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Abstract

Cell death by apoptosis plays a key role in several developmental processes such as tissue

sculpting and homeostasis. During embryonic development of the urogenital system in

mice, apoptosis plays a crucial role in removing a temporal structure called the Common

Nephric Duct (CND), a necessary step to connect the ureter to the bladder epithelium.

Evidence suggests that apoptotic cell removal generates pulling forces necessary for tis-

sue rearrangement. Non-professional phagocytosis of apoptotic cells by neighbouring

epithelial cells (referred to as non-professional efferocytosis) was observed during CND

elimination. In this process, epithelial cells programmed to die are engulfed and sub-

sequently phagocytosed by neighboring cells. This entire process involves five different

stages of apoptosis, a cell drift and an apoptotic gradient along the CND. We develop

a novel multiscale mathematical model that couples the different stages of efferocytosis

and the cell types involved (e.g., apoptotic, phagocyte and engulfed) with the cellular

drift equation system (advection) equation to provide spatiotemporal insights about this

process. We use the apoptotic gradient along the CND, the stationary distribution of

cells in the different stages and the maintenance of a uniform diameter of the duct to

parameterize the model. Using experimental data and boundary conditions, we adapt

the model to different physiological conditions, including in vivo wild types, ex vivo

non-treated embryos and ex vivo treated embryos. The mathematical model is then em-

ployed to perform tasks that are difficult or not possible to be conducted experimentally.

With this approach, we quantify the dwell time at each stage of efferocytosis and dissect

the relative contribution of efferocytosis, cell extrusion and proliferation individually and

in combination to CND shortening/elongation continuously over time. We finally ex-

amine the effects of Blebbistatin treatment on CND dynamics and determine the role of
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actomyosin during CND elimination. Our results suggest that there is significant CND

shortening forces in the absence of actomyosin activity, an interesting outcome of this

modeling study in view of the generally recognized belief that morphogenetic forces are

largely driven primarily by actomyosin activity. Indeed, this work provides an evidence

that efferocytosis and actomyosin drive the CND elimination throughout time (i.e., not

only at certain time points). It also provides a mathematical spatiotemporal framework

for how cellular rearrangement could occur during embryonic development in the CND.
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Abstract

La mort cellulaire programmée (apoptose) est essentielle dans plusieurs processus de

développement tel que le remodelage de tissue et l’homéostasie. Pendant le développe-

ment embryonnaire du système urogénital de la souris, l’apoptose joue un rôle crucial

dans l’élimination d’une structure temporaire nommée le Canal Mésonéphrique Com-

mun (CMC), une étape nécessaire afin de connecter l’uretère à l’épithélium de la vessie.

Plusieurs données suggèrent que l’apoptose génère des forces de traction nécessaires aux

réarrangements de tissues. L’efferocytose par des cellules épithéliales (aussi surnom-

mée la phagocytose non-professionnelle) a été osbervée pendant l’élimination du CMC.

Durant ce processus, les cellules épithéliales programmées à mourir sont phagocytées

et digérées par des cellules voisines. Ce processus au complet implique cinq étapes

d’apoptose, un flux cellulaire et un gradient apoptotique le long du CMC. Nous develop-

pons un nouveau modèle à multi-échelles qui associe les différentes étapes de l’efferocytose

et les types de cellule impliqués (e.g. apoptotique, phagocyte et phagocytée) à un sys-

tème d’équations de flux cellulaire (advection) afin de fournir des renseignements spa-

tiotemporels concernant ce processus. Nous utilisons le gradient apoptotique le long du

CMC, la distribution stationnaire des cellules dans les différentes étapes de l’efferocytose

et la maintenance d’un diamètre constant du conduit pour paramétrer le modèle. En

utilisant des données expérimentales et des conditions limites, nous adaptons le mod-

èle à plusieurs conditions physiologiques, incluant des types sauvages in vivo, des em-

bryos non-traités ex vivo et des embryos traités ex vivo. Le modèle mathématique est

ensuite utilisé pour effectuer des tâches qui sont difficiles ou même impossible à faire

expérimentalement. Avec cette approche, nous quantifions la durée de chaque étape de

l’efferocytose et décortiquons la contribution de l’efferocytose, l’extrusion cellulaire et la
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prolifération cellulaire individuellement et en combinaison dans le racourcissement/élongation

du CMC au fil du temps. Finalement, nous examinons les effets d’un traitement Blebbis-

tatin sur la dynamique du CMC et déterminons le rôle de l’actomyosine durant l’élimination

du CMC. Nos résultats suggèrent qu’il y a un raccourcissement important malgré l’absence

d’actomyosine, une conclusion intéressante de cette étude en vue de l’idée générale-

ment reconnue que les forces morphogéniques sont majoritairement guidées principale-

ment par l’activité de l’actomyosine. En effet, ce travail témoigne que l’efferocytose et

l’actomyosine guident l’élimination du CND au fil du temps. Cela fournit également

un potentiel cadre mathématique spatiotemporel de réarrangement cellulaire pendant le

développement embryonnaire du CND.
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Nomenclature

Markov models for efferocytosis

KA(x, t) rate of efferocytosis at location x and time t days−1

KEI transition rate from early internalization to late internalization days−1

KLI transition rate from late internalization to debris days−1

KG rate of degradation days−1

KD rate of digestion days−1

c slope of KA with respect to space scaled by −L−1 days−1

d y-intercept of KA with respect to space days−1

Multistate Model of Cellular Interactions

N volume fraction occupied by normal cells unitless

P volume fraction occupied by Phagocytes unitless

KP (x, t) rate at which normal cells are turned into Phagocytes at location x and

time t days−1

KS rate of proliferation days−1

KBX(x, t) rate of basal extrusion at location x and time t days−1

fn fraction of cells not undergoing proliferation unitless

fs fraction of cell volume conserved after water release during apoptosis unitless

Fluid Dynamics model for Cellular Drifting

ρN(x, t) density of volume fraction of Normal cells at location x and time t µm−1

ρP (x, t) density of volume fraction of Phagocytes at location x and time t µm−1

ρA(x, t) density of volume fraction of Apoptotic cell bodies being extruded at location x

and time t µm−1

L(t) length of the CND at time t µm
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v(x, t) cellular drifting velocity at location x and time t µm/days

From experimental data to cell densities

gR apoptotic gradient value at the rostral end of the CND unitless

gC apoptotic gradient value at the caudal end of the CND unitless

pi percentage of cell in state i=A,E,EI,LI,D,N or P unitless

vi volume fraction occupied by cells in state i=A,E,N or P unitless

a slope of ρN
ρT

with respect to space scaled by −L−1 unitless

b y-intercept of ρN
ρT

with respect to space unitless

g slope of ρP
ρT

with respect to space scaled by −L−1 unitless

g y-intercept of ρP
ρT

with respect to space unitless

Blebbistatin model

KAX rate of apical extrusion days−1

fax fraction of cells not being extruded on the apical side unitless

di experimentally measured Blebbistatin treated CND length at time ti unitless

ci predicted CND length at time ti+1 using Control model unitless

pi elongation percentage caused by Blebbistatin between ti and ti−1 unitless

RC Control CND radius µm

RB CND radius after 48 hours of Blebbistatin treatment µm

rC Control lumen radius µm

rB lumen radius after 48 hours of Blebbistatin treatment µm

Ri CND radius between ti and ti+1 µm

α ratio of RB to RC unitless

αi ratio of Ri to Ri−1 unitless

ri lumen radius between ti and ti+1 µm

β ratio of rB to rC unitless

βi ratio of ri to ri−1 unitless

γ ratio of volume of a cell before Blebbistatin treatment to volume of cell after 48

hours of Blebbistatin treatment unitless

γi ratio of volume of a cell at ti to volume of a cell at ti+1 unitless
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δ fraction of cells not undergoing apical extrusion at 48h after the start of Blebbistatin

treatment unitless

δi fraction of cells not undergoing apical extrusion at ti unitless

Lei elongated length at ti µm

B(Lei) predicted length at ti+1 using Blebbi model µm

ρT i density of the Blebbistatin treated CND between ti−1 and ti µm−1

PDE model for Blebbistatin

V (t) volume fraction of the CND at time t unitless

W (t) volume of the CND at time t µm3

V0 volume fraction of the CND at time t = 0 unitless

τ time constant of the Blebbistatin treatment day−1

RV (t) rate of CND volume fraction loss at time t day−1

R(t) CND radius at time t µm

r(t) lumen radius at time t µm

VWT1 WT1 CND volume fraction at t = 0 unitless

WWT1 WT1 CND volume at t = 0 µm3

Different components of CND elimination

VTot(T ) total volume fraction eliminated between t = 0 and t = T unitless

Vi(T ) volume fraction eliminated between t = 0 and t = T through efferocytosis (i=E),

basal extrusion (i=BX), apical extrusion (i=AX) unitless

VP (T ) volume fraction added between t = 0 and t = T through proliferation unitless

Li(t) length of the CND at time t when considering only proliferation (P) and apical

extrusion(AX) (i=P+AX), proliferation (P), basal extrusion (BX) and efferocytosis(E)

(i=P+BX+E)... µm
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Chapter 1

Introduction

1.1 Biological problem

The biological process by which a tissue or organ develops into its final form or shape is

known as morphogenesis. Morphogenesis therefore lies at the core of the embryonic de-

velopment (also named embryogenesis) during which primary layers of cells, called germ

layers, are formed [1]. Three germ layers are formed during the embryonic development

of vertebrates [2]. Each germ layer eventually develops into specific tissues and organs of

the body. Cells derived from the mesoderm (one of the three germ layers) give rise to vital

organs such as the heart, the urogenital system and the muscles system [3–5]. A narrow

section of the mesoderm, the intermediate mesoderm, develops into the urogenital sys-

tem which includes the kidney, the bladder, the ureter, the gonads, etc [5]. Development

of complex systems, such as the urogenital system, involves the assembly of indepen-

dently formed organs. In a healthy urogenital system, the ureter conducts urine from

the kidney to the the bladder for storage and excretion. At the 11.5 days of embryonic

development (denoted E11.5), the ureteric bud (which later develops into the ureter) is

inserted into the nephric duct (also called the Wolffian duct), an epithelial structure run-

ning through the intermediate mesoderm and connected to the cloaca (the primordium

of the bladder and urethra), as shown on Figure 1.1 [7,9]. Before the start of urine produc-

tion at E15.5, the urinary tract has to become functional, which requires the displacement

of the base of the ureteric bud from the nephric duct to the clocoa [9] as shown in the

20



simplified schematic of Figure 1.2. Through this developmental process, the ureter even-

tually becomes separated from the Wolffian duct and connects the kidney to the bladder.

Using mouse models, studies have been conducted to determine the fate of the region

of the Wolffian duct lying between the ureteric bud and the clocoa, called the Common

Nephric Duct (CND). In 1975, it was hypothesized that the CND expands and differen-

tiates into the trigone (the muscular region located at the base of the bladder) [6]. This

theory was dismissed in [7] using lineage analysis by labeling the CND and its daughter

cells: the labeled cells were visible in the CND up to about E13, after which, expression

diminished and became undetectable by birth. This indicated that the CND is likely re-

gressing during ureter maturation rather than differentiating into the trigone. In that

same study and more recently in other studies [8, 9], it has been shown that the CND

undergoes apoptosis, eventually leading to its elimination and subsequently separating

the ureter from the Wolffian duct and inserting it into the clocoa (Figures 1.1 and 1.2).

In this developmental process, progressive CND shortening depends on regulated cell

death elimination that brings the ureteric bud in contact with the bladder epithelium. An

irregular apoptosis rate in this system can lead to diseases such as vesicoureteral reflux

in the case of excess apoptosis [9], and vesicoureteral junction obstruction in the case of

decrease in apoptotic rate [10–15]. Vesicoureteral reflux is the most common urinary tract

defect and affects 1-2% of newborns [16]. Such defects are collectively part of Congen-

ital Anomalies of the Kidney and Urinary Tract (CAKUT), a disease group that is the

primary cause of chronic kidney disease, urinary tract infection and renal transplant in

children [17].

The above studies raise the possibility that the bladder epithelium could be a source of

signals inducing programmed cell death in the CND. Programmed cell death is a crucial

process during development [20]. Morphogenesis and organ sculpting during embryoge-

nesis rely on successful clearing of apoptotic cells [21]. These processes can be performed

by professional Phagocytes (e.g. macrophages) or non-professional Phagocytes (e.g. ep-

ithelial cells) [22]. The latter are essential when professional Phagocytes are not abundant
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Figure 1.1: During the early stages of development, the Common Nephric Duct (CND) is

the region of the Nephric Duct lying between the ureteric bud and the clocoa. The apop-

totic gradient along the CND along with the maintenance of a uniform diameter causes

the CND to progressively shorten and eventually leads the ureteric bud to be detached

from the ND and connected to the clocoa, as depicted on Figure 1.2. This diagram was

produced by Emily Tang, PhD candidate in the Bouchard Lab.

Figure 1.2: "ND" and "CND" stand for Nephric Duct and Common Nephric Duct. The

time duration of the process leading to the ureter-bladder connection is around three

days, from E11.5 to E14.5.

yet (e.g. during development) or when the site of the apoptosis is inaccessible [21].

Recent observations (unpublished data) made from high resolution confocal imaging in

the Bouchard Lab (McGill University) showed that almost all apoptotic cells of the CND

are engulfed by neighboring epithelial cells, with very few being extruded out of the

CND. This suggests that the main clearance mechanism of the CND elimination is done
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through non-professional phagocytosis of apoptotic cells by neighbouring epithelial cells,

a process referred to as non-professional efferocytosis. This epithelial-cell efferocytosis

has been observed in a few other systems such as the lung and adult kidneys, but it oc-

curred only upon injury to maintain tissue homeostasis [18,19]. It has also been observed

in mammary glands, with involution after lactation [47]. Even though epithelial-cell ef-

ferocytosis occurs in adult systems, none of them are essential for tissue morphogenesis

during normal development. In the CND, however, it is essential.

The shortening process of the CND involves a gradient of apoptotic cell death that is

highest at the CND-cloaca junction and progressively declines along the CND [9, 10, 12,

13, 16, 31], as shown on Figure 1.1. Based on this data, one can deduce that cell death

is not uniform across the CND; indeed, the closer cell nuclei are to the bladder, the

more likely these nuclei will be in the apoptotic process. This is what we call the apop-

totic gradient [9–11, 31], which plays an important role in cellular rearrangement in the

CND. The work conducted in [7] indicates that the shape of the CND at its most cau-

dal region changes in order to insert into the clocoa. This change in shape is even more

pronounced around E13.5 when there is not much left of the CND. Unpublished data

from the Bouchard Lab (McGill University) indicates, however, that when considering the

whole duct at E11.5 and E13.5, the CND maintains its cylindrical with a uniform diameter.

Since the CND maintains a uniform diameter along with an apoptotic gradient, we can

infer that cells in the CND will gradually drift toward the bladder and cause the CND to

shrink in length. Five stages of efferocytosishave been identified by the Bouchard Lab us-

ing biomarkers; these include : healthy (or "Normal"), Pre-Engulfed, Early Internalized,

Late Internalized and Debris stages, as shown on Figure 1.3. To understand quantita-

tively the dynamics of the disappearance of the CND, one needs to measure cellular drift

toward the bladder caused by the apoptotic gradient and determine the duration of each

stage of efferocytosis described above. Due to technical difficulties, it is very hard or even

impossible to do so in vivo. In this thesis, we develop a novel multiscale mathematical

model, constrained by the unpublished data from the Bouchard lab, to accomplish this

task. We estimate dwell time spent in each stage of the non-professional efferocytosis
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and characterize several spatiotemporal aspects of this system including the rate of ef-

ferocytosis and the cellular drift velocity. Moreover, we quantify the contribution of the

different processes (proliferation, non-professional efferocyosis, extrusion) in the elimina-

tion/elongation of the CND. Even though the biological data provided by the Bouchard

Lab suggest that the majority of apoptotic cells are being engulfed by neighboring cells

rather than being extruded, we integrate time scales of both events (efferocytosis and ex-

trusion) to determine the overall contribution of each process to the eventual shrinkage

of the CND continuously over time.

Tissue morphogenesis is driven in large part by mechanical forces affecting the shape

and behavior of individual or groups of cells [23–29]. Those mechanical forces are largely

associated with an actin-myosin complex that forms within the cytoskeleton, where the

myosin motor protein are able to pull on actin filaments. This property gives rise to con-

tractile fibers that enable cell motility and force generation even in non-muscle cells such

as epithelial tissues. However, a category of morphogenetic drivers not primarily based

on actomyosin activity, has recently emerged [30]. By constraining our model with data

from ex-vivo Blebbistatin (an inhibitor of actomyosin) treated CNDs, we provide further

evidence for the presence of significant CND shortening forces in the absence of acto-

myosin activity. Our work also supports the hypothesis by the Bouchard Lab that apop-

tosis and efferocytosis drive the morphogenetic movement leading the ureter to connect

to the bladder primordium.

1.2 Mathematical models of phagocytosis

We wish to design a mathematical model which describes, on one hand, cellular pro-

cesses in the CND (efferocytosis and extrusion) and, on the other hand, CND shortening.

Previous modelling work of phagocytosis in macrophages already exists in the context

of Type 1 diabetes (T1D) [33–35] and using Markov models [48]. In these in vitro stud-

ies, the population of macrophages within a cell culture was divided into classes (Mi,

i = 1, . . . , N ) with each class representing macrohopages that have a specific number of
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Figure 1.3: The four stages of efferocytosis. The diagram was produced by Emily Tang,

PhD candidate in the Bouchard Lab.

apoptotic cells (i) inside them [49]. For example,M0 represented the class of macrophages

with zero apoptotic cells inside them, M1 represented the class of macrophages with one

apoptotic cell inside them and Mi represented the class of macrophages with i apoptotic

cells inside them (i was determined experimentally to be at most N = 7). Engulfment

of apoptotic cells by macrophages was assumed to be an irreversible process and mass

action kinetics was used to represent the constant rate of engulfment (denoted by param-

eter ke) of this process. Engulfed apoptotic bodies were then assumed to be digested at

a roughly constant rate kd. Since the study focuses on phagocytosis at a time scale of

hours, death of macrophages (which happens at a time scale of days) was neglected [49].

