
Layered Graph Drawing

Matthew Suderman

School of Computer Science

McGill University, Montréal

October, 2005

A thesis submitted to McGill University in partial fulfilment

of the requirements of the degree of Doctor of Philosophy.

© Matthew Suderman, 2005

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-21700-9
Our file Notre référence
ISBN: 978-0-494-21700-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Contents

Abstract

Résumé

Declaration

Acknowledgements

Figures

Tables

1 Introduction

1.1 Planar Drawings .

1.2 Non-Planar Drawings

1.3 Practical Approaches to NP-hard Problems

1.4 Contributions and Organization of the Thesis

2 Preliminaries

2.1 Set Notation.

2.2 Graphs

2.3 Layered Drawings .

2.4 Points in the Plane

1 Planar Layered Drawings

3 Proper Three Layer Drawings

3.1 Three-Layer Planarity Characterization Theorem

3.2 3-Layer Planarity Testing

3.3 Conclusions and Open Problems

ii

v

vi

viii

ix

x

xiii

1

2

5

7

19

21

21

21

24

25

26

28
29

50

56

4 Tree Drawings

4.1 Preliminaries

4.2 Short Layered Drawings

4.3 Proper Layered Drawings .

4.4 Upright and Unconstrained Layered Drawings .

4.5 Linear-Time Drawing Algorithms

4.6 Conclusions and Open Problems

5 One-Bend Drawings

5.1 Technique of Kaufmann and Wiese

5.2 Cutting Paths

5.3 Counterexamples to k-Layer, I-Bend Planarity

5.4 Complexity of k-Layer, I-Bend Planarity

5.5 Characterization of Two Layer Drawings .

5.6 2-0uterplanar Graphs

5.7 Conclusions and Open Problems

II Non-Planar Drawings

6 Biplanarization Algorithms

6.1 One-Layer Planarization in O(2k . IGI) Time

6.2 Two-Layer Planarization in O(3.562k . IGI) Time

6.3 Achieving Constant Time Per Node

6.4 Incorporating Divide-And-Conquer

6.5 Conclusions and Future Directions

7 One-Sided Crossing Minimization

7.1 Preliminaries
7.2 Basic Bounded Search Tree Aigorithm

7.3 Improving to O(k2 • 1.61Sk + k 'IGI2) Time .

7.4 Improving to O(1.4656k + k 'IGI2) Time

7.5 A Divide-And-Conquer Heuristic

7.6 Two Applications of Crossing Minimization

7.7 Conclusions and Future Directions

8 Experiments with FPT Algorithms

8.1 Implementation Details

iii

CONTENTS

..

58

58
61

66
69

76

79

80

82

84

90

93
101
115
117

119

121
123
128
136
143

146

149
150
151

153
154
155
155

165

166
167

8.2 Experiment Data
8.3 Two-Layer Planarization Experiments
8.4 One-Sided Crossing Minimization Experiments

8.5 Conclusions and Further Experiments

9 Conclusions and Future Research

A Algorithm of Fo6meier and Kaufmann

B Detailed Instructions for Repeating Experiments

B.1 Two-Layer Planarization Experiments

B.2 One-Sided Crossing Minimization Experiments

C Rationale for Choice of Java as Implementation Language

D Sparse Experimental Results

Bibliography

Index

iv

CONTENTS

168

168

171
176

177

182

186
186
188

189

192

211

211

Abstract

A layered graph drawing is a two-dimensional drawing of a combinatorial graph in which

the vertices lie on a given set of horizontal lines. Such drawings are used in application

domains su ch as software engineering, bioinformatics, and VLSI design. In addition to

being layered, drawings in these applications may aIso satisfy other constraints, for example

bounds on the number of edge crossings. The problems related to obtaining the se drawings

are almost always NP-hard, so, in this thesis, we investigate restricted versions of these

problems in order to find efficient aIgorithmic solutions that can be used in practice.

As a first very drastic restriction, we consider layered drawings that are planar. Even

with this restriction, however, the resulting problems can still be NP-hard. In addition to

proving one such hardness result, we do succeed in deriving efficient algorithms for two

problems. In both cases, we correct previously published results that claimed extremely

simple and efficient algorithmic solutions to the se problems. Our solutions, though efficient

as weIl, show that the truth about these problems is significantly more complex than the

published results would suggest.

We also study non-pl anar layered drawings, particularly drawings obtained by crossing

minimization and minimum planarization. Though the corresponding problems are Np­
hard, they become tractable when the value to be minimized is upper-bounded by a constant.

This approach to obtaining tractable problems is formalized in a theory called parameter­

ized complexity, and the resulting tractable problems and algorithmic solutions are said to

be fixed-parameter tractable (FPT). Though relatively new, this theory has attracted a

rapidly growing body of theoretical results. Indeed, we derive original FPT algorithms

with the best-known asymptotic running times for planarization in two layer drawings.

Because parameterized complexity is so new, little is known about its implications to

the practice of graph drawing. Consequently, we have implemented a few FPT algorithms

and compared them experimentally with previously implemented approaches, especially

integer linear programming (lLP). Our experiments show that the performance of our FPT

planarization algorithms are competitive with current ILP algorithms, but that, for crossing

minimization, current ILP algorithms remain the c1ear winners.

v

Résumé

Le problème du dessin de graphe en couches consiste à dessiner dans le plan euclidien un

graphe combinatoire de façon à ce que chaque sommet du graphe se retrouve sur l'une

ou l'autre d'un ensemble spécifié de lignes horizontales. Ce problème a des applica­

tions dans des domaines tel le génie logiciel, la bio-informatique ou la conception VLSI.

Outre la représentation par couches, certaines applications imposent parfois des contraintes

supplémentaires au dessin du graphe, par exemple une limite au nombre d'intersections

d'arêtes. Les problèmes de ce genre sont le plus souvent NP-difficiles; la présente thèse a

pour objectif de trouver des solutions algorithmiques efficaces, et par conséquent utiles en

pratique, à des instances restreintes de ces problèmes.

Nous examinons en premier lieu le problème du dessin en couches de graphes planaires.

Même restreints à cette classe de graphes, les problèmes évoqués ci-haut demeurent souvent

NP-difficiles. Nous établissons un tel résultat de NP-difficulté; nous donnons également

des algorithmes efficaces pour deux autres problèmes, rectifiant ainsi des résultats publiés

précédemment qui disaient fournir pour ces deux problèmes des solutions algorithmiques

efficaces et élégantes. Nos solutions mettent en lumière une complexité de ces deux problèmes

insoupçonnée desdites publications précédentes.

Nous examinons également le dessin en couches de graphes non planaires, en particulier

les dessins obtenus par minimisation de planarisation ou d'intersections d'arêtes. Bien que

les problèmes correspondants soient NP-difficiles, ils admettent des algorithmes efficaces

(deviennent tractables) s'il existe une constante qui soit une borne supérieure à la valeur

devant être minimisée. Cette approche génératrice de problèmes tractables découle du con­

cept plus formel de la complexité paramétrée (FPT), et les solutions algorithmiques corre­

spondantes sont dites 'tractables par paramètre fixe'. Un nombre grandissant de résultats

théoriques sont publiés à propos de ce concept malgré qu'il soit relativement nouveau;

quant à nous, nous présentons de nouveaux algorithmes pour la planarisation en deux

couches d'un graphe, algorithmes au meilleur temps d'exécution asymptotique connu.

La complexité paramétrée est si récente que l'on sait peu sur son utilité pratique pour

le dessin de graphes. Nous avons donc implémenté quelques algorithmes tractables par

vi

CONTENTS

paramètre fixe dans le but de les comparer à des stratégies existantes, en particulier la pro­

grammation linéaire en nombres entiers (lLP). Nos tests démontrent une certaine compétitivité

entre les deux stratégies, cependant, pour ce qui est de la minimisation d'intersections

d'arêtes, les algorithmes ILP existants demeurent nettement supérieurs.

vii

Declaration

This thesis contains no material which has been accepted in whole, or in part, for any

other degree or diploma. Except for results who se authors are cited where first mentioned,

Chapters 3-8 constitute an original contribution to knowledge.

Assistance has been received only as mentioned in the following:

• The problem studied in Chapter 3 was originally discussed at the 2001 International

Workshop on Graph Drawing and Fixed Parameter Tractability organized by my

supervisor Sue Whitesides; however, only minor progress was made toward solving

the problem at the workshop.

• The work presented in Chapter 4 was initiated by David Wood when he suggested

that 1 attempt to reconstruct a proof of a c1aimed result.

• Chapter 5 is joint work with Emilio Di Giacomo, Walter Didimo and Giuseppe Liotta.

• Chapter 8 is joint work with my supervisor although 1 was solely responsible for

implementing the algorithms, running the experiments and handling the data.

An extended abstract of Chapter 4 appears in [89], the contents of Chapter 5 appear in [43],

and preliminary results of Chapter 8 appear in [90].

Vlll

Acknowledgements

1 would first of ail like to thank Sue Whitesides. Both personally and professionally, Sue

has much to offer students and colleagues, and, as my supervisor, she has been very gener­

ous to me. Not only did she introduce me to the topics addressed in this thesis, but she gave

me many opportunities to experience first-class research, by inviting me to her workshops,

arranging research visits with her colleagues, and making it possible for me to attend con­

ferences. Sue has always impressed me with her ability to perceive the deeper significance

of ideas. More than once have 1 discovered what seemed to me to be a little curiosity, only

to realize in a conversation with Sue that the curiosity was in fact the key to something

surprisingly significant.

1 would like to thank Thomas Shermer for teaching his graduate course on Graph Draw­

ing. One of the four assignments in the course was, of ail things, to implement the Hopcroft

and Tarjan planarity testing algorithm! As difficult as the assignment was, it sparked my

interest in drawing graphs and ultimately led to the completion of this thesis.

Thanks to my colleagues Vida Dujmovié and David Wood for both calm and lively

days spent proving theorems. David amazes me with his ability to comprehend the ideas

that come tumbling out of my mouth and give them clear and concise expression. Vida

ensures that problem sessions are stimulating, the way she pounces on ideas and instantly

spots holes in "proofs."

1 am especially grateful to Sue for introducing me to Giuseppe (Beppe) Liotta. Each

week that 1 have spent visiting and working with Beppe, Emilio Di Giacomo and Walter

Didimo in Perugia has been memorable and productive. As a result of the visits, 1 have

come to consider all three of them as my friends.

Many of the ideas presented in this thesis are based on work by Michael Fellows and

Frances Rosamond. 1 was fortunate enough to have Mike and Fran invite me to spend a

month with them at the University of Newcastle. During that time, 1 experienced first-hand

their lifestyle built around mathematics, computer science, ... and of course surfing. 1 also

had the pleasure of meeting their students Peter Shaw and Elena Prieto and spending time

with them trying to cover points with lines.

ix

CONTENTS

Thanks to Michel Langlois for translating my abstract into French. 1 definitely could

not have done that without you!

1 am grateful for financial support from a scholarship for doctoral studies from FCAR

and from the grant of Sue Whitesides. 1 was not a starving student!

Thank you Dad for showing me how to work hard and to think deeply about things.

Thank you Mom for passing your insatiable curiosity on to me.

And finaIly, to my wife Leslie, thanks for putting up with aIl the late nights of c1ickity­

c1ack on the keyboard and reminding me when it was 3AM. You are my best friend. Let's

have a picnic.

x

List of Figures

1.1 Planar and non-pl anar layered drawings.

1.2 DNA mapping illustration. . . .

1.3 DNA mapping fragment overlap.

1.4 Software include graph.

1.5 Correspondence between edge crossings and ILP variables.

2.1 A caterpillar and a 2-claw.

3.1 Drawing a cycle on two and three layers ..

3.2 A biconnected graph that is not 3-layer planar ..

3.3 Safe vertices.

3.4 Extension of a biconnected component.

3.5 Safety certificate of a biconnected component. .

3.6 A biconnected component and its weak dual . .

3.7 Layered drawing of an extension

3.8 Three steps for obtaining a proper 3-layer planar drawing ..

4.1 Drawing of an exposed vertex.

4.2 Tree Sk

4.3 An exposed vertex.

4.4 Tree pk

4.5 An exposed vertex.

4.6 Illustration for Lemma 4.25.

4.7 Planar layered drawings oftrees.

4.8 Tree T k • •••••••••••••

4.9 Decomposing a tree to obtain a drawing.

5.1 A graph that is not l-layer, I-bend planar.

5.2 Illustration of Kaufmann and Wiese technique.

xi

2

3

3

8

11

22

30

30

31

32

33

36

39

48

62

63

67

68

69

71

72

73

78

81

83

5.3 A cutting sequence

5.4 Illustration of Lemma 5.5.

5.5 Augmenting cutting path ..

5.6 Embedded maximal planar graphs H5 and Nk+l.

5.7 Illustration of Corollary 5.13

5.8 Illustration of the reduction in Lemma 5.14.

5.9 Illustration for Lemma 5.14.

5.10 Inductive construction of H k+ 1 (G).

5.11 An A-shaped drawing.

5.12 A drawing of Hk+l(G) \ {V2} with overlapping segments.

5.13 A drawing of Hk+l(G) \ {V2}
5.14 Obtaining a drawing of Hk+l(G) by adding a vertex.

5.15 A drawing of Hk+l(G) ..

5.16 Handles in a graph.

5.17 Overlapping handles.

5.18 Covering vertices with a cutting path and handles ..

5.19 Removal of a dangling handle.

5.20 Solving the co-handle width problem.

5.21 Drawing non-handle graph edges. ..

5.22 Drawing of a handle graph

5.23 Reinserting a dangling handle vertex ..

5.24 Illustration for reinserting dangling handles.

5.25 Drawing edges outside a handle.

5.26 A 2-outerplanar graph that is not l-Iayer, I-bend planar ..

5.27 Drawing a 2-outerplanar graph ..

6.1 A violation of (*)
6.2 Illustration for branching rule 1EDGE. .

6.3 Illustration for branching rule X2EDGE.

6.4 Illustration for branching rule Y2EDGE.

6.5 Illustration for branching rule 2EDGE ..

6.6 Illustration for proof of Lemma 6.2 case 1 ..

6.7 Illustration for proof ofLemma 6.2 case 2 ..

6.8 Illustration for 2-layer branching rules ..

6.9 Illustration of branching rule 3CYC. .

6.10 Illustration of branching rule CLAWO.

6.11 Illustration of branching rule CLAW 1.

xii

LIST OF FIGURES

87

88

89

91

93

94

95

96

97

99

99

100

100

102

102

104

108

109

111

112

113
114
115
116

117

123

124

125

125

125

127
127

129

129

129

130

6.12 Illustration of branching rule CLAW2.

6.13 Illustration ofbranching rule CLAW3.

6.14 Illustration of branching rule 4CYC. .

6.15 Illustration ofbranching rule CLAWS.

7.1 Illustration of list distance.

7.2 Admitted leaf orderings.

7.3 Computing cliff ..

7.4 A directed graph.

LIST OF FIGURES

130

130

133

134

156

157

160

161

8.1 Comparison of experimental results with three edge densities. 171

8.2 Experimental results for a single edge density. 172

C.l Illustration of how to implement a generic list data structure in C++. 190

xiii

List of Tables

8.1 Two-Iayer planarization experimental results.

8.2 One-sided crossing minimization experimental results.

D.1 Sparse experiments (IEI/IVI = 0.6)

D.2 Sparse experiments (IEI/IVI = 0.8)

D.3 Sparse experiments (IEI/IVI = 1.0)

XIV

174

175

192

198

........... 201

Chapter 1

Introduction

To Leslie-you show me that sanity is not found in reasoning but in loving.

A combinatorial graph consists of a set of elements called vertices and a set of connections

between pairs of vertices called edges. In spite of this simple definition, combinatorial

graphs are important theoretical tools for modelling complex types of data. For example,

software engineers model large software systems as graphs whose vertices correspond to

system components and who se edges correspond to component dependencies. They use

these graph models to visualize and test the structural quality of systems (see, e.g. [65]).

Another example is the World Wide Web (WWW), which has grown so large that new tools

are needed to use it to find information efficiently. As a result, research into how to effec­

tively visualize and navigate the structure of the World Wide Web has become a popular

research topic (see, e.g. [35]), where the structure is often modelled as a graph whose ver­

tices correspond to Web pages and who se edges correspond to hyperlinks between pages.

Once obtained, graph models are used for a variety of purposes that often require draw­

ings of the graph satisfying certain physical constraints such as bounded area or volume,

or a minimum distance between pairs of vertices. The discipline of Graph Drawing is con­

cerned, in part, with aIl problems relating to mathematically characterizing those graphs

that can be drawn subject to certain constraints, to finding efficient algorithms for automat­

ically testing whether or not a given graph satisfies a given characterization and, if it does,

to obtaining su ch a drawing.

In this thesis, we investigate layered or hierarchical graph drawings, that is drawings in

the plane whose vertices are drawn on one or more horizontallines called layers. Layered

graph drawings were first introduced by Tomii, Kambayashi and Yajima [93], Carpano [11],

and Sugiyama, Tagawa and Toda [91]. They are used in many applications [76] including

visualization [6,60], DNA mapping [96], phylogenetic tree comparison [29], and row-based

VLSI layout [86].

Layered drawings come in many different flavours. In nearly aIl of the drawings that we

consider in this thesis, edges are drawn as straight-line segments between the vertices that

1

CHAPT ER 1. INTRODUCTION

they connect. Within this broad category of drawings, we differentiate between planar and

non-pl anar drawings. A drawing is a planar drawing if no pair of distinct edges intersects

except at shared end-vertices; otherwise, the drawing is non-planar. For ex ample, Figure

1.1 illustrates a planar and a non-planar drawing of the same graph. The only difference

between the two drawings is the position of the darkened vertex and its incident edges, and

the fact that the non-pl anar drawing uses fewer layers.

~) :::::: ~ ::
(a) (b)

Figure 1.1: A planar layered drawing (a) and a non-planar layered drawing (b) ofthe same
graph.

In the next two sections, we discuss layered drawings in more detail and define several

problems related to obtaining these drawings.

1.1 Planar Drawings

We motivate the details related to planar layered drawings using an application from DNA

mapping. For our purposes, a DNA molecule is simply composed of a long chain of nu­

cleotide pairs. In DNA mapping, biologists use restriction enzymes to identify important

locations in DNA molecules. A restriction enzyme interacts with a DNA molecule by cut­

ting it into smaller molecule fragments at specifie locations. To identify these locations,

biologists obtain copies of a DNA molecule and two restriction enzymes. Let us suppose

that one enzyme is denoted by A and and the other by B. They then use enzyme A to eut

one of the molecule copies into fragments al, a2, . .. ,am, and then use enzyme B to eut

another copy of the molecule into fragments bl , b2 , ... ,bn . Through further tests, biologists

are able to discover which pairs of fragments contain the same parts of the original DNA

molecule; in other words, they know which fragments overlap. From this information, they

wish to determine the order of the cuts created by A and B along the molecule, or, equiva­

lently, the order of the fragments as they appeared in the original molecule. For an example,

see Figure 1.2.

Waterman and Griggs [96] reduce this problem to a layered graph drawing problem

on two layers. They construct a graph model in which each fragment ai, 1 ~ i ~ m,

2

CHAPTER 1. INTRODUCTION

a2 a4 a3 al as
III III

__ 1
111l1li -IIIIIIII~IIII -

~ ~ 1-- l1lil1li -~IIII-IIII +
b4 b6 b3 b2 bs bl

Figure 1.2: The fragments created by enzymes A and B as they appear in the original
molecule.

and each fragment bi , 1 ::; i ::; n, corresponds to a unique vertex, and there is an edge

between each pair of vertices whose corresponding fragments overlap. Figure 1.3 shows the

graph corresponding to the mapping information given in Figure 1.2. They derive several

A layer

B layer

Figure 1.3: The graph corresponding to the fragment overlap information given in Figure
1.2.

properties of such graphs. For example, they show that there is at most one sequence of

edges that one can follow when traversing the graph from one vertex to another. In graph­

theoretic terms, this implies that the graph is acyclic. They also show that each vertex is

connected by edges to at most two other vertices that are not leaves. A leaf vertex is a

vertex that is connected to exactly one other vertex by an edge. Using these properties,

they provide an efficient algorithm for obtaining a planar drawing of the graph in which

the vertices corresponding to fragments ai, 1 ::; i ::; m, lie on one layer, and the vertices

corresponding to fragments bi , 1 ::; i ::; n, lie on a second layer. They show that the

linear order of the vertices on each layer in the drawing corresponds to the order of their

corresponding DNA fragments in the original DNA molecule.

It is interesting to note that Waterman and Griggs, without realizing it, actually describe

proper 2-layer planar graph drawings, drawings that were defined and studied by Harary

and Schwenk [45] as far back as 1972. The reason for the term 'proper' is to differentiate

these drawings from other layered drawings in which the end-vertices of a single edge may

lie on the same layer or lie on non-adjacent layers. We say that these other types of drawings

are unconstrained. We formally define these and other types of layered drawings in Chapter

2.

3

CHAPT ER 1. INTRODUCTION

Though this DNA mapping application does not iIlustrate it, other applications areas

generalize drawings on two layers to drawings on a larger number of layers. In these con­

texts, it is usually neeessary to determine whether or not a graph has a planar drawing on a

given number of layers, and, if it does have su ch a drawing, to obtain the drawing. Henee,

for proper drawings we have the PROPER k-LAYER PLANAR problem: l

Given: A graph G and an integer k 2:: O.

Question: Is G proper k-Iayer planar? i.e. does G have a planar drawing in

which the vertiees lie on k horizontallines and the edges are drawn as straight­

line segments between end-vertiees on adjacent layers?

Much has been published about drawing graphs after their vertiees have already been as­

signed to layers; examples indude the well-known work of Sugiyama, Tagawa and Toda

[91] and polynomial-time algorithms of Junger et al. [56,55] and Healy and Kuusik [48].

However, surprisingly little is known about problems like PROPER k-LAYER PLANAR

where the vertiees have not been pre-assigned to layers. Aside from the NP-completeness

result of Heath and Rosenberg [51], 2 Dujmovié et al. [24] derive the only other results

related to this problem. Though they obtain polynomial-time solutions when the number of

layers is bounded by a constant, the running times are impractically large for even simple

graphs.

More is known when the number oflayers is equal to 1, 2 or 3. Of course, for k = 1, the

PROPER k-LAYER PLANAR problem is trivial and, for k = 2, we have already discussed

the efficient algorithm of Waterman and Griggs [96]. For k = 3, F6Bmeier and Kaufmann

[40] daim to have a linear-time solution; however, as we will discuss in Chapter 3, their

algorithm contains fatal ftaws. Cornelsen, Schank and Wagner [17] have published the only

result for unconstrained planar drawings on two and three layers. They derive linear-time

algorithms for determining whether or not a given graph has unconstrained 2 and 3-layer

planar drawings.

In the drawings that we have considered so far, edges are drawn as straight-line segments

between their end-vertices. Most applications favour such a restriction because it is easy

to see which pairs of vertiees are connected by edges. It is natural, however, to consider

drawings that relax this restriction, allowing edges to be drawn with a single bend, in other

1 Similar problem definitions exist for other types of planar Iayered drawings; however, we omit them here
in order to simplify the discussion.

2Heath and Rosenberg [51] prove that the NP-completeness of determining whether or not a given graph
has a planar layered drawing in which the end-vertices of each edge lie on adjacent layers. They caU such
drawings leveled-planar whereas we calI them praper, planar layered drawings. This complexity result,
however, does not appear to immediately extend to minimizing Iayers in planar layered drawings that are not
necessariIy proper. ConsequentIy, the complexity of the problem for these drawings remains open.

4

CHAPTER 1. INTRODUCTION

words, as polylines consisting of at most two line-segments. Thus, we have the k-LAYER,

1-BEND PLANAR problem:

Given: A graph G and an integer k ?: O.

Question: Is there a k-Iayer, 1-bend planar drawing of G? i.e. does G have a

pl anar drawing on k layers in which each edge is drawn as a polyline consisting

of at most two li ne-segments?

Even for k = 1, this problem is NP-complete [61]. In Chapter 5, we extend this hardness

result by showing that the problem is NP-hard for each tixed k ?: 2. In other words, it is

extremely unlikely that we will ever obtain efficient solutions to this problem.

1.2 Non-Planar Drawings

Sometimes, it is impossible to draw a graph without having a few crossing edges. The

application of DNA mapping mentioned above is no exception because of imperfections

in the experimental methods for determining whether or not two DNA molecule fragments

overlap. Consequently, the resulting graph may be missing a few edges or incorrectly con­

tain a few additional edges. Though missing edges do not prevent us from obtaining 2-layer

planar drawings, additional edges may impose crossings. To obtain a reasonable ordering

of the DNA fragments under these conditions, we obtain a 2-layer drawing of the graph as

before; however, in this case, we either obtain a drawing that minimizes the number of edge

crossings, or else we attempt to remove a minimum number of edges such that the resulting

graph has a pl anar drawing. The decision version of the tirst problem is called 2-SIDED

CROSSING MINIMIZATION:

Given: A bipartite graph G = (VOl Vi; E) and an integer k ?: O.

Question: Is there a 2-layer drawing of G with at most k edge crossings in

which the vertices of 110 lie on one layer and the vertices of Vl lie on the other

layer?

The decision version of the second problem is called 2-LAYER PLANARIZATION:

Given: A graph G and an integer k ?: O.

Question: Is there a set of edges S ç E of size at most k such that G - S has

a proper 2-layer planar drawing?

Solving these problems, of course, does not guarantee a correct ordering for the original

DNA mapping problem, but, when the experimental errors are small (as is usually the case),

the obtained orderings closely resemble the correct orderings.

5

CHAPTER 1. INTRODUCTION

Both 2-SIDED CROSSING MINIMIZATION and 2-LAYER PLANARIZATION are NP­
complete [42,32,93]. In fact, Eades and Wormald [33] show that crossing minimization

remains NP-complete even when we fix the order of the vertices on one of the layers. This

restricted version of the problem is called l-SIDED CROSSING MINIMIZATION. Munoz

et al. [73] shows further that this restricted problem remains NP-complete even when the

vertices on the ordered layer have degree equal to one, and the vertices on the other layer

have degree at most four.

The 2-LAYER PLANARIZATION problem similarly remains NP-complete even when

the order of the vertices on one of the layers is fixed [32,93]. This restricted version of

the problem is called l-LAYER PLANARIZATION. Eades and Whitesides [32] show fur­

ther that 2-LAYER PLANARIZATION remains NP-complete even when the vertices on one

layer have degree two and the vertices on the other layer have degree at most three. They

also show that l-LAYER PLANARIZATION remains NP-complete when each vertex on the

fixed-order layer has degree one, and each vertex on the other layer has degree at most two;

that is, the graph is composed of compone nt paths of length at most two. These problems

are, however, solvable in polynomial-time when the order of the vertices on bath layers is

fixed [32,77,95,5].

In experiments with branch-and-cut algorithms for crossing minimization, Jünger and

Mutzel [58] show that the 2-SIDED CROSSING MINIMIZATION problem may be more dif­

ficult to solve in practice than the l-SIDED CROSSING MINIMIZATION problem. More

specifically, their results show that their algorithms can efficiently and optimally solve in­

stances of l-SIDED CROSSING MINIMIZATION with up to about 60 vertices on the free

layer; on the other hand, their algorithm for 2-SIDED CROSSING MINIMIZATION can ef­

ficiently handle at most 15 vertices per layer. Further investigations are necessary, then,

in order to find more practical solutions to 2-SIDED CROSSING MINIMIZATION, if su ch

solutions exist.

In similar experiments using branch-and-cut algorithms for planarization, Mutzel [74,

75] describes an algorithm for the 2-LAYER PLANARIZATION problem that handles graphs

with up to about 100 vertices per layer and 200 total edges. Though these results are

quite strong, the algorithm does demonstrate weakness when applied to graphs with edge­

to-vertex ratio around 1.25. Mutzel's l-LAYER PLANARIZATION algorithm is even more

efficient, efficient enough to be used in most practical situations to obtain exact solutions

[77].

As with planar drawings on layers, we may also consider non-pl anar drawings on more

than two layers. These drawings have applications in visualization [6,60], and row-based

VLSI layout [86]. Of course, these problems are as difficult as their 2-layer versions so, in

6

CHAPT ER 1. INTRODUCTION

practice, we do not normally expect to obtain anything more than approximate solutions.

The most famous approximation approach is due to Sugiyama, Tagawa and Toda [91]

which reduces the problem to a series of l-SIDED CROSSING MINIMIZATION or 1-LAYER

PLANARIZATION problems. The vertices are first assigned to layers and then an algorithmic

solution to l-SIDED CROSSING MINIMIZATION or 1-LAYER PLANARIZATION is applied

to adjacent pairs of layers, permuting the vertices on one layer while holding the other

layer fixed. Usually, this algorithm is applied in a sweeping fashion, beginning with the top

two layers and then, moving down layer-by-Iayer to the bottom two layers, and then in a

similar manner back up to the top. These sweeps are repeated until sorne stopping criteria

is satisfied, at which point, a drawing is obtained.

Jünger et al. [54] do describe branch-and-bound and branch-and-cut algorithms that

minimize crossings globally once vertices have been assigned to layers. Though potentially

producing drawings with fewer crossings than algorithms based on Sugiyama's approach,

the algorithms are not yet efficient enough to be used in practice. They include experiments

only for two and three layer drawings. Healy and Kuusik [47,46] obtain slight improve­

ments by adding additional constraints based on cycles. In preliminary experiments3, their

algorithms have slightly slower running times but use about half as many branch-and-bound

nodes.

1.3 Practical Approaches to NP-hard Problems

Most of the problems that we have just surveyed are NP-hard; consequently, it is very un­

likely that any of them can be solved efficiently in general. Indeed, in our survey so far, we

have described experiments with state-of-the-art implementations that are often not efficient

enough to be used in practice. Since practical solutions are needed, we now survey several

approaches to obtaining such solutions to these difficult problems. In particular, we survey

algorithms that handle restricted versions of problems, heuristic algorithms, approximation

algorithms, branch-and-cut algorithms, and fixed-parameter tractable algorithms.

There are other approaches to solving NP-hard problems such as randomized algo­

rithms, algorithms with running times of the form O(an) where n is the size of the problem

instance and a is just slightly larger than 1, and genetic algorithms. We omit these because

we are not aware that these approaches have been successfully applied to the problems we

consider. Investigating the usefulness of these approaches is a possible area for further

research.

3The experiments are reported in [47]. They consider 10 different graphs, each on 8layers with 12 vertices
per layer and 110 edges total. One of the graphs requires a minimum of 31 edge crossings.

7

CHAPTER 1. INTRODUCTION

1.3.1 Problem Restriction

In many applications, it is not necessary to solve a graph problem in full generality. As an

example, consider the software include graph used by software engineers to model program

file dependencies (see Figure 1.4). In these models, each vertex corresponds to a unique

ole2.h oleauto.h

program.cpp }---<

ddelm.h

rpc.h

Figure 1.4: A layered drawing of an include graph corresponding to a very simple Windows
program.

file and each edge to a case where one file "includes" information from another file. The

resulting graphs are called directed graphs because each edge has an oriented direction

to indicate which of the two files "includes" the information and which file provides the

information. According to Lakos [65], these graphs should never contain a directed cycle,

for otherwise, this would imply a cyclic dependency in the program files. Furthermore, the

most natural way for software engineers to visualize these graphs is as layered drawings in

which each edge is oriented from a vertex on a lower layer to a vertex on a higher layer. We

note that this is a restriction of the layered drawings mentioned earlier, and, unlike the many

of them, this restricted problem has a well-known Iinear-time algorithm for minimizing the

number ofrequired layers in the drawing [6].

1.3.2 Heuristics

A very common approach to handling NP-hard problems is to exchange optimal or ex­

act solutions in favor of 'reasonably good' solutions, usually by applying on one or more

heuristics to the problem. A heuristic is simply a rule of thumb, often a greedy choice, that

can be made quickly.

8

CHAPTER 1. INTRODUCTION

For example, the Sugiyama framework for layered drawings that we mentioned earlier

uses two main heuristics. First of aU, to truly minimize edge crossings in a layered drawing

of a graph, assigning a layer to each vertex and ordering of the vertices on each layer

must be performed in a globaUy optimal way, and therefore simultaneously. However,

to simplify things, the Sugiyama framework separates these two problems into different

steps. Secondly, once vertices are assigned to layers, the resulting edge crossings can be

minimized only by choosing an ordering of the vertices on each layer, once again, in a

globaUy optimal way, and therefore for all layers simultaneously. However, as described

earlier, the Sugiyama framework chooses layer orderings by iteratively considering two

layers at a time.

In spi te of these simplifications, the crossing minimization problem, called l-SIDED

CROSSING MINIMIZATION, that forms the basis of the Sugiyama framework is also Np­
hard. Consequently, practical algorithms within the Sugiyama framework often use heuris­

tics to solve even these problems, including the barycenter heuristic of Sugiyama, Tagawa

and Toda [91], and the median heuristic of Eades and Wormald [33]. In both of these

heuristics, the order of the vertices on the free layer, the layer who se order is not fixed,

is obtained according to sorne "averaging" criteria. More specifically, let Wl, W2, .. . ,wp

be the vertices on the fixed layer, in the order that they appear on that layer, that are each

connected to the same vertex v by an edge. In the barycenter heuristic, the x-coordinate

pos(v) of v is set equal to the average x-coordinate of its neighbors Wl, W2, ... ,wp :

1 p

pos(v) = - LPOS(Wi).
P i=l

In the median heuristic, the x-coordinate of v is set equal to the median x-coordinate of its

neighbors:
1

pos(v) = 2(poS(WL~J) + pos(wr~l))'

Surprisingly, these two simple heuristics consistently outperform other more complex heuris­

tics in experiments [67,58], including the stochastic [22], greedy-insert [30], greedy-switch

[30], split [30], and assign [12] heuristics.

Because the barycenter and median heuristics have proved to be so successful, new

approaches based on these two heuristics have been proposed. Marti and Laguna [68]

describe experiments with a new heuristic called GRASP, which is based on the barycenter

heuristic, and show that it outperforms aIl previous heuristics on sparse graphs. They also

inc1ude a Tabu Search algorithm in their experiments and show that, in exchange for a

longer running time than most other heuristics, the algorithm often finds optimal solutions

9

CHAPT ER 1. INTRODUCTION

when the input graphs have high edge-density.

Stallman et al. [88] also report on experiments with several variations of the barycenter

and median heuristics. These variations consist of a preprocessing step that obtains an

initial ordering of the vertices before applying the barycenter and median heuristics. Their

experiments show that these variations are very effective when applied to highly structured

graphs such as trees.

1.3.3 Approximation Aigorithms

Approximation algorithms are closely related to heuristic algorithms in that they do not

guarantee an optimal solution; however, approximation algorithms do come with bounds on

their worst-case behavior. It turns out that both the barycenter and median heuristics are ap­

proximation algorithms for l-SIDED CROSSING MINIMIZATION, with barycenter solutions

at most 8(fo) times the minimum [66] and median solutions incredibly at most 3 times

the minimum [33]. In other words, the barycenter heuristic is a 8(fo)-approximation and

the median heuristic is a 3-approximation algorithm. Yamaguchi and Sugimoto [98] obtain

a slightly better approximation with their greedy heuristic. When the maximum degree of

the graph is at most four, their algorithm is a 2-approximation, and, as the maximum degree

increases, the approximation ratio monotonically increases to a maximum of 3. Recently,

Nagamochi [78] has obtained a 1.47-approximation.

For 2-SIDED CROSSING MINIMIZATION, we do not know of any approximation algo­

rithms; this is further evidence that this problem may be significantly more difficult to solve

than l-SIDED CROSSING MINIMIZATION.

1.3.4 Branch-and-Cut

Many problems can be expressed as linear programming problems similar to the following:

maximize 200XI + 500X2

subject to the following constraints:

60XI + 40X2 < 2400

50XI + 50X2 < 2500

Xl, X2 > 0

More generally, a linear programming problem has as input a linear function to mini­

mize or maximize subject to a set of linear constraints. A linear function f has the form

f (Xl, X2, ... ,Xn) = alxl + a2X2 + ... + anXn where each ai is a constant rational number

and each Xi is a variable. A linear constraint has the form f(XI' X2, . .. ,xn) ~ b where b is

10

CHAPTER 1. INTRODUCTION

a constant rational number and f is a linear function. It is well-known that such problems

can be solved in polynomial time and efficiently in practice as well.

However, the problems that we consider cannot be expressed as linear programming

problerns unless we are able to constrain sorne of the variables to take only integer values.

Programs with these types of constraints are called (mixed) integer linear programs. For

example, Jünger et al. [54] express 2-SIDED CROSSING MINIMIZATION as the following

integer linear pro gram:

rninimize 2:(Vi,Wj),(Vk,Wt)EE Cijkl

subject to the following constraints:

Xik + Ylj - Cijkl < 1

Xki + Yjl - Cijkl < 1

< 2

(Vi, Wj), (Vk, Wl) E E and i < k,j =1= l

Vi, Vj, Vk E V(i < j < k) Xij + Xjk + Xki

Yij + Yjk + Yki

Xij + Xji

Yij + Yji

< 2 Wi, Wj, Wk E V(i < j < k)
1 Vi, Vj E V(i < j)
1 Wi,Wj E V(i < j)

Xij, Yij, Cijkl E {O,l}

In this program, there is a variable Xij for each pair of vertices Vi and Vj on the first layer,

such that Xij = 1 if Vi is before Vj on the layer, and Xij = 0 otherwise. There is similarly a

variable Yij for each pair of vertices Wi and Wj on the second layer. Then, for each pair of

edges (Vi, W j) and (Vk, Wl) such that i < k and j =1= l, there is a variable Cïjkl that is equal

to 1 if the edges cross and equal to 0 otherwise. In the program, we wish to minimize the

number of crossings 2:(Vi,Wj),(Vk,WI)EE Cïjkl. The first two constraints ensure that Cïjkl = 1

whenever edges (Vi, Wj) and (Vk, Wl) cross, that is, whenever Xik = Ylj = 1 (see Figure

1.5(a» or Xki = Yjl = 1 (see Figure 1.5(b». The next two constraints ensure that the vertex

(a) (b)

Figure 1.5: Edge crossings corresponding to variable values in an integer linear prograrn:
(a) Xik = Ylj = 1 and (b) Xki = Yjl = 1.

orderings implied by the variables are transitive. The final two constraints ensure that each

pair of vertices is ordered.

11

CHAPTER 1. INTRODUCTION

Integer linear programs can be solved using branch-and-bound algorithms. As the

name suggests, branch-and-bound algorithms consist of "branching" and "bounding". The

"branching" part involves selecting a variable with integer constraints and using it to split

the problem into two subproblems. More specifically, if the variable must take a integer

value between lower bound L and upper bound U, then we might generate a subproblem

in which the variable must take an integer between Land l(U + L)/2J and another sub­

problem in which the variable must take an integer between l(U + L)/2J + 1 and U. The

algorithm then "branches", solving each subproblem separately.

The "bounding" part usually involves solving the relaxation of the integer linear pro­

gramming problem; in other words, the problem is solved while allowing all variables to

take non-integer values. As mentioned earlier, the relaxation can be solved efficiently. We

observe that such a solution is a lower bound on the solution for the original problem if it

is a minimization problem, and an upper bound on the solution for the original problem if

it is a maximization problem. In sorne cases, the relaxation solution satisfies the integer

constraints of the original problem. In that case, the solution is an optimal solution for the

subproblem corresponding to the current branching and a feasible solution (i.e. satisfies all

constraints) for the original problem. It is not necessarily an optimal solution to the original

problem because, as mentioned above, each branching creates subproblems by adding new

constraints.

As a branch-and-bound algorithm runs, the feasible solutions that it discovers incre­

mentally improve until an optimal solution is discovered. As a result, if we can find an

initial feasible solution to the problem before beginning the branch-and-bound algorithm

using sorne heuristic, then the branch-and-bound algorithm acts as an anytime algorithm;

in other words, at any point in the execution of the algorithm, we can stop it and ask for the

best feasible solution that it has computed. On the other hand, if we allow the algorithm to

finish, then the best feasible solution is also optimal.

One way to increase the efficiency of branch-and-bound algorithms is to add additional

constraints to the integer linear program as the branch-and-bound algorithm runs. Though

these added constraints do not affect the optimal solution of the program, they may help

the algorithm converge to an optimal solution more efficiently. For example, in any proper

2-layer drawing of a simple cycle, there are at least n/2 - 1 edges crossings, where n is the

number of edges in the cycle. Therefore, for each simple cycle C in the graph, we could

add the following constraint to the program:

C··kl > n/2-1 ~J - ,

(Vi ,Wj),(Vk,Wl)EE(C)

12

CHAPT ER 1. INTRODUCTION

where E(C) is the set of edges in C and n is the size of E(C). Unfortunately, generating

such a constraint for each cycle in a typical graph would result in far too many constraints

for any linear programming system to handle. Therefore, we add these types of constraints

dynamically whenever they are violated by sorne intermediate relaxation solution. This

variation of branch-and-bound is called branch-and-cut.

We recall that branch-and-cut algorithms are used in the experiments of Jünger and

Mutzel [58], Jünger et al. [54], and Healy and Kuusik [47,46], as weIl as in the planariza­

tion experiments of Mutzel [74,75] mentioned earlier. There we noted that the branch-and­

cut algorithms were efficient enough to solve l-LAYER PLANARIZATION in most practical

applications, efficient enough to solve l-SIDED CROSSING MINIMIZATION and 2-LAYER

PLANARIZATION in many practical applications, but too inefficient to solve anything but

very small instances of 2-SIDED CROSSING MINIMIZATION. Branch-and-cut algorithms

depend on many factors, including the types of cuts used and how they are applied, so fur­

ther investigations are necessary to determine whether or not aIl of these problems can be

solved efficiently using branch-and-cut algorithms.

1.3.5 Parameterized Complexity

The motivation behind the theory of parameterized complexity is that most applications do

not require efficient solutions for aIl instances of difficult problems. This the ory formalizes

this idea by studying parameterized decision problems. A parameterized decision problem

consists of a classical decision problem, usually NP-hard, together with a parameter, often

an integer, that relates to the problem input in sorne way. The hope is that, for sorne bounded

range of parameter values, the parameterized decision problem has efficient solutions. For

instance, let us consider a parameterized version of 2-SIDED CROSSING MINIMIZATION

where the parameter is the number of edge crossings k that are permitted. Notice that, if

this parameterized problem can be solved efficiently for small values of k, then it is likely

to be an efficient solution to the DNA mapping problem (described on page 2) because

the number of experimental errors, and therefore the number of imposed edge crossings, is

normally very small. Similarly, a parameterized version of 2-LAYER PLANARIZATION

could have as its parameter the maximum number of edges k that may be removed to

planarize the graph. In this case as weIl, a solution to the problem that is efficient for

small values of k is likely to be an efficient solution to the DNA mapping problem as weIl.

In parameterized complexity, as in classical complexity, a problem is tractable if it

can be solved in polynomial time. In the language of parameterized complexity, su ch a

problem is said to be fixed-parameter tractable, or in the class FPT. More formaIly, a

13

CHAPTER 1. INTRODUCTION

parameterized problem with parameter k and input size n belongs to FPT if it can be

solved in O(f(k) . na) time, for sorne function f that is independent of n, and a constant

0: > O. An algorithm whose running time proves that a problem belongs to FPT is said to

be an FPT algorithm.

Although nearly half of the parameterized versions of the NP-complete problems in

[41] belong to FPT [82], many appear to be outside this class. In classical complexity

theory, NP-hard problems are those that are not likely to have polynomial-time solutions.

Parameterized complexity has an analogous class of problems, W[l]-hard problems, that

are not likely to belong to FPT. In fact, the theory organizes problems into a whole

hierarchy of hardness classes FPT ç W[l] ç W[2] ç ... and supplies appropriate

reducibility and completeness notations for each.

The value of any theory is determined by how weIl it models and explains current ob­

servations and how weIl it predicts future observations. Classical complexity theory has

proved to be a valuable theory. For example, it has so far accurately predicted that NP­
hard problems cannot be be efficiently solved in general. Unfortunately, these predictions

have not always proved to be useful in practice. For example, consider the well-known

problems VERTEX COVER and INDEPENDENT SET. These two problems are very sim­

ilar; in fact, they are duals of one other: if G is a graph with vertex set V, then S is a

vertex cover for G if and only if V \ S is an independent set for G. Not surprisingly, in

classical complexity, both of these problems belong to the same complexity class, the class

of NP-complete problems. In addition to this, neither problem admits a polynomial-time

approximation scheme [52,53]. Both theoretical and experimental evidence suggests that

VERTEX COVER is the easier problem to solve. For example, the following is a simple

2-approximation algorithm for solving VERTEX COVER: select an edge in the graph, add

the end-vertices of the edge to the cover, remove the vertices from the graph, and then

repeat the previous three steps until the graph con tains no vertices. More sophisticated

techniques have been used to obtain an approximation within a factor of 2 - 1~~!~i~1 times

the optimal [4,72]. On the other hand, INDEPENDENT SET is not likely to he approximated

within 1V1 1/ 2
-€ times the optimal for any E > 0 [53]. On the experimental side, Cheetham

et al. [14] report that their paraUel system consistently solves the VERTEX COVER problem

for graphs with covers of size up to 400 in at most 1.5 hours. Experiments with INDE­

PENDENT SET have not been nearly as successful. One of the fastest algorithms is based

on branch-and-hound [94].4 This algorithm regularly finds independent sets of size up to

4The actual results of Tomita and Seki [94] are for finding the maximum clique. It is well-known that
the size of the maximum clique in a graph is equal to the maximum independent set in the dual of the graph,
the graph obtained by connecting vertex pairs with edges if and only if they are not connected by edges in
the original graph. Thus, an algorithm that finds maximum cliques can be easily adapted to find maximum

14

CHAPTER 1. INTRODUCTION

30-40 vertices, though, in sorne cases, it takes 4-5 hours to find an independent set of size

as small as 10. 5

Thus, as this evidence appears to suggest, these two problems should fall into a different

complexity classes in a finer grained complexity theory. Indeed, this is the case for parame­

terized complexity because VERTEX COVER is in :FPT, and INDEPENDENT SET is in the

harder W[l] class [21].

1.3.5.1 Toolkit

An important benefit of parameterized complexity to practice is that it provides a growing,

systematic toolkit of techniques for obtaining FPT algorithms. The benefit of this toolkit

is not that its techniques are entirely novel because, in fact, many of the basic techniques

are used in other approaches to obtain efficient algorithms. Instead, the benefit is that in

parameterized complexity, its toolkit of techniques is being used systematically to obtain

FPT algorithms.

Not all of the techniques in the toolkit are intended to obtain FPT algorithms that

are efficient in practice. Sorne common examples inc1ude color-coding (hashing) [21],

well-quasi-ordering [21], and monadic second-order logic with bounded treewidth [20].

Though definitely not efficient in practice, finding FPT algorithms using these techniques

is not completely meaningless from a practical point of view. For example, the first FPT
algorithms for VERTEX COVER and GRAPH GENUS were based on the se techniques but

increasingly more efficient algorithms have since been obtained [71,21]. Our concern in

this thesis is with efficient algorithms so this is aIl we will say about these techniques.

Other techniques that may lead to efficient algorithms include kernelization [21], bounded

search trees [21], bounded treewidth [21], crown decompositions [1], extremal structure

such coordinatized kernels [36], and catalyzation [36]. In the remainder of this section, we

describe kernelization, bounded search tree and bounded treewidth in more detail and sur­

vey their uses in layered graph drawing. We omit further discussion of the other techniques

because they have not yet been successfully applied to layered graph drawing.

Kernelization. The most commonly used technique is called kernelization, the process of

transforming problem instances into equivalent simpler instances. Of course, kernelization

independent sets by simply preprocessing the input graph to obtain its dual.
5In sorne rare cases, the algorithm Tomita and Seki [94] finds independent sets of size up to 150; however,

these graphs have extremely low edge-density, smaller than 0.1. Graphs with such small edge-density tend to
have very large independent sets in comparison to the number of vertices in the graph; therefore, they tend to
have very small minimum vertex covers. In other words, we would expect to be able to use the algorithm of
Cheetham et al. [14] to quickly find a minimum vertex cover and from that obtain a maximum independent
set. Thus, even these rare cases do not support the hypothesis that VERTEX COYER and INDEPENDENT SET
are equally difficult.

15

CHAPT ER 1. INTRODUCTION

is not an invention of parameterized complexity. Years before anyone had dreamt of the

name "parameterized complexity", Nemhauser and Trotter [79] discovered a clever way

to use linear programming to greatly reduce the number of variables in an integer linear

program for solving the VERTEX COVER problem.

However, in parameterized complexity, kernelization has become a standard technique

that is used in conjunction with one or more parameters. We illustrate using the algorithm

of Dujmovié and Whitesides [28] for the parameterized version of l-SIDED CROSSING

MINIMIZATION whose parameter k is the number of permitted edge crossings. In their

algorithm, they kernelize by assigning a so-called "natural ordering" to certain pairs of

vertices on the unordered layer. A pair of vertices u and v has a natural ordering if the

neighbors of u on the ordered layer all appear before or all appear after the neighbors of

v on the ordered layer. In the first case, the natural ordering is u before v, and, in the

second case, the natural ordering is v before u. They show that every optimal solution

to the problem satisfies the natural orderings. This kernelizing step is easily completed

in O(IGI3) time, after which the algorithm determines whether or not the remaining pairs

of vertices, those without natural orderings, can be assigned an ordering while creating at

most k edge-crossings. Though this step requires exponential time, it is a function of k

rather than of the size of the graph. This is because each pair of vertices without a natural

ordering is responsible for at least one edge-crossing in any solution. Thus, if there are

more than k pairs of vertices without natural orderings, then every ordering of the vertices

creates more than k edge-crossings so the algorithm can simply return false; otherwise, the

algorithm enumerates all possible orderings, at most 2k , of these pairs to determine if one

of them induces at most k edge-crossings. Thus, we have obtained an algorithm that runs

in O(k2
• 2k + IGI3) time, proving that the problem belongs to FPT. We will show below

how to improve this running time using a heuristic and bounded search trees.

For another graph drawing problem, upward planarity testing, Chan [13] also uses ker­

nelization to obtain a solution that runs in O(k! . 8k • n3 + 23.
21

• k3.
21

• k! . 8k • n) time, where

k is a problem parameter bounding the number of triconnected components in the input

graph, lis a second problem parameter bounding the number of cut-vertices in the graph,

and n is the number of vertices in the graph. The algorithm is based on a result showing

that the number of planar embeddings of a graph is bounded by a function of the number

of triconnected components in the graph. Thus, the algorithm works by enumerating all

planar embeddings and determining whether or not one of embeddings is upward planar.

Healy and Lynch [50] improve on this result, also using kernelization, to obtain a solu­

tion that runs in O(2k • k! . n2) time. They also describe another algorithm with a running

time of O(n2 + L\4 . (2L\ + 1)!) where L\ = IEI-IVI.

16

CHAPTER 1. INTRODUCTION

These examples show positive results where a kernelizing procedure leads directly to an

FPT algorithm. As we mentioned earlier, however, not ail parameterized problems belong

to FPT. Even for these problem kernelization can be used to reduce problem instances to

obtain something manageable in certain applications, see e.g. [19].

Bounded Search Trees. The second technique uses bounded search trees. Similar to

branch-and-bound algorithms, bounded search tree algorithms organize the search space

of the problem instance as a rooted tree, but, unlike branch-and-bound, uses the problem

parameter to bound the size of the tree. For example, the exhaustive enumeration step in

the algorithm of Dujmovié and Whitesides [28] described in the previous section couid be

organized as a bounded search tree. At each node in the tree, we associate a subproblem of

the original problem instance. To the root node, we associate the original problem instance.

We create two children for anode by selecting an unordered pair of vertices and fixing their

order in two possible ways, one for each child. The children inherit not only these fixed

orderings but also ail orderings fixed by their ancestors. Thus, a search tree node has no

children if aU pairs are ordered by its ancestors in the search tree. Since there are at most k

unordered pairs, the height of the tree is at most k so that size of the tree is at most 2k + 1.

Organizing the search space in this way, it is possible to further reduce the size of the

tree by observing that we are only interested in vertex orderings that create at most k edge

crossings. Thus, if fixing the order of a pair of vertices u and v results in only 1 additional

edge crossing regardiess of the ordering that we choose, then we can actuaUy ignore this

pair in the search tree. In other words, anode has no children when the oni y pairs of vertices

unordered by the node's ancestors are like u and v. No further branching is needed at this

node because every ordering of u and v creates exactly one additional edge crossing. Using

this observation, Dujmovié and Whitesides [28] reduce the size of the search tree from

O(2k) to O(ak), where a = 1+2v'5 ~ 1.618. Using more complicated heuristics, Dujmovié,

Fernau and Kaufmann [26] further reduce the size to O(ak) where a ~ 1.4656. We de scribe

this algorithm in Chapter 7.

Bounded search tree algorithms have also been used to solve planarization problems.

The first FPT algorithms for 1-LAYER PLANARIZATION and 2-LAYER PLANARIZATION

had running times of O(3k
• ICI) and (6k • ICI), respectively [23]. The result for 2-LAYER

PLANARIZATION was then slightly improved in the journal version of that paper [25] to

O(k . 6k + ICI). Very recently, Fernau [39] has combined heuristics from solutions to the

3-HITTING SET and 6-HITTING SET problems to reduce the running times for 1-LAYER

PLANARIZATION and 2-LAYER PLANARIZATION down to O(k3 • 2.5616k + ICI2) and

O(k2 • 5.1926k + ICI), respectively.

17

CHAPT ER 1. INTRODUCTION

Bounded Treewidth. A third technique uses bounded treewidth. Very roughly, treewidth is

a measure of how cIosely a graph resembles a tree. It is well-known that many intractable

problems become tractable when restricted to graphs with bounded treewidth [83]. In the

language of parameterized complexity, we say that the problems, when parameterized by

taking the treewidth of the input graph as a parameter, belong to FPT.

One approach for obtaining FPT algorithms for problems parameterized by treewidth

uses dynamic programming on tree decompositions. If a graph G has treewidth k, then

there exists a tree decomposition of G of width k. Very roughly, this tree decomposition is

a tree that resembles G, where each tree vertex corresponds to a set of at most k + 1 vertices

in G. The problem is then solved by tirst obtaining a tree decomposition of width k and

then applying a dynamic programming solution to the problem on the tree decomposition.

There is an FPT algorithm that determines whether a graph has treewidth k, and, if it does,

the algorithm obtains a tree decomposition ofwidth k [84]. Thus, to prove that the problem

is in FPT, we need only tind a FPT dynamic programming solution to the problem.

Bodlaender [9] gives a more detailed overview of the different techniques one can use to

obtain FPT algorithms when treewidth is bounded.

This technique was successfully applied by Dujmovié et al. [24] to obtain FPT algo­

rithms for the (h, k)-LAYER CROSSING MINIMIZATION problem:

Given: A graph Gand integers h, k ~ O.

Question: Is there an h-layer drawing of G containing at most k edge crossings

in which edges are drawn as straight-line segments between their end-vertices?

and for the (h, k)-LAYER PLANARIZATION problem:

Given: A graph Gand integers h, k ~ O.

Question: Is there a set of edges S of size at most k in G such that G - S has

an h-layer planar drawing?

Dujmovié et al. [24] also obtain FPT algorithms for variations of both these problems

in which the drawings must be proper, i.e. edges must be drawn as straight-line segments

between end-vertices on adjacent layers.

Though the algorithms are FPT, their importance is purely theoretical because their

running times are O(232(h+2k)3 • IGI). There are two reasons for the poor running time.

