . . , n, indicating

hT

j = 0, which contradicts to the fact that H is invertible. Thus l̄j < ūj. In the

rest part of this chapter, when we refer to a po-box, we always assume that it is

non-degenerate.

Then we prove Z is an integer matrix. Let us define x̄ = (x̄i)n ∈ P̄ where

x̄i = l̄i when i ∈ J̄ and x̄i = 0 otherwise. It is easy to see that (x̄ + ei) ∈ P̄ for

i = 1, 2, . . . , n. We must have

Zx̄ ∈ P ⊆ Z
n, (3.24a)

Z(x̄+ ei) ∈ P ⊆ Z
n. (3.24b)

58

Subtracting (3.24a) from (3.24b) gives us Zei ∈ Z
n for all i = 1, 2, . . . , n. Thus, we

have Z ∈ Z
n×n. Since Z and Z−1 are both integral, by Proposition 1–1, Z must be

unimodular.

It is obvious that when a box B is transformed by a permutation matrix, we

still get a box. This observation has been pervasively used in solving BILS problems,

see, e.g., [108, 30, 98, 24, 20]. Next, we give the other direction of this observation.

Observation 3–1. Given a box B, if there exists a box B̄ and a square matrix

Z ∈ R
n×n such that

B = ΛB̄(Z), (3.25)

then |Z| is a permutation matrix.

Proof. Because a box is a special po-box, from Lemma 3–1, we knowZ is unimodular.

Next, we prove by contradiction that each column of Z has at most one non-zero

entry. Let zT

i denote the i-th row of Z. Assume that there exist i, j, k ∈ {1, 2, . . . , n}

such that i 6= j, zik, zjk 6= 0. Without loss of generality, we assume that both

zik, zjk > 0. If, for example, zik < 0, we can multiply zT

i by −1 and interchange li, ui

in B so that (3.25) still holds. Due to (3.25), for any x ∈ B, we can find x̄ ∈ B̄ such

that x = Zx̄. It follows that xi = zT

i x̄ =
∑n

t=1 zitx̄t. Since li ≤ xi ≤ ui, we must

have the following equalities:

li =
n∑

t=1

min
l̄t≤x̄t≤ūt

(zitx̄t), ui =
n∑

t=1

max
l̄t≤x̄t≤ūt

(zitx̄t).

Then, under the assumption zik > 0, when xi = li, we must have x̄k = l̄k, i.e., zikx̄k

reaches its minimum. Similarly, under the assumption zjk > 0, xj = uj requires

59

x̄k = ūk, i.e., zjkx̄k reaches its maximum. Since l̄k 6= ūk, this implies that we cannot

have xi = li and xj = uj at the same time, contradicting to the assumption that x is

an arbitrary vector in B. Thus Z has at most one non-zero entry each column. Since

Z is non-singular, we can further conclude that Z has exactly one non-zero entry in

each column and each row. Since det(Z) = ±1 (from the definition of unimodular

matrix), it is easy to see that those non-zero entries of Z has to be ±1, completing

the proof.

Theorem 3. Given a po-box P with the form of (3.15) and a matrix Z ∈ R
n×n.

We can construct another po-box P̄ such that

P = ΛP̄(Z), (3.26)

if and only if Z is unimodular and for any i ∈ J , there exists j ∈ {1, 2, . . . , n} such

that
∣
∣zT

i

∣
∣ = eT

j , (3.27)

where zT

i is the i-th row of Z.

Proof. To prove the “if” part, we first give a process to construct P̄ and then prove

(3.26) holds with the constructed P̄ .

Define map p(i) = j for each of those pairs of i and j in (3.27). Let

P̄ = {x̄ | x̄ ∈ Z
n; li ≤ zijx̄j ≤ ui ∀i ∈ J , j = p(i)}, (3.28)

where zij = ±1, see (3.27). With the P̄ constructed above, in the following we prove

(3.26) by showing P ⊇ ΛP̄(Z) and P ⊆ ΛP̄(Z).

60

To show P ⊇ ΛP̄(Z), it suffices to show that for every x̄ ∈ P̄ , x = Zx̄ ∈ P .

Since x̄ ∈ Z
n and Z ∈ Z

n×n, we have x ∈ Z
n. For any i ∈ J , xi = zT

i x̄ = zije
T

j x̄ =

zijx̄j. From (3.28), we know that li ≤ zijx̄j ≤ ui, proving x ∈ P .

To show P ⊆ ΛP̄(Z), it suffices to show that for every x ∈ P , x̄ = Z−1x ∈ P̄ .

Since x ∈ Z
n and Z is unimodular, we have x̄ ∈ Z

n immediately. Let H = Z−1 and

let row i of H be hT

i . From ZH = In, we can see that zT

i H = eT

i . For any i ∈ J

and j = p(i), we also have zT

i H = zije
T

j H = zijh
T

j , indicating hT

j = zije
T

i . We have

zijx̄j = zije
T

j x̄ = zije
T

j Hx = zijh
T

j x = z2ije
T

i x = xi. From (3.15), li ≤ zijx̄j ≤ ui,

proving x̄ ∈ P̄ .

Now we prove the “only if” part of the theorem. By Lemma 3–2, we can conclude

that Z is unimodular. Next, we prove that (3.27) must hold. Let P be a permutation

matrix such that for any i ∈ J , we have Pei = ek for some k ∈ {1, 2, . . . , |J |}.

Similarly, let P̄ be a permutation matrix such that for any i ∈ J̄ , we have P̄ ei = ek

for some k ∈
{
1, 2, . . . ,

∣
∣J̄
∣
∣
}
. Note that ΛP(P) = {Px | x ∈ P} and ΛP̄(P̄) =

{
P̄ x̄ | x̄ ∈ P̄

}
. Let matrix Z̄ = PZP̄

T
. From (3.26), it is easy to see that for any

s̄ ∈ ΛP̄(P̄), there exists an s ∈ ΛP(P) such that

s = Z̄s̄.

We note that sk is interval-constrained if and only if k ∈ {1, 2, . . . , |J |} and s̄k is

interval-constrained if and only if k ∈
{
1, 2 . . . ,

∣
∣J̄
∣
∣
}
. Partition Z̄ as follows:

Z̄ =

[]
Z̄11 Z̄12 |J |

|J̄ |
Z̄21

n−|J̄ |
Z̄22 n− |J | .

61

We can claim Z̄12 = 0|J |×(n−|J̄ |). To prove this, assume z̄ik 6= 0 for some i ∈

{1, 2, . . . , |J |} and k ∈
{∣
∣J̄
∣
∣+ 1,

∣
∣J̄
∣
∣+ 2, . . . , n

}
. For any integer α and a given

vector s̄′ ∈ ΛP̄(P̄), we define s̄ = (s̄′ + αek) ∈ ΛP̄(P̄) (because s̄k is unbounded).

Thus vector s = Z̄s̄ ∈ ΛP(P). Let s′ = Z̄s̄′. We have si = s′i + αzik. Since

z̄ik 6= 0 and α is an arbitrary integer, this equation indicates that si is unbounded,

contradicting the fact that si is interval-constrained.

Since Z̄12 = 0|J |×(n−|J̄ |) and Z̄ is non singular, it is easy to see that |J | ≤
∣
∣J̄
∣
∣.

Similary, from P̄ = ΛP(H) with H = Z−1, we can show
∣
∣J̄
∣
∣ ≤ |J |, giving us

that |J | =
∣
∣J̄
∣
∣. Thus, Z̄11 is a square matrix. From Observation 3–1,

∣
∣Z̄11

∣
∣ is a

permutation matrix. Let z̄T

k be the k-th row of Z̄. Then
∣
∣z̄T

k

∣
∣ is a standard unit

vector for any k ∈ {1, 2, . . . , |J |}. From the definition of P , for any i ∈ J , we can

find some k ∈ {1, 2, . . . , |J |} such that Pei = ek. Thus

∣
∣zT

i

∣
∣ = eT

i Z = eT

i P
TZ̄P̄ = eT

k Z̄P̄ = z̄T

k P̄ .

Obviously,
∣
∣zT

i

∣
∣ is also a standard unit vector, completing the proof.

3.2.4 Reduction of the POBILS problem

We have shown that in the reduction of the POBILS problem (3.14) with |J | <

n, the unimodular matrix Z in the QRZ factorization can incorporate IGTs. In the

reduction of the POBILS problem (3.14), by Theorem 3, we compute the following

QRZ factorization of A

QTAZ =

[
R

0

]

, (3.29)

where Q =
[

n

Q1
m−n

Q2

]
∈ R

m×m is orthogonal, R ∈ R
n×n is an upper triangular

matrix with positive diagonal entries, and Z ∈ Z
n×n is a unimodular matrix whose

62

i-th row zT

i satisfies

zT

i = eT

j (3.30)

for any i ∈ J and some j ∈ {1, 2, . . . , n}. Here, without bringing in any inconve-

nience, we do not take zT

i = −eT

j , although it is allowed in (3.27). Then the POBILS

problem (3.14) is reduced to

min
z∈P̄

‖ȳ −Rz‖22 , (3.31)

where ȳ = QT

1y, z = Z−1x, and

P̄ =
{
z | z ∈ Z

n; li ≤ zp(i) ≤ ui ∀i ∈ J
}

with p(i) = j for each pair of (i, j) in (3.30), c.f., (3.28).

In Section 3.2.2, we see that an IGT Zij can be applied in reducing matrix A in

(3.14) if i ∈ I. It is easy to see that such a Zij satisfies (3.30). Also from (3.30), we

see that if there is no inactive constraint in (3.14), i.e., I = φ and J = {1, 2, . . . , n},

then the QRZ factorization (3.29) becomes the QRP factorization (3.2). Theorem 3

indicates that the larger the inactive set, the more freedom we have in choosing Z

in (3.29). If all the constraints are inactive, i.e., I = {1, 2, . . . , n} and J = Ic = φ,

then Z can be any unimodular matrix and (3.29) becomes (2.2), the regular QRZ

factorization for OILS problems.

Now the questions are: how do we find an inactive set I as large as possible for

a given BILS problem, and based on the inactive set found, how do we construct an

appropriate Z that satisfies (3.27) to reduce the lattice? These questions are to be

addressed in the following sections.

63

3.3 Finding Inactive Constraints

Given a valid search radius ρ, the optimal solution of a BILS problem is in

the intersection of (3.10a) and (3.10b). After an inactive set of constraints are

removed, the optimal solution does not change. Note that removing an inactive set

of constraints may or may not introduce new points into the search region (3.10).

For the efficiency of sphere decoding, we want to find an inactive set of constraints

such that removing the set will not introduce new points into the search region.

Base on a given search radius ρ (we will show how to find it later), we propose

two efficient algorithms to find a set of inactive constraints: the level-1 inactive-

set-finding algorithm (ISF-1) and the level-2 inactive-set-finding algorithm (ISF-2).

Both of the two algorithms are based on the triangular form of the BILS problem

(3.4), which can be obtained by applying the QR factorization from the original BILS

problem (3.1). For the convenience of algorithmic descriptions, we represent inactive

sets using Boolean vectors.

Definition 3–3 (inactive vector). For an inactive set I, we define a Boolean vector

s = (si)n ∈ {0, 1}n such that si = 1 if i ∈ I, and si = 0 otherwise. We call the vector

s an inactive vector.

3.3.1 The level-1 inactive-set-finding (ISF-1) algorithm

For the BILS problem (3.4), suppose that we can find the smallest box
{
z | z ∈

Z
n, l̂ ≤ z ≤ û

}
that covers all the integer points in the search ellipsoid (3.10a),

see Figure 3–3. It can be seen that the constraint zi ≤ ūi is redundant if ûi ≤ ūi,

and the constraint zi ≥ l̄i is redundant if l̂i ≥ l̄i. Thus s = (̂l ≥ l̄) ∧ (û ≤ ū) is an

inactive vector. In the example shown in Figure 3–3, we have s =
[
1 0

]T
. Actually,

64

removing the interval constraint l̄1 ≤ z1 ≤ ū1 does not introduce new integer points

into the search region.

z1

z2

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

‖ȳ −Rz‖22 < ρ2 Search ellipsoid

l̄ ≤ z ≤ ū Box constraint

l̂ ≤ z ≤ û ISF-1 bounds

Figure 3–3: Example for ISF-1

Computing the covering box [̂l, û] actually amounts to determine the range

of each entry of z ∈ Z
n in the ellipsoid (3.10a). As in Section 3.1.2, let F =

[
f 1 f 2 . . . fn

]
= R−T, and let ž be the unconstrained real least squares solution

of (3.4), i.e., ž = F Tȳ. For any z satisfying (3.10a), define vector d = (Rz − ȳ)/ρ.

Then we have ‖d‖2 ≤ 1 and

z = ž + ρF Td. (3.32)

Equation (3.32) can give us the range of possible values for z. Multiplying both

sides of (3.32) by eT

i form the left, we have

zi = eT

i (ž + ρF Td) = ži + ρfT

i d. (3.33)

65

Using the Cauchy-Schwarz inequality, we have
∣
∣fT

i d
∣
∣ ≤ ‖f i‖2 ‖d‖2 ≤ ‖f i‖2. Thus,

from (3.33) we have ži − ρ ‖f i‖2 ≤ zi ≤ ži + ρ ‖f i‖2, leading to the covering box:

l̂ ≤ z ≤ û, l̂i = ⌈ži − ρ ‖f i‖2⌉ , ûi = ⌊ži + ρ ‖f i‖2⌋ , i = 1, 2 . . . , n. (3.34)

In [23], the same bound as (3.34) has been deduced for solving the ellipsoid-

constrained ILS problems. Note that this method of finding an inactive set checks

the constraints on each zi separately. The determination of one inactive constraint

has no effect on the determination of any other inactive constraint. We call this

algorithm the level-1 inactive-set-finding (ISF-1) algorithm.

The pseudocode of computing l̂ = (l̂i)n and û = (ûi)n is given in Algorithm

3–2. The pseudocode of the ISF-1 algorithm is given in Algorithm 3–3. Here, we

could put Algorithm 3–2 and Algorithm 3–3 into one algorithm. But for later uses,

we separate them. The main cost of ISF-1 comes from the computation of F , which

needs O(n3) flops.

Algorithm 3–2 Compute l̂ and û

function [̂l, û] = ISF1-bounds(F , ž, ρ)

1: f̃ = [‖f 1‖2 ‖f 2‖2 . . . ‖fn‖2]
T
; ⊲ f̃ i = ‖f i‖2

2: l̂ =
⌈
ž − ρf̃

⌉
and û =

⌊
ž + ρf̃

⌋
; ⊲ see (3.34)

Algorithm 3–3 ISF-1: level-1 inactive-set-finding algorithm

function s = ISF-1(R, ȳ, l̄, ū, ρ)

1: F = R−T and ž = R−1ȳ;
2: [̂l, û] = ISF1-bounds(F , ž, ρ);
3: s =

(
l̂ ≥ l̄

)
∧ (û ≤ ū);

66

3.3.2 The level-2 inactive-set-finding (ISF-2) algorithm

In this section, we propose another algorithm which will be referred as the level-2

inactive-set-finding (ISF-2) algorithm that can find a larger inactive set than ISF-

1. In ISF-1 we compute the range of each entry zi in the hyper-ellipsoid (3.10a)

separately. However, the range of possible values of zi in the actual search region

is usually smaller because it is affected by some other interval constraints. In the

example shown in Figure 3–4, it can be seen that the range of z1 within the box

constraint B̄ is [2, 8]. The range [l̂1, û1] for z1 found by ISF-1 is [1, 6] and thus

constant l̄1 ≤ z1 ≤ ū1 cannot be determined as inactive by ISF-1. Notice that in

the box constraint, l̄2 = 3. From the figure, for any integer point
[
z1 z2

]T
within

the ellipse satisfying z2 ≥ l̄2 = 3, we must have 3 ≤ z1 ≤ 6. So, removing the

interval constraint l̄1 ≤ z1 ≤ ū1 will not introduce any new integer point into the

actual search region. This indicates that s =
[
1 0

]T
is an inactive vector for this

BILS problem. Here, we can use the search ellipsoid and one interval constraint to

determine whether another interval constraint can be removed. In the following, we

first present a general method to do this. Then, we propose the ISF-2 algorithm which

finds an inactive set based on this method. Compared with the ISF-1 algorithm, the

ISF-2 algorithm can find a bigger inactive set.

Let z be an integer point in the hyper-ellipsoid (3.10a). For any pair of indices

i, k with i, k ∈ {1, 2, . . . , n} and i 6= k, suppose zk satisfies the interval constraint

l̄k ≤ zk ≤ ūk, we would like to determine the range of zi. The integer point z should

67

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 z1

z2

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

‖ȳ −Rz‖22 < ρ2 Search ellipsoid

l̄ ≤ z ≤ ū Box constraint

l̂ ≤ z ≤ û ISF-1 bounds

l̃ ≤ z ≤ ũ ISF-2 bounds

Figure 3–4: Example for ISF-2

satisfy (3.32). Multiplying both sides of (3.32) by
[
ek ei

]T
from the left, we obtain

[
zk
zi

]

=
[
ek ei

]T
(ž + ρF Td) =

[
žk
ži

]

+ ρ
[
fk f i

]T
d. (3.35)

Let the QR factorization of
[
fk f i

]
be

[
fk f i

]
=
[

Q
(ki)
1 Q

(ki)
2

] [
S(ki)

0

]

,

where Q(ki) =
[

2

Q
(ki)
1

n−2

Q
(ki)
2

]

∈ R
n×n is orthogonal, S(ki) =

[

s
(ki)
11 s

(ki)
12

s
(ki)
22

]

= R
2×2 is

an upper triangular matrix. Without loss of generality, we assume s
(ki)
11 , s

(ki)
22 > 0.

68

Let T = (tij)n×n = F TF . We can easily show

s
(ki)
11 = ‖fk‖2 =

√
tkk, (3.36a)

s
(ki)
12 = fT

kf i/ ‖fk‖2 = tki/
√
tkk, (3.36b)

s
(ki)
22 =

√

‖f i‖22 −
(
fT

kf i/ ‖f k‖2
)2

=
√

tii − t2ki/tkk. (3.36c)

Define d̄ =
[
d̄1 d̄2

]T
= Q

(ki)T
1 d. It can be seen that

[
f k f i

]T
d =

[
fk f i

]T
Q(ki)Q(ki)Td =

[
S(ki)

0

]T
[

Q
(ki)T
1 d

Q
(ki)T
2 d

]

= S(ki)Td̄.