In this modeling study, digestion was assumed to be either saturated or unsatured; sat-

urated digestion represented the case when apoptotic cells are digested one at a time by

macrophages, while unsaturated digestion represented the case when apoptotic cells are

digested simultaneously by macrophages. An example of saturated digestion with N

classes of macrophages can be visualized in Figure 1.4. The differential equations model
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associated with the diagram in Figure 1.4 is thus given by

dM0

dt
= −keM0A+ kdM1 (1.1)

dMi

dt
= keMi−1A− (kd + keA)Mi + kdMi+1 (1.2)

dMN

dt
= keMN−1A− kdAMN , (1.3)

where A is the density of the apoptotic cells whose decaying dynamics are described by

the following differential equation

dA

dt
= −ke

N−1∑
i=0

Mi. (1.4)

Notice how equations (1.1)-(1.3) include the source and sink terms associated with each

state of the Markov model in Figure 1.4 (such approach in defining the source and sink

terms will be similarly used when developing the multiscale model used in this thesis).

The authors in [33] then used the Markov model to compare the values of ke and kd be-

tween wild-type and T1D-prone animals and thus determine which aspects of macrophage

phagocytosis are affected by the disease. Although this model and its variants provided

interesting insights about how defects are manifested in macrophage phagocytosis, they

only focused on the temporal aspect of this system with no implications on tissue struc-

ture as this was not involved.

Figure 1.4: Kinetic model of saturated macrophage phagocytosis. Mi is the density of

macrophages with i engulfed apoptotic cells and N is the maximal macrophage capacity.

ke is the rate at which macrophages engulf apoptotic cells and kd is the rate at which

apoptotic cells are digested. This diagram is taken from [33].

In our system of CND elimination, efferocytosis (i.e. phagocytosis by epithelial cells)

takes a central role. The studies of macrophage phagocytosis cited above provided some
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insights into how to approach this problem using Markov state formalism to describe the

different cellular processes involved in efferocytosis. As observed by the Bouchard Lab,

the epithelial cells that become non-professional phagocytes can only engulf one apop-

totic cell at a time. While this may simplify how to describe efferocytosis mathematically

with one step Markov model (see Figure 1.4), the presence of different stages of effero-

cytosis and the significant implications this may have at the CND tissue level makes this

problem all the more challenging. The feed-forward and feedback between phagocytosis

and CND structure require the use of multiscale modeling approaches to decipher how

they interact during CND elimination. The model developed is novel in nature, combin-

ing different biological processes: phagocytosis, extrusion and proliferation at the cellular

level as well as cellular rearrangement (drift) at the tissue level.

1.3 Multiscale model of CND elimination

In this thesis, we will combine Markov models of cellular processes of efferocytosis with

a submodel for cellular drifting through an advection; the latter is extended to include

the source and sink terms representing engulfment, extrusion and proliferation. Using

experimental data and boundary conditions to constrain the model (i.e. parameterize),

we have been able to adapt it to different conditions, including in vivo wild types, ex vivo

non-treated embryos and ex vivo treated embryos upon the application of Blebbistatin.

The resulting multiscale model is then used to quantify/characterize certain aspects of

this system that cannot not be conducted experimentally. Indeed, in this thesis, we will

quantify the digestion time of efferocytosis, the dwell time in each stage of efferocytosis

and dissect the relative role of efferocytosis, cell extrusion and proliferation in the process

of CND shortening/elongation. The differences in time scale of each process, which could

alter the contribution of each component, are integrated into the model and are shown to

produce interesting outcomes. The conclusions generated provide insights into the role

of each of these components over time independently of each other and in combination

when integrated together. Finally, we will examine the effects of Blebbistatin treatment

in order to determine the role of actomyosin during CND elimination over time. Even
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though actomyosin is crucial to the CND shortening (as suggested by the unpublished

data from the Bouchard lab), our model shows that efferocytosis is also one of the main

driver of the CND shortening and can act independently of actomyosin.
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Chapter 2

In vivo model: Wild Type 1

2.1 Experimental data

We first present an in vivo wild type CND data provided by the Bouchard Lab (McGill

University), a set of data that we refer to hereafter as Wild Type 1 (WT1). The CND is

an epithelial tissue enclosed between an outer cylinder and an inner cylinder. The inner

cylinder is called the lumen. A cross-section of the CND is shown on Figure 2.1. The

"CND radius" refers to the radius of the outer cylinder. The lumen corresponds to the

hollow tube in the center of the nephric duct. As suggested by experimental observations

of the Bouchard Lab, the CND and lumen radii remain constant between E11.5 and E13.5.

In our modeling efforts, we will take the CND and lumen radii to be constant between

E11.5 and E13.5.

During urinary tract development, the displacement of the ureteric bud (i.e., ureter) to

its final position in the bladder requires the elimination of the CND. To learn more about

the way by which the CND gets eliminated, the Bouchard Lab measured the level of

apoptosis in the CND at E11.5 and E12.5. The percentage of nuclei undergoing apopto-

sis was measured in cross-sections taken from six different regions of the CND ranging

from the rostral-most region (rrCND) to the caudal-most region (ccCND). The measure-
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Figure 2.1: The CND is an epithelial tissue enclosed by an outer cylinder and an inner

cylinder, called the lumen (a hollow tube). When taking a cross-section of the CND at

a specific location and a given time point, the percentage of cells undergoing apopto-

sis is given by the apoptotic gradient at that specific location and given time point. The

remaining cells are healthy epithelial cells. Cells within the pool of apoptotic epithelial

cells, are distributed between the five apoptotic states according to the stable (or station-

ary) distribution given in Figure 2.5 . Within the pool of healthy epithelial cells, there is a

small percentage of cells undergoing proliferation. This proliferation percentage is given

in Figure 2.3.

ments revealed a gradient of apoptosis from low percentages at the rostral end to high

percentages at the caudal end, as shown on Figure 2.2. This apoptotic gradient remained

confined within the CND despite a 50% shortening from 306 µm at E11.5 to 153 µm at

E12.5, as shown on Figure 2.3. By looking at the values of the apoptotic gradient at the

rostral-most and caudal-most regions of the CND at those two time points (see Figure

2.2), we can infer that the end points of the gradient remain roughly unchanged, with

the gradient getting steeper. These inferences were confirmed by the members of the

Bouchard Lab.

Further experimental analysis was conducted in the Bouchard Lab to gain insights into
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Figure 2.2: Unpublished data from the Bouchard Lab: The apoptotic gradient at E11.5

and E12.5. The measurements were averaged over three embryos at E11.5 and five em-

bryos at E12.5. The regions from the most caudal one to the most rostral one are given in

the following order: ccCND (caudal-caudal), rcCND (rostral-caudal), cmCND (caudal-

middle), rmCND (rostral-middle), crCND (caudal-rostral) and finally rrCND (rostral-

rostral CND). In each cross-section, the apoptotic gradient gives the percentage of nuclei

undergoing apoptosis out of the total number of nuclei in this cross-section. The standard

errors of the mean are shown as error bars on the diagram. The CND was sectioned and

immuno-stained with Ecad (cell membrane), TUNEL (dying cells) and Dapi (nucleus) to

quantify the number of apoptotic cells in each region. P-values were calculated using

two-tailed t-tests between each pair of cell type and were all smaller than 0.05 (and most

of them smaller than 0.001).
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Figure 2.3: Unpublished data from the Bouchard Lab: length of the WT1 CND and pro-

liferation at E11.5 and E12.5. Data presented as mean ± SD. The CND was sectioned and

immuno-stained with Ecad (cell membrane), Ki67 (proliferating cells) and Dapi (nucleus)

to quantify the number of proliferating cells. The proliferation percentage was obtained

out of a total of 594 cells and 1057 cells at E11.5 and E12.5 respectively. E11.5 and E12.5

Urogenital System (UGS) from Pax2GFP (Pax2 is expressed in the UGS system that makes

it positive for GFP (Green Fluorescent Protein)) embryos were dissected to measure CND

lengths. The length was averaged over 25 CNDs for each of E11.5 and E12.5 and p-values

were calculated using two-tailed t-tests and were found to be smaller than 0.0001. The

figure was produced by Emily Tang, Phd candidate in the Bouchard Lab.

the cell elimination process. This analysis revealed that the vast majority of the apoptotic

cells were engulfed by neighboring epithelial cells from the CND. Using immuno-staining

with Ecad (cell membrane), TUNEL (dying cells) and Dapi (nucleus), the progression of

non-professional efferocytosis (phagocytosis by epithelial cells) was broken down into

four stages (see Figure 2.4): Pre-Engulfment, Early Internalization, Late internalization

and Debris stages. In the Pre-Engulfment stage, apoptotic cells became round and lost

about 80% of their volume. In the next stage, apoptotic bodies were found as TUNEL-

negative condensed masses inside healthy epithelial cells (Early Internalization). These

apoptotic bodies eventually acquired TUNEL-positive signal (Late Internalization) and
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subsequently appeared as debris (Debris stage; shown as fragmented TUNEL staining).

A quantification of these different stages showed that the Pre-engulfment and Early In-

ternalization stages are rarely found whereas the Late Internalization and Debris stages

are far more dominant (see Figure 2.5). Finally, a small number of cells were found to be

extruded from the duct through the basal side (periphery) of the duct, as shown in Figure

2.4. This process is referred to as basal extrusion. The percentage given by the apoptotic

gradient is defined as the sum of the percentages of cells in the five different apoptotic

states: the Pre-Engulfed, Early-Internalization, Late Internalization, Debris states of effe-

rocytosis and cells undergoing basal extrusion. Even thought the percentage of apoptotic

cells increases along the CND (as indicated by the apoptotic gradient), the Bouchard Lab

noticed that the distribution of cells within the five apoptotic states remained relatively

stable over the six different regions of the CND and over the E11.5 and the E12.5 time

points (see Figure 2.5).

To further explore epithelial cell phagocytosis in the CND, the Bouchard Lab looked at

the presence of macrophages (professional phagocytes) in and around the CND. While

macrophages could be detected in the surroundings of the CND as previously reported

[63], very few were in direct contact with the CND and none were found in the CND.

To see how apoptotic bodies are processed in engulfing epithelial cells, the Bouchard

Lab conducted further experimental works involving lysosome (vesicles containing en-

zyme capable of breaking down various biomolecules it engulfs) and phagosome (a vesi-

cle formed around a particle engulfed by a phagocyte) markers. The results of these

experiments were consistent with the processing of apoptotic bodies through the phago-

cytic pathways. From these results, they concluded that CND elimination involves non-

professional phagocytosis of apoptotic cells by neighbouring epithelial cells, a process

referred to as non-professional efferocytosis.

Finally, the Bouchard Lab also measured the percentage of cell proliferation in the CND

at E11.5 and E12.5, as shown in Figure 2.3. The unpublished experimental data observa-

tions can be summarized in the diagram shown in Figure 2.1. It is important to point out
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Figure 2.4: The four stages of efferocytosis labeled in red on the left and a cross-section

of the process of basal extrusion on the right. During basal extrusion, an apoptotic cell

is extruded on the basal side of the CND. The diagram and the image were produced by

Emily Tang, PhD candidate in the Bouchard Lab.

that all the cells of the CND are of the same type; there are no cells that are more prone

to enter apoptosis or to proliferate. The cells entering apoptosis are randomly selected

according to the apoptotic gradient. None of the cells have a predetermined fate: there is

no systematic way that a cell is pre-allocated into one pathway versus another (Bouchard

Lab). Hereafter, we will refer to healthy epithelial cells with an engulfed apoptotic body

inside of them as Phagocytes. All Phagocytes can proliferate and when they do, the en-

gulfed apoptotic body does not get split. In other words, when a Phagocyte proliferate,

it produces two different cells: a healthy epithelial cell with no engulfed apoptotic body

and a Phagocyte, as shown on Figure 2.11
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Figure 2.5: Unpublished data from the Bouchard Lab: The distribution of the nuclei in the

five apoptotic states (including the four stages of efferocytosis identified). A total of eight

embryos was used to generate this data: three taken at E11.5 and five taken at E12.5. For

each embryo, a cross-section from each of the six regions of the CND (as shown on Figure

2.2) was taken. This makes a total of 48 cross-sections. For each cross-section, the distribu-

tion of nuclei between the five apoptotic states (Pre-Engulfed, Early Internalization, Late

Internalization, Debris and Basal extrusion) was calculated. The average distribution is

given in the above table. The CNDs were sectioned and immuno-stained with Ecad (cell

membrane), TUNEL (dying cells) and Dapi (nucleus) to quantify the number of apoptotic

cells. P-values were calculated using two-tailed t-tests between each pair of cell type and

were all smaller than 0.05 (and most of them smaller than 0.001).

2.2 Mathematical Model and Derivations

In this section, we present the mathematical framework used to model Wild Type 1 (la-

beled WT1).

2.2.1 Markov model for efferocytosis

The shrinking and eventually the disappearance process of the CND takes place roughly

between the E11.5 and E13.5. In a healthy duct, when a cell enters apoptosis, it can either

be extruded on the basal side of the CND or it can be internalized by a neighboring cell

through non-professional efferocytosis (also called non-professional phagocytosis). Dur-

ing efferocytosis, the cells in the CND undergo four different stages highlighted in Figure

2.4. To understand these four different stages, we introduce here the following list of

definitions that will be used quite frequently hereafter:
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• Normal cell: is a healthy cell maintaining its volume.

• Pre-Engulfment stage: is the stage associated with the shrinking process of Normal

cells until they become ready for engulfment; we also call a cell in that stage an

apoptotic body.

• Early Internalization stage: is the stage occuring right after the engulfment of apop-

totic bodies.

• Late Internalization stage: is the stage in which the engulfed apoptotic bodies un-

dergo active DNA fragmentation. The red dots of Figure 2.4 represents the accumu-

lation of double stranded DNA breaks.

• Debris stage: is the stage in which the nucleus is degraded into non-detectable small

pieces, but the DNA breaks remain detectable (red dots in Fig 2.4).

• Phagocyte: is a Normal cell that has engulfed an apoptotic body. When digestion is

over, the Phagocyte returns to being a Normal cell.

The efferocytosis process can be described by an irreversible Markov model consisting of

5 states, as shown on Figure 2.6.

Figure 2.6: The irreversible 5-states Markov model consistent with that shown in Figure

2.4. "N" stands for "Normal", "E" for "Pre-Engulfment", "EI" for "Early Internalization",

"LI" for "Late Internalization" and "D" for "Debris".
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Let N(t), E(t), Ei(t), Li(t) and D(t) denote the total number of cells in the Normal, Pre-

engulfed, Early-internalized, Late-internalized and Debris stages, respectively, at time t

(in days). At E11.5, we set t = 0 days, whereas at E13.5, we set t = 2 days. Let KA, KR,

KEI and KLI be the forward rate constants for the transitions N(t)→ E(t), E(t)→ Ei(t),

Ei(t) → Li(t) and Li(t) → D(t), respectively, while KG be the degradation rate. We will

refer to KA as the efferocytosis rate and KR as the engulfment rate.

Our immediate goal is to quantify the dwell time spent in the four stages of the effe-

rocytosis process because each stage is associated with a biological process that is taking

place within the cell. For example, the Late Internalization stage is associated with active

DNA fragmentation, so determining the dwell time tells us the time constant of this pro-

cess. Furthermore, determining the dwell time of the Debris stage tells us how long the

DNA breaks remain detectable. Quantifying these parameters is thus quite important as

it may provide some fundamental information about which one of these stages is altered

in pathological conditions (e.g., during vesicoureteral reflux and junction obstruction) in

a manner similar to what was done with macrophage phagocytosis [35]. We need to de-

termine the values of KA, KR, KEI , KLI and KG, and then compute the reciprocal of these

parameters to determine the dwell time in the Normal, Pre-engulfed, Early-internalized,

Late-internalized and Debris states, respectively.

To tackle this problem, we need to introduce the following types of cells.

• A Dead cell: is a cell in the E, EI, LI or D state of Figure 2.6.

• An Engulfed cell: is a cell in the EI, LI or D state of Figure 2.6.

Based on these definitions, we can simplify the 5-state Markov model of Figure 2.6 into a

3-state irreversible Markov model (shown in Figure 2.7).

KD represents the digestion rate and its reciprocal gives the time an engulfed cell stays

in the Phagocyte, i.e. the digestion time. The digestion rate KD represent the combined

rate of KEI , KLI and KG.
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Figure 2.7: The irreversible 3-state Markov model whose Early Internalization, Late In-

ternalization and Debris states have been merged into one called the Engulfed state. "N"

stands for "Normal" and "E" for "Pre-Engulfment".

As shown on Figure 2.5, the percentage of cells in the Pre-Engulfment state is close to

0. Moreover, out of a total of 48 cross-sections that were analyzed (as mentioned in Figure

2.5), 43 cross-sections had 0% of cells in the Pre-Engulfment state. This means that the

time spent in the Pre-Engulfment state is the shortest and cells in this state are the hardest

to observe, and will therefore have the largest uncertainty. Based on this data, we assume

that the engulfment process, represented by the KR arrow, is instantaneous. Hence, the

5-state and 3-state Markov models of Figures 2.6 and 2.7, respectively, can be simplified

into 4-state and 2-state Markov models, shown in Figure 2.8. To verify that this would not

affect our results significantly, we have used the original 5-state and 3-state Markov mod-

els shown in 2.6 and 2.7, respectively, and obtained results that differed quantitatively by

less than 0.4% compared to the 4-state and 2-state Markov models as shown below. We

have found that the value ofKR is three orders of magnitude bigger than the other rates.

2.2.2 Stationary cellular distribution

Unpublished data from Bouchard Lab suggests that the distribution of apoptotic cells into

the four efferocytosis stages and the basal extrusion between E11.5 and E12.5 is stable

over time (non-changing, see Figure 2.5). This represents the stationary distribution of

the system.
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Figure 2.8: Top: The irreversible 4-states Markov model with the engulfment process

assumed to be instantaneous. Bottom: The irreversible 2-state Markov model whose Early

Internalization, Late Internalization and Debris states have been merged into one called

the Engulfed state. "N" stands for "Normal", "EI" for "Early Internalization", "LI" for "Late

Internalization" and "D" for "Debris".

2.2.3 Apoptotic gradient

The length of the CND decreases overtime but the diameter remains the same as con-

firmed by the Bouchard Lab. During this process, the CND remains directly connected to

the bladder and shortens due to the apoptotic gradient. As suggested by the experimental

data shown in Section 2.1, the endpoints of the apoptotic gradient remain roughly con-

stant over time, which implies that the gradient is getting steeper. The average apoptotic

gradient is calculated and is shown in Figure 2.9.