The tirst is that the dynamic programming step in their algorithms runs in something of the

order O((h + k)h+k), and the second is that the FPT algorithms for computing minimum

tree decompositions have even worse running times. In spite of this, this algorithm may

eventually prove to be useful if we can modify it to obtain sorne kind of approximation

18

CHAPTERI. INTRODUCTION

algorithm. Currently, there are efficient approximation algorithms for computing tree de­

compositions [63], and these have been used, for example, to solve several cases of partial

constraint satisfaction problems that had never before been solved [64].

1.4 Contributions and Organization of the Thesis

In the next chapter, Chapter 2, we present formaI definitions and previous results that are

used throughout the paper. The main body of the thesis is divided into two parts.

Part 1 Planar drawings.

Chapter 3 Proper three-Iayer drawings.

We correct an oversimplified result in the literature by characterizing proper

3-layer planar drawings and, from the characterization, obtain a corresponding

efficient linear-time recognition and drawing algorithm. Based on the complex­

ity of our characterization, however, we conclude that we may need to consider

other approaches in order to consider solving similar problems for four layers.

Chapter 4 Tree drawings.

We study the relationship of pathwidth (a specialization of treewidth) to the

number of layers required in planar layered drawings of trees under four dif­

ferent drawing models. For each model, we prove optimal upper and lower

bounds on the number of layers with respect to pathwidth, and obtain efficient

linear-time algorithms for obtaining drawings satisfying these bounds.

Our results correct a previously published result about pathwidth and layered

drawings of trees.

Chapter 5 One-bend drawings.

We study layered drawings in which each edge may be drawn with at most one

bend. We obtain a simple characterization of graphs that have su ch drawings on

two layers. We also prove that the problem of testing whether or not a graph has

su ch a drawing on any fixed number of layers is NP-hard.

Part II Non-planar drawings.

Chapter 6 Biplanarization algorithms.

We derive new algorithms for the l-LAYER PLANARIZATION and 2-LAYER

PLANARIZATION problems. Our algorithms with running times of O(2k + ICI)
and O(3.562k + ICI), respectively, are currently the fastest algorithms known

19

CHAPT ER 1. INTRODUCTION

for this problem. The previous best running times were by Fernau [39] and had

running times of O(k3
• 2.5616k + IGI2) and O(k2

• 5.1926k + IGI), respectively.

We also describe a new divide-and-conquer heuristic for traversing bounded

search trees. We show how to incorporate this heuristic into our 2-LAYER PLA­

NARIZATION algorithms without increasing their asymptotic running times.

Chapter 7 One-sided crossing minimization and applications.

We describe the most recent l-SIDED CROSSING MINIMIZATION algorithm

[26] and our implementation of it. We also show how to incorporate the divide­

and-conquer heuristic described in Chapter 6 into the algorithm of [26] while

only slightly increasing the asymptotic running time. We end the chapter by

showing how to modify the algorithm of [26] to obtain FPT algorithms for

two problems from bioinformatics.

Chapter 8 Experiments with FPT algorithms.

We describe our experiments with FPT algorithms for 2-LAYER PLANARIZA­

TION and l-SIDED CROSSING MINIMIZATION as described in Chapters 6 and

7. Our experiments show that, with respect to the 2-LAYER PLANARIZATION

problem, our implementations of FPT algorithms are competitive with and

in many cases better than current branch-and-cut algorithms. On the other

hand, with respect to the l-SIDED CROSSING MINIMIZATION problem, cur­

rent branch-and-cut algorithms remain the clear winners.

We conclude the thesis in Chapter 9, by presenting a short review of the thesis highlights

and describing topics for future research.

20

Chapter 2

Preliminaries

ln this chapter we give notation, definitions, and fundamental results that are used through­

out the thesis.

2.1 Set Notation

We assume that the reader is familiar with standard set-notation, so in this section we only

define notation that may not be so standard. If a is an element in S, then we use S - a to

denote the subset of S containing aIl elements of S except element a. Similarly, if S' is a

subset of S, then we use S\ S' to denote the subset of S containing aIl elements of S except

for those in S'. Conversely, S + a denotes the set containing a and the elements of S, and

S U S' denotes the set containing the elements of S and S'.

2.2 Graphs

Given a graph G = (V, E), we use V (G) = V to denote the vertices of Gand E (G) = E

to denote its edges. An edge e E E(G) corresponds to a pair of vertices u, v E V (G) and is

denoted (u, v) or (v, u). Given e = (u, v), we say that e is incident on u and v, that u and

v are adjacent to one another and to e, that u and v are the end-vertices of e, and that u and

v are neighbors. The graphs in this thesis are undirected so the notation (u, v) and (v, u)

denote the sarne edge. The degree of a vertex v in G, denoted degG (v) (or just deg(v) when

the context is c1ear), is equal to the number of edges incident on v in G. For a vertex v, we

use Adj (v) to denote the set of vertices adjacent to v and Inc(v) to denote the set of edges

incident on v.

A subgraph H of Gis a graph for which V(H) ç V(G) and E(H) ç E(G). The

subgraph H of G induced by a set of vertices S ç V (G) is such that V (H) = Sand

E(H) = {(u, v) 1 u, v E S, (u, v) E E(Gn. A graph G is bipartite if there exist subsets

A, B ç V(G) su ch that V(G) = AUB, AnB = 0, and each edge in G has one end-vertex

21

CHAPTER 2. PRELIMINARIES

v1 v2 ~V_1 v (h
~----------- ---

(a) (b)

Figure 2.1: (a) Caterpillar, (b) 2-Claw

in A and the other in B. Vertex sets A and B are called bipartition classes of G, and we

write G = (A, B; E) where E = E(G).

Following our set-notation above, we use G - v to denote, for sorne vertex v E V(G),

the induced subgraph of G on vertex-set V(G) - v, and we use G - e to denote, for sorne

edge e E E(G), the subgraph H of G with V(H) = V(G) and E(H) = E(G) - e.

Similarly, given a set of vertices S ç V(G), G \ S denotes the induced subgraph of G on

vertex set V(G) \S. If, on the other hand, Sis a set of edges from E(G), then G\S denotes

the subgraph H ofG with V(H) = V(G) and E(H) = E(G) \ S.

A vertex is called a leaf if it is adjacent to exactly one other vertex in the graph. We use

deg~ (v) (or deg' (v) when the context is clear) to denote the number of non-leaf neighbors

of a vertex v in a graph G. Any graph that can be transformed into a path by removing aIl

its leaves is a caterpillar. This unique path is cal1ed the spine of the caterpillar. The 2-claw

is the smallest tree that is not a caterpillar. It consists of a vertex called the root that has

three neighbors, and each neighbor is additionally adjacent to a leaf. See Figure 2.1 for

illustrations of a caterpil1ar and a 2-claw.

A path in graph G is a subgraph of G defined by a sequence of vertices in which each

edge is incident on a pair of consecutive vertices and each pair of consecutive vertices is

adjacent. A simple path is a path defined by a sequence of non-repeating vertices. We often

denote a path by listing the vertices in their sequential order. A graph G is then said to be

connected whenever there is a (simple) path in G between each pair of vertices. A cycle

in a graph G is a subgraph of G defined by a cyclic sequence of the vertices in which each

edge is incident on a pair of consecutive vertices and each pair of consecutive vertices is

adjacent. A simple cycle is then a cycle defined by sequence of non-repeating vertices. A

gtaph is said to be acyclic if it contains no simple cycles. A tree is an acyclic and connected

graph. Aforest is a graph composed of one or more trees.

A vertex v is a eut-vertex in a graph G if every path between two vertices of G other

than v contain v. If a graph contains no cut-vertices, then we say that it is biconnected. An

edge e is a bridge in G if every path between two vertices of G contains e.

Let P = VI ... vp be a simple path of length at least two in a graph G. If deg~ (VI) 2: 3,

22

CHAPTER 2. PRELIMINARIES

deg~(vp) = 1, and the remaining vertices Vi have deg~(Vi) = 2, then the subgraph induced

by the vertices of P and the neighbors of vertices V2, ... ,vp is called a pendant caterpillar

of G. This pendant caterpillar is said to be connected to the graph at VI, its connection

point. If, instead, we have deg~ (vp) 2': 3, then the subgraph induced by the vertices of

P and the neighbors of vertices V2, ... ,Vp-l is called an internai caterpillar of G. This

internaI caterpillar is said to be connected to G at vertices VI and vp , its connection points.

If an internaI caterpillar is a path, then it is also called an internai path.

Any graph that can be transformed into a simple cycle C by removing aIl of its leaves is

caIled a wreath. The edges of C are caIled the cycle edges and C is caIled the wreath cycle

of the wreath. A wreath subgraph is caIled a pendant wreath if exactly one of the vertices V

in the wreath has a neighbor outside of the wreath, and V is on the wreath cycle. The wreath

subgraph is said to be connected to the rest of the graph at v, its connection point.

In this thesis, we define a drawing of a graph to be a drawing in the plane in which each

vertex is assigned a unique point in the plane and each edge is drawn as a curve connecting

its end-vertices. We often use the symbol r G (or just r when the context is clear) to refer to

a drawing of a graph G. A planar drawing of a graph is a drawing in which no two edges

cross. Two edges cross whenever they intersect at a point other than at a shared end-vertex.

Figure 1.1 (a) gives an example of a planar drawing and Figure l.l(b) gives an example of

a non-planar drawing. A graph is planar, then, if it has a planar drawing. It is weIl-known

that a planar drawing of a graph induces an cyclic ordering on the set of edges incident on

each single vertex. The ordering is obtained by sorting the edges according to the angle

at which they first leave the vertex in the drawing. Thus, a planar embedding of a graph

consists of an ordering of incident edges for each vertex as defined by a planar drawing

ofthe graph. In this thesis, we use <PG (or just <P when the context is clear) to denote the

planar embedding of a given planar graph G. In a pl anar graph drawing, the edges cut the

plane into regions. Each region is caIled a face and corresponds to a cycle in the graph

composed of the vertices and edges that lie on its border. We say that the cycle bounds the

face and observe that, in the planar embedding corresponding to the drawing, each pair of

consecutive edges in the cycle is also consecutive in the cyclic ordering of their shared end­

vertex. In the drawing, exactly one face extends to infinity. We calI this face the external

face, and we caU the other faces internai faces. A planar graph is maximal planar if no

edge can be added without violating its planarity. We observe that if G is maximal planar,

then the set of faces in each pl anar embedding of G remains the same except for the choice

of the external face. AIso, each face in each embedding is bounded by a 3-cycle.

A graph is Hamiltonian if it has a simple cycle that traverses aIl its vertices; such a

cycle is called a Hamiltonian cycle. A planar graph G is sub-Hamiltonian if either G is

23

CHAPT ER 2. PRELIMINARIES

Hamiltonian or G can be augmented with edges in such a way that it becomes Hamiltonian

and remains planar. Observe that a maximal planar graph is sub-Hamiltonian if and only if

it is Hamiltonian.

2.3 Layered Drawings

An k-Iayer drawing of a graph is a drawing in which each vertex is placed on one of k

parallellines. In ail chapters except Chapter 5, edges are represented in the drawings that

we consider by straight-line segments between their end-vertices. In Chapter 5, edges are

drawn as polylines consisting of at most two straight-line segments.

We assume, without loss of generality, that the layers are horizontal and parallel to the

x-coordinate axis. We say that the left direction on a layer is toward toward x = -00, and

the right direction on a layer is toward x = 00. When we are not concerned about the exact

number of layers, we simply call an k-layer drawing a layered drawing.

In a layered drawing, we say that an edge is proper if its endpoints lie on adjacent

layers, short if they lie on the same layer, and long otherwise. Thus, a proper layered

drawing contains only proper edges, a short layered drawing contains no long edges, an

upright layered drawing contains no short edges, and an (unconstrained) layered drawing

may contain any of these types of edges.

When referring to planar drawings on k layers, we say that the drawings are proper

/ short / upright / unconstrained k-Iayer planar drawings. Thus, a graph with su ch a

drawing is said to be proper / short / upright / unconstrained k-Iayer planar. In many

cases, we will drop the term 'unconstrained'.

The following result is fundamental to nearly aIl results presented in this thesis. It

characterizes the set of graphs that are proper 2-layer planar.

Lemma 2.1 ([31,45,93]) Let G be a graph. ThefoIlowing are equivalent:

1. G is proper 2-layer planar;

2. G is a forest of caterpiIlars;

3. G is acyclic and contains no 2-claw; and

4. The graph obtained from G by deleting aIl leaves is a forest and con tains no vertex

with degree three or greater.

A graph is biplanar if it is a proper 2-layer planar graph. A set of edges whose removal

from a graph G makes it biplanar is called a biplanarizing set for G. The biplanarizing

number of G, denoted by bpn(G), is the size of the minimum biplanarizing set for G.

24

CHAPT ER 2. PRELIMINARIES

It is convenient to extend these definitions as they relate to the l-LAYER PLANARIZA­

TION problem whose input is a bipartite graph G = (A, B; E) and a linear ordering 11" of A.

A bipartite graph G = (A, B; E) and a linear ordering 11" of Ais biplanar if G has a proper

2-layer planar drawing in which the vertices of A lie on a single layer in order given by 11".

Thus, a biplanarizing set for Gand 11" is a set of edges whose removal from G makes the

resulting graph and 11" biplanar. Finally, the biplanarizing number of Gand 11", denoted by

bpn(G, 11"), is the size of the minimum biplanarizing set for Gand 11".

For the 2-SIDED CROSSING MINIMIZATION problem, given a bipartite graph G =
(A, B; E), the bipartite crossing number of G, denoted bcr(G), is the minimum number

of edge crossings in any proper 2-layer drawing of G. For the l-SIDED CROSSING MINI­

MIZATION problem, we also have as input a linear ordering 11" of the vertices of A. In this

case, the bipartite crossing number of Gand 11", denoted bcr(G, 11"), is the minimum number

of edge crossings in any proper 2-layer drawing of G in which the vertices of A lie on a

single layer in the order given by 11".

In Chapters 6 and 7, we use linear and partial orderings extensively. To avoid unnec­

essary detail, we give only simple, intuitive definitions here. A linear ordering of a set of

elements S simply defines a sequential ordering ofthe elements in S. A partial ordering of

S defines an ordering of various pairs of elements in S such that there exists a linear order­

ing of S that defines the same ordering for these pairs. Given a linear or partial ordering 11",

we use x <71" y to say that element x appears before element y in 11", and we use x ~71" y to

say that element x appears before element y in 11" or is equal to y. One implication of the se

definitions is that linear and partial orderings are transitive, i.e. if 11" is a linear or partial

ordering su ch that a <71" band b <71" C, then we must also have a <71" c.

2.4 Points in the Plane

A point P in the plane has a position defined by two values, an x-coordinate denoted X(p)

and a y-coordinate Y(p). In many cases, we will need to refer to the locations of vertices

in planar drawings. In those cases, we will treat the vertex v as a point and use X(v)

and Y(p) to refer to its 2-dimensionallocation. A sequence of points Pl, ... ,Pn in the 2-

dimension al plane are x-monotone if their x-coordinates are non-decreasing as we traverse

the list from one end to the other. They are strictly x-monotone if their x-coordinates are

always increasing as we traverse the list from one end to the other.

25

PartI

Planar Layered Drawings

26

Overview of Part 1

In the next three chapters, we con si der planar layered drawings, addressing the problem

of efficiently determining whether or not a given graph has a planar layered drawing on a

given number of layers. As we noted in Chapter 1, this problem tends to be NP-hard [51]

for most drawing models. To further illustrate the difficulty of obtaining planar layered

drawings, we show, in Chapter 5, that the problem is NP-hard when each edge may be

drawn with a single bend. Thus, in Chapters 3 and 4, we consider restricted versions of the

problem. In Chapter 3, we consider drawings on only three layers and, in Chapter 5, we

consider drawing trees rather than general graphs.

In spite of the fact that we consider different problems in each chapter, we solve each

inductively on the number of layers, say k, in the drawing. The induction is made possible

by the existence of a "special" path in the input graph whose removal creates a graph that

can be drawn on k -llayers. We then use this inductive approach to describe corresponding

recognition and drawing algorithms and to prove their correctness. The proofs of correct­

ness have two parts: a proof of necessity, such as that a recognition algorithm produces no

false negatives, and a proof of sufficiency, such as that a recognition algorithm produces

no false positives. Proofs of necessity begin by assuming the existence of a drawing of the

input graph on k layers, and then show that the drawing contains a "special" path that "cuts"

the drawing into smaller drawings on k - 1 layers. Our proofs of sufticiency, on the other

hand, begin by assuming that the given graph is ayes-instance to the problem, and we then

show how to compute a drawing of the graph on k layers. Drawings are computed by tirst

drawing the "special" path which must exist because the graph is a yes-instance, and then

by recursively drawing the remainder of the graph, which, we recall, can be drawn on k - 1

layers.

27

Chapter 3

Proper Three Layer Drawings

To Sue Whitesides-there is always something good, and you see it.

In this chapter, we characterize the graphs that are proper 3-layer pl anar and derive a cor­

responding linear-time recognition algorithm. In other words, we show that the PROPER

3-LAYER PLANAR decision problem can be solved in linear time:

Given: A graph G.

Question: Is G a proper 3-layer planar graph?

In addition, we show how to obtain a linear-time drawing algorithm from the recognition

algorithm.

F6Bmeier and Kaufmann [40] daim to have already obtained a linear-time algorithm

for solving this decision problem. They refer to proper 3-layer planar drawings as BAB­

drawings. This is because the vertices drawn on the top and bottom layers, denoted by B,

are not adjacent to one another, and the vertices on the middle layers, denoted by A, are

likewise not adjacent toone another. We believe, however, that the algorithm they present

is neither correct nor sufficiently specified. We describe these difficulties in Appendix A in

detail. Though sorne of the errors may be easy to fix, a few major problems remain. The

linear-time algorithm we present in this chapter is partially inspired by the algorithm of

F6Bmeier and Kaufmann. Differences are due to the fact our algorithm handles additional

difficuIt cases.

The purpose of this chapter is not only to correct an error in the literature, but also to

determine whether or not our approach and that ofF6Bmeier and Kaufmann is generalizable

for drawings with more than three layers. Unfortunately, as we will show, our current ap­

proach is complicated, especially considering the fact that we are only considering drawings

on three layers. Consequently, we will condude this chapter by suggesting an alternative

approach for future investigations.

We recall from Chapter 1 that Cornelsen, Schank and Wagner [17] also describe a linear­

time algorithm for recognizing and drawing graphs on three layers; however, in their draw­

ings, the edges may be non-proper, i.e. edges may cross the middle layer or may connect

28

CHAPTER 3. PROPER THREE LAYER DRA WINGS

vertices on the same layer. In addition, they add the restriction that vertices with degree one

drawn on the top or bottom layer must be adjacent to a vertex on the middle layer. Hence,

though they consider planar drawings on three layers, the type of the drawings are quite

different.

3.1 Three-Layer Planarity Characterization Theorem

We obtain our algorithm from a characterization of proper 3-layer pl anar graphs. The sim­

plest constraint in our characterization states that proper 3-layer planar graphs are bipartite.

As mentioned earlier, the vertices on the top and bottom layers of a proper 3-layer pl anar

drawing can form one bipartition class because no pair of them is adjacent, and the vertices

on the middle layer can form the other class because no pair of them is adjacent.

The remaining constraints in the characterization apply to components of the graph. For

the restricted case where the input graph G is a tree, the characterization roughly says that

Gis 3-layer pl anar if and only if, for each vertex v of G, at most two connected components

of G - v are not proper 2-layer planar. The reason is that, if there are three components

that are not 2-layer planar, then each component in the drawing uses an three layers so

one component is drawn between the other two components. The problem, however, arises

from the fact that v is adjacent to aIl three components so one of this incident edges must

cross an edge of the middle component. In the more general case where G may not be a

tree, we note that even-Iength cycles are proper 3-layer planar but not proper 2-layer planar.

Figure 3.1(a) gives a proper 3-layer planar drawing of a cycle and Figure 3.l(b) shows why

it cannot be drawn on 2layers. In Figure 3.1(b), vertex c is arbitrarily chosen to be leftmost

in the drawing and the illustration shows that every resulting drawing of the cycle contains

a crossing.

Consequently, to characterize aIl 3-layer planar graphs, we must deal with biconnected

components. As we will show, we can handle biconnected components by generalizing

the way we handle vertices in trees. For example, it is not difficult to see that if C is a

biconnected component in a proper 3-layer planar graph G, then G - C contains at most

two connected components that are not proper 2-layer planar. Unfortunately, this is not

sufficient because not aIl biconnected components are proper 3-layer planar; consequently,

our characterization must provide additional constraints for biconnected components. For

example, the biconnected compone nt in Figure 3.2 composed of a cycle and a vertex that is

adjacent to three of the cycle vertices is not proper 3-layer planar.

In the following, we describe these constraints more formally and completely. A vertex

or biconnected component that satisfies these constraints will be called saie. We recall that

29

CHAPTER 3. PROPER THREE LAYER DRAWINGS

h

(a)

K c a

(b)

Figure 3.1: A cycle C = abcdefgh has a (a) proper 3-layer pl anar drawing but not a (b)
proper 2-layer planar drawing.

Figure 3.2: A biconnected graph that is not 3-layer planar.

proper 3-layer planar graphs are bipartite so our definitions will apply to bipartite graphs

and be given with respect to a given bipartition class of the graph.

Definition 3.1 Let Va be a bipartition class of a bipartite graph G. A vertex v in G is safe

with respect to Va if:

1. v E Va and G - v contains at most two components that are not caterpillars (e.g see

Figure 3.3(b)); or

2. v tt Va and v has at most four non-Ieaf neighbors, and:

(a) G - v contains at most two components Hl and H 2 such that G(V(HI) + v)

and G(V(H2) + v) are not caterpillars.

(b) if v has four non-Ieaf neighbors or v belongs to a cycle, then G - v contains at

most two components Hl and H 2 such that G(V(HI) + v) plus a leafattached

to v and G(V(H2) + v) plus a leaf attached to v are not caterpillars (e.g. see

Figure 3.3(c)).

A vertex v may be safe but only just "bareIy safe" because the connected components

Hl and H2 of G - v mentioned above are not caterpillars. As a result, in every proper 3-

30

CHAPT ER 3. PROPER THREE LAYER DRA WINGS

(a) (b) (c)

Figure 3.3: (a) Suppose that, for sorne vertex v in G - (Vo, VI; E), G - v has three
connected components Hl, H2 and H3. (b) If H3 is a caterpillar and v E Vo, then v is safe
with respect to Vo. (c) If v ri. Vo and G(V(H3) + v) plus a leaf attached to v is a caterpillar,
then v is safe with respect to Vo.

layer planar drawing of G, one of these components must be drawn to the left of v and the

other component must be drawn to the right. Thus, we caU v a connecting vertex because it

"connects" the left part of the drawing with the right part of the drawing.

Definition 3.2 A vertex v is a connecting vertex with respect to Vo if:

J. v ri. Vo and v has four non-Ieaf neighbors in G; or

2. v does not belong to a cycle and G - v contains two components Hl and H 2 such

that G(V(HI) + v) and G(V(H2) + v) are not caterpillars; or

3. v belongs to a cycle and G - v contains two components Hl and H2 such that the

graph containing G(V(Hd + v) plus a leaf attached to v and the graph containing

G(V(H2) + v) plus a leaf attached to v are not caterpillars.

To de scribe the properties of a safe biconnected component, it is necessary to know how

the biconnected component is connected to the remainder of the graph:

Definition 3.3 Let C be a biconnected component of a bipartite graph G = (Vo, \rî; E).

The extension of C with respect to vertices VI and V2 in C and Vo is a graph obtained from

C by attaching leaves and pendant 2-paths to certain vertices in C. More specifically, if a

vertex of C is adjacent to a leaf in G then, in the extension of C, this vertex is adjacent to a

leaf If a vertex v in Chas d 2:: 1 non-leaf neighbors outside C in G then:

J. If v =J VI, V2 or v ri. Vo, then we attach d pendant 2-paths to v in the extension of C.

2. If v = VI = V2 E Vo and d 2:: 2, then we attached 2 pendant 2-paths to v in the

extension of C.

31

CHAPT ER 3. PROPER THREE LAYER DRAWINGS

3. Otherwise, we attach exactly one penoont 2-path to v in the extension of C.

This definition is illustrated in Figure 3.4.

(a) (b)

Figure 3.4: (a) A biconnected component C in a bipartite graph G = (Va, VI; E) where the
darkened vertices belong to Va, and (b) the extension of C with respect to VI> V2 and Va.

Definition 3.4 Let C be a biconnected component of a bipartite graph G = (Va, VI; E).

Biconnected component C is safe with respect to Va if there exists a safety certificate for

C with respect to Va, namely (VI, V2, Pl, P2 , Wc) consisting oftwo vertiees VI and V2 in C,

two simple paths Pl and P2 in Ce, the extension of C with respect to VI, V2 and Vo, and a

planar embedding Wc of C, such that:

J. The vertiees of Pl and P2 in C lie on the externalface of Wc;

2. g and P2 each contain a vertex of Va on eachfaee ofwc;

3. If a vertex of C belongs to Va, then it belongs to Pl or P2 but not both;

4. If a vertex V in Chas a neighbor outside C, then V belongs to Pl or P2;

5. If a vertex in C is a connecting vertex, then it is equal to VI or V2;

6. Both VI and V2 are end-vertiees of the subpaths of Pl or P2 in C such that each path

from VI to V2 on the external face cycle of C in Wc contains the subpath of Pl in C

or the subpath of P2 in C;

7. lf,for some vertex V in C, G - V contains two components Hl and H2 vertex-disjoint

with C that are not caterpillars, then V = VI = V2; and

32

CHAPTER 3. PROPER THREE LAYER DRA WINGS

8. Each pendant 2-path in Ce belongs to Pl or P2•

A safety certificate (Vl' V2, Pl, P2, \lie) is said to be tied if Vl = V2. We note that the

extension of Figure 3.4(b) does not lead to a safety certificate because a vertex has three

pendant 2-paths, making it impossible to find paths Pl and P2 that contain ail pendant

2-paths and each contain a vertex of Vo on each face. Figure 3.5, however, shows that

the biconnected component of Figure 3.4(a) is safe. The safety certificate consists of the

vertices labelled Vl and V2, the two highlighted paths Pl and P2, and the embedding of the

component given in the drawing.

Figure 3.5: The biconnected component of Figure 3.4(a) has a safety certificate
(Vl, V2, Pl, P2, \li) where Pl and P2 are the highlighted paths.

Based on these definitions, we state our characterization theorem:

Theorem 3.1 A graph G is proper 3-layer planar if and only if G is bipartite and each

vertex and each biconnected component of G is safe with respect to some bipartition class

ofG.

In the remainder of this section, we prove this theorem. To begin the proof, we require a

few more definitions and preliminary results.

Given a subgraph H of G and a proper 3-layer planar drawing r of G, a vertex v is

H -minimum if it has the smallest x-coordinate of any vertex in H on its layer. A vertex v is

H -maximum if it has the largest x-coordinate of any vertex in H on its layer. Given another

subgraph H' of G, vertex-disjoint from H, we say that H' is before (after) H in the drawing

if for each vertex v' in H' and each vertex v in H on the same layer, the x-coordinate of v'

is less (greater) than the x-coordinate of v.

The following result is fundamental to proving our theorem.

Lemma 3.2 Let r be a proper layered drawing of a graph G, and let H be a connected

subgraph of G. Suppose that one of the following holds:

33

CHAPT ER 3. PROPER THREE LAYER DRA WINGS

1. H eontains vertices on the top and bottom layers and G \ H eontains G-minimum

and G-maximum vertices.

2. H eontains G-minimum and G-maximum vertices and G \ H eontains vertices on the

top and bottom layers.

Then, V(H) is a eut-setfor G.

Proof: Let e be a circ1e containing aIl of r.
Suppose that H contains a vertex u on the top layer and a vertex u' on the bottom layer,

and that G \ H contains a G-minimum vertex v and a G-maximum vertex v'. Let Pu be

the point where the vertical ray from u to positive infinity crosses c, and let Pu' be the point

where the vertical ray from u' to negative infinity crosses c. Since H is connected, there is

simple path P from u to u' . If CH is the simple, closed curve composed of P, segments upu

and u'pu" and an arc of C from Pu to Pu', then either vis inside and v' is outside or else v is

outside and v' is inside the boundary of CH. In either case, each path P' from v to v' in G

crosses CH. By definition, P' crosses CH only at points on the drawing of P, so, since r is

planar, P' contains a vertex of P. Thus, V(H) is a cut-set for G.

Now suppose that H contains a G-minimum vertex u and a G-maximum vertex u' , and

G \ H contains a vertex v on the top layer and a vertex v' on the bottom layer. Let Pu be

the point where the horizontal ray from u to negative infinity crosses c, let Pu' be the point

where the horizontal ray from u' to positive infinity crosses c,

If H is connected, then there is a simple path P from u to u' . If Cc is the simple, c10sed

curve composed of P, segments upu and u'pu" and an arc of C frompu to Pu', then either v

is inside and v' is outside or else v is outside and v' is inside the boundary of Cc. In either

case, each path P' from v to v' in G crosses Cc. By definition, P' crosses Cc only at points

in the drawing of P, so, since r is planar, P' contains a vertex of P so V(H) is a cut-set

forG. 0

Recall that a vertex is safe, roughly if G - v contains at most two components that occupy

aIl three layers in any proper 3-layer drawing of G. Lemma 3.2 implies that each vertex in

a proper 3-layer planar graph is safe.

Corollary 3.3 Let r be a proper planar layered drawing of a graph G, and let v be a vertex

in G. Then, at most two eonneeted components in G - v eontain a vertex on the top and

bottom layers.

The next few results de scribes how paths and cycles are drawn within proper 3-layer

planar drawings. A path P in a proper layered drawing of a graph G is x-monotone if the

34

CHAPTER 3. PROPER THREE LAYER DRA WINGS

x-coordinates of vertices on the same layer are monotonie aIl y increasing as we traverse P

from one end to the other.

Lemma 3.4 Let r be a proper 3-layer planar drawing of a graph G. If P is a simple path

in G from a P-minimum vertex to a P-maximum vertex, then P is x-monotone in r.

Proof: Suppose, by way of contradiction, u precedes v in P, u and v lie on the same layer

in r, but v has a smaller x-coordinate than u. We additionally assume that u is the last

vertex in P with such a successor in P, and that v is the first su ch successor of u in P.

Let Vi be the predecessor of v in P. Since v is not P-maximum, v also has a successor

v" in P. Let u" be the successor of u in P.

If v lies on the top layer, then the Vi, v" and u" of u aIl lie on the middle layer. By

assumption, the x-coordinate of u" is less than the x-coordinate of v" implying that edges

(u, u") and (v, v") cross.

Thus, v lies on the rniddle layer. If Vi and v" lie on the same layer, then, by assumption,

Vi has a smaller x-coordinate than v". Since Vi #- u, Vi has a predecessor in P on the middle

layer, whose x-coordinate, by assumption, is greater than or equal to that u. However, this

is impossible since such an edge would cross edge (v, v").

Thus, Vi or v" lies on the top layer and the other on the bottom layer. The first vertex

u' of Pis P-rninimum so it is drawn before the 2-path Vi, v, v". Since u is drawn after

this 2-path, then, by Lemma 3.2, the subpath of P from u' to u contains Vi, v or v", a

contradiction. 0

The following result states that any proper 3-layer planar drawing of a cycle partitions

the cycle into two x-monotone paths, one drawn on the top two layers and the other on the

bottom two layers (see, e.g. Figure 3.1).

Lemma 3.5 Let r be a proper 3-layer planar drawing of a graph G. If C is a simple cycle

in G, then C contains two distinct vertices u and v such that u is C -minimum on the middle

layer, vis C-maximum on the middle layer, one path in C from u to v is x-monotone on the

top two layers, and the other path in C from u to v is x-monotone on the bottom two layers.

Proof: Since C is cycle, then by Lemma 2.1, C occupies at least three layers, and has

at least two vertices on the middle layer. Let u be the C-minimum vertex and v the C­

maximum vertex on the middle layer. If one path in C from u to v occupies aIl three layers,

then it contains a 2-path occupying aIl three layers. By Lemma 3.2, this implies that the

2-path is a eut-set for C. However, this is impossible because C is a simple cycle so each

path from u to v occupies exactly two layers. By Lemma 3.4, both paths are x-monotone.

o

35

CHAPTER 3. PROPER THREE LAYER DRA WINGS

From Lemma 3.5, we obtain several properties about how components attached to a cycle

in a graph are drawn in a proper 3-1ayer planar drawing of the graph.

Corollary 3.6 Let r be a proper 3-layer planar drawing of a graph G. If C is a simple

cycle in G, then:

(a) Any vertex that does not belong to C and is adjacent to aC-minimum (C-maximum)

vertex of C on the middle layer is drawn before (after) C.

(b) Every vertex that belongs to C and is adjacent to a non-Ieafvertex outside C that is

drawn before (after) C is C-minimum (maximum).

(c) Any non-Ieafvertex that does not belong to C and is adjacent to aC-minimum (C­

maximum) vertex is drawn before (after) C.

(d) Any edge whose end-vertices that do not belong to C is drawn either before C or

afterC.

(e) At most two verrices of C are adjacent to vertices that do not belong to C and are

drawn before (after) C.

(f) If a C -minimum (C -maximum) vertex v has two non-Ieaf neighbors that do not belong

to C and are drawn before (after) C, then there exists a 2-path containing v that is

vertex-disjoint with C - v and has a vertex on each layer.

As we will soon see, an important fact about safe biconnected components is that the

weak duals of their planar embeddings are paths. A graph is a weak dual of a planar

embedding if there is a 1-1 mapping between the vertices of the dual and the internaI faces

of the embedding, and two vertices of the dual are adjacent whenever their corresponding

faces in the embedding share an edge. Figure 3.6 shows that weak dual of the planar

embedding of the biconnected component shown in Figure 3.4. Since this biconnected

component is safe, the weak dual is a path.

Figure 3.6: A biconnected component and its weak dual.

36

CHAPTER 3. PROPER THREE LAYER DRAWINGS

Lemma 3.7 Let C be a biconnected component of a bipartite graph G with a safety certifi­

cate (VI, V2, Pl, P2 , Wc) with respect to bipartition class Vo of G. Then, if a vertex V ri. Vo
belongs to C but is not an internaI vertex of the subpath of Pi in C for i· = 1 or 2, then v has

at most one neighbor in Pi. In addition, there exists a linear ordering on the internaI faces

of Wc, such that two faces share an edge if and only if they are consecutive in the ordering.

Proof: Consider a vertex v ri. Vo in C that is not an internaI vertex of sorne ~ in C. If v has

two neighbors in Pi, then there exists an internaI face in Wc enclosed by a cycle composed

of v and the path between the neighbors of v in ~. However, this implies that ~ contains

aIl the vertices of Vo on this face, contradicting the fact that the other path P2- i also contains

a vertex of Vo on this face.

Now, we prove that there is a Iinear ordering of the internaI faces of Wc su ch that two

faces share an edge if and only if they are consecutive in the ordering. Consider a vertex v

not on the external face of wc. By definition, v does not belong to Pl and P2 so v ri. Vo.
Consequently, each neighbor of v belongs to Vo and belongs to Pl or P2• We have just

proven that v has at most one neighbor in Pl and at most one neighbor in P2.

Thus, each vertex not on the external face of Wc has at most two neighbors, both on the

external face of Wc and one in Pl and the other in P2• Thus, each internaI face of Wc is

enclosed by a cycle consisting of a subpath of Pl, a subpath of P2 and at two paths between

Pl and P2 • Consequently, there exists an ordering on the internaI faces of Wc, such that

two faces share an edge if and only if they are consecutive in the ordering. This ordering is

Iinear because paths Pl and P2 are simple paths. 0

Corollary 3.8 Let C be a biconnected component of a bipartite graph G = (Vo, Vi; E)

with a safety certificate (VI, V2, Pl, P2 , Wc) with respect to Vo. If a vertex v E Vo or has

degree at least three, then v belongs to Pl or P2•

FinaIly, we are ready to prove our characterization theorem.

3.1.1 Proof of Necessity

Let r be a proper 3-1ayer planar drawing of a graph G. Earlier we showed that, by definition,

G is a bipartite graph. Let Vo be the bipartition class corresponding to the vertices on the

top and bottom Iayers.

3.1.1.1 Safety of Vertices in Vo

Consider a vertex v E Vo. If v is not safe with respect to Vo, then G - v contains three

connected components that are each not caterpillars. By Lemma 2.1, each contains a vertex

37

CHAPTER 3. PROPER THREE LAYER DRA WINGS

on the top and bottom layers; however, this contradicts Corollary 3.3. Thus, each vertex in

Vo is safe with respect to Vo.

3.1.1.2 Safety of Vertices Outside Va

Consider a vertex v rt. Va, and suppose, by way of contradiction, that v is not safe with

respect to Vo. If v has five non-Ieaf neighbors, then v has three non-Ieaf neighbors either

on the top layer or on the bottom layer. Each of these has a neighbor other than v on the

middellayer; however, this implies that we have a drawing of a 2-c1aw on two layers which

contradicts Lemma 2.1. Thus, v has at most four non-Ieaf neighbors and G - v contains at

most four connected components of more than one vertex each.

If G - v has at most two connected components of more than one vertex each, then, by

Definition 3.1, v is safe, so G - v contains at least three such components.

Suppose that G - v contains exactly three connected components Hl, H2 and H3 of

more than one vertex each. This implies that v has at most three non-Ieaf neighbors, and,

by Definition 3.1, each G(V(Hi) + v) is not a caterpillar. Since v lies on the middle layer,

each Hi has a vertex on the top and bottom layers by Lemma 2.1. Each Hi is connected,

so, in fact, each Hi has vertices on each layer. However, this contradicts Corollary 3.3.

Thus, G - v contains exactly four connected components of more than one vertex each.

This implies that v has exactly four non-Ieaf neighbors. Since v is not safe, then by Def­

inition 3.1, three connected components Hl, H2 and H3 of G - v are such that, for each

1 ::; i ::; 3, graph consisting of G (V (Hi) + v) plus a a leaf attached to v is not a caterpillar.

Let H 4 be the fourth connected component of G - v. By Corollary 3.3, we can assume,

without loss of generality, that Hl has vertices on at most two layers in r, say the bot­

tom two layers. By Lemma 2.1, then, each neighbor of v outside Hl lies on the top layer.

However, this implies that the 2-c1aw consisting of v and three edges in H2' H3 and H4 is

drawn on the top two layers. This contradicts Lemma 2.1 so each vertex v rt. Va is safe with

respect to Va.

3.1.1.3 Safety of Biconnected Components

Finally, we show that each biconnected component C is safe with respect to Va. Let P be a

simple, minimal-Iength path in G from aG-minimum to a G-maximum vertex. By Lemmas

3.2 and 3.5, P contains at least one vertex in C, so let VI be the first vertex of C in P and

V2 the last vertex of C in P. By Lemma 3.4, Pis a x-monotone, so, by Corollary 3.6, VI is

C-minimum and V2 is C-maximum (see, e.g. Figure 3.7(a)).

From r, we derive a proper 3-layer planar drawing r e of Ce, the extension of C with

38

CHAPTER 3. PROPER THREE LAYER DRA WINGS

(a)

(b)

Figure 3.7: (a) A biconnected component in a proper 3-layer planar drawing and (b) the
resulting drawing of its extension.

respect to VI, v2 and Va. Let H be the subgraph of G induced by the vertices of C and the

vertices connected to C by a single edge or a 2-path. Let rH be the drawing of H inside r.
Each vertex W in H at distance at least two from each vertex in C corresponds to a leaf end­

vertex of an attached 2-path in Ce. If w is not a leaf in H, then it has two or more neighbors

at distance one from the same vertex in C. In this case, we modify rH by splitting w into

one new vertex for each of its neighbors. To ensure that the resulting drawing is planar,

we place the new vertices at the location of w a small distance apart and ordered so that

their incident edges do not cross one another. After removing any 2-paths and leaves in the

resulting drawing that do not appear in Ce, we obtain a proper 3-layer pl anar drawing r e of

Ce. (see, e.g. Figure 3.7(b)).

By Lemma 3.5, two paths QI = UI, U2, ... , up and Q2 = WI, W2, ... , wq together com­

pose the external face cycle of C in r e such that UI = WI is C-minimum on the middle

layer, up = wq is C -maximum on the middle layer, QI lies on the top two layers, and Q2

lies on the bottom two layers. Let Q~ be the result of removing each end-vertex of QI

that has no non-leaf neighbor outside C on the top layer. Similarly, let Q; be the result

of removing each end-vertex of Q2 that has no non-leaf neighbor outside C on the bottom

layer. Then, let Pl be an extension of Q~ in Ce such that Pl contains no additional vertices

in C and at least one 2-path attached to each end-vertex of Q~, if they exist. Similarly, P2

be an extension of Q; in Ce su ch that P2 contains no additional vertices in C and at least

39

CHAPT ER 3. PROPER THREE LAYER DRA WINGS

one 2-path attached to each end-vertex of Q~, ifthey exist and do not already belong to Pl.

Finally, let Wc be the planar embedding of C induced by the drawing of C in r (see, e.g.

Figure 3.7(b) where paths Pl and P2 are highlighted).

We show that (VI, V2, Pl, P2 , Wc) is a safety certificate with respect to Vo:

1. The vertices of Pl and P2 in C lie on the externalface of Wc. This statement follows

by the construction of Pl and P2 •

2. Pl and P2 each contain a vertex of Va on each face of Wc. Suppose, by way of

contradiction, that Pl does not contain a vertex of Va on face cycle F of Wc. Since

H contains a C-minimum and a C-maximum vertex, then, by Lemmas 3.2 and 3.5,

Pl contains an F -minimum vertex W outside Va and therefore on the middle layer.

By Corollary 3.6, each neighbor of this F -minimum vertex that is outside F is drawn

before F. Consequently, the immediate successor of w in Pl is drawn before F.

Thus, by Lemmas 3.2 and 3.5, sorne successor of w in Pl contains an F-minimum

vertex on the top or bottom layer and therefore a vertex of Va in F.

3. If a vertex of C belongs to Va, then if belongs to Pl or P2 but not both.

By construction, Pl contains the C-minimum and C-maximum vertices on the top

layer while P2 contains the C -minimum and C -maximum vertices on the bottom

layer. By Corollary 3.6, then each vertex of C on the top layer belongs to Pl but not

to P2 , and each vertex of C on the bottom layer belongs to P2 but not to Pl.

4. If a vertex V in Chas a neighbor outside C, then V belongs to Pl or P2•

Suppose, by way of contradiction, that a vertex v in Chas a neighbor outside C but v

does not belong to Pl and P2 • In the previous item, we prove that v does not belong

to Va, SO v lies on the middle layer. If vis C-minimum, then by Corollary 3.6, v has

a neighbor drawn before C so v belongs to Pl or P2 • Similarly, if vis C-maximum,

then v has a neighbor drawn after C so v belongs to Pl or P2• Thus, v is neither

C-minimum nor C-maximum. By Corollary 3.6, then, v belongs to the extemal face

of C, which implies that v belongs to Pl or P2 , a contradiction.

5. If a vertex in C is a connecting vertex, then it is equal to VI or V2.

If v <t Va and has four non-leaf neighbors, then, by Corollary 3.6, v is either C­

minimum and two non-leaf neighbors are drawn before C or else v is C-maximum

and two non-leaf neighbors are drawn after C. Let x and y be these two non-leaf

neighbors. By Lemma 3.5, v has another non-Ieaf neighbor in C drawn on the top

layer. If x and y both lie on the top layer, then we have a drawing of a 2-claw drawn

40

CHAPTER 3. PROPER THREE LAYER DRA WINGS

on the top two layers. This is impossible by Lemma 2.1, so x or y lies on the bottom

layer. Similarly, v has a non-leaf neighbor in C drawn on the bottom layer so x or y

lies on the top layer. Since P contains a G-minimum vertex, then, by Lemma 3.2, P

contains one of v, x or y before any other vertex in C. Every path from x or y to a

vertex in C contains v so v = VI or V = V2'

If v E Va or v does not have four non-leaf neighbors, then, since v belongs to a cycle

in C, G - v contains a connected component H that is vertex-disjoint with C su ch

that the graph H' containing G (V (H) + v) and a leaf attached to v is not a caterpillar.

Suppose that v belongs to Va. By Corollary 3.6, v has a neighbor in C on the rniddle

layer, so, by Lemma 2.1 and the fact that H' is not a caterpillar, H has a vertex on the

top and bottom layers. By Lemma 3.2, then, P con tains a vertex from C and a vertex

from H. Every path from C to H con tains v so v = VI or v = V2.

Suppose that v does not belong to Va. By Lemma 3.5, v has a neighbor in C on the

top layer so, by Lemma 2.1 and the fact that H' is not a caterpillar, H has a vertex on

the bottom layer. Vertex v also has a neighbor in C on the bottom layer so H has a

vertex on the top layer. By Lemma 3.2, then, P contains a vertex from C and a vertex

from H. Every path from C to H contain v so v = VI or v = V2.

6. Both VI and V2 are end-vertices of the subpaths of Pl or P2 in C such that each path

from VI to V2 on the external face cycle of C in \li' c contains the subpath of Pl in C

or the subpath of P2 in C.

By Lemma 3.5, VI is C-minimum. Let w be the C-minimum vertex on the middle

layer.

If VI does not belong to H or P2 , then VI lies on the middle layer and Pl contains

the C-minimum vertex u on the top layer and P2 contains the C-minimum vertex v

on the bottom layer. Furthermore, VI has no neighbors drawn before C. Since VI

is the first vertex of P in C, VI is G-minimum, so, by Corollary 3.6, u and v are

also G-minimum. By Corollary 3.6, u and v are the only neighbors of VI in G so P

contains u or v. However, this contradicts the fact that P has minimallength. Thus,

VI belongs to H or g.

If VI is the first vertex in C of neither Pl nor P2 , then, since VI is C-minimum, either

VI lies on the top layer and w is the first vertex of Pl in C, or else VI lies on the

bottom layer and w is the first vertex of P2 in C. Both cases are symmetric so we

consider only the first. By construction, then, w has a neighbor w' drawn before C

on the top layer. As a result, VI is not G-minimum so the subpath P' of P, from its

41

CHAPTER 3. PROPER THREE LAYER DRA WINGS

G-minimum end-vertex up to but not including VI, contains at least one vertex and,

by Corollary 3.6, is drawn before C. However, this implies that VI has a neighbor v~

drawn before C on the middle layer, which creates an edge-crossing between edges

(w, w') and (VI, vD.

7. If, for sorne vertex V in C, G - V contains two cornponents Hl and H2 vertex-disjoint

with C that are not caterpillars, then V = VI = V2.

By Lemma 2.1, Hl has a vertex on the top and bottom layers and H2 has a vertex on

the top and bottom layers. By Lemma 3.2, then, P contains a vertex in Hl and H2•

Since P is a simple path, P contains only V in C.

8. Each pendant 2-path in Ce belongs to Pl or P2•

By Corollary 3.6, each pendant 2-path in Ce is attached to a C-minimum vertex and

drawn before C in r e or el se it is attached to a C-maximum vertex and drawn after

C in re.
We tirst consider the case where a vertex V E Va has two or more attached 2-paths

drawn before C. Thus, V lies on the top or bottom layer; both cases are symmetric

so we assume that V lies on the top layer. By Corollary 3.6(f), at least one of these

2-paths along with v has a vertex on each layer. Since P contains aG-minimum

vertex and a G-maximum vertex, then, by Lemma 3.2, P contains a vertex in this

2-path and a vertex in C. Thus, in G, v is the tirst vertex of Pin C; that is, we have

v = VI. Since v belongs to Va and has two or more attached 2-paths in Ce, then, by

detinition, v = VI = V2 and exactly two 2-paths are attached to v. Consequently, Pis

vertex-disjoint with the connected component H of G - v containing vertices of C.

By Lemma 3.2, then, His drawn on at most two layers in r, and the corresponding

component He in Ce is drawn on at most two layers in r e' As a result, H and He are

caterpillars so at most two other 2-paths are attached to C in Ce. By Corollary 3.6(f),

one of these 2-paths is drawn before C and the other is drawn after C in r e. Neither

of these is attached to a vertex on the top layer so they both belong to P2 • Likewise,

the 2-paths attached to v belong to Pl because v lies on the top layer.

It remains then, to consider the case where each vertex of Va in Chas at most one

pendant 2-path drawn before C and at most one pendant 2-path drawn after C in r e.

By Corollary 3.6, at most two attached 2-paths are drawn before C and at most two

attached 2-paths are drawn after C. If the C-minimum middle layer vertex has a

neighbor outside C on the top layer, then by Corollary 3.6, the C-minimum vertex on

the top layer has no neighbors drawn before C. Similarly, if the C-minimum vertex

42

CHAPTER3. PROPER THREE LAYER DRAWINGS

on the middle layer has a neighbor outside C drawn on the bottom layer, then the C­

minimum vertex on the bottom layer has no neighbors drawn before C. Symmetric

arguments apply to C -maximum vertices, so at most two 2-paths are drawn before C

and at most two 2-paths are drawn after C. Therefore, each attached 2-path belongs

to either H or P2.

Thus, C is safe with respect to Vo.

3.1.2 Proof of Sufficiency

Suppose that G is bipartite and that each vertex and each biconnected component of Gis

safe with respect to sorne bipartition class Vo of G. We show that G is proper 3-layer planar

by obtaining a proper 3-layer planar drawing r of G.

Let Cl, C2 , . .. ,Cn be the biconnected components of G. Each biconnected component

Ci is safe with respect to Vo so there exists a safety certificate (vi, v~, pt, P~, 'lt i) for Ci

with respect to Va.

3.1.2.1 The Special Path

Next, we show that there is a simple path in G that contains each connecting vertex as weU

as vertices vi and v~ in each biconnected component Ci.

Lemma 3.9 Let Ci he a hiconnected component that does not have a tied safety certificate.

For each vertex v E Vo, the connected component of G - v containing vertices of Ci is not

a caterpillar.

Proof: If vertex v does not belong to Ci, then the connected component of G - v containing

vertices of Ci contains aU of Ci so it is not a caterpillar. We assume then that v belongs to

Ci·
If v belongs to Ci but does not lie on the boundary of an internaI face in 'lt i , then the

connected component of G - v containing vertices of Ci contains a cycle so it is not a

caterpillar. We assume then that v belongs to Ci and lies on the boundary of each internaI

cycle of 'lt i .

Let Q be the path obtained from the cycle bounding the external face of 'lt i by removing

vertex v and any end-vertex of the resulting path with degree equal to 2 (by Definition 3.4,

v is on the external face because v EVa). By CoroUary 3.6, each end-vertex of Q has

two neighbors that are not equal to v. Thus, the connected component of G - v containing

vertices of Ci is not a caterpillar in each of the following cases:

43

CHAPTER 3. PROPER THREE LAYER DRA WINGS

• a vertex in Q has three non-leaf neighbors outside Ci;

• a vertex in Q has two non-leaf neighbors outside Ci and Q contains at least two

vertices;

• a vertex in Q has on non-1eaf neighbor outside Ci and the vertex is not an end-vertex

ofQ.

If none of these cases holds, then let Ce be the extension of Ci with respect to v and Vo.

We observe that, in this case, (v, v, Pl, P2 , Wi) is a safety certificate for Ci where Pl is the

path in Ce consisting of v and any pendant 2-paths attached to v, and P2 is the path in Ce

containing Q and any pendant 2-paths attached to the end-vertices of Q. However, this

contradicts our assumption that Ci has no tied safety certificates. o

In light of Lemma 3.9, we make the foUowing simplifying assumption:

Assumption 3.1 Ifbiconnected component Ci has a tiedsafety certificate, then (vi, v~, Pt, P~, Wi)

is a tied safety certificate for Ci; that is, vi = v~.

Now we prove the existence of our path:

Lemma 3.10 If each vertex and each biconnected component of a bipartite graph G with

a planar embedding is safe with respect to a bipartition class Va of G, then there exists

a simple path containing each connecting vertex in Gand each vertex v;, j = 1, 2 and

l~i~n.

Proof: We obtain the result by proving two daims:

Claim 1. For each connecting vertex v, G - v contains at most two connected components

that each contain a connecting vertex or a vertex v;.
Claim 2. For each biconnected component Ck , G - Ck contains at most two connected

components that each contain a connected vertex or a vertex v;, and, furthermore, one

component is adjacent to vf and the other to v~.

We prove Claim 1 by way of contradiction, so we assume that G - v contains three

connected components that each contain either a connecting vertex or a vertex v;. Suppose

that v E Va. If a connected component H of G - v contains a vertex v;, then either H

contains aU of Ci or else v belongs to Ci' If H contains aU of Ci, then H is not a caterpillar.

If, on the other hand, v belongs to Ci, then, by Lemma 3.9, and the fact that v t- v;, H is

not a caterpillar. If H does not contain a vertex v;, then H contains a connecting vertex

w that does not belong to a biconnected component. In this case, either w has four non­

leaf neighbors so w is the root of a 2-daw subgraph of H or else H contains a connected

44

CHAPTER 3. PROPER THREE LAYER DRA WINGS

component of G - w that together with w is not a caterpillar. Thus, G - v contains three

connected components that are each not caterpillars; however, this contradicts the fact that

vis safe with respect to Va.
Now consider the case where v r;f. Va. Each of the cases is the same as above, except

where v belongs to Ci SO H contains Ci - v. In that case, G(V(H) + v) contains ail of Ci

so it is not a caterpillar. Thus, G - v contains three connected components such that, each

together with v, is not a caterpillar; however, this contradicts the fact that v is safe with

respect to Va.
We now prove Claim 2, aIso by way of contradiction. First consider the second part of

Claim 2 which states that each component of G - Ck that is not a caterpillar is adjacent to

v~ or v~. If a connected component H of G - Ck is adjacent to a vertex v =J v~, v~ in Ck and

contains a vertex vj or a connecting vertex, G(V(H) + v) is not a caterpillar. However, this

implies that v is a connecting vertex, a contradiction of Definition 3.4 because v =J v~, v~.

Therefore, the second part of Claim 2 holds so we have that G - v~ - v~ contains three

connected components disjoint with Ck that each contain a connecting vertex or a vertex vj.
We assume, without loss of generality, that two of these components are adjacent to v~. If

one ofthese connected components H contains a vertex vj, then H contains ail of Ci except

possibly vertex v~. If v~ is not in Ci, then H contains ail of Ci so it is not a caterpillar. If

v~ belongs to Ci, then v~ has at least five non-leaf neighbors in G so v~ E Va. By Lemma

3.9, then, Ci - v~ is not a caterpillar, so neither is H. If, on the other hand, H contains no

su ch vertex vj, then H contains a connecting vertex w that does not belong to a cycle. As a

result, H contains a subgraph that is not a caterpillar. Thus, G - v~ contains two connected

components disjoint with Ck that are not caterpillars. Since Ck is safe, this implies that

v~ = v~. Consequently, v~ has at least five non-leafneighbors so v~ E Vo. By Lemma 3.9,

the connected component of G - v~ containing vertices of Ck is not a caterpillar, so G - v~

contains three connected components that are not caterpillars. However, this contradicts the

fact that v~ is safe. Thus, we have established Claim 2.

Taken together, Claims 1 and 2 imply that there is a path that contains every connecting

vertex and every vertex vj in G. 0

The previous lemma doesn't help us much if G contains no connecting vertices or bi­

connected components. However, in that case G is proper 3-1ayer planar tree as the next

lemma will show. In fact, the proof the lemma serves as a preview for proving sufficiency

in the general case.

Lemma 3.11 If a tree T contains no connecting vertices with respect to sorne bipartition

class Va of T, then T is proper 3-1ayer planar.

45

CHAPTER 3. PROPER THREE LAYER DRAWINGS

Proof: We prove that T is proper 3-layer planar by producing a drawing, tirst by drawing a

special path and then by inserting drawings of the remaining subtrees.

