This is the peer reviewed version of the following article:Brunetti VC, Yu OHY, Platt RW, Filion KB. The association of long-acting insulin analogue use versus neutral protamine Hagedorn insulin use and the risk of major adverse cardiovascular events among individuals with type 2 diabetes: A population-based cohort study. Diabetes Obes Metab. 2022;24:2169-2181., which has been published in final form at DOI:10.1111/dom.14802. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

The Association of Long-Acting Insulin Analogue Use Versus Neutral Protamine Hagedorn Insulin Use With Major Adverse Cardiovascular Events Among Individuals With Type 2 Diabetes: A Population-Based Cohort Study

Vanessa C Brunetti, Doctoral Student, Oriana Hoi Yun Yu, Endocrinologist and Assistant Professor

of Medicine, Robert W. Platt, Professor of Pediatrics and of Epidemiology and Biostatistics,

Kristian B. Filion, Associate Professor of Medicine and of Epidemiology

Supplementary Material

Table of Contents

Supplemental methods 1
e-Table 1: List of covariates and assessment windows
e-Table 2: Baseline characteristics of initiators of glargine, detemir, and degludec among patients with type 2 diabetes in the UK
e-Table 3 : Secondary analyses of risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, stratified by baseline age categories, sex, history of cardiovascular disease, and concomitant use of antidiabetic drugs at baseline
e-Table 4: Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, varying from the grace period to 60 and 90 days
e-Table 5 : Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, excluding patients with a hospitalization for heart failure, stroke or myocardial infarction in the 30 days prior to cohort entry 18
e-Table 6: Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, assessed using a standard time-dependent Cox proportional hazards model with adjustment for baseline covariates
e-Figure 1: Study flow-chart for primary analysis on the association between current use of individual long-acting insulin analogs (glargine, detemir, degludec) and NPH and the risk of major adverse cardiovascular events (MACE)
e-Figure 2: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of myocardial infarction (MI)
e-Figure 3: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of ischemic stroke
e-Figure 4: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of cardiovascular death
e-Figure 5: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of hospitalization for heart failure
e-Figure 6: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of all-cause mortality
References

Supplemental methods 1

Inverse probability of treatment weights (IPTW)

For each person-month of follow-up, we generated stabilized weighted using inverse probability of treatment weights (IPTWs) and inverse probability of censoring weights (IPCWs). IPTWs were used to determine the inverse probability of the observed treatment. We used a logistic model to estimate the numerator of the IPTW, estimating the probability of observed treatment (long-acting insulin analogues versus NPH insulin) conditional on baseline covariates (see **e-Table** 1), previous treatment, and month of follow-up duration. The denominator of the IPTW was estimated using a logistic model, conditional on baseline and time-varying covariates, previous treatment, and month of follow-up duration. For the analyses by individual long-acting insulin analogue type, multinomial logistic regression was used to compute the numerator and the denominator of the IPTW.

Inverse probability of censoring weights (IPCW)

We then constructed two different IPCW models to account for potential differential censoring between exposure groups, according to the reasons for censoring. The first IPCW model (IPCW_A) estimated the probability of censoring due to loss to follow-up, end of registration with the CPRD, non-cardiovascular death (except for the outcome of all-cause mortality), or end of the study period (November 30th, 2018). The second IPCW model (IPCW_B) estimated the probability of censoring due to either treatment discontinuation or use of both long-acting insulins and NPH. Both IPCWs were estimated using logistic models that were conditioned on baseline covariates, previous treatment, and month of follow-up for the IPCW numerators and baseline and time-varying covariates, previous treatment, and month of follow-up for the IPCW denominators. For

the analyses by individual long-acting insulin analogue type, multinomial logistic regression was used to compute the numerator and the denominator of the IPTW.

We used the product of the IPTW, $IPCW_A$, and $IPCW_B$ to obtain standardized weights. Standardized weights below 1st percentile and 99th percentile were truncated to the values of the 1st and 99th percentiles^{1,2}, respectively.

The stabilized weights were included in a Cox proportional hazards model with robust variance estimators³ and adjusted for baseline covariates¹ to estimate marginal HRs and 95% CIs for each outcome of interest, comparing current use of long-acting insulin analogues to NPH. Continuous variables (age, duration of treated diabetes, and month of follow-up time) were modeled using restricted cubic splines with 5 knots (3 interior knots) to account for potential non-linear associations and to decrease the variance of the estimator⁴.

