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ABSTRACT

Fiber-reinforced polymer (FRP) composites have several advantages over conven-

tional isotropic materials used in land, marine and aerospace applications. Most im-

portantly, they provide the flexibility to tailor their material properties, and changing

the fiber orientations in the material is one of the ways to do so. However, this makes

the design of laminated composite structures more complex and tedious due to the

large number of design variables (fiber orientation angles). This offers an opportunity

to use optimization techniques to design the best suited structure as per requirements

of the specific application. Different optimization methods have been used in the past

to optimize the stacking sequence of laminated composites, and genetic algorithms

(GAs) are reported to be the most popular to solve such design problems. How-

ever, GAs generate solutions according to arbitrarily defined termination criteria,

and the optimality of such solutions cannot be characterized. Moreover, they require

a high number of function evaluations, making them computationally expensive com-

pared to other evolutionary algorithms and direct-search methods. This motivates

us to try and test other derivative-free optimization methods to address the draw-

backs associated with GAs. In this work, we use the Mesh Adaptive Direct Search

(MADS) algorithm, and compare its performance to GAs when solving composite

stacking sequence optimization problems. Specifically, we compare the convergence

rate, computational cost and the quality of the solution.
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RÉSUMÉ

Les composites faits à partir de fibre renforcé de polymère ont plusieurs avantages

par rapport aux matériaux isotropiques conventionnels utilisés pour de multiples ap-

plications terrestres, marines et aérospatiales. L’aspect le plus important des com-

posites est leur capacité à modifier leurs propriétés; entres autres par le change-

ment de l’orientation des fibres dans le matériel Cependant, le design des com-

posites est plus complexe dû aux nombreuses variables présentes dans le matériel

(angle d’orientation des fibres). Ceci offre une opportunité d’utiliser des techniques

d’optimisation dans le but de concevoir des structures plus appropriées aux deman-

des spécifiques d’application. Diverses méthodes d’optimisation ont été utilisées

dans le passé afin d’optimiser la séquence d’empilement des composites stratifiés

et l’algorithme génétique (GAs) s’avère être le plus populaire afin de résoudre ce

type de problème. Toutefois, les GAs génèrent des solutions où les critères sont

arbitraires et dont l’optimum ne peut être caractérisé. De plus, le processus est cou-

teux en termes de calcul comparativement aux autres algorithmes évolutifs et aux

méthodes de recherche directes puisque cette technique nécessite un nombre élevé

d’évaluation des fonctions. Les faiblesses de l’algorithme génétique nous motivent

à tester d’autres méthodes d’optimisation sans dérivés. Dans cette recherche, nous

utilisons l’algorithme Mesh Adaptative Direct Search (MADS) que nous comparons

à l’algorithme génétique afin de résoudre des problèmes d’optimisation de séquence

d’empilement des composites. Plus précisément, nous comparons le taux de conver-

gence, le coût de calcul et la qualité de la solution.
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CHAPTER 1

Introduction

Derivative-free optimization is useful in simulation-based engineering design, because

in most of the engineering applications functions defining the optimization problem

cannot be explicitly expressed in closed form mathematical expressions. This makes

it either difficult or impossible to use gradient-based optimization methods, since

gradients are either not available or cannot be approximated reliably. Moreover, these

functions are often, if not always, highly non-linear, noisy, and discontinuous. Meta-

heuristic techniques such as Genetic Algorithms, Simulated Annealing and other

nature-inspired evolutionary algorithms have been successfully used to solve such

engineering optimization problems in the past. Genetic Algorithms are robust and

can find application in a broad range of optimization problems.

Since their early development, direct search methods (DSM) have proven to be robust

and reliable in derivative-free optimization. Mesh Adaptive Direct Search (MADS)

[1] introduced by Audet and Dennis in 2006 is a class of algorithms belonging to direct

search methods. It has been successfully implemented in a software package called

NOMAD (Non-linear Optimization by Mesh Adaptive Direct search). NOMAD is

a black-box optimization software which can handle non-linear, non-smooth, non-

convex objectives with mixed type of variables (continuous, discrete, categorical),
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and can also handle non-linear constraints [1]. Furthermore, MADS is backed by a

convergence analysis based on Clark’s calculus [2].

In this work, we use the Mesh Adaptive Direct Search in stacking sequence optimiza-

tion of laminated composites and compare its performance against GAs.

1.1 Motivation

Design of laminated composite structures is a complex and tedious task when com-

pared to the design of structures using conventional materials (metals and alloys)

due to the higher number of design variables involved. This is because, composites

provide the ability to tailor material behavior and structural response, and changing

the orientation of fibers in the material is on of the ways to achieve this. Consider-

ing fiber orientations as design variables essentially increases the number of design

variables. Hence, to design more efficient composite structures, different optimiza-

tion techniques have been used in the past, and Genetic Algorithms (GAs) have

been reported to be the most popular among researchers. There is no doubt that

genetic algorithms are a powerful tool in the field of optimization. However, genetic

algorithms have some limitations such as, they require a high number of function

evaluations before finding a suitable solution. Besides, they generate solutions ac-

cording to randomly chosen termination criteria, and the optimality of such solutions

cannot be characterized. A high number of function evaluations could be a major

drawback if function evaluations are performed using costly black-box programs.

MADS, on the other hand, has a proven convergence analysis, which means solu-

tions generated by MADS possess convergence properties [2]. Moreover, since its

2



introduction, MADS has been proved to be effective and efficient in solving highly

non-linear and discontinuous problems [3]. To our knowledge it has not been used in

the composite stacking sequence optimization yet. This motivates us to use MADS

to solve the stacking sequence optimization problem by considering the fiber orien-

tations as design variables. We demonstrate its effectiveness in addressing some of

the drawbacks associated with the genetic algorithms.

1.2 Objective

The primary objective of this thesis is to use the Mesh Adaptive Direct Search al-

gorithm to solve composite stacking sequence optimization problems and compare

its performance to the genetic algorithms. To assess the performance of both algo-

rithms under consideration, we solve two optimization problems in this work. The

first problem is a single objective unconstrained minimization with mixed variable

formulation, and the second problem is a bi-objective maximization problem formu-

lated with and without constraints. We analyze the results obtained to compare

MADS with GAs on parameters such as convergence rate, computational cost and

the quality of the solution.

1.3 Thesis Overview

This thesis is organized in 6 chapters. Chapter 1 briefly introduces the idea be-

hind this work, the motivation and the objective defined for this work. Chapter

2 describes the definition, classification, advantages and limitations of composites.

It also provides a detailed background about the mechanics of composite materials

along with equations and notations used in this work. In Chapter 3, we discuss about

3



design optimization of laminated composites. A brief review on different optimiza-

tion methods used in the past is presented in this chapter. Information on problem

formulations, the nested genetic algorithm approach, and all-in-one MADS approach

is presented in Chapter 4. A brief description of MADS is also presented in this

chapter. Algorithm settings used and the numerical results obtained are reported

in chapter 5. Finally, conclusion and suggestions for future work are presented in

chapter 6.
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CHAPTER 2

Introduction To Composites

2.1 Introduction

2.1.1 What are composites?

Composites are defined as materials formed by deliberately combining two or more

constituents with significantly different physical and/or chemical properties, which

after combining together produce a heterogeneous material with considerably dif-

ferent physical properties than its constituents. Unlike metal alloys, in composites

the individual constituents remain distinct. This definition includes a wide classifi-

cation of materials such as: fiber-reinforced polymers/plastics, reinforced concrete,

particle filled plastics, rubber reinforced plastics, wood laminates, ceramic mixtures,

metal-ceramic mixtures, etc. [4].

2.1.2 History of Composites

Early applications of composites can be traced back to history when it was found

that, combining two materials could lead to a material with superior performance

than that of its constituents. For instance, mud bricks reinforced with straw were

used in ancient Israelites in Egypt, Samurai swords and Damascus gun barrels were

made from combined layers of iron and steel for greater strength. Mongols made their

bows from cattle tendons, wood and silk bonded together using the glue made from
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animal hoofs and bones [4]. Since then composites have evolved significantly, and

what we have today are advanced composite materials with much superior properties

than the early composite materials used. In fact, some composites have properties

which are either superior or at par with some of the advanced metals and alloys.

The term advanced composites is generally associated with composites composed

of unidirectional long fiber (with modulus greater than 200, 000 MPa) reinforced

layers, with grater than 50% fibers by volume [4].

Use of modern composites is believed to began in 1937 when it was found that

fiberglass can be effectively used as a reinforcement. Soon, the advancements in

composites took a fast pace during World War II when aircraft manufacturers began

to adopt fiber reinforced polymer composites in structural and semi-structural parts

of airplanes. The invention of high strength fibers, such as carbon fiber (1961), boron

fiber (1965) and aramid fiber (1971) led to an increase in the use of fiber reinforced

polymer (FRP) composites not only in aerospace industry but also in automobiles,

armors, sports, medical applications, etc. [4].

2.1.3 Classification

Composites are mainly classified in three different categories depending on the type,

geometry, and the orientation of the reinforcement phase as shown in figure 2–1.

Among these types, continuous fiber composites are the most efficient in terms of

strength and stiffness. This class of composites can further be divided into sub-

categories based on the matrix material used such as, Polymer Matrix Composites,

6



Figure 2–1: Classification of composite materials based on the type of reinfocement
phase. (Source: [5])

Metal Matrix Composites, and Ceramic Matrix Composites. Polymer matrix com-

posites are of more interest in terms of structural efficiency. Hence, they are usually

the first choice for structural applications among other types [5, 6]. FRPs have several
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advantages over the conventional isotropic materials used in structural applications.

Some of these advantages are listed in next section along with limitations.

2.1.4 Advantages and Limitations

Higher specific strength (strength/ mass density) and specific modulus (modulus/

mass density) make fiber reinforced polymer composite structures relatively lighter

than other comparable metals and alloys used in industries. Better corrosion resis-

tance and fatigue life, ease to mold into complex shapes, stealth (low radar visibility)

are some of the other advantages of composites over metals [6]. The fact that com-

posite structures are lighter than metallic structures is evident from figure 2–2, where

structural efficiency (strength/weight) of carbon fiber/epoxy composite is compared

with titanium and aluminum alloys used in the aerospace industry. It is clear from

Figure 2–2: Relative structural efficiency of aerospace materials (Source:[6])

the figure that, carbon/epoxy composite is more efficient than aluminum and tita-

nium in static as well as fatigue structural efficiency (fatigue strength/weight). This
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essentially results in great weight savings, which ultimately translates into improved

performance, higher payloads, longer range and fuel savings in commercial aerospace

applications. Besides, the ability to tailor the material properties by selective use

of fiber orientations in laminates interests structural designers the most as it gives

designers more control to fine tune the structure as per the requirements of specific

application.

All the above mentioned benefits come with some limitations too. For instance,

the cost of advanced composite materials is higher than those of other conventional

isotropic materials. Lack of generalized design guidelines, expensive and slow manu-

facturing techniques, shorter working temperature range, etc. are some of the other

limitations of composites when compared with metals and their alloys [4, 6, 7, 8].

Moreover, unlike metals, composites are brittle, and the lack of ductility makes them

more vulnerable to stress concentrations and impact loads [6]. However, with the ad-

vancement in technology and science, engineers and scientists are trying to overcome

these limitations, and the use of composite structures is increasing in a variety of

applications. For example, 50% of the air-frame of Boeing-787 is made of advanced

composite material (mostly Carbon Fiber composites)(see fig. 2–3) which makes it

about 20% lighter than aluminum designs [9].

2.2 Basic Concepts

Fiber reinforced polymer composites are made up of layers (also called plies) of a

polymer reinforced with long, unidirectional (straight) fibers, as shown in figure 2–4.

9



Figure 2–3: Boeing 787: Material composition (Source: The Boeing Company)

Fibers in each layer can be oriented in different directions to have different strength

and stiffness.

Figure 2–4: Typical laminated composite layup (Source: [7])

Before we start analyzing the structural behavior and the mechanics of composite

materials, it is essential to establish some general conventions.
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2.2.1 Laminate Code and Coordinate System

The stacking sequence of plies in a laminate is described by the orientation of fibers

in continuous and unidirectional plies with respect to the x axis in an x − y − z

coordinate system as shown in figure 2–5. Here the z axis is perpendicular to the

plane of the laminate. The x − y − z coordinate system is also referred as "Global

or Geometric or Loading" coordinate system. In the global coordinate system, a

laminate can be represented by the sequence of orientation angles, θs, of fibers in

individual plies. Such a representation is often called as "Laminate Code" and goes

as follows:

[(θ1)i/(θ2)j/(θ3)k/· · ·]

where, θi denotes the fiber orientation, θ1 being the lowermost ply in the stack.

