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ABSTRACT

To date nearly 300 exoplanets have been discovered, most of them through

measurements of the wobble induced by the planet in the motion of its host

star. We have developed a program, based on Bayesian inference, to fit ec-

centric Keplerian orbits to exoplanet radial velocity data. The data consist of

optical spectra obtained using the HIRES echelle spectrometer on the Keck

I telescope. We have applied the program to 58 sets of measurements. We

have obtained probability distributions for the orbital period and eccentricity

for each set. We have found that clear upper and lower limits can be placed

on the period while the eccentricity proves more difficult to constrain. From

the average period probability distribution we prepared, we preliminarily con-

cluded that there is a much higher probability to find exoplanets with periods

below 10000 days than with periods above 10000 days. We also suspect the

existence of a correlation between the period and the eccentricity, as well as

that of a possible trend of decreasing period with increasing stellar metallicity.

ABRÉGÉ

À date presque 300 exoplanètes ont été découvertes, la plupart à travers

des mesures du vacillement provoqué par la planète dans le mouvement de

son étoile mère. Nous avons mis au point un programme, basé sur l’inférence

bayésienne, pour modéliser des données de vélocité radiale pour la recherche

d’exoplanètes par des orbites excentriques képlériennes. Les données sont des

spectres optiques et ont été recueillies avec le spectromètre échelle HIRES au

télescope Keck I. Nous avons utilisé le programme pour analyser 58 ensembles

de données. Nous avons obtenu des distributions de probabilité pour la période

orbitale ainsi que pour l’excentricité pour chaque ensemble. Nous avons trouvé

qu’il est possible de placer des limites supérieures et inférieures sur la période,

mais que l’excentricité est plus difficile à contraindre. À partir de la moyenne

des distributions de probabilité que nous avons obtenu pour la période, nous
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avons préliminairement conclu qu’il y a une beaucoup plus grande probabilité

de trouver des exoplanètes avec des périodes inférieures à 10000 jours qu’avec

des périodes supérieures à 10000 jours. Nous suspectons la présence d’une

corrélation entre la période et l’excentricité, ainsi qu’une possible tendance de

la période à décrôıtre à mesure que la métallicité stellaire augmente.
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Chapter 1

Introduction

In 1992, the first exoplanet was discovered orbiting a pulsar by astronomers

Aleksander Wolszczan and Dale Frail [81]. Three years later, the first exo-

planet around a solar-type was detected by Michel Mayor and Didier Queloz

of the University of Geneva [57]. Since 1995, nearly 300 exoplanets have been

discovered at an increasing rate. Over 20 multiple-planet systems are presently

known. The most productive search method is the radial velocity technique,

but several other methods are also producing results (see section 1.4). A large

number of ground- and space-based missions, using a variety of search meth-

ods, are currently in operation or being planned.

The exoplanets found until now are extremely diverse, with masses ranging

from a few times that of the Earth to several times the mass of Jupiter. They

have been revealed to exist around pulsars, solar-type stars and brown dwarfs.

Their orbital period can be as short as 1.3 days [83] and as long as 14 years [24].

Their orbital properties in general have baffled astronomers and forced them

to reconsider previously proposed planetary formation models based uniquely

on the solar system.

The statistical properties of these exoplanet populations can reveal useful

information regarding their formation and evolution, as well as the frequency

of these companions. In the cases of exoplanets with periods of the order of

or longer than the duration of the observations, it is difficult to adequately
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characterise their orbits as multiple solutions can fit the data equally well.

As such, a good understanding of the uncertainties in orbital parameters will

become increasingly important. Bayesian inference can be a convenient and

effective way towards this goal. The Bayesian method produces a probability

distribution for a given parameter, thus providing a means to estimate the

uncertainty associated with the best-fit value of that parameter.

The focus of this thesis on long period exoplanets is motivated by a lack

of information regarding their occurrence rate and formation processes. The

longer the orbital period of a planet, the farther away from its star the planet

is located. It is not clear whether a planet massive enough to be detected from

Earth can form in the far outer regions of the protoplanetary disk, where the

disk material is less dense and orbits the star slower [52]. These conditions

may inhibit the coagulation of dust to form rocky bodies and prevent such

bodies from colliding and sticking together, two processes essential to planet

formation. If a significant number of exoplanets do exist at such distances

from their host star, could they have formed there or were they scattered

outwards by another planet in the system? The second possibility may in

turn explain the existence of a large number of exoplanets on eccentric orbits.

Through a statistical analysis of the radial velocity data associated with 58 long

period exoplanets and planetary candidates, this thesis aims to place additional

constraints on the period and eccentricity probability distributions of these

companions, and attempts to shed more light on the questions described above.

Furthermore, direct imaging surveys which search for exoplanets with long

orbits, such as the Gemini Deep Planet Survey [49], can use estimates for the

constraints on the orbital properties of such planets to better plan the surveys.

Our results could therefore serve as input for such surveys.

The outline of the thesis is as follows. In this chapter we give an introduc-

tion to extrasolar planets, describe the means by which they are detected and

summarise the current knowledge regarding their formation and evolution. In

chapter 2, we provide an introduction to Bayesian statistics and review previ-

ous work pertaining to the object of this thesis. In chapter 3 we describe our
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analysis method and in chapter 4 we present and discuss the results obtained.

In chapter 5 we conclude and suggest a few avenues for future work.

1.1 Definitions

To begin, we should define an exoplanet. An exoplanet, or extra-solar planet, is

a planet beyond the solar system. According to the International Astronomical

Union (IAU), a planet is an object with true mass below the limiting mass for

thermonuclear fusion of deuterium that orbits a star; this limiting mass is

currently calculated to be 13 Jupiter masses for objects of solar metallicity

[11]. Objects above this mass are generally classified as brown dwarfs, but

how the boundary between these two classes of objects should be defined is

still being debated.

The IAU has also placed a lower mass limit on objects that can be called

planets: a planet is a body that has sufficient mass to assume hydrostatic

equilibrium (this can be as low as 0.01% of the Earth’s mass) and has cleared

the neighborhood around its orbit. The second part of this definition is difficult

to verify observationally for exoplanets, but at present this is not a concern

because all known exoplanets around solar-type stars have masses significantly

higher than the IAU-defined lower limit.

Most exoplanets discovered so far have masses close to or exceeding that

of Jupiter (see next section) and orbit very close to their host star (at about

5% of the Earth-Sun distance). As a consequence of the second property, they

are believed to be extremely hot. For this reason, they are referred to as “hot

Jupiters”.

Finally, we include a note on naming conventions for exoplanets. A lower-

case letter is placed after the star name, starting with “b” for the first planet

found in the system (for example, 51 Peg b). For the next planet in the

system the letter “c” is assigned, and so on. The letter “a” was intended to

refer specifically to the host star, but it is rarely used. Letters are assigned

based on the order in which the exoplanets are discovered and not on their
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position. This is also the standard nomenclature for binary stars or multiple

star systems.

1.2 A Note on Size Conventions

Many of the exoplanets discovered thus far are similar in size to Jupiter. Con-

sequently, throughout this thesis we will refer to the radius or the mass of an

exoplanet in relation to that of Jupiter (MJ and RJ). For reference, Jupiter

has a radius of 7.1492 × 106 m and a mass of 1.8986 × 1027 kg. We also refer

to R⊙ and M⊙, the radius and the mass of the Sun, respectively. These values

are 6.9599 × 108 m and 1.9891 × 1030 kg. We sometimes use M⊕ which is the

mass of the Earth and is equal to 5.9736 × 1024 kg. Finally, we measure dis-

tances in AU (astronomical unit) which corresponds to the distance between

the Sun and the Earth and has a value of 1.496× 1030 m, or in ly (light-year)

which corresponds to the distance light travels in one year and is equal to

9.4607 × 1015 m.

1.3 Celestial Mechanics

Kepler’s Laws of Motion revolutionized our understanding of celestial mechan-

ics. The inverse square nature of gravity gives rise to these laws, from which

the principles and equations that govern planetary motion around a star have

been derived.

Kepler’s three laws are:

1. The planets move in ellipses with the Sun at one focus.

2. A line joining a planet and the Sun sweeps out equal areas during equal

intervals of time.

3. The square of the orbital period of a planet is proportional to the cube

of its semi-major axis:
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(

P

2π

)2

=
a3

G(M +m)
(1.1)

where P is the period, a is the semi-major axis, G is the gravitational

constant, M is the mass of the Sun and m is the mass of the planet.

1.3.1 Model of the Planetary System

An orbit involving two spherical objects and governed by gravitational forces

is called a Keplerian orbit. It can be completely described by six parameters

(the orbital period, P ; the orbital eccentricity, e; the inclination relative to the

plane of the sky, i; the argument of periastron measured from the plane of the

sky, ω; the longitude of ascending node, Ω; and the mean anomaly, M). Some

of those parameters are shown in figure 1.11. M is not shown in the figure

because it varies with time; it is the angle (as seen from the host star) between

the periastron of the orbit (the point where the planet is closest to its star)

and the position at which the planet would be if it was travelling at constant

velocity along a circular orbit. Another way to describe it is as the measure

of the phase of the planet’s motion around the orbit.

Using Newton’s Laws of Motion and the fact that a Keplerian orbit is

circular in velocity space, it is possible to obtain the velocity equation for

an object moving in a Keplerian orbit [33], which depends on five of the six

parameters listed above (all except Ω), on K (the velocity semi-amplitude)

and on C (the velocity constant, equivalent to the mean line-of-sight velocity

of the center of motion of the planetary system):

f = K(cos (ω + θ) + e cosω) + C (1.2)

where θ is the true anomaly and depends on P , e, the orbital phase φ and

time as follows

1The image in figure 1.1 comes from the following web address:

http://scienceworld.wolfram.com/physics/OrbitalElements.html
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Figure 1.1 Keplerian orbital parameters (i, ω and Ω). In the context of exo-
planet orbits, the reference plane is the plane of the sky. Image is courtesy of
Eric Weisstein’s World of Physics.

tan
θ

2
=

√

1 + e

1 − e
tan

E

2
. (1.3)

E is called the eccentric anomaly and it is determined by solving Kepler’s

equation

E − e sinE = M. (1.4)

M is the mean anomaly

M =
2πt

P
+ φ, (1.5)

where t is time.

By setting e and ω to 0, we obtain the velocity equation for an object

moving in a circular Keplerian orbit

f = K sin

(

2πt

P
+ φ

)

+ C. (1.6)
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We chose f for the velocity “predicted” by the model in order to distinguish

it from the measured velocity v, which will appear in Chapter 3.

For multiple-planet systems, a multi-Keplerian orbit is fitted to the data.

It can be expressed as follows:

fN = C +

N
∑

j=1

(Kj(cos (ωj + θj) + ej cosωj)). (1.7)

However, for the purpose of this thesis only single-Keplerian orbits have been

considered. Furthermore, the six independent parameters we will refer to from

here on are K, P , e, ω, φ and C. (M , θ and E are dependent on one or more

of these six parameters.)