Multiple imputation

All variables with missing information (Index of Multiple Deprivation, ethnicity, body mass index [BMI], systolic blood pressure [SBP], diastolic blood pressure [DBP], glycated hemoglobin A1c [HbA1c], and estimated glomerular filtration rate [eGFR]) were imputed using multiple imputation by chained equations⁵ prior to estimating the IPTW and IPCWs to ensure that the positivity assumption⁶ was met. We used logistic regression to perform 5 independent imputations using variables that can help predict missingness, including exposure, outcome, and covariates⁷. The resulting datasets were analyzed separately. We pooled the estimates and computed standard errors using Rubin's rule ⁸.

e-Table 1: Description of covariates, their assessment windows, and the models in which they were included.

Characteristic	Description	Baseline lookback	Time varying assessment	IPTW	IPCWA	IPCWB	Outcome model
Demographic			•				
Age		Defined at cohort entry date	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Sex	women, men	N/A	N/A	yes	yes	yes	yes
Ethnicity	Caucasian, other	N/A	N/A	yes	yes	yes	yes
Index of multiple deprivation quintile	1 (least deprived) to 5 (most deprived)	N/A	N/A	yes	yes	yes	yes
Duration of treated diabetes	Defined as time between the first prescription of	Defined at cohort entry date	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Smoking status	ever/never	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Clinical measuremen	ts						
Body mass index	continuous, kg/m ²	latest measurement in the year prior to cohort entry	updated every 365 days	yes	yes	yes	yes, baseline only
HbA1c	continuous, %	latest measurement in the year prior to cohort entry	updated every 365 days	yes	yes	yes	yes, baseline only
eGFR	continuous, ml/min/1.73m ²	latest measurement in	updated every 365 days	yes	yes	yes	yes, baseline only

		the year prior to cohort entry					
Systolic blood pressure	continuous, mmHg	latest measurement in the year prior to cohort entry	updated every 365 days	yes	yes	yes	yes, baseline only
Diastolic blood pressure	continuous, mmHg	latest measurement in the year prior to cohort entry	updated every 365 days	yes	yes	yes	yes, baseline only
Comorbidities							
Alcohol related disorders: alcoholism, cirrhosis, hepatitis, and liver failure	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Atrial fibrillation	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Cancer	other than non- melanoma skin cancer yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
COPD	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Coronary artery disease	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Dyslipidemia	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Hypertension	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only
Peripheral vascular disease	yes/no	anytime prior to cohort entry	ever/never, updated at 30- day intervals	yes	yes	yes	yes, baseline only

Stroke	yes/no		ever/never, updated at 30-	yes*	yes	yes	yes, baseline
		anytime prior to	day intervals, except where				only
		cohort entry	stroke or MACE is the				
			outcome				
MI	yes/no	anytime prior to	ever/never, updated at 30-	yes*	yes	yes	yes, baseline
		cohort entry	day intervals (except where				only
			MI or MACE is the				
			outcome)				
Coronary	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
revascularization		cohort entry	day intervals				only
Acute kidney injury	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
		cohort entry	day intervals				only
Chronic kidney	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
disease		cohort entry	day intervals				only
Retinopathy	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
		cohort entry	day intervals				only
Neuropathy	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
		cohort entry	day intervals				only
Dialysis	yes/no	anytime prior to	ever/never, updated at 30-	yes	yes	yes	yes, baseline
		cohort entry	day intervals				only
Use of antidiabetic d	rugs						
Metformin	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
		cohort entry					only
Sulfonylureas	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
		cohort entry					only
Thiazolidinediones	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
		cohort entry					only
DPP-4 inhibitors	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
		cohort entry					only
SGLT-2 inhibitors	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
		cohort entry					only
GLP-1 receptor	yes/no	year prior to	updated at 30-day intervals	yes	yes	yes	yes, baseline
agonists		cohort entry					only