Subscripts i, j, k, · · · denote the number of adjacent plies with same fiber orienta-

tion.

Figure 2–5: The laminate coordinate system (x − y − z) and the ply coordinate
system (x1 − x2 − x3) (Source: [7])

The ply coordinate system x1 − x2 − x3 is generally referred as material coordinate

system where axis x1 is allied with the fibers and x2 is perpendicular to the fibers
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as shown in figure 2–5. For simplicity, the ply coordinate system x1 − x2 − x3 will

simply be referred as 1− 2− 3 here after. Also please note that, θ is positive in the

counterclockwise direction from x axis as shown in figure 2–5.

If there exists a symmetry about the mid plane of the laminate, such laminates are

called as symmetric laminates and are represented by a subscript ‘s’ in the laminate

code as shown below:

[(θ1)i/(θ2)j/(θ3)k/· · ·]S
For example,

[0/30/90]S =⇒ [0/30/90/90/30/0]

If the symmetry does not exist about the mid plane of the laminate, then such

laminates are called unsymmetrical laminates. Figure 2–6 shows examples of both

symmetric and unsymmetrical laminates with their laminate code.

Figure 2–6: (a) Symmetric Laminate, (b) Unsymmetrical Laminate
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2.2.2 Basic Lamina Properties

The basic material properties of an unidirectional ply are of vital importance. Based

on the micro-mechanics, an unidirectional ply shown in figure 2–7 can be character-

ized by the following material properties [5]:

Figure 2–7: Unidirectional lamina and principal coordinate axes. (Source: [5])

E1, E2, E3 Young’s moduli along principle ply directions

G12, G23, G13 Shear moduli in 1-2, 2-3, and 1-3 planes respectively (equal

to G21, G32, G31 respectively)

ν12, ν23, ν13 Poisson’s ratios (these Poisson’s ratios are different from

ν21, ν32, and ν31)

F1t, F2t, F3t Tensile strengths along principle ply directions

F1c, F2c, F3c Compressive strengths along principle ply directions

F12, F23, F13 Shear strengths in 1-2, 2-3, and 1-3 planes respectively (these

are equal to F21, F32, and F31 respectively)
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2.3 Mechanics of Composite Materials

2.3.1 Elastic Behavior of Uni-directional Lamina

The stress and strain components at a point in a continuum for any anisotropic

material as shown in figure 2–8 are related to each other by the generalized Hooke’s

law as shown in equations (2.3.1) and (2.3.2).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ31

σ12

σ32

σ13

σ21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1123 C1131 C1112 C1132 C1113 C1121

C2211 C2222 C2233 C2223 C2231 C2212 C2232 C2213 C2221

C3311 C3322 C3333 C3323 C3331 C3312 C3332 C3313 C3321

C2311 C2322 C2333 C2323 C2331 C2312 C2332 C2313 C2321

C3111 C3122 C3133 C3123 C3131 C3112 C3132 C3113 C3121

C1211 C1222 C1233 C1223 C1231 C1212 C1232 C1213 C1221

C3211 C3222 C3233 C3223 C3231 C3212 C3232 C3213 C3221

C1311 C1322 C1333 C1323 C1331 C1312 C1332 C1313 C1321

C2111 C2122 C2133 C2123 C2131 C2112 C2132 C2113 C2121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε31

ε12

ε32

ε13

ε21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.1)

Figure 2–8: State of stress at a point in a continuum (Source: [5])
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε31

ε12

ε32

ε13

ε21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1111 S1122 S1133 S1123 S1131 S1112 S1132 S1113 S1121

S2211 S2222 S2233 S2223 S2231 S2212 S2232 S2213 S2221

S3311 S3322 S3333 S3323 S3331 S3312 S3332 S3313 S3321

S2311 S2322 S2333 S2323 S2331 S2312 S2332 S2313 S2321

S3111 S3122 S3133 S3123 S3131 S3112 S3132 S3113 S3121

S1211 S1222 S1233 S1223 S1231 S1212 S1232 S1213 S1221

S3211 S3222 S3233 S3223 S3231 S3212 S3232 S3213 S3221

S1311 S1322 S1333 S1323 S1331 S1312 S1332 S1313 S1321

S2111 S2122 S2133 S2123 S2131 S2112 S2132 S2113 S2121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ31

σ12

σ32

σ13

σ21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.2)

The equations (2.3.1) and (2.3.2) can be written in indicial notation as follows:

σij = Cijkl εij

εij = Sijkl σij

(2.3.3)

where,

i, j, k, l = 1, 2, 3,

Cijkl = Stiffness Components,

Sijkl = Compliance Components

The symmetry of stress and strain tensors, σij = σji and εij = εji, reduces the number

of independent elastic constants from 81 to 36. And with the contracted notation1

and using τ and γ to represent shear stress and shear strain respectively, equation

1 The details on contracted notation are omitted for brevity. Readers may refer
[5] for more details.
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(2.3.1) can be written as,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

τ4

τ5

τ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

γ4

γ5

γ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.4)

For orthotropic materials (which have three mutually perpendicular planes of mate-

rial symmetry), the number of independent elastic constants, from equation (2.3.4),

is reduced from 36 to 9 as shown in equation (2.3.5) [5].⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

τ4

τ5

τ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

γ4

γ5

γ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.5)

Similarly, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

γ4

γ5

γ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0

S21 S22 S23 0 0 0

S31 S32 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

τ4

τ5

τ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.6)
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In structural applications, composites are generally used in the form of thin plates

loaded only in the plane of the laminate. Therefore, it is assumed that, all the

out-of-plane (direction 3) stress and strain components are zero, i.e.,

σ3 = τ4 = τ5 = 0

Moreover, it is much easier to work with stress-strain relations when they are ex-

pressed in terms of the familiar engineering constants i.e. moduli and Poisson’s

ratios. The relationship between stress and strain expressed in terms of engineering

constants can be derived by applying hypothetical normal and shear loads on the

hypothetical unidirectional lamina as shown in figure 2–9.

Figure 2–9: Normal and shear load applied to an uni-directional lamina (Source: [5])

1. Apply stress σ1 in the fiber direction (Uni-axial longitudinal tensile test) [10]

ε1 =
1

E1

σ1

ε2 =− ν12
E1

σ1

(2.3.7)

2. Apply σ2 in the matrix direction (Uni-axial transverse tensite test) [10]

ε2 =
1

E2

σ2

ε1 =− ν21
E2

σ2

(2.3.8)
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3. Apply in-plane shear stress τ6 [10]

γ6 =
1

G12

τ6 (2.3.9)

Under the assumption that the material is linearly elastic, stress-strain relations for

an uni-directional lamina can be obtained by superposing equations (2.3.7), (2.3.8),

and (2.3.9).

ε1 =
1

E1

σ1 − ν21
E2

σ2

ε2 =− ν12
E1

σ1 +
1

E2

σ2

γ6 =
1

G12

τ6

(2.3.10)

Equation (2.3.10) can be written in matrix form to get the strain-stress or compliance

relations for an uni-directional lamina as,⎡
⎢⎢⎢⎢⎣
ε1

ε2

γ6

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
E1

−ν21
E2

0

−ν12
E1

1
E2

0

0 0 1
G12

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
σ1

σ2

τ6

⎤
⎥⎥⎥⎥⎦ (2.3.11)

where,⎡
⎢⎢⎢⎢⎣

1
E1

−ν21
E2

0

−ν12
E1

1
E2

0

0 0 1
G12

⎤
⎥⎥⎥⎥⎦ = [Sij] = Compliance Matrix · · · · · · · · · i, j = 1, 2, 6
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Similarly, a stiffness matrix, "Q", can be obtained by inverting equation (2.3.10) to

get,

σ1 = mE1 [ε1 + ν21ε2]

σ2 = mE2 [ν12ε1 + ε2]

τ6 = G12 γ6

(2.3.12)

where,

m = [1− ν12ν21]
−1

Equation (2.3.12) can be written in the matrix form with the stiffness components

represented by Qij as, ⎡
⎢⎢⎢⎢⎣
σ1

σ2

τ6

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
ε1

ε2

γ6

⎤
⎥⎥⎥⎥⎦ (2.3.13)

where

Q11 = mE1

Q22 = mE2

Q12 = mν21E1 = Q21 = mν12E2

Q66 = G12

Because of the symmetry of both stiffness and compliance matrices we have,

S12 = S21

Q12 = Q21

∴ ν12E2 = ν21E1

=⇒ ν12
ν21

=
E1

E2
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Since ν12 and ν21 are related to each other through moduli E1 and E2, the material

properties for an unidirectional ply can be defined using 4 interdependent engineering

constants such as, E1, E2, G12, and ν12 or ν21.

2.3.2 Stress, Strain, and Material Property Transformation

Unlike isotropic materials, where material properties do not change with the reference

coordinates, in composite materials properties do change with reference coordinates.

Hence, transformation of stress, strain, and material properties for different orienta-

tions of fibers is really important. Moreover, often the lamina or local coordinates

(1− 2) do not coincide with the loading or reference coordinates (x− y) (see figure

2–10). In such case, the "on-axis" stress and strain (w.r.t. lamina coordinates 1− 2)

Figure 2–10: Stress components in an uni-directional lamina w.r.t. global and local
coordinates (Source: [5])
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can be expressed in terms of the off-axis quantities (w.r.t. reference coordinates x−y)

as [10], ⎡
⎢⎢⎢⎢⎣
σ1

σ2

τ6

⎤
⎥⎥⎥⎥⎦ =

[
Tσ

]
⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
ε1

ε2

γ6

⎤
⎥⎥⎥⎥⎦ =

[
Tε

]
⎡
⎢⎢⎢⎢⎣
εx

εy

γs

⎤
⎥⎥⎥⎥⎦

(2.3.14)

where

[
Tσ

]
=

⎡
⎢⎢⎢⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎥⎥⎥⎦ and

[
Tε

]
=

⎡
⎢⎢⎢⎢⎣

m2 n2 mn

n2 m2 −mn

−2mn 2mn m2 − n2

⎤
⎥⎥⎥⎥⎦

m = cos θ and n = sin θ

So, by using equation (2.3.14) it is possible to transform stresses and strains from

one coordinate system to another and equations (2.3.11) and (2.3.13) relate stress

and strain in on-axis coordinate system. Using these relations, it is possible to relate

stress to strain in the off-axis coordinate system as,⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Qxx Qxy Qxs

Qyx Qyy Qys

Qsx Qsy Qss

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
εx

εy

γs

⎤
⎥⎥⎥⎥⎦ (2.3.15)
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where

⎡
⎢⎢⎢⎢⎣
Qxx Qxy Qxs

Qyx Qyy Qys

Qsx Qsy Qss

⎤
⎥⎥⎥⎥⎦ = [Q]ij is a transformed off-axis stiffness matrix and can

be derived as follows,⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦ =

[
T−1σ

]
⎡
⎢⎢⎢⎢⎣
σ1

σ2

τ6

⎤
⎥⎥⎥⎥⎦ =

[
T−1σ

]
⎡
⎢⎢⎢⎢⎣
Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
ε1

ε2

γ6

⎤
⎥⎥⎥⎥⎦

=

[
T−1σ

]
⎡
⎢⎢⎢⎢⎣
Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤
⎥⎥⎥⎥⎦
[
Tε

]
⎡
⎢⎢⎢⎢⎣
εx

εy

γs

⎤
⎥⎥⎥⎥⎦

(2.3.16)

Comparing equations (2.3.15) and (2.3.16),

[Q]ij =

⎡
⎢⎢⎢⎢⎣
Qxx Qxy Qxs

Qyx Qyy Qys

Qsx Qsy Qss

⎤
⎥⎥⎥⎥⎦ =

[
T−1σ

]
⎡
⎢⎢⎢⎢⎣
Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤
⎥⎥⎥⎥⎦
[
Tε

]
(2.3.17)

Similarly, the transformed compliance matrix [S]ij can be written as,

[S]ij =

⎡
⎢⎢⎢⎢⎣
Sxx Sxy Sxs

Syx Syy Sys

Ssx Ssy Sss

⎤
⎥⎥⎥⎥⎦ =

[
T−1ε

]
⎡
⎢⎢⎢⎢⎣
S11 S12 0

S21 S22 0

0 0 S66

⎤
⎥⎥⎥⎥⎦
[
Tσ

]
(2.3.18)

Among the above two transformed properties, the stiffness matrix [Q]ij can be used

to determine the behavior of a multidirectional laminate made up of of plies or ply

groups with arbitrary fiber orientations.
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2.3.3 Elastic Properties of General Laminates

The classical laminate theory (CLT) predicts the elastic behavior of the laminate

under the following assumptions [5],

1. Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic.