2.2.4 Multistate model of cellular interactions

To better understand the dynamics of CND shortening, we will further use a multistate

model to describe the different cell pathways in the CND in terms of their volume fraction

(see Figure 2.10). This alternate model description will allow us to account for Normal

cells and Phagocytes. The cell states and rate constants used in this multistate model are

described in the Nomenclature.
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Figure 2.9: Unpublished data from the Bouchard Lab. A total of eight embryos was used

to generate this data: three taken at E11.5 and five taken at E12.5. For each embryo, a

cross-section of the 6 regions ranging from the most rostral to the most caudal (rrCND,

crCND, rmCND, cmCND, rcCND and ccCND) was taken. For each cross-section, the

percentage of apoptotic cells with respect to the total number of cells in the cross-section

was measured. The percentages of apoptotic cells in each region was averaged over the

eight different embryos and are shown above. The standard errors of the mean are shown

as error bars on the diagram.

The volume of a Pre-Engulfed cell is 20% of the volume of a Normal cell. Therefore,

when a Normal cell engulfs a Pre-Engulfed cell, it becomes a Phagocyte that is 20% big-

ger than a Normal cell. It is important to recall that the engulfment process is assumed to

be instantaneous. This is why it does not appear in the multistate model shown in Figure

2.10. We now introduce a unitless quantity that we call "volume fraction". The volume

fraction of an entity is equal to the ratio of its volume over the volume of a Normal cell.
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For example, since a Phagocyte is 20% bigger than a Normal cell, the volume fraction

of a Phagocyte is equal to 1.2. In order to avoid any confusion when discussing volume

fraction (unitless) versus number of cells, we make the following observations.

• A Normal cell occupies a volume fraction of 1. A Phagocyte occupies a volume

fraction of 1.2.

• Based on the previous assumption, at a specific time point, the number of Normal

cells is equal to the volume fraction of N.

• Based on the first assumption stated above, if the volume fraction of P is known,

then the total number of Phagocytes is equal to this volume fraction divided by 1.2

When a cell enters apoptosis, it shrinks and loses 80% of its volume through water re-

lease (1 − fe = 0.8) and gets engulfed by a neighboring Normal cell at a rate KA or gets

pushed out of the CND through basal extrusion at rate KBX . The cells that are prolifer-

ating can not enter apoptosis or engulf a Pre-Engulfed cell; we therefore use fn to denote

the fraction of cells not proliferating. The Normal cells that engulf Pre-Engulfed cells are

turned into Phagocytes at rate KP . When a Normal cell is turned into a Phagocyte, it

gains a 0.2 volume fraction (fe = 0.2) corresponding to the engulfment of a Pre-Engulfed

cell (through the fnfeKA transition). When the Phagocytes are done digesting, they re-

vert back to being Normal cells again; this occurs at a rate identical to the digestion rate

KD (since digestion and reversion are the same processes). When a Phagocyte is turned

back into a Normal cell, it loses the 0.2 volume fraction occupied by the Pre-Engulfed

cell (fe/(fe + 1)KD transition) and the remaining 1 volume fraction is turned back into a

Normal cell (1/(fe + 1)KD transition). Details of these interactions are described by the

scheme on Figure 2.10.

During development, cells proliferate. Unpublished data by the Bouchard Lab (McGill

University) shown on Figure 2.3 suggests that there are, on average, 11.4% (fn = 0.886) of

Normal cells and Phagocytes that undergo proliferation. This mean that a Phagocyte can

undergo cell division while digesting another cell. It was also estimated that the duration
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Figure 2.10: The multistate model, "MS1", describing the interactions between the differ-

ent types of cells in terms of volume fraction. The efferocytosis pathway is colored in

blue."N" stands for "Normal" and "P" stands for "Phagocytes". There is a 1 − fn fraction

of Normal cells that undergo proliferation. The rest of the Normal cells can either be ex-

truded on the basal side of the CND at rate KBX or enter efferocytosis (blue pathway) at

a rate KA. When a Normal cell undergoes efferocytosis, it first shrinks and loses 80% of

its volume (1 − fe = 0.8) and then gets engulfed by a neighboring cell. Normal cells that

engulf Pre-Engulfed cells get turned into Phagocytes at a rate KP . When a Normal cell is

turned into a Phagocyte, it gains a 0.2 volume fraction (fe = 0.2) corresponding to the en-

gulfment of a Pre-Engulfed cell (through the fnfeKA transition). When the Phagocytes are

done digesting, they revert back to being Normal cells again; this occurs at a rate identical

to the digestion rate KD (since digestion and reversion are the same processes). When a

Phagocyte is turned back into a Normal cell, it loses the 0.2 volume fraction occupied by

the Pre-Engulfed cell (fe/(fe + 1)KD transition) and the remaining 1 volume fraction is

turned back into a Normal cell (1/(fe + 1)KD transition).
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Figure 2.11: Cell proliferation: a mother Normal cell produces two daughter Normal cells

but a mother Phagocyte produces one Normal cell and one Phagocyte.

of cell cycle is about 18 hours (KS = 18/24 days−1). When a Normal cell divides, it gives

birth to two daughter cells that are Normal cells, whereas when a Phagocyte divides, it

gives birth to one Phagocyte and one Normal cell (see Figure 2.11). Thus, according to

both scenarios, the system gains one new Normal cell and the number of Phagocytes re-

mains the same. It is important to note here that a Normal cell undergoing proliferation

can not enter apoptosis or be turned into a Phagocyte.

The average percentage of cells proliferating between E11.5 and E12.5 is 11.4%. Therefore,

the fraction of cells not proliferating (fn) is set to be 0.886 (corresponding to 11.4%) in the

model presented above. Given that the percentage of cells proliferating at E11.5 (5.3%)

and at E12.5 (17.5%) are significantly different (Figure 2.3, we also set fn to be 0.947 (5.3%

proliferation) and 0.825 (17.5% proliferation) to see how these values affect the outcomes

of the MS1 model. Our results revealed that there is around a 7% difference in the value

of KD when compared to the KD obtained when fn = 0.886 (Table 4 in the Appendix).

As for the heatmaps of the rate of efferocytosis KA, the qualitative behaviour remains the

same, but the maximum value attained by KA differs by around 20% when compared

with model when fn = 0.886 (Figures 2.14 and Figures 4.2 and 4.3 of the Appendix).

The heatmaps of the drifting velocity v, on the other hand, remains almost identical in
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all cases (Figures 2.15 and Figures 4.2 and 4.3 of the Appendix). Because of these small

differences, we have decided to use the average percentage of cell proliferation (11.4%) in

the modeling analysis.

2.2.5 Fluid dynamics model for cellular drifting

As mentioned in the introduction, for the CND to maintain its uniform diameter and its

apoptotic gradient, a flux of cells moving toward the bladder must occur. This follows

from the fact that if more cells are dying in the caudal region of the CND (i.e., at the

bladder side of Figure 2.12) than in the rostral region of the CND away from the blad-

der (as suggested by the apoptotic gradient), then the radius of the former will decrease

quicker than that of the latter, causing the CND to have a non-uniform diameter. Since

the CND maintains a uniform diameter, it follows that there is a cellular drift from the

rostral region of the CND toward the caudal (see Figure 2.12). This cellular drift leads to

the shortening of the CND.

Figure 2.12: A longitudinal view of the CND with arrows indicating the direction of

cellular drift from the rostral (away from the bladder) to the caudal (close to the bladder)

regions. The rostral end x = −L corresponds to the shrinking end of the CND and the

caudal end x = 0 corresponds to the one connected to the bladder.

To study the dynamics of this system in the presence of a cellular drift, we need to intro-

duce the variables ρN and ρP that represent the densities of Normal cells and Phagocytes,

respectively, expressed as volume fraction per micrometers. Since volume fraction is unit-
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less, the unit of ρN and ρP is µm−1. For example, if there are 4 Normal cells in a 2 µm long

segment of the CND, then ρN in that segment is

ρN =
4× 1

2
= 2 µm−1.

However, if there are 4 Phagocytes in a 2 µm long segment of the CND, then ρP in that

segment is

ρE =
4× 1.2

2
= 2.4 µm−1.

Let v(x, t) denote the velocity of cells drifting longitudinally along the CND at location

x and time t. Using cell densities, we can describe the spatiotemporal dynamics of this

system by extending the drift-diffusion (also called the diffusion-advection) equation to

include the source and sink terms of Figure 2.10. This produces the following equations

∂ρN
∂t

= − ∂

∂x
(vρN)− fn(KA +KBX +KP )ρN +

1

1 + fe
KDρP (2.1)

+ (1− fn)KS(ρN + ρP )

∂ρP
∂t

= − ∂

∂x
(vρP ) + fn (KP + feKA) ρN −KDρP (2.2)

Since there is no diffusion is this system, it is not included in the model; instead, cell

movement is described by a drift (advection) term, given by ∂vρi/∂x, for i = N and P . To

quantify the various parameters of the model, further analysis will be conducted.

2.2.6 Basal extrusion versus efferocytosis

Based on unpublished data by the Bouchard Lab (McGill University), we can determine a

proportional relation between the rate of efferocytosis KA and the rate of basal extrusion

KBX . Using biological markers, it was determined that the time it takes for a cell to be

extruded out of the CND is the same as the time it takes for a cell to reach the middle of
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the Late Internalization stage. Let’s suppose that the stationary distribution is given by

Basal Extrusion→ A%

Early Internalized→ EI%

Late Internalized→ LI%

Debris→ D%.

If we let KT denote the rate of apoptosis (basal extrusion and efferocytosis), i.e. KT =

KA +KBX , we obtain

KA =
EI + LI/2

A+ EI + LI/2
KT

KBX =
A

A+ EI + LI/2
KT .

This gives a proportional relation between KA and KBX , given by

KBX =
A

EI + LI/2
KA. (2.3)

2.2.7 Important equations

In this section we set up boundary conditions and important equations that will be used

in Section 2.3 to solve the model analytically.

Biological conditions and assumptions on rate constants (validated by the Bouchard

Lab)

It is to be expected that the rate of efferocytosis KA is closely correlated to the apop-

totic gradient. By applying linear regression (Figure 2.13) on the apoptotic gradients at

E11.5 and E12.5 (Figure 2.2) and on the averaged apoptotic gradient (Figure 2.9) along the

length of the CND, we obtain R2-values that are close enough to 1 (always bigger than
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Figure 2.13: Linear regressions applied on the apoptotic gradients at E11.5 (blue) and at

E12.5 (orange) and on the averaged apoptotic gradient (grey). The data points of each

gradient are taken from Figures 2.2 and 2.9. For each gradient, the data points are taken

at the regions ranging from the most rostral end to the most caudal end, as shown on

Figure 2.9. To apply a linear regression, we set the length of the CND to L = 300 µm, set

the caudal and rostral ends to x = 0 and x = −L µm, respectively (as shown on Figure

2.12), and associate each data point to the middle point of the corresponding region. For

example, in the case of the rrCND region extending from -300 to -250 µm, the data point

is plotted at −275 µm, the mid point of the rrCND region. The R2-values are independent

of the value of the length of the CND L.

0.94) to suggest that the rate of efferocytosis KA varies linearly along the CND. Therefore,

we approximate the rate of efferocytosis KA to be a linear function of space (x) with end

points (at x = 0 and x = −L(t)) that are independent of the length L(t) of the CND (as
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suggested in Section 2.3.1), i.e.,

KA(x) =
c

−L(t)
x+ d, . (2.4)

As mentioned earlier, the Engulfed state of Fig 2.7 incorporates the Early Internalized,

Late Internalized and Debris states of Fig 2.6. Based on this, we have

1

KD

=
1

KEI

+
1

KLI

+
1

KG

. (2.5)

Using the stationary distribution associated with Early Internalized, Late Internalized

and Debris states, given by

Early Internalization→ EI%

Late Internalization→ LI%

Debris→ D%,

we conclude that

1

KLI

=
LI
EI

(
1

KEI

)
(2.6)

1

KG

=
D

EI

(
1

KEI

)
. (2.7)

Differential Equations

By letting ρT denote the total density of cells in the CND, we have

ρT := ρN + ρP + ρA,
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and since the CND has a uniform diameter, ρT is constant in time and space. ρA has not

been introduced yet, it is the density of the apoptotic cell bodies being extruded out of

the CND to the basal side. Using the differential equations 2.1 and 2.2 and since ρT is

constant, we obtain

∂ρT
∂t

=
∂

∂t
(ρN + ρP + ρA), which implies that

0 =
∂ρN
∂t

+
∂ρP
∂t

+
∂ρA
∂t

(2.8)

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP

− (
∂

∂x
(vρN) +

∂

∂x
(vρP ) +

∂

∂x
(vρA))

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP

− (ρN
∂v

∂x
+ v

∂ρN
∂x

+ ρP
∂v

∂x
+ v

∂ρP
∂x

+ ρA
∂v

∂x
+ v

∂ρA
∂x

)

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP

− ((ρN + ρP + ρA)
∂v

∂x
+ v

∂

∂x
(ρN + ρP + ρA))

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP − (ρT

∂v

∂x
+ v

∂ρT
∂x

)

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP − (ρT

∂v

∂x
+ 0)

=− fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −
fe

1 + fe
KDρP − ρT

∂v

∂x
.

Rearranging these terms, we obtain the following differential equation for the cellular

velocity v(x, t)

ρT
∂v

∂x
= −fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −

fe
1 + fe

KDρP . (2.9)
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As mentioned earlier, x = −L corresponds to the rostral end of the CND and x = 0

corresponds to the caudal end of the CND. Since the caudal end of the CND does not

move, we use the following boundary condition for v(x, t):

v(0, t) = 0. (2.10)

Note that the velocity at the shrinking end of the CND (rostral end) corresponds to the

rate at which the length L(t) of the CND decreases. We can thus set

∂L(t)

∂t
= −v(x, t)

∣∣
x=−L(t). (2.11)

Boundary conditions on the dynamics of the system

To reduce the number of parameters of the model, we need to make the value of the rate

of efferocytosis KA at the rostral end of the CND a boundary condition for the model.

Given the low percentage of the apoptosis in the most rostral region of the CND (Figure

2.9), one would expect KA to be very close to 0 at that end. Based on this, We have set

KA = 0 (an assumption approved by the Bouchard Lab) because it is the minimal value

that KA can attain; by choosing a different value close to 0, the analysis would remain

the exact same qualitatively and the results would quantitatively differ only slightly. For

example, when setting KA equal to 0.50 at the rostral end, the predicted value of KD and

the heatmap of the drifting velocity v remain the same, while the maximum value attained

by KA decreases by only 18%. Based on this, we have decided to make the assumption

that at the shrinking rostral end of the CND, the rate of efferocytosis is zero. This gives

KA(−L(t), t) = 0. (2.12)

Since at any given time point, KA increases linearly along the CND, this assumption does

not mean that there exists a region along the CND with a rate of efferocytosis equal to

zero; since KA(x, t) > 0 for any x > −L(t), then for all l > −L(t), the average KA is al-

ways strictly bigger than 0 on the region extending from x = −L(t) to x = l.
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As discussed earlier, when a cell is engulfed by a neighboring cell, one Normal cell is

turned into a Phagocyte. If one Normal cell turns into a Phagocyte at time t = α days,

then at time t = α + 1/KD days, this cell will revert back to being a Normal cell because

1/KD days corresponds to the digestion time. This means that the number of cells that

have been engulfed between t = 0 and t = T days (left hand side of equation 2.13) should

be equal to the number of Phagocytes that have turned back into Normal cells between

t = 1/KD and t = T + 1/KD days (right hand side of equation 2.13). The latter can be

expressed as the number of cells that went from the P state to the N state to which we

add the number of Phagocytes at t = T days (because they will turn back to Normal cells

before t = T + 1/KD) and subtract the number of Phagocytes at t = 0 (because they will

turn back to Normal cells before t = 1/KD days). Mathematically, this is equivalent to

saying that

∫ T

0

∫ 0

−L(t)
fnKAρNdxdt︸ ︷︷ ︸

Number of Pre-Engulfed

cells engulfed by

Phagocytes

between t=0 and t=T days.

=

∫ T

0

∫ 0

−L(t)
KD

ρP
1 + fe

dxdt︸ ︷︷ ︸
Number of Phagocytes

returning back to being

Normal cells between t=0

and t=T days.

+

∫ 0

−L(T )

ρP (T, x)

1 + fe
dx︸ ︷︷ ︸

Number of

Phagocytes

at t=T days.

−
∫ 0

−L(0)

ρP (0, x)

1 + fe
dx,︸ ︷︷ ︸

Number of

Phagocytes

at t=0 days.

(2.13)

where (1 + fe) = 1.2 is a scaling factor that corresponds to the volume fraction occupied

by a Phagocyte, KDρP represents the volume fraction loss from the P state and KDρP
1+fe

represents the number of cells transitioning from the P state to the N sate.

Quantifying cellular velocity

Integrating both sides of equation 2.9, we obtain

∫ 0

−L(t)
ρT
∂v(x, t)

∂x
dx =

∫ 0

−L(t)
−fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −

fe
1 + fe

KDρP dx,
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which implies that

ρT [v(0, t)− v(−L(t), t)] =

∫ 0

−L(t)
−fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −

fe
1 + fe

KDρP dx.

Since the caudal end of the CND connecting to the bladder does not move, we have

v(0, t) = 0 µm/days for all t. This means that

ρT [0− v(−L(t), t)] =

∫ 0

−L(t)
−fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −

fe
1 + fe

KDρP dx

which implies that

−ρTv(−L(t), t) =

∫ 0

−L(t)
−fn((1− fe)KA +KBX)ρN + (1− fn)(ρN + ρP )KS −

fe
1 + fe

KDρP dx.

Let RV (t) denote the rate of CND volume loss at time t. It follows that

RV (t) =

∫ 0

−L(t)
fn((1− fe)KA +KBX)ρN − (1− fn)(ρN + ρP )KS +

fe
1 + fe

KDρP ,

and therefore,

ρTv(−L(t), t) = RV (t). (2.14)

We will use the notation RV (t) in Section 3.2.5. We can subsequently conclude that

∫ T

0

RV (t)dt

provides a quantification for the total volume loss between t = 0 and t = T days.