K can also be related to the planet mass, MP , by [19]

K =
28.4m/s√

1 − e2

(

MP sin i

MJ

)(

P

1yr

)−1/3(
M⋆

M⊙

)−2/3

, (1.8)

where MJ is the mass of Jupiter, M⋆ is the mass of the host star and M⊙ is

the mass of the Sun.

As described in section 1.4, the inclination (i) cannot be obtained from

radial velocity measurements alone; the longitude of the ascending node (Ω)

and the mass of the planet (MP ) cannot be determined either. Only mP sin i,

which corresponds to the minimum mass of the planet, can be calculated. The

stellar mass can either be obtained from stellar properties catalogs ([73], [76]),

or by using the B − V stellar mass relation [1].

1.4 Exoplanet Detection Methods

Currently, several techniques can be used for the detection of exoplanets. In

this section we briefly describe the most commonly used of these techniques.

The most productive exoplanet detection method so far is the radial veloc-

ity (RV) method, which was used to obtain the data analysed in this thesis.
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About 200 exoplanets have been discovered with this method. A planet in

orbit around a star induces an orbital motion in the latter. This motion trans-

lates into redshifted or blueshifted lines in the star’s spectra, from which RV

values can be obtained. As an example, Jupiter induces a velocity variation

in the Sun’s motion of 12 m/s. Such variations are now relatively easy to de-

tect in nearby stars with high-precision spectrometers, such as HIRES (High

Resolution Echelle Spectrometer) [12] at the Keck optical telescope in Hawaii

and the HARPS (High Accuracy Radial Velocity Planet Searcher) [62] spec-

trometer at the La Silla Observatory. Indeed, these instruments can pick up

signals with measurement errors down to 1 m/s [14].

A major limitation is the signal-to-noise ratio (SNR), so such high preci-

sion can only be achieved for nearby stars (within a few hundred light-years)

[15]. Furthermore, as described in more detail in the next section, only the

minimum mass of an exoplanet can be obtained from RV measurements. RV

measurements do not provide any information on the inclination (i) of the or-

bit, so only the component of the RV which lies along our line of sight (v sin i)

can be measured (see figure 1.2). Since the true mass (m) depends on the true

velocity of the star, without the inclination only m sin i can be estimated using

this detection method.

The second most efficient exoplanet detection technique is transit photom-

etry, which has been used to observe over 30 exoplanets. When the orbital

plane of an exoplanet lies within a few degrees of the observer’s line of sight

(about 10% of all known exoplanets have such alignment), a dip in the host

star’s luminosity can be detected as the planet passes in front of it if the latter

has a small enough orbit. The radius of the planet and the inclination of the

orbital plane can then be calculated from the duration and depth of this drop

in luminosity. The transit method often gives rise to false detections, because

several phenomena not related to a planet can also cause variations in its lu-

minosity. These include grazing binaries, small-radius stellar companions and

stellar activity patterns [59]. Therefore, RV follow-ups are typically carried

out in order to confirm the presence of a planet. These follow-ups are also
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Figure 1.2 Velocity components of a star.

used in conjunction with the transit measurements to determine both the true

mass (since i can be deduced from the transit data) and the radius of the

planet, and thus its density. The transit method also allows the study of an

exoplanet’s atmosphere. It is possible to detect elements present in the upper

atmosphere of the planet by closely examining light from the host star that

passed through it ([67], [38]).

Furthermore, by subtracting the luminosity of the star when the planet is

behind it (giving rise to a secondary eclipse) from the luminosity observed just

before and after the secondary eclipse, the radiation arising from the planet

alone can be obtained. This information can in turn be used to estimate the

planet’s temperature through the Stefan-Boltzmann law. Charbonneau at al.

[16] and Deming et al. [21] have carried out this type of measurements on the

exoplanets TrES-1 and HD 209458 b, respectively.

The first three planets outside our solar system were discovered by pulsar

timing around PSR 1257+12 [81]. The rotation of a pulsar is extremely regu-

lar, so slight anomalies in the timing due to its motion in an orbit stand out
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and can indicate the presence of planets. This method is so sensitive that it

can detect planets with a mass as low as 0.04% of that of the Earth. Although

another exoplanet has been found in orbit around PSR B1620-26 [75], pulsars

themselves are quite rare and hence it is not likely that many planets will be

found in this way. However, in 2007 the timing method has also been used to

discover a planet around V 391 Pegasi, a B-type subdwarf star which exhibits

pulsations with a very stable frequency [70].

Gravitational microlensing occurs when the light of a distant star is mag-

nified by the gravitational field of a foreground star acting as a lens. A lensing

event requires the two stars to be almost precisely aligned with each other and

is usually brief (of the order of a few days to a few weeks). If the foreground

star hosts a planet, the latter can make a detectable contribution to the lensing

effect. Such events are rare, but microlensing searches such as OGLE (Optical

Gravitational Lensing Experiment) monitoring over 100 million stars have al-

ready achieved six exoplanet detections using this method, the first of which

was announced in 2004 [8]. Most of these stars lie between the Earth and

the Galactic Bulge which provides a large number of background stars. The

fact that a given lensing measurement cannot be repeated represents another

disadvantage of this technique. In addition, follow-ups with other methods

are usually impossible because the lensing stars are most often located several

thousand light-years away.

There are two other methods currently employed in exoplanet searches and

studies which are rising in popularity due to some recent successes. Astrometry

involves measuring the change in position of a star due to a planetary com-

panion. This method is expected to work best for systems with low-inclination

orbital planes. No planetary companions have yet been discovered in this way,

but high-precision astrometric observations have helped determine the mass of

a few already known exoplanets ([4], [5], [58]), and have shown that HD 33636

b, which was previously classified as a planet [63], is in fact a low-mass star
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[3]. Although exoplanets are generally extremely faint relative to their host

stars, the VLT (Very Large Telescope), Gemini and Subaru telescopes are in

the process of being equipped with instruments capable of directly imaging

exoplanets. Even so, in 2004 the first image of an exoplanet around the brown

dwarf 2M1207 has been obtained [18].

1.5 Observed Properties of Exoplanets

Because the amount of information that can be obtained for a single exo-

planet is in most cases limited to its orbital properties and to a certain extent

its physical properties, we can learn more from studying these properties sta-

tistically for all planets than for each planet in particular. In this section we

briefly review the statistical distributions for some of these properties and the

conclusions that can be drawn from them.

Figures 1.3 to 1.6 show properties pertaining to a fraction of or all of 292

planets known to date. The data used for the figures was obtained from the

Interactive Extra-solar Planets Catalog 2.

Figure 1.3 shows a considerable decrease in the number of planets at high

masses. The low end of the distribution is affected by a selection effect common

to radial velocity surveys: low-mass planets induce small velocity variations

in the motion of their host star; they are thus more difficult to detect and are

under-represented in this distribution. However, massive planets are easier to

detect so the scarcity of planets with minimum masses larger than 12 MJ is

real. This also confirms the existence of the brown dwarf desert, a region in

the mass function of stellar companions between the planetary and the brown

dwarf mass regimes where very few objects have been found; the brown dwarf

desert indicates that there is a fairly clear distinction between planets and

brown dwarfs.

Figure 1.4 shows the distribution of periods for nearby hot Jupiters. There

2The Interactive Extra-solar Planets Catalog can be found at

http://exoplanet.eu/catalog.php
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is a “pile-up” of such planets at periods of around 3 days, suggesting that

the migration mechanism which brought them close to their host stars ceases

once they reach this period. Another explanation is the existence of a braking

mechanism which stops the giant planets at this period, or loses strength at

periods shorter than 3 days and sends the planets into the star. It should be

noted that there is no significant selection effect contributing to this pile-up

since radial velocity surveys have the same sensitivity to hot Jupiters for all

the periods in figure 1.4.

Figure 1.3 Minimum mass distribution for the 292 known nearby exoplanets
with m sin i < 15MJ . We produced this figure interactively at exoplanet.eu.

There seems to be a lack of close-in planets with high masses, as indicated

in figure 1.5. However, selection effects make low-mass planets beyond 1 AU

difficult to detect because such planets induce small velocity variations in their

host stars and require longer observation times to cover a full period, so it is

not clear whether the mass distribution for such planets is different from that

of close-in planets.

Figure 1.6 shows orbital eccentricity as a function of minimum mass for

nearby exoplanets. Many of the planets at e ≈ 0 are located very close to

their host star (a < 0.1 AU) and their orbits are likely to have been tidally

circularised. No strong correlation between eccentricity and mass is apparent,
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Figure 1.4 Distribution of orbital periods for the 103 known nearby hot
Jupiters. We produced this figure interactively at exoplanet.eu.

Figure 1.5 Minimum mass distribution of the 276 known nearby exoplanets
with a < 6.5 AU. We produced this figure interactively at exoplanet.eu.

but close inspection shows that high-mass exoplanets (m sin i > 5MJ) have a

higher median eccentricity than lower-mass exoplanets. Radial velocity surveys

have uniform sensitivity for eccentricities below 0.7 [19].
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Figure 1.6 Distribution of orbital eccentricities as a function of minimum mass
for the 253 known nearby exoplanets with m sin i < 13MJ for which the ec-
centricity is known. We produced this figure interactively at exoplanet.eu.

In addition, Johnson et al. (2007) [45] have found that the fraction of

stars with planets increases with the stellar mass. However, since low-mass

(< 0.7M⊙) and high-mass (> 1.3M⊙) stars have only recently started to

be searched for planets, conclusions with respect to this trend should be

drawn with caution. Fischer & Valenti (2005) [25] have also shown a cor-

relation between the fraction of stars with planets and the stellar metallicity.

They found that planet frequency rises rapidly with stellar metallicity ac-

cording to a power law in terms of the fraction of metal atoms: p(planet) =

0.03[(NFe/NH)/(NFe/NH)⊙]2.0.

Furthermore, radial velocity observations to date have also shown that mul-

tiple planet systems are common, with over 25 found to date. Transit searches

have also produced some interesting results, such as revealing a population of

planets with extremely short periods (between 1.2 and 3 days). In addition,

the radii obtained for transiting (and hence close-in) exoplanets confirm their

gas giant nature.
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1.6 Planet Formation and Evolution

1.6.1 Formation

The complete planet formation process is not known with certainty. The cur-

rently accepted theory is that as a star forms, ever-larger bodies form in the

surrounding protoplanetary disk through accretion of dust particles. Aerody-

namic forces and the gravity from the star are dominant until these bodies

attain sizes of 1-100 km, becoming planetesimals. However, the growth mech-

anism of centimeter and meter sized rocky objects to planetesimal size is still

unknown [22]. These rocky objects have high velocities and can migrate to-

wards the star very quickly (hundreds of years), due to a “headwind” from the

slower rotating gas [80]. This implies a rapid growth to kilometer sized objects

to avoid being absorbed into the star. One possibility is that planetesimals

form via continuous collisions, possibly aided by the concentration of particles

into small regions due to local turbulence, but these meter scale boulders are

expected to stick together poorly [6]. Alternatively, the formation of plan-

etesimals may take place through gravitational collapse of regions with high

concentrations of solid particles [82], but turbulence will prevent sedimenta-

tion of solids to a sufficiently high density, and we know turbulence is required

to explain gas accretion in protostellar disks [40]. However, Johansen et al.