Alpha-glucosidase inhibitors	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Meglitinides	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Non-basal insulin	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Use of other drugs							
Angiotensin- converting enzyme inhibitors	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Angiotensin II receptor blockers	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Beta-blockers	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Calcium channel blockers	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Diuretics	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Oral anticoagulants	vitamin K antagonists, direct-acting oral anticoagulants yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Antiplatelets	clopidogrel, ticagrelor, prasugrel yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Statins	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Acetylsalicylic acid	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only
Nonsteroidal anti- inflammatory drugs	yes/no	year prior to cohort entry	updated at 30-day intervals	yes	yes	yes	yes, baseline only

Abbreviations: NPH: neutral protamine Hagedorn, aSD: absolute standardized difference, SD: standard deviation. BMI: body mass index, HbA1c: glycated hemoglobin, eGFR: estimated glomerular filtration rate, SBP: systolic blood pressure, DBP: diastolic blood pressure, COPD: chronic obstructive pulmonary disorder, TZD: thiazolidinediones, DPP-4: dipeptidyl peptidase-4, GLP-1: glucagon-like peptide-1, SGLT-2: sodium-glucose co-transporter 2, ACE: angiotensin-converting enzyme, ARB: angiotensin II receptor blockers, DOAC: direct oral anticoagulants, NSAID: non-steroidal anti-inflammatory drugs

Characteristic	NPH	Detemir	Glargine	Degludec
N (%)*	26,198 (45.7)	8,368 (14.6)	22,226 (38.8)	437 (0.8)
Female	11,861 (45.3)	3,757 (44.9)	9,538 (42.9)	193 (44.2)
Age, years, mean (SD)	64.4 (14.2)	61.3 (14.5)	64.0 (14.1)	61.5 (13.2)
<40	1,575 (6.0)	643 (7.7)	1,071 (4.8)	26 (5.9)
40 to 49.9	2,408 (9.2)	1,142 (13.6)	2,466 (11.1)	42 (9.6)
50 to 59.9	4,936 (18.8)	1,879 (22.5)	4,700 (21.1)	126 (28.8)
60 to 69.9	6,836 (26.1)	2,079 (24.8)	5,566 (25.0)	123 (28.1)
70 to 79.9	6,841 (26.1)	1,745 (20.9)	5,139 (23.1)	82 (18.8)
80+	3,602 (13.7)	880 (10.5)	3,284 (14.8)	38 (8.7)
Ethnicity				
Caucasian	21,025 (80.3)	6,822 (81.5)	17,803 (80.1)	356 (81.5)
Non-Caucasian	4,081 (15.6)	1,127 (13.5)	3,341 (15.0)	48 (11.0)
Missing	1,092 (4.2)	419 (5.0)	1,082 (4.9)	33 (7.6)
Index of Multiple Deprivation				
1	4,607 (17.6)	1,533 (18.3)	3,812 (17.2)	92 (21.1)
2	4,755 (18.2)	1,703 (20.4)	4,172 (18.8)	88 (20.1)
3	5,147 (19.6)	1,613 (19.3)	4,296 (19.3)	80 (18.3)
4	5,744 (21.9)	1,690 (20.2)	4,776 (21.5)	96 (22.0)
5	5,912 (22.6)	1,821 (21.8)	5,143 (23.1)	81 (18.5)
Missing	33 (0.1)	8 (0.1)	27 (0.1)	0 (0.0)
Smoking	19,458 (74.3)	6,191 (74.0)	16,420 (73.9)	340 (77.8)
BMI, kg/m ² , mean(SD)	30.9 (6.7)	31.4 (7.0)	30.6 (6.6)	33.7 (7.7)
<25	4,284 (16.4)	1,310 (15.7)	3,958 (17.8)	46 (10.5)
25 to 29.9	7,782 (29.7)	2,407 (28.8)	6,930 (31.2)	98 (22.4)
30 to 34.9	6,752 (25.8)	2,278 (27.2)	5,694 (25.6)	112 (25.6)
35 to 39.9	3,471 (13.2)	1,250 (14.9)	2,822 (12.7)	96 (22.0)
40+	2,263 (8.6)	893 (10.7)	1,813 (8.2)	75 (17.2)
Missing	1,646 (6.3)	230 (2.7)	1,009 (4.5)	10 (2.3)
HbA1c, %, mean (SD)	9.7 (2.2)	9.7 (2.1)	9.7 (2.1)	10.1 (2.1)
<6.5	1,340 (5.1)	335 (4.0)	789 (3.5)	6 (1.4)
6.5 to 8	3,999 (15.3)	1,112 (13.3)	3,509 (15.8)	59 (13.5)
8+	18,325 (69.9)	6,414 (76.6)	16,600 (74.7)	363 (83.1)
Missing	2,534 (9.7)	507 (6.1)	1,328 (6.0)	9 (2.1)
eGFR, ml/min/1.73m ² , mean	68.0(21.3)	69 3 (20 5)	67.6 (20.8)	73 3 (17 9)
(SD)	00.0 (21.5)	09.5 (20.5)	07.0 (20.0)	(17.5)
<60	4,813 (18.4)	1,528 (18.3)	4,254 (19.1)	65 (14.9)
≥60	10,640 (40.6)	4,315 (51.6)	9,639 (43.4)	310 (70.9)
Missing	10,745 (41.0)	2,525 (30.2)	8,333 (37.5)	62 (14.2)
SBP, mmHg, mean (SD)	133.4 (17.6)	132.7 (16.5)	133.9 (17.2)	130.2 (13.5)

