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Abstract

User identity linkage (UIL) is the task of aligning user identities of the same user across

different social network platforms. Although existing approaches have explored vari-

ous aspects such as different user profile attributes and social network structures, the

writing styles from user-generated texts, which is commonly known as stylometry, re-

main relatively underexplored. In this thesis, we propose a novel Graph Neural Network

(GNN)-based model named StyleLink, which leverages both social network structures

and stylometric features derived from user-generated texts to address the UIL problem in

an integrated manner. Our model utilizes GNNs to incorporate both stylometric features

and the network structure for each social network, effectively embedding the network

and enhancing user representation. This is the first work to incorporate stylometric fea-

tures into GNNs to embed social network and then conduct UIL between two embedding

spaces. Through extensive experiments conducted on real-world social network datasets,

the results demonstrate that StyleLink outperforms state-of-the-art methods in both link-

ing accuracy and identity-match ranking performance. In addition, we explore the effects

of different linguistic characteristics in the identification of user profiles on social net-

works.
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Abrégé

Le lien d’identité utilisateur (UIL) est la tâche consistant à aligner les identités d’un même

utilisateur sur différentes plateformes de réseaux sociaux. Bien que les approches exis-

tantes aient exploré divers aspects tels que les différents attributs de profil utilisateur et

les structures des réseaux sociaux, les styles d’écriture issus des textes générés par les util-

isateurs, communément appelés stylométrie, restent relativement sous-explorés. Dans cet

article, nous proposons un nouveau modèle basé sur les réseaux de neurones graphiques

(GNN) nommé StyleLink, qui exploite à la fois les structures des réseaux sociaux et les

caractéristiques stylométriques dérivées des textes générés par les utilisateurs pour abor-

der le problème de l’UIL de manière intégrée. Notre modèle utilise les GNN pour intégrer

à la fois les caractéristiques stylométriques et la structure du réseau pour chaque réseau

social, ce qui permet d’effectuer une meilleure représentation des utilisateurs. Il s’agit de

la première étude à intégrer des caractéristiques stylométriques dans les GNNs pour en-

coder un réseau social et ensuite réaliser l’UIL entre deux espaces d’encodage. À travers

des expériences approfondies menées sur des ensembles de données de réseaux soci-

aux réels, les résultats montrent que StyleLink surpasse les méthodes à la pointe de la

technologie en termes de précision de liaison et de performance de classement des corre-

spondances d’identité. De plus, nous explorons les effets de différentes caractéristiques

linguistiques dans l’identification des profils d’utilisateurs sur les réseaux sociaux.
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Chapter 1

Introduction

1.1 Motivation

With the flourishing Online Social Networks (OSNs), people tend to participate in vari-

ous social networks to engage in different social activities. According to reports [9, 10],

roughly three-quarters of the public (73%) uses more than one OSN and the median

American uses three mainstream social network sites. Each OSN serves different social

networking functions in daily life. For instance, users connect with friends on Facebook

and Instagram, share updates on X (formerly known as Twitter), and network with col-

leagues and potential employers on LinkedIn.

As a result, the same individual may have signed up multiple accounts across these

diverse platforms, each account reflecting different user attributes, user-generated con-

tent (UGC), and behavior patterns, such as follows, likes, etc. User identity linkage (UIL)

is a task of aligning accounts that belong to the same individual from different social

networks. UIL has received increasing attention in both academia and industry, play-

ing a crucial role in various applications, including user migration [39], recommenda-

tion systems [5, 6, 48], crime detection [82], and privacy protection [19, 42, 59, 75]. With

the advancement of network embedding techniques, embedding-based methods have

been widely employed to address the UIL problem. Existing approaches leverage vari-
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ous dimensional attributes of user identities and can be categorized into three types: user

profile-based, network structure-based, and content-based methods.

User profile-based approaches typically focus on user-provided identifiable informa-

tion, including username, gender, birthday, email, education, location, etc [1,43,77]. While

public profile attributes offer valuable insights for identifying users across Online So-

cial Networks (OSNs), their effectiveness diminishes when applied to large-scale OSNs,

where many attributes can be duplicated and easily impersonated.

Network-based approaches aim to link user identities with their network structures,

specifically utilizing topology consistency [81]. Users who share similar neighborhoods in

different networks could be recognized as matched identities. In social networks, social

relationships, such as follower-followee, play a significant role in exploring correspond-

ing user identities across different OSNs [44,47,81,86]. However, the assumption of topol-

ogy consistency is challenged by network heterogeneity. For instance, users may prefer

certain platforms, such as favoring Facebook over Twitter, leading to active engagement

on one network and a subdued presence on another. Additionally, heterogeneity arises

from differing semantics of relations, such as those between a career-oriented platform

like LinkedIn and a co-authorship network like Google Scholar.

Content-based approaches to user identity linkage have explored various aspects of

UGC and behavior patterns. These methods have analyzed tag frequencies [27], typing

patterns [78], multi-modal UGC [13], and N-gram language modelling [20, 66, 78]. How-

ever, these approaches still have limitations. By focusing solely on UGC, they overlook

the crucial network structure and user connectivity, which are the most typical charac-

teristics of OSNs. They also face challenges with platform-specific content variations and

scalability issues with large datasets. Moreover, the exclusive focus on content neglects

the fundamental purpose and dynamics of social networking platforms. These limitations

highlight the need for a more comprehensive approach that integrates content analysis

with network structural information to achieve more robust cross-platform user identity

linkage.
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In OSNs, user profile attributes and network structure are closely interrelated. For

instance, users with similar profile attributes are more likely to be connected as friends,

and groups of users with shared characteristics often form dense communities. Due to

the unique social attributes and community ecology of social networks, there exist the

dual mechanisms of linguistic homophily [37]. This phenomenon manifests in two ways:

firstly, individuals who share similar linguistic styles have a higher propensity to form

and sustain friendships; secondly, friends tend to experience linguistic convergence over

time. These mechanisms contribute to the emergence of relational echo chambers within

social networks.

Drawing inspiration from the success of applying graph neural networks (GNNs) and

attention mechanisms to embeddings [67, 68], we propose a novel GNN-based model for

User Identity Linkage (UIL). This model leverages both social network structures and

stylometric features derived from UGC to address the aforementioned limitations.

1.2 Contributions

To the best of our knowledge, this is the first work to incorporate stylometric features into

GNNs to embed social network and then conduct UIL between two embedding spaces.

• We present a novel methodology that leverages both user-generated content (UGC)

and network structure to establish correspondences between user accounts across

OSNs. This approach reduces reliance on user-provided identifiable information,

which may be inconsistent or deliberately obscured. Instead, we focus on analyzing

user activities, including writing styles and social connections, which are harder to

impersonate and accumulate over time with consistent social network engagement.

• We introduce StyleLink, an innovative Graph Neural Network (GNN)-based ap-

proach to tackle the UIL problem. StyleLink consists of three primary components:

a) Stylometric feature extraction, where we identify distinctive linguistic patterns in

UGC to capture unique writing styles; b) Network embedding: we employ GNN
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models to generate user representations that incorporate both stylometric features

and network structure; and c) Supervised linkage learning, where we compare the

usage of cosine similarity and Triplet loss for learning and use a Multi-Layer Percep-

tron (MLP) as the mapping function to learn the embedding transformation between

source and target networks, thus predicting aligned user identities.