2. The laminate is thin with its lateral dimensions much larger than its thickness

and is loaded in its plane only, i.e., the laminate and its layers (except for their

edges) are in a state of plane stress, i.e. (σz = τxz = τyz = 0).

3. All displacements are small compared with the thickness of the laminate, i.e.

(|u|, |v|, |w| � h)

4. Displacements are continuous throughout the laminate.

5. In-plane displacements vary linearly through the thickness of the laminate, i.e.,

u and v displacements in the x and y directions are linear functions of z.

6. Transverse shear strains γxz and γyz are negligible. This assumption and the

preceding one imply that straight lines normal to the middle surface remain

straight and normal to that surface after deformation.

7. Strain-displacement and stress-strain relations are linear.

8. Normal distances from the middle surface remain constant, i.e., the transverse

normal strain εz is negligible (compared with the in-plane strains εx and εy).

Laminate notations with the individual lamina z-coordinates marked as hi from the

reference plane are shown in figure 2–11(a).
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Figure 2–11: (a) Multidirectional laminate with individual ply coordinate notation,
(b) Force and moment resultants acting on an element in a ply. (Source: [5])

The total strain at any point in a laminate can be written in terms of in-plane strains

εoi and laminate curvatures ki as,⎡
⎢⎢⎢⎢⎣
εx

εy

γs

⎤
⎥⎥⎥⎥⎦
z

=

⎡
⎢⎢⎢⎢⎣
εox

εoy

γo
s

⎤
⎥⎥⎥⎥⎦+ z

⎡
⎢⎢⎢⎢⎣
kx

ky

ks

⎤
⎥⎥⎥⎥⎦ (2.3.19)

where, the superscript "o" represents strain due to in-plane deformation and is inde-

pendent of z. This is because of the thin laminate assumption. For small displace-

ments, in plane strains and curvatures are given as [7, 5, 10],

εox =
∂uo

∂x
, εoy =

∂vo
∂y

, γo
s =

∂uo

∂y
+

∂vo
∂x

kx = − ∂2w

∂x2
, ky = − ∂2w

∂y2
, ky = − 2∂2w

∂x∂y
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The stress-strain relation for the kth layer at distance zk from the reference plane

(see figure 2–11) w.r.t. laminate coordinate axes is given by equation (2.3.15). Sub-

stituting equation (2.3.19) in equation (2.3.15) we get,⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎣
Qxx Qxy Qxs

Qyx Qyy Qys

Qsx Qsy Qss

⎤
⎥⎥⎥⎥⎦

k

⎡
⎢⎢⎢⎢⎣
εox

εoy

γo
s

⎤
⎥⎥⎥⎥⎦ + zk

⎡
⎢⎢⎢⎢⎣
Qxx Qxy Qxs

Qyx Qyy Qys

Qsx Qsy Qss

⎤
⎥⎥⎥⎥⎦

k

⎡
⎢⎢⎢⎢⎣
kx

ky

ks

⎤
⎥⎥⎥⎥⎦ (2.3.20)

The resultant forces (Ni) and moments (Mi) acting on the an element in the kth ply,

as shown in figure 2–11(b), can be related to respective stress components as,⎡
⎢⎢⎢⎢⎣
Nx

Ny

Ns

⎤
⎥⎥⎥⎥⎦

k

=

∫ t/2

−t/2

⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

k

dz

⎡
⎢⎢⎢⎢⎣
Mx

My

Ms

⎤
⎥⎥⎥⎥⎦

k

=

∫ t/2

−t/2

⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

k

zdz

(2.3.21)

For a multi-layer laminate, the total force and moment resultants can be obtained

by summing up resultants for all the layers and is given by,⎡
⎢⎢⎢⎢⎣
Nx

Ny

Ns

⎤
⎥⎥⎥⎥⎦ =

n∑
k=1

∫ hk

hk−1

⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

k

dz

⎡
⎢⎢⎢⎢⎣
Mx

My

Ms

⎤
⎥⎥⎥⎥⎦ =

n∑
k=1

∫ hk

hk−1

⎡
⎢⎢⎢⎢⎣
σx

σy

τs

⎤
⎥⎥⎥⎥⎦

k

zdz

(2.3.22)
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where n is the total number of plies in the laminate and, hk and hk−1 are z-coordinates

of the upper and lower surfaces of the kth ply, respectively.

Putting equation (2.3.20) in equation (2.3.22) and using indicial notation, we get,[
N

]
x,y

=

[
n∑

k=1

[Q]
k

x,y

∫ hk

hk−1
dz

]
[εo]x,y

+

[
n∑

k=1

[Q]
k

x,y

∫ hk

hk−1
zdz

]
[k]x,y

=

[
n∑

k=1

[Q]
k

x,y(hk − hk−1)
]
[εo]x,y

+

[
1
2

n∑
k=1

[Q]
k

x,y(h
2
k − h2

k−1)
]
[k]x,y

=[A]x,y[ε
o]x,y + [B]x,y[k]x,y

(2.3.23)

and, [
M

]
x,y

=

[
1
2

n∑
k=1

[Q]
k

x,y(h
2
k − h2

k−1)
]
[εo]x,y

+

[
1
3

n∑
k=1

[Q]
k

x,y(h
3
k − h3

k−1)
]
[k]x,y

=[B]x,y[ε
o]x,y + [D]x,y[k]x,y

(2.3.24)

where A, B, and D are extensional stiffness or in-plane stiffness matrix, coupling

stiffness matrix (relates in-plane loads to curvature and moments to in-plane strains),

and bending/flexural stiffness matrix, respectively, and can be expressed as,

Aij =
n∑

k=1

Qk
ij(hk − hk−1)

Bij =
1

2

n∑
k=1

Qk
ij(h

2
k − h2

k−1)

Dij =
1

3

n∑
k=1

Qk
ij(h

3
k − h3

k−1)

(2.3.25)

with i, j = x, y, s.
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Finally, equations (2.3.23) and (2.3.24) can be combined and expressed in a matrix

form as, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nx

Ny

Ns

Mx

My

Ms

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Axx Axy Axs

Ayx Ayy Ays

Asx Asy Ass

Bxx Bxy Bxs

Byx Byy Bys

Bsx Bsy Bss

Bxx Bxy Bxs

Byx Byy Bys

Bsx Bsy Bss

Dxx Dxy Dxs

Dyx Dyy Dys

Dsx Dsy Dss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εox

εoy

γo
s

kx

ky

ks

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.26)

In this work, we solved two composite stacking sequence optimization problems. In

CASE-I we solve the target stiffness achievement of a composite box-beam, and in

CASE-II we optimize the stacking sequence of a rectangular sandwich panel with a

goal to maximize the safety factor (More details about the problem formulations is

given in chapter 4). In CASE-II, we can directly use load-strain relations given by

equation 2.3.26 to calculate the safety factor for given loading conditions, Ni and

Mi. For CASE-I, we use the mathematical model formulated by Simth and Chopra

[11] to calculate the stiffness of a composite box-beam. A brief description about

this model is presented in chapter 4.
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CHAPTER 3

Introduction To Optimization of Composite Stacking

Sequence

Design is a complex process, in which possibile alternatives are checked to choose

the best suitable one, essentially making it a decision-making process [12]. The

ultimate goal in the design process is either to minimize the efforts/investment or

to maximize the desired benefit. These objectives in any practical situation can be

expressed by a mathematical model, which is nothing but an abstract description

of the system using functions of certain variables, relevant natural laws, geometry,

etc. By having a criterion to compare these models for different choices, the best or

optimum solution can be identified using various optimization techniques [12, 13].

Some of these techniques are addressed in this chapter in point of view of composite

stacking sequence design optimization.

3.1 Introduction to Design Optimization

What is design optimization? While there exists numerous definitions for "design

optimization" in the literature, Papalambros and Wilde in [12] have proposed that,

design optimization is a process which involves:

1. The selection of a set of variables to describe the design alternatives.
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2. The selection of an objective (criterion), expressed in terms of the design vari-

ables, which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of the design

variables, which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize

(or maximize) the objective, while satisfying all the constraints.

Let x = [x1, x2, x3, · · · , xn] represents the set of design variables belonging to the sub-

set X of n-dimensional real space Rn, i.e., x ∈ X ⊆ R
n. The objective and constraints

can be quantifiably expressed as functions of design variables as, f(x), hi(x) =

0, and gi(x) ≤ 0, where, f, hi, and gi are objective, equality constraints, and in-

equality constraints, respectively. The optimization problem can then be written in

a general form as,

min f(x) subject to

⎧⎪⎨
⎪⎩
hi(x) = 0, · · · · · · i = 1, 2, · · · ,m1

gi(x) ≤ 0, · · · · · · i = 1, 2, · · · ,m2

(3.1.1)

Various techniques present today to solve the problem expressed in the above ex-

pression, which can broadly be classified as,

1. Gradient-based Methods

2. Derivative-free Optimization

As the name says, Gradient-based Methods (GBM) use gradients of functions, to

move towards the optimum/better solution from the initial point in a design space.

Derivative-free methods, on the other hand, do not need gradients of the functions.
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Instead, they only use function values to find the optimum/better solution to the

problem. Both these techniques have their own advantages and limitations, perhaps,

these advantages and limitations are often specific to the type and structure of the

problem one wishes to solve.

The application of these techniques to solve composite design optimization problems

is reviewed in the following sections.

3.2 Gradient-based Methods

As discussed before, gradient-based methods use gradients of the function to move

towards a better solution from the initial point in a design space. In numerical

optimization it is believed that, gradients of the function posses the most useful

information. For continuously differentiable functions, the first-order necessary con-

dition and the second order sufficient condition can be used to find local optima.

These necessary and sufficient conditions use the gradients of the function.

Gradient-based methods have been used in composite stacking sequence optimization

in the past. Ghiasi et al. in [14, 15] have compared optimization techniques used

to optimize the stacking sequence of laminated composites and highlighted potential

areas which need more attention. In [14], the authors have mainly covered the

constant stiffness design class, where the stacking sequence is uniform throughout

the laminate. They compared some of the popular gradient-based methods, such

as vanishing the function’s first order gradient, the Steepest Decent method, the

Conjugate Gradient method, the Quasi-Newton method, etc. All these methods

are well known for their fast and reliable convergence and can find local optima
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(or global optima in case of an unimodal function) in comparitively less number

of iterations and function evaluations [8, 12, 14]. However, these methods have

their disadvantages when applied to composite stacking sequence optimization. To

illustrate this let us consider a simple unconstrained problem with the objective of

maximizing the in-plane stiffness of a four-layer symmetric laminate with the stacking

sequence Θ = [θ1/θ2]s. The symmetry of the laminate about the mid-plane reduces

the number of variables from 4 to 2.

As seen in figure 3–1, the normalized in-plane stiffness, Axx, for a four-layer sym-

metric Graphite/Epoxy laminate1 is a multimodal function with multiple regions

where the first order partial derivative of the function reduces to zero. We use the

(a) Surface Plot (b) Contour Plot

Figure 3–1: In-plane stiffness Axx as a function of ply angles θ1 and θ2 for a 4 layer
symmetric Graphite/Epoxy laminate

sequential quadratic programming (SQP) algorithm in MATLAB optimization toolbox,

1 For Graphite/Epoxy properties: E1 = 141.5GPa, E2 = 9.8GPa, G12 =
5.9GPa, and ν12 = 0.42
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to find optimum fiber orientations to maximize the in-plane stiffness Axx. The re-

sults with different starting points are shown in the table 3–1. It is evident from

figure 3–1a that, Θ∗ = [0◦/0◦]s is the global optimum for this problem. It can be

Table 3–1: Example: Maximizing the stiffness for a 4-layer symmetric laminate using
GBM

Starting Function Solution, Obj. Function, Optimization
Point,Θ Evaluations Θ∗ Axx(GPa.m) Status

[02]s 3 [02]s 0.0728 Complete:Initial
point is local
optimum.

