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Chapter One
Introduction

In 1837 a psper by Poisson [6i] was published
in France, establishing the Polisson distribution, Since
then a great deal of research has been done on this dis-
tribution and the distributions stemming from it, It
enjoys remarkable application 1n medecine, psychology,
genetics, blology, physics, economics and other areas,

This work 1s an attempt to present, in an organlized manner,
the existing knowledge of the Polsson distribution, and so,
is basicly expository in nature, and definitely not orig-

inel, Complete references are glven throughout,

The Poisson distribution and four generalized
Poisson distributions are first inbroduced and various
properties are developed, properties which are used in

the later chapters on estimation and hypothesis testing,

A detailled account of point estimates of the
rarameter N of the complete Polsson distribution occup-
ies chapter i, The theory has been developed in this area
to such an extent that the uniformly minimum variance
unbiased (U, M, V, U,) estimate of a wide class of

functions of A, g(\), has been obtained, The chapter

closes with a brief treatment of the Polsson process,

Truncated and censored Poisson distributions




are examined with respect to point estimation of parameters,
A great deal of papers have been written about the trunc-
ated Polsson distribution and only a few about the censored
Poisson distribution, A special emphaslis lles on the case

of truncation away from the zero polnt,

The generalized Poisson distributions, the Pascal,
the Neyman Type A, the Poisson v Binomial and the Polssonv
Pascal, were developed to provide better fits to dats where
simpler distributions, such as the Polsson proved unsatis-
fectory. Chapters 7, 8, 9 and 10 deal with estimation
of the parameters of these distributlons, with major em-
phasis on maximum likelihood estimation, The resulting
estimation procedures are generally long and tedious,

however, tables have been developed to save time and labour,

In chapter 11, two basic types of confidence
Intervals for the parameter x of a complete Poisson
distribution, randomized and non-randomized, are discussed,
The subject has been dealt with in detaill and references
are given to the excellent tables available, A short
treatment of the Polsson process due to Birnbaum [ y ]\[s]

concludes the chapter,

In chapter 12, goodmess of fit and homogeneity
tests involving the Poisson distribution, both complete and
truncated away from zero are discussed aﬁd compared, A short
treatment of the Poisson process 1s also given, The problem

of testing hypotheses and combining tests for discrete




distributions in general is examined in sections 12,6

and 12,7,

The final chapter presents a few ideas for
research topics with the major emphaslis on the truncated

Poisson distribution.




Chapter Two
The Poisson Distribution
2.1 Introduction

In this chapter a formal definition of the
Poisson distribution is given and various propertles
are developed, Most of these properties are used in
later chapters but not all, The simple structure of
the Polsson distribution is evident and is one of the
reasons why 1t has widespread application, The distrib-
ution appears in a great vaklety of situations, often
as a limliting approximation to & much more complicated
distribution, Examples of this are glven in this chap-
ter, and even though some are not referred to in later
chapters, they are sufficiently intriguing so as to earn

a place here,
2.2 The Poisson Distribution

Let X denote a discrete random variable taking
on values x belonging to the infinite sample space con-
sisting of the non-negative integers, and having probab-

ility density function (p., d, f.)

SR X
e >\ A= 0,02, 00

P(I'))‘) = x|



Ly

where A > O 1s a real number, Then X 1is said to
have a "Poisson distribution" with parameter A, We
can easily see that the two requirements for a function
of & random variable to be a p, 4, £, are satisfied, by

noting that
2™
5oe T

=\

+) Z (.)(\C“\\ =\
A =0

> o )c:o\\\"l_""

The cumulaetive distribution function (c. d. f.)
of X is

v'FC‘-C'.r\\ = Z_ PC"'W\\ S = 0 \2, -

Both p(x;N and F(x;)\) have been tabulated by Molina[m]
for >\ ranging from 0,001 to 100, The Polsson dis-
tribution hes also been tabulated by Soper [72] , Whitaker

[ex] and Kitagawa [us] ,
2,3 Structural Properties

The p. d. £. plx;N obeys the simple
recurrence relation
\>(x+\“/\\ = ,}_‘,._ \3(*'\/\\ (")
(1(*—\\)
From (1) we obtain the mode X of the Poisson dis-

tribution, For, note that

’

?(Yoﬂ',\\ & P(Yo‘,\)



and P Geon '\ & p G ,)\
lead to the inequalities, X - 1 < x, and x_ <)\,

respectively, Since X, must be an integer the in-

equalities combine to give x = L] where [N denotes

the greatest integer less than or equal to 3\, The mode

X is unique except for the case where N is an Integer,

o)

In that case x takes on the two consecutive values

o]

N - and A ,

Let X be a Poisson random varisble with

p. d. f., p(x;N), then for a positive integer n
b

| -~ a-n
Z PN = —(—\/'\‘\'\ g e X (+)
. X =o WA . \

(am-1)?

o

This can be easlily verified by integrating the right side
of (2) by parts and then summing, If T has a gamma
distribution with parameter n, and }L;M has a chi-
square distribution with 2n degrees of fresdom, then
either side of (2) equals P (T > A) and also,
P(j{;“§»2%). Since there are extensive gamma and chi-
square = tables available, (2) permits one to obtain
Poisson sums quickly, This property is particularly

useful when investigating confidence intervals and test-



ing hypotheses,

Let X and Y-X be two Poisson random variables

having p. d, f.'s p(x;k1) and p(y-x;\;) respectively.

Than we have

() 4 \ <
\ AT N ”&) o
RIS Plye™) = ) ’g\?(* <>>

- - C\H—\»\ C
= € \v% L& ) 2‘;‘\
) —;‘\' s ~C 1\1
- (\“*—\v 3
. < ) \ t Lo
- = Ny

= F(Aé ) N+ \M,>

We conclude this section of the chapter by
stating an inequallty and an equality involving the
Poisson distribution, The proofs are long, yet not
difficult, and are omitted, Teicher (18] proves the

Interesting inequality

U]
~ -t
Z \_‘ > é -%oq,oﬂ-o- \)o
veo ~ !
hY
S ,%VLQ]_QW\>O

Crow and Gardner (ﬁq} , in the course of developing
confidence intervals for the parameter X of a Poisson

distribution, use the following equality, Let ‘X?vﬂ




and both are fixed, be the value of N

i‘)(x-‘\ﬂ

treated as a function of \ . 1t 1s easy to show that
\

Ty 4
\1. “ = EW‘("\""\ vt ""—l

b}

where rq < r,

that maximizes

Crow and Gardner [ 19] prove that for fixed k=0,1,2,,..

T é Ty
M ax Z p G )) = > PG B
T2 0 W2~ AT x =

when \*-)‘T.*Q <\ < \T.+l)v\+~&+\' This is true for

I‘1 = 0,1,2,000 @
2.4 Generating Functions

If X 1s e Polsson random varisble with para-

meter\% s then X has

1) characteristic function
g(x) = Ege:h‘} =

where 1 = 'J:T: |

2) moment generating function, (m, g. f.),

.
‘\L(;t\-; Ei_e-}\lg _ ¢(\£\-\ ) €>(c-\5

hx \(e:+—4\)
€ Pr\‘ i XX = €

(4)

s

%2) probability generating function, (p, g. f.),

(k1)
o(£) = (et = Ef£] ¢ (5)




i) factorisl moment generating function

u() = Ei(ni\y} - e\t &)

5) cumulant generating function

4
v = dndlr) = NS _\) 1)

The r th central moment of X or the moment about the
origin of X denoted by }ﬂr, is the coefficlent of
(1t)F/r! in the expansion of (l4) and may also be

written as ®

po= B - PASEIERY ®)

=0
The r th moment about the mean of X, denoted by p. ,

may be written as *
P = E_g(\(_\Y} - Z (-2 ?(\c‘)\) 9
X=o

The ©r th factorlal moment of X, denoted by Mua,
1s the coefficient of tT/r! 1in the expansion of (6),

and may also be wrltten as
-]

pea = BV PESEGSANEN

x=o
where X[P]=X(X-1) cee (X;r+1). The r th
cumulant (or seml - invariant) of X, denoted by K.
is the coefficient of (it)¥/r! 1in the expansion of
(7), and so for all r is N .
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More specifically; we may use

(8) and (9)
to obtain the following
p|‘ = k. '—‘-\
ﬂ»\ = Kk, = M+ AN
3
B = Ky Bk, v WG = N+ 3N+ )
and
Poo=
pe = O
M3y = »
My = S Cre3))
Ms = PN C\-\— \o\x
M = % (rveash +sN)

It should be noted that the mesn, defined by E(X),

is N, and that the variance, defined by 6 = EE’CX—XY} ,
is also A .

The following relations involving the moments

about the mean, M. , and the central moments, /AL ’
are given, Their proofs are straightforward and are
omitted to save space,

SRAPACHES
-

peo= > 2 (75) M
=

pla = N open v X dps

crm——

DY
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N'\-}-\:T\MW—\ + N JM'
FRN

Z (;)(—W"‘

A very useful property of the Polsson distrib-
ution is the additivity propcrty. Let X1, cony Xn be
n independent random variables having paremeters
Mqs eses \,s Tespectively, Then from (L) we have that

the characteristic function of the statistic EL X{ is
+2lx - \ (e,—\) x» i+
E{ i l We
This 1s the characterlstic function of a Polisson random
varisble with parameter Zi\\ e« Thus the sum of n
-s-\
independent Poisson random variables is again a Poisson

random varisble,
2.5 The Limit of the Binomlal Distribution

The Poisson distribution is usually introduced
in textbooks &s a limit of the binomial distribution,
Consider the binomial distribution having parameters
n and p and probability generating function (p, g. f.),
(g + pz)® where p>0, g>0 and p+ q =1, Then,

in the limit as p—-$ O and n-—> o such that np = PN
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where A > O 1is a real number, we have
Qi (%+p%\m', Lirm (L?X“ < I

2%(—M\ ( *Jv\(l(ﬂm

S (-0
€

|

{

From (5) we see that this is the p, g. f., of a Poisson
random variablesparameter b . Mainly due to this approx-
imation, used when p 1is very small, the Poisson law is
known to many statisticians as the law of small numbers

or rare events, Raff [©®] has made & study of the six
best épproximations to.the cumulative binomial probabllity
and classifies these into two groups, The simple, less
accurate approximations consist of the normal, the arcsine
and the Poisson, while the "advanced" or more asccurate
approximations are the normal Gram - Charlier, the Poisson
Gram - Charlier and the Camp - Paulson, The Poisson

Gram - Chari}er approximation 1is

Z pCrywmp)  # J?_(T-MP\ pOame) (1o}
eS

T=o
where plr;np) 1s the r th Poisson probability with
parameter np, The cumulative binomial probabllity,

approximated by (10

z ( W°~v\’“‘

Of the simple approximations the Polsson is best for

p < 0,075 and the arcsine, for p > 0,075, Of the
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®advanced" approximetions the Polsson Gram - Charlier

13 best for p < 0,075, while for larcer p, the Camp -
Paulson 1s best, It 1s 1lnteresting to note that both

the Poisson and Poisson Gram - Charlier approximations

are practlcally independent of the value of n,
2.6 The Polsson Process

The Polisson distrlibution may be derived from
the concept of a Poisson process, Let (0, t) and
(t, t+h) be two contlguous intervals of time, with h
considered small, Then let Pn(t) be the probability
that exactly n changes of some physicsal nature occur
during time interval t, The Poisson process is char-
acterlzed by the postulates stated in Feller [25] s
"Whatever the number of changes during (0, t), the
probability that during (t, t+h) & change occurs is
Ah + o(h), and the probability that more than one change
occurs is o(h).," Here N 1s a positive constant,
This completes the formal concept of a Poisson process,
In language less mathematical, the probability of an
event (change) depends only upon the length of the time
interval, and not upon either the position of the infer-
val in the range of time, or the past history of the pre-
ceding intervals, Now, the event (n changes occur
during (0, h + t) ) has probability 'Pn(h+t) of
occuring and can be realized Im three mutually excluslve

ways, namely,
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1) n changes occur in (0O, t) while no
changes occur in (t, t+h)
2) n - 1 changes occur in (0, t) while 14

change occurs in (t, t+h)

’
and 3) n - x changes occur in (O, t) while

X > 2 changes occur in (t, t+h)
The respective probabilities of these "ways" or events are

1) P (t) (1 - M - o(h))
2) P__,(t)\h
and 3) P,_x(t) o(h)

Thus :
P ) = Pu (1301 0(8) + Doy (1) MR+ Py (3) o)

so that

Pulerd) = D) _ N Pu(d) + X Pun (&) + o)
2 = n
and in the 1limit as h > 0 we obtain the differential
equation
AR® AP + X Pl (®)

ok

Solving this equation for n =0 and 1 and then using

s

mathematical induction, leads to the solution

-2k ~
Cl&) = < QEA | (u)
m
Thus, for a fixed time Interval t, the random variable

n glving the number of changes or events during t, 1is
a Polisson random veriasble with parameter A t. The con-

stent N\ 1s the mean number of changes or events per
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unit time., The number of automobile accidents at a cer-
tain corner, during a certain hour on a specified day

of the week, and the number of chromosome interchanges
induced by X-rays during a fixed time, are two examples
of the Polsson random variable and the Poisson process,
It is important to mention thgt although we have only
referred to random events in time, this has been for the
sake of simplicity, The same arguments apply for rendom
events in space of one, two or three dimensions, Thus,
for example, the number of blades of grass in a square
foot of lawn, the number of stars in a large volume of
space and the number 6f dents per foot on a very long
thin rod, may be assumed to be Polsson random veriables,
and the process involved, a Poisson process, We will
refer to the Poisson process discussed here as &

" - Polsson process" and shall edopt Birnbaum [ 5] ‘s
phrasing by referring to the "emount of time", or "the
amount of space®, collectively, as "the amount of observ-

ation",

Suppose that T 1s the amount of observation
required for n events to occur in a N - Poisson pro-
cess, Then we shall show thet 2 AT is a chi-square
random variable with 2n degrees of freedom, denoted by
Y5.. Let U be a rendom variable defined as the "time"
or observation required for two successive events, or,

using a different wording, the "waiting time" between

successive events, in a A - Polsson process, Then U
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has the cumulative distributlion function (e, 4. f.)

Plue) - ?(WW% D o)

53
|
¢
1
I

Thus the probability density function (p, d. f.) of
U 1is - \u
9l = Xe w2 o ()
The mean of U 1is E{Uz = 1/y and shall be denoted as &
, so that § = 1/\' Problems in statistical inference
involving the parameter A\ are simplified by the fact
that A occurs as a parameter in both the Polsson dis-

tribution (11) and the exponential distribution (12).

The characteristic function of U 1is
® “Yu+itu

E{e:tu\i _ S \ e b = N (\3)

A-ct
where N\ >t > 0, If t 1is to be the amount of ohserv-
ation for n successlive events to occur, then T 1is
the sum of n 1ndependent random varisbles each having

'p. d, f. (12), and so, characteristic function (13),

N - it

Thus T has characteristic function ( X " and
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the random varlable, 2)\T, has characteristic function

1 . Thus 2AT 1is a chi-square random variable
(1 = 21ig)8

with 2n degrees of freedom, This fact is used by
Birnbaum [ 5 ] to obtain confidence intervals for the
parameter >\ as well as to test various hypotheses in-

volving Polsson processes,

2.7 Interesting Examples of the Poisson as a Limiting
Distribution

Both the examples offered are directly from
Feller [25] . Consider a Markov chaln with states

E E ess having transition probabilities

o’ 1’ - _R
‘ DY (1)P AT e
PT‘& = ¢ 1o x) % (#-x))

o x>f

where p &and q are constent probabilities of
"success™ and "failure", respectively, with p + g =1,

and A > 0, Define the higher trensition probability

p(n) as

rk
P(Jh\ P{&Wﬁ% TAM e, I th\n,.ktoil Eﬁ\st}
kT

e + Kha An@\.thm wmmm E~r
Then it can be shown that the "stationary" probability
that the system is in the state Ek is
P_‘“& = e z
® %!
Thus k 1s a Polsson reandom varisble with parameter x/q.

.

N>
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Consider the problem of placing r balls in
n cells with each arrangement equiprobable, We seek the
probability that exactly x cells are empty. Feller [2s]

shows that

M=K
P% x ane = (J"\) ("\)-b <Jn—7.. \"" -I_-\-_—b
i
However, this result is only wieldy if n and r are
small, so that for large r and n, approximations
are in order, Let r and n both approach infinity
such that A\ = ne'r/n remains bounded, In this case
“N\ X
D Pil - e _>\_
A, Mm—> 0 x!
Thus for large r and n, the exact number of empty
cells is approximately a Poisson random variable with

parameter A = ne-r/n

In chapter three four discrete distributions
closely related to the Poisson distribution are discussed,

Each one, under a limiting condition, approaches the

Poisson distribution,
2.8 Approximations Involving the Poisson Distribution

If X 1is a Poisson random variable having
parameter A we may consider, as a rough approximation,

that X is a normal random variasble with mean )\ and
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vearlance X . However, even with a correction for contin-

uity, the approximation 1s too rough for most purposes,

If X1, cess Xn are n Independent Poisson

rendom variables having pqaametars X1,'>2, ey Xn

respectively, then 2 = zi_xé/n has characteristic
a=!

) i \(i/"‘

E[e:HS - € {e . 3

=\ e
L Z\ (e —\)

function

\

1l
®

Yo (6 - \> (N\

= £
where >\ :E~> By differentiating (14) twice
with respect to t we obtain A /0 and )xo/nz for the
mean and variance of Z, respectively, Now let us

attempt to find an approximstion for (1&). Expanding

the power of e in (1) we have «
\o[e‘llu-|] ["Z‘; ]
e = &
+)
- Yo ['r =\ T‘l (\s)
e

If we neglect all terms of order r > 2 in the power

of e in (15) we obtain X
NE S
LY Y W

\J

which 1s the characteristic function of a normal random

variable having mean >\o/n and variance \xo/nz. Thus
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we see that for large n the random variable 72 1s
approximetely & normal random variable, In most instances
we are ilnterested in the.special case where all the para-
meters X‘1’>‘2’ "">‘n are equal, say of value X\ , Then
o = n A and Z, now denoted by X, has the approximate
normal distribution with mean * and variance A /n,
Generally speaking, this is a very useful approximation,
It may be used to obtain confidence intervals for PN ,

and in hypotheses testing, as shall be shown 1n chapters

I\ and \2,

We shall now show that the statistic 24<§~
has an asymptotic normal distribution with mean ZAFST
and variance 1/n., The proof given here is patterned
efter a more general proof found in Wilks (?5] , Po 259~
260, For convenience let g(x) = 2/{§: Since A > o,
there exists an interval containing W, say I, such
that for all X e¢ I, the first derivative, g'(X),
exists, From the law of large numbers (Wilks (8] ,

P, 108) we have that if an arbitrary &€ >0 1is given,

¢ such that for 8ll n > n_

ﬂ> (}ﬁeJi Lol o Ane.y > \-e Cie)

For any x ¢ I we have, from a well-known theorem in

there exists an n, say n

calculus,

%(i\-_: %C)‘\ + ca‘ (\c") (i—\\
where |x% - A < Ix - Xl. More explicitly we have

ATE = X+ = (3-)) (i)

I‘l‘
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Rewriting (17) gives
= (4% A ) = \} =, (\?— %) (ie)

From (16) we have that (18) holds with probability
greater than 1 - ¢ for 2ll n > n_. Thus in the limit
as n-—->« (18) holds with probabillty one., Now, the
statistic 4 n (X - \) converges in distribution to a
normal random varisble, say S, having mean O and
variance )\ . Also, from Wilks 1®%] , 1/«(23 converges
in probability to 1A{§ . Thus

B P (%@-\\ N> - P(E m)

M=k

Lo P (m (F-53) ww)= P (T ro )

MO

so that

where T = s‘(ii hes a standard normal distribution,

It now follows that 2 4??(‘{35_) has a limiting normal
distribution with mean 24 n X and variance 1, Thus
2\f§— has a limiting normal distribution with mean 2‘{3?
and veariance 1/n. The confidence intervals for A ob-
tained using thls approximation are almost identical to
those using the Immediately preceding approximation, a

not too surprising result,
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Chapter Three
Generalized and Compound Poisson Distributions
3.1 Introduction

When the simple discrete distributions fail to
fit biological data adequately, more complicated distrib-
utions, such as the genéralized'and compound Poisson
distributions, need to be investigated, In this chapter
four prominent distributions, the Poisson v Binomieal,
the Poisson v Pascal, the negative - binomial and the
Neyman Tvpe A, will be unveiled, Their definitions and
a few basic properties will be given, This chapter is

1,8,3 owmelo
preparation for chapters A whlch deal with the estim-

ation of the parameters,
2.2 Generallized and Compound Poisson Distributions

Let X1 be a random variable having ¢, 4., T,
F1(x1|\) where the parameter N may be regarded as s
random variable X, having c, d. f. Fa(xz). Then we
let X1 A X2 denote the random varisble having e¢, d, f.

T oo ) 4R Go)

-
where ¢ 1is a sulteble arbiltrary constant, and call it

the "compound X4 variable with respect to the com-

pounder Xo ",
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Let X and X be random variables having

1 2
P. g. £.'s g.(z) and g2(z) respectively., Then let
X v X2 denote a random varlable having p. g. f. given

varisble

by g1gg2(z53 and call it the "generalized X,

with respect to the generalizer XZ"‘

Let X, and X, have ¢, d. f.'s F,(x, [«
and Fa(xalg), respectively, where o and § are
parameters, If for each o there exists & F ., and for
each p there exists an o , such that

Fylxld) = F(xI§)
whatever the value of x, the random variables X, and
X, are said to be "equivalent", and we write X, w~ X

2
Gurland [33] vproves the following theorem, If X

2.
T
is a random variable with p, g. f. of the form {h(zj] s
and the parameter N 1s regarded as & random variable
X2 having ¢, d. f, Fz(x) and p, g. f. g,(z), then

whatever be the random variable X,, we have that

X1/\ Xé\A X2 v X1. The proof is simple, From the

definitions of compound and generslized distributlons

we have that the p, g. f. of X A X for sultable ¢ 1is

f 2] 4F )

and that the p, g. f. of X X4
% { I (%\} {E—R(Q] }

g [Jg\(%ﬂ AT )

Thus the random variables X1 A X2 and sz X1 are
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equivalent, and are equal when ¢ = X. Since the
Polsson random variable hss p. g. £, of the form re-
quired by the theorem, every compound Polisson distrib-

ution may be considered to be some generalized distribution,

Applying the definition of a generalized distrib-
ution to the Poisson distribution, we have that the

generallzed Poisson distribution has p, g. f. of the form

»[RGEY-1]

%(i\ = o ()

where A > 0O and h(z) 1is an arbitrary p. g. f. .

%(Q\ = Z_vac = (=)

Suppose that

and o
~9\_(‘:\,\ = Z_ ™ Zf €
X=0©

where P, and T, éare the generalized Polsson and

generalizer probabilities respectively., We would now

like to esteblish the following importasnt recurrence

relation x
Pen = - 3 Gogo) Tager W, *
WA y = O
3

Differentiate (1) with respsct to =z to obtain
%(\)(}) _ \ %(}\_‘e\(\\<})

Then, using Lelbnitz's formula we have

e I GRTTE
-

Detecting from (2) and (3) that

\ % ) (?:\ = D’r +! )

v ('T'\-\\\. 230
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() _ v Q)
"."\‘ c& é) \1——,0 - \ag
%.
(oried
and /__\._—————— v6\ h é’\) L = ’Tl—q-d*’\. (3)
(G- = |

setting 2z = 0, and substituting the results (6),
(7) and (8) into equation (5), gives the desired

result (4),
2,3 The Pascal Distribution

The Pascal distribution, better known as the
negative binomial distribution, may be obtained by
assuming that the parsemeter N of a Poisson distribution
has the gamma dlstribution represented by the p, 4, f,

%\ R DN
Fl, < i
n(R)
Thus the Pascal distribution 1s a compound Polsson dis-

tribution and has p, d, .
-] ->‘C_ < ‘Q \ﬁ—\ —§§\

’ﬂ"x = g e (\c \) e 0\\
Tl PR

©

g * RN (gre) xR
B (05 \ ge » ot
P ac )
ﬁ-o"‘ N (\c-\— ‘%.7
= — T x+ 4

) ! (pee)

- (‘ ) iy (it )

(1)



2l

where p, = ﬁ__ and q1 = c so that p1 + q1 = 1

? + ¢ g c

and ¢ 1s some sultable constant,

The p, d., f. (9) wmay also be obtained by a
simple combinatorial argument, Consider n Bernoulll
trials, and let k ©be the number of successes and x
the number of fallures, where p4; 1s the constant prob-
ebility of success assoclated with each triesl, and a4
1s the probability of fallure, so that p1 + q1 =1,
Keep k fixed, and consider the random variable x, It
is easy to show that x has p. d. f. given by (9).

The p. g. f. of x&is

0T () G
= (%_?%\-ﬁ. (k>

where we have put p =94 and g =1, so thet q -p =1,
P1 Py '

Suppose we define the random variable n to

3

be the number of triasls required to obtain exsctly

successes, Then n =k + x, so that n has p, 4, T,

% -+
WA
43-»\ P %'

and probability generating function (p. g. f.)