We obtain our path P inductively so that, after step i ~ 1, Pis a path in T on i vertices

Wl, W2, ... ,Wi satisfying the following property: for each 1 ~ j < i, the subtree Tj of

T - Wj containing WHI does not contain Wl and T(V(Tj) + Wj) is not a caterpillar.

For i = 1, P consists a single non-leaf vertex Wl. Thereafter, we repeatedly extend

P until we cannot extend P without violating the property given above. Such a procedure

terminates after 1 ~ p ~ IV(T)I steps because P is a simple path in T.

Now, consider a vertex Wi in P but outside 110. Since Wi is not a connecting vertex, Wi

has at most three non-Ieaf neighbors. If only one of these non-Ieaf neighbors belongs to

P, then i = 1 or p. This follows from the fact that Wl is not a leaf by construction, and

wp is aiso not a leaf because T(V(Tp_ 1) + Vp-l) is not a caterpillar (recall that Tp- 1 is the

connected component ofT - Vp-l containing vp). If Wi = Wl or Wi = wp and two non-Ieaf

neighbors of Wi are outside P, then we simply extend P by adding one of these non-leaf

neighbors to P. This completes our construction of P.

Our path P has two important properties:

1. Each vertex of P outside 110 has at most one non-leaf neighbor outside P.

2. For each subtree T' ofT\ P adjacent to a vertex v in P, T(V(T') + v) is a caterpillar.

The tirst property follows by the construction of P so we prove the second property. Let T'

be a subtree of T \ P, adjacent to vertex Wi in P. We show that H = T(V(T') + Wi) is a

caterpillar. For 1 ~ i < p, if His not a caterpillar, then, since ~ and T'are vertex-disjoint,

Wi is a connecting vertex, a contradiction. For i = p, if H is not a caterpillar, then, since T'

does not contain Wl, the procedure above could have continued past step p by appending

the neighbor of wp in T', a contradiction.

We obtain a proper 3-layer planar drawing of T by tirst drawing P so that it is x­

monotone on the top two layers and the vertices of 110 in P lie on the top layer. Next, we

draw each subtree of T' of T \ P. If T' is attached to a vertex v E 110 in P, then, since

T' is a caterpillar, there exists a proper 2-layer planar drawing of T' by Lemma 2.1. Thus,

we insert su ch a drawing of T' onto the bottom two layers between the vertices before and

after v in P. If T' is attached to a vertex v tt. 110 in P, then we con si der two cases. If T' is

a leaf, then we draw the leaf vertex on the top layer between the vertices before and after v

in P. If T' is not a leaf, then, by the tirst property of P above, T' is the only su ch subtree

of T \ P adjacent to v. By the second property of P, H = T(V(T') + v) is a caterpillar, so

we draw H on the bottom two layers at the location of v, which we have already drawn. 0

46

CHAPTER 3. PROPER THREE LAYER DRAWINGS

For the remainder of this section (proof of sufficiency), then, we assume that G contains

at least one connecting vertex or at least one biconnected component.

As in the proof of Lemma 3.11, we obtain a special path before drawing the graph. In

view of our assumption above, Lemma 3.10 implies the existence of a minimal-Iength path

Po containing each connecting vertex and each vertex vl in a biconnected component Ci.

We may also need to extend that path. If an end-vertex v of Po does not belong to Vo, and

v is a connecting vertex due to two connected components Hl and H 2 of G - v, then we

append to Po a neighbor of v in Hl if it is not in Po and, otherwise, we append to Po a

neighbor of v in H2 • Let Pl be the resulting path. If an end-vertex v of Pl does not belong

to Va, and v has two or more non-Ieaf neighbors outside Plo then we append one of these

non-Ieaf neighbors to Pl. Let P be the path resulting from these possible additions, if any.

3.1.2.2 Biconnected Components

We begin drawing G by obtaining the drawing fi of each Ci.

Lemma 3.12 For each 1 ::; i ::; n, there exists a proper 3-layer planar drawing of Ci in

which:

1. A vertex in Ci lies on the middle layer if and only if it does not belong to Vo.

2. The subpaths of Pt and P~ in Ci each have one end-vertex that is Ci-minimum and

another end-vertex that is Ci-maximum.

3. The subpath of Pt in Ci lies on the top two layers, and the subpath of P~ in Ci lies on

the bottom two layers.

Proof: Let F be an internaI face cycle in 'l!i. By Lemma 3.7, each edge not on the boundary

of the external face of 'l!i either has one end-vertex in Pt and the other in P~ or el se it

belongs to an induced 2-path with one end-vertex in Vo and Pt and the other in Vo and

P~. Thus, F is composed of a subpath of Pt containing a vertex in Vo, a subpath of P~

containing a vertex in Vo, and two paths of length at most two from Pt to P~. Thus, there

is a proper 3-layer planar drawing of F in which one path from Pt to P~ consists of F­

minimum vertices and the other consists of F -maximum vertices. In addition, the vertices

of Vo and Pt in F lie on the top layer and the vertices of Vo and P~ in F lie on the bottom

layer. Finally, each path between Pt and P~ lies on at most two internaI faces of 'l!i; thus,

we obtain a proper 3-layer pl anar drawing of Ci by merging such drawings of the internaI

faces of 'l! i. 0

47

CHAPTER 3. PROPER THREE LAYER DRA WINGS

We observe that, as we traverse P from one end to the other, the vertices of each bicon­

nected component are consecutive, and the vertices of two biconnected components overlap

at a single shared vertex. Without loss of generality, then, we assume that in P we encounter

the vertices of component Cl first, then C2 , and so on until we reach the vertices of Cn last.

We also assume that we visit each vi before v~. We then insert each of these drawings in

this left-to-right order into r. For an example, see Figure 3.8(a).

vi =v~

~4'

2

(a)

vi =v~ v~ =vj

(b)

v~ v~

(c)

Figure 3.8: Three main steps for obtaining a proper 3-layer planar drawing of a graph: (a)
draw the biconnected components separately, (b) draw the remainder of the special path,
and (c) draw the pendant subtrees.

Next, we draw the remainder of P. For convenience, we draw the subpath of P between

each pair of vertices v~ and V1+l, for 1 ~ i < n, so that it is strongly x-monotone and

entirely on the top two layers or entirely on the bottom two layers. This is possible if the

subpath of PJ that contains v~ occupies the same two layers as does the subpath of Pk+ l

48

CHAPTER 3. PROPER THREE LAYER DRA WINGS

that contains V~+l. We satisfy this property by reflecting sorne of the inserted biconnected

component drawings about the horizontal.

We have now drawn aIl of P except for the subpath before Cl and the subpath following

Cn . If the subpath of P before Cl consists of a single vertex adjacent to a vertex v in Cl on

the top or bottom layer, then we draw the leaf inside Cl between the vertices next to v in

the external face cycle of Cl. Otherwise, we draw it before Cl on the two layers occupied

by the subpath of P] in Cl that contains v}. Likewise, if the subpath of P after Cn consists

of a single vertex adjacent to a vertex v in Cn on the top or bottom layer, then we draw the

leaf inside Cn between the vertices next to v in the external face cycle of Cn . Otherwise,

we draw it after Cn on the two layers occupied by the subpath of Pp in Cn that contains v'2.
For an example, see Figure 3.8(b).

It remains for us to draw pendant trees attached to vertices in biconnected components

and vertices in P. This step is illustrated in Figure 3.8(c).

3.1.2.3 Pendant Trees

For convenience, we assign a direction to each path PJ, j = 1, 2 and 1 ::; i ::; n, so that if

a vertex of PJ is Ci-minimum but not Ci-maximum, then it appears before vertices of PJ
that are not Ci-minimum, and, if a vertex of PJ is Ci-maximum but not Ci-minimum, then

it appears after vertices of PJ that are not Ci-maximum.

We first draw each pendant tree T that is attached to a vertex v in a biconnected com­

ponent Ci such that T is not a leaf and v ::J vi, v~. By Lemma 3.12, v is Ci-minimum or

Ci-maximum. Since v is not a connecting vertex and Ci is not a caterpillar, the tree con­

taining G (V (T) + v) and a leaf adjacent to v is a caterpillar. In other words, T has a proper

2-layer planar drawing rT in which the neighbor of v in T is T-minimum. Each such tree

is by definition uni quel y associated with a pendant 2-path attached to v in Ce, the extension

of Ci with respect to vi, v~ and Va. Furthermore, the 2-path belongs to PJ = Pt or P~. We

then insert r Tinto the drawing of G on the same two layers occupied by PJ. If v is the first

vertex of Ci in PJ (recall that we assigned a direction to PJ), then we insert r T before Ci

and, otherwise, we insert rT after Ci. Drawing each such tree in this way does not create

any edge crossings because, by Lemma 3.12, each PJ contains at most two pendant 2-paths

in Ci, one attached to a Ci-minimum vertex and another attached to a Ci-maximum vertex.

Thus, the drawing ofT does not overlap the drawing of P or any other pendant tree attached

to a vertex in Ci.

Now consider each pendant tree that is a leaf vertex w attached to a vertex v in a bi­

connected component Ci. If v E Va, then we draw (v, w) so that w lies inside Ci between

the two neighbors of v in Ci on the middle layer. These neighbors exist by Lemma 3.12.

49

CHAPTER 3. PROPER THREE LAYER DRAWINGS

Since the drawing of G so far is pl anar, drawing (v, w) in this way does not create any

edge-crossings. If v ri. Va and v is neither Ci-minimum nor Ci-maximum, then we draw

(v, w) so that w lies between the neighbors of v in Ci that both lie on the top layer or both

lie on the bottom layer. These neighbors exist by Lemma 3.12. Once again, since the draw­

ing of G so far is planar, drawing (v, w) in this way does not create any edge-crossings.

Finally, if v ri. Va and v is Ci-minimum (Ci-maximum), then, by definition, v belongs to

PJ = Pt or Pi. We draw edge (v, w) so that v and w occupy the same two layers as PJ
and w lies immediately before (after) Ci. Drawing (v, w) in this way does not create any

edge-crossings because if any vertex attached to a vertex in Ci has been drawn on the same

layer as w and on the same side as of Ci as w, then it is adjacent to v.

The only remaining vertices to draw belong to pendant trees attached to vertices in P

that, if these vertices in P belongs to a biconnected component Ci, then they belong to Va
and are equal to vi or v~.

Let T be a pendant tree attached to a vertex v in Vo; in other words, v lies on the top

or bottom layer. None of the vertices of T belong to P, so no vertex of T is a connecting

vertex. Since P contains a vertex from a biconnected component or a connecting vertex,

T is a caterpillar. If v belongs to a biconnected component C, then we draw T on the two

layers opposite v, immediately before C if vis C-minimum, and after C, otherwise. If v

does not belong to a biconnected component, then we draw T on the two layers opposite v

between the vertices before and after v in P.

Finally, consider each vertex v in P but outside Va. Let H be the induced subgraph of G

containing vertex v and the components of G - v vertex-disjoint with P. Since v does not

belong to a biconnected component and v is safe, then there exist at most two connected

components Hl and H2 of G - v such that G(V(Hi) + v) is not a caterpillar. According to

the construction of P, the vertex before v in P belongs to, say, Hl and the vertex after v in

P belongs to H2• Thus, His a caterpillar so we draw this caterpillar at the location of von

the middle layer and the layer unoccupied by the vertices of P next to v.

The only remaining vertices adjacent to v are leaves. We draw them between the vertices

of P next to v.

This concludes our proof of Theorem 3.1.

3.2 3-Layer Planarity Testing

Our proper 3-layer planarity recognition and drawing algorithm is derived directly from

Theorem 3.1. For convenience, we first derive a recognition algorithm and then show how

to modify it so as to obtain a drawing algorithm.

50

CHAPTER 3. PROPER THREE LAYER DRA WINGS

The algorithm simply applies Theorem 3.1.

ISPROPER3LAYERPLANAR(G)

Input: An undirected graph G.

Output: TRUE if G is 3-layer pl anar; otherwise, FALSE.

1. if Gis not bipartite then return FALSE

2. Cl, C2 , . .• ,Cp +- the biconnected components of G.

3. COMPUTECATERPILLARS(G).

4. for each bipartition class Vo of G do

5. for each vertex v in G do

6. iflsSAFEVERTEX(G, Vo, v) = FALSE then goto line 4.

7. S +- CONNECTINGVERTICES(G, Vo).

8. for each biconnected component Ci of G do

9. iflsSAFECOMPONENT(G, Vo, Ci, S) = FALSE then goto line 4.

10. return TRUE.

11. return FALSE.

The definitions of safe vertices and biconnected components depend on knowing whether

or not various subgraphs of the input graph Gare caterpillars or not. Procedure COM­

PUTECATERPILLARS below computes ail of the necessary facts using dynamic program­

ming on the block-cut tree of G. A block-cut tree of a graph is a tree whose vertices

correspond to cut-vertices and biconnected components in the graph. Edges in the block­

cut tree connect biconnected components with the cut-vertices that they contain in the

graph.

COMPUTECATERPILLARS (G)

Input: An undirected graph G.

Output: For each vertex v and each connected component H of G - v, deter­

mines whether H, H' = G(V(H) + v) and H" = H' plus a leaf attached

to v are caterpillars.

1. T +- the block-cut tree for G. I>A linear-time algorithm for computing

block-cut trees is given in [92].

2. For each vertex v and connected component H of G - v, determine whether

H, H' and H" are caterpillars. 1> We can compute This for the entire graph

in linear time using two traversals ofT.

Using the results computed by COMPUTECATERPILLARS, procedures ISSAFEVERTEX

and CONNECTINGVERTICES simply apply Definitions 3.1 and 3.2, respectively. Therefore,

we omit the definitions of these procedures here.

51

CRAPTER 3. PROPER TRREE LAYER DRA WINGS

Determining whether or not a biconnected component is safe requires a little more than

simply applying the definitions.

ISSAFECOMPONENT(G, Va, C, S)

Input: A bipartite graph G with bipartition class Va, a biconnected component

C of G, and the set of connecting vertices S of G with respect to Vo.

Output: TRUE if Ci is safe with respect to Va; otherwise, FALSE.

1. CiJ! +-- a simple cycle in C containing aIl vertices of Vo or vertices with

degree three.

2. if f-ICiJ! then return FALSE.

3. 'lie +-- a planar embedding of C with CiJ! on the external face.

4. if f-I'lI e then return FALSE.

r>See Corollary 3.8.

5. ... continued below ...

We note that the only vertices that do not belong to CiJ! belong to Va and have degree

equal to 2. Consequently, aIl planar embeddings of C with CiJ! on the external face are

combinatorially equivalent. The only difference between embeddings is the ordering of

pairs of vertices of degree two that have the same two neighbors. Thus, we need only

consider one planar embedding 'lie of C.

Given 'lie, we now determine ifwe can fiIl in the remainder of a safety certificate for C.

By Definition 3.4, the two paths H and P2 in any safety certificate contain vertex-disjoint

subpaths in CiJ! that each contain a vertex of Va on each face of 'lie. This implies, that if

C is safe, then there are two unique minimal-Iength, vertex-disjoint subpaths QI and Q2 of

CiJ! that contain a vertex of Va on each face of 'lie. The next step in the algorithm checks

for the existence of these paths. Based on the constraints, this test can be applied in linear

time in the size of C.

5. QI, Q2 +-- two minimal-Iength, vertex-disjoint subpaths of CiJ! that each

path contains at least one vertex of Va on each face of 'lie.

6. if f-IQ1, Q2 then return FALSE.

7. ... continued below ...

Also by Definition 3.4, paths Pl and P2 in a safety certificate contain aIl pendant 2-

paths in the extension of C. By Definition 3.3, if a vertex has a non-Ieaf neighbor out­

side C, then it is adjacent to a pendant 2-path in the extension of C. Therefore, each

vertex with a non-Ieaf neighbor outside C is an end-vertex of a subpath of Pl or P2 in

C.

52

CHAPTER 3. PROPER THREE LAYER DRA WINGS

7. if there are more than four vertices with non-Ieaf neighbors outside C then

return FALSE.

8. if a vertex with a non-Ieaf neighbor outside C is internaI to Q1 or Q2 then

return FALSE.

9. . .. continued below ...

A safety certificate contains two vertices V1 and V2 in C'I! such that, every path from

V1 to V2 in C'I! contains the subpath of Pl or P2 in C. By the definition of Q1 and Q2,

C'I! = Q1 Q~ Q2Q~ for subpaths Q~ and Q~ of C'I! su ch that Q1, Q2, Q~, Q~ contain aIl

of the edges in C'I!. Thus, if V1 and V2 belong to a safety certificate, then, without loss of

generality, V1 belongs to Q~ and and V2 belongs to Q~. Using these observations, we now

either prove that Chas a tied safety certificate or rule out su ch a certificate and determine

whether or not Chas a non-tied certificate.

If a certificate is tied, then Q1 or Q2 contains exactly one vertex v that belongs to Vo

and V1 = V2 = v.

9. for j = 1, 2 do

10. if Qj = v for sorne vertex v and v E Va then

11. V1 ,V2 +- v.

12. Ce +- the extension of C with respect to V1, V2 and Va. c>See Defini-

tion 3.3.

13. Pl +- v plus the at most 2 pendant 2-paths attached to v in Ce.

14. P +- C'I! - v.

15. P' +- P minus any end-vertex with degree equal to 2.

16. P2 +- P' plus up to one pendant 2-path attached to each end-vertex

of P'.

17. if (V1, V2, Pl, P2 , wc) is a safety certificate wrt Va then return TRUE.

18. . .. continued below ...

According to Definition 3.4, there is one case in which every certificate must be tied.

Since we have ruled such a certificate out, if that case still holds, then C is not safe.

18. if 3 vertex v in C su ch that G - v contains two non-caterpillar components

Hl and H 2 vertex-disjoint with C then return FALSE.

19 continued below ...

Now, we attempt to find a non-tied certificate for C. Above we showed that, in a cer­

tificate, V1 belongs to Q~ and V2 belongs to Q~. We now further show that, without loss of

generality, we can assume that each Vi is equal ta a vertex in C with a non-Ieaf neighbor

outside C or to an end-vertex of Q~ or Q~.

53

CHAPTER 3. PROPER THREE LAYER DRA WINGS

Lemma 3.13 If C is safe with respect to Va, then there exists a safety certificate (VI, V2, Pb

P2, wc) for C with respect to Va in which each Vi has a non-leafneighbor outside C or is

an end-vertex ofQ~ or Q;.

Proof: Let (v~, v;, PI, P~wc) be a safety certificate for C with respect to Va. If v~ does

not have the desired properties, then v~ has degree 2. If v~ has degree equal to three, then

v~ has an incident edge that does not belong to CiJ!. However, this implies that the edges

incident on v~ in CiJ! lie on the boundary of different internaI faces of wc. However, since

v~ belongs to neither QI nor Q2, QI and Q2 do not contain vertices of Va on each of the se

faces, a contradiction. Therefore, v~ has exactly two neighbors. If Q~ contains no vertices

with non-Ieaf neighbors outside C, then we obtain a new certificate by setting v~ to be the

end-vertex common to QI and Q~, shorten P{ so that v~ is its new end-vertex and length P~

so that it contain aIl of Q~ - v~. On the other hand, if Q~ contains a vertex adjacent to a

non-Ieaf vertex outside C, then we set v~ to be that vertex. In this case, the only change to

P{ or P~ may be to remove any pendant 2-path that is removed from the extension of C by

changing v~ . 0

Since there are at most four vertices with non-Ieaf neighbors outside C, and at most

four end-vertices of Q~ and Q;, the possible cases for VI and V2 that we need to consider is

bounded by a smaIl constant. Therefore, we consider each case and determine if any leads to

a safety certificate. In each case, we compute the corresponding extension of C and then de­

termine if we can find the necessary paths Pl and P2 to obtain a safety certificate. This part

can be done efficiently because Definition 3.4 severely restricts acceptable pairs of paths Pl

and P2 once VI, V2 and the planar embedding are given.

19. for each pair of vertices VI and V2 in C such that VI is either an end-vertex

of Q~ or a vertex in Q~ with a non-Ieaf neighbor outside C, V2 is either an

end-vertex of Q~ or a vertex in Q~ with a non-Ieaf neighbor outside C, and

each connecting vertex in C is equal to VI or V2 do

20. Ce ~ the extension of C with respect to VI, V2 and Vo.

21. if :3 a pair of paths Pl and P2 in Ce such that the subpath of Pl in C

contains QI and is a subpath of a path in CiJ! from VI to V2, the subpath

of P2 in C contains Q2 and is a subpath of a path in CiJ! from VI to V2,

each vertex of Vo or with degree three in C belongs to Pl or P2 , and each

pendant 2-path in Ce belongs to Pl or P2 then return TRUE.

22. return FALSE.

Hence, we obtain the foIlowing result:

54

CHAPTER 3. PROPER THREE LAYER DRAWINGS

Theorem 3.14 Algorithm ISPROPER3LAYERPLANAR determines whether or not a graph

is proper 3-1ayer planar in linear time.

We can transform this recognition algorithm into a drawing algorithm by returning a

proper 3-layer pl anar drawing anytime the recognition algorithm returns TRUE. The draw­

ing is constructed as described in the sufficiency proof of Theorem 3.1 which is illustrated

in Figure 3.8. To do this, we require the set of connecting vertices and a safety certificate

for each biconnected component. Fortunately, as described above, the recognition algo­

rithm already computes ail of these things. We recall, however, that the sufficiency proof

requires that ail safety certificates be tied whenever possible (see Assumption 3.1). Once

again, our recognition algorithm first determines whether or not the biconnected component

has a tied certificate before considering other certificates.

We describe the remainder of the drawing algorithm as follows:

DRAWPROPER3LAYERGRAPH(G, Vo, S, R)

Input: A proper 3-layer pl anar bipartite graph G = (Vo, Vi, E) with connect­

ing vertices S with respect to Vo and a safety certificate (vi, v~, Ci, 'lt i) E R

with respect to Vo for each biconnected component Ci in G.

Output: A proper 3-layer planar drawing of G with the vertices of Vo on the

top and bottom layers and the vertices of Vi on the middle layer.

1. if G contains no connecting vertices or biconnected components then

2. Draw G as described in the proof of Lemma 3.11.

t> The drawing can be computed in linear time using the results com­

puted by COMPUTECATERPILLARS.

3. else t>G contains a connecting vertex or a biconnected component.

4. Po f- a path containing ail connecting vertices and ail vertices V] from

the safety certificates.

t>This path exists by Lemma 3.10 and can be found efficiently using

Claims 1 and 2 in the proof and the results computed by COMPUTE­

CATERPILLARS.

5. Pl f- Po with at most one addition al vertex attached to the end-vertices

of Po, as described on page 47.

6. P f- the path computed from Pl as described on page 47.

7. t>Can be done efficiently using the results computed by COMPUTE­

CATERPILLARS.

8. for each biconnected compone nt Ci do

9. ri f- the drawing of Ci described by Lemma 3.12.

55

CHAPTER 3. PROPER THREE LAYER DRAWINGS

10. Insert each ri into the drawing so that P can be drawn x-monotone.

11. Draw the remaining subpaths of P (those that do not belong to bic on­

nected components), as described on page 49.

12. Draw the remaining pendant trees and insert their drawings into the main

drawing as described in Section 3.1.2.3.

Since this drawing algorithm simply follows the sufficiency proof of our characteriza­

tion theorem, Theorem 3.1, it creates a proper 3-layer planar drawing of the input graph,

whenever one exists. We call the resulting algorithm PROPER3LAYERDRAWER. Through­

out our description of the algorithm, we show that the running-time of each non-trivial step

is linear, so we obtain the following result:

Theorem 3.15 Algorithm PROPER3LAYERDRAWER determines whether or not a graph is

proper 3-1ayer planar, and, if so, obtains a proper 3-1ayer planar drawing of the graph, aU

in linear time.

3.3 Conclusions and Open Problems

We have shown that the PROPER 3-LAYER PLANAR decision problem can be solved and

proper 3-layer planar drawings obtained all in linear time. Unfortunately, as can be seen

by the length of this chapter, the difficulty of obtaining these algorithms, though they are

linear, is much greater than for obtaining recognition and drawing algorithms for two layers.

Because of this, it seems unlikely that our present approach will generalize easily to solving

the same problems for four layers. Since our approach is partially based on the algorithm

of FoBmeier and Kaufmann [40], it seems equally unlikely that their approach will easily

generalize to four layers.

Another approach that may generalize uses graph operations that reduce the graph to an

empty graph if and only if it has a planar drawing on a given number of layers. Amborg

and Proskurowski [3] use this approach to recognize graphs of treewidth three, and Ma­

tousek and Thomas [69] modify their set of reductions to obtain an efficient quadratic-time

recognition algorithm. Generalizing these results, Sanders [85] shows that this approach

can be use to efficiently recognize graphs with treewidth four. Our hope is to similarly find

a set reductions for proper 3-layer planar graphs and likewise use them ta obtain reduc­

tions for proper 4-layer planar graphs. We believe that this approach might be successful

because Dujmovié et al. [24] use pathwidth, a restricted version of treewidth, to obtain

algorithms for recognizing k-Iayer planar graphs (inefficient algorithms though they may

be). In addition to this, in Chapter 4 of this thesis, we show how to use pathwidth to obtain

56

CHAPT ER 3. PROPER THREE LAYER DRAWINGS

planar drawings of trees on a minimum number of layers. These results show that path­

width and hence treewidth are cIosely related to the number of layers required 10 obtain

pl anar drawings of graphs.

57

Chapter 4

Tree Drawings

To David Wood-you have many good ide as, and you express them elegantly.

ln this chapter we study the problem of obtaining planar drawings of trees on a minimum

number of layers with respect to the pathwidth of the tree. We consider proper, short, up­

right and unconstrained drawings (see Chapter 2 for definitions) and obtain optimal bounds

on the number of layers for each. We also give linear-time algorithms for obtaining layered

drawings that match these bounds.

To our knowledge, these algorithms are the first practical algorithms for minimizing lay­

ers in planar drawings of undirected graphs. We hope that the ideas behind our algorithms

willlead to efficient algorithms for drawing other more general dasses of graphs. The only

other such algorithm for minimizing layers is due to Dujmovié et al. [24]. However, as we

mention in Chapter 1, though their algorithm is general and polynomial, its running time is

too large for the algorithm to be useful in practice.

The results in this chapter correct a daim by Felsner et al. [37] that a tree with pathwidth

k is (unconstrained) k-Iayer planar. Though their result and proof of it seem plausible, it

turns out to be oversimplified. Indeed, we will present examples of trees whose drawings

occupy at least r3h/21Iayers.

4.1 Preliminaries

Because we are considering only pl anar drawings in this part of the thesis, we often omit

the term 'pl anar' for convenience of exposition.

We number the layers in our drawings consecutively from 1 to h, with layer 1 as the top

layer and layer h as the bottom layer. The following simple lemma states one of the key

observations that we use to establish lower bounds on the number of layers in a drawing.

Lemma 4.1 In any unconstrained h-Iayer planar drawing of a tree T with a vertex v, the

drawings of at most two components ofT \ v occupy h layers.

58

CHAPT ER 4. TREE DRA WINGS

Proof: Assume the contradiction, that T\ v contains at least three components Tl, T2 and T3

whose drawings each occupy h layers. Each Ti occupies aIl h layers so each has a vertex Vi

on the top layer. Assume without loss of generality that X(VI) :s: X(V2) :s: X(V3). However,

T2 has another vertex v~ on the bottom layer so the drawing is not pl anar: an edge in the

path from VI to V3 in T \ T2 crosses an edge in the path from V2 to v~ in T2. 0

From Lemma 4.1, we obtain the following result about layered drawings of complete

temary trees, which was already proven by Felsner et al. [37]:

Corollary 4.2 Every unconstrained planar layered drawing of a complete ternary tree of

depth d 2:: 0 occupies at least d + 1 layers.

Proof: The proof is by induction on the depth d of the tree beginning at depth d = 0 where

the tree consists of a single vertex. 0

We also obtain the following bounds for upright layered drawings of nearly complete

temary trees. A nearly complete ternary tree of depth dis obtained from a complete temary

tree of depth d by removing exactly two children from each vertex at depth d - 1.

Corollary 4.3 Every upright planar layered drawing of a nearly complete ternary tree of

depth d 2:: 0 occupies at least d + 1 layers.

Proof: The proof is by induction on the depth d of the tree. The result differs from Corollary

4.2 because in upright drawings the endpoints of edges occupy different layers. 0

Nearly aIl of the remaining results depend on the pathwidth of the given tree. A path

decomposition B of a graph G is a sequence BI, B2, ... , Bp of subsets of V(G) that

satisfies the following three properties:

2. for every edge (u, v) E E(G), there is a subset Bi su ch that both u, V E Bi; and

3. for alll :s: i < j < k :s: p, Bi n Bk ç Bj.

The width of Bis max{IBilll :s: i :s: p} -1. The pathwidth of a graph G, denoted pw(G),

is the minimum width of a path decomposition of G.

Both Scheffler [87] and Ellis et al. [34] give linear-time algorithms for computing the

pathwidth of trees. Both algorithms depend on the following fundamental result about trees

and pathwidth:

59

CHAPTER 4. TREE DRAWINGS

Lemma 4.4 ([87,34]) A tree T has pathwidth at most h if and only iffor aU vertices v in

T at most two components ofT \ v have pathwidth h and the remainder have pathwidth at

most h - 1.

As defined by Ellis et al. [34], we say that a vertex v is h-critical in a rooted tree T if exactly

two subtrees rooted at children of v have pathwidth h and the remainder have pathwidth at

most h - 1. They prove the following two results about critical vertices:

Lemma 4.5 ([34]) Let T be a tree rooted at r. If at most two subtrees rooted at children

of r have pathwidth h, neither has an h-critical vertex, and every other subtree rooted at a

child ofr has pathwidth at most h - 1, then pw(T) :::; h.

Lemma 4.6 ([34]) A tree T has at most one pw(T)-critical vertex.

In the next section we prove optimal upper and lower bounds on the number of layers

required by short layered drawings of trees. We follow that with bounds for proper, upright

and unconstrained layered drawings in Sections 4.3 and 4.4, and fina]]y, in Section 4.5, we

give linear-time algorithms for obtaining short, proper, upright and unconstrained drawings

matching the upper bounds.

We prove our upper bounds by constructing drawings of trees. Similar to Felsner

et al. [37], the drawings are constructed in two steps: we draw one or more paths in the

tree and then recursively draw the remaining components next to the previously drawn

paths. The most important of these paths is the main path. A main path P of a tree T is a

path such that the pathwidth of T \ P is at most pw(T) - 1.

Lemma 4.7 Every tree has at least one main pa th.

Proof: Consider a path decomposition B = BI, B2' ... , Bp of T of minimum width. Let

VI be a vertex in BI, vp a vertex in Bp, and P the path between VI and vp. By definition,

each Bi contains at least one vertex in P so, if we remove the vertices of P from each Bi,

then the result is a path decomposition of T \ P with width at most pw(T) - 1. 0

The remaining components must be drawn so that we can insert the edges connecting the

components to the previously drawn paths without creating crossings. As a result, if f is a

drawing of a component and vertex v in the component is adjacent to a previously drawn

path vertex, then v lies on the top or bottom layer of f. We say that vis exposed in f. In

general, a vertex v E T is exposed in a layered drawing of a tree T if v lies on the top or

bottom layer of the drawing.

The next result il1ustrates how to obtain proper 2-layer pl anar drawings of certain trees

given one of their main paths.

60

CHAPTER 4. TREE DRA WINGS

Lemma 4.8 For every tree T with pw(T) ::; 1, there exists a proper 2-layer planar draw­

ing.

Proof: By Lemma 4.7, T has a main path P, and T \ P consists of vertices with degree

zero. We draw T by first drawing P on both layers and then inserting each vertex v in T \ P

adjacent to a vertex w E P on the layer opposite w. 0

4.2 Short Layered Drawings

Using a similar though slightly more complicated drawing algorithm than in Lemma 4.8,

we obtain an upper bound for short layered drawings, first proved by Dujmovié et al. [27]:

Lemma 4.9 Every tree T with pw(T) ~ 2 has a short (2pw(T) -1)-layer planar drawing.

Proof: We obtain a short (2pw(T) - 1)-1ayer planar drawing by first drawing a main path

P of T on the top layer. Each component T' in T \ P has pathwidth at most pw(T) - 1.

Let v be the vertex in T' adjacent to a vertex w in P. We insert a drawing of each T'

ante the (2pw(T) - 2) layers below w and then draw the missing edge (v, w) as a straight

line between v and w. To avoid edge-crossings, we draw T' so that v lies on the layer

immediately below w; that is, we draw T' so that v is exposed. It remains to prove, then,

that su ch drawings of T' exist. In other words, we must prove that for any tree T with

pw(T) ~ 1 and vertex v E T, there exists a short 2pw(T)-layer planar drawing of Tin

which v is exposed.

The proof is by induction on the pathwidth of T. When pw(T) = 1, there is a short

2-layer pl anar drawing of T by Lemma 4.8. Since there are only two layers, every vertex

including v is exposed. Suppose that pw(T) ~ 2 and let P = VI V2 ... Vn he a main path in

T and R the path between v and a vertex Vi in P. We begin drawing T on 2pw(T) layers

by first drawing the path RViVi-1 ... VIon the top layer and then the path Vi+1 Vi+2 ... Vn

on the second layer below edge (Vi, Vi-I). Each connected component T' of (T \ P) \ R

has pathwidth at most pw(T) - 1 so, by induction, there exists a short (2pw(T) - 2)-layer

planar drawing of T' in which vertex v' E T' adjacent to vertex w in PUR is exposed. We

recursively construct and then insert this drawing of T' onto the layers below w. The final

drawing is illustrated in Figure 4.1. 0

This upper bound is optimal for a set of rooted trees that we define below. We construct the

trees in such a way that we know the location of designated vertices in any minimum layered

drawing. The following lemma describes the key construction technique. It describes how

61

CHAPT ER 4. TREE DRA WINGS

v

Figure 4.1: A short (2pw(T) -1)-layer planar drawing T in which vertex v in T is exposed.

we can force the roots of certain trees to be "squeezed" outward onto an increasingly smaller

number of top or bottom layers as we decrease the number of layers that the drawing of the

tree occupies.

Lemma 4.10 Let h 2:: 1 and T be a tree rooted at a vertex r with n 2:: 0 children. Suppose

that each subtree rooted at a child c of r has the property that every short layered drawing

occupies at least h - 1 layers and at least h layers if c is exposed. If n 2:: (i + 3) (i + 2) + 1

for sorne 0 :::; i < h then, in any short (h + i)-layer planar drawing of T, r is on one of the

top or bottorn i layers.

Proof: Assume by way of contradiction that r does not lie on the top or bottom i layers;

that is, r lies on layer j, i + 1 :::; j :::; h. If the drawing of a subtree rooted at a child

c of r occupies exactly l = h - 1 layers then c is not exposed in that drawing so r lies

on one of those l layers. If instead the subtree occupies l 2:: h layers then these l layers

include layers i + 1, i + 2, ... , h, one which is occupied by r. By Lemma 4.1, the

drawings of at most two subtrees occupy the same set of layers. There are h + i - l + 1

ways to choose l 2:: h - 1 consecutive layers from h + i totallayers so r can have at most

2~?~Llh + i -l + 1 = 2[(i + 2) + (i + 1) + ... + 1] = (i + 2)(i + 3) children. 0

Using Lemma 4.10, we describe the set of trees recursively. For k = 1, Sk = SI is the

complete temary tree of height one. For k 2:: 2, Sk consists of a root v with one child x that

in tum has two children u and w. In addition, we make use of Lemma 4.10 when i = 1 by

giving u, w and x each n = (i + 3)(i + 2) + 1 = 13 children. Each child is a root of a

subtree isomorphic to Sk-l. See Figure 4.2.

Lemma 4.11 For k 2:: 1, every short planar layered drawing of Sk occupies at least 2k - 1

layers and at least 2k layers if its root v is exposed.

62

CHAPT ER 4. TREE DRA WINGS

v

Figure 4.2: Tree Sk for k ~ 2. Each Ui, Wi and Xi is the root of a subtree isomorphic to
Sk-l.

Proof: The proof is by induction on k. For k = 1, Sk = SI is a complete ternary tree of

depth 1 so by Corollary 4.2 every drawing occupies at least 2k = 2 layers.

Assume that k ~ 2. By induction, every short layered drawing of Sk-l occupies at least

2k - 3 layers and 2k - 2 layers if its root is exposed. Thus, Lemma 4.10 applies to rooted

subtrees S~, S~ and (S~ \ S~) \ S~ In Lemma 4.10, we let root r = u, w, or x and i = 1, so

h + i = h + 1 = 2k - 1; thus, any drawing of these subtrees occupies at least h + 1 = 2k - 1

layers, and if exactly 2k - llayers, then the root r = u, w, or x is exposed.

Now consider a drawing of Sk. Since the subtree rooted at U occupies at least 2k - 1

layers, then every drawing of Sk also occupies at least 2k - llayers. If v is exposed in a

(2k - l)-1ayer planar drawing of Sk then either u, W or x is not exposed in the drawing

of its corresponding subtree. However, in that case, the corresponding subtree occupies 2k

layers; therefore, the drawing of Sk occupies at least 2k Iayers. 0

We obtain an upper bound on the pathwidth of each Sk.

Lemma 4.12 For k ~ 1, pw(Sk) ::; k.

Proof: The proof is by induction on k. For k = 1, the pathwidth of Sk = SI is 1. For

k ~ 2, there are, by induction, path decompositions for each S~i' S~i and S~i of width

k - 1. From these, we construct a path decomposition of width k for Sk as follows:

• The first bags are those from the decompositions of each S~i but with U added to

each.

• The next bag consists of x and u.

• The next bags are those from the decompositions of each S~i but with x added to

each.

• The next bag consists of x and v.

• The next bag consists x and w.

63

CHAPTER 4. TREE DRAWINGS

• The final bags are those from the decompositions of each S~i but with w added to

each.

o

Thus, by Lemmas 4.11 and 4.12, the upper bound given in Lemma 4.9 is optimal for each

Sk.

Corollary 4.13 For each h ~ 2, there exists a tree T with pw(T) < h for which every

short planar layered drawing occupies at least 2h - 1 layers.

The lower bound for short layered drawings is implied by a result of Felsner et al. [38].

They prove that if a planar graph G has a pl anar drawing on an a x b grid, then a, b ~ pw(G).

This implies that a short layered drawing of G also occupies at least pw(G) layers. We

reproduce our own proof of this fact here because most of it can be reused later to prove a

similar lower bound for proper layer drawings.

Our proof involves constructing a path decomposition of G with width h from a short

h-Iayer planar drawing of G. The first bag in the decomposition contains the left-most

vertices on each layer in the drawing, and we show that we can construct each successive

bag by removing one vertex v from the current bag and adding a new vertex immediately

to the right of v in the drawing.

To do this, we require a few definitions and preliminary results. Given a vertex v in a

short h-layer planar drawing of G, we use R(v) to denote the set of vertices on the same

layer but to the right of x:

R(v) = {u 1 u E V(G), Y(v) = Y(u), X(v) < X(u)}.

We use next(v) to denote the vertex in R(v) c10sest to v; that is, next(v) is the vertex in

R(v) with the minimum x-coordinate. If R(v) is empty then next (v) is undefined. Given a

set of vertices S ç V (G) with exactly one vertex on each layer, we use R(S) to denote the

set of vertices UVES R(v). Finally, we use F(S) to denote the set of frontier vertices in S;

that is, the vertices v E S su ch that R(v) =/:- 0 and v has no neighbors in R(S) on a different

layer:

F(S) = {v 1 v E S, R(v) =/:-0, (u,v) E E(G) andu E R(S)::::} u E R(v)}.

When we construct our path decomposition, we use F(S) to determine which vertex to

remove from the current bag in the decomposition and which vertex to add in order to

construct the next bag in the sequence.

64

CHAPTER 4. TREE DRAWINGS

Lemma 4.14 In a short h-layer planar drawing of a graph G, if S ç V(G) has exactly

one vertex on each layer and R(S) =J. 0 then F(S) =J. 0.

Proof: Assume that R(S) =J. 0 and let S' ç S be the set of vertices v E S for which

R(v) =J. 0; that is, S' = {v 1 v E S, R(v) =J. 0}. In addition, let Sil ç S' be the set

of vertices v E S' having a neighbor in R(S) on layer Y (v) - 1; that is, Sil = {v 1 v E

S', :J(v,v') E E(G), v' E R(S), Y(v') = Y(v) -1}. We observe thatS' is notempty

because R(S) is not empty and consider two cases:

1. S" = 0. In this case, the vertex v in S' with the largest y-coordinate has no neighbors

in R(S) on layers Y(v) - 1 or Y(v) + 1; therefore, v belongs to F(S).

2. S" =J. 0. Let v be the vertex in Sil with the smallest y-coordinate. Thus, v has a

neighbor v' in R(w) for sorne w E S' with Y(v') = Y(w) = Y(v) - 1. Vertex w

does not belong to Sil because v has the smallest y-coordinate of any vertex in Sil;

consequently, w has no neighbors in R(S) on layer Y (w) - 1. Vertex w also has no

neighbor in R(S) on layer Y (w) + 1 = Y (v) because su ch an edge would cross edge

(v, v'). Therefore, w belongs to F(S).

o

Finally, we obtain our lower bound:

Lemma 4.15 If a graph G has a short planar layered drawing then that drawing occupies

at least pw(G) layers.

Proof: We show that, given a short h-layer planar drawing of G, we can construct a path

de composition of G with width h. When IVI s h, a path decomposition consisting of a

single bag containing ail vertices in G is sufficient. We assume, then, that IVI > h.

We construct the path decomposition BI, B2' ... , BIVI-h from a sequence of sets

So, SI, ... , Sivi-h. More specifically, we let each Bi = Si U Si-l. We define each Si

inductively as follows:

• So is the set of h vertices with minimum x-coordinates on each layer .

• We define Si in terms of Si-l. By Lemma 4.14, there exists at least one vertex in

F(Si-l) for 1 SiS IVI - h - 1 so we let v be the vertex with the smallest y­

coordinate; thus, Si = (Si-l \ {v}) U {next(v)}.

Ifwe leteach Bi = SiUSi-l then we claim that BI, B2' ... , BIVI - h is apath decompo­

sition of G with width h. The first bag BI contains h + 1 vertices, and each successive bag

contains exactly one vertex not found in the bags before it so BI UB2 U .. . UBIVI-h = V(G).

65

CHAPT ER 4. TREE DRAWINGS

Now consider an edge (u, v) E E(G) su ch that Bi is the first bag containing u and Bk

is the first bag containing v, for i ~ k. Thus, we have u E Si, V E Sk. and v E R(Sj) for

each Sj, i ~ j ~ k - 1. Consequently, u belongs to each Sj and most importantly to Sk-l;

thus, u and v both belong to Bk.

Finally consider a vertex v E Bi n Bk, for i < k. In other words, v is in Si and Sk-l so

in fact v E Sj for each i ~ j ~ k - 1; thus, v also belongs to each bag Bj. 0

We cannot improve on this lower bound because the nearly complete ternary tree of depth

d :::::: 1 has pathwidth d by Lemma 4.4 and a short d-layer planar drawing. To obtain su ch a

drawing, we simply place vertices at depth i on layer i except for each leaf which we place

next to its parent and on the same layer.

Lemma 4.16 For each h :::::: 1, there exists a graph G with pw(G) :::::: h and a short h-Iayer

planar drawing.

By Lemma 4.9 and Corollary 4.13, and Lemmas 4.15 and 4.16, then, our bounds on the

number of layers in short layered drawings of trees are optimal:

Theorem 4.17 For each h :::::: 2, the lower bound h and the upper bound 2h - 1 are optimal

bounds on the number of layers in short planar layered drawings of trees with pathwidth h.

4.3 Proper Layered Drawings

As with short layered drawings, we obtain our upper bound by constructing drawings. This

bound was first proved by Dujmovié et al. [27]:

Lemma 4.18 Every tree T with pw(T) :::::: 2 has a proper (3pw(T) - 2)-layer planar

drawing.

Proof: We obtain a proper (3pw(T)-2)-layerplanar drawing ofany tree Twith pw(T) :::::: 2

by first drawing a main path P of T on the top two layers. Each component T' in T \ P has

pathwidth at most pw(T) - 1. Let v be the vertex in T' adjacent to a vertex w in P. We

insert a drawing of each T' onto the (3pw(T) - 4) layers below w EPand then draw the

missing edge (v, w) as a straight line between v and w. To avoid crossings, we draw T' so

that v lies on the layer immediately below w; that is, v is exposed in the drawing of T'. It

remains to prove, then, that such drawings of T' exist; that is, we must prove that for any

tree T with pw(T) :::::: 1 and vertex v ET, there exists a proper (3pw(T) - l)-1ayer planar

drawing of T in which v is exposed.

66

CHAPTER 4. TREE DRA WINGS

Let P = VI V2 ... Vn be a main path of T. The proof is by induction on pw(T). For

pw(T) = 1, there exists a proper 2-layer planar drawing of T by Lemma 4.8. Clearly V is

exposed in this drawing since there are only two layers. Now suppose that pw(T) ;::: 2, and

let R be the path between v and a vertex Vi on P. We begin drawing T on (3pw(T) - 1)

layers by first drawing the path RViVi-1 ... VIon layers one and two and then the path

Vi+IVi+2 ... Vn on layers two and three below edge (Vi, Vi-l). Each connected component

T' of (T \ P) \ R has pathwidth at most pw(T) - 1. Let v' be the vertex in T' adjacent to a

vertex w E PuR. By induction, there exists a proper (3pw(T) - 4)-layer pl anar drawing

of T' in which v' is exposed. We insert this drawing onto the layers below w. The final

drawing is ilIustrated in Figure 4.3. 0

Figure 4.3: A proper (3pw(T) - 1)-Iayer planar drawing T in which vertex V in T is
exposed.

As we did for short layered drawings, we show that this upper bound is optimal by

using Lemma 4.10 to recursively define a set of rooted trees. We de6ne pl to be the tree

consisting of a single edge and, for k ;::: 2, we define pk to be just like Sk except that:

• we attach another child y to the root V that has two children and each of those children

has exactly one child leaf;

• we make use of Lemma 4.10 when i = 2 by giving u, w and x each n = (3 + i)(2 +
i) + 1 = 21 children. Each child is the root of a subtree isomorphic to pk-l.

See Figure 4.4.

Lemma 4.19 For k ;::: 1, every proper planar layered drawing of pk occupies at least

3k - 2 layers and at least 3k - 1 layers if v is exposed.

Proof: The proof is by induction on k. For k = 1, tree pk = pl consists of a single edge

so every proper layered drawing of pk occupies at least 3k - 1 = 2 layers.

67

CHAPTER 4. TREE DRAWINGS

v
y

Figure 4.4: Tree pk for k ~ 2. Each Ui, Wi and Xi is the root of a subtree isomorphic to
pk-l.

Assume that k ~ 2. By induction, every proper layered drawing of pk-l occupies at

least 3(k - 1) - 2 = 3k - 5 layers and 3k - 41ayers if the root is exposed. By Lemma 4.10,

then, any proper layered drawing of subtree p!;, p! or (P; \ p!;) \ p! occupies at least

3k - 3 layers and if exactly 3k - 3 layers then the subtree root lies on the top or bottom

layer (sirnply let r = u, W, or X and i = 1 so h + i = h + 1 = 3k - 3 in Lernrna 4.10). In

addition, if the drawing uses exactly 3k - 2 layers then the root lies on one of the 2 topmost

or bottornmost layers (simply let r = u, W, or x and i = 2 so h + i = h + 2 = 3k - 2 in

Lemrna 4.10).

Now consider a proper layered drawing of pk. The subtree rooted at U occupies at least

3k - 3 layers so pk also occupies at least 3k - 3 layers. Furtherrnore, because uxw is a path

in the tree, aU three cannot occupy the sarne layer. Consequently, if pk occupies exactly

3k - 3 layers, then u, W or x does not lie on the top or bottom layer so it is not exposed in

the drawing of its corresponding subtree. However, in that case, the corresponding subtree

occupies at least 3k - 2 layers so every drawing of pk occupies at least 3k - 2 layers.

If v is exposed on the top layer in a proper layered drawing of pk then either U or W is

on layer three. Assume without loss of generality that W is on layer three. See Figure 4.5.

We consider two cases: k = 2 and k ~ 3. If k = 2, then p! = p~ contains no vertices

on the top layer. This is because subtrees p!; and p; have vertices on layers 1, 2 and 3;

thus, P! would need a path of length 4 starting at W to reach the top layer. The longest su ch

path has length 2. If p! occupies exactly 3k - 3 = 31ayers then it occupies layers 3, 4 and

5; otherwise, it occupies at least 3k - 2 = 41ayers, layers 2 to 5. Therefore, the drawing of

pk occupies at least 3k - 1 = 5 layers.

If k ~ 3, then every drawing of p! occupies at least 3k - 3 ~ 6 layers. If it occupies

exactly 3k - 3 layers then it occupies layers 3 to 3k - 1. If it occupies exactly 3k - 2 layers

then it occupies layers 2 to 3k - 1. Thus, every drawing of pk occupies at least 3k - 1

layers. D

The pathwidth of each pk is identical to that of Sk.

Lemma 4.20 For k ~ 1, pw(pk) s: k.

68

CHAPT ER 4. TREE DRAWINGS

.. ~u ... v
• • o. • • . . • . •

x y
•• o. ••.•.• . .•.

w

Figure 4.5: Vertex v is exposed on the top layer in a proper layered drawing of pk.

Thus, by Lemmas 4.19 and 4.20, the upper bound given in Lemma 4.18 is optimal for

each pk.

Corollary 4.21 For each h 2:: 2, there exists a tree T with pw(T) < h for which every

proper planar layered drawing occupies at least 3h - 2layers.

For proper layered drawings, our lower bound is one layer larger than for short layered

drawings because we do not permit short edges. Our proof proceeds as in Lemma 4.15

except that we let each bag Bi = Si. This is possible because we do not permit short edges.

Thus, we have the following lower bound for proper drawings of graphs.

Lemma 4.22 If a graph G has a proper planar layered drawing then that drawing occupies

at least pw(G) + 1 layers.

We cannot improve this lower bound because the complete ternary tree of depth d has

pathwidth d by Lemma 4.4 and a proper d + l-layer planar drawing. We simply place each

vertex at depth i on layer i + 1.

Lemma 4.23 For each h 2:: 0, there exists a graph G with pw(G) > h and a proper

(h + l)-layer planar drawing.

By Lemma 4.18 and Corol1ary 4.21, and Lemmas 4.22 and 4.23, then, our bounds on

the number of layers in proper layered drawings of trees are optimal:

Theorem 4.24 For each h 2:: 2, the lower bound h and the upper bound 3h - 2 are opti­

mal bounds on the number of layers used in proper planar layered drawings of trees with

pathwidth h.

4.4 Upright and Unconstrained Layered Drawings

In this section we first state and prove an upper bound for upright layered drawings and

then prove that this bound is the optimal upper bound for unconstrained layered drawings.

Because every upright layered drawing is by definition an unconstrained layered drawing,

69

CHAPTER 4. TREE DRA WINGS

we will have thus proven that our upper bound is optimal for both upright and unconstrained

layered drawings.

First we prove the upper bound:

Lemma 4.25 Every tree T with pw(T) > 1 has an upright f3pw(T) /21-layer planar

drawing.

Proof: We obtain an upright f3pw(T)/21-layer planar drawing of any tree T with pw(T) ~

1 by first drawing a main path P of T so that its vertices alternate between the top and

bottom layers. We then insert drawings of each component T' in T \ P next to the drawing

of P. More specifically, let v be the vertex in T' adjacent to a vertex W in P. We in sert a

drawing of T' with v exposed into the f3pw(T)/21 - 1layers below W (or above if W is

on the bottom layer). It remains to prove, then, that such a drawing of T' with pw(T') =

pw(T) - 1 exists. In other words, we must show that, for any tree T with pw(T) ~ 0

and vertex v E T, there exists an upright (f3(pw(T) + 1)/21 - l)-1ayer planar drawing in

which v is exposed. We note that f3(pw(T) + 1)/21 - 1 simplifies to f(3pw(T) + 1)/2l

The proof is by induction on the pathwidth of T. If pw(T) = 0, then T contains no

edges and can be drawn on a single layer. If pw(T) = 1, then by Lemma 4.8, T has an

upright 2-layer planar drawing.

Assume that pw(T) ~ 2. We begin by drawing P = VIV2 . .. vm , a main path of T, on

f (3pw(T) + 1) /21layers so that its vertices alternate between the top and bottom layers. If v

lies on P then v will be exposed in the final drawing. Otherwise, v belongs to a component

T' of T \ P. Let P' be a main path of T', v' the vertex in T' adjacent to a vertex Vi in P and

let Q = Wl W2 ... W n be a path from v' to an end-vertex of P' such that Q contains as much

of the path from v to v' as is possible. For example, see Figure 4.6.

We continue by drawing Q on f(3pw(T) + 1)/21-11ayers next to Vi so that its vertices

alternate between the top and bottom of these layers. If v belongs to Q then we draw Q so

that v is exposed in the final drawing. Otherwise, v belongs to a component Til of T' \ P'.

Let v" he the vertex in Til adjacent to a vertex Wj of Q and R the path from v" to v. In this

case we draw Q so that Wj is not exposed so that we can expose v. We then draw path R on

r(3pw(T) + 1)/21 - 21ayers next to Wj so that its vertices alternate between the top and

bottom of these layers and v is exposed. If Q does not contain aIl of P' and vertex Wk in Q
is adjacent to a vertex in P' \ Q then we draw P' \ Q on the r(3pw(T) + 1)/21 - 2layers

next to Wk so that its vertices alternate between the top and bottom of these layers. Figure

4.6 illustrates the relationships between paths P, P', Q and R in T.

Each component C of (T \ T') \ P has pathwidth at most pw(T) - 1 so, by induction,

each has a (r(3pw(T) + 1)/21 - l)-layer planar drawing in which the vertex in C adjacent

70

v

CHAPTER 4. TREE DRA WINGS

- Path P
Path P'

_ Path Q

- Path R

Figure 4.6: Paths P, pl, Q and R in a tree T.

to a vertex in P is exposed. We recursively obtain such drawings and insert them into the

main drawing next to the appropriate vertices in P. Similarly, each component of T' \ P'

and therefore each component C of T' \ P' \ Q \ R has pathwidth at most pw(T) - 2, so, by

induction, each has a (f(3pw(T) + 1) /21- 3)-layer planar drawing in which the vertex in C

adjacent to P' U Q U R is exposed. We recursively obtain such drawings and insert them into

the main drawing next to the appropriate vertices in PIUQUR. The final result is illustrated

in Figure 4.7. The rectangles represent drawings of components of T \ P \ P' \ Q \ R. 0

We now prove that the upper bound just proven is optimal for unconstrained layered

drawings. As for short and proper layered drawings, we prove optimality by describing a

set of rooted trees whose unconstrained layered drawings use the number of layers given in

the upper bound. These trees have the property that, when drawn on a minimum number of

layers, the root is not accessible. A vertex v is accessible in a layered drawing r if we can

insert a layered drawing of sorne path Pinto r without creating crossings so that one end

vertex is adjacent to v and the other is exposed. Notice that if a vertex is exposed then it is

accessible but the reverse is not always true. The next two lemmas show how we prevent

the root from being accessible in a minimum layer drawing.

Lemma 4.26 Let T be a tree rooted at v, and let u and w be children of v. Let r be an

unconstrained h-layer planar drawing ofT for h 2:: 1 in which subtrees Tu and Tw each

occupy at least h - llayers. Then, r contains a drawing of Tu in which u is accessible.