Substituting equation 2.11 into equation 2.14, we obtain

−ρT
∂L(t)

∂t
= RV (t). (2.15)

Note that ∂L(t)
∂t

corresponds to the rate at which the length of CND decreases.
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2.2.8 Quantifying the density of each type of cells using experimental

data

Let ρT denote the total density of the duct in terms of volume fraction per micrometers

(i.e., the unit of ρT is µm−1 because volume fraction is unitless). This means that

ρT := ρN + ρP + ρA.

Since the CND has a uniform diameter, it implies that ρT is constant in time and space.

In WT1 (as well as in the ex-vivo Control model associated with the CND analyzed in the

next chapter), we know from unpublished data from the Bouchard Lab (McGill Univer-

sity) that ρT = 2000
300

µm−1. For Blebbistatin treated CND, the calculation of ρT is done in

Section 3.2.4.

For any given time point, we assume that the apoptotic gradient is a linear function of

space, as suggested by Figure 2.13. This means that:

ρN
ρT

(x) =
a

−L(t)
x+ b, (2.16)

ρP
ρT

(x) =
g

−L(t)
x+ h. (2.17)

Then, ρA
ρT

(x) can be determined simply by using the following equation

ρA
ρT

(x) = 1− ρN
ρT

(x)− ρP
ρT

(x).

From data provided by Bouchard Lab (McGill University), we can retrieve (see next

subsection) the values of

ρN
ρT

(−L(t)),
ρP
ρT

(−L(t)), (2.18)

ρN
ρT

(0),
ρP
ρT

(0). (2.19)
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Using equations 2.16, 2.17, 2.18 and 2.19, we obtain a system of two equations with two

unknowns for each variable ρN and ρP , given by

ρN
ρT

(−L(t)) = a+ b,
ρP
ρT

(−L(t)) = g + h (2.20)

ρN
ρT

(0) = b,
ρP
ρT

(0) = h. (2.21)

We can analytically solve the system of equations given by 2.20 and 2.21 and determine

the values of a, b, g and h.

Quantifying the density of each cell type at the rostral end and caudal end of the CND

of WT1

Let us now see how to quantify the expressions listed in 2.18 and 2.19 from experimental

data.

Step 1: Estimating the rostral and caudal ends of the apoptotic gradient.

The values of the average apoptotic gradient are given in Figure 2.9. If the length of

the CND is denoted by L, then the theoretical apoptotic gradient is the linear function

obtained from the linear regression done on the average apoptotic gradient. This corre-

sponds to the grey curve of Figure 2.13. Let g(x) be this linear function (grey curve of

Figure 2.13) and set gR := g(0) (if g(0) < 0, we set gR = 0) and gC := g(L). The quantities

gR and gC correspond to the values of the theoretical apoptotic gradient at the rostral and

caudal ends of the CND, respectively. In the mathematical framework described in Sec-

tion 2.2.5, gR is the value of the gradient at x = −L(t) and gC is the value of the gradient

at x = 0. The two values gR and gC are independent of the length of the CND L. From the

grey curve of Figure 2.13, one can infer that gC = 43.2 and gR = 8.9

Step 2: Determining a, b, g and h from gR and gC .

As explained previously, to determine the values of a, b, g and h, it is sufficient to deter-
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mine the values of

ρN
ρT

(−L(t)),
ρP
ρT

(−L(t)),
ρN
ρT

(0),
ρP
ρT

(0).

In order to understand the following calculation, one must keep in mind that the units of

ρN , ρP and ρT are volume fraction per unit length.

We will initially show the detailed steps used to determine the values of

ρN
ρT

(−L(t)) and
ρP
ρT

(−L(t)),

which represent the percentages of total volume fraction occupied by Normal cells and

Phagocytes, respectively, at x = −L(t).

To do so, we first recover the percentage of cells in each stage at x = −L(t), denoted

by pA, pEI , pLI and pD, using the following formula

pi = [% given by stationary distribution for state i]× gR × 0.01, (2.22)

where the stationary distribution is shown in Figure 2.5, for i = A,EI , LI and D. One

should keep in mind that each cell in one of the EI , LI or D state is in a Phagocyte. Also,

Normal cells occupy a volume fraction of 1, Phagocytes occupy a volume fraction of 1.2

and apoptotic cell bodies being extruded occupy a volume fraction of 0.2. Let pN and pP

denote the percentages of cells in the Normal and Phagocyte states respectively.

Let vN , vP and vA denote the volume fraction of cells in the states of Normal, Phagocyte

and Apoptotic cell body being extruded, respectively. It follows that

vA = 0.01× pA × 0.2× T (2.23)

vP = 0.01× (pEI + pLI + pD)× 1.2× T. (2.24)
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where T is the total number of cells. Since 1 = pA +pEI +pLI +pD +pN +pP , we conclude

that the volume fraction occupied by the Normal cells is given by

vN = 0.01× pN × T = [1− (pA + pEI + pLI + pD + pP )]× T = 0.01× [1− gR − pP ]× T.

(2.25)

It follows that

ρN
ρT

(−L(t)) =
vN

vN + vA + vP
(2.26)

ρP
ρT

(−L(t)) =
vP

vN + vA + vP
. (2.27)

By applying the same procedure with gC instead of gR, one can determine the values of
ρN
ρT

(0) and ρP
ρT

(0).

As shown in Figure 2.9, the largest standard error of the mean of the apoptotic gradi-

ent is 3.05. To investigate the uncertainty due to the apoptotic gradient, we have also

ran the model in two different set ups: one with an apoptotic gradient shifted by +3.05

(adding 3.05 to the values of gC and gR estimated in step 1 of Section 2.2.8), and one with

an apoptotic gradient shifted by−3.05 (subtracting 3.05 from the values of gC and gR esti-

mated in step 1 of section 2.2.8). Our results reveal that there is around a 10% increase and

13% decrease difference in the value of KD when applying those two shifts, respectively

(Table 5 in the Appendix). As for the heatmaps of the rate of efferocytosis KA, the quali-

tative behaviour is kept the same, but the maximum value attained by KA has increased

by around 18% and decreased by around 12%, respectively (Figure 2.14 and Figures 4.4

and 4.5 of the Appendix). The heatmaps of the drifting velocity v, on the other hand, re-

mained almost identical in all cases (Figure 2.15 and Figures 4.4 and 4.5 of the Appendix).

Because of these small differences, we have decided to use the average apoptotic gradi-

ent (Figure 2.9) in the modeling analysis (an approach that has been also approved by the

Bouchard Lab).
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2.3 Results

2.3.1 Solving the model analytically using Mathematica

As demonstrated before, the apoptotic gradient is approximated by a linear function with

respect to space (section 2.2.8). Since the endpoints of this apoptotic gradient are con-

stants, the slope of the apoptotic gradient increases with time. The rostral endpoint is

located at the position x = −L(t) and the caudal endpoint at the position x = 0. This

means that the values of the terms listed in 2.18 and 2.19 are constants and as explained

in Section 2.2.8, those are sufficient to determine the parameters a, b, g and h, which char-

acterize ρN and ρP .

Let gR and gC denote the values of the apoptotic gradient at x = −L(t) and x = 0, re-

spectively. The details of how we were able to determine the values of a, b, g and h from

the values of gR and gc and the stationary distribution, were given in Section 2.2.8. The

key thing to remember is that they are all functions of gR and gC ,

a = a(gR, gC), b = b(gR, gC), g = g(gR, gC)

h = h(gR, gC) (2.28)

Below, we outline the different steps implemented to quantify each aspect of the model

analytically.

Step 1: The cellular drift (advection) velocity v(x, t)

ρN and ρP are functions of a, b, g and h, the spatial variable x and the length of the CND L.

So far, we know the values of a, b, g and h but we have not characterized L(t) yet. Given

that ρN and ρP are only functions of x and L, it follows that equation 2.9 is an ODE. By

solving this ODE for v, we obtain an expression of v that depends on x, L, c, d and KD of

the form v = f(x, L, c, d,KD) + c1, where f(0, L, c, d,KD) = 0 and c1 is a constant. With

the boundary condition v(0) = 0, we set c1 = 0. This produces an expression for v that
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depends on x, L, c, d and KD, given by

v = v(x, L, c, d,KD).

=
x (((−1.72× 10−1) d− (1.29× 10−1)KD + 1.51× 10−1)L2)

L2

+
x (((8.60× 10−2) c+ (2.56× 10−1) d− (5.51× 10−2)KD − 2.02× 10−4)xL− (1.71× 10−1) cx2)

L2

(2.29)

Step 2: The length of the CND L(t)

By solving the ODE in equation 2.15 along with the initial conditionL(0) = 306 µm (length

obtained experimentally, Figure 2.3), we obtain an expression for L(t) that depends on

time t, c, d and KD, as follows

L = L(t, c, d,KD)

= 3.06× 102 exp
[((
−2.57× 10−1

)
c−

(
4.27× 10−1

)
d−

(
7.38× 10−2

)
KD + 1.52× 10−1

)
t
]

(2.30)

Using equation 2.30 and applying the boundary condition L(1) = 153 µm (length ob-

tained experimentally, Figure 2.3), we can find an expression for c that depends on d and

KD, as follows

c = c(d,KD)

= −1.67d−
(
2.88× 10−1

)
KD + 3.30 (2.31)

By substituting the value of c, given by equation 2.31, into 2.30, the expression for L(t)

simplifies to

L(t) = 306e−ln(2)t. (2.32)

58



Step 3: The rate of efferocytosis KA(x, t)

Using equation 2.4 and solving the boundary condition KA(−L(t), t) = 0, we obtain

d = −c. (2.33)

Substituting d by −c in equation 2.31 and isolating c, we obtain

c =
(
4.31× 10−1

)
KD − 4.93. (2.34)

Using equations 2.34, 2.33 and 2.32, equations 2.29 and 2.4 become

v =v(x, t,KD)

=x
(
e1.39t

(
8.98× 10−6 −

(
7.85× 10−7

)
KD

)
x2 + eln(2)t

(
2.74× 10−3

−
(
4.19× 10−4

)
KD

)
x−

(
5.48.× 10−4

)
KD − 6.97× 10−1

)
(2.35)

and

KA = KA(x, t,KD).

=
((

4.31× 10−1
)
KD − 4.93

) ((
−3.27× 10−3

)
eln(2)tx− 1.

)
(2.36)

Step 4: Quantifying KD, KEI , KLI and KG

Substituting equations 2.36, 2.16, 2.17 and 2.32 into equation 2.13 and solving for KD, we

obtain

KD = 2.70 days−1. (2.37)

By substituting equations 2.6 and 2.7 into equation 2.5 and using the fact that KD = 2.70,

we can solve for KEI . Once we know the value of KEI , we can then plug its value back

into equations 2.6 and 2.7 to determine the values of KLI and KG.
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Step 5: Determining the analytical expressions of v(c, t), KA(x, t), KP (x, t) and KBX(x, t)

By substituting KD = 2.70 into equations 2.35 and 2.36, we obtain the spatiotemporal

analytical expressions of v(x, t) and KA(x, t), given by

v = v(x, t)

= x
((

6.86× 10−6
)
e1.39tx2 +

(
1.60× 10−3

)
eln(2)tx− 8.45× 10−1

)
(2.38)

and

KA = KA(x, t).

= 3.77
((

3.27× 10−3
)
eln(2)tx+ 1

)
. (2.39)

As explained before, KP (x, t) = KA(x, t). Substituting equation 2.39 into equation 2.3, we

obtain an analytical expression for KBX , given by

KBX(x, t) =2.62× 10−1
((

3.27× 10−3
)
eln(2)tx+ 1

)
. (2.40)

2.3.2 Spatiotemporal dynamics insights

By using the stationary cellular distribution of WT1 (Figure 2.5) , apoptotic gradient of

WT1 (Figure 2.9), two time points of the length of the CND of WT1 (at E11.5 and E12.5,

see Section 2.1), the rate of proliferation KS (Section 2.1), the fraction of cells not un-

dergoing proliferation fn (Section 2.1), the fraction of volume lost by a cell through water

release during apoptosis (1−fe) as experimental data (Section 2.2.4) along with the deriva-

tions detailed in Sections 2.2.8 and 2.3.1, we were able to derive analytical expressions for

the spatiotemporal variables KA(x, t), KP (x, t), KBX(x, t) and v(x, t) (heatmaps plotted in

Figure 4.1 of the Appendix), the temporal variable L(t) and to determine the value of the

rate constants KD, KEI , KLI and KG (values given in Table 1).

60



Dwell time of each stage of non-professional phagocytosis

Table 1: List of parameters and their estimated values of WT1.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.70 day−1 8.89 hours

KEI Early internalization rate 32.5 day−1 44.3 minutes

KLI Late internalization rate 5.12 day−1 4.69 hours

KG Degradation rate 6.94 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

The value of KS was known experimentally (see Section 2.1). The other rate constants

were obtained using the model, as explained above. Once we have retrieved a rate con-

stant, its reciprocal gives the duration of the associated process. For example, the diges-

tion time is given by 1/KD = 8.89 hours (see Table 1). This argument also holds for KEI ,

KLI , KG and KS . We can thus conclude that the time it takes for one Phagocyte to digest

an engulfed cell is 8.89 hours, which falls into a reasonable biological range (as confirmed

by the Bouchard Lab that was expecting a value between 8h and 12h).

Consistent with the low number of experimental observations of these stages, the time

of Early internalization has been found to be in a shorter time scale (44.3 min) (Figure

2.5). Conversely, the Late Internalization and Debris stages of efferocytosis were found to

be slow processes, occurring in a time scale of hours (4.69 hours and 3.46 hours, respec-

tively) (Figure 2.5). These dwell times, which could NOT be measured in vivo, provide

an insight into the timeline of efferocytosis by CND epithelial cells and can assist in pin-

pointing where pathologies occur when comparing their values to disease conditions.

The role of efferocytosis and drifting velocity

For WT1, it was determined by the Bouchard Lab that the length of the CND at t=0 days

(E11.5) is 306 µm and at t=1 days (E12.5) is 153 µm (Figure 2.3), which we used as bound-

ary conditions to the model. By following the derivations outlined in Section 2.3.1, an
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analytical expression for L(t) is obtained in the form of an exponential decay with a de-

cay constant equal to ln(2) (see Figure 2.16, orange plot). This means that the CND loses

half of its length on a daily basis.

To understand how the rate of efferocytosis KA(x, t) and cellular velocity v(x, t) vary spa-

tially and temporarily during this progressive decay in the length of the CND, we plot

in Figure 2.14 and Figure 2.15 the heatmaps of these variables with respect to time and

length of the CND. The time variable (vertical axis) in these heat-maps represents the du-

ration between t = 0 days (E11.5) until t = 2 days (E13.5), whereas the spatial variable

(horizontal axis) corresponds to the length of the CND, extending from x = −L (the ros-

tral end of the CND at the ureter-nephric duct connection point) all the way to x = 0 (the

caudal end where the CND connects to the bladder).

Figure 2.14 shows that, during the progressive decline of CND length, the rate of effe-

rocytosis KA increases along the CND toward the caudal region of the CND at each time

point; this is an expected outcome in view of the assumptions we made on KA(x, t) in

equation 2.4 and the profile of the apoptotic gradient (Figure 2.9). This profile suggests

that apoptosis via efferocytosis is far more dominant in the region adjacent to the bladder

than in the rostral region. It reflects the fact that the rate of efferocytosis follows a similar

gradient as the apoptotic gradient.

In contrast, Figure 2.15 shows that the heatmap of the velocity along the shrinking CND

exhibits a behavior opposite to that for KA. In this case, the heatmap shows that, at each

time point, the velocity of the cells decreases monotonically (it follows a cubic decrease as

highlighted by equation 2.29) toward the bladder until reaching a velocity of zero when

touching the bladder. Having v = 0 at the caudal end is to be expected since there is

no cell movement beyond the bladder, which is why we used that condition to constrain

the model. The higher velocity at the rostral end is also to be expected, given that the
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Figure 2.14: The heatmap of the rate of efferocytosis (KA) in days−1 along the CND with

respect to time (horizontal axis) and length of the CND (vertical axis). The heat-maps is

color-coded according to the color-bars to the right. Notice how the length of the CND

gradually shrinks exponentially.

death rate in the caudal region is higher, forcing other cells of the CND to move toward

the caudal region to compensate for the loss in volume. This means that if a cell is far

away from the bladder, it has to travel faster to replace dead cells. This velocity gradually

decreases at the caudal end as the CND shrinks and the number of apoptotic cells driving

cell movement decreases (see Figure 2.15).
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Figure 2.15: The heatmap of the cellular velocity v along the CND in µm/days with re-

spect to time (horizontal axis) and length of the CND (vertical axis). The heat-map is

color-coded according to the color-bars to the right. Notice how the length of the CND

gradually shrinks exponentially.

2.3.3 Contribution of efferocytosis and basal extrusion to CND short-

ening

We have previously analyzed the dynamics of the model when all the components in-

volved in CND shortening/elongation are included (efferocytosis, basal extrusion and
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proliferation). Now that we have constrained our model with experimental data and that

the model produced outcomes are consistent with those observed experimentally, we can

now use it to perform tasks that CANNOT be done experimentally. Our goal is to explore

how the system behaves when one single component is present versus when a combina-

tion of them is present (i.e., examine the contribution of these components individually

and in combination). Let us use the model to quantify the role of each component (Prolif-

eration (P), Efferocytosis (E) and Basal Extrusion (BX)) individually and in combination in

the CND shrinkage/elongation. In the WT1 model, the total volume fraction eliminated

between t = 0 and t = T days is given by

VTot(T ) =

∫ T

0

∫ 0

−L(t)
fn((1− fe)KA +KBX)ρN +

fe
1 + fe

KDρP dxdt. (2.41)

The volume fraction eliminated between t = 0 and t = T days by efferocytosis (VE) and

by basal extrusion (VBX) are given by, respectively,

VE(T ) =

∫ T

0

∫ 0

−L(t)
fn(1− fe)KAρN +

fe
1 + fe

KDρP dxdt (2.42)

and

VBX(T ) =

∫ T

0

∫ 0

−L(t)
fnKBXρN dxdt (2.43)

with VTot = VE + VBX . Therefore, the percentages of cell clearance through efferocytosis

and basal extrusion are given by VE
VTot

100 and VBX
VTot

100, respectively. It is interesting to point

out here that these ratios do not depend on T .