= . on- R 4
MZ& - (fa'.\)?' voom(pe) (oge)

We shall be concerned with the random variable, x,
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rather than the closely related random variable, n,
which was introduced for the sake of completeness,
According to Feller [25], n has a Pascal or negative
binomial distribution, while the distribution of x 1is
not named, We shall sadopt Katti and Gurland [:3&] 's
terminology and refer to the distribution of x as the

Pascal or negaetive binomial distribution,

’

If we denote the Pascal probabilities by =,
as In (9), we may use (9) to prove the recurrence

relation
My = % [-(*“BTT¥+I - {%.&:Tr‘ (W)
The moments sbout the origin AQT may be ob-

tgined as follows, First, let 2z = et, then it can be

T

&?2!(%\ - Z ' Q‘Q(TB &-&z(%\ (_n.\
4 i dad

shown thsat

where the aj(r) satisfy the recurrence relation

(16 C'r\ = 6—«&-\-\3 6{6_—)(1'-—\) + &'3 ('r-\} ().
which has boundary condlitions

Qa (‘\\ = O a->"-
6:o‘wwiw%‘73°
Using (13) it 1s easy to form a table of values of
aj(r). From (10) we have |
. -
‘ 3 =) Gope)
& (%\ - P -‘a(\—&.-ﬂ\ (‘9«4—*&"‘\3 %-??’
42
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Thus -
R _ 4
M~ = "&, - Z O"CTB é . :
= _Z.— QB-G\) P28 B (9&6"\\ Cu)
&=

In particular, we have from (1) that

bl = R
p\-: = '&@[(9&\\? +\—J

and

Py = "Q?[(QH\)MU'»\ ?L x 3 (—Rﬂ\? ¥ \]

To conclude this section we show that the
Pascal distribution approaches the Poisson distribution
in the 1limit, Consider the limit of (10) as k—> o

and p —>0 such that kp =>\, a constant grester than

,ero. ZM (%_Pﬂ—ﬁ ) %%—-&(\, %‘f)
4
= \DMW(H'}{) ('2?\4«?)

)\C%-\)
= £

-R

—+

which is the p, g. f. of a Polsson random variable with

paremster \ .
2.l The Neyman Type A Distribution

Suppose that h(z) in (1) 1s the p, g. f.

of a Polsson random variable with parameter >\1’ then we
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obtain the Poisson Poisson distribution or Neyman Type A
distribution, having p. g. f.\ (-

XEe __\] (1s)

%(%3 = e
where X4 >0 and A > O, Expanding g{z) gives
o
_\ ' \\‘(%-\\
%C%\ = Z_ = _;\i P
S
=ZZ€—_\_3‘€ (\\j\i
‘a-"'o Y= O ‘a‘- x\.
so that the x th probability Px is given by
[~ o] '
- - \ x
(;) _ efXx\? 6.\“3 (\4‘\ (00
ple ——'\ 6
.%':.O' '6 x\.
Using (16) we shall derive the recurrence
relation ~©
N ®
f\) 3\ e O > NP o
w7
(V) $-0o £
For

‘ c
37° ‘ (e e

3 |
o D M TG
Cean) g7 (N )

_ 2 - \ —-\\' ~ x -x"'&
_ My e ™ Ze>2§e ?"3‘_ Z (}ij&
Grext) i=° 3\ \ keo
RN R W S N -k
v o R 3=° 3 (o= 4\
v &
M *
- M\e N Vg
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To obtain the moments about the orlgin, sub-

stitute z = e¥ in (15) and then differentiate with

respect to t, The first three moments are

P = %é\)r = N
R A SRR

N's‘ 9\:‘%3] = \\\[\\1’4—2)\‘—\:— £33\ £3% +3IXN, +L|]
2 | o

and

The Neyman Type A distribution approaches the
Poisson distribution in the limit, Let \1—> 0 and VN>

such that X)1 =« , & constant greater than zero, Then

from (15) we have y, (a-1) W (-0
[e —-\—] . \[“QMQ ]
N, (Z:-\)
= —QA/VM, €
d (2-1)
= €

Thus the limiting distribution is a Polsson with para-
meter o =\\‘ .

3,5 The Poisson Vv Binomlal Distribution

Suppose that h(z) in (1) 1s the p. g. T,
of a binomial random variable, then we obtalnt he gener-

alized Polsson v Binomial distribution having p, g, f, |

Y1 ( +?2\ﬁ—\
%(2) = e { § | _J (18)
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where p >0, q>0 and p +q =1, and A > 0, eand

n is a positive integer. Expanding (18) we have

Qd(z) = Z e )\3 +P2)m
. A |
xl f ") o ()

so that the x-th probability is given by

N e

This, we may note, is also the p, d, £, of a compound

]

Binomial A Poisson distribution, and serves as an illust-

ration of the theorem due to Gurland [‘33] in section 3.2,

If in the recurrence relation (L) we let

m 1-3‘«»\ M= +3'-|
Trx.a'-n = (X—d+\) P ‘:k

and denote the Poisson Vv Binomial probsasbilities by Px’

we obtain the following recurrence relation

P = dap D (*“3*)\>'«5”‘”‘Pxa o

(x+) F=o
This equation is used by Sprott [‘73] in his method of

determining the meximum likelihood estimstes of the para-

meters of the Poisson V Binomial distribution,

By substituting z = e® in (18) and diff-
erentiating with respect to t, we obtain the first

three moments about the origin,

Moo= 8| = hp
dk It=o

p,_\ = & = )\mpz()\m+ M) >"“P
dt* lt=0
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and /u3' = e_\_s_%;\ = Xm; [_xlml £ 3han (m=1) + (n-0) (m—l\]
Ale=e £3Amp? (Am +m=1) +hmp

To conclude our discussion of the Polsson V
Binomial distribution we give two limiting distributions,
Suppose that p—- 0 and n-> e such that np =<, a

constant greater t han zero, Then considering (18) we
” M (=) 14+ p2 ”‘_\]
have )\[(%ﬂ)z) __‘] [( p) ( ‘“P)
- X\ v 22 O\
Yo e)\ [( ”‘) ( M(\-f)) }

ae e "] N & ]
e = €

[

which 1s the p, 4, f, of the Neyman Type A distribution

having parameters ‘x end o« = np, This result is not

too surprising as the binomial distrlibution, under these

limiting conditions, approaches the Poisson distribution,

Suppose now that p —0 and )\—>°° such that \p =,

a constant greater than zero, Then from (18) we have that
)\[(%«»pz)m-\] \[lv\(k+p%\m]

Lim €

i

Lim

Din Gop2)™

)
1
—
!
N
e
%
3
e,
&
2o
T w
=
>/
2

il
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which is the p, g, f., of a Poisson distribution having

parameter n<,
3,6 The Poisson v Pascal Distribution

If we select h(z) of (1) to be the p., g. f,
(10) of the Pascal distribution we obtain the general=-
1zed Poisson VvV Pascal distribution, sometimes referred
to as the generalized Polya - Aeppli distribution, having

P. g. f. glven by Y l: (%’P*Y%“ |]
%(2) =

(20

where p >0, q -p =

1

we have 3@3 zi
= a‘- |

5 5 () e

.=<x =<m a . .

_ Z e-\—i\:a_ (-&a‘a—x—\ )cﬁ“&a—l‘)xzzrf

P L

and k > O, Expanding (21)

!

-4
(%—1T2)

so that the Polsson Vv Pascal probebilities P, are

;Z— N g %3+x—\)x;ié—x.91 22)
% %

We may note that Px can also be obtalned by compound=-

given by

ing a Pascal distribution with a Poisson distribution,

If in the recurrence relation (L) we let

Toge = ([ 27570) Py

(23)
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the Pascal probability obtsined from either (9) or
(10), we obtain the following recurrence reletion for

the Poisson v Pascal probabilities P

x x’

. S B

P. = Mo Z (’*{*3) PY 9 L Px-'&' (2)
(‘KA—\) A\ = O 6

From (21) we may obtain the moments about

the origin by first substituting z = et and then

s
differentiating with respect to t, The first three
moments are !

SR

=0

H-': = %\%\{:—_07- )x‘%.‘)l (\'GH ‘eu-\) ¥ \’PQ?
and M3 = X%Pg {X‘«&‘+ Xk + (—?u\)(“%an)] +3 N ke" (Mt de) + )\@P

Under three different limiting conditions the
Poisson V Pascal distribution approaches the Poisson,
the Neyman Type A and the Pascal distribution, First,
suppose that p—= 0 and X—>oo such that Ap = o, a
constant greater than zero, Then from (21) we hsve

_‘& - %\"%_\
ibua e ==-Ewu e ¢
-%

Ra m(z—gt\

e ®p

|- Pz
b éﬁﬁ.[fggk - 1%'( 5 ﬁﬁhsl = €

1

'ﬁctCz—\]

which is the p, g. f. of 2 Polsson random varieble with
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parameter k , Secondly, suppose that p—>0 and k- o
such thet kp = X1, a constant greater than zero, Then

consider the limit of (21)

p lerted e g
—’ﬁ -k
I KEE YT
l= ek[e_\“h_'ll]

This i1s the p, g. f. of a Neyman Tvpe A distribution
heving psrameters )\ and )\1 = kp., Flnally consider
the limit of (21) as k->0 and \ —>% such that

Ak =

s positive constent, Then

M (gopat ®o0
Q[%P ] = Do e

k1,

\[4% P%) ]

~RA - %,
=.ﬂm<s§-?%\ = (3&—9;)

and this 1s the p, g. f. of & Pascal distribution, .
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Chapter Four
The Complete Poisson Distribution
h.1 Introduction

The complete Poisson distribution has universal
application so that fitting it to observed date is 2n
important problem, Some function of the observations
must be selected so as to provide as "good" an estimate
of the perameter as possible, Because of the simple
form of the complete Poisson distribution, the problem
could be considered to be solved, In this chapter we
consider point estimation of )\, of Integral powers of
A', and of resl - valued function of x . & discussion
of point estimation of the parameter of a Polsson process

concludes the chapter,
4,2 Simple Point Estimation

Let X Dbe a Poisson fandom varigble with para=-
meter)\) then E{X} =N. Thus, if an observation, x,
is taken, the "expected" or "anticipated" value of x 1is
)\, On thesé grounds we may select the single observation
x as an estimate of >\ . Again, E{le =>\2 +>\, Thus
the "expected" value of the square of the observation is

>\2 + A\, so that the solution

X ~ _\+qh+411

—

b 2
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of the quadratlic equation

\1+>\ —-DC—L -0
may be taken am an estimate of )\. These two estlmates
are based on & single observation and are very rough,
yet, in a sense, they reflect the nature of the well =

known "method of moments",

The above arguments mav be applied to a random

sample Xys eeey X,, Of size n from the Poisson dis-~
tribution, to obtain more accurate estimates of >\. From

M
section 2. we know that the random variable 2 X4

(=

has & Polsson distribution with pafameter nh\. Let

M
T = z;Xi, Then EIT} = nX. Thus the observed value

=\
for T, say t, may be taken as an estimate of n)5
so that t/n, 1is an estimate of N\ , Again, E{Ti’-} =
n2X2 + n)g so that the solution

N [T

* 2
of the quadratic equation

ﬂﬁwW¥m)—£L=O

may be taken as an estimate of >\. These two estimates

are based on n observations of the random variable X,
and, of course, & single observation of the random var=-

iable T,

The estimates >\x and >\t are blased, while
estimates x and t/n are unbiased, Later we shall
show that t/n 1is an Mefficient" or "best" estimate of

X, having minimum varlance among all unblased estimates

of A R
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Let p(x;X) be the Poisson p, d, f. or fre-
quency function, and let My be the frequency of the
value x 1in & random sample, Then for any two selected
values of x, say k, and k,, we have

P[%\)\‘ _ Xﬁ\‘gl ‘%}_l
?(%13X) 2.1

Thus the ratio of the theoretical frequencies mav be

replaced by the ratio of the observed frequencies to

obtein an estimate for k , hamely,
\

XR— Tl )RR

t‘&! N\-Q‘_

The best values for kq and k, are those having

largest observed frequencles,
l{,3 The Maximum Likelihood Estimate

Let L(x,, e.., X 5 N\) be the likelihood
function of a random sample, x,, ..., X of size n,

taken from the Poisson distribution having parameter N .

Then ix:

—mA\ et
\_ (1\, e 1V'KM )\) = € \ Y

Take the natural logarithm of (1), differentiate with
respect to )\ and equate to zero, The solution for A

A
is the maximum likelihood estimate ).. Thus
M
A .
>\ - ;x; /m_ (2)
N

The estimate A 1s the estimate t/n obtained in the
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preceding section, From section 2,8 we have that
A
the mean of A is A and the variance is >\/n
N
Thus A 1is an unbiased estimate of N . Wilks [ 85 ]

N
demonstrates that the variance, € 2( 8 ), of any unbiased
[

estimate B (x, , ..., x,) of a parameter © , under a

1’
regularity condition, obeys the inequality

A \
s* (o) >
E{S,:}
where S = S (x,, «u., X 3;8) = 3d1ln L where

36
L = L(xq, «.o, Xp3 B) 1s the 1lilkelihood function of the

random sample, In other words, the variesnce of unblased

estimators for © have lower bound

) efsd

Applying Wilks' result to our case where b = )\, gives

G- b [€TNNET

=t

?. Y
- 2
80 that S = Z X
= Y 2’
hY
and E {S 2§ = n/ Thus X = Zx / is an "efficient"
n X‘ — i/m i

or "best" estimate as its variance takes on the lower
M

bound value >\/n The result in /n  as an estimate
tel

of A is also obtained by Roy and Mitra [7'3]'3 "ratio

method", which is discussed in section L.L .
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.
4.4 The U, M, V, U, Estimate of A

Noak [56 ] has defined the power series dis-
tribution (p, s. d,) as the distribution with probab-
ility function

P{ X:I} = oa(x) _G__I X=0,42, - (3)
£(e)

where © > O 1is an unknown parameter, a(x) > O and

a(0) =1, and £f(6) = Z_ a{x)B8 %X, The Poisson p. 4., f,
Xxzo

has the form (3) 1if we let B = A and a(x) = 1/x! ,

X. Now, Roy and Mitre [70 ] have

so that f(8) = e

derived the unique uniformly minimum variance unbiased
*

(U, M, V, U,) estimate for B , where r 1s a given

positive integer, Consider a random sample X9 eeey Xp

of size n from (3) and define

= alx-+) x>
' alx)
Th ~
en x *
Qﬁuﬂz E-tmamg_ - )
- x=o _F(e)
Put T = }i;xi, Then T can easily be shown to

sl

be a complete sufficient statistic for © in the sense
of Lehmann and Scheffe [48]. The p. d. f. of the

statistic T 1is ;
p{T=t) = 8 Clt,m) =02, (5)
i }M [£(e)]”

where C(t, n) = }i-rT a(xy) and the summation is over

i=y

non-negative integral values of x4, ..., X, such that
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m
o x, = t. It should be noted that the p. d., f. (5)
=

has the form (3), Now define

(o} Tenr
(e)
L\'r({'-\ = C(t"'\*‘\ t>~
Clt,m)

Because of (L) we have that
E {u,(ﬂl -0 (n

Because u(T) 1s an unblased estimate for 0 and the
stetistiec T 1is complete and sifficient for 8 we have
by the Reo - Blackwell Theorem [ % ] and | & ] , that
u,(T) 1s the unique U, M, V, U, estimate of 9 .
Applying this result to the complete Poisson distribution

with parameter A gives,

t
C (t,M] = M
!
so that wu,(t) Dbecomes
o) t(“'
k3|
(k) = { t T
—T
m
]
where t =t (t -1) ,,. (t -r + 1), Thus the unique

* E’]
U, M. V, U, estimate un(T) of A is t /of, If we

1

put r , we obtain the estimate t/n of A , as before,

Let us again consider the general case renre-
sented by (3)., Put r = 1, then for the variance of

u1(T) we have

V{u.(T)} - E{u.(T)}l_ % @

and the U, M, V. U, estimate of V{u,I(T)l 1s

vit) = iu\(t\iz_ u, (t) (2
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Applying (8) and (9) to the Poisson distribution,
we have V{u\(T\} = E{f.{ RN

n "
and vk) = & - _
mt Mt m?

Thus t/n° 1s a U, M, V. U, estimate of )\/n. In
chapter 5 we continue Roy ond Mitra's argument, and
consider the problem of obtaining the U, M, V, U,
estimate of er , When sampling from s distribution of
the same generality as (3), but being truncated on the

left at a fixed volnt ¢,
4.5 The U, M. V. U. Estimate of g(\)

Suppose that X 1s a Polsson random variable
with parsmeter A , and that g(A) = e'A(1 +\), that
1s, is the probability that the random variable takes on
value O or 1, We may wish to obtain the U, M, V, U,
astimate of g(A). The following theorem dues to
Guttman [39 ] allows us to obtaln this estimate, Let
X be a discrete random variable, and t(X), a sufficient
stetistic for the parameter A , Suppose that t(X)

assumes only positive integer values with probabllities
t
P)(t) = JW\()\\ %t >\ 't’—'-oa‘\')-)"' (\O)

Let g(\) be a real - valued function of the parameter
A\ which takes on values in an interval containing the

origin, Then there exists an essentially unique
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U, M, V. U, estimate of g(X), if and only if,

GO\ = zm
(O8N

1s analytic at x = 0, with power series expansion
Lo
t
6O\ = 2 a X
t=o

such that &, = 0 for all ¢t for which k, = 0,

t t
The sufficiency part of the proof follows, Define
Q
‘ b ke #0
r =1 % !

6:% & =
ehen E{s] - D w4

=0

S t
= D o mO
+=0

= () tZ o, X

1}

AM()\ G(\\ = 3())

Thus f, 1is an unbiased estimate for g(A\) eand it is
uniquely defined for points of non-zero probability,
Since, putting &, = 0 in (11) implies that f_=0

t
is the only unbiased estimate of zero, we have that f

t

is complete, The statistic t(X) 1is given as being
sufficient for A . Thus by the Reao -~ Blackwell theorem
Teedanal ¢ ], £, 1s the U, M, V, U, estimate of g(N.
For the necessity part of the proof assume that £y 1s

an unbiased estimate of g(X). Then



B L2
Z f o () %, \t = cé(\)
t =0

Thus Z- atxt = O = (\(>\\

t=o s ON)

where a, = ft kt‘ Since A includes the origin, G(X)
is analytic at N = 0. The remainder of the proof

follows as in the sufficiency psart,

Let us apply the theorem to obtain the
-A
(1 +N\) where A

is the parsmeter of a Pcisson distribution, Now, in
~m

U, M. V. U, estimate of g(\) =

gsection Z.h, we have shown that zi'xi has a Poisson
wal
distribution with parameter nN, Also it is easy to

show that E_x is g sufficient statistic for )\.

=\

Then, let t = in. From (10) we have that

Y]

m(N\) = ="\ and ky = nt/t! . Thus, we may obtain
a from'the identity

A(m=1)
> oo N = g e
t=0 J\M(\‘
* t
::Z__K .m\
t=o |

Comparing the coefficients of )\t gives

t-
Gt=(m—\)‘(_;\_+\
(t-01 t

so that fy = (m—l)t(l.‘_ t

is the

M Mm-1
U, M, V, U, estimate of the probability that the Poisson

random variable takes on value 0O or 1,
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.6 The Poisson Process

In section 2.6 it was shown that 2AT has
a ]Lim distribution where T 1is the amount of observ=-
ation required for exactly n events to occur in a N -
Polsson process, Using this fact we may obtain a confid-
ence Interval for A having confldence coefflicient 1 =€,
From tables of the 3, distribution obtein C and D

P%CL—Z\T‘:—D}_—:\—G,—

such thsat

Now, given the event

S 4 XN« >

2T aT |
and a point estimate of x , say )\', we can minimize
the maximum percentage deviation of A' from A by
selecting )\\ _ C+D
- TuT

In this case the maximum percentage deviation of >\'

from X., with respect to %x', occurs when
A= D /o7
and 1is P (D—C) mc‘%
(c+D)

As the number n of events observed increases, T
decreases, Thus, from 7L§m tables a value for n
can be obtained so as to provide an estimate Nt
having meximum percentage deviation T 1less than some

given positive value, all at a confidence lavel 1 -g,
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As a second problem, suppose that an estimate
A of A 1is desired such that for given € > 0 and ﬁ > 0
PLIN-M 28] > e

Let T, be the "time" required for n events to occur,

T

Put ‘c_=g}_

2m

Observe the Poisson process for 1 units of "time",
2cT
n

and define the random variable X as the number of

events occuring, Then

N = 27T X
is the desired point estimate for )\. For
E{\'l = LT E{X] = X
and R A A e E{X}" =N
= LcTw N = 2em |
From Tchebycheff's inequality we have, finally, that

P{\\A‘—\lép} > - 2;«; = \-e

The results given in this section were developed by

Birnbaum [ 5 ].
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Chapter Five
The Truncatesd Poisson Distribution
5.1 Introduction

This chapter deals with the problem of point
estimating the parameter of a truncated Poisson distrib-
ution, The emphasis is placed on the simplest and most
useful case of truncation, that is, truncation of the
zero class, To beglin, a very generai procedure for ob-
taining the maximum likelihood estimate of a truncated
distribution 1s presented, Then, a discussion of the
case of truncation on the right is given, a case where
no unbiaéed estimates of the parameter exist, The final
section offers a rather extensive discussion of the

case of truncation on the left,

5. The Iterative Maximum Likelihood Procedure

A "truncated" Poisson distribution is one in
which a certain subset A of the sample space, 0, 1, 2,
of the complete distribution, is missing, The bprobabil-

ities of the remsining values x are
PR

(‘ - Ze—\A}\_:_ x|

Te A

W

Thus, a randoong slze n, drawn from the truncated

Poisson distribution, will not contsin values from A,
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Hartley [_qo] provides an iterative approach
to maximum likelihood estimation from incomplete dats
that is applicab1e>to any discrete distribution for which
a maximum likelihood procedure for the complete dlstrib-
ution is aveilaeble, Although in many casses special
methods are simpler (for example, when tables are avail-
able), Hartley's [ uo] method applies to the many cases

where no such special methods exist,

First of all, we shall introduce notation, and

then, outline the procedure for obtsining the meximum

s
likelihood estimate of A, the parameter of 2 suitable,
yet unspecified, discrete distribution having p, d. f.
f(x;A\). Next we shall give Hartley's proof that the pro-
cedure does provide the maximum likelihood estimate, .
Now, let:

A% -be the set of permissible values, labelled

by 1 and A-Dbe the set of missing values, labelled

s
by Jj. Thus the union of A¥ and A is the sample space
of the complste p, d, f., f(x;)), Let:
ng - be the observed frequency of value i, 1 e A*,
nj"be the unknown, unobserved frequency of
velue Jj, ] E'A,
chj-he the c-th estimate of njy,
n - be the observed sample size,
on'- be the c-th estimate of the total number

of missing frequencies, that is ,n' = Zz_cnj,
}eA



and finally, let
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£(1;N) -be the probability that x = 1

1 e A%,
£( j; ) -be the probability that x

) = F(4N

ﬁeA

i
Cde
-

j e A,

Then the procedure for obtaining the maximum likelihood

A
estimate, A

1.

is:

H

For a1l j € A, make initiel, probably rough, est-
imates of the missing frequencies nj, and denote

these estimates by onje Compute on' = zg‘oni-
3 .

Using the given n, and the o™ § compute an lnitial

estimate of A , denoted by 1A from the expression

’

A
for A in the complate cases, For the purposes of
il1lustretion, when the maximum likelihood estimate of

X in the complete case 1s the mean, we have,

|)\= Zim-‘. + Z'k ALY

LeA* %eA (2

m + om

Using 1)\ compute "improved" estimates, 1ng, of

the missing frequencies n from

J
0y = F(]", )
= FON)
and then obtein 4n' = j{ 103
eA

With the njgy and the "1&proved" 1n;, compute an

"improved" estimate ,)\, of N, from

o\ = Ztm; +Z& le.d

te A" a’eA (3

1
M+ M
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5. Continue this procedure, obtaining "improved" estim-
ates 1X, Zx’ eees oA, until 1little change occurs
in the estimates of A, Then the final estimate _ A
1s an approximation to the maximum likelihood estimate
of X , and the approximation may be made to any
desired number of decimsl pleces, This completes

the procedure,

We now attempt to estehlish the valldity of
the procedure, To distinguish the proof from the pro-
cedure given, we shall use the symbol O to refer to
the parameter of the discrete random varisble x,
raether than X . Let x take on values belonging to two
mutually exclusive énd exhaustive sets, denoted by A%

and A, The probabilities for 1 e A and j e A are

denoted by f(1;8) and f(j;6), respsctively, Clearly,
2, fe) + 2 f(g:e) =y
ich €A
[
Let f£(8) = ;?; r(j;08). Take a rsndom sample from the

A
population 09 X, &and let n;

i denote the number of

observed values 1, The truncation of velues § € A
accounts for the fact that no values j occur, Now,
the maximum likelihood equation for the estimation of
the parameter in the case of truncation is

Z m, ﬂiﬁ) + f_(:)(_e} = 0 (4
ie AY f(iye) |— £(e)

where  (®(i.8) = ¥f(ije) and £9) = 5__';(_5)
3B ®
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Define suxiliary variesbles ni, for each j € A by

- §(e)

Then, (4) becomes

Z " g(l)(L"e) + ng m -0 (&)
A (o) feh F(§re)

Note that equation (6) is the maximum likelihood

equation for a complete sample of size n + n', with

observed cell frequencies ny and nj. Then the iter-

ative procedure ylelds solutions

8 = Aum O

d A .
B J‘ﬂi = lk.ﬂﬁ c_ma' ‘KEA

= oo

of equetions (5) and (6), sand so (4), eall, of

s
course, on the ascumption that the iterastive procedure:
converges, Hartley [H{)] maintains that the convergence

1s extremely rapid in 30 examples that he has worked out,

To obtain a value for the variance of the

A
meximum likelihood estimate, 8 , define L(8) to be

the likelihood function, and
Le(s) = dL (o) avd. Leo(8) = 3*L (o)
Y] ‘ de?