[0/90]s 3 [0/90]s 0.0389 Complete:Initial
point is local
optimum.

[902]s 3 [902]s 0.0050 Complete:Initial
point is local
optimum.

[±45]s 39 [02]s 0.0728 Complete:Local
optimum found.

[89/−1]s 112 [02]s 0.0728 Complete:Local
optimum found.

seen from table 3–1, a fairly simple, unconstrained problem with a smooth objective

function can be efficiently solved using GBMs. Here SQP, which essentially reduces

to a Newton’s method for unconstrained optimization problem, converges to a global

optimum ([02]s), even for the worst initial guess ([89/−1]s), in merely 112 function

evaluations.

Now, let us consider a similar problem, but with an objective to maximize the safety

factor under the application of bending about the y-direction. Here, the minimum of
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the safety factors calculated using three failure criteria such as, Maximum Stress cri-

terion, Tsai-Wu Quadratic failure criterion, and the Hashin Failure criterion, is taken

as the objective to maximize. The normalized safety factor as a function of design

variables, Θ = [θ1/θ2]s, under the bending load of 1, 000N (note that, this is bending

moment per unit width in Nm/m) is shown in figure 3–2 for Graphite/Epoxy.

(a) Surface Plot (b) Contour Plot

Figure 3–2: Bending safety factor as a function of ply angles θ1 and θ2 for a 4 layer
symmetric Graphite/Epoxy laminate

The results for this optimization problem are presented in table 3–2. It can be seen

from figure 3–2 that, the design space consists of multiple regions where the first

order gradient of the function reduces to zero satisfying the first-order optimality

condition. Hence, a gradient based method is most likely to get trapped in such local

optima. Such a situation is evident from table 3–2, where starting points [0/90]s and

[±45s] lead to a local optimum, whereas a more educated guess such as, [30/−30]s

leads to a near global optimum solution. Hence, perhaps, in such situations, a priori

knowledge of the design space of the problem one wishes to solve is critical to get a

better quality solution.
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Table 3–2: Example: Maximizing the safety factor for a 4-layer symmetric laminate
using GBM

Starting Function Solution, Obj. Function, Optimization
Point,Θ Evaluations Θ∗ Axx(GPa.m) Status

[02]s 3 [02]s 2.7565 Complete:Initial
point is local
minima.

[0/90]s 3 [0/90]s 1.4980 Complete:Initial
point is local
minima.

[902]s 9 [902]s 0.2002 Complete:Initial
point is local
minima.

[±45]s 410 [72.83/−3.55]s 1.4830 Stopped:Local
minima possible.

[30/−30]s 428 [2.26/−0.40]s 2.7522 Stopped:Local
minima possible.

Besides, GBMs can only handle continuous variable, and ply orientations are gener-

ally limited to only a set of discrete angles such as, 0◦,±45◦, 90◦. Considering these

limitations of gradient-based methods, it is necessary to try derivative-free optimiza-

tion methods, to be able to address more complex and realistic problems.

3.3 Derivative-free Methods

The inherent limitations present in gradient-based methods were, perhaps, one of the

greatest motivations behind the development of derivative-free optimization meth-

ods. Moreover, in engineering design optimization, most of the time the objective

and constraint functions are calculated using black-box simulations and cannot be

explicitely expressed in closed form mathematical expressions. Hence, the derivatives

of these functions are either unavailable or unreliable or very expensive to calculate.
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In such case, one might still want to carry out optimization, and derivative-free opti-

mization (DFO) methods provide the means to solve such problems. In fact, DFO is

considered to be one of the most important, open, and challenging areas in computa-

tional science and engineering [16]. As mentioned earlier, derivative-free optimization

methods only use function values to find an optimum/better solution. They provide

a way to address problems with inherent system noise, highly non-linear functions,

and with a high number of variables, or otherwise problems which are unseemly for

classical gradient-based methods [17]. We shall now look into the DFO methods used

in stacking sequence optimization of laminated composites.

Ghiasi et al. have reviewed some of the popular derivative-free optimization meth-

ods such as, Random Search methods, Simplex methods, Simulated Annealing (SA),

and Genetic Algorithms (GAs) used in stacking sequence optimization of composites

[14, 15]. Here the authors have concluded that, GAs have been the most popu-

lar in stacking sequence optimization of composite laminates, SA being the second

most popular method. These methods have been reveled to be quite significant in

composite lay-up design, as described in the following sections.

3.3.1 Genetic Algorithms

Genetic Algorithm belongs to the class of evolutionary algorithms. It mimics the

Darwin’s theory of survival of the fittest. In GA, a set of designs, usually refered as

a population of individuals is randomely generated, and is evolved through iterations

(usually referred as generations). In each generation, the population is transformed

using genetic operators such as, selection, cross-over, mutation, and reproduction
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[8]. Individuals with better function values are retained and passed on to the next

generation. The individual with best function value is returned as the solution when

the termination criterion are satisfied. A high-level representation of GA is shown

in figure 3–3.

Figure 3–3: High-level representation of Genetic Algorithm
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GAs have been used to find the optimal stacking sequence in variety of composite

structures such as, simple rectangular plates, sandwich panels, I-section beam, box-

beam, etc. Naik et al. in [18] used a simple binary coded GA to optimize the

simple rectangular laminated composite plate to minimize the weight of the plate,

with only ply orientations as variables. Here, the authors have considered strength

constraints under the application of tensile, compressive, and shear loads, either alone

or in combination. Almeida and Awruch in [19] used finite-element model, instead

of an mathematical model. They formulated the problem with ply orientation and

ply material as design variables while minimizing the weight and deflection of a

rectangular plate and conclude that, performance and reliability of the GA can be

improved by careful selection of parameters for genetic operators, and using memory

technique to store previous results to avoid repeated fitness evaluations. However,

this makes the algorithm complex to program and is not very effective if one wants to

make use of GA’s one of the advantages, that is its ease of programming. Similarly,

different variants of GA have been used in the past for different objective functions

[14, 15, 20, 21, 22, 23, 24]. Although, modifications in simple GA using different

techniques, such as memory approach [19], parallel computing [25, 26], multi-level

problem formulation [27], using problem specific genetic operators [21, 28], using

approximation models [22, 23], etc. seem to improve the algorithm performance and

robustness, it is almost impossible to comprehensively compare them, because GAs

are probabilistic methods [14].

Although GAs has been reported to be the most popular technique for stacking

sequence optimization of laminated composites, there are some limitations associated
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with them. For instance, they require a high number of function evaluation before

finding a better solution. The performance of GAs largely depends on population

size and parameters which control genetic operators. Moreover, GAs generate a set

of solutions according to a randomly defined termination criterion, and the solutions

generated do not posses convergence properties. The improvement in quality of the

solutions generated by GAs is usually at an expense of computational cost. Hence,

this offers an opportunity to test other derivative-free optimization techniques to

overcome shortcomings associated with GAs.

3.3.2 Simulated Annealing

Simulated annealing is an iterative procedure, which mimics the annealing process

in metallurgy. The algorithm works as follows. At any instance, the algorithm

randomly generates a design and tests it with the current design. The probability

that the worst design gets selected for the following iteration is controlled by the

controlling parameter, often referred as temperature in this case. At the beginning,

the temperature is assigned with a high value, which implies a higher probability that

the worst design will be passed down to the next iteration. This ensures extensive

search of the design space which is often the objective in most of the global search

algorithms. The temperature is gradually decreased as the algorithm moves forward

with the iterations, similar to the slow and controlled cooling in annealing process

[29]. In other words, at the beginning when the temperature is high, the search is

almost random, and with the decrease in temperature, the search becomes almost

greedy [30].
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Although simulated annealing is extensively used in the past to solve combinatorial

optimization problems, it is still a challenging task to define an ideal cooling sched-

ule which can cover large range of problems [30]. Moreover, generating a sequence

of points that converges to a non-optimal solution is another limitation of SA [14].

Therefore, several modifications have been proposed in the past to overcome this

limitation and to improve the performance and robustness of the algorithm. Rao

and Arvind in [30] used a tabu embedded simulated annealing (TSA) to solve a

stacking sequence optimization of laminated composites formulated as a combinato-

rial problem. They used the tabu search in order to prevent recycling of recently

visited points and to help algorithm to recover from the sub-optimal region. TSA

was reported to be at par as GAs in obtaining multiple near optimal solutions, and

the computational performance was reported to be superior for the problem type

considered. Akbulut and Sonmez used a new variant of SA called as Direct Search

Simulated Annealing (DSA) to optimize the rectangular laminated plate subjected

to in-plane loads in [31] and combination of in-plan and flexural loads in [32]. The

problem is formulated to minimize the thickness of the plate with fiber orientation

angles and layer thickness as design variables. Unlike standard SA, where only one

point moves in the design space, DSA uses a set of points in each move (iteration)

and it always retains the best solutions making it more robust than the standard

SA. The authors used 1◦ increment in fiber orientation to obtain a larger design

space to check robustness of the proposed algorithm, and concluded that the DSA

provided consistent and reliable results when compared to other variants of SA and

GA [31, 32].
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Although, SA and its variants have been extensively used in composite stacking

sequence optimization in the past, there are certain limitations associated with it.

For instance, there is no known cooling schedule that can be applied to a large set

of problems and most of the time, user has to define the cooling schedule and the

parameters associated with it using empirical evidences obtained from experimental

runs of the algorithm [30]. Moreover, SA is not as easy as GAs to program, and unlike

GAs, SA cannot be programmed to take advantages from the specific properties of

a given problem [14].

3.3.3 Other Meta-heuristic Techniques

Apart from GAs and SA, other nature-inspired derivative-free optimization methods

have also been used in the recent past. Kathiravan and Ganguli in [33] have used

the particle swarm optimization (PSO), an evolutionary algorithm which mimics

the behavior of a bird flock or a school of fish in search of the food, for maxi-

mizing the strength of a helicopter rotor box-beam. The performance of PSO is

compared with sequential quadratic programming (SQP) and authors have reported

that, PSO yielded results which are either superior or equivalent to that of SQP.

S.N. Omkar et al. developed a version of an evolutionary algorithm from the arti-

ficial immune system (AIS) paradigm, called Objective Switching Clonal Selection

Algorithm (OSCSA) for multi-objective optimization of composites [34]. Here, the

authors compared the performance of the proposed method with their previous work

(vector evaluated particle swarm optimization (VEPSO) [35]) to show the robustness

of proposed method. Furthermore, S.N. Omkar et al. proposed a variant of Artificial

Bee Colony (ABC) algorithm, another nature-inspired evolutionary algorithm based
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on the behavior of social insects, called Vector Evaluated Artificial Bee Colony (VE-

ABC) algorithm for multi-objective composite design optimization [36]. Here, the

authors used separate evaluations and swarms for multiple objectives and concluded

that the performance of this method is at par when compared to other evolutionary

algorithms such as, GAs, AIS, and PSO.

All in all, although GAs and SA have been have been reported to be the most popular

techniques in the past for optimization of composite stacking sequence, shortcomings

associated with these methods encourage researchers to test other derivative-free

optimization techniques.