The data from the Bouchard Lab shows that much more cells are undergoing efferocy-

tosis than basal extrusion (Figure 2.5). Since the measurements were done at two specific

time points, they do not tell us anything about the time scales of these two processes

(efferocytosis and extrusion) and how they interact collectively over extended periods of

time. The multiscale model developed in this thesis allows us to quantify the overall con-

tribution of each process to the CND shrinkage over time and account for the time scales
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of each process (the experimental data alone cannot do so). Using equations 2.41, 2.42

and 2.43, we can conclude that cell processing through efferocytosis and basal extrusion

represent VE
VTot

100 = 93.8% and VBX
VTot

100 = 6.2% of the CND elimination, respectively. This

suggests that efferocytosis is the main driver of the CND shortening.

To validate this further, we investigated the evolution of the length of the CND in dif-

ferent conditions in Figure 2.16 using the method developed below.

The WT1 model accounts three crucial components: Proliferation (P), Efferocytosis (E)

and Basal Extrusion (BX). The volume fraction added by proliferation between t = 0 and

t = T days is given by

VP (T ) =

∫ T

0

∫ 0

−L(t)
(1− fn)KS(ρN + ρP ) dxdt. (2.44)

We can conclude that the overall volume fraction change between t = 0 and t = T days is

given by VP (T )− VE(T )− VBX(T ). To convert this volume fraction change into a change

in CND length, `c we simply have to divide the latter by ρT , i.e.

`c =
VP − VE − VBX

ρT
(2.45)

which gives the change in CND length at t = T days. If this quantity is positive (negative),

it means that the CND length has decreased (increased). For WT1, if we substitute T = 2

days into equation 2.45, we find that `c = 229.5, which is to be expected because the length

of the CND decreased from 306 µm at t = 0 days to 76.5 µm at t = 2 days. Naturally, the

expression the length of the CND at t = T days,L(T ), can be expressed as

L(T ) = 306− VP (T )− VE(T )− VBX(T )

ρT
(2.46)

and this matches the expression given by equation 2.32.

Using this framework, we can predict the effect of inhibiting different components in-
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volved in determining the length of the CND. For example, the evolution of CND length

without basal extrusion LP+E is given by

LP+E(t) = 306− VP (t)− VE(t)

ρT
. (2.47)

Similarly, we can define the following temporal variables

LP+BX(t) = 306− VP (t)− VBX(t)

ρT
, (2.48)

LE+BX(t) = 306− −VE(t)− VBX(t)

ρT
, (2.49)

LP (t) = 306− VP (t)

ρT
, (2.50)

to describe the combined contribution of proliferation and basal extrusion, of efferocy-

tosis and basal extrusion, and finally of proliferation alone. LP (t) , LP+BX(t) , LP+E(t) ,

L(t) and LE+BX(t) are plotted in purple, brown, blue, orange and black, respectively, in

Figure 2.16.

As expected, proliferation causes an elongation of the duct (purple curve) and basal ex-

trusion is not strong enough to counter the elongation caused by proliferation (brown

curve). When only basal extrusion is removed, the shrinkage of CND is almost identical

to when all components of the model are included (the blue curve is very close to the

orange curve). This once again shows that efferocytosis is the main driver of the CND

shrinkage and that basal extrusion merely contributes to the shrinkage of the CND.

As highlighted by the Bouchard Lab, the insightful conclusions provided by the model

are hard or even impossible to verify experimentally. This is the very reason why we have

used multiscale mathematical modeling approaches (adopted from nonlinear dynamics

and complex systems) to fill out the gaps left out by the experimental work, an approach

used routinely in the field. At best, one could try to verify our predictions using cell

culture experiments. However, this would require different cell types and conditions for

67



Figure 2.16: The time evolution of the length of the CND in different conditions as

determined by model. These conditions include: the contribution of cell proliferation

alone (purple curve), the contributions of both basal extrusion and cell proliferation only

(brown curve), the contributions of both cell proliferation and efferocytosis only (blue

curve), the contributions of both basal extrusion and efferocytosis only (black curve) and

the contributions of proliferation, basal extrusion and efferocytosis combined (orange

curve). Notice how similar the blue and orange curves.

cells to grow outside the embryos that are no longer consistent with the framework of the

multiscale model.

2.3.4 How parameter perturbations affect model outcomes

Fixed values of fe, L0 (length of the CND at t = 0 day), L1 (length of the CND at t = 1

day), gC and gR were previously used to constrain the WT1 model. Since the Bouchard

Lab has been greatly interested in estimating the digestion time 1/KD associated with

the WT1 model (determined in Section 2.3.2), it would be interesting to investigate how

perturbations in these former parameters affect the rate of digestion (KD) in the model
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(while keeping data associated with CND shortening unchanged). For example, if the

apoptotic gradient was different, then what value of KD would be necessary to match the

rest of the experimental data. Since from a biological point of view, there is no reason for

KD to change, we realize that this does not imply that digestion and apoptotic gradient

are dependent on each other; it just implies that they are both at play.We still perform this

analysis to test how this is manifested according to the model.

Varying L0 and L1

By applying the steps of Section 2.3.1 with L0 and L1 left as a non fixed parameters, we

obtain the following expression for KD

KD = 1.54 + 1.67ln

(
L0

L1

)
. (2.51)

According to equation 2.51, we can conclude thatKD increases as L0 increases or as L1 de-

creases. Since L0 > L1, it follows that KD increases as the difference L0−L1 > 0 increases.

This is to be expected since an increase in L0−L1 > 0 implies that the CND length shrinks

more in the same amount of time, which requires a faster efferocytosis process and hence

a faster digestion.

Varying gC and gR

After following the steps of Section 2.3.1 with gC or gR left as non fixed parameters, we

plot KD against each of these parameters in Figure 2.17.

Based on Figure 2.17, we can conclude that KD decreases as gC or gR increases. If either

gC or gR increases, the apoptotic gradient becomes bigger, which means that more cells

are undergoing apoptosis. If more cells are undergoing apoptosis, then the time required

for digestion needs to increase in order to maintain the same shrinkage rate. Once again,

this is an expected outcomes because if the digestion time were to stay the same, then the

shrinkage rate would not remain fixed.

Varying fe
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Figure 2.17: On the left: KD as a function of gC with gR = 8.9 (as used in the WT1 model).

On the right: KD as a function of gR with gC = 43.2 (as used in the WT1 model).

Recall that fe ∈ [0, 1] corresponds to the remaining volume fraction of a Normal cell after

it has shrunk due to apoptosis. In the WT1 model, when a Normal cell enters apoptosis,

80% of its volume is lost through water release, implying that fe = 0.20. After applying

the steps of Section 2.3.1 allowing fe to vary as a parameter, we can plot KD against fe,

(see Figure 2.18).

Figure 2.18: KD as a function of fe.

The resulting graph reveals that if all the other parameters are held fixed, then increasing
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fe causes KD to increase. This implies that, as fe increases, the digestion process becomes

slower. This makes sense because as fe increases, the volume of a Pre-Engulfed cell gets

bigger, requiring the system to compensate by getting rid of them at a faster rate to main-

tain the same rate of CND shrinkage as before. In order to get rid of them faster, the

Phagocyte needs to digest them at a faster rate. The latter is made possible by having a

higher digestion rate.

As described above, changes in L0, L1, fe, gC and gR affect the digestion rate KD in a

physiologically understandable and consistent manner suggested by the model. As men-

tioned in the Introduction, some studies raised the possibility that the bladder epithelium

could be a source of signals inducing the apoptotic gradient along the CND. One could

modify experimentally the apoptotic gradient without affecting the digestion time (given

by 1/KD in our model) by playing with this signal. Intuitively, a higher apoptotic gradi-

ent should accelerate the shortening of the CND and a lower apoptotic gradient should

slow down the shortening of the CND. We can investigate this using our model with KD

and L0 left as fixed parameters and shifting the apoptotic gradient up or down by a per-

centage ∆ (adding ∆ to the values of gC and gR estimated in Step 1 of Section 2.2.8). The

effect on the predicted length at E12.5 (L1) is plotted in Figure 2.19, and as expected, L1

shortens as ∆ increases. Therefore, according to our model, a higher apoptotic gradient

accelerates the shortening of the CND and a lower one slows it down.
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Figure 2.19: L1 as a function of ∆.
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Chapter 3

Ex vivo model: Blebbistatin treatment

3.1 Experimental data

To assess the role of actomyosin in the shortening of the CND, ex vivo experiments in

the Bouchard Lab (McGill University) were conducted. These included CNDs that were

treated with Blebbistatin (an actomyosin inhibitor) as well as those that were not. The

latter will be called "Control CND" hereafter. We cannot use the experimentally observed

apoptotic gradient and stationary distribution of the ex vivo CNDs in both conditions

because the data was not solid enough to be included. The length of the Control and

Blebbi-treated CNDs was measured at six different time points as shown in Table 2. For

the Blebbi-treated CNDs, Blebbistatin treatment was initiated at E11.5 (t = 0 h); such

treatment caused several changes to CND dynamics compared to those observed in WT1

CNDs, including a decrease in CND radius and lumen radius, an increase in cell volume

and an enhancement of apical extrusion (see Figure 3.1). It is important to point out

here that the extrusion observed in WT1 (Section 2.1) happens only on the basal side

whereas in Blebbi-treated CNDs, extrusion happens on the basal side and on the apical

side simultaneously. Basal extrusion follows a gradient but apical extrusion in Blebbi-

treated CND is constant along the CND and affects 4.2% of the cells 48 h after the start of

the Blebbistatin treatment (E13.5). The radii of the Blebbi-treated CND and lumen were

measured at t = 48 h and compared to that of Control CND and lumen; the results were

as follows: CND radius of 37.35 µm for Control vs 27.20 µm for Blebbi-treated and lumen
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radius of 13.7 µm for Control vs 12.4 µm for Blebbi-treated (see Figure 3.2). Finally, it was

also revealed experimentally that cell volume increased by 32% on average at t = 48 h in

the Blebbi-treated CND compared to Control CND (see Figure 3.3).

Figure 3.1: A cross-section of the process of apical extrusion, during which apoptotic cells

are being pushed toward the lumen of the CND. Unpublished data from the Bouchard

Lab indicate that an average of 4.2% (SEM of 1.5%) of cells in Blebbistatin-treated CND

and an average of 0.4% (SEM of 0.5%) of cells in Control CND undergo apical extrusion

(data obtained with n=3 embryos for each condition). The p-value was calculated using

two tailed t-tests and was found to be smaller than 0.05.

3.2 Mathematical Model and Derivations

3.2.1 Ex vivo Control CND

As explained in Section 3.1, we cannot use the experimentally observed apoptotic gradi-

ent and stationary distribution of the ex vivo CNDs. Larger cell volume in Blebbi-treated

CNDs may affect a bit the phagocytic process, but all in all it should be in the same range

as in the Control CND. This follows from the fact that the phagocytic vesicle fuses with
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Figure 3.2: Unpublished data from the Bouchard: duct diameter and lumen diameter.

Data presented as mean ± SEM. N= 3 embryos, 15-20 sections for each embryo for control

and Blebbistatin treatment. P-values were calculated using two-tailed t-tests for each of

the CND radius and lumen radius and were found to be smaller than 0.01 for the former

and non significant for the latter. The figure was produced by Emily Tang, Phd candidate

in the Bouchard Lab.

lysosomes (vesicles containing enzyme capable of breaking down various biomolecules

it engulfs) which digests the content independently of phagocytic vesicle size. Further-

more, the Bouchard Lab has obtained some quantification of the stationary distribution

of Blebbi-treated ducts but the data were too few to be meaningful for solid enough in-

terpretations of the results. The only conclusion that could be made is that the Late Inter-

nalization was not affected at all in Blebbi-treated CNDs while the Debris was reduced

but not significantly (statistically speaking). This final outcome was consistent with the

expectation of the Bouchard Lab, as they saw no reason for the time duration of the De-

bris stage to be affected, given that actomyosin plays no role in lysosome function. Based

on this and the recommendation made by the Bouchard Lab, we have decided to assume

here that the Blebbi-treated CND and the Control CND have the same stationary distri-
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Figure 3.3: Unpublished data from the Bouchard: cell volume of Blebbistatin treated CND

cultures. Data presented as mean ± SD. N=103 cells for control and n=149 cells for Bleb-

bistatin treatment. The p-value was calculated using two-tailed t-test and was found

to be smaller than 0.05. The figure was produced by Emily Tang, Phd candidate in the

Bouchard Lab.

Table 2: Control CND and Blebbi-treated CND length (in µm) measured at 6 time points.

t = 0 h corresponds to E11.5. For each of Control and Blebbi-treated CND, the data

was averaged over 65, 10, 12, 23, 34 and 20 CNDs at 0 h, 3 h, 6 h, 12 h, 24 h and 48

h, respectively. E11.5 UGS from Pax2GFP embryos was dissected and ex vivo cultured

to measure CND lengths for each time points. For the Blebbi-treated conditions, 100uM

Blebbistatin is added to the DMEM medium in the culture.

bution as WT1.

As mentioned in the previous section, the apoptotic gradient can be used to constrain

the model and estimate the unknown parameters (including the digestion rate KD) in the

in vivo WT case, but for the ex vivo CNDs, we cannot do so as no evidence suggests that
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the apoptotic gradient is maintained in this latter case. On the other hand, as mentioned

in the above paragraph, it is physiologically reasonable to assume that the ex vivo rate

of digestion KD is in the same range as that for the in vivo case because Late Internal-

ization and Debris, the two main stages of digestion (see Figure 2.5), do not seem to be

affected by actomysoin. Since we do not have experimental data to estimate the ex-vivo

apoptotic gradient, we will generate a "theoretical ex vivo apoptotic gradient" by using

the assumption that the in-vivo and ex-vivo digestion times and stationary distributions

are the same to constrain the model. The details of how this is done can be found in the

next subsection. To help facilitate understanding of the computational steps detailed here

in later sections, we will use the word "input" to describe those experimental data that

are employed to constrain (i.e., parameterize) the model and use the word "output" to

describe the parameters that are estimated by the model.

Based on this terminology, it follows that with the theoretical ex vivo apoptotic gradi-

ent along with the other usual input data (described in chapter 2), we obtain the "Control

model".

Predicting the theoretical ex vivo apoptotic gradient

As explained earlier, we wish to take the length of the Control CND at E11.5 and E12.5

and the stationary distribution of WT1 as inputs to parameterize the model, and then de-

termine what values gR and gC must attain to obtain the same KD as in WT1.

In our WT1 model, the analytical expression obtained for the CND length was an ex-

ponential decaying curve (see Step 2 of Section 2.3.1). As described in Section 3.1, the

length of the Control CND was measured at 6 different time points: 0 h, 3 h, 6h, 12 h, 24

h and 48 h. To parameterize the model according to this Control CND data, we need two

specific times points to do so, namely, E11.5 (t = 0 h) and E12.5 (t = 24 h) (just like we

did in the WT1 model); by taking advantage of data available at the the six time points,

one can generate better estimates of the control CND length at E11.5 and E12.5. To do so,

we first fit an exponential curve to CND length at these six times points (blue curve of
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Figure 3.4, with an R-value bigger than 0.92). This is followed by using the blue curve to

determine the length of the CND at t = 0 h (E11.5) and t = 24 h (E12.5). This produces

the lengths: 280.68 µm and 240.86 µm, respectively. These values are then used as inputs

to parameterize the Control model. Obviously any other two time points along the ex-

periential curve could have been used for model parameterization, but the former two

time points, t = 0 h and t = 24 h, have been picked for the sake of consistency with WT1

model.

Figure 3.4: The experimental data points for Control CND and Blebbistatin treated CND

are plotted in black and green, respectively. The evolution of the length of the CND

according to the Control model and Blebbi model are plotted in blue and orange, respec-

tively, and are relatively close to their corresponding experimental data.
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Since gC and gR are unknowns, we express a, b, g and h as functions of gC and gR (equa-

tions 2.28). We then follow the steps described in Section 2.3.1. At Step 4, we obtain

(unlike before) a relation between KD, on one hand, and gC and gR, on the other, given by

KD = f(gC , gR), (3.1)

where f(gC , gR) is the function shown in Figure 4.7 of the Appendix. For any fixed values

of KD and gR (or gC) in R there exists gC ∈ R (or gR ∈ R) such that f(gC , gR) = KD.

Recall that in the WT1 model, KD = 2.70 and that there exist infinitely many 2-tuples

(gC , gR) such that KD = f(gC , gR) = 2.70. This being said, we still need to determine

what gC and gR should be to characterize the theoretical ex vivo apoptotic gradient. In

order to get a unique pair, we need to fix either gC or gR. With recommendations from

the Bouchard Lab, we set gR = 0. By doing so, we obtain gC = 19.2. This, as a result,

produces a theoretical ex vivo gradient that is linear with 0% apoptosis at x = −L(t) and

19.2% apoptosis at x = 0.

3.2.2 Blebbistatin treated CND

We know that Blebbistatin treatment acts in the following ways:

• It reduces CND radius.

• It reduces lumen radius.

• It increases cell volume.

• It enhances apical extrusion.

According to the protocol used in Bouchard Lab, Blebbistatin treatment starts at t = 0 h

and the final effects (mentioned above) are measured at t = 48 h.

In order to add apical extrusion rigorously to our model, we need to employ the mul-

tistate model (labeled MS2) shown on Figure 3.5; the framework of this new model is
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similar to the MS1 model, except for the addition of the rate of apical extrusion KAX and

(1− fax), the fraction of cells being extruded on the apical side. The value of fax is known

experimentally (see Section 3.1) and the value of KAX can be determined from the values

of KEI and KLI obtained with the Control model (see the details in next section). The

Bouchard Lab recommended that we consider basal and apical extrusion as two indepen-

dent pathways due to differences in dynamics. Indeed, at any given time point, the rate

of basal extrusion increases along the CND toward the bladder while apical extrusion is

constant along the CND. To help explain the various transitions of the multistate model

of Figure 3.5, the fate of the different cell types have been further elucidated in Figure 3.6.

Using this framework, the two extrusion processes, the theoretical ex vivo apoptotic gra-

dient and MS2 model along with the other usual input data, we obtain the "intermediate

Blebbi model" (IBM).