2
Recalling that the c-th estimate of B 1= _ 8 end the

A A
fact thet La(e) = 0, we have an estimate of L. (8),

namely, A A
Lee (8) = LB (Ce)—\—e(e)
<0-8
= L—B (ce)

A
<8 -0
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\.9 (ce)
¢6-86
of score" by R,A, Fisher, Thus, an estimate of the

N
veriance of © 1is:

The quantity is called the "rate of change

LQB

Hartley's very general method is 1llustrated
in his paper with the Poisson distribution, The method
has the asdvantage that it apvlies to all cases of
truncation, However, iteration involves much time and
computation, so that for those distributions heving
widespresd application, such as the Poisson, a more

efficient procedure is sought for,

5.3 Truncaetion on the Right

Let the set A, referred to in section 5.2,
consist of the values d+1; d+2, ... where d > 0 1is a
fixed integer called "the truncation point", "Permissible"

values are then O, 1,6 2

4

, eeey d, Let X be a truncated

’

Poisson random variable with parameter A , and taking

on values x =0, 1, 2, ..., d with probabllity
2N coyee sy d
P(Is\a) = € A 3;’ S )
F(a) « >o
where ‘
NS (8)
Fd) = ) e A

Tr=0 T\'
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We shall now prove that an unbiased estimate
for the parameter >\ does not exist in this special case

of truncation on the right, For, assume that an unbias-

’

ed estimate for A does exist, and is denoted by
X(x1, cees xn), where X,, ..., X, 1s a random sample
of size n taken from the truncated Poisson distrib-

ution (7), Then the joint p, d. £f. of x,, ..., x 1is

m 1’m n
""MX X 4
< [ l A ;E_ BN )
i=r o oxild € 2; (
T=0 Tl
so that
y 2 -m\
D ) Mo T \A
Xy=0 X =0 C=t _ >\
NN A
> <
T=0 1l
Simplifjlng, we have . "
Z Z \(Y‘) : |Ym‘ l ] >\ —_ >\ Z }_\__ (1o}
L= Y‘\ “~=0 T\-

I,N\—-O
The left side of (10) 1is a polynomial of degree nd
in A, while the right side of (10) 1is a polynomial
of degree (nd + 1) in A, This implies that the

md+1
coefficient of be zero, that is, that

()

be zero, which is of course impossible for finite 4

and n, Thus no unbiased estimate exlsts,

Moore {:52-] has suggested a simple estimate

for the parameter ). From (7) we note that




-
d IN
— x
PAET RSN
=\ N
ef\'}j
\

i

-]

x
L]
-1 0

X=o
If, from & set of observations from (7), we have n_
as the number of x values observed, and n, the total
numbar of observations, then we may select, as an est-
imata of A , the quantitv

d-t
Z X My
2 Mx

=0

Moore [57—] has obtained an expression for the mean

and varliance of th’ namely,
wa N — (Z POxy X\) (Z*P(* »
_ \ _ A=o (n)
M) = ¥ .
m ( P(x3>~))

and

Z_'x plxy N) — ( Z_xpfx )x))
V{\M} = x=e -
ZZ,FCX3\)

=0

M,

where we have defined p(x;\) 1n section 2.2 to be
A\ X
PGN) = € >\/1\

It may be noted from (11) that )\m has & blas which

decreases as n increases, An estimate for the var-

iance of>\ m? V{)\m} is

4
Z xi ‘M’L Z‘XMXJ
< 2 - X=8
x - . WY

[ 2]
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A meximum likelihood procedure for estimating

A is given by Cohen [ 3 J. From (9) we have the

likelihood equation, which in slightly different form, is

Sy x| M=
L= L Goyoryem) X)A) = .T_r x
, e [T =
Thus B%L Zi LL__EQQ} )
Xao F(3)

Setting (12) equal to zero and solving for A gives
A

the maximum likelihood estimate, X , that is,

T = % T
-¥(d\.i
where X is the sample mean, D x n, /n end F(d)
x=b

is defined in (8), Cohen [lB] provides tables of X
as a function of X and d, for \ from 0,005 +to
14,5 and d from 1 to 34, with X given to 5
decimal places, When x and d are siven, X 1is
obtained accurately from the tables by lnverse linear

interpolation,

Substitute (8) into (13) end obtain

_ T 4l
x \)\ :T = O (V)
X=0o

a polynomial equation of degree 4 1iIn »x having exact-

A
ly one positive root, If a more sccurate value for X
1s desired, (14) wmay be solved by one of the several
standard, iterative methods of determining roots of

polynomial equations,
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A G
The variance of N , say V {)}, is found to be

ViX] e 200

(r))
F(A-.)[ag(d) +Np(d Q)]— AF(d) p(d-15))

where

Y4(N) =

where p(d;>\) = e'xli . Cohen [\3] provides a table
d

of the variance function de(X), as a function of A
and d, for d =2 (1) 1k and A going from 0,001
to 15,

Murakaml, Asai and Kawamura [53 ] have also
obtained the maximum likelihood estimate X for this
particular case of the truncated Poisson distribﬁtion.
They suggest the use of nomogrems for obtéining X ,
given x and d, However, their approach does not

A

offer as accurate values for A as thet of Cohen {l3 ].
Murskemi, et al [ 53] examine the relative efficiency

of Moore's estimate, )‘m’ compared to the maximum
likelihood estimate X . They determine an approximste

expression for V(\,), and using 1t, determine the ratio

A
RRIWAIW
For given r =1 (1) 10 this ratio ié plotted as a
function of A , with N\ ranping from O to 10, They
conclude that, although the veriance of the maximum
likelihood estimate is smaller for all r than the
variance of Moore's estimate, the ease in obtaining the

latter outweighs the advantares of better efficiency,
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However, the tables provided by Cohen [ 13 ] permit one

A
to detarmine A quickly end accuretely, and so, the

conslistent and asymptotically efficient maximum likeli-

n
hood estimate, A seems to be preferable 1n this

2

particular case of the truncsted FPoisson distributiocn,
5,& Truncation on the Left

Let the set A, referred to in section 5.2,

consist of the values O, 1,2, ..., ¢ where c > O,

’

is a fixed integer called "the truncation point".

"Permissible" values sre then c+1, c¢c+2, ,,, . Let X

’
be a random variable having a truncated Poisson dis-

tribution with parameter X and p, d., f.

N x
e \,\ Xmeaea ey

P% (1>\>)°) = \so
|- F) | x! >
where £ [ ] )
Fle) = Z e"\”};
T=o T\

A simple procedure for estimating x is given
by Rider [QB] . Let a random sample of size n be

taken from (15)' and let n_ be the numbers of x

values observed, x =c+1, ¢c+2, ,.. . Let N be the
totel number of the observations, assuming that we have
sampled from a complete distribution, and that the ob-
servations actually observed form only a part of the

"complete" sample, Defins

T = zz_J“x (\)
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00

—T\ = Z 'xMx ()
K =cCry
oQ
and T, = Z X My \18)
‘£—<+|t
Also let T = NZ\)CT;M + T (1)
TZO
T = N2rples\) + T, a0}
T=o
[
and T;\ = N Z_'\-x\)(«r;\\ + T, (21)
T=o0

. SN |
where p(r;A) = e " \'/r! . Then we may tske T, /T,

and T,'/T ', to be estimates of A and >\+>\2,

respectively, Thug _n\:= \,T;I (21)
and Tz\ = (\-\- \I)To‘ , (23)
Substituting (19), (20) end (21) 1into (22) and
(23) gives ‘ M\ C
T-XT. = Ne \,\ )
(c-\—\)i.
+ -—>\\C+|
T - ()\*XB'—]—; = Ne / (\+c+|) (25)
\
c.

Solving (2L) and (25) for A glves us Rider's Les ]

estimate T, - (Q_‘_\) T,

N =

T\— C.—r;

This estimate has the advantage of being easy to obtain}
however, it has the disadvantages of being blased and

inefficient,
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Tate and Goen E"77.] mention a simple estimate
for A, Let
Ué(x) = 0 X =c¢+ 1
b d XxX>c+2

=t

N
Then an estimate for A\ is Vc(x1, cees xn) = % ;E_Ub(xi).

For the special case when c¢ = O, Vo(x1, cees xn) is

Plackett's estimate, )\P’ which shall be considared

shortly, The estimate Vi(x,, ..., x ) 1is superior to

Rider's estimate, N gs» for two reasons, It is unbiased

snd slimpler to compute,

To obtalin the maximum likelihood estimate of

A
A say A , we note from (15) that the likelihood

?

function 1is o My

X
N\
= Ayt y A >\)C = TT €
\_ L( ) ) w\ X =CHt K_I_F(C'{l 'z:\‘

so that 3l _ x I— Fle-t) 27)
T 2 [—X e

X = | - F(C)

(26

Equating (27) to zero, we asrrive at

£ = N (-Fea) /(\-Fcc\) (28)

xNy
where 2
x = M ™
X =yl

The case of truncation at zero, that is,
where ¢ = 0, 1s especially important, Putting ¢ = 0

in (28) gives

A
N ‘ (29)

...\’:o
| — e

Rr]
f
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David and Johnson X;Z\ ] derive (29) and maintain that

" it does not seem possible to obtain an expliclit express-
A

fon for A, ", and imply that tables would be helpful,

Irwin [ H3] derives an explicit expression

for \0 from (29) 1n the form of a Lagrange series,
First N I
N, = X- e

. and by Lagrange's expansion, =

z N -2x o -T%
No=s-xe +% de _ 4 ()E 4 &,
2! dx + azx™
(78]
T~/ =x\T
i)z
T=1\ 'I'l-

Using Stirling's Theorem Irwin [‘¥3] demonstrates that
the series is convergent for x > 1 but only satisfact=-
orily for x > 2, He illustrates the applicability of
this expansion by obtaining XL from data given in
Finney and Varley [_26 ] on the distribution of eggs laid
In unopened flower heads of the black knapweed by the

Knapweed gall - fly,

Finney and Varley [ 26 ] meintain that (29)

can be solved rapidly by iterastive or interpolatory
A
processes and a table for direct reading of )“ and

N V(X.) as functions of % could sasily be constructed
4
where N 1s the total number of observations snd V(\,)

A
is the variance of xb .
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David and Johnson [7-\ ] and Rider [‘08] have
provided tables for solution of (29) but thes= tesbles
are inadequate, Cohen [ “*] provides adequsats tables
for solution of (29) for

x = 1,0005 (0,0005) 1,005 (0,005) 1,250
(0.01) 1,75 (0,05) 5,00 (0.1) 11,0
end 11,0 to 12,5 .

Linear intesrpolation using the tables offers accuracy
to at least 3 dscimal places and usually L. A folded
scale chart of & = X =N\ as a function of X 1s civen
when a quick solution of (29) 4is desired, By putting

¢c =0 in (26) we obtain

-2
FomL _ _M{i"__ e

NS N (e ™Y

- A
Thus, an asymptotic expression for the variance of Xc,

v( )I\\u) is

i\

Vi) = — w A LX)

E{ BI_M} "
i3S
where ’)L(}\\ _ ( |- e—\)l

L= (W) e

Also, it 1s easy to see that

N2 VW) = 2

. M m
Cohen [\4-] gives a table having 7L ()\) tabulated for

)\ renging from 0,001 to 14.5, and a graph of LX)
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plotted against >\,

Two relatively simple methods for obtaining
an estimats of x for the case of truncation on the
left with ¢ = O, are due to Plackett [ 60| and David

b

and Johnson [2\-}. Plackett suggests using the unblased
> o4
estimate
\P = 2 X M (30)
’ x=2 m

The efficiency of PN P is always greater than 95%, and
the estimate 1s exceptionally easy to calculate, The

variance of X p can be shown to be exactly

VO = (O )

An unbiased estimate for V(\P) is

( mhp +2m,_> /M"

David and Johnson [_1J-1 suggest the method

of moments., Let M1' and M2' be the first and second

population moments about the origin, respectively, of a
Polsson distribution truncated st zero. Let m,', ma'
be the corresponding sample moments, Then

M= 2 x S S o

-\
=) (-e™) x! \-<
o N\ X 2

x=t  (-eM)x! (1-e*)

o0
ol = O s

x=\
——————/

m
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7<)
\
E 2
and My, = XMy /JY\

x=1

Solving (31) and (32) simultaneously we have

\
= M
M.
which suggests an estimate for )\, namely,
N o= m
)

\a)
An spproximation to the variance of N+ 1 is

VO] e Aealloe)

m

An approximation is also made of the relative efficiency

W
of the "crude" moments estimate x compared to the
A

maximum likelihood estimate A, . Their ratio is
V{)‘q ﬁ X (e_\_|)
V(R (M2) (™= N=1)

David and Johnson [:2\] evaluate (33) for a few values

133)

of N and obtain values ranging from 0.72 to 0.87 .
- ‘
Of the two simple estimates for A ’ )‘P and )\ y

Plackett's )\P is superior,

The most desirable estimates for parameters
are unbiased, and have minimum veriance among all un-
biased estimates, Tate and Goen [ 77 ] have derived
the uniformly minimum variance unbiased (U, M, V, U,)
estimate for A , for the general case of the Poisson
distribution truncated on the left at ¢ > O, However,
they only provide adequate tables for the case ¢ = O,
A limited solution to the case where ¢ = 1 1is also given,

Thelr development follows,
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Let X be the truncated Poisson random vari-
able having p., 4. f. given by (15) and characteristic
function denoted by ¢ chx). Let X1, cesy Xn be a
random sample of size n from (15) and let

T ':'i\(." t34)

v

It is easy to demonstrate the completeness of T, as
well as its sufficlency for the family {p(x;)d} ,

defined in section 2.2 . According to Tukey [81 ],

T, 1is also sufficlent for the family {p*(x;x,c)l .

Treat the case ¢ = 0 first. The character-

istic function of T_, denoted by K.(+)1s

Lo (4) HJJ)]M

LcdX—- )\

,_er

(\—

I

M

I

" " —\- ?Xe
(e

%_‘ o
(e ) k

Now, the p, d. f. of T, denoted by p,(t), can be
obtained by the inversion formula for characteristic

functions, as follows

—tdt
p. () = — Y. () A<t

AL




NHD N B

et—1 ﬁ=° w
(= Y (RN
a ( e;—\) ?;;: ( a) A 'Bq:r_
= >\tm \ S(’t)m) ‘L‘.f-m\m“).. . (34)
(Q)—\)MJE‘
where \\ L ( )("‘W t= myma, e
S(t\m\-: ! 3=e (37
o tiem

S(t, n) defines a Stirling number of the second kind,
Jordan [LW-] and Riordan [ loq] define Stirling numbers

and also establish the two following relations
S(t\m\ = S ({;—l).m-—l) + om S(£-1 m) (z8)

t
and | S(!:-\-\\m-\-\) _ % <§) S(’b,ﬂ\) (x9)

A
Now, suppose that N\.(t) 1is an unbiamsed statistic for A

based on T,, then since T, 1is a complete and suff-

icient statistic for the family {p*(x;x,o)l , X\o(t)

1s unique and has minimum variance (Lehmann and Scheffe

(4 ]). Thus

Z \;\Ao(\'-) /\tm\. S(‘t‘m\ - N (40)

tean £l (e
But (36) implies that 00 ,
()" Z N ! SC )
t=m \

]

so that (L40) becomes

=~ tt
D Xe X st - Z St ») (o
t=m 4l ton tl |
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Equating the coefficients of >\t in (L41) and using

(38) results in

N =t Sk - % ( | S({:—t,m\)
M

St m) S(t\-m)
- t_ C(M)‘\:) (42)
M
where C(M{\Z) = | — S-<'i:.‘) ) (u3)
SCE, m)

From (43) and Miksa[ 50] 's tables of S(t, n) for
n=1(1)t with t =1 (1) 50, Tate and Goen [ 77 ]
offer a table of C(n, t) for n=2 (1) t -1 with
t =3 (1) 50 correct to 5 decimal places, For large
t, that is, t >>n, Jordsn [44] and Riordan [bq ]

show that S{t, n) can be approximated by nb®/n! , making

) » t {\ _ (a—_‘f‘"] (uny

M xnt

The approximation (lLl) is satisfactory for 2 < n < 15
and ‘'t > 51,

v 2
If the variance of A.(t) 1s denoted by € o

Tate and Goen [77 ] have proved that

2
AN(1-e
( >, o< L

- N
m (\~e’)‘— b e—)) . e

(m__f\i__
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We shall now continue Tate and Goen | 77] 's

development for the case when c¢ > O, The statistie, T

c,
defined in (34), has characteristic function
cdx=X\ >\x m
Yo - [ 2
X = (\-—F(<)) x\
N e m
—mA Ve {ax | %
= & e - 2 e A\
m —
(I-—F(c)) xX=o I\.
Using & similar method to that used in the case where
¢ =0, we obtain the p., d, f, of t, p,(t), to be
t [\
Pc(t):: Ml. )\ S.M)t 't:m(t-h))./v\(gq,ﬂi-l).u (45)
< m
) X
T=o 1'!
where g
c £, t‘ZT£T+l
S, et PR CT R N
mk = ‘ (u6)
M

{‘! %‘ﬂ\‘ (tﬁ zT%Tkt) lﬁ(‘r‘ )ﬁﬂl

T30

where k, =0, 1,2, ,,., n with 1=1,2, ..., c+2
t =n (c+1), n (c+1) + 1, ...
and the summation is taken over all k4, ..., k such
c+2

= o -
that k; + ...+ k  , =n. Note that S, = S(t, n).

Along the lines used in the ¢ = 0 case we
obtain the following expression for the U, M, V, U,

estimate of X

({:) _ t Sm,t-\ 41}
Sot

>3

[
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Jordan [:”4] defines

3p-t
Coi = Dy (39‘-‘ S Gy-e) (g
é'-'?w Ja

and proves that

= C + (£-1) C
C‘&wn,‘t-'lm =M 't-m—t)'t-'lm- \ ( ) t-m—!’t—-lm
This recurrence relation permits one to tabulate the

T From (L46), (L48) =and (37) we have for c =1,

| —
SJV\)t - C'\:—M)t—lm

Thus for ¢ =1, (47) reduces to

p,iL °

|

Y. (t) — _t Et—m—\,t-l.r::'

C t“M) 't ——L-I'\
A table in Jordan enables the estimation problem to be

solved for n=1,2, ,..,5 with 2n + 1 <t <n + 6,

More extensive tables of C are required so as to

p,1
\A .

permit evaluation of \,(t) over a greater region of

n and t, No practical solution seems likely by this

method for ¢ > 1,

To conclude this section we present Roy &nd
Mitre |10 ]'s derivation of the U. M. V. U, estimate
of 9+‘ when © is the parametsr of a p, s. d. truncated
on the left (the complete p, s, d, 1s defined in section
L. L), To conform with their notation let the truncation
point be 8 - 1 instead of ¢, Let X be the random
variable having the power series distribution (p. s, d,)

truncated on the left at s - 1. <Yhe p. d. f. of X 1is
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P{ X = } - =8 X=SiSH, (49)
£s (8)
where ‘(S(e) = Z_&(x)ex
x=s

We notice that the truncated Poisson distribution (15)
has this form when © =X, s=c + 1, a(x)=1/x! and
fs(e) = ex [1 - F(c)] . By similar arguments to those
used in section L, the U, M, V, U, estimate of a

-+

positive integral power of the parameter, b 1s

u T) wher
I’,s( ) e Cs ({"'\'\M) t > MS4+T
(8o)
“‘r\s(‘t) = Cs(t \m)
o t o msar
m M '
where T = -Ei_xi and Cg(t, n) = :z; Ijha(xi) with
the summation ;Z; belng over integral values X4, ...,X,
such that x4 + x5, + ... +# x, =t and xy > s, It can

be shown that m .
Caltm) = aZ (-2 (;‘) {“S‘”}g Csa (f—@fs-ﬂ, m—a)

where C. (t, n) = C(t, n). Thus (51) enables us to
evaluate C,(t, n) for all s, t and n, although it
certainly appears to be a tedious chore for large s,

For s =1, thet is truncation at zero, (51) reduces to

C, tom) =i(-'\‘5(‘§)C<t,m-g) B
X:o

where C(t, n) is defined in section L.,L ., Applying

the theory to the Polsson distribution truncated at zero,

(1)
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(52) simplifies to m
M-+ ‘t’
C\C‘t‘JV\) _ .—\— Z (—\} —b( ‘N\),a (s3)
‘t\. %':—l 3

Roy and Mitra {'70 ] have tabulated uy 4(t) obtainable
. b
from (53%3) and (50), for n =2 (1) 10 and t =2 (1) 96.

Note that wu, ,(t) is the U, M. V, U, estimate of N,
s

\a3
and is identical to Xo(t), developed by Tate and Goen {77].

We are now prepared to suggest a procedure for
estimating )\ when the zero class is missing from the
Poisson distribution, Use the U, M, V, U, estimates,
w
N.(t) and u1’1(t), whenever possible, that 1s, when

1 <n< with 1 < t < 50,

'v

n=+%t>51, Use \o(t)

n =1 with t > %1,

or

]

n=2 (1) 10
Use u1 ’1(t) .

t =2 (1) 96

For the regions 2 €« n< 15 with t >51 and n > 16

with t >> n use either the asporoximation

e - - (&__\_)t-‘

m M

or the maximum likelihood estimate Ne , obtainable
from Cohen [|4.]'s tables. Outside these regions, use
XL, if the tables permit, and Plackett's estimate, >\P
1f they do not, If no tables are available, Plackett's

estimate is recommended,
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Chepter Six

Censored and Other Specilal Poisson Distributions
6,1 Introduction

Censored Poisson distributions have not been
as thorouchly investigated by statlisticlans as the
truncated Polsson., Among the main topics in this chap~-
ter is Hartley | 4°]'s iterative maximum 1likelihood
procedure for estimating the parameter )\ In a most
general case of censoring, The maximum llkelihood ést-
imates of the parameters of two special cases of the
truncated Polsson, as well as a modified Polsson distrib-

ution, are dealt with,
6.2 The Censored Poisson Distribution

Let n_ be the number of x values observed
In a random sample of fixed size n from a Polsson
population, Classically, this is a "censored" population
1f the numbers n_ are each known for x <€ ¢, and are

°0

unknown, except for their total number, 2; n,, for

L=CHl

x > c, where c¢ 1s a positive Integer called the "point

of censorship", Hartley [ Yo ] deals with a more general

situstion which he terms "grouped frequencies"

censoring,
Here, the entire population is divided into mutually
exclusive grouvs of frequencies, If a random sample is

teken, only the total number of observstions in each

group is known,
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We shall consider those discrete distributions

having maximum likelihood molutions in the complete case,

Since the

complete Polsson distribution has a2 maximum

likelihood solution the treatment given applies to the

censored Poisson distribution, Let us introduce the

notation,

Suppose that the entire population of the

discrete random variasble x 1s divided into G groups,

labelled by g, where ¢ =1,2, ,.., G, and that the

values of

j=192’
and
where/ A
varisble
Let

the g-th
and

X 1in each group are labelled by j, where

see o Let A . "
Flgy W) = Ple-itadpr el
_'F(‘})}\) = %{(3,3)\] = Pi*xe ﬁﬂw‘}

i1s the parsmeter of the discrete random'

x, and Z; is the summatlion over all j,

(v

3
Ng = total number of observations in g-th group,
cnjg = ¢c-th estimate of the j-th freguency in
group

n = thg total number of observations, so that

n = %;-N%

Hartley [:40.] suggests the following procedure for ob=

A

taining the maximum likelihood estimate of N\ , say N ,

1. Inspect the group frequencies N and estimate

g

roughly the values oMgs of2gs e for each g,

2, Using

the compute an initlal estimate, 1X,

o"ig

of the meximum likelihood estimate A , using the

maximum likelihood solution for the complete case,

For purposes of 1llustration, if the parameter A is
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‘estimated by the mean in the complete case, we have

\}\ = Z_ x omiz (q_)
% .

mMm
where the summation, zl , 1s over sll arrangements
%
of 3 end g,

3, Using, 1X, compute "improved" estimates of the

individual frequencles, say, 1nog’ 1n1g, 1n?g, veay

lng.a = N% ‘F(a,j')\X)
F(%)l\\

i, Using the 1 4g compute en "improved" estimate of N

with

, say , A with N Z .
m

5. Repeat the procedure until there is little change in
the CX, The final value for N\ is an spproxima-

tion to the maximum llkelihood estimate .

The proof that this procedure yields the
meximum likelihood estimate is similar to the one given
by Hartley [140] for truncated distributions described
in section 5,2 , Again, we denote the parameter by B8
to distingulsh the proof from the procedure, The max=-
imum likelihood equation for the "grouped frequencies"

situation is G

(0
Z N‘& F (%')e) o (3)

where




T2

Define suxiliary random variables by
F(%‘)e)

()

"
Detecting that (1) 1implies
\ e,
‘ F()(%')B) = Z“C )(3)%9)
3
we may rewrite (3) as
. (O VAN
Z Z‘Ma% —( )(3)%)6) = O (5)
LA £(4:9,8)
1((-»(6.‘3,)9) - éf(}‘\i-]e)

where

)
Now (5) 1is the maximum likelihood equations for a
complete distribution having observed frequencles, nj g
with n = Zi:;i,nj o Thus, the procedure outlined, 1if
it convergel, 1111’§1e1d solutions to (L) and (5),

and so, to (3),

Murakami, Asai, and Kawsmura [:53-] examine
maximum likelihood estimation in & classically censored

Poisson population, Thus, the n, are known for x <€ ¢,

and only Zi n, is known for x > ¢, Let the Poisson

L=CHy

random variable x have parsmeter x‘, The likelihood

function for this censored case is M-m

[o ]
[
e 1 ]
< X=zo ol L=C+y
where n'! = Zi n, and n = n,, and of course,

X=o x=o

plx;N) = e \*/x! . Take the natural logarithm of
(6) and differentiste partially with respect to A\ , to

arrive at
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<

N €
é%_“_‘: = Z XMy _ M +(M'J“‘)e \/C\

5)\ xX=0 T Z‘”_e—))”‘

L= ekl xl

N

e ng = gives us the maximum e 00
Setti 3L 0 gi h fmum likelihood
DN

equation, which turns out to be quite complicated, To
LAY

say P nomograms are con=

obtain a solution for A ,

b

structed as follows, Put

x=0
m

where N —XX‘ l
’)L(\)C\) = % ..)“\/«Cx'
€ A
S X=ER !

\

and = M=-M

= e

Now, for a given fixed value ¢ and several different

y
fixed values p, grephs of g vs )\ ,may be construct-
ed, This has been done by Murakasmi et sl [_53] for

e =1 (1) 10,

Moore's estimate, A m» discussed in section
5.3, may also be used as an estimate of N in the
classical censored case, Murakami et al [ 53] obtain
8 slightly more accurate expression for the variance of
Nyt s V(Ay). They plot the ratio V(R )/V(\y) egainst A
for ¢ =1 (1) 10, For small A the efficiency of A M
is high, but for larger A , X M is considerably ine-

efficient,
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6.2 Two Special Cases of the Truncated Polsson Distribution

Let X be a random variable heving p, d, f.