3.3.4 Mesh Adaptive Direct Search

Direct search methods (DSM) use a systematic approach to find an optimum solution

for a given problem. Enumeration search, Nelder and Mead (NM) Simplex method,

random and greedy search, etc. have been used to optimize the stacking sequence

of laminated composites [14]. Hakan Boyaci in his master’s thesis used generalized

pattern search (GPS) algorithm to optimize the stacking sequence of anti-buckled

graphite/epoxy laminate for minimum weight [37]. Cardoso et al. have compared

the genetic algorithm and the particle swarm algorithm with direct search algorithms

[38]. Here, the authors have compared the performance of DSM with genetic algo-

rithm when solving computationally expensive structural optimization problems and

concluded that, DSM provided good quality solutions under low computational ef-

forts. With the availability of sophisticated software packages implementing these

methods, direct search methods can be promising in structural optimization..
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Mesh adaptive direct search, which extends the GPS by allowing the local search in

an asymptotically dense set of directions, has been proved to be effective and efficient

when solving black-box optimization problems [1, 39, 40, 41]. MADS is developed

to efficiently handle highly non-linear and discontinuous functions with numerical

noise. Moreover, it generates solutions which posses convergence properties [2]. This

encourages us to try and test MADS to solve composite stacking sequence optimiza-

tion problems. We find it is worth the efforts to try and compare the performance of

Mesh Adaptive Direct Search algorithm proposed by Audet and Dennis [1] to solve

the composite lay-up design optimization problem. A detail description of MADS is

presented in the next chapter.
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CHAPTER 4

Optimization Using Mesh Adaptive Direct Search and GAs

As discussed in the previous chapter, various composite lay-up design problem for-

mulations have been reported in the literature. Different objectives such as, strength

maximization, weight minimization, buckling factor maximization, etc. have been

used in previous studies. In this study, we have considered two composite stacking

sequence optimization problems. In CASE-I we solve the target stiffness achievement

of a composite box-beam, and in CASE-II we optimize the stacking sequence of a

rectangular sandwich panel with a goal to maximize the safety factor. We solve the

CASE-I using two variants of the GA, namely a nested GA approach and an all-in-

one GA approach, and compare their performance with the all-in-one approach with

mesh adaptive direct search (MADS) algorithm. Similarly, we solve the CASE-II us-

ing multi-objective GA (MOGA) and bi-objective MADS (bi-MADS) and compare

the performance of these algorithms. A detail information about problem formula-

tions and the algorithms is presented in following section.
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4.1 Problem Formulation

4.1.1 CASE-I: Helicopter rotor box-beam target stiffness achievement

Murugan et.al in [27] solved the composite box-beam optimization problem to design

the beam to satisfy the stiffness requirements. Here, the authors have considered stiff-

ness values obtained from an aeroelastic optimization study by Murgan and Ganguli

[42]. The elastic behavior of the box beam as shown in figure 4–1 is given by,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Qx

Mx

−My

Mz

⎤
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(4.1.1)

where K = [Kij] is a box-beam stiffness matrix. Please note that, subscripts

i, j = [1, 2, 3, 4] are different than the subscript notation used in chapter 2. Here,

subscripts represent the position of the stiffness component Kij in the 4×4 box-beam

stiffness matrix K. The stiffness matrix is calculated using the mathematical model

formulation for composite box-beams by Smith and Chopra [11]. A brief description

about the model is reported in subsection 4.1.1.

The off-diagonal terms in equation (4.1.1) are called elastic couplings. It is possible

eliminate the elastic couplings by making the walls of the box-beam made up of

symmetric and balanced lay-up and all four walls with the same stacking sequence.

Under this condition, Murugan et al. in [27] formulated the optimization problem

with the objective to achieve the desired bending stiffness about y and z direction
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Figure 4–1: Composite box-beam configuration and the coordinate system. Source:
[27]

and twisting stiffness about x direction. This objective translates into minimizing

the percentage error between the target stiffness and the actual stiffness. The opti-

mization problem can be written as,

min F(x) = [f1(x), f2(x), f3(x)]

subject to xl ≤ x ≤ xu

x = [b, h,Θ],

(4.1.2)

where b and h represent the geometry of the box as shown in figure 4–1, Θ = [θ1, θ2, θ3, · · ·]
represents the stacking sequence of the box-beam walls, and

f1(x) =

√
(K22 −KT

22)
2

(KT
22)

2
× 100

f2(x) =

√
(K33 −KT

33)
2

(KT
33)

2
× 100
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f3(x) =

√
(K44 −KT

44)
2

(KT
44)

2
× 100

Here, Kii represent the actual stiffness values of the box-beam given in equation

(4.1.1) and the superscript ‘T ’ in KT
ii represents the corresponding target stiffness

value. The target stiffness values obtained from the aeroelastic optimization [27, 42]

are given in table 4–1.

Table 4–1: Target stiffness values

Stiffness
K22 (GJ, Nm2) 20,419.79
K33 (EIy, Nm2) 38,364.46
K44 (EIz, Nm2) 82,916.73

For simplicity, the three objectives in equation (4.1.2) are converted into a single

objective function using min-max methods as,

min J = max[f1(x), f2(x), f3(x)] (4.1.3)

The authors in [27] partitioned the design variables separating the continuous type

geometry variables, b and h from the discrete fiber orientation variables. This sep-

aration of variables results in a nested loop optimization problem. The inner loop

finds the optimal stacking sequence, Θ∗ = [θ1, θ2, θ3, · · ·] for each box geometry [b, h]

in the outer loop. The nested loop problem formulation can be written as;
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Outer loop

min F(b,h,Θ∗)

subject to bl ≤ b ≤ bu

hl ≤ h ≤ hu

Inner loop: for a given [b, h]

min F(Θ)

subject to Θ ∈ {set of discrete ply angles}

Hence by using the nested approach, it is possible to find the best stacking sequence

for different geometries and simply select the one with minimum error. This ensures

thorough exploration of the design space.

In this study, to avoid an impractical solution, upper and lower bounds for ge-

ometry variables are considered as; b : 3 ≤ b ≤ 5, and h : 2 ≤ h ≤ 3. These

bounds have been chosen to have reasonable cross-section properties of the box-

beam based on the aeroelastic optimization of helicoptor rotor composite box-beam

by Murugan et al. [42]. A 10◦ discretization is considered for ply orientations, i.e.

θi ∈ {10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦}.

The mathematical model for composite box-beams by Smith and Chopra [11] is

presented in the next subsection.

Mathematical Model for Composite Box-Beams

The main advantage of the mathematical model for a composite box-beam by Simth

and Chopra [11] is that, in this model the authors have considered individual walls

of the box-beam as laminated composite plates, and the stiffness components of the
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box-beam, Kij, can be directly related to the the stiffness matrices A, B, and D of

the individual walls. This makes the model easy to program and computationally

less expensive. In our problem, we calculate three stiffness components for the com-

posite box-beam, such as the torsional stiffness (K22), the span-wise bending stiffness

(K33), and the chord-wise bending stiffness (K44). The expressions to calculate these

three stiffness components corresponding to the box-beam and the coordinate system

shown in figure 4–1 and figure 4–2 are;

K22 = (1 + β)2
∫∫

h

Qss z
2 dA + (1− β)2

∫∫
v

Qss y
2 dA

+ d0

[
(1− β)

∫∫
v

Qys y dA − (1 + β)

∫∫
h

Qys z dA

]

+ d1(1− β)

∫∫
v

Qys y
2 dA − d2(1 + β)

∫∫
h

Qys z
2 dA

K33 =

∫∫
h,v

Qxx z2 dA − c2

∫∫
h,v

Qxy z2 dA

K44 =

∫∫
h,v

Qxx y2 dA − b1

∫∫
h,v

Qxy y2 dA

(4.1.4)

where Qij is calculated from equation 2.3.17 for individual plies in the walls. The

subscript h and v on the double integral sign represent horizontal and vertical walls,

Figure 4–2: Composite box-beam cross-section and the coordinate axes
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respectively. These stiffness expressions contain a number of constants such as β, b1,

c2, d0, d1 and d2. These constants are defined in [11] as below.

β = − (1− α)

(1 + α)

α =

(
b

h

)

b1 =

∫∫
h,v

Qxy y2 dA∫∫
h,v

Qyy y2 dA

c2 =

∫∫
h,v

Qxy z2 dA∫∫
h,v

Qyy z2 dA

d0 =

[
(1 + β)

∫∫
h

Qys z dA − (1− β)

∫∫
v

Qys y dA

]
∫∫

h,v

Qyy dA

d1 =

−(1− β)

∫∫
h,v

Qys y
2 dA∫∫

h,v

Qyy y2 dA

d2 =

(1 + β)

∫∫
h,v

Qys z
2 dA∫∫

h,v

Qyy z2 dA

These expressions can easily be expressed in terms of the individual wall stiffness

components, Aij, Dij, and Bij as shown below.

Let us consider the expression for K33 from equation 4.1.4,

K33 =

∫∫
h,v

Qxx z2 dA − c2

∫∫
h,v

Qxy z2 dA
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The first term in the expression further expands to,∫∫
h,v

Qxx z2 dA =

∫∫
H1

QH1
xx z2 dA +

∫∫
H2

QH2
xx z2 dA

+

∫∫
V1

QV1
xx z2 dA +

∫∫
V2

QV2
xx z2 dA

where H1, H2, V1, and V2 correspond to the horizontal and vertical walls as shown

in figure 4–2. Let’s simplify the first term in the above equation,∫∫
H1

QH1
xx z2 dA =

∫∫
H1

QH1
xx z2 dy dz

=

b/2∫
−b/2

[∫
QH1

xx z2 dz

]
dy

= b

⎡
⎢⎣ m∑

i=1

h
2
+zi+1∫

h
2
+zi

(QH1
xx )

i z2 dz

⎤
⎥⎦

= b

⎡
⎢⎣ m∑

i=1

(QH1
xx )

i

h
2
+zi+1∫

h
2
+zi

z2 dz

⎤
⎥⎦

= b

[
m∑
i=1

(QH1
xx )

i z3

3

∣∣∣∣
h
2
+zi+1

h
2
+zi

]

= b

[
m∑
i=1

(QH1
xx )

i 1

3

([
h

2
+ zi+1

]3
−

[
h

2
+ zi

]3)]

= b

[
m∑
i=1

(QH1
xx )

i

([
z3i+1 − z3i

3

]
+ h

[
z2i+1 − z2i

2

]
+

(
h

2

)2

(zi+1 − zi)

)]

from equation 2.3.25∫∫
H1

QH1
xx z2 dA = b

[
DH1

xx + hBH1
xx +

(
h

2

)2

AH1
xx

]
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Similarly, it can be shown that,∫∫
H2

QH2
xx z2 dA = b

[
DH2

xx − hBH2
xx +

(
h

2

)2

AH2
xx

]

Similarly, other terms in expressions for stiffness parameters can be expressed using

general notations as;∫∫
H1,2

Q
H1,2

ij z2 dA = b

[
D

H1,2

ij ± hB
H1,2

ij +

(
h

2

)2

A
H1,2

ij

]
∫∫

V1,2

Q
V1,2

ij y2 dA = h

[
D

V1,2

ij ± bB
V1,2

ij +

(
b

2

)2

A
V1,2

ij

]
∫∫

H1,2

Q
H1,2

ij y2 dA =
b3

12
A

H1,2

1,2∫∫
V1,2

Q
V1,2

ij z2 dA =
h3

12
A

V1,2

1,2∫∫
H1,2

Q
H1,2

ij z dA = b

[
B

H1,2

ij ±
(
h

2

)
A

H1,2

ij

]
∫∫

V1,2

Q
V1,2

ij y dA = h

[
B

V1,2

ij ±
(
b

2

)
A

V1,2

ij

]
∫∫

H1,2

Q
H1,2

ij dA = b A
H1,2

ij∫∫
V1,2

Q
V1,2

ij dA = h A
V1,2

ij

Using the expressions given above, the mathematical model to estimate the stiffness

components of a composite box-beam is programmed in MATLAB.

4.1.2 CASE-II: Design of a critical section of a bicycle handle bar for
maximum safety factor

The bicycle handle bar is subjected to loads from the rider, as shown in figure 4–3a.

The goal is to design a lay-up for a sandwich beam construction at a critical section of

the handle. We assume that the critical section is made up of a rectangular sandwich
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plate as shown in figure 4–3b. The cyclic twisting of the handle is resolved into three

loads, an in-plane shear load N6, a bending moment M1, and a twisting moment M6

as shown in figure 4–3b. We assume the width and the length of the plate are fixed

(a)

(b)

Figure 4–3: Bicycle handle bar

to W = 3cm and B = 10cm respectively. The loads M1 = 5.5kN , M6 = ±3.25kN ,

and N6 = ±89kN/m (please note that these are loads per unit width) result into

two load cases;

1. Load Case:1

M1 = 5.5kN, M6 = 3.25kN, N6 = 89kN/m

2. Load Case:2

M1 = 5.5kN, M6 = −3.25kN, N6 = −89kN/m

The goal is to design the plate such that, it satisfies three failure criteria, maxi-

mum stress failure criterion, Tsai-Wu quadratic failure criterion, and Hashin fail-

ure criterion with the minimum safety factor for any layer to be at least 1.5. The

52



lightest possible design with a symmetric layup and with the 3cm thick honeycomb

core at the middle of the laminate consists of 12 layers (plies) of the unidirec-

tional Graphite/Thermoplastic (AS4/PEEK) composite. The material properties

for AS4/PEEK are given in the table 4–2. The symmetry about the mid-plane re-

Table 4–2: Material properties for Graphite/Thermoplastic (AS4/PEEK)

Elastic Properties Strength Properties
E1 (GPa) = 134 F1t (MPa) = 2130

E2 (GPa) = 8.9 F2t (MPa) = 80

G12 (GPa) = 5.1 F1c (MPa) = 1100

ν12 = 0.28 F2c (MPa) = 200

F12 (MPa) = 160

duces the number of design variables to 6 ply orientations. The laminate, in this

case, can be represented by the laminate code [θ1/θ2/θ3/θ4/θ5/θ6]s.