Proof: There is a path in the drawing of T outside Tu that begins at v and ends at an exposed

vertex in Tw ; therefore, u is accessible in the drawing of Tu. 0

Lemma 4.27 Let u and w be vertices in a tree T rooted at vertex v such that v is the

only common ancestor of u and w. Assume that Ul and U2 are children of u such that any

unconstrained planar layered drawing of subtree TUi occupies at least h 2:: 0 layers but

Ui is not accessible in any h-Iayer planar drawing. Similarly, assume that Wl and W2 are

71

, , · , , , ,
" , , , ,

" , · ,
"

CHAPT ER 4. TREE DRAWINGS

,-........ , .

, , , ,
,-,

,
, , , ,

., , ,

. ·wi· ·w
J
· 'w"n' .

"

"

· " , , , , , , , , , , , , · ,.
"

, , ,.

, , , , ,

, ,
,

, , , ,

. , , ,

......... ,

, , , ,
, ,

, , , ,
,-

.. , , ,

, ,

, ,

, ,
"

" , , ,
" , , " , ,

v

Figure 4.7: An upright (f(3pw(T) + 1)/21)-layer planar drawing of T (top), an upright
(f(3pw(T) + 1)/21 - l)-layer planar drawing of T' (middle) and an upright (f(3pw(T) +
1) /21 - 2)-layer planar drawing of T" (bottom).

children of w such that any drawing of subtree TWi occupies at least h + 1 layers but Wi

is not accessible in any (h + 1)-layer planar drawing. Then there are no unconstrained

(h + 2)-layer planar drawings ofT in which v is accessible.

Proof: Assume by way of contradiction that we have an unconstrained (h + 2)-layer

planar drawing r of T in which v is accessible. We thus insert the drawing of a path

P = VI V2 ... Vn into r So that VI is adjacent to v and Vn is on the top layer. We let

T' =TUP.

72

CHAPT ER 4. TREE DRAWINGS

We c1aim that, in this drawing, T' \ T~ occupies the top h + Ilayers and (T' \ T~) \ T~

occupies the top h layers. Each subtree T~i occupies at least h + 1 layers so, by Lemma

4.26, Wi is accessible in the drawing of T~i. Therefore, each T~i occupies at least h + 2

layers. By Lemma 4.1, then, T' \ T~ occupies at most h + Ilayers. Similarly, each subtree

T~i occupies at least h of these layers so, by Lemma 4.26, Ui is accessible in the drawing

of T~i. Therefore, each T~i occupies at least h + Ilayers so, by Lemma 4.1, (T' \ T~) \ T~

occupies at most h layers. Since Vn E P lies on the top layer and Vn E T' \ T~, subtree

T' \ T~ occupies the top h + 1 1 ayers , that is layers 1, 2, ... , h + 1. Similarly, we have

Vn E (T' \ T~) \ T~ so (T' \ T~) \ T~ occupies the top h layers.

Let Til be a subdivision of T' created by subdividing each long edge that crosses layer

h + 1 in r. We obtain an (h + 2)-layer planar drawing r' of Til from r by placing the new

vertices in Til on layer h + 1 where the edges they subdivide intersect layer h + 1. Let S

be the non-empty set of vertices in Til on layer h + 2 and Till the connected component in

Til \ S containing u. Thus, r' contains an (h + 1)-layer planar drawing r" of Til'. However,

this contradicts Lemma 4.1 because Til' \ u contains three components that occupy h + 1

layers in r". The component containing UI occupies h + Ilayers because we showed above

that T~l occupies the top h + 1layers. The same applies to the component containing U2.

The component containing v also contains Vn E P on the top layer because we showed

above that P lies on the top h layers. This component also contains a vertex on layer h + 1

adjacent to a vertex in S; therefore, the component containing v occupies ail h + 1 layers.

o

Using Lemma 4.27, we recursively define a tree T k for each k ~ O. Tree TO is the

empty tree, and tree Tl is the single vertex. For k ~ 2, tree T k consists of a root v with two

children U and w. Child u has two children UI and U2, each roots of subtrees isomorphic to

T k - 2 • Similarly, child w has two children WI and W2, each roots of subtrees isomorphic to

T k - l . These trees are illustrated in Figure 4.8. As expected, we obtain the following result:

v

Figure 4.8: Tree Tk, for k ~ 2. Each Ui is the root of a subtree isomorphic to T k- 2 and
each Wi the root of a subtree isomorphic to T k - l •

73

CHAPTER 4. TREE DRA WINGS

Lemma 4.28 Every unconstrained planar layered drawing ofTk occupies at least k - 1

layers and at least k layers if v is accessible.

Proof: Every layered drawing of tree Tl occupies at least 1 layer. Tree T 2 contains a

complete temary tree of height 1 so by Corollary 4.2 every drawing of T 2 occupies at least

2 layers. For k ~ 3, then, the result follows by induction and Lemmas 4.26 and 4.27. 0

Next we obtain an upper bound on the pathwidth of each tree T k •

Lemma 4.29 For k ~ 0, pw(Tk
) :::; l2k/3J

Proof: The proof is by induction on k. We tirst prove that for k' ~ ° and k ~ 2, if T k
-

2

contains no k'-critical vertices and we have pw(Tk- l) :::; k' then T k contains no (k' + 1)­

critical vertices, Tk+l contains no (k' + 2)-critical vertices and pw(Tk+2) :::; k' + 2.

Subtrees T~l and T~2 are isomorphic to T k- l so they each have pathwidth at most k'.

Therefore, subtree T~ contains no (k' + 1)-critical vertices and neither does subtree T!;, since

it is isomorphic to a subtree of T~. Subtrees T!;,;-l and T!;,2+1 are isomorphic to T k- 2 so, by

Lemma 4.5, subtree T!;, has pathwidth at most k' and therefore v is not (k' + l)-critical.

Thus, T k contains no (k' + 1)-critical vertices.

Subtree T!;,+l is isomorphic to T~ so it contains no (k' + l)-critical vertices. By Lemma

4.5, T!;,+l has pathwidth at most k' + 1 so v is not (k' + 2)-critical. Subtrees T~;l and

T~tl are isomorphic to T k so they contain no (k' + l)-critical vertices. By Lemma 4.5,

then, subtree T~+l has pathwidth at most k' + 1 and therefore con tains no (k' + 2)-critical

vertices. Thus, Tk+l contains no (k' + 2)-critical vertices.

Subtree T!;,+2 is isomorphic to T~+l so it has pathwidth at most k' + 1. Subtrees T~;2

and T~t2 contain no (k' + 2)-critical vertices because they are isomorphic to Tk+l. By

Lemma 4.5, then, Tk+2 has pathwidth at most k' + 2.

The lemma then follows by induction on k because for k = ° trees T k = TO and

Tk+l = Tl both have pathwidth O. 0

Finally, we show that the upper bound of Lemma 4.25 is optimal:

Lemma 4.30 For each h ~ 0, there exists a tree T with pw(T) :::; h for which every

unconstrained planar layered drawing occupies at least r3h/21Iayers.

Proof: Consider the tree T rooted at r having three children each the roots of subtrees

isomorphic to Tr3h/ 21-1• By Lemma 4.29, tree Tr3h/ 21-1 has pathwidth at most h - 1.

Therefore, by Lemma 4.5, T has pathwidth at most h.

By Lemma 4.28, in any drawing of T, the three subtrees occupy at least r3h/21 - 2

layers. By Lemma 4.1, then, T occupies at least r3h/21 - 1layers. However, if T occupies

74

CHAPTER 4. TREE DRA WINGS

exactly f3h/21 - 1 layers then each subtree has a vertex on either the top or bottom layer

implying that the root of each subtree is accessible. Therefore, by Lemma 4.28, each subtree

occupies f3h/21 - 1 layers. Consequently, by Lemma 4.1, every layered drawing of T

occupies at least f3h/21Iayers. 0

The optimal 10wer bounds for upright and unconstrained layered drawings differ. We

recall that Felsner et al. [38] prove that if a planar graph G has a planar drawing on an

a x b grid, then a, b :2: pw(G). This implies that an unconstrained layered drawing of G

also occupies at least pw(G) layers:

Lemma 4.31 ([38]) For every graph G, any unconstrained planar layered drawing of G

occupies at least pw(G) layers.

Short layered drawings are unconstrained layered drawings so, by Lemma 4.16, this lower

bound is optimal.

Corollary 4.32 For each h :2: 1, there exists a graph G with pw(G) :2: h and an uncon­

strained h-Iayer planar drawing.

Thus, by Lemmas 4.25, 4.30 and 4.31, and Corollary 4.32, then, our bounds on the number

of layers in unconstrained layered drawings of trees are optimal:

Theorem 4.33 For each h :2: 1, the lower bound h and the upper bound f3h/21 are optimal

bounds on the number of layers in unconstrained planar layered drawings of trees with

pathwidth h.

For upright layered drawings, we observe that in the proof of Lemma 4.31 we can

simply let each Bi = Si because short edges are not permitted in the drawing.

Lemma 4.34 If a graph G has an upright planar layered drawing then that drawing occu­

pies at least pw(G) + 1 layers.

The optimality of this bound follows from Lemma 4.23 because every proper layered draw­

ing is by definition an upright layered drawing.

Corollary 4.35 For each h :2: 0, there exists a graph G with pw(G) :2: h and an upright

(h + 1) -layer planar drawing.

Thus, by Lemmas 4.25, 4.30 and 4.34, and Corollary 4.35, then, our bounds on the number

of layers in upright layered drawings of trees are optimal:

Theorem 4.36 For each h :2: 1, the lower bound h + 1 and the upper bound f3h/21 are

optimal bounds on the number of layers in upright planar layered drawings of trees with

pathwidth h.

75

CHAPTER 4. TREE DRA WINGS

4.5 Linear-Time Drawing Algorithms

We can obtain the layered drawings described in the proofs of Lemmas 4.~ 4.18 and 4.25

in linear time. Each drawing depends on there being an algorithm that can efficiently de­

compose a tree into one or more paths and subtrees. More specifically, given a vertex v in

a tree T, the drawings depend on three different decompositions:

1. a main path P of T and the components of T \ P;

2. a main path P of T, the path R from v to P, and the components of (T \ P) \ R; and,

3. a main path P of T, a main path P' of the subtree in T \ P containing v, the path Q
from P to an end vertex of P' su ch that Q intersects the path from v to P, the path R

from v to Q, and the components of (((T \ P) \ Pl) \ Q) \ R.

Recall that the first decomposition is applied initially to the whole tree and then the last two

decompositions are recursively applied to the subtrees until the entire tree is decomposed

into paths. We describe an algorithm that can accomplish this in linear time.

As a preprocessing step, we root the tree at an arbitrary vertex and then apply the linear­

time algorithm of Ellis et al. [34] for finding the pathwidth of a tree. More specifically,

given a tree T the algorithm computes a label for each a vertex v in the tree. The label

consists of a sequence of non-negative integers (al, a2, ... a p) in descending order and a

corresponding sequence of vertices (VI, V2, ... v p) in the subtree Tv rooted at v such that:

3. for 1 ::; i ::; P - 1, Vi is an ai-critical vertex in Tv \ TVl \ TV2 \ ••• \ TVi _ l '

For our algorithm we do not need to save the whole label for each vertex v. Instead, we

need only retain the values al and a2 and corresponding vertices VI and V2. We refer to VI

with Cfl(V), V2 with Cf2(V), al with pwl(v) and a2 with pw2(v). In the case that a2 and V2

do not exist, we simply say that Cf2 (v) and pw 2 (v) are undefined.

The first step of each decomposition is to find a main path in the tree. The next two

results show how we find a main path.

Lemma 4.37 Let v be a vertex in a rooted tree T. Then, there exist at most two vertices u

and w that are descendants of v with pw 1 (u) = pw 1 (w) = pw 1 (v), and each child c of u

or w has pw 1 (c) < pw 1 (v). Furthermore, the path between u and w contains Cfl (v) and is

a main path for Tv.

76

CHAPTER 4. TREE DRAWINGS

Proof: Suppose that there are two such descendants, u and w. Since pw} (u) = pw} (w) =

pw}(v), vertex u is not a descendant of w, and w is not a descendant of u. In addition,

vertex Cf} (v) is the lowest common ancestor of u and w because, by Lemma 4.6, Cf} (v) is

the unique pw}(v)-critical vertex in Tv.

If there is a third such descendant x of v then Cf} (v) is the lowest common ancestor of u,

w and x, so Tv \ cr}(v) contains three components with pw}(v). By Lemma 4.4, however,

this means that Tv has pathwidth greater than pw} (v), a contradiction. Thus, there are at

most two su ch descendants u and w.

Let P he the path from u to w, and consider a component T' of T \ P. Let x be the

vertex on P that is adjacent to a vertex in T'. If pw(T') 2: pw} (v) then x is not a descendant

of u or w. Consequently, there are at least three components in Tv \ x with pathwidth at least

pw} (v): one containing Tu, another containing Tw , and the third containing T'. B Y Lemma

4.4, however, this means that Tv has pathwidth greater than pw} (v), a contradiction. Thus,

P is a main path. D

Corollary 4.38 To find a main path P in a tree rooted at v, we initialize P to be the single­

vertex path consisting of Cf} (v). We then walk down the tree following edges to vertices u

with pw} (u) = pw} (v). As we walk, we add each such u to the appropriate end of P.

It is convenient if the main path removed in the first decomposition contains the root.

This is because each remaining component is a rooted subtree of the original tree; con se­

quently, we can reuse the labels ca1culated in the preprocessing step to recursively decom­

pose each remaining component. If the main path does not contain r then we reroot the tree

at Cf} (r) and relabel the tree. Then, the new root r is equal to Cf} (r) so the main path found

using the algorithm described in Corollary 4.38 contains r = Cf} (r). This decomposition is

i11ustrated in Figure 4.9(a).

We then apply either decomposition two or three to the remaining subtrees. The root of

each subtree is the vertex v in the subtree that is adjacent to the main path just removed.

We apply decomposition two to subtree Tv by again using the algorithm described in

Corollary 4.38 to find a main path P of Tv. The path R from the subtree root v to P is

simply the path from v to Cf} (v) E P. We traverse this path by walking up the tree from

Cf} (v) to v. This decomposition is illustrated in Figure 4.9(b).

We apply decomposition three to subtree Tv by again using the algorithm described

in Corollary 4.38 to find a main path P of Tv. If v = Cf} (v), then the decomposition is

complete since paths P', Q and R have zero length. On the other hand, if v =1= Cf} (v) then

v belongs to subtree T' = Tv \ Tcr1 (v)' We find a main path P' of T' by again applying the

algorithm described in Corollary 4.38 except that, for each ancestor w of Cf} (v), we refer to

77

CHAPTER 4. TREE DRA WINGS

cr2(w) and pw2(w) instead of to cr} (w) and pw} (w), respectively. Let X be the path from

cr2(V) to v. Path Q is then composed of the path from cr}(v) to the nearest vertex w in X

and the path from an end vertex of P' to w. We traverse Q by walking up the tree from

cr} (v) to w and then from an end vertex of P' again up to w. Path R is the path from w to

v. We traverse R by walking up the tree from w to v. Two cases for this decomposition are

illustrated in Figure 4.9(c-d).

(a)

(c)

(b)

(d)

Figure 4.9: Decomposing a tree.

- Path P
Path P'

_ PathQ

- Path R

After applying decompositions two or three to Tv, we recursively apply either of these

decompositions to any remaining components of Tv. Because the set of paths removed

from Tv are connected and contain the root v, each of the remaining components is actually

a rooted subtree of the original tree. In addition, the component vertex adjacent to the

removed paths is precisely the root of the component. Consequently, we can reuse the

vertex labels calculated earlier to recursively apply either of these decompositions exactly

as we just described them for Tv.

We daim that the recursion finishes in linear time. The preprocessing step applies a

linear-time labelling algorithm to the tree. The first decomposition may require rerooting

and relabelling the tree, but both of these are accompli shed in linear time. The remainder of

the algorithm involves traversing various paths and collecting adjacent subtrees for further

78

CHAPT ER 4. TREE DRA WINGS

decomposition. These traversaIs involve visiting each vertex in the tree a small constant

number of times. Thus, we have linear-time algorithms to construct the drawings described

in the proofs of Lemmas 4.9, 4.18 and 4.25:

Theorem 4.39 The following drawings of a tree T with pw(T) = h can be obtained in

linear time:

• an unconstrained (r3h/2l)-layer planar drawing (if h ~ 1);

• an upright (r3h/2l)-layer planar drawing (if h ~ 1);

• a short (2h - l)-layer planar drawing (if h ~ 2); and

• a proper (3h - 3)-layer planar drawing (if h ~ 2).

4.6 Conclusions and Open Problems

In this chapter, we have proven optimal upper and lower bounds on the number of layers

required by layered drawings of trees with respect to their pathwidth. We have also given

linear-time algorithms for obtaining drawings that match the upper bounds. It remains,

however, an open problem to efficiently compute the minimum number of layers required

to draw any specific tree. Though the algorithms presented in this chapter are optimal with

respect to pathwidth, it is clear that they could be improved for individual trees.

Solving this problem for other classes of graphs similarly remains open. Outerplanar

graphs are a slightly more general class than trees so our results for trees may generalize

to outerplanar graphs. Biedl [8] shows that outerplanar graphs have visibility drawings that

occupy O(n log n) area. Though these are not layered drawings, visibility drawings do

resemble layered drawings in sorne respects so combining our approach with that of Biedl

may lead to interesting results.

79

Chapter 5

One-Bend Drawings

To Beppe, Emilio and Walter-happy as we worked, where did the lime go?

A common aesthetic requirement for many graph drawings is that it be easy to locate the

end-vertices of each edge. The most common way to achieve this is to draw each edge

as a straight-line segment. In sorne applications, such a restriction is too drastic, resulting

in drawings that violate sorne other equally important aesthetic requirement, such as area

requirements or minimum distance between vertices. In this chapter, we relax this restric­

tion slightly by allowing each edge to bend. More specifically, we consider k-Iayer, 1-bend

planar graph drawings, k-Iayer planar drawings in which each edge is drawn as a polyline

composed of at most two straight-line segments. A graph with such a drawing is said to be

k-Iayer, 1-bend planar. Thus, we have the k-LAYER, 1-BEND PLANAR problem:

Given: A graph G and an integer k ~ 1.

Question: Is Ga k-Iayer, 1-bend planar graph?

When k = 1, this problem tums out to be equivalent to the c1assic problem of testing

whether or not a graph has a 2-page book embedding or 2-stack layout. Bemhart and

Kainen [7] show that a planar graph has a 2-page book embedding if and only if it is sub­

Hamiltonian. A pl anar graph is sub-Hamiltonian if it can be transformed into a Hamiltonian

planar graph by adding edges. Wigderson [97] shows that testing maximal planar graphs

for Harniltonicity is NP-complete, so the more general problem of testing planar graphs

for sub-Hamiltonicity is at least NP-hard.

In the process of examining a related problem, the point-set embeddability problem,

Kaufmann and Wiese [61], characterize the set of l-layer, 1-bend planar graphs as the set

of sub-Hamiltonian pl anar graphs. Consequently, due to the results mentioned above, they

show that the 1-LAYER, 1-BEND PLANAR problem is equivalent to 2-page book embed­

dability testing and is therefore NP-complete.

On the other hand, Di Giacomo et al. [44] and Kaufmann and Wiese [61] show that,

by slightly relaxing the constraints of the k-LAYER, 1-BEND PLANAR problem for k = 1,

80

CHAPTER 5. ONE-BEND DRAWINGS

we sometimes obtain polynomial problems. Di Giacomo et al. [44] show that aIl planar

graphs are 1-layer, 1-bend planar wh en we allow the layer to be a convex curve rather than a

straight line. Kaufmann and Wiese [61] prove a result that implies that aIl planar graphs are

1-layer, 2-bend planar. In both cases, the resulting drawings can be obtained in polynomial

time.

These results lead us to ask whether or not aIl pl anar graphs are k-Iayer, 1-bend planar

for sorne large enough k. In other words, we would like to know if using additionallayers

in 1-bend drawings wil1 give us the power of a single curved layer or the power of using

2-bends on a single straight-line layer. Figure 5.1 suggests a positive answer, since Fig­

ure 5.1(a) shows a graph that is not 1-layer, 1-bend planar [61] but, as Figure 5.1(b) shows,

the graph does have a 2-layer, 1-bend pl anar drawing.

5 Il

(a) (b)

Figure 5.1: (a) A graph G that is not 1-layer, 1-bend planar. (b) A 2-layer, 1-bend planar
drawing of G.

In spite of this positive evidence, we show in this chapter the foIlowing negative results:

• We prove that, for any given k ?: 1, there exists a graph that is not k-Iayer, I-bend

planar. In fact, we show that there is a planar 3-tree with maximum degree 12 that is

not k-Iayer, I-bend pl anar for each k ?: 1.

• In fact, we prove that, for each k ?: 2, the k-LAYER, I-BEND PLANAR problem is

NP-hard.

Because of these negative results, we restrict ourselves to only 2 layers and obtain the

following positive results:

• We generalize the equivalence between 2-page book embeddable graphs (Le. l-layer,

I-bend planar graphs) and sub-Hamiltonicity by introducing the notion of sub-Hamiltonian­

with-handles graphs, and showing that it is equivalent to 2-layer, I-bend planarity.

81

CHAPTER 5. ONE-BEND DRAWINGS

• We exploit the above characterization for the 2-LAYER, 1-BEND PLANAR problem

to show that 2-outerplanar graphs are 2-layer, 1-bend planar and that a 2-layer, 1-bend

planar drawing can be constructed efficiently. We note that there are 2-outerplanar

graphs that are not 1-layer, 1-bend planar (see, e.g. Figure 5.1(a».

The remainder of the chapter is structured as follows. In Section 5.1, we recall a tech­

nique introduced by Kaufmann and Wiese to compute 1-layer, 2-bend planar drawings be­

cause we generalize and use it extensively in the remainder of the chapter. Section 5.2

introduces the new notion of cutting path, a tool that we use extensively in the chapter.

In Section 5.3 we describe how, for any given k ~ 1, it is possible to construct graphs

that are not k-layer, 1-bend planar. The NP-hardness of the k-LAYER, 1-BEND PLANAR

problem is proven in Section 5.4, and in Section 5.5 we provide a characterization of the

class of graphs that are 2-layer, 1-bend planar. In Section 5.6, a subclass of planar graphs

that always admit a 2-layer, 1-bend planar drawing is described, and an efficient drawing

algorithm is presented. Conclusions and open problems are given in Section 5.7.

5.1 Technique of Kaufmann and Wiese

In [61], Kaufmann and Wiese study the point-set embeddability problem and prove that it

is closely connected with Hamiltonicity. As mentioned earlier, we generalize and use their

drawing technique in the chapter, so we recall their technique and its proof of correctness

below:

Lemma 5.1 (Kaufmann and Wiese, [61]) Let 8 be a set ofpoints in the plane, and let G

be a planar graph with 181 verrices. IfG is Hamiltonian, then there exists a planar drawing

of G in which each vertex is mapped to a unique point in 8 and each edge is drawn as a

polyline with at most one bend.

Proof: We assume that each verticalline contains at most one point in 8. If this is not

the case, then we rotate the points until it is the case. Let Pl , P2, ... ,Pn be the sequence of

points in 8 ordered by increasing x-coordinate. Let C = VI, V2, ... ,Vn be a Hamiltonian

cycle in G, and let 'li be a planar embedding of G such that edge (VI, Vn) lies on the external

face (notice that 'li always exists). We describe how to compute a planar drawing of G that

maps the vertices of G to the points of 8 and that preserves w.
Assign each vertex Vi to point Pi in P and draw the edges of path P = C \ {(VI, Vn)} as

straight-line segments between their end-vertices. Draw each remaining edge e using two

segments, one with slope a > 0 and the other with slope -a. We prevent e from crossing

the previously drawn edges in P by choosing our slope a to be greater than the absolute

82

CHAPT ER 5. ONE-BEND DRAWINGS

value of the slope of each edge in P. With segments of slope ±a, it is possible to draw e

above or below P. In order for the drawing to preserve the planar embedding \li, draw e

above P if e is inside C in G, and below P, otherwise.

The resulting drawing is planar except that edges outside P that are incident on the

same vertex may contain overlapping segments. To eliminate overlapping, perturb over­

lapping edges by decreasing the absolute value of their segment slopes by slightly different

amounts. The slope changes are chosen to be small enough to avoid creating edge crossings

while preserving the same planar embedding. See Figure 5.2.

More formally, given an angle e > 0, if segment S overlaps with one or more other

segments and is the m th longest of these segments, then we decrease the absolute value of

its slope by an angle of (m - 1) . e. We observe that this ensures the correct ordering of

these segments around their adjacent vertex with respect to the embedding of the graph. We

prevent edge crossings by choosing a small enough e. Namely, to prevent crossings with

another edge outside P, we let e be small enough that our rotated s does not intersect any

other previously parallel segment. An upper bound of L~A on e is sufficient, where E is the

smallest distance between parallel segments, L is the length of the longest segment drawn

so far, and 6 is the maximum degree of any vertex in G. To prevent crossings with edges in

P, we further bound our choice of e from above so that, if we rotate a segment with slope

a by an angle of e . 6, then the resulting slope is stilliarger than the absolute value of the

slope of each edge in P. 0

(a) (b)

Figure 5.2: Drawing of a graph on a point-set (a) before, and (b) after perturbing overlap­
ping segments.

83

CHAPTER 5. ONE-BEND DRAWINGS

5.2 Cutting Paths

Our approach to solving the k-LAYER, I-BEND PLANAR problem is inductive on the num­

ber k of layers in the drawing. To do this, we investigate ways of partitioning k-Iayer,

I-bend planar graphs into (k - l)-layer, I-bend planar subgraphs by removing a "special

path."

We find this path by considering a k-Iayer, I-bend planar drawing r of the graph and

showing that there is a path from a vertex that is the leftmost on its layer to a vertex that

is the rightmost on its layer, and that removing this path from r leaves behind connected

components that are drawn on k -llayers. More specifically, we find the path by starting at

a vertex and then moving to the right of the vertex along the layer until we encounter either

another vertex or an edge crossing the layer. If we encounter a vertex, then we simply

continue moving to the right along the layer. On the other hand, if we encounter an edge,

then we '1ump" to a new layer by folIowing the drawing of the edge to one of its end­

vertices. Since the edge has at most one bend, then it is possible to follow the edge to an

end-vertex without encountering the bend in the edge, if it has one. Upon arriving at the

end-vertex, we continue moving to the right of the vertex along its layer as before. Below,

we will show that this procedure terminates when we reach a vertex v, su ch that, we can

move to the right of v as far as we like without encountering another vertex or edge.

By symmetry, then, we can perform the same procedure starting at v but moving to the

left until we reach a vertex w, su ch that, like v, we can move to the left from w as far as we

like without encountering another vertex of edge. Our traversaI of the drawing from v to w

traces a polyline through the drawing that splits the drawing into a part above the polyline

and a part below the polyline. No edge connects the se two parts so each part occupies at

most k - 1 layers. FinalIy, we show that the polyline either corresponds to a path in r or

else it is possible to complete the path by adding edges without violating planarity. The

resulting path is thus the "special path" that splits our original graph into components that

are (k - 1)-layer, I-bend planar.

We now formalize this procedure and prove its correctness. During our traversai of the

drawing, we use straight-line segments of edges to '1ump" from one layer to a vertex v on

another layer. We calI such a segment a jumping segment to a vertex v. More formally,

a jumping segment is a straight-line segment pv contained in an edge incident on v such

that point p and vertex v lie on different layers. Also during our traversaI, we move from a

vertex v to a point p on an edge on the same layer. This is a horizontalline segment which

we caU a landing segment from vertex v. More formally, a landing segment from vertex v

is a horizontalline segment vp from vertex v to a point p such that:

84

CHAPTER 5. ONE-BEND DRAWINGS

• v is to the left of point p;

• p does not coin ci de with a vertex but does belong to an edge;

• if an edge intersects vp at a point q =1- p, then q coincides with a vertex.

Thus, our traversaI can be described as a alternating sequence of jumping and landing seg­

ments which we call a jumping sequence. More formally, a jumping sequence is an alter­

nating sequence of jumping segments and landing segments SI, S2, ... ,Sp such that, for

each pair of consecutive segments Si and SHI, if Si is a jumping segment pv, then SHI is

a landing segment vp' for sorne point p' right of v, and otherwise, if Si is a landing segment

vp, then SHI is a jumping segment pw.

We will use jumping sequences to prove the existence of our "special path" which we

caIl a cutting path. To do this, we first show that the points shared by a layer and a jumping

sequence are strictly x-monotone as we traverse the layer from left-to-right.

Lemma 5.2 Let r be a k-layer, I-bend planar drawing of a graph G, and let SI, S2, ... , Sp

be the subsequence of jumping segments in a jumping sequence of r. Then, if a segment Si

contains a point p and another segment Sj, for i < j, con tains a point q on the same layer,

then p is left of q on the layer.

Proof: Suppose, by way of contradiction, that Sj is the first segment that violates x­

monotonicity. Thus, there is a segment Si, 1 :::; i < j, such that Si contains a point p

on a layer Lp that is not to the left of a point q in Sj on the same layer. Assume that Si is the

last such segment before Sj for which this is true. In other words, segments SI, S2, ... , Sj-l

are x-monotone, and segments SHI, SH2, .. . ,Sj are also x-monotone.

We first show that i + 1 =1- j. By definition, Si and SHI do not intersect because they

belong to different edge segments in a pl anar drawing, and they do not contain the same

vertices. Also by definition, Si contains a vertex v strictly to the left of an end-point of

SHI; therefore, in each case where Si and SHI cross the same layer, Si crosses strictly to

the left of SHI.

Next, we show that Si and Sj do not intersect. So, if Si and Sj contain the same vertex v,

then, by definition, SHI contains a point strictly to the right of von the layer of v. However,

this contradicts our assumption that segments SHI, SH2, . .. ,Sj are x-monotone. Thus, Si

and Sj do not contain the same vertex so, if they intersect at a point r, then they belong

to the same edge because Si and Sj are different edge segments in a planar drawing. By

definition, Sj-l contains a vertex v strictly to the left of r on the layer of r. However, this

contradicts the fact that segments SI, S2, ... ,Sj-l are x-monotone. Therefore, Si and Sj

do not intersect.

85

CHAPTER 5. ONE-BEND DRAWINGS

In other words, if L is any layer that Si and Sj both intersect, then Si intersects the layer

strictly to the right of Sj. Furthermore, this implies that segments SHI, SH2,' .. ,Sj-l

do not intersect layer L. None can intersect at or to the left of Si because segments

SI, S2,'" ,Sj-l are x-monotone. Neither can they intersect at or to the right of Sj because

segments SHI, SH2,' .. ,Sj are x-monotone.

Because each pair of consecutive segments in SHI, SH2,'" ,Sj intersect a common

layer, segments SHI, SH2,' .. ,Sj alllie above the layers intersected by Si and Sj or alliie

below these layers. Without loss of generality, we assume that they lie below. Let Lb the

lowest layer intersected by Si and Sj. Layer Lb is not the lowest layer intersected by Si

because SHI and Si intersect a common layer. However, this implies that Lb is similarly

not the lowest layer intersected by Sj because Sj-l and Sj intersect a common layer. We

have a contradiction, so p must lie to the left of q on layer Lp. 0

Next, we show the conditions under which a jumping sequence can be inductively ex­

tended.

Lemma 5.3 Let r be a k-layer, I-bend planar drawing of a graph, and let SI, S2,' .. ,Sp

be a jumping sequence ofr. Let p be the end-point of Sp that is also the end-point of the

jumping sequence.

J. If Sp is a landing segment, then there exists a jumping segment Sp+l such that SI,

S2, ... , Sp, Sp+1 is a jumping sequence.

2. Otherwise, Sp is a jumping segment and, either each edge intersection on the layer of

p to the right ofp coincides with a vertex, or else there exists a landing segment Sp+l

such that SI, S2,' .. ,Sp, Sp+l is a jumping sequence.

Proof: Suppose that Sp is a landing segment. By definition, p does not coincide with a

vertex but does belong to an edge e = (u, v). We show that e contains either pu or pv.

If not, then e contains at least two different line-segments between u and p, and at least

two different line-segments between p and v. However, in this case, e is drawn with at

least three different line-segments (i.e. with at least two bends), a contradiction. Therefore,

either pu or pv belongs to e so one of these is a jumping segment.

Now suppose that Sp is a jumping segment. If an edge intersects the layer of p to the

right of p, and the intersection does not coincide with a vertex, then let q be the leftmost such

intersection. By definition, p coincides with a vertex v so pq = vq is a landing segment. 0

Using these results, we prove the existence of a cutting sequence. A cutting sequence

in a k-Iayer, I-bend planar drawing is an infinite polyline that contains at least one end­

vertex of each edge that it intersects and consists of a jumping sequence, a horizontal ray

86

CHAPT ER 5. ONE-BEND DRA WINGS

pointing at negative infinity and a horizontal ray pointing at positive infinity. See Figure

5.3 for an ex ample of a cutting sequence in a 2-layer, I-bend planar drawing. Recall that

non-horizontal segments are ail jumping segments.

Figure 5.3: A cutting sequence in a 2-layer, I-bend planar drawing.

Lemma 5.4 Every k-layer, I-bend planar drawing r of a graph contains a cutting se­

quence.

Proof: By Lemmas 5.2 and 5.3, there exists a vertex v in r such that each edge intersection

on the layer of v to the right of v coincides with a vertex. By symmetry, then, there exists

a vertex w in r such that each edge intersection on the layer of w to the left of w coincides

with a vertex. We observe that the horizontal ray anchored at w and pointing at negative

infinity contains at least one end-vertex of each edge that it intersects.

If, in addition, each edge intersection on the layer of w to the right of w coincides

with a vertex, then our cutting sequence consists of two horizontal rays anchored at w, one

pointing at negative infinity and the other at positive infinity.

Otherwise, by Lemmas 5.2 and 5.3, there is a jumping sequence S starting at w and

en ding at a vertex w' such that each edge intersection to the right of w' coincides with a

vertex. In this case, our cutting sequence consists of a horizontal ray anchored at w' and

pointing at positive infinity, our jumping sequence S, and a horizontal ray anchored at w

and pointing at negative infinity. D

We are nearly ready to prove that every k-Iayer, I-bend planar drawing contains a cut­

ting path. Formally, a cutting path is a simple path in the drawing that contains ail the

vertices of a cutting sequence in the same order as they appear in the cutting sequence. In

sorne cases, the drawing does not contain aIl of the edges needed to complete a cutting path.

87

CHAPTER 5. ONE-BEND DRAWINGS

In these cases, however, it is possible to augment the drawing by adding edges so that the

resulting drawing does contain a cutting path and remains k-layer, I-bend planar. We then

say that the original drawing contains an augmenting cutting path.

A key to this proof is the following observation about augmenting a drawing by adding

edges:

Lemma 5.5 Let r be a k-Iayer, I-bend planar drawing of a graph G. Let v be a vertex

in G, and let p be the point where an edge e intersects the layer of v. If no vertex or edge

intersects the layer between v and p, then r can be augmented by adding at most one edge

so that v is adjacent to an end-vertex of e and the resulting drawing is k-Iayer, I-bend

planar.

Proof: If a vertex w coincides with p, then w is an end-vertex of e and we can augment r
by adding segment pv without crossing any other edges.

If no vertex coincides with p, then let q be a point between v and p at an arbitrarily

small distance from p. Since p is on e and e is drawn with at most two line-segments, the

drawing of e contains segment pw for sorne end-vertex w of e. We can augment r by adding

segments vq and qw so that v and w are adjacent. Figure 5.4 illustrates this case. The added

edge is drawn as a dashed polyline.

e
p 0-----··

v q '-

Figure 5.4: Augmenting a drawing so that v is adjacent to w.

Of course, in either of these cases, no augmentation is needed if v is already adjacent to

w. 0

Lemma 5.6 Every k-Iayer, I-bend planar drawing r of a graph contains an augmenting

cutting path.

Proof: By Lemma 5.4, r contains a cutting sequence. Consider two consecutive vertices

u and von the sequence that are not joined by an edge. By Lemma 5.5, we can insert a

drawing of (u, v) into r. If u and v lie on the same layer, then either they belong to the

same landing segment or else to the same horizontal ray. In either case, no edge intersects

the layer between them so we can draw edge (u, v) by drawing horizontalline-segment uv.
If they lie on different layers, then, we assume, without loss of generality, that v coincides

88

CHAPTER 5. ONE-BEND DRAWINGS

with the end-vertex of a jumping segment with an end-point p on the layer of u. Since no

edge intersects the layer between u and p, we can insert a drawing of edge (u, v) by Lemma

5.5.

In Figure 5.5, we illustrate the augmenting cutting path corresponding to the cutting

sequence shown in Figure 5.3. The edges that we add to the drawing are indicated by

dashed polylines. 0

Figure 5.5: The augmenting cutting path corresponding to the cutting sequence shown in
Figure 5.3.

It follows easily, that if we remove the vertices of an augmenting cutting path together

with their incident edges in a k-Iayer, I-bend planar drawing, then the resulting connected

components are drawn on k - llayers.

Lemma 5.7 For some k ~ 2, let P be an augmenting cutting path in a k-layer, I-bend

planar drawing r of a graph G. Then, each connected component of G \ P in r is drawn

on k - 1 layers.

Proof: By way of contradiction, let H be a connected component of G \ P who se drawing

in r occupies all k layers. Thus, there exists a path P' in H from a vertex on the top layerto

a vertex on the bottom layer. By definition, the cutting sequence corresponding to Plies

between the top and bottom layers so the cutting sequence intersects P'. Also by definition,

if an edge intersects the cutting sequence, then it contains a jumping segment, so at least

one end-vertex of the edge belongs to P. However, this implies that H contains a vertex in

P, a contradiction. 0

89

CHAPTER 5. ONE-BEND DRAWINGS

5.3 Counterexamples to k-Layer, 1-Bend Planarity

In this section, we de scribe graphs that are not k-Iayer, I-bend planar for each fixed k ~ 1.

These graphs are maximal planar and we construct them inductively with respect to k,

making extensive use of the following simple corollary of Lemma 5.7:

Corollary 5.8 If G is a maximal planar graph that is k-layer, I-bend planar for k ~ 2,

then there exists a simple cycle C in G such that G \ C is (k - 1) -layer, I-bend planar.

Perhaps it seems strange that Lemma 5.7 mentions a path whereas we mention a cycle here.

However, we recall that the path in Lemma 5.7 has both end-vertices on the extemal face.

In this corollary, we are considering maximal planar graphs, so any simple path with both

end-vertices on the extemal face can be transformed into a simple cycle by adding one

extemal face edge to the path.

As mentioned, we construct our graphs inductively. More specifical1y, we construct a

graph N k+l for each k ~ 1 that is not (k + l)-1ayer, I-bend planar from copies of a graph

N k that is not k-Iayer, I-bend planar. The idea is to insert the copies of N k in su ch a way

that no simple cycle in N k+l contains a vertex from every copy of N k • If we can do this,

then, by Corol1ary 5.8, N k+l is not (k + 1)-layer, I-bend planar. The fol1owing result shows

us how to do this. It is a generalization of ideas from [10] about Hamiltonicity:

Lemma 5.9 Let G be a planar graph with subgraph H. Suppose that there exists a planar

embedding of G and a corresponding embedding of H such that at least 1 V (H) 1 + 1 faces

of H contain a vertex of G \ H. If C is a simple cycle in G, then the vertices of G \ H in

one of these faces do not belong to C.

Proof: Let FIl F21 ... FIV(H)I+I be faces of H that each contain at least one vertex of G \ H,

and, by way of contradiction, suppose that there is a simple cycle C that contains a vertex

Vi of G \ H in each face Fi. Since Gis planar, there exists a vertex of H between each pair

Vi and Vj, i =1= j, in C. Since C is simple, this implies that C contains at at least IV(H) 1 + 1

vertices of H, a contradiction. D

In other words, we need a maximal planar graph H that has at least IV(H) 1 + 1 faces.

We recall Euler's formula which says that, for every connected planar graph H, IV(H)I -

IE(H)I + IF(H)I = 2, where F(H) is the set of faces. Also wel1-known is the fact that if

His a maximal pl anar graph, then IE(H)I = 31V(H)I- 6. Thus, Euler's formula becomes

IF(H)I = 21V(H)1 - 4 for maximal planar graph embeddings, so IF(H)I ~ IV(H) 1 + 1

for IV(H)I ~ 5. Let H5, then, be the maximal planar graph on 5 vertices shown in Figure

5.6. We obtain NI by inserting a single vertex into each face of H5 and then triangulating

90

CHAPTER 5. ONE-BEND DRAWINGS

the result. Then, we inductively construct N k+l by placing a copy of N k into each of H5

and then triangulating the result. See Figure 5.6 for drawings of the se graphs.

(a) (b)

Figure 5.6: Embedded maximal planar graphs (a) H5 and (b) N k+l .

Now we show that each Nk is not k-Iayer, l-bend planar. In the proof, we rely on the

result of Bernhart and Kainen [7] that a maximal planar graph is l-layer, l-bend planar if

and only if it is Hamiltonian. 1

Lemma 5.10 For each integer k ~ 1, N k is not k-layer, l-bend planar.

Proof: The proofis by induction on k. By Lemma 5.9, NI is not Hamiltonian so NI is not

l-layer, l-bend planar.

Suppose that N k is not k-Iayer, l-bend planar, and consider Nk+l for sorne k ~ 1. By

Lemma 5.9, no cycle contains a vertex of each of the six copies of Nk in N k+l • Therefore,

if we assume that N k is not k-Iayer, l-bend planar, then, by Corollary 5.8, Nk+l is not

(k + l)-layer, l-bend planar. 0

Thus, we have the following main result:

Theorem 5.11 For each integer k ~ 1, there exists a planar graph that is not k-layer,

l-bend planar.

We note that Theorem 5.11 has implications for drawings with 0 bends:

Corollary 5.12 For each integer k ~ 1, there exists a planar graph that is not k-layer,

O-bend planar.

l We note that we could have started our inductive construction at NO as a graph containing a single vertex,
instead ofwith N 1• We would have then written the inductive proof of Lemma 5.10 by starting with NO which
is trivially not O-layer, I-bend planar and then proceeded to the inductive step. In that case, we would not have
needed the result of Bernhart and Kainen [7]. However, while this simplifies the mathematics, it is difficult to
concretely describe a O-layer, I-bend planar drawing.

91

CHAPTER 5. ONE-BEND DRAWINGS

A corollary to Lemma 5.10 is that there are planar 3-trees that are not k-Iayer, 1-bend

planar for each fixed k 2: 1. A 3-tree is any graph that is a 3-cycle or else it contains a vertex

with degree equal to 3 whose removal yields a 3-tree. In other words, aIl planar embedded

3-trees can be constructed by starting with a pl anar embedded 3-cycle and then repeatedly

adding a new vertex to a face of the existing graph and then triangulating. We observe that

planar 3-trees are proper subclass of maximal planar graphs.

Corollary 5.13 For each k 2: 1, there exists a planar 3-tree with maximum degree equal to

12 that is not k-Iayer, 1-bend planar.

Proof: The proof is by induction on k, the number of layers. For each k 2: 1, we construct

a planar embedded graph T k just as we construct Nk, only here we give more specific

instructions on how to triangulate after inserting a copy of T k - l when k 2: 2 in order to

satisfy addition al properties. The additional properties include the following:

• T k is a planar embedded 3-tree with maximum degree 12;

• T k has at least one external face vertex with degree at most 8, another with degree at

most 10 and the third with degree at most 11; and,

• T k can be constructed by starting with a planar embedding of the 3-cycle bounding

its external face, and then repeatedly adding a new vertex to an internaI face and

triangulating.

For k = 1, we let Tl = NI since NI is a planar 3-tree with maximum degree equal to

8, and we can also construct Tl as described above. Now assume the existence of T k for

sorne k 2: 1.

In constructing Tk+l using the method described above, our goal is to place a copy

T k into each face of H5 and then triangulate the result. To describe the construction, we

number the six faces of H5 from 1 to 6, and their corresponding copies of T k with the same

numbers. Let face 6 be the external face of H5' For copy of Tk number i, we let Xi, Yi, Zi

denote the cycle bounding its external face. By induction, we assume that deg(xi) S; 8,

deg(Yi) S; 10 and deg(zi) S; 11. Refer to Figure 5.7 for an illustration.

We construct Tk+l starting with the external face cycle VI, V3, X6, where VI and V3 be­

long to H5 and X6 belongs to the copy of T k number 6. We then insert vertices V5, V4 and

then V2, triangulating after each insertion so that the resulting graph consists of H5 plus

vertex X6. Next, we add the copy of Tk containing X6. To do this, we first insert Y6 into the

face bounded by VI, X6, V5 and triangulate, and then we insert Z6 into the face bounded by

X6, Y6, V5 and triangulate. FinaIly, we recursively insert the rest ofTk into the face X6, Y6, Z6.

92

CHAPTER 5. ONE-BEND DRA WINGS

(a) (b)

Figure 5.7: (a) The six faces of H5 and (b) the inductive construction of T k+l .

Now, consider face i < 6 of H5 bounded by a cycle Vj, Vk, Vz and consider inserting the

corresponding copy of T k into that face. We first insert Xi into Vj, Vk, Vz and triangulate,

then insert Yi into Vj, Vk, Xi and triangulate, and then insert Zi into Vj, Xi, Yi and triangulate.

Finally, we recursively insert the rest of Tk into the face Xi, Yi, Zi. This completes the

construction of Tk+l.

To satisfy the degree bounds in Tk+l, it is necessary to further refine our selection of

edges used to triangulate Tk+l. The following table shows precisely the edges that we add

to each face of H5. These additions are illustrated in Figure 5.7.

Face Bounding Cycle Edges Added

FI V2, VI, V3 (V2, Xl), (V2, YI)' (V2, Zl), (VI, Xl), (VI, YI), (V3, Xl)

F2 V2,V4,VI (V2,X2), (V2,Y2), (V2,Z2), (V4,X2), (V4,Y2), (VI,X2)

F3 V5,V4,VI (V5,X3), (V5,Y3), (V5,Z3), (V4,X3), (V4,Y3), (VI,X3)

F4 V2,V4,V3 (V2,X4), (V2,Y4), (V2,Z4), (V4,X4), (V4,Y4), (V3,X4)

F5 V5,V4,V3 (V5, X5), (V5, Y5), (V5, Z5), (V4, X5), (V4, Y5), (V3, X5)

F6 V5,VI,V3 (V5, X6), (V5, Y6), (V5, Z6), (VI, X6), (VI, Y6), (V3, X6)

Now, it is easy to verify that the maximum degree of each vertex in each copy of Tk is

at most 12. It is also easy to verify that deg(VI) = 10, deg(V2) = 12, deg(V3) = 8,

deg(V4) = 12, and deg(V5) = 12. Furthermore, of the vertices V3, VI and X6 on the external

faceofTk+l ,deg(v3) = 8,deg(vI) = 1O,anddeg(x6) = 11. 0

5.4 Complexity of k-Layer, 1-Bend Planarity

Since we have shown that not aIl planar graphs are k-Iayer, 1-bend planar, we study the

complexity of determining wh ether or not a planar graph is k-layer, 1-bend planar, and show

93

CHAPTER 5. ONE-BEND DRA WINGS

that the problem is NP-hard. Our reduction is from the following restricted version of the

HAMILTONIAN CIRCUIT problem called MAXIMAL PLANAR EXTERNAL HAMILTONIAN

CIRCUIT (also MPE-HC):

Given: A maximal pl anar graph G with a planar embedding.

Question: Is G external Hamiltonian? i.e. does G contain a Hamiltonian cir­

cuit that contains an edge on the external face?

Before describing the reduction, we must first show that this problem is itself NP-complete:

Lemma 5.14 MPE-HC is NP-complete.

Proof: It is easy to verify that the problem belongs to NP, so it remains for us to give a

reduction. The reduction is from the HAMILTONIAN CIRCUIT problem when restricted to

maximal planar graphs. Wigderson [97] has shown that this problem is NP-complete.

Let G be a maximal planar graph. We obtain input f(G) to the MPE-HC problem

by first selecting a planar embedding of G su ch that a vertex v of minimum degree in

G lies on the external face. Since G is maximal planar, v has degree d = 3, 4 or 5. Let

VI, V2, ... , Vd be the neighbors of v in the counter-clockwise ordering around v as defined by

the embedding such that VI and Vd are on the external face. We obtain f (G) by replacing v in

G with a planar embedded copy of K4' Let WI, W2 and W3 be the vertices on the external

v v v

d = deg(v) = 3 d = deg(v) = 4 d = deg(v) = 5

Figure 5.8: Cases for the reduction to the MPE-HC problem. The small darkened triangles
in the bottom three drawings denote the graph illustrated in Figure 5.9.

94

CHAPT ER 5. ONE-BEND DRAWINGS

Figure 5.9: View of a planar embedded K4 with vertices Xl, x2 and X3 inserted into its
internaI faces.

face of the inserted K4 and let W4 be its other vertex. We triangulate the resulting graph by

inserting edges (VI, WI), (VI, W2), (Vd, WI), (Vd, W3), (V2, W2), ... , (Vr~l' W2), (Vr~l' W3), ... ,

(Vd-l' W3) (see Figure 5.8). Finally, we in sert a new vertex into each of the three internaI

faces of the inserted K4 and triangulate each (see Figure 5.9). We note that the resulting

graph is maximal planar and contains at least three vertices of degree 3, in particular, those

vertices inserted into the faces of the inserted K4. Thus, we set f(G) equal to the resulting

graph ernbedded so that a vertex of degree 3 lies on the external face. Since we refer to the

vertices inserted into the faces ofthe inserted K4, we label them Xl, X2, and X3 as in Figure

5.9 so that Xl is adjacent to WI and W2, X2 is adjacent to WI and W3, and X3 is adjacent to W2

and W3.

It rernains for us to show that G is Hamiltonian if and only if f(G) is external Harnil­

tonian. Let C be a Hamiltonian circuit in G. In each case, we obtain a Hamiltonian

circuit Cf for f (G) by replacing V in C with one of the following paths or its reversaI:

WI, Xb W4, X2, W3, X3, W2, or WI, X2, W4, Xl, W2, X3, W3, or W2, Xl, WI, X2, W4, X3, W3. The re­

sulting circuit is also external Hamiltonian because, in the embedding of f(G), at least one

external face vertex has degree 3.

Let C be an external Hamiltonian circuit in f(G). We observe that vertices WI, W2, W3,

W4, Xl, X2 and X3 are consecutive in C. This is because each vertex Xi is between sorne Wj

and sorne Wj' for each 1 ::; i ::; 3 and sorne 1 ::; j =1- j' ::; 4. In addition, the vertex before

and the vertex after this subpath of C are adjacent to V in G. Thus, we obtain a Hamiltonian

circuit for G by replacing this subpath in C with vertex v. 0

We are now ready to describe ourreduction from MPE-HC to k-LAYER, 1-BEND PLA­

NAR. We obtain our reduction by inductively describing a maximal planar graph Hk (G),
for k ~ 1, that is k-Iayer, 1-bend planar if and only if the input embedded maximal planar

graph G is external Hamiltonian. The construction is very similar to our construction of

95

CHAPTER 5. ONE-BEND DRAWINGS

N k
•

For the base of our induction, we recall the fact that a maximal planar graph is 1-layer,

1-bend pl anar if and only if it is Hamiltonian. We construct Hl (G) by inserting G into a

3-cycle and triangulating the result.

Lemma 5.15 Let G be an embedded maximal planar graph. Then, HI(G) is 1-layer, 1-

bend planar if and only if G is external Hamiltonian.

Proof: If Hl (G) is 1-layer, 1-bend planar, then Hl (G) contains a Hamiltonian circuit C.

Each maximal subpath P in C consisting of vertices outside G is preceded and succeeded

in C by vertices on the extemal face of G. Therefore, we can transform Cinto a Hamil­

tonian circuit for G by simply removing aIl such maximal paths and replacing them with

the appropriate extemal face edge of G. There is at least one such maximal path Pin C,

so the resulting cycle contains at least one extemal face edge in G. Thus, G is extemal

Hamiltonian.

Now suppose that G is extemal Hamiltonian, and let C be a Hamiltonian circuit in G

containing an extemal face edge of G. We construct a Hamiltonian circuit for Hl (G) by

replacing the extemal face edge e = (u, v) of G in C with the subpath u, WI, W2, W3, v
where WI, W2 and W3 lie on the extemal face of Hl (G), and u is adjacent to WI and v is

adjacent to W3. This is always possible because at least two vertices on the extemal face of

Hl (G) are each adjacent to at least two vertices on the extemal face of G. 0

Now, given Hk(G) for sorne k ~ 1, we construct Hk+I(G) by obtaining the planar

embedding for H5 as shown in Figure 5.6(a) and planar embedding of H k(G). We then

insert a copy of the embedded H k(G) into each face of H5 and then triangulate as shown

in Figure 5.10.

Figure 5.10: Inductive construction of Hk+I(G).

96

CHAPTER 5. ONE-BEND DRA WINGS

Now we prove that if G is external Hamiltonian, then H k (G) is k-Iayer" 1-bend planar.

In order to prove this inductively, we actually prove that H k (G) has an A-shaped k-Iayer,

1-bend planar drawing. In an A-shaped k-layer, 1-bend planar drawing of an embedded

maximal planar graph, each vertex on the external face lies on the bottom layer, each edge

on the external face is drawn with two straight-line segments, one with a slope (j > 0 and

the other with si ope -(j, and two ofthese edges are drawn entirely below the bottom layer.

Such a drawing is illustrated in Figure 5.11.

Figure 5.11: An A -shaped drawing of a graph in which the edge segments on the external
face have slope ±l.

Lemma 5.16 Let G be a maximal planar graph that is external Hamiltonian. For each

k ~ l, then, Hk(G) has an A-shaped k-layer, 1-bend planar drawing.

Proof: The proof is by induction on k. For k = l, Lemma 5.15 states that HI(G) has a

1-layer, 1-bend planar drawing. Since the external face contains exactly three edges and

the bottom layer is the only layer in the drawing, every 1-layer, 1-bend planar drawing of

Hl (G) is A-shaped.

For the induction step, we assume that we have an A-shaped k-Iayer, 1-bend planar

drawing of Hk(G). We first draw Hk+I(G) without vertex V2 of H5 on k layers. We

duplicate the drawing of H k (G) six times and evenly space the copies so that their external

face vertices lie on the bottom layer. We then draw the vertices VI, V3, V4, and V5 of H5

on the bottom layer, VI left of any other vertex, V3 between the third and fourth copies of

Hk(G), V4 between the fourth and fifth copies of Hk(G), and V5 between the fifth and sixth

copies of Hk(G). We then draw the edges connecting the vertices of H5 to each other and

to the copies of Hk(G) so that the first (leftmost) copy of Hk(G) belongs to face VIV2V4,

the second to face VI, V2, V3 of H5, the third to face V2, V3, V4, the fourth to face V3, V4, V5,

the fifth to face VI, V4, V5, and the sixth to face VI, V3, V5 (see Figure 5.12). Next we add the

remaining edges except those incident on V2 using the technique of Kaufmann and Wiese

described in Section 5.1. No crossings are created because, according to the embedding of

the graph, each edge that we draw is entirely above, entirely below or on the bottom layer.

97

CHAPTER 5. ONE-BEND DRAWINGS

The initial slope (j of each edge segment is any value larger than the slope of the segments

on the external face of each drawing of Hk(G). Thus, we have a k-layer, 1-bend pl anar

drawing of Hk+1 (G) \ {V2} as shown in Figure 5.13.