Thus (3.35) can be rewritten as

zk = žk + ρd̄1s
(ki)
11 , (3.37a)

zi = ži + ρd̄1s
(ki)
12 + ρd̄2s

(ki)
22 . (3.37b)

Since l̄k ≤ zk ≤ ūk and zk is an integer, from (3.37a) we have žk + ρd̄1s
(ki)
11 ∈

{
l̄k, l̄k + 1, . . . , ūk

}
. Let zrk = median

(
⌊žk⌉ , l̄k, ūk

)
. Since zrk is the closest element in

{
l̄k, l̄k + 1, . . . , ūk

}
to žk, we must have

∣
∣ρd̄1s

(ki)
11

∣
∣ ≥ |zrk − žk|. Then, by (3.36a), we

have

d̄
2
1 ≥

(

(zrk − žk) /
(
ρs

(ki)
11

))2

= (zrk − žk)
2 /
(
ρ2tkk

)
.

Since
∥
∥d̄
∥
∥
2
≤
∥
∥Q

(ki)
1

∥
∥
2
‖d‖2 ≤ 1, we have d̄

2
1 + d̄

2
2 ≤ 1. So, we have the following

inequality:

∣
∣d̄2
∣
∣ ≤

√

1− (zrk − žk)
2

ρ2tkk
. (3.38)

69

Since l̄k ≤ zk ≤ ūk, from (3.36a) and (3.37a) we have

l̄k − žk
ρ
√
tkk

≤ d̄1 ≤
ūk − žk
ρ
√
tkk

. (3.39)

Define two non-negative numbers t+ki = max (tki, 0) and t−ki = max (−tki, 0). We

can rewrite (3.36b) as s
(ki)
12 = t+ki/

√
tkk − t−ki/

√
tkk. Then, from (3.39), we have

ρd̄1s
(ki)
12 ≥

(
l̄k − žk

)
t+ki

tkk
− (ūk − žk) t

−
ki

tkk
=

l̄kt
+
ki − ūkt

−
ki − žktki

tkk
,

ρd̄1s
(ki)
12 ≤ (ūk − žk) t

+
ki

tkk
−
(
l̄k − žk

)
t−ki

tkk
=

ūkt
+
ki − l̄kt

−
ki − žktki

tkk
.

(3.40)

Now from (3.37b), (3.36c), (3.38) and (3.40), we have

l̃ki ≤ zi ≤ ũki, (3.41)

where

l̃ki =







ži +
l̄kt

+
ki − ūkt

−
ki − žktki

tkk
−
√

ρ2 − (zrk − žk)
2

tkk

√

tii −
t2ki
tkk







, (3.42a)

ũki =




ži +

ūkt
+
ki − l̄kt

−
ki − žktki

tkk
+

√

ρ2 − (zrk − žk)
2

tkk

√

tii −
t2ki
tkk




 . (3.42b)

Here we want to emphasize that the interval constraint we used to derive (3.41) is

l̄k ≤ zk ≤ ūk. Thus, if there exist i, k1, k2 where i 6= k1, k2 such that l̃k2i ≥ l̄i and

ũk1i ≤ ūi, then removing the i-th interval constraint l̄i ≤ zi ≤ ūi will not change the

search region as long as the k1-th and k2-th interval constraints are preserved.

70

We assumed k 6= i in the derivation of (3.41). If we set k = i, we obtain

l̄kt
+
ki − ūkt

+
ki − žktki

tkk
= l̄i − ži,

ūkt
+
ki − l̄kt

+
ki − žktki

tkk
= ūi − ži,

and tii − t2ki/tkk = 0. Then, from (3.42), we have

l̃ii = l̄i, ũii = ūi. (3.43)

This indicates that when k = i, (3.41) is just the original interval constraint on zi.

Define L̃ = (l̃ij)n×n and Ũ = (ũij)n×n. The pseudocode for computing L̃ and Ũ

using (3.42) is given in Algorithm 3–4. The main cost of this algorithm is the cost of

computing T , which needs O(n3) flops. The cost of all other computations is O(n2)

flops.

Algorithm 3–4 Compute L̃ and Ũ

function [L̃, Ũ] = ISF2-bounds(F , ž, l̄, ū, ρ)

1: zr = max
(
min (⌊ž⌉ , ū) l̄

)
;

2: T = F TF ;
3: T+ = max(T ,0), T− = max(−T ,0);

4: B = (bki)n×n with bki =
√

ρ2 − (zrk − žk)
2 /tkk

√

tii − t2ki/tkk;

5: L̃ = (l̃ki)n×n with l̃ki =
⌈
ži +

(
l̄kt

+
ki − ūkt

+
ki − žktki

)
/tkk − bki

⌉
; ⊲ see (3.42a)

6: Ũ = (ũki)n×n with ũki =
⌊
ži +

(
ūkt

+
ki − l̄kt

+
ki − žktki

)
/tkk + bki

⌋
; ⊲ see (3.42b)

Next, we present an algorithm to construct an inactive vector s using L̃, Ũ .

Write L̃ =
[
l̃1 l̃2 . . . l̃n

]
and Ũ =

[
ũ1 ũ2 . . . ũn

]
. First we construct the

following Boolean vectors:

li =
(
l̃i < 1nl̄i

)
, ui = (ũi > 1nūi) , for i = 1, 2, . . . , n. (3.44)

71

Because of (3.43), li,ui 6= 1n for all i.

Theorem 4. For the BILS problem (3.4), define a set of Boolean vectors

B =
{
li | l̂i < l̄i, i ∈ {1, 2, . . . , n}

}
∪
{
ui | ûi > ūi, i ∈ {1, 2, . . . , n}

}
, (3.45)

where li, ui are defined in (3.44), and l̂i, ûi are defined in (3.34). Any Boolean vector

s ∈ {0, 1}n which satisfies

s ∨ b 6= 1n, ∀b ∈ B (3.46)

is an inactive vector.

Proof. First we give a remark. Because b 6= 1n for any b ∈ B, there exists at least

one s such that (3.46) holds (i.e., s = 0n).

Let i be any index such that si = 1. If l̂i ≥ l̄i, obviously the lower bound l̄i ≤ zi

can be removed from the box constraint without affecting the solution to (3.4) (see

Section 3.3.1). If l̂i < l̄i, by (3.45), li ∈ B. By (3.46) we have s ∨ li 6= 1n, which

indicates that there must exist k 6= i such that sk = 0 and eT

k li = 0 (eT

k li is the k-th

entry of li), implying l̃ki ≥ l̄i by (3.44). From (3.41), we can still claim that the

lower bound l̄i ≤ zi can be removed without affecting the solution to (3.4). Here,

we would like to emphasize that the k-th interval constraint corresponding to sk = 0

will not be removed.

Similarly, for any i such that si = 1, we can prove that the upper bound zi ≤ ūi

can be removed without affecting the solution to (3.4). Then by Definition 3–3, we

know that s is an inactive vector, completing the proof.

In the following we use an example to illustrate Theorem 4.

72

Example 3–1. Suppose in the BILS problem (3.4), n = 4, l̄ = 04 and ū = 7 × 14.

And suppose after applying Algorithm 3–2 and Algorithm 3–4, we obtain

l̂ =







−1

−2

1

0






, û =







8

6

9

9






, L̃ =







0 −2 2 −1

1 0 −2 0

−1 −1 0 −3

0 1 −3 0






, Ũ =







7 9 8 6

8 7 9 11

5 9 7 8

12 9 10 7






. (3.47)

The ISF-1 algorithm (Algorithm 3–3) cannot find any inactive constraints since
(
l̂ ≥

l̄
)
∧ (û ≤ ū) =

[
0 0 1 1

]T ∧
[
0 1 0 0

]T
= 0. However, from (3.45), we have

B = {l1, l2,u1,u3,u4} =













0

0

1

0






,







1

0

1

0






,







0

1

0

1






,







1

1

0

1






,







0

1

1

0













. (3.48)

From Theorem 4, vector s =
[
1 1 0 0

]T
satisfies (3.46) and thus {1, 2} is an

inactive set. This can be verified as follows. Let z be any integer point in the

ellipsoid (3.10a). From (3.34), we have

−1 = l̂1 ≤ z1 ≤ û1 = 8, −2 = l̂1 ≤ z2 ≤ û2 = 6.

Since the interval constraint on z3 is preserved, from (3.41), we have

−1 = l̃31 ≤ z1 ≤ ũ31 = 5, −1 = l̃32 ≤ z2 ≤ ũ32 = 9.

Since the interval constraint on z4 is preserved, again from (3.41), we have

0 = l̃41 ≤ z1 ≤ ũ41 = 12, 1 = l̃42 ≤ z2 ≤ ũ42 = 9.

73

From the above inequalities, it follows that

0 ≤ z1 ≤ 5, 1 ≤ z2 ≤ 6.

Thus the 1st interval constraint 0 ≤ z1 ≤ 7 and the 2nd interval constraint 0 ≤ z2 ≤ 7

are inactive at the same time, i.e., they form an inactive set.

To get a large inactive set, ideally we would like to find the s satisfing (3.46)

with the largest number of 1’s. However, to find such an s is actually to solve a

hitting set problem, which is known to be NP-hard [29]. Here we give a polynomial

time greedy algorithm that finds a suboptimal solution.

First, from Theorem 4, we must have s ∨ b 6= 1n for any b ∈ B. Thus, if

b = 1n − ei for some b ∈ B and i ∈ {1, 2, . . . , n}, then we must have si = 0. From

this observation, we first initialize s = (si)n such that

si =

{
0 if (1n − ei) ∈ B,

1 otherwise
, i = 1, 2, . . . , n. (3.49)

Then, we update B by removing all b from B such that s∨b 6= 1n. If the updated

B is an empty set, then by Theorem 4, the current s is an inactive vector. If not,

then we must have s 6= 0n (because b 6= 1n for any b ∈ B). Thus we can always

find an index k such that sk = 1. Then we flip sk to 0 and remove all b from B

where bk = 0. Specifically, we choose

k = argmin
i∈{1,...,n}

∑

b∈B

bi, (3.50)

so that the number of elements removed from B is maximized in this step (a greedy

strategy). This flipping-and-removing step is repeated until B is empty. Note that

74

it is possible that we may have more than one choices for k in (3.50). In this case, it

does not matter which value is chosen (in our implementation, we simple choose the

smallest one).

In the following, we use an example to illustrate the above process of finding an

inactive vector s.

Example 3–2. Assume we have the same l̂, û, L̃ and Ũ as in (3.47). To find

a vector s that satisfies (3.46), we first initialize s by (3.49) where B is given in

(3.48). Note that in B, only u3 = 14 − e3. Thus we have s =
[
1 1 0 1

]T
. Since

s ∨ u2 6= 14 and s ∨ u3 6= 14, we remove u2 and u3 from B, giving the updated B

as follows:

B =













0

0

1

0






,







1

0

1

0






,







0

1

1

0













.

For the above B, we can easily see that
∑

b∈B bi is minimum when i = 4. So we

set s4 = 0, giving the updated s =
[
1 1 0 0

]T
. It is easy to check that s ∨ b 6= 14

for all b ∈ B, so they can all be removed from B, leading to B = φ. Then,

s =
[
1 1 0 0

]T
is our inactive vector. This s is exactly the inactive vector we

used in Example 3–1.

A formal description of ISF-2 (the level 2 inactive-set-finding algorithm) is given

in Algorithm 3–5. If Algorithm 3–5 is implemented properly, the initialization of B

and the first update of B cost O(n2) flops, and in each iteration of the “while” loop,

computing k costs O(n2) flops and the update of B costs O(n) flops. We know that

in each iteration, one element of s is flipped from 1 to 0. So the total number of

iterations is not more than n. The total cost of the algorithm is thus O(n3) flops. In

75

our numerical experiments, we found that usually B becomes empty after the first

update (line 6 in Algorithm 3–5) and thus the while loop is usually not executed.

Algorithm 3–5 ISF-2: level-2 inactive-set-finding algorithm

function s = ISF-2(R, ȳ, l̄, ū, ρ)

1: F = R−T and ž = R−1ȳ;
2: [̂l, û] = ISF1-bounds(F , ž, ρ); ⊲ see Algorithm 3–2
3: [L̃, Ũ] = ISF2-bounds(F , ž, l̄, ū, ρ); ⊲ see Algorithm 3–4
4: Construct B using (3.45);
5: initialize s = (si)n using (3.49);
6: remove any b from B, if s ∨ b 6= 1n;
7: while B 6= φ do
8: k = argmini∈{1,...,n}

∑

b∈B bi;
9: sk = 0;

10: remove any b from B, if bk = 0;
11: end while

In the following, we make two remarks about Algorithm 3–5.

The cost of ISF-2 is of the same order as the cost of ISF-1. The reason that

ISF-1 does not cost less is because, like ISF-2, it involves the computation of R−1,

which needs O(n3) flops.

In this algorithm, we pursue only the objective of maximizing the size of the

inactive set. This is because the larger the inactive set, the less restrictions we will

have in choosing the unimodular matrix Z in (3.29). However, the impact of an

inactive set on the lattice reduction not only depends on it size, but also depends

on the nature of specific constraints in this inactive set, e.g., removing some interval

constraints may lead to a better lattice reduction than removing some others. The

reduction would be more effective if we could take both aspects into account. This

is a challenging problem for future studies.

76

3.4 Computing an Initial Search Radius ρ

To find an inactive set of constraints for a BILS problem, both ISF-1 and ISF-2

introduced in the last section rely on a given search radius ρ. A small ρ is preferred

as both ISF-1 and ISF-2 tend to find a larger inactive set with a smaller ρ. A small

initial ρ also makes sphere decoding faster (see Section 3.1.3). However, ρ cannot

be arbitrary small, as the optimal solution has to be in the search region (3.10).

In this section, we consider how to find an initial ρ for a given BILS problem. We

propose three methods for this purpose. All of the three methods involve finding

an approximate solution of (3.4). In the first method, the approximate solution is

computed based on the OILS relaxation of (3.4). In the second method, the box-

constrained Babai point is used as the approximate solution. In the last method,

the approximate solution is computed based on the real relaxation of (3.4). We will

compare the three different methods in the numerical experiments, see Section 3.6.

3.4.1 An OILS relaxation based method

Suppose we have transformed the BILS problem (3.1) to the problem (3.4) by

the standard QR factorization, i.e., P = In in (3.2) and (3.3). Note that in this

case, z in (3.4) can be replaced by x.

In this method of computing ρ, we first remove the box constraint in (3.4) and

get an OILS problem:

min
z∈Zn

‖ȳ −Rz‖22 .

Then, we solve the OILS problem and get the solution z∗. For efficiency, we use the

PLLL reduction [7] to reduce the OILS problem and use Schnorr-Euchner’s sphere

decoding algorithm to find z∗, see Section 2.2. If z∗ is in the box B̄, then certainly

77

z∗ is also the solution of the BILS problem (3.4). Otherwise, we project z∗ onto B̄,

obtaining z̄∗ = median
(
z∗, l̄, ū

)
, the nearest integer point in B̄ to z∗, which we use

as an approximate solution to (3.4). Then we can define the initial search radius as

ρ = ‖ȳ −Rz̄∗‖2.

This method is more than just finding an initial ρ for solving a BILS problem

(3.4). Actually, it provides a method for solving (3.4). We will formally describe this

method in Algorithm 3–8 after we introduce a new reduction algorithm for (3.4).

3.4.2 A Babai point based method

Another way of finding ρ for the BILS problem (3.4) is to compute the box-

constrained Babai point zB, an approximate solution to (3.4), which is often used in

practice, see Section 3.1.3. Then, the residual of the Babai point, i.e., ‖ȳ −RzB‖2,

can be used as the initial search radius ρ.

It is known that the AIP reduction introduced in Section 3.1.2 can reduce the

residual of the Babai point for BILS problems [24]. Thus, to get a small search radius

ρ, we apply the AIP reduction on (3.1) to get (3.4). Recall that the AIP reduction

actually computes the Babai point zB in the reduction process, see Algorithm 3–1.

3.4.3 A real relaxation based method

Assume z∗ is the optimal solution of (3.4). Clearly the value of z∗n is af-

fected by all interval constraints l̄i ≤ zi ≤ ūi for i = 1, 2, . . . , n. In the previ-

ously introduced process to compute zB

n, the last entry of the box constrained Babai

point, we can see that the information in the interval constraint on zn is used, i.e.,

zB

n = median
(
⌊žn⌉ , l̄n, ūn

)
. However, in this computation, the information of other

interval constraints are not taken into account at all.

78

Suppose we have transformed the BILS problem (3.1) to the problem (3.4) by

the standard QR factorization. Here we propose a real relaxation based method

which finds an approximate solution ẑ ∈ Z
n based on z̃ ∈ R

n, the solution of the

real relaxation of the BILS problem (3.4), i.e.,

z̃ = argmin
l̄≤z≤ū

‖ȳ −Rz‖22 . (3.51)

The constrained real least squares solution z̃ in (3.51) can be computed efficiently

using various numerical algorithms (for classic algorithms, see [81, Chapter 16]). In

this thesis, we use the algorithm proposed in [75], which is based on the gradient

projection algorithm [13] combined with the standard active set strategy for solving

constrained optimization problems, see, e.g., [81, Section 16.5] and [12].

Clearly, the computation of z̃ uses information in all interval constraints. To

find an approximate solution ẑ of (3.4), we let ẑn = ⌊z̃n⌉. Then, like in the AIP

reduction, we update ȳ = ȳ − rnẑn and reduce the dimension of (3.51) by 1 to get

the following subproblem (see Section 3.1.2):

min
l̄1:k≤z1:k≤ū1:k

‖ȳ1:k −R1:k,1:kz1:k‖22 , (3.52)

where k = n − 1. Then, by applying the above procedure recursively to (3.52), we

determine ẑk for k = n− 1, n− 2, . . . , 1.

In the above process of finding ẑ, we need to solve n real constrained least squares

subproblems (3.52) of dimension k where k = n, n− 1, . . . , 1. Denote the solution of

(3.52) by z̃(k). When a numerical algorithm is used to find z̃(k), an initial guess z̃
(k)
0

79

needs to be provided. The better the initial guess is, the faster the algorithm con-

verges [75]. Assume that we have computed z̃(k+1) =
[

z̃
(k+1)
1 z̃

(k+1)
2 . . . z̃

(k+1)
k+1

]T

for the (k + 1)-dimensional subproblem. We use only z̃
(k+1)
k+1 to determine ẑk+1, i.e.,

ẑk+1 =
⌊

z̃
(k+1)
k+1

⌉

. However, the computation of the other entries of z̃(k+1) will not be

wasted. We use z̃
(k)
0 =

[

z̃
(k+1)
1 z̃

(k+1)
1 . . . z̃

(k+1)
k

]T

as the initial point to find z̃(k).

Likely, this z̃
(k)
0 is a good initial point for finding z̃(k).