-8 x=e
?5(1 Y8 N) = 5e "\ X =42, (@)
(l—éA) x !

where N\ > 0 and O < B <1, For example, consider the
distribution of biologlical organisms among colony sites,
where no migration occurs between sites, Assume that

that sites are distinet and countable, and that each has
constant probebility © of being selected, Once a
site‘is selected, assume that the number of organisms there
is a truncated Polsson distribution with missing zero
class and pargmeter >\. Then the random varlable, defined
as the number of organisms counted 1f & single site is
selected at randon, has the distribution represented by
(8). Note that when ® =1 we have the truncated Poisson

distribution with missing zero class as a special case

of (8).

Cohen {_IS 1 demonstrgtes a maximum likelihood
approach to the problem of estimating the parameters X 
and 86 of (8), Take a random sample of size n from

(8), and let n_  Dbe the numbers of zeroes observed,

and n", the number of observations greater than zero,

so that ng + n* = n, Then the likelihood function is
m M* m* ~>\ >\xo'.
° e

L= “e;\) XJ
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Taking the natural logarithm of (9) and differentlating
with respect to X , and equating to zero, gives
m¥
-\
¥ ¥
}.@&:— m + M e_)\ -\—; X =o0 (10)
2\ \~-e <=1 hY

Taking the natural logarithm of (9) and differentiating

with respect to § , eand equating to zero, gives

¥
hf&g: = M _ Mo ) )
36 ® (1-8)
Solving (10) for the meximum likelihood estimate of X\,
A
A we obtain o _ \ 12)
(1= e™™)
m"
where T _ ZI'-
=\
N\’

Solving (11) for the maximum likelihood estimate of B |

A

© we obtain *

A
5 = M
m

Equation (\2) is identical to (29) in section 5.4

and can be solved for given x¥ by consulting the tables
in Cohen %], Cohen ['5 ] fits (8) to data from
Beall and Rescia [ 3 .1 (the number of European corn -
borers on small unit areas of a field as observed in 1937)
and demonstrates the superiority of (8) over the

complete Poisson distribution in this case,

Now, to compute the asymptotic varisnces of
A A
N end B , note that
bl'&/\L - /{\‘v My

der Bt (1-e\*




BzQML _ M* [ Zav _ e—\ jl
AN N (-eM
and 3L - o Ll _ o (3)
36 O\ 3% %8
Then V{ék w B8(i-8) /m
and Vi /\Mg w X KON /E{m*}
where Eim"‘ = m8 and L\ = (1~ e ™"
i'~ o= () e

n

From (13) we see that © and A are asymptotically

Independent, It is also easy to see that
RS s\/{%‘] £ 22
mo mBe

Let X be & random variable heaving p, d, f.

/ o x=o
( \-g)xe_‘\” N = .
Alxy \e) = { I-e(ired)
e M NE =23,
\ (1- o )Y e")‘) x!

where A > 0 and O <® <1, With B =1, (1) 1is
the p., 4, f, of the truncated Polisson distribution with
missing zero class, As an example, let a random vari=-
able be the number of insect eges per nest where each
nest must have et least one egg. Due to faulty observ-
ation, a proportion of ones, say B , are overlooked
or ignored. This random varisble than has the distrib-
ution given by (14),

Cohen l:’é-] obtains the maximum likelihood

A

N
estimates for N and 8, A and 6 , Take a random

semple of size n from the population, and let n1
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be the number of ones in the sample., The likelihood

funetion is Ny
_.\ X

-
L(x\... I.M‘\ 6) = (l—e)e >\ —\_-:[ e !
LR - e (146N X\
[\ —e (\+a)\\] xt)

where ‘*i is the product over all x4's such that

x; > 1. By setting }f&ﬂ:' and bl each equal to
-2, )

zero, we obtain the maximum likelihood equations for 8

Y
and A My (l-e) e A us)
m - (14 a)\)
- »
and mx _  €-6 (1e)
] \-9
M
where X = ‘Z‘_x;
m

Let n* be the number of observations greater than one,

so that n¥ = n - ny. Solving (16) for 8 pives us

A

the meximum likelihood estimate, 8

- by
é an-—m\ﬁ ) ()
- M* ‘i‘k
where S
X* - ;Z.Xwa
x=2
fn*
where n is the number of observed x values, Sub-

X
stituting (17) into (15) results in
-2
sx. o) ) N
l— <> (1+X)

A
It is Interesting to note that N is independent of

the number of ones in the sample, Thus, if some ones
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are known to be missing, the maximum likelihood approach
ignores the entire class of ones, To evaluate (18)

for A Cohen [ ”0__‘ has tabulated b(A) for

L
A A

N =0 (0.,10) 13.900 with b(X) given to L decimal
places, For quicker evaluation of N & folded scale
graph of £ =%* - XN as a function of x* 1is plotted,

Only a slight sacrifice is made in sccuracy, Now, e

may be obtained from (17).

Using standard procedure, Cohen [-‘b-] obtains

N

an expression for the asymptotic variance of A

ly V{X\E w }\_‘ L ON)

M 2
[\— e \+\)]
( l-—- e——>\)7.—_ \2. e")‘

, hame=

where —\{ ( M -

Cohen [H,] tabulates ')(,'()\) for N =0 (0.1) 1.0 (0.5) 5 (1) 10
and 15. The distribution (14) 1is fitted to data from

Varley giving the number of gall - cells produced in the

flower heads of the knapweed by larvae of the knapweed

gall - fly in 1936, and a satisfactory fit results,
6.4, A Modified Poisson Distribution

Let X be & random variable having p., 4, f,

[ Q#X(H-e)) x=e
(1-e) \e x=1 0a)
w('x-) X\Q) = RN )\'x
e xX= 7_\3)...
x|

where AN > 0 and O <8 <1, As an example, let a
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random varisble be the number of defscts present per
given unit, znd let B Dbe the probability of misclass-
iIfying an item containing one defect by considering 1t
as containing no defects, Then this random variable
hss distribution (19), For B = 0, (19) reduces to

the complete Poisson p, 4, f. .

Cohen [ 17 ] determines the maximum likelihood
estimstes of N and ® , say N end & ., Take a
random sample of size n from the population and let

n be the number of zero observations, and n1, the

number of ones observed, The likelihood functlion is

- e ™ AT
L = [e x(ue))] [(l-e)ke ] U e 2\_

x:

where -ET is the product over all x,'s that are greater
than one, By setting L and 3%l each equal
AN ¥e

to zero we obtain the maximum likelihood equations

M
:ijc
=1

+ Mg e _ Mm = o) (20)
PN l+e)\
moh(1+eN) — _Mm - O ()

(1-8)
Eliminating © from (20) and (21) gives

\"-—<§—\+J1o_‘)>\—(f—ﬂ)=o @)

m 0

M .
where X = £2| x; /J“

Simplifying (21), we have
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~

5= (me=m/y) (23)

Mo + M,

Solving the quadrstic (22) for )~ gives
N L[ 314+ e LI 2 - (2
A = = —= | + <x-l+J_v_\3]+“(’°“’.“_*_ '+
2 N 2 m M

A
The estimate € may be obtained by substituting (2L)

into (23),.

Cohen {_r71 determines the asymptotic

variances and covariances
m( L+ N — € )

-
V8l w (e)(ived-pe )
% } axe (s >\—e'>)

and Coraniomea (X\é) W (1-o)
M( I+ N—-e”

)

The distribution (19) 1is fitted by Cohen [ y ] to
data from Bortkiewicz [ ' ] on the number of deaths
from the kick of & horse in ten Prussian Army Corps

over the twenty years 1875 - 189&7 after the data is

sultably sltered,
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Chapter Seven
The Pascel Distribution
7.1 Introduction

'In section 3,3 the Pascal, or negative -
binomial distribution was introduced and several of its
properties developed, The Pascal distribution is an
extension of the Polsson series 1n which the parameter
of the Polsson distribution is not constant but varies
continuously with a distribution proportional to that
of chi - square, In more formal language, the Pascal
random varieble is a compound Poisson random varlable
with respect to a chi - square or a gamma compounder,
Undar certaln conditions it has a limiting Poisson
distribution, In this chapter, point estimates of the
two parameters, k and p, are obtained for both the
complete Pascal distribution and the ftruncated Pascal
distribution, Once these estimates have been obtained,
the expected frequencies may be computed usling the re-
currence relation iIn section 3,3 , Thus, the two major
problems In fitting the Pascal distribution to observed

data are solved,

7.2 Two Simple Methods of Estimation for the Complete

Pascal Distribution

From section 3,3, we notice that a Pascal
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distribution with parameters k and p, and probability
generating function (p. g. f.)
-%
(x-72)

where % > 0, p>0 and g - p =1, has central

)

)
moment s P\=’ﬁ?

pa' = g (R p o]

The method of moménts estimates can be obtained as follows,

and

Take a random sample of slze n and let nX be the

number of x veslues observed, Let the first and second
AN

L)
sample moments, M and M., be

=)
Al - Z ')CM
/A‘ - =a * /m
o0
Ay
and }& = ; Ilmt /
™
A ("
x=o

“ w
Then the moment estimates, k end p, are

w G

4 = ki (2)
AL ALY A
M‘L - /L\\ - Nl

end

o5
1
hs

/ ) ‘ (3

Bquation (3) 1is a fully efficient equation of estima-
tion, Anscombe [ | -] has shown that the efficisncy of
(2) 1s at least 0.90 for 1) small velues of kp when
p < 1/6, 2) 1large values of kp when k > 13, and

3) moderate values of kp when (1 + p) (k + 2) > 15 ,

ot

b

A%
He also shows that the large sample variance of k 1is
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Vig] w &G P A)?

Ay -
'

A second simple method of estimation is the

method of the zero proportion, Let n, be the number

of zeroes in the sample. From section 3%,3 we hsve

P = %'%

(4)

and ﬁ,\‘\ = '@P ’ (si

where P i1s the probablility of obtaining a zero,

o

Equations (l4) and (5) suggest that estimates, say
v
k and 5, may be obtained from

v

ﬂ,em(u%_):ﬁ,a(ﬁ-) e

o

and : ﬁ = X / v 7

Equation (6) may be solved by iterstion. Select a
trial value for k such that the left side 1s greater
than the constant right side, Then, seleét a trial

value for k such that the left side is less than the
rirht side. Interpolation between these two trial values
gives a first spproximation of ﬁ. The orocess may be
repeated to obtain any'aesired accuracy, For efficiency
at least 0,90, ng must be greater than or equal to

n/3., Once K 1is obtained, 5 is determined from (7).
Anscombe [ ‘ ] has shown that the large sample vari-

v
ance of k is -

V{‘é}‘&_\ (\-R) —-‘ﬁR—|2
m\:_lm(l—R)-—R]

where =
R _——
R+ =

|




8l

T.5 Maximum Likelihood Estimation for the Complete

Pascal Distribution

Prom section 3%,% we note that a random

variable x having the Pascal distribution has p. 4, f.
x —-H*-x
P - (%»(x——\) P 9 X =02, 8)
x T X
where p > 0, k > O is an integer, and q - p =1,

From (8) we have

%@j& X (& yx) (N
b\: P 1+

a0 B dller-0) A8 (Nl B ()

Y Ok a%
= F('%nc—\) - F (’e’\"‘) - "QM(H—P)

_‘{; _ﬁ_L 4o +ﬁ\ — D (1p) (10)
PRV
d da

-

where F (%\ _

(i

a2

Take a random sample of size n from (8) and let n,

be the number of x values observed, Then, the maximum

A 4}

likelihood estimates, p and k are the solutions for

b4

p and k, respectively, of the following maximum

1ikelihooq°equations Z -
) xm + Z My
> a5 &

B ke

i\

x=0 op pC1+p)

- Mm (i—.&P) - O (\2)
p (i+p)
! ,l—— — 4 (12p)
g; T e v

xR

Z Ax T QM (H—\)\ —-a (\3)

=o (%+x)

|}

a2 e Yo
x=o ¥

]

15
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where

Ax = z JV\-x.y.a‘
!

xX=a

[~}
and x = lem,; /Jn

Simplify (12) and (13) to
x=%7
oD

and :E— _1&2__ _ wa,zw <| +

N
X=o ‘Q-\-‘X

()

o) R

Fisher [427] terms the expression
R

) us)
2. = ;E:E Ax - A4~QM.(1 +

(16)
X=o ‘&§+T‘ )

the "score" for the trial value k;. By trial and error,

fr!

i

combined with linear interpolation, a value k, making
the score "vanish" 1is obtained, and this value of k 1is
the meximum likelihood estimate, k. Then P is simply
found from (1l). Bliss [ 7 ] fits the Pascal distrib-
ution to data from Garman [ 3o'lon the counts of red

mites on apple leaves with the parameters estimated using

the maximum likelihood technique and a very good fit results,

The sample mean, E, is the maximum likeli-

hood estimate of the mean kp of the Pascal distribution,
Using (1) it is a simple matter to show that the

variance of x, V(x), is given by

Vi(z) = ®e (p+)
m
A
Now, the varlance of the maximum likelihood estimate k
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i1s the reciprocal of the amount of information sbout k,
where, according to Fisher [27], the amount of informa-
tion about k 1is the rate at which the score (16) 1is
decreasing as 1t passes the zero point, A fast way to
compute an approximation to the variance is as follows,

Suppose that during the trial and error procedure of

I3

obtaining k

s 2%y @&nd Z3,q, 8are two values of the

"score"™ (16), the first, z;, being just below zero,

and the second, just above zero, Let ki and

“141 >

ki+1 be the corresponding trial values of k, Then an
A

approximation to the variance of k 1is

> %i - ﬁiﬂ
Viﬁ} N 2o — 2

Bliss ( T ] maintains that for the cases of "over -
dispension" (that is, cases where the sample variance,
sa, excceds the sample mean, x) the Pascal distrib-
ution is generally more useful than distributions such
as the Neyman Type A distribution (Neyman [54]), the
Thomas double Poisson distribution (Thomas [79]), and

the Polya distribution (Anscombe [I ]).
it
7.4 The U, M, V. U, Estimate of ©

The theory developed by Roy and Mitra L70] ror
power series distributions and discussed in section h.h
applies to the Pascal distribution when k 1s 2 known
positive integer, as in problems of inverse binomial

sampling, Now, (8) has the form of (3) in section L.
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if we let p = ) and
(1 -0
a(x) = [k +x -1
S
and £(8) = (1 -8)7k

Let X4, ..., X, De & random sample of size n from (8)

n m
with p replaced by ®/(1 -8 )., Let T = 2§~xi’ then

it can be easily shown that T has p. d, T,

P(T=t] - (%’“tt-‘) Fa ™ faoe

Then from section L., where C(t, n) and wu,(t) are

originaldy defined, we have

Clhym) = (%mt-‘)

k
and U, () = o Ter
C('l:-’f,m) b2~
Clt,m)
o ke
= £ Ear (e)
I "
Qﬁm+tﬂ}

where t[r] =t (t-1) ... (t-r+1), Then wu_(t), given
*

by (18), is the U, M, V, U, estimate of 8 | where

r 1s a given positlve integer, In particular, the

U, M, V., U, estimate of 8 1is

W) = ° te
t o>y
Rast-)

and the U, M, V. U, estimate of the variance of u1(t)
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using (9) 1in section L.k,

fm-t
(%m+t—&2(%m+t’1)

is

’

7.5 Two Moment Methods of Estimation for the Truncated

Pascal Distribution

In this section, the simplest and most import-
ant case of truncation, truncaetion awsy from the zero
class, will be examined., If (8) represents the complete
Pascal distributlon, then the truncated Pascal distrib-

ution is represented by

x - R-x
P Vo (&Hc—\ ) « ek K= [y (\9)
* T x

(\-¢%)
If the central moments of the complete Pascal distribution

\
are denoted by )**, the central moments of the truncat-

ed Pascal distribution, say po, are given by

/u"cn— - f*\"' / ( - 98.{) (20)

In particulsr, _ .
MLl =-'ﬁ9 /(j\— %.%) (20

pod = Rp Q) /(- ()

<ty oo ] o)

and

Teke a random sample of size n from (19) and let n_
be the number of x values observed, where, of course,

x > 1, Then let




89

> Z
A A ~x*om
Nb] = Z K Mx ,AO’L —X x
-

x=) ~x=\
R
m NL
oD
AN 3
Moz = 2 L M
and )
o ——
N

al N A
Note that Mo, ;Qland Moz &re consistrnt estimates of
p&, Nm: and Mo;, respectively, Eliminating k and
(1 = qg7k) from (21), (22) and (23), we obtain the

moment estimate, ;; for p,

ey a

Ay
- 02 — Mor Mo | (24)
- A A A

Mo — Mo Mas

©s

Now, from (21) and (22) we obtain

Poo o (En)p ! s

ol

Once p has been evaluated using (2y), we may eval-
uate the moment estimate, ﬁ, from (25). This moment
method of estimation 1s simple, yet very 1lnefficient,
due to the Introduction of the third moment about the

origin,

A posslble iterative method of moments, using
Al A
only the first two sample moments, M. and N“l’ follows,

First, we shall rewrite equation (21) in the form

-% 2
- 1 -
1 = =P (2¢)

\
Mo
Take the natural logarithm of both sides in (26) so that

—RIm(1+p) = ﬂn(\—&) (27)
Mo




S0

Substitute (25) into (27) eliminating k, that is,

(niv2) L =;zm(mz e o)
P Mok
where \
m, = |- ﬁ_:_\_g_-a;
Mo
and S, = | - -/_V_V_‘_l_
[\/\o:

Rearranging (28) we obtain

my= P D (me- P/p.:\) - P 129)
L p

Now, the estimate for p, say p, may be obtained from
(29) by trial and error and linear interpolation, in o
similar manner to that used in section 7.2 to solve
equation (6), Once p has been obtalned, ﬁ, the
estimate of k, 1is obtained from (25). This method
ylelds estimates having hicgher efficliency than the first
method of moments; however, it appears to be a rather

tiresome chore to solve (29),

7.6 Maximum Likelihood Estimetion for the Truncated

Pascal Distribution

As in section 7.5 we shall deal with the
Pascal distribution truncated at zero, David and
Johnson [ 21 ] obtain the maximum likelihood equations
for estimating k and p, Denote the estimates by
a ‘

ko, and ﬁo‘ Take & random sample of size n from the

truncated Pascal distribution representsd by (19),
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Let n, be the number of x values observed, Then,

the likelihood function 1is

5° Il = Z’mxﬁm R
o x=\
glving Mnl _ Mx{&&m(&m—d!_ ddalh-nl “Q""j
6{( ’ 'IZ-:\- n d& (\_ —'&\

and BQ/V\L Z.n |
22e s ) xm, | ok
x=1 FOB “[5(\"%'

Note that (30) 1is similar to equation (10) belonging

to the complete case, From (30) and (31) we conclude
A A

that the maximum likellhood estimetes, k, and bp,

are the solutions for k and p, respectively, of the

following two equations

Z_Mx"e‘-(%xx) = L (ixp) (32)

_——ee

m (-¢7%)
% = &p /(\,%—%) 133)

where _
xX = 2 xmx/m
x=\

wa Al Ll
® Q+\+ * Rtx-1

Then by a very difficult iteration process the estimates,
)

A
k, end p, mey be obtained from (32) and (33),

and
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Hartley [l+01 has developed & more convenlent
lterative procedure Tor obtaining the maximum likelihood
estimateg. Suppose that n, is the unknown number of
geroes missing, so that N =n_+ n 1s the "complete"

sample size, Using equations (12) sand (13), related

to the complete case, we define

— (34)
P(%,p) = (mrma)(X-%e)
p(i+p)
and K(‘&,?) = § _é\_x_ _ (ma—mo)QM(U«\:) {35)
x=o (HRex)
where X 1s ths mean of a complete sample of size
n+n, Now, the parameters %k and p, and also ng,

can be estimated usine (2L) and (35), eand also

Mg = M P(D ‘)‘%,P) /(l"" P(O)‘a,?)) - (36)

where ©p(O;3;k,p) is the probability that a complete

Pascal random variable, having parameters k and p,

will teke on the value, zero, -Select, arbitrarily,

s
three "pivotal qusntities", which are simple to work

with, say kX =1, 1/2 and 1/3, For each of these values
of k, repeated use is mede of (34) and (36), as

is 1llustrated for k = 1/2 in the followins steps,

1) 'Let k = 1/2., Choose a rough estimate of n,

say and compute a first estimate of p, say 4p,

2 2 xm,

- L= o

—_—

o%o>
from (3L), that is

P =

= | R

M oM,




9%

2) Compute p(0; 1/2, 1p) from (8), that is,

P(o' '/n.,\ = —-‘—-‘-
‘ P) (\'\-\P)h’

3) Now, compute an "improved" estimste of n_, say

10 from
°’ 1Mo = M P(O') '/z,\P)

\-P(O‘) hy \P)

i) After 2 1/2 cycles of thils procedure have been

carried out, we obtain "improving" estimates of ng,
olps 4N, and on,, Let 81 = qDg - ol &and
%2 = 2ngy - qn,. Now, assume that the procedure
continues producing further "improving" estimates
304 hno’ +ee With associated differences 53,
)5 ++», defined by §3 = 40y = 490, for
i=3, h, ves o Assume that the differences
51 s g;z, 53, ghf ee. Tform a geometrical progress-
ion with constant factor q = 82/51, The sum to
infinity of 83, S}+, ess 18 S2q/(1-q). Thus,
the 1limit of 2P 304 hno, vse, Which we shall

denote by ngy(1/2), 1is
JV\:(‘/‘L) = M * g;%/( ‘_%) (37)
Compute the final "improved" estimate of ng,

no(1/2), from (37),

5) Using no(1/2), obtain a final estimate of p, say

o0
2 )=
x=0

M + Mo('lﬁ.)

o(1/2), from

|

ﬁ(%)



ol

These 5 steps are repeated for k =1 and k = 1/3,
and the correspondinc estimates of bp, (1) eand
p(1/3), are obtained, as well 28 the estimates of ng,
ny(1) and ny(1/3), respectively, For each k and
its corresponding n_(k) end plk), X(k, p) can be

evaluated from (35),., Thus a table may be formed

K plk) K(k, p)

1 p(1) K(1, p(1))
1/2 p(1/2) K(1/2, p(1/2))
1/3 p(1/3) K(1/3, p(1/3))

By inverse interpolation between k and K(k, p) in

A

the table, a value for k say k, can be found making

y b4

K(k, p) = 0. By direct intsrpolation between k and
p(k) 1in the table, & value for ﬁ(k), corresponding
to Q, say 5, can be found, The maximum likellhood
estimates are then Q and 5, A final remark should
be made about the selection of the pivotal vsalues for
k (here k=1, 1/2, and 1/3), Since the pivotal
values of k should cover the maximum likelilhood est-
imate, ﬁ, a sound procedure is to compute p(k) for
k =1 and then depending upon the sign of K(k, plk)),
choose pivotel values of k >1 'or k < 1, Estimates
of the varlances and covariances of ﬁ and 5 can be
obtained by noting that

DB _ - 3 (
\/i’ez} - 3K (%,p) 38)




V a - - BP (39)
{Pl 3P (&, p)
and Coy {é)ﬁ = —20% _ _D2p (o)

2P0 KU o)

A A ~A A n A A
where V(k), V(p) and Cov.(k, p) are estimates of
v(k), V(p) and Cov.(k, p), respectively, where "V"
refers to variance and "Cov" refers to covariance, For

details, refer to Hartley [”°].
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Chapter Eight
The Neyman Type A Distribution
8.1 Introduction

The Neyman Type A distribution was introduced
in section 3, as a generalized Poisson distribution,
and a few of its pfoperties were determined, Under
certain conditions it has a limlting Poisson distribution,
In this chapter, we examine the moment method, and the
meximum likelihood method of estimation for the para-
meters of both the complete Neyman Type A distribution,
and the truncated Neyman Type A distribution with the

zero class missing,
8.2 The Complete Neyman Type A Distribution

Let N\ and X;1 be the parameters of the com-
plete Neyman Type A distribution, then the method of
\a$ W
moments provides simple estimates, X and )\1, of A
and A - respectively. From section 3.4 the first

two central moments, fx1' and ,AZ', are

PV = 3\ \ m
and ,A,‘ = \N(X\, +>\| +I) \2)
Take a random sample of size n from the complete
Neymen Type A distribution, and let n, be the number

of x values observed, Let the consistent estimates of

o

1 '
M1 and NQ be ‘ E;XM;
/A.l = xX=0
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L~
2 XMy
=0

m

and

Solving (1) end (2) simultaneously fer N and )\1,

indicates that we teke the following, as estimates of A\

and X,, I/$?