• We validate the effectiveness of StyleLink on real-world datasets. Experimental re-

sults demonstrate that our method significantly outperforms existing baselines in

terms of both accuracy and efficiency.

The rest of the thesis is organized as follows: in Chapter 2, we thoroughly reviewed

related work for network embedding, the graph neural network models, network align-

ment, and writing style features in authorship identifications. Chapter 3 formally defines

the UIL research problem. Chapter 4 describes the proposed StyleLink model, detailing

our design architecture of three main steps. Chapter 5 illustrates the datasets, baseline

models, the experiment setup, and experimental results. Finally, Chapter 6 summarizes

the advantages and limitations of our approach and discusses potential directions for fu-

ture work.
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Chapter 2

Literature Review

Before introducing our proposed network alignment models and experiments on various

social networks, we give a summary of the related work on network embedding methods,

Graph Neural Networks (GNNs), the models tackling the UIL problem from different

aspects, and writing styles in authorship identification.

2.1 Network Embedding

Network embedding has become a widely recognized and powerful method for gener-

ating low-dimensional representations of nodes within networks, attracting significant

attention due to its effectiveness and efficiency. This section briefly introduces some

classical node embedding algorithms based on random walks, including Deepwalk [53],

node2vec [23], LINE [62].

2.1.1 DeepWalk

DeepWalk [53] was the first to apply random walks for representation learning in graphs,

adapting concepts from the SkipGram model used in language processing. SkipGram op-

timizes the co-occurrence probability of words within a fixed window in a sentence. Sim-

ilarly, DeepWalk leverages local information from truncated random walks to learn latent
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node representations, considering these walks as equivalent to sentences. The DeepWalk

algorithm comprises two main steps: generating random walks and applying the Skip-

Gram algorithm to update the representations. It simulates random walks starting from

each vertex, where, at each step, a neighboring vertex is uniformly selected as the next

node, continuing this process iteratively until the maximum walk length is reached.

2.1.2 Node2Vec

Building upon the uniformly random walks used in DeepWalk, node2vec [23] introduces

biased random walks for sampling. As depicted in Figure 2.1, it utilizes two key param-

eters, the return parameter p and the in-out parameter q, to effectively balance between

BFS (Breadth-First-Search) and DFS (Depth-First-Search) strategies when generating these

random walks. According to Grover and Leskovec [23], Breadth-First-Search (BFS) and

Depth-First-Search (DFS) play a crucial role in generating representations that reflect ei-

ther homophily or structural equivalence. When we use BFS to sample neighborhoods,

the resulting embeddings closely align with structural equivalence. This occurs because

accurately characterizing local neighborhoods is sufficient to identify structural equiva-

lence. BFS accomplishes this by initially exploring nodes, providing a detailed view of

the network at a microscopic level. The return parameter p controls the probability of

immediately revisiting nodes in the generated random walk; a higher value of p reduces

the likelihood of revisiting, thereby promoting exploration. The in-out parameter q deter-

mines the likelihood of remaining within the neighborhood of node v versus exploring

nodes further away from node v.

2.1.3 LINE: Large Information Network Embeddings

LINE (Large-scale Information Network Embedding) [62] has raised concerns about the

lack of a clearly defined objective with respect to preserving specific network properties

in DeepWalk. Instead of sampling random walks, Large-scale Information Network Em-
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Figure 2.1: An illustration of the biased random walk process in node2vec. The parame-

ters p and q are the two hyper-parameters that influence the walk, while α represents the

probability of selecting a particular edge as the next step in the random walk. Adapted

from [23]

bedding (LINE) adopts a BFS strategy, explicitly aiming to preserve both first-order and

second-order proximity within the network with a carefully designed objective function.

First-order proximity in a network refers to the local proximity between two vertices.

Second-order proximity between a pair of vertices (u, v) refers to the similarity between

their respective neighborhood structures. As implied by its name, LINE is well-suited

for various types of information networks and can easily scale to millions of nodes by

utilizing an edge-sampling algorithm to optimize its objective function [62].

However, the limitations of these shallow node embeddings via random walks are

apparent [24]. First of all, they do not utilize node, edge, or graph features and only in-

corporate the topological features of the graph. Many graph datasets contain rich feature

information, especially with social networks, which could be potentially informative for

embedding. The second issue is that they cannot generate embeddings for nodes not

in the training set and inherently transductive. Lastly, it has no sharing of parameters

between nodes. To alleviate these drawbacks, shallow embedding methods can be re-

placed with embedding methods that depend on the structure and attributes of the graph
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and nodes. Currently, the most popular and effective paradigm is Graph Neural Networks

(GNNs).

2.2 Graph Neural Network

As a solution to the limitations of random-walk-based embedding methods, deep repre-

sentation learning and Graph Neural Networks (GNNs) have become a powerful tool

to extract useful low-dimensional features in attributed networks with node features

[25, 35, 65, 71].

The basic idea of applying GNNs is to encode and project the nodes in a graph into

a latent space (shown as Figure 2.2), where a node is represented by a low-dimensional,

continuous, and dense embedding vector. Low-dimensional embedding vectors are pre-

ferred, as the dimensionality is far smaller than the total number of nodes in the graph.

Additionally, the embedding vectors must be continuous and composed of real numbers.

Density is another important characteristic of embedding vectors, as we aim to avoid

sparsity, a common problem of adjacency matrices. The embeddings are trained in a way

that the distances or similarities in the latent embedding space correspond to the relative

positions of the nodes in the original graph. The feature of a node can be aggregated and

updated by its neighborhood through the message-passing mechanism.

This section includes some fundamental information about graph representation learn-

ing and fundamental GNNs to prepare readers with basic theoretical information.

2.2.1 Message Passing

Message passing is a fundamental mechanism in GNNs that allows nodes to communi-

cate with their neighboring nodes and update their feature representations based on the

information received from their neighbors [7].

In each message passing layer, each node aggregates the information from its neigh-

boring nodes and combines it with its own features to produce a new representation. This
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Figure 2.2: Node Embedding. Generate a low-dimensional, continuous, and dense em-

bedding vector for each node in a graph to facilitate downstream tasks.

new representation is then passed on to its neighboring nodes for further processing. The

process is repeated for multiple iterations until a stable representation is achieved.

The message-passing operation can be formally defined as follows:

hl+1
v = AGGREGATEl(m(l,v)

u |u ∈ N(v)) (2.1)

ml+1
v = COMBINEl(hl

v, h
l+1
v ) (2.2)

where hl
v represents the feature representation of node v at layer l, ml,v

u is the message sent

from node u to node v at layer l, AGGREGATEl is the aggregation function that combines

the messages from neighboring nodes, and COMBINEl is the combining function that

produces the new feature representation for node v at layer l + 1.

The selection of aggregation and combination functions may differ based on the spe-

cific GNNs architecture and the particular task at hand. Similar to the pooling functions

used in CNN, max, mean, sum are typical element-wise aggregation functions in GNNs as

well. However, the overall idea is to allow nodes to exchange information and update

their features based on the collective information of their neighboring nodes.
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Message Passing is the foundation framework for all the graph neural network mod-

els. Theoretically, the basic message passing layer representation in GNNs is defined as:

hk
u = σ(Wk

selfh
k−1
u +Wk

neigh

∑
v∈N(u)

hk−1
v + bk) (2.3)

2.2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [35] extend convolutional neural networks (CNNs)

[40] to process graph-structured data, which lacks a fixed grid layout, enabling direct op-

erations on the graph’s structure. GCNs are proved to be effective in various downstream

tasks, such as text classification [73], social network recommender systems [74], Natural

Language Processing [69], etc. GCNs have also been shown to be effective in handling

noisy and incomplete graph data, making them useful tools for real-world applications.

