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Chapter One 

Introduction 

In 1837 a paper by Poisson [b\] was published 

in France, establishing the Poisson distribution. Since 

then a great deal of research has been done on this dis­

tribution and the distributions stemming from it. It 

enjoys remarkable application in medecine, psychology, 

genettes, biology, physics, economies and other areas. 

This work is an attempt to present, in an organized manner, 

the existing knowledge of the Poisson distribution, and so, 

is basicly expository in nature, and definitely not orig­

inal. Complete references are given throughout. 

The Poisson distribution and four generalized 

Poisson distributions are first inbroduced and various 

properties are developed, properties which are used in 

the later chapters on estimation and hypothesis testing. 

A detailed account o~ point estimates o~ the 

parameter ~ of the complete Poisson distribution occup­

ies chapter 4. The theory has been developed in this area 

to such an extent that the uniformly minimum variance 

unbiased (U. M. V. u.) ewtimate of a wide class of 

functions of À, g(À), has been obtained. The chapter 

closes with a brief treatment of the Poisson process. 

Truncated and censored Poisson distributions 
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are examined with respect to point estimation of parameters. 

A great deal of papers have been written about the trunc­

ated Poisson distribution and only a few about the censored 

Poisson distribution. A special emphasis lies on the case 

of truncation away from the zero point. 

The generalized Poisson distributions, the Pascal, 

the Neyman Type A, the Poisson v Binomial and the Poissonv 

Pascal, were developed to provide better fits to data where 

simpler distributions, auch as the Poisson proved unsatis­

factory. Chapters 7, 8, 9 and 10 deal with estimation 

of the parameters of these distributions, with major em­

phasis on maximum likelihood estimation. The resulting 

estimation procedures are generally long and tedious, 

however, tables have been developed to save time and labour. 

In chapter 11, two basic types of confidence 

intervals for the parameter À of a complete Poisson 

distribution, randomized and non-randomized, are discussed. 

The subject has been dealt with in detail and references 

are given to the excellent tables available. A short 

treatment of the Poisson process due to Birnbaum [ 4 ],[s] 

concludes the chapter. 

In chapter 12, goodaess of fit and homogeneity 

tests involving the Poisson distribution, both complete and 

truncated away from zero are discussed and compared. A short 

treatment of the Poisson process is also given. The problem 

of testing hypotheses and combining tests for discrete 



distributions in general is examined in sections 12.6 

and 12.7. 

The rinal chapter presents a rew ideas ror 

research topics with the major emphasis on the truncated 

Poisson distribution. 
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Chapter Two 

The Poisson Distribution 

2.1 Introduction 

In this chapter a formal definition of the 

Poisson distribution is given and various properties 

are developed. Most of these properties are used in 

later chapters but not all. The simple structure of 

the Poisson distribution is evident and is one of the 

reasons why it has widespread application. The distrib­

ution appears in a great va~iety of situations, often 

as a limiting approximation to a much more complicated 

distribution. Examples of this are given in this chap­

ter, and even though some are not referred to in later 

chapters, they are sufficiently intriguing ao as to earn 

a place here. 

2.2 The Poisson Distribution 

Let X denote a discrete random variable taking 

on values x belonging to the infinite sample space con­

alsting of the non-negative integers, and having probab­

ility density function (p. d. f.) 

0 
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where f.. > 0 is a real number. Then X is said to 

have a "Poisson distribution" with parameter À. We 

can easily see that the two requirements for a function 

of a random variable to be a p. d. f. are satisfied, by 

noting that 

•) e->->-."" -"'.lC\ 
> 0 

The cumulative distribution function (c. d. f.) 

of X is 
"X 

"F (-x;·,~) - L pC~~)..} 

Both p(x; )J and F(x;'>.) have been tabulated by Molina [s1] 

for ~ ranging from 0.001 to 100. The Poisson dis­

tribution has also been tabulated by Soper (12.1 , Whi taker 

(&lt 1 and Ki tagawa [If-S J • 

2.3 Structural Properties 

The p. d. f. p(x;~) obeys the simple 

recurrence relation 

p{l(+\j)..) - ). ? ( ")( \ )-) ( ') --(")(-\-\) 

From ( 1 ) we obtain the mode x of the Poisson dis-
0 

tribution. For, note that 

L 
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and ? Cv.,-\ ~ \) L.- ~ C"l(o . ~) 
) 

le ad to the inequalities, ).. - 1 < xo and xo ~). ~ -
respectively. Since xo must be an integer tbe in-

equalities combine to give x
0 

= ( '>-l where ["1 denotes 

the greatest integer less than or equal to \ • The mode 

x 0 is unique except for the case wh~re ~ is an integer. 

In that case x 0 takes on the two consecutive values 

and '>. • 

Let X be a Poisson random variable with 

p. d. f.' p(x;À), then for a positive in te ger n 
..M.-\ 

ob 

L ?('L').) \ 

~\ 
-;:l: -M-1 

cU. (~) - - e -*. 
( .M-\) \ 

~ ::::.o 

This can be easily verified by integrating the right side 

of (2) by parts and then summing. If T has a gamma 

distribution with parameter n, and lL~~ bas a chi­

square distribution with 2n dAgrees of freAdom, then 

either side of {2) equals P {T ~À) and also, 
"!... 

P( /._1.,.. ";1. 2.>.). Since there are extensive gamma and chi-

square tables available, (2) permits one to obtain 

Poisson sums quickly. This property is particularly 

useful when investigating confidence intervals and t~est-
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ing hypotheses. 

Let X and~-~ be two Poisson random variables 

having p. d. f. 1s p(x;À
1

) and p(y-x;~2 ) respectively. 