(2007) may have found a way to overcome this challenge [44].

Planetesimals are massive enough to continue accreting at an accelerated

rate and their increasingly spherical shape means they are only weakly affected

by aerodynamic forces. Planetesimals can collide and form larger bodies or

undergo close encounters with one another, which alter their orbits. Larger

bodies typically grow more rapidly than smaller ones at the expense of the

latter, as part of the runaway and oligarchic growth processes ([48], [47]). At

this stage, the newly formed large objects are known as protoplanets. Further

collisions and radioactive decay heat the protoplanets until they melt at least

partially, causing dense elements such as iron to sink to the center and form

a core surrounded by a rocky mantle [42]. The evolution from planetesimal
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to protoplanet is expected to last one million years or less. The resulting

population is made up of lunar-sized protoplanets which continue to collide

and then accumulate atmospheres, which greatly increase the capture rate of

remaining planetesimals [43], thus forming terrestrial planets on a time scale of

up to 100 million years. Planetesimals that have avoided collision can become

natural satellites or asteroids.

There are two models for gas giant formation. The standard theory is core

accretion [64], whereby a core of the order of 10 Earth masses forms through

a process similar to the formation of terrestrial planets, and subsequently ac-

cretes gas from the protoplanetary disk. Gas giants form beyond the snow

line, at a few AU from the host star, since the inner region of the disk does not

contain enough solid material to form a massive enough core. The snow line

defines the radius from the star beyond which water can condense. Initially,

the core is surrounded by a low mass atmosphere which grows steadily more

massive as the gas cools and contracts onto the core. As the latter exceeds

the critical core mass, beyond which a hydrostatic envelope can no longer be

maintained, gas begins to flow onto the core at an increasing rate as the planet

gains mass. The time scale for gas giant formation through this model is dif-

ficult to estimate, but it is clear that the planet must form before the star

ignites and the disk evaporates, terminating the supply of gas.

The alternative theory is that of gravitational disk instability [23]. A suf-

ficiently massive and/or cold gas disk is becomes gravitationally unstable. If

this instability can lead to fragmentation, formation of massive planets can

occur. An important advantage of this mechanism is that it works extremely

rapidly.

Nevertheless, core accretion is the preferred model. One reason for this

is even though protoplanetary disks may be massive enough to be unstable,

calculations show that they are unlikely to cool fast enough to fragment (ex-

cept perhaps at large radii) [7]. Another reason is that the core accretion

model naturally supports the existence of ice giants like Neptune and Uranus,

although such planets have not yet been confirmed outside our solar system.
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Finally, the observed correlation between the frequency of exoplanets and the

metallicity of their host stars [25] can be explained as a consequence of core

accretion: if the disk is rich in solids, a critical mass core can form more easily.

It is not clear whether this correlation can be explained by the gravitational

instability model. Additional observations may either validate one of these

models, or suggest that a combination of the two is most appropriate.

1.6.2 Migration

Interest in planetary migration mechanisms increased with the discovery of 51

Peg b [57], an exoplanet with an orbital period of 4.2 days, which places it

extremely close to its host star. The planet could not have formed at that

distance since protoplanetary disk material so close to the star would have

been absorbed before the planet could have been created. Two gas disk and

one planetesimal-driven migration mechanisms have been proposed.

Low-mass planets undergo type I migration [79], where the surface density

profile of the gas disk is only mildly affected by the planet. The migration

rate is proportional to the planet’s mass, and the planet remains completely

embedded in the gas. Interaction with the gas disk interior to its orbit adds

angular momentum to the planet, while interaction with the exterior disk

removes angular momentum. Consequently, the planet can either migrate

inward or outward. Simulations suggest that it will almost always migrate

inward, potentially on a time scale as short as one million years [74].

Massive planets perturb the gas disk much more strongly. During type II

migration [79], the exchange of angular momentum between the planet and the

disk repels gas from the vicinity of the former, creating a surrounding gap with

low gas surface density. The direction and speed of the migration depends on

how quickly the gas disk can flow back toward the gap. The motion of the

planet is locked to the viscous evolution of the disk. If the gas is flowing inward,

the planet also moves inward, while if the gas flows outward, the planet also

moves outward. Type II migration is typically slower than Type I migration.

Planets can also exchange angular momentum with smaller bodies through
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collisions or close encounters. During such an event, if a planet ejects a plan-

etesimal from the planetary system, it must give up energy and thus move

inward towards the star. A planet that scatters planetesimals into shorter

period orbits gains energy and migrates outward. Ida et al. (2000) [41] have

shown through numerical simulations that planetesimal-driven migration can

indeed be significant.

So far, there is no direct observational evidence for gas disk or planetesimal

migration, but type I and type II migration are widely accepted as explana-

tions for the existence of hot Jupiters. Furthermore, no satisfactory braking

mechanism has yet been developed to explain how the migration of gas giants

is stopped.

1.6.3 Orbit Alterations

Planet-planet scattering can occur after the protoplanetary disk has been de-

pleted or evaporated. An initially unstable planetary system could evolve via

ejection of one or more of the lighter planets (arising from collisions or close

encounters) or an increase in the orbital separation of the planets toward a

more stable configuration (through migration for example). Numerical calcu-

lations have shown that planet-planet scattering can reproduce the observed

eccentricity distribution of massive exoplanets, which makes this mechanism a

leading candidate for explaining why a significant fraction of exoplanets have

non-circular orbits [26].

Planets that form on or acquire eccentric orbits can undergo tidal circu-

larization to reach circular, short-period orbits observed in many extrasolar

systems [66]. The periastron of a planet on an eccentric orbit is in the neigh-

borhood of the star, where tidal effects become important. The gravitational

potential gradient of the star creates a differential attraction between the in-

ner side (facing the star) and the outer side of the planet. As a result, a

tire-shaped structure forms at the surface of the planet, which gives rise to the

energy dissipation by internal friction within the planet that tends to circular-

ize the orbit. A side effect of this process is that the rotation and revolution
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of the planet will become synchronized; consequently, the planet will become

tidally locked, always showing the same side to the star. This circularization

process takes about one billion years for the planet to attain a final period of

a few days [39].
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Chapter 2

Bayesian Inference at Work in

Exoplanet Orbit Analysis

2.1 Introduction to Bayesian Inference

In this section we present a brief overview of Bayesian inference. For a more

complete resource, see Sivia (1996) [71].

Bayesian inference interprets the concept of probability as a measure of

belief in or a state of knowledge concerning a given hypothesis. As evidence

accumulates, the degree of belief in a hypothesis should either increase or

decrease. Bayesian inference uses a numerical estimate of the degree of belief

in a hypothesis before evidence has been observed (the prior probability) and

calculates a numerical estimate of the degree of belief in the hypothesis after

evidence has been observed (the posterior probability), sometimes repeatedly

as new evidence becomes available.

The essential equations of Bayesian inference can be derived from the basic

algebra of probability theory. Starting with the joint probability distribution

p(x, y) (where x and y can be scalars or arrays of several variables), we can

produce the marginalized probability distribution for x by integrating over y:

p(x) =

∫

p(x, y)dy. (2.1)
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Using the fact that we can write the joint probability distribution as a product

of equation (2.1) and a conditional probability distribution as follows

p(x, y) = p(x)p(y|x), (2.2)

Bayes’ theorem can be expressed as

p(x|y) =
p(x, y)

p(x)
=

p(y)p(x|y)
∫

p(y)p(x|y)dy . (2.3)

If we now replace x with a set of observational data d, and y with a set

of model parameters H (the orbital parameters in the context of this thesis),

equation (2.3) becomes

p(H|d,M) =
p(d,H|M)

p(d|M)
=

p(H|M)p(d|H,M)
∫

p(H|M)p(d|H,M)dH
(2.4)

where M is the model (equation (1.2) in this thesis) which includes the mean-

ing of the model parametersH and their relationship to the data d. In equation

(2.4) p(H|M) represents the prior probability distribution that is based on pre-

vious knowledge of the model parameters; p(d|H,M) is the probability of the

data given the model parameters (also known as the likelihood function); and

p(H|d,M) is the posterior probability distribution.

The power of Bayes’ theorem lies in the fact that it relates the quantity of

interest, the probability that a given set of parameters is true given the data

and the model (p(H|d,M)), to the term that we have a better chance of being

able to assign, the probability that we would have observed the measured data

if a given set of parameters and the model were true (p(d|H,M)).

For a Keplerian orbit there are six parameters to consider. If we want to

obtain the probability distribution for a single one of them (for example K),

we can integrate equation (2.4) over the remaining parameters as follows:

p(K) = p(H(K)) =

∫

p(H(K,P, e, ω, φ, C))dPdedωdφdC. (2.5)
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In the same way, we can obtain probability distributions for two or more

parameters as well.

Bayesian inference has several advantages over frequentist statistical meth-

ods. First, since all Bayesian inferences are based on the posterior probability

distributions, there is a rigorous basis for quantifying uncertainties in the pa-

rameters. Frequentist methods generally result in point estimates for these

parameters so in order to estimate the associated uncertainties, they are often

combined with techniques such as bootstrap which rely on fictitious observa-

tions simulated by the experimenter. The rigorousness of Bayesian methods

arises from the fact that posterior distributions depend only on the observa-

tions that actually took place. Another advantage consists of the ability to

incorporate a variety of information and observations in the prior and the like-

lihood function, thus updating the posterior distributions as new knowledge

or data becomes available. Furthermore, the Bayesian framework provides a

natural basis for making predictions about future observations [29].

The necessity of specifying a prior probability distribution before perform-

ing any Bayesian analysis is the main inconvenience of Bayesian inference. It

is important to choose a prior which reflects the state of knowledge (or ig-

norance) of the data as accurately as possible; when in doubt, one should

select the more conservative prior. Additionally, one should always check the

dependence of the results and conclusions on the choice of prior.

A major difficulty in Bayesian inference is the computation of the lower

integral in equation (2.4), especially when H has a large number of dimensions.

We chose simple, direct numerical integration for this thesis, partly because

we were not concerned with multiple planetary systems (which would have

dramatically increased the number of parameters on which H depends), but

especially because we wanted a simple and low maintenance program which

would allow us to focus on the features of the probability distributions and

possible correlations between parameters. However, when the main goal is to

search for exoplanets and characterise their orbits using a large number of data

sets, more efficient methods become necessary such as Markov Chain Monte
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Carlo ([27], [28]) and parallel tempering ([34], [35], [36]) algorithms. Work with

these methods also encompasses most of the Bayesian statistics applications

in the field of exoplanets so far.

2.2 Markov Chain Monte Carlo

During the last decade, the Markov Chain Monte Carlo (MCMC) method has

been applied successfully to several astronomical data and problems, including

the analysis of UV and X-ray spectra [46], star formation history [61], cluster

weak lensing and the Sunyaev-Zeldovich effect [56] and the cosmic microwave

background [77], to name a few.