Theoretically, GCN is a multi-layer neural network that function directly on graph

data., generating embedding vectors for nodes by leveraging the properties of their sur-

rounding neighborhoods. Following our notations for the graph, Figure 2.3 is the vi-

sualization of a 2-layer version of the GCNs computation graph. By contrast with the

two-layer version of a message-passing model mentioned in Sec 2.2.1, GCNs starts from

the adjacency matrix Ã = A+I, with diagonal elements as 1 because of adding self-loops.

This Ã enables the inclusion of the node’s own representation when updating the node

embeddings at each layer. In GCNs, the node embeddings at every layer are updated

according to the following propagation rules:

H1 = X (2.4)

Hk+1 = σ(D− 1
2 ÃD− 1

2HkWk) (2.5)

In this context, H represents the matrix of node embeddings hu, X corresponds to the

matrix of node features xu, σ(·) denotes the activation function (e.g., ReLU), Ã is the
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adjacency matrix of the graph, augmented with self-loops, D̃ is the degree matrix, also

including self-loops, and Θ refers to the matrix of trainable parameters.

Figure 2.3: Overview of a 2-layer GCNs computation graph for a single node. NN1 and

NN2 represent two different Neural Networks for layer-1 and layer-2 respectively, while

the parameters are shared in each neural network.

2.2.3 Graph Attention Networks

When a graph becomes too noisy, which is normal for real social network graphs, a sim-

ple graph convolution mechanism will struggle to effectively propagate and aggregate

meaningful information, as it indiscriminately combines information from neighboring

nodes, including irrelevant or noisy ones [12]. However, the attention mechanism in

graph structure is more robust than graph convolution and is able to alleviate the im-

pact of noise by assigning higher weights to more relevant nodes and edges, allowing

the model to focus on critical relationships while ignoring less important or noisy con-

nections. Petar Veličković et al. [65] introduced the Graph Attention Network (GAT) in

2018. It combines graph neural networks with additional attention layers. It employs an
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Figure 2.4: The attention mechanism α(Wh⃗i,Wh⃗j) are employed

Figure 2.5: A GAT layer with multi-head attention (with K = 3 heads) is applied by

node 1 to its neighboring nodes. The distinct arrow styles and colors illustrate separate

attention computations for each head. The features gathered from each head are then

either concatenated or averaged to generate the updated node representation, h⃗′
1.

attention mechanism [64] to aggregate the embeddings of neighboring nodes, where the

attention mechanism assigns different weights to neighbors and edges based on their sig-

nificance. Attention layers allow the model to prioritize important information from the

graph rather than considering the entire graph, as shown in Figure 2.4 and 2.5.
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A multi-head GAT layer can be expressed as the following equation:

h⃗′
u =

K∥∥∥
k=1

σ

(∑
v∈Nu

αuvW
kh⃗′

v

)
(2.6)

Specifically, K represents the number of attention heads,
∥∥∥ means vector concatenation,

αuv are the normalized attention coefficients computed by the k-th attention mechanism

(ak), and Wk is the weight matrix for the associated linear transformation of the input.

In cases where multi-head attention is applied to the network’s final (prediction) layer,

averaging is used in place of concatenation.

h⃗′
u = σ

(
1

K

K∑
k−1

∑
v∈Nu

αuvW
kh⃗′

v

)
(2.7)

and the aggregation process of a multi-head graph attention layer is illustrated in Fig-

ure 2.5

2.2.4 GraphSAGE

GraphSAGE [25] is a general inductive model for learning graph representations that

utilizes node attribute information, such as text features, to efficiently create node em-

beddings for novel data. It learns a function that generates embeddings by sampling and

aggregating feature vectors from a node’s neighboring connections. GraphSAGE, along

with some other GNN models, is inductive in nature. This enables the model to generate

embeddings for nodes that were not seen during the training phase. This is particularly

useful for handling new nodes. By contrast, Node2Vec [23], being transductive, needs to

be retrained to handle new nodes. GraphSAGE can generate embeddings for completely

new nodes based solely on their features, without any connections.
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2.3 User Identity Linkage

User Identity Linkage (UIL), also referred to as network alignment, is a concept first for-

malized by Zafarani and Liu. They defined UIL as the process of connecting user accounts

across various Online Social Networks (OSNs) that belong to the same individual in real

life. It plays a crucial role in various downstream applications, including bioinformatics

such as protein-protein interaction matching [38], computer vision [15], recommendation

systems [5, 6, 45, 48], drug trafficker detection [82], and privacy protection [19, 42, 59, 75],

etc.

Current approaches leverage different dimensional attributes of an identity and can be

classified into three categories: user profile-based, network structure-based, and content-

based methods.

2.3.1 User Profile-based Approaches

User profile-based approaches typically focus on discrete user profile attributes, including

username, gender, birthday, email, location, etc. These attributes are usually accessible on

public platforms, prompting early studies to propose diverse approaches for leveraging

these profile attributes in user identity linkage.

Usernames or screen names are a mandatory element of user profiles in nearly all

social networks and have therefore been one of the first and most extensively explored

methods for identifying users across different OSNs. Zafarani and Liu [77] conducted an

initial investigation on the feasibility of employing usernames for mapping users across

social networks, with a system relying on the public user URLs. Liu et al. [43] introduced

an unsupervised method that leverages the rarity and commonality of usernames, quan-

tified using n-gram probabilities. Similarly, Ahmad and Ali [1] focused exclusively on

username as a distinctive attribute to identify matching user profiles across three distinct

social networking platforms. A more in-depth study on usernames was conducted by

Zafarani et al. [50], where they designed sophisticated features for identification based

14



on some observations about human behaviors, such as limitations in time and memory,

knowledge limitations, and typing patterns, to model the behavioral patterns of users

when selecting usernames.

Utilizing a combination of profile features can significantly enhance the accuracy of

user identification. Motoyama and Varghese [49] matched users by calculating the simi-

larity of users based on a number of biographical attributes, such as gender, age, occupa-

tion, hometown, etc. Carmagnola and Cena [8] proposed a method that utilizes multiple

profile attributes, including username, name, location, and email address, to link user

identities across platforms. More recently, Sharma and Dyreson [58] proposed LINKSO-

CIAL, which links profiles by extracting a few core attributes: username, name, bio and

profile image. Goga et al. [21,22] utilized a combination of real name, username, profile photo,

location, and friends to identify matching user identities between Facebook and Twitter

platforms.

In order to carefully measure the reliability of user profiles across real-world social net-

works in user identity linkage, Goga et al. [21] introduced a framework comprising four

key properties: Availability, Consistency, Impersonability, and Discriminability (ACID).

Their findings support the notion that individuals generally maintain consistent personas

across various social networks. However, a notable issue emerges when exclusively using

profile attributes for identification, as there exists a substantial number of profiles belong-

ing to distinct users that share similar characteristics. While public profile attributes offer

valuable insights for identifying users across SNs, their effectiveness diminishes when

applied to large-scale SNs, where many attributes can be duplicated and easily imper-

sonated. A significant number of users would mask or counterfeit their personal profiles.