We obtain an A-shaped (k + l)-Iayer, 1-bend planar drawing of Hk+I(G) by inserting

a new layer above the top layer of the previous drawing and then draw V2 on this layer

immediately above the second copy of Hk(G). We prove that it is possible draw the edges

incident on V2 with at most one bend per edge and without creating any edge crossings. Let

t be the leftmost and u the rightmost vertex of the second copy of H k (G) on the bottom

layer. Refer to Figure 5.14. We place the new layer and draw V2 so that segment tV2 has

slope (j and UV2 has slope -(j. Let q be the point where edge (VI, t) bends, and let r be

the point where edge (V3, u) bends. We observe that V2 is strictly above the second copy of

H k (G) because the slope (j, by definition, is greater than the slopes of the segments in edge

(t, u). Let 8 be the rightmost vertex in the first copy of Hk(G) on the bottom layer.

The drawing technique of Kaufmann and Wiese guarantees that edge (8, V4) remains

above segments tV2 and UV2 even after perturbing overlapping segments because they have

slopes ±(j. Consequently, if p is the point where edge (8, V4) bends, then segment PV2 does

not intersect any edges except for (8, V4). Thus, it is possible to draw edge (V2, V4).

The drawing technique also guarantees that the slope of qt is (j and the slope of ru is

-(j because no segments overlap at vertices t and u. Consequently, points q, t and V2, and

points r, u and V2 are collinear so it is possible to draw aIl of the remaining edges incident

on V2 with at most one bend each and without creating any edge crossings. Figure 5.15

shows how we draw V2 and its incident edges. o

Next, we prove the converse, that if H k (G) is k-layer, 1-bend planar, then G is external

Hamiltonian.

Lemma 5.17 Let G be an embedded maximal planar graph. For each k > 1, then, if
H k (G) is k-layer, 1-bend planar, then G is external Hamiltonian.

Proof: Our proof is by induction on k. By Lemma 5.15, we can assume that the result

holds for k 2:: 1. We prove that it holds for k + 1.

Suppose that Hk+1 (G) is (k + 1)-layer, 1-bend planar, but assume, by way of contradic­

tion, that G is not external Hamiltonian. By induction, then, H k (G) is not k-layer, 1-bend

planar, so, by Corollary 5.8, there exists a simple cycle C that con tains at least one vertex

from each copy of Hk(G). However, this contradicts Lemma 5.9, so, in fact, G must be

external Hamiltonian. 0

By Lemmas 5.16 and 5.17, the k-LAYER, 1-BEND PLANAR problem is NP-hard.

Theorem 5.18 For each k 2:: 1, the k-LAYER, 1-BEND PLANAR problem is NP-hard.

98

CHAPTER 5. ONE-BEND DRA WINGS

Figure 5.12: An inductive k-layer, I-bend planar drawing of the graph Hk+l(G) \ {V2} with
overlapping segments.

Figure 5.13: An inductive k-layer, I-bend planar drawing of graph Hk+l(G) \ {V2}'

99

q

,
V2 "

, , ,

, ,
, ,

, ,

CHAPTER 5. ONE-BEND DRAWINGS

... a'··············· , , , ,
.; ,

r

Figure 5.14: Adding V2 to the drawing of Hk+l(G) \ {V2} in Figure 5.13.

Figure 5.15: An inductive (k + l)-Iayer, I-bend planar drawing of the graph Hk+l(G).

100

CHAPTER 5. ONE-BEND DRA WINGS

5.5 Characterization of Two Layer Drawings

Given the negative results of the previous two sections, particularly the NP-hardness of

the k-LAYER, I-BEND PLANAR problem, we consider the case where k = 2. Here we

show that the set of 2-layer, I-bend planar graphs is equal to the set of sub-Hamiltonian­

with-handles graphs. Intuitively, a graph is Hamiltonian-with-handles if its vertices can be

covered by a cycle and a set of vertex-disjoint paths whose end-vertices are connected to the

cycle. We will define this notion in more detail shortly. We observe that our characterization

is a generalization of the l-layer, I-bend planar characterization by Bernhart and Kainen [7]

which says that the set of l-layer, I-bend pl anar graphs is equal to the set of planar sub­

Hamiltonian graphs. This suggests that further generalizations may exist for drawings with

three or more layers. In addition to this, our characterization is also useful for efficiently

obtaining 2-layer, I-bend planar drawings of families of graphs that are 2-layer, I-bend

pl anar. In Section 5.6, we give an efficient algorithm for drawing 2-outerplanar graphs.

In order to formally define the concept of Hamiltonian-with-handles graphs, we require

sorne additional definitions. Let G be an embedded planar graph, and let II be a simple path

in G whose end-vertices lie on the external face of G. We call such a path a base path. A

handle of II consists of a simple path "l (possibly consisting of a single vertex) that is vertex­

disjoint with II and, for each end-vertex of "l, an edge connecting the end-vertex to II. The

vertex or vertices of the handle in II are the anchors of the handle. A dangling handle of II

is a handle with exactly one anchor vertex. The co-handle of a handle is the subpath of II

between its anchors. The handle graph of a han dIe consists of the cycle composed of the

han dIe and its co-handle, as weil as any edges or vertices inside the cycle.

As we traverse II from one end to the other, each handle is embedded on the right or

left of II. Thus, we say that two handles are embedded on the same side of II if they are

both embedded on the left or both on the right side of II. Conversely, we say that they are

embedded on opposite sides of II if one is embedded on the left and the other on the right

of II. For example, handles "lI and "l2 in Figure 5.16 lie on opposite sides of II. Handle "l2

is a dangling handle. Vertices 81 and t1 are the anchor vertices of "lI, and vertex 82 = t2 is

the anchor vertex of "l2.

We say that two handles are overlapping if:

1. Their handle graphs share more than one vertex; or

2. Their handle graphs share a vertex that is not an anchor for one of the handles; or

3. They are both dangling handles on opposite sides of II that share the same anchor

vertex.

101

CHAPTER 5. ONE-BEND DRAWINGS

Figure 5.16: A handle and a dangling handle of II.

We ilIustrate overlapping handles in Figure 5.17. Handles TJI and TJa, TJ2 and TJb, and TJ3 and

TJc are overlapping pairs of handles.

Figure 5.17: Overlapping handles.

A graph G is a Hamiltonian-with-handles if there exists a planar embedding of G such

that vertices of G can be covered by a base path II and a set of non-overlapping handles

of II. Thus, a graph G is sub-Hamiltonian-with-handles if it is possible to augment G by

adding edges so that the resulting graph is still pl anar and Hamiltonian-with-handles.

In the remainder of this section we prove the following characterization:

102

CHAPTER 5. ONE-BEND DRAWINGS

Theorem 5.19 A graph G is 2-1ayer, I-bend planar if! it is sub-Hamiltonian-with-handles.

5.5.1 Proof of Necessity

Let r be a 2-layer, I-bend planar drawing of G. By Lemma 5.4, there exists a cutting

sequence in rand, by Lemma 5.6, a corresponding augmenting cutting path II. We will

augment r so that we can use II as our base path.

We select our handles in a manner very similar to the way that we obtain cutting paths.

On a given layer, let VI, V2, ... ,Vq be a maximal sequence of consecutive vertices in the

order that they appear on the layer such that each Vi is not in II and, if an edge intersects

segment VI Vq on the layer, then its intersection coincides with sorne Vi. We caU VI Vq a

handle segment. We observe that handle segments are very similar to landing segments

defined earlier.

From each handle segment we construct a handle by finding or inserting into the draw­

ing edges to connect the first and last vertices in the segment to II.

First consider the case where no vertex or edge intersects the layer of VI to the left of

VI. In this case, VI lies on the external face of rand, by definition, II contains a vertex V on

the opposite layersuch that no vertex or edge intersects its layer to the left of v. Therefore,

it is easy to draw an edge with one bend between V and VI entirely between the two layers

without creating any edge crossings.

If this first case doesn't hold, then an edge or vertex intersects the layerto the left of

VI. By Lemma 5.5, then, it is possible to augment r so that VI is adjacent to a vertex

immediately to the left of VI or on the opposite layer. In either case, VI is adjacent to a

vertex w in II. In addition, according to the proof of Lemma 5.5, the edge connecting

VI and w lies entirely between the two layers. If w is immediately to the left of VI, then

w belongs to II by definition, and, if w is on the opposite layer, then w belongs to II by

Lemma5.7.

By symmetry, vq can be connected to II in the same manner as VI. Thus, vertices

VI, V2, ... , vq and the new edges connecting VI and vq to II form a handle of II.

We apply this same procedure to obtain a handle for each handle segment. Thus, we are

able to cover aH vertices in r with our base path II and its handles. Figure 5.18 illustrates

how we cover the vertices with our cutting path II and handles in the drawing of Figure 5.3.

It remains to show that these handles are non-overlapping.

By definition, the vertices of the handle graph of handle 'l7 can be covered by a closed

polygon. The polygon consists of one horizontalline segment on each layer and two pol y­

lines strictly between the two layers belonging to edges that conne ct the end-points of the

103

CHAPTER 5. ONE-BEND DRA WINGS

Figure 5.18: Cutting path and handles cover all ofthe vertices in the drawing of Figure 5.3.

horizontalline segments. One horizontal li ne segment L" belongs to a landing segment in

the cutting sequence, and the other horizontalline segment H" contains the corresponding

handle segment and possibly a vertex of II at either end-point. We observe that any vertex

of II in HTJ is an anchor vertex for 'fi. We obtain the following result:

Lemma 5.20 Let 'fi be a handle of r as described above. The handle graph of'fl contains

at least one vertex on each layer, and the leftmost vertex of the graph on one layer belongs

to 'fi while the leftmost on the other layer is an anchor vertex for 'fi.

Proof: Let v be the leftmost vertex in 'fi.

We tirst observe that if a vertex w lies on the layer of v to the left of v, then an edge

crosses the layer between them. For, otherwise, since II is a cutting path, w cannot belong

to II because v does not belong to II. Furthermore, w cannot belong to a handle because

then v and w should belong to the same handle. By the construction of the handles, each

vertex belongs to either II or to a handle.

Thus, also by the construction of the handles, v is adjacent to an anchor vertex x for 'fi

on the opposite layer, Both v and x are leftmost in the handle graph of 'fi. D

Using this result, we prove that the handles as constructed do not overlap, so, consider

another handle 'fi'. Let LTJ, and HTJ, be the horizontal segments containing the vertices of the

handle graph of 'fi', corresponding to segments LTJ and HTJ for 'fi.

We consider two cases:

1. H" and HTJ, lie on the same layer. Since LTJ and LTJ, do not contain han dIe vertices,

then, by Lemma 5.20, the leftmost vertex v of HTJ belongs to 'fi and the leftmost vertex

104

CHAPTER 5. ONE-BEND DRA WINGS

v' of H",I belongs to rJ'. Thus, H", does not contain v' and H",I does not contain v so,

in fact, H", and H",I are disjoint segments.

Now consider L", and L",I that both lie on the layer opposite that of Ht} and H",I. Since

H", and H'TJI are disjoint, we assume, without loss of generality, that H'TJ is strictly left

of H'TJI. The end-points of H'TJ (H'TJI) are connected by segments belonging to edges to

the end-points of L'TJ (L'TJI). The drawing of r is planar, so, L'TJ and L'TJI share at most

one vertex w, the rightmost vertex of L'TJ and the leftmost vertex of L'TJI. By Lemma

5.20, w is an anchor vertex for rI', so it remains for us to show that w is an anchor

vertex for 'f}. Since w belongs to both L'TJ and L'TJI, one neighbor of w in II belongs to

L'TJ or else it lies left of H'TJ' and the other neighbor of w belongs to H'TJI or L'TJI. In ail

cases, then, H'TJ contains no vertex of II so w is an anchor vertex for 'f}.

2. H'TJ and L'TJI lie on the same layer. Segment L'TJI contains only vertices of II, and if H'TJ

contains a vertex w of II, then w is its rightmost vertex by Lemma 5.20. Therefore,

H'TJ and L"" share at most one vertex in common, and if so, they share w, the rightmost

vertex in H'TJ and the leftmost vertex in L'TJI. We observe, that, in this case, L'TJ is strictly

left of H'TJI since the leftmost vertex in H'TJI belongs to 'f}' by Lemma 5.20 and the end­

points of H", (H'TJI) are connected by segments belonging to edges to the end-points of

L'TJ (L",/). Also by Lemma 5.20, w is an anchor vertex for 'f}' and, by the construction

of 'f}, an anchor for 'f} as weIl.

Since H'TJ and L'TJ contain ail vertices in the handle graph of 'f}, and H",I and L'TJI contain

aIl vertices in the handle graph of 'f}', we have shown that the handle graphs share at most

one anchor vertex in common. It remains, then, for us to show that if'f} and 'f}' are dangling

handles on opposite sides of II, then they do have the same anchor vertex. However, since

'f} and 'f}' are on opposite sides of II, then L'TJ and L'TJI are on opposite layers and, by Lemma

5.20, these segments contain the anchor vertices of their respective handles.

Thus, we have proven that our handles do not overlap so have proven that our charac­

terization is a necessary condition for 2-layer, I-bend planar drawings:

Lemma 5.21 (Necessary Condition) If a graph G is 2-layer, I-bend planar, then G is sub­

Hamiltonian-with-handles.

5.5.2 Proof of Sufficiency

In this section we prove the sufficiency of the characterization given in Theorem 5.19 by

constructing a 2-layer, I-bend planar drawing of our sub-Hamiltonian-with-handles graph

G.

105

CHAPTER 5. ONE-BEND DRAWINGS

Let II be the base path in G. Since the end-vertices of II lie on the extemal face of

G, II divides G into two subgraphs, a left subgraph and a right subgraph. Intuitively, the

algorithm tirst draws II on two layers and then draws the left subgraph above II and the

right subgraph below II. The outline of our algorithm is as fol1ows:

Drawing II: We draw II on two layers so that the co-handle of each han dIe in the left sub­

graph lies on the bottom layer, and the co-han dIe of each handle in the right subgraph

lies on the top layer. Section 5.5.2.1 describes this step in more detail.

Removing the Dangling Handles: In order to simplify the algorithm, we replace the dan­

gling handles with edges. We will use the drawings of these edges in the last step

to guide our re-insertion of these handles into the drawing. Section 5.5.2.2 describes

this step in more detail.

Drawing the Non-Dangling Handles: We draw each handle vertex on the layeropposite

to its co-handle in II, centered above or below its co-handle end-vertices. Sec­

tion 5.5.2.3 describes this step in more detail.

Drawing the Non-Handle Graph Edges: We draw the edges that do not belong either to

II or to a handle graph. Recall that II divides our embedded graph into two subgraphs,

one to the left of II and the other to the right of II. Consequently, we draw the non­

handle graph edges of each subgraph separately, the edges of the left subgraph above

II and the edges of the right subgraph below II. Section 5.5.2.4 describes this step in

more detail.

Drawing the Handle Graph Edges: Other than drawing the dangling handles, aIl that re­

mains is to draw the edges inside each non-dangling handle. Section 5.5.2.5 describes

this step in more detail.

Re-inserting the Dangling Handles: Final1y, we re-insert the dangling handles back into

the drawing after removing the edges we inserted earlier. We use the positions of

these edges to guide our drawings of the dangling handles. Section 5.5.2.6 de scribes

this step in more detail.

We now give a detailed description the steps above. In our drawing, the layers are horizontal

and 1 unit apart.

5.5.2.1 Drawing II.

Suppose that II = VI, V2, .. . ,vp • We assign preliminary x-coordinate i to each Vi in II. We

may modify sorne of these coordinates later.

106

CHAPTER 5. ONE-BEND DRA WINGS

We assign a layer to each vertex Vi so that the following two properties are satisfied:

Property 5.1 Let II = Vl, V2, . .. ,Vp be the base path.

J. If Vi is the anchor vertex of a dangling handle, then Vi is assigned the top layer if the

handle is on the right side of II; otherwise, if the handle is on the left side, then Vi is

assigned the bottom layer.

2. If Vi is not a handle anchor but belongs to a co-handle, then Vi is assigned the top

layer if the handle corresponding to the co-handle is on the right side of II; otherwise,

if the handle is on the left side, then Vi is assigned the bottom layer.

These layer assignments are possible because the handles are non-overlapping. In particu­

lar, if Vi is the anchor of a dangling handle, then aIl dangling handles that it anchors lie on

the same side of II. If, on the other hand, Vi belongs to a co-handle but is not an anchor for

its corresponding handle, then Vi belongs to exactly one co-handle and is not the anchor for

any handle.

In order to simplify our drawing, we would like to draw the edges of II as straight­

line segments. Unfortunately, our two goals mentioned above are incompatible with this

simplification when the co-handle of a non-dangling handle 'Tl consists of a single edge e,

and both end-vertices of e are anchors of dangling handles on the opposite side of II. In

this situation, it is impossible to draw e as a straight line since the vertices of 'Tl must lie

on the same track as the end-vertices of e. We resolve this problem by observing that each

handle contains at least two edges. Therefore, since our handles are non-overlapping, we

can eliminate 'Tl by replacing e in II with 'Tl. Thus, we can assume, for the remainder of our

drawing procedure the following property:

Property 5.2 Each co-handle contains at least two edges.

Now we are able to safely draw the edges of II as straight-line segments between their

end-vertices so that the drawing satisfies Properties 5.1 and 5.2, and the following:

Property 5.3 If II = Vl,V2, ... ,Vp , then, each edge (Vi,Vi+l) is drawn as a straight-line

segment with slope 0 or ±~.

5.5.2.2 Removing the Dangling Handles

To simplify our drawing procedure, we replace dangling handles in the graph with edges.

Let 'Tl be a dangling handle of G with anchor vertex s. Then, for each edge e = (v, w) where

w is not in 'Tl and V =1- sis in 'Tl, we replace edge e with new edge e' = (w, s).

107

CHAPTER 5. ONE-BEND DRA WINGS

It is possible that we remove the handle rJ here but do not replace it with any edges.

In this case, s and a vertex v =1- s of rJ belong to a face of G external to rJ. If this face

contains no other vertices, then G is equal to rJ. In this case, obtaining a 2-layer, I-bend

planar drawing of G is trivial, so we assume that there is at least one other vertex w on this

face. Adding edge (v, w) to G inside this face does not violate the planar embedding of

G so add this edge and the reapply the replacement described above. Consequently, rJ is

replaced by the edge (s, w).
Another potential problem is that two different dangling handles might contain adjacent

vertices. We handle this problem by removing the dangling handles in a fixed order, and,

then, when we want to re-insert them back into the drawing later, we re-insert them in the

reverse order. The removal technique is illustrated in Figure 5.19.

,
\ ,

\ '
... \ \ 1

... , \ \ 1
, \, 1
,\ ,,,

...... ,\ \ , l "
... -... ' \\ 1 1 1 '

, ... , 1 ' ... ,-. I" " ...
"'~\u.' ,

s Il s
(a) (b)

Figure 5.19: The removal of a dangling handle.

5.5.2.3 Drawing the Non-Dangling Handles

We assign a layer to each non-dangling handle vertex as follows: non-anchor vertices in

handles on the left side of Il are assigned the top layer, and vertices in handles on the right

side are assigned the bottom layer. We observe that this places each handle on the layer

opposite its non-anchor co-handle vertices by Property 5.1.

Property 5.4 The non-anchor vertices of each non-dangling handle on the left (right) side

of Il in the embedding is drawn on the top (bottom) layer.

When assigning x-coordinates, we must be careful not to make it impossible to draw

edges outside the handle graph with at most one bend. Figure 5.20(a) illustrates the poten­

tial problem if we are not careful. The han die anchored at vertices sand t has been drawn

108

CHAPTER 5. ONE-BEND DRA WINGS

so that the handle is wider than its co-handle. Consequently, it is impossible to draw edge

e = (8, t) with one bend without crossing an edge in the han dIe graph.

Let s = VI, V2, ... , Vp = t be the han die vertices in the order that they appear in the han­

dIe, and let 8 = WI, W2, .. . ,wq = t be the co-handle vertices, in the order that they appear

in II. We assume, without loss of generality, that vertices V2, V3, ... ,Vp-I are assigned the

top layerand vertices W2, W3, . .. ,Wq-I are assigned the bottom layer. By Property 5.2, we

have that q - 1 ~ 2, so we avoid the problem mentioned above by shifting aU of the vertices

with x-coordinates smaUer or equal to that of Wq-I in the drawing to the left. We shift them

far enough so that we can assign x-coordinates to the handle vertices V2, V3, ... ,Vp-I such

that X(Vi) + 1 :::; X(Vi+I) for each 1 :::; i :::; p - 1. We observe that our drawing of II still

satisfies Property 5.3. See Figure 5.20(b).

e

(a)
e

(b)

Figure 5.20: Solving the co-handle width problem.

Finally, we draw the handle edges as straight-line segments between their end-vertices.

Because our handles are non-overlapping, our drawing of II satisfies Properties 5.1 and 5.3,

and because each co-handle has at least one non-anchor vertex by Property 5.2, our CUITent

drawing has the following property:

Property 5.5 The drawing of II and of the non-dangling handles is planar and, if P =

VI, V2, . .. ,vp is the path composed of handles drawn above (below) II along with the sub­

paths of II connecting them together, then each edge (Vi,Vi+I) is drawn as a straight-line

segmentwith slope 0 or ±~ andX(vi) + 1:::; X(vi+d.

109

CHAPT ER 5. ONE-BEND DRAWINGS

5.5.2.4 Drawing the Non-Handle Graph Edges

At this point, ail vertices in the graph have been drawn so we are ready to draw the edges

that do not belong to handle graphs. We draw these edges using the technique of Kaufmann

and Wiese described in the proof of Lemma 5.1. Our situation here is similar in that each

edge that we wish to draw must be drawn entirely above or entirely below II by Property

5.4. It is different only in the fact that we have previously drawn not only a path II but

also handles. The handles, however, do not create any difficulties because, when drawing

the edges above II, we are actually drawing above a path P consisting of subpaths of II

and the handles drawn above II. By Property 5.5, the x-coordinates of the vertices in P

are monotonically increasing as we traverse P from one end to the other. The remainder

of II and the handles drawn below II are drawn below P so they do not interfere with the

drawings of these edges. Analogous comments apply when drawing the edges below II.

Figure 5.21 illustrates how edges are drawn above II, both with the overlaps and then

without.

To simplify the step where we re-insert dangling handles, we would like each edge that

we draw above II and whose end-vertices are on the bottom layer to bend at a point above

the top layer. To achieve this, we simply require that a, our initial segment slope, be greater

than t:.~'2 where .6.y is the distance between the layers and .6.x is the minimum distance

between the end-vertices of an edge. Since .6.y = 1 and, by Property 5.5, we have.6.x 2:: 1,

we assign a a value greater than 2. Thus, when we are fini shed this step, our drawing

satisfies the following property:

Property 5.6 Each non-handle edge on the left (rig ht) side of II bends at a point above

(below) the top (bottom) layer.

5.5.2.5 Drawing the Handle Graph Edges

Next we complete the drawing ofhandle graphs. Consider a handle 'Tl, and let VI, V2, . .. , vp

be the vertices of its handle graph on the top layerand WI, W2, ... ,wq be the vertices of its

han die graph on the bottom layer. We assume that the order of these sequences corresponds

to their left-to-right order on their respective layers. By Property 5.5, each edge (Vi, VHI)

and each edge (Wi, WH I) is drawn as a horizontal line segment, and edges (VI, WI) and

(vp , w q) are drawn as straight-line segments with slopes ±~.

We first draw each edge (Vi, Wj) as a straight-line segment Vi, Wj as in Figure 5.22(a).

We note that the resulting drawing has the same embedding as the original graph and is

2-layer, I-bend planar.

110

CHAPTER 5. ONE-BEND DRAWINGS

(a)

(b)

Figure 5.21: Non-handle graph edges drawn above II with exactly two straight-line seg­
ments, (a) before and (b) after perturbation.

The remaining handle graph edges have both end-vertices on the same layer. Let T'rJ be

the remaining edges with both end-vertices on the top layer, and let B'rJ be the remaining

edges with both end-vertices on the bottom layer. We draw these edges using the tech­

nique of Kaufmann and Wiese described in Lemma 5.1. There are, however, differences

to con si der here. First of aIl, we must prevent the initial segment slope (7 from being too

large because, according to our planar embedding, the edges must be drawn entirely inside

the handle graph, without crossing any of the previously drawn edges in the handle graph.

More precisely, suppose that we are drawing edge (Wi, Wj) E B'rJ where i + 1 < j. Recall

that we draw (Wi, Wj) with two segments, the segment incident on Wi with slope (7 and the

segment incident on Wj with slope -(7. To prevent the edge from crossing the top layer, (7

must be smaller than ~(X(Wj~~X(Wi»' where!:ly is the distance between the layers (recall that

!:ly = 1). To guarantee this for each edge in B'rJ' we choose a (7 smaller than 4(X(Wq~~X(Wl»'
Of course, to additionally ensure that edges in T'rJ do not cross the bottom layer, we choose

111

CHAPT ER 5. ONE-BEND DRAWINGS

a a smaller than 1- max(x(vp)-X~i),X(Wq)-X(Wl»' We must also prevent the edge from crossing
any previously drawn edges in the handle graph, that is, those with end-vertices on different

layers. If edge (Vk, WI) has the sma]]est slope (in absolute value) of these previously drawn

edges, then we choose a a smaller than this slope.

A second difference from Lemma 5.1 is that we are also drawing edges in T", between

the two layers, so we must ensure that the edges in B", do not intersect with those in T",. The

solution here is to ensure that each edge in T", is drawn above and each edge in B", is drawn

below the horizontal line halfway between the two layers. In other words, for drawing

edges in both B", and T"" we choose a to be smaller than max(x(vp)-X(~),X(wq)-X(Wl»'
Figure 5.22(b) illustrates how we draw a typical han dIe graph.

(a)

(b)

Figure 5.22: Drawing of a handle graph.

5.5.2.6 Re-inserting the Dangling Handles

In an earlier step described in Section 5.5.2.2, we replaced each dangling handle with a set

of edges. Here, we describe how to re-insert these handles back into the drawing as a final

step in our algorithm.

Let rJ be a dangling handle that lies on the left side of n. By Property 5.1, then, anchor

s of rJ lies on the bottom layer, so, by Property 5.6, the edges incident on s that we used to

replace rJ bend above the top layer. Let e = (s, v) be one such edge, and let c be the point

nearest s in e where e crosses the top layer. We observe that e contains line segment sc. We

112

CHAPTER 5. ONE-BEND DRAWINGS

also recall, from Section 5.5.2.2, that we inserted e to replace an edge between v and vertex

win 'rJ. Let b be the point where the two segments of e intersect. Then, we remove edge e

and replace it with edge (v, w) by drawing vertex w at point c and drawing (v, w) with line

segments vb and bw (see Figure 5.23).

Now suppose that sorne other vertex v' is adjacent to w in the original graph. We replace

edge e' = (s, v') with edge (v', w) by removing e' and then drawing (v', w) with segments

v'b' and b'w, where b' is the point where e' bends. We apply the same replacement procedure

for every other vertex that is adjacent to w in the original graph. Figure 5.23 illustrates the

result of replacing edges incident on s with vertex w and its incident edges.

b

s

Figure 5.23: Reinserting a dangling handle vertex.

We show that these reinsertions do not create any edge crossings. Suppose, by way

of contradiction, that we do create an edge crossing with an edge ec (see Figure 5.24(a)).

Clearly, edge (v, w) does not create the crossing because we can obtain its drawing by

simply erasing the segment sc from edge e = (s, v). We assume then, without loss of

generality, that edge (v', w) creates the crossing. Segment v'b' belongs to edge v' s, so edge

ec crosses segment b'w. This implies that ec is incident on a vertex inside the triangle

defined by s, c and b'. In our embedding, aIl edges incident on s between (v', s) and (v, s)

are edges that replace the original edges incident on w. Therefore, if ec is incident on s,

then we have just replaced ec by an edge incident on w so no crossing exists. Otherwise,

ec is incident on a vertex Vc on the top layerbetween (v', s) and (v, s). According to the

embedding and because s is in II, VC does not belong to II, so Vc belongs to a handle 'rJ'.

Because Vc is between (v', s) and (v, s), handle 'rJ' is a dangling handle anchored at s. We

observe that 'rJ = 'rJ' because the edges of 'rJ' are between edges (v', s) and (v, s) which

correspond to handle 'rJ in our embedding. Thus, Vc is in 'rJ and since it is between (v', s)

and (v, s), it is in fact equal to w so no crossing exists (see Figure 5.24(b)).

113

CHAPT ER 5. ONE-BEND DRAWINGS

b

s s

(a) (b)

Figure 5.24: Edge ec crosses reinserted edge e' = (v'w) and is incident either on (a) anchor
s on the bottom layer, or else on (b) vertex Vc on the top layer.

To complete the drawing of 'f}, it remains for us to draw the following edges connecting

pairs of vertices in 'f}:

Edges that are inside the handle graph. This case is identical to the earlier step where

we draw edges inside a non-dangling handle. Once again, then, we draw these edges

using the technique of Kaufmann and Wiese as described in the proof of Lemma 5.1,

but with additional upper bounds on (J described in Section 5.5.2.5.

Edges that are outside the handle graph and incident on s. Let e he such an edge, let

VI, V2, ... ,Vp be the edges of 'f) in the order that they appear on the top layer. Then,

e = (s, Vi) appears between (s, VI) and II or between (s, vp) and II in the cyclic

ordering of the edges incident on s in the embedding of our graph. We assume,

without loss of generality, the former case. We draw e with two segments that meet

at a point b arbitrarily close VI, higher than and to the left of VI. We note that e

does not cross any previously drawn edges and its drawing corresponds to our graph

embedding.

Now consider another such edge e' = (s, Vj) that also appears between (s, VI) and II

in the cyclic ordering of the edges incident on s. It either appears before or after e in

this ordering. In the tirst case, we draw e' with two segments that meet at a point b'
that is arbitrarily close to b, higher than and to the left of b'. In the second case, b' is

arbitrarily close to b, lower than and to the right of b', and, at the same time, higher

than and to the left of VI.

114

CHAPT ER 5. ONE-BEND DRA WINGS

We draw other such edges in the same manner. Figure 5.25 illustrates how we draw

two edges (s, V2) and (s, V3) outside the handle.

s

Figure 5.25: Drawing edges (s, V2) and (s, V3) outside the handle.

Edges outside the handle graph and not incident on s. These are edges between vertices

in 'TJ that lie on the top layer. We draw these edges using the same technique as we

used in Section 5.5.2.5 to draw edges inside non-dangling handles. The only change

here is that the slope (J must be sm aIl enough that we don't ereate any crossings with

other edges drawn outside the handle graph of 'TJ, particularly those between vertices

in'TJ and s. This is not a problem, however, because we can make (J arbitrarily close

to O.

Thus, we have proven the sufficiency of the characterization given in Theorem 5.19.

Lemma 5.22 (Sufficient Condition) If a graph G is sub-Hamiltonian-with-handles, then

G is 2-1ayer, I-bend planar.

Together, Lernmas 5.21 and 5.22 complete the proof of Theorem 5.19.

5.6 2-0uterplanar Graphs

Given the eharacterization of 2-layer, I-bend planarity, it is natural to ask if there are

families of planar graphs that satisfy the characterization. In this section, we consider

2-outerplanar graphs . A planar embedding of a graph is outerplanar if eaeh vertex lies on

the external face. A planar embedding of a graph is 2-outerplanar if removing all vertices

on the external face yields an outerplanar embedding of the remaining subgraph. Thus,

a graph is outerplanar if it has an outerplanar embedding, and 2-outerplanar if it has a

2-outerplanar embedding.

115

CHAPTER 5. ONE-BEND DRAWINGS

First, we observe that not all2-outerplanar graphs are l-layer, I-bend planar. An exam­

pIe is shown in Figure 5.26 and we recall from Section 5.3 that this graph is not l-layer,

I-bend planar.

Figure 5.26: A 2-outerplanar graph that is not l-layer, I-bend planar. Called NI in Section
5.3.

Next, we use our characterization of 2-layer, I-bend pl anar graphs to show that all 2-

outerplanar graphs are 2-layer, I-bend planar. This result is an interesting contrast to that of

Cornelsen et al. [17, 18] which states that not all outerplanar graphs have planar drawings

on two layers when edges must be drawn as straight-line segments.

Theorem 5.23 Every 2-outerplanar graph is 2-layer, I-bend planar and a 2-layer, I-bend

planar drawing can be computed in linear time in the number ofvertices in the graph.

Proof: By Theorem 5.19 it is sufficient to prove the graph G is sub-Hamiltonian-with­

handles. We assume that G is embedded with a 2-outerplanar embedding.

For convenience, we would like G to be biconnected. If G is not biconnected, then we

make it biconnected by adding edges, so consider a eut-vertex v in G and suppose that it

belongs to h biconnected components. Then, in the cyc1ic ordering of the edges incident on

v, there are h consecutive pairs that belong to different biconnected components. Consider

one such pair (v, u) and (v, w). We augment G by adding edge (u, w) for h - 1 of these

pairs. We observe that the embedding of G remains 2-outerplanar because each edge that

we add lies on the external face and each vertex that was on the external face before adding

the edges remains on the external face. If we repeat this augmentation until there are no

more cut-vertices, then we obtain a 2-outerplanar biconnected graph.

Aiso for convenience, we would like each vertex not on the external face to be adjacent

to a vertex on the external face. If this is not the case for sorne vertex w not on the external

116

CHAPTER 5. ONE-BEND DRA WINGS

face, then, since G is 2-outerplanar, w belongs to a face containing at least one external face

vertex v. Thus, we add the edge (v, w) to G and observe that G remains 2-outerplanar. We

repeat this augmentation until each vertex not on the external face is adjacent to a vertex on

the external face.

Since G is biconnected, the external face of Gis bounded by a simple cycle C. Thus,

we can cover the vertices of G with C minus one edge as our base path and one handle for

each vertex w not in C consisting of a single edge connecting w to a vertex in C. Since

these handles ail lie inside C, they do not overlap (see Figure 5.27 for an example).

(a) (b)

Figure 5.27: (a) A 2-outerplanar embedded graph G. (b) A base path and a set of non­
interleaving handles that cover the vertices of G. Dashed edges are dummy edges.

o

5.7 Conclusions and Open Problems

In this chapter, we have introduced the k-Iayer, I-bend planar drawing convention for planar

graphs. This convention can be used to describe, from a homogeneous perspective, several

graph drawing problems studied in the literature. For example, the literature shows a con­

nection between 2-page book embeddings and Hamiltonicity. Therefore, since 2-page book

embeddings can be seen as l-layer, I-bend planar drawings, this leads to a new connection

between 2-layer, I-bend planar drawings and an extension of Hamiltonicity.

Given previous results, we asked in the introduction if aIl planar graphs are 2-layer,

I-bend planar, and then proved in this chapter that the answer is 'no', showing, in fact,

that it is NP-hard to determine whether or not a planar graph is 2-layer, I-bend planar.

Consequently, we have shown the surprising result that no number of layers lines is large

enough to match the power of a single convex curve or allowing two bends per edge. Thus,

our results suggest several new questions:

117

CHAPT ER 5. ONE-BEND DRAWINGS

• What happens if we have two non-parallellayers?

• Are two non-parallellayers as powerful as three or more?

• What happens if we use a layer defined by a convex polyline? Here the layer approx­

imates a convex layer so we might ask how many layer segments are necessary to

draw aIl planar graphs. Certainly, if the number of segments is equal to IV (G) 1 - 1

and at most two vertices are placed on a single segment iIi the drawing, then there is

a convex curve containing aIl the vertices.

FinaIly, we have also characterized 2-layer, I-bend planarity by generalizing a char­

acterization for l-Iayer, I-bend planarity. Consequently, we are interested in discovering

further generalizations to k-Iayer, I-bend planarity for k 2: 3. We gave one example of us­

ing our characterization to obtain efficient algorithms for computing 2-layer, I-bend planar

drawings of 2-outerplanar graphs. Perhaps there are other interesting classes that can also

be drawn efficiently using this characterization.

118

Part II

Non-Planar Drawings

119

Overview of Part II

ln this part of the thesis, we consider drawings of graphs on two layers that may contain

edge crossings. Our approach to non-pl anar drawings is different than our approach to

pl anar drawings. For planar drawings in Part l, given an NP-hard problem, we generally

found a tractable subproblem and obtained an efficient solution to it. Our hope was that the

subproblem solution would give insight into solutions to more general problems.

ln the case of drawings with edge crossings, however, there is a natural and systematic

way to break the problems into manage able subproblems: by bounding a problem parame­

ter by a constant. More specifically, for the l-SIDED CROSSING MINIMIZATION problem,

if we use the number of allowable edge crossings as a parameter and bound it by a constant,

then the resulting problem has a polynomial solution. Similarly, for the 2-LAYER PLA­

NARIZATION problem, if we use the number of allowable edge removals as a parameter

and bound it by a constant, then this problem can also be solved in polynomial time. As

discussed in Chapter 1, this approach is formalized in a relatively recent theory called pa­

rameterized complexity and the parameterized problems just described belong to the class

FPT.

The final chapter in this part presents experimental results based on our implementations

of a few of these FPT algorithms. The purpose of the experiments is to compare the

performance of these FPT algorithms in practice to previously implemented approaches

like integer linear programming.

120

Chapter 6

Biplanarization Algorithms

To Sparrow-your eyes present me with the most delightful mystery.

In this chapter, we derive currently the most efficient FPT algorithms for solving bipla­

narization problems for two layers. We recall that the 2-LAYER PLANARIZATION problem

is defined as follows:

Given: A bipartite graph G and an integer k :2: O.

Question: Is there a set of edges S ç E of size at most k such that G - S is

biplanar?

and the 1-LAYER PLANARIZATION problem is defined as follows:

Given: Abipartite graph G = (A, B; E), an integer k :2: 0, and a linear

ordering 7r of the vertices in A.

Question: Is there a set of edges S ç E of size at most k such that G - Sand

7r is biplanar?

We also recall from Chapter 1 that both of these problems have many applications but

that both are NP-hard; consequently, we would like to find algorithms that can be used in at

least sorne of the applications. Along these lines, Dujmovié et al. [25] have already shown

that both of these problems are fixed-parameter tractable when k is the problem parameter.

They describe a O(k2 ·3k +IGI 2
) time algorithmfor 1-LAYER PLANARIZATION, and a O(k·

6k + IGI) time algorithm for 2-LAYER PLANARIZATION. Using heuristics from efficient

algorithms for the h-HITTING SET problem, Fernau [39] derives improved algorithms for

both these problems with running times of O(k3 • 2.5616k + IGI2) and O(k2 ·5.1926k + IGI),

respectively.

In this chapter, we further improve these results by deriving a O(2k + IGD-time algo­

rithm for l-LAYER PLANARIZATION, and a O(3.562k + IGI)-time algorithm for 2-LAYER

PLANARIZATION. Like their predecessors, our algorithms organize the problem search

space as a tree whose size is bounded by a function of k (see Section 1.3.5.1 for a general

121

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

description of bounded search trees). To each node in our bounded search trees, we asso­

ciate a subgraph H of the original input graph G, and we generate children for the node

by identifying small subgraphs of H that are not biplanar. Each child then corresponds to

a different way of removing edges from the small subgraph so that it becomes bi pl anar,

A leaf node in the search tree is one whose corresponding problem instance can easily be

identified as either a no-instance or ayes-instance.

Our improvements are based on extending sorne of the heuristics used by Fernau [39]

for efficiently biplanarizing dense subgraphs, and adding new heuristics for efficiently bi­

planarizing sparse induced subgraphs. Chen, Kanj and Jia [15] use a technique similar to

this to obtain the fastest FPT algorithm for the VERTEX COVER problern. The main idea

behind dense subgraph heuristics is that small dense subgraphs can only be made biplanar in

a small number of ways, but each way involves removing a large number of edges. In terms

of the search tree, this rneans that corresponding search tree nodes have a fewer children,

and the subtree rooted at each child has reduced size. Indeed, Fernau [39] uses heuristics

based on this observation to reduce the search tree size for 2-LAYER PLANARIZATION from

approxirnately 6k nodes to approximately 5.2k nodes.

For sparse induced subgraphs, the situation is quite different because the number of

edges that must be rernoved is quite small in comparison to its size. In this case, we show

that we can obtain a correct solution without considering aIl possible ways of biplanarizing

the subgraph. In terms of the search tree, this rneans that corresponding search tree nodes

have fewer children.

ln this chapter, we also describe how to incorporate our new divide-and-conquer heuris­

tic to construct and traverse a bounded search tree. The idea is that sornetirnes the input

graph can be split into two subgraphs whose minimum biplanarizing sets together form a

minimum biplanarizing set for the main graph. Hence, it is more efficient to biplanarize

the subgraphs separately rather than as a single graph. Though we do not yet know how to

use this heuristic to improve the worst-case running time of our algorithms, we will show

in Chapter 8 that it dramatically improves performance in experiments.

ln Section 6.1, we derive a O(2k . IGI)-time algorithm for l-LAYER PLANARIZATION,

followed by a O(3.562k • IGI)-time algorithm for 2-LAYER PLANARIZATION in Section

6.2. Then, in Section 6.3, we show how to irnprove these running times to O(2k + IGI) and

O(3.562k + IGI), respectively. Finally, in Section 6.4, we describe our divide-and-conquer

approach.

122

CHAPTER 6. BIPLANARIZATION ALGORITHMS

6.1 One-Layer Planarization in O(2k . IGI) Time

The first FPT algorithrn for solving l-LAYER PLANARIZATION is described by Dujrnovié

et al. [23]. We de scribe their algorithrn here because our algorithrn elaborates on their basic

approach. It is based on the following result:

Lemma 6.1 (Dujmovié et al. [23]) Let G = (A, B; E) be a bipartite graph and 1f a linear

ordering of A. Then, bpn(G, 1f) = 0 if! G is acyclic and the following condition holds:

Foreverypath (x,v,y) ofGwithx,y E A, ifa E Aisbetween

x and y in 1f, then the only edge incident to a (if any) is (a, v).

A violation of (*) is illustrated in Figure 6.1.

x a
A····

B····
b v

Figure 6.1: A violation of (*).

Using this result, they derive a bounded search tree algorithrn for solving the l-LAYER

PLANARIZATION problern which we briefly describe. Each node N in the search tree

corresponds to an instance of l-LAYER PLANARIZATION whose input is a subgraph RN

of G, an integer 0 ~ kN ~ k, and, of course, linear ordering 1f. The root R of the tree

corresponds to the original problern instance so RR = Gand kR = k. Anode N has

children if kN > 0 and RN does not satisfy (*). In fact, N has exactly three children, say

NI. N 2 and N 3 , that correspond to sorne violation of (*) in RN. In particular, RN con tains

sorne path x, v, y for x, y E A and an edge (a, b) su ch that a E A, x <7T a <7T y and

b =1- v. By Lemma 6.1, every biplanarizing set of RN and 1f contains (a, b), (x, v) or (y, v).

Therefore, we set RNI = RN - (a, b), R N2 = RN - (x, v) and RN3 = RN - (y, v), and

each kNi = kN - 1.

On the other hand, if kN = 0 or RN and 1f satisfies (*), then N is a leaf in the search tree.

By Lemma 6.1, RN, 1f and kN is ayes-instance to the l-LAYER PLANARIZATION problern

if and only if RN can be made acyclic by rernoving at rnost kN edges. By the construction

ofthe search tree, if RN, 1f and kN is ayes-instance, then this irnplies that G, 1f and k is a

yes-instance to the l-LAYER PLANARIZATION problern. In this case, the algorithrn retums

this positive result. On the other hand, if no such node is found, then, by the construction

of the search tree, G, 1f and k are a no-instance so the algorithrn retums this negative result.

123

CHAPTER 6. BIPLANARIZATION ALGORITHMS

By construction, the height of our search tree is at most k, and each non-Ieaf search

node has exactly three children; therefore, it has size at most O(3k). Dujmovié et al. [23]

show that the tree can be constructed and searched by spending O(IGI) time at each node.

Consequently, their algorithm solves the l-LAYER PLANARIZATION problem in O(3k ·IGI)

time.

In the remainder of this section, we describe more sophisticated branching rules to

reduce the size of the search tree from O(3k) down to O(2k).

As in the original algorithm, branching is described in terms of sorne violation of (*).

Consequently, suppose that we have a path (x, v, y) such that x, y E A and that there is a

vertex a E A incident on a vertex b E B such that x <7r a <7r y and b =1= v. We assume that

x is the minimum su ch vertex in 7r and, given x, that y is maximum and a is minimum in

7r. AIso, let x' E A be maximum in 7r and y' E A be minimum in 7r su ch that x' and y' are

adjacent to v and x' <7r a <7r y'. Here is the first branching rule:

lEDGE If Adj (a) ç {b, v} and a is the only vertex strictly between x' and y' with degree

greater than 0, then branch on removing (a, b) or (y', v).

See Figure 6.2 for an illustration. In the figure, a is the only vertex between x' and y' that is

adjacent to another vertex. The dashed line between a and v shows that a may be adjacent

to v. If this rule cannot be applied, then there is another edge (a', b') =1= (a, b) su ch that

x' a
A

B·····
v

Figure 6.2: Illustration for branching rule 1EDGE.

x' <7r a ~7r a' <7r y' and b' =1= v. In this case, we apply one of the following rules:

X2EDGE If x =1= x', then branch on removing {(v, x), (v, x')}, {(a, b), (a', b')} or (y, v).

Y2EDGE If y =1= y', then branch on removing {(v, y), (v, y')}, {(a, b), (a', b')} or (x, v).

2EDGE If x = x' and y = y', then bran ch on removing {(a, b), (a', b')} or (y, v).

See Figures 6.3, 6.4 and 6.5 for illustrations of the se rules. We note that, in each case, we

might have a = a' or b = b' but we cannot have both at the same time since (a, b) =1= (a', b').

124

CHAPTER 6. BIPLANARIZATION ALGORITHMS

X x'
A····

a a' y

B····
b

Figure 6.3: Illustration for branching rule X2EDGE.

x a a'
A····

B····
b v

Figure 6.4: Illustration for branching rule Y2EDGE.

x = x'
A············

a a'

B····
b v

Figure 6.5: Illustration for branching rule 2EDGE.

Straight-forward analysis shows that the resulting search tree has size T(k) bounded by:

T(k) :::; T(k - 1) + 2T(k - 2).

With T(k) bounded by sorne constant for sufficiently small k, a simple proof by induction

on k shows that T(k) E O(2k).

Next we show that any bounded search tree computed by applying these branching rules

contains anode with ayes-instance to the 1-LAYER PLANARIZATION problem if and only

if the original input problem is a yes-instance. In other words, for each tree node N with

chiidren obtained by applying one of the branching rules, we must show that the problem

instance of N is a yes-instance if and only if the problem of at least one child of N is a

yes-instance. This is equivalent to saying that there is a minimum biplanarizing set for HN,

the graph associated with N, that con tains the edges removed in the branch corresponding

to at least one child of N.

125

CHAPTER 6. BIPLANARIZATION ALGORITHMS

Lemma 6.2 Let G = (A, B; E) be a bipartite graph, and let 7r be a linear ordering of A.

1. If 1 EDGE can be applied to Gand 7r, then there exists a minimum biplanarizing set

S for Gand 7r such that (a, b) E S or (yi, v) E S.

2. If X2EDGE can be applied to Gand 7r, then, for every minimum biplanarizing set S

for Gand 7r, {(v, x), (v, x')} ç S, {(a, b), (a', b')} ç S or (y, v) E S.

3. If Y2EDGE can be applied to Gand 7r, then, for every minimum biplanarizing set S

forGand7r, {(v, y), (v, yi)} ç S, {(a,b), (a',b')} ç Sor(x,v) E S.

4. If 2EDGE can be applied to Gand 7r, then there exists a minimum biplanarizing set

SforGand7rsuch that{(a,b), (a',b')} ç Sor(y,v) ES.

Proof:

1. Let S* be a minimum biplanarizing set su ch that (a, b), (yi, v) fi. S*. By Lemma 6.1,

then, we have (x', v) E S*. By definition, there is a biplanar drawing r of subgraph

H = G - S*, and, in r, we have b < v. Since a is the only vertex between x' and yi

with degree greater than 0, (yi, v) is in r, and Adj (a) ç {b, v}, then (a, b) is the only

edge in r that crosses line segment x' v. Therefore, we can obtain another biplanar

drawing from r by removing edge (a, b) and inserting edge (x', v). In other words,

S* - (x', v) + (a, b) is a minimum biplanarizing set for Gand 7r.

2. This statement follows directly from Lemma 6.1.

3. This statement also follows directly from Lemma 6.1.

4. Due the mi nimal it y of x and the maximality of y given x, each neighbor of v is

between x and y in 7r. Since, in addition, we have that x = x' and y = yi, then

Adj(v) ç {x, y, a}.

Let S* be a minimum biplanarizing set su ch that {(a, b), (a', b')} g; S* and (y, v) fi.
S*. By Lemma 6.1, then, we have (x, v) E S* and there is a biplanar drawing r of

subgraph H = G - S*. Let X be the set of edges that cross line segment xv in r.
We consider two cases:

(a) Each edge in X is incident on a.

In other words, we have X = {(a, bl), (a, b2), . .. ,(a, bp)} where bl < b2 <
... < bp in r. Because of the minimality of x, the neighbors of each bi are

greater than or equal to x in 7r. Because (y, v) is in r, we also have bi < v. Now

consider the following drawing obtained from r: remove edge (y, v) (and edge

126

CHAPTER 6. BIPLANARIZATION ALGORITHMS

(v, a) if it exists), move v so that it lies immediately before bl , and then insert

edge (x, v) (and edge (v, a) if it exists). The resulting drawing is biplanar so

S* - (x, v) + (y, v) is a minimum biplanarizing set for Gand 1'(. See Figure 6.6

for an illustration of this modification.

B·····

Figure 6.6: How to modify the drawing when each edge in X is incident on a.

(b) An edge in X is not incident on a.

In other words, we have X = {(al, bl), (a2, b2), ... , (ap , bp)} where x <7r

al :S7r a2 :S7r ... :S7r ap <7r y and bl :S b2 :S ... :S bp in r. In this case,

we have Adj(v) ç {x, y} because r contains edge (y, v) and the edge in X

not incident on a. Because of the minimality of x, the neighbors of each bi are

greater than or equal to x in 1'(. Therefore, the drawing obtained from r by re­

moving (y, v), moving v immediately before bl and then inserting edge (x, v)

is biplanar. In other words, S* - (x, v) + (y, v) is a minimum biplanarizing set

for Gand 1'(. See Figure 6.7 for an illustration ofthis modification.

o

Figure 6.7: How to modify the drawing when an edge in X is not incident on a.

To compute and traverse the search tree, it is necessary to spend at most O(IGI) time at

each search tree node so we have a O(2k . IGI) time algorithm for l-LAYER PLANARIZA­

TION.

Theorem 6.3 For any given bipartite graph G = (A, B; E), linear ordering 1'(of A and

integer k ~ 0, there is an algorithm that determines whether or not bpn(G, 1f) < k in

O(2k
• IGI) time.

127

CHAPTER 6. BIPLANARIZATION ALGORITHMS

6.2 1\vo-Layer Planarization in O(3.562k • ICI) Time

The first FPT algorithm for 2-LAYER PLANARIZATION is also described by Dujmovié

et al. [23]. Once again, we describe their algorithm here because our algorithm elaborates

on their basic approach. Based on Lemma 2.1, they describe a bounded search tree algo­

rithm, much like their algorithm for l-LAYER PLANARIZATION described in the previous

section, that selects a "forbidden structure" at each search tree node, and then creates one

child for each edge in the structure. The next lemma describes these structures:

Lemma 6.4 (Dujmovié et al. [23]) If there exists a vertex v in a graph G such that deg' (v) ~

3, then v belongs to a 2-claw or a 3- or 4-cycle in G.

Proof: Let UI, U2, U3 be three distinct non-Ieaf neighbors of v, and let WI, W2, W3 be neigh­

bors of UI, U2, U3, respectively, that are distinct from v. If Wi = Uj for sorne i and j,

then VUjUi is a 3-cycle. On the other hand, if Wi =1= Uj for each i and j but Wi = Wj

for sorne i =1= j, then VUiWiUj is a 4-cycle. If neither of these is true, then vertices

v, UI, U2, U3, WI, W2, W3 form a 2-claw rooted at v. 0

We caU a 2-claw or a 3- or 4-cycle in a graph aforbidden structure.

We construct the bounded search tree recursively, beginning at the root. Given a graph

Gand integer k ~ 0 as input to the algorithm, we associate a subgraph HN of G and an

integer 0 ::; kN ::; k to each search tree node N. For root node R, H R = Gand kR = k. A

node N has children if kN > 0 and HN contains a forbidden structure S. By Lemma 2.1,

at least one edge in Sis in every biplanarizing set of HN ; consequently, the node has ISI

children, one child N' for each edge e in S. Thus, we set HN' = HN - e and kNJ = kN-l.

Anode N is a leaf if kN = 0 or HN contains no forbidden structures. If HN contains

no forbidden structures, then, by Lemma 6.4, every vertex v in HN has deg~N(v) ::; 2;

in other words, each connected component in HN is either a caterpillar or a wreath (see

Chapter 2). By Lemma 2.1, every minimum biplanarizing set contains exactly one cycle

edge from each component wreath in HN . Thus, a leaf node represents ayes-instance to

the problem if its subgraph H N does not contain any forbidden structures and con tains at

most kN component wreaths.

The resulting tree has at most O(6k) nodes because each node has at most 6 children,

and the height of the tree is at most k. It is possible to construct and traverse this tree

while spending at most O(IGI) time at each node; therefore, we have an O(6k . IGI) time

algorithm for solving the 2-LAYER PLANARIZATION problem.

We can dramaticaUy improve the running time of this algorithm by refining our branch­

ing rules. For each rule, let v be a vertex with three non-Ieaf neighbors VI, V2 and V3' We

128

CRAPTER 6. BIPLANARIZATION AL GORITHMS

assume then that deg(vI) ~ deg(v2) ~ deg(v3) ~ 2, and, for each Vi, we let Vil =1= V

be a neighbor of Vi, and, if deg(Vi) ~ 3, then Vi2 =1= V is another neighbor of Vi. We let

ei = (V, Vi) and eij = (Vi,Vij) for each i = 1,2,3 and j = 1,2 (see Figure 6.8). The

V

Figure 6.8: A vertex V with three non-Ieaf neighbors.

following rules are illustrated in Figures 6.9-6.13.

3CYC If Vi = Vi'j' for sorne i =1= if and j' E {1, 2}, then branch on removing edges ei, ei'j'

V

Figure 6.9: 3CYC: a 3-cycIe because VI = V21.

CLAWO If deg(VI) = 2, then branch on removing edges eu, e21, e31 or {el, e2}.

V

Figure 6.10: CLAWO: deg(vI) = deg(v2) = deg(v3) = 2.

CLAWI If deg(vI) > 2 and deg(v2) = 2, then branch on removing el, {eu, eI2}, e2b e31,

or {e2, e3}.

129

CHAPTER 6. BIPLANARIZATION ALGORITHMS

v

Figure 6.11: CLAW1: deg(vI) > 2 and deg(v2) = deg(v3) = 2.

v

Figure 6.12: CLAW2: deg(vI)' deg(v2) > 2 and deg(v3) = 2.

v

Figure 6.13: CLAW3: deg(VI), deg(V2), deg(V3) > 2.

CLAW3 If deg(V3) > 2, then we branch on removing el, e2, e3, {eu, eI2}, {e21, e22}, or

{e311 e32}.

We apply 3CYC whenever it is applicable sa that, in each of the remaining rules, we can

assume that Vi i= Vi',j' for each i i= i' and j E {l, 2}.

Our proof of the correctness of these rules is similar ta Lemma 6.2 for the I-LAYER

PLANARIZATION problem. In other words, given a search tree no de N and any applicable

branching, we prove that there is a minimum biplanarizing set for H N that contains the

edge(s) of a branch corresponding ta at least one of the children of N. We will use the

following lemma repeatedly ta obtain our result:

Lemma 6.5 Lete = (u, v) be an edge ina graph G. Foreach vertexw in V(G), deg~_e(w) <
deg~ (w) if and only if:

1. w = u and degc(v) ~ 2; or

130

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

2. w = v and degG(u) ~ 2; or

3. (u,w) E E(G)anddega(u) = 2; or

4. (v, w) E E(G) and dega(v) = 2.