Recall we mentioned before that the AIP reduction can reduce the residual of

the Babai point zB. To further improve the quality of ẑ, we also blend the column

interchange strategy of the AIP reduction into the above basic structure of the real

relaxation based method. Specifically, before we determine the last entry of ẑ, we

first compute

j = argmax
i∈{1,...,n}

(
z̃si − z̃i

)
/ ‖f i‖22 , (3.53)

where f i is the i-th column of F = R−T and z̃si is the second closest integer in [l̄i, ūi]

to z̃i. Then, like in the AIP reduction (see Section 3.1.2), we interchange columns

j and n of R and update ȳ, l̄, ū and z̃ accordingly. After that, we determine ẑn,

and reduce the original problem to the subproblem (3.52) as described before. This

column permutation strategy is recursively applied to (3.52).

Since column permutations are adopted, the resulting ẑ needs to be permuted

back to give an approximate solution to the original BILS problem. We call this

approximate solution as the R-approximate of (3.4), as it is computed based on the

real relaxation of (3.4). An efficient implementation of the above algorithm to find

an R-approximate ẑ and a search radius ρ is given in Algorithm 3–6.

80

Algorithm 3–6 Find an initial radius for a BILS problem

function [ẑ, ρ] = R-approximate(R, ȳ, l̄, ū)

1: compute F = R−T, f̌ = (‖f i‖22)n and initialize P = In, ρ = 0;
2: for k = n to 1 do
3: ž = F Tȳ ∈ R

k;
4: compute z̃ = argminl̄≤z≤ū ‖ȳ −Rz‖22;
5: let z̃si be the second closest integer in [l̄i, ūi] to z̃i, for i = 1, 2, . . . , k;

6: j = argmaxi∈{1,...,k}
(
z̃si − z̃i

)2
/f̌ i for i = 1, 2, . . . , k; ⊲ see (3.53)

7: ẑk = ⌊z̃j⌉;
8: ȳ = ȳ − rj ẑk;
9: remove column j of F and entry j of l̄, ū and f̌ ;

10: if j 6= k then
11: interchange columns j and k of R and P ;
12: use Givens rotations to bring R back to upper triangular;
13: apply the same Givens rotations to update F and ȳ;
14: end if
15: ρ = ρ+ (rkk(ẑk − žk))

2;
16: remove column k and row k of R; ⊲ s.t. R ∈ R

k×k

17: update f̌ i = f̌ i − f 2
ki for i = 1, 2, . . . , k;

18: remove row k of F and entry k in ȳ; ⊲ s.t. F ∈ R
k×k ȳ ∈ R

k

19: end for
20: ẑ = P ẑ, ρ =

√
ρ;

3.5 New Reduction Algorithms for BILS Problems

In this section, we show how to transform the BILS problem (3.1) to a reduced

POBILS problem (3.31) using the theories and algorithms introduced in the previous

sections.

Assume we have a po-box constrained lattice ΛP(A) as defined in (3.16). Recall

that to reduce ΛP(A), we want to compute the QRZ factorization (3.29) (see Section

3.2.4). Without lost of generality, we further assume that we have obtained an initial

R in (3.29) by applying the QR factorization to A and have transformed the original

lattice to ΛP(R). In this section, we first propose a restricted lattice reduction

81

algorithm that lattice reduces the initial R. This algorithm can be regarded as an

extension of the LLL algorithm, see Algorithm 2–1. As the use of size reductions in

the algorithm is restricted by the set J in (3.15), we refer to the algorithm as the

restricted LLL (RLLL) algorithm.

In Sections 3.5.1 and 3.5.2, we describe two new size reduction operations that

are used to update R in the RLLL algorithm. Then based on the two operations,

we describe the RLLL algorithm in Section 3.5.3. Based on the RLLL algorithm,

we give three versions of RLLL-based BILS reduction algorithms that transform the

BILS problem (3.1) to a reduced POBILS problem (3.31) in Section 3.5.4. The main

difference of these versions is that they compute different initial search radius ρ.

3.5.1 Extended size reduction

Recall that in the LLL reduction (see Algorithm 2–1), every off-diagonal entry

rik is size reduced by IGT Zik defined in (2.5). In the RLLL reduction, however,

an IGT Zik is only allowed if i 6∈ J (see Section 3.2.2). So, we would like to look

at how to apply only the allowed IGTs Zik to reduce off-diagonal entries in rk, the

k-th column of R.

For a given index set J , define the Boolean vector s = (si)n where si = 1 if

i 6∈ J and s = 0 otherwise. Given s and k ∈ {1, 2, . . . , n}, we denote

{i | si = 1, i < k} = {i1, i2, . . . , ip},

where 1 ≤ i1 < i2 < · · · < ip ≤ k − 1. The most straightforward way to reduce the

entries in rk is to use the IGT Zik = I−ζikeie
T

k with ζik = ⌊rik/rii⌉ to update rk for

i = ip, ip−1, . . . , i1, in the same way as the LLL reduction does (see Algorithm 2–1).

82

However, this straightforward method has a flaw. We know that after applying

Zik in the above way, |rik| is reduced. But, |rjk| might be increased for some j < i.

In the LLL algorithm, this does not cause problem because for any j < i, |rjk| will

be reduced later by the IGT Zjk. Here, if sj = 0, rjk will fail to be reduced. In this

case, some off-diagonal entries in R may progressively grow too large and this can

cause severe numerical problems, see [109]. Also, the goal of lattice reduction is to

make the column vectors of R shorter. If we only reduce |rik| where si = 1 and let

other entries in rk grow, the overall length of rk might be greatly increased.

In our algorithm, instead of reducing some entries of rk, we try to reduce ‖rk‖2
using IGT Zik where i < k and si = 1. To achieve this, we compute the size-

reduction coefficients ζik differently. The IGTs we can apply to reduce vector rk are

Zip,k, Zip−1,k, . . . , Zi1,k. And those IGTs only affect entries in r1:ip,k. Define i0 = 0

and r(j),k = rij−1+1:ij ,k. Then r1:ip,k can be partitioned to

r1:ip,k =













r(1),k i1

r(2),k i2 − i1

...
...

r(p),k ip − ip−1

.

Generally, applying IGT Zij ,k will alter r(1),k, r(2),k, . . . , r(j),k. In the size reduction,

we first let j = p and apply Zij ,k to R. Then, r(j),k becomes r(j),k − ζij ,kr(j),ij .

Instead of choosing ζij ,k ∈ Z such that
∣
∣rij ,k − ζij ,krij ,ij

∣
∣ is minimized as the LLL

does, we choose ζij ,k to be the solution to

min
ζ∈Z

∥
∥r(j),k − ζr(j),ij

∥
∥
2
. (3.54)

83

It can be easily shown that the optimal ζij ,k is

ζij ,k =

⌊
rT

(j),ij
r(j),k

rT

(j),ij
r(j),ij

⌉

. (3.55)

After ζij ,k is computed, we construct Zip,k = I−ζip,keipe
T

k and update rk by applying

Zip,k to R. Other size-reduction coefficients ζij ,k for j = p − 1, p − 2, . . . , 1 are

computed using the same method. We would like to point out that solving (3.54)

is one step of the Gaussian algorithm for finding a reduced base for a 2-dimensional

lattice, see, e.g., [71, section 1.2].

The regular size reduction reduces one element by an IGT, while the above size

reduction reduces a vector by an IGT. So the latter can be regarded as an extension of

the former. For this reason, we call the latter the extended size reduction. Applying

the sequence of extended size reductions to reduce a column as shown above is

also a natural extension of applying a sequence of regular size reductions to reduce

a column as the LLL reduction. To see this, write R̂ =
[
r1 r2 . . . rk−1

]
and

let ζ =
[
ζ1 ζ2 . . . ζk−1

]T ∈ Z
k−1 be the integer vector consisting of size-reduction

coefficients. In the LLL reduction process for column k, rk is transformed to rk−R̂ζ.

To make the length of rk small after the reduction, it is easy to verify that ζ in the

LLL reduction is chosen to be the Babai point, see (2.16), of the following OILS

problem:

min
ζ∈Zk−1

∥
∥rk − R̂ζ

∥
∥
2

2
. (3.56)

In the restricted lattice reduction, we can only use columns ri1 , ri2 , . . . , rip to reduce

rk. Redefine R̂ =
[
ri1 ri2 . . . rip

]
, and ζ =

[
ζi1 ζi2 . . . ζip

]T
. Problem (3.56)

84

in this situation becomes

min
ζ∈Zp

∥
∥rk − R̂ζ

∥
∥
2

2
. (3.57)

Note that R̂ in (3.57) may not be upper triangular. We can use the QR factorization

to transform (3.57) to a triangular form as (3.56) so that the Babai point of (3.57)

can still be computed using the formula (2.16) given before. It can be shown that,

the size-reduction coefficients computed using (3.55) form the exact Babai point of

(3.57).

3.5.2 Backward size reduction

In all size reductions we have seen so far, we alway use column ri to reduce rik in

column rk where k > i. In this subsection, we propose the backward size reduction

which uses column k + 1 to reduce rkk in column k, which will be used later.

A backward size reduction matrix has the form Zk+1,k = I−ζk+1,kek+1e
T

k where

ζk+1,k ∈ Z. Unlike the regular size reductions we have seen before, when applying

Zk+1,k to an upper triangular matrix, the resulting matrix is no longer upper tri-

angular. A Givens rotation Gk,k+1 is needed to bring the matrix back to upper

triangular. We can describe the process of applying a backward size reduction using

the following equation:

R̄ = Gk,k+1RZk+1,k.

It is easy to see that

r̄2kk =

∥
∥
∥
∥

[
rkk
0

]

− ζk+1,k

[
rk,k+1

rk+1,k+1

]∥
∥
∥
∥

2

2

.

85

To minimize r̄2k,k, we choose ζk+1,k such that:

ζk+1,k = argmin
ζ∈Z

∥
∥
∥
∥

[
rkk
0

]

− ζ

[
rk,k+1

rk+1,k+1

]∥
∥
∥
∥

2

2

. (3.58)

Note that the right hand side of (3.58) is actually (3.54) with r(j),k replaced by
[
rkk 0

]T
and r(j),ij by

[
rk,k+1 rk+1,k+1

]T
. Thus, from (3.55), we have

ζk+1,k =

⌊

rkkrk,k+1

r2k,k+1 + r2k+1,k+1

⌉

. (3.59)

It can be verified that the backward reduction is actually equivalent to first inter-

changing columns k and k+1 of R, then applying regular size reduction Zk,k+1 and

interchanging columns k and k + 1 back. In the following example, we demonstrate

how the backward size reduction is applied to a po-box constrained lattice.

Example 3–3. Assume for ΛP(R) we have

R =

[
5.0 4.0

0 3.1

]

, s =

[
0

1

]

.

Since s1 = 0, we cannot use r1 to reduce r2. It is easy to see that the Lovász

condition is satisfied for R, thus no column permutation will happen if the LLL

permutation strategy is used. However, from (3.59), we have ζ2,1 = 1. This means

R can be reduced by the backward size reduction. After the backward size reduction,

R becomes

R̄ = G1,2

[
5.0 4.0

0 3.1

] [
1 0

−1 1

]

= G1,2

[
1.0 4.0

−3.1 3.1

]

=

[
3.2573 −1.7223

0 4.7585

]

.

Next, we make a remark on the backward size reduction.

86

Proposition 3–1. If an upper triangular matrix R is δ-LLL reduced with δ = 1,

then ζk+1,k = 0 in (3.59) for all k = 1, 2, . . . , n− 1.

Proof. Since R is δ-LLL reduced, we have (see (2.4))

|rk,k+1| ≤ rkk/2, (3.60a)

δr2kk ≤ r2k,k+1 + r2k+1,k+1, (3.60b)

for all k = 1, . . . , n− 1. Then it follows from (3.60) that

|ζk+1,k| =
⌊

|rkkrk,k+1|
r2k,k+1 + r2k+1,k+1

⌉

≤
⌊

r2kk
2δr2kk

⌉

=

⌊
1

2δ

⌉

.

When δ = 1, we have |ζk+1,k| ≤ ⌊0.5⌉ = 0 (we defined ⌊0.5⌉ = 0, see Section 1.7).

From Proposition 3–1 we can see that the backward size reduction Zk+1,k is not

very useful in the LLL reduction (Algorithm 2–1) where δ is usually set to 1 or very

close to 1. However, in the restricted lattice reduction, the size-reduction condition

(3.60a) cannot always be satisfied, e.g., when sk+1 = 1 and sk = 0, backward size

reduction Zk+1,k is helpful to reduce rkk.

3.5.3 The RLLL algorithm

Given a po-box constrained lattice ΛP(R) = {Rx | x ∈ Z
n, li ≤ xi ≤ ui, si = 0},

the RLLL algorithm reduces the lattice basis R following the framework of the LLL

algorithm with two main differences. First, in RLLL, IGT Zij is allowed only if

si = 1, i.e., the i-th interval constraint is inactive, see Section 3.2.2. Second, when it

is possible, RLLL performs backward size reductions on columns of R where neither

regular size reductions nor the LLL column permutations can be applied.

87

Specifically, the RLLL algorithm checks and updates the upper triangular matrix

R column by column. Assume the current column it works on is rk. The RLLL

algorithm first checks sk−1. If sk−1 = 1, then it reduces rk−1,k using an IGT Zk−1,k.

Otherwise, it skips this size reduction step and checks the Lovász condition (2.4b).

If the Lovász condition does not hold, then it interchanges columns k − 1 and k of R

and entries k−1 and k of l, u and s. However, if the Lovász condition holds, then it

checks if sk−1 = 0, sk = 1 and the backward size-reduction coefficient ζk,k−1 6= 0. If

these criteria are satisfied, then it reduces rk−1,k−1 using the backward IGT Zk,k−1.

When either the column permutation or the backward size reduction occurs in

the above step, column rk−1 is modified. In this case, the RLLL algorithm moves

backward to column k − 1 of R (if k > 2). Otherwise, it applies the extended

size reductions to reduce ‖rk‖22, see Section 3.5.1, and then moves forward to the

column k + 1. After it moves to a new column, it updates k accordingly. Like the

LLL algorithm, the above process starts from k = 2 and ends once k > n. The

pseudocode of the overall RLLL algorithm is given in Algorithm 3–7. The inputs of

the algorithm are R, l, u and s that define ΛP(R).

Here we make some remarks. Algorithm 3–7 behaves exactly the same as the

LLL algorithm if all constraints are inactive, i.e., s = 1n. On the other end, if there

is no inactive constraint, i.e., s = 0n, it becomes a column permutation algorithm

that follows the LLL permutation strategy, see [25]. Also, like ELLL [64] and PLLL

[109] which reduces the cost of LLL, the RLLL reduction could be modified to reduce

the cost too. We leave this topic to future research.

88

Algorithm 3–7 The restricted LLL algorithm

function [R, l,u, s,Z] = RLLL(R, l,u, s)

1: let Z = In, k = 2;
2: while k ≤ n do
3: if sk−1 = 1 then
4: reduce rk−1,k: R = RZk−1,k; ⊲ regular size reduction
5: update Z: Z = ZZk−1,k;
6: end if
7: if δr2k−1,k−1 > r2k−1,k + r2k,k then
8: do column permutation: R = Gk−1,kRP k−1,k;
9: update Z = ZP k−1,k;

10: update l = P k−1,kl, u = P k−1,ku and s = P k−1,ks;
11: k = max(k − 1, 2);
12: else
13: if sk−1 = 0 and sk = 1 then
14: compute ζk,k−1 using (3.59); ⊲ backward size reduction
15: if ζk,k−1 6= 0 then
16: apply backward size reduction: R = Gk,k−1RZk,k−1;
17: update Z = ZZk,k−1;
18: k = max(k − 1, 2);
19: continue
20: end if
21: end if
22: apply the extended size reduction to rk;
23: k = k + 1;
24: end if
25: end while

3.5.4 RLLL based reductions for BILS problems

Now we put all relevant methods together to propose three RLLL based reduc-

tion algorithms to transform the original BILS problem (3.1) to the reduced POBILS

problem (3.31).

Given the BILS problem (3.1), the three reduction algorithms, named RLLL-O,

RLLL-A, and RLLL-R first apply the QR factorization on A to get the initial R and

89

ȳ in (3.31) with initial l̄ = l and ū = u, i.e., by letting Z = I in (3.29). Then they

compute an initial search radius ρ using different methods:

RLLL-O: using the OILS relaxation based method, see Section 3.4.1;

RLLL-A: using the AIP reduction and the Babai point, see Section 3.4.2;

RLLL-R: using the real relaxation based method, see Section 3.4.3.

After that they apply ISF-2 (see Algorithm 3–5) to find an inactive vector s of the

problem. Based on s, define P = {z | z ∈ Z
n; l̄i ≤ zi ≤ ūi where si = 0}. The

original BILS problem is then transformed to the following POBILS problem:

min
z∈P

‖ȳ −Rz‖22 .

The RLLL algorithm is then applied to perform the restricted lattice reduction on

the upper triangular R obtained above.

To further improve the efficiency of sphere decoding, the AIP reduction (see

Algorithm 3–1) is used in these reduction algorithms to reorder the columns of R

after the RLLL reduction. Although the RLLL algorithm applies lattice reduction

to R, it determines the column order of R based on the diagonal entries of R, unlike

the AIP reduction which also uses the information in B and ȳ. We use two extreme

cases to explain why combining RLLL with AIP is beneficial. In one extreme case

where we have a full inactive set, i.e., s = 1n, the POBILS problem becomes an

OILS problem and the RLLL reduction becomes the LLL reduction. It is observed

in [19, chapter 3] that applying the AIP reduction after the LLL reduction is helpful

in improving the efficiency of sphere decoding for solving the OILS problems. In the

opposite extreme case where the inactive set is empty, i.e., s = 0n, no size reduction

90

can be performed in the RLLL reduction. In this case, the RLLL reduction merely

uses the LLL permute strategy to reorder the columns of R according to its diagonal

entries. And we know that in general this column ordering is not as effective as

the V-BLAST ordering (see [25]), which is not as effective as the AIP ordering (see

[20, 24]). In the implementation, if s = 0n, we actually skip the RLLL reduction

and perform only the AIP reduction.

Note that the RLLL-O reduction has a chance to find the solution x∗ of the

original BILS problem in the computation of ρ. If this happens, it returns the solution

x∗, and the rest of the reduction and sphere decoding are no longer needed. The

pseudocode of RLLL-O, RLLL-A and RLLL-R is given in Algorithm 3–8, Algorithm

3–9 and Algorithm 3–10, respectively.