According to a survey of 1,500 U.S. social media users conducted by USCasinos.com1,

one-third of participants create fake account profiles for various reasons.

1https://uscasinos.com/blog/owning-fake-social-media-accounts/
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2.3.2 Content-based Approaches

Due to the potential ambiguity and unreliability of user profiles in UIL tasks, researchers

have shifted their focus towards analyzing user-generated content (User Generated Con-

tent (UGC)) as an alternative approach.

Iofciu1 et al. [27] focused on tagging information and addressed the UIL problem from

their user ID and tagging behavior, exploiting tag frequencies and the inverse document

frequency of a tag. In terms of the textual UGCs, extracting linguistic features has proved

to be effective for identifying users. Zheng et al [84] developed a framework for identify-

ing authorship by analyzing the writing style features of online messages and employing

various classification methods. Goga et al. [20] included feature extraction from textual

data and built probabilistic language models for users with unigram probability distri-

bution. The geo-location information within users’ posts and the timestamp of posts are

also been explored.

Srivastava and Roychoudhury [61] utilized only the publicly available content infor-

mation, extracting and processing parts-of-speech, symbols, emoticons, numbers, and

high-frequency words in user’s posts, tweets, retweets, and URLs. ustyle-uid [82] lever-

ages both writing and photography styles from the text and photo contents for drug

trafficker identification. Vosoughi et al. [66] presented the effectiveness of temporal (the

activity patterns of users) and linguistic (derived from TF-IDF cosine similarities and N-

gram language modeling) features of users in the UIL problem. Chen et al. [13] tackled

UIL between Instagram and Twitter with the multi-modal UGCs (texts and images) and

temporal post correlation on different social media. Apart from handcrafted acitivity and

network features, Chatzakou et al. [11] also incorporated static linguistic features to cap-

ture the writing style of tweet authors, using this information to establish connections

between user accounts within the same social media platform.

However, these approaches still have limitations. By focusing solely on UGC, they

overlook the crucial network structure and user connectivity, which are the most typical

characteristics of OSNs. They also face challenges with platform-specific content varia-
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tions and scalability issues with large datasets. Moreover, the exclusive focus on content

neglects the fundamental purpose and dynamics of social networking platforms.

2.3.3 Network Structure-based Approaches

Network-based approaches seek to connect user identities with the structures of networks

by leveraging the topology consistency [81], which means users who share similar neigh-

borhoods in different networks could be aligned. In social networks, social relationships

such as following/followee play a pivotal role in exploring corresponding user identities

across different SNs [44, 47, 81, 86].

NS [51] is the first approach to demonstrate feasibility of successful re-identification

based solely on the network topology. Zhou et al. [88] proposed the Friend Relationship-

Based User Identification (FRUI) algorithm. This algorithm operates on the premise that

no two users share an identical friend cycle, making it a more precise approach for cross-

platform social network analysis as it leverages friendship structures. Man et al. [47] pro-

posed a supervised model, called PALE, that leverages observed anchor links to identify

key structural patterns. IONE [44] generates multiple node embeddings and conceptu-

alizes followers and followees as input and output context vectors, respectively. This

method aims to maintain the proximity of users with comparable follower/followee re-

lationships in the embedded space. Zhou et al. presented DeepLink [86], which encodes

network nodes into vector representations, capturing both local and global network struc-

tures without relying on hand-crafted features. These embeddings are then utilized to

align anchor nodes through deep neural networks. Lastly, CrossMNA [14] tackles the

multi-network alignment problem by focusing solely on network structural information,

employing cross-network embedding techniques.

Treating network alignment process as Reinforcement learning (RL) has gained more

attention in recent years. Li et al. [41] transformed UIL into a sequence decision prob-

lem and proposed a deep RL model, named RLink, for the task. They also fully utilized
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UIL model Type Feature Involved
PALE [47], CrossMNA [14], DeepLink [86] supervised Network
MNA [36], DCIM [52] supervised Network, Content
MEgo2Vec [79] supervised Network, Profile
FRUI [87], IONE [44], NS [51] semi-supervised Network
COSNET [83] semi-supervised Network, Profile
HYDRA [46] semi-supervised Network, Profile, Content
RLINK [41] reinforcement learning Network

Table 2.1: Comparison of Different Network-based User Identity Linkage Models. The

models with joint use of content or profile features are also listed.

both the social network structure with Node2Vec [23], and the history-matched identities,

which may have long-term influences on the subsequent linkage.

However, the assumption of topology consistency can be challenged by network het-

erogeneity. For instance, users may exhibit personal preferences for specific social plat-

forms, such as favoring Facebook over Twitter. Consequently, they may engage actively

on one social network while maintaining a more subdued presence on another. Network

heterogeneity can also arise from variations in the semantic meaning of relationships [72]

across different platforms. For instance, the connections on a professional networking site

such as LinkedIn differ significantly in nature from those found in academic collaboration

networks like Google Scholar, where links typically represent co-authorship.

Apart from leveraging features solely from one of the categories above, the joint us-

age of profile information, user-generated contents, and network structures promisingly

bring better results [32, 33].

MNA (Multi-Network Anchoring) [36] extracts social features, including spatial, tem-

poral, and text content features ( bag-of-words vectors weighted by TF-IDF), and neighborhood-

based network features and match user identity pairs. Zhang et al. [79] proposed MEgo2Vec,

a graph neural network model designed for alignment, where both attribute embed-

dings and structural embeddings are seamlessly integrated into a convolutional neural

network. Zhang et al. [83] proposed the COSNET model, which considers both local con-

sistency and global consistency. FINAL [81] leveraged not only node profile information
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but also edge feature information in the graph. Liu et al. [46] proposed HYDRA, which

incorporates and makes full use of user profile attributes, user-generated contents target-

ing topic and style, and all the social behavior exhibited by a user on the platforms along

the timestamps to link user accounts across different OSNs. Nie et al. [52] proposed a

Dynamic Core Interests Mapping (DCIM) algorithm, which integrates both users’ social

network structures and their textual content. It models each user’s core interests and sub-

sequently computes the similarity between pairs of target users based on these modeled

interests.

2.4 Stylometric Features for Authorship Analysis

Writing styles can serve two contrasting application directions: revealing authorship, as

in authorship attribution, where stylometric analysis is used to identify an individual to

a specific text; and hiding authorship, as in authorship anonymity [4] or authorship ob-

fuscation [3], where techniques are employed to obscure or neutralize distinctive writing

features to protect the writer’s identity.

Stylometric features effectively distinguish the author of texts from posts, articles,

emails, and reviews [2, 16, 17]. It involves examining various linguistic and stylistic fea-

tures of the text and comparing them to a known set of writing styles by the suspected

author. By analyzing features from Character-, Word-, and POS-level [17, 28, 30, 31], au-

thorship attribution aims to attribute an anonymous piece of text to its rightful author.