Reductions in both CND and lumen radii and an increase in cells’ volume must imply

that there is an increase in the length of the CND to account for the extra volume gener-

ated, provided that there is no volume leak in the CND (i.e. that all the extra cell volume

caused by the Blebbistatin treatment stays in the CND). The latter was suggested by the

Bouchard Lab. On the other hand, we would expect efferocytosis and cellular extrusion

to cause a decrease in the length of the CND. Therefore, in Blebbi-treated CNDs, elonga-

tion and shortening of the CND are happening simultaneously but our fluid dynamics

framework (see Section 2.2.5) only takes into account shortening of the CND. To account

for elongation, one can either formulate a PDE model (described in Section 3.2.5) or use

the experimentally measured CND length by the Bouchard Lab (McGill University) at

discrete time points to approximately quantify the contribution of both shortening and

elongation. The former would require solving the PDE model numerically by doing pa-

rameter fitting in MATLAB; this would have required the use of complex numerical fitting

techniques that would have produced results that are similar to those produced by using

the latter method.

Given that we have opted to choose the discrete time model, we have used the measured
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Figure 3.5: The multistate model, "MS2", describing the interactions between the differ-

ent types of cells in terms of volume fraction in a Blebbi-treated CND. The efferocytosis

pathway is colored in blue."N" stands for "Normal" and "P" stands for "Phagocytes". The

MS2 model accounts for both apical and basal extrusion whereas only basal extrusion is

present in the MS1 model.

length of the Blebbi-treated CND at 6 time points: 0 h, 3 h, 6 h, 12 h, 24 h and 48 h (see

Section 3.1). Using the Control (untreated) model, we quantified the elongation caused

by Blebbistatin between each time point (see Figure 3.7). This is done by comparing the

predicted length of the CND using the Control model (labeled in blue in Figure 3.7) and

the measured length of the Blebbistatin treated CND (labeled in green in Figure 3.7) at

each time point. The difference between those two lengths is assumed to be an elonga-

tion caused by Blebbistatin (labeled in red Figure 3.7). Each of these elongations are then

converted into an instantaneous elongation at each previous time point (in purple in Fig-

ure 3.8 ). The calculations of each of these instantaneous elongations (detailed in the next

section) are based on the percentages colored in red on Figure 3.7 and take into account

81



Figure 3.6: When taking a cross-section of the Blebbistatin treated CND at a specific spa-

tiotemporal time point, the percentage of cells undergoing apoptosis either through basal

extrusion or efferocytosis is given by the apoptotic gradient at that specific location and

time point. The remaining cells are either Normal cells or Phagocytes. Within the pool of

Normal cells, a fraction (1−fax) of them undergo apical extrusion and the rest are healthy

Normal cells. Within the pool of healthy Normal cells or Phagocytes, a fraction (1 − fn)

of them are proliferating. The fraction of Normal cells and Phagocytes with respect to the

total amount of cells in the cross-section, PN and PP , respectively, are calculated from the

experimental data, using the method described in Section 2.2.8.

the reduction in both CND and lumen radii and the increase in cell volume. This method

allows us to incorporate the effects of Blebbistatin treatment in a stepwise manner based

on experimental data.
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Figure 3.7: The length of the Blebbistatin treated CND has been measured at 6 time points:

0 h, 3 h, 6 h, 12 h, 24 h and 48 h (green). Between each time point, using the Control model,

we predicted the length of the CND (blue). By comparing the predicted length (blue) with

the experimental data (green) at each time point (except for the first one), we can quantify

the percentage of elongation caused by Blebbistatin (red). The length unit is µm.
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To model Blebbi-treated CND shortening we perform some parameter fitting by solving

the IBM analytically within each time interval (see Figure 3.8), as follows:

1. We initially apply an instantaneous elongation at t = 0 h on the experimental data

(purple arrow at t = 0 h in Figure 3.8), we then run the IBM from t = 0 h to t = 3 h,

which includes shortening only, (diagonal yellow arrow between t = 0 h and t = 3 h

in Figure 3.8). This is then followed by applying an instantaneous elongation on the

predicted length at t = 3 h (purple arrow at t = 3 h in Figure 3.8) .

2. Using the instantaneous elongated length at t = 3 h , we run the IBM from t = 3 h

to t = 6 h, which includes shortening only, (diagonal yellow arrow between t = 3 h

and t = 6 h in Figure 3.8). This is then followed by applying an instantaneous

elongation on the predicted length at t = 6 h (purple arrow at t = 6 h in Figure 3.8).

3. Using the instantaneous elongated length at t = 6 h , we run the IBM from t = 6 h

to t = 12 h (diagonal yellow arrow between t = 6 h and t = 12 h in Figure 3.8). This

is then followed by applying an instantaneous elongation on the predicted length at

t = 12 h (purple arrow at t = 12 h in Figure 3.8).

4. Using the instantaneous elongated length at t = 12 h , we run the IBM from t = 12 h

to t = 24 h (diagonal yellow arrow between t = 12 h and t = 24 h in Figure 3.8). This

is then followed by applying an instantaneous elongation on the predicted length at

t = 24 h (purple arrow at t = 24 h in Figure 3.8).

5. Using the instantaneous elongated length at t = 24 h , we run the IBM from t = 24 h

to t = 48 h (diagonal yellow arrow between t = 24 h and t = 48 h in Figure 3.8).

Incorporation of these discrete steps with the IBM produces what we call the "Blebbi

model". The details of the mathematical model are given in the next section. It is im-

portant to point out here that we are only working with six time points but the general

method (described in the next section) is designed for any number of n steps. As n gets

bigger, this method approaches a continuous PDE model discussed earlier.
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Figure 3.8: The Blebbi model consists of applying instantaneous elongations and using

the intermediate Blebbi model (IBM). The length unit is µm.

3.2.3 Algorithm of Blebbi model

In this section, we generalize the Steps 1 to 5 of Section 3.2.2 to any number of n time

points.

We know that Blebbistatin treatment acts in the following ways:

1. It reduces the CND radius from 37.35 µm to 27.2 µm.

2. It reduces the lumen radius from 13.7 µm to 12.4 µm.

3. It increases cell volume by 32 %.

4. It increases apical extrusion from 0% to 4.2% of CND cells..

According to the protocol used in Bouchard Lab, Blebbistatin treatment starts at t = 0 h

and the final effects (mentioned above) are measured at t = 48 h. Since we know that the

time it takes for a cell to be extruded out of the CND is the same as the time it takes for a

cell to reach the middle of the Late Internalization stage, we can infer that

1

KAX

=
1

KEI

+
1

2KLI

,
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where KEI and KLI values are taken from the Control model (see Table 7 in the Ap-

pendix) since, as discussed previously, these rates are assumed to be the same in Control

and Blebbi-treated CNDs.

Suppose that at n time points t1 < t2 < t3... < tn−1 < tn, the experimentally measured

length of the CND are denoted by d1, d2, ..., dn, respectively, and that t1 = 0 h and tn = 48 h

(see Figure 3.9).

For each i = 1, ..., n − 1, let’s run the Control model from t = 0 to t = ti+1 − ti and let ci

denote the predicted length at t = ti+1. Then, by defining

pi =
di+1 − ci

ci
100 ∀i = 1, ..., n− 1, (3.2)

we can conclude that the Blebbistatin treatment causes an elongation of pi% between ti

and ti+1 for all i = 1, ..., n−1. Let us now introduce the generalized Blebbi model. At each

time point ti with i = 1, ..., n−1, we apply an instantaneous elongation to the CND length

and then run the IBM from ti to ti+1. For every ti (except tn), we need to characterize the

instantaneous elongation. We will do so rigorously in a general framework and then

apply it to our data.

Instantaneous Elongation

Let’s suppose that the CND has length L, and that instantaneously the radius of the CND

and of the lumen reduces fromR1 toR2 and from r1 to r2 respectively and that the volume

of each cell increases by a%. We then calculate the length of the Blebbi-treated CND

needed to fit this new total volume in the CND, we will call this new length the elongated

length, denoted by Le. Let V1 and V2 denote the volume of the CND before and after the

instantaneous changes. It follows that

100 + a

100
V1 = V2 (3.3)
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Time t (in 
hours)

Experimental 
Data

 t1 d1

t2 d2

t3 d3

... ...

tn-1 dn-1

tn dn

d1

c1 d2

d3 c2

... ...

dn-1 cn-2

cn-1 dn

prediction with control model

effect of Blebbi

+p1 %

+p2%

...

+ pn-2 %

+pn-1%

Figure 3.9: The length of the Blebbistatin treated CND has been measured at n time points:

t1, t2, ..., tn (green). Between two time points, the Control model, is used to predict the

length of the CND (blue). By comparing the predicted length (blue) with the experimental

data (green) at each time point (except for the first one), we can quantify the percentage

of elongation caused by Blebbistatin (red). The length unit is µm.

Using the volume formula for a cylinder, we obtain

100 + a

100
Lπ(R2

1 − r21) = Leπ(R2
2 − r22), (3.4)
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and solving for Le, we obtain

Le =
L(R2

1 − r21)
(R2

2 − r22)
100 + a

100
. (3.5)

Generalized Blebbi model

Let RC and RB be the radii of the CND in Control CND and at t = 48 h in Blebbi-treated

CND respectively. Similarly, let rC and rB be the radii of the lumen in Control CND and

at t = 48 h in Blebbi-treated CND, respectively. Let γ denote the factor by which the

volume of each cell at t = 0 h is multiplied to reach its final volume at t = 48 h in Blebbi-

treated CND; experimentally, we know that γ = 1.32. Let XC and XB be the extrusion

percentages, with respect to the total number of cells, in control and at t = 48 h in Blebbi-

treated CND, respectively.

Let us define the following parameters

α =
RB

RC

, (3.6)

β =
rB
rC
, (3.7)

δ = XB −XC , (3.8)

p =
n−1∑
i=1

pi. (3.9)

Based on this, we have for each i = 1, ..., n− 1,

αi = α
pi
p , (3.10)

βi = β
pi
p , (3.11)

γi = γ
pi
p , (3.12)

δi = XC + δ

∑i
k=1 pk
p

. (3.13)
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Notice that

n−1∏
i=1

αi = α, (3.14)

n−1∏
i=1

βi = β, (3.15)

n−1∏
i=1

γi = γ, (3.16)

δn−1 = XB. (3.17)

By applying an instantaneous elongation at t1 on the CND with L = d1 , R1 = Rc , r1 = rc ,

R2 = α1Rc , r2 = β1rc , and a = (γ1 − 1)100, we obtain an elongated length Le1 given by

Le1 = d1
(R2

c − r2c )
((α1Rc)2 − (β1rc)2)

γ1. (3.18)

Then using the elongated length Le1 as our initial length at t = 0, we run the IBM until

t = t2 − t1 in Blebbi conditions with a fraction of apical extrusion fax equal to δ1%. Let

B(Le1) denote the length at t = t2 predicted by the IBM in order for the digestion time

to be the same as in the Control model. The rate of digestion of Control is given by

KDControl = 2.40. Let KD1 denote the digestion rate of the IBM run between t = 0 and

t = t1. K−1
D1

gives the digestion time associated to a Phagocyte of one volume fraction but

since the volume of each cell has been multiplied by γ1 due to the Blebbistatin treatment,

the digestion time of one entire Phagocyte is given by γ1K−1
D1

. Therefore, in order for the

digestion time to be the same in both model, we need

1

KDControl

=
γ1
KD1

, (3.19)

which is equivalent to

KD1 = γ1KDControl , (3.20)
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see Tables 7 and 8 of the Appendix.

Then, we apply an instantaneous elongation at t2 on the CND with L = B(Le1) , R1 =

α1Rc , r1 = β1rc , R2 = α1α2Rc , r2 = β1β2rc , and a = (γ2 − 1)100, which leads to

the elongated length Le2 given by

Le2 = B(Le1)
((α1Rc)

2 − (β1rc)
2)

((α1α2Rc)2 − (β1β2rc)2)
γ2. (3.21)

Then using the elongated length Le2 as our initial length at t = 0, we run the IBM until

t = t3 − t2 in Blebbi conditions with a fraction of apical extrusion fax equal to δ2%. Let

B(Le2) denote the length at t = t3 predicted by the model in order for the digestion time

to be the same as in Control. Following the same logic as earlier, in order for the digestion

time to be the same in the Control model and in the IBM ran between t = t2 and t = t3,

we need

KD2 = γ2KDControl , (3.22)

where KD2 is the digestion rate associated to the IBM run between t = t2 and t = t3.

We repeat this process until we reachB(Len−1). The heatmaps of the spatiotemporal quan-

tities KA, v and KBX of the IBMs used in each step are plotted in Figure 4.8, 4.9, 4.10, 4.11

and 4.12 of the Appendix.

If we define

R0 = Rc, (3.23)

Ri = αiRi−1, ∀i = 1, ..., n− 1 (3.24)

r0 = rc, (3.25)

ri = βiri−1, ∀i = 1, ..., n− 1, (3.26)

90



it follows that the elongated length Lei at each time point ti, for i = 1, ..., n− 1 is given by

Le1 = d1
(R2

c − r2c )
(R2

1 − r21)
γ1 (3.27)

and

Lei = B(Lei−1
)
(R2

i−1 − r2i−1)

(R2
i − r2i )

γi. ∀i = 2, ..., n− 1, (3.28)

where each length B(Lei), i = 1, ..., n − 1, is obtained by using the elongated length Lei

at t = 0 and running the IBM until t = ti − ti−1 in Blebbi conditions (while incorporating

the same apoptotic gradient and stationary distribution as in control, an extrusion rate of

δi%, with the same digestion time as in Control, see Tables 7, 8, 9, 10, 11 and 12 of the

Appendix).

For i = 2, ..., n, the generalized Blebbi model can quantify a theoretical CND length of

B(Lei) at ti, plotted in orange on Figure 3.4 and 3.10.

3.2.4 Quantifying the total density ρT of the CND during Blebbistatin

treatment

Unpublished data from Bouchard Lab (McGill University) for volume fraction (2000) and

length of the CND (300 µm) in healthy ducts indicate that ρT = 2000/300 µm−1 in a healthy

duct. The CND and lumen radii of a healthy CND are equal to R = 37.35µm−1 and

r = 27.2µm−1, respectively. This means that a volume of V = π(R2 − r2)L (volume of the

CND) corresponds to a volume fraction of 2000. Now let’s suppose that we have a duct

with the same number of cells, but with the volume of each cell multiplied by a factor of

Γ, a CND and a lumen radii equal to R̃ and r̃, respectively. As explained in Section 3.2.3,

in order for the volume to be kept in the CND, this new duct must have a length of

Ln =
L(R2 − r2)
(R̃2 − r̃2)

Γ;

91



and the volume of the new duct is equal to

Vn = π(R̃2 − r̃2)Ln,

so the volume fraction occupied by the new duct is given by Vn
V
× 2000. This means that

the density of the new duct is given by

ρTn =
Vn
V

2000

Ln

=
(R̃2 − r̃2)Ln
(R2 − r2)L

2000

Ln

=
(R̃2 − r̃2)2000

(R2 − r2)L
µm−1.

Using the above method and the notation from Section 3.2.3 (in which ρTi , R0, Ri, r0 and

ri are defined), we can conclude that the total density used in the IBM between ti−1 and ti

(for i = 1, ..., n− 1) is equal to

ρTi =
(R2

i − r2i )2000

(R2
0 − r20)300

µm−1.

3.2.5 PDE model for Blebbistatin treated CND

If we were to formulate a PDE model to account the Blebbistatin effects, the equations

2.8, 2.10 and 2.11 would not be valid anymore. Since the radius of the CND is decreasing

and the cell volume is increasing, the direction of the cellular drifting is not necessarily

always heading toward the bladder as suggested by Figure 2.12. Let’s investigate the best

way to formulate a PDE model that takes into account shortening due to efferocytosis and

extrusion, as well as elongation due to Blebbistatin (which also includes decrease in both

CND and lumen radii and the increase in cell volume by 32%).

Differential equation for Elongation only

Let V (t) denote the volume fraction of the CND at time t and V0 denote the volume frac-

tion of the CND at t = 0 when Blebbistatin treatment starts. Unpublished data from
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Bouchard Lab (McGill University) suggest that Blebbistatin increases cell volume by 32%.

By approximating the effect of the treatment as an exponential growth, (an assumption

consistent with other modeling studies of tissue growth, e,g, cancer, [60]), we obtain

V (t) = V0(1.32− 0.32e−
t
τ ), (3.29)

where τ is a time constant, that can be described by the following initial value problem,

∂V (t)

∂t
= V0

0.32

τ
e−

t
τ (3.30)

V (0) = V0. (3.31)

Differential equation for Shortening only

Using the same notation as above, and recalling the rate of CND volume fraction loss at

time t, denoted by RV (t) (introduced in Section 2.2.7), we have

RV (t) =

∫ 0

−L(t)
faxfn((1− fe)KA +KBX)ρN − (1− fn)(faxρN + ρP )KS +

fe
1 + fe

KDρP

+ (1− fax)KAXρN dx.

The initial value problem for volume fraction of the CND is thus given by

∂V (t)

∂t
= −RV (t) (3.32)

V (0) = V0. (3.33)

Merging shortening and elongation

Since the volume of the CND is not only subject to gain but also to loss, V0 needs to be

replaced by V in equation 3.30 , producing the following initial value problem

∂V (t)

∂t
= V (t)

0.32

τ
e−

t
τ −RV (t) (3.34)

V (0) = V0. (3.35)
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The difference between this model and the previous one is that ρT is not constant and the

expression for L(t) is not an exponential decay anymore but a more complicated function.

Their exact expression are described below.

Let R(t) and r(t) denote the radii of the CND and the lumen, respectively. Let RC =

37.35µm and rC = 13.7µm be the radii of the Control CND and the Control lumen, respec-

tively. Let RB = 27.2µm and rB = 12.4µm be the radii of the CND and the lumen after 48

hours of Blebbi treatment. R(t) and r(t) are given by

R(t) = RC − (RC −RB)(1− e−t/τ ) (3.36)

and

r(t) = rC − (rC − rB)(1− e−t/τ ). (3.37)

A WT1 CND occupies a volume fraction of VWT1 = 2000 at t = 0 and its real volume at

t = 0 is given by

WWT1 = 300π(R2
C − r2C). (3.38)

Let W (t) denote the volume of the CND at time t. It is clear that

W (t) = L(t)π(R(t)2 − r(t)2)

and that
W (t)

V (t)
=
WWT1

VWT1

.