Ford has developed a MCMC algorithm based on Bayesian inference to

characterise the uncertainties in the orbits of exoplanets. As described in Ford

(2005) [27], the goal of the MCMC method is to generate a sequence of sets

of parameter values that are sampled from a desired probability distribution,

which can be calculated from an initial set of parameter values (H0) and a

transition probability (p(Hn+1|Hn)). The Monte Carlo aspect of MCMC refers

to the randomness in the generation of each set of parameters (state). The

Markov property indicates that the probability distribution for Hn+1 can de-

pend on Hn but not on previous states. The Markov chain will converge to the

posterior probability distribution if it is aperiodic, irreducible and reversible

[31]. The chain being irreducible means that it should be able to reach any

state with nonzero probability from any other state with nonzero probability.

The Metropolis-Hastings (M-H) algorithm satisfies these conditions. It can

draw samples from the probability distribution p(H) and generates a Markov

chain in which each state Hn+1 depends only on Hn. The algorithm uses a

proposal distribution q(H ′|H,M) to generate a new proposed sample H ′. The

proposal is accepted as the next value if the acceptance probability (α), drawn

from U(0,1) satisfies

α <
p(d|H ′,M)q(H|H ′,M)

p(d|H,M)q(H ′|H,M)
. (2.6)
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If the proposal is not accepted, the current value ofH is conserved: Hn+1 = Hn.

The M-H algorithm does not specify when the chain will converge. The

choice of q(H ′

µ|Hµ,M) is very important as it can have an extremely significant

effect on the rate of convergence. Based on tests which involved monitoring

the fraction of states that are accepted, Ford opted for a Gaussian proposal

distribution,

q(H ′

µ|Hµ,M) =
1

√

2πψ2
µ

exp

[

−
(H ′

µ −Hµ)
2

wψ2
µ

]

, (2.7)

where each ψµ is a parameter that controls the scale for the steps taken [27].

The values of ψµ are automatically selected by the MCMC algorithm, which

saves a lot of time that would otherwise be spent on trial runs in order to

manually determine the most appropriate set of ψµ values. In short, MCMC

explores probability space by taking short steps in regions of high probability,

and longer steps in regions of low probability.

In this paper [27], Ford also showed that Bayesian analyses work particu-

larly well for systems where the orbital period is comparable to the duration

of observations. Ford et al. (2005) have used this algorithm to analyse the

dynamical interactions of the three planets in the υ Andromedae system [30].

In Ford (2006) [28], he introduced several improvements to the MCMC

method. He tested several alternative proposal probability distributions which

improve the efficiency of MCMC. For example, it was shown that the rate of

convergence can be increased significantly when specific proposal distributions

are used for planets with a large range of possible orbital periods, high eccen-

tricity or low eccentricity. The optimised algorithms were applied to several

exoplanet systems. In one case (HD 117207) it was demonstrated that the un-

certainties in the orbital parameters are larger than estimated using frequentist

resampling methods. In another (HD 37124), a good choice of proposal dis-

tributions allowed the MCMC algorithm to identify small peaks in strongly

multimodal (comprising more than one significant solution) posterior proba-

bility distributions.
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Although the MCMC method was also used on a few 2- and 3- planet

systems [28], improvements are needed in order to efficiently simultaneously

consider models with zero, one, two or more planets. One possible alternative

is parallel tempering [35].

2.3 Parallel Tempering

Gregory (2005) [34] used an approach similar to that of Ford (2005) [27] to

implement the MCMC method, involving a M-H algorithm. In addition, he

introduced parallel tempering to better handle multimodal probability distri-

butions, which most often arise for multiple planet systems and for planets

with periods longer than or comparable to the duration of observations [28].

In parallel tempering, several copies of a MCMC simulation are run in par-

allel. They each have a different temperature T . (Here, temperature refers

to the step size in the Monte Carlo algorithm: high temperature corresponds

to large steps, and low temperature corresponds to small steps.) Instead of

varying T from 0 to infinity, β = 1/T is used, which varies between 0 and

1. The desired posterior probability distribution corresponds to the simula-

tion with β = 1. The remaining simulations have increasingly higher T (or

increasingly lower β). At a given MCMC step, a pair of adjacent simulations

is randomly chosen and a proposal is made to swap their parameter configu-

rations. The proposal is accepted or rejected based on a M-H criterion. If the

swap takes place, it allows for an exchange of information across the ensemble

of simulations. Simulations with a higher temperature can experience radi-

cally different parameter configurations after a swap, while lower temperature

simulations can refine their configurations. Adjacent simulations must overlap

somewhat in order for a swap to take place. In short, by a careful choice of

temperatures and number of simulations, it is possible to improve the mixing

properties of a set of Monte Carlo simulations.

Using parallel tempering with MCMC, Gregory found two alternative or-

bital solutions for the HD 73526 system [34]. In addition, he claimed that the
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data for HD 208487 system shows a 95% probability for a second planet [35],

and the data for HD 11964 indicates the presence of three planets [36].

2.4 Non-Bayesian Statistical Methods

Several non-Bayesian methods are also used to find best-fit orbital solutions

for exoplanets. In this section we very briefly describe the main techniques.

A periodogram is essentially a plot of the minimum χ2 versus the period,

in which the velocity semi-amplitude and the phase can vary. Because it is

comparable to fitting data with a simple sinusoid, it is not an accurate method

for estimating the parameters of eccentric orbits. However, periodograms allow

for quick identification of potential orbital periods in the observational data

without requiring a simultaneous fit for all the other parameters, which can

then be used as input (initial guesses) for other algorithms.

The Levenberg-Marquardt algorithm [65] searches the parameter space to

minimise χ2. The disadvantage of this technique is the fact that it can only

find one minimum for a given initial guess of parameters. It is most useful for

refining the model parameters locally once the rough topography of χ2 space

is obtained through global search algorithms.

Simulated annealing [65] is one such algorithm. Initially it takes large steps

(high temperature) and then gradually smaller steps (lower temperature). Two

disadvantages are the large number of iterations and the need to specify a

cooling curve (the rate at which the steps should be reduced).

A genetic algorithm is another kind of global search algorithm, which is

generally based on biological evolution [17]. However, it can be extremely

time-consuming, especially when applied to a large number of data sets. It

has been used successfully on the υ Andromedae [72] and the GJ 876 [51]

systems.
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2.5 Motivation for this Thesis Work

In 2004, Cumming statistically analysed the sensitivity of radial velocity sur-

veys at large periods and low velocity semi-amplitudes [19]. In order to esti-

mate the significance of a Keplerian fit to radial velocity data, he calculates

the false alarm probability (FAP) associated with a particular fit using the

Lomb-Scargle (LS) periodogram ([53], [69]). The periodogram uses power (z)

as a measure of the goodness of the fit. Consider χ2
Kep, the χ2 of a Keplerian

fit, and χ2
mean, the χ2 from the fit of a constant to the data. The power is

z =
(χ2

mean − χ2
Kep)/4

χ2
Kep/ν

(2.8)

where ν is the number of degrees of freedom. A simple estimate of the FAP is

FAP ≈ Mprob(z > z0) (2.9)

where M is the number of independent frequencies and prob(z > z0) is the

probability that z is larger than z0 (z0 is obtained using fake data sets which

contained only noise). For details on how prob(z > z0) is obtained and for a

discussion of a Bayesian approach to the LS periodogram, see [19]. Among the

other results of this paper are analytical expressions for the velocity thresholds

for short and long periods. Of particular interest for this thesis is that for

circular orbits at long periods, Cumming showed that a linear or quadratic

relationship (K ∝ P or K ∝ P 2) can fit the data as well as a Keplerian orbit

(see section 4.3). He also showed that there are important selection effects to

be considered for observations of orbits with e & 0.6.

A sample of 585 stars were searched for planets using the false alarm prob-

ability by Cumming et al. (2008) [20]. They showed that all exoplanets with

P > 2000 days, K > 20 m/s and e . 0.6 had already been announced, and

they found evidence for 76 unconfirmed candidates. Of these, 27 candidates

correspond to companions with masses & 20MJ (thus likely not planets). The

remaining candidates have not yet been confirmed due to either low K (. 20
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m/s) or high P (& 2000 days), which make their orbital parameters difficult to

constrain. Figure 2.1 summarises these results. A more in-depth characterisa-

tion of the orbits of the candidates to the right of the vertical line and below

the 10MJ line in figure 2.1, including uncertainty estimates of their orbital

parameters, constitutes a major motivation for this thesis.

Figure 2.1 All confirmed planets (48) and unconfirmed candidates (76) flagged
among the 585 stars analysed. The open circles represent the planets and the
solid triangles represent the candidates. The vertical dashed line corresponds
to the duration of the survey (8 years). The dotted lines correspond to exo-
planet masses of m sin i = 0.1, 1 and 10MJ , for a solar mass star. This figure
is used with the permission of A. Cumming.

Cumming et al. (2008) also found that 17−20% of stars should have planets

with periods shorter than 90 years (3.2 × 104 days), but data show that 18%

of stars host planets with periods shorter than 32 years (1.2× 104 days). This

may indicate that there is a lack of planets at periods larger than 32 years, or

that there are more stars with planets than expected based on the assumptions
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made in this paper. We compare our results with these expectations in section

4.4.

Finally, in Cumming et al. (2008) the eccentricity (especially if e & 0.6) and

associated selection effects were neglected in some parts of their analysis. This

thesis aims to study the eccentricity distributions and consider the prospective

results when placing constraints on e and P .
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Chapter 3

Method

In this chapter we describe our method for calculating probability distribu-

tions for the exoplanet orbital parameters. We chose to base our approach

on Bayesian inference because of its capacity to quantify uncertainty in the

orbits of exoplanets and because it can easily incorporate new information in

the form of priors or additional data. We used the IDL programming language

to perform the necessary calculations.

3.1 Circular Orbits

It is simpler to constrain the parameters for circular orbits than for eccentric

orbits. Therefore, developing a program which only characterizes orbits using

circular orbit models as a first step allowed us to arrive at the most time

efficient and straightforward set of computation and integration techniques.

The model used for fitting radial velocity data with circular orbits is

fi = K sin

(

2πti
P

+ φ

)

+ C (3.1)

where K is the velocity semi-amplitude, P is the orbital period, φ is the orbital

phase and C is the velocity constant. These are the parameters of the reflex

motion of the star, although P , φ and C will be the same for the planet. fi
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is the set of velocities corresponding to a set of observation times ti, given a

particular set of the four parameters.

Our method involves choosing priors and limits for K, P and φ and solv-

ing analytically for C, scanning through a grid of values of the first three

parameters, calculating χ2 and then the probability for every combination of

parameters and finally integrating (marginalizing) over all parameters except

the one for which we wish to obtain a probability distribution.

3.1.1 Choice of Priors

It is important to choose a set of priors that accurately reflects our state of

uncertainty about the truth of the model before analysing the data. For the

period (P ), we set a lower limit of 300 days and an upper limit of 30000 days.