Proof: We observe that only u and v can become leaves by removing edge e. Therefore,

deg'(w) is reduced only if w n {u, v} =J 0 or Adj(w) n {u, v} =J 0. 0

Lemma 6.6 Let G be a graph.

1. Ij 3CYC can be applied to G, thenfor every minimum biplanarizing set S of G we

have ei' E S, ei'j' E S, or ei E S.

2. IfCLAWO can be applied to G, then there is a minimum biplanarizing set S ofG such

thaten ES, e21 ES, e31 E S, or {el,e2} ç S.

3. IfCLAW1 can be applied to G, then there is a minimum biplanarizing set S ofG such

that el E S, {en, e12} ç S, e21 E S, e31 E S, or {e2, e3} ç S.

4. IjCLAW2 can be applied to G, then there is a minimum biplanarizing set S ofG such

that {en, eld ç S, {e21, e22} ç S, e31 E S, el E S, or e2 E S.

5. IjCLAW3 can be applied to G, thenfor every minimum biplanarizing set S ofG we

have el E S, e2 E S, e3 E S, {en, e12} ç S, {e21' e22} ç S, or {e3b e32} ç S.

Proof:

1. Follows immediately from Lemma 2.1 because v, Vi', Vi' ,j' is a 3-cycle.

2. Let S* be a minimum biplanarizing set such that eil ~ S* and {el, e2} g S*. Since

S* is a biplanarizing set, then, without loss of generality, S* contains sorne ei. Let H

be the subgraph of G obtained by removing the edges of S* from G, and let HI! be the

subgraph of H obtained by removing edge eil from H. Since S* is a biplanarizing

set, H and HI! contain no 2-claws or cycles. If we let H' = HI! + ei, then vertex VI

is a leaf in H'; thus, H' contains no cycles because HI! con tains no cycles. Since HI!

contains no 2-claws, then, by Lemma 6.5, H' may contain a 2-claw only if v is a leaf

in HI! and its only neighbor in HI! is the 2-claw root. Since edge el or e2 belongs to

HI!, then VI or v2 is the only neighbor of V in HI!. However, neither of these vertices

is the root of a 2-c1aw because each has degree at most 2 in H'. Therefore, H' is

biplanar so S* - ei + eil is a minimum biplanarizing set.

131

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

3. Let S* be a minimum biplanarizing set such that el, e21, e31 ~ S*, {eu, e12} ~ S*

and {e2, e3} ~ S*. Without loss of generality, we assume that eu, e2 ~ S*. Since

S* is a biplanarizing set, S* contains edge e3. Let H be the subgraph of G obtained

by deleting the edges of S*, and let H If be the subgraph of H obtained by deleting

edge e31. Since S* is a biplanarizing set, H and H If are acyclic and do not contain

any 2-claws. Let H' = H If + e3. Since V3 is a leaf in H', then H' is acyclic because

H If is acyclic. Since H If contains no 2-claws, then, by Lemma 6.5, H' may contain

a 2-claw only if v is a leaf in H If
• By assumption, however, v is adjacent to VI and

V2 in H and H If
; therefore, H' contains no 2-claws. In other words, H' is biplanar so

S* - e3 + e31 is a minimum biplanarizing set for G.

4. Let S* be a minimum biplanarizing set such that el, e2, e31 ~ S*, {eu, e12} ~ S*

and {e21, e22} ~ S*. Since S* is a biplanarizing set, then S* contains edge e3. Since

we have el, e2 ~ S*, the situation is the same as for CLAW2 so S* - e3 + e31 is a

minimum biplanarizing set for G.

5. Follows immediately from Lemma 2.1.

o

Let T(k) denote the size of the search tree created by applying these rules. For suffi­

ciently small k, T(k) is bounded by a small constant, so for larger k, we obtain the following

upper bound for T (k) :

T(k) ::; 3T(k - 1) + 3T(k - 2).

A simple proof by induction shows that T(k) E 0 ((3+f21r) ~ O(3.8k
), so we have

the following result:

Lemma 6.7 For any given graph Gand integer k 2': 0, there is an algorithm that deter­

mines whether or not bpn(C) ::; k in O(3.Sk
• ICI) time.

To further reduce the running time to O(3.562k • IGI) time, we replace branching rule

CLAW3 with new rules since it is the rule that leads to largest branching factor. In each, we

assume, as in rule CLAW3, that deg(vI), deg(v2), deg(v3) > 2. The first new rule handles

the case where sorne Vij is a leaf vertex. Like Dujmovié et al. [25], we show that search

tree branches corresponding to removing an edge incident on a leaf vertex can be ignored.

LEAF If sorne vertex Vij is a leaf for sorne i E {I, 2, 3} and j E {I,2}, then branch

on removing the same sets of edges as in rule CLA W3 except the set containing eij

which we omit.

132

CHAPTER 6. BIPLANARIZATION ALGORITHMS

In the following proof of correctness, we consider only the case where i = I because

the other cases are syrnrnetric.

Lemma 6.8 Let G be a graph. If LEAF can be applied to G because Vlj is a leaf for some

j E {l, 2}, then there exists a minimum biplanarizing set S for G such that el E S, e2 E S,

e3 E S, {e21, e22} ç S, or {e31, e32} ç S.

Proof: Let S* be a minimum biplanarizing set that does not satisfy the lernrna statement,

and let H be the subgraph of G obtained by deleting the edges of S*. Since S* is a bi­

planarizing set, we have {eu, e12} ç S* and, furthermore, in H, Adj (VI) = {V} and

Adj (Vlj) = 0. Thus, H - el + elj is biplanar, so S* - elj + el is a minimum biplanarizing

~. 0

The next branching rule applies whenever we have Vij = Vi'j'. When this is the case,

our structure contains a 4-cycle VViVijVi'. By Lernrna 2.1, every biplanarizing set for the

graph contains at least one of the cycle edges. Therefore, we obtain a new branching rule

that extends the CLAW3 rule so that each set removes at least one edge of the 4-cycle. This

rule is illustrated in Figure 6.14:

4CYC If Vij = Vi'j' for sorne i =1= i' E {l, 2, 3} and j, j' E {l, 2}, then branch on removing

the same sets of edges as in rule CLAW3 except that, for each set X that does not

contain ei, eij, ei
'

or ei'j" we create two sets X + eij and X + ei'j'.

e.g. if Vlj = V2j', then branch on removing {el}, {e2}, {e3, elj}, {e3, e2j/}

{ eu, eI2}, {e21' en}, {e31, e32, elj}, or { e31, e32, e2j' }.

V

Figure 6.14: 4CYC: Vl2 = V21.

In the following proof of correctness, we consider only the case where i = I and i' = 2

since the other cases are symmetric.

Lemma 6.9 Let G be a graph. If 4CYC can be applied to G for because Vlj = V2jl for

some j,j' E {1,2}, then, for every minimum biplanarizing set S for G, el E S, e2 E S,

133

CHAPTER 6. BIPLANARIZATION ALGORITHMS

{e3,elj} ç S, {e3,e2j'} C S, {eU,e12} ç S, {e21,e22} C S, {e31,e32,elj} C S, or

{e31, e32, e2j'} ç S.

Proof: By way of contradiction, let S* be a minimum biplanarizing set that does not satisfy

the lemma statement, and let H be the subgraph of G obtained by deleting the edges of S*.

Thus, we have e21 or e22 rf. S*, eu or e12 rf. S*, and el, e2 rf. S*. Since S* is a biplanarizing

set, then e3 E S* or {e31, e32} ç S*. In either case, we have elj, e2j' rf. S* by assumption

so H contains a 4-cyc1e VVl VljV2' 0

If neither of these two rules is applicable, then each vertex Vij is adjacent to a vertex

Vijl =1= Vi and possibly another vertex Vij2 =1= Vi' We let eijl = (Vij, Vijl), and, if Vij2 exists,

then we let eij2 = (Vij, Vij2). We observe that each Vi has three non-Ieaf neighbors V, Vil and

Vi2 so we may be able to apply one of the branching rules above to the structure centered

at Vi instead of v. For example, for i = 1, we would consider the structure consisting of

vertices VI, V, V2, V3, Vu, VUl, V12, and V121 (and V112 and V122 ifthey exist).

In the final rule below, then, we assume none of the rules above are applicable for any of

these structures. Thus, since CLAWO, CLAWI and CLAW2 are not applicable, then each

Vi has at least three neighbors inc1uding V, Vil and Vi2, and similarly, each Vij has at least

three neighbors inc1uding Vi, Vijl and Vij2. Since, in addition, rule 4CYC is not applicable,

we have that 1 { V, VI, V2, V3, Vu, V12, V21, V22, V31, V32} 1 = 10. Since 3CYC is not applicable,

eill =1= ei2I' for each i E {1, 2, 3} and l, l' E {1, 2}.

With these assumptions, we de scribe the final branching rule. As mentioned above, we

not only have a CLAW3 structure centered at V but also at each Vi for each i E {1, 2, 3}.

In Figure 6.15, we highlight the CLAW3 structure centered at VI. Consequently, we have

V

Figure 6.15: CLAWS subgraph.

CLAW3 structures that overlap so, like branching rule 4CYC, we branch on the two struc­

tures at the same time rather than consecutively. As we will see, this results in a smaller

134

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

overaIl branching factor in the search tree. To obtain a correct branching rule, we tirst re­

caIl that rule CLAW3 generates the following sets of edges: {el}, {e2}, {e3}, {en, eI2},

{e21,e22}, and {e31,e32}. Similarly, when we apply CLAW3 to the structure centered at

VI, it generates the foIlowing sets of edges: {el}' {en}, {eI2}, {e2, e3}, {e111, en2}, and

{ el21, eI22}' We combine these two applications into a single rule by combining aIl pairs

of sets, one from the application for V and the other from the application for VI. Because

the applications overlap on sets of edges, sorne of the resulting pairs are redundant. For

example, both {el} and {el, en} are sets obtained by combining a set from the application

for V with a set from the application for VI. The second set {el, en} is redundant because

it corresponds to a solution only if {el} corresponds to a solution. More generaIly, a set

is redundant whenever it is a superset of another set. Thus, whereas there are 6 . 6 = 36

possible sets from the two applications and therefore 36 possible branches, 17 of them are

redundant so we actually only consider 19 branches.

CLAWS If I{V,VI,V2,V3,Vn,VI2,V21,V22,V31,V32}1 = 10 and eill i= ei2l' for each i E

{l, 2, 3} and l, l' E {l, 2}, then branch on removing {el}' {en, eI2}, {e2, e3}, {e2, en},

{ e2, eI2}, { e2, enl, en2}, { e2, e121, eI22}, { e3, en}, { e3, eI2}, { e3, enl , en2}, { e3, e121, e122},

{e21, e22, en}, {e21, e22, eI2}, {e21, e22, enl, en2}, {e2b e22, e121, eI22}, {e31, e32, en},

{e31, e32, eI2}, or {e31, e32, enl, e112}, {e31, e32, e121, eI22},

We prove that this rule is correct:

Lemma 6.10 Let G be a graph. If CLAWS can be applied to G, then every minimum

bipZanarizing set for G contains at Zeast one subset listed by ruZe CLA WS.

Proof: By way of contradiction, let S* be a minimum biplanarizing set that does not satisfy

the lemma statement, and let H be the subgraph of G obtained by deleting the edges of

S*. By this assumption, then, el tJ. S* and either en or el2 tJ. S*. However, since S*

is a biplanarizing set, then S* contains e2, e3, {e21,e22}, or {e31,e32}. Byassumption,

however, each of these four cases implies that v, Vn and Vl2 are non-Ieaf neighbors of V in

H, a contradiction by Lemma 2.1. 0

Using these rules, we obtain the following bound for the size T(k) of the resulting

search tree:

T(k) ~ max { 3T(k - 1) + 2T(k - 2), 2T(k -1) + 4T(k - 2) + 2T(k - 3),

T(k - 1) + 6T(k - 2) + 8T(k - 3) + 4T(k - 4)}.

A simple proofby induction shows that T(k) E 0 ((3+f11r) >:::; O(3.562k).

Thus, we have the following result:

135

CHAPTER 6. BIPLANARIZATION ALGORITHMS

Theorem 6.11 For any given graph C and integer k 2:: 0, there is an algorithm that deter­

mines whether or not bpn(C) ::; k in O(3.562k • ICI) time.

6.3 Achieving Constant Time Per Node

In this section, we show that the running times of the algorithms described in the previous

sections can be improved so that, on average, constant time is spent at each search tree node.

In particular, we show how to solve the 1-LAYER PLANARIZATION problem in O(2k + ICI)

time, and the 2-LAYER PLANARIZATION problem in O(3.562k + ICI) time.

6.3.1 l-LAYER PLANARIZATION in O(2k + ICI) Time

To achieve a running time of O(2k + ICI), we show how to utilize O(ICI) initialization time

in order to spend at most O(kN) time at each search tree node N. If we can do this, then

the running time T(k) after initialization has the following bound:

T(k) ::; T(k - 1) + 2T(k - 2) + O(k).

It is well-known that the solution to this recurrence is dominated by the exponential part so

T(k) E O(2k
) (see e.g. [80]). Therefore, assuming that we can indeed use O(kN) time at

each search tree node, we have obtained an algorithm that runs in O(2k + ICI) time.

To achieve this bound, we require sorne additional data structures. To this end, we

present a few definitions. Consider a problem instance consisting of a bipartite graph C =

(A, B; E), a linear ordering 1r of A, and an integer k 2:: O. A vertex v E Bis called a star­

violator if it has two neighbors x, y E A and there exists an edge (a, b) such that a E A,

x <n a <n y, and b =1= v. A vertex v E B is called a diamond-violator if it has exactly two

distinct neighbors x, y E A and there exists another vertex v' E B also adjacent only to x

and y. The term violator then applies to any star-violator or diamond-violator.

To each node N, we not only associate a subgraph HN of C and an integer 0 ::; kN ::; k,

but we also associate three additional data structures:

1. SN, the set of star-violators in HN ;

2. DN, the set of diamond-violators in HN that do not belong to SN; and

3. TN, the induced subgraph of HN composed of vertices in B - SN that have degree

two along with their neighbors in H N .

136

CHAPTER 6. BIPLANARIZATION ALGORITHMS

Thus, SN U D N is the set of violators in H N. We first show H N contains no violators if and

only if HN and 7r is biplanar.

Lemma 6.12 A bipartite graph G = (A, B; E) and linear ordering 7r of A contains no

violators if and only if bpn (G, 7r) = O.

Proof: (=}) By definition, Gand 7r satisfy (*), so, by Lemma 6.1, it remains for us to

prove that G is acyclic. Assume, by way of contradiction, that G contains a cycle C. If

C is a 4-cycle, then C contains two diamond-violators; therefore, C contains at least five

vertices so let al, bl , a2, b2, a3 be a subpath of C such that a2 is the minimum vertex of

C in 7r. If a3 <7r al, then path al, bl , a2 and edge (b2, a3) show that bl is a star-violator.

Thus, a3 >7r al; however, in that case, path a2, b2, a3 and edge (al, bl) show that b2 is a

star-violator.

({=) By Lemma 6.1, G satisfies (*), so G con tains no star-violators. The existence of a

diamond-violator implies the existence of a cycle, so G contains no violators. 0

For each node N in the search tree, we look for an application of a branching rule using

the data structures described above. The next lemma, then, is a key to spending at most

O(kN) at node N because it shows that ISNI + IDNI ::; 2kN whenever bpn(HN) ::; kN.

Lemma 6.13 Let G = (A, B; E) be a bipartite graph and 7r a linear ordering of A. If
bpn(G, 7r) ::; k for sorne integer k ~ 0, then Gand 7r contain at most 2k violators.

Proof: Let e = (a, b) be an edge in G, a E A and b E B, and let H = G - e. AIso, let

BG be the set of violators in G and 7r, and let BH be the set of violators in H and 7r. It is

sufficient to prove that IBHI ~ IBGI- 2.

Let v, v' =1= b be vertices in BG but not in B H. We will show that v = v' so, suppose,

by way of contradiction, that v =1= v'. Since v, v' E BG, v has two neighbors x, y E A in

G and v' has two neighbors x', y' E A in G. We assume that x and x' are minimum and y

and y' are maximum possible. Since v, v' =1= b, v and v' have the same neighbors in H as in

G. We assume without loss of generality that x ::;7r x'. By assumption, then, we have that

y ::;7r x'. Since v, v' E BG, then, we cannot have a <7r x' because then v' E BH. Similarly,

we cannot have a > 7r Y because then v E B H. Thus, y ::;7r a ::;7r x'. However, in this case, it

is not possible that edge (a, b) makes v and v' star-violators in G, so (a, b) must make them

both diamond-violators. This is possible for v if bis adjacent to x and for v' if b is adjacent

to y'. However, this implies that deg(b) = 3 in G meaning that (a, b) makes neither of them

diamond-violators. Thus, we must have v = v'. o

Based on this result, we show that the children of node N and their associated data

structures can be generated in O(kN) time from the data structures of N.

137

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

Applying a branching rules to create children. We tirst show how to select and apply a

branching rule at a non-Ieaf search tree node N in O(kN) time. If SN is not empty, then

H N and 7r violate (*). In this case, we select a vertex v from SN with the minimum neighbor

x in 7r. Unfortunately, selecting v could require O(IHNI) time if we are not careful. We

bound the search time by O(kN) by representing HN so that the adjacency lists of the

vertices in B are ordering according to 7r. Creating and maintaining these ordered lists uses

only O(IGI) time during the initialization phase of the algorithm. During the the search

tree construction and traversaI times, we need not concern ourselves with these orderings

because edge removals only remove items from adjacency lists. Given that the adjacency

lists are ordered according to 7r, and that ISNI E O(kN) by Lemma 6.13, it is possible to

select v and x in O(kN) time. Vertex y is then the last vertex in the adjacency list of v.

Next we select vertex a between x and y that is adjacent to a vertex b =Iv. Unfortunately,

if v is adjacent to many Ieaves or there are vertices with degree equal to zero, then this

could take O(IAI) time. We handle degree zero vertices by simply removing them from the

graph during initialization or whenever they are created by an edge removal. Thus, in the

following, we will assume that there are no such vertices. We handle consecutive leaves

incident on v using the following observation:

Observation 6.1 Let G = (A, B; E) be a bipartite graph and 7r a linear ordering of A. Let

S be a biplanarizing set of Gand 7r. If v E B has two leaf neighbors al and a2 that are

consecutive in 7r and (al, v) ri. S, then S - (a2, v) is a biplanarizing set of Gand 7r.

In other words, a minimum biplanarizing set either contains both (al, v) and (a2, v) or

neither of them. Therefore, we can treat these leaf edges like a single edge whose removal

has the cost of two edges. During the initialization phase, we simply combine consecutive

leaves in 7r that are adjacent to the same vertex in B and mark them with an extra co st.

During the course of the algorithm, we remove edges from the graph so additional Ieaves

may be created. In these cases, we simply merge them with any other consecutive leaf

edges that are incident on the same vertex and increase the cost of removing the resulting

edge. In the following, then, we will assume that there are no consecutive leaves incident

on the same vertex.

Based on these two simplifying assumptions, then, vertex a is the tirst or second vertex

immediately following x in 7r (we recall that a is minimum). Vertex x', the maximum

neighbor of v before a in 7r, and vertex yi, the minimum neighbor of v after a in 7r, are also

easy to tind. Vertex x' is the tirst or second vertex immediately preceding a in 7r (we note

that x' = x or x' is a leaf by the minimality of a) and yi is the vertex immediately following

x' in the adjacency list of v. Having selected these vertices, it is now easy to select and

138

CHAPTER 6. BIPLANARIZATION ALGORITHMS

apply an appropriate branching rule in constant time. Thus, we have shown how to select

and apply a bran ching rule in O(kN) time (recall that selecting v may use O(kN) time)

whenever HN contains a star-violator.

For each set of edges generated by a branching rule, we create a child N' for N and

generate a corresponding set of data structures.

Computing HN, for child N'. Unfortunately, subgraph HNI may be larger than O(kNI).

Therefore, we cannot actually generate a completely new graph for the child. Instead, we

construct and se arch the tree simultaneously in a depth-first search order, so that we actually

only need to explicitly maintain one graph. To construct H N', we delete the necessary edges

from HN to obtain HNI. Then, if in our search we later backtrack from N' up to N, we

simply undo the changes made to obtain HNI in order to obtain HN once again. This uses

only constant time per edge removal.

Computing SN' for child N'. To obtain SN', we observe that SNI ç SN because HNI

is a subgraph of H N. Thus, we obtain SN' by determining which vertices of SN are star­

violators in HNI. This requires only constant time per vertex in SNI using a technique

similar to the one described above for selecting a branching rule. Since SN has size at most

O(kN), then we can compute SNI in O(kN) time.

Computing TN' for child N'. Just like HN" subgraph TN, may be larger than O(kNI),

but, because we construct and traverse our search tree using a depth-first search order, we

actually only~need to maintain one copy of the subgraph at a time. We obtain TN, from TN,

then, by adding or removing vertices as necessary.

We add a vertex of B - SNI to TN obtain TN, whenever it has degree equal to two in

HN' and either belongs to SN or has degree greater than two in H N. We detect the first

case during the construction of SN', each vertex of SN not added to SN' is added to TN, if

it has degree equal to two. We detect the second case during the construction of HN,. For

each edge that is removed from HN to obtain HN" we check whether or not the degree of

its end-vertex in B has been reduced to two.

We remove a vertex from T N to obtain T N' whenever the vertex has degree less than one

in HN,. We do not need to concern ourselves with vertices of degree two in TN that belong

to SNI because, as we observed above, SNI ç SN. Thus, we check for vertices to remove

from TN during the construction of HN,. For each edge that is removed from HN to obtain

HN" we check whether or not the degree ofits end-vertex in B belongs to TN and has had

its degree reduced to less than two.

Computing DNI for child N'. The final data structure constructed is DN" the set of

139

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

diamond-violators that are not star-violators. To construct DN" then, we must be able

to determine whether or not a given vertex is a diamond-violator but not a star-violator.

Unfortunately, this could require searching through each vertex in B with degree equal to

two in H N' if we are not careful. We can perform such a test in constant time if modify the

representation of TN, so that each vertex u in A has two adjacency lists, one list for degree

two neighbors in B whose other neighbor is before u in 7r, and another list for degree two

neighbors in B whose other neighbor is after u in 7r. Representing T N' in this way and

maintaining this representation for each node N' does not increase our asymptotic running

time.

Given this representation, then, we perform our test on vertex wEB as follows: w

belongs to DN' if and only if w belongs to an adjacency list in TNI containing more than

one vertex. The correctness of this test follows by definition. If w does not belong to

TN" then w does not satisfy the definition of DNI so we should reject w. Otherwise, w

belongs to TN, so let u be one of its neighbors in A. If a vertex w' belongs to the same

adjacency list of u that w belongs to, then we observe that w' has the same neighbors as

w because, otherwise, w or w' would be star-violators. Therefore, w is a diamond-violator

but not a star-violator so it belongs to DN'. If, on the other hand, no other vertex belongs

to the adjacency list of u that contains w, then no other vertex in B has exactly the same

two neighbors as w. No vertex in SNI has the same two neighbors because, otherwise,

w would be a star-violator. No vertex outside SN' has the same two neighbors because,

otherwise, there would be another vertex in the adjacency list of u. Therefore, w is not a

diamond-violator so it does not belong to DN'.

We note that this test can be performed in constant-time, so, in O(kN) time, it is possible

determine which vertices of SN U DN belong to DNI. It remains, then, for us to find each

vertex w that belongs to D N' but does not belong to SN or D N. If w does not belong to T N,

then w has degree greater than two in HN and, by the test above, is added to an adjacency

list in TN, that already contains at least one vertex. On the other hand, if w belongs to TN,

then, by the test described above, w belongs to adjacency lists of size equal to one in TN ,

and to adjacency lists of size greater than one in TN,. In each case, vertex w is the result

of an edge removal. In the first case, w is an end-vertex and, in the second, an end-vertex

is added to an adjacency list containing only w. Using the test above, we can determine in

constant time per edge removal which vertices outside SN and DN belong to DN'.

Handling leaf nodes. We have now described how to construct and traverse the search tree

by spending at most O(kN) time per at each non-Ieaf search tree node N. To complete

the algorithm description, we describe how to detect leaf nodes and whether or not they

correspond to yes-instances. By definition, anode N is a leaf if either kN = 0 or SN = 0

140

CHAPTER 6. BIPLANARIZATION ALGORITHMS

and corresponds to a yes-instance if and only if bpn(HN) ::; kN. Of course, if kN = 0

but SN =1= 0, then the node corresponds to a no-instance because bpn(HN) > O. On the

other hand, if HN satisfies (*), then, by Lemma 6.12, we must determine whether or not we

can remove aIl diamond-violators from HN by removing at most kN edges. Because SN is

empty, then, by definition, DN contains aIl diamond-violators and TN contains aIl vertices

of HN with degree equal to two. From our test for membership in DN described above,

then, we remove diamond-violators by removing enough edges so that the adjacency lists

of each vertex of A in TN contains at most one vertex. Dujmovié et al. [25] shows that

we can remove aIl diamond-violators from HN with a minimum number of edge-removals

by repeatedly selecting a diamond-violator from DN, removing an incident edge and then

updating DN and TN. As described above, these updates require constant time per edge­

removal and IDNI ::; 2kN so we can test wh ether or not a leaf node corresponds to a

yes-instance in O(kN) time.

We calI the resulting algorithm OLP. By Theorem 6.3, then, we have the foIlowing

result:

Theorem 6.14 For any bipartite graph G = (A, B; E), linear ordering 7r of A and integer

k 2:: 0, algorithm OLP determines whether or not bpn(G, 7r) ::; k in O(2k + IGI) time.

6.3.2 2-LAYER PLANARIZATION in O(3.562k + IGI) Time

For the 2-LAYER PLANARIZATION problem, it is possible to spend constant time at each

each search tree node after O(IGI) time initialization. Our approach is very similar to the

one we use in [90] to reduce the running time of the (6k ·IGI) time algorithm to O(6k + IGI).

In the algorithm for l-LAYER PLANARIZATION, we noted that the size of each graph HN

associated with each search tree node may be larger than even O(kN) so, rather than create

a new graph at each node, we construct and traverse the tree simultaneously in a depth-first

search order, maintaining only one explicit copy of the graph.

It is possible to choose an appropriate branching rule in constant time if, in addition to

the graph, we maintain a list F of vertices with three or more non-Ieaf neighbors and, for

each vertex v, the list f(v) of edges incident on v that are incident to the non-Ieaf neighbors

of v. We first select any vertex v in F, then we select the first three edges el, e2 and e3

in f(v), sorted so that deg(vl) 2:: deg(v2) 2:: deg(v3), and finaIly, for each Vi, we select

an incident edge other than ei. It is then easy to select an appropriate branching rule in

constant time. Of course, if F is empty, then, we are at a leaf node in the tree.

We now show how to update set F and mapping f appropriately as we move from a

parent to a child node during the traversaI of the search tree. By Lemma 6.5, a vertex v

141

CHAPTER 6. BIPLANARIZATION ALGORITHMS

must be added to or removed from F or the value of f (v) moditied, if it is the end-vertex

of a removed edge or if it is adjacent to an end-vertex of a removed edge with degree equal

to two. Thus, we need only update F and f with respect to at most four vertices for each

edge removal, the end-vertices of the removed edge and, if an end-vertex becomes a leaf,

then its only remaining neighbor.

As mentioned in the simple O(6k ·IGI) time algorithm, a leaf node N in the se arch tree

corresponds to a yes-instance if HN contains contains no 2-claws and at most kN compo­

nent wreaths. Unfortunately, detecting component wreaths in HN could require more than

constant time so we must tind a way to avoid this. The solution is simply to detect and

planarize component wreaths as soon as they are created by an edge removal. While this

creates extra work at each search tree node, it is still possible to perform the extra work in

constant time per edge removal.

To detect a component wreath in constant time, we cannot expect to do so by visiting

each vertex in the component. Instead, we rely on pointers called cheaters. Cheaters link

the tirst and last vertices on the spine of every internaI caterpillar.

Suppose that the subgraph H N of anode N con tains no component wreaths but that,

for sorne edge e = (u, v) in H N, H N - e con tains at least one component wreath W. If

deg(u) = 2, then let u' be the neighbor of u not equal to v; otherwise, let u' = u. Similarly,

if deg(v) = 2, then let v' be the neighbor of v not equal to u; otherwise, let v' = v. By

Lemma 6.5, u, v, u' and v' are the only vertices in HN for which deg~N-e < deg~N'
Each vertex in a component wreath has at most two non-leaf neighbors. Considering W

as a subgraph of HN, we have that either W consists of an internaI caterpillar and its

single connection point u' or v' to the rest of the graph, or else W belongs to a connected

components of H N consisting of W and the edge (u, v). We detect the tirst case by noticing

that the internaI caterpillar in HN has a single connection point u' or v' and, following

the removal of (u, v), the vertex is not longer a connection point. We detect the second

case by noticing that two internaI caterpillars of HN have the same connection points, the

connection points belong to {u, v, u', v'}, and, following the removal of (u, v), neither of

these vertices are connection points. Thus, in either case, any component wreath created by

an edge removal can be detected in constant time using cheaters and the end-vertices of the

removed edge.

We now describe how to update cheaters in constant time following the removal of an

edge e from subgraph HN . If a new internaI caterpillar is created by an edge removal,

then deg~N(v) > deg~N_e(v) = 2 for sorne vertex v. If v is a connection point for two

internaI caterpillars Pl and P2 before the edge removal, then the new internaI caterpillar is

the concatenation of Pl and P2 along with v and its incident edges. If v is a connection point

142

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

for only one internaI caterpillar P, then the new internaI caterpillar is the concatenation of

P with v and its Ieaf neighbors. Otherwise, the new internaI caterpillar is composed only

of v and its leaf neighbors. In each of these three cases, it is a simple matter to update the

cheaters in constant time after an edge removal using existing cheaters. By Lemma 6.5, we

need to consider these cases with respect at most two vertices, either the end-vertices of the

removed edge, or, if one or both becomes a leaf, then its only neighbor.

Thus, we have shown how to construct and traverse the search tree by spending at most

constant time at each search tree node. By Theorem 6.11, we have an algorithm which we

call TLP that solve the 2-LAYER PLANARIZATION problem in O(3.562k + IGI) time.

Theorem 6.15 For any graph Gand integer k 2: 0, algorithm TLP determines whether or

not bpn(G) ~ k in O(3.562k + IGI) time.

6.4 Incorporating Divide-And-Conquer

One way that we might improve the performance of algorithm TLP on large sparse graphs

is to integrate a divide-and-conquer approach into the bounded search tree. For example,

if we biplanarize two subgraphs GI and G2 as a single graph, then we could use up to

O(3.562bpn(Gl)+bpn(G2) + IGII + IG2 1) time. If, on the other hand, it is possible to biplanarize

them separately, then we would use at most O(3.562bpn(GI) + 3.562bpn(G2) + IGII + IG2 1)

time. Clearly, the second option is preferable. In sparse graphs, we would expect this to

be possible quite often because the edge-removals will tend to disconnect the graph being

planarized.

Certainly, if a graph is disconnected, then the minimum biplanarizing set for the whole

graph is simply the union of the minimum biplanarizing sets for the connected components.

We can, however, do slightly better than this by dividing the graph into p-components.

A p-component of a graph is a maximal connected subgraph consisting of biconnected

components that are connected by internaI paths of length at most three, and any internaI

caterpillars that connect it to other p-components. We note, then, that two p-components

are not necessarily disjoint since they may share a single internaI caterpillar. The following

lemma shows that each p-component can be planarized separately.

Lemma 6.16 If HI, H2 ,· .. ,Hp are the p-components of a graph G, and Ml, M2 , . .. ,Mp

are their minimum canonical biplanarizing sets, respectively, then U Mi is a minimum

canonical biplanarizing set for G and Mi n Mj = 0for each i =1- j.

Proof: We tirst show that U Mi is a biplanarizing set for G, so consider removing all

edges in U Mi from G. The resulting graph G' contains no component wreaths because

143

CHAPTER 6. BIPLANARIZATION ALGORITHMS

each wreath cycle belongs entirely to a single p-component. In addition, each vertex has

deg' :::; 2 because each vertex with deg' ~ 3 in G belongs to a p-component. Thus, by

Lemma 2.1, subgraph G' is biplanar. Furthermore, any edge that is candidate in Hi is aiso

a candidate in G; therefore, U ."'fi is aiso a canonical biplanarizing set for G.

Next we show that Mi n Mj = 0 for i =1= j. We recall that Hi and Hj share at most

one internaI caterpillar or path in G. Only two edges on this caterpillar are candidate edges,

and, of these two, one is incident on a leaf in Hi and the other is incident on a leaf in Hj.

Therefore, the candidate edges of Hi are disjoint from those in Hj so Mi n Mj = 0.
Finally, we show that U Mi is a minimum biplanarizing set G. Let M' be a minimum

canonical biplanarizing set for G. Let Mf be the candidate edges in Hi that belong to M.

Since Mf is a biplanarizing set for Hi, we have 1 1\lf 1 ~ IMil. Thus, IM'I ~ IMII + ... +
IAlp l. 0

Lemma 6.16 suggests a divide-and-conquer variation of the algorithm: divide the graph

into p-components, and then planarize each p-component individually. In fact, we could

actually do better than this by biplanarizing in such a way as to break larger p-components

into smaller p-components so that we can planarize each of them separately. One possible

strategy for breaking up a p-component is to branch on forbidden structures containing cut

vertices.

A slight complication of this variation of the algorithm is that, when planarizing a p­

component, we are using a bounded search tree so we have bounded the number of edge

removals by sorne parameter k. Thus, if we break the p-component Cinto smaller child

p-components, then we must somehow divide the parameter k for Cinto sm aller param­

eters for each child p-component. The problem is that we do not know which parameter

value to assign each child without knowing the size of its minimum biplanarizing set. We

solve this problem by initializing the parameter for each child to sorne lower bound on the

child. We re-apply the algorithm to the child, increasing its parameter until we find its

minimum biplanarizing set. If the sum of the parameters for the children ever becomes

greater than the parameter for their parent, then we realize that the way we divided the

parent p-component into smaller p-components will not yield a biplanarizing set matching

the parent's parameter. In response, we immediately backtrack to the point in the search

tree where we disconnected the parent p-component and continue traversing the search tree

from there.

The extra work of computing the p-components and determining if the CUITent p-component

Chas been broken into smaller p-components can aIl be done in O(bpn(C)) time. To

compute sub-p-components, we simply apply a modification of the algorithm for finding

biconnected components in a graph. We apply the algorithm to the at most O(bpn(C))

144

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

vertices having three or more non-Ieaf neighbors, skipping over internaI caterpillars during

graph traversaI using the cheaters, which we described earlier.

Despite the extra work at each node, the resulting algorithm still runs in O(3.562k + IGI)
time. In fact, we will show that we can apply this divide-and-conquer approach to any

bounded search tree algorithm with running time O(ak + IGI) for sorne constant a ~ 3 to

obtain a divide-and-conquer algorithm with the same asymptotic running time. Let T(k) be

the running time of our algorithm when applied to a graph with bpn = k after preprocessing

has been completed. It has the following upper bOUlld:

T(k) ::; T'(O) + T'(l) + ... T'(k) for k ~ 0

where T' (k) is the time it takes to determine if a graph has a biplanarizing set of size k.

Let c be a constant of sufficiently large size such that we use at most ck time to compute

and check for new p-components after each edge removal. Then, T' (k) can be described as

follows:

T(jl) + T(j2) ... + T(ji) + ck

if the edge removal disconnects the p-component into

T'(k) ::; a· children with bpn's equal to jl,j2,'" ,Ji such that

jl + j2 + ... + ji ::; k - 1 and each ji ~ 1;

T' (k - 1) + ck otherwise.

We prove that T'(k) is in O(ak) by induction on k by showing that T'(k) ::; c'ak for a

constant c'large enough that T'(k) ::; c' for k = 0 .. 1. For k ~ 2, then, we have for the first

case:

T'(k) < aT(l) + aT(k - 2) + ack

< a[T'(O) + T'(l)] + a[T'(O) + T'(l) + ... + T'(k - 2)] + ack

< a2c' + a[2c' + c'a2 + c'a3 + ... + c'ak
-
2] + ack

- ac'(a2 + a 3 + ... + a k
-
2) + a4c' + ack

- ac'(ak -
1

- (2)/(a - 1) + a4c' + ack

- c'ak
- c' ak (a - 2) / (a - 1) - c' a 3 / (a - 1) + a4c' + ack

< c'ak for c ::; c'.

145

CHAPTER 6. BIPLANARlZATION ALGORITHMS

For the second case of T' (k), we similarly have:

T'(k) < aT'(k - 1) + ck

< c'ak - l + ck

< c'ak - c'(a - 1) . a k - l + ck

< c'ak for c ~ c'.

Thus, T(k) ~ c'ao + c'al + c'a2 + ... + c'ak ~ c'ak+l, so T(k) is O(ak). Together

with the preprocessing step, we have an algorithm that runs in O(ak + IGI) time. For

algorithms with 1 < a < 3, we cannot quite obtain the results mentioned above. Instead,

we simply observe that we spend O(k) time at each se arch tree node so the resulting divide­

and-conquer algorithm has a running time of (k . a k + 1 G 1).
Though this algorithm does not immediately help us to obtain theoretical running time

improvements, as we will see in Chapter 8, it does demonstrate dramatically improved

experimental performance.

6.5 Conclusions and Future Directions

In this chapter, we have derived fixed-parameter tractable algorithms for both the 1-LAYER

PLANARIZATION and 2-LAYER PLANARIZATION problems. Both algorithms significantly

improve on the best running times of previous algorithms by combining simple heuristics

for biplanarizing sparse and dense subgraphs. We believe, however, that there is still room

for improvement because our algorithms do not make use of everything that is known about

biplanarization using bounded search trees. For example, the running time improvements

of Fernau [39] require sophisticated techniques for analyzing recurrences that describe the

size of the bounded search trees. In this chapter, we consider only very simple recurrences

and use elementary analysis techniques.

Another possibility for improvement could come from our divide-and-conquer approach.

As we show in Chapter 8, this approach results in the most successful implementation dis­

cussed in that chapter. We would like to explain its success mathematically. One possibility

would be to prove that, given a p-component C and constants 0 < a, (3 < 1, it is possible

biplanarize C in the search tree in su ch a way that, after removing abpn(C) edges from

C, we will have broken Cinto two smaller p-components with biplanarizing sets of size

at most (3(1 - a)bpn(C) each. If T(k) describes the size of the resulting search tree, we

146

CHAPT ER 6. BIPLANARIZATION ALGORITHMS

obtain the following upper bound on T(k) (assuming T(l) = 1):

T(k) < 2· 3.562akT(,B(1 - o:)k)
< 2j · 3.562ak(L:{~~(1-a)if3i)T(,B(1 - o:)jk)

< 2-1og(k)/log((1-a),6)3.562ka/(l-(1-a)f3)

For example, if we have 0: = ~ and,B = ~, then the tree has size at most kO.713.5624k/5 ~

kO. 71 2.77k •

A final possibility for improvement is based on candidate and ambivalent edges. As

defined in [25], an edge e = (u, v) is called a candidate for removai if it is the middle

edge of an internaI 3-path, or it does not belong to an internaI 3-path and deg' (u) > 2 and

deg(v) > 1. We use !C to denote the set of candidate edges, so a canonical biplanarizing

set is a biplanarizing set that is a subset of!C. The following lemma shows that there is

al ways a minimum biplanarizing set that is canonical.

Lemma 6.17 (Dujmovié et al. [25]) If T is a biplanarizing set for a graph G, then there

exists a canonical biplanarizing set T* of G such that jT* j ~ jTj.

One can easily test whether or not an edge is a candidate for removal in constant time, so it

is possible to modify any biplanarizing algorithm to produce only canonical biplanarizing

sets without affecting its worst-case performance.

Similarly, we say that an edge e is ambivalent with respect to an end-vertex v if:

• deg'(v) ~ 3;

• e is a candidate edge;

• e is a bridge edge (see Chapter 2);

• e belongs to an internai path of Iength at Ieast four or to an internaI caterpillar that is

not an internaI path.

Unlike non-candidate edges, we cannot simply ignore ail ambivalent edges. However, as

the following Iemma shows, we can ignore sorne and thus prune sorne of the branches in

our bounded search tree:

Lemma 6.18 Let e be an ambivalent edge with respect its end-vertex v in a graph G, and

let T be a minimum canonical biplanarizing set for G containing e. Then, there exists

another edge e' incident on v but not in T such that (T - e) + e' is a minimum canonical

biplanarizing set for G.

147

CHAPTER 6. BIPLANARIZATION ALGORITHMS

Proof: Let C' = C \ (T - e). Because e is ambivalent, at most one vertex in C' has three

non-Ieaf neighbors and aIl other vertices have at most two non-Ieaf neighbors. Because T

is minimum, either v or a neighbor of v has three non-Ieaf neighbors in C' while aIl other

vertices have at most two non-leaf neighbors. In either case, we can biplanarize C' by

removing any non-Ieaf edge e' i:- e incident on v. 0

For example, then, if an edge is ambivalent with respect to the root of a 2-claw, then

we normally do not need to consider branching on its removal from the 2-claw. The only

exception is if each edge in the 2-claw is either a non-candidate or an ambivalent edge. In

that case, we arbitrarily choose one of the ambivalent edges incident on the 2-claw root and

remove it.

While candidate edges and canonical biplanarizing sets have already been considered,

ambivalent edges are new, and we would like to know if there is a way to use them to further

decrease the size of our bounded search trees.

148

Chapter 7

One-Sided Crossing Minimization

Algorithms and Applications

To Vida Dujmovié-you remind me that life is painted with brilliant colors.

In this chapter, we describe algorithms for solving the I-SIDED CROSSING MINIMIZATION

problem:

Given: A bipartite graph G = (A, B; E), an integer k > 0, and a linear

ordering 11A of A.

Question: Is bcr(G, 11A) :::; k?

The algorithm we describe was discovered by Dujmovié, Fernau and Kaufmann [26] and

currently has the best asymptotic running time of O(1.4656k + k . IGI2). It is based on

the bounded search tree algorithms for crossing minimization described in Section 1.3.5.1.

Though we are not the authors of this algorithm, we include it in this thesis because, in

Chapter 8, we describe our implementation of and experiments with this algorithm. Hence,

our description of the algorithm here is more detailed than usual (e.g. than in [26]) in order

that our resulting implementation of it is fairly obvious.

We recall that, in Section 6.4 of the previous chapter, we described a divide-and-conquer

version of our FPT algorithm for biplanarizing graphs. Similarly, in this chapter, we show

apply this idea to crossing minimization to obtain a divide-and-conquer version of the algo­

rithm of [26]. In Chapter 8, we will present experimental results using an implementation

of this version as weIl.

Finally, at the end of this chapter, we describe two applications closely related to the

I-SIDED CROSSING MINIMIZATION problem. We show, for the first time, that both ap­

plications are NP-complete and explain how to modify the algorithms presented in this

chapter to obtain efficient solutions for these applications. These modified algorithms show

that, unlike most exact solutions to hard problems, the bounded search tree algorithms de­

scribed in this chapter are quite flexible.

149

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

7.1 Preliminaries

Let G = (A, B; E) be a bipartite graph. Given a linear ordering 1rA of A and a linear

ordering 1rE of B, consider any 2-layer drawing of Gin which the vertices of A are drawn

on one layer in the ordering given by 1rA, and the vertices of B are drawn on the other layer

in the ordering given by 1rE. We compute the number of edge crossings in this drawing as

follows:

where Cuv denotes the number of edge crossings in the drawing between edges incident on u

and v. If we were to reverse the order of u and v in the drawing, then above calculation for

the number of edge crossings in the new drawing would contain the value of Cvu instead of

Cuv because v is before u. We observe that the values of Cuv and Cvu are the same regardless

of the ordering defined by 1rE. We call Cuv and' Cvu the crossing numbers of u and v with

respect to 1r A.

We will define the algorithm in terms of crossing numbers, so the first step of the algo­

rithm is to actually compute them for each pair of vertices. It is not too difficult to obtain a

brute-force algorithm for this step that runs in O(IGI3) time. However, as described in [26],

crossing numbers can aIl be computed more efficiently as follows:

1. Sort the adjacency lists ofthe vertices in B according to 1rA.

2. For each vertex v in B:

(a) For each vertex u in A, compute the number r(u) of neighbors of v that are

before u in 1r A.

(b) For each vertex v' in B - v, we compute Cvv' as follows:

Cvv' = L r(u')
(u',v')EE

Sorting adjacency lists is the key to obtaining efficiency, and it can be completed in O(IEI)

time using a bucket sort. With sorted adjacency lists, we are able to compute r(u) for each

vertex u in A in O(IAI) time provided that we iterate through the vertices of A in the order

of 1rA. FinaIly, we compute Cvv' for each vertex v' in B in O(IBI + lEI) time. This can be

improved to O(kIBI) by observing that we will not be using crossing numbers greater than

k where k is crossing bound of the I-SIDED CROSSING MINIMIZATION problem instance.

Therefore, if we iterate through each neighbor u' of v' in A in their sorted order and stop as

soon as we realize that Cvv' is larger than k or that r(u') = 0, then we spend O(k) computing

150

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

cvv" In cases where we do not fully compute Cvv', we just set its value to k + 1. Thus, in total

weuseO(IEI+IBI(IAI+min(kIBI, IBI+IEI))) = O(min(IAIIBI+kIBI2, IBI2+IBIIEI))

time. To simplify, we'll say we use O(kIGI2
) time to compute crossing numbers.

7.2 Basic Bounded Search Tree Algorithm

As described in Section 1.3.5.1, the key observation in the design of bounded search tree

algorithms for one-sided crossing rnÏnimization has to do with natural vertex orderings. A

pair of vertices u and v in B are said to have a natural ordering in which u is before v

whenever Cuv = 0, and a pair with a natural ordering are said to be suited. Dujmovié and

Whitesides [28] prove that optimal solutions to I-SlDED CROSSING MINIMIZATION place

suited pairs in their natural orderings:

Lemma 7.1 (Dujmovié and Whitesides [28]) Let G = (A, B; E) be a bipartite graph

and 1f A a linear ordering of A. Let r be a 2-layer drawing of G in which the vertices

of A are drawn on one layer in the order given by 1fA. If r contains at most bcr(G, 1fA)

edge crossings, then aU suited pairs ofvertices in B appear in their natural ordering in r.

7.2.1 Ordering Suited Pairs

With this result, the next step in the algorithm, after computing crossing numbers, is to fix

the order of ail suited pairs of vertices in B in their natural orderings. At this step, we

must be careful when ordering suited pairs with two natural orderings so that the resulting

ordering, denoted 1f1, is a valid partial ordering on B. One way to ensure a partial ordering

is to break these "ties" according to sorne arbitrary linear ordering on the vertices in B.

With Lemma 7.1 and this "tie-breaking" method, we guarantee that 1f1 is a partial order on

B.

The running time for this step in the algorithm is O(IBI2).

7.2.2 Computing and Updating the Lower Bound

In the next step, we compute a lower bound on the number of crossings in any optimal

solution. A solution assigns an order to each pair of vertices in B, so any optimal solution

will contain at least the following number of edge crossings:

L min (cuv , Cvu).

u,vEB, ufv

151

CHAPT ER 7. ONE-SIDED CROSSINO MINIMIZATION

As the algorithm progresses, this lower bound may need to be updated if a pair, say u

and v, are ordered so that they contribute max(cuv , cvu) crossings rather than min(cuv , cvu)

crossings. When that happens, we do not need to recalculate the lower bound L. Instead,

we simply add max(Cuv, cvu) - min(cuv , cvu) to the previous lower bound.

Initially computing the lower bound can be accompli shed in O(IBI2) time. Thereafter,

we use constant time per update.

7.2.3 Kernelizing

We kernelize our problem input by first comparing our lower bound L to k. Clearly, if L

is larger than k, then our problem input is a no-instance to the problem so we return this

negative answer; otherwise, we continue with L :::; k. Because we have already ordered

each suited pair of vertices, the remaining pairs u and v are su ch that min(Cuv, Cvu) 2:: 1.

Since L :::; k, we have at most k unordered pairs of vertices in B.

Next, we look for pairs of vertices u and v for which Cuv is greater than k. Because the

drawing cannot have more than k edge crossings, we are forced to fix their order so that v

is before u.

After fixing these pairs given the initial partial ordering 7rl from the previous step, we

must obtain transitive c10sure so that the resulting ordering 7r2 is a partial order. To do

this, we first compute the list of unordered pairs of vertices U which, as mentioned earlier,

contains at most k pairs. Then, each time we assign an order to a pair u and v, say u

before v, we compute the transitive c10sure for the CUITent ordering 7r by iterating through

U exactly one time. For each pair of vertices u' and v' in U, we apply two tests:

1. u' :::;7r u and v :::;7r v'; and

If the first test holds, then we have by transitivity that u' < v'. Conversely, if the second

test holds, then we have that v' < u' . If either test holds, then we remove the pair u' and

v' from U and update 7r accordingly; otherwise, if neither test holds, then we just leave the

pair in U and 7r remains the same.

After aIl su ch pairs have been assigned an order, the resulting order 7r2 is a partial order

on Band U is the set of pairs that are not ordered in 7r2.

This step uses 0 (k2) time because we assign an order to at most k pairs and spend 0 (k)

time obtaining transitive c10sure after assigning an order to a pair.

152

CHAPTER 7. ONE-SIDED CROSSINO MINIMIZATION

7.2.4 Traversing the Bounded Search Tree

At this point we are ready to construct and traverse our bounded search tree. We describe

this procedure in a little more detail than we did in Section 1.3.5.1.

To each node N in the search tree, we associate a partial ordering 'TfN on the vertices in

B, a list UN of pairs of vertices in B that are not ordered 'Tf N, and a lower bound LN on the

number of crossings in any solution that agrees with 'TfN. At the root node, UN is the final

set of unordered pairs remaining after the kernelization step and 'TfN = 'Tf2.

If the lower bound LN at anode is not greater than k, then we create children for the

node by selecting a pair of vertices u and v from UN and creating two children, one for each

way to assign an order to u and v. The vertex ordering and set of unordered vertex pairs at

each child is obtained by adding the corresponding ordering of u and v to 'Tf N, removing the

pair u and v from UN, and then obtaining transitive closure for the resulting ordering using

the same method that we used in the kernelizing step. The lower bound for each child is

obtained by updating LN as described in the kernelizing step.

The size T(k) of the resulting se arch tree is bounded as follows:

T(k) ::; 2T(k - 1).

For small values of k, T(k) is bounded by a constant so the size of the tree is O(2k). Since

the size of UN is at most k N, the time spent at each search tree node N is bounded by

O(kN). Thus, the overall running time of this algorithm, including the initialization time,

is O(2k + k . IGI2).

7.3 Improving to O(k2 • 1.61Sk + k . IGI2) Time

As hinted at in Section 1.3.5.1, we can improve the running time of the previous algorithm

by observing that we need never consider branching on unordered pairs u and v for which

Cuv = Cvu = 1. We simply branch on pairs with Cuv + Cuv > 2 until there are none left.

At anode N where each unordered pair has Cuv + Cvu ::; 2, each pair is also unsuited so

Cuv = Cvu = 1. As a result, every solution containing 'TfN has LN edge crossings, our lower

bound; therefore, we just arbitrarily assign an order to each remaining pair. The size T(k)

of the resulting search tree is then bounded as follows:

T(k) ::; T(k - 1) + T(k - 2).

An easy proofby induction on k shows that T(k) ::; a k for a = Hp ~ 1.618.

153

CHAPT ER 7. ONE-SIDED CROSSING MINIMIZATION

7.4 Improving to O(1.4656k + k . IGI2) Time

We can further improve our running time by observing that not only can we avoid branching

on cases where Cuv + Cvu ~ 2, but also on many cases where Cuv + Cvu = 3.

Lemma 7.2 (Dujmovié, Fernau and Kaufmann [26]) Let G = (A, B; E) be a bipartite

graph and 1f A a linear ordering of A. Let r be a 2-layer drawing of G in which the vertices

of A are drawn on one layer in the order given by 1f A, and let u and v be a pair of vertices in

B such that deg(u) = deg(v) = 2, Cuv = 1 and Cvu = 2. Ifr contains at most bcr(G, 1fA)

crossings, then u is left of v in r.

Therefore, immediately after assigning orderings to suited pairs in the previous algorithm,

we insert a new step in which we assign the order implied by Lemma 7.2 to each applicable

pair of unordered vertices.

Then, in the bounded search tree, we first only consider unordered pairs u and v for

which Cuv + Cvu ~ 4. If none of these are left at a node N, then we immediately apply two

new kernelizing steps. In the first, we arbitrarily assign an order to pairs of vertices that have

the same set of neighbors. We note that this step could have been applied at the beginning

of the algorithm. In the second kernelizing step, we find pairs of unordered vertices that

have been assigned an order with respect to every other vertex. These pairs are said to be

independent because any order we assign to them cannot transitively trigger an ordering of

other unordered pairs. Consequently, we assign an ordering to the pair that minimizes the

number of resulting edge crossings. In particular, if u and v are an independent pair, then

we order them u before v if Cuv < Cvu, and, otherwise, we order them v before u.

Lemma 7.3 (Dujmovié, Fernau and Kaufmann [26]) Let N be a search tree node with

two children Cl and C2• Let 1fN be the partial order at node N such that each pair of

unordered vertices u and v has Cuv + Cvu ~ 3, u and v do not constitute an independent

pair, and u and v do not share the same set of neighbors. If an unordered pair of vertices x

and y are such that Cxy = 1 and cyx = 2, then (kN - kC1) + (kN - kC2) ~ 4.

As in the previous algorithm, at nodes where there are no unordered pairs with Cuv +
Cvu = 3, each pair has Cuv = Cvu = 1 so we arbitrarily assign an order to aIl the remaining

unordered pairs. According to Lemma 7.3, then, the size T(k) of our search tree tree is

bounded as follows:

T(k) ~ max(T(k - 1) + T(k - 3), 2T(k - 2))

An easy proof by induction on k shows that T(k) < exk for ex ~ 1.4656. We calI the

resulting algorithm OSCM.

154

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

Theorem 7.4 (Dujmovié, Fernau and Kaufmann [26]) Given any bipartite graph G =

(A, B; E), an integer k ~ 0, and a linear ordering 11"A on A, algorithm OSCM determines

in O(1.4656k + k . IGI) time whether or not bcr(G, 11"A) ::; k.

7.5 A Divide-And-Conquer Heuristic

In the previous section describing algorithm OSCM, we defined independent pairs of ver­

tices in terms of a partial order 11" of the vertices in B. Such pairs are ordered in 11" with

respect to aIl other vertices in B, but the pair itself is not ordered. As a result, we can assign

an order to this pair without any consideration 9f the other vertices in B. In other words,

we find a globaIly optimal solution by finding a locally optimal solution.

Generalizing, we consider a maximal subset B' ç B such that each pair of vertices

consisting of one vertex in B' and one outside B is ordered in 11". Then, any globally optimal

solution contains an optimal solution for B'. In graph-theoretic terms, let G7[be the graph

with V(G7[) = B such that there is an edge (u, v) E E(G7[) whenever u and v are not

ordered in 11". Then, B' corresponds to a connected component in G7[, so we incorporate the

divide-and-conquer approach described in Section 6.4 based on components of G7[rather

than on p-components. Using the same running time analysis, we find that the resulting

algorithm runs in O(k . 1.4656k + k . IGI2). We note that the term k . 1.4656k cannot be

replaced with 1.4656k because 1.4656 < 3. We calI this algorithm OSCM-C and refer to it

by this name in Chapter 8.