Using the above formulas, the length of the CND L(t), is given by

L(t) =
WWT1

VWT1

V (t)

π(R(t)2 − r(t)2)
. (3.39)
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According to Section 3.2.4,

ρT =
(R(t)2 − r(t)2)2000

(R2
C − r2C)L(t)

µm−1. (3.40)

Substituting equations 3.39 and 3.40 into equation 3.34 leads to a PDE model that is not

solvable analytically on Mathematica and hence needs to be solved numerically by doing

some parameter fitting in MATLAB.

3.2.6 Contribution of different components to CND elimination

As explained in Section 3.2.3, we have used the IBM to compute the length of the Blebbi-

treated CND between two time points. What differentiates each step when applying the

IBM is the fraction of cells undergoing apical extrusion (1 − fax) and the total density ρT

(see Section 3.2.4). Using this information, we can use the the model and these steps to

compute the volume fraction eliminated by efferocytosis (VE), apical extrusion (VAX) and

basal extrusion (VBX) and the total volume fraction eliminated (VTot) individually or in

combination. This can be done by taking advantage of the percentage of cell clearance

done through efferocytosis, apical extrusion and basal extrusion are given by VE
VTot

100,
VAX
VTot

100 and VBX
VTot

100, respectively. Using this approach, we obtain the values listed in

Table 3.

3.2.7 Effects of selective removal of different components on CND length

As stated earlier, the IBM accounts for four crucial components: Proliferation (P), Effero-

cytosis (E) Apical Extrusion (AE) and Basal Extrusion (BE). The volume fraction added

by proliferation between t = 0 and t = T is given by

VP (r) =

∫ T

0

∫ 0

−L(t)
(1− fn)fsKS(faxρN + ρP ) dxdt. (3.41)

Now, we will explain how to predict the length of the CND when the contribution of

apical extrusion is removed (blue curve of Figure 3.10). We will use the same notation as

Section 3.2.3. The first point of the blue curve is (0, d1).
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By applying an instantaneous elongation at t1 on the CND with L = d1 , R1 = Rc , r1 = rc ,

R2 = α1Rc , r2 = β1rc , and a = (γ1 − 1)100, we obtain the elongated length Le1 given by

Le1 = d1
(R2

c − r2c )
((α1Rc)2 − (β1rc)2)

γ1. (3.42)

Then using the elongated length Le1 as our initial length at t = 0, we can run the IBM

until t = t2 − t1 in Blebbi conditions with a fraction of apical extrusion fax equal to δ1%.

Let B(Le1) denote the length at t = t2 predicted by the IBM when the digestion time is

the same as in Control. Using the same method as Section 2.3.4, we can compute the

volume fraction eliminated by efferocytosis (V 1
E), apical extrusion (V 1

AX), basal extrusion

(V 1
BX) and the volume added by proliferation (V 1

P ). Now, similar to the logic explained in

Section 2.3.4, let us define

L1
P+E+BX(t) = B(Le1)−

V 1
P (t)− V 1

E(t)− V 1
BE(t)

ρT
. (3.43)

The quantity L1
P+E+BX(t2 − t1) gives the length of the CND at t = t2 when removing the

contribution of apical extrusion. We add the point (t2, L
1
P+E+BX(t2 − t1)) to the blue plot.

Then, we apply an instantaneous elongation at t2 on the CND with L = L1
P+E+BX(t2−t1) ,

R1 = α1Rc , r1 = β1rc , R2 = α1α2Rc , r2 = β1β2rc , and a = (γ2 − 1)100, which leads to the

elongated length Le2 given by

Le2 = L1
P+E+BX(t2 − t1)

((α1Rc)
2 − (β1rc)

2)

((α1α2Rc)2 − (β1β2rc)2)
γ2. (3.44)

Then using the elongated length Le2 as our initial length at t = 0, we run the IBM until

t = t3 − t2 in Blebbi conditions with a fraction of apical extrusion fax equal to δ2%. As

before, we let B(Le2) denote the length at t = t3 − t2 predicted by the IBM when the

digestion time is the same as in Control. Using the same method as in Section 2.3.4,

we compute the volume fraction eliminated by efferocytosis (V 2
E), apical extrusion (V 2

AX),
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basal extrusion (V 2
BX) and the volume added by proliferation (V 2

P ). Now let us define

L2
P+E+BX(t) = B(L2

e2
)− V 2

P (t)− V 2
E(t)− V 2

BX(t)

ρT
(3.45)

which gives the length of the CND at t = t3 when removing the contribution of apical ex-

trusion. We add the point (t3, L
2
P+E+BX(t3− t2)) to the blue plot. We continue this process

for every time point along the blue curve.

The purple and grey curves of Figure 3.10 are obtained by following the same procedure,

but by using LP+AX+BX and LP+BX , respectively. The green plot is the experimental data

given in Figure 3.7. The orange plot of Figure 3.4 and 3.10 corresponds to the Blebbi

model described in Section 3.2.3 (i.e. with all the component included).

3.3 Results

The Control model (Section 3.2.1) and the Blebbi model (Sections 3.2.2 and 3.2.3) quantify

CND lengths that are very close to the experimental data (see Figure 3.4). This indicates

that they capture well the key parameters of CND elimination ex vivo with and with-

out Blebbistatin treatment. One can argue that this is a circular argument because we

designed the Blebbi model using experimental data that already incorporates elongation

effects (see Section 3.2.2 and 3.2.3). Still, this is useful to us for two reasons: it shows that

the core of the model describing the dynamics of the duct shortening adapts well to ex

vivo conditions, and now that we have a Blebbi model that is physiologically close to the

experimental observation, we can use it to produce insightful conclusions that are hard

to deduce experimentally; that includes dissecting the contribution of each component:

proliferation, efferocytosis, apical extrusion etc (like we did for WT1).

We have already seen in Section 2.3 that Basal Extrusion contributes little to the CND

shortening. Now, let us use the Blebbi model to quantify the role of Efferocytosis (E),

Apical Extrusion (AX) and Basal Extrusion (BX) in the shrinkage of Blebbi-treated CND.
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Using the method developed in Section 3.2.6, we generate Table 3 demonstrating that Ef-

ferocytosis is always the main driver of cell clearance throughout time. To validate this

further, we have plotted the evolution of the length of the CND in different conditions in

Figure 3.10 using the method developed in Section 3.2.7. As expected, the overall effects

of Blebbistatin (B), basal extrusion (BE) and cell proliferation (Prol) cause a CND elon-

gation (purple plot). However, when apical extrusion (grey curve) or efferocytosis (blue

curve) are added, the elongation is no longer apparent at all time points. We can see that

efferocytosis is more efficient than apical extrusion at reducing the elongation of the CND

(blue plot is under the grey plot). This once again shows that efferocytosis is a crucial

driver of the CND clearance over time.

As mentioned in the Introduction, the reason why the Blebbistatin experiment was con-

ducted is because actomyosin is most of the time crucial to morphogenesis. First of all,

let us determine if there is shrinkage happening in Blebbi-treated CND. By looking at the

experimental data (green plot of Figure 3.4), the length of the CND has increased between

t=0 h and t=48 h. This is because Blebbistatin causes an elongation of the CND. To isolate

the effect of this elongation, we have removed the contribution of Apical Extrusion and

Efferocytosis and plotted the evolution of the CND length in Figure 3.10 (purple plot).

This plot predicts a much longer CND length than when all the components are activated

(orange plot of Figure 3.10). This shows that even though the overall evolution of the

CND is an elongation, there is still active cell elimination done through efferocytosis and

apical extrusion; this is demonstrated in the ∼600 µm difference in CND length between

the purple and orange curves at t = 24 h in Figure 3.10. As explained earlier, apical ex-

trusion appears in Blebbi-treated CNDs and is almost non existent in non treated CNDs

(Figure 3.1). Efferocytosis, on the other hand, is present in both conditions. To isolate

the contribution of the CND shrinkage, independent of actomyosin and Blebbistatin, we

investigate the contribution of efferocytosis alone by looking at the grey curve of Figure

3.10. From this curve, we can see that efferocytosis is responsible for a CND shrinkage of

around 350 µm (the difference between the grey and orange plots at t = 48 h). Therefore,

our model suggests that shrinkage is still efficient throughout time in the absence of ac-
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tomyosin primarily through non-professional efferocytosis and secondly through apical

extrusion and that the efficiency of efferocytosis is independent of actomyosin.

Table 3: The percentages of cell clearance of each component.

Time period Efferocytosis Apical Extrusion Basal Extrusion

from t = 0 h to t = 3 h 89.5 4.3 6.2

from t = 3 h to t = 6 h 86.2 7.9 5.9

from t = 6 h to t = 12 h 71.1 24.0 4.9

from t = 12 h to t = 24 h 64.2 31.4 4.4

from t = 24 h to t = 48 h 53.2 43.2 3.6
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Figure 3.10: The time evolution of the length of the CND in different conditions as deter-

mined by Blebbi model. These conditions include: the contribution of Blebbi effect, basal

extrusion and cell proliferation (purple curve), the contributions of Blebbi effects, basal

extrusion, cell proliferation and apical extrusion (gray curve), the contributions of Blebbi

effects, basal extrusion, cell proliferation and efferocytosis (blue curve) and the contribu-

tions of all components, including Blebbi effects, basal extrusion, cell proliferation, apical

extrusion and efferocytosis (orange curve). Experimental data of Blebbi-treated CND is

in green.
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Chapter 4

Conclusion and discussions

4.1 In vivo models

The initial purpose of this study was to estimate the dwell time spent in each stage of the

non-professional efferocytosis happening in the CND. This task proved to be non-trivial,

as we quickly realised that we needed to employ spatiotemporal modeling techniques to

describe the dynamics of the CND; that involved integrating the non-professional effero-

cytosis, shortening of the CND and the apoptotic gradient into one spatiotemporal model.

In order to study all of these processes simultaneously, we combined two submodels: a

multistate model that describes the cellular interactions happening in the CND (includ-

ing efferocytosis and extrusion) and another that describes the shortening of the CND

as a flux of cells drifing toward the bladder. The two submodels are coupled together

through a set of advection equations describing cellular drifting that incorporate source

and sink terms representing cellular interactions (e.g., efferocytosis described as sink and

proliferation described as source). This way, we managed to model the spatiotemporal

dynamics of the CND at both the cellular and tissue levels.

Using an in vivo wild type CND data set provided by the Bouchard Lab (McGill Univer-

sity), referred to as WT1, we constrained the set of parameters of the model and derived

boundary conditions to the dynamics of the system, allowing us to solve the model an-

alytically using Mathematica. We generated analytical expressions for all the spatiotem-
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poral variables (including the rate of efferocytosis KA and the cellular drifting velocity

v) and provided the dwell time in each stage of the non-professional efferocytosis. Our

results fell in the range of physiologically realistic estimates. How these estimates get

altered in pathological conditions, such as during vesicoureteral reflux and junction ob-

struction, remains to be seen. Our model also enabled us to quantify the contribution of

each component (proliferation, basal extrusion and non-professional efferocytosis) to the

CND shrinkage over time (as opposed to two discrete times as was done experimentally).

This showed that CND shrinkage is mainly driven by efferocytosis and that basal extru-

sion plays a minor role in this process. These tasks performed by our model could not be

done experimentally and provided information that our collaborators from the Bouchard

Lab were interested in.

4.2 Ex vivo models

Actomyosin plays crucial role in several developmental processes. To study its impact

on the elimination of the CND, ex vivo experiments in the Bouchard Lab (McGill Univer-

sity) were conducted. These included CNDs that were treated with Blebbistatin (an ac-

tomyosin inhibitor) as well as those that were not. Inhibition of actomyosin affected cell

volume (increasing it by 32%), duct architecture (decreasing the CND and lumen radii)

and enhanced apical extrusion, which cause an elongation of the CND. We adapted our in

vivo framework to ex vivo conditions to model simultaneously the elongation of the CND

due to Blebbistatin treatment and the shortening of the CND due to non-professional ef-

ferocytosis and cellular extrusion. Using this new model, we generated results showing

that even when actomyosin is inhibited, shrinkage is still happening in the CND primar-

ily through non-professional efferocytosis but also through apical extrusion. Even though

the overall shrinkage of the CND is not as efficient as in the ex vivo Control CND, this

suggests that the motor force of the CND shrinkage (non-professional efferocytosis) can

work in the absence of actomyosin and that actomyosin is crucial to achieve the amount
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of shrinkage necessary during normal development.

This study thus provided spatiotemporal insights into the dynamics of the CND elimi-

nation and answered fundamental questions that cannot be tackled experimentally ; that

include

1. quantifying

(a) the digestion time of non-professional efferocytosis,

(b) the timeline of the different stages of non-professional efferocytosis, and

(c) the contribution of each component of the system to the CND shrinkage over

time;

2. determining the efficiency of the CND shrinkage in the absence of actomyosin;

3. identifying efferocytosis as a key component responsible for this shrinkage over

time.

More generally, our study suggests a mechanism for how cellular rearrangement could

occur during embryonic development. The predictions made by our model are hard or

even impossible to verify experimentally. Determining the timeline of non-professional

efferocytosis in vivo is not doable because the CND can only be observed at given time

points. As explained in Section 2.3.3, inhibiting certain cellular pathways to isolate the

effect of some specific components is also hard because it would require cell culture ex-

periments using different cell types with conditions for cells to grow outside the embryos

that are very different from those used in vivo and control conditions highlighted in this

study. This, as a result, would make the model not applicable to such culture conditions.

Furthermore, it is important to emphasize here that the multiscale model used here was

meant to deepen our understanding of this system in a manner similar to many other

mathematical modeling studies done in this field.
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4.3 Limitations and Future directions

A primary limitation in our study is the experimental data that defined the model frame-

work. Indeed, this framework was purely based on experimental data coming from only

two time points (E11.5 and E12.5). The length was averaged over 25 CNDs for both time

points but the stationary distribution and apoptotic gradient were averaged over just

three and five different embryos at E11.5 an E12.5, respectively. This limited data might

moderately affect the accuracy of the quantitative predictions made by the model (e.g.

digestion time and the dwell times in each stage of the efferocytosis) but should not affect

too much our qualitative predictions (e.g. dissecting the main components of the CND

shrinkage). We assumed instantaneous engulfment for both in-vivo and ex-vivo models.

However, it is possible for Blebbistatin to slow down the engulfment process; since we

had no significant experimental data to support this, we could not incorporate such ef-

fects in the model. This thus may impact the quantitative accuracy of our results but since

the engulfment process is orders of magnitude faster than the other processes, it should

not discredit our qualitative predictions (efficiency of the shrinkage in the absence of ac-

tomyosin through efferocytosis).

As mentioned before, one of the specificity of this mathematical model is that it was

solved completely analytically. The advantage of producing analytical expressions is

that they can be used to conduct analysis on the system that are otherwise not possi-

ble to perform. A shortcoming of this approach, however, is that the complexity of the

involved differential equations is relatively limited because otherwise it would not be

solvable analytically. We encountered this issue when we derived the PDE model for the

Blebbi-treated CND (taking into account elongation and shortening of the CND); with

such model formulation it was not possible to solve the model analytically on Mathe-

matica. To implement the PDE model of Blebbi-treated CND, one needs to parameterize
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the model using fitting techniques such Markov Chain Monte Carlo methods. It would

also be interesting to see if the results obtained analytically match with the ones obtained

numerically. Discrepancies between the two models would then raise some interesting

questions about our modeling of the CND elimination. Solving the model numerically

could also allow us to investigate how the fluidity of the epithelial layer accounts for the

shortening of the CND. The advection equation in our model considers the CND as a flux

of cells without any phase transition. However, cell jamming within the CND can occur

and generate a phase transition between liquid to solid states [46] which implies that the

viscoelastic properties of the CND should be considered. Another limitation of our model

is that we approximated the CND as a 1-D structure whereas the CND is a 3-D tissue en-

closed between an outer cylinder and an inner cylinder (as explained in the Introduction).

This geometrical aspect of the system could be further incorporated into the model in a

more precise manner. Finally, our model does not take into account Phagocytes avail-

ability when modeling non-professional efferocytosis. In the caudal regions of the CND,

where there are a lot of apoptosis, it is likely that an apoptotic body is surrounded by

Phagocytes and needs to move in the CND before finding an available Normal cell to en-

gulf it. The time required to find this available Normal cell could be an important factor

in the model. Now that we already quantified the cellular interactions dynamics of the

CND, one could incorporate these results into a simpler submodel for cellular interactions

and couple it to a more elaborate 3-D model similar to those vertex models of epithelial

morphogenesis previously developed in [36]. Such a comprehensive model represents

the next step in our modeling effort of the CND to explore its spatiotemporal dynamics

in a more biophysically accurate way.

105



Bibliography

[1] Scott, G., 2003, The Epidermis and the Origin of Cutaneous Structures, Developmental

Biology. Sinauer Associates.

[2] Sadler, T. W., 2010, Langman’s Medical Embryology, 11th edition., Lippincott Williams

Wilkins

[3] Scott, G., 2010, Developmental biology, 9th edition., USA: Sinauer Associates.

[4] Dudek, R. W., 2009, High-yield. Embryology, 4th edition, Lippincott Williams Wilkins

[5] Kumar, R. , 2008, Textbook of human embryology, I.K. International.

[6] Mackie GG, Stephens FD, 1975, Duplex kidneys: a correlation of renal dysplasia with posi-

tion of the ureteral orifice., J Urol, 114:274–280.

[7] C. Mendelsohn., 2009, Using mouse models to understand normal and abnormal urogenital

tract development, Organogenesis, 5(1):306-14.

[8] K. Stewart M. Bouchard, 2011, Kidney and urinary tract development: an apoptotic bal-

ancing act., Pediatr Nephrol, 26:1419–1425.

[9] Stewart, K., and Bouchard, M. , 2014b Coordinated cell behaviours in early urogenital

system morphogenesis, Seminars in cell developmental biology 36, 13-20.

[10] Batourina, E., Tsai, S., Lambert, S., Sprenkle, P., Viana, R., Dutta, S. et al. , 2005 Apopto-

sis induced by vitamin A signaling is crucial for connecting the ureters to the bladder, Nature

Genetics 37, 1082.