e-Table 2: Baseline characteristics of initiators of glargine, detemir, and degludec among patients with type 2 diabetes in the UK.

DBP, mmHg, mean (SD)	75.8 (10.3)	76.3 (10.0)	76.4 (10.3)	74.4 (9.00)
Comorbidities				
Acute kidney injury	3,444 (13.1)	655 (7.8)	2,403 (10.8)	77 (17.6)
Alcohol-related disease	6,112 (23.3)	1,976 (23.6)	4,830 (21.7)	127 (29.1)
Atrial fibrillation	2,617 (10.0)	676 (8.1)	2,039 (9.2)	45 (10.3)
Cancer	4,299 (16.4)	1,143 (13.7)	3,237 (14.6)	46 (10.5)
Chronic kidney disease	6,359 (24.3)	1,999 (23.9)	5,170 (23.3)	84 (19.2)
COPD	3,990 (15.2)	1,151 (13.8)	3,032 (13.6)	71 (16.2)
Coronary artery disease	8,580 (32.8)	2,276 (27.2)	6,759 (30.4)	122 (27.9)
Coronary revascularization	2,209 (8.4)	578 (6.9)	1,642 (7.4)	30 (6.9)
Dialysis	255 (1.0)	S	166 (0.7)	S
Dyslipidemia	24,679 (94.2)	7,981 (95.4)	21,330 (96.0)	429 (98.2)
Hypertension	15,721 (60.0)	4,958 (59.2)	13,564 (61.0)	287 (65.7)
Hypoglycemia	2,778 (10.6)	739 (8.8)	2,332 (10.5)	82 (18.8)
Myocardial infarction	2,197 (8.4)	421 (5.0)	1,249 (5.6)	22 (5.0)
Neuropathy	1,533 (5.9)	487 (5.8)	1,428 (6.4)	31 (7.1)
Peripheral vascular disease	3,473 (13.3)	899 (10.7)	2,986 (13.4)	50 (11.4)
Retinopathy	11,429 (43.6)	3,851 (46.0)	9,476 (42.6)	253 (57.9)
Stroke	1,199 (4.6)	253 (3.0)	921 (4.1)	18 (4.1)
Previous use of other				
antidiabetic drugs				
Metformin	19,088 (72.9)	6,603 (78.9)	17,285 (77.8)	369 (84.4)
Sulfonylureas	17,913 (68.4)	5,793 (69.2)	15,943 (71.7)	271 (62.0)
TZD	11,610 (44.3)	4,253 (50.8)	10,659 (48.0)	359 (82.2)
DPP-4 inhibitors	6,381 (24.4)	1,955 (23.4)	4,871 (21.9)	174 (39.8)
GLP-1 receptor agonists	2,520 (9.6)	1,062 (12.7)	1,673 (7.5)	261 (59.7)
Alpha-glucosidase inhibitors	452 (1.7)	S	391 (1.8)	S
SGLT-2 inhibitors	1,283 (4.9)	234 (2.8)	925 (4.2)	125 (28.6)
Previous use of other drugs				
ACE inhibitors	13,169 (50.3)	4,304 (51.4)	11,358 (51.1)	229 (52.4)
Antiplatelets	10,720 (40.9)	3,611 (43.2)	10,019 (45.1)	133 (30.4)
ARB	7,791 (29.7)	2,536 (30.3)	6,701 (30.1)	139 (31.8)
Beta-blockers	8,030 (30.7)	2,328 (27.8)	6,328 (28.5)	113 (25.9)
Calcium-channel blockers	7,932 (30.3)	2,408 (28.8)	6,599 (29.7)	117 (26.8)
Diuretics	9,816 (37.5)	2,936 (35.1)	8,303 (37.4)	121 (27.7)
DOAC	467 (1.8)	90 (1.1)	289 (1.3)	23 (5.3)
NSAID	6,199 (23.7)	1,971 (23.6)	5,287 (23.8)	115 (26.3)
Statins	17,701 (67.6)	6,164 (73.7)	16,007 (72.0)	332 (76.0)