Authorship attribution has a wide range of applications across various domains. These

applications help especially in cyber forensics and crime investigation [29–31, 56], lever-

aging the ability to analyze and link texts to their authors based on writing style or other

features Reasonably, it inspires content-based approaches in User Identity Linkage (UIL)

approaches, with rich information extracted from the UGCs across OSNs [11,20,61,66,84].
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Chapter 3

Problem Description

In this section, the main goal is to prepare the information of basic terminology and defi-

nitions for the problem of User Identity Linkage (UIL).

3.1 Social Network Graphs

Social Network Graphs (SNGs) can be represented formally as G = {V,E,X}, where

V = {v1, v2, ..., vN} is a set of nodes representing the users, and E ∈ V ×V is a set of edges

representing the social relationships among users, e.g., follower/followee on Instagram

and Twitter. Each user vi is associated with a d-dimensional feature vector xi (the i-th

row in X). In addition, a set of known anchor nodes T = {(vsi , ut
j)|vsi ∈ V s, ut

j ∈ V t} is

provided, where each pair (vsi , u
t
j) represents accounts belonging to the same individual

between the two networks. In real-life social networks, anchor links naturally exist due

to users registering accounts on multiple platforms. Users may explicitly mention or link

their other social network accounts in their profiles or posts, providing clear anchor links.
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Figure 3.1: Illustrate the UIL problem

3.2 UIL Problem Definition

A social network is a graph G = {V , E ,X}, where V = {v1, v2, ..., vN} is a set of nodes

representing the users, and E ∈ V×V is a set of edges representing the social relationships

among users, e.g., follower/followee on Instagram and Twitter. Each user vi is associated

with a d-dimensional stylometric feature vector xi (the i-th row in X ), which is extracted

from the text written by the user vi.

Let Gs = {Vs, Es,X s} and Gt = {V t, E t,X t} be the source and target networks, re-

spectively, In these networks, Vs and V t are the sets of users, Es and E t are the sets of

edges representing connections between users, and X s and X t are the sets of stylometric

features.

The goal of User Identity Linkage (UIL) is to predict whether a user vsi in the source

network and a user vtj in the target network correspond to the same individual in the

real world. Formally, the linkage can be defined as a function f(vsi , v
t
j|T,Gs, Gt), which is
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defined as:

f(vsi , v
t
j|T,Gs, Gt) =

 1, if vsi = vtj

0, otherwise

The output is a binary value, where 1 indicates that vsi and vtj refer to the same person,

and 0 indicates otherwise.

Table 3.1: Major Used Notations in This Thesis

Notation Description
Gs and Gt The source and target social networks.
V and E The set of users and social connections between users.
vi and i The target user and the index of the user.
X The stylometric feature matrix for a network
f()̇ The linkage function
Φ The mapping function
Z The embedding for network, i.e. the output from GNNs
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Chapter 4

Proposed Model Architecture

To solve the User Identity Linkage (UIL) problem, we propose a Graph Neural Networks

(GNNs)-based model, named StyleLink. As shown in Figure 4.1, StyleLink consists of

three key components: stylometric feature engineering, network embedding via GNNs,

and supervised linkage learning. We will discuss each component in detail.

4.1 Stylometric Feature Extraction

To model users’ writing styles, stylometric features like word choice, frequency, punctu-

ation, and sentence length can be easily identified [55] and assembled into sets of repre-

sentative characteristics. In this thesis, we extract and characterize the writing styles of

users from the following aspects, following the framework proposed and commonly used

by [17,28,30,31,84]. We evaluate on 274 static features including lexical, syntactical, struc-

tural features and idiosyncratic features specially designed for UGC on OSNs, as listed in

Table 4.1. Specifically, the frequency of misspellings can reflect a user’s attention to de-

tail, educational background, and language proficiency. The use of abbreviations varies

greatly among users, reflecting their communication style, level of formality, and adapta-

tion to platform norms. Users who frequently interact with various topics may exhibit a

broader range of abbreviations, reflecting their engagement level. Therefore, we choose
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Figure 4.1: Illustration of the StyleLink model workflow. The process begins with ob-

taining source and target social network information, including user connections and

their publicly posted texts (textual UGC). Next, stylometric features are extracted from

the UGC and input into a Graph Neural Network to generate network embeddings that

better represent the users. Subsequently, a mapping function is constructed to learn the

relationships across the two OSNs. Finally, the user linkage results are produced.

Figure 4.2: Overview of Stylometric Feature Extraction: User-generated texts undergo

text pre-processing followed by extraction of four key stylometric features—Lexical, Syn-

tactical, Structural, and Idiosyncratic—to represent writing styles.

to incorporate these features into our model to enhance the accuracy and reliability of

UIL.
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Table 4.1: List of Stylometric Features. The features from 1 to 242 are adapted from [84],

and the corresponding abbreviations are listed in Table 4.2.

Categories Examples

Lexical Features F1

Character-based features:
1. Total number of characters(C)
2. Ratio of alphabetic characters/C
3. Ratio of upper-case characters/C
4. Ratio of digits/C
5. Ratio of tabs/C
6–31. Frequency of letters, ignoring case (26
features: A to Z)
32–53. Frequency of special characters (22
features: ()<>%—{} []/# ˜ +-*=$ˆ& )
Word-based features:
54. Total number of words (M)
55. Ratio of short words (less than four
characters)/M
56. Total number of characters in words/C
57. Average word length (in characters)
58. Average sentence length (in characters)
59. Average sentence length (in words)
60. Total different words/M
61. Yule’s K measure* (A vocabulary rich-
ness measure defined by Yule)
62–81. Word length frequency distribution
/ M (20 features) Frequency of words in
different lengths

Syntactic Features F2

82–89. Frequency of punctuations (8 fea-
tures) including ” , . ? ! : ; '
90–239. Frequency of function words (150
features) ( [84])

Structural Features F3
240. Total number of sentences
241. Average sentences per post
242. Average URL per post

Idiosyncratic Features F4
243. Average Misspelled words per post
244-273. Abbreviation Frequency
274. Average Abbreviation Diversity
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Table 4.2: Common Social Media Abbreviations and Their Meanings. We chose these 30

words as they are widely used and representative across various OSNs [34, 54].

Abbreviation Meaning Abbreviation Meaning
AFAIK As far as I know AFK Away from keyboard
ASAP As soon as possi-

ble
BC, B/C Because

BFF Best Friend For-
ever

BRB Be right back

BTW By the way DM Direct message
FYI For your infor-

mation
IDK I don’t know

IMO In my opinion RN Right now
JK Just kidding LMK Let me know
LMAO Laughing my ass

off
LOL Laugh out loud

NB Not bad NP No problem
NVM Never mind OFC Of course
OMG Oh my God OMW On my way
PM Private Message TBH To be honest
TMI Too much infor-

mation
HBD Happy Birthday

TY Thank You WTF What the f***
YW You’re welcome XOXO A term to convey affection

4.2 Graph Neural Networks for Network Embedding

In StyleLink, both source and target networks are embedded into continuous and low-

dimensional spaces, represented as Zs and Zt respectively, and a mapping function Φ :

Zs → Zt, which maps the latent spaces from the source to the target, is learned. Firstly,

we apply Graph Convolutional Networks (GCNs) [35], one of effective GNNs that cap-

tures high-order information from neighboring nodes, to embed the source and target

networks. For multi-layer GCNs, the layers can be mathematically defined as:

H1 = σ(D− 1
2 ÃD− 1

2XW 0) (4.1)
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Table 4.3: List of English function words in our feature set, adapted from [84].