106



[11] Batourina, E., Choi, C., Paragas, N., Bello, N., Hensle, T., Costantini, F.D.,

Schuchardt, A., Bacallao, R.L., and Mendelsohn, C.L., 2002 Distal ureter morphogen-

esis depends on epithelial cell remodeling mediated by vitamin A and Ret, Nature genetics

32, 109-115.

[12] Kim, S.T., Ahn, S.Y., Swat, W., and Miner, J.H., 2014 DLG1 influences distal ureter

maturation via a non-epithelial cell autonomous mechanism involving reduced retinoic acid

signaling, Ret expression, and apoptosis, Developmental biology 390, 160-169.

[13] Peuckert, C., Aresh, B., Holenya, P., Adams, D., Sreedharan, S., Porthin, A., Anders-

son, L., Pettersson, H., Wolfl, S., Klein, R., et al., 2016 Multimodal Eph/Ephrin signaling

controls several phases of urogenital development, Kidney international 90, 373-388.

[14] Roux, M., Bouchard, M., and Kmita, M., 2019 Multifaceted Hoxa13 function in urogen-

ital development underlies the Hand-Foot-Genital Syndrome , Human molecular genetics

28, 1671-1681.

[15] Uetani, N., and Bouchard, M., 2009 Plumbing in the embryo: developmental defects of the

urinary tracts, Clin Genet 75, 307-317.

[16] Stewart, K., Tang, Y. C., Shafer, M. E. R., Graham-Paquin, A.-L., and Bouchard, M.

, 2017 Modulation of apoptotic response by LAR family phosphatases–cIAP1 signaling dur-

ing urinary tract morphogenesis,Proceedings of the National Academy of Sciences 114,

E9016-E9025.

[17] Yosypiv, I.V., 2012 Congenital anomalies of the kidney and urinary tract: A genetic disor-

der?,In International Journal of Nephrology.

[18] Penberthy, Kristen K., Ignacio J. Juncadella, and Kodi S. Ravichandran , 2014 Apop-

tosis and Engulfment by Bronchial Epithelial Cells. Implications for Allergic Airway Inflam-

mation,Annals of the American Thoracic Society 11.Supplement 5: S259-S262.

[19] Stanford, Jamie C., et al , 2014 Efferocytosis produces a prometastatic landscape during

postpartum mammary gland involution,The Journal of clinical investigation 124.11: 4737.

107



[20] Jacobson, M. D., Weil, M., Raff, M. C., 1997, Programmed cell death in animal develop-

ment, Cell, 88(3), 347-354.

[21] Shklover, J., Levy-Adam, F., and Kurant, E., 2015 Apoptotic Cell Clearance in Devel-

opment, Current Topics in Developmental Biology (Steller, H., Ed.), pp 297-334, Aca-

demic Press., 924-935.

[22] Arandjelovic, S., and Ravichandran, K. S. , 2015 Phagocytosis of apoptotic cells in home-

ostasis, Current Topics in Developmental Biology (Steller, H., Ed.), Nature immunol-

ogy 16, 907-917.

[23] He, L., Wang, X., Tang, H.L., and Montell, D.J., 2010 Tissue elongation requires oscillat-

ing contractions of a basal actomyosin network, Nature cell biology 12, 1133-1142.

[24] Heisenberg, C.P., and Bellaiche, Y., 2013 Forces in tissue morphogenesis and patterning,

Cell 153, 948-962.

[25] Keller, R., Shook, D., and Skoglund, P., 2008 The forces that shape embryos: physical

aspects of convergent extension by cell intercalation, Phys Biol 5, 015007.

[26] Murrell, M., Oakes, P.W., Lenz, M., and Gardel, M.L., 2015 Forcing cells into shape: the

mechanics of actomyosin contractility, Nature reviews Molecular cell biology 16, 486-498.

[27] Petridou, N.I., and Heisenberg, C.P., 2019 Tissue rheology in embryonic organization,

The EMBO journal 38, e102497.

[28] Sadati, M., Taheri Qazvini, N., Krishnan, R., Park, C.Y., and Fredberg, J.J., 2013 Col-

lective migration and cell jamming. Differentiation, Research in biological diversity 86,

121-125.

[29] Yang, X., Bi, D., Czajkowski, M., Merkel, M., Manning, M.L., and Marchetti, M.C.,

2017 Correlating cell shape and cellular stress in motile confluent tissues, Proceedings of

the National Academy of Sciences of the United States of America 114, 12663-12668.

[30] Sun, Z., and Toyama, Y. , 2018 Three-dimensional forces beyond actomyosin contraction:

lessons from fly epithelial deformation, Curr Opin Genet Dev 51, 96-102

108



[31] Uetani, N., Bertozzi, K., Chagnon, M. J., Hendriks, W., Tremblay, M. L., Bouchard,

M., 2009 Maturation of ureter-bladder connection in mice is controlled by LAR family re-

ceptor protein tyrosine phosphatases, The Journal of clinical investigation, 119(119 (4)),

924-935.

[32] Tran CL, Jones AD, Donaldson K, 1995 Mathematical model of phagocytosis and inflam-

mation after the inhalation of quartz at different concentrations, Scand J Work Environ

Health 1995;21(2):50-54

[33] Athanasius F.M. Marée, M. Komba, C. Dyckb, M Łabecki, D. T. Finegood, L.

Edelstein-Keshet, 2004 Quantifying macrophage defects in type 1 diabetes, Journal of The-

oretical Biology 233 (2005) 533–551

[34] Athanasius F.M. Marée, R. Kublik, D. T. Finegood, L. Edelstein-Keshet, 2006 Mod-

elling the onset of Type 1 diabetes: can impaired macrophage phagocytosis make the difference

between health and disease?, Phil. Trans. R. Soc. A (2006) 364, 1267–1282

[35] Athanasius F.M. Marée, M. Komba, D. T. Finegood, L. Edelstein-Keshet, 2007 A quan-

titative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages

from normal (BALB/c) and diabetes-prone (NOD) mice, J Appl Physiol 104: 157–169, 2008.

[36] A. G. Fletcher, M. Osterfield, R. E. Baker, and S. Y. Shvartsman, 2014 Vertex models of

epithelial morphogenesis, Biophysical journal 106 (11), 2291-2304

[37] Trudeau, J.D., Dutz, J.P., Arany, E., Hill, D.J., Fieldus, W.E., Finegood, D.T., 2000.

Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes?, Diabetes 49, 1–7

[38] Mathis, D., Vence, L., Benoist, C., 2001. β-Cell death during progression to diabetes.,

Nature 414 (6865), 792–798.

[39] Georgiou, H.M., Constantinou, D., Mandel, T.E., 1995. Prevention of autoimmunity

in non-obese diabetic (NOD) mice by neonatal transfer of allogeneic thymic macrophages,

Autoimmunity 21, 89–97.

109



[40] Shimada, A., Takei, I., Maruyama, T., Kasuga, A., Kasatani, T., Watanabe, K., Asaba,

Y., Ishii, T., Tadakuma, T., Habu, S., et al., 1994. Acceleration of diabetes in young NOD

mice with peritoneal macrophages Diabetes Res. Clin. Practice 24, 69–76.

[41] Alleva, D.G., Pavlovich, R.P., Grant, C., Kaser, S.B., Beller, D.I., 2000. Aberrant

macrophage cytokine production is a conserved feature among autoimmune-prone mouse

strains: elevated inter- leukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and

IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice.

Diabetes 49, 1106–1115.

[42] Jun, H.-S., Yoon, C.-S., Zbytnuik, L., Van Rooijen, N., Yoon, J.-W., 1999. The role of

macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Exp. Med.

189, 347–358.

[43] O’Brien, B.A., Huang, Y., Geng, X., Dutz, J.P., Finegood, D.T., 2002. Phagocytosis of

apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51, 2481–2488

[44] Gammack, D., Doering, C.R., Kirschner, D.E., 2004. Macrophage response to Mycobac-

terium tuberculosis infection. J. Math. Biol. 48, 218–242.

[45] Tran, C.L., Jones, A.D., Donaldson, K., 1995. Mathematical model of phagocytosis and

inflammation after the inhalation of quartz at different concentrations. Scand. J. Work Envi-

ron. Health 21, 50–54.

[46] Dapeng Bi et al, 2015. A density-independent rigidity transition in biological tissues. Na-

ture Physics. 11, pages1074–1079 (2015).

[47] M.Sandahl, D. M. Hunter, K. E. Strunk, H S. Earp, R. S Cook 2010. Epithelial cell-

directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis

and future lactation BMC Dev Biol. 2010; 10: 122

[48] Diabetes Systems Biology, Quantitative methods for understanding beta-cell dynamics and

function. A. Khadra, H. Jamaleddine and al., Institute of Physics Publishing, 2020

110



[49] Jamaleddine, H., and Khadra, 2020 A Immune-cell dynamics in type 1 diabetes. Diabetes

Systems Biology.

[50] A. Khadra, P. Santamaria and L. Edelstein-Keshet. The Role of Low Avidity T Cells in

the Protection Against Type 1 Diabetes: A Modeling Investigation. Journal of Theoretical

Biology, 256, 126-141, 2009.

[51] A. Khadra, P. Santamaria and L. Edelstein-Keshet. The Pathogenicity of Self-Antigen

Decreases at High Levels of Autoantigenicity: A Computational Approach. International

Immunology, 22, 571-582, 2010.

[52] A. Khadra, S. Tsai, P. Santamaria and L. Edelstein-Keshet. On How Monospecific

Memory-Like Autoregulatory CD8+ T Cells Can Blunt Diabetogenic Autoimmunity: A Com-

putational Approach. Journal of Immunology, 185, 5962-5972, 2010.

[53] A. Khadra, M. Pietropaolo, G.T. Nepom and A. Sherman. Investigating the Role of

T-Cell Avidity and Killing Efficacy in Relation to Type 1 Diabetes Prediction. PLoS ONE, 6,

e14796, 2011.

[54] M. Jaberi-Douraki, M. Pietropaolo and A. Khadra. Predictive Models of Type 1 Diabetes

Progression: Understanding T-Cell Cycles and their Implications on Autoantibody Release.

PLoS ONE, 9, e93326, 2014.

[55] M. Jaberi-Douraki, S.W. Liu, M. Pietropaolo and A. Khadra. Autoimmune Responses in

T1DM: Quantitative Methods to Understand Onset, Progression and Prevention of Disease.

Pediatric Diabetes, 15, 162-174, 2014.

[56] M. Jaberi-Douraki, S. Schnell, M. Pietropaolo and A. Khadra. Unraveling the Contri-

bution of Pancreatic Beta-Cell Suicide in Autoimmune Type 1 Diabetes. Journal of Theoret-

ical Biology, 375, 77-87, 2015.

[57] A. Khadra and S. Schnell. Development, Growth and Maintenance of Beta-Cell Mass:

Models are also Part of the Story. Molecular Aspects of Medicine, Special Issue: Recent

Advances in Pancreatic Beta Cell Failure and Diabetes, 42, 42-60, 2015.

111



[58] M. Jaberi-Douraki, M. Pietropaolo and A. Khadra. Continuum Model of T-Cell Avidity:

Understanding Autoreactive and Regulatory T-Cell Responses in Type 1 Diabetes. Journal

of Theoretical Biology, 383, 93-105, 2015.

[59] Weliky, M., and G. Oster, 1990. The mechanical basis of cell rearrangement. I. Epithelial

morphogenesis during Fundulus epiboly. Development. 109:373–386.

[60] Edelstein-Keshet, Leah, 2005. Edelstein-Keshet, Leah. Mathematical models in biology.

Society for Industrial and Applied Mathematics. 109:373–386.

[61] Weliky, M., S. Minsuk, G. Oster and al, 1991. Notochord morphogenesis in Xenopus

laevis: simulation of cell behavior underlying tissue conver- gence and extension. Develop-

ment. 113:1231–1244.

[62] T. J. van Ham, D. Kokel, R. T. Peterson. Apoptotic Cells Are Cleared by Directional

Migration and elmo1- Dependent Macrophage Engulfment. Current Biology, Volume 22,

Issue 9, 8 May 2012, Pages 830-836.

[63] D. A. D. Munro, and al., 2019 Macrophages restrict the nephrogenic field and promote

endothelial connections during kidney development Cell, volume 107, issue 1, eLife 8

[64] T. L. Gumienny, E. Brugnera, K.S Ravichandran and al. CED-12/ELMO, a Novel Mem-

ber of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration. Cell,

volume 107, issue 1, P27-41, October 05, 2001.

112



Appendix: heatmaps of spatiotemporal

variables and tables of parameters

For each of WT1, and Control CND ex vivo, we plot the heatmaps of KA, v and KBX with

respect to time on (the vertical axis) and position along the CND (on the horizontal axis)

and provide the values of the rate constants KD KEI , KLI , KG and KS (and KAX for the

IBMs). The values of fn and fe are given by 0.886 and 0.20, respectively. The value of fax

varies between the different time steps when applying the IBM; it is equal to 0.998, 0.996,

0.985, 0.977 and 0.958 for the steps between t = 0 h and t = 3 h (labeled IBM1), between

t = 3 h and t = 6 h (labeled IBM2), between t = 6 h and t = 12 h (labeled IBM3), between

t = 12 h and t = 24 h (labeled IBM4) and between t = 24 h and t = 48 h (labeled IBM5),

respectively.

Computations of the "Duration of each process per cell" in Tables 6 and 7

Given KD, KEI , KLI , KG, and KS , one can compute the duration of each process associ-

ated with these rate constants (i.e., the dwell time spent in each stage of the Markov mod-

els of Figures 2.3 and 2.4). Because the transitions of the Markov model are irreversible,

these durations are given by 1/KD, 1/KEI , 1/KLI , 1/KG and 1/KS , respectively.

Computations of the "Duration of each process per cell" in Tables 8, 9, 10, 11 and 12.

For each IBMi (i = 1, 2, 3, 4, 5), the rate constantsKD, KEI , KLI , KG, andKS , as before, de-

fine the duration of each process associated with them as follows: γi/KD, γi/KEI , γi/KLI ,

γi/KG and 1/KS days, respectively. For each IBMi, the value of γi is given in Section 3.2.3.
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Clarification on the heatmaps of IBM1, IBM2 IBM3, IBM4 and IBM5.

For each IBMi (i = 1, 2, 3, 4, 5), the length of the CND shrinks from the elongated length

of Lei at t = 0 to the length B(Lei) at t = ti − ti−1 (see notation in Section 3.2.3).

Varying proliferation

Let WT1-P5.3 and WT1-P17.5 denote the WT1 model with 5.3% (fn = 0.947) and 17.5%

(fn = 0.825) proliferation.

Table 4: Values of KD in WT1, WT1-P5.3 and WT1-P17.5 models.

Model WT1-P5.3 WT1 WT1-P17.5

KD (days−1) 2.50 2.70 2.91

Varying apoptotic gradient

Let WT1-Upregulated and WT1-Downregulated denote the WT1 model with the apop-

totic gradient shown in Figure 2.9 shifted up and down by 3.5%, respectively.

Table 5: Values of KD in WT1, WT1-Upregulated and WT1-Downregulated models.

Model WT1-Upregulated WT1 WT1-Downregulated

KD (days−1) 2.43 2.70 3.04
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Table 6: List of rate constants and their estimated values for WT1.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.70 day−1 8.89 hours

KEI Early internalization rate 32.5 day−1 44.3 minutes

KLI Late internalization rate 5.12 day−1 4.69 hours

KG Degradation rate 6.94 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

Table 7: List of rate constants and their estimated values for Control.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.70 day−1 8.89 hours

KEI Early internalization rate 32.5 day−1 44.3 minutes

KLI Late internalization rate 5.12 day−1 4.69 hours

KG Degradation rate 6.94 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

Table 8: List of rate constants and their estimated values for IBM1.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.74 day−1 8.89 hours

KEI Early internalization rate 32.9 day−1 44.3 minutes

KLI Late internalization rate 5.19 day−1 4.69 hours

KG Degradation rate 7.03 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

KAX Apical extrusion rate 7.79 day−1 3.08 hours

115



Table 9: List of rate constants and their estimated values for IBM2.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.77 day−1 8.89 hours

KEI Early internalization rate 33.3 day−1 44.3 minutes

KLI Late internalization rate 5.25 day−1 4.69 hours

KG Degradation rate 7.12 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

KAX Apical extrusion rate 7.79 day−1 3.58 hours

Table 10: List of rate constants and their estimated values for IBM3.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 2.99 day−1 8.89 hours

KEI Early internalization rate 35.9 day−1 44.3 minutes

KLI Late internalization rate 5.66 day−1 4.69 hours

KG Degradation rate 7.67 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

KAX Apical extrusion rate 7.79 day−1 3.58 hours

Table 11: List of rate constants and their estimated values for IBM4.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 3.15 day−1 8.89 hours

KEI Early internalization rate 37.8 day−1 44.3 minutes

KLI Late internalization rate 5.97 day−1 4.69 hours

KG Degradation rate 8.09 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

KAX Apical extrusion rate 7.79 day−1 3.58 hours
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Table 12: List of rate constants and their estimated values for IBM5.

Symbol Description Value Unit Duration of associated

process per cell

KD Digestion rate 3.57 day−1 8.89 hours

KEI Early internalization rate 42.8 day−1 44.3 minutes

KLI Late internalization rate 6.76 day−1 4.69 hours

KG Degradation rate 9.16 day−1 3.46 hours

KS Proliferation rate 24/18 day−1 18 hours

KAX Apical extrusion rate 7.79 day−1 3.58 hours
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Figure 4.1: Heat maps of KA, v and KBX associated with WT1.
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Figure 4.2: Heat maps of KA and v associated with WT1-P5.3.

Figure 4.3: Heat maps of KA and v associated with WT1-P17.5.
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Figure 4.4: Heat maps of KA and v associated with WT1-UpGrad.

Figure 4.5: Heat maps of KA and v associated with WT1-DownGrad.
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Figure 4.6: Heat maps of KA, v and KBX associated with Control.
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Figure 4.7: The function f(gC , gR) in 3.1

122



Figure 4.8: Heat maps of KA, v and KBX associated with IBM1.
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Figure 4.9: Heat maps of KA, v and KBX associated with IBM2.
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Figure 4.10: Heat maps of KA, v and KBX associated with IBM3.
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Figure 4.11: Heat maps of KA, v and KBX associated with IBM4.
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Figure 4.12: Heat maps of KA, v and KBX associated with IBM5.
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