Abbreviations: NPH: neutral protamine Hagedorn, aSD: absolute standardized difference, SD: standard deviation. BMI: body mass index, HbA1c: glycated hemoglobin, eGFR: estimated glomerular filtration rate, SBP: systolic blood pressure, DBP: diastolic blood pressure, COPD: chronic obstructive pulmonary disorder, TZD: thiazolidinediones, DPP-4: dipeptidyl peptidase-4, GLP-1: glucagon-like peptide-1, SGLT-

2: sodium-glucose co-transporter 2, ACE: angiotensin-converting enzyme, ARB: angiotensin II receptor blockers, DOAC: direct oral anticoagulants, NSAID: non-steroidal anti-inflammatory drugs

Smoking status and comorbidities were measured at any time prior to cohort entry. Medication use was measured in the year prior to cohort entry. The most recent measurement in the 5 years prior to cohort entry was used for HbA1c, eGFR, BMI, SBP and DBP. * Percentages represent proportion of the total cohort.

e-Table 3: Secondary analyses of risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, stratified by baseline age categories, sex, history of cardiovascular disease, and concomitant use of antidiabetic drugs at baseline.

Exposure	Events	Person- years	Crude IR* (95% CI)	Weighted HR [†] (95% CI)	Weighted and adjusted HR ^{†‡§} (95% CI)
Age					· · ·
< 70					
Overall	1,361	65,747	20.7 (19.6 to 21.8)	-	-
NPH	661	26,380	25.1 (23.2 to 27.0)	1.00 (Reference)	1.00 (Reference)
Long-acting	700	39,366	17.8 (16.5 to 19.1)	0.71 (0.63 to 0.79)	0.85 (0.76 to 0.95)
1 insulin >70					
Overall	2.133	27,690	77.0 (73.8 to 80.4)	-	-
NPH	1,158	13,995	82.7 (78.1 to 87.7)	1.00 (Reference)	1.00 (Reference)
Long-acting	975	13,696	71.2 (66.9 to 75.8)	0.86 (0.79 to 0.94)	0.99 (0.91 to 1.08)
insulin					
Sex					
Women					
Overall	1,356	40,445	33.5 (31.8 to 35.4)	-	-
NPH	709	18,303	38.7 (36.0 to 41.7)	1.00 (Reference)	1.00 (Reference)
Long-acting insulin	647	22,142	29.2 (27.1 to 31.6)	0.77 (0.69 to 0.85)	0.99 (0.89 to 1.11)
Male					
Overall	2,138	52,991	40.3 (38.7 to 42.1)	-	-
NPH	1,110	22,071	50.3 (47.4 to 53.3)	1.00 (Reference)	1.00 (Reference)
Long-acting	1,028	30,920	33.2 (31.3 to 35.3)	0.67 (0.62 to 0.73)	0.91 (0.83 to 0.99)
insulin					
History of CVD					
No history of CVD					
Overall	1,403	64,984	21.6 (20.4 to 22.7)	-	-
NPH	665	26,715	24.9 (23.1 to 26.9)	1.00 (Reference)	1.00 (Reference)