Y N

and -

>’s
1

Shenton ['H ] has developed a procedure fer
obtaining the maximum likelihood estimates, X. and ):1
of N and )\1, respectively, Let Px denote the probab-
ility that the complete Neyman Type A random variable X
takes en the value x, Using the recurrence relation (17)

from section 3.4 we have

bP’:____ —)“Z X‘ 17"'Px

T=o0

= (fjﬂ PxH - P !
PN
and %_%_( Cox B (xe) B, (
TN W

From (3) and (L) we obtain the maximum likelihood equations

Z M, (1-\-\) Px+\ - Z My = s (5)
AN

xL=0 T=0

and S
Z My BPI - Z IM; me (I-\-l\ P’xH -0 (v)
=e X‘

Y=o —é: R =0

where n, is the number ef x values observed in a sample

]
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of size n taken from the complete Neyman Type A distrib-
ution, Let X be the sample mean and put

Trx = (I-H) P (n

X+
Px
then equations (5) and (6) reduce to
o0
me'ﬂ; = AN\ m (8)
=0
oby
and Z m T, = mE @
x=
Equations (8) and (9) can be cembined mere advantageously,
so that % = N\, (10)
and Z_ Me Ty = mx it

A=0

Equations (10) and (11) must be solved for the estimates,

A

A
N and \ Shenton L 71 | defines

F(M) = Zw,m;\T, - MX (1)

x=0

where )\ 1s considered to be eliminated by (10), Then

1.

differentiating F()\1) with respect to )\1 gives
F(\) = Z me () [Px 3 _ Pew dB ')
1 — f):')_ d\\ d\\
Now, W0 _ 3R 4\, ¥R

n\ - SS\ -XXI .—%—\-\
= - X (I*‘)E‘f’_‘ R 36%_ _ () Py (1)
% VY M N
Substituting (14) into (13) gives

Fm(\,\ = i My (}_g_\) i My ¢I (1s)

X =o >\\ \‘7_ x=o

where

~ T, ) L16)
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N
The meximum likelihood estimate ), may be obtalned as

A

A .
follows. Let M: Dbe an estimate of A 4, then a

A
closer approximation 1is Xhh\, given by

A

\\‘Lw = §\|)L - F(X\h.‘_) /F(‘)(\A‘ ) (\7)

The initial estimate, ., , may be determined using the

» 2

method of moments, Repeated use of (17) 1s made until
A A

there is little change in \ni. The final value for \ni

will be a good approximation to the maximum likelihood

A A
estimate, \1. Once %1

A
hood estimate, A, is obtained from (10),

is obtained, the maxlimum likeli-

Equation (17) 1is a very tedious equation to work
with, Douglas ['12] has constructed tables which consider-

ably shorten the work, Let

-\
o= \e
then P and P from (1) in section 4.3 are
x d=- A
Po = e -
<\, X ~
and Pw. = e )\‘ Z :zol x YO0
—;c—‘. =0 1'\'
_ X \ (\a)
- P’ }.\_‘. M~
I X
where ) —dZ <
M= e T
\ r=o )
If we let p_ = M, then from (19) we may obtain the
M
relation
PI.H = >\\ P:( Pz l20)
(x+1)

Using (20) the maximum likelihood equations (10) and (11)
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AN A -
become AN = X

R =) wep [

and Y =0

Now, from (12) and (13) we have
L]

F(»‘\) = >\\ me‘)" - omX (21)
and F(\)<\|\ = Z_JV\X P — (\4—\1‘) ;;J\n,_%, G2)

L=o
where q, = px(px+1 - px). Douglas ['zzf] has tabulated

p, and q. for = = 0,000 (0,001) 0,03 (0.01) 0.3 (0.1) 3.0
and x = 0 (1) 19, Using equations (17) and (18) 1in

(17) 1instead of (12) and (15), speeds us the calcul-
ation of X1 considerably, Douglas [ 21] fits the complete
Neyman Type A distribution to data on the European Corn-

Borer, given in Neyman [ 54 ], and a good fit results,
8.3 The Truncated Neyman Type A Distribution

We consider the special case of truncation where
the zero class 1s missing, If Px is the complete Neyman
Type A probabllity, then the truncated Neyman Type A

probabllity 1is
P*\ - Px X =47, (23)
- R

“
The method of moments estimates, Ne and Xt., of the para-

meters AN and )\1, are obtained in a manner similar to that

of the complete case, That is,

A LY
Xon = P’“ — N\ - ‘ (7.4)

and
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a3 LY -

}\b = l’\\ /XO\ 124

where \ g

M‘ = Z IM)(— /m
x—

A

d ]
an M'L - Z ’XI.M,,/J“

x=1
Sometimes equations (24) and (2%) 1lead to negative

estimates, so that, X\o. and \\Ao are only obtained when
rough ideas as to the values of the parameters, A and

1
)\, are desired,

Along lines similar to those used in the complete

case we obtain the maximum likelihood equations

N, o, 5 (2e)
\— ig -
A o
2 —-)°l A -1
and \— P, e = MW [ 0% (27)
X=1

A

where Ao and N are the meximum 1ikelihood estimates
[} n
of \ and N4, respectively, and P, and T are the
expressions, Po and ., with N and )\1 replaced by
N
):; and \o. , respectively, and finally, where

o]
=D xu, /M
x=\

Write

NS
FO\) = \-Re - ;Mx“t 28l

mx
where we have considered A to be eliminated by use of

(28). Then, differentiating with respect to >\ 45 8lves

v N Ve MY N 1= e™p. )
FiOu = e P[H\M’ =S {\-\A(\ MR

+ [\ + _;: {\—X\‘ = ” Zm&qsx

m)\.i‘ \")\(\

o ? T ()
b 53
YA *
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! =
where Po : 1:, and both ™5 and ¢x are as in the

o
A

complete case, Thus, i1f A.; is an 1B estimate of X\,

L

& closer approximation is, ﬁuﬁ“, given by
A A LY
>\t>l‘£+| = \ol)i. - F( \°'|;'] /F \ (5‘\ ) (30)
o).
A A :
Ir \qx 1s an 1P estimate of Xo , & closer approximation
A A
. “\etliﬂ
18’ >\o...+- » glven by —\7?0\; ( \— € ]
" A 3
Xl:‘i,ﬂ - ___-x:_—— ‘ - e

Xol,i.g
The work involved in using (30) and (3]) 1is much greater
than that involved in using (12) and (13) 1in the complete
case, To shorten the amount of labour Douglas [ ] has
introduced a procedure similar to that used in the complete
case, Omitting the detalls, the maximum likelihood equat=-
lons are expressed as
A " [ -1
\0\0\ /(\"‘R) =X
A
A= hey z

and \-he = z My P
3 x=) -
m X

(1]

n (aY
wherse p, 1is p, with N and )\1 replaced by Ao  and

laY

No, » Tespectively, Also (2B8) and (29) are expressed as
-2 2
FOWON = \-Re =X Zw\xp,
NI x=y N
e FONZN)= e R [l—\-\e._\m—-(\-C_x')}_{\'%x‘e b }]
A

=N-e MY )
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Again the tables of P, and qx provide a more efficient
means of ebtaining the maximum likelihood estimates, To
illustrate the procedure Douglas ['22] fits the truncated
Neyman Type A distribution to data of leaf counts supplied
by Goodall [32-], and obtains a good fit (Lﬁ'= 6.8),

A procedure similar to that given in section 7,6
(Hartley [40] ) may be used to determine the maximum like-
1ihood eatimates of A and A -
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Chapter Nine
The Polsson Vv Blnomlal Distribution
9.1 Introduction

In section 3.5, the Polsson v Binomlal distrib=-
ution was introduced and a few of its properties determined,
Under certain conditions 1t has & limiting Poisson distrib-
ution, There are two major problems in fitting a fairly
complicated distribution ¢ 1) point estimation of the para-
meters, and 2) determination of the expected frequencilss
using the estimates of the parameters, Both of these prob-

lems are treated in this chapter,
- 942 Simple Methods of Estimation

Let X be a random variable having the Poisson
Binomial distributien with parsmeters N and p and
probabllitles, P given by

ecx’ ) ™~
- x Mr-x
_ E M e X\ i\
PI- B T=0 ( x ) P % T\'

where >\>0, p>0, 9q>0 and p+q=1, &and n is a
posltive integer, From section 3,5, the first two central

) 2
moments are M= >\P’“ (2)

and /u.: = \PM [ /\?m + P(m—t) ¥ \‘} ()

Let a random sample of size N be taken from (1) and let

n be the number of x values observed, Let

X
a = ;§;¥nn, /1q

L=o
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[ o]
25
}A.‘_ —3 x N\I N
=0

and

Assume that n 1is known, Solving (2) eand (3) for
\A
and p, we obtain the method of moments estimates, N

and ;; for N and p, respectively,

s: M-} ﬁ“
- Ay AV [}
(A= A=A
A Ay % FN
and \{)\ _ :'LA:- . N" . P"
(M"‘) )11‘

A second simple méthod of estimation is the
method of sample zero frequency, Let no be the number
of zeroes 1in the sample, If X and 5 are the estimates
of )\ and p, respectively, then they are obtained from

Xp = A/n
X[ - (t-§)m]
and Mmo= N e

McGuire, Brindley and Bancroft [ 49 | remark that
useful values of n are n =2, 3 or l, since the Poisson
Vv Binomlal distribution approaches the Neyman Type A dis~
tribution rapidly as n 1increases and p decreases, Sprott
C73] Investigates the efficliency of both these simple methods
for n =2, Only for very small p 1s the efficiency of the
method of moments high. The efficiency of the method of

sample zero frequency is around 0,90 for p < 0.3 but much
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lower for other values of p, For both methods the efflc-
iency approaches zero as p approaches one, These simple,
relatively inefficient, methods are useful for providing

initial estimates in long iterative procedures,

9.3 Maximum Likelihood Estimation

Sprott ['73] has developed the following maximum
likelihood procedure for obtalning the estimates, X and 5,
of AN and p, respectively, We assume that the value of
n is known, From section 3.5 the probabilities, Px’

satisfy the recurrence relation
x
T-

Pz e D (") Py P w

(1+\) tT=o
Put = -
S\('I) = \f (»M'r x_JST-x (s)
2% (7] P
Then Sz(‘t—) - BS\(x) _ - x -\ (Jvi‘r x MT=x
3N\ ;z? (<)) 1—) P‘k
- (‘X“") ck_ S‘(erl) A l g\ (x) (L)
Similarly, it can be shown that
35ix) _ x Si(x) — (x+1) S, (x+1) (N

op P P
Now S.(x) =e P, sothat 1n P_=1n S;(x) - A, Take
a random sample of size N from (1) and let n_ be the
number of x values observed, The maximum likelihood

equations are
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and ZM; WMP Z.m, 36 _ o w

K=o x=o (x) ?p

Equations (8) and (9) reduce to

Xp =% te)
and L(§) = ZJW EG)—- N =o )
where FGx) = (x+1)  Prw ()

VAP NI 2

and - S
x = ZX"MY. /N
rX=0

~ A
To evaluate the meximum likelihood estimates, N and P,

is a rather long procedure, First, note that from (10)

and (11) that =
AL = D on S N -
= S

Thus Af we let L(”(p) =4d ﬂp), we have

QBL(')( 3 me Sfﬂb\&_(l[\ (;’;(ﬂ %%_&_)] LU ﬁ)
Silx

Using the method of deriving (6) and noticing from (10)

that 9\

o f

—_— —
—

>5
-o>j>/>

we have the followlng,

&S(I) - -(3(‘\—\)( _c%__ €>\ P‘r-n +:’L(\— AN e}Px
o P P ~”

and 43, ) _ (‘il)_g}_*_’)—_) e)\ P’r_m.
dp NP>

(% "
[(w (- (2x+\)%:J '&' el
gl

I+ x — X | X_ @ PI_ (18)
vl mhp

W)

(is)
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Now, substitute (15) and (16) into (1l), making use
of (12), =o that

\ A A * .
X=o

Mme op

A
Now, the maximum likelihood estimate p may be evaluated,
A A
Let P, be the 1P estimate of p, then a closer approx-

imation to p is given by Newton's formula,

A
Pi+1e

r A k A () (18)
Pih = Pi - L ( ().‘ ) /L ( ‘;“\ \
By repeated application of (18) we obtain as good an
approximation for ﬁ as desired, The rough initlal estimate,

A

P may be obtalned by either the method of moments or

’
t;e method of sample zero frequency, ILf the number of zeroes
In the sample 18 large the latter method is favoured, Once

; has been evaluated, X may be determined from (10),
Finally, the probabilities Px can be determined recursively
using (L), Thus expected frequencies mey be computed and
the Poisson vV Binomlal distribution fitted to the data,
Sprott [ 131 fits the Poisson v Binomial distribution to
deta from MeGuire et al [ 49 | with the parameters estimated
by the method of moments (}12(5) = 18,90), the method of
sample zero frequency (7L2(5) = (,J40) and the meximum
likelihood method (712(5) = 9,88). The implication of the
paper 1s that for smell p, say less then 0,3, the method

of sample zero frequency may be used, and the maximum like-

lihood method for larger values of p,

Sprott [1:3] determines expressions for the
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variance and covariance of the maximum likelihood estimates,
~ ~
N and p. Details are omitted here, If "V" refers to

variance and "Cov", to covariance,

; T
Vigl = I» ViR = 2ee
Dx? D\PN
Cou (%)) =Ty,
Dy, N*
where 1
_l?:- - %ZA + W\ (\N\ ‘)&QK
N A\X
T 2\ \
L1op _WNA FmA[I-m o+
and N A »J“ ( p )
Iy = \
i G SN C A

and Dy = N (WH %) A - (w\-‘)l

Gurland and Shumway [‘38:] have developed a simpler
procedure for obtalning the maximum likelihood estimates and
computing the Polsson v Binomlal probabilities than the pro-
cedure suggested by Sprott f731 . He suggests using the
recurrence relation (h) to determine the probasbilities,

The argument against this idea 1is twofold : 1) the comput-
ation of successive probabilities using (L) 1s tedious
because the formula 1s long and each probability depends on
all the preceding ones, and 2) any errors made slong the way

are carried by all the succeeding probabilities,




First, a simpler recurrence relation than (L)

can be developed as follows, Rewrite (1) 1in the form
...)s x \ = r_x] T
P‘L = € —& —_ z (MT\ °_(_
ckw x\' X =0 1".

d-—>‘ x
% ’.7.‘_ [x]
where oL = \ng and () = mr(mr=1)e (T -x4)
d ~al ?oo: =1 o )
an . /AY_::] = € (MT) fi {20
T=0 T!

From (19) and (20) we obtain
P):.H = E‘_ PL‘*] ()

Gea)
where Pea = Mrxan / M ixd (2a)

From (20) we notice that it is possible to consider M,
as the xth factorial moment of the random variable nr

where r 1s & Polsson random variaesble with parasmeter o ,

Thus, Pra E [(mv\tﬂJ - E { Z_ s(x,t).m; T’C}

i=]

1]

Z_ s(xi) . Ei?;}

<=0

= < : - ,‘_tél
Z s(r‘,a)m E Z% S(‘la) }

T

= z Z S(I,L) m“ S(Lq] oLA' (23)
= a'-.-\

where the s(x,i) are Stirling numbers of the first kind
and the S(i,j) are Stirling numbers of the second kind,
Now, the numbers s(x,i) and S(1,j) can easily be obtained

from the recurrence relations
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s(xxyi) = s c=1) — x s(x,i)
SCieng ) = SCy4-) + 4 SCy)

Stirling numbers are defined and discussed in Riordan [69]

and

and Richardson [©©¢ |, For given values of n, « and x,
MPmey be eveluated from (23). Then P, Bey be determined

from (22), The have been tabulated by Gurland and

Pra

Shumway [ 38] for n=2, x=0(1)9 and ¢ = 0,10 (0,02) 1,10,

Then (21) 1s the simpler recurrence relation promised,

It is possible to calculate each probability from the one

Immedlately preceding it, end also, to do so with little labour,

The computation of probabilities 1s, of course,

only possible when we have numerical values for the parsmeters,

A and p, A shorter procedure for obtaining the maximum
A A
likellhood estimates, X and p, follows, Let

Y = Pm ( Pixea ~ Pm)
then (17) may be rewritten in the form -
L(l)(‘,)\‘ = | __ [(M_\) Z:Jv\x Py {(’_“:‘)’\LL ]Z;JV\*C&U]
wﬁ)xy% %
Gurland and Shumway [32¢ | have also tabulated 9, for
the same values of n, x and  as p(,J Thus equation (Zh)
is easier to manipulate than Sprott's equation (17). As
before the estimates X and ; are obtained from (18)

and (10),

To compute the vatiances and covariance of A

and 5, Sprott ['73] has shown that the quantity

(2u)
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A= f_[r-(x)}zﬁ iy (25)

must be computed, Rewrite (25) in the form
2
At ) P -1
m’»k" 2 Toa P[ﬂ x

Thus A may be determined using the tables and the estimates

of the parameters,

The probabilities Px may also be computed by
& procedure involving matrices developed by Gurland and
Shumway [37]. Equation (23) may be written in matrix

notation as

—

)
pro= SNSA

where \
P ‘ Mm o @)
\ [;-] N © st
p[q = *
P = -_
3 . o
M)
oL : sGy) o Y
od* sty SGa) .
N =1 S - ; : (26)
Q.lm s (rew,1) e S(m,.}wn)
and Sty o )
S - S 30 2)
SCe) - S (m,om)
Write A = SNS and P = [P then P = BAA
P
P
where T
B‘r = Po & | owmd 8- o c
v —" o B .
CE %! B - -t ‘ (1)

%)
303.
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=X
and P =e . The matrix A has the triangular form
A\‘ o.._ O
A _ A“' A» . "
:JM * .
AT A,

Gurland and Shumway [:37:] have tabulated the matrix A

for n=2,3,4 snd m=10, To compute the probabilities
P_, first obtain the matrix B from (28) and N from
(26)., Then metrix P may be obtained from (27)., This

method also offers a great lmprovement 1n speed and accur=-

ecy over the direct use of the recurrence relation (L),
9.4 The Minimum Chi-Square Method

Gurland end Katti [ 35 ] consider the minimum
chl=square method of estimating the two parameters, \ and
p, of the Polsson V Binomial distribution, We again assume
that n 1is known, The most useful values of n are small,
say 2, 3 and L4, since the Poisson V Binomial distribution
rapidly approaches the Neyman Type A distribution with
increasing n, Suppose that ﬁ‘1,“?2 and are different

5
functions of A and P, having consistent estimates, ¢t

1 2
t2 and t3, respectively, Let ‘T amd t be the matrices
(¢1 T {3) and (t1 t, t3)’ respectively, Barankin
and Gurland [ 2 ] show that the estlmates t which minimlze
A -y 1 _
Q = (h-+) 2 (£-4) (24)
are asymptotically the best, where () 1is a consistent

estimate of the covariance matrix, <2, of t, and (t-7!'

i1s the transpose matrix of (t-T), After differentiating,
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the estimation equetions are

[P SI C S R G
2>

and _Bi _CAZ—‘ (k-ﬂ‘ =0 ()
°p

The solutions of (30) and (31) for N\ and p, are the
A ~

minimum chi-square estimates, denoted by A and p, Uresp-

ectively, We shall now sketch the method of obtailning the

A
asymptotic generalized varlance of the estimates, X and P.

From (30) and (31) we have

[?.i‘} §A2—|~<E—H] = 0 (32)
L I
and
4 A
] e
X)P _ X)P

. A A
Expending (t-T)! in powers of (A-A) and (p-p), and

neglecting all second order and higher terms, we obtain

asymptotlically,
¥ o7 -t) 2 3 2 3 < \“—\Aj (3w
AN AN EC\‘:) ‘3‘ - P
and éj‘_ foks (t—‘i‘)‘ - 3 'y ! (X\_ Y ) (35)
op L% IO N PP
where the matrix X 1s more explicitly written as
ANp) 21, M
N Y
20 an
EIONTY =™ ¥
PR
AN P
The generalized variance G 1s then
A— A A“ ‘84 -\ BJ\\‘ -
(3-—‘: < ‘)) é(,\,ﬂ B(/\\\‘\
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Suppose that we select the first two factofial
cumulants, Kcg aﬁd Kgj, and the natural logarithm of the
zero proportion, 1ln P, , as particular cases of A 1 ,*1‘2
and 1 3 respectively, Let ﬁm, ﬁm and the 1ln f’o be
conslstent estimates of Ky, Ky, and 1n P,, respectively,
so that the matrix ¢t = (ﬁm I‘Em 1n 190) is a consistent
estimate of the matrix T = (Ky K 1n P), From section

3,5 we have that for the Poisson vV Blnomlial distribution
Ky = XPM, Ky = \le (w\-\) (‘sd)(sv)
L = N (%M—l) (30)

Using (36), (37) and (38) the estimation equations
(30) and (31) Dbecome

»\ _ (Mp M(M-\)FL “

(MP (=) p LIS -1

and

‘(t ko WR)
4

- JY\P M(M"\)P %")
and (l

N o q%.m—l )é—! ("Q('J .\;\c‘] QMPQ ) (ue)
(“ 7—(’“") P —%M-' )_OA_-‘ ("‘P m (=) p" }A-l)
The covariance matrix, <0, of t 1is the symmetric matrix
ey S S RS -
\ \ \ | V>
il DY M = My =P

]
- M . R
a I

Now ()" can be written in the form KA, where K = NINQ|

O = =
N

and /\ is the symmetric matrix
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Pa—bt N e SN T
% | ke
[ \ \ V- (R '
N = | wpop p TN T Py - py
P- P'
[} > \3
RO - gy W mpl g me(p o)

* 7"03"7“‘; - P:‘V
Since (39) and (l40) are homogeneous of degree zero in <2 ,
-1
{2 may be replaced by /\ with the constant K omitted.
Teke & random sample of size N from the population. Com-

AN a A L) A

pute the sample moments (u1 s Mo p\§ and }L)-l» and Po from

the data using g .
al v -
/JL = ; _ X Mo N c=h1 30
X=o0
A
and Po = Mo / N

where n, 1is the number of x values observed. Then the
metrix /\ and 1n ﬁo may be determined, The sample
factorial moments may be obtained from the equations

Rtﬂ = ,‘}|\
and &bq = ﬁ: - ;nq’ - [L‘
Equations (39) and (LO) enable one to tabulate A as a
function of p, However, Gurland and Katti [ 35] have not
formed such a table, As they stend, the two equations may
be solved by an iterative trlal and error process with an

initiel value of p teken to be & simple number near the

method of moments estimate of p,.

Gurland and Katti [ 35 ]| illustrate the procedure
with an example from McGuire et al [ uﬁ]. They fit the Poisson

vV Binomial distribution to the data, estimating the parameters,
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A\ and P, by the 1) method of moments (')LZL‘_ = 17.47),

2) the method of the first moment and the zerdlfrequency

(]Lzh = 5,57), 3) the maximum likelihood method (}Lau = 5,71)
and ) the minimum chi-square method Vy,zh =6,71).

The efficiehcy of the minimum chi-square method is
tabulated for all combinations of n =2, 3, 5, A= 0.1,
0,3, 0,5, 1,0, and 2,0 and p =0,1, 0,35 and 0,5, A
general high efficiency prevails throughout the region
2<n<15, 0<AN<2, snd O<p=< 0,5, The efficiency
of the method ofvthe sample zero frequency is tabulated for
the same X , B and p, and generally high efficiencies
prevall, each value being only slightly below that of the
minimum chi-square method, The efficiency of the method of
moments is tabulated and generally, the values are very low,
From the table one would conclude that only for p << 0,1 1s
the efficiency satisfactory, that 1s, around 0,90,

Gurland and Katti [ 35 ] conclude, mainly on the
basis of the high efficiency results, that the minimum chi-
square method, using the first two factorial cumulants and
the logarithm of the zero frequency, may be used instead of
the asymptotically efficient maximum likelihood method, when
the parameters are in the region for which the tables are
constructed, Beyond this region the Polsson V Binomial may
be replaced by other simpler distributions, such as the Poisson

distribution in one limiting case,
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Chapter Ten
The Poissen VvV Pascal Distribution
10,1 Introduction

The Peissen V Pascal Distribution was introduced
in section 3,6 as a generallized Polsson distributlon and a
few of its properties were developed, Under certain con-
ditions it has & limiting Poisson distribution, In this
chapter we are concerned with fitting the distribution te
observed data, The two major problems in fitting distrib-
utions to observed data are 1) computation of the expected
frequencies and 2) estimation of the unknown parameters,
Three simple "ad hoc" methods of estimation, as well as the

maximum likellhood method, are investigated,
10,2 Three Simple Methods of Estimation

The three "ad hoc" methods considered in this
section permlt quick evaluation of the estimates, however,
these estimates are all less efflcient than the asyﬁptotically

efficlent maxlmum likelihood estimates,

Before we consider the methods of estimation we
shall establish some needed relations between various moments
and cumulants, Let wu(t) and v(t) be the factorial moment
generating function and the factorial cumulant generating
function, respectively, of any random variable, More ex-

plicitly, let PT& and K¢y be the rPh fectorial moment and
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the rth factorial cumulant, respectively, so that

ul®) = Z_ M t /*\

-=o

and V(‘t_) = ; Kr_,‘] -LT / 1'\
T=o
Now by definition wu(t) and v(t) are related as follows
vd) = dw ult) m

By differentiating both sides of (1) we can establish the

following

2
Kea = Mg Rea = M - P (2)
2

3
K = Mg — 3 P P +2 Mg

The first "ad hoc" method to be considered is the
method of the first three fasctorial cumulants, From section

3.6 we may deduce that the factorial moment generating function,

u(t), of the Poisson V Pascal distributio& is ,
\ -p v (3)
ult) = ¢ [ iq‘ P ]

where >\>O, p>0, k>0 and q - p =1, Then, the

factorial cumulant generating function, v(t), 1is

véi) = >\[ Y%—Fh+td-h_4] )

From (l4) we may obtain the first three factorial cumulants

kL‘] - \«&P KL’—J = )\% (‘B?,-H) Pl
Kty = \‘9{(‘09-*'\) (‘QU-'L) \3

{s)

and

A N A
Now let /Um, Nmand My be consistent estimates of the first

three factorial moments M¢,, Mpyand Mi;, respectively, and
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A A r
let K, Km and K@ be consistent estimates of Wry, ¥ea
and Kp), respectively, Solving the equations (5) simult-
aneously for \ , Kk and p, suggests that the estlimates of
N, k and p, say X, k and ;\, respectively, be taken as

AL

‘é\ _ 2 Kra — K Wi ‘(; _ K
— Py " A2 -
Wra K - K (‘g\'ﬁ-\\ lATm ()
A
X\ = k[\]
and -g F

To obtain ]\::\, fo’\ and K\ numerically, compute fl‘\\m’ }imand
ilmfrom the data, then compute \%m, \:\m and \:\m from
equations (2), and substitute into (6). @enerally, this
method is favoured among the "ad hoc™ methods when the sample

mean and variance are large,

The second "ad hoc™ method is the method of the
first two factorial moments and the propertion of zeroes,
Let Po be the propertion of zeroes, or the probabllity of
obtaining the value zero, We shall obtain three simultaneous
equations involving 1ln PG’ Kgn and Kwi, By replacing 1n Py
Kty and Kp] with their consistent estimates 1n lgo, Kca and
\2&3, respectively, and solving for )\, k and p, we obtain

w

W w
the estimates, >\, k and p, respectively, That is

Kin = >“&? K = \%?L (“&H)
_
and 4, P = \(ck —1)