7.6 Two Applications of Crossing Minimization

As we mentioned in the introduction to this chapter, we describe two applications for one­

sided crossing minimization, prove that the resulting problems are NP-complete and show

how to modify algorithm OSCM to obtain solutions to these problems. Both applications

involve computing a "distance" between the linear orderings 11"1 and 11"2 of two subsets Xl

and X 2 , respectively, of a common set of elements X. One natural way to measure distance

is in terms of a 2-layer graph drawing: draw the elements of Xl as vertices on one layer so

that their order corresponds to 11"1, draw the elements of X 2 as vertices on the other layer so

that their order corresponds to 11"2, and then draw an edge (line segment) between vertices

that correspond to the same element in X. The "distance" between 11"1 and 11"2, then, is the

number of edge crossings in the drawing (see, e.g. Figure 7.1). We can think ofthis distance

measure as the number of pairs in X whose order in 11"1 is different from their order in 11"2.

155

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

bdc a e b c d a e

~6 ~6
abc d e abc d e

diff(bdcae, abcde) = 4 diff(bcdae, abcde) = 3

Figure 7.1: The distance of two lists from the list abcde.

We will use diff(?rl, ?r2) to den ote this distance between?rl and ?r2. We recall from Section

1.2 (see e.g. [32]) that diff(?rl, ?r2) can be computed in polynomial time.

7.6.1 Application for Phylogenetic Trees

The first application cornes from the study of phylogenetic trees. Phylogenetic trees are

graphs used to model the relationships between various species or other entities under the

assumption that each pair of entities has a common ancestor. The Tree of Life is an ex­

ample of a phylogenetic tree showing the evolutionary relationships between organisms.

In this tree, each leaf corresponds to a currently living organism. The remaining vertices

correspond to hypothetical organisms thought to be ancestors of the living organisms.

Normally, there are several different methods for computing a phylogenetic tree from a

given set of entities and each produces a different tree. In addition, no specifie tree captures

entity relationships "better" than the other trees, so biologists are forced to compare two

or more phylogenetic trees. The Tree of Life is no exception; its structure, including the

relationships of the ancestors common to most living organisms, is highly controversial.

As described by Dwyer and Shreiber [29], one way to compare two different phylo­

genetic trees is to deterrnine the minimum "distance" between the leaf vertex orderings

admitted by each respective tree. A tree admits a given leaf ordering if there exists a cor­

responding set of orderings on the children of each vertex. More formally, let U and v be

leaves in the tree with lowest common ancestor a, and let Ua be the child of a that is the

ancestor of U and Va be the child of a that is the ancestor of v. Then, u is before v in the

adrnitted leaf ordering if and only if Ua is before Va in the corresponding child ordering of

a. Figure 7.2 shows each of the leaf orderings admitted by a small binary tree.

As described in the introduction to this section, we define the distance between two leaf

orderings ?rI and ?r2 as the value of diff(?rl' ?r2) (note: we compute diff as if ?rI and ?r2 are

not leaf orderings but actually the corresponding orderings of the entities such as genes

that the leaves represent). Hence, the distance between two trees Tl and T2 is the distance

between the pair of admitted leaf orderings of Tl and T2 that have the minimum distance;

156

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

abc d e a bdc e a b e d cab e c d

bac d e b a d c e b a e d c b a e c d

ecdab edcab edcba ecdba

cdeab dceab dceba cdeba

Figure 7.2: The leaf orderings admitted by a small binary tree.

that is, the distance between Tl and T2 is equal to:

min{diff(11"1,11"2) 1 11"1 isanadmittedleaforderingofT1,

11"2 is an admitted leaf ordering of T2 }

We call the resulting decision problem 2-SIDED TREE COMPARISON:

Given: An integer k ~ 0 and two trees Tl and T2 whose leaves are subsets of

a common vertex set L.

Question: Does Tl admit a leaf ordering 11"1 and T2 admit a leaf ordering 11"2

such that diff(11"l, 11"2) ::; k?

We could also consider a "one-sided" version of this problem where the problem in­

put is a tree and an ordering of the leaves. Solutions to this problem would be useful in

situations where candidate phylogenetic trees are compared to sorne canonical leaf order­

ing, or several iterations of the solution are used to approximate a solution to the two-sided

problem. We call this problem I-SIDED TREE COMPARISON:

157

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

Given: An integer k ~ 0, a tree T, and a linear ordering 'Tr ofthe leaves ofT.

Question: Ooes T admit a leaf ordering 'Tr' such that diff('Tr, 'Tr') ~ k?

Though these problems may seem easier than related crossing minimization problems,

they are both NP-complete. We describe a simple hardness proof based on ideas described

by Prieto [81]:

Theorem 7.5 Problems l-SIDED TREE COMPARISON and 2-SIDED TREE COMPARISON

are NP-complete.

Proof: Both problems clearly belong to NP, so we immediately describe reductions from

l-SIDED CROSSING MINIMIZATION and 2-SIDED CROSSING MINIMIZATION, respec­

tively.

Let bipartite graph G = (A, B; E), linear ordering 'TrA of A and integer k ~ 0 be input

to l-SIDED CROSSING MINIMIZATION. Munoz et al. [73] show that the problem remains

NP-complete even when the vertices in A are leaves so we will assume that A contains

only Ieaves. Let T be a rooted tree composed of a root with one child for each vertex in B,

and each of these children has one child for each incident edge in G. Let A' be the leaves

of T. We observe that there is a 1-1 correspondence between A' and the edges of Gand

therefore the vertices of A because the vertices of A are Ieaves in G.

Given a 2-layer drawing r of G in which the vertices of A lie on one layer in the order

given by 'TrA, we obtain an ordering 'Tr of the edges in G in the order that they intersect the

layer containing the vertices of B. By definition, if we let 'Tr' be the ordering of A' corre­

sponding to 'Tr, then, by definition, 'Tr' is admitted by T and r contains exactly diff ('Tr', 'Tr A)

edge crossings.

On the other hand, given a leaf ordering 'Tr' admitted by T, let 'Tr be a corresponding

ordering of the edges of G. Since 'Tr' is admitted by T, edges incident on the same vertex in

B are consecutive in 'Tr; therefore, there is a 2-layer drawing of G in which the vertices of A

lie on one layer in the order given by 'Tr A and the edges intersect a parallelline an arbitrarily

small distance from the other layer in the order of 'Tr. This drawing has exactly diff('Tr/, 'TrA)

edge crossings.

To show that 2-SIDED TREE COMPARISON, the reduction is identical and from 2-

SIDED CROSSING MINIMIZATION. Here, we construct a tree for A using the same con­

struction method as we use to construct the tree for B. 0

We note that, for the case where the input trees are binary trees, trees in which each vertex

has at most two children, Owyer and Schreiber [29], give polynomial-time solutions to the

l-SIDED TREE COMPARISON problem.

158

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

For the general problem, however, we do not expect to find a polynomial-time solution

to either of these problems, so we will be satisfied with finding efficient FPT algorithms

instead. Indeed, it is not difficult to modify algorithm OSCM to solve the l-SIDED TREE

COMPARISON problem. In the modified versions of the algorithms, as soon as we assign

an order to a pair of vertices u and v, we fix the order of each pair of vertices u' and v'

where u' belongs to a subtree containing u but not v, and v' belongs to a subtree containing

v but not u. We observe that none of these pairs will have previously been assigned an

order so the resulting algorithm has the same running time as algorithm OSCM. Thus, we

have an algorithm, which we caU OSTC, for solving l-SIDED TREE COMPARISON based

on algorithm OSCM.

Theorem 7.6 Given any integer k ~ 0, tree T, and linear ordering 11" on the leaves of T,

algorithm OSTC determines in O(1.4656k + k . IGI2) lime whether or not there exists an

admitted leaf ordering 11"' ofT such that diff(1I", 11"') ::; k.

Unfortunately, we do not yet know of any efficient solutions for the 2-SIDED CROSSING

MINIMIZATION problem so we cannot yet use a similar approach to obtain an efficient

algorithm to the 2-SIDED TREE COMPARISON.

7.6.2 Application for Synthesizing Lists

High-throughput genomics and proteomic strategies, such as microarray studies, are often

used to compare the importance of genes to sorne biological process. The result of these

comparisons is usually a list of the genes whose order corresponds to the relative importance

of each gene. As can be expected, different strategies give rise to similar though slightly

different lists; therefore, it is necessary to combine the lists into a single list that somehow

represents what is common to each of the strategies. One possible candidate is a list whose

"distance" from the given lists is minimum. In other words, given two lists 11"1 and 11"2,

we choose the list 11" such that diff(11"1,11") + diff(11"2,11") is minimum possible. In Figure

7.3, we illustrate with the ex ample where 11"1 = bcdae and 11"2 = bdcae and give the value

of diff(1I"1, 11") + diff(1I"2 , 11") for two different values of 11". We caU the resulting decision

problem LIST SYNTHESIS:

Given: A set of elements X, p ~ 1 subsets X 1 ,X2 , ... ,Xp of X, a linear

ordering 1I"i of each list Xi for 1 ::; i ::; p, and an integer k ~ O.

Question: Is there linear ordering 11" of X such that the sum 2:1~i~P diff(11", 1I"i) ::;

k?

159

CHAPTER 7. ONE-SIDED CROSSINO MINIMIZATION

?fI = bcdae
%1

?fI = bcdae
I)X 1

?f = abcde ?f = bacde
7>K: 1 I)K 1

?f2 = bdcae ?f2 = bdcae

Figure 7.3: For?f = abcde, wehavediff(?fI,?f)+diff(?f2,?f) = 3+4 = 7and,for?f = bacde,

we have diff(?fI, ?f) + diff(?f2, ?f) = 2 + 3 = 5.

As in our crossing minimization problem, we use c xy to denote, for each pair of elements

x, y E X, the number of cases where x >7ri y for 1 ::; i ::; p. We observe that this

corresponds to the crossing minimization viewpoint where we have p + 1 layers and we

place the elements of each Xi on their own layer in order given by ?fi and then place the

elements of X on layer p + 1. Adding an edge between each element on an Xi layer to

the corresponding element on layer p + 1, our problem turns into a crossing minimization

problem where we attempt to order the elements on layer p + 1 so that the number of edge

crossings is minimized. In other words, we can view cxy as the number of crossings created

by edges incident on x and y on layer p+ 1 when x is before y on the layer. We also observe

that we can reformulate the sum that we are attempting to minimize as follows:

L cxy = L diff(?f, ?fi).
x,yEX 1 x<",y I::;i::;p

In addition, we can reuse the lower bound that we used for crossing minimization:

We prove NP-completeness of this problem using the basic ideas used by Munoz

et al. [73] to show that 1-SIDED CROSSING MINIMIZATION is NP-complete even when

the vertices on the ordered layer are leaves and the vertices on the other layer have degree

equal to four. The reduction is from the NP-complete FEEDBACK ARC SET problem (see,

e.g. [41]):

Given: Given a directed graph G = (V, E) and an integer k ~ O.

Question: Is there a set A, called afeedback arc set, of at most k edges in G

such that G - A contains no directed cycles?

Given the directed graph in Figure 7.4, sets {e4, e7} and {e5, e6} are feedback arc sets.

Thus, the graph is a yes-instance for the FEEDBACK ARC SET for k = 2.

Theorem 7.7 LIST SYNTHESIS is NP-complete.

160

CHAPT ER 7. ONE-SIDED CROSSING MINIMIZATION

Figure 7.4: A directed graph.

Proof: It is easy to verify that the problem belongs to NP, so we need only show that

FEEDBACK ARC SET reduces to LIST SYNTHESIS. Let G = (V, E) be a directed graph;

we assume that each vertex in G belongs to a directed cycle. This assumption is without

10ss of generality because if a vertex v does not belong to any directed cycle, then a set

of edges is a feedback arc set for G if and only if it is a feedback arc set for G - v.

From G, we construct four sets Al = A2 = A3 = A4 = VUE. Linear ordering 1l"1 is

composed of consecutive subsequences of the form v, el, e2, ... , ep where {el, e2, ... , ep}

is the set of edges directed out from vertex v. We obtain the linear ordering 1l"2 from 1l"1 by

reversing 1l"1 and then replacing each subsequence ep, ep-l,' .. ,el, v with v, ep, ep-l, ... ,el.

Linear ordering 1l"3 is similar to 1l"1 except that it consists of consecutive subsequences of the

form h, 12,· .. ,fq , v where {h, 12, .. . ,fq } is the set of edges directed into v. Finally, we

obtain 1l"4 from 1l"3 by reversing 1l"3 and then replacing each subsequence v, f q, fq-l,' .. ,h
with f q, fq-l,' .. ,h, v. For example, from the graph shown in Figure 7.4, we obtain the

following linear orderings:

We will show that G has a feedback arc set of size k if and only if there is a linear

ordering 1l" of VUE such that 2::199 diff(1l", 1l"i) ~ L + 2k, where L is the 10wer bound

defined above.

To establish this result, we depend on the following claim:

Claim. Let x, y E VUE. Then:

1. Y is an edge directed into vertex x or x is an edge directed out from vertex

y, and c xy = 1 and c yx = 3; or

2. y is an edge directed out from vertex x or x is an edge directed into vertex

y, and c yx = 1 and c xy = 3; or

161

CHAPTER 7. ONE-SIDED CROSSINO MINIMIZATION

3. c xy = c yx = 2.

To prove this claim, we first consider the case where y is an edge adjacent to x. By def­

inition, then, y = (x,w) or y = (w,x) for sorne vertex w. If y = (x,w), then x <1Tl y

and x <1T2 y because y is directed out from x. In 1f3 and 1f4, on the other hand, x and y do

not belong to the defined subsequences and 1f4 is obtained by reversing 1f3, so x <1T3 y and

x >1T4 y, or x >1T3 y and x < 1T4 y. Thus, c xy = 1 and c yx = 3.

Otherwise, we have y = (w, x). In this case, x >1T3 y and x > 1T4 y because y is directed

into x. In 1f1 and 1f2, on the other hand, x and y do not belong to the defined subsequences

and 1f2 is obtained by reversing 1f1, so x <1Tl y and x >1T2 y, or x > 1Tl y and x < 1T2 y. Thus,

c xy = 3 and c yx = l.

The cases where x is an edge adjacent to y are symmetric so c xy = 1 and c yx = 3 if x is

directed out from y, and c xy = 3 and c yx = 1 if x is directed into y.

The only remaining cases to handle occur when x and y are both vertices, both edges,

or one is a vertex and the other is a non-adjacent edge. In these cases, we have x < 1Tl y and

x >1T2 y, or x > 1Tl y and x <1T2 y, and x <1T3 y and x >1T4 y, or x >1T3 y and x <1T4 y. Thus,

we have c xy = c yx = 2.

Having established the daim, it is now a simple matter to prove the correctness of our

reduction.

First, suppose that A is a feedback arc set of size k for G. By definition, then, G - A is

acyclic so let 1f' be a topological sort of G - A so that, if (u, v) is an edge in G - A, then

u >1T' v. Then, let 1f be a linear ordering of VUE obtained from 1f' by inserting each edge

(u, v) in G - A immediately before u, and inserting each edge (u, v) in A immediately after

u. By our claim above, for each pair x, y E VUE su ch that x <1T y and c xy > Cyx, we

have that c xy = c yx + 2 and either x is an edge directed into vertex y or el se y is an edge

directed out of vertex x. By the construction of 1f, then, x or y is an edge in A. Thus, we

have shown that 2:199 diff(1f, 1fi) = L + 2k.

Now suppose that we have a linear ordering 1f of VUE such that 2:199 diff(1f, 1fd =

L + 2k. By our claim above, if x <1T y and c xy > Cyx, then c xy = c yx + 2 and x or y is an

edge (u, v) in G such that u <1T y. If A is the set of all su ch edges, then lAI = k and 1f is a

topological sort of G - A. Therefore, A is a feedback arc set for G. 0

We note that our proof shows that the problem is NP-complete for p ~ 4 subsets. For

p ::; 2 sets, the problem can be easily solved in polynomial time. Hence, it remains open

whether or not the problem is NP-complete for p = 3 subsets. The current results for the

l-SIDED CROSSING MINIMIZATION problem are analogous if we consider the maximum

degree of the vertices on the layer whose order is not fixed. More specifically, Munoz

162

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

et al. [73] show that the l-SIDED CROSSING MINIMIZATION problem is NP-complete

when the vertices on the fixed layer are leaves and the vertices on the other unfixed layer

have maximum degree four. They also show that the problem is polynomial when, instead,

the vertices on the unfixed layer have maximum degree two. When the maximum degree

is three, the complexity question remains open. Because the hardness proofs are so similar

for the two problems, we believe that answering the open problem for either will quickly

lead to a similar answer for the other problem.

It is not difficult to modify algorithm OSCM to obtain an FPT algorithm for LIST

SYNTHESIS. We do this by showing that Lemma 7.1 about suited pairs and natural order­

ings is true for the CUITent problem. We say that two elements x and y in X have a natural

ordering in which x is before y whenever cxy = O. A pair with a natural ordering are said

to be suited.

Lemma 7.8 Let X be a set of elements, Xl, X 2 , .•• ,Xp be p 2 1 subsets of X, and 7ri be

a linear ordering each set Xi for 1 :::; i :::; p. If 7r is a linear ordering of X such that the

sum LI~i~p diff(7ri, 7r) is minimized, then aU suited pairs of elements in X appear in their

natural ordering in 7r.

Proof: By way of contradiction, suppose that x and y are suited but x <7r y is not their

natural ordering. Thus, for each 1 :::; i :::; p, we have x >7ri y. We obtain 7rx from 7r

by removing x and inserting just after y, and we obtain 7ry from 7r by removing y and

inserting just before x. In both 7rx and 7ry, then, x and y are in their natural ordering. We

will show that 5x = LI~i~pdiff(7ri,7rx) or 5y = LI9~pdiff(7ri,7ry) is strictly less than

5 = LI~i~P diff(7ri, 7r). Foreach 1 :::; i :::; p, we let Œi = I{z E Xilx <7r z <7r y, Z <7ri y}l,
f3i = I{z E Xilx <7r z <7r y, Y <7ri Z <7ri x }I, and 'Yi = I{z E Xilx <7r z <7r y, X <7ri z }I·
Thus,5x = 5 - p + LI~i~p -Œi - f3i + 'Yi and 5y = 5 - p + LI9~P Œi - f3 - 'Yi. Adding

them together, we obtain 5x + 5y = 25 - 2p + L19~P -2f3i < 25 so 5x < 5 or 5y < 5.

However, this contradicts our assumption that 5 is minimum. D

Now, for p = 2lists, we recall that LIST SYNTHESIS can be solved in polynomial time.

In particular, when p = 2, we have cxy + cyx = 2, and if x and y are not suited, then

cxy = cyx = 1. Thus, by Lemma 7.8, we solve the problem by first putting each suited pair

in their natural order and then arbitrarily ordering the remaining pairs with c xy = c yx = 1.

For p = 3, on the other hand, we do not know whether or not the problem is NP­
hard, and, for p 2 4, the problem is NP-hard so we solve these cases using a bounded

search tree algorithm. Algorithm initialization includes computing the crossing numbers

of each pair of elements in X, ordering suited pairs, and then kemelization, just like our

algorithms for l-SIDED CROSSING MINIMIZATION. However, sin ce cxy :::; p for each pair

163

CHAPTER 7. ONE-SIDED CROSSING MINIMIZATION

of elements x, y E X, initialization can be completed in O(pIXI2
) time. After initialization,

we construct and traverse a bounded search tree by selecting a pair of unordered elements

x, y E X at each non-Ieaf node and creating one child corresponding to setting x < y and

another child corresponding to setting y > x. Since x and y are not suited and cxy +cyx = p,

the size T(k) of the resulting search tree is bounded as folIows for large values of k:

T(k) ~ max {T(k - i) + T(k - p + i)}.
lStsp-l

We observe that T(k) ~ o:k for any 0: 2:: 1 that is a solution for each of the following

polynomial inequalities: o:p-i - o:p-2i - 1 2:: 0 for aIl 2 ~ 2i ~ p. In fact, this follows as

long as o:p-l - o:p-2 - 1 2:: 0 because 0: 2:: 1; therefore, the search tree has size T(k) ~ o:k

for the positive root of the polynomial o:p-l - o:p-2 - 1 = O.

We calI the algorithm Synthesizer:

Theorem 7.9 Let X be a set of elements, and, for some p 2:: 1, let XI, X 2 , . .. ,Xp be

subsets of X, each with a linear ordering 7ri. For any integer k 2:: 0, algorithm Synthesizer

determines in O(o:k + p . IXI2) time whether or not there exists a linear ordering 7r of X
such that L:lSiSP diff(7r, 7ri) ~ k, where 0: is the positive solution to o:p-l - o:p-2 - 1 = O.

Thus, for p 2:: 3 lists, the algorithm has running times similar to the following:

p running time

3 O(1.618k + IXI2
)

4 O(1.466k + IXI2
)

5 O(1.381k + IXI2
)

6 O(1.325k + IXI2
)

7 O(1.286k + IXI2
)

8 O(1.256k + IXI2
)

100 O(1.035k + IXI2
)

As one would expect from the math, as p increases the running time in terrns of k and

IXI decreases. However, this seems a little counter-intuitive because one would expect

the difficulty of the problem to increases as p increases. To capture this notion, it might

perhaps be better to parameterize in terrns of 1 = ~ rather than just k to capture the fact that

crossings are coming from p different lists. In that case, our running times look like the

following:

164

CHAPTER 7. ONE-SIDED CROSSINO MINIMIZATION

p running time

3 0(4.2361 + IXI2
)

4 0(4.6191 + IXI2
)

5 0(5.0241 + IXI2
)

6 0(5.4121 + IXI2
)

7 0(5.8171 + IXI2
)

8 0(6.1941 + IXI2
)

100 0(30.741 + IXI2
)

7.7 Conclusions and Future Directions

In this chapter, we have described the most recent FPT algorithm for solving the l-S IDED

CROSSING MINIMIZATION problem. In further studies, we would like to see if its running

time could be reduced by investigating cases where Cuv + Cvu = 4.

The other algorithm, called OSCM-C, shows how one way to incorporate divide-and­

conquer into the bounded search tree algorithms with very little time penalty in order to

obtain a heuristic speed-up. As we discussed in Chapter 6, we would like to determine

whether or not this divide-and-conquer approach can be used to obtain theoretical running­

time improvements.

Finally, we have described two related applications of l-SIDED CROSSING MINIMIZA­

TION, proved that their corresponding problems are NP-complete and showed how to eas­

ily modify algorithm OSCM so that it solves these new problems. These modified algo­

rithms are interesting because they show that bounded search tree algorithms can be quite

flexible, an unusual property for exact solutions to hard problems.

165

Chapter 8

Experiments with FPT Algorithms

To Mike and Fran-may your infectious love for adventure and one another never cool.

The algorithms described in Chapters 6 and 7 for solving crossing minimization and pla­

narization problems are among the first FPT algorithms used to draw graphs. Though,

in theory, fixed parameter tractability sounds like a promising approach for solving certain

NP-hard problems, it is not at all clear that these solutions have efficient implementations

that are competitive with other approaches.

In this chapter, we de scribe our implementations of two biplanarizing algorithms from

Chapter 6, and two crossing minimization algorithms from Chapter 7. The first biplanariz­

ing algorithm has a running time of O(6k + ICI) and the second algorithm is a divide­

and-conquer variation of this algorithm that has the same running time. We recall that, in

Chapter 6, we actually describe a faster aIgorithm that runs in O(3.562k + ICI) time. Un­

fortunately, we did not discover the branching rules described in Section 6.2 until recently.

On the other hand, we did know how to construct and traverse the tree by spending con­

stant time at each search tree node; therefore, the algorithm we use in the experiments in

this chapter runs in O(6k + ICI) time. In addition to this, our algorithm also pruned the

search tree by considering only candidate edges for removal (see Section 6.5). We cali this

algorithm TLP-6. In Section 6.4, we show how to obtain a divide-and-conquer version

of our O(3.562k + ICI) time algorithm; however, our description could be used instead to

obtain a divide-and-conquer version of TLP-6 with the same running time. Sorne of the

experiments of this chapter are with su ch an algorithm, which we calI TLP-C. Our crossing

minimization experiments are with implementations of algorithms OSCM and OSCM-C

as described in Chapter 7.

We show that our implementations are both competitive with existing approaches, and

that there is much room for improving their performance. We are particularly interested in

comparing our approach to the integer linear programming (ILP) approach of Jünger and

Mutzel [57,74] because, previously, theirs was the only practical approach for obtaining

exact solutions to these problems.

166

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

8.1 Implementation Details

We implemented aIl of our algorithms in the Java programming language. We initially con­

sidered using C++ because it appears to be the most popular language for implementing

algorithms. Indeed, there are sorne high-quality algorithms libraries available like the Li­

brary of Efficient Data Structures and Aigorithms (LEDA) [70]. This is the library used

to implement the branch-and-cut algorithms for I-SIDED CROSSING MINIMIZATION and

2-LAYER PLANARIZATION described in [57,74].

ln spite of this, we eventually chose not to use C++. First of aIl, we decided not to

use any of the algorithms libraries because none of them provided quite the right set of

data structures and algorithms for our purposes so it wasn't c1ear that using any of the

available libraries would have saved us much in the way of implementation time. Secondly,

we decided to use Java instead of C++ because Java programs are easier to write, maintain

and distribute. Java programs are easier to write because Java has a more principled design

than C++; as a result, it is much easier to leam and tends to result in programs that are

easier to understand. Java programs are easier to maintain because Java enforces many of

the most important programming practices recommended by software engineering experts

(see e.g. [65]). FinaIly, distribution of programs written in Java to users is more convenient

because, whereas C++ programs are distributed as system-dependent machine code, Java

programs are distributed in a so-called "byte code" form which is system-independent. As a

result, just about any Java program can be executed by any computer with a Java byte-code

interpreter. In fact, animations of our planarization algorithms are available as Java Applets

on the World Wide Web. In Appendix C, we illustrate in detail one difference between Java

and C++ which was an important factor in our decision to choose Java over C++.

We compiled the program using the byte-code compiler from the Java SDK version

1.4.1 from Sun Microsystems. We ran the experiments using their byte-code interpreter

on a 1 GHz Pentium III computer with 1 Gb RAM running Debian Linux version 2.4.18.

Actual running times depend on many factors such as the speed and architecture of the

computer, other processes running in the background, the quality of the implementation,

and the choice of implementation language; therefore, we also recorded the number of

high-Ievel steps taken by the algorithm to solve the problem. These values depend only on

the input graph and the algorithm. We inc1uded the running times in our results only to give

a rough idea of how long the implementation takes to planarize a graph.

167

CHAPT ER 8. EXPERIMENTS WITH FPT ALGORITHMS

8.2 Experiment Data

AlI of the pseudo-random graphs used in our experiments are from Stanford GraphBase

[62]. We chose to use this graph generator in order to test our algorithms on the same

graphs used by Jünger and Mutzel [57,74]. Detailed steps for generating these graphs are

described in Appendix B.

Stanford GraphBase generates pseudo-random graphs given a desired number of ver­

tices and edges. The system first creates a graph on the desired number of vertices without

any edges, and then adds the desired number of edges, each edge added by randomly se­

lecting its end-vertices. With this generation algorithm, each labelled graph on the given

number of vertices and edges has an equal chance of being generated. Unfortunately, the

trouble with this type of graph generation is that the resulting graphs tend to have very lit­

de structure, whereas, the graphs generated by practical applications like DNA mapping,

tend to have a lot of structure. In spite of this, we chose to use the Stanford GraphBase

in order to compare our results with results from other experiments that also used Stanford

GraphBase.

For future research, we would like to obtain graphs from DNA mapping and phyloge­

netics in order to better evaluate our the performance of our implementations in practice.

8.3 Two-Layer Planarization Experiments

As previously mentioned, we applied our two-Iayer planarization implementations to the

bipartite graphs from the Stanford GraphBase [62] that were used in the experiments of

Mutzel [74,75]. See Appendix B for detailed instructions for how to generate the set of

graphs used in these experiments.

Our experimental results are shown alongside those of Mutzel [75] in Table 8.1. Each

row in the table contains average values from applying each algorithm to 100 different

graphs. The colurnn labelled "T" gives the average running time, and "Steps" gives the av­

erage number of search tree nodes traversed. The colurnn labelled "%" denotes the number

of graphs G for which the algorithm was able to compute bpn(G) in under 600 seconds.

We note that Mutzel terminated the search for bpn(G) after 300 seconds. We chose to wait

600 seconds because, unlike branch-and-cut algorithms, ours do not maintain an improving

upper bound as they run; consequendy, it is more important for us to allow our algorithms

to completely finish their computations in order to obtain any data with which to analyze

the algorithms. Because branch-and-cut algorithms maintain an upper bound, Mutzel's ex­

perimental results inc1ude not only a running time but also an average guarantee of solution

168

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

value (Gar). More specifically, for each graph planarized, the value uPg:~::~rl x 100 is

computed, where Sol denotes the number of edges in a biplanar subgraph of G having the

most edges among the biplanar subgraphs found, and UpBound denotes the value of the

maintained upper bound determined by the linear programming relaxation when the time

limit of 300 seconds expired. The average guarantee of solution value (Gar) in the table of

results, denotes the average of these values over a set of 100 graphs.

It turns out that for the graphs investigated, our lower bound for bpn(G) is quite close to

bpn(G) itself. The difference between them is shown in the column labelled Diff in Table

8.1. For denser graphs we would expect this value to be smaller than for sparser graphs

because of the higher probability of having a spanning caterpillar. On average, this value is

around 0.6, so even our lower bound which is calculated in O(IGI) time is close to optimal.

8.3.1 ILP versus FPT

It would not be very meaningful to directly compare our running times to those of Mutzel

because of environment differences. More specifically, Mutzel's results were originally

reported in 1996 [74] so the computers used were slower than the ones we used. On the

other hand, their implementation language was C++ and used the branch-and-cut library

ABACUS [59], whereas our implementation language was Java and we did not use any

other libraries.

It is, however, meaningful to compare the shapes of the lEI versus running time (T)

graphs. In the first 17 rows of Table 8.1, we see that the FPT implementation is quite

efficient up to lEI = 55, finding exact solutions to all input graphs. After lEI = 55, our

implementation of TLP-6 is able to obtain exact solutions to only a few input graphs for a

maximum time of 10 minutes per graph. The branch-and-cut implementation, on the other

hand, demonstrates poorest performance at lEI = 50. However, after lEI = 50, it improves

as lEI approaches 100.

Thus, we see that these two different approaches may be complimentary. It appears

that, whereas FPT approach tend to be efficient on sparse graphs, the ILP approach tends

to be efficient on dense graphs. A possible reason for this is that the ILP approach finds

an optimal solution by repeatedly finding approximate solutions that close in on the opti­

mal solution. For planarization, this means that an branch-and-cut algorithm begins with a

biplanarizing set of size between bpn(G) and lEI - IVI + 1, and then finds increasingly

smaller biplanarizing sets until one of size bpn(G) is found. For dense graphs, the proba­

bility that bpn(G) = lEI - IVI + 1 is high, so the branch-and-cut algorithm begins with a

solution very close to the optimal. Our FPT algorithm, on the other hand, finds bpn(G)

169

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

by beginning with a lower bound for bpn (G) and then working upward toward the optimal.

As a result, the FPT algorithm is more efficient when bpn(G) is close to the lower bound.

In addition, the FPT algorithm traverses search trees whose sizes are bounded by bpn(G);

therefore, smaller values of bpn(G) and, consequently, sparser graphs are preferred.

The divide-and-conquer version of the FPT algorithm, TLP-C, is the c1ear winner in

aIl experiments except possibly the cases where IViI = 80,90,100 and lEI = 160,180,200,

respectively. In these cases, we are not entirely sure which approach is the winner because

the ILP approach was not able to obtain optimal solutions for these values of IViI and lEI,
and the divergence ofits solutions from the optimal increases for larger values of IViI and

lEI·
Though we hypothesized that this version of the FPT algorithm would perform better

than the original FPT algorithm, we had no idea that the improvement would be so dra­

matie. The biggest surprise is its improvement with respect to dense graphs. One possible

explanation is that aIl graphs become fairly sparse at sufficient depth in the search tree so

the algorithm is able to "divide-and-conquer" these graphs very efficiently.

8.3.2 Sparse Graph Experiments

In Chapter 6, we also hypothesized that if we applied TLP-C to sparse graphs of equal

density but different sizes, then the running time should increase polynomially as graph

size increased. This hypothesis arises from the assumption that a large sparse graph is

composed of several smaller sparse subgraphs of similar density that are very "loosely"

connected together.

Results from experiments designed to test this hypothesis are illustrated in Figures 8.1

and 8.2. Detailed results are given in Appendix D. We consider three graph densities

(IEI/IVI): 0.6, 0.8 and 1.0. Figure 8.2 shows a c10ser view of the results for density

IEI/IVI = 0.6.

Looking at the results, it is rather difficult to determine whether or not our hypothesis

is correct. Of aIl three densities, IEI/IVI = 0.6 is the only one that might support our

hypothesis. In other words, we might say that, for TLP-C, a sparse graph has density

IEI/IVI ::; 0.6. To confirm this, it would be necessary to run further experiments with

much larger graphs. This would give us a longer curve to look at.

170

18000

16000

14000

12000

'" 10000 c..
B
'"
0

:jj: 8000

6000

4000

2000

0
0 20 40

CHAPT ER 8. EXPERIMENTS WITH FPT ALGORITHMS

Il
Il
Il

, . , ' , '
" "
" "
",' "
:::: :::

~ : : :: : ~
~ ~ :::::
" " .".,
:; :: :::::

HM'··
. '"

,J, • t·.::···.~ :
;0

....... :·r· ..

60 80 100
IVI

EIY=.6 --
ElY =.8
EIY=I----·_

"
120 140 160 180 200

Figure 8.1: Number of Steps vs. IViI when IEI/IVI = 0.6,0.8,1 from experiments with
TLP-C.

8.4 One-Sided Crossing Minimization Experiments

After our results with planarization problems, we were surprised that our one-sided crossing

minimization experimental results did not compare so favourably with those of Jünger and

Mutzel [57,58]. The results of our experiments are shown alongside their results in Table

8.2. Each row in the table corresponds to the average values of applying the algorithm to

100 different graphs generated by Stanford GraphBase [62]. For detailed instructions on

how to generate these graphs or to repeat these experiments, see Appendix B. In Table

8.2, the colurnn labelled "T" gives the average running time, and "Steps" gives the average

number of search tree nodes traversed. The column labelled "%" denotes the number of

graphs G for which the algorithm was able to compute bcr(G, 7r) in under 600 seconds. We

note that Mutzel terrninated the search for bcr(G, 7r) after 300 seconds.

8.4.1 Unexpected Results

Surprisingly, our crossing minimization results are almost the reverse of what we obtained

for planarization. First of aIl, our FPT approach performs fairly weIl on dense graphs but

171

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

350

300

250

'" 200
Q.
E
'"
0

::II: 150

100

50

0
0 20 40 60 80 100 120 140 160 180 200

IVI

Figure 8.2: Number of Steps vs. IViI when IEI/IVI = 0.6 from experiments with TLP-C.

dismally on sparse graphs. In addition, whereas TLP-C was significantly better than TLP-

6 for planarization, the reverse is true for crossing minimization, OSCM performs slightly

better than OSCM-C in almost aIl cases. This is surprising because our FPT algorithms

for planarization traverse search trees of size up to 6bpn(G), whereas our FPT algorithms

for crossing minimization traverse search trees of size up to 1.47bcr(G,7r). It would seem,

then, that if either of them were to be successful, then it would be the crossing minimization

algorithms.

Fortunately, however, we may be able to explain our results. For sparse graphs, our

experimental results, as expected, resemble an exponential function like 1.47bcr(G,7r). How­

ever, in addition to this, the average value of bcr(G, 7r) for each value of 1 Vi 1 appears to be

in the order of e(IViI 2
). This implies that the value of bcr(G, 7r) is tied to the size of the

graph. Consequently, the running time of our FPT algorithm is exponential in the size of

the graph G. It is easy, then, to imagine why the algorithm is not effective when applied

to the set of sparse graphs. In the planarization results of Table 8.1, on the other hand,

the value of bpn(G) is always much smaller than the number of vertices in the graph G.

In other words, the sparse graphs in the crossing minimization experiments are actually not

sparse in terms of their crossing numbers since even the sparse graphs have very large cross-

172

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

ing numbers. We hypothesize, then, that experiments on graphs with small crossing number

would better show the strength of our implementations in comparison to other approaches.

With dense graphs, the running times of our FPT algorithms do not resemble a func­

tion anything like O(1.47bcr(G,1f»). In fact, as the the average bcr(G,n) value increases,

the average time to solve each problem decreases. This suggests that the ability of the al­

gorithm to prune the bounded search tree increases drastically as edge density increases.

Recall from Chapter 7 that the algorithm attempts to prune the search tree using kernelizing

rules to automatically order certain pairs of vertices. One of these rules states that two ver­

tices with the same set of neighbors can be arbitrarily ordered. The possibility of applying

this rule increases as edge density nears its maximum value. The maximum density we

con si der occurs when IViI = 20 and lEI = 360. This is very close to the maximum possible

densityat IViI = 20 and lEI = 400. However, the application of this rule does not explain

the overall trend which begins at IViI = 20 and lEI = 120, when each of the 20 vertices

in the unordered layer has an average of 6 neighbors in the ordered layer containing a total

of 20 vertices. In this case, it is very unlikely that two vertices in a random graph have the

same set of neighbors. It is also unlikely that many vertices have less than four neighbors

in these graphs so we can be reasonably sure that it is our dynamically maintained lower

bound that is responsible for search tree pruning (see Section 7.2.2). At each search tree

node, we decide whether to investigate its subtree by comparing a lower bound L against

our parameter k. If L is greater than k, then we conclude that the subtree contains no

solutions so we ignore it; otherwise, L ::; k and we explore the subtree.

The experiments of Jünger and Mutzel [57] agree with this conclusion because they

show that the median heuristic is one of the most effective heuristics for one-sided crossing

minimization. As described in Section 1.3.2, this heuristic is called an "averaging heuristic"

because it computes an "average position" for each vertex based on the positions of its

neighbors, and then orders the vertices according to their "average position" values. More

specifically, in this heuristic, the "average position" of a vertex is the same as the position

of its neighbor with the median position over aIl its neighbors. Very roughly, then, if vertex

u appears to the left of v in the final ordering, then there is a neighbor u' of u that appears

to the left of a neighbor Vi of v, and half of the neighbors of u appear before u' and half

of the neighbors of v appear before Vi. Thus, if we consider u and v alone, they contribute

fewer edge crossings to the total solution if u is to the left of v. This coincides with exactly

how our lower bound rule would prune the search tree, if applicable. This is because lower

bounds corresponding to the branch in which u is left of v is strictly smaller than the branch

in which u is right of v. Consequently, if applicable, the lower bound rule would prune the

branch corresponding to u right of v and keep the other branch.

173

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

Table 8.1: Two-layer planarization results for bipartite graphs with Illi 1 vertices per bipar­
tition cIass and lEI edges. We note that each ILP experiment was terminated after 300
seconds, and each FPT experiment after 600 seconds.

ILP TLP-6 TLP-C
Illii lEI bpn Diff Gar T T Steps % T Steps %
20 20 0.72 0.06 0.00 0 0 5 100 0 2 100
20 25 1.47 0.12 0.00 0 0 8 100 0 2 100
20 30 3.00 0.24 0.00 0 0 25 100 0 5 100
20 35 4.91 0.41 0.00 1 0 90 100 0 14 100
20 40 7.65 0.34 0.00 6 0 595 100 0 76 100
20 45 10.66 0.15 0.03 26 0 1,829 100 0 85 100
20 50 14.29 0.19 0.67 100 2 53,416 100 4 4,694 100
20 55 18.27 0.35 0.53 81 41 1,767,872 96 1 946 100
20 60 22.53 0.30 0.37 56 - - - 5 6,232 100
20 65 27.21 0.49 0.32 54 - - - 3 3,645 97
20 70 31.75 0.46 0.13 26 - - - 7 8,263 99
20 75 36.54 0.32 0.13 22 - - - 2 2,249 100
20 80 41.41 0.28 0.03 12 - - - 2 2,060 99
20 85 46.27 0.22 0.10 20 - - - 5 5,366 100
20 90 51.23 0.21 0.02 8 - - - 6 6,503 99
20 95 56.20 0.17 0.00 4 - - - 8 8,276 99
20 100 61.10 0.09 0.00 4 - - - 4 5,243 98
20 40 7.43 0.32 0.00 6 0 495 100 0 95 100
30 60 II.30 0.46 0.13 49 1 10,559 100 0 356 100
40 80 15.63 0.49 0.55 150 9 243,760 100 3 3,002 100
50 100 19.40 0.56 1.45 253 43 1,281,694 97 14 11,876 99
60 120 23.55 0.66 1.86 279 - - - 64 48,240 96
70 140 27.51 0.59 2.35 294 - - - 129 91,339 88
80 160 30.64 0.49 2.90 300 - - - - - -
90 180 - - 3.48 301 - - - - - -

100 200 - - 4.67 300 - - - - - -

174

.....
-.}
VI

Table 8.2: One-sided crossing minimization results for bipartite graphs with IViI vertices per bipartition class and lEI edges. We note
that the each FPT experiment was terminated after 600 seconds.

ILP OSCM OSCM-C

IViI lEI ber Diff T Steps T % Steps T %
20 40 179.36 0.45 0.02 548.12 0.14 100 657.06 0.51 100
20 80 970.50 1.99 0.03 7494.57 2.00 100 7,234.65 8.71 100
20 120 2,452.13 2.26 0.03 3394.35 0.96 100 3,280.13 4.23 100
20 160 4,655.86 2.12 0.04 3064.95 0.87 100 3,045.71 3.88 100
20 200 7,531.25 1.51 0.05 1966.16 0.60 100 2,038.21 2.75 100
20 240 11,353.04 1.34 0.07 1951.70 0.54 100 1,889.22 2.25 100
20 280 15,863.25 0.55 0.09 704.52 0.23 100 767.75 1.01 100
20 320 21,294.51 0.32 0.11 533.70 0.17 100 509.20 0.66 100
20 360 27,736.15 0.06 0.14 226.52 0.10 100 224.97 0.36 100
10 20 37.34 0.00 0.00 19.63 0.01 100 25.52 0.03 100
20 40 178.57 0.40 0.01 325.80 0.09 100 275.67 0.48 100
30 60 430.21 1.45 0.11 71,750.26 15.72 97 22,768.08 31.95 97
40 80 765.70 4.20 0.30 156,031.21 62.68 80 54,468.60 109.77 75
50 100 1252.20 4.90 0.68 302,475.43 137.86 35 61,245.62 196.07 29
60 120 1687.60 4.50 1.09 303,426.92 173.60 13 108,789.30 372.66 10
70 140 2479.00 14.00 4.46 204,463.00 522.82 2 282,390.00 804.99 1
80 160 3172.10 18.20 6.42 - - - - - -
90 180 4132.80 28.80 25.13 - - - - - -

100 200 5162.70 35.30 435.51 - - - - - -

@
:>
'"0

tii
~
?Cl

~
~
~

~
~
~
~
~
~
~

~
Q

~
~
~

CHAPTER 8. EXPERIMENTS WITH FPT ALGORITHMS

8.5 Conclusions and Further Experiments

In this chapter, we described our implementations of FPT algorithms for 2-layer graph

drawing, and showed that they are competitive with existing branch-and-cut algorithms.

Sine these are only the tirst experiments using tixed-parameter tractability to solve graph

drawing problems, many more algorithms remain to be discovered, programming solutions

with improved performance to be implemented, and, of course, many more experiments

to be performed. In particular, in Chapter 6, we described planarization algorithms with

improved running times that may have implementations with improved performance. The

only way to know for sure, is to implement them and perform experiments.

In this chapter, aIl of our experiments involved pseudo-random graphs. To better study

the performance of our approach and that of others, we would like to obtain graphs from

applications like DNA mapping and phylogenetics. Related to this, we noted that the so­

called "sparse" graphs used in our crossing minimization experiments were not really sparse

in terms of the number of crossings in their drawings or in terms of applications like DNA

mapping. We would like to know how our approach performs on these graphs, and whether

or not it resembles the performance of our approach to planarization. We would also like to

know how other approaches perform in these extremely sparse graphs.

176

Chapter 9

Conclusions and Future Research

To Jesus-your thoughts are like discovering a theorem.

ln this thesis, we have investigated problems related to layered graph drawing. The purpose

of this thesis was to obtain efficient algorithms for sorne of these problems that can be used

to obtain drawings in practical applications. Indeed, we have found linear-time algorithms

for obtaining proper 3-layer pl anar drawings and planar layered drawings of trees.

For drawings in which edges are permitted to bend, we had initially believed that the

related recognition and drawing problems would be polynomial. Surprisingly, however,

we have shown that they are in fact NP-hard. In spite of this, we were able to obtain a

linear-time algorithm for drawing 2-outerplanar graphs using our characterization for two­

layer drawings. Our characterization may yet lead to efficient algorithms for other classes

of graphs.

ln the second part of the thesis, we studied two-Iayer drawings that may contain edge

crossings. Here we were able to modify an existing FPT algorithm for the l-SIDED

CROSSING MINIMIZATION problem to obtain the first FPT algorithms for two related

NP-complete problems. For the l-LAYER PLANARIZATION and 2-LAYER PLANARIZA­

TION problems, we discovered new FPT algorithms with running times that are much

better than previous algorithms. In the final chapter, we showed that parameterized com­

plexity not only has a theoretical contribution but also a practical contribution to make to

graph drawing.

We now conclude this thesis by listing the open problems and future directions raised

by the investigations of this thesis.

Chapter 3 Proper 3-layer drawings .

• Is it possible to extend our results for proper 3-layer planarity to proper 4-layer

planarity?

• Can our approach to proper 3-layer planarity be modified for non-proper layered

drawings?

177

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

• Can the graph reduction approach [3,69,85] for recognizing graphs with treewidth

equal to 3 and 4 be used for 3 and 4-layer planarity?

Chapter 4 Tree drawings.

• Is there an efficient way to compute the minimum number of layers required to

draw any given tree (under the unconstrained, proper, short and upright drawing

models)?

• Can the approach described in this chapter be used to draw other classes of

graphs, e.g. outerplanar graphs?

Chapter 5 One-bend drawings.

• What is the complexity of recognizing graphs that have planar drawings with

one-bend-per-edge on two non-parallellayers?

Is there a concise characterization of the graphs that admit su ch drawings?

• What is the complexity of recognizing graphs that have planar drawings with

one-bend-per-edge on a single convex poly-tine composed of a constant number

of tine segments?

Is there a concise characterization of the graphs that admit su ch drawings?

• Can our characterization of 2-layer, I-bend planarity be generalized to charac­

terize 3-layer, I-bend planarity?

• Can we use our characterization of 2-layer, I-bend planarity to obtain efficient

algorithms for obtaining 2-layer, I-bend planar drawings of any well-known

classes of graphs? Recall that we show that this is the case for 2-outerplanar

graphs. Are there other classes?

Chapter 6 Biplanarization algorithms.

• Are there asymptotically faster algorithms for planarization?

• ... by incorporating ambivalent edges and other heuristics?

• ... by incorporating the divide-and-conquer approach? Recall that the divide­

and-conquer approach did not change the asymptotic running time but did im­

prove experimental results quite dramatically as described in Chapter 8.

• Do the improved planarization algorithms described in this thesis suggest better

approximation algorithms?

Currently, there is a 2-approximation for 2-LAYER PLANARIZATION and a 3-

approximation for l-LAYER PLANARIZATION [25].

178

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

• Are there efficient FPT algorithms for k-layer planarization? Healy, Kuusik

and Leipert [49] derive the minimal subgraphs that are not proper k-layer planar

(after the vertices have been assigned to layers). From this result, it would be

possible, for example, to derive minimal subgraphs that cannot belong to 3-1ayer

planar graphs. If these subgraphs contain at most d edges each, then we have a

trivial O(dk ·IGI)-time algorithm for the 3-layer planarization problem.

Chapter 7 One-sided crossing minimization and applications

• Are there asymptotically faster algorithms for l-SIDED CROSSING MINIMIZA­

TION?

• ... by incorporating the divide-and-conquer approach?

• Is there an efficient algorithm for 2-SIDED CROSSING MINIMIZATION?

Note: we believe that we have discovered one algorithm which combines ideas

from crossing minimization and planarization. Until we have formally de­

scribed and proved the correctness of the algorithm, the problem remains open.

The algorithm appears to have a running time of approximately O(12k + IGI)

but we have improvements in mind that could reduce the running time to O(Sk +
IGI).

• Is the k-LIsT SYNTHESIS problem NP-hard for p = 3lists?

Chapter 8 Experiments with FPT algorithms.

• Further experiments with data from the l-SIDED CROSSING MINIMIZATION

applications for comparing phylogenetic trees and synthesizing lists.

• Investigate ways of combining the advantages of our FPT implementations

with branch-and-bound solutions.

e.g. it appears that the FPT implementations are efficient because they are

so problem-specific and can make effective use of a parameter. It would be

interesting to study different ways of incorporating parameters into branch-and­

bound solutions.

[Suggested by Peter Eades (private communication, 2005).]

• Implement and repeat the experiments with the most recent planarization algo­

rithms described in the thesis.

• Parallelize our implementations and performing experiments.

Parallel bounded search tree algorithms have already been implemented for the

VERTEX COVER problem [2].

179

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

• Implement and experiment with approximation approaches based on bounded

search tree algorithms:

e.g. Consider a search tree bounded by parameter k = a and another tree

bounded by parameter k = a + 1. If the first tree contains solution nodes, then

the second tree contains at least as many solutions nodes, and possibly more.

For example, for 2-LAYER PLANARIZATlON, if Sis a biplanarizing set of size

a, then S U { e } for any edge e rt S is also a biplanarizing set, but of size a + 1.

Thus, if the first tree has ~ solutions, then the second tree has atleast (IEI-a)~

solution nodes, where lEI is the number edges in the graph. Generalizing, then,

the tree bounded by k = a + (3, for sorne 0 ::; (3 ::; lEI - a, has at least

(IEI- a)(IEI- a - 1) ... (IEI- a - (3 + 1)~ which is approximately IEIJ3 ~
for small enough (3. Of course, bounding the search tree by k = a+(3 rather than

k = a results in a larger bounded search tree, however, searching the larger tree

may actually be faster because it contains so many more solution nodes (as soon

as the search algorithm finds a solution node, it stops). In fact, as (3 increases, the

number of solutions increases exponentially, and much faster than the bounded

search size increases. For example, one of our search tree algorithms constructs

a tree of size 3.562k so, as (3 increases, the tree size increases by a factor of

3.562 whereas the number of solutions increases by a factor of lEI.
According to our experimental results shown in Table 8.1, the biplanarizing

number of most graphs is less than or equal to our lower bound plus 1 or 2.

Therefore, for most graphs, we could tum our algorithms into approximation

algorithms by simply applying them with the parameter k set to the initiallower

bound plus 2.

[Suggested by Mike HaIlett (private communication, 2005).]

• Experiment with heuristic approaches based on exact algorithmic solutions:

e.g. Cook and Seymour [16] de scribe a heuristic approach to solving the trav­

elling salesman problem by first applying several heuristic algorithms that each

compute a tour, then creating a restricted graph consisting of the edges from

each of these tours, and then applying an exact solution for solving the trav­

elling salesman problem on the restricted graph. By definition, the resulting

algorithm will do at least as weIl as the best heuristic algorithm, and often bet­

ter.

In terms of 2-LAYER PLANARIZATlON problem, we would simply obtain a

collection of heuristic and approximation algorithms, apply them to an input

graph, mark each edge removed by one of these algorithms as "removable," and

180

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

then apply any one of the biplanarizing algorithms described in Chapter 6 to

the same graph except that the algorithm may only consider removing edges

marked "removable." For example, if the algorithm is branching on removing

a 2-claw that contains only two edges marked "removable", then the algorithm

considers only two branches rather than six branches.

[Suggested by Mike Fellows (private communication, 2004).]

181

AppendixA

Problems with the Proper 3-Layer

Planarity Testing Algorithm of Fo8meier

and Kaufmann

FoBmeier and Kaufmann [40] daim to have a linear-time algorithm for proper 3-layer pla­

narity testing; however, the description of their algorithm contains ambiguities and does not

appear to be correct.

Below is their proper 3-layer planarity testing algorithm as described in [40]. In the

algorithm description, a vertex is small if it is leaf; on the other hand, if a vertex has at least

two neighbors, then it is said to be large. We have also inserted our own boxed comments

to darify or point out what we believe to be errors in the algorithm.

test(G = (Vi, Va; E), borders)

The input to the algorithm is a bipartite graph G = (Vi, Va; E) and a set of

vertices borders. The algorithm returns true if and only if G has a proper 3-

layer planar drawing in which the vertices of Vi lie on the middle layer and, if

borders contains at least one vertex, one vertex in bord ers has the smallest x­

coordinate in the drawing, and, if borders contains two vertices, then the other

vertex has the largest x-coordinate in the drawing. We observe, then, that if

we want to know if G is proper 3-layer planar, then we set borders = 0. If

1 borders 1 > 2, then the algorithm returns false.

(a) (* Simple checks *)

(1) if IVII ~ 1 then return true;

(2) if there is a small vertex v E Vi then

if v E borders then insert v's neighbor into borders fi;

call test(G \ {v}, borders \ {v});

182

APPENDIX A. ALGORITHM OF FOSSMEIER AND KAUFMANN

Error: Consider the following graph G

vertices of Va are darkened:

v

(Vt, Va; E) where the

The algorithm would first remove v from the graph as described in

(a2). The remaining graph G - v is clearly proper 3-layer planar

so the recursive caU to the algorithm should return true. However,

by Theorem 3.1, this graph is not proper 3-layer planar because the

main biconnected component is not safe (see Definition 3.4).

(3) if there is a vertex v E Vt with > 4 large neighbors then return false;

(* the non-trivial cases *)

(b) there are vertices in VI with four large neighbors; let v be such a vertex

if v is a separator vertex and aIl (at most four) connected components

of G \ {v} are drawable in the two-sides-constrained model (where v
gets a new border) and at most two of the components are no-caterpillar

components then return true else return false;

A separator vertex is a eut-vertex, Le. a vertex whose removal from

a graph disconnects the graph. The two-sides-constrained model is ex­

actly the proper 3-layer planar drawing model. We assume that the phrase

"where v gets a new border" means that, in each recursive calI, v is added

to the set of borders. From the description of the algorithm, it sounds like

the recursive caUs are testing the drawability of components of G - v.

In fact, according to the proof of correctness, the recursive caUs are ac­

tuaUy being applied to G(V(H) + v) for each component H of G - v.

More specificaUy, when the algorithm says that a component H is or is

not a caterpillar, it should actually say that G (V (H) + v) is or is not a

caterpillar.

(c) there are sorne vertices in Vt with three large neighbors; let v be su ch a

vertex;

(1) if v is a separator vertex then we make the same test as in case (b)

(2) else we need a more special case analysis involving separator edges

which is omitted;

183

APPENDIX A. ALGORITHM OF FOSSMEIER AND KAUFMANN

A separator edge is an edge (u, v) such that removing u and v dis­

connects the graph. The special case analysis mentioned here does

not appear anywhere in the literature. Unfortunately, by definition,

the separator edge referred to belongs to a cycle. Based on the fact

that the bulk of the complexity in Theorem 3.1 relates to cycles, we

would be very surprised if there is a straight-forward way to handle

this case.