Long-acting insulin	738	38,269	19.3 (17.9 to 20.7)	0.78 (0.70 to 0.87)	1.01 (0.90 to 1.13)					
History of CVD										
Overall	2,091	28,453	73.5 (70.4 to 76.7)	-	-					
NPH	1,154	14,793	84.5 (79.7 to 89.5)	1.00 (Reference)	1.00 (Reference)					
Long-acting	937	13,660	63.3 (59.4 to 67.5)	0.75 (0.69 to 0.82)	0.91 (0.83 to 0.99)					
insulin										
Concomitant use of antidiabetic drugs										
No use of antidiabetic	drugs									
Overall	1,135	22,590	50.2 (47.4 to 53.3)	-	-					
NPH	655	11,277	58.1 (53.8 to 62.7)	1.00 (Reference)	1.00 (Reference)					
Long-acting insulin analogs	480	11,314	42.4 (38.8 to 46.4)	0.74 (0.66 to 0.84)	0.95 (0.84 to 1.08)					
Use of antidiabetic dr	ugs									
Overall	2,359	70,846	33.3 (32.0 to 34.7)	-	-					
NPH	1,164	29,098	40.0 (37.8 to 42.4)	1.00 (Reference)	1.00 (Reference)					
Long-acting insulin analogs	1,195	41,748	28.6 (27.0 to 30.3)	0.74 (0.68 to 0.81)	0.86 (0.79 to 0.94)					

Abbreviations: HR: Hazard ratio; IR: incidence rate; CI: confidence interval

* Per 1000 person-years

[†] Marginal structural model weighted with standardized weights using inverse probability of treatment weights (IPTW) and inverse probability of censoring weights (IPCWs).

[‡] Age and duration of treated diabetes were modeled as restricted cubic splines with 5 knots.

[§] The model was adjusted for the following covariates at baseline: age, sex, ethnicity, year of cohort entry, index of multiple deprivation quintile, duration of treated diabetes, smoking status (ever/never smoker), history of alcohol-related disorders, coronary artery disease, myocardial infarction, stroke, chronic obstructive pulmonary disease, acute kidney injury, chronic kidney disease, neuropathy, retinopathy, peripheral vascular disease, atrial fibrillation. History of prescription drug use in the year prior to cohort entry included the following: metformin, sulfonylureas, thiazolidinediones, dipeptidyl-peptidase 4 inhibitors, glucagon-like peptide-1 receptor agonists, alpha-glucosidase inhibitors, sodium-glucose co-transporter 2 inhibitors, other antidiabetic drugs, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, calcium-channel blockers, diuretics, direct oral anticoagulants, antiplatelets, statins, non-

steroidal anti-inflammatory drugs. Clinical measurements were assessed in the year prior to cohort entry and included the following: body mass index, estimated glomerular filtration rate, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure. [¶] Sum of events and person-time in molecule specific analyses do not add up to the totals for long-acting insulin analogues due to censoring upon combination use.

Exposure	Events	Person-	Person- Incidence Rate		Weighted and adjusted HR†‡§
	Lvenes	Years	(95% CI) ‡	(95% CI)	(95% CI) §
60-day grace period					
Overall	4,726	123,866	38.2	-	-
NPH	2,380	51,600	46.1 (44.3 to 48.0)	1.00 (Reference)	1.00 (Reference)
Long-acting insulin analogs	2,346	72,267	32.5 (31.2 to 33.8)	0.72 (0.68 to 0.76)	0.93 (0.85 to 1.02)
90-day grace period					
Overall	5,632	142,850	39.4 (38.4 to 40.5)	-	-
NPH	2,766	58,446	47.3 (45.6 to 49.1)	1.00 (Reference)	1.00 (Reference)
Long-acting insulin analogs	2,866	84,403	34.0 (32.7 to 35.2)	0.73 (0.69 to 0.77)	0.95 (0.86 to 1.05)

e-Table 4: Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, varying from the grace period to 60 and 90 days.

Abbreviations: HR: Hazard ratio; IR: incidence rate; CI: confidence interval

* Per 1000 person-years

[†] Marginal structural model weighted with standardized weights using inverse probability of treatment weights (IPTW) and inverse probability of censoring weights (IPCWs).

[‡] Age and duration of treated diabetes were modeled as restricted cubic splines with 5 knots.