a
about
above
after
all

although
am

among
an

and
another

any
anybody
anyone

anything
are

around
as
at
be

because
before
behind
below
beside

between

both
but
by
can
cos
do

down
each

either
enough
every

everybody
everyone

everything
few

following
for

from
have

he
her
him

i
if
in

including

inside
into

is
it
its

latter
less
like
little
lots

many
me

more
most
much
must
my

near
need

neither
no

nobody
none
nor

nothing
of

off
on

once
one
onto

opposite
or

our
outside

over
own
past
per

plenty
plus

regarding
same

several
she

should
since

so
some

somebody
someone

something

such
than
that
the

their
them
these
they
this

those
though
through

till
to

toward
towards
under
unless
unlike
until
up

upon
us

used
via
we

what
whatever

when
where

whether
which
while
who

whoever
whom
whose

will
with

within
without
worth
would

yes
yet
you
your

Hk+1 = σ(D− 1
2 ÃD− 1

2HkW k) (4.2)

where Hk is the node embedding matrix at layer k, X is the matrix of stylometric features

and also the initial layer H0, σ(·) is an activation function (e.g., we could choose ReLU

σ(x) = max(0, x)), Ã is the graph adjacency matrix with the addition of self-loops, ensur-

ing that each node’s own features are included in the aggregation process. D̃ represents

the degree matrix of the graph, which includes self-loops as well. W l is the weight matrix

at layer l to learn.
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Adding the attention mechanism in the process of GNNs learning, where a node in-

volves the most relevant information from its neighborhoods and updates its own fea-

tures with the learned attention weights, allows the model to focus on important nodes

or edges in the graph while alleviating noise signals during message passing in the net-

work. Here we applied Graph Attention Network (GAT) [65] as the second variant to our

embedding and mathematically, the attention mechanism can be defined as follows:

Let hi denote the hidden state of node i. The attention coefficient eij between node i

and node j is computed as:

eij = LeakyReLU(αT [Whi ∥Whj]) (4.3)

where α is the attention vector, W is the weight matrix, and ∥ denotes concatenation. The

normalized attention coefficients αij are tcomputed using the softmax function:

αij =
exp(eij)∑

k∈N (i) exp(eik)
(4.4)

Finally, the new representation of node i is computed as a weighted sum of its neigh-

bors’ representations, taking into account the attention coefficients:

h′
i = σ

 ∑
j∈N (i)

αijWhj

 (4.5)

where σ is a non-linear activation function, and N (i) refers to the set of neighbors of node

i.

Thus, the attention mechanism enables the model to focus on important nodes or

edges while aggregating the writing styles from neighbors effectively.
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4.3 Supervised Linkage Learning

After obtaining the representation Zs ∈ Rd×n, Zt ∈ Rd×n from GNNs for the source and

target network graphs, respectively, the next step is to learn a mapping function Φ : Zs →

Zt. This mapping function is supervised using the known anchor links T . We need to

minimize the objective function during the mapping function learning.

4.3.1 Cosine Similarity

In many existing approaches, cosine similarity [13,36,70,85,86,86] has widely been adopted

to compute the objective function to learn the mapping function. Cosine similarity mea-

sures the likeness between two vectors by calculating the cosine of their angle. In user

identity linkage, this metric assesses the similarity of user feature representations across

different social networks. Higher cosine similarity suggests greater vector alignment, in-

dicating a higher likelihood of representing the same user. Unlike magnitude-dependent

measures, cosine similarity focuses on directionality, making it particularly effective in

high-dimensional spaces. This makes it a simple yet powerful tool to implement for com-

paring stylometric feature embeddings in user identity linkage tasks.

Lcosine = argmin
WΦ,b

(1− cos(Φ(Zs),Φ(Zt))) (4.6)

4.3.2 Triplet Loss

Our proposed model adopts the Triplet Loss for the objective function in supervised link-

age learning.The concept of triplet loss was initially developed for facial recognition ap-

plications [57]. It has shown an improved ability to distinguish between different items in

the embedding space. Unlike cosine similarity, which only looks at pairs of items, triplet

loss considers groups of three. This approach pushes the mapping function to position

correct matches significantly closer together in the latent space compared to incorrect

matches.
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We need to minimize the objective function as follows during the mapping function

learning:

Ltriplet = argmin
W,b

∑
(a,p,n)∈T

[
∥Φ(Zs

a)− Zt
p∥22

−∥Φ(Zs
a)− Zt

n∥22 + α
]

(4.7)

where Anchor (a) represents a node from the source network; Positive (p) represents the

corresponding node from the target network, i.e. the same user; and Negative (n) is a

different node from the target network.

Based on comparisons between linear and non-linear mapping functions in [47], we

also decide to employ Multi-Layer Perceptron (MLP) as our mapping function Φ, which is

able to capture the non-linear mapping relationship between the source and target social

networks.

4.4 Complexity Analysis

In this section, we explicitly explain the complexity of our approach with an example of

applying GCNs for social network embedding and MLP for mapping function.

4.4.1 Graph Convolutional Networks)

Applying GCNs to embed the source and target networks involves several steps:

• Graph Construction: Building the adjacency matrix for each network. For a net-

work with n nodes and m edges, constructing this matrix has a complexity of O(m).

• GCN Layers: Each GCN layer performs a convolution operation on the graph, ag-

gregating information from neighboring nodes. Given l GCN layers, the complexity

per layer is O(|E| · d), where |E| is the number of edges and d is the feature dimen-

sion. For l layers, the total complexity is O(l · |E| · d).
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• Embedding Computation: After l layers, the final node embeddings are computed.

This process is generally linear in the number of nodes and edges, making the com-

plexity O(|V | · d), where d is the dimensionality of the embeddings.

4.4.2 Multi-Layer Perceptron (MLP) for Mapping Function Φ

The MLP is used to learn the transformation between source and target network embed-

dings. The complexity of this step is influenced by:

• Embedding Size: Assuming embeddings of size d for each network, and consid-

ering an MLP with k layers and each layer having m neurons, the complexity of a

forward pass through the MLP is O(k · (d2 ·m)).

• Training: During training, the complexity involves forward and backward passes.

If the MLP has k layers with each layer having m neurons, the total training com-

plexity per epoch is O(k · d2 ·m · n), where n is the number of training samples.

4.4.3 User Identity Linkage

Performing user identity linkage involves comparing the learned embeddings from both

networks. Assuming |Vs| and |Vt| are the number of nodes in the source and target net-

works, the complexity for computing pairwise similarities is O(|Vs| · |Vt| · d).

4.4.4 Overall Complexity

The overall complexity of the method can be summarized as:

• GCNs: O(L · (|Es|+ |Et|) · d)

• MLP Training: O(k · d2 ·m · n)

• Linkage: O(|Vs| · |Vt| · d)
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In summary, while the method is computationally intensive due to multiple steps in-

volving large-scale graph operations, embeddings, and neural network training, the over-

all complexity is manageable with respect to modern computational resources and can be

optimized based on specific use cases and network sizes.
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Chapter 5

Experimental Results

In this section, we evaluate the proposed StyleLink model, including both its GCN and

GAT variants, through two experimental tasks. Our investigation aims to address several

key aspects of the model’s performance and capabilities. Firstly, we explore the effec-

tiveness of StyleLink in predicting user identities across different OSNs. We want to see

how our model performs compared to state-of-the-art (SOTA) methods in the field of UIL.