Safety factors, R1 for the load case-1 and R2 for the load case-2, are plotted as

functions of ply orientation angles in the figure 4–4. The surface plots are generated

for θ1 = θ2 = θ3 = θa, and θ4 = θ5 = θ6 = θb. It can be seen that, the safety

factor is a highly non-linear function with multiple local minima and maxima. It can

also been from figure 4–4 that, even though the shear load and the twisting moment

only change the direction and the magnitude of these two loads remain the same,

the safety factor as a function of the ply orientations behaves quite differently in

the design space. Moreover, figure 4–5 shows the objective space, where R1 and R2

are plotted against each other. Here the red ‘x’ markers represent the safety factors

for a 12 layer uni-directional symmetric laminate, [(θ)6]S (i.e. all six plies have the
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(a) Safety factor R1 as a function of ply orientation angles, [ (θa)3/(θb)3 ].

(b) Safety factor R2 as a function of ply orientation angles, [ (θa)3/(θb)3 ].

Figure 4–4: Safety factor vs Fiber orientation angles. (a): For load case-1, (b): For
load case-2

same fiber orientation), where θ is in the range of −89◦ to 90◦. The blue ‘o’ markers

represent the symmetric multi-directional laminate, [(θ1)/(θ2)/(θ3)/(θ4)/(θ5)/(θ6)]S,

where θi is in the range −89◦ to 90◦ and θ1 �= θ2 �= θ3 �= θ4 �= θ5 �= θ6.

The bi-objective maximization problem is first solved as an unconstrained problem.

The results for this formulation are reported in subsection 5.2.1. The problem is

then formulated as a constrained bi-objective maximization problem, and the results

for this formulation are reported in subsection 5.2.2.
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Figure 4–5: Safety factors, R1 and R2, as functions of fiber orientation angle

4.2 Algorithms

The primary objective in this thesis, as mentioned earlier, is to compare the perfor-

mance of mesh adaptive direct search (MADS) with the GAs. The variant of the

GA used in this study, the nested GA, and the MADS are briefly described in the

following subsections.

4.2.1 Nested GA approach

A nested GA based on the one reported in [27] to solve the problem formulated in

previous section is shown in figure 4–6. The algorithm uses two subroutines. The

Inner loop finds the optimal stacking sequence for a given geometry, and the Outer
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Figure 4–6: Representation of global and local GA

loop finds the optimal box geometry. In each iteration, the Outer GA randomly

generates a population of [b, h] (box geometry), and for each [b, h] the Inner GA

finds an optimal stacking sequence Θ∗ and calculates the objective function value for

[b, h,Θ∗]. This optimal stacking sequence and the objective function value is then

returned to the Outer GA.
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The helicopter rotor box-beam target stiffness achievement problem presented in sec-

tion 4.1.1 is solved using the nested GA approach and we compare the performance of

this approach to the all-in-one approach using MADS algorithm. A brief description

on MADS is presented in next section.

4.2.2 Mesh Adaptive Direct Search

Audet and Dennis introduced the Mesh Adaptive Direct Search (MADS) algorithm

to solve non-linear constrained optimization problems [1]. MADS is an extension to

the Generalized Pattern Search (GPS) algorithm. MADS allows the local search in

an asymptotically dense set of directions in the neighborhood of a current iterate.

This step of local exploration of the design space is usually referred as Poll step.

The algorithm is backed by the convergence to the second-order stationary points

based on Clark’s calculus [43] for non-smooth functions [1, 2]. Besides the advantage

of asymptotically dense polling directions over GPS, MADS can handle non-linear

constraints with the barrier approach. This implies that, instead of applying the

algorithm directly on the objective function f , MADS uses the barrier function, fΩ,

which is equal to f in the domain Ω and +∞ outside Ω [1]. Here, Ω represents

the feasible design space defined by constraints and is a subset of the entire design

space.

MADS has been successfully implemented in a software package, called NOMAD

(Nonlinear Optimization by Mesh Adaptive Direct Search) [44, 45, 46]. NOMAD

is designed to handle black-box optimization problems, where optimizing functions

are often costly programs or simulations with no gradient information available and
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it is unworthy to calculate or approximate the gradients due to numerical noise

and/or high computational cost. NOMAD is equiped with various features such as,

bi-objective optimization, the ability to handle continuous, integer, binary, and cate-

gorical variables at the same time (i.e. Mixed Variable Programming), which accord-

ing to our knowledge, no other optimization software provides all together. It also

implements the Variable Neighborhood Search (VNS) as one of the in-built search

strategies to make it a Global Optimization Tool [39]. As mentioned by authors, al-

though the fundamental structure of both these algorithms are complementary, the

convergence analysis of the combination follows directly to the convergence analysis

of MADS. Apart from VNS, NOMAD also provides the user with generic search

strategies such as, Model Search intoduced by Conn and Le Digabel [40], Specula-

tive search, Latin-hypercube search. Besides academic researchers, NOMAD is being

used in industries such as, Boeing, Airbus, ExxonMobil, GM, and Hydro-Québec,

etc [45, 46]. Readers may refer [44, 45, 46] for detail information about NOMAD

and its implementation.

Table 4–3 shows a high-level representation of MADS as described in [44]. At the be-

ginning, the user must provide a initial point x0 ∈ R
n in order to start the algorithm.

Each iteration in MADS is denoted by the index k, as can be seen in table 4–3. At

every iteration, MADS evaluates the function(s) at a finite number of trial points

carefully selected from a conceptual mesh. This is done in two steps: an optional

and more flexible Search step, and a mandatory and more rigorous Poll step. When

we say more flexible search we mean that, Search allows the user to take advantage

of his/her knowledge about the problem and define a strategy to choose the trial
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Table 4–3: High-level Representation of MADS Algorithm

Initialization: Let x0 ∈ R
n be an initial point and set the iteration counter k ← 0

Main loop:
repeat

SEARCH on the mesh to find a better solution than xk

if the search failed then
poll on the mesh to find a better solution than xk

if a better solution than xk was found by either search or the poll then
call it xk+1 and coarsen the mesh

else
set xk+1 = xk and refine the mesh

Update parameters and set k ← k + 1
until Stopping criterion is satisfied;

points where the function(s) will be evaluated. Moreover, the uses can also use the

available generic search strategies such as, speculative search, variable neighborhood

search (VNS), Latin-hypercube sampling, model search, etc. The Poll step, on the

other hand, has more rigorous restrictions on selecting the trial points to satisfy the

convergence analysis of the algorithm. Readers may refer [1] and [47] for details on

how the algorithms generates trial points during poll using a probabilistic strategy

in [1] and a deterministic strategy in [47].

As mentioned earlier, both Search and Poll steps generate trial points belonging

to a conceptual mesh, denoted as Mk. At any iteration k, the mesh structure is

represented by the following expression [1],

Mk =
⋃
x∈Vk

{x+Δm
k Dz : z ∈ N

nD} (4.2.1)

where, Δm
k ∈ R

+ is a mesh size parameter, D is a n×nD matrix representing a fixed

finite set of nD directions in R
n and is called the set of mesh directions. Vk is the set
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of points where the objective and constraints have been evaluated by the start of kth

iteration where, V0 contains the staring point(s).

Each MADS iteration starts with the Search step where a set of trial points is gener-

ated on a given mesh. Figure 4–7 illustrates this with a hypothetical example using a

2D mesh structure. Here the points t1, t2 and t3 represent the set of trial point gener-

ated during the search step. Then, the algorithm launches the black box to evaluate

Figure 4–7: Example of MADS trial points during Search and Poll in a R
2 design

space. Showing Search trial points {t1, t2, t3} and Poll trial points {t4, t5, t6, t7}.
Source: [41]

these trial points to test if the trial points are better than the current incumbent

xk. This step can be opportunistic, i.e. the iterations terminates if the algorithm
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finds a point better than the current incumbent. And the new iteration starts with

the recently found incumbent. If the search fails to find a better trial point on the

mesh, the poll step generates a new set of trial points near the incumbent xk. Again,

the algorithm calls black-box program to evaluate the trial points to find a better

point than the current incumbent. The poll step may be terminated as soon as a

better point is found (opportunistic approach). The opportunistic approach during

search and poll may results in the faster convergence. At the end of each iteration,

the parameters are updated based on the outcome. There are two possibilities. If

either the search or the poll generates a trial point t which is better than the cur-

rent incumbent xk, then the incumbent for the next iteration xk+1 is set to t, i.e.

xk+1 ← t and both the mesh size parameter and the poll size parameter are increased

(mesh coarsening) or kept to the same value. Otherwise, the poll size parameter is

decreased and the mesh size parameter is either decreased (mesh refining) or kept

the same and the the algorithm starts the new iteration with the same incumbent

as the last iteration, i.e. xk+1 ← xk. Again, coarsening the mesh after a successful

iterations helps in faster convergence.

After every failed iteration, mesh size Δm
k reduces much faster than poll size Δp

k [1, 2].

Which implies that, MADS can choose the polling direction from a larger set, i.e. the

set of polling directions is asymptotically dense. To illustrate this, let us consider

an example of a design space R
2, where the set of directions, D, consist of eight

directions {(d1, d2)T �= (0, 0)T : d1, d2 ∈ {−1, 0, 1}}. Figure 4–8 and 4–9 show frames

generated by GPS and MADS, respectively, for different mesh size parameters. Note

that, for MADS the pole size parameter is taken to be n
√

Δm
k . It is evident from

61



Figure 4–8: Example of GPS frames in R
2 design space. Source: [1]

Figure 4–9: Example of MADS frames in R
2 design space. Source: [1]

the figure 4–8 that, in GPS regardless of iteration, the mesh size, and the poll size,

there could only be eight distinct positive bases with three direction to choose from.

In MADS (figure 4–9), on the other hand, the set of distinct positive bases and the

directions grow denser and denser as the mesh size and the poll size are reduced. A
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numerical example to prove that MADS generates asymptotically dense set of poll

directions given any directions in R
n is given in [1].

The two problem formulations and a brief description of the optimization algorithms

used in this thesis are presented in this chapter. A brief description on how MADS

works, its implementation in NOMAD and some insight on the features available in

NOMAD are also presented in this chapter. Both the problems presented in this

chapter are solved to find the optimum solution(s). The results obtained using the

GAs and the MADS are analyzed to compare the performance of the two algorithms

on parameters such as computational cost, convergence rate and the quality of the

solution. We present the results and the discussion in the next chapter.
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CHAPTER 5

Results and Discussion

Composite stacking sequence optimization problems described in section 4.1.1 and

4.1.2 were solved using MADS and GAs. Results and the assessment of the two

algorithms based on these results are presented in this chapter. The primary goal

of this investigation is to compare the MADS against GAs on parameters, such as

convergence rate, computational cost, and quality of the solution.

5.1 CASE-I: Helicopter rotor box-beam target stiffness achievement

The helicopter rotor composite box-beam target stiffness achievement problem for-

mulated by Murugan et. al in [27] and reported in 4.1.1 is solved using two variants

of the genetic algorithm and MADS. The problem is first solved using a nested GA

approach proposed by Murugan et.al in [27] and the results are reported in section

4.2.1. Then, the problem is solved using Mesh Adaptive Direct Search (MADS).

Lastly, we use the mixed variable genetic algorithm from the MATLAB optimization

toolbox to solve the problem using all-in-one GA approach. Results and discus-

sion about these three approaches and the comparison between the algorithms are

presented in the upcoming sections.
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5.1.1 Nested GA approach

The target stiffness achievement problem is formulated with 7 variables, out of which

the first two variables are continuous variables and define the box geometry in inches,

and the rest five variables are of discrete type. They define fiber orientations in

the box-beam walls. We assume a 10◦ discretization. In the nested approach, the

problem is partitioned into two loops separating the continuous and discrete variables

as described in section 4.2.1.

Genetic algorithms are probabilistic in nature, hence the algorithm is run 10 times

with the same parameter setting. Results for these runs are averaged to assess

the performance of the algorithm. Moreover, since the performance of GAs largely

depend on the population size, we repeat the procedure for different population sizes

for the inner loop. The average number of function evaluations, best, worst, and mean

of the objective, and the standard deviation in objective for different population sizes

are reported in Table 5–1.