Algorithm 3–8 Reduction based on RLLL and the OILS relaxation solution

function [x∗,R, ȳ,Z, l̄, ū, s, ρ] = RLLL-O(A,y, l,u)

1: apply the PLLL reduction: R = QT

1AZ, ȳ = QT

1y;
2: compute z∗ = argminz∈Zn ‖ȳ −Rz‖22;
3: x̄∗ = Zz∗;
4: if l ≤ x̄∗ ≤ u then
5: x∗ = x̄∗; ⊲ x∗ is the solution
6: else
7: x̄∗ = median (x̄∗, l,u);
8: apply QR factorization: R = QT

1A, ȳ = QT

1y;
9: ρ = ‖ȳ −Rx̄∗‖2;

10: s = ISF-2(R, ȳ, l,u, ρ);
11: if s 6= 0 then
12: [R, l̄, ū, s,Z] = RLLL(R, l,u, s)
13: update ȳ accordingly;
14: end if
15: [R, ȳ, l̄, ū,P] = AIP(R, ȳ, l̄, ū);
16: update Z = ZP and s = P T

s;
17: end if

91

Algorithm 3–9 Reduction based on RLLL and the Babai point

function [R, ȳ,Z, l̄, ū, s, ρ] = RLLL-A(A,y, l,u)

1: [R, ȳ, l̄, ū,P 0, z
B] = AIP(A,y, l,u); ⊲ see Algorithm 3–1

2: ρ = ‖ȳ −RzB‖2;
3: s = ISF-2(R, ȳ, l̄, ū, ρ);
4: if s 6= 0 then
5: [R, l̄, ū, s,Z] = RLLL(R, l̄, ū, s);
6: update ȳ accordingly;
7: [R, ȳ, l̄, ū,P 1] = AIP(R, ȳ, l̄, ū);
8: update Z = P 0ZP 1 and s = P T

1 s;
9: else

10: Z = P 0;
11: end if

Algorithm 3–10 Reduction based on RLLL and the real relaxation solutions

function [R, ȳ,Z, l̄, ū, s, ρ] = RLLL-R(A,y, l,u)

1: apply QR factorization: R = QT

1A, ȳ = QT

1y;
2: initialize l̄ = l, ū = u and Z = In;
3: [ẑ, ρ] = R-approximate(R, ȳ, l̄, ū); ⊲ see Algorithm 3–6
4: s = ISF-2(R, ȳ, l̄, ū, ρ);
5: if s 6= 0 then
6: [R, l̄, ū, s,Z] = RLLL(R, l̄, ū, s);
7: update ȳ accordingly;
8: end if
9: [R, ȳ, l̄, ū,P] = AIP(R, ȳ, l̄, ū);

10: update Z = ZP and s = P T
s;

3.6 Numerical experiments

In this section, we compare the performance of the RLLL based algorithms

proposed in Section 3.5.4 and the AIP reduction described in Section 3.1.2 through

numerical experiments. All of the experiments were performed in MATLAB 7.14

(R2012a) on a PC with 3.30GHz quadcore CPU and 4GB memory running Ubuntu

12.04 (Linux 3.2.0).

92

We designed two experiments to compare the AIP reduction and the RLLL based

reductions. In the first experiment, we focus on general BILS problems and compare

the effectiveness of the reduction algorithms on Schnorr-Euchner’s sphere decoding

algorithm. In MIMO applications, one is often interested in finding approximate

solutions to BILS problems. In the second experiment, we focus on MIMO model

and show how the reduction algorithms affect the symbol error rate (SER) of the

approximate solutions.

3.6.1 Effects of reductions on the efficiency of sphere decoding

In this numerical experiment, we generate instances of the BILS problem (3.1)

according to the following linear model:

y = Ax+ v, 0n ≤ x ≤ (2k − 1)1n, (3.61)

where v ∈ R
n×1 is the noise vector following N (0n, σ

2In), k ∈ Z is the scale factor of

the box constraint, x = (xi)n where xi ∈ Z follows the i.i.d. uniform distribution over

the range [0, 2k − 1], and A ∈ R
n×n is generated differently in the tests as follows:

• Case 1: A = randn(n, n), where randn(n, n) is a MATLAB built-in function

to generate a random n× n matrix with independent, identically distributed

(i.i.d.) entries following normal distribution N (0, 1).

• Case 2 (moderately ill conditioned): we first generate A0 = randn(n, n) and

compute the singular value decompositionA0 = UDV T. Then, we construct a

diagonal matrix D̄ with d̄11 = 15, d̄nn = 0.005 and d̄ii = dii for i = 2, 3, . . . , n−

1. Finally, we form A = UD̄V T. The condition number of A is at least 3000.

The same two cases have been used in Section 2.4.

93

We first compare the effectiveness of the four reduction algorithms, AIP, RLLL-

O, RLLL-A and RLLL-R, in improving the efficiency of solving BILS problems.

The test instances of BILS problem (3.1) are generated using model (3.61). For

each of Case 1 and Case 2, we generate 200 instances independently. For each

instance, we reduce it using the four reduction algorithms mentioned above and

solve the reduced problems using the Schnorr-Euchner’s sphere decoding algorithm

for BILS, see Section 3.1.3. The per-instance runtime (including the computation

time of reduction and sphere decoding) corresponding to each reduction algorithm

and their performance profiles are shown in Figure 3–5 and Figure 3–6 for Case 1

and Case 2 respectively. Performance profiles provide an effective means to compare

solver performance for several solvers at once, eliminating some of the bias certain

comparisons have (see, e.g., [15, 33]). The runtime statistics is reported in Table

3–1.

Table 3–1: Runtime statistics of the 200 instances

Case 1 (Figure 3–5a) Case 2 (Figure 3–6a)

Solver Min (s) Average (s) Max (s) Min (s) Average (s) Max (s)

AIP 0.012 3.946 257.650 0.011 6.410 164.810

RLLL-O 0.005 1.166 206.690 0.009 0.398 35.390

RLLL-A 0.026 0.103 7.121 0.031 0.971 86.710

RLLL-R 0.047 0.065 0.142 0.047 0.071 1.274

94

0 20 40 60 80 100 120 140 160 180 200

10−2

10−1

100

101

102

103

run number

ru
n
ti
m
e
(s
)

AIP
RLLL-O
RLLL-A
RLLL-R

(a) Runtime of 200 instances

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

p
ro
fi
le

AIP
RLLL-O
RLLL-A
RLLL-R

(b) Performance profile

Figure 3–5: Case 1: σ = 0.35, k = 5 and n = 50

95

0 20 40 60 80 100 120 140 160 180 200
10−2

10−1

100

101

102

103

run number

ru
n
ti
m
e
(s
)

AIP
RLLL-O
RLLL-A
RLLL-R

(a) Runtime of 200 instances

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

p
ro
fi
le

AIP
RLLL-O
RLLL-A
RLLL-R

(b) Performance profile

Figure 3–6: Case 2: σ = 0.35, k = 5 and n = 45

96

We can see that generally the RLLL-O reduction gives us the best performance,

followed by the AIP reduction. Solving the BILS problems using RLLL-A and RLLL-

R as the reduction algorithms are generally slower because the two reduction algo-

rithms themselves are more time consuming. However, the runtime curves of the

AIP reduction has many spikes, especially in Case 2 (see Figure 3–6a). In contrast,

the runtime curves corresponding to the RLLL based reductions have significantly

less spikes, especially for RLLL-R. If we look at the average runtime over the 200

instance of each cases in Table 3–1, we see that the RLLL-R reductions gives the

best average performance.

To give a full comparison of the four reduction algorithms under different di-

mensions, noise levels and box sizes, we further tested the four reductions in three

different scenarios. Let us consider the BILS problems of Case 1 first. In the first sce-

nario, we take σ = 0.35, k = 5 (so that 0 ≤ xi ≤ 31) and n = 40, 41, . . . , 60. For each

dimension n, we independently generate 100 instances of BILS problem (3.1) using

model (3.61). For each instance, we solve it using the four reduction algorithms and

the Schnorr-Euchner’s sphere decoding algorithm. The average computation time

(including the reduction time and the sphere decoding time) corresponding to each

reduction algorithm over the 100 instances is shown in Figure 3–7.

In Figure 3–7, we can see that for most n, using RLLL-O as reduction enables

us to solve the BILS problems much faster than using the other three algorithms on

average, but there are many spikes in the corresponding curve. Recall that RLLL-O

solves an OILS problem to find the initial search radius ρ. We found that, these

spikes on the curve of RLLL-O are mainly due to the OILS sphere decoding. The

97

40 42 44 46 48 50 52 54 56 58 60
10−3

10−2

10−1

100

101

102

103

dimension: n

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–7: Case 1: σ = 0.35, k = 5 and n = 40 : 60

RLLL-A algorithm also has many spikes on its curve. Recall that the RLLL-A

computes an initial search radius ρ using the AIP reduction and then applies the

RLLL algorithm (Algorithm 3–7) based on this ρ. When this initial ρ is large and

the ISF-2 algorithm cannot find enough number of inactive constraints, then the

RLLL algorithm does not bring significant benefit. It can be observed that the curve

of RLLL-A shares some spikes with the curve of AIP, e.g., at dimensions 48, 57 and

60. On the other hand, RLLL-R is more stable than the three other algorithms, even

though sometimes it is outperformed by RLLL-O. Compared to the AIP reduction,

the RLLL-R reduction lets us solve the BILS problems about 10 times to 1000 times

faster (from dimension 40 to dimension 60).

98

In the second scenario, we take n = 50, k = 5 and let σ = 0.05 : 0.05 : 0.7. For

each value of σ, we independently generate 100 instances of BILS problem (3.1) using

model (3.61). Then, we solve the 100 instances using the four reduction algorithms

and sphere decoding as in scenario 1. The average runtime is shown in Figure 3–8

for Case 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10−3

10−2

10−1

100

101

102

standard deviation of noise: σ

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–8: Case 1: n = 50, k = 5 and σ = 0.05 : 0.05 : 0.7

In Figure 3–8, we can see that the RLLL-O is the best reduction when the noise

is small. This is because Schnorr-Euchner’s sphere decoding algorithm combined

with the PLLL reduction is very efficient in solving the OILS problems when the

noise is small. And in this case, we often observe that the solution of the OILS

relaxation is just the solution of the original BILS problem. Thus, we can save time

to reduce and solve the BILS problem. However, when the noise is large, the cost for

99

solving the OILS relaxation increases rapidly. And the chance of the OILS solution

being different from the BILS solution also increases. In this case, the RLLL-O based

solver is less efficient than the RLLL-R based solver.

The efficiency of reduction and the efficiency of sphere decoding are usually two

competing considerations in solving ILS problems. We can see that the RLLL-A

reduction and RLLL-R reduction are outperformed by the RLLL-O reduction and

the AIP reduction when the noise is small. The reason is that RLLL-R and RLLL-

O tend to spend a lot more time in reduction, trying to get a higher efficiency for

sphere decoding. However, when the noise is small, the sphere decoding process is

usually not expensive. In this case, the gain in sphere decoding does not pay off

the extra effort spent on reduction. However, when the noise increases, the cost of

sphere decoding raises rapidly if the AIP reduction is used. The RLLL-R algorithm

becomes the better choice when σ ≥ 0.35. As the noise level keeps increasing, the

initial search radius ρ inevitably increases, and the number of inactive constraints we

could find decreases. In Figure 3–8, we can observe that the performance differences

between the AIP reduction and the RLLL based reductions decrease when σ is big.

In the third scenario, we take n = 50, σ = 0.35 and let k take different values

from 1 to 10 (so that each xi takes values from 0 to 1023). For each value of k,

we independently generate 100 instances of BILS problem (3.1) using model (3.61).

Then, we compute the average computation time of the 100 instances using the four

reduction algorithms and sphere decoding as in scenario 1 and scenario 2. The results

are shown in Figure 3–9 for Case 1.

100

1 2 3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

101

102

scale factor of the box: k

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–9: Case 1: n = 50, σ = 0.35 and k = 1 : 10

In Figure 3–9, we can observe that when the AIP reduction is used, the solving

time increases when the size of the box increases. Recall that the search region of

sphere decoding for a BILS problem is the intersection of the ellipsoid (3.10a) and

the box (3.10b). When the size of the box is large, the volume of the intersection is

expected to be large as well, leading to less efficient sphere decoding. However, when

the box is large, we have a better chance to find more inactive constraints, which

means more size reductions are allowed in the RLLL reduction. Affected by these

two factors, the curve corresponding to the RLLL-A reduction in Figure 3–9 tends

to increase when k changes form 1 to 6, and then it tends to decrease or remain

unchanged when k changes from 6 to 10. For RLLL-O, when the size of the box is

small, the OILS solution is less likely to be (or close to) the BILS solution. Thus,

101

when the box is very small, the RLLL-O reduction does not perform very well. We

can see that RLLL-R, even though is not always the best one, generally performs

well and is very stable in this scenario. It will be an interesting topic to study why

RLLL-R is much more stable than the other reductions in the tests. We leave it to

future research.

For Case 2, we also compare the runtime of solving the BILS problems (now

with a more ill conditioned A) using the four reductions and sphere decoding in the

above three scenarios. The results are shown in Figure 3–10, 3–11 and 3–12, In Case

2, we noticed that some sphere decoders run very slowly for large n. For efficiency,

we use slightly smaller dimensions n in the tests, i.e., n = 35 : 55 in scenario 1 (see

Figure 3–10) and n = 45 in scenarios 2 and 3 (see Figure 3–11 and 3–12). We also

limit the search tree size of sphere decoding to 108. If a sphere decoder does not

finish within this limit, we terminate it and set the runtime to NaN, which will be

shown as blank in the figures. All other setups are identical to the setups used in

the scenarios for Case 1. From the figures, we can observe that all curves are more

spiky compared with Case 1, indicating larger instance-to-instance variations. But,

when we compare the different reduction algorithms in Case 2, we still see the similar

patterns as we saw in Case 1.

102

36 38 40 42 44 46 48 50 52 54
10−2

10−1

100

101

102

dimension n

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–10: Case 2: σ = 0.35, k = 5 and n = 35 : 55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10−2

10−1

100

101

102

standard deviation of noise: σ

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–11: Case 2: n = 45, k = 5, and σ = 0.05 : 0.05 : 0.7

103

1 2 3 4 5 6 7 8 9 10
10−2

10−1

100

101

102

scale factor of the box: k

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

10
0
ru
n
s AIP

RLLL-O
RLLL-A
RLLL-R

Figure 3–12: Case 2: n = 45, σ = 0.35 and k = 1 : 10

3.6.2 Effects of reductions on the quality of approximate solutions

Solving the BILS problem (3.1) exactly can be very time consuming. In applica-

tions like MIMO communication, approximate solutions to (3.1) are acceptable, but

they are required to be computed very quickly. In the following numerical tests, we

compare the performance of the approximation solutions obtained in the reduction

algorithms introduced before. However, since the RLLL-O reduction algorithm in-

volves solving an OILS problem exactly, which is very time consuming sometimes, we

consider only the AIP, RLLL-A and RLLL-R reduction algorithms in the tests. For

the AIP reduction, we use the box-constrained Babai point zB as the approximate

solution. Recall that the RLLL-A reduction and the RLLL-R reduction compute an

approximate solution ẑ to get the initial search radius ρ before the RLLL algorithm

104

is applied. To not waste the computation, for RLLL-A and RLLL-R, we compare the

residual of ẑ and the residual of zB, the box-constrained Babai point of the RLLL-

A/RLLL-R reduced problem, and choose the one that has a smaller residual as the

approximate solution.

In the tests, we use the MIMO model to generate the BILS problems. Recall

that in the MIMO application with m transmit and n receive antennas, we have the

complex linear model

y = Hx+ v, x ∈
{
k1 + k2i | k1, k2 = ±1,±3, . . . ,±(2k − 1)

}n
, (3.62)

where H ∈ C
m×n is the channel matrix, x is an n-dimensional transmitted symbol

vector, y ∈ C
m is the received signal vector and v ∈ C

m is a Gaussian noise vector

with distribution CN (0m, σ
2Im). Note that the entries of x in (3.62) correspond to

the M -QAM (quadrature amplitude modulation) constellation where M = 4k.

The correlation between different MIMO channel elements is usually modelled

under the assumption that the correlation among the receive antennas is independent

of the correlation among the transmit antennas (and vice versa), see, e.g., [94, 53].

Under this assumption, the MIMO channel matrix H for Rayleigh flat-fading like

channels with signal correlation can be described by (e.g., [104, 40])

H = R1/2
R

H0R
1/2
T

,

where H0 ∈ C
m×n is a random matrix with i.i.d. complex Gaussian zero-mean unit

variance elements, i.e., hij ∼ CN (0, 1), RT ∈ R
m×m and RR ∈ R

n×n are the correla-

tions observed on the transmitter and receiver side respectively.

105

In [104], a single coefficient spatial correlation model is proposed to generate RT

and RR for simulation purposes. Specifically, the model sets

RR =












1 rR r4
R

. . . r
(n−1)2

R

rR 1 rR

. . .
...

r4
R

rR 1
. . . r4

R

...
. rR

r
(n−1)2

R . . . r4
R

rR 1












, RT =












1 rT r4
T

. . . r
(n−1)2

T

rT 1 rT

. . .
...

r4
T

rT 1
. . . r4

T

...
. rT

r
(n−1)2

T . . . r4
T

rT 1












,

where rR, rT ∈ [0, 1] reflect the level of correlation on the receiver side and the trans-

mitter side. Matrix H changes from a full rank matrix (usually H0 has full column

rank) to a rank 1 matrix as rR and rT increase from 0 to 1.

In our simulation, we transform the above complex model to a real model. We

define

ṽ =

[
vR

vI

]

, H̃0 =

[
HR

0 −H I

0

H I

0 HR

0

]

, H̃ =

[
R1/2

R

R1/2
R

]

H̃0

[
R1/2

T

R1/2
T

]

, (3.63)

where the superscript R indicates the real part of a complex matrix or vector, and

the superscript I indicates its imaginary part. It is easy to see that the entries of HR

0

and H I

0 follow the i.i.d. distribution N (0, 1/2) and the entries of v̄ follow the i.i.d.

distribution N (0, σ2/2). Let x̄ = (x̃ + (2k − 1)12n)/2, and ȳ = ỹ + (2k − 1)H̃12n.

We can transform the complex model (3.62) to the following linear model

ȳ = 2H̃x̄+ ṽ, 02n ≤ x̄ ≤ (2k − 1)12n. (3.64)

In our simulation, we set m = n, i.e., H̃ is a square matrix, and let rR = rT = γ for

simplicity. To generate an instance of the above linear model, we uniformly generate

x̄i in [0, 2k−1] for i = 1, 2, . . . , 2n, generate HR

0 and H I

0 using 1/
√
2∗ randn(2n, 2n),

106

and generate ṽ using σ/
√
2 ∗ randn(2n, 1). Then we compute H̃ using (3.63) and ȳ

using (3.64).

In Figure 3–13, Figure 3–14 and Figure 3–15, we show the average symbol error

rates (SERs) of the approximate solutions obtained by using the above mentioned

reduction algorithms against the signal-to-noise-ratios (SNRs) in different setups.

Here the SER of an approximate solution x̂ is the defined by d/(2n), where d is the

number of different entries between x̂ and the transmitted vector x̄. For a M -QAM

constellation, the SNR is defined by SNR = 10 log10 2n(M − 1)/(3σ2). Each point

in the figures represents the average SER over 5000 runs.