In addition, we focus on how these linguistic characteristics contribute to creating more

representative and informative network embeddings for OSNs. We examine various as-

pects of stylometric features to understand their individual and collective impact on both

the quality of network embeddings and the overall performance of user identity linkage

tasks.

All the experiments are carried out on a Windows Server equipped with two Xeon

E5-2697 CPUs (36 cores), 384 GB of RAM, and four NVIDIA TITAN XP GPUs.

5.1 Datasets Preparation

To validate our approach, we conduct experiments using the real-world partially aligned

OSN datasets: X1 - Foursquare2. X (formerly Twitter) is a social media platform where

1https://twitter.com/home
2https://foursquare.com/
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Figure 5.1: This figure illustrates the process of confirming anchor users across datasets.

On a Foursquare user’s profile page, a Twitter icon with hyperlink may appear to the

right of the username. Clicking this icon directs you to the Twitter profile of the same

individual. For users who haven’t linked their Twitter accounts, it is challenging to estab-

lish them as anchor links.

users post short messages, images, and videos, and interact through likes, replies, and

reposts. Foursquare is a location-based service that allows users to discover and review

places, while businesses can use its analytics tools to engage customers and optimize

operations. The statistics information of the datasets is shown as Table 5.1. This dataset is

originally provided by Zhang et al. [80], where users of two social networks are partially

aligned. The ground truth of 1,609 anchors are confirmed by users explicitly as shown in

Figure 5.1.

34



We extended the original datasets with additional UGC scraping until year of 2023,

such that the average number of posts are increased by 30% in Table 5.1 to avoid stylo-

metric features being too sparse.

To improve the accuracy of our analysis, we pre-process the datasets by removing non-

English UGCs first. Then for each valid tweet from X or tip from Foursquare, we remove

user mentions (e.g., ”@username”), hashtags (e.g., #topic), and replace URLs uniformly

with a specified token. These elements are excluded because they are often generic and

repetitively used by many users, making them less useful for representing the unique

writing styles of users.

Table 5.1: Summary Statistics of X - Foursquare Dataset, with 1,609 anchors users.

N V Avg Degree Avg Posts Vocabulary Size
X 5,120 130,575 60.28 1,405.5 90,661

Foursquare 5,313 54,233 26.05 270.6 480,135

5.2 Evaluation Metrics

As outlined in [60], we use several standard metrics to assess prediction and ranking

performance, including Precision@k (P@K), MAP, AUC and Hit-Precision [50].

In the setting of UIL, Precision@k (P@k) is the metric for evaluating the linking accuracy,

which is exactly the same as Recall@k and F1@k. It is defined as:

P@k =
n∑
i

Ii{success@k}/n (5.1)

Here, Ii{success@k}/n evaluates whether the correctly matched identity is present in the

top-k (k ≤ n) results, where n represents the total number of testing anchor nodes.
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For evaluating the ranking performance of the algorithms, we use the following mea-

surements:

MAP =
1

n
(

n∑ 1

ra
)

AUC =
1

n
(

n∑ m+ 1− ra

m
)

Hit− Precision =
1

n
(

n∑ k − (ra− 1)

k
)

(5.2)

where ra represents the rank position of the positive matching identities, i.e., the matched

target user in the return top-k candidate target entities, m is the number of negative user

identities, and n is the number of total testing anchor nodes. Mean Average Precision

(MAP) is a robust metric known for its strong discrimination and stability. Unlike pre-

cision@k, MAP places greater emphasis on the ranking of the top returned items. It is

important to note that for all these metrics, a higher value indicates better model perfor-

mance.

5.3 Comparing Models

We evaluate the performance of StyleLink by comparing it with the following baselines,

among these baseline models, network embedding methods are employed such that the

user latent space is obtained for aligning the user identities.

Table 5.2: Comparison among different baseline UIL methods. The comparison tells

whether their network embedding methods involves topology and attributes or not.

UIL method Type Topology Attribute
MNA [36] supervised × ✓
RLink [41] reinforcement ✓ ×
PALE [47] supervised ✓ ✓
DeepLink [86] supervised ✓ ×
IONE [44] supervised ✓ ×

• IONE [44]: Input-Output Network Embedding (IONE) proposes a network embed-

ding method to learn the follower-ship/followee-ship of each user simultaneously
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and utilities input/output context vectors to preserve the proximity of anchor users.

In IONE, the followers and followees of users are embedded with three vectors:

node vector, input vector and output vector.

• PALE (MLP) [47]: Predicting Anchor Links via Embedding (PALE) conducts net-

work embedding to capture its major structural regularity. In the matching stage, it

learns a mapping function (MLP) across two low-dimensional latent spaces.

• DeepLink [86]: DeepLink is a deep reinforcement learning based algorithm which

applies unbiased Random Walk to generate embeddings and uses MLP in a dual

learning way to map users.

• MNA (Multi-Network Anchoring) [36]: MNA extracts social features, including

spatial, temporal and text content features (bag-of-words vectors weighted by TF-

IDF), and neighborhood-based network features and match user identity pairs.

• RLink [41]: RLink applies Node2Vec [23] to pre-train the network embedding and

concatenates the embeddings of source and target networks to represent network

structure information. Specifically, it is the first to consider UIL as a sequence deci-

sion problem and proposes a deep reinforcement learning model.

5.4 Experimental Performance Analysis

First of all, we compare the performances of various approaches by linking precision

P@k, as presented in Figure 5.2a. We set the training ratio α to be 0.7 and present the

results of different P@k. The results in Figure 5.2a show that both StyleLink-GCN and

StyleLink-GAT consistently outperform the other models across all values of k, with

StyleLink-GAT achieving the highest accuracy. On average, our method of both vari-

ants achieves a 9.2% improvement over the baseline model RLink and a 21.2% improve-

ment over DeepLink on the X-Foursquare datasets. We observe that models utilizing

deep learning techniques, such as DeepLink, PALE, RLink, and our proposed variants,
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(a) This figure shows the performance of UIL models for different P@k, on the X-Foursquare
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(b) This figure shows the performance of UIL models for different training ratios α, on the X-

Foursquare dataset.

Figure 5.2: Performance Comparison on X-Foursquare Datasets: Each experiment was

repeated 10 times, and the mean evaluation results were recorded.38



StyleLink-GCN and StyleLink-GAT, generally achieve higher linking precision compared

to models that do not employ neural networks, such as IONE and MNA. Specifically,

IONE, DeepLink, PALE, RLink, and the StyleLink variants significantly outperform MNA,

which achieves only 36.04% precision at P@30, whereas the other models achieve compa-

rable precision at P@5. Compared to PALE and DeepLink, both of which use supervised

mapping with deep learning methods, StyleLink demonstrates superior performance by

integrating writing style features into the network structure embeddings.

Furthermore, we varied the training ratio from 0.1 to 0.8 and evaluated P@30 for each

method. The proportion of anchor nodes T used during training significantly impacts the

performance of UIL models. While RLink exhibits competitive performance, particularly

at higher training ratios, it does not reach the precision levels achieved by the StyleLink

models. This suggests that while considering UIL as a sequence decision problem is ben-

eficial, the network embeddings generated via Node2Vec in RLink are not as effective as

those produced by our GNNs-based embeddings.