Table 5–1: CASE-I: Nested GA Results

Population Avg. function Objective Standard
Size evaluations min max mean Deviation

30 1,088,427 0.1931 1.2489 0.6371 0.3791
50 1,989,780 0.0224 0.9482 0.4359 0.2931
80 3,183,180 0.0500 0.9728 0.3699 0.3108
100 3,978,780 0.0758 0.4633 0.2495 0.1122
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The average number of function evaluations and objective function values (minimum,

maximum, and mean) are plotted against population size in figures 5–1 and 5–2,

respectively. It is evident from these results that, the mean value of the objective

Figure 5–1: Nested GA: Average number of function evaluations vs Population size
(CASE-I)

Figure 5–2: Nested GA: Objective vs Population size (CASE-I)

function decreases with an increase in the population size, whereas the number of
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function evaluations increase with an increase in the population size as expected.

Moreover, the standard deviation in the solutions generated during 10 runs of each

population size does not follow this trend. It is evident from these results that, the

quality of the solutions generated by GAs cannot be characterized, because among

the 40 runs performed, the best solution was obtained with the population size of

50, not with the larger population size of 80 or 100. This means that, we still cannot

quantify the quality of the solutions with respect to the population size. The only

logical comment one can make with these results is that, the odds of converging to

the worst solution can be decreased by increasing the population size.

5.1.2 MADS: All-in-one Approach

Results obtained with mixed variable programming in NOMAD are reported in this

section. In the first part, results obtained with only the poll step are shown, whereas

the second part covers results using MADS with the search. Throughout this study,

we used Ortho-MADS [47] to choose the directions during the poll step.

I MADS with only Poll

MADS is run five times with randomly selected starting points (X0) as shown

in table 5–2. First four starting points are formed form upper and lower bounds

on variables, whereas fifth starting point was formed with randomly selected

values for variables. The objective function values for the initial design, f(x0),

and for the final solution, f(x∗), the number of function evaluations, and the

termination criterion are reported in table 5–3. The termination criteria "Mesh

index limit" means that, the algorithm has reached a local optimum and the
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Table 5–2: CASE-I: Starting points for MADS

Run# x0

1 [ 3.00, 2.00, 0, 0, 0, 0, 0 ]

2 [ 5.00, 3.00, 0, 0, 0, 0, 0 ]

3 [ 3.00, 2.00, 90, 90, 90, 90, 90 ]

4 [ 5.00, 3.00, 90, 90, 90, 90, 90 ]

5 [ 3.60, 2.50, 40, 20, 70, 0, 60 ]

Table 5–3: CASE-I: MADS (Poll only) Results

Run# Objective Function Termination
f(x0) f(x∗) Evaluations Criterion

1 77.4619 3.9351 939 Mesh index limit
2 439.1329 0.1251 1,265 Mesh index limit
3 77.4619 1.1531 1,025 Mesh index limit
4 54.5267 0.8226 1,170 Mesh index limit
5 58.3098 0.1097 1,544 Mesh index limit

mesh size is reduced to the lowest possible value. It can be seen from table 5–3

that, despite starting from worse points, i.e. designs with a quite high percentage

error between target and actual stiffness values, MADS could converge to local

optima in less function evaluations than the nested GA approach presented in

previous section. The average number of function evaluations for these 5 runs

is 1188, which is less than the average number of function evaluations for the

nested GA approach by almost 3 orders of magnitude. In other words, MADS

certainly is computationally less expensive than the nested GA, which is a great

advantage for an optimization algorithm, especially in the field of engineering
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optimization, where function values are calculated using expensive computer

simulations.

II MADS with Search and Poll

NOMAD has 4 in built search strategies, such as Speculative Search, Variable

Neighborhood Search(VNS), Latin-Hypercube Search, and the Model Search,

which can either be used alone or in combination. To show the effectiveness

of search step in escaping local optima and further improving quality of the

solutions, we use three search strategies, viz. Speculative Search, Model Search,

and Variable Neighborhood Search (VNS). Results obtained with same starting

points from table 5–2 are reported in table 5–4 in the similar format as reported

in the previous part.

Table 5–4: CASE-I: MADS (Poll+Search) Results

Run# Objective Function Termination
f(x0) f(x∗) Evaluations Criterion

1 77.4619 0.0960 (97.56%) 4,251 Mesh index limit
2 439.1329 0.0730 (41.65%) 3,445 Mesh index limit
3 77.4619 0.4032 (65.03%) 2,453 Mesh index limit
4 54.5267 0.8532 (-3.72%) 3,386 Mesh index limit
5 58.3098 0.0152 (86.14%) 2,480 Mesh index limit

The percentage values in brackets are the percentage improvements in the so-

lution obtained by employing the search step over the one obtained with only

the poll step. It can be seen that, except the fourth run, MADS with the search
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step could improve quality of the solution. MADS with the search strategy per-

formed better and could escape local optima to find a better solution without

much increase in the number of function evaluations. The average number of

function evaluations in this case is 3203. Furthermore, MADS still preserves the

convergence properties of solutions generated.

5.1.3 GA: All-in-one Approach

In all-in-one approach, we use the mixed variable genetic algorithm in MATLAB to

solve the optimization problem. Similar to the nested GA approach, the algorithm

is run 10 times each with different population size. Results are reported in table

5–5 corresponding to the population size. The maximum number of generations set

to 600 for all runs. However, none of the 50 runs performed could reach allowable

maximum number of generations. The algorithm terminated before it could reach

the maximum number of generations, because the average change in the objective

value is below its threshold of 10−6. It is evident from table 5–5 and figures 5–3

Table 5–5: CASE-I: All-in-one GA Results

Population Avg. function Objective Function Standard
Size evaluations min max mean Deviation

50 15,631 0.0380 1.4384 0.3575 0.4320
100 23,661 0.0667 0.8315 0.2599 0.2161
200 31,841 0.0105 1.0992 0.3068 0.3137
500 79,401 0.0236 0.4248 0.2081 0.1622

1,000 136,001 0.0184 0.4248 0.1679 0.1510
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Figure 5–3: All-in-one GA: Function evaluations vs Population size (CASE-I)

Figure 5–4: All-in-one GA: Objective vs Population size (CASE-I)

and 5–4 that, all-in-one formulation using mixed variable GA performed better than

that of the nested approach. The mixed variable GA was able to converge to better

solutions in less number of function evaluations than the nested GA approach. In

fact the number of function evaluations were lower than that of nested GA by more

than an order of magnitude. However, it was still more than the all-in-one approach
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using MADS. Also, the quality of the solution (i.e. the lowest error in the target and

actual stiffness values) was at par when compared with MADS.

Besides this, figure 5–5 shows improvements in the objective against function evalu-

ations for MADS (Run-1 in table 5–4) and all-in-one GA for 5 different population

sizes as shown in table 5–5. Numbers in the legend represent the population size for

Figure 5–5: Convergence rate: MADS vs All-in-one GA (CASE-I)

the all-in-one GA. It can be seen from the figure 5–5 that, despite starting from the

worse starting point, MADS converged faster than the all-in-one GA. As mentioned

before, the convergence rate of an optimization algorithm is of vital importance in

the field of engineering optimization, we believe that fast convergence is a great

advantage MADS has over GAs.
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5.2 CASE-II: Design of a critical section of a bicycle handle bar for
maximum safety factor

We first solve the bi-objective maximization problem as an unconstrained problem.

Results for this formulation are reported in subsection 5.2.1. The problem is then

formulated as a constrained bi-objective maximization problem, and results for this

formulation are reported in subsection 5.2.2.

5.2.1 Uncostrained bi-objective formulation

For unconstrained bi-objective formulation, we run the bi-objective MADS (bi-MADS)

in NOMAD and the multi-objective GA (MOGA) in MATLAB to get the Pareto front

approximations. The algorithm setting used for these algorithms are reported in

table 5–6 and 5–7, and Pareto fronts obtained are shown in figure 5–6 and 5–7,

respectively. respectively.

Table 5–6: MOGA setting

Population Size 200

# Generations 100

Creation Function Constraint dependent

Selection Function Tournament

Crossover Function Scattered

Mutation Function Constraint dependent

Please note that, since the MOGA is a probabilistic approach, it generates different

Pareto front approximations every time we run the algorithm. Hence, the algorithm

is run more than once. The Pareto front shown in the figure 5–6 is the best one of
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Table 5–7: Bi-MADS setting

Starting Point [0◦6]S

Speculative Search Disable

Model Search Disable

VNS Disable

# Multi-MADS Runs 100

# Black box evaluations
200per Multi-MADS run

Polling direction type Ortho MADS 2N

the Pareto fronts obtained during these runs. For MADS, on the other hand, we

performed two runs; one without the search and one with the search. Algorithm

parameters during these runs are set in such a way that, it performs approximately

equal number of function evaluations as that of the MOGA. The Pareto front gen-

erated with bi-MADS is shown in figure 5–7.

Figure 5–6: MOGA Pareto front
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Figure 5–7: Bi-MADS Pareto front (Poll only)

Before we compare these Pareto fronts, it is interesting to notice that, a mere visual

comparison shows that, the Pareto front with bi-MADS is smoother and continuous

than that the one obtained with MOGA. Moreover, although bi-MADS generates

a narrower Pareto front, it gives more number of better designs than the MOGA.

To cover a wider objective space and have a wider Pareto front, we run the bi-

MADS with Speculative Search, Model Search, and VNS enabled. The Pareto front

obtained with this setting is shown in figure 5–8. It can be seen from the figure that,

the Pareto front obtained form this run is wider, however, it is not continuous like the

one shown in figure 5–7. The reason that the Pareto front with bi-MADS+search

is wider is that, with the search, especially the variable neighborhood search, the

algorithms leaves the local region and tries to find better design in multiple regions.

This explains why the Pareto front with search is wider, since the algorithm covers

a wider design space with the search.
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Figure 5–8: Bi-MADS Pareto front (Poll+Search)

There exist ways to compare these Pareto fronts, among which the hypervolume

indicator is reported to be one of the most favorite choices [48, 49]. Moreover,

it does not require the knowledge of the actual Pareto front. Hence, we compare

the Pareto front approximations obtained from the MOGA and bi-MADS using the

hypervolume indicator. The hypervolume indicator measures the size of the objective

space between a reference point, r, and a Pareto front. The reference point, r is

randomly chosen from the design space, i.e. r ∈ R
m, and it should be dominated

by the Pareto front under consideration. In case of bi-objective optimization, the

hypervolume indicator essentially represents the area under the Pareto front bounded

by the reference point as shown in figure 5–9. Here, the shaded area represents the

hypervolume indicator for a minimization problem. The higher the hypervolume

indicator, the better the Pareto front approximation.

Similar to the hypothetical case, figure 5–10 shows Pareto fronts obtained using

MOGA and bi-MADS with sample objective points in the objective space. The hy-
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Figure 5–9: Illustration of the hypervolume indicator with hypothetical objective
values for a bi-objective minimization. Source: [50]

Figure 5–10: Pareto comparison: Bi-MADS vs MOGA

pervolume indicators for these three Pareto fronts are reported in Table 5–8. These

Table 5–8: Pareto comparison: Hypervolume indicators

MOGA Bi-MADS Bi-MADS+Search

1.7657 0.2731 1.8298

77



values are calculated using a MATLAB function developed by Johannes W. Kruissel-

brink [51] with respect to the reference point, [f1(x), f2(x)] = [1, 1], as shown in

figure 5–10.

It can be seen from visual inspection of the three fronts that, the Pareto front

using MOGA (shown in blue) almost coincides with the Pareto front using bi-

MADS+Search (shown in orange). The Pareto front using bi-MADS (shown in

yellow) is dominated by other two fronts over most of the design space, which is

also evident from hypervolume indicators. Hypervolume indicators show that, the

Pareto front using bi-MADS+Search (HV = 1.8298) dominates the Pareto front

using MOGA (HV = 1.7657). It is also interesting to notice that, Pareto points

generated using bi-MADS without search dominate the other two Pareto fronts in

the objective space where both the objectives are greater than 1.5. This is because,

when we run the algorithm with the search, it performs iterations in multiple re-

gions from the design space in search of Pareto optimal solution. Since bi-MADS

uses series of single objective formulations of bi-objective problem and the series of

formulations is constructed in such a way that it attempts an uniform coverage of

the Pareto [52], the algorithm uses the allowed computational budget (the number of

function evaluations) uniformly over the design space. Which is why bi-MADS with

search could generate a wider Pareto front using given computational budget.