Th~n we 

--
We conclude this section of the chapter by 

stating an inequality and an equality involving the 

Poisson distribution. The proofs are long, yet not 

difficult, and are omitted. Teicher (le] proves the 

interesting inequality 
t }.] 

L > 
-,.:o 

e 
).. 

e 
2. 

Crow and Gardner (\9) , in the course of developing 

confidence intervals for the parameter ~ of a Poisson 

distribution, use the following equali ty. Let \ .,.,> -r, J 
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where r1 ~ r 2 and both are fixed, be the value of h 
that maximizes 

treated as a function of \ • It is easy to show that 

Crow and Gardner (1~1 prove that for fixed k=0,1 ,2, ••• 

1''\"4 .,.."' 

Mo..x I p (")C\ ).) - L ?c)<,\) c~) 
T::. o,l,'l,··· "X' a 't 

-y: :=. "(', 

when ~ .... ).,.,~4 ~ '>-! \..,,+,) "'4\+~+\ • 
This is true for 

r 1 = 0,1 ,2,... • 

2.4 Generating Functions 

If X is a Poisson random variable with para­

mater ~ , then X has 

1) characteristic function 

where 1 = F. 

2) moment generating function, {m. g. f.), 

).(e-1-_,) 

"1/-U:.\ ~ Et""-+'<1 = c;b (? Î ~ e 

3} probability generating function, {p. g. r.>, 

(s) 
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4) factorial moment generating function 

(6) 

5) cumulant generating function 

The r th central moment of X or the moment about the 

origin of X 
1 

denoted by jJ...,.. , is the coefficient of 

(it)r/r~ in the expansion of (4) and may also be 

written as ~ 

('7) 

,.~ ~ E-t '1.'1 = L ,.~ ? r<>-1 (8) 

"'c.:. 0 

The r th moment about the mean of X, denoted by ?? , 
may be written as ~ 

P.• ~ E. t ( '\l-.,. f} ~ ""'?; C-.- "')~ \' c~>-,. î (,l 

The r th factorial moment of X, denoted by P.c:rJ , 

ia the coefficient of tr/r~ in the expansion of (6}. 

and may also be written as 

where X[r] = X (X - 1) •. • (X - r + 1). The r th 

cumulant (or semi - invariant) of X, denoted by k'-.. 

is the coefficient of (it)r/r! in the expansion of 

( 7), and so for all r is ~ • 

' 
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More specifically, we may use (8) and {9) 

to obtain the following 

and 

::- ).. c 1 + \0 \) 

= )._ ( '"""~s).. ~~s)..,J 

It should be noted that the mean, defined 

is ~ , and that the variance, defined by 

is also )... • 

by E(X), 

~ .... ::.Et ('k-'>.Y} , 

The following relations involving the moments 

about the mean, jl.-.. , 
1 

and the central moments, ~~ , 

are given. Their proofs are straightforward and are 

omitted to save space. 

1 ).. fc-.·J Pi }Jo"\- -
~; 0 d 

"1'-'l.. 

p..,. ).. LC;') }A' - 1 
1~0 

1 '}. /A 'T' 
+ \ J.,v-~ 

jJ T\-1 = 
G\).. 
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' fA'· ô 

A very useful property of the Poisson distrib­

ution is the addi ti vi ty property. Let x
1 

, ••• , Xn be 

n independant random variables having parameters 

)..1 ' 

the 

••• , ~n, respectively. Then from (4) we h.,!ve that 

characteristic function of the statistic ~X· is 
./11 ;+ i'' t 

:t L.x·1 -M ~·(e.-1) - •-l-

E [ e i" 1 ~ p E'. 6 - e_"f>l Ce - ') 

This is th~ characteristic function of a Poisson random 

variable with parameter • Thus the sum of n 

independent Poisson random variables is again a Poisson 

random varie.ble. 

2.5 The Limit of the Binomial Distribution 

The Poisson distribution is usually introduced 

in textbooks as a limit of the binomial distribution. 

Consider the binomial distribution having parameters 

n and p and probability generating function (p. g. f.), 

(q + pz)n where p > 0, q > 0 and p + q = 1. Then, 

in the li mit as p -'> 0 and n -"> oc such that np = >. 
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where ).. > 0 i s a real number, we have 

From ( 5) we see that this is the p. g. f. of a Poisson 

random variabl~ameter ).. . Mainly due to this approx-

imation, used when p is very small, the Poisson law is 

known to many statisticians as the law of small numbers 

or rare events. Raff (~~) bas made a study of the six 

best approximations to the cumulative binomial probability 

and classifies these into two groups. The simple, less 

accurate approximations consist of the normal, the arcsine 

and the Poisson, while the "advanced" or more accurate 

approximations are the normal Gram - Charlier, the Poisson 

Gram - Charlier and the Camp - Paulson. The Poisson 

Gram - Char lier approximation is 
'X 

L -'" 2-. (r--Mp) p ('ot~ J\1\ ~) 
d. 

-r:::.o 

where p(r;np) is the r th Poisson probability with 

parameter np. The cumulative binomial probability, 

approximated by (10), is 

i (: ) r ~ ( ' -v î ~- ~ 

Of the simple approximations the Poisson is best for 

p < 0.075 and the arcsine, for p > 0.075. Of the 
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ttadvanced" approximations the Poisson Gram - Charlier 

is bAst for p < 0.075, while for lerr,re'Y" p~ the Camp­

Paulson is best. It is interesting to not~ that both 

the Poisson and Poisson Gram - Charlier approximations 

are practically independant of the value of n. 