To summarize, the above observations demonstrate that our proposed StyleLink mod-

els, both StyleLink-GCN and StyleLink-GAT, effectively address the User Identity Link-

age (UIL) problem. Compared to other baseline models, StyleLink demonstrates signifi-

cantly better performance with a lower proportion of training anchor nodes. It can effec-

tively learn meaningful representations and perform well in scenarios where training data

is incomplete or imbalanced, which is common for authentic social network datasets. In

addition, StyleLink-GAT, which incorporates an attention mechanism, achieves superior

linkage performance over other models.

5.5 Effectiveness of Social Network Embedding via GCNs

This experiment is meant to validate the effectiveness of our approach of generating the

stylometric features and then applying GCNs to embed the whole network. We present
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visualizations in Figure 5.3 to illustrate that applying GNNs in network embedding in-

deed helps generate more meaningful and distinguishable embeddings.

Firstly, the embeddings are reduced to two dimensions using t-SNE [63] for visualiza-

tion. Then, we can use some density-based clustering algorithm, for example, we adopted

DBSCAN [18] for large spatial databases with noise here, to group similar nodes based

on the reduced embeddings. Nodes with a similarity score above a defined threshold

are filtered for clarity. Positions for these nodes are determined, and colors are assigned

according to their cluster labels. The filtered nodes and their connecting edges are then

visualized in a network graph, with a color bar indicating cluster labels, helping to high-

light similarities in writing styles.

From the visualization comparison in Figure 5.3, we observe that representing users

solely with stylometric features results in several clustering communities, where users

with similar embeddings tend to cluster closely together in the embedding space. How-

ever, as seen in Figure 5.3 (a), despite the same number of users being represented as in

Figure 5.3 (b), most nodes overlap significantly, forming extremely dense clusters.

In contrast, after applying GCNs to generate network embeddings, we notice that

users with similar embeddings (i.e., users with similar colors) still form clusters, but these

clusters are more dispersed and better by clearer boundaries. This observation indicates

that GCNs can create more distinct clusters, which helps differentiate between various

users.

These observations are also evident in Figures 5.3 (c) and 5.3 (d), where similar pat-

terns in the X dataset can be observed.

5.6 Ablation Study

An ablation study was carried out to determine the contribution of different components

of stylometric features to the network embedding and UIL performance on OSNs. In Ta-

ble 4.1, stylometric features are divided into 4 categories, from the perspective of different
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Figure 5.3: We present embedding visualizations for the X-Foursquare datasets, compar-

ing the representations before and after applying GCNs. High dimensional embeddings

of V , X , and Z, are projected to 2D dimension and the light grey lines represent the edges

E from the network graphs. To enhance clarity and improve visualization quality, we

filtered out nodes with similarity scores below a certain threshold. These filtered nodes,

colored in dark purple, contribute to visual clutter if not removed. After applying this fil-

tering process, 2,004 Twitter users and 2,369 Foursquare users remain, which were used

to generate the visualizations shown above.
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linguistics. Therefore, we conducted experiments on X-Foursquare datasets between dif-

ferent variants of StyleLink, with different category of stylometric features padded zeros

respectively. Negative values indicate a decrease in performance when that category of

features is padded with zeros.

Table 5.3: Stylometic Feature Ablation Results.

Features StyleLink-GCN StyleLink-GAT
P@10 MAP@10 P@10 MAP@10

All features 55.3 47.1 57.5 50.6
(–) Lexical -1.87 -2.32 -1.00 -0.89
(–) Syntactic -1.43 -1.21 -0.60 -1.10
(–) Structural -0.83 -0.29 -0.40 -0.50
(–) Idiosyncratic -1.02 -1.29 -1.40 -1.00

Overall, each category of stylometric feature types contributes positively to the per-

formance of our model, but to different extents. Lexical features remain the most critical

for StyleLink-GCN according to both metrics. For StyleLink-GAT, idiosyncratic features

have the largest impact in terms of P@10, while lexical and syntactic features affect MAP

more. Compared to StyleLink-GAT, which demonstrates more balanced sensitivity across

different feature types, StyleLink-GCN exhibits higher sensitivity to feature ablation, par-

ticularly for lexical and syntactic features. Structural features have the least impact on

StyleLink-GCN but are more influential for StyleLink-GAT.

5.7 Discussion

This study aims to develop and evaluate the StyleLink model, integrating both GCNs

and GAT variants, to improve user identity linkage (UIL) across various online social

networks (OSNs). Our main objective was to evaluate whether incorporating stylometric

features, linguistics characteristics inherent in users’ writing styles, into Graph Neural

Networks could enhance the linking precision and quality of network embeddings for

UIL tasks. We compare StyleLink’s performance against leading UIL methods, examining

42



how these stylometric features contribute to the model’s ability to generate superior social

network embeddings and accurately link user identities across different OSNs.

Our results align with previous studies highlighting the importance of linguistic fea-

tures in user identification [20, 61, 84]. However, our work extends these findings by

demonstrating the effectiveness of GNNs in leveraging these features for cross-platform

identity linkage. While our study demonstrates the effectiveness of StyleLink, our ex-

periments were conducted on one benchmark dataset, however with rich information on

textual UGCs. The model’s performance is expected to be assessed on additional OSNs

with varying platform functionalities and user behaviors.
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Chapter 6

Conclusion and Future Work

This research introduced and evaluated the StyleLink model, incorporating GCN and

GAT variants, for user identity linkage (UIL) across different online social networks (OSNs).

The results demonstrate that StyleLink, particularly the GAT variant, significantly outper-

forms some of state-of-the-art UIL methods in linkage precision, especially as the train-

ing data ratio increases. This performance improvement highlights the effectiveness of

integrating stylometric features into graph-based models, providing a more effective and

representative embedding of user identities across OSNs.

The thesis confirms that stylometric features, such as lexical, syntactical, structural,

and idiosyncratic characteristics, play a crucial role in enhancing the quality of network

embeddings, leading to more accurate UIL. These findings contribute to UIL across dif-

ferent OSNs by offering a novel approach that leverages both linguistic analysis and ad-

vanced graph neural networks. In summary, StyleLink presents a promising direction for

future research and practical applications in OSNs analysis, where accurate user identity

linkage is critical.

There are several directions that need to be investigated in the future. Since UGCs

are always associated with timestamps, we aim to explore whether temporal writing

style evolution plays a significant role in user identity linkage on social networks. This

could involve developing time-aware variants of StyleLink that can capture and lever-
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age temporal patterns in user behavior and writing style. A key challenge with current

stylometric-based user identity linkage lies in the variability of stylometric features across

users. Some users generate strong, distinct writing styles, while others produce weaker

or less consistent signals, potentially affecting the model’s ability to link identities ef-

fectively. Future work could also focus on developing evaluation metrics to assess the

strength of a user’s stylometric feature and implementing triage mechanisms, thus en-

hancing the model’s robustness and ensuring more reliable identity linkage across diverse

user populations. We also intend to explore the application of more advanced Graph Neu-

ral Network architectures, such as Graph Transformers [26,76], to potentially enhance the

capability to capture noisy, complex, and large-scale social network structures. Finally,

we aim to extend StyleLink to handle multi-platform scenarios beyond pairwise network

alignment, enabling simultaneous user linkage across multiple social networks.
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