Now, please recall that, in this problem the objective space of interest is where both

the objectives are greater than 1.5. Hence, before we make any concluding remarks

about the quality of Pareto fronts generated by both these algorithms, we will restrict

our objective space to be always greater than or equal to 1.5, i.e. fi(x) ≥ 1.5.
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Moreover, although bi-MADS with search produces a wider Pareto front than the

bi-MADS without search, it spends the computational budget in the regions where

it improves one of the objectives while compromising on the other. For instance,

points where f1 > 2 and f2 < 0.5 and vise versa. To avoid this situation, we

impose constraints on the objectives to always be at least 1.5. Which brings us

to the constrained bi-objective optimization problem formulation. The numerical

results for constrained bi-objective problem formulation are presented in the next

section.

5.2.2 Constrained bi-objective formulation

In this problem, since we need to find a lay-up to satisfy the requirement that the

safety factor for either of the load cases should be at lease 1.5, we imposed this

condition as constraints on objectives. The problem formulation can be written

as,

max [ f1(x), f2(x) ]

subject to Ci(x) ≥ 1.5 · · · · · · · · · i = 1, 2

x ∈ X,

where C1(x) and C2(x) are safety factors calculated for load case-I and load case-II,

respectively.

We run MOGA and bi-MADS with the same algorithmic settings as shown in tables

5–6 and 5–7. MOGA was able to find Pareto points satisfying both constraints in 2

out of 10 runs. Rest of the runs were not able to find feasible designs satisfying both

constraints. The first successful run found 2 Pareto points and the second successful
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run found 11 Pareto points, i.e. total 13 points. The total of 13 Pareto points

found in these 2 successful runs of are reported in the table 5–9 and the Pareto front

approximation with the feasible designs dominated by Pareto front are plotted in

figure 5–11.

Figure 5–11: Pareto front: MOGA with constrained formulation

Similarly, 16 Pareto points generated by the bi-MADS are reported in the table 5–9

and figure 5–12 shows the Pareto with the feasible design points for this run.

To compare these two Pareto fronts, we use the hypervolume indicator. Figure 5–13

shows the Pareto fronts and sample points in the objective space. The lower bound

imposed by constraints, i.e. [f1(x), f2(x)] = [1.5, 1.5], is taken as a reference point

to calculated the hypervolume indicator.

The hypervolume indicators calculated for the Pareto fronts generated using MOGA

and bi-MADS are 0.0018 and 0.0039, respectively. This shows that, the Pareto front

approximation generated by bi-MADS is better than the one generated by MOGA.
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Table 5–9: Pareto points for constrained bi-objective formulation

MOGA Bi-MADS
f1(x) f2(x) f1(x) f2(x)

1 1.5448 1.5031 1.5648 1.5127
2 1.5434 1.5041 1.5642 1.5132
3 1.5322 1.5115 1.5637 1.5146
4 1.5311 1.5165 1.5583 1.5254
5 1.5183 1.5191 1.5568 1.5271
6 1.5175 1.5225 1.5510 1.5310
7 1.5168 1.5262 1.5501 1.5326
8 1.5168 1.5269 1.5491 1.5368
9 1.5149 1.5287 1.5475 1.5377
10 1.5097 1.5267 1.5443 1.5447
11 1.5090 1.5306 1.5413 1.5449
12 1.5042 1.5432 1.5410 1.5451
13 1.5008 1.5405 1.5362 1.5519
14 - - 1.5282 1.5575
15 - - 1.5125 1.5577
16 - - 1.5052 1.5598

This conclusion, however, is based on the consideration that, the higher value of

hypervolume indicator implies that the Pareto using bi-MADS dominates the one

generated by MOGA. This is also clear from the figure 5–13. For the problem under

consideration, the Pareto front generated by bi-MADS clearly dominates the Pareto

front generated by MOGA. Moreover, among all the Pareto optimal solutions found,

the best designs found with each of the two algorithms are shown in bold face in table

5–9. When we say the best design we mean the design with the largest minimum

safety factor among f1 and f2. The best design with MOGA gives the safety factors
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Figure 5–12: Pareto front: Bi-MADS with constrained formulation

Figure 5–13: Feasible design space and Pareto fronts for constrained optimization

f1 = 1.5183 and f2 = 1.5191, whereas the best design with bi-MADS gives the safety

factors f1 = 1.5443 and f2 = 1.5447.
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5.3 Summary of Results

The numerical investigations have shown that, MADS outperformed GAs in stacking

sequence optimization of laminated composites. For a single objective unconstrained

problem with a non-linear objective function, we observed from the results that, the

solutions generated with MADS with different starting points are either superior or at

par than the solutions generated with the nested and all-in-one GA. Moreover, for the

target stiffness achievement problem, the number of function evaluation for MADS

are less than the nested GA approach proposed by Murugan et al. [27] by three orders

of magnitude. All-in-one GA approach, on the other hand, performed better than

the nested GA approach. However, still the average number of function evaluation

with the all-in-one GA is more than the MADS by one order of magnitude. Besides

computational cost, it is evident for figure 5–5 that, among the three approaches

used to solve the target stiffness achievement problem, MADS converged faster than

the GAs. Moving forward to the second problem, where we solve the bi-objective

optimization problem, for a given allocated computational budget, the Pareto front

generated by bi-MADS with and without search are better than the multi-objective

GA. For both problems considered in this study, the quality of the solution with

MADS is either at par or superior than the GAs. Moreover, MADS outperformed

GAs in terms of the convergence rate and computational cost.
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CHAPTER 6

Conclusion

6.1 Conclusion

Composite materials can be very promising considering their advantages over con-

ventional materials. They provide a great flexibility in designing structural compo-

nents in aerospace, land, and marine applications. However, the large number of

variables involved make the design of laminated composite structures complex and

tedious. This encourages designers to use optimization techniques to design more

efficient structures using laminated composites while keeping in mind the physical

and practical constraints. The presence of discrete variables, highly non-linear and

multi-modal response functions are some of the challenges involved in composite de-

sign optimization. To address these challenges different optimization methods have

been used in the past to solve composite stacking sequence optimization problems. A

variety of problem formulations and customized versions of algorithms can be found

in the literature addressing these challenges. Among all these algorithms, the genetic

algorithms (GAs) are reported to be the most popular ones.

Genetic algorithm is definitely a very powerful tool in optimization with a broad

scope. It has been reported to be very effective in solving a variety of optimization

problems when other methods fall short. However, being a meta-heuristic approach
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GAs generate a set of solutions according to arbitrarily chosen termination criteria

and the optimality of these solutions cannot be characterized. Moreover, GAs require

a high number of function evaluations before it can find a better solution and still

finding the optimal solution is not always guarantied. In this thesis, we used the

mesh adaptive direct search (MADS), a class of algorithms belonging to direct search

methods, to try and address these limitations associated with GAs.

Direct search methods have proved to be very robust and reliable, both therotically

and practically. Mesh adaptive direct search, one of the direct search algorithms

which extends the pattern search algorithm by allowing the local exploration in

asymptotically dense set of directions. It can handle noisy, non-smooth, highly non-

linear function with mixed variable types (continuous, discrete, categorical). Besides,

MADS is backed by the convergence analysis based on the Clark’s calculus, which

we feel is the greatest advantage MADS has over GAs. This encourages us to test

MADS against GAs in solving stacking sequence optimization problems.

In our investigation of the results generated with variants of GA and MADS we

observed that, MADS outperformed GAs in optimizing the fiber orientations in lam-

inated composite structural elements. Note that, the results reported in the previous

chapter are analyzed and quantified to compare both the techniques on computa-

tional cost, convergence rate and the quality of the solution.

The target stiffness achievement of a helicopter rotor composite box-beam problem

is solved using nested GA, all-in-one GA and MADS. Among the three approaches,

MADS is found to be the least computationally expensive. The number of function
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evaluations with MADS is less than the nested GA and all-in-one GA by three orders

of magnitude and one order of magnitude, respectively. MADS with only the poll

step performed converged to local optima during the 5 runs with randomly chosen

starting point with the average function evaluations of 1,188. For MADS with the

three search strategies (variable neighborhood search, speculative search and model

search), the average number of function evaluations is 3,203. It is evident that,

MADS converges to the local optima in fairly less number of function evaluations,

which in our opinion is vital in engineering optimization field. Especially when the

functions are calculated using costly simulations, low computational cost is a great

advantage of MADS over GAs. It is, however, important to see if the quality of

the solutions generated with these algorithm before we conclude about the overall

performance of these algorithm.

When we say the quality of the solution, how close an algorithm can find a solution

to the desired solution. For the target stiffness achievement problem, the desired

solution is to make the error between the target stiffness and the actual stiffness as

small as possible, ideally zero. It can be seen that, MADS with only the poll step

converges to the local optima, and the best design found with this setting is with

an error of 0.12% error between stiffness values. The best designs found with the

nested GA and all-in-one GA are with an error of 0.02% and 0.01%. The best design

found with MADS with search strategies is with an error of 0.1%. It is interested

to note here that, MADS with search strategies converged in merely 2,480 function

evaluations. All-in-one GA on the other hand, took 31,841 function evaluations to

reach the best design with the same error margins. Moreover, most of the solutions
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generated with both the GA approaches were poor as compared to the solutions

generated with MADS. One more point we would like to highlight here is that,

MADS is more reliable than the GAs, since the solutions generated with MADS

posses convergence properties.

For the second problem in consideration, i.e. design of a rectangular sandwich panel

using bi-objective optimization, bi-MADS clearly generated better Pareto fronts than

the multi-objective GA (MOGA), not only in terms of the Pareto spread but also

Pareto front generated with bi-MADS consist of better designs. From all these obser-

vations, we can conclude that the solutions generated with MADS are either superior

or at par with the solutions generated with GAs in both the problem formulations

under consideration.

Moreover, it is evident from figire 5–5 that, despite starting from the much worst

starting point, MADS converged faster than GAs. In GAs, we observed that the

convergence rate is faster for the runs with lower populations size than the runs

with a higher population size. However, it is still slower than the MADS. Moreover,

the faster convergence is typically at a compromise in the quality of the solution,

as GA with smaller population size fails to achieve better quality solutions. In

other words, the convergence rate and the quality of the solutions in case of GAs

are complementary to each other, and improvement in one may sometimes, if not

always, deteriorate the other.

All in all, there is no doubt that GAs are a powerful tool in engineering optimization

with a broad range of application. However, numerical investigation presented in
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this thesis shows that MADS performs better than GAs in solving composite stack-

ing sequence optimization problems formulated and presented in this thesis. MADS

was found to converge faster than both variants of GA (nested and all-in-one) while

solving the single objective mixed variable composite stacking sequence optimiza-

tion problem. Moreover, the quality of the solutions with MADS was found to be

either superiour or at par than those generated with GAs. The number of function

evaluations required by MADS were found to be less than the number of function

evaluations performed by GAs. Which, in our opinion, is a great advantage to have

especially in engineering optimization. Also, quality of the solution generated with

bi-objective MADS (bi-MADS) is better than that of multi-objective GA (MOGA).

And with the availability of the sophisticated softwares like NOMAD, it has become

easy to implement the algorithm. However, before we can generalize our conclusion

about the performance of the MADS in composite design optimization field, we feel

it is necessary to test MADS against more variants and custom approaches present in

the literature to have a more clear picture on the performance of MADS in the field.

This opens up many opportunities to further test MADS in the field of engineering

optimization and it definitively worth more attention in the future.

6.2 Suggestions for Future Work

Although our initial analysis shows that, MADS has performance advantages in

terms of the convergence rate and computational cost over GAs, it is important to

note that the performance of optimization algorithms largely depends on the type

and structure of the problems under consideration. Hence, to make our observations
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more general, we feel it is necessary to test MADS with different problem formu-

lations and with other popular evolutionary algorithms. It would be interesting to

conduct the comparative studies similar to the one presented in this thesis to test the

competence of MADS against other popular evolutionary algorithms such as, simu-

lated annealing, artificial bee colony algorithm, particle swarm optimization, etc. As

far as our knowledge, this is the first attempt to use MADS in composite stacking

sequence optimization. We believe that, this study encourages research to try and

test MADS in the composite optimization field and it gets more recognition in the

future research in the field of engineering optimization.
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