2.6 The Poisson Process 

The Poisson distribution may be derived from 

the concept of a Poisson proceRs. Let (0, t) and 

(t, t+h) be two contiguous intervals of time, with h 

considered small. Then let Pn(t) be the probability 

that exactly n changes of sorne physical nature occur 

during time interval t. The Poisson process is char­

acterized by the postulates stated in Feller [2s] : 

"Whatever the number of changes during ( 0, t), the 

probability that during (t, t+h) a change occurs is 

Àh + o(h), and the probability that more than one change 

occurs is o(h)." Here ~ is a positive constant. 

This completes the formel concept of a Poisson process. 

In language less mathematical, the probabili t~y of an 

event (change) depends only upon the length of the time 

interval, and not upon either the position of the inter­

val in the range of time, or the past history of the pre­

ceding intervals. Now, the event (n changes occur 

during (0, h + t) ) has probability P {h+t) of 
n 

occurlng and can be realized tu three mutually exclusive 

ways, nemely, 
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1 ) n changes oc our in ( 0' t) while no 

changes occur in (t, t+h) 

2) n - 1 changes coeur in ( 0' t} wh ile 1 

change occurs in (t' t+h) 

and ·3) n - x changes oc our in (0, t) wh ile 

x > 2 changes occur in (t' t+h) 

The respective probabilities of these "ways" or events are 

1 ) P n ( t) ( 1 - }. h - o( h) ) 

2) P n-1 ( t) À h 

and 3) Pn-x(t) o(h) 

Thus 

so that 

? J\1\. ( t+~) - \)..IV\ (_ -t \ 
{ 

and in the limit as h -7> 0 we obtain the differentiel 

equation 

-3 p-M C.t) 
= 

~ 

Solving this equation for n = 0 and 1 , and then using 

mathematical induction, leads to the solution 
'Î) - ..,_ !:. .JV\. 

L.~ (-*:} = e C)..±) 
~ 

Thus, for a fixed time interval t, the random variable 

n giving the number of changPs or events during t, is 

a Poisson random variable with parameter À t. The con­

stant À is the mean number of changes or events per 

( u,) 



unit time. The number of automobile accidents at a cer-

tain corner, during a certain hour on a specifiAd day 

of the week, and the number of chromosome interchanges 

induced by X-rays during a fixed time, are two examples 

of the Poisson random variable and the Poisson process. 

It is important to mention that although we have only 

referred to random events intime, this has bAen for the 

sake of simplicity. The same arguments apply for rendom 

events in space of one, two or three dimensions. Thus, 

for example, the number of blades of grass in a square 

foot of laWn., the number of stars in a large volume of 

space and the number of dents per foot on a very long 

thin rod, may be assumed to be Poisson random variables, 

and the process involved, a Poisson process. We will 

refer to the Poisson process discussed here es a 

11 - Poisson process" and she.ll adopt Birnbe.um [;-1 \s 

phrasing by referring to the "e.mount of time 11 , or "the 

amount of space", collectively, as "the amount of observ-

ation". 

Suppose that T is the amount of observation 

required for n events to occur in a ~ - Poisson pro­

cess. Then we shall show that 2 '>-T is a chi-square 

random variable with 2n degrees of freedom, denoted by 
'2.. 

~l.tf'l • Let U be a random variable defined as the "time" 

or observation required for two successive events, or, 

uaing a different wording, the "waiting time" between 

sucee ssive events, in a ). - Poisson proce ss. Then U 
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has the cumulative distribution function {c. d. f.) 

?{uL«Î= l>('~:t;_"~~~ .. ~ 
Y(~~~~ .±Ou. \ 

= ~~~~~~) 

:: 

cO 

L -\v. -x: 

e (\~) 

- \u.. 
\- e 

Thus the probability density function (p. d. f.) of 

U is 

The mean of 

' 
so that 

\.e-\u d (u,) = " 

U is EtU1 = 1/À and shall be denoted as 6 

~ = 1/~. Problems in statistical inference 

involving the parameter À are simplified by the fact 

that À occurs as a parameter in both the Poisson dis-

tribution (11) and the exponential distribution (12). 

The characteristic function of U is 

- ) ""\~-\v.+;\~ .l.. 
0 

= 

where ~ > t > 0. If t is to be the amount of observ-

ation for n successive events to occur, then T is 

the sum of n independent random variables each having 

p. d. f. (12), and so, characteristic function (13). 

Th us T has characteristic function and 
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the :random va:riab::ïe, 2 À T, has characteristic function 

1 • Thus 2 À T is a chi-square random variable 
(1 - 2it)fi 

with 2n degrees of freedom. This fact is used by 

Birnbaum [ 5 J to obtain confidence intervals for the 

parameter ~ as well as to test va:rious hypotheses in-

volving Poisson prooesses. 

2.7 Interesting Examples of the Poisson as a Limiting 

Distribution 

Both the examples offered are directly from 

Feller [ 25] • Consider a Markov chain with states 

having transition probabilities 

= 

e_- '>- "f ( : ) ~-x.\ ...--x \~-x. 
L (i-x)\ 

0 

where p and q are constant probabilities of 

"suooess" and "railure", respeotively, with p + q = 1, 

and 
(n) 

Prk 

Then 

that 

Th us 

À > o. Define the higher transition probability 

as 

it oan be shown that the "stationary" p:robability 

the system is in the state Ek is 

~ 
{.If\) - )./\( ~ 

p"t-~ = € ~) 
..1\'\~<10 -f<\ 

k: is a Poisson r~ndom variable with parameter Àfq. 
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Consider the problem of placing r balla in 

n cella with each arrangement equiprobable. We seek the 

probability that exactly x cella are empty. Feller [-z.s] 

shows that 

However, this result is only wieldy if n and r are 

small, so that for large r and n, approximations 

are in order. Let r and n both approach infinity 

such that \ = ne-r/n re mains bounded. In this case 

k Pt··· J = e.-).. "'""' 
~.M-:pr;() -x! 