In Figure 3–13, we take k = 4, i.e., 256-QAM, m = n = 8 and γ = 0, 0.5, 0.7.

We can see that for all AIP, RLLL-A and RLLL-R, the average SERs of the ap-

proximate solutions increase when γ increases. Compared with AIP, RLLL-R signif-

icantly reduces the average SER of the approximate solutions. And the performance

of RLLL-A is always in-between the performance of the other two. When γ is large

(H̃ is ill-conditioned), RLLL-A performs similarly to AIP. This is because that when

H̃ is ill conditioned, the initial ρ computed in RLLL-A is usually large. In this case,

the inactive set found by ISF-2 will be small and the RLLL reduction used in RLLL-

A will be less effective. On the contrary, when γ is small (H̃ is well-conditioned),

RLLL-A performs similarly to RLLL-R. This is because that when H̃ is well con-

ditioned, the initial residuals computed in RLLL-A and RLLL-R are close to each

other.

In Figure 3–14, we take γ = 0.5, m = n = 8 and k = 3, 4, 5 (corresponding

to 64-QAM, 256-QAM and 1024-QAM). We can see that the average SERs of the

107

approximate solutions increase when k increases. RLLL-R still performs better than

RLLL-A, and they both reduce SER more than AIP does. When a larger QAM

constellation is used, i.e., when k is larger, the benefit of using RLLL-R and RLLL-

A becomes more significant and the performance of RLLL-R and RLLL-A becomes

closer. This is expected because when k is large, RLLL-R and RLLL-A can usually

find larger inactive sets which will make the RLLL reduction more effective. Also,

when k is large, the R-approximate computed by Algorithm 3–6 becomes close to

the Babai point computed by the AIP algorithm Algorithm 3–1. In the extreme

case when k approaches to infinity, it can be seen that z̃ (the solution to the real

relaxation of the BILS problem, see (3.51)) used in Algorithm 3–6 is just ž (the

unconstrained RLS solution) used in Algorithm 3–1, and thus the R-approximate

computed by Algorithm 3–6 becomes the Babai point computed Algorithm 3–1. In

this case, RLLL-R becomes RLLL-A.

In Figure 3–15, we take γ = 0.5, k = 4 and m = n = 4, 8, 16. Because the

curves tend to be very close to each other for different values of m and n in this

setup, we separate the results into three sub-figures for clearness. We can see that

for all of the three algorithms, when the SNR is low, SER increases as the number

of antennas increases, and when the SNR is high, SER decreases as the number of

antennas increases (this can be seen more clearly in Figure 3–16 where we use AIP

as an example). This indicates that in the current spacial correlation model, using

less antennas is preferred in a noisy environment. Otherwise, using more antennas

is preferred. In Figure 3–15, we can also see that RLLL-R still performs the best,

108

AIP still performs the worst and RLLL-A performs similarly to RLLL-B when the

dimension is small and it performs similarly to AIP when the dimension is large.

The drawback of computing the approximate solution using RLLL-A and RLLL-

R is that the cost of the RLLL based reductions is higher than the cost the AIP

reduction. In Table 3–2, we list the average cost of computing the the approximate

solutions in Figure 3–13, Figure 3–14 and Figure 3–15. Because of the space limita-

tion, in the table, we use A and R to represent RLLL-A and RLLL-R, respectively.

We can see that compared with AIP, using RLLL-A to compute approximate solu-

tions generally costs about 3 to 5 times more, and using RLLL-R costs about 4 to 6

times more.

109

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :γ = 0
RLLL-A:γ = 0
RLLL-R:γ = 0
AIP :γ = 0.5
RLLL-A:γ = 0.5
RLLL-R:γ = 0.5
AIP :γ = 0.7
RLLL-A:γ = 0.7
RLLL-R:γ = 0.7

Figure 3–13: 256-QAM, m = n = 8

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :64-QAM
RLLL-A:64-QAM
RLLL-R:64-QAM

AIP :256-QAM
RLLL-A:256-QAM
RLLL-R:256-QAM

AIP :1024-QAM
RLLL-A:1024-QAM
RLLL-R:1024-QAM

Figure 3–14: γ = 0.5, m = n = 8

110

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :m = n = 4
RLLL-A:m = n = 4
RLLL-R:m = n = 4

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :m = n = 8
RLLL-A:m = n = 8
RLLL-R:m = n = 8

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :m = n = 16
RLLL-A:m = n = 16
RLLL-R:m = n = 16

Figure 3–15: 256-QAM, γ = 0.5

111

25 30 35 40 45 50 55 60 65
10−3

10−2

10−1

100

SNR dB

av
er
ag
e
S
E
R

ov
er

50
00

ru
n
s

AIP :m = n = 4
AIP :m = n = 8
AIP :m = n = 16

Figure 3–16: 256-QAM, γ = 0.5

Table 3–2: Average runtime to compute the approximate solutions

AIP A R AIP A R AIP A R

Fig. 3–13 γ = 0 γ = 5 γ = 7

time (ms) 2.5 8.6 10.6 2.5 10.8 13.2 2.5 10.0 14.6

Fig. 3–14 64-QAM 256-QAM 1024-QAM

time (ms) 2.5 10.9 13.5 2.5 10.8 13.2 2.5 10.7 13.3

Fig. 3–15 m = n = 4 m = n = 8 m = n = 16

time (ms) 1.2 4.2 5.1 2.5 10.8 13.2 6.3 27.4 34.3

112

CHAPTER 4
Mixed ILS Problems With Box Constraints On The Real Variables

4.1 Introduction

This chapter is concerned with the mixed ILS problems with box constraints on

the real variables (MILSBR). An MILSBR problem has the following form:

min
x∈Rnr , l≤x≤u

z∈Zni

‖y −Ax−Bz‖22 , (4.1)

where y ∈ R
m is a given real vector, A ∈ R

m×nr and B ∈ R
m×ni are given real

matrices, x ∈ R
nr is a real vector, l,u ∈ R

nr are given lower and upper bounds on

x, and z ∈ Z
ni is an integer vector. Here, we assume that

[
A B

]
∈ R

m×n, where

n = nr + ni, has full column rank.

One application of MILSBR lies in the GPS positioning with some prior infor-

mation of the actual position. In the double-difference carrier phase GPS positioning,

one needs to solve a mixed ILS problem with an unknown variable z as the integer

carrier-phase ambiguity vector and x as the real position vector. In some situations,

additional information can be obtained to determine a range for the possible posi-

tion vector x, e.g., on a bathymetric surveying boat where the real time altitudes can

be obtained (within certain measurement error range) from the tide-gauge readings

[111]. Higher position accuracy can be achieved by using the additional information.

In this case, we can solve an MILSBR problem.

113

In this chapter, we propose an algorithm to solve (4.1) based on the sphere de-

coding approach (see Section 2.10). In Sections 4.2 and 4.3, we describe the frame-

work of applying reduction and sphere decoding to solve (4.1). In Section 4.4, we

propose an algorithm to find an initial search radius, which is an important param-

eter used in sphere decoding. To solve an MILSBR problem, the sphere decoding

approach recursively solves a series of subproblems. Each of the subproblems is also

an MILSBR problem with a lower dimension. In Section 4.5, we propose a method

to find some lower bounds on the objective functions in the sub-MILSBR problems,

and we will show how to improve the efficiency of the sphere decoding approach by

using those lower bounds. Finally, in Section 4.6, we use numerical experiments to

show that our algorithms are very effective to find a good initial search radius and

good lower bounds of the sub-MILSBR problems, which can significantly improve

the efficiency of sphere decoding. Numerical results indicate that the new algorithm

can solve the MILSBR problems much faster than the popular commercial software

package CPLEX does. The main results obtained in this chapter will appear in [26].

4.2 Reduction

Like solving OILS problems, when we solve an MILSBR problem (4.1), we first

reduce the problem in order to facilitate the solving process and improve the solving

efficiency. Specifically, for the MILSBR problem (4.1), we find the following matrix

decomposition
[
A BZ

]
= Q

[
R

0

]

, (4.2)

114

where Q =
[

n

Q1
m−n

Q2

]
∈ R

m×m is an orthogonal matrix, R =

[
R1 R2

nr ni

R3

]
nr

ni

is an

upper triangular matrix, and Z ∈ Z
ni×ni is a unimodular matrix. Once we have

(4.2), we can reduce (4.1) to the following problem

min
x∈Rnr , l≤x≤u

z̄∈Zni

∥
∥
∥
∥

[
ȳ1

ȳ2

]

−
[
R1 R2

R3

] [
x

z̄

]∥
∥
∥
∥

2

2

, (4.3)

where ȳ =

[
ȳ1

ȳ2

]
nr

ni

= QT

1y ∈ R
n and z̄ = Z−1z ∈ Z

ni . After we find the solution x∗

and z̄∗ of (4.3), we can let z∗ = Zz̄∗, and x∗, z∗ give the solution of (4.1).

In the reduction, the unimodular matrix Z is not unique and different Z will

give different R which will affect the efficiency of sphere decoding. In Section 4.3, we

will see that the MILSBR problem (4.1) can be solved based on a sphere decoding

process on the lattice Λ(R3) = {R3z̄ | z̄ ∈ Z
ni}. To make sphere decoding more

efficient, we want to choose an appropriate Z that improves the orthogonality of the

bases of Λ(R3), see Section 1.4. In this thesis, we propose to use the well-known

LLL reduction algorithm [60] to form Z.

To use the LLL algorithm to form Z, we first use the QR factorization to

compute R1. Assume we have the following QR factorization,

A = QA

[
R1

0

]

, (4.4)

where QA ∈ R
m×m is orthogonal and R1 ∈ R

nr×nr is upper triangular. Let B̄ =

QT

AB =

[
B̄1

B̄2

]
nr

m−nr

. Then, we apply the LLL algorithm (see Algorithm 2–1) to B̄2

115

to get the following QRZ factorization:

B̄2Z = QB

[
R3

0

]

, (4.5)

where Z ∈ Z
ni×ni is unimodular, QB ∈ R

(m−nr)×(m−nr) is orthogonal and R3 ∈

R
ni×ni is an LLL reduced upper triangular matrix. Finally, we define

R2 = B̄1Z, Q =
[

n

Q1
m−n

Q2

]
= QA

[
Inr×nr

QB

]

, ȳ = QT

1y. (4.6)

Equations (4.4), (4.5) and (4.6) give us R and ȳ in (4.3).

Note that in the implementation of the above process, we do not need to explic-

itly form the orthogonal matrices QA and QB. Instead, we obtain B̄ by updating

B in the process of QR factorization (4.4) and obtain ȳ by updating y in the QR

factorization (4.4) and in the LLL reduction described in (4.5). The pseudocode to

compute (4.2) using the LLL reduction is given in Algorithm 4–1.

Algorithm 4–1 The LLL reduction for MILSBR problems

function [R,Z] = LLL MILSBR(A,B)

1: compute QR factorization A = QA

[
R1
0

]

;

2: in the QR factorization, update B̄ = QT

AB =

[

B̄1

B̄2

]

nr

m−nr

;

3: [R3,Z] = LLL(B̄2); ⊲ see Algorithm 2–1
4: R2 = B̄1Z;

5: R =
[
R1 R2

R3

]

;

4.3 Sphere Decoding for MILSBR

In this section, we propose a method to solve the reduced MILSBR problem

(4.3) using sphere decoding algorithms.

116

Recall that to solve the reduced OILS problem (2.3), a sphere decoder enumer-

ates a series of integer points z in a hyper-ellipsoid (2.10). These integer points

enumerated by the sphere decoder are referred to as the candidate solutions. Then,

among all candidates, the decoder finds the one that minimizes the objective function

and returns it as the optimal solution. To find the solution of the MILSBR problem

(4.3), we can also use a sphere decoder to find a series of candidate solutions first,

and then choose the optimal solution among them. Below we show how to do it.

Suppose

[
x∗

z̄∗

]

is the optimal solution to (4.3). Assume that we have ρ ∈ R
+

such that for x = x∗ and z̄ = z̄∗, the following inequality holds

∥
∥
∥
∥

[
ȳ1

ȳ2

]

−
[
R1 R2

R3

] [
x

z̄

]∥
∥
∥
∥

2

2

< ρ2. (4.7)

The left hand side of (4.7) can be expanded to ‖ȳ2 −R3z̄‖22 + ‖ȳ1 −R2z̄ −R1x‖22.

Since x ∈ R
nr , there are an infinity number of points

[
x

z̄

]

that satisfy (4.7). However,

when z̄ is fixed to a specific value, e.g., z̄ = z̄′, the optimal value for x for minimizing

the left hand side of (4.7) is uniquely fixed, i.e., x = x∗
z̄′ where

x∗
z̄ = argmin

l≤x≤u

‖(ȳ1 −R2z̄)−R1x‖22 . (4.8)

For any vector z̄ ∈ Z
ni , define the following residual function

f(z̄) = ‖(ȳ1 −R2z̄)−R1x
∗
z̄‖2 . (4.9)

To find the optimal solution in (4.7), we actually only need to enumerate a finite

number of integer points z̄ that satisfy

‖ȳ2 −R3z̄‖22 + f 2(z̄) < ρ2. (4.10)

117

Because f 2(z̄) ≥ 0, the inequality (4.10) indicates

‖ȳ2 −R3z̄‖22 < ρ2. (4.11)

Note that (4.11) defines a hyper-ellipsoid, which has the same form as the OILS

search region (2.10). We can use sphere decoding algorithms to enumerate all integer

points that satisfy (4.11). For each integer point z̄′ enumerated, we compute the

corresponding real vector x′ = x∗
z̄′ as defined in (4.8). If (4.10) is satisfied with z̄ =

z̄′, we call such a pair (x′, z̄′) a candidate solution of (4.3). Among all the candidate

solutions, the pair (x′, z̄′) that minimizes the objective function

∥
∥
∥
∥
ȳ −R

[
x

z̄

]∥
∥
∥
∥

2

2

is the

optimal solution of (4.3).

In general, the solution x∗
z̄ in (4.8) cannot be found analytically. In this thesis,

we propose to compute x∗
z̄ numerically using an efficient algorithm given in [75]

which combines the gradient projection method (see [13]) and the standard active

set strategy for solving the convex constrained optimization problem (see [12] and

[81, Chapter 16]).

The shrink strategy can greatly improve the search efficiency of the sphere de-

coding for OILS problems. For the mixed ILS problem, we can also shrink the search

region in the process of sphere decoding. Assume we start sphere decoding using an

initial search radius ρ. Once a candidate integer solution z̄′ is found, i.e., (4.10) holds

with z̄ = z̄′, we then shrink the search radius by letting ρ2 = ‖ȳ2 −R3z̄
′‖22 + f 2(z̄′).

In this way, the sphere decoder only needs to enumerate part of the candidate so-

lutions in the initial search region (4.11). Different sphere decoding algorithms may

enumerate the points in (4.11) in different order. Some of the orders can make ρ

118

shrink faster than the others and thus can improve the efficiency of sphere decod-

ing. To get the most out of shrinking, we use Schnorr-Euchner’s sphere decoding

algorithm (see Section 2.2) to enumerate (4.11).

4.4 Computing an Initial Search Radius

In this section, we propose an algorithm to find an initial search radius ρ for

the search region (4.7). The smaller the ρ is, the more efficient the sphere decoding

would be. But ρ should not be too small so that the optimal solution is excluded

from the search region. To find a valid ρ, we first find a suboptimal solution to (4.3)

and then use the corresponding residual as the initial search radius ρ.

To find a suboptimal solution of (4.3), a straightforward way is to first use

Babai’s nearest plane algorithm (see Section 2.2) to approximately solve

min
z̄∈Zni

‖ȳ2 −R3z̄‖22 . (4.12)

Denote the resulting approximate solution as z̄B (which is also known as the Babai

point). Then, we compute the real vector x∗
z̄B defined by (4.8). Then we can initialize

ρ2 = ‖ȳ2 −R3z̄
B‖22 + f 2(z̄B), (4.13)

where f is defined in (4.9).

When computing the Babai point z̄B in the above process, we are actually trying

to minimize ‖ȳ2 −R3z̄‖2 alone without considering the interval constraints on x at

all. Thus, it is possible that we end up with a large f(z̄B), which will lead to a large

search radius ρ.

119

To improve the initial search radius, we propose a new method to compute an

approximate solution for z̄ in (4.3) with the box constraint on x being taken into

account. Assume the solution of (4.3) is

[
x∗

z̄∗

]

. In this method, we first compute a

vector x̃ as a rough approximation to x∗ and use x̃ to guide the computation of a

suboptimal z̄.

To compute x̃, we first interchange R:,1:nr
and R:,nr+1:n in R, and bring the

resulting matrix back to upper triangular using an orthogonal transformation QT.

We denote the resulting matrix as R̃. Then, we update ȳ to ỹ correspondingly using

the same orthogonal transformation QT. This process can be described as

R̃ = QT

[
R2 R1

R3

]

=

[
R̃1 R̃2

ni nr

R̃3

]
ni

nr

, ỹ = QTȳ =

[
ỹ1

ỹ2

]
ni

nr

. (4.14)

Then, the original reduced MILSBR problem (4.3) is equivalent to

min
z̄∈Zni

l≤x≤u

∥
∥
∥
∥

[
ỹ1

ỹ2

]

−
[
R̃1 R̃2

R̃3

] [
z̄

x

]∥
∥
∥
∥

2

2

, (4.15)

and

[
z̄∗

x∗

]

is the optimal solution to (4.15). Let

x̃ = argmin
l≤x≤u

∥
∥ỹ2 − R̃3x

∥
∥
2

2
. (4.16)

Like (4.8), x̃ in (4.16) can be solved numerically using the algorithm proposed in

[75]. If we fix x = x̃, (4.15) can be transformed to the following OILS problem

min
z̄∈Zni

∥
∥(ỹ1 − R̃2x̃)− R̃1z̄

∥
∥
2

2
. (4.17)

We use the Babai point z̃B as a suboptimal solution to (4.17). After z̃B is computed,

we recompute the approximation to the real vector x∗
z̃B . Finally, the initial search

120

radius is computed as follows:

ρ2 = ‖ȳ2 −R3z̃
B‖22 + f 2(z̃B). (4.18)

Obviously, z̃B is affected by the box constraint l ≤ x ≤ u. This new method

essentially uses the information of the box constraint on x to guide the computation

of the approximate solution z̃B. In contrast, z̄B, the Babai point of (4.12), is totally

independent of the box constraint. Because of the use of the information in the

box constraint, the new method is able to find a much smaller search radius than

the straightforward Babai based method does. We use Example 4–1, where ni =

nr = 1, to illustrate this. The effectiveness of the new method is also observed in

the numerical experiments, see Section 4.6. The pseudocode of the new algorithm is

given in Algorithm 4–2.