We use a Jeffreys prior, which corresponds to a uniform probability density in

ln P . Since the prior period range spreads over 3 log scale decades, a Jeffreys

prior is a good choice as it says that the true value of P is just as likely to lie

in any of the decades. It can be written as

p(P )dP =
dP

P ln(PH/PL)
(3.2)

where PH and PL are the upper and lower limits on P , respectively. The

lower limit for the velocity semi-amplitude (K) is 1 m/s and the upper limit is

2(vmax−vmin). The upper limit allows the velocity semi-amplitude to be up to

twice as large as the largest difference between two velocities in the data set.

We opted for a uniform prior for K with these limits. For the phase (φ) we

used a uniform prior ranging from 0 to 2π radians. The prior for C is uniform

and its range is from −∞ to ∞. The limits on C may seem extreme but they

enable us to marginalize over C analytically, as described in more detail in

section 3.1.3.
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3.1.2 Calculating the Probabilities

Next, we set up a three-dimensional grid of K, φ and P values. The first

two parameters were sampled uniformly while P was sampled uniformly in

frequency (ν). We did not need to sample C because it is possible to find

analytically the best-fit value of C for a given combination of K, P and φ,

as shown in section 3.1.3. For a given set of measurements we calculated fi

for each combination of K, P , φ and C values using equation (3.1). We then

determined χ2 for each fi as follows:

χ2 =
N
∑

i=1

(

vi − fi

σi

)2

. (3.3)

Finally, the probability was calculated using

p(d|K,P, φ, C) =
1

(
√

2πσi)N
e

−χ2(K,P,φ,C)
2 (3.4)

where σi is the uncertainty associated with the ith velocity measurement.

Equation (3.4) comes from drawing each observed velocity from a Gaussian

distribution [19], and multiplying together the probabilities for obtaining these

individual observed velocities.

3.1.3 Marginalization

Unless otherwise specified, the method we used to marginalize over parameters

is direct numerical integration. This consists of adding up the value of the

integrand evaluated at each sampled value of the parameter over which we

marginalized. We compared this to the Trapezoidal Rule and Simpson’s Rule

(“Numerical Recipes”, section 4.1 [65]) and obtained only slightly differing

results (i.e. the values obtained for the area under a given curve as calculated

with direct numerical integration, and with the Trapezoidal Rule or Simpson’s

rule, differed by only 0.1%). This means that we could use fewer grid points

(sample the parameters less finely) and use Simpson’s rule to attain the same
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accuracy as that obtained using direct numerical integration on more grid

points. However, the former method would require the use of loops, while the

latter method consists of simply summing the values of the integrand, thus

requiring less operations and less computer time. Indeed, the time gained by

the reduction in the number of grid points does not compensate the time lost

through the use of loops. Therefore, we opted for direct numerical integration

because it was the most efficient method.

Marginalizing over the observational uncertainties

Since each radial velocity measurement is calculated by averaging thousands of

spectral lines over a large number of spectrum sections, the associated observa-

tional uncertainties can be accurately estimated and are almost Gaussian [13].

However, there can be additional causes of radial velocity variations that are

not included in these uncertainties, such as stellar jitter or additional unseen

companions around the same star [28]. We can produce the most conservative

results by considering a fourth parameter s which we multiply by the measured

observational uncertainty (σi) and over which we integrate equation (3.3) from

0 to ∞. Essentially, this means that we assume the actual observational un-

certainty can be infinitely large. This assumption may seem unrealistic, but

we have verified that it is sufficiently accurate. Figure 3.1 shows two overlap-

ping probability distributions for K for the same radial velocity data set. The

difference between them is only a difference in the upper limits chosen for the

marginalization over σi: for the top curve the upper limit was infinity while

for the bottom curve it was 6 m/s (the mean value of the observational uncer-

tainty for any data set was never larger than 4.5 m/s, so 6 m/s seemed a safe

choice for a finite upper limit). The two distributions do not differ by much.

Having verified that our choice did not affect the probability distributions, we

opted for an upper limit of infinity. If anything, this choice produces more

conservative probability distributions and, not least, it allowed us to solve the

integral analytically. We used integration by parts repeatedly and solved a

standard Gaussian integral to obtain
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∫

∞

0

1

(
√

2πsσi)N
e

−χ2(K,P,φ,C,s)
2 ds ∝ [χ2(K,P, φ, C)](−N/2). (3.5)

where the constant prefactor was dropped since only the odds ratio is used for

the final result.

Figure 3.1 Two overlapping probability distributions for K for the same radial
velocity data set. The top curve was obtained with ∞ as the upper limit for
the marginalization over σi; the bottom curve was obtained with 6 m/s as the
upper limit.

Marginalizing over C

First, we define hi as follows:

hi = K sin

(

2πti
P

+ φ

)

(3.6)

so we have
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χ2 =
N
∑

i=1

(

vi − C − hi

σi

)2

. (3.7)

We can write equation (3.7) as a quadratic expression in C,

χ2

N
∑

i=1

1

σ2
i

= C2 − 2C













N
∑

i=1

(vi − hi)

σ2
i

N
∑

i=1

1

σ2
i













+

N
∑

i=1

(vi − hi)
2

σ2
i

N
∑

i=1

1

σ2
i

. (3.8)

(χ2)(−N/2) can now be integrated analytically over C as follows:

∫

∞

−∞

(χ2(K,P, φ, C))(−N/2)dC ∝
(

N
∑

i=1

1

σ2
i

)(−1/2)( N
∑

i=1

(vi − hi)
2

σ2
i

..

−
(

N
∑

i=1

1

σ2
i

)−1 N
∑

i=1

(

vi − hi

σ2
i

)2
)−(N−1

2
)

.(3.9)

Once again, we dropped the constant prefactor for the same reason as in the

marginalization over σi.

In fact, equation (3.9) can be written in terms of the χ2 corresponding to

the best-fit C for each K, P and φ combination. As mentioned above, we can

find the best-fit C analytically by taking the first derivative of equation (3.3)

with respect to C and setting it equal to 0 to find the best-fit value of C, which

corresponds to the minimum of χ2 at a given combination of K, P and φ:

∂χ2

∂C

∣

∣

∣

k,p,φ
= 2

N
∑

i=1

(

vi − fi

σi

)(

− 1

σi

∂fi

∂C

)

= 0. (3.10)

We thus obtain
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Cbf =

N
∑

i=1

(

vi − hi

σ2
i

)

N
∑

i=1

1

σ2
i

. (3.11)

What equation (3.11) says is that to find Cbf all we need to do is subtract

from each velocity measurement the velocity variation resulting from the or-

bital motion of the planet (which is a function of K, P and φ), and then find

the weighted average of these residuals.

This means that equation (3.9) can be written very simply as

∫

∞

−∞

(χ2(K,P, φ, C))(−N/2)dC ∝
(

N
∑

i=1

1

σ2
i

)(−1/2)

(χ2
o(K,P, φ))−(N−1

2
) (3.12)

where χ2
o is just χ2 evaluated at Cbf for each set of K, P and φ.

Marginalizing over φ

To simplify the integration over φ, we initially adopted a Gaussian approx-

imation to the integrand. However, upon comparison with direct numerical

integration, this approximation proved to be inaccurate. We noticed this im-

portant detail in the probability distribution for K. Using both methods, we

ran the program on the radial velocity data for several known exoplanets and

consistently obtained a discrepancy between the two methods. The top curve

in figure 3.2 was obtained through direct numerical integration over φ while

the bottom curve was obtained by using a Gaussian approximation to the in-

tegrand and solving the resulting Gaussian integral. There is less probability

under the bottom curve because the Gaussian approximation method seems

to have “missed” some of the φ probability distribution. The bottom curve

also diverges at low values of K (less than ∼7 m/s).

Next, we proceeded to understand the exact cause of this discrepancy,

that is, why the Gaussian approximation fails. We looked at the probability
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Figure 3.2 Probability distribution for K: for the top curve, we used direct
numerical integration over φ; for the bottom curve, we used a Gaussian ap-
proximation to the integrand.

distribution for φ computed for each of several combinations of K, P and

C values. In several instances, the probability distribution was either multi-

peaked or otherwise non-Gaussian. Figure 3.3 illustrates a typical example at

low values of K. When fitting a Gaussian to such a distribution, the program

will choose the largest value in the φ distribution to correspond to the peak

of the Gaussian. The fitted Gaussian in this case includes more probability

than the actual distribution, especially when considering the area under its

tails, which extend to the left beyond 0 rad and to the right beyond 2π rad.

Although some actual probability will still be “missed” (roughly between 3π/2

and 2π on the figure), the effect just described will more than compensate for

it, resulting in a calculated probability which is larger than is actually the case.

This produces the divergence shown in figure 3.2 at low K.

Figure 3.4 shows a multi-peaked probability distribution for φ, which oc-

curred for various combinations of values of the other three parameters. Fitting

a Gaussian to the taller peak (the global maximum) while unaware of the pres-
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Figure 3.3 The solid curve is a typical example of the probability distribution
for φ at low values of K. The dashed curve is the fitted Gaussian, which
includes more probability than the actual distribution.

ence of the shorter peak will inevitably yield a lower probability than is the

case, as is represented by the dashed curve. Such cases account for the “miss-

ing” probability represented by the bottom curve in figure 3.2. Although at

values larger than ∼7 m/s, the two curves agree within 10 to 15% and they

have roughly the same overall shape, we could not be sure that this will be the

case for all the radial velocity data sets we will analyse. Furthermore, since it

originates from the integration over φ, this discrepancy could potentially affect

the period, and for eccentric orbits, the eccentricity probability distributions.

Finally, it is to be noted that the peaks of the two curves correspond to slightly

different values of K. We could not predict whether this difference in the best-

fit value of K would remain small for any of the candidates we analysed, nor

any difference that might arise in the best-fit values of the period or eccen-

tricity. To avoid these problems we employed direct numerical integration for

marginalizing over φ.
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Figure 3.4 The solid curve is a typical example of the probability distribution
for φ at various combinations of values of K, P and C. The dashed curve is
the fitted Gaussian, which only includes one of the peaks.

Marginalizing over K and P

To obtain the probability distribution for K, we finally marginalized over P

through direct numerical integration. To obtain the probability distribution

for P , we marginalized over K instead.

3.1.4 The Odds Ratio

One other useful quantity which we can calculate is the odds ratio. This

is basically the probability of the presence of a planet in the data vs. the

probability that no planet is present. By marginalizing over all parameters for

a given data set, we obtain a single value which we called p, the probability

that a planet is present in the data. For each data set, we also find

q =

∫

∞

−∞

(χ2(C))
−(N−1)

2 dC (3.13)
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which is the probability that no planet is present.

The odds ratio,

Λ =
p

q
, (3.14)

tells us which model is preferred, planet or no planet.

3.1.5 Improving the Efficiency of the Calculations

In preparation for the eccentric orbit program, we proceeded to simplify and

render our calculations more efficient. The improvements consisted of deriv-

ing an explicit formula for χ2 in terms of the circular orbit parameters and

the radial velocity measurements for a given exoplanet. In addition to the

substitutions defined below, we will also use
∑

instead of
∑N

i=1.