The 1asl. of these equations is obtained from (22) in section

7

3.6, and the first two, from (5)., The estimates p, k and
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are then obtained from

[ e (e _p) 84 i ) Ate)s

km . Kin

A
W LY
{: ._\'Sﬂ__ - >\ = KEG (8), (10)

(VN
RKrta

P QP » A

From the data we obtain }kq, f%gand P os and them, K, K,
W w W
are obtained from (2), The estimates p, k and X can

then be obtained from (8), (9) and (10), Equation (8)
can be solved by an iterative trial and error process, The
method of the first two factorlial moments and the proportlion
of zeroes 1s generally favoured among the "ad hoc" methods
when the sample mean and variance are moderate and the

proportion of zeroes observed is large,

The third "ad hoc® method is the method of the
first two factorlial moments and the ratio of the first two

frequencies, From (22 1in sect;fn 3,6 we have that

and P‘ = }}%&_ e
L3}
A
so that Po _ hat )
P\ N\ P

Solving (11) and the first two equations of (5), simult-
aneously for X\, k and p, and replacing kiy, Kmnaend
A [y »
Po/P1 by their consistent estimates Kra, Kpaand Pe/ﬁa,
w W

respectively, we obtain the estimates B, k and )\, of p,

k and )\, respectively, as follows

(8)




M (149 ) _ Ke g Keg P ()

and { = K['»l . \ S’\\ = kl’_\] (lB))(N)
N [ ) w
Ko P % P

PAO/P:, };m and /C\m are computed from the date, then, \pg
and th are computed from (2), Equation (12) can be
solved for ;~ by an 1terative trlal and error procedure,
and then kK and X may be obtained from (13) eand (1l4),
respectively, This "ad hoc" method is favoured when the

first two frequencies are relatlively large,

Katti and Gurland [ 3¢ ] have computed tables of
the efficiencles of the three "ad hoc" methods, The region
of tabulation in all cases is 0.1 < A < 5.0, .1 <p < 1,0
and 0,1 <k <2,0 , The method of the first three factorial
moments has generally poor efficiency, Howe?er, the other
two methods have generally, high efficlency values, and one
of them may be used (which one depends upon circumstances)
without much loss of information, Since the Poisson Vv Pascal
distribution rapidly approaches the Neyman Type A distrib-
ution as k-—> and p-> 0, only small values of k need
be considered, For_'\-%>a: the Poisson V Pascal distribution
approaches elther the Pascal distribution or the Poisson
distribution, so that only small values of N need be

considered,

Katti and Gurland ([ 3¢ ] have fitted the Poisson
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Pascal distribution te two sets of data from Beall and Rescia
['31 with the parameters estimated for the first set by the
method of the first three factorial moments (7(28 = 9,58),
and for the second set, by the method of the first two fact-
orial moments and the zero frequency ()L28 = 6,88), For
comparison purposes, the Neyman Type A distribution was
fitted to both the first set of data (7;29 = 42,97) and

the second set of data ()L29 = 13,75). The Poisson v Pascal

gives a relatively good fit,
10,3 Maximum Likelihood Estimation

The efficiencies of the second two "ad hoc" methods
are high, still it 1s of value to be able to obtain the
asymptotically efficlent maximum likelihood estimates,
especlally if a simple enough procedure involving tables and
such can be developed, We shall now give the rather long

~n "

derivation of the maximum likelihood estimates, A , k and

’
%, of N\, k and p, respectively, of the Polsson Y Pascal
distribution as found in Gurland and Shumway [37] . From

section 3,6 we have that the Polsson Vv Pascal probabllities,
Px’ are given by B =N\~

o= 2 (Fer R T "

T=0 et "'!
where N> 0, k>0, p>0 and q - p =1, By differentlat-

ing (15) with respect to N and p, respectively, we have

5?& _ CI+‘) Vl+‘ - ;5__92 — F;
S ﬁ; M
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e _ = P (x+1) Px+\
and < = -

3p P P

These results lead to the maximum likelihood equations

L(p) = Z_ My 33\)* Zm‘ M,- N =o (16)

x=o Pp
and _S_ My &:%NM\__NM\_NSO G
== T M N XA

where n_ is the observed number of x values in a sample
of size N,

v = (I.-P\) PI*"

&

A\
and /A‘ = ZngJwL //
LT=0 N

Equations (16) and (17) reduce to

o
(e
L(P) = z Mr, - N )
X=o
and /4,7\\\ = \"%‘; (19)
Now, we must obtain %2;, so as to obtain the third maximum
k

likelihood equation, Let g(z) and h(z) be the probability
generating functions (p.g.f.'s) of the Poisson V Pascal

and Pascal distributions, respectively. Then
P y NA@)-1]

%(2) _ [ ck P%\“ :I ) (1o)
and %%) = - >\ %(2)'&(?:) N (%— \9%)

Using Leibnitz's formula we have

. £ 9, (T"a‘)( o)) x-v
d %G\ [Zm %—3 e ({EFJ

x

__Z ( t) (}(1)(2)/{},‘(?*’(%) @M(e&-?%)} (2\)

T=0
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('x)
Now, x x|
so that B_P’: -2 ‘“ (ﬂ(i)l
ok 3k x!
I Y %(%)‘ (23)
xt az® 2%
Also, if Ty is the rb®B Pascal probability,
SR S (€Y (24)
v dz” Z=o

Thus, substituting (21) (22) and (24) into (23),
we obtain
= [ (x-T)ZB *’3—% Z P, «ka] (29)
T=o

Using equations (L) and (23) from sections 3,2 and 3.6

respectively we have

BPI L ‘ _ch—-‘\-ﬂ [(,N.d P‘\q,\—- ﬁl PTJ__ &HQP}M_E&J}M

xX=1

= _,‘{ Z _Ex-* T Pf pxbe _ %_P [(vn) E:ﬂ —1;; Px}-QMqS_

T-o V&"'T (-} (%-t+) “&
The third maximum likelihood equation is then

»J_“L%%:_NX%?(\‘ ) 7;““‘ Z‘B Przo wa

x=o Pz.
- x-T

where BT = P T (1)
x-T (I—‘r)(x-'r-h)

The Brx sre tabulated by Gurland and Shumway [ 37] for
r=1(1)8 and x =2 (1) 9 . Equation (26) may be

written in matrix notation
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" B‘ (@] o Pl
oo mom .
NX‘({)\_%%) P P B‘. B, ’ f.’z (28)
é\”‘ oo ‘Sm_\

Now, let k be fixed, and differentiate L(p), given by
(18), with respect 60 p, treating N as a function of p
(this 1s valid because of (19)). Then

P = e\Px _ = G By <g+a9> bR <fm +\Px
i £ ?

Z_ Jf\x [:‘@ +) AM, (cki— ﬁ )] (29)

P
We are now equipped to obtain the meximum likelihood estimates,

and Lf“(?) _

A [ (2] A N
N, p and k, First, obtain initlsl estimates )s1, P, and
A
ky, from the method of the first three factorial moments,
N A
Then calculate an improved estimate of P, 88y Py, from

Newton's equation

é;. _ (3\ _ L(?A‘B /L(\)<A

A
Calculate an lmproved estimate, k,, of k, from the matrix
A

equation (28), Then, obtain an improved estimate, )\2,

A
of N, from (19), which is

~ A A A
LS /Jé, P
This procedure 1s repeated untlil no substantial change

ocecurs in the estimates,

Once the parameters >\, k and p have been

estimated, the expected frequencles may be computed by com-
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puting the probaebilitles P

x using the recurrence relation

(M) in section 3,6, However, this has two drawbacks, already
mentioned in connection with the Poisson V Binomlal distrilb-
ution, First, the formula is long and each probability de-
pends upon all the preceding probabilities, and secondly,
errors made in computing any one probabillty are carried

along by the succeedlng probsbilitles, Gurland and Shumway
[37] have developed a matrix procedure which shortens the
labour, The probabilities P,, given by (15), may be

rewritten as d-N  x \ k
30
P'x,:' € —-?—;:_ ‘L‘\ /uﬁﬂ )
o
2 %

where ol = X‘k \ - (2 (x) —-o(dw- (a1

= ; e <

M oo ) +!

and

where (kr)(x) = kr(kr+1) ,,. (kr+x-1), Now, (31) suggests
\

that we may treat ,/Abqas the x'2 factorial moment of kr,

where r 1s & Poisson random variable with parsmeter <A,

Consider equation, (31),
() —d

plg = Z, (40 e <[~

= Z Z_ S¥(=3) (3 e °L/
T
) ~od =
= Z_ 2_ S (“xa)‘% S(a) ) (‘t) e oLc(. 'r\.

T =zo
X

= Z_ 2_ S*(I‘Jd) S(a\‘)"% \ (32)

4 T\
where S(j,1) are Stirling numbers of the second kind and are
discussed in Riordon [qul, and the S#(x,j) are defined

by the expansion



129
(x)
= KX ) e (X exmy)
X N .
DERSACANY
&
The S#%(x,j) can be shown, easily enough, to satisfy the
recurrence relation "
¥( . * . oA
S )c-\-\)a)—: S (r)a—-l) + S ( )’é\
and so, a table may be constructed as in the case of the
Stirling numbers of the first and second kinds, Now equations
(30) and (32) may be written in matrix notation as

P'-: BS*K_S_/\': BA*/\ (33)
where o % 01 0
N=|7T K=| o
;lm 0 ... «Q\m
4 S*(\ﬂ) o o
P = \;:_ S*-:. S‘k(l.") S*(")"\ ‘
P/M SV'W\)\) T Sy(w\,m\)
S,y o - o
S _ SG) S2)
S(A“N) s | S Cawyom)
and B‘ o
8 - 7 B
B RN

where B, R=.£f
b

Now A¥ = S*KS has the triangular form

i
<\

.}



130

%
AT )

and 1s tabulated by Gurland and Shumway [37]. Thus the
probabllities Px may be obtained by determining the matrix
P form (33), The matrix procedurs offers a great improve-
ment in speed and accuracy over the use of the recurrence

relation (2Y) in section 3,6,
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Chapter Eleven
Confidence Intervals
1.1 Introduction

We now consdier the problem of obtaining confid-
ence intervals for the parameter )* of the complete Polsson
distribution, Since only a single parameter is involved,
Fisher's concept of fiducial limits and Neyman's concept of
a confidence interval (although they differ basicly) may
each be considered in terms of the other, Then, the term-
inology will be a convenient blending of that of both "schools",
There are basicly two types of confidence intervals, non-
randomized and randomized, For the former, it 1s not possible
to make "exact" statements as to the probability that the
interval contains the parameter, For example, we mey only
say that the probabllity is at least 0,95 that the confid-
ence region contains the parameter, Randomized confidence
intervals involve the performing of an auxiliary experiment
using tables of random numbers and permit one to meke "exact"
probability statements, such as, the probability is 0,95
that the confldence region contains the parameter, In this
chapter we discuss both types of confildence intervals, A
brief section deals with the Polsson process and the special
approach that may be used, We conclude the chapter with a

short discussion of confidence intervals based on approximations,
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11.2 Non-randomized Confidence Intervals

Suppose that x 18 a single observation of a
discrete random variable having parameter W , and that, on
this basis, we desire a "confidence interval", denoted by,
€(x), such that, given 0 < € < 1,

P {’n‘e S(x) 1} P

We call 1 - &€ the "confidence coefficient"™, Such a region,

W)

$(x), may be constructed, according to Neyman ‘:SQ], as
follows, For each W , determine an "ecceptence region",
denoted by A(W), as a subset of the sample space such that
P{xcalm) ] 21 @
Then, let S (x) consist of those values and only those
values " whose corresponding acceptance region A(W) con-
tains x., Then the so-constructed &(x) satisfies (1).
For, let T, be the actual value of the parameter and x,,
the observed walue of the random variable, Then
F’{ Xe € A‘GW;) 'ﬂ%} > |-e
But, by the definition of € (x,), <T.eS(x,) 1if and only if

x_ ¢ A(T), so that

0 P{meg(ﬁto)\xo} = P{I‘eA(ﬁb)\—m} s |-e

Thus © (xo) satisfies (1),

For the Polsson distribution, the parameter 1is
T = A and the sample space consists of the non-negative
integers, Given 1 - €, for each %\ we consider acceptance

reglons A(N) as consisting of consecutive, non-negative
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integers, X, x1+1, coes Xy, such that
T

Ny X
P{ Xe A(I\\E = ZC /_‘ > |-¢ (3)
x x!

=%

Now, x, and x, in (3) are not unique, so that re-

’

1
strictions upon them shall follow, and for each restriction,

a different confidence interval shall result,

The first restriction defines the familiar "central®
confidence intervals considered by Garwood [3) ] , Ricker [67]
and Pearson and Hartley [:93]. They are often referred to

as the "usual" or "standard" confidence intervaels. Choose

x, and X, such that x is the largest integer so that
Ay _) <
Z.oe’N & ¢
T=0 uc\ 2_
and X5 is the smallest integer so that
g *
> N 4ok
X=A’;+\ x‘- 2

Garwood L 31 | constructs tables giving 51(15) = (>\1(x), \Z(x)),
where >\1(x) and )\a(x) are the lower and upper limits,
respectlvely, to the confidence interval for X., for x =

9 (1) 50, using the fact that Polsson sums can be expressed

a8 integrals over gamma and chi-square distributions, Thus,

for the lower tall, we see from section 2,5 that,
A=

D N L S Y

Lo m!
|- Pﬁc’h‘ ezk}

where T 1s a gamma random variable with parsmeter x, and

1L5x1 = 2T 18 a chi~-square random variasble with 2x1 degrees
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of freedom, For each given x,, a value for A can be

found from chi-square tables, A similar Hreatment is used

for the upper tall, Once the acceptance regions are deter-

mined, the confidence regions are easlly obtalned. Ricker [47]
gives tables of confidence limits for 1 - € = 0,95 and

0,99 and x = 0 (1) 50, 7The Poisson sums are obtained

from tables given in Soper L12] and Whitaker [24]. For

x > 50, Ricker [ b7.} suggests using the normal approximation
to the Poisson distribution, Crow and Gardner [}?'] have

determined an accurate approximation to 61(1) by averaging
the two large sample approximations, the normal approximation
with continuity correction and the square root normal approx-
imation with continuity correction, Both these approx-
imations were established in section 2.8, If ‘Xu. and \\L are

the upper and lower confidence limits, respectively, then
N 2 g
w ox+ 3P EL RSB I (cav) e Be
\u.} 15 T 2 F ( A) %?

where ?4 is the upper 100%/2 7L point of the standard

normal distribution, Central confidence intervals are, of
course, non-randomized, and are larger than necessary to have
the parameter covered with probability at least 1 - €,

The two tails each have probability less than € /2 of con~

taining the parameter,

A second restriction upon x4 and x2 is due to
Sterne ETHf]. Let the acceptance region, denoted by AZ()Q,
consist of the values x having the largest probabllities,

Thus, for each )\, the most probable value of x 1s s
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member of AZ(X), the second most probable value is also a
member, and so on, until (3) 1is satisfied, The acceptance
region AZ(X) is determined sccording to Crow and Gardner[19],
by proceeding continuously from small values to larger values
of x;, starting at N = O, and altering x1 and X, 8o as
to maintain (3), Suppose that for A =>\o, the ascceptance

region AZ(XO), is x,, x,#1, ..., Xy#r = x,, Then

n+r _ \o z
ZZ_ e N > l-e

Py

X=X, x\

Now, because of the definition of Sterne's acceptance region,
no probability sum of less than r+1 terms is as large as
1-¢ for N =)\°. Because of the inequality (3) in
section 2.3, no probability sum of less than r+1 terms is
as large as 1 - & for >\ >>\o. Thus, combining these two
statements, we have that the length of the acceptance cannot
decrease with increasing )\. It is then desirable to keep

the acceptance region at the same length, if possible, as >\

increases, Let Xk be the value of >‘ that maximizes
Ay d)yYar e SN ->\ <
> e\
b e £ 11 Dc\.

Then, the same length is maintained, if possible, by sub-

29 . <
stituting xy+1 -for x, at/\ =>\ . 1r ? e')x
Tkt Yok \ oy :’T

drops to 1 - € before such a substitution is possible, the

acceptance region must be enlarged to x4, x4+1, ..., X,*1,

2
Once the acceptance regions Aa(X) have been determined, the

confidence regions, denoted by & o(x), are easily obtained.
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A third type of confidence interval 1s due to a
slight modification of Sterne's acceptance region by Crow
and Gardner | 197]. If in the process of determining Sterne's

acceptance region, we replace x by x.,+1 at the value of X

1 2
where M N =
) e X
X=X 4 ‘.C\.

first equals 1 -C, 1instead of at A = N\ , we obtain a

r.+|,-x,_+\
different accpetance region, which we denote by Aa(\). Ir
X, ~ :
§ efxz_ drops to 1 - & before the substitution is
\
=%, X

possible, the acceptance region is enlarged to x,, x,+1, ...,

12 %4

x2+1. The confidence reglons obtained by this modification
are denoted by f;a(x) and have been tabulated by Crow and
Gardner [ 19 | for 1 - € = 0,80, 0,90, 0.95, 0,99 and 0,99

and x = 0 (1) 300,

Crow and Gardner [ 19 ] compare the confidence
intervals 81(x), 5;2(1) end § 3(x) by considering their
lengths d

d and d respectively, and computing the

19 92 ’

relative percentage devzations 1OO(d1 - d5)/d1 and

100(4, - d2)/d1. The improvement of Q'B(x) over 8-1(x)

is appreciable for small values of x and decreases as X
increases, The relative improvement of § (x) over §:2(x)
is also appreé¢iable for smell x, Of all non-randomized
confidence intervaels for )\ , ga(x) and SB(X) have the

shortest total lengths for a given confidence coefficient,

In addition, S-B(x) has the advantage over & ,(x), of having
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the smallest upper confidence limits, However, all three
of 81(x), gz(x) and gB(X) are at a disadvantage when one-

slded confidence intervals are desired,
11.3 Randomized Confidence Intervals

A shortcoming of the confidence intervals, §;a(x)
and E;B(x), 1s that there 1s no statement possible sbout
the probabilities, first that the parameter lles below the
lower confidence limlit, and second, that the parameter lies
above the upper confidence limit, When the statistician is
interested in only one limit (such as the opper limit of the
average number of defects on a manufactured item), this
additional information is desired, Stevens [f?gl introduces
randomized confidence intervals as an interesting solution

to the problem,

Let X Dbe a Polsson random variable having p.d.f.

B NS
given by o (x3%) = e N X = 0,02, (4)
\

x!

where A\ > O, Define G(x,\ as

RN SN
G(!‘)/\) = Z P(T)\) = Z e _>\__‘ (s)
T=% T=x -t

Define the lower P_ limit of N, denoted by A (x), as

the solution for \ of G (x) \) _ Po (6)

where P, 1s a given real number such that 0 < P, <1 and
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>\o(o) 1s defined to be identically zero. Similarly, define

the upper P, limit of A, denoted by \,(x), as the

solution for A of G(x+\)>\) = \- P’ (7

From (5) we have that

- 2Ny AT A T\
400 = 26N Z €N _eN|=e X @
B/\ T=X (’r—\)\. "r\. (1_‘“

Similarly, from (5) we have

o
AN = 3 G (xay N) _ e N (%)
)= 3! ‘

From (6), (7), (8) and (9) we have
A(x)

£.00 d\ = &

R WY 05

and | Sa.m = 1-P

(=]

Then, ho(X) and h1(X) supply limits to the parameter )\,
corresponding to any pair of significance levels, Po and
P1. Now, suppose that x 1s the observed value of the
Poisson random variasble, and let

% = X + Z
where 2z 1s any number belonging to the rectangular distrib-
ution and chosen from a table of random numbers, We note that
both x and 2z are uniquely determlned 1f y 1s given,

Let Yo = %o * 2, where x_ and 3z

o o» 8&nd so y,, are

fixed., Then from simple probability concepts we have

Pi%”ﬂ = PE"W% + P{xﬂ&} P{ 21%}

= G(Tb“'\)/\) + ?(Io')\\ (\"26)
= 20 Glxay N + (-2 G0N (10)
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Differentiate both sides with respect to )\, and drop the

zero suffixes on x and z_, 8o that

2.0 = 2RO+ (-2) RE)

x - -\
= 2 -€‘>\>\ + (\—--?:) 6\_}1__
=) (-0

For any given x, there exists an hz(X) for each possible

()

value of z. Thus to make hz(\d unique the following rule
1s employed, Perform the maln experiment and obtain a value
x of the Polsson random variable, Then, one, and only one
selection 1s made, from a table of random numbers, of the
value 2z, The unique distribution, hz(X), thus determined,
1s called "the fiducial distribution of A ", The fiducial
limits, obtained by integrating hz(X), always lie wholly
within the limits obtained for A by the Ricker [ L7 | or
Garwood [3' ]| approach, Two useful propsrties are displayed
by the resulting confidence limits : 1) Because of the
continuous nature of the random variable y, probablllty
statements may be made in terms of equalities rather than
inequalities, 2) The probabilities, first, of the parameter
lying below the lower fiducial limit, and second, of the
parameter lylng above the upper fiducial 1limit, are easily
obtained,

Suppose that >‘o and %‘o' are the lower limits
correspondlng to the observed value x, and x+1, respect-
ively, obtained from Garwood (3 ] , Ricker [_B7 ] or
Pearson and Hartley [:Sﬁ]. We shall calculate the lower

fiducial 1limit of Stevens' method by interpolating between
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the two consecutive values of y, that is, y = x and
y = x+1, But first, we must obtain the functional relation-
ship between y and )\. For a lower limit, corresponding

to any given, fixed probability P, we have

P = 2 G(ul)}\) + (\—%) C—(r) X) (12)
so that ab P AP Ak
T T2 ™ =
= ——PC't;\\ + R (X\)é}_\ - © )
da>
Rearranging (13) we obtain
A pCeyN) b %)
Az R 0) hz+x-)

Since the equation (12) approaches G(x+1,)0 = P, the
equation approprliate to the value y = x+1, as 2z approaches
one, )\ is a continuous functlion of 1z, although the

derivative g§§ is discontinuous at integral values of 7y,

dy
I N i\_ YA ) _§»_\_A_ (s
Now dzr —}—,}:( én;) T a\dz/ 4= )

From (1) and (15) we obtain the following results,

A\ _ )\e éix \ = x:— }_‘_"__\_,_,I
._._—\%:O - ) A%"

&2 x 2 =0 —;: \c
(\k))(n)
and _%—\— \ = \ A'L\ = }— -
dx |z2= ) &2 oo, Ne

Let )ws be Stevens' lower fiducial limit, Using Taylor's

series and elther expanding about the point 2z = 0, or ex-

panding about z =1, we obtain

\ v,\-\b,,aw a+\,31\)z” Ue)
s E Zz=0 A d%t 2
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\QS V_: Xo‘ + _EL\_\ (%"') -\—J—é_?:}‘_ @"\) (1)

&2 Z=\ 2 azb Z=\

or

In summary, then, to calculate Stevens' fiducial limits,
proceed as follows, For the lowsr fiduclal limit, >ms,

obtain from suitable tables (Pearson and Hartley [ 59 ] )

the lower limits corresponding to the observed value of x,
and also, x+1, Denote these by >\o and >\°', respectively,

Obtain a value for 2z by referring to a table of random

numbers, If z < 1/2, compute 4> and a2
dz =0 dzZ | 2z=0

from (16) and (17). Then compute ‘xcs from (19)., If

z > 1/2, compute Nos ffom (20), The same basic procedure
1s used to obtain Stevens' upper fiducial limits., Thus,
Stevens'! useful, randomized fiducial 1limits may be obtained
from existing tables of confidence intervals by a simple

interpolation procedure,

To conclude our treatment of randomlized confidence
intervals for the Polsson parameter we present the concept
of the Neyman -~ shortest ﬁnbiased confidence Ilnterval as
given in Blyth and Hutchinson [9 |. Generally, a random
subset A of the possible values of a parameter 'X is an
Wunbiased" confidence interval for A , Wwith confidence

coefficlent 1 -&, 1if the following two conditions hold,
Pi Xe A N > \-¢ Bocoll N (o)
p{\A‘QA\\A} L P{)eA I\A} INNTAN )
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A "uniformly" Neyman - shortest confidence interval, A,
is one which, in addition to satisfying (20) and (21},
also minimizes P(\'¢e A I\) for all pairs >\' and }\.
A process of randomization 1s needed for the construction

of such confidence intervals when the random varisble involved

1s discrete,

Let X be the Polsson random variable with para-
meter >\ and let Y be & random variable having the rect-
angular distribution, such that X and Y are independent,
Eudey \__23] has shown that a uniformly mest powerful un-

biased test of | Be: Z= \)\*
.

He \’7‘>\¥

having significance level 1 - & and based on a single
observation X, 1s given by the acceptance region
A (X* ) = {(‘c,xa\) T+ o & Xty & ‘x\+Yn} (22)

where x, and x, are integers and 0<¥,<1, 0<{, <1,

and A(Xo) satisfies the two conditions

d P%x.«-?{, = xua £ xi ¥ \,\} (23),(24)

P{nﬁ&, é‘-x+\a & x\—ﬂfa\\*} = d ) E_,\' I\=>\¥

More specifically the conditions (23) and (24) are

(x\-\.,) [P{Io‘:-x L x-) \\#} - ok] - Xo P{1=x° \\,} + X, Pix-;x.\\*}
(£,~%a) Pix..—. Xo \\g}

o) P 3] = <] 5 P ] s Pfas ]
(- %) P{Y—.—.x\\ X*}

(as)

(z¢)
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Eudey [?3]'5 test 1s unique except for the way in which
randomization is carried out, Blyth and Hutchinson [ | ]
have tabulated Neyman - shortest unblased confidence intervals

for the Polsson parameter, N , for & =0,95 and 0,99 and
)c-\-ca = o.ol (o.e1)olo(6c2)o.20( 0,05) |.0oo (o) 100
10.0(:2) 40.0(06.5) 55.0(1) 250

using an ILLIAC digital computer, For given values of ‘X¥

end 4 | trial values of X, and x, were substituted into

1
(25) and (26) wuntil both ¥, and ¥, were in the

interval [O, 1].