Thus for large r and n, the exact number of empty 

cella is approximately a Poisson random variable with 

parameter ~ = ne-r/n 

In chapter three four discrete distributions 

closely related to the Poisson distribution are discussed. 

Each one, under a limiting condition, approaches the 

Poisson distribution. 

2.8 Approximations Involving the Poisson Distribution 

If X is a Poisson random variable having 

parameter ~ we may consider, as a rough approximation, 

that X is a normal random variable with mean \ and 
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variance À • However, even with a correction for contin-

uity, the approximation is too rough for most purposes. 

If x1 , ••• , Xn are n independant Poisson 

rendom variables having pa!ameters À 1 , )._2 , ••• , \n 

.L x.~ ln has characteristic respectively, then 

function 

where \ = . '2. )...f • 

z = 
ô"' 1 <l 

{ 
• ~ j_ '!.~ 1 Jt- J E e ù=-' 

( ;.j.. '"" ) -M. ).~ €, -1 ne r··, .... •+1-. ) L).. (e _, 
ti"\ l e. 

C •+1-. \ 
\o e. - \ } 

€.. 

By differentiating (14) twice 
0 il .... 1 ~ 

with respect to t we ob tain ~ 
0
/n and ).. 

0
/n2 for the 

mean and variance of Z, respectively. Now let us 

attempt to find an approximation for (14). Expanding 

the power of e in (14) 

[ •·'-~~ l 
\o e -1 

-e. 

If we neglect all terms of order r > 2 in the power 

of e in ( 15) 

- -

t'l.. we obtain l 
'i--L ~ ;.IV\~ 

US} 

which is the characteristic function of a normal random 

variable having mean \ 0 /n and variance ~0/n2. Thus 
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we see that for large n the random variable Z is 

approximetely a normal random variable. In most instances 

we are interested in the special case where all the para-

meters \. \ \. are equal, say of value '.>. • Then 
.>.1'"2' •••'"n 

)... 0 = n '>. and Z, now denoted by X, has the approxima te 

normal distribution with mean )... and variance~ /n. 

Generall:r speaking, this is a very useful approximation. 

It may be used to obtain confidence int~rvals for ~ , 

and in hypotheses testing, as shall be shown in chapters 

l\ and \'2.. 

We shall now show that the statistic 2{X 
hasan asymptotic normal distribution with mean 2~ 

and variance 1/n. The proof given here is patterned 

after a more general proof found in Wilks (ss] , P. 259-

260. For convenience let g(x) = 21 x. Since ~ > o, 

there exista an interval containing ~ , say I, such 

that for all x~ I, the first derivative, g'(x), 

exista. From the law of large numbers ·(Wilks (BS] , 

P. 108) we have that if an arbitrary ~ > 0 is given, 

there exists an n, say n~, auch that for all n > n~ 

~ c ')( E: 1. +'-~ ,JV\.) .ME; ) > \- ~ (q. ') 

For any x~ I we have, from a well-known theorem in 

calculus, 
o- c ~} + 0 \ ( ")( ~ ) ciL - '>-) 

where lx~~ - ~ 1 < li -\1. More explicitly we have 

+ \ -
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Rewriting (17) gives 

~~c~--1T)= 1~ G~:-\) 
From (16) we have that (18) holds with probability 

greater than 1 - ~ for all n > n,. Thus in the limit 

as n ~dO ( 18) holds wi th probabili ty one. Now, the 

statistic {ÏÏ (X - \) converges in distribution to a 

normal random variable, say S, having mean 0 and 

variance ).. • Also, from Wilks (Ssl , 1/ ~X* converges 

in probability to 1 /~ • Thus 

.t,.. \) ( -r.:. (:<:-).) <. w) = V C ~ ~oô) 
...M.~cJ;. ~ 

so that \ ( \ 
L \) (•C.(.fi"-.{).Î LW)"' \) J 1-w} 

J!A-')rJO 

where T = S/~ has a standard normal distribution. 

It now follows that 2 {Il ( {ï) has a limiting normal 

distribution with mean 2 ~ and variance 1. Thus 

2-{î has a limi ting normal distribution wi th mean 2 IT 
and variance 1/n. The confidence intervals for \ ob-

tained using this approximation are almost identica.l to 

those using the lmmedia.tely preceding approximation, a 

not tao surprising result. 
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Chapter Three 

Generalized and Compound Poisson Distributions 

3.1 Introduction 

When the simple discrete distributions fail to 

fit biological data adequately, more complicated distrib-

utions, such as the generalized and compound Poisson 

distributions, need to b~ investigated. In this chapter 

four prominent distributions, the Poisson v Binomial, 

the Poisson v Pascal, the negative - binomial and the 

Neyman T?pe A, will be unveiled. rrheir defini ti ons and 

a few basic properties will be given. This chapter is 
'1,8,~~10 

preparation for chapters A which deal with the estim-

ation of the parameters. 

3.2 Generalized and Compound Poisson Distributions 

Let x1 be a random variable having c. d. f. 

F 1 ( x1 1 '>.) where the param~ter ~ may be regarded as a 

random variable x2 having c. d. f. F2 (x2 ). Then we 

denote the random variable having c. d. f. 