Ω =
2π

P
, wi =

1

σ2
i

, < v >=

∑

wi(vi)
∑

wi
, < v2 >=

∑

wi(v
2
i )

∑

wi
,

< Bc >=

∑

wi(sin Ωti)
∑

wi

, < Ac >=

∑

wi(cos Ωti)
∑

wi

,

< B2
c >=

∑

wi(sin Ωti)
2

∑

wi
, < A2

c >=

∑

wi(cos Ωti)
2

∑

wi
,

< vBc >=

∑

wi(vi sin Ωti)
∑

wi

, < vAc >=

∑

wi(vi cos Ωti)
∑

wi

,

< BcAc >=

∑

wi(cos Ωti sin Ωti)
∑

wi

.

Using these substitutions, Cbf becomes

Cbf = < v > −K < Bc > cosφ−K < Ac > sin φ (3.15)
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and the equation for χ2
P

wi
is

χ2

∑

wi
= K2(< A2

c > sin φ2 + 2 < BcAc > sinφ cosφ+ < B2
c > cos φ2)...

+ < v2 > −C2
bf − 2K(< vAc > sin φ+ < vBc > cosφ). (3.16)

There are two reasons for re-writing χ2 in the manner described above.

The first is efficiency. The IDL programming language allows the use of vector

operations. This means that, using equation (3.16), we can calculate not a

single value but an entire matrix of χ2 values with one line of code. The

alternative would have been the use of significantly less efficient multiple loops

through all the values of all the parameters we sampled.

The second reason becomes clear when we consider that all the values inside

<> in equation (3.16) only need to be computed when P changes, and not

when K or φ change, because these values only depend on P and the velocity

measurements (of course, < v2 > was computed only once for each data set

since it does not depend on any parameters). For example, if we were to sample

10 values for each of the three parameters, we would only need to calculate

the values inside <> 10 times as opposed to 103 times. This minimizes the

number of operations required to generate values of χ2 and thus allows us to

do so more quickly. This is also very useful for the eccentric orbits program,

as detailed in section 3.2.4.

With these tools in hand and using what we have learned from our work

on circular orbit models, we began developing a program capable of fitting

eccentric orbits.

3.2 Eccentric Orbits

As mentioned in section 1.3.1, the model used for fitting radial velocity data

with eccentric orbits is

fi = K(cos (ω + θi) + e cosω) + C (3.17)
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where K is the velocity semi-amplitude, e is the eccentricity, ω is the argument

of periastron (measured from the plane of the sky), θ is the true anomaly and

C is the velocity constant. P and φ are included in θi. This means that

altogether we have six independent parameters. Once again, these parameters

correspond to the reflex motion of the star, although e, P , φ and C will be the

same for the planet. fi and ti are as described in section 3.1.

We chose priors and limits for K, P , e, ω and φ, and solved analytically

for C. Next, we scanned through a grid of the first five parameters, calculated

χ2 and the probability for every combination of parameters, and obtained

probability distributions for the parameters of interest by marginalizing over

the other parameters.

3.2.1 Choice of Priors

For eccentric orbits we made a more careful choice of priors, as the resulting

program is the one actually used in the analysis of our data. It is to be noted

that a program for eccentric orbits can also accomodate circular orbits with

e, ω = 0.

We define a long period exoplanet to have a mass equal to or less than

10MJ and a period between 300 and 3×105 days (≈820 years). Although there

are currently no confirmed planets with such large periods, the upper cut-off

corresponds approximately to a period where perturbations from nearby stars

and the galactic tide would disturb the planetary candidate’s orbit [37]. We

mostly adopted the priors used in Gregory (2007) [35]. As for circular orbits,

we used a Jeffreys prior for P , with a uniform probability density in ln P , since

the prior period range spreads over 4 log scale decades.

We also used a Jeffreys prior for K, with K ranging between 1 m/s and

284(1yr/Pi)
1/3(1/

√

1 − e2i )(M⋆/M⊙)−2/3 m/s. The upper cut-off for K corre-

sponds to a 10MJ planet and comes from [19]

K =
28.4m/s√

1 − e2

(

MP sin i

MJ

)(

P

1yr

)−1/3(
M⋆

M⊙

)−2/3

(3.18)
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where MP sin i/MJ was set to 10. For a given set of measurements, as the

value of P we can fit through the data increases, the value of K must decrease

in order to have an object of not more than 10MJ . Additionally, as the value

of e we can fit through the data increases, the value of K must decrease to

fulfill the same condition. Thus, the upper limit on K depends both on P

and eccentricity (e). The masses of the stars were obtained from Takeda et al.

2007 [73] and from Valenti and Fischer 2005 [76].

For the eccentricity e we used a uniform prior with a range from 0 to 1.

The priors for ω and φ were also uniform, with a range from 0 to 2π.

3.2.2 Kepler’s Equation

In order to obtain θi (used in equation (3.17)), we had to solve Kepler’s equa-

tion

Ei − e sinEi = Mi (3.19)

where E and M are related to θ as defined in section 1.3.1.

We solved Kepler’s equation (3.19) using an algorithm which finds the

root(s) of a function within a given range (here, M lies between 0 and 2π) using

Brent’s method. The value is refined until it reaches the accuracy specified

by the user. For more information on Brent’s method, refer to “Numerical

Recipes”, section 9.3 [65].

3.2.3 Analytic Solution for Cbf

The equation for Cbf is the same as equation (3.11),

Cbf =

N
∑

i=1

(

vi − hi

σ2
i

)

N
∑

i=1

1

σ2
i

(3.20)
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except that here hi corresponds to an eccentric orbit:

hi = K(cos (ω + θi) + e cosω). (3.21)

As for circular orbits, the equation for Cbf says that it is simply the

weighted average of the residuals obtained by subtracting from each veloc-

ity measurement the velocity variation resulting from the orbital motion of

the planet (which for eccentric orbits is a function of K, P , e, ω and φ).

Introducing two more substitutions,

< Ae >=

∑

wi cos θi
∑

wi
and < Be >=

∑

wi sin θi
∑

wi
,

we can write Cbf as

Cbf = < v > −Ke cosω −K < Ae > cosω +K < Be > sinω. (3.22)

3.2.4 Calculating the Probabilities

Before calculating the probabilities, we first write χ2 in terms of the eccentric

orbit parameters and the radial velocity measurements for a given planet,

χ2

∑

wi
= < v2 > −(Cbf +Ke cosω)2 − 2K(< vAe > cosω− < vBe > sinω)...

+ K2(< A2
e > cos2 ω+ < B2

e > sin2 ω − 2 < BeAe > sinω cosω) (3.23)

where < vBe >,< vAe >,< BeAe >,< B2
e > and < A2

e > are analogous to the

expressions defined in section 3.1.5 for circular orbits, with Bc and Ac replaced

by Be and Ae, respectively.

In section 3.1.5 we considered two reasons for writing χ2 using these substi-

tutions. We elaborate on how the second justification applies to the eccentric

orbits case. Equation (3.17) shows that we need to calculate θi every time P , e

or φ change, but not when K and ω change. So if we were to sample 10 values
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for each of the five parameters, we would only need to calculate θi 103 times

as opposed to 105 times. This increases the efficiency and thus the speed of

the program by minimizing the number of operations needed to calculate the

grid of χ2 values.

For the eccentric orbit program we set up a five-dimensional grid of K, P ,

e, ω and φ values. We sampled 200 values of K, 400 values of P , 30 values

of e and 100 values of ω. The sampling in φ was determined by an adaptive

integration algorithm, which selected as many values as needed to achieve the

specified level of accuracy in the results of the integration. This procedure is

described in more detail below.

We calculated the probability using equation (3.4).

3.2.5 Marginalization

We marginalized over the observational uncertainty and over C in the same

way as in section 3.1.3, using equation (3.21) instead of equation (3.6). The

marginalization over the five remaining parameters is described in the following

subsections. Unless otherwise specified, the method used to marginalize over

parameters is direct numerical integration (see section 3.1.3).

Marginalizing over φ

Given the various shapes the probability distribution for φ can exhibit and in

order to ensure we did not miss any peaks in the distribution, we decided to use

an adaptive integration algorithm for the marginalization over this parameter.

This IDL-based algorithm is called QPINT1D. It locates regions of the inte-

gration interval which contain the highest error (difference between the values

of the integrand computed at two adjacent points) and concentrates on those

regions. It does this by successively bisecting the starting interval (in this case

0 to 2π), assigning an error estimate to each subinterval and dividing further

until each subinterval carries the same amount of error, which was specified

by the user.
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Figure 3.5 Probability distribution for φ, with e = 0.5, K = 31.7 m/s, P =
59.6 days and ω = π/3.

Figure 3.6 Probability distribution for φ, with e = 0.7, K = 31.7 m/s, P =
59.6 days and ω = π/3.

Figure 3.7 Probability distribution for φ, with e = 0.9, K = 31.7 m/s, P =
59.6 days and ω = π/3.
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For high values of e, the probability distribution for φ presents a large

number of variations which are greater than the user-specified error. Thus,

although this method proved indeed to be accurate, it is also slow because at

high values of e the algorithm would compute the integrand for up to 6000

values of φ. Nonetheless, it was reasonably fast for our purpose and we used it

throughout the entire analysis. Some examples of the probability distribution

for φ at e = 0.5, e = 0.7 and e = 0.9 are shown in figures 3.5, 3.6 and 3.7,

respectively. K, P and ω have the same values for each of the three figures.

Marginalizing over K, P , e and ω

Once again, we simply used direct numerical integration for the remaining four

parameters. Ultimately we were interested in the probability distributions for

P and e. Therefore we only stored the probability distributions marginalized

over all parameters except those two.

We can also find the odds ratio as described in section 3.1.4.

3.2.6 Running Time Factors and Limitations

Although the duration of execution of the circular orbit program never ex-

ceeded 20 seconds, we nonetheless strove to decrease this time by implement-

ing equation (3.16), in preparation for the eccentric orbit program. In the

case of the latter, the addition of two more parameters (e and ω) increased

the running duration by two or three orders of magnitude, depending on how

finely the new parameters were sampled. In order to keep this effect under

control, we tried running the program with several combinations of parameter

sampling and observed the variations in the resulting probability distributions.

The sampling ultimately chosen for each parameter was such that making it

more fine no longer significantly affected the probability distributions for P and

e (the ones that most interested us). The number of values sampled mentioned

in section 3.2.4 are based on these tests.

We now take a closer look at how these choices affected the running time

of the program. We sampled 200 values of K, 400 values of P , 30 values of e,
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100 values of ω and an average of the order of 500 values of φ. Multiplying

these numbers gives 1.2 × 1011 calculations of χ2. The program takes on

average 3 to 4 hours to run on a 2.1 GHz processor, depending on the number

of measurements in a given data set. If it runs for 3 hours, this means each

calculation of χ2 for a combination of five parameters takes about 10−7 seconds.