Blyth and Hutechinson [ﬁ'], in comparing Stevens'
fiducial 1limits with those based on Eudey'['23}'s results,
show that Stevens' are shorter for 1.6 < x + y < 9,4 and
longer elsewhere, However, it should be mentioned that
shortness 1s not the only criterion of deslrability for

confldence intervals,
11,4 The Poisson Process

Often it is possible to interpret observations as
resulting from the continulng Polisson process characterlzed
by the parasmeter >\. In such a case, observatlions stating
the number of events during a certain amount of observation,
or, the amount of observation, T, required for a certain
number of events, n, to occur, are possible, From experi-
mental designs based on this type of observation, confidence

intervals and test of hypotheses, involving the parameter )\,

mey be determined,
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In section 2,6 we have shown that Z‘XT has a
chi-square distribution with 2n degrees of freedom, Thus,
given confidence coefficient 1 - ¢, numbers C and D may
be found from chi-square tables so that

P{ C&ONT & D} = )-e
Thus ( c_, _2_‘) 1s a confidence interval for ‘x having
2T 2T
confidence coefficlent 1 ~-¢,

If two Polisson processes, characterized by \d
and )\2, are to be compared by arriving at conclusions
concerning the ratio § =7\2/)\1, a confidence interval
for ¥ can be easily constructed, Let T, and T, be
the amounts of observation required for n4 and n2 events
to occur 1n the >\1 - Polsson process and the )\2 - Poisson
process, respectively, Then 2)\1T1 and 2 XZTZ have both
chi-square distributions with 2n1 and 2n degrees of

2
freedom, respectively, Then the statistic

F‘ ’L}MT\ 2 )\-,Tz. = Tima
- 2 m, 2 m, ¥ Toom,
has the F distribution with (2n,, 2n,) degrees of free-

dom, Given confidence coefficelnt, 1 -€, two numbers C

eand D may be found from tables of the F distrlibution

such that <
Plc ¢ —f= 2 D} - -¢
KT’L My
Thus | 2>™p , Mg ) ig a confidence interval for
Tim, T\ My

having confidence coefficient 1 - €&,
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Birnbaum [ 4 1 shows that it two Poisson processes

characterized by )\1 and )\2 may be observed simultaneously,

then a confidence interval for U =>\2/ N1 can be obtained,

Let x, and x, be the number of events occuring in the

1
)\1 - and )\2 - Poisson processes, respectively, during a

fixed amount of observation, Let p be the probability
that, starting at a certain "time", the first event to
occur will come from the )\1 - Poisson process, Clearly,

then, P = ‘\| . Then 1 - p 1is the probability that
\ 2

the first event willl come from the )\2 ~ Polsson process,

We may treat the ohservations x, and X5 as the number of
"successes" and "failures", respectively, of a binomial
sample, Using any of the procedures developed for obtaining
confidence intervals for the "proportion" parameter of a

binomial distribution, we may obtain & confidence interval

for p, If (C, D) 1is the confidence interval for p having

confidence coefficient 1 - &, then (D=1, C-1) 1is a

confidence interval for X having confidence coefficient 1
11.5 Approximate Confidence Intervals

In section 2.8 we showed that the statistic LE;*@
Mm

where the Xy, 1 =1,2, .,., n are independent Poisson
distributions each having parameter }~, has an asymptotic
normal distribution with mean PN and variance >\/n. This

fact may be used to form an approximate confidence interval

-&,

A
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for )\ when n 1is large, Let the desired confldence
coefficient be 1 ~ &, Then, from standard normal tables,

& real number ?E can be found such that

—

- & %= & +fe § \-c
Phoe B2 e o]

The resulting confidence interval for >\ 1s the asymptot-

ically shortest 100 (1 -é:)7£ confidence interval, Let the
upper and lower confidence limits for N be ‘Xu and \L R

respectively, Then

\L—\(E +,2£)+5C-L = 0

m

and solving for ‘X glves
b -~ .
Nl g B Eﬁ,\/.\—_gi + 1z G
AL 2 (A M m
We have also shown in section 2.8 that the statistic Z\fi

has an asymptotic normal distribution with mean 2 \fx_and
variance 1/n, Thus

P{—ge £ 24 (X A% epe} ~ e
Solving for the upper and lower confidence limits, §“A and

XL, respectively, we have
\u X - x
= Xx ¥ je 1+ Fe = (28)
AL U M
As we have already mentioned in section 11,2, Crow and
Gardner | \ﬁ.] have averaged (27) and (28) to obtain a
remarkably accurate approximation to the Garwood [:31] and
Ricker [ 67 ] confidence intervals, 81(x). When terms of
order 1/n are neglected, both (27) and (28) simplify to
>\u & :i t ?e j’_
N N

8 result commonly seen,
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11.6 Concluding Comments

The different methods of obtaining confidence

intervals discussed in this chapter are 1n the maln based

on a single observation of the Poisson random variable,
However, because of the additivity property of the Polisson
distribution, established in section Z;h, the sum of n
independent Poiason random variables each having parameter
) , 1s again & Polsson random variable, and has parameter

nx, A random sample of size n can be taken and a confldence
interval obtained for nA. Thus a confidence interval for

PN 1s obtalned based on n observations of the Poisson

random variable,

Most of the distinctions made between the different
confidence intervals discussed in this chapter are appreciable
only for small samples, In the majoerity of cases, the normal
approximate confidence intervals and the simple Garwood L31]

and Ricker [ 67 ] confidence intervals are satisfactory,
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Chapter Twelve
Hypothesis Testing
12,1 Introduction

In this chapter we deal with the problem of
hypothesis testing for the Polsson distribution, Goodness
of fit and homogenelty tests are investigated, The Poisson
distributlion truncated at zero l1s briefly discussed, In
continuation of our treatment of the Polsson process, a
chapter 1s offered, and the simplicity of the methods in-
volved should be noted, The problems of hypothesis testing
end combing tests when observations are from a discrete

distribution are considered in.the final two chapters,
12.2 Goodness of Fit Tests

Suppose that the sample space of a Poisson random

variable x 1s divided into a finlte number »r of mutually

exclusive and exhaustlve cells or classes S1, S2’ ecey S o

T~

r
Let Dy, +s., Py Where 2 p; =1 be the probebilities

v
that an observation chosen at random falls in §,, Sa, cees Sp,

respectively, Take a random sample of size n from the
population and let O15 02, eeey O be the number of

observations falllng in S1, 82, eees Sr’ respectively,

}
o that 2 o, = n., We wish to test the null hypothesis

o=

Ho that the population has & Polsson distribution with known

parameter % . Then consider the quantity called "the chi-
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square of the grouped sample"

v D (emmp) »

L= m Py
If the null hypothesis Ho is true, - np1 wlll be the ex-
pected number of observations falling in 8;, where 1 =
1,2, v.., T &nd the value of . ° will be small, so that
'X‘Z is apparently a convenient measure of the deviation of
the hypothetical Poisson distribution from the actual dis-
tribution of the population, Now, under the null hypothesls
H,, the random variables’\b1, ©,, esey O, have a multi-

r
nomial distribution with parameters n and Pys Pys eees P

n-1°
Cramer [ '8 ] (P, 417 - 419) proves that .2 has an
asymptotic chi-square distribution with r-1 degrees of
freedom, As n-—>« , the multinomlal distribution approaches
the multivariate normal, so that )22, which can then be
written as the sum of r-1 standard normal random variables,
has a chi-square distribution, The most significant aspect

of this result is that the limiting distribution of')é_2 is
independent of the original Poisson distribution, and only
depends upon the number of cells r, Large values of'yla
indicate a peor fit so that the critical region of the test

is selected to be the "right-hand"™ tail of the chi-square
distribution with r-1 degrees of freedom, When n 1is
fairly large the chief source of discrepancy 1s that the

exact distribution of:X_Z is discontinuous whereas the

approximating distribution is continuous, The standard

correction for continuity may be applied., Since the random
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variable')(.2 has a finite range and 1ts continuous approx-
imation, infinite range, there exlists a tendency to over-
estimate the true probabilities near the end of the "right-
hand" tail, For finite n, the approximation 1s satisfactory
for most purposes if npy > 5 where 1=1,2, ..., 7,

It is desirable, if accuracy is not forsaken, to have the
cells each as small as possible so that as little information

as possible from the sample 1is lost, Cramér [\3 ] shows

that under the null hypothesis H,, the mean and variance

of)(,‘2 are Eiﬁ»l — e (2)

and \/{1’1 = 2(r) + L [ ZT___‘\)__ ot _ 2%+ 2 (3)

M
Thus, if the number of observations n 1s so small as to
rule out the application of the chi-square test some inform-
ation may be obtained from (2) and (3). The well - known
results of thls paragraph apply, of course, to any discrete

hypothetical distribution whether it 1s Poisson or not,

Suppose that we now wish to test the null hypothesis
H, that a population has a Poisson distribution with unknown
parameter, The chi-square test may be used to test the
"goodness of fit" of the Poisson distribution to a random
sample taken from the populstion, The unknown parameter

may be estlimated by the manimum likelihood estimate, the

sample mean X, Cramer [ 18 ] (P, L2l - 43l4) shows that

f:i(

(=

O
;——__—-—-—.

2
—-J»/\‘g"\ (%)
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A
where Py is Py with the parameter estimated by 'i) has a
chi-square distribution with r-2 degrees of freedom, Then
a right - tail test based on L2 may be used to test the

goodness of fit,

As Fisher (28] points out, )L 2 as a measure
of discrepancy, may be inaccurate with X 1is small and the
Polsson series short (that is, small r), since an indication
of discrepancy may then come chiefly from frequencies with
small expectation, Fisher [:26] proposes a "generalized

measure of deviation® +

—_ . (o (s)
L = E OtiaL( .

MP;

which he describes as "the logarithmic difference in likeli-

=i

_hood between the most likely Poisson series and the most

likely theroetical series without restriction", The statistic
-2L has an asymptotic chi-square distribution when the Poisson
parameter is large, Cochran [ 12 ] also investigates the
statistic L and suggests that the likelihood approach is

more approprlilate than the‘X;Z approach as a test criterion,

We shall now present a test for deviation in the
zero frequency, Section 12,}, dealing with the Poisson dis-
tribution truncated at zero, may be read along wlth this
paeragraph, Sometimes it happens when using a goodness of
fit test, that the quantity')(_2 is significant becsause the
zero observation is over - represented, Thus, a method of

examining whether or not the zero frequency is responsible
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for the significantfl.a is of value, Let n_, where
x=0,1,2, ..., be the number of x values observed 1ln a
random sample of slze n taken from a population that is

Let n'=z=n -n

Poisson under the null hypothesls H,, o°*

Let y:zp be the total chi-aquare quantity, that is
(-]

L, = Z_ (smg= smpGe))

1=0 0 px)
where p(x) are the complete Poisson probabilities, Let

y,ZT be the chl-square quantity for the Poisson distribution

truncated at zero, that is

Z__ (JV\,C- M P‘(x))

]
‘)(x)
where p'(x) eare the truncated Poisson probabilities,

Define'ygaz by

L 2
3L P IL T
Thenn)LZZ has & chi-square distribution with one degree of

freedom and may be used to detect significant departures

in the zerc frequency,

Similarly, a maximum likelihood ratio goodness of
fit test may yield a significant value of L, Let Lp
be the total L, that is

ZM: (Mv(“))

and let LT be the "L wvalue" for the Poisson distribution

truncated at zero, that 1is

;iiNJw“ 1/ ( Mx )

Ly
M‘P('v.\

]

Define L, by
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Then -2L; has an approximate chil-square distribution with
one degree of freedom,'and may be used to test the zero
" frequency, Both the approaches mentioned are only valid for

large samples,

An exact expression may be easily obtalned for the
probability that a certain number, say n,, of the observ-
ations in the sample are "zero" observations, The problem
1s equivelent to a classical occupancy problem where the
zero qsservation corresponds to a cell being empty when
T = zi n, objects are placed in n cells, The probability

that n, obJects or observations are zero observations may
be determined from Feller [ 25 | (P, 92) to be

P = () 2 8 (o) o)

i =0

- ( m‘) AT :

T
Mo

m
Thus, to detect both positive and negative departures of

n, from the expected we set up a critical region
C'-: {\N\o

where r, is the largest positive integer and

Mo= ©,,2,; Ti—| omd Moz Tty o ,M-\)M}
Ty, the
smallest positive integer such that

jii [)°. &‘44/;

=0
Mo m

and Zi_ RM‘ L J/L

Mo= Ty

where <X 1is the upper limit to the significance level,

Valuss of ATor have been tabulated in Stevens [76] and
Pl
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in Fisher and Yates {_19-1 so that the values of Pno

may be obtained with only a little computation, If n 1s
large, the normal approximation may be used (see Weiss [ 23] ).

If T >> n, Pn may be approximated by the Poisson dis-

o
tribution (see Feller [ 25 ] (P, 94)),
' A-—)\ M,
Pa. & e A
Mol

~ Tl ’
where >\= ne . Thus Pn may be obtained from Polsson
o

Tablaes,
12.3 Homogeneity Tests
a) The Index of Dispersion Test

Suppose that a random sample consists of n
observations 'x1; oy eeey X from a Poisson population,
and that T = g; X{. We have seen in section L. that T
is a sufficient statistic for the Polsson parameter, If T
and n are fixed, the conditional random variables
Xiy X3y eeey X, may be treated as multinomial random
variables each having probabllity 1/n, so that the condit-

ional probability of the observations 1s
T! YT ('6)
P{ Xy Xapoes 4 Xm \T)m} = Iz \m

o lxd

T, nj = T/n = x, We would like to

~test the null hypothesis H

We note that E{xi

o that each of the observations
X415 X2, eeey Xp 8arise from the same Polsson population and
not from a compound Poisson population, The chi-square test

applied to the conditional observations ylelds the well-known
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quantity I called "the Polsson index of dispersion“

wm

1= _Z— (> = E3=1T]) Z—(““ﬂ ()
L= E 7!;.\'\"} =)
Cramer [l\le (P, 4hs - L4h9) discusses the chi-square test

as & test for the homogeneity of & number of samples, and in
so doing, shows that I 1s approximately a chi-square random
variable with n-1 degrees of freedom, Hoel [ 4 | considers
approximations for the flrst four moments of I &and from his
work 1t appears that the chl-square approximation is highly
satisfactory for X > 5, For slightly smaller X the
approximation is still fairly accurate for the Poisson dis-
tribution (but not for some other distributions such as

the binomial distribution), Rao and Chakravarti { 5] have
also investigated the chi-square approximatioh and conclude
that it yields "good" results for x > 3 but that it "may

be misleading" if x < 1, It should be noted that the
numerator of I equals n times the sample variance and

that under the null hypothesis H,, the denominator 1s also
an estimate of the variance of a Poisson distribution.

Thus, in cases where the sample ts non-homogeneous and
"over-dispersion" occurs, the quantity I will be large,

so that & right tail test based on the chi-square -distribution
i1s possible, This test is sometimes called "the varilance

test of homogeneity", If it so happens that exact probab-

ilities are desired, the expression (&) may be used,
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b) The Likelihood Ratio Test

Suppose that we wish to test the null hypothesis
Ho that esch of the n observations comes from the same
Poisson population having parameter )\ sgainst the alter-
native hypothesis H1 that each of the n observations
comes from different Polsson populations and having parameters

)\1,>\2, veey >\n as in part a) of this section, Thus we
wish to test Bot \o=Np = <o =\ =\

o \i. #\3 i*{:—a L\.&: e

The likellihood functions of the sample x,, X5y eeey Xy

under H, and H, are L(H,) end L(Hq), respectively,

where EROR _ e-—m\ \T

m N
and LWy = TT e .jﬁ;
x)

After the maximizing process we obtain the maximum likelihood
A A
functions L(H,) end L(Hy) of L(H,) and L(H,), resp-

ectively, to Dbe

-7 T
L(uo) = € (T/M)
and [ (W)ae TTx
= %!

Thus the maxlimum likelihood ratio is

| T
N= LG _ (T
\:. (]'\\\ T_f\r -I\'xi

=\
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so that /QM/\= T_Q“T_T_QN\M__ZXL‘QM.X;

o=\

If T/n 1is large, -2 1ln N\ has an approximate chi~-square
distribution with n-1 degrees of freedom, Then, the
maximum likelihood ratio test based on the statistic -2 1ln A

may be used to test H, against H The statistics -2 ln N

1°
and the index of dispersion I are asymptotically equivalent
so that neither is preferable to the other when x is large,
Under H, the expectation of a particular value x of the
Poisson series x =0, 1,2, ... 1is given by
NN

’Mfmex'x;s
If the class expectations m, are small, Cochran L]
suggested that the statistic -2 1ln ANE Y preferable to I,
Also, when class expectations are small Fisher [28) gives
examples of samples illustrating the superiority of the
statistic -2 1ln A, Rao and Chakravarti (bS] , in a
follow up of Fisher [28 ) 's work, come to the conclusion
that for small samples and/or small X, then -2 1n N
has advantages over the 1Index of dispersion I, They remark
that for small samples I "tends to be heavily grouped" so
that the value of I having “a cumudative probability less
than or equal bo 5 9, may actually correspond to a much lower
level of significance because of the gaps in I", Using
-2 1n A\ "much closer percentages are obtalned and consequent-

1y it has better chance of rejecting the null hypothesis",
N

A table gives values of ,Z; xiz such that all values of

=
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M

~§Z xiz greater than or equal to the tabulated values are
;;énificant at less than or equal to 5%, for T =3 (1) 10
and n =3 (1) 10 (10) 100, The ggtual cumulative probabil-
ities accompany each tabulated 2; xia value and are ob-
tained using the exact probability expression (&), A

ﬂ
similar table deals withthe statistic Zl Xy 1n x involved

=1 1
inthe likelihood test,

¢) Conditional Tests

The basic approach of this sectioh was originated
by Przyborowski and Wilenski [ 2] , We first consider Hoel[uz]'s
follow up of their paper, Let x4 and X5 be observations
from Polsson populations having means Xq and >\2, resp-

ectively, We wish to test the hypothesis

Het 122; - T

A (&)
W N g

Y

where r 1is a specified number, The probability of obtaining

x and x is glven b
1 2 g y —\‘ x, —-\‘I— >\ 2N
F(‘L)I-.) —_ e }_\_ e -__1’__
".Cl\. f)_\
Put /u=\1 +>\2, p = M and m=x1+x2. Then we
' . \\ +\1.
may rewrite p(x,,x ) as
2 -,A M \ X, YT o
plryn) = & P O P (\-?) (2
-NV\! I\\. (N‘A-x‘\\'

and the hypothesés (8) may be rewritten as

Ho p= !

14

W p> -

14
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A diasgram of the sample space follows, It should be noted

that for each diagonal line, m = x, + x, equals a positive

integer,

8

7 X=Xy
&

S

Xa

U

3

2 M=X+x = b
\

o

© + 2 3 4 § (-1 8
x,

The probability p(x1,x2) given by (9) can be looked on

as the product of two chances, namely,

Moo

1) the chance p (o |w) =€ A*_\
Mt

the probability that the point (x1,x2) falls on the line

= +
m =X +x,

X, M-
2) and the chance P(IJM)P): ) p (1-p) (o)
'I\‘. (‘MA—'X'I\\.
the probability that for a given m, the observed partition

into x and m - x,, occurs,
1 1 w

To test the hypotheses we seek a critical region“such that

Pi(x.,x..)ew p=-s) /ul = o

where dJd. 18 the slignificance level, However, because of

the discreteness of xy and x,, no such region exists,
If m and p are large, the binomial function (l0) can be

approximated by a continuous normal function, and an « -region
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on each line m = x, + x, can be determined so that

P%M‘b M (rym) o o= Xydx, unMJéoJU. M«MZAM} = A
The totality of such X -regions, determined for m = 0, 1, 2,,..,
constitutes a critical region C of size o4 , which 1is
independent of /M because the probability that a point

(x,, x;) 1ies in the critical region is

-, o0

= R - ow! “ep) M e
2 e P P _ e M
_A\ = \ Ol — ol
_ sl

X |. (M"I\)\, =
M=0 MA L C ! Jmeo

Among all the similar critical regions € that may be
determined as outlined there exists a 'best'! critical region
in the Neyman - Pearson sense, for testing

Ho: P =po

Hi: p=¢
if there exists a best eritical reglion on each dlagonal line
m=x, + X, The best c¢ritical region on such a line, if

it exists, is a region satisfying
'F(x\‘) Fo) < ﬁ [")
Flxy p)

where f 1s the continuous normal function and k 1is a
constant determined so that the probability under Ho of
a point (x1,x2) falling in the critical region is < ,

Writing condition (W) more explicitly and letting qq =

1 - P, and q, = 1 -p we have
. ( ° 2 ( el
1 [Gimwp Xi—om o) }
2 W Py YN Po%o
<%

e e :

which may be altered to
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\ 1 ) X — I ( —;; - — )
N P\c&\ Po%o (_l__ K \) =1 (n)
d Py g
!
where ¢ 1s a conqtant independent of X4 Let x be the

value of x1 suchithat

P{ o S P <N ’ P:Po'} = o (l's)
then (12) holds for x, > x, provided py > p_. Thus the
region defined by (13) 1is a 'best! critical region for

alternative hypotheses of the form H1 : p1 > p, on the

line m = xqy * X5 - The totaelity of all such regions for
m=0,1,2, ,.. constitutes a 'best' eritical region A

similar treatment applies to testing with alternative

1

hypotheses of the fBrm H, p1 < po‘ Przyborowski and
Wilenski [ ©2] deal with the special case where the null

hypothesis is H, : r =1 and so H  : p=p, =1/2,

They chose to work with the binomial function rather than

approximate it by some continuous function, In testing

Ho-‘ P""'/L
Wt P#'/Z.

they determined a critical region C* as follows, For each

m, m=0,1,2, ..., let w(m,2) be all the sample points

1 + xa and

satisfying x; < k(m,%) and x; > m - k(m,=) where k(m,)

(x1,x2) falling on'the diagonal line m = x

i1s the largest positive integer such that
’QQIW‘\"')
ot . o

x‘q,o Ill- (M’I\)‘ 2

The totality of regions w(m,2) for m=0,1, 2, ..,

constitutes a critical region of size less than or equal to o(,
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They state that the test "seems likely to be as efficient
as any other alternative test in detecting departures in p
from 1/2", A table gives the boundary values k(m,«) for
m=1¢()80 and % =0,01, 0,05, 0,10 and 0.20, The

power functlon of the test 1s given by
oD

* ' M JV\R\ X } )«w\-r.
P{(n’n) ¢ P’P} - Z - %.l G | -

Jwzo oo(m,d)
and has been computed by Przyborowski and Wilenski [_62] for

=2 (1) 15 (5) 50 and p = 0.0 (0,1) 0,5 with < = 0,10, 0,05,
Hoel [u1] points oﬁt that the approach of Przyborowski and
Wilenski | ¢2 | has the disadvantage that special tables or
charts are needed, Hoel [Ulj , Dbeslides using a continuous
approximation for the binomial function, suggests a further
modification of Przyborowski and Wilenski [61] . He chooses

x, to be the integer which most nearly satisfies (13),

rather than the smallest lnteger for which the left side

does not exceed > , Hoel Lur] remarks that there are only

two values of m, namely m =3 and 9, for m < 30 for

which the chi-square test and his modificatlion of Przyborowski

and Wilenski [bl ] 's paper might yleld different decisions,

In conclusion, it seems that the conditional tests
offer nothing that is of any great advantage, and so either
the chi-square approach or the likellhood approach it to be

preferred,
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12,1 The Truncated Poisson Distribution

The special case of truncation at zero will only
be considered, From section 5,4 we have for ¢ = O that

the truncated Poisson probabilities are given by

—X X} X =142, ('w)
Pe(xihe) = e-qu

First, we derive an exact expression for the probability of

the observed frequencies, Let n, be the number of x

values observed from the truncated Poisson population, Let

me D m
x=\
oy
2_xm,
x=u
The conditional probability of n4, Do, eeo given n 1s

- SN\ Ny
Pl W) - == T e

%Xzl
YO N T
ml e \ (8)

TT md (0)™ (-e™)"

A=)

and T

m

The conditlonal probability of T given n 1s given by

P{T\m} = (‘ — Z (- 03 (M—a] (16)

which may be obtained by noting that the probability gener=-

ating function of a truncated Polsson random variable is

o =

© NN x _ x RUES
: x g z _ >(,\.&) _ e (e =1)
;P*(I)X)O)z = xzﬂ (‘-e~>~)x! g\&i—e’_}‘)—x—\— ( \_Q__)\]

so that the probability generating function of the random
varisble T 1is
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E{ZT} _ {—m)x e ) /(‘—

—-mA\ - T T
=.-a€%;:§33_ ;ig- >\ %;; ﬁa( th? Z

From expressions (15) and (16) we obtain the conditional

probability of n 2, eee glven T and n to be

P \T\M} = Plongm, | / PY T lm

~)

$(Tm) 1_| ) (x1)™

)

where g (T, m)

)
—
'
N
o,
TN

-m] (M—j\T

- Ao
We note that due to the sufficiency of the statistic T
(see Tukey [81) ), the expression for P(n,, n, ,,, | T,n)
is independent of the parameter A. The expression (17)

may be used to compute cumulative probabilities,

If we wish to perform a goodness of fit test on

the data we may use either the chi- square statistic

Z (Mvc m‘)

or the likellhood ratio stgfistic
Z{_le.2“< fﬁi)
x=)

where the expected frequencies wm,, x=1,2, ..., are

given by

N\ X
My =M —-e——>\—
(|_e'>‘)x!
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and the parameter N is estimated, as we have seen 1n

section 5.4, by the formuls
A T
- e m

A\

Both jla-and.-llxrhave asymptotic chi-square distributions
with m-| degrees of freedom, As in section 12,3 there is
little to choose between the two statistics ’%Erand -2L+

if the class frequencles m, are large, while the llkelihood
ratio statistic is preferable 1f class frequencles are small,
The "accuracy™ of either statistic may be investigated by
compubing cumulative probabilities using the expression (17),
However, as computations are lengthy, this 1s only practical

for small samples,

We would now like to consider the problem of testing
the homogeneity of a random sample x4, X5, ,.., Xy e The
statistic In the truncated case that corresponds to the Polsson