( ~~ Î \ 
j + llC• \ c)(, J dT,. Gr~J 
-~ 

where c is a suitable arbitrary constant, and call it 

the 11 compound X1 variable with respect to the com­

pounder x2 "· 
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Let x1 

p. g. r.'a g1(z) 

and x2 be random variables having 

and g2(z) respectively. Then l~t 

x1 v x2 denote a random variable having p. g. f. giv~n 

by g1t g2 ( z ~ and call it the "generaliz~d x 1 variable 

with respect to the generalizer X " 2 • 

Let x1 and Xz have c. d. f.' s F
1 

( x
1 

1 ~) 

and F2 ( x2 1 ~), respectively, where ri and ~ are 

parametera. If for each d. the re exista a ~ ' 
and for 

each ~ there exista an o1. , such tha.t 

F 1 (x 1 d..) = F 
2 
{x 1 ~ ) 

whatever the value of x, the random var1a. ble a x1 and 

x2 are aaid to be "equivalent", and we wri te x1 ""' x2 • 

Gurland [331 provea the following theorem. If X1 ~ 

ia a random variable with p. g. f. of the form lh(z)] , 

and the parameter À is regarded as a random variable 

x
2 

having c. d. f. F2(x) and p. g. f. g2(z), then 

whatever be the random variable x2 , we have that 

X1 1\ X
2 

v.. X
2 

v X1 • The proof is simple. From the 

definitions of compound and generalized distributions 

we have that the p. ?: • f. of x1' " x2 for sui te.ble c ia r" c~(:e)rx nJ")C) 

and that the p. g. r. of Xz xt ia 

,~ t ~· (~\} - ~,_ t [ -RC~)1 \} 
+Ob ). 

= ) [ -R ( ~ l] "l< .n:._ ("' î 
-cà 

Thua the random variable a x1 1\ x2 and Xz 'tl x1 are 
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equivalent, and a.re equal when c = ~. Since the 

Poisson random variable has p. g. f. of the form re-

quired by the theorem, every compound Poisson distrib­

ution may be considered to be sorne genera.lized distrthution. 

Applying the definition of a generalized distrib-

ution to the Poisson distribution, we have that the 

generalized Poisson distribution has p. g. f. of the form 
'>- [~(::t)-\1 

~ c~> = e C ') 

where ).. > 0 and h(z) is an e.rbitrary p. g. f •• 

Suppose that 
00 

2- ry~ 
-;1:. 

~ (~) - ~ 

-x;.-::.0 

and 01.) 

~L 
-:c 

~(~) ~ ê 

'le:O 

where Px and 'Jtx are the genera.lized Poisson and 

generalizer probahilities respectively. We would now 

like to esta.blish the following important recurrence 

'X: 

= \ L G--a'+,) ~-(1+, \)3 
(_ JC+l) i .... o 

relation 

v--c+\ 

Differentiate (1) with respect to z to obtain 

~ (')(~) = \ ~ (1:) ~ (\) (:t-) 

Then, using Leibnitz's formula we have 

+ ( \ () (-r--a"+Î) / (~)( ) 

t')(..)=.).._ t= i !"""' l<-) ~ ~ 

Detecting from (2) and (3) that 

\ ~h+,)(:t)\ 
:t; .... a 

(3) 

(4) 

(S) 

lt) 
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\ -

and 

setting z ~ 0, and substituting the resulta (6), 

(7) and (8) into equation (5), gives the desired 

result (4). 

?.3 The Pascal Distribution 

('1) 

(tO) 

The Pascal distribution, better known as the 

negative binom.ial distribution, may be obta:ined by 

assuming that the parameter ~ of a Poisson distribution 

has the gamma distribution represented by the p. d. r. 
~ -e. \ ~-' e - ~ )\ 

re~) 
Thus the Pascal distribution is a compound Poisson dis-

tribution and has 

~tc 
~ ~oO -)..(~tc) -.c+ -\b.-\ 

- e '\ J.\ 
r C-9t) "")' \ 

e. 

~ ~ r" {Y.+-~) 
- ! c "")(+-i. 

rf-t):c\ ( ~+c) 



wh er~ and q = c 
1 ~ + c 

so that = 1 

and c is some suitable constant. 

The p. d. f. (9} may also be obtained by a 

simple combinatorial argument. Consider n Bernoulli 

trials, and let k be the number of successes and x 

the number of failures, where p1 is the constant prob­

ability of success associated with each trial, and q 1 

is the probability of failure, so that p
1 

+ q
1 = 1. 

Keep k fixed, and consider the random variable x. It 

is easy to show that x has p. d. f. given by (9). 

The p. g. f. of 

6 c~) '= 

where we have put p = ..9..1 
P1 

and q = _1_, 
p1 

so that q - p = 1 • 

Suppose we define the random variable n to 

be the number of trials required to obtain exa.ctly k 

successes. Th en so that 
v'\1\-~ 

~· 

n has p. d. f. 

and probability gen~rsting function (p. g. f.) 

~ -M( \ ~ --M-~ i --l b ~ ~-', J ~'· '\· = (?•'1:) Ct-'l!'"î 
We shall be concerned with the random variable, x, 
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rather than the closely related random variable, n, 

which was introduced for thè sake of completeness. 

According to Feller [2sl, n has a Pascal or negative 

binomial distribution, while the distribution of x is 

not named. We shall adopt Kat ti and Gurland [ "3C.. J 's 

terminology and refer to the distribution of x as the 

Pascal or negative binomial distribution. 

If we denote the Pascal probabilities by nx, 

as in (9), we may use (9) to prove the recurrence 

relation 
( \\) 

\ p,.. may be ob-The moments about the origin 
t 

t~ined as follows. First, let z = e , then it can be 

shown thst 
(n .. ') 

where the a 3(r) satisfy the recurrence relation 

a~c..,.) = G-~+\) ~_,(,._,) 4- o..~ c--r-,) 
boundary conditions 

(n.). 

which has 

{ 
Using (13) it is easy to forma table of values of 
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Th us "" 
' ~\ - L ai(~JÀ \ fJ.-r -= 

d-i +-= 0 -o-=-\ d~ô '-è-=- 1 

"" 2_ 
. 

= a.G) ~ ~c~-r,) ... c~.+ô-'> ô p 
<)--=-' 

In particular, we have from ( 14) that 
\ 

~ p., -::::. 