[§] The model was adjusted for the following covariates at baseline: age, sex, ethnicity, year of cohort entry, index of multiple deprivation quintile, duration of treated diabetes, smoking status (ever/ never), history of alcohol-related disorders, coronary artery disease, myocardial infarction, stroke, chronic obstructive pulmonary disease, acute kidney injury, chronic kidney disease, neuropathy, retinopathy, peripheral vascular disease, atrial fibrillation. History of prescription drug use in the year prior to cohort entry included the following: metformin, sulfonylureas, thiazolidinediones, dipeptidyl-peptidase 4 inhibitors, glucagon-like peptide-1 receptor agonists, alpha-glucosidase inhibitors, sodium-glucose co-transporter 2 inhibitors, other antidiabetic drugs, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, calcium-channel blockers, diuretics, direct oral anticoagulants, antiplatelets, statins, non-

steroidal anti-inflammatory drugs. Clinical measurements were assessed in the year prior to cohort entry and included the following: body mass index, estimated glomerular filtration rate, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure. [¶] Sum of events and person-time in molecule specific analyses do not add up to the totals for long-acting insulin analogues due to censoring upon combination use. e-Table 5: Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, excluding patients with a hospitalization for heart failure, stroke, or myocardial infarction in the 30 days prior to cohort entry.

Exposure	Essen4a	Person-	Incidence Rate	Crude HR	Adjusted HR ^{†‡§}
	Lvents	Years	(95% CI) ‡	(95% CI)	(95% CI) [§]
Overall	3,141	91,323	34.4 (33.2 to 35.6)	-	-
NPH	1,583	38,768	40.8 (38.9 to 42.9)	1.00 (Reference)	1.00 (Reference)
Long-acting insulin analogs	1,558	52,554	29.6 (28.2 to 31.2)	0.74 (0.69 to 0.79)	0.89 (0.82 to 0.96)

Abbreviations: HR: Hazard ratio; IR: incidence rate; CI: confidence interval

* Per 1000 person-years

[†] Marginal structural model weighted with standardized weights using inverse probability of treatment weights (IPTW) and inverse probability of censoring weights (IPCWs).

[‡] Age and duration of treated diabetes were modeled as restricted cubic splines with 5 knots.

[§] The model was adjusted for the following covariates at baseline: age, sex, ethnicity, year of cohort entry, index of multiple deprivation quintile, duration of treated diabetes, smoking status (ever/ never smokers), history of alcohol-related disorders, coronary artery disease, myocardial infarction, stroke, chronic obstructive pulmonary disease, acute kidney injury, chronic kidney disease, neuropathy, retinopathy, peripheral vascular disease, atrial fibrillation. History of prescription drug use in the year prior to cohort entry included the following: metformin, sulfonylureas, thiazolidinediones, dipeptidyl-peptidase 4 inhibitors, glucagon-like peptide-1 receptor agonists, alpha-glucosidase inhibitors, sodium-glucose co-transporter 2 inhibitors, other antidiabetic drugs, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, calcium-channel blockers, diuretics, direct oral anticoagulants, antiplatelets, statins, non-steroidal anti-inflammatory drugs. Clinical measurements were assessed in the year prior to cohort entry and included the following: body mass index, estimated glomerular filtration rate, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure.

[¶] Sum of events and person-time in molecule specific analyses do not add up to the totals for long-acting insulin analogues due to censoring upon combination use.

e-Table 6: Risk of major adverse cardiovascular events (MACE) with the current use of long-acting insulin analogues and NPH among patients with type 2 diabetes in the UK, assessed using a standard time-dependent Cox proportional hazards model with adjustment for baseline covariates.

Exposure	F (Person-	Incidence Rate	Crude HR	Adjusted HR
	Events	Years	(95% CI) *	(95% CI)	(95% CI) †‡
Overall	11,735	274,664	42.7 (42.0 to 43.5)	-	-
NPH	2,974	65,404	45.5 (43.9 to 47.1)	1.00 (Reference)	1.00 (Reference)
Long-acting insulin analogs	3,232	101,490	31.8 (30.7 to 33.0)	0.72 (0.68 to 0.75)	0.91 (0.84 to 0.98)
Glargine	2,344	71,622	32.5 (31.2 to 33.9)	0.73 (0.69 to 0.77)	0.90 (0.83 to 0.98)
Detemir	847	28,318	29.3 (27.4 to 31.4)	0.67 (0.62 to 0.73)	0.92 (0.82 to 1.02)
Degludec	36	1,550	19.2 (13.0 to 28.2)	0.59 (0.43 to 0.82)	0.90 (0.60 to 1.35)
No use or combination	5,529	107,926	51.2 (49.9 to 52.6)	1.21 (1.16 to 1.27)	1.40 (1.30 to 1.49)

Abbreviations: HR: Hazard ratio; IR: incidence rate; CI: confidence interval

* Per 1000 person-years

[†] Marginal structural model weighted with standardized weights using inverse probability of treatment weights (IPTW) and inverse probability of censoring weights (IPCWs).