Algorithm 4–2 Find an initial search radius for a MILSBR problem

function ρ = initial radius(R, ȳ, l,u)

1: Compute R̃ and ỹ using (4.14);
2: Solve (4.16) for x̃;
3: Compute the Babai point z̃B for (4.17);
4: Compute x∗

z̃B by solving (4.8);

5: ρ =

∥
∥
∥
∥
ȳ −R

[
x∗
z̃B

z̃B

]∥
∥
∥
∥
2

;

Example 4–1. Here we use a 2-dimensional example to show that (4.18) is better

than (4.13) in finding a small ρ. Assume we have

R =

[
2.5 4

3

]

, ȳ =

[
0

5

]

, l = 4, u = 5.

121

And we want to find x ∈ [l, u] and z̄ ∈ Z to make
∥
∥ȳ −R

[
x z̄

]T ∥
∥
2

2
small. In the

first method, we first compute the Babai point z̄B = ⌊5/3⌉ = 2. Based on this Babai

point, we compute

x∗
z̄B = argmin

4≤x≤5
((0− 4z̄B)− 2.5x)2 = median (−8/2.5, 4, 5) = 4.

Using z̄B and x∗
z̄B, we obtain ρ2 =

∥
∥ȳ −R

[
4 2

]T ∥
∥
2

2
= 182 + 12 = 325.

If we use the new method, we first permute the columns of R to get R̃, i.e.,

R̃ =

[
5 2

1.5

]

ỹ =

[
3

−4

]

.

Then we compute x̃ = median (−4/1.5, 4, 5) = 4. Based on x̃, we compute the Babai

point z̃B = ⌊(3− 2x̃)/5⌉ = −1. And finally, we compute

x∗
z̃B = argmin

4≤x≤5
((0− 4z̃B)− 2.5x)2 = median (4/2.5, 4, 5) = 4.

Based on z̃B and x∗
z̃B
, we get ρ2 =

∥
∥ȳ −R

[
4 −1

]T ∥
∥
2

2
= 62 + 82 = 100.

Here we can see that because the computation of z̄B does not consider the interval

constraints on x, we end up with a large overall residual. Since the computation of

z̃B uses the information of the interval constraints on x, the new method gives us a

smaller initial search radius.

4.5 Improving the Efficiency of Sphere Decoding using Lower Bounds

In the sphere decoding process to find candidate solutions in the search region

(4.11), z̄ni
is enumerated over the integer values that satisfy the following inequality

(see (2.12a)):

(ȳn − rnnz̄ni
)2 < ρ2. (4.19)

122

Sphere decoding is essentially a depth-first search in a search tree (see Section 2.2),

and each value of z̄ni
satisfying (4.19) corresponds to a branch at the n-th level of

the search tree.

Recall that (4.7) is a necessary condition for the optimal solution to (4.3). Let

w =

[
x

z̄

]

be a vector satisfying (4.7). Define the following partitions:

ȳ =

[
ŷ

ȳn

]
n− 1

1
, R =

[
R̂ r̂

n−1 1

rnn

]
n− 1

1
, w =

[
ŵ

wn

]
n− 1

1
. (4.20)

Here wn is just z̄ni
. With (4.20), the inequality (4.7) can be rewritten as

∥
∥
∥
∥

[
ŷ

ȳn

]

−
[
R̂ r̂

rnn

] [
ŵ

wn

]∥
∥
∥
∥
< ρ2. (4.21)

Define function

gwn
(ŵ) =

∥
∥(ŷ − wnr̂)− R̂ŵ

∥
∥
2

2
. (4.22)

The inequality (4.21) can be rewritten as (ȳn − rnnwn)
2 + gwn

(ŵ) < ρ2. Since

gwn
(ŵ) ≥ 0, (4.19) follows immediately. However, if we can find a lower bound

¯
gwn

for (4.22), i.e.,

0 ≤
¯
gwn

≤ min
l≤x≤u

ẑ∈Zni−1

gwn

([
x

ẑ

])

, (4.23)

then from (4.21), we only need to enumerate values for wn that satisfy

(ȳn − rnnwn)
2 < ρ2 −

¯
gwn

. (4.24)

With a good lower bound
¯
gwn

, the number of different wn that satisfy (4.24) is

expected to be less than the number of those that satisfy (4.19). This means that we

could cut some of those branches in the search tree. In an n-dimensional enumeration

123

process of sphere decoding, for each value wn enumerated, an (n − 1)-dimensional

subprocess is recursively invoked to enumerate ŵ over the region gwn
(ŵ) ≤ ρ2−(ȳn−

rnnwn)
2. This lower-bound based branch-cutting method is also applied recursively

to the k-dimensional subproblems for k = n− 1, n− 2, . . . , nr to improve the overall

search efficiency. To reduce the overhead introduced by the computation of the lower

bounds, for a given value of wn in the enumeration, we check the inequality (4.19)

first. If (4.19) is not satisfied, then we do not need to compute the lower bound

¯
gwn

. The above process of using lower bounds in sphere decoding in described in

Algorithm 4–3.

In (4.23), the right hand side of the second inequality is actually an (n − 1)-

dimensional MILSBR problem. Thus
¯
gwn

is a lower bound on the residual of an

MILSBR problem. Some algorithms in literature that compute lower bounds of the

residuals of OILS and BILS problems can be adopted to compute
¯
gwn

. In Subsec-

tions 4.5.1 and 4.5.2, we give two algorithms to compute lower bounds based on the

algorithms in the literature and in Subsection 4.5.3 we propose a new algorithm that

can find a tighter lower bound.

4.5.1 The vector norm based method to find a lower bound

In [50], a method is proposed to find lower bounds for binary quadratic opti-

mization problems based on the minimal singular value of R. This method is later

improved and used in solving the ILS and BILS problems, see, e.g., [97] and [67]. In

this subsection, we give a method to obtain
¯
gwn

based on the same idea.

124

Algorithm 4–3 Sphere decoding for solving MILSBR problems

function [x∗, z̄∗] = sphere decoding MILSBR(R, ȳ, l,u, ρ)

1: Initialize ŷ(n) = ȳ, sn = 0, k = n and k0 = n;
2: while k ≤ n do
3: if k > nr then
4: if k ≤ k0 then
5: ck = ŷ

(k)
k /rkk, wk = ⌊ck⌉, dk = sign(ck − wk);

6: else
7: wk = wk + dk, dk = −dk − sign(dk); ⊲ Shenorr-Euchner’s search order
8: end if
9: sk−1 = sk + r2kk(wk − ck)

2; ⊲ partial residual
10: if sk−1 < ρ2 then
11: k1 = k − 1;
12: ŷ(k1) = ŷ

(k)
1:k1

− r1:k1,kwk;

13: find
¯
gwk:n

as a lower bound of
∥
∥ŷ(k1) − R̂1:k1,1:k1w1:k1

∥
∥
2

2
; ⊲ see later

14: if sk1 +
¯
gwk:n

< ρ2 then
15: k0 = k, k = k − 1; ⊲ move down in the search tree
16: continue
17: end if
18: end if
19: k0 = k, k = k + 1; ⊲ move up in the search tree
20: else
21: solve x′ = argminu≤x≤l

∥
∥ŷ(nr) −R1:nn,1:nr

x
∥
∥
2

2
;

22: if snr
+
∥
∥ŷ(nr) −R1:nn,1:nr

x′
∥
∥
2

2
< ρ2 then

23: x∗ = x′, z̄∗ = wnr+1:n; ⊲ found a solution candidate

24: ρ2 = snr
+
∥
∥ŷ(nr) −R1:nr,1:nr

x′
∥
∥
2

2
; ⊲ shrink the search radius

25: end if
26: k0 = k, k = k + 1; ⊲ move up in the search tree
27: end if
28: end while

Define w̌(n−1) = R̂
−1
(ŷ − wnr̂). For simplicity, we denote w̌ = w̌(n−1). From

(4.22), gwn
(ŵ) can be rewritten as

gwn
(ŵ) =

∥
∥R̂
(
ŵ − w̌

)∥
∥
2

2
.

125

Let d = R̂
(
ŵ− w̌

)
and F̂ = R̂

−T

with column partition F̂ =
[

f̂ 1 f̂ 2 . . . f̂n−1

]

.

Then we have

F̂
T

d = ŵ − w̌. (4.25)

Applying the Cauchy-Schwartz inequality to (4.25) gives

∥
∥F̂
∥
∥
2

∥
∥d
∥
∥
2
≥
∥
∥F̂

T

d
∥
∥
2
=
∥
∥ŵ − w̌

∥
∥
2
.

Note that
∥
∥
∥F̂

∥
∥
∥
2
= σ−1

min(R̂), where σmin(R̂) is the minimal singular value of R̂. Thus

gwn
(ŵ) = ‖d‖22 ≥

‖ŵ − w̌‖22
∥
∥F̂
∥
∥
2

2

= σ2
min(R̂) ‖ŵ − w̌‖22 . (4.26)

Recall that ŵi = xi when i ≤ nr, and ŵi = z̄i−nr
otherwise. Thus we have:

li ≤ ŵi ≤ ui, i = 1, 2, . . . , nr,

ŵi ∈ Z, i = nr + 1, nr + 2, . . . , n− 1.

(4.27)

Define the (n− 1)-dimensional vector ŵ′ as the closest ŵ to w̌, i.e.,

ŵ′
i =

{
median(w̌i, li, ui) if i ≤ nr,
⌊
w̌i

⌉
otherwise.

(4.28)

This gives us the following lower bound,

¯
gwn

= σ2
min(R̂)min

ŵ
‖ŵ − w̌‖22

= σ2
min(R̂)

n−1∑

i=1

min
ŵi

(ŵi − w̌i)
2
2

= σ2
min(R̂)

n−1∑

i=1

(ŵ′
i − w̌i)

2
2.

(4.29)

126

Now we discuss how to compute
¯
gwn

in an efficient way. Computing
¯
gwn

requires

w̌ = w̌(n−1) = R̂
−1
(ŷ − wnr̂). Assume that we have computed w̌(n) = R−1ȳ, which

is the n-dimensional counter part of w̌(n−1). From partition (4.20), we have

ŷ =
[

R̂ r̂
]
[

w̌
(n)
1:n−1

w̌
(n)
n

]

= R̂w̌
(n)
1:n−1 + r̂w̌(n)

n .

Define ĥ = R̂
−1
r̂. We have

w̌(n−1) = R̂
−1
ŷ − wnR̂

−1
r̂

= w̌
(n)
1:n−1 + (w̌(n)

n − wn)ĥ.

(4.30)

Since ĥ is constant in the enumeration process of sphere decoding and can be

precomputed, (4.30) provides us an efficient way to compute w̌ in O(n). With

ĥ(k) = R−1
1:k,1:kr1:k,k+1 precomputed, we can recursively compute w̌(k) for the k-

dimensional sphere decoding subprocess at a cost of O(k). With (4.28), (4.30) and

(4.29), the lower bound
¯
gwn

given in (4.29) can be computed. Noting that σmin(R̂)

is also constant through out the whole process of sphere decoding and it can be

precomputed, the complexity of computing
¯
gwn

for each value of wn is O(n) (here

we do not include the cost of any precomputations because this cost is constant to

the number of values of wn in the enumeration).

To understand this method from geometric perspective, let us assume we have

an hyper-ellipsoid gwn
(ŵ) =

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
< ρ̂2. The inequality (4.26) indicates

that if ŵ is in the above hyper-ellipsoid, then it is also in the following hyper-sphere

σ2
min(R̂) ‖ŵ − w̌‖22 < ρ̂2. (4.31)

127

This means that the hyper-sphere (4.31) covers the hyper-ellipsoid gwn
(ŵ) < ρ̂2. We

also know that in the MILSBR problem, the entries of ŵ are subject to interval

constraints or integer constraints, see (4.27). The norm-wise lower bound algorithm

computes
¯
gwn

as the largest value for ρ̂ such that the hyper-sphere (4.31) contains no

valid ŵ that satisfies (4.27). In this way, it ensures that gwn
(ŵ) ≥

¯
gwn

for any ŵ that

satisfies (4.27). To illustrate this geometry relationship of the hyper-ellipsoid, the

hyper-sphere and the valid values for ŵ, we give two examples in Figure 4–1 where

ŵ are 2-dimensional vectors which are subject to the integer constraint ŵ ∈ Z
2 or

the box constraint l ≤ ŵ ≤ u respectively.

b

b b

b

r

(w̌1, w̌2)r ŵ1

ŵ2

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
<
¯
gw3

(a) Integer constraint

r

ŵ2

ŵ1
(w̌1, w̌2)

r

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
<
¯
gw3

l ≤ ŵ ≤ u

(b) Box constraint

Figure 4–1: Norm-wise lower bound

It is easy to see that the lower-bound computed using the above method is

tight when the shape of the hyper-ellipsoid gwn
(ŵ) < ρ̂2 is close to the hyper-sphere

(4.31), i.e., σmin(R̂)/σmax(R̂) is close to 1. To improve the lower bound, [50] propose

to precondition R̂ before computing the lower bound. Let C ∈ R
n×n be a diagonal

128

matrix. Multiplying both sides of (4.25) by C gives us

F̃
T

d = C(ŵ − w̌),

where F̃ = F̂C. Following the same deduction as (4.26), we have:

gwn
(ŵ) = ‖d‖22 ≥

‖C(ŵ − w̌)‖22
∥
∥F̃

T∥
∥
2

2

=

∑n−1
i=1 c2ii (ŵi − w̌i)

2
2

∥
∥F̃
∥
∥
2

2

. (4.32)

This inequality gives us the following lower bound:

¯
gwn,C =

∥
∥F̃
∥
∥
−2

2

n−1∑

i=1

c2ii (ŵ
′
i − w̌i)

2
2. (4.33)

It is easy to see that (4.29) is a special case of (4.33) where C = I. We can adjust

the value of the above lower bound by choosing a different matrix C. In, e.g.,

[50, 66], it is suggested to solve a semi-definite programming (SDP) problem to find

C. Other methods of choosing C can be found in, e.g., [97, 21, 22]. Here we choose

cii =
∥
∥f̂ i

∥
∥
−1

2
, where f̂ i is the i-th column of F̂ for i = 1, 2, . . . , n − 1, as [21] does.

Then (4.33) becomes

¯
gwn

=
∥
∥F̃
∥
∥
−2

2

n−1∑

i=1

(ŵ′
i − w̌i)

2
2

∥
∥f̂ i

∥
∥
2

2

, (4.34)

where matrix F̃ has unit column vectors. Computing C in the above way requires

much less computations than the SDP based methods, and can be done prior to

the enumeration process of sphere decoding. This meets our need to compute the

lower bounds efficiently. The lower bound computed by (4.34) is optimal if matrix F̂

has orthogonal column vectors. To see this, we note that F̃ becomes an orthogonal

matrix in this case, and thus the inequality in (4.32) takes only the equality sign. This

means that the lower bound
¯
gwn

computed by (4.34) is reachable, i.e.,
¯
gwn

= gwn
(ŵ′).

129

4.5.2 The component-wise method to find a lower bound

In this subsection, we show how to compute the lower bound
¯
gwn

based on a

method proposed in [39]. The original method in [39] is proposed to compute lower

bounds for solving the BILS problems. The same method is also used in [21] to

compute lower bounds for convex constrained quadratic integer programming.

Equation (4.25) indicates that

∣
∣f̂

T

i d
∣
∣ =

∣
∣eT

i F̂
T

d
∣
∣ =

∣
∣eT

i (ŵ − w̌)
∣
∣ =

∣
∣ŵi − w̌i

∣
∣. (4.35)

From (4.35), by the Cauchy-Schwartz inequality we have

∥
∥f̂ i

∥
∥
2

∥
∥d
∥
∥
2
≥
∣
∣f̂

T

i d
∣
∣ =

∣
∣ŵi − w̌i

∣
∣, i = 1, 2 . . . , n− 1. (4.36)

Recall that the above inequality is essentially what we used in designing the ISF-1

to derive the covering box that gives the boundaries of ŵi for i = 1, 2, . . . , n, where

‖d‖2 is upper bounded, i.e., ‖d‖22 < ρ2, see Subsection 3.3.1. Now, we will reversely

use it to derive a lower bound on ‖d‖2, given the constraint on ŵi. From (4.36), we

have

gwn
(ŵ) = ‖d‖22 ≥ max

i∈{1,...,n−1}

(ŵi − w̌i)
2

∥
∥f̂ i

∥
∥
2

2

.

Since ŵi is either integer constrained or interval constrained, this inequality gives us

the following formula to compute the lower bound:

¯
gwn

= max
i∈{1,...,n−1}

minŵi
(ŵi − w̌i)

2

∥
∥f̂ i

∥
∥
2

2

= max
i∈{1,...,n−1}

(ŵ′
i − w̌i)

2

∥
∥f̂ i

∥
∥
2

2

, (4.37)

where ŵ′
i is defined in (4.28). Vector w̌n−1 can be computed using (4.37). With

∥
∥f̂ i

∥
∥
2

2
precomputed, the lower bound

¯
gwn

can be computed in O(n).

130

To understand the component-wise method geometrically, we still consider a

(n−1)-dimensional hyper-ellipsoid gwn
(ŵ) < ρ̂2. Then inequalities in (4.36) indicate

that for any ŵ in the above hyper-ellipsoid, we have,

(ŵi − w̌i)
2

∥
∥f̂ i

∥
∥
2

2

< ρ̂2, i = 1, 2, . . . n− 1. (4.38)

In geometry, (4.38) defines an (n−1)-dimensional box that covers the hyper-ellipsoid

gwn
(ŵ) < ρ̂2. The component-wise method then computes

¯
gwn

as the largest value for

ρ̂ such that the box (4.38) contains no valid ŵ that satisfies (4.27). This guarantees

that gwn
(ŵ) ≥

¯
gwn

for any ŵ that satisfies (4.27). In Figure 4–2, we use the same

two examples we gave in Figure 4–1 to illustrate how
¯
gwn

is computed based on the

box (4.38).

b

b b

b

r

(w̌1, w̌2)r ŵ1

ŵ2

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
<
¯
gw3

(a) Integer constraint

r

ŵ2

ŵ1
(w̌1, w̌2)

r

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
<
¯
gw3

l ≤ ŵ ≤ u

(b) Box constraint

Figure 4–2: Component-wise lower bound

131

4.5.3 The second-order component-wise method to find a lower bound

Recall that the norm-wise method introduced in Section 4.5.1 takes vector norms

of each sides of (4.25), and the component-wise method introduced in Section 4.5.2

considers the components on each side of (4.25) one by one. In this subsection, we

propose a new method to compute
¯
gwn

which considers two components on each side

of (4.25) at a time. We call this method the second-order component-wise method.

As we have seen that the component-wise method is to reversely apply the ISF-1

algorithm, the second-order component-wise method is to reversely apply the ISF-2

algorithm introduced in Section 3.3.2.