(d) (*alI vertices in VI have at most 2 large neighbors *)

(1) if there is a separator vertex v E Vi
then calI test for the two connected components of G \ {v} after

inserting v into borders for these procedure caUs;
Error: The graph drawn below is proper 3-layer planar but, if v E VI

is the separator vertex in case (dl), then one of the recursive calls

would retum false because one of the components of G - v plus v

does not have a proper 3-layer pl anar drawing in which v has the

smallest or largest x-coordinate in the drawing.

We note that each vertex of Vi in this counter-example has at most

two non-Ieaf neighbors and none of them is a leaf; therefore, cases

(a)-(c) do not apply.

It seems that that this error could be corrected by a more careful

analysis of the components of G - v. Most likely, v should be added

to borders in the recursive calls only for components of G - v that

are not caterpillars.

(2) if there is a separator vertex w E Va then

if there are at most two no-caterpillar components among the con­

nected components of G \ {w} then calI test for the no-caterpillar

components after inserting w into borders for the se calls else retum

false;
In case (b) above, we showed that the authors were actually not refer­

ring to components H of G - w but rather subgraphs G(V(H) + w).

Here, again, the recursive calls apply to G(V(H) + w).

(3) (* no separator vertices at alI, vertices in Vi have degree 2 *)

let L be the graph obtained by replacing aIl v E Vi by edges be-

184

APPENDIX A. ALGORITHM OF FOSSMEIER AND KAUFMANN

tween its neighbors. if Lis a ladder graph (an outerplanar graph with

completely nested shortcut edges) then return true else return false;
We assume that the authors mean that, not only must L be a ladder

graph, but it must have a drawing in which one vertex of border,

if 1 border 1 > 0, has the smallest x-coordinate in the drawing and

the other vertex, if Iborderl > 1, has the largest x-coordinate in the

drawing.

If this is the case, then the algorithm would reject the foUowing graph

even though it is proper 3-layer pl anar:

Since the graph contains four separator vertices in Va, the algorithm

would return false because any attempt to recursively draw the main

biconnected component in the graph would require the parameter

borders to contain aU four separator vertices. This is due to case

(d2) which is not described here but is similar to (dl), except that

it applies to vertices in Va rather than Vi. However, as mentioned

above, the algorithm would return false because borders may con­

tain at most two vertices.

If this is not the case (i.e. the algorithm ignores borders in case

(d3», then the algorithm would return true for the foUowing graph

even though it is not proper 3-layer planar:

This is one of the problems that we address in our characterization

by defining safe biconnected components (see Definition 3.4).

185

AppendixB

Detailed Instructions for Repeating

Experiments

B.l Two-Layer Planarization Experiments

The graphs for the experiments corresponding to the first 17 rows of Table 8.1 can be re­

produced using the Stanford GraphBase [62]. We first generated 1700 random integers be­

ginning with seed 5841. From each integer we generated a bipartite graph with 1 Vi 1 vertices

in each bipartition set and lEI edges. The graphs used in the experiments corresponding

to the last 9 rows can be generated by first generating 900 random integers beginning with

seed 4741, and then, from each integer, generating a bipartite graph with IViI vertices per

bipartition set and lEI edges.

Below is the corresponding code written in C:

1. "Dense graphs" corresponding to the first 17 rows of Table 8.1.

1. unsigned long v = 20;

2. int i;

3. Graph *G;

4. unsigned long seeds[1700];

5. gbjniLseed(5841);

6. for (i = 0; i < 1700; i++) {

7. seeds[i] = gbJlexLrandO;

8. }

9. for (unsigned long e = 20, i = 0; e :::; 100; e += 5, i++) {

10. for (int j = 0; j < 100; j++, i++) {

11. G = random_bigraph(v, v, e, 0, 0, 0, 0, 0, seeds[i]);

/1 output G

12. }

186

APPENDIX B. DETAILED INSTRUCTIONS FOR REPEATING EXPERIMENTS

13. }

2. "Sparse graphs" corresponding to the last 9 rows of Table 8.1.

1. Graph *G;

2. int i;

3. unsigned long seeds[900];

4. gbjniLseed(4741);

5. for (i = 0; i < 900; i++) {

6. seeds[i] = gbJ1exLrandO;

7. }

8. for (unsigned long v = 20, i = 0; v ::; 100; v += 10, i++) {

9. unsigned long e = v+v;

10. for (int j = 0; j < 100; j++, i++) {

11. G = random_bigraph(v, v, e, 0, 0, 0, 0, 0, seeds[i]);

/1 output G

12. }

13. }

3. "Sparse graphs" used to compute Tables D.1, D.2 and D.3 are generated with similar

code, initializing the Stanford GraphBase random number generator with seed 4741.

The following files need to be incIuded in the programs above:

#include "gb_flip.h"

#include "gb_graph.h"

#include "gb_rand.h"

The reason why we put all the random graph seeds into an array (seeds[]) is because the

random graph generator uses the random number generator. As a resuIt, had we generated

each random graph seed immediately before generating its corresponding graph, we would

have generated a different sequence of random graphs.

In the code mentioned above, we incIude a comment that would be replaced by code for

saving or otherwise communicating the contents of the graph to the planarization program.

To see how this might be done, we incIude a piece of C code that prints the graph to the

terminal (standard output), one edge per line and each edge printed as a pair of comma­

separated vertices.

1. Vertex *vertex = G ---+ vertices;

2. Arc *arc;

187

APPENDIX B. DETAILED INSTRUCTIONS FOR REPEATING EXPERIMENTS

3. for (; vertex < G -+ vertices + G -+ n; vertex++) {

4. for (arc = vertex -+ arcs; arc; arc = arc-+ next) {

5. if (vertex < arc-+tip)

6. printf("%s, %s\n", vertex-+name, arc-+tip-+name);

7. }
8. }

B.2 One-Sided Crossing Minimization Experiments

Unfortunately, though we were able to obtain the same graphs as those used by Jünger and

Mutzel [57], we were not able to determine how they selected an ordering for the vertices

on the ordered layer. Here we describe how we selected the ordering. Suppose we create a

given graph with the following function caU to Stanford GraphBase:

G = random_bigraph(v, v, e, 0, 0, 0, 0, 0, seeds[i]);

The vertices in the bipartition class of size v can be referenced using G -+ vertices[i]

where i is in the range O ... v - 1. The other bipartition, of size v, can also be referenced

using G -+ vertices[i] but with i in the range v . .. v + v - 1. In our experiments, we

chose the vertices in the first bipartition class to be unordered and the vertices in the second

bipartition class to be ordered as they appear in the array G -+ vertices. In other words,

if our algorithm found a solution to the problem for graph G, then the layer containing

the vertices of G -+ vertices[O .. v - 1] would be ordered so as to minimize the number of

crossings when the remaining vertices of G -+vertices[v .. v + v - 1] on the opposite layer

are ordered as they appear in the array.

Below we describe the C code for generating the graphs used in the experiments:

1. "Dense graphs" corresponding to the first 9 rows of Table 8.2.

This is the same as the "Dense graphs" code for the planarization experiments with

the exception that, as can be seen from Table 8.2, 1700 must be replaced with 900,

e=20 with e=40, and e ::; 100 with e ::; 360.

2. "Sparse graphs" corresponding to the last 10 rows of Table 8.1.

This is the same as the "Sparse graphs" code for the planarization experiments with

the exception that, as can be seen from Table 8.2, 900 must be replaced with 1000,

and v=20 with v=lO. In addition, we initialize the random number generator with

5841 instead of 4741.

188

Appendix C

Rationale for Choice of Java as

Implementation Language

We illustrate one specific difference between Java and C++ encountered when implement­

ing data structures in each language that store and operate on generic data objects. We

highlight the difference because aIl recently designed algorithms libraries including ours

contain dozens of su ch data structures.

In Java, it is quite straight-forward to implement su ch data structures because every data

object belongs to the class Obj ect. This is not, however, the case in C++ because there is

no universal class like Obj ect in the language.

In C++, there are basicaIly two ways to implement generic data structures. One is to

define a "generic" object class and require that aIl objects stored by the data structures

belong to this class. Unfortunately, if a program uses this data structure and other third­

party software libraries, such as LEDA or a library for displaying graphies, then, since the

third-party software library knows nothing about this special "generic" object class, it will

be impossible to store objects from such a library in the data structure. There are ways to

work around this problem but they tend to create overly-complicated programs.

A second option is to use template classes. Template classes are a generalization of

regular classes whose definitions include one or more class name placeholders. To create

objects belonging to a template class, a program provides a specific object class for each

placeholder. For example, if a list class is defined as a template class where the objects to

be stored in the list are represented by a class name placeholder, then we create a list of

say, integers, by replacing the placeholder with the integer class name. Template classes

are an excellent idea in theory, but they are notoriously difficult to support in practice; as

a result, most C++ compilers do not fully support them. In addition to this, when most

C++ compilers encounter a statement creating an object from a template class, the compiler

looks up the template, creates an entirely new class by replacing the class placeholders with

actual class names and then compiling this new class. This obviously has the potential of

189

APPENDIX C. RATIONALE FOR CHOICE OF JAVA AS IMPLEMENTATION
LANGUAGE

typedef void* Voidptr; template <class DATA>
class GenericList

class List {
{
public:

Node& insert
(Node& node, VoidPtr data);

VoidPtr get{const Node& node);

}

public:

Node& insert
(Node& node,

}

const DATA& data) {
return
list.insert{node, &data);

DATA& get

}

(const Node& node) {
return

* (DATA*)list.get(node) ;

private:
List list;

}

Figure C.l: Illustration ofhow to implement a generic list data structure in C++.

unnecessarily creating enormously large programs.

One way to work around these problems with templates, a solution used to implement

LEDA, is to implement two classes for each data structure, a light-weight template c1ass

which acts as a "false front" for a second regular class whose data objects are "void" point­

ers. In C++, a "void" pointer can point to any machine address, and therefore any piece of

data regardless of its class. Consider the list data structure as an example. The list template

class, caB it GenericList, defines operations on a sequence of data objects belonging to

a class represented by a placeholder, while the regular list class, caB it List, operates on

a sequence of "void" pointers. A closer look at these definitions reveals that List defines

a typical linked list that one might see in any introductory programming course, whereas

GenericList contains little more than the data class placeholder and caBs to a list of

type List. See Figure C.l for more details. The definition of insert in the template

class first obtains a "void" pointer (VoidPtr) to the data object to insert and then inserts

190

APPENDIX C. RATION ALE FOR CHOICE OF JAVA AS IMPLEMENTATION
LANGUAGE

it into the regular list object. Conversely, the detinition of get in the template class tirst

obtains the "void" pointer to the desired data object and then uses this pointer to return the

data object it points to.

Clearly, this solution is much more complicated, prone to error, and time-consuming

than a similar Java implementation.

191

AppendixD

Sparse Experimental Results

Here we present detailed results from the sparse graph experiments applied to the div ide­

and-conquer FPT algorithm described in Section 8.3.2 of Chapter 8. We considered three

different graph densities, 0.6, 0.8 and 1.0. Each row in the three tables below give the

average results of applying our algorithm to 100 bipartite graphs with 1 Vi 1 vertices per

bipartition set and lEI edges. Column bpn contains the average biplanarization set size,

Diff the average difference between the lower bound and bpn, Steps the average number

of search tree nodes traversed to compute bpn, and % the number of graphs for which the

algorithm found bpn in under 15 minutes.

If the algorithm was unable to solve at least 95 ofthe 100 input graphs, then we imme­

diately aborted the experiment for the CUITent edge density.

AlI of the graphs were generated using Stanford GraphBase. See Appendix B for details

on how to generate exactly the se graphs.

Table D.1: Sparse experiments <IEI/IVI = 0.6)

IViI lEI bpn Diff Steps %

20 24 1.2100 0.1100 2.1000 100

21 25 1.2800 0.0900 2.1700 100

22 26 1.4700 0.1300 2.4400 100

23 27 1.5100 0.1800 2.4900 100

24 28 1.4800 0.1700 2.5100 100

25 30 1.7600 0.2200 2.8800 100

26 31 1.9200 0.2200 3.0400 100

27 32 1.9700 0.2500 3.1300 100

28 33 1.9500 0.2400 3.1700 100

29 34 2.0700 0.2200 3.2900 100

30 36 2.2500 0.3700 3.1200 100

Continued on next page

192

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

31 37 2.1400 0.3500 3.8700 100

32 38 2.4200 0.3900 3.8200 100

33 39 2.2700 0.2900 3.4000 100

34 40 2.3400 0.2700 3.5900 100

35 42 2.7500 0.4900 4.1500 100

36 43 2.5600 0.3600 3.7500 100

37 44 2.8200 0.4300 3.8300 100

38 45 2.8200 0.4900 3.9000 100

39 46 2.6800 0.4600 3.8800 100

40 48 3.0200 0.5100 4.4800 100

41 49 2.8900 0.5100 4.0600 100

42 50 3.1100 0.5800 4.3900 100

43 51 2.9500 0.5100 4.3800 100

44 52 3.2300 0.4900 4.8900 100

45 54 3.3000 0.5600 4.8400 100

46 55 3.8800 0.8000 5.4000 100

47 56 3.5900 0.6000 5.0400 100

48 57 3.6900 0.6600 5.4300 100

49 58 3.8000 0.5900 6.5300 100

50 60 4.4400 0.9100 6.4300 100

51 61 4.0800 0.6700 6.3000 100

52 62 4.0400 0.8400 5.6100 100

53 63 4.1800 0.8800 5.8900 100

54 64 3.9600 0.7400 6.3200 100

55 66 4.3900 0.7700 7.1700 100

56 67 4.4000 0.9000 6.4900 100

57 68 4.5300 0.9300 7.0100 100

58 69 4.3400 0.8200 6.1300 100

59 70 4.4700 0.8600 6.7000 100

60 72 4.3800 0.7900 6.3700 100

61 73 4.6000 0.8300 5.9500 100

62 74 4.9100 0.9300 6.3900 100

63 75 4.7100 0.9500 8.8100 100

Continued on next page

193

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

64 76 5.0500 1.0000 8.9400 100

65 78 5.1900 0.9800 9.0300 100

66 79 5.1400 1.0100 9.3300 100

67 80 5.3200 1.0700 8.2400 100

68 81 5.5000 1.0800 8.7800 100

69 82 5.2500 1.0400 7.4500 100

70 84 5.4700 1.1000 10.1100 100

71 85 5.5500 1.0900 8.5500 100

72 86 5.9400 1.1800 13.0000 100

73 87 6.2100 1.1500 9.2500 100

74 88 5.8600 1.1300 11.3800 100

75 90 5.8300 1.1700 8.8900 100

76 91 6.4200 1.1100 12.8400 100

77 92 6.3800 1.1900 10.3400 100

78 93 6.0900 1.2100 10.6700 100

79 94 6.1800 1.2200 9.9200 100

80 96 6.5400 1.2600 12.5000 100

81 97 6.8900 1.3300 9.8300 100

82 98 6.6000 1.2200 12.1200 100

83 99 6.4400 1.2500 Il.2300 100

84 100 6.8700 1.4100 10.7000 100

85 102 7.2000 1.4800 12.2700 100

86 103 7.1300 1.4400 Il.4400 100

87 104 6.7900 1.3400 14.2000 100

88 105 6.8500 1.3500 20.8200 100

89 106 6.8200 1.2800 13.8100 100

90 108 7.3200 1.4400 21.1300 100

91 109 7.2400 1.6000 14.9300 100

92 110 7.3500 1.4000 14.5400 100

93 111 7.5900 1.5900 16.2300 100

94 112 7.5900 1.6000 13.0100 100

95 114 7.8100 1.4700 18.2200 100

96 115 7.3400 1.5200 10.5400 100

Continued on next page

194

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

97 116 8.0700 1.7500 16.5800 100

98 117 7.5100 1.5900 10.4600 100

99 118 8.0500 1.6700 16.5600 100

100 120 7.9100 1.6200 13.4800 100

101 121 8.3200 1.6800 19.7900 100

102 122 8.2200 1.7100 14.3700 100

103 123 8.4400 1.7100 17.7600 100

104 124 8.2500 1.6600 17.8900 100

105 126 8.7500 1.6900 18.4900 100

106 127 8.5900 1.7200 14.1600 100

107 128 8.4600 1.8300 22.3200 100

108 129 8.9800 1.8800 17.2200 100

109 130 8.9300 1.8900 24.6400 100

110 132 9.0200 1.8800 23.5900 100

111 133 8.9200 1.7600 20.2100 100

112 134 8.8900 1.8800 20.7800 100

113 135 9.2700 1.8200 27.5200 100

114 136 9.1500 1.9400 16.7000 100

115 138 9.8500 2.0100 19.1500 100

116 139 9.6200 2.0100 21.2200 100

117 140 9.6800 2.0400 26.5400 100

118 141 9.4700 1.9700 15.0300 100

119 142 9.3500 1.9900 13.5400 100

120 144 9.9800 2.0100 24.1600 100

121 145 9.3700 2.0500 20.5500 100

122 146 10.2100 2.1700 22.9900 100

123 147 10.2100 2.1100 23.5400 100

124 148 10.0200 2.0200 45.3100 100

125 150 10.4700 2.1300 26.2100 100

126 151 10.2900 2.1300 34.7000 100

127 152 10.6500 2.2500 22.7900 100

128 153 10.1700 2.0400 31.8200 100

129 154 10.2800 2.1800 26.5300 100

Continued on next page

195

APPENDIX D. SPARSE EXpERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

130 156 10.4100 2.2900 29.6600 100

131 157 11.0600 2.1300 24.7800 100

132 158 10.3700 2.1800 26.5900 100

133 159 10.9000 2.2700 42.9600 100

134 160 10.9500 2.3100 24.3900 100

135 162 10.9300 2.3400 27.9600 100

136 163 11.5800 2.5200 71.1500 100

137 164 Il.2300 2.4300 26.1900 100

138 165 10.7800 2.0600 30.2100 100

139 166 11.2300 2.2200 28.9700 100

140 168 12.1100 2.5500 28.7200 100

141 169 11.1200 2.4800 33.0800 100

142 170 11.3000 2.3000 46.7700 100

143 171 Il.3900 2.3500 47.3000 100

144 172 11.5100 2.6600 54.6200 100

145 174 12.0500 2.5900 58.4000 100

146 175 12.0000 2.6700 41.4100 100

147 176 12.0600 2.5300 39.3100 100

148 177 11.9700 2.5000 39.7200 100

149 178 12.3400 2.4500 41.7200 100

150 180 12.7600 2.8500 36.5400 100

151 181 12.5700 2.6600 46.1300 100

152 182 12.6100 2.6600 116.3800 100

153 183 12.1400 2.6600 26.1000 100

154 184 12.4000 2.7000 32.5400 100

155 186 12.1700 2.6500 26.6300 100

156 187 13.0000 2.7600 68.5100 100

157 188 12.8100 2.6800 42.9400 100

158 189 12.4900 2.5400 46.5600 100

159 190 13.0300 2.8900 58.3500 100

160 192 13.1400 2.8100 37.2900 100

161 193 13.5200 2.7500 51.4100 100

162 194 13.5500 2.9200 39.4600 100

Continued on next page

196

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

163 195 12.9000 2.8100 31.6200 100

164 196 13.2500 2.8100 39.7100 100

165 198 13.0000 2.9100 46.9300 100

166 199 13.7100 2.9700 304.6900 100

167 200 13.4100 2.8100 248.2300 100

168 201 13.7000 2.8600 49.8600 100

169 202 14.2500 2.8400 224.2500 100

170 204 13.5300 2.9800 34.0200 100

171 205 13.5000 3.0000 69.0800 100

172 206 14.0600 3.1000 41.2800 100

173 207 14.0000 2.9100 59.6200 100

174 208 14.1900 3.0900 39.6000 100

175 210 14.3000 3.1200 48.2600 100

176 211 14.7000 3.1600 49.4600 100

177 212 14.5600 3.1000 52.1800 100

178 213 14.2400 2.9900 100.5000 100

179 214 14.5900 3.1100 32.0200 100

180 216 14.7900 3.1700 60.2300 100

181 217 14.8600 3.1900 61.9800 100

182 218 14.8100 3.2800 63.4100 100

183 219 15.4600 3.3000 150.1100 100

184 220 15.4200 3.0600 166.2500 100

185 222 15.4500 3.1200 79.9700 100

186 223 15.3600 3.2200 108.9200 100

187 224 15.5700 3.2800 79.3300 100

188 225 15.6300 3.1300 48.3100 100

189 226 15.6200 3.5000 108.0100 100

190 228 15.9200 3.4700 165.2300 100

191 229 15.5400 3.0300 57.2800 100

192 230 15.3800 3.2500 85.1600 100

193 231 16.1400 3.5100 57.8400 100

194 232 16.0400 3.3800 69.3300 100

195 234 16.6000 3.6000 91.4200 100

Continued on next page

197

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.6) continued ...

IViI lEI bpn Diff Steps %

196 235 16.6300 3.5300 130.9900 100

197 236 16.6700 3.5000 170.6700 100

198 237 16.5600 3.6300 71.3400 100

199 238 16.1500 3.4300 262.5300 100

200 240 16.7200 3.7800 114.9000 100

Table D.2: Sparse experiments (IEI/IVI = 0.8)

IViI lEI bpn Diff Steps %

20 32 3.6100 0.3800 7.5900 100

21 33 3.8100 0.4200 6.4400 100

22 35 4.2800 0.2600 9.2400 100

23 36 4.2800 0.3800 11.3700 100

24 38 4.6100 0.5700 9.6400 100

25 40 4.8600 0.4500 10.9800 100

26 41 4.9900 0.4800 13.8400 100

27 43 5.2500 0.5000 13.0200 100

28 44 5.4000 0.6100 16.5700 100

29 46 5.6900 0.5600 16.5500 100

30 48 6.0000 0.5800 13.6300 100

31 49 5.8600 0.5800 19.5100 100

32 51 6.3400 0.5900 22.5900 100

33 52 6.3200 0.6300 21.9800 100

34 54 6.5800 0.5700 20.9200 100

35 56 7.1600 0.6900 28.4600 100

36 57 6.8700 0.6900 26.3900 100

37 59 7.6900 0.8900 37.5200 100

38 60 7.3900 0.7200 35.2000 100

39 62 7.4500 0.8700 24.2000 100

40 64 7.9800 0.7700 48.0600 100

41 65 7.7500 0.8200 39.5600 100

42 67 8.2700 0.8900 58.7300 100

43 68 8.1800 0.9400 40.8600 100

Continued on next page

198

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.8) continued ...

IViI lEI bpn Diff Steps %

44 70 8.7700 0.8900 46.0400 100

45 72 9.0400 0.8900 56.2900 100

46 73 9.1700 0.9800 84.0900 100

47 75 9.5500 0.9100 126.1800 100

48 76 9.4700 0.8700 113.0500 100

49 78 10.0100 1.0300 92.4700 100

50 80 10.5200 1.1100 136.7300 100

51 81 10.3100 1.1700 198.6600 100

52 83 10.4100 1.0000 200.1900 100

53 84 10.5200 0.9200 220.0600 100

54 86 10.9700 1.0700 140.7300 100

55 88 Il.3400 1.0800 203.9600 100

56 89 Il.0700 1.2300 84.2700 100

57 91 11.6600 1.1900 259.3400 100

58 92 11.2700 1.1100 244.5600 100

59 94 12.2900 1.2500 869.8700 100

60 96 12.0100 1.2000 344.8200 100

61 97 12.2300 1.3800 358.4000 100

62 99 12.8600 1.4300 443.4300 100

63 100 12.6100 1.2000 572.0500 100

64 102 13.2800 1.3600 1156.2000 100

65 104 13.3000 1.3900 399.9700 100

66 105 12.9900 1.3400 455.8200 100

67 107 13.8800 1.4800 507.3000 100

68 108 13.8600 1.5300 950.1100 100

69 110 13.8600 1.1900 587.9800 100

70 112 14.7900 1.4600 1717.9700 100

71 113 14.2200 1.3900 928.5700 100

72 115 14.8100 1.4800 1507.3200 100

73 116 15.0100 1.3600 1727.4900 100

74 118 15.1200 1.3900 2021.3100 100

75 120 15.3100 1.6100 1392.1700 100

76 121 15.6768 1.3737 780.1717 99

Continued on next page

199

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Sparse experiments (IEI/IVI = 0.8) continued ...

IViI lEI bpn Diff Steps %

77 123 15.8600 1.5100 5176.3100 100

78 124 15.5400 1.7000 1078.1700 100

79 126 16.2000 1.5100 3264.2400 100

80 128 16.7000 1.6400 4236.1600 100

81 129 16.8788 1.6869 7088.6364 99

82 131 16.7100 1.5100 2181.8900 100

83 132 16.8800 1.8900 4438.7900 100

84 134 16.9600 1.7700 2553.0100 100

85 136 17.8600 1.8200 6366.0300 100

86 137 17.4900 1.6500 2793.9600 100

87 139 17.8990 1.7879 3600.2828 99

88 140 17.2245 1.6429 4942.0510 98

89 142 17.8900 1.7600 2365.8300 100

90 144 18.4800 1.7800 5854.8500 100

91 145 18.7172 1.8889 9330.7879 99

92 147 18.5859 1.6263 6254.2727 99

93 148 18.6633 1.8469 4404.5816 98

94 150 19.4900 1.8500 9138.0100 100

95 152 19.4747 1.9091 7949.0303 99

96 153 19.3000 1.9000 4799.7200 100

97 155 19.9495 1.8586 4828.9192 99

98 156 19.8788 2.1212 7684.8081 99

99 158 20.0000 1.8041 7835.2474 97

100 160 20.3434 1.9899 6872.7980 99

101 161 20.4639 2.0206 13975.3093 97

102 163 20.4000 1.9895 9109.4211 95

103 164 20.8687 1.9091 12725.3131 99

104 166 21.2041 2.0918 13246.1837 98

105 168 21.8367 2.0306 11963.5816 98

106 169 22.0102 2.1429 17847.4694 98

107 171 21.8660 2.1031 16022.3093 97

108 172 21.8676 2.4559 10505.5441 68

200

APPENDIX D. SPARSE EXPERIMENTAL RESULTS

Table D.3: Sparse experiments (IEI/IVI = 1.0)

IViI lEI bpn Diff Steps %

20 40 7.4300 0.3200 94.5800 100

21 42 7.9600 0.3600 56.8200 100

22 44 8.5200 0.1900 59.2800 100

23 46 8.8500 0.3000 103.1100 100

24 48 9.3500 0.3900 102.2900 100

25 50 9.6100 0.3500 153.4900 100

26 52 9.9500 0.4500 194.2800 100

27 54 10.4000 0.3500 219.0700 100

28 56 10.8400 0.4100 551.9200 100

29 58 11.2500 0.4200 396.5000 100

30 60 11.5700 0.4300 281.6800 100

31 62 11.8200 0.3600 480.5300 100

32 64 12.5600 0.4500 788.2300 100

33 66 12.8900 0.4800 2138.3900 100

34 68 13.1400 0.3700 486.5400 100

35 70 13.7200 0.4800 625.9600 100

36 72 13.7700 0.4800 678.3400 100

37 74 14.7400 0.5500 1725.5000 100

38 76 14.8500 0.3800 4335.5300 100

39 78 15.1800 0.5200 2091.4100 100

40 80 15.5900 0.4600 5559.7600 100

41 82 15.8500 0.5700 2736.6200 100

42 84 16.2200 0.4700 4414.7000 100

43 86 16.2900 0.5000 2124.2100 100

44 88 17.3232 0.5152 7407.7374 99

45 90 17.2400 0.5100 3284.0400 100

46 92 17.8200 0.5300 6941.5100 100

47 94 18.4343 0.4444 9415.6970 99

48 96 19.0101 0.4646 13834.9596 99

49 98 19.1622 0.5946 12165.2703 37

201

Bibliography

[1] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston,

W. Henry Suters, and Chris T. Symons. Kernelization algorithms for the vertex cover

problem: Theory and experiments. In Workshop on Aigorithm Engineering and Ex­

periments (ALENEX), 2001. 15

[2] Faisal N. Abu-Khzam, Michael A. Langston, and Pushkar Shanbhag. Scalable parallel

algorithms for difficult combinatorial problems: A case study in optimization. In In­

ternational Conference on ParaUel and Distributed Computing and Systems (PDCS).

ACTA Press, 2003. 179

[3] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees.

SIAM Journal of Aigebraic and Discrete Methods, 7(2):305-314, 1986. 56,178

[4] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted

vertex cover problem. Analysis and Design of Aigorithms for Combinatorial Prob­

lems, 25:27-46, 1985. 14

[5] Wilhelm Barth, Michael Jünger, and Petra Mutzel. Simple and efficient bilayer cross

counting. In Michael Goodrich and Stephen Kobourov, editors, Graph Drawing, i Oth

international Symposium (GD 2002), volume 2528 of Lecture Notes in Computer

Science, pages 130-141. Springer-Verlag, 2002. 6

[6] Guiseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph

Drawing: Aigorithmsfor the Visualization ofGraphs. Prentice-Hall, 1999. 1,6,8

[7] F. Bernhart and P.e. Kainen. The book thickness of a graph. Journal Combinatorial

Theory, Series B, 27(3):320-331, 1979. 80,91, 101

[8] Therese Biedl. Drawing outer-pl anar graphs in o(n log n) area. In Michael Goodrich

and Stephen Kobourov, editors, Graph Drawing, lOth international Symposium (GD

2002), volume 2528 of Lecture Notes in Computer Science, pages 54-65. Springer­

Verlag, 2002. 79

202

BIBLIOGRAPHY

[9] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In 1. Privara and

P. Ruzicka, editors, Proceedings of the 22nd International Symposium of Mathemat­

ical Foundations of Computer Science (MFCS 1997), volume 1295 of Lecture Notes

in Computer Science, pages 19-36. Springer-Verlag, 1997. 18

[10] Ibrahim Cahit and Mehmet Ozel. The characterization of ail maximal planar graphs,

Manuscript. http://www.emu.edu.tr/-cahit/prprnt . html, 2003. 90

[11] M. J. Carpano. Automatic display of hierarchized graphs for computer aided decision

analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):705-715,

1980. 1

[12] Tiziana Catarci. The assignment heuristic for crossing reduction. IEEE Transactions

on Systems, Man, and Cybernetics, 25(3):515-521, 1995. 9

[13] Hubert Chan. A parameterized algorithm for upward planarity testing (extended ab­

stract). In Susanne Albers and Tomasz Radzik, editors, 12th annual European Sympo­

sium on Aigorithms (ESA 2004), volume 3221 of Lecture Notes in Computer Science,

pages 157-168. Springer, 2004. 16

[14] James Cheetham, Frank Dehne, Andrew Rau-Chaplin, Ulrike Stege, and Peter 1. Tail­

lon. Solving large FPT problems on coarse-grained parallel machines. Journal of

Computer and System Sciences, 67(4):691-706, 2003. 14, 15

[15] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and

further improvements. Journal of Aigorithms, 41 (2), 2001. 122

[16] William Cook and Paul Seymour. Tour merging via branch-decomposition. Journal

on Computing, 15:233-248,2003. 180

[17] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs on two

and three Iines. In Michael Goodrich and Stephen Kobourov, editors, Graph Drawing,

10th International Symposium (GD 2002), volume 2528 of Lecture Notes in Computer

Science, pages 31-41. Springer-Verlag, 2002. 4,28, 116

[18] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs on two

and three Iines. Journal of Graph Aigorithms and Applications, 8(2):161-177, 2004.

116

[19] Carlos Cotta, Christian Sloper, and Pablo Moscato. Evolutionary search of thresh­

olds for robust feature set selection: Application to the analysis of microarray data.

203

BIBLIOGRAPHY

In Günther R. RaidI, Stefano Cagnoni, Jürgen Branke, David Corne, Rolf Drechsler,

Yaochu Jin, Colin G. Johnson, Penousal Machado, Elena Marchiori, Franz Rothlauf,

George D. Smith, and Giovanni Squillero, editors, Applications of Evolutionary Com­

puting, EvoWorkshops 2004, volume 3005 of Lecture Notes in Computer Science,

pages 21-30. Springer, 2004. 17

[20] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. Handbook of

Theoretical Computer Science, B, chapter 5, 1990. 15

[21] Rodney G. Downey and Michael R. Fellows. Parametrized Complexity. Springer­

Verlag, 1999. 15

[22] Stefan Dresbach. A new heuristic layout algorithm for dags. Operations Research

Proceedings, pages 121-126, 1994. 9

[23] Vida Dujmovié, Michael R. Fellows, Michael T. Hallett, M. Kitching, Giuseppe Li­

otta, Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosa­

mond, Matthew Suderman, Sue Whitesides, and David R. Wood. A fixed-parameter

approach to two-Iayer planarization. In Petra Mutzel, Michael Jünger, and Sebastian

Leipert, editors, Graph Drawing, 9th International Symposium (GD 2001), volume

2265 of Lecture Notes in Computer Science, pages 1-15. Springer-Verlag, 2001. 17,

123, 124, 128

[24] Vida Dujmovié, Michael R. Fellows, Michael T. Hallett, M. Kitching, Giuseppe Li­

otta, Catherine McCartin, Naomi Ni shimura, Prabhakar Ragde, Frances A. Rosa­

mond, Matthew Suderman, Sue Whitesides, and David R. Wood. On the parameter­

ized complexity of layered graph drawing. In Friedhelm Meyer auf der Heide, editor,

Algorithms, 9th European Symposium (ESA 2001), volume 2161 of Lecture Notes in

Computer Science, pages 488-499. Springer-Verlag, 2001. 4, 18,56,58

[25] Vida Dujmovié, Michael R. Fellows, Michael T. Hallett, M. Kitching, Giuseppe Li­

otta, Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosa­

mond, Matthew Suderman, Sue Whitesides, and David R. Wood. A fixed-parameter

approach to two-Iayer planarization. Algorithmica, to appear. 17, 121, 132, 141, 147,

178

[26] Vida Dujmovié, Henning Fernau, and Michael Kaufmann. One-sided crossing rnÏn­

imization revisited. In Giuseppe Liotta, editor, Graph Drawing, Ilth International

Symposium (GD 2003), volume 2912 of Lecture Notes in Computer Science, pages

332-344. Springer-Verlag, 2003. 17,20,149,150, 154, 155

204

BIBLIOGRAPHY

[27] Vida Dujmovié, Matthew Suderman, and David R. Wood. Personal communication,

2002. 61,66

[28] Vida Dujmovié and Sue Whitesides. An efficient fixed parameter tractable algorithm

for l-sided crossing minimization. In Michael Goodrich and Stephen Kobourov, ed­

itors, Graph Drawing, 10th International Symposium (GD 2002), volume 2528 of

Lecture Notes in Computer Science, pages 118-129. Springer-Verlag, 2002. 16, 17,

151

[29] Tim Dwyer and Falk Schreiber. Optimal leaf ordering for two and a half di men­

sional phylogenetic tree visualisation. In Neville Churcher and Clare Churcher, edi­

tors, Australasian Symposium on Information Visualisation, (invis.au'04), volume 35

of Conferences in Research and Practice in Information Technology, pages 109-115,

Christchurch, New Zealand, 2004. ACS. 1, 156, 158

[30] Peter Eades and David Kelly. Heuristics for reducing crossings in 2-layered networks.

Ars Combinatoria, 21 (A):89-98, 1986. 9

[31] Peter Eades, Brendan McKay, and Nick Wormald. On an edge crossing problem.

In Proceedings of the 9th Australian Computer Science Conference, pages 327-334.

Australian National University, 1986. 24

[32] Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer

Science, 131(2):361-374, 1994. 6, 156

[33] Peter Eades and Nick Wormald. Edge crossings in drawings of bipartite graphs. Al­

gorithmica, 11(4):379-403, 1994. 6,9, 10

[34] John A. Ellis, Ivan Hal Sudborough, and Jonathan Turner. The vertex separation and

search number of a graph. Information and Computation, 113(1):50-79, 1994. 59,

60, 76

[35] Stuart 1. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors. Proceed­

ings of the 13th international conference on World Wide Web, WWW 2004. ACM,

2004. 1

[36] Michael R. Fellows, Catherine McCartin, Francis A. Rosamond, and Ulrike Stege.

Coordinatized kernels and catalytic reductions: An improved fpt algorithm for max

leaf spanning tree and other problems. In Foundations of Software Technology and

Theoretical Computer Science 20th Conference (FST TCS 2000), volume 1974 of

Lecture Notes in Computer Science, pages 240-251. Springer, 2000. 15

205

BIBLIOGRAPHY

[37] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings

on restricted integer grids in two and three dimensions (extended abstract). In Petra

Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th Interna­

tional Symposium (GD 2001), volume 2265 of Lecture Notes in Computer Science,

pages 328-342. Springer-Verlag, 2001. 58, 59, 60

[38] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings on

restricted integer grids in two and three dimensions. Journal of Graph Algorithms and

Applications, (special issue): 1-33, 2003. 64, 75

[39] Henning Fernau. Two-Iayer planarization: Improving on parameterized algorithmics.

In Peter Vojtas, Maria Bielikova, Bernadette Charron-Bost, and Ondrej Sykora, edi­

tors, 31 st Annual Conference on Current Trends in Theory and Practice of Informatics

(SOFSEM 2005), volume 3381 of Lecture Notes in Computer Science, pages 137-146.

Springer-Verlag, 2005. 17,20,121,122,146

[40] Ulrich FoBmeier and Michael Kaufmann. Nice drawings for planar bipartite graphs.

In Gian Carlo Bongiovanni, Daniel P. Bovet, and Giuseppe Di Battista, editors, Pro­

ceedings of the 3rd Italian Conference on Algorithms and Complexity (ClAC 1997),

volume 1203 of Lecture Notes in Computer Science, pages 122-134. Springer-Verlag,

1997. 4,28,56,182

[41] Michael R. Garey and David S. Johnson. Computers and Itractability: A Guide to the

Theory ofNP-Completeness. W. H. Freeman & Co, 1979. 14,160

[42] Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM

Journal of Algebraic Discrete Methods, 4(3):312-316, 1983. 6

[43] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Matthew Suderman.

Hamiltonian-with-handles graphs and the k-spine drawability problem. In Janos Pach,

editor, Graph Drawing, volume 3383 of Lecture Notes in Computer Science, pages

262-272. Springer, 2004. viii

[44] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath.

Curve-constrained drawings of pl anar graphs. Computational Geometry: Theory and

Applications, 30:1-23, 2005. 80,81

[45] Frank Harary and Allen Schwenk. A new crossing number for bipartite graphs. Utili­

tas Mathematica, 1:203-209, 1972. 3,24

206

BIBLIOGRAPHY

[46] Patrick Healy and Ago Kuusik. The vertex-exchange graph: A new concept for multi­

level crossing minimisation. In Jan Kratochvfl, editor, Graph Drawing, 7th Inter­

national Symposium (GD '99), volume 1731 of Lecture Notes in Computer Science,

pages 205-216. Springer-Verlag, 1999. 7, 13

[47] Patrick Healy and Ago Kuusik. The vertex-exchange graph and its use in multi-level

graph layout. Technical Report UL-CSIS-99-1, Department of Computer Science and

Information Systems, University of Limerick, April 1999. 7, 13

[48] Patrick Healy and Ago Kuusik. Algorithms for multi-level graph planarity testing and

layout. Theoretical Computer Science, 320(2-3):331-344, 2004. 4

[49] Patrick Healy, Ago Kuusik, and Sebastian Leipert. A characterization of level planar

graphs. Discrete Mathematics, 280(1-3):51-63, 2004. 179

[50] Patrick Healy and Karol Lynch. Fixed-parameter tractable algorithms for testing up­

ward planarity. In Peter Vojtas, Maria Bielikova, Bernadette Charron-Bost, and Ondrej

Sykora, editors, 31st Annual Conference on Current Trends in Theory and Practice of

Informatics (SOFSEM 2005), volume 3381 of Lecture Notes in Computer Science,

pages 199-208. Springer, 2005. 16

[51] Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using queues. SIAM

Journal on Computing, 21(5):927-958, 1992. 4,27

[52] Johan Hjijastad. Sorne optimal inapproximability results. In Proceedings of the 29th

Annual ACM Symposium on the Theory of Computing (STOC 1997), pages 1-10.

ACM Press, 1997. 14

[53] Johan Hjijastad. Clique is hard to approximate within n1- E
• Acta Mathematica,

182:105-142, 1999. 14

[54] Michael Jünger, Eva K. Lee, Petra Mutzel, and Thomas Odenthal. A polyhedral ap­

proach to the multi-Iayer crossing minimization problem. In Giuseppe Di Battista,

editor, Graph Drawing, 5th International Symposium (GD '97), volume 1353 of Lec­

ture Notes in Computer Science, pages 13-24. Springer-Verlag, 1997. 7, 11, 13

[55] Michael Jünger and Sebastian Leipert. Level planar embedding in linear time. Journal

of Graph Algorithms and Applications, 6(1):67-113, 2002. 4

[56] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity testing in linear

time. In Sue Whitesides, editor, Graph Drawing, 6th International Symposium (GD

207

BIBLIOGRAPHY

'98), volume 1547 of Lecture Notes in Computer Science, pages 224-237. Springer­

Verlag, 1998. 4

[57] Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-layer straight­

line crossing minimization. In Franz-Josef Brandenburg, editor, Graph Drawing, Sym­

posium on Graph Drawing (GD '95), volume 1027 of Lecture Notes in Computer

Science, pages 337-348. Springer-Verlag, 1995. 166, 167,168, 171, 173,188

[58] Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: perfor­

mance of exact and heuristic algorithms. Journal of Graph Aigorithms and Applica­

tions, 1(1):1-25, 1997. 6,9,13, 171

[59] Michael Jünger and S. Thienel. The ABACUS-system for branch and cut and price

algorithms in integer programming and combinatorial optimization. In Software­

Practice and Experience, volume 30, pages 1324-1352,2000. 169

[60] Michael Kaufmann and Dorothea Wagner. Drawing Graphs: Methods and Models,

volume 2025 of Lecture Notes in Computer Science. Springer-Verlag,2001. 1,6

[61] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends

suffice for planar graphs. Journal of Graph Aigorithms and Applications, 6(1):115-

129,2002. 5,80,81,82

[62] Donald Knuth. The Stanford GraphBase: A Platformfor Combinatorial Computing.

ACM Press, Addison-Wesley Publishing Company, 1993. 168, 171, 186

[63] Arie M. C. A. Koster, Hans L. Bodlaender, and Stam P. M. van Hoesel. Treewidth:

Computational experiments. In J. Breese and D. Koller, editors, Proceedings of the

17th Conference on Uncertainty in Artificial Intelligence, pages 32-39. Morgan Kauf­

mann Publishers, 2001. 19

[64] Arie M. C. A. Koster, Stan P. M. van Hoesel, and Antoon W. J. Kolen. Solving partial

constraint satisfaction problems with tree decomposition. Networks, 40(3): 170-180,

2002. 19

[65] John Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996. 1,8, 167

[66] Xiao Yu Li and Matthias F. Stallmann. New bounds on the barycenter heuristic for

bipartite graph drawing. Information Processing Letters, 82:293-298, 2002. 10

[67] Erkki Makinen. Experiments on drawing 2-level hierarchical graphs. International

Journal of Computer Mathematics, 36:175-181, 1990. 9

208

BIBLIOGRAPHY

[68] Rafael Marti and Manuel Laguna. Heuristics and meta-heuristics for 2-layer straight

line crossing minimization. Discrete AppUed Mathematics, 2002. 9

[69] Jin Matousek and Robin Thomas. Algorithms finding tree-decompositions of graphs.

Journal of Algorithms, 12(1): 1-22, 1991. 56, 178

[70] Kurt Mehlhorn and Stefan Niiher. LEDA: A Platform for Combinatorial and Geomet­

ric Computing. Cambridge University Press, 1999. 167

[71] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM

Journal of Discrete Mathematics, 12(1):6-26, 1999. 15

[72] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm

for the vertex cover problem. Acta Informatica, 22: 115-123, 1985. 14

[73] Xavier Mufioz, Walter Unger, and Irnrich Vrt'o. One sided crossing minimization is

np-hard for sparse graphs. In Petra Mutzel, Michael Jünger, and Sebastian Leipert,

editors, Graph Drawing, 9th International Symposium (GD 2001), volume 2265 of

Lecture Notes in Computer Science, pages 115-123. Springer-Verlag, 2001. 6, 158,

160, 163

[74] Petra Mutzel. An alternative method to crossing minimization on hierarchical graphs.

ln Stephen C. North, editor, Graph Drawing, Symposium on Graph Drawing (GD

'96), volume 1190 of Lecture Notes in Computer Science, pages 318-333. Springer­

Verlag, 1996. 6, 13, 166, 167, 168, 169

[75] Petra Mutzel. An alternative method to crossing minimization on hierarchical graphs.

SIAM Journal ofOptimization, 11(4):1065-1080,2001. 6,13,168

[76] Petra Mutzel. Optimization in leveled graphs. In Panos M. Pardalos and Christodou­

los A. Floudas, editors, Encyclopedia ofOptimization, pages 189-196. Kluwer Aca­

demic Publishers, 2001. 1

[77] Petra Mutzel and René Weiskircher. Two-layer planarization in graph drawing. In

Kyung-Yong Chwa and Oscar H. Ibarra, editors, Proceedings of the 9th International

Symposium on Algorithms and Computation (ISAAC 1998), volume 1533 of Lecture

Notes in Computer Science, pages 69-78. Springer-Verlag, 1998. 6

[78] Hiroshi Nagamochi. An improved approximation to the one-sided bilayer drawing. In

Giuseppe Liotta, editor, Graph Drawing, 11th International Symposium (GD 2003),

209

BIBLIOGRAPHY

volume 2912 of Lecture Notes in Computer Science, pages 406-418. Springer-Verlag,

2003. 10

[79] G.L. Nernhauser and L.E. Trotter. Vertex packings: Structural properties and algo­

rithms. Mathematical Programming, 8:232-248, 1975. 16

[80] Rolf Niedermeier and Peter Rossmanith. A general method to speed up fixed­

parameter-tractable algorithms. Information Processing Letters, 73(3-4):125-129,

2000. 136

[81] Elena Prieto. Personal communication, 2004. 158

[82] F. Roberts, 1. Kratochvil, and J. Nesetril, editors. Parameterized complexity: a

framework for systematically confronting computational intractability, volume 49.

Amer. Math. Soc. Providence,Rl, 1999. 14

[83] G. Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of

tree-width. Journal of Aigorithms, 7:309-322, 1986. 18

[84] G. Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths

problem. Journal ofCombinatorial Theory Series B, 63:65-110, 1995. 18

[85] Daniel P. Sanders. On linear recognition of tree-width at most four. SIAM Journal on

Discrete Mathematics, 9(1):101-117,1995. 56,178

[86] M. Sarrafzadeh and C.K. Wong. An Introduction to VLSI Physical Design. McGraw

Hill, 1996. 1, 6

[87] Petra Scheffler. A linear algorithm for the pathwidth of trees. In Rainer Bodendiek

and Rudolf Henn, editors, Topics in Combina tories and Graph Theory, pages 613-

620. Physica-Verlag, Heidelberg, 1990. 59, 60

[88] Matthias F. Stallmann, Franc Brglez, and Debabrata Ghosh. Heuristics, experimental

subjects, and treatment evaluation in bigraph crossing minimization. ACM Journal on

Experimental Aigorithmics, 2002. 10

[89] Matthew Suderman. Pathwidth and layered drawings of trees. International Journal

of Computational Geometry & Applications, 14(3):203-225,2004. viii

[90] Matthew Suderman and Sue Whitesides. Experiments with the fixed-parameter ap­

proach for two-Iayer planarization. In Giuseppe Liotta, editor, Graph Drawing, Il th

International Symposium (GD 2003), volume 2912 of Lecture Notes in Computer Sci­

ence, pages 345-356. Springer-Verlag, 2003. viii,141

210

BIBLIOGRAPHY

[91] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under­

standing of hierarchical system structures. IEEE Transactions on Systems, Man, and

Cybernetics, 11(2):109-125, 1981. 1,4, 7, 9

[92] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com­

puting, 1(2):146-160, 1972. 51

[93] N. Tomii, Yahiko Kambayashi, and Shuzo Yajima. On planarization algorithms of 2-

level graphs. Technical Report EC77-38, Institute of Electronic and Communication

Engineers of Japan (IECEJ), 1977. 1,6,24

[94] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for find­

ing a maximum clique. In Cristian Calude, Michael J. Dinneen, and Vincent Va­

jnovszki, editors, Discrete Mathematics and Theoretical Computer Science, 4th In­

ternational Conference, DMTCS 2003, volume 2731 of Lecture Notes in Computer

Science, pages 278-289. Springer DMTCS, 2003. 14, 15

[95] Vance E. Waddle and Ashok Malhotra. An e log e line crossing algorithm for levelled

graphs. In Jan Kratochvil, editor, Graph Drawing, 7th International Symposium (GD

'99), volume 1731 of Lecture Notes in Computer Science, pages 59-71. Springer­

Verlag, 1999. 6

[96] Michael S. Waterman and Jerrold R. Griggs. Interval graphs and maps of DNA. Bul­

letin of Mathematical Biology, 48(2):189-195, 1986. 1,2,4

[97] Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar

graphs. Technical Report 298, Princeton University, EECS Department, 1982. 80,94

[98] Atsuko Yamaguchi and Akihiro Sugimoto. An approximation algorithm for the two­

layered graph drawing problem. In Takao Asano, Hiroshi Imai, D. T. Lee, Shin-Ichi

Nakano, and Takeshi Tokuyama, editors, Computing and Combinatorics, 5th Annual

International Conference (COCOON 1999), volume 1627 of Lecture Notes in Com­

puter Science, pages 81-91. Springer-Verlag, 1999. 10

211

Index

Symbols base path 10 1

r 23 biconnected 22

~ 23 biconnected component

extension 31
A

safe 31,32
ABACUS 169

accessible 71

acyclic 3, 22

adjacent. 21

admitted leaf ordering 156

algorithm

bipartite 21

bipartite crossing number 25

bipartition class 22

biplanarizing number 24

biplanarizing set 24

block-cut tree 51
divide-and-conquer heuristic143, 155

ISPROPER3LAYERPLANAR 51

Synthesizer 164

OLP 141

book embedding

2-page book embedding 80

bounded search tree ... 17,123, 128, 151,

153
OSCM 154,163, 166, 172

branch-and-bound 12
OSCM-C 155, 166

OSCM-C 172

OSTC 159

branch-and-cut 13, 167

bridge edge 22

PROPER3LAYERDRAWER 56 C

TLP 143 C++ 167

TLP-6 166 canonical biplanarizing set 147

TLP-C 166, 170 caterpillar 22, 128

anchors 101 cheaters 142, 145

anytime algorithm 12 claw

approximation algorithm , 10 2-claw 22

assign heuristic 9 co-han dIe 101

augmenting cutting path 88 combinatorial graph 1

B

barycenter heuristic 9

connected 22, 23

connecting vertex 31

connection point 23

212

crossing edges 23

crossing number 150

cut-vertex 22

cutting path 87

cutting sequence 86

cycle 22

cycle edge 23

D

dangling handle 101

degree 21

diamond-violator 136

diff(7I"1, 71"2) ..••........•••••••..... 156

directed graph 8

DNA mapping 1

DNA molecule 2

drawing 23

A -shaped 97

k-Iayer, I-bend planar drawing. 5,80

k-Iayer drawing 24

layered drawing 24

layered graph drawing 1

non-planar 2

planar 2

planar drawing 23

proper 2-layer planar drawing 3

proper k-Iayer planar 24, 66

proper layered drawing 24

short k-Iayer planar 24,61

short layered drawing 24

technique of Kaufmann and Wiese 82

unconstrained k-Iayer planar .. 24, 69

unconstrained layered drawing ... 24

upright k-Iayer planar 24, 69

upright layered drawing 24

drawings

BAB-drawings 28

213

INDEX

dynamic programming 18

E

edge 1,21,24

ambivalent. 147

candidate 166

long edge 24

proper edge 24

short edge 24

end-vertex 21

exposed vertex 60

external face 23

external Hamiltonian 94

F

face 23

feedback arc set 160

fixed-parameter tractable 13

forbidden structure 128

forest 22

FPT 13, 121, 149, 166

frontier 64

G

graph see combinatorial graph, 21

Graph Drawing 1

GRASP heuristic 9

greedy-insert heuristic 9

greedy-switch heuristic 9

H

h-critical 60

Hamiltonian 23,80

Hamiltonian cycle 23

Hamiltonian-with-handles 102

handle 101

han dIe graph 101

handle segment 103

INDEX

heuristic 8 strictly x-monotone 25

hierarchicai graph drawing 1 x-monotone 25

1
x-monotone path 34

incident 21 N

include graph 8 naturalordering 16, 151, 163

independent , 154 nearly complete ternary tree 59

induced 21 neighbor 21

integer Iinear program Il NP-hard 14

internaI caterpillar 23

internaI face 23
o

internaI path 23
outerplanar 115

2-outerplanar 115

J 2-outerplanar embedding 115

Java 167 2-outerplanar graph 115

jumping segment 84 outerplanar embedding 115

jumping sequence 85 overlapping 10 1

K p

k-tree p-component 143

3-tree 92 parameterized complexity 13

kernelization 15, 152 parameterized decision problem 13

L
partial ordering 25

landing segment 84

Ieaf 3,22

leaf ordering 156

left 24

path 22

path decomposition 59

pathwidth 59

pendant caterpillar 23

linear constraint . 10
pendant wreath 23

linear function 10
phylogenetic tree 1

linear ordering 25

linear programming problem 10

planar 2, 23

biplanar 24

embedding 23

M k-Iayer, I-bend planar 5,80

main path 60 maximal 23

median heuristic 9, 173 proper 2-layer planar 24

mixed integer linear pro gram . see integer proper k-Iayer planar 24

linear program short k-Iayer planar 24

monotone 85 unconstrained k-Iayer pl anar 24

214

upright k-Iayer planar 24

polynomial-time approximation scheme14

problem

R

l-LAYER PLANARIZATION. 6,7,17,

19, 121, 123

l-SIDED CROSSING MINIMIZATION

6,7,10,13,16,20,149,158

l-SIDED TREE COMPARISON .. 157,

158

2-LAYER PLANARIZATION .5,6, 13,

17, 19,20,121,128

2-SIDED CROSSING MINIMIZATION

5, 6, Il, 13, 158

2-SIDED TREE COMPARISON .. 157,

158

3-HITTING SET 17

6-HITTING SET 17

FEEDBACK ARC SET 160

HITTING SET 17

INDEPENDENT SET 14

k-LAYER, 1-BEND PLANAR .. 5, 19,

80

LIST SYNTHESIS 159, 160

point-set embeddability .. '" 80

PROPER 3-LAYER PLANAR 28

PROPER k-LAYER PLANAR4

VERTEX COVER 14

rational number 10

relaxation 12

restriction enzyme 2

right 24

root 22

S

safe

215

INDEX

biconnected component 31, 32

vertex 30

safety certificate 32

tied 33

short layered drawings 61

simple cycle 22

simple path 22

software engineering 1

spine 22

split heuristic 9

stack layout

2-stack layout 80

Stanford GraphBase 168, 171

star-violator 136

stochastic heuristic 9

sub-Hamiltonian 23,80

sub-Hamiltonian-with-handles .. 101, 102

subgraph 21

Sugiyama framework 7,9

suited pair 151, 163

T

Tabu Search 9

tied 33

tractable . 13

transitive 25

tree 22

tree decomposition 18

Tree of Life 156

treewidth 18

U

undirected 21

upward planarity 16

v
vertex 1

connecting 31

INDEX

exposed 60

safe 30

vertices see vertex

violator. 136

visualization 1

VLSI layout 1

W

weak dual 36

World Wide Web 1

wreath 23, 128

wreath cycle 23

WWW 1

216