\ ~ [(-e_+,) ~ + \l Jl .. = 
and 

To conclude this section we show that the 

Pascal distribution approaches the Poisson dlstribution 

in the li mit. Consider the limi t of ( 10) as k ~ Ob 

and p -">0 auch that kp = ~, a constant greater than 

which is the p. g. f. of a Poisson random variable with 

paremeter \ • 

3.4 The Neyman Type A Distribution 

Suppose that h{z) in (1} is the p. g. f. 

0L4) 

of a. Poisson random variable with parameter ' th _ l' 1 , en we 
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obtain the Poisson Poisson distribution or Neyman Type A 

distribution, having p. g. f. )., c~-1) 

'>-[e -'J 
~ c~} - e 

where ).._1 > 0 and )... > o. Expanding g(z) giVP-S 
co 

(J C-=b) L -'>-\i )., i C=ë-') 
- e r -e 

(\=o . ' 6· 

= 
i ... o ")(.-::.0 

so that the x th probability Px is given by 

(\lo) 

Using (16) we shall derive the recurrence 

relation 

( 1'1) 

For 

">.., 

")(. \ 

t Ct )i"-~ 
~ ..... (.) 
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To obtain the moments about the origin, sub­

stitute z =et in (15) and then differentiate with 

r~spect to t. The first three moments are 

\ 
)J.., 

~ \.\.=o = ). \, 

= ~ko: ).').,\._'>.),,;- \,+~ 
and 

Jh.'-= ~1~1 = \\,[)..-:4--d.~---'>.~ +3'>-'>-.~ -t-3)q .... ~;...>., +4] 
Jl t=o 

The Neyman Type A distribution approaches the 

Poisson distribution in the limit. Let \ 1 -'> 0 and \->oo 

such tha. t À~ 1 = d... , ~ constant greater than zero. Then 

from ( 15) we have )., C~- 1) l 
'>..[e -'J 

~e 

= 

Thus the limiting distribution is a Poisson with para­

meter J.. =).. \ • 

3.5 The Poisson v Binomial Distribution 

Suppose that h( z) in ( 1) is the p. g. f • 

of a binomial random variable, then we obtain the gener-

alized Poisson Y Binomial distribution having p. g. r. 
'>-l ('t+pr.)~,] 

e (\8) 
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where p > o, q > 0 and p + q = 1, and )... > 0 and , 

(\9l 

a compound 

Binomial ~ Poisson distribution, and serves as an illust­

ration of the theorem due to Gurland [ 5'3] in section 3.2. 

If in the recurrence relation (4) we let 

( 

.NI ) )C;--n'+\ .11\- x +~- 1 

"IT 'X-i+' = x-i+' ? 1 
and denote the Poisson v Binomial probabilities by 

we obtain the following recurrence relation 

p , 
x 

~ ( ) ~ .M-i+'o P:x:+t = "'mp L_ ~-' p \ f:~t-à h.o) 

(X+I} Ô=o 0 

This equation is used by Sprott [ 73] in his method of 

determining the maximum likelihood estimates of the para­

meters of the Poisson v Binomial distribution. 

By substituting z =et in (18) and diff­

erentiating with respect to t, we obtain the first 

three moments about the origin, 

\ 

p-,_ = 



and 

~0 

= À-'V'tp
3 L )..~2 + 3)..-lV\ (m-')+ (JvH)(.~V~-1..)] 

+3}-..Mp' (}...IVl +.l'(l-1) + \.ft)p 

To conclude our discussion of the Poisson v 

Binomial distribution we give two limiting distributions. 

Suppose that p ~ 0 and n ~ oo such that np = ""-, a 

constant grea ter t han zero. Then considering (18) we 

have ). ( {'t-t ft) JY\- \J ~ [ ( \-f )J\1 (' + ~ r~,- '1 
.4m ~ e :::: e 

h [ ( ,_ : r~ (, 
=~ e 

"'" ol~ r(\ 
M(t-{') - '] 

>.[e-c(e. ali! ] 
-1 

L at(~-·\ J }. e _, 

= €. : .e_ 

which is the p. d. r. of the Neyman Type A distribution 

having parameters " and ol.. = np. This result is not 

too surprising as the binomial distribution, under these 

limiting conditions, approaches the Poisson distribution. 

Suppose now that p --'> 0 and ~ _.,. oo such that ')\ p = o<, 

a constant greater than zero. Then from (18) we have that 
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which is the p. g. f. of a Poisson dtstribution having 

pe.rameter nat. 

3.6 The Poisson v Pascal Distribution 

If we select h(z) of (1) to be the p. g. f. 

(10) of the Pascal distribution we obtain th~ general-

ized Poisson v Pascal distribution, sometimes r~ferred 

to as the generalized Polya - Aeppli distribution, having 

p. g. f. given by . >-. [ (\-P"ff<- •J 
= e 

where p > 0, q - p = 1 and k > o. Expanding (21) 

we have 

so that the Poisson v Pascal probabilities Px are 

given by 

We may note that Px can also be obtained by compound• 

ing a Pascal distribution with a Poisson distribution. 

lll) 

\2.2.} 
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the Pascal probability obtsined from either (9) or 

( 10), we obtain the following recurrence relation for 

the Poisson v Pascal probabilities P , 
)(. x 

Px+• : Hp L ( -f<+~) P) \- t-~ -\ P-.:-i (Wl 

()(.·1-1) â~o ê 
From (21) we may obtain the moments about 

t 
the origin by first substituting z = e , and then 

differentiating with respect to t. The first three 

moments are 

~: ~ ~\ = ~{~1. (}.. ~+ {;-,) + \{? 
~ t -=-0 

and /"; ,. ). ~~3 L \'{' + 5\ ~ + C-1.+,)(-\t~~ +~Hp' (~-ht-1.+1) + \~p 

Under three different limiting conditions the 

Poisson v Pascal distribution approaches the Poisson, 

the Neyman Type A and the Pascal distribution. First, 

suppose that p ~ 0 and À-> cc auch that À p = <::11., a 

which is the p. g. f. of a Poisson random variPble with 
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parameter k. Secondly, suppose that p~O and k-'> oo 

auch thet kp = À1 , a cons tant p:ree.ter than zero. Then 

consider the limit of (21) 