For two different integer indices i, j ≤ nr, multiplying both sides of (4.25) by
[
ei ej

]T
gives us

[

f̂ i f̂ j

]T

d =

[
ŵi − w̌i

ŵj − w̌j

]

. (4.39)

Let the QR factorization of
[
f i f j

]
be

[

f̂ i f̂ j

]

=
[

Q
(ij)
1 Q

(ij)
2

] [
S(ij)

0

]

,

where Q(ij) =
[

2

Q
(ij)
1

n−2

Q
(ij)
2

]

∈ R
n×n is orthogonal, and S(ij) =

[

s
(ij)
11 s

(ij)
12

s
(ij)
22

]

∈

R
2×2. Without loss of generality, we assume s

(ij)
11 , s

(ij)
22 > 0. Let T = (tij)nr×nr

=
(
F̂ :,1:nr

)TF̂ :,1:nr
. We have (see (3.36))

s
(ij)
11 =

∥
∥f̂ i

∥
∥
2
=

√
tii, (4.40a)

s
(ij)
12 = f̂

T

i f̂ i/
∥
∥f̂ i

∥
∥
2
= tij/

√
tii, (4.40b)

s
(ij)
22 =

√
∥
∥f̂ j

∥
∥
2

2
−
(

f̂
T

i f̂ j/
∥
∥f̂ i

∥
∥
2

)2

=
√

tjj − t2ij/tii. (4.40c)

132

Define d̃ =
[
d̃1 d̃2

]T
= Q

(ij)T
1 d. It can be seen that

[

f̂ i f̂ j

]T

d =
[

f̂ i f̂ j

]T

Q(ij)Q(ij)Td =

[
S(ij)

0

]T
[

Q
(ij)T
1 d

Q
(ij)T
2 d

]

= S(ij)Td̃.

Replacing the left hand side of (4.39) with S(ij)Td̃, it can be rewritten as

d̃1 =
(
ŵi − w̌i

)
/s

(ij)
11 ,

d̃2 =
(
ŵj − w̌j − d̃1s

(ij)
12

)
/s

(ij)
22 .

(4.41)

Since li ≤ ŵi ≤ ui and lj ≤ ŵj ≤ uj for i, j ≤ nr, from (4.41), we have

li − w̌i√
tii

≤ d̃1 ≤
ui − w̌i√

tii
, (4.42a)

lj − w̌j − d̃1tij/
√
tii

√

tjj − t2ij/tii
≤ d̃2 ≤

uj − w̌j − d̃1tij/
√
tii

√

tjj − t2ij/tii
. (4.42b)

Variable tij can be represented as the difference of two non-negative numbers t+ij =

max (tij, 0) and t−ij = max (−tij, 0), i.e., tij = t+ij − t−ij. From (4.42a), we have

(lit
+
ij − uit

−
ij − tijw̌i)/tii ≤ d̃1tij/

√
tii ≤ (uit

+
ij − lit

−
ij − tijw̌i)/tii. (4.43)

Define

αij = tij/tii, βij = tjj − t2ij/tii, w̃ij = w̌j − αijw̌i,

l̃ij = lj − (uit
+
ij − lit

−
ij)/tii, ũij = ũj − (lit

+
ij − uit

−
ij)/tii.

From (4.42b) and (4.43), we have

l̃ij − w̃ij
√
βij

≤ d̃2 ≤
ũj − w̃ij
√
βij

. (4.44)

133

Define

s̄i =

(

median

(
li − w̌i√

tii
,
ui − w̌i√

tii
, 0

))2

=

(
median (w̌i, li, ui)− w̌i

)2

tii
, (4.45a)

¯̄sij=

(

median

(

l̃ij − w̃ij
√

βij

,
ũij − w̃ij
√
βij

, 0

))2

=

(

median
(
w̃ij, l̃ij , ũij

)
− w̃ij

)2

βij

. (4.45b)

From (4.42a) and (4.44), we can see that s̄i and ¯̄sij are lower bounds on d̃
2

1 and d̃
2

2

respectively. It immediately follows that

‖d‖22 ≥
∥
∥
(
Q

(ij)
1

)T
d
∥
∥
2

2
∥
∥Q

(ij)
1

∥
∥
2

2

=

∥
∥d̃
∥
∥
2

2

1
= d̃

2

1 + d̃
2

2 ≥ s̄i + ¯̄sij, i, j ∈ {1, 2, . . . , nr}, i 6= j

Thus, we can get the following lower bound:

gwn
(ŵ) = ‖d‖22 ≥ max

i,j∈{1,2,...,nr}
i 6=j

s̄i + ¯̄sij.

When αij , βij, l̃ij, ũij are precomputed for all i, j ∈ {1, 2, . . . , nr} and i 6= j, the

cost of computing the above lower bound is O(n2
r) flops. In the above mentioned

GPS positioning application, nr = 3 is the dimension of the position vector, and ni

is typically around 20, when dual frequencies of GPS signals are used.

From (4.45a), (4.28) and (4.40a), we actually have s̄i =
(
ŵ′

i− w̌i

)2
/
∥
∥f̂ i

∥
∥
2

2
, which

is what we used to compute the component-wise lower bound in (4.37). Thus, we

can extend the definition of s̄i to include i ∈ {nr + 1, nr + 2, . . . , n− 1} by using this

formula and we always have gwn
(ŵ) ≥ s̄i for i ∈ {1, 2, . . . , n− 1}. However, ¯̄sij is

only defined for the real part of the MILSBR problem, i.e., i, j ∈ {1, 2, . . . , nr} (note

that it uses the box constraints on the real variables). To fully use the information

in the integer constraint on z̄ and the box constraint on x, we take the following

134

lower bound:

¯
gwn

= max



 max
i∈{nr+1,...,n−1}

s̄i , max
i,j∈{1,...,nr}

i 6=j

s̄i + ¯̄sij



 . (4.46)

This lower bound can be computed in O(n2
r + ni) flops. We call this method the

second-order component-wise method of computing lower bound.

To understand the second-order component-wise method in geometrical terms,

let us assume that a vector ŵ is in the hyper-ellipsoid ‖R(ŵ − w̌)‖22 < ρ̂2. Recall

that in the component-wise method introduced in Section 4.5.2, we compute the

range of each component of ŵ separately and get a covering box (4.38) of the hyper-

ellipsoid. In the second-order component-wise method however, we also consider the

effect of the value of one component on the range of another component. These

inter-components effects are reflected in the computation of ¯̄sij. As an example, the

dashed red parallelogram in Figure 4–3 shows how the value of x2 can affect the

range of x1 (we actually only consider the “linear effect” in our method). Since the

second-order component-wise method also considers s̄i, it actually finds a covering

polyhedron of the hyper-ellipsoid (e.g., the shadowed area in Figure 4–3). If we let

¯
gwn

be the largest value of ρ̂2 such that this polyhedron contains no valid ŵ that

satisfies (4.27), then we can ensure that gwn
(ŵ) ≥

¯
gwn

for any valid ŵ. The setup

of the example in Figure 4–3 is exactly the same as in Figure 4–1b and Figure 4–2b.

However, with the second-order component-wise method, we are able to find a much

tighter lower bound.

We can combine the second-order component-wise method with the precondi-

tioned norm-wise method (4.34). Note that the right hand side of (4.34) is actually

135

r

ŵ2

ŵ1
(w̌1, w̌2)r

∥
∥R̂(ŵ − w̌)

∥
∥
2

2
<
¯
gw3

l ≤ ŵ ≤ u

Figure 4–3: Second-order component-wise lower bound

∥
∥F̃
∥
∥
−2

2

∑n−1
i=1 s̄i. Combining (4.34) and (4.46) gives us

¯
gwn

= max




∥
∥F̃
∥
∥
−2

2

n−1∑

i=1

s̄i , max
i∈{nr+1,...,n−1}

s̄i , max
i,j∈{1,...,nr}

i 6=j

s̄i + ¯̄sij



 . (4.47)

We refer to this method as the combined method of computing lower bound. The-

oretically, (4.47) enables us to cut more branches than (4.46) does. However, as we

see form the numerical tests results, the overhead introduced by (4.47) offsets the

benefits. When compared with (4.46), and the overall efficiency of sphere decoding

is usually not improved when we use (4.47), see Section (4.6).

4.6 Numerical Experiments

In this section, we use numerical experiments to show the effectiveness of the

proposed algorithms in solving MILSBR problems (4.1). The algorithms to be tested

in this section are implemented in C using the Matlab executable (MEX) library. In

the tests, we compare our solvers with the IBM ILOG CPLEX Optimization Studio

136

(version 12.6) which is probably the most popular commercial optimization software

package 1 . All tests were performed on a PC with 3.30GHz quadcore CPU and 4GB

memory running Ubuntu 12.04 (Linux 3.2.0).

In the numerical experiments, we construct the data according to the following

linear model

y =
[
A B

]
[
x

z

]

+ v, x ∈ R
nr , z ∈ Z

ni , l ≤ x ≤ u, (4.48)

where v ∈ R
m is the Gaussian noise vector following the distribution N (0, σ2I).

To generate instances of (4.48), we let l = randn(nr, 1), where randn(m,n) is the

Matlab function to generate an m× n matrix whose entries are drawn from the

standard normal distribution, u = l+d1n, where d ∈ R
+ is the width of the interval

constraints, x = (xi)nr
where xi ∈ R follows the i.i.d. uniform distribution over the

range [li, ui], z = round(10 ∗ randn(ni, 1)), and v = σ ∗ randn(n, 1). Matrices A and

B are generated in the following ways:

Case 1: A = randn(m,nr), B = randn(m,ni). Matrices A, B generated in this

way are generally well conditioned.

Case 2: A = rand(m,nr), B = rand(m,ni), where rand(m,n) is a Matlab function

to generate an m× n matrix whose entries follow the i.i.d. uniform distribution

1 CPLEX solves the MILSBR problems based on the branch and bound methods
[58] and incorporates many advanced optimization algorithms to improve the solving
efficiency.

137

on the interval (0, 1). Matrices A, B generated in this way are generally more

ill conditioned than the ones generated in Case 1.

In our simulations, we explicitly specify n and nr, and take m = n and ni = n− nr.

We compared CPLEX and five different sphere decoders in the tests. The sphere

decoders are all based on Shenorr-Euchner’s sphere decoding strategy but use differ-

ent methods to find lower bounds as shown below

none: using no lower bound, i.e.,
¯
gwn

= 0;

norm: the improved norm-wise method (4.33);

component: the regular component-wise method (4.37);

component-2: the second-order component-wise method (4.46);

combined: the combined method (4.47).

In the numerical tests, we always use LLL to reduce the original MILSRB problems

first (see Section 4.2). When the sphere decoders are used, we use Algorithm 4–2 to

find an initial search radius ρ.

Figure 4–4, 4–5 and 4–6 show the average runtime over 200 runs (including the

time for reduction and finding an initial ρ, when applicable) of the sphere decoders

and CPLEX for Case 1. We can see that, the sphere decoder uses no lower bound

runs faster than CPLEX only when the dimension n is small and the standard devia-

tion σ of the noise is small. However, when lower bounds are used in sphere decoding,

the sphere decoders become much more efficient and outperform CPLEX in all of

the tests in Case 1. From the figures, we can see that the sphere decoders based on

the component-wise lower bounds or the second-order component-wise lower bounds

138

are usually faster than the ones based on the norm-wise lower bounds or the com-

bined lower bounds. This is mostly because the norm-wise method and the combined

method need to precompute ni matrix norms
∥
∥F̃
∥
∥
2
(see (4.34) and (4.47)) for sub-

problems of dimension k for k = n− 1, n− 2, . . . , nr. Computing the matrices norms

introduces a big overhead. However, the sphere decoder based on the combined lower

bounds can outperform the one based on the component-wise lower bounds when the

noise is large. This is because the combined method can find tighter lower bounds

than the component-wise method does, and thus can cut more branches from the

search tree. Overall, the sphere decoder based on the second-order component-wise

lower bounds gives the best performance.

10 12 14 16 18 20 22 24 26 28 30
10−4

10−3

10−2

10−1

100

101

102

dimension n

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX
none

Figure 4–4: Case 1, nr = 3, σ = 0.75, d = 0.25

139

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10−3

10−2

10−1

100

101

noise σ

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX
none

Figure 4–5: Case 1, n = 20, nr = 3, d = 0.25

Figure 4–7, 4–8 and 4–9 show the average runtime over 200 runs of the sphere

decoders and CPLEX in Case 2. In this case, we did not test the sphere decoder

which uses no lower bound because this decoder is extremely inefficient in Case 2.

In the figures, we can still see that the sphere decoder based on the second-order

component-wise lower bounds is more efficient than the other sphere decoders and

CPLEX. And the sphere decoder based on the combined lower bounds is faster than

the method based on the component-wise lower bounds, when the noise is not too

small. In Case 2, the sphere decoder based on the combined method can be much

faster than the decoder based on the component-wise and norm-wise lower bounds.

In both Case 1 and Case 2, we saw in our numerical tests that even though the

combined method can cut more branches in the search tree than the second-order

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

101

edge length d

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX
none

Figure 4–6: Case 1, n = 20, nr = 3, σ = 0.75

component-wise method does, the former is usually slower in practice because of the

overhead it introduces. Nevertheless, they are both much faster than CPLEX.

As we stated above, we always use Algorithm 4–2 to compute an initial radius

ρ for the sphere decoders. Next, we show how Algorithm 4–2 helps in improving the

efficiency of the sphere decoders. Specifically, we focus on the sphere decoder that

uses the second-order component-wise method to compute the lower bounds.

In Figure 4–10a, we show the initial search radius found by the straightforward

Babai’s algorithm (marked as “Babai” in the figure) and by Algorithm 4–2 (marked

as “New” in the figure). We can see that, in both Case 1 and Case 2, Algorithm

4–2 can find a much smaller initial search radius than the straightforward Babai’s

algorithms does. This is because that Algorithm 4–2 is able to use the information of

141

10 12 14 16 18 20 22 24 26 28 30
10−4

10−3

10−2

10−1

100

101

dimension n

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX

Figure 4–7: Case 2, nr = 3, σ = 0.5, d = 1

the box constraint. We know that when computing the lower bounds in the process

of sphere decoding, especially the second-order component-wise lower bounds, the

information in the box constraint is also used. Next, we show that even when the

lower bounds are used, Algorithm 4–2 is still useful in improving the efficiency of

sphere decoding. In Figure 4–10b, we show the runtime of the sphere decoder (using

the second-order component-wise lower bounds) where the initial search radius is

computed by the straightforward Babai’s algorithm or by Algorithm 4–2. We can

see that the solving time is decreased when Algorithm 4–2 is used to compute the

initial search radius.

142

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

101

noise σ

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX

Figure 4–8: Case 2, n = 20, nr = 3, d = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−3

10−2

10−1

100

edge length d

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s norm

component
component-2
combined
CPLEX

Figure 4–9: Case 2, n = 20, nr = 3, σ = 0.5

143

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
100

101

102

103

104

dimension n

av
er
ag
e
ρ
2
ov
er

20
0
ru
n
s

Case 1: Babai
Case 1: New
Case 2: Babai
Case 2: New

(a) Initial search radius ρ

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
10−4

10−3

10−2

10−1

100

101

102

dimension n

av
er
ag
e
ru
n
ti
m
e
(s
)
ov
er

20
0
ru
n
s Case 1: Babai

Case 1: New
Case 2: Babai
Case 2: New

(b) Effects of initial ρ on sphere decoding using component-2 lower bounds

Figure 4–10: nr = 3, σ = 0.5, d = 1

144

CHAPTER 5
Conclusion and Future Work

This thesis covered a range of theoretical results and algorithms for various

ILS problems. In Chapter 1, we first gave an extensive background introduction

to the ILS problems and their applications in practice. Then we introduced the

concept of lattice reduction, which is commonly applied in the solving process of ILS

problems. To give a state-of-art overview, various lattice reductions and approaches

for solving ILS problems were reviewed and their advantages and disadvantages were

commented.

In Chapter 2, we looked at the cost of the sphere decoding approach for solving

the OILS problems. In this chapter, we discussed how the cost of the sphere decoding

algorithms change in the process of the LLL reduction [60] and showed that this cost

is reduced after the LLL reduction. We also discussed the effect of the parameter

δ of the LLL reduction on the efficiency of sphere decoding. Examples and results

of numerical tests were given to show that though increasing the value of δ gener-

ally improves the efficiency of sphere decoding for solving the OILS problems, this

conclusion does not always hold.

There are some interesting questions we want to answer in future research. First,

we assumed that the model matrix is deterministic. If the matrix is random following

some probability distribution, what is the expected cost of sphere decoding? And how

does the LLL reduction affect it? Second, the KZ reduction can usually make sphere

145

decoding faster than LLL does. Can some implementations of the KZ reduction

always decrease the cost of sphere decoding, and decrease it more than the LLL

reduction algorithm does?

In Chapter 3, the BILS problems were studied. First, we introduced the concept

of inactive set of constraints for the BILS problems. Based on this concept, we

showed that IGTs can be applied in the reduction of the BILS problems as long

as certain conditions are satisfied, contrary to the common belief. After that, we

proposed three algorithms to compute an initial search radius ρ for a given BILS

problem, and two algorithms, ISF-1 and ISF-2, to find an inactive set based on the

value of ρ. Based on these algorithms, we proposed the RLLL reduction algorithm

which incorporates IGTs and applies the restricted LLL lattice reduction to the

BILS problems. Numerical experiments were given to show that the RLLL based

reductions can significantly improve the efficiency of the sphere decoding approach

for solving BILS problems and the quality of some approximate solutions.

Here we want to emphasize that the RLLL algorithm is only one implementation

of the QRZ factorization. In the reduction of the BILS problem, in additional to the

RLLL algorithm, we also used the AIP reduction algorithm separately. It would be

more ideal if the two reduction algorithms could be combined more naturally. More

work is required to get a deeper understanding on how the factor Z in the QRZ

factorization affects the efficiency of sphere decoding of the BILS problems. With a

deeper understanding, more effective reduction algorithms could be designed for the

BILS problems.

146

In Chapter 4, we studied the MILSBR problems. We proposed to use the LLL

reduction and the sphere decoding approach to solve the MILSBR problems. To

improve the efficiency of sphere decoding, we then proposed a method to find an

initial search radius for a given MILSBR problem using the information in the box

constraint. Compared to the straightforward Babai’s nearest plane algorithm, this

new method is able to find a much smaller initial search radius. It is known that the

efficiency of sphere decoding can be improved using the lower bounds of the search

radius of the sub sphere decoding processes. We proposed three efficient methods

to compute lower bounds for the sphere decoding process: the norm-wise method,

the component-wise method and the second-order component-wise method. The

first two of them are adopted from the methods that compute the lower bounds

of search radius for OILS and BILS problems and the third method is specifically

for BILSBR. As shown in the numerical experiments, these methods improve the

efficiency of sphere decoding significantly. When using the second-order component

wise method to compute the lower bounds, the sphere decoding method is much

faster than CPLEX.