One important limitation that this creates is the number of planets we can

search for in a given data set. To fit a multi-Keplerian orbit to a set of radial

velocity measurements as follows,

Fi =
M
∑

j=1

hi,j (3.24)

where M is the number of planets we wish to search for and hi corresponds

to equation (3.21), we would effectively need to sample 5 × M parameters,

or 5 additional parameters for each additional Keplerian orbit. If we were

to keep the same sampling as for a single Keplerian orbit, searching for even

two planets would then require (1.2× 1011)2 = 1.4× 1022 computations of χ2,

which translates into an impractical duration of execution. The purpose of this

thesis involves fitting single Keplerian orbits, but if we wished to accomodate

multiple planet systems we would have to radically modify our method.
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Chapter 4

Results and Discussion

The data to be analysed consisted of radial velocity measurements for 58 solar

type stars, selected out of the 585 stars used in Cumming et al (2008) [20]

(where single values for the best-fit period and exoplanet mass had been esti-

mated using frequentist methods). The data were obtained with the HIRES

echelle spectrometer at the Keck 1 optical telescope in Hawaii as part of the

Keck Planet Search program [78]. The uncertainty on the radial velocity mea-

surements is typically 3-5 m/s. Only data pertaining to stars with at least 10

observations over a period of two years or more were used in this analysis. The

reader should refer to Cumming et al (2008) [20] for additional details on how

the radial velocity data were obtained.

The selection was based on period (we chose the long period candidates,

with P > 300 days) and estimated exoplanet mass (we chose candidates with

M < 10MJ). In terms of mass, an exoplanet is loosely defined as having a

mass lower than 12 − 13MJ . Objects above this mass are often classified as

brown dwarfs (see section 1.1). However, the boundary between the two is

fairly blurred. Consequently, we conservatively chose 10MJ as an upper mass

limit.

Of the 58 stars, 21 have confirmed planets (i.e. a published orbital solution)

and the remaining 37 are unconfirmed candidates. We did not discriminate

between those two categories during our analysis. It is to be noted that,
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although the confirmed planets have a confirmed mass which corresponds to an

exoplanet mass as described above, some or all of the unconfirmed candidates

may turn out to be objects with masses above 10MJ . This is because the

values for the best-fit period obtained in [20] are based on the data currently

available, which in most cases does not cover an entire period.

4.1 Comparison with Previous Work

Before producing probability distributions for all the data sets we used, we

wanted to make sure our program produced accurate results. To accomplish

this, we compared the period-eccentricity probability contour plot for HD72659

(Fig. 4.1(a)) with the one produced in Ford 2005 [27] (Fig. 4.1(b)). This is a

plot of the probability distribution marginalized over all parameters except the

period and eccentricity. We used the same data set as in [27], which consists

of fewer measurements than we have available today. To obtain the contours,

we calculated the height of the probability distribution above which 68.3%

(1 σ), 95.4% (2 σ) or 99.73% (3 σ) of the total volume encompassed by the

distribution is contained. In other words, 68.3% of the distribution lies above

the height defined by the 1 σ contour, and so on.

Overall, the probability distributions match. Nevertheless, a few differences

are present. In Figure 4.1(a), the 1σ contour does not extend to as high periods

as in Figure 4.1(b). Additionally, it does not include e = 0 in the left-hand plot,

while it does in the right-hand plot. We believe these discrepancies originate

from the finite grid sampling used in our method, whereas the right-hand plot

was produced using Markov Chain Monte Carlo (see section 2.2). The latter

technique is adaptive and thus can sample more finely in some regions of P −e
space as needed, while our approach uses the same sampling throughout the

entire P − e space. Furthermore, the high e and P end of the contour plot tail

reaches higher on the e axis in the left-hand plot than on the right-hand plot.

We are not sure where this difference comes from, but we believe the difference

in sampling may partly account for it as well. In conclusion, we attributed the
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(a) (b)

Figure 4.1 Probability distribution marginalized over all parameters except the
P and e, for HD 72659. The solid contours indicate the 1, 2 and 3 σ confi-
dence intervals, corresponding to 68.3%, 95.4% and 99.73% of the probability
distribution. a) Our contour plot. b) The contour plot taken from [27] (the
dotted contours represent 1, 2 and 3 σ confidence intervals obtained through
a different method, and the dot represents the best-fit orbital solution based
on later observations made after the rest of the plot had been composed). The
plot in subfigure b) is used with the permission of E.B. Ford.

minor differences to the different methods used to produce each plot (simple

grid sampling for Figure 4.1(a) and MCMC for Figure 4.1(b)).

We then proceeded to analyse the remainder of the data sets.

4.2 Probability Distributions

Having run our program on the 58 sets of measurements, we produced proba-

bility distributions for P and e for each set. We include plots of the associated

radial velocity measurements (Figure 4.2). We also include six examples of

distributions for each of the two parameters as well as six examples of the con-

tour plots for both parameters (Figures 4.3, 4.4 and 4.5. These six examples

correspond to six unconfirmed candidates.

Figure 4.3 shows a good variety of shapes and breadths of the period prob-

ability distributions. In general, the period is well constrained within approxi-
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mately one order of magnitude. We can also observe this in the contour plots:

the 1σ confidence interval most often encompasses less than one order of mag-

nitude for the period. This tells us that even with radial velocity measurements

covering only a fraction of an orbit, it is still possible to place reasonably good

constraints on the periods of these candidates.

Figure 4.2 Radial velocity measurements and p10/200 values (see text for details)
for six unconfirmed candidates.
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Figure 4.3 Period probability distributions for six unconfirmed candidates.

On the other hand, the eccentricity (Fig. 4.4) is much less constrained.

Again, this can also be seen in the contour plots, where in many cases the 1σ

confidence interval extends over the entire range of eccentricity. One way to

explain this effect is as follows. For the period, we can always establish a fairly

clear lower limit; any period below this limit simply cannot fit the data at all,

no matter how we vary the other parameters. For example, in the plot for Star
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Figure 4.4 Eccentricity probability distributions for six unconfirmed candi-
dates.

3 in Figure 4.2, we would be hard put to fit an orbit with a period of less than

2500 days. Although less abrupt than the lower limit, we can also recognise

an upper limit on period since the tail of the distribution does not generally

reach 3×105 days (the upper end of the P sampling). This upper limit is

due to the upper limit we chose on exoplanet mass (10 MJ) and hence on K.
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Figure 4.5 Period-eccentricity probability distributions for six unconfirmed
candidates. The contours indicate the 1, 2 and 3 σ confidence intervals, cor-
responding to 68.3%, 95.4% and 99.73% of the probability distribution.

This says that for the orbit of a candidate to have a period larger than the

upper limit seen in the corresponding distribution, the candidate must be more

massive than 10 MJ , which is beyond the K values sampled. For example, the

candidate orbiting Star 3 cannot have a period longer than ≈ 3 × 104 days if
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it has a mass lower than or equal to 10 MJ . In the case of the eccentricity,

however, we can often vary the other parameters in such a way as to obtain

a decently fitting orbit of any eccentricity. Thus, a clear lower or upper limit

for this parameter cannot be easily defined.

Most of the probability distributions as a function of both period and

eccentricity (Fig. 4.5) exhibit a common feature: part of the distribution (in

some cases, the entire distribution) tends to curve towards the upper right

corner of the plot. In other words, the best-fit eccentricity increases with the

best-fit period according to a specific function. Our attempt to predict this

correlation is described in section 4.3.

As discussed in the previous chapter and at the beginning of this chapter,

we selected the confirmed planets and unconfirmed candidates for the analy-

sis based on the 10MJ criterion (as well as the previously estimated best-fit

period) and chose an upper limit for the velocity semi-amplitude accordingly.

However, some of these objects may prove to have higher masses. To account

for this, we wished to find the probability that a given object is a planet (as

defined above) versus a higher-mass object (p10/hm). We ran our program on

all 58 data sets once again, modifying the upper limit on K to correspond to

200MJ . We found that beyond 200MJ , the probability distributions for P and

e as well as p10/hm did not change much, so we chose this value as a “maxi-

mum” mass for a higher-mass object. Thus, p10/hm became p10/200, which is

calculated as follows:

p10/200 =
p(d|M10)

p(d|M200)
(4.1)

where d is the data, M10 is the model for an object with mass less than

10MJ , and M200 is the model for an object with mass less than 200MJ . We

computed this value for each of the 58 data sets. It is noteworthy that generally

p10/200 was much higher for the confirmed planets than for the unconfirmed

candidates, as expected.
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4.3 A Closer Look at the Period-Eccentricity

Probability Distributions

In Figure 4.5, the period-eccentricity probability contour plots for Stars 1,4 and

5 exhibit a branch that curves to higher eccentricity at higher period, although

it is less pronounced in the first plot. A second branch is often present as well,

as in the plot for Star 3 in the same figure. In fact, over half of the contour

plots we prepared display both branches. A representative example is shown

in Figure 4.6(a). In some cases, only the right-most branch is present (Figure

4.6(b)).

There are also a few distributions that look like HD 190406 (Figure 4.5)

and for which P and e seem relatively well constrained. This is due to the

limited range of K values we searched. As we discussed before, the upper

limit we used for K corresponded to 10 MJ . In cases where the previously

estimated planet mass [20] lay between 4 and 10 MJ the contour plots looked

like that for Star 2 in Figure 4.5. It seemed somewhat suspicious that the

planets with the largest estimated masses (and likely the largest best-fit K)

would be the ones best constrained in the P -e plane. When we raised the upper

limit on K to correspond to 200 MJ , keeping everything else unchanged, we

found that the period-eccentricity distributions for these objects invariably

broadened and assumed the two-branch shape present for other objects. A

good illustration of this can be found in Figure 4.7. Upon increasing the

sampling range forK, we obtained many more possible orbital solutions within

a given confidence interval. By essentially eliminating the (planetary) upper

limit on K, orbital solutions are found that fit the data much better (i.e. that

have much higher probability) than the solutions found for an object between

0 and 10 MJ . In other words, the probability distribution of Figure 4.7(a)

hides in the probability distribution of Figure 4.7(b) which is much higher.

This observation does not affect other aspects of our analysis, but it was

useful in interpreting the probability distributions.

Returning to the two branches described at the beginning of this section, we

67



(a)

(b)

Figure 4.6 Period-eccentricity probability distributions, showing a) two
branches and b) a single branch.

believe they can be predicted analytically. In Cumming 2004 [19], it was found

that for some long period candidates, when the data cover only a fraction of

the orbit, it is possible to fit a quadratic to the data fi = at2i +bti+c and obtain

as good a fit as with a circular orbit sinusoid (equation (3.1)). A quadratic fit

then gives the following relation between K and P :

K =
P

2π

(

b2 + P 2 c
2

π2

)1/2

. (4.2)

Essentially, equation (4.2) says that when a quadratic is a good fit to the

data, these two parameters scale as K ∝ P 2. We have decided to use the same
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(a)

(b)

Figure 4.7 Period-eccentricity probability distributions. a) The upper limit on
K corresponds to 10 MJ . b) The upper limit on K corresponds to 200 MJ .

approach for eccentric orbits. By fitting a quadratic to data that cover only

part of a full period, we hope to find a relation between P and e (possibly

dependent on some of the other parameters as well) which describes the two

branches apparent in most of the period-eccentricity probability distributions.