‘index of dispersion is m
2
I;-= ZE. (xi- X*)
s XL N-X* )

- T
where x* = — = N . The statistic 1. has an asymptotic
m 1T = XN
chi-square distribution with /Mm-) degrees of freedom, We

shall now develop the likelihood ratio statistiec, The
likelihood function of the random sample X1y X2y eeey X

under the null hypothesis Ho of a homogeneous sample is

L(H) = ¢
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The value of A maximizing L(Ho) satisfies the equation
N\ T
(\-e™?) m

The likelihood function under H,, the hypothesis of a

non-homogeneous sample is -

) :
] Y
\_(Hl’ =T i\_e_\;) =

(=l

The value of M\ 3, 1=1,2, ..., n, maximizing L(H,)

satisfles

x; 1 L= 20ees
—-—::._— 3 )

AN - M
Thus, the likelihood ratio becomes
-m\ M\ T m . x:
/\T = £ (l ) >\ T—T e_\ X \r\i
Am =) I8

The statistic —2 & Ag has an approximate chi-square
distribution with m-\ d&egrees of freesdom, Thus both the
statistics I-r and ~24u Armay be used to test the
homogeneity of the sample., Again, the statistic -2 Ow A

is to be preferfed to IT when class expectations are small,
12,5 The Poisson Process

Birnbaum [ 5 ] offers solutions to certain
problems in hypotheslis testing when it is natural to concelve
of the observations as originating from a )\-Poisson process,
Let T Dbe the amount of observation required for a specified
number of events n to occur in a )\-Poisson process, Then
we have seen that 2)\T has a chl-square distribution with
2n degrees of freedom, Thus we may test at significance

level « , the hypotheses
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where X‘o > 0 1s a real number, A number ? may be found
from chi-square tables such that under the null hypothesis H
PlaNT 78] =«

If the observed value of T exceeds ?/2 >\o we reject

0

Ho : >\ =>\° in favour of H1 H >\ >>\°. Otherwlise we

accept Ho’ A similar approach may be used to test Ho :

>\=>\o against H, : X\ <>\° or H, : N 7‘>\o°

Suppose that t wo Polsson processes characterized
by )\1 and )\2 may be observed simultaneously, Let the
amount of observation t be the same in both cases, From
section 2,6 we have that the number of events observed in

the respective processes x1 and x2 have Polsson distrib-

ution with parameters P 1 =‘X1t and f*z ='x2t, respect-
lvely, Let

\6: _&"_—_--}—L—
ﬁl\\\ '\|

We may think of x1 as the number of "successes" observed
in a series of n trials where a "success" refers to an event

occuring from the )\ -Poisson process, so that the probability

1
of a "success" is

P — >\| - \ (B)

PNTR Y |+ ¥
Thus, we may treat x, &nd x, as a sample from the binom-

lel distributlion having parameters m = X,

may test H, @ [~«1 =/\A2 or \1 =>\2 against H1 3/.&1 #}AZ

+ X and . W
2 p. We
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or )\1 ;l)\z by testing H, : p = 1/2 against Hy 3

p # 1/2 because of (18)., This may be done using sny pro-
cedure for testing binomisl parameters, For the sake of

simplicity Birnbaum Ls ] 's detailed discussion of the test

procedure and of the duration of the experiment is omitted,

Suppose that two Polsson processes, characterized
by X 1 and %‘2 are separated In space or time and that T1

and T2 are the amounts of observation required to observe

n, and n, events, respectively, Then 2)\1T1 and 2)\2T2

have chi-square distributions with 2n4 and 2n2 degrees

of freedom, respectively, Then

F _ 2 \I—“/ ')_>\7_Tz - M
- ZM‘L My >\1—T1

has an F - distribution with (2n4, 2n,) degrees of freedom.

2M|

We wish to test at significance level « , the hypotheses
Ho: \\’-‘-\‘z.
H\I \l#\l

Under the null hypothesis Ho we have F = n,T, /n1T2 so

that a real number ﬁ may be found from F - tables such that
P &>P =
MtT'l—
Ir BTy , computed from the observations, 1s greater than
n,T
172

P we reject H : >\1 =>\2 in favour of H1. Otherwise we

accept H,,

Wald [81:1 has developed "the sequential probability
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ratio test" for testing null hypotheses against one-sided
alternatives, We wlill very briefly outline the testing pro-
cedure as applied to the xk-Poisson process and given in
Birnbaum [ S] . We wish to test at significance level <

hypotheses of the form

Ho: §\=‘\o
H\‘- \: >\°+A

where [\ > 0 is a real number, Let the variable x be the
number of events observed in the A -Poisson process, and the
variable t, the corresponding amount of observation per-
formed, Observe the process only as long as the variables

x and t satisfy the inequality
best ¢ = ¢ o st

| where o = -QM-( l:ji.) QM—( Ao >

o N\ot+ A
b () ()
and S = A On Ne

and < 1s the desired maximum probability of rejecting Ho
when >\ < >\°, and F is the deslred maximum probability

of rejecting H, when PN 3)\0 + /. Then, observation of the
process wlll be stopped if either x < Db + st or x > a + st,
If stoppage 1s because of x > a + st, we reject Ho H

>\ -_->\0 in favour of H1. Otherwise, we accept Ho‘
12,6 Tests of Significance in Discrete Distributions

In this section we deal with discrete probability
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density functions in general, Let x be a discrete random

variable having sample space x =0, 1,2, ..., k where Kk

’ 3

is a positive integer or < and probability density function
p(xIN) where N is a single unknown parameter, We wish
to test Ho: N\ = Xo

| TR NN W

Let the desired significance level be < and let the
critical reglon of the test be C = [x | x=0,1,2, .o,y é}

where ¢ 1s the smallest value of x such that
4
E P(x\\a) 1: 0{ “q)
x=c

The cumulative probabilities in (l9) may be determined from
special tables in the case of the Poisson or binomial distrib-
utions, If an observatlion of x 1s taken and the value
belongs to C the null hypothesis HO is rejected in favour
- of H1. Although this test 1s simple it has several draw-
backs, Flrst, the size of the test 1s less than the signif-
icance level., This means that the probability of rejecting
the null hypothesis Ho when 1t is true 1s smaller than the
desired value o , Also, 'best'! teats in the sense of Neyman
and Pearson are not possible as no two regions can be found

having exactly the same size,

To overcome these drawbacks Pearson [ 57] and
Tocher EQO] propose the performing of an auxiliary experi-
ment, We present Tocher[ﬁo] 's contribution here and

Pearson (57 | 's, in section 12,7. In both cases the essent~
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ial idea is that of adding "a continuous dimension" to
the sample space of x which permits the application of
the theory for continuous sample spaces, We wish to find

a 'best! test for testing at significance level o\, the

hypotheses Ho‘ \__ Mo

Hy >\=\‘

First, let the likelihood ratio AN of the value x be

x
Ax = pGIN) [pGeide) (2e)
end order the sample points such that
A2 Ay > o (29
and such that if A x = /\x+1’ then p(x I)\o) < p(x+1 I>\o).
Ir /\x = /\x+1 and p(x |>‘o) = p(x+1 I)\o) then,

p(x I)\1) = p(x+1 I)\1) and the events x and -x+1 are
equivalent in a certaln sense and so may be pooled together
and considered to be a single event having probability
2p(x IN).,

Any set of numbers wa} where O < Wy < 1

end x=1,2, ,,., k defines a test procedure (2 (w_)

which rejects H, 1in favour of H1 with pggbability Wy

if the value x 1is observed, Let F = zz_ w_plx |'X1).

=1

A
We desire a test procedure Jﬂl(wi) such that the set

A
iwk} satisfies the two conditions

-ﬁ A
Zw; pxlhe) & o
Xzt
and &
(:)x P(x\\o da O MO

r=y
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Define E;X} such that \ - X= 42y yXe
a’x = B = o - Z_: P(X\\o) W= Wt (232)
Plxa+1 | No)
1} X > Xt

where x is the value of x satisfying
° Ao Yot!

ZP(x\\J L oA <L Z_F(x\\c)
x=I

€=
A A
Let [3 = iwx pix I)\1). We now showthat? 3\3.

First, — 1L 4
%o

p= ) () pleh) 4 4 LD planln ) pleiny
? x=| P(I.,H\ No) L= AeH

so that é—ﬁ e Z ("'“\’x] (/\r." /\‘:C-H) ?(x\\") (14)

x=) %
+ Z Wy (/\;c,\.\" /\x\ P(r-\xo)
X= Yot

From (2.F) we have that the right-hand side of (2.4)
A

is a positive quantity, so that ﬁ > p. The equality holds

only if %o
Z_ Log P(I\\e) = o
x=t
and |-wye =0 X = Ly X

%

wyxy =2© X = Xok2) -

Therefore, equally powerful test procedures only differ
A

from () (wy) in the w values assigned to the value

x = x5+ 1, The test procedure is as follows, Take an

x=0,1,2, 4o0, xo}

observation, and eall it x©, If x© ¢ {x
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re ject Hc‘ Ir x°=x, + 1, perform the auxiliary ex-

periment by selecting a number between O and 1 from a

table of random numbers, and call it z°, Ir
N oA — Zi.p(x‘\o
% 2 9: (7-5)
P(IQ+' '\Q)
re ject Ho in favour of H We also note that

P{c \HQ} Z_u), p(=1%) =

Thus the test KQ-(;X) has the following two points in
its favour :

1) The probability of rejecting the null hypothesis H,
when it i1s true is known exactly and equals the desired
value &,

2) Thé test_ﬁ].(gx) is a 'best' test in the sense of
Neyman and Pearson,

Tocher [301 extends the concepts of Neyman and Pearson

in testing to lnclude unbiased test procedures and also,

testing composite hypotheses,

To counterbalance the advantages of the auxiliary
random experliment there are two disadvantages :
1) From the same experimental data different decisions
as to the rejection or acceptance of the null hypothesis
are possible,
2) Under certain experimental conditions computations may
prove troublesome (see Lancaster [46]). If the probability
plx, + 1 I)\o) is large, the number of observations of

Xo + 1 may be large, so that the suxillary random experil-
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ment may have to be used repeatedly, thus it is possible
that the effect of the auxiliary rendom experiment may be
greater than the effect of the remainder of the experi-
mental data in the decision to reject or accept the null
hypothesis, Lancaster [4.] offers an approach which
avolds these difficulties, Lancaster [ 4] selscts the

median probability Pm(X)x defined by -

P () = 2 pG 1) + %F(a"m (20)

j:!'

2

as test function, If x° 1s the observed value of x
the rule of rejection is to reject H, 1if

Bw(xo) L oL (27)
When this rule is applied to the observation xo5 + 1 1t
is equivalent to a rule of rejection when 6 > 1/2, where
O is given by (25)., The decision based on the rule (27)
willl always be the same for given Ho and a given set of
experiemntal data, Lancaster [ue’] considers the agree-
ment between the auxillary random experiment and the median
probabllity approach and concludes that there is 75 72
agreement in marginal cases and 10071 agreement in all
other cases, Both approaches may involve lengthy comput-
ations, however the median probability has a "good approx-
imation" in the crude chi-square distribution as is shown

in Lancaster E46] .
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12.7 The Combination of Tests

As conditions often differ from experiment to
experiment it 1s desirable to have some method of combin-
ing a number of independent experiments which have all
been planned to test a common hypothesis, If continuous
distributions are involved there 1is little difficulty;
howsver, the matter 1s not so simple in the case of discrete
distributions, We shall deal with discrete‘distributions

In general,

Lancaster [u7 ] mentions the need for an adequate
procedure for combining independent experiments when the
number of observations in any experiment is small and dis-

crete distributions are involved,

It will be helpful to have in mind the procedure
generally used in the combination of tests involving a
continuous distribution, Let x be a continuous random
variable with probability density funetion p(x) defined
as a positive quantity for a < x < b and zero elsewhere,

Then a random variable y defined by

‘3: gP(:)Ax

has the uniform distribution in [O, 1]. Clearly, the
random variable 1 - y 1s &lso uniformly distributed in
[O, 1]. It 1s then easy to show that the random variables
-2 Iny and -2 1ln (1-y) each have chi-square distrib-
utions with 2 degfees of freedom, Also, 1f M 1is the
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median of the distribution p(x)k defined such that

" )4
Ic) = X 3C=‘—
K‘ P() x .YNF >

[\ %
then the random variable y' defined by
x
2§P(x)o\x xeM
o1
b
zf p(x) dx x> M
x

is uniformly distributed in [0, 1], so that -2 1n y!
has a chli-square distribution with 2 degrees of freedom,
These results may be used to combine a number of independ-
ent tests as follows, Let Xy be the continuous test

statistic of the 1ith exrperiment where 1 =1, 2

9 25 eeey 1

and let p(x; | Ho) be its probability density function
under a null hypothesis H, , common to the 1 experiments,

Define y; and y;' for i1=1,2, ,..,1 by

4 = g ‘P(x;“-lo)dx;

a;
d' Xi .«
- : 2§ p (i [Ho) e xi &My
- Q;
%‘ - bi
L P(I;IH»] dx. x> ML
x;

where M1 1s the median of the distribution given by
plxy | HO) and a; and by are related to x, 8s a
and b are related to x, Then the three statistics

Q1, QZ’ Q3 defined by

| r
Q=-12 Z'Q'V‘% : Q,=-2 Z.’Q’“("S‘)

= iz
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Q .
)
and Q3= _22\“'&’“3;

each have a chi-square distribution with 2R degrees of
freedom, The statistics Q1- and Q2 are used in single~
tell tests while Q3 18 used in two-tail tests,

The question arises as to whether or not a
similar procedure may be used for discontinuous distrib-
utions, David and Johnson [2¢] have partly answered
the question, Let x be a discrete random varisble
taking on values 1, 2, ..., k with probabiliﬁges Py

Ppy eees Py where k 1is finite or <® and x;% Py = 1.

by ‘
i (
Vi = Z Px. »8)
. r=\

and Uy = P= + P C=h2yeee
=\ 2.

Define vy and u

"@ (29)

ol

Then we define the new random varlables v and u as

taking on values vy and uy respectively, for i =

Pi v=\l:] = P

1, 2, eeey ko It 1is easy to verify that
and P[Uf:klli = P
% N
and also that R
ef]-> (Sp)p-t( 0 Lr
vs| r':'PLP ?' ~
and E_iu}:
and L3
et (D s]p o
: 2

(-3

N
TN
®
.-'-
otz
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=t

.k
end in particular Vi\*l _ o ( | — Z?;z)
(S <

It 18 interesting to examine these results and compare
them with the continuous case, First, the random variable
v 1s defined in an snaslogous manner to the continuous
random variable y, However, the expectation of v 1is
greater than 1/2, the expectation of y. The random
variable u 1s defined as a slight modification of v,

so a8 to have expectation equal to 1/2. The variance of
u 1is slightly smaller than 1/12, the variance of 1y,

As k —» o the moments of u approach those of a random
varisble that is uniformly distributed in [0, 1]. David
and Johnson [20] numerically investigate the departure
of u and v from rectangularity for x both a Poisson
and a binomial random variable, The conclusion is that the
essumption of rectangularity for u and v may be mis-
leading, The minimum departure occurs when all the Py
values are equal, The random variable -2 1n v 1is anal-
ogous to the continuous random variable -2 1n y which

has a chi-square distribution with 2 degrees of freedom,

After some manipulation we obtain the r 1 2, eee
N T \— P__
el ] 07 )[R E
=\

_ Y (,/_)_w Z f;‘ii o W(-2p)
(w0t o7 A(Z?;)

L= x=id
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where d 1s an operator defined by ed =E and E 1is

the shift operator defined on any function of n, f(n),
such that E f(n) = f(n+1), The cumulants of -2 ln u
may be obtained from (39, although the resulting express-
ions are rather long, As k —<« and pi—» 0 from the
positive direction for 1 s 1,2, ..., k the moments of
=2 In u tend to those of & random variable having a chil-
square distribution with 2 degrees of freedom, That is
/th E{—'L»vau}T = 2.1\ "’l

t>w, pi->e
The statistic -2 ln u 1is also considered by Lancaster L47]
where it is denoted by ‘y,'zm. The mean value of -2 ln v
on the éssumption that v 1is uniformly distributed is

denoted by )L_am by Lancaster [47] end is given by

Vi
‘Y,':M = (—IDMV) dv /(V _v\'“

Vit

l — ’L V ﬁMVL ;.. QV\ \/\...
Ve -~ Voo J

where v; 18 the observed value of v. According to

Lancaster [ q7] both l_zm and )L 'Zm may be approxim-
ated by the chi-square distribution with 2 degrees of
freedom, The statistic ) 2m has mean equal to 2 and
variance slightly less than L, The quantities Y Zm or
X;'am may be obtalned for each of the 1 independeﬁt
experiments and the sum of the }C Zm 's or the yi'am 's
will have an aspproximate chi-square distribution with 24

degrees of freedom, The statistiec }ﬁ'zm is ﬁo be preferred
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to j[lzm because 1t can be more easily evaluated, Both
'Zm and y:am are superior to -2 1ln v looked upon as

a chi-square random variable,

A radically different approach to the problem
of combining independent experiments follows from the work
of Eudey [23] , Stevens [75] , Tocher [ 8 ]|, and Pearson [57] .
The baslc idea 18 to add a continuous uniformly dlstributed
random variable to t he dliscrete random variable, so that
the sum will be a contlinuous random variable, and the
procedure alresdy outlined for continuous random variasbles,
sapplicable, The idea has already been discussed in section
11.3 and 12,6, Let x be a dlscrete random variable having
probability density function p(x) where x =1, 2, eeey K
and k 1s finite oroo , Let 2z be a continuous random
veriable uniformly distributed on l:O, 1] and independent
of x, Define a random varisble y as in section 11,3 by

% = X+ i,

We note that y 1s a continuous random variasble, Now

P{‘}é(&o} = P{xz_xo] 2. P(xo)

= ;_ P(T.) + 2, ‘)(Yu)

for any values x, and 2z, of x and 3z, respectively,

O

Drop the zeroes on x, and 2z, and define y(x,z) by

° 1 )

4@2) = ) pG) v = p )
=
Then y(x,z) 1is a continuous random variable and is unifermly

distributed on ['O; 1]. Then =2 1ln y(x,z) 1is a chi-square
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rendom variable having 2 degrees of freedom, so that a
number of independent experiments may be combined, It 1is
interesting to note that the mean of -2 1ln y(x,z) 1is

2 - 12
)L y &nd that the median of -2 1n y(x,z) 1is )é "

Pearson [.57] also provides the following results for
fixed x. Eiwwmm. v& -7—-9\«\3(3(,1@ =2

\/fL AL ok -1 JN\BCX,%)] <Y

E{ sl o -2 ey @iz il
and ViJW\\M % -2 ‘?M«&(x)z)} 0y
These are to be compared with 2 and L, the mean and

variance, respectively, of a random variable having the

chl-square distribution with 2 degrees of freedom,

We conclude this chapter with a brlef comparison
of the approaches offered by Lancaster [ 47| and Pearson
[57] . When small samples are 1lnvolved there is some
uncertalnty as to just how accurate Lancaster [47] 's two
statistics are. Tocher [.8°] has shown that for a fixed
glgnificance level the test based on y(x,z) 1s more power-
ful in the sense of Neyman and Pearson than any other test,
Also the test procedure is as quick to carry out as that in-
volving }L'Zm, and much quicker than that of )L,Zm. The
mein argument against the use of y(x,z) is that it seems
difficult to have to make a decision to reject or accept a
null hypothesls on the basis of an auxiliary random experi-

ment which is in a sense independent of the observations
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of the random variable x. Either Lancaster [”7]'3

li'am or Pearson[:57'1's -2 1n y(x,z) may be used in
combining & number of independent tests, depending upon
the specific nature of the tests, the accuracy desired,

end the experimenters convictions regarding the use of the

auxiliary random experiment,
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Chapter Thirteen
Topics for Original Research

The complete Poisson distribution has been
thoroughly investigated, and excellent tables have been
formed of probabilities, estimates and confidence intervals,
There is stlll research to be done with the truncated and

censored Poisson distributlons,

The Poisson distributipn truncated on the right
was discussed in section 5.3 and it was noted that an
unbiased estimate for the parameter N 1in this case does
not exist, Now, for any integer m < d where d 1s the

truncation point, we have that

0 Moo=
>
}\_— r=o I\.
’ - m-{
A x
> X
=0 ‘.C‘.
am

so that Z
XMy
Xco
o~
0 me

xX=0

is an estimate for >~, where n, 1s the number of x

x
values observed in a sample, An interesting aspeet of
this estimate for A 1is that it is independent of the
truncation point d, By putting m = d we obtain

Moore [52 | 's estimate )\M. If the truncation point d
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N

is known, the maximum likellhood estimate N may be ob-
tained from Cohen [137) 's tables, If d 1is unknown, the

maximum likellhood estimate of d 1s

A
é. = JW\wy.{’Jc.)x,)‘-. )XM}

where x,, Xy eees X is a random semple of size n,

n
An investigation of 4 may be worthwhlle, First, we

determine an expression for the probabilitles of d

P{&z } .—_i (2) P{xa-<o( \7'.31\,2‘..‘\{ ) x.=-~'=3ri-—oc}
;‘ 3= Cym-ky %
=Z <2) Ze_x)\L N
%=1 i=o EZiizfl F(4) «!
) (3) () ey’
) 2o ¢ F(d) (F(cl) o)

i

where
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A
Since d 4is an estimate of d we are interested

in the probability that d takes on the value d, that 1s

P{Sﬂx} -\ - (r:(a-.))m

F(d)
We may note that

e P [ ()] -

thus d 1is a consistent estimate of d, The mean of d

1s obtained as follows

d " m
. A R (F(a)) —(F(d-\))
Eidl :Zd P{A:u{l—_—zd (F(d))m

d=o od=0
d-y

S 4o ) [
j= \ FQ@

o
Thus 4 1is an "under-estimate™ of d having a negative

bias, However, we have that

S Ei&{ = d
The variance of a after a 1little manlipulatlion is found to be
d- (A
) m 4t N
V{&I =;2;_<§A-33_\)<E§Q> _ ;?; FG)
= F(4) g= \ F)

In summary of the case of truncation on the right, if both

A
d and N are unknown, d may be estimated by d, and

then A may be obtained from Cohen (i3] 's tables,

The Polsson distribution truncated on the left
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‘at ¢ was discussed in section 5.&. If the truncation
point ¢ 1s known two simple estimates for >\ are
Rider [68] 's A_ and the unbiased estimate given in
Tate and Goen [77], Velxy, x5, +o., x ). The maximum
likelihood estimate of A\, X 1s the solutlon for A
of equation (28) in section 5.4, that is

However, tables are only avallable for the case where

¢ =0 (see Cohen [I4]), Complete tables giving >\ as
a function of X for different values of ¢ would be
valuable, If the truncation point ¢ 1s unknown c¢ + 1

may be estimated>by the maximum likelihood estimate
(c*t) = Jvm,im{x.)r,_)\.. )-rm}

where Xys Xys eeey X 1s & random sample of size n,

A
We shall now examine (¢ + 1) briefly, The probabilities

e .
of (c + 1) are given by

P{ c:\ = o(} ._-_'Pi.lw\im{r..n‘.--)x“} = c(}

:i (g) P{xa)d Va‘#';"-,"'\fe ;r.=---=xt=az_}

.&
®

]
-

o0 AN . M= . R
A Z e e A
oy fm Q,F(;))}'! ([—-F(},\) o

= <M) \- F) o e_)‘\d R
oo |- Fe) (\-F) «!
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ol
|__g:(d)+ éAX\ \-F()
-FGE)  (1-F@) <) I-F o)

m

(1— F(J-t))m— (l— F(a))
(1-F@)

I

AN

The probability that the estimate (¢ + 1) takes on the

value ¢ + 1 1s then given by

P[c\t\ = ¢nl = | = |- F<C.+‘)
| . 1- F(c)

We may also note that

Siom P{c‘;. . cu} A <“F(°*")M -

1= F(o)
A
We now obtain the mean of the estimate (c + 1)

M > MDD

o0

M m

Eik} E L 1G] - (1-Fw)

C4t = vy
ol = et . (l—F(c)\

i m

| i:C-H l—F(C)
A
go that (¢ + 1) is an "over-estimate" of ¢ + 1 having a

A a
positive bias, The variance of (c + 1) is found to be
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~ o 2
m
c+\ ; <Qa—ac—|) a) . Z \";(a)
T |- F(e) jren \ |- FG)

Once an estimate for c¢ has been obtained, an estimate for

)\ may‘be obtained by the methods already discussed,

In section 6,2 the censored Poisson distribution
was discussed, Let n, be the number of x values ob-
served in a random sample of size n, Then if n, 1is known
for all x < ¢ @and only the total number of observations
i1s known for x > ¢ Murakami et al [53] have constructed
nomograms to facilitate determlination of the maximuﬁ
likelihood estimate of X\. However, these graphs are not
very accurate, and tables would be more useful, Other
cases of censoring, such as the case where n, 1s known

for x > ¢ and only the total number of observations is

known for x < ¢, may be treated in a similar manner,

The generalized Poisson distribution obtained by
assuming that the parameter >\ of a Poisson dlstribution
has the normal distribution truncated away from negative
real numbers may be considered, If we impose the restrict-
ing condition that the mean and varlance be equal, a
relatively simple genersalized distribution results, No
details are given as it is not at all certaln at this time
that this 1dea 1s of practical value or not, If the idea
ls useful, there is of course, a large number of estimatien

and fitting problems to be considered,
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