[ 
-~ -ft ] 

n·· e'Ar (q-\'l~ ri._,] ~ ( l+p) ( 1 -~) -1 
.J.»w. L \:. = ~ e c ~+f) 

~c (, + h )--l ( , _ '>.,: )-~ ,J 
- ~ e ~ i. c l+p) 

= e 
f )..,(~-·) J '>-Le. _, 

This is the p. g. f. of a Neyman Type A distribution 

having parameters ~ and À 1 == kp. Finally c onsider 

the limi t of ( 21 } as k-+ 0 and ~ _..,. oo suoh that 

Àk = k , e positive constant. Then l ( )--\ J 
1 \[( ,-'ft l ).. ~ ~-,Dê 

A ~-p~l -\j ~· b 
.1.w,. .e.. ~ = ~ -e 

n. -~>.. 
=~(~-p~) -

and this is the p. g. f. of a Pascal distribution. 
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Chapter Four 

The CompletA Poisson Distr5bution 

4.1 Introduction 

The complete Poisson distribution has univP.rsal 

application so that fittin~ it to observed data is en 

important problem. Some function of the observa.tions 

must be selected so as to prov:ide as 11 good" an estimate 

of the parameter as possible. Because of the simple 

form of the complete Poisson distribution, the problem 

could be considered to be solved. In this chapter we 

consider point estimation of ~ , of integral powers of 

À , and of real - valued function of ~ • A discussion 

of point estimation of the parameter of a Poisson process 

concludes the chapter. 

4.2 Simple Point Estimation 

Let X be a Poisson random variàble with para­

mater ÀJ then E{x} =À. Thus, if an observation, x, 

is taken, the 11 expectedn or "anticipated" value of x is 

À. On these grounds we may select the single observation 

x as an estimate of À Again, Th us 

the 11 expected" value of the square of the observation is 

\2 + À, so that the solution 

-\ +-~1+4-x..,_ 
1 
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of the quadratic equation 

\..'2.+ \ -x.L. =o 

may be taken aE an estimate of \ • These two estimates 

are based on a single observation and are very rough, 

yet, in a sense, they reflect the nature of the well -

known 11 method of moments". 

The above arguments may be applied to a random 

sample, x 1 , ••• , xn, of size n from the Poisson dls­

tribution, to obtain more accurate estimates of À • From 

section 2.4 we know thnt the random variable 

has a Poisson distribution with pa.rameter nÀ. Let 
~ 

T = ?. Xi. Then Eç T\ = nÀ. Thus the ob served value 
'"'' t 

for T, say t, may be ta.ken as an estimate of n~ 

so tha.t t/n, is an estimate of ~ • 

n2~2 + n \ so that the solution 

+ ~ 1+4t~ À = t 

of the quadratic equation 

JV\ l.. )..l- + ./'(l ).. - 1::. ...... :.. 0 

Again, EtT21 = 

may be taken as an estimate of ~ • These two estimates 

are ba.sed on n observations of the random va.riable X, 

and, of course, a single observation of the random var-

iable T. 

The estima.tes Àx and Àt are biased, while 

estima.tes x and t/n are unbiased. Later we shall 

show tha.t t/n is an "efficient" or "beat" estima.te of 

À, having minimum variance among all unbiased estimates 

of À. 
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Let p(x;À) be the Poisson p. d. f. or fre-

quency function, and let ;nx be the frequency of the 

value x in a random sample. Then for any two selected 

values of x, say k1 and k2' we have 

p({,·)'x) \ ~,-~~ ~~ \ -r < -ea,. > \) 
-
~\ ~ 

Thus the re.tio of the theoretical frequencies may be 

repleced by the ratio of the observed frequencies to 

obtein an estimate for~, namely, 

The best velues for k1 and k2 are those having 

largest observed frequencies. 

4.3 The Maximum Likelihood Estimate 

Let L(x
1 

, ••• , xn; )..) be the lik19lihood 

function of a random sample, x1' • • •' xn' of size 

ta.ken 

Then 

from the Poisson distribution 

-JYI.~ 

l ( ~, ... ) ~ ) ).. ) - e.. 

ha.ving parame ter 

n, 

~-

Ta.ke the na.tural logarithm of (1 ), differentiste with 

respect to ~ and equa.te to zero. Thlll solution for ~ 
,,.. . 

is the maximum likelihood estimate 1\ 

~ :. .ix\. /JYl 
~= \ 

Th us 

," The estimate 1\ is the estimate t/n obtained in the 

l'Ll 
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preceding section. From section 2.8 we have that 

'-" the mean of 1\ is À. and the variance is ~ /n. 
'{' 

Thus 1\ 1~ an unbiased estimate of À • Wilks [ 95 ] 

demonstrates that the variance, 6 2{ & ), of any unbiased 
1\ 

estimate e ( x1 ' ••• ' x ) of a param~ter e ' under a n 

regularity condition, obeys the inequality 

L = L(x1 , . . . , Xnj 9) 

'0 ln L 
oe 

where 

is the J.ikelihood function of the 

random sample. In ether words, the varisnce of unbiased 

estimatôl"s for e have lower bound 

/ Et sM~1 
Applying Wilks' result to our case where 9 =À, gives l -M~ ~ t~.) ~~ s.M = 

e ,..,, - ·-n- -x~ l ~À 
~ i.o:.t 

'2. 