At the time of this writing, it is still a work in progress.
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4.4 Average Period Probability Distribution

The next step in this statistical analysis consisted of producing a weighted

average of the period distributions. The distributions were weighted by their

corresponding probability of representing an object with mass < 10MJ , p10/200

(obtained as described in section 4.2), and then averaged over the 58 long

period exoplanets and candidates. The weighted average of the period distri-

butions is shown in Figure 4.8. (The weighting step also allows us to use only

the term “planet” when discussing this plot.)

One conclusion that can be drawn from this plot is that there is a much

higher probability to have planets with periods between 300 and 104 days than

planets with periods above 104 days. This is consistent with results obtained

in Cumming et al. 2008 [20], where the period distribution for P < 2000 days

was extrapolated to predict the occurrence rate of long period planets. It was

found that 17% to 19% of solar type stars are expected to host a gas giant

with period less than 3.2×104 days. However, the actual numbers of confirmed

planets and candidates detected to date indicate that 18% of solar type stars

host a planet with period less than only 1.2 × 104 days. These figures would

suggest that extremely few stars are expected to have planets with periods

between 1.2 × 104 and 3.2 × 104 days. Figure 4.8 supports this conclusion.

Nevertheless, the uncertainties in the orbital parameters must be included in

the statistical analyses before we can extract more convincing hypotheses.
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(d)

Figure 4.8 Average probability distribution for the period for the 58 long period
confirmed planets and candidates.
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4.5 Period-Metallicity Trend

Inspired by recent metallicity and stellar mass studies in the context of exo-

planets ([25], [32]), we wanted to see if a correlation might exist between the

period and the stellar metallicity. Since there already seems to be a connection

between metallicity and stellar mass [50], we also plotted the period versus the

stellar mass. We extracted the best-fit period for each planet and candidate

from the corresponding period probability distribution. The stellar masses

were obtained from [73] and [76].

The plot of the best-fit periods versus the stellar mass is shown in Figure

4.9. Although no trend is apparent, it should be noted that the masses of

most of these stars are close to solar mass, and as such this distribution is not

representative of a very wide range of stellar masses.

Figure 4.9 Pbf−stellar mass distribution for the 58 long period confirmed plan-
ets and candidates (P > 300 days). The error bars correspond to the 1 σ
confidence intervals of the associated probability distributions.

Stellar metallicity is generally expressed as “[Fe/H]”, which represents the

logarithm of the ratio of a star’s iron abundance compared to that of the Sun.

We obtained the stellar metallicity for each of the 37 stars with unconfirmed
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candidates from [54], [9], [60], [73] and [76]. The plot of the best-fit periods

versus the stellar metallicity is shown in Figure 4.10. We have then produced

the same plot for 257 confirmed planets with available stellar metallicity data

(regardless of period duration), for which we have obtained the best-fit peri-

ods and metallicities from exoplanet.eu/catalog.php, and for the unconfirmed

candidates combined in Figure 4.11.

Figure 4.10 shows a trend of decreasing period with increasing metallicity.

The circled points correspond define a possible outer envelope. When plotting

the distributions for the known exoplanets and the unconfirmed candidates

together in Figure 4.11, the trend is still apparent at periods longer than

≈5000 days; however, it is not noticeable among the confirmed planets at

periods below 5000 days.

Before establishing whether what we observed is a real correlation between

period and stellar metallicity, we must first check that this is not caused by

any selection effects. We first looked at the duration of observations. Radial

velocity measurements for many higher metallicity stars have only begun to be

collected recently, motivated by studies of a possible correlation between stellar

metallicity and planet frequency (see section 1.5). For data sets with shorter

durations of observations, our program favors shorter best-fit periods. This

can be seen in Fig. 4.3: the probability distributions have a more pronounced

tail towards longer periods, with the best-fit period generally lying nearer

the lower period cutoff than the higher period cutoff. Consequently, it was

possible that we found lower best-fit periods for candidates around stars with

higher metallicities, if the duration of observation was shorter than for stars

with lower metallicities. Figure 4.12 shows our study of this possible selection

effect.

There does seem to be a decrease in duration of observations at higher

metallicities. However, only the right-most point corresponds to one of the

circled envelope points which determine the trend in Figure 4.10. Although

we cannot conclusively show it, we can tentatively assume that the duration

of observations is not significantly responsible for the trend.
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Figure 4.10 Pbf−stellar metallicity distribution for the 37 long period uncon-
firmed candidates. The diamonds correspond to candidates with p10/200 < 0.1
while the circular points correspond to candidates with p10/200 > 0.1. The error
bars correspond to the 1 σ confidence intervals of the associated probability
distributions. The metallicity is expressed as [Fe/H], where 0.0 corresponds
to the metallicity of the Sun. The circled points constitute the outer envelope
of a possible trend (see text for details). Not plotted here for visual ease are
the error bars for the metallicity values: the magnitude of these error bars
corresponding to the 1 σ confidence interval is 0.019 [76], which is roughly the
diameter of the data points on this plot.

Next, we checked whether the observational uncertainty in the radial ve-

locity measurements might be of concern. We plotted the mean uncertainty

for each candidate versus metallicity in Figure 4.13. There are a few outlying

points, but no clear correlation. None of the outlying points correspond to any

of the circled envelope points from Figure 4.10. We concluded that this effect

is not likely to have caused the period-metallicity trend.

In Figures 4.10, 4.12 and 4.13 we have distinguished between candidates
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Figure 4.11 Pbf−stellar metallicity distribution for the 37 unconfirmed candi-
dates and all 257 confirmed planets (for which stellar metallicity information
was available) combined. The confirmed planets are representd by dots and
the candidates are represented by asterisks. The metallicity is expressed as
[Fe/H], where 0.0 corresponds to the metallicity of the Sun.

with values of p10/200 below and above 0.1. Indeed, since those candidates with

p10/200 less than 0.1 are unlikely to be planets (see section 4.2), they could

justifiably be removed from these three plots. As more radial velocity mea-

surements are added to the data sets of these candidates, their corresponding

p10/200 values may either increase or decrease, thus validating or invalidating

the period metallicity trend. For now we plot them alongside candidates with

p10/200 > 0.1 and distinguish them as described above.

Finally, we determined the correlation coefficient (r), which measures the

strength and direction of a linear relationship between two variables. A value

of r close to +1 or -1 indicates a high degree of correlation and a good fit to a

positive or negative linear model respectively. A value of r close to 0 indicates

a poor fit to a linear model. The correlation coefficient we find between the

best-fit period and the stellar metallicity is -0.42. This indicates that there is

some correlation, but the distribution is too scattered to be considered a good
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fit to a linear model. It is also possible that the relationship between the two

variables is accurately described by a non-linear model, which could explain

why the value of r is closer to 0 than to -1.

We must also do a Kolmogorov-Smirnov (KS) test on the period-metallicity

distribution in order to assess how significant the trend is statistically. Specif-

ically, we want to quantify the difference between the distribution above 5000

days (candidates), and that below 5000 days (Figure 4.11). The KS test does

this by computing the KS statistic, taking into account the number of points

in each distribution. However, at the time of this writing we have not yet had

time to perform this test.

Figure 4.12 Duration of observations versus metallicity for the 37 unconfirmed
candidates. The diamonds correspond to candidates with p10/200 < 0.1 while
the circular points correspond to candidates with p10/200 > 0.1. The circled
candidates are the same as the circled envelope candidates in Figure 4.10. The
metallicity is expressed as [Fe/H], where 0.0 corresponds to the metallicity of
the Sun. The magnitude of the error bars corresponding to the 1 σ confidence
interval for the metallicity values is 0.019 [76], which is roughly the diameter
of the data points on this plot.
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Figure 4.13 Mean observational uncertainty versus metallicity for the 37 uncon-
firmed candidates. The diamonds correspond to candidates with p10/200 < 0.1
while the circular points correspond to candidates with p10/200 > 0.1. The
circled candidates are the same as the circled envelope candidates in Figure
4.10. The metallicity is expressed as [Fe/H], where 0.0 corresponds to the
metallicity of the Sun. The magnitude of the error bars corresponding to the
1 σ confidence interval for the metallicity values is 0.019 [76], which is roughly
the diameter of the data points on this plot.

If the decreasing period with increasing metallicity trend is indeed real,

it could be explained by some current planet migration models. Sandquist

et al. [68] have shown using simulations that it is possible for planets to

migrate toward and become absorbed by their host star; depending on the

composition of the planet’s interior, this process can result in an increase in

the star’s metallicity. In this context, close-in planets (or planets with shorter

periods, since the period is related to the semi-major axis through (1.1)) could

constitute the tail of a stream of planets that have been consumed by the

host star. Thus, we can speculate that planets which are further out (longer

periods) are associated with lower metallicity stars which did not get a chance
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to have their meal. In this frame of thought, we then expect such systems

to host more than one planet. A follow-up project on this topic would be to

search for other companions by fitting multi-Keplerian orbits to the data sets

corresponding to the unconfirmed candidates.
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Chapter 5

Conclusion and Future Work

The goal of this thesis was to place constraints on the period and eccentric-

ity of long period exoplanets, and to shed some light on questions such as

the incidence of such exoplanets. Motivated by the advantages of and the in-

creasing use of Bayesian inference in the characterisation of exoplanet orbits

([27], [34]), we adopted a Bayesian approach for our own analysis. We first

developed a program to fit circular Keplerian orbits to radial velocity data,

and then upgraded to an eccentric orbit program. Along the way, we derived

analytical solutions for some of the calculations while others we did numeri-

cally. We also found that a Gaussian is not always a good approximation to

the probability distributions for the phase. From our results, we were able

to place some qualitative constraints on the probability distributions for the

period and eccentricity, including a possible correlation between those two pa-

rameters. Our average probability distribution for the period supported the

results obtained by Cumming et al. (2008) [20] regarding the incidence of long

period exoplanets. Finally, we revealed a possible trend suggesting that, at

long periods, the orbital exoplanet period decreases with increasing host star

metallicity.

Near future work involves obtaining the latest radial velocity data for the

long period planets and candidates we analysed (the data used for this thesis
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ends in 2004 (see [20])), and producing updated period and eccentricity distri-

butions. Further work should be done on analytically predicting and under-

standing the period-eccentricity correlation. The possible period-metallicity

trend should be verified more carefully, and a Kolmogorov-Smirnov test should

be done to compare the candidates and confirmed planets distributions, thus

assessing the significance of the trend. Nevertheless, it is important to keep

in mind the large error bars on the best-fit period estimates. We hope that

with more recent data we will be able to reduce these error bars for some of

the candidates.

A far future goal would be to simultaneously search for multiple planets

within a same system (same set of radial velocity data). However, as we’ve

shown at the end of chapter 2, this would require either modifying our current

computational approach, or using a different method (MCMC) or a combina-

tion of different methods.

Ongoing radial velocity surveys (HARPS [62], HIRES [12], ELODIE [2])

continue to acquire data while budding programs such as MARVELS [55] (due

to go online in fall 2008) promise to search for planets around thousands more

stars and to achieve unprecedented levels of sensitivity. Transit surveys such as

the space based Kepler mission [10] (due for launch in 2008) will also provide

further candidates for radial velocity follow-ups. With these new data and

continuing progress on numerical simulations, we suspect the answers to many

planet formation and occurrence questions are forthcoming.
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