[‡] Age and duration of treated diabetes were modeled as restricted cubic splines with 5 knots.

[§] The model was adjusted for the following covariates at baseline: age, sex, ethnicity, year of cohort entry, index of multiple deprivation quintile, duration of treated diabetes, smoking status (ever/ never smokers), history of alcohol-related disorders, coronary artery disease, myocardial infarction, stroke, chronic obstructive pulmonary disease, acute kidney injury, chronic kidney disease, neuropathy, retinopathy, peripheral vascular disease, atrial fibrillation. History of prescription drug use in the year prior to cohort entry included the following: metformin, sulfonylureas, thiazolidinediones, dipeptidyl-peptidase 4 inhibitors, glucagon-like peptide-1 receptor agonists, alpha-glucosidase inhibitors, sodium-glucose co-transporter 2 inhibitors, other antidiabetic drugs, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, calcium-channel blockers, diuretics, direct oral anticoagulants, antiplatelets, statins, non-

steroidal anti-inflammatory drugs. Clinical measurements were assessed in the year prior to cohort entry and included the following: body mass index, estimated glomerular filtration rate, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure. [¶] Sum of events and person-time in molecule specific analyses do not add up to the totals for long-acting insulin analogues due to censoring upon combination use. **e-Figure 1**: Study flow-chart for primary analysis on the association between current use of individual long-acting insulin analogs (glargine, detemir, degludec) and NPH and the risk of major adverse cardiovascular events (MACE)

Patients linked with HES with a first-ever prescription for a basal insulin between September 1st, 2002 and November 30th, 2018 (n=139,424) **Exclusions:** • Less than 1 year of medical history at first insulin prescription (n=57,543) Age< 18 years at first anti-diabetic prescription (n=5,184) • Date inconsistencies (n=51) • Patients with zero days of follow-up (n=34) • A previous diagnosis of polycystic ovary syndrome • (n=1,705)A previous diagnosis of type 1 diabetes (n=14,964) • A diagnosis of gestational diabetes in the year before first • prescription (n=2,302) Patients initiating two basal insulins (n=412) Eligible patients with a first-ever prescription for a basal insulin between September 1st, 2002 and November 30th, 2018 (n=57,229)

e-Figure 2: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of myocardial infarction (MI).

Patients linked with HES with a first-ever prescription for a basal insulin between September 1st, 2002 and November 30th, 2018 (n=139,424)

e-Figure 3: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of ischemic stroke.

September 1st, 2002 and November 30th, 2018 (n=57,339) **e-Figure 4**: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of cardiovascular death.

e-Figure 5: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of hospitalization for heart failure.

e-Figure 6: Flow chart for secondary analysis of the association between current use of long-acting insulin analogs and the risk of all-cause mortality.

References

1. Cole SR, Hernán MA. Constructing Inverse Probability Weights for Marginal Structural Models. American Journal of Epidemiology 2008;168:656-64.

2. Xiao Y, Moodie EEM, Abrahamowicz M. Comparison of Approaches to Weight Truncation for Marginal Structural Cox Models. Epidemiologic Methods 2013;2:1-20.

3. Karim ME, Gustafson P, Petkau J, et al. Marginal structural Cox models for estimating the association between beta-interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol 2014;180:160-71.

4. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. American journal of epidemiology 2006;163:1149-56.

5. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine 2011;30:377-99.

6. Platt RW, Delaney JA, Suissa S. The positivity assumption and marginal structural models: the example of warfarin use and risk of bleeding. Eur J Epidemiol 2012;27:77-83.

7. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Annals of internal medicine 2017;167:268-74.

8. Rubin DB. Multiple imputation for nonresponse in surveys: John Wiley & Sons; 2004.