Recall that when solving the OILS problems, Schnorr-Euchner’s sphere decoding

algorithm enumerates z̄k in a specific order, trying to find good solution candidates

early. However, this order is not the best for solving the MILSBR problems because

it does not take the box constraint into account. This can lead to bad solution

candidates being found early in the enumeration and result in poor efficiency for

sphere decoding. It would be an interesting topic to find out if we can use the

147

information in the box constraint to guide the enumeration order of z̄k and improve

the efficiency of sphere decoding.

One practical application of the MILSBR problems is the GPS positioning where

the position of the receiver is in a known range. In the future, we would like to

apply the ILS approach to these GPS positioning problems and compare it with the

Bayesian approach given in [111].

148

References

[1] W. Abediseid. Efficient Lattice Decoders for the Linear Gaussian Vector Chan-
nel: Performance & Complexity Analysis. PhD thesis, Department of Electrical
and Computer Engineering, University of Waterloo, 2011.

[2] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.
IEEE Transactions on Information Theory, 48(8):2201–2214, 2002.

[3] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized re-
ductions. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 10–19, 1998.

[4] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Proceedings of the 29th Annual ACM Symposium on The-
ory of Computing, pages 284–293, 1997.

[5] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 601–610, 2001.

[6] M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and
the closest lattice vector problem. In Proceedings of the 17th IEEE Annual
Conference on Computational Complexity, pages 41–45, 2002.

[7] M. Al Borno, X.-W. Chang, and X. Xie. On “decorrelation” in solving in-
teger least-squares problems for ambiguity determination. Survey Review,
46(334):37–49, 2014.

[8] M. F. Anjos, X.-W. Chang, and W.-Y. Ku. Lattice preconditioning for the
real relaxation branch-and-bound approach for integer least squares problems.
Journal of Global Optimization, 59(1):227–242, 2014.

[9] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. In Proceedings of

149

150

34th Annual Symposium on Foundations of Computer Science, pages 724–733,
1993.

[10] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

[11] A. Banihashemi and A. Khandani. On the complexity of decoding lattices
using the Korkin-Zolotarev reduced basis. IEEE Transactions on Information
Theory, 44(1):162–171, 1998.

[12] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method.
IEEE Transactions on Automatic Control, 21(2):174–184, 1976.

[13] D. P. Bertsekas. Projected Newton methods for optimization problems with
simple constraints. SIAM Journal on Control and Optimization, 20(2):221–246,
1982.

[14] D. Bienstock. Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140, 1996.

[15] S. C. Billups, S. P. Dirkse, and M. C. Ferris. A comparison of large scale mixed
complementarity problem solvers. Computational Optimization and Applica-
tions, 7(1):3–25, 1997.

[16] G. Blewitt. Basics of the GPS technique: observation equations. Geodetic
Applications of GPS, pages 10–54, 1997.

[17] J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors
and successive minima. In L. Arge, C. Cachin, T. Jurdziński, and A. Tarlecki,
editors, Automata, Languages and Programming, volume 4596 of Lecture Notes
in Computer Science, pages 65–77. Springer Berlin Heidelberg, 2007.

[18] J. Boutros, N. Gresset, L. Brunel, and M. Fossorier. Soft-input soft-output
lattice sphere decoder for linear channels. In Proceedings of the IEEE Global
Telecommunications Conference, pages 1583–1587, 2003.

[19] S. Breen. Integer least squares search and reduction strategies. Master’s thesis,
McGill University, 2011.

[20] S. Breen and X.-W. Chang. Column reordering for box-constrained integer
least squares problems. In Proceedings of the IEEE Global Telecommunications
Conference, number of pages 6, 2011.

151

[21] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound algo-
rithm for convex quadratic integer programming. Mathematical Programming,
135(1-2):369–395, 2012.

[22] C. Buchheim, M. De Santis, L. Palagi, and M. Piacentini. An exact algo-
rithm for nonconvex quadratic integer minimization using ellipsoidal relax-
ations. SIAM Journal on Optimization, 23(3):1867–1889, 2013.

[23] X.-W. Chang and G. Golub. Solving ellipsoid-constrained integer least squares
problems. SIAM Journal on Matrix Analysis and Applications, 31(3):1071–
1089, 2009.

[24] X.-W. Chang and Q. Han. Solving box-constrained integer least squares prob-
lems. IEEE Transactions on Wireless Communications, 7(1):277–287, 2008.

[25] X.-W. Chang, J. Wen, and X. Xie. Effects of the LLL reduction on the success
probability of the Babai point and on the complexity of sphere decoding. IEEE
Transactions on Information Theory, 59(8):4915–4926, 2013.

[26] X.-W. Chang and X. Xie. A discrete enumeration approach for mixed integer
least squares problems with box constraints on real variables, in preparation.

[27] X.-W. Chang and X. Xie. Restricted LLL lattice reduction and its application
in solving box-constrained integer least squares problems, in preparation.

[28] X.-W. Chang, X. Yang, and T. Zhou. MLAMBDA: A modified LAMBDA
method for integer least-squares estimation. Journal of Geodesy, 79(9):552–
565, 2005.

[29] P. Crescenzi and V. Kann. Approximation on the web: A compendium of NP
optimization problems. In J. Rolim, editor, Randomization and Approximation
Techniques in Computer Science, volume 1269 of Lecture Notes in Computer
Science, pages 111–118. Springer Berlin Heidelberg, 1997.

[30] M.-O. Damen, H. El-Gamal, and G. Caire. On maximum-likelihood detection
and the search for the closest lattice point. IEEE Transactions on Information
Theory, 49(10):2389–2402, 2003.

[31] P. De Jonge and C. Tiberius. LAMBDA method for integer ambiguity esti-
mation: implementation aspects. In Delft Geodetic Computing Center LGR-
Series, No.12, 1996.

152

[32] J. Detrey, G. Hanrot, X. Pujol, and D. Stehlé. Accelerating lattice reduction
with FPGAs. In M. Abdalla and P. S. Barreto, editors, Progress in Cryptology
– LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages
124–143. Springer Berlin Heidelberg, 2010.

[33] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical programming, 91(2):201–213, 2002.

[34] F. Eisenbrand. Integer programming and algorithmic geometry of numbers.
In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulley-
blank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008, pages 505–559. Springer Berlin Heidelberg, 2010.

[35] U. Fincke and M. Pohst. Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Mathematics of Computa-
tion, 44(170):463–471, 1985.

[36] G. D. Forney. On the duality of coding and quantizing. In Coding and Quanti-
zatiion: DIMACS, volume 14 of Discr. Math. Theory Comp. Sci. AMS Book-
store, 1993.

[37] G. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky. Simplified process-
ing for high spectral efficiency wireless communication employing multi-element
arrays. IEEE Journal on Selected Areas in Communications, 17(11):1841–1852,
1999.

[38] Y. H. Gan, C. Ling, and W.-H. Mow. Complex lattice reduction algorithm for
low-complexity full-diversity MIMO detection. IEEE Transactions on Signal
Processing, 57(7):2701–2710, 2009.

[39] V. M. Garcia, S. Roger, R. A. Trujillo, A. M. Vidal, and A. Gonzalez. A deter-
ministic lower bound for the radius in sphere decoding search. In Proceedings
of International Conference on Advanced Technologies for Communications,
pages 11–16, 2010.

[40] D. Gesbert and J. Akhtar. Transmitting over ill-conditioned MIMO channels:
From spatial to constellation multiplexing. In T. Kaiser, editor, Smart Anten-
nas in Europe – State-of-the-Art. EURASIP Publishing, 2005.

[41] G. H. Golub and C. F. Van Loan. Matrix Computations, 4th edition. The
Johns Hopkins University Press, Baltimore, Maryland, 2013.

153

[42] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and closest lat-
tice vector problems. In Y. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang,
and C. Xing, editors, Coding and Cryptology, volume 6639 of Lecture Notes in
Computer Science, pages 159–190. Springer Berlin Heidelberg, 2011.

[43] G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector
algorithm. In Proceedings of the 27th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 170–186. Springer-Verlag, 2007.

[44] A. Hassibi and S. Boyd. Integer parameter estimation in linear models with
applications to GPS. IEEE Transactions on Signal Processing, 46(11):2938–
2952, 1998.

[45] B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theoretical Computer Science, 41:125–139, 1985.

[46] J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel. Par-
allel shortest lattice vector enumeration on graphics cards. In D. J. Bernstein
and T. Lange, editors, Progress in Cryptology – AFRICACRYPT, volume 6055
of Lecture Notes in Computer Science, pages 52–68. Springer Berlin Heidelberg,
2010.

[47] C. Hermite. Extraits de lettres de M. Hermitea M. Jacobi sur différents objets
de la théorie des nombres, deuxième lettre. J. reine angew. Math, 40:279–290,
1850.

[48] J. Jalden and B. Ottersten. On the complexity of sphere decoding in digital
communications. IEEE Transactions on Signal Processing, 53(4):1474–1484,
2005.

[49] J. Jalden, D. Seethaler, and G. Matz. Worst- and average-case complexity
of LLL lattice reduction in MIMO wireless systems. In Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, pages
2685–2688, 2008.

[50] A. Kamath and N. Karmarkar. A continuous method for computing bounds
in integer quadratic optimization problems. Journal of Global Optimization,
2(3):229–241, 1992.

154

[51] R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pages 193–206, 1983.

[52] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12:415–550, 1987.

[53] J. P. Kermoal, L. Schumacher, P. E. Mogensen, and K. I. Pedersen. Experimen-
tal investigation of correlation properties of MIMO radio channels for indoor
picocell scenarios. In Proceedings of the 52nd IEEE Vehicular Technology Con-
ference, pages 14–21, 2000.

[54] D. Kim and R. B. Langley. GPS ambiguity resolution and validation: method-
ologies, trends and issues. In Proceedings of the 7th GNSS Workshop–
International Symposium on GPS/GNSS, volume 30, 2000.

[55] M. Kisialiou and Z.-Q. Luo. Performance analysis of quasi-maximum-likelihood
detector based on semi-definite programming. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, volume 3,
pages 433–436, 2005.

[56] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische
Annalen, 6(3):366–389, 1873.

[57] W.-Y. Ku. Lattice preconditioning for the real relaxation based branch and
bound method for integer least squares problems. Master’s thesis, School of
Computer Science, McGill University, 2011.

[58] A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica: Journal of the Econometric Society, 28(3):497–
520, 1960.

[59] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta. Massive MIMO for
next generation wireless systems. IEEE Communications Magazine, 52(2):186–
195, 2014.

[60] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[61] H. Lenstra. Lattices. In J. P. Buhler and P. Stevenhagen, editors, Algorith-
mic Number Theory, MSRI Publications, pages 127–181. Cambridge University
Press, 2011.

155

[62] Q. Li, G. Li, W. Lee, M.-i. Lee, D. Mazzarese, B. Clerckx, and Z. Li. Mimo
techniques in wimax and lte: a feature overview. Communications Magazine,
IEEE, 48(5):86–92, 2010.

[63] C. Ling. On the proximity factors of lattice reduction-aided decoding. IEEE
Transactions on Signal Processing, 59(6):2795–2808, 2011.

[64] C. Ling and N. Howgrave-Graham. Effective LLL reduction for lattice decod-
ing. In IEEE International Symposium on Information Theory, pages 196–200,
2007.

[65] C. Ling, W.-H. Mow, K. H. Li, and A. C. Kot. Multiple-antenna differen-
tial lattice decoding. IEEE Journal on Selected Areas in Communications,
23(9):1821–1829, Sept 2005.

[66] W.-K. Ma, T. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching. Quasi-
maximum-likelihood multiuser detection using semi-definite relaxation with
application to synchronous CDMA. IEEE Transactions on Signal Processing,
50(4):912–922, 2002.

[67] J. Maurer, J. Jaldén, D. Seethaler, and G. Matz. Achieving a continu-
ous diversity-complexity tradeoff in wireless MIMO systems via pre-equalized
sphere-decoding. Selected Topics in Signal Processing, IEEE Journal of,
3(6):986–999, 2009.

[68] R. D. McBride and J. S. Yormark. An implicit enumeration algorithm for
quadratic integer programming. Management Science, 26(3):282–296, 1980.

[69] K. D. McDonald. The modernization of GPS: plans, new capabilities and the
future relationship to Galileo. Journal of Global Positioning Systems, 1(1):1–
17, 2002.

[70] D. Micciancio. The hardness of the closest vector problem with preprocessing.
IEEE Transactions on Information Theory, 47(3):1212–1215, 2001.

[71] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Crypto-
graphic Perspective, volume 671. Springer, 2002.

[72] D. Micciancio and O. Regev. Lattice-based cryptography. In D. J. Bernstein,
J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography, pages
147–191. Springer Berlin Heidelberg, 2009.

156

[73] D. Micciancio and P. Voulgaris. A deterministic single exponential time algo-
rithm for most lattice problems based on Voronoi cell computations. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, pages 351–358,
2010.

[74] H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, Leipzig, 1896.

[75] J. J. Moré and G. Toraldo. Algorithms for bound constrained quadratic pro-
gramming problems. Numerische Mathematik, 55(4):377–400, 1989.

[76] I. Morel, D. Stehlé, and G. Villard. H-LLL: using householder inside LLL. In
Proceedings of the 34th International Symposium on Symbolic and Algebraic
Computation, pages 271–278, 2009.

[77] W. Mow. Universal lattice decoding: principle and recent advances. Wireless
Communications and Mobile Computing, 3(5):553–569, 2003.

[78] W.-H. Mow. Maximum likelihood sequence estimation from the lattice view-
point. IEEE Transactions on Information Theory, 40(5):1591–1600, 1994.

[79] P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM
Journal on Computing, 39(3):874–903, 2009.

[80] P. Q. Nguyen and D. Stehlé. LLL on the average. In F. Hess, S. Pauli, and
M. Pohst, editors, Algorithmic Number Theory, volume 4076 of Lecture Notes
in Computer Science, pages 238–256. Springer Berlin Heidelberg, 2006.

[81] J. Nocedal and S. J. Wright. Numerical Optimization, 2nd edition. Springer
Series in Operations Research and Financial Engineering. Springer New York,
2006.

[82] A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-
linear time complexity. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing, pages 403–412, 2011.

[83] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and
Computational Number Theory, 42:75–88, 1990.

[84] J. M. W. P. M. Gruber, editor. Handbook of Convex Geometry. North-Holland,
Amsterdam, 1993.

157

[85] M. Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. ACM Sigsam Bulletin, 15(1):37–
44, 1981.

[86] B. Remondi. Global positioning system carrier phase: Description and use.
Bulletin Géodésique, 59(4):361–377, 1985.

[87] F. Rusek, D. Persson, B. K. Lau, E. Larsson, T. Marzetta, O. Edfors, and
F. Tufvesson. Scaling up MIMO: Opportunities and challenges with very large
arrays. Signal Processing Magazine, IEEE, 30(1):40–60, Jan 2013.

[88] S. Schaer, G. Beutler, L. Mervart, M. Rothacher, and U. Wild. Global and
regional ionospheric models using the GPS double difference phase observable.
In Proceedings of the IGS Workshop on Special Topics and New Directions,
pages 77–92, 1995.

[89] C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming,
66(1):181–199, 1994.

[90] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science, 53:201–224, 1987.

[91] C. P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal
of Algorithms, 9:47–62, 1988.

[92] C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Proceedings of Advances in Cryptology, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
volume 921 of Lecture Notes in Computer Science, pages 1–12. Springer, 1995.

[93] D. Seethaler, J. Jalden, C. Studer, and H. Bolcskei. On the complexity dis-
tribution of sphere decoding. IEEE Transactions on Information Theory,
57(9):5754–5768, 2011.

[94] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn. Fading correlation and
its effect on the capacity of multielement antenna systems. IEEE Transactions
on Communications, 48(3):502–513, 2000.

[95] N. J. Sloane and J. Conway. Sphere Packings, Lattices and Groups. Springer,
1999.

158

[96] D. Stehlé. Floating-point LLL: Theoretical and practical aspects. In P. Q.
Nguyen and B. Vallée, editors, The LLL Algorithm, Information Security and
Cryptography, pages 179–213. Springer Berlin Heidelberg, 2010.

[97] M. Stojnic, H. Vikalo, and B. Hassibi. Speeding up the sphere decoder with
h∞ and SDP inspired lower bounds. IEEE Transactions on Signal Processing,
56(2):712–726, 2008.

[98] K. Su and I. Wassell. A new ordering for efficient sphere decoding. In Proceed-
ings of IEEE International Conference on Communications, volume 3, pages
1906–1910, 2005.

[99] P. H. Tan and L. Rasmussen. The application of semidefinite programming
for detection in CDMA. IEEE Journal on Selected Areas in Communications,
19(8):1442–1449, 2001.

[100] P. Teunissen. Integer least-squares theory for the GNSS compass. Journal of
Geodesy, 84(7):433–447, 2010.

[101] P. J. Teunissen. The Lambda method for the GNSS compass. Artificial Satel-
lites, 41(3):89–103, 2006.

[102] U.S. Naval Observatory. Current GPS constellation. http://tycho.usno.

navy.mil/gpscurr.html. Accessed: 2014-11-1.

[103] P. van Emde Boas. Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Technical Report 81-04, Mathematics
Department, University of Amsterdam, Amsterdam, The Netherlands, 1981.

[104] A. Van Zelst and J. S. Hammerschmidt. A single coefficient spatial corre-
lation model for multiple-input multiple-output (MIMO) radio channels. In
Proceedings of URSI General Assembly, pages 17–24, 2002.

[105] E. Viterbo and E. Biglieri. A universal algorithm for decoding lattice codes.
In Proceedings of the 14th Symposium on Signal Processing and Images. ICIP,
Study Group of Signal Processing and Images, 1993.

[106] E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels.
IEEE Transactions on Information Theory, 45(5):1639–1642, 1999.

[107] G. Voronöı. Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres

159

primitifs. Journal für die reine und angewandte Mathematik, 134:198–287,
1908.

[108] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. Kammeyer. Efficient algo-
rithm for decoding layered space-time codes. Electronics Letters, 37(22):1348–
1350, 2001.

[109] X. Xie, X.-W. Chang, and M. Al Borno. Partial LLL reduction. In Proceedings
of the IEEE Global Telecommunications Conference, number of pages 5, 2011.

[110] G. Xu. GPS observables. In GPS: Theory, Algorithms, and Applications, pages
37–42. Springer Berlin Heidelberg, 2007.

[111] J.-J. Zhu, R. Santerre, and X.-W. Chang. A Bayesian method for linear,
inequality-constrained adjustment and its application to GPS positioning.
Journal of Geodesy, 78(9):528–534, 2005.