(·~ ~r so that SM :. 

... 
. Lxi/tv\ is an "efficient" 
l'C.\ 

or "beat" estimate as its variance takes on thP lower 
Jf\ 

bound value À./n • The result L x1 /n as an estima te 
t .. l 

of ).. is also obtained by Boy and Mitra [ lo] t s "ratio 

method" , which is discussed in section 4.4 • 
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T 

4.4 The U. M. V. U. Estima te of À 

Noak [Sb ] haf't defined the pow~r series dis­

tribution {p. s. d.) as the distribution with probab­

ility function 
"lC 

o. <x:) e 
Hel 

where e > 0 is an unknown parameter' a( x) > 0 and 

{!) 

(JO 

a(O) = 1' and f(9) = L a(x) 9 x. The Poisson p. d. f. 
~'='0 

has the form {3) if we let e =À and a(x) = 1/x! ' 

so that f(e) = e)... Now, Roy and Mitra [le] have 

deri.ved the unique uniformly minimum variance unbiased 
,.. 

( U. M. V. U •) er:.timate for e , where r is a given 

positive integer. Considera random sample x1 , ••• , Xn 

of size n from (3) and define 

t._. (~) t 0 
::::: ~b:.--r) 

~.td 
e<) 

E1t-.(X)} ~ L -\:'\-('~.) ~(~)i_ 
~=-o f(e) 

Then 
' (4-) 

Jf\ 

Put T = 2:_ x
1

• Then T can easily be shown to 
i. .. l 

be a complete sufficient statistic for e in the sense 

of Lehmann and Scheffe l48]. The p. d. f. of the 

statistic T is 

JWI 

where C(t, n) =In e.(xi) 
••\ 

and the summation is over 

non-negative integral values of x1, ••• , xn such the.t 
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Lx =t. Itshouldbenotedtha.tthep.d.f. (5) 
..... , 1 

ha.s the form (3). Now define 

Because of (4) we have that 

E. l u~ ( T)} = e ~ 
Because ur(T) is an unbiased estimate for 

(1.,. 

~ and the 

statistic T is complete and sifficient for 9 we have 

by the Rao - Blackwell Theorem l <oq.. ] and [ e:, ] , ths.t 

ur(T) is the unique U. M. V. U. estimate of Q~ • 

ApplyinF this r~sult to the complete Poisson distribution 

with parameter À gives, 
t 

-::. J'(\ -
l\ 

so that ur(t) becomes 

{ 0 t<,.. 

u ... (t\ = 
t ... ] 

t t :a.,.. ,. 
/'(\ 

(:~] 
t(t-1) • • . ( t + 1 ) • where t = - r Thus the unique 

'A'r t""J 
u. M. v. u. estimate Ur(T) of is t /nr. If we 

(G) 

('1\ 

put r = 1, we obtain the estimAte t/n of ~ , as before. 

Let us s.gain consider the general case renre-

sented by ( 3). Put r = 1 ' then for the variance of 

u
1

{T) we have 

V f u, ( T 11 =- q u, ( T r -e 'l ~8\ 

and the u. M. v. u. estimate of V (u1 ( T )} is 

v(t.) =- t u, (\: l r- u,_ (t.J l,l 
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Applying (8) and (9) to the Poisson distribution, 

we have Vfu~(\)1 = El~:1- \7. = ~ 

and v(t) = 
t.'1.. 

Thus t/n2 is a u. M. v. u. estimate of À/n. In 

chapter 5 we continue Roy end Mitra 1 s argument, and 

consider the problem of obtaining the u. M. v. u. 
t 

estimate of e ' when sampling from a distribution of 

the same generality as (3), but being truncated on the 

left at a fixed point c. 

4.5 The u. M. v. P. Estimate of g(À) 

Suppose that X is a Poisson random va~iable 

with parameter À, a.nd that g(À) = e-\1 +À), that 

is, is the probability that the random variable takes on 

value 0 or 1. We may wish to obtain the u. M. V. u. 
estimate of g(À). The following theorem due to 

Guttman ( '39 ] allows us to obta.in this estima.te. Let 

X be a discrete random variable, and t(X), a sufficient 

statistic for the parameter ~ • Suppose that t(X) 

assumes only positive integer values with probabilities 

Let g(\} be a. real - va.lued function of the parameter 

À which takes on values in an interval containing the 

ori~sin. Then there exists an essentially unique 



u. M. V. u. estimate of g(À), if and only if, 

G-(\) ::. 

is analytic at \ = o, with power series expansion 

auch that a = 0 for e.ll 
t t for which kt = o. 

'l'he sufficiency part of the proof follows. Defi ne 

then 

-\::=o 
~ t 

= L \:lt lW\ (}.) \ 

t:.o 
Cl) 

= ..NVI ().) L ~t )..1: 
t=C> 

= JM().) Cs().\ = d (>.) 

Thus ft is an unbiased estimate for g(À) and it is 

uniquely defined for points of non-zero probability. 

Since, putting at= 0 in { 11 ) implies that f = 0 t 

is the only unbiased estimate of zero, we have that ft 

is complete. The statistic t{X) is given as being 

sufficient for À • Thus by the Rao - Blackwell theorem 

[b4-]and [ b ] , ft is the u. M. v. u. estimate of g(À). 

For the necessity part of the proof assume that ft is 

an unbiased estimate of g(À}. Then 
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~ t +t. .JVV\ o.) {t ~ =- ~()..) 
t-=-o 

OC) 

CS\t ~ t Th us L_ - ~ = G( À) 
t ... o .rm().) 

where at = ft kt• Since À includes the origin, G{~) 

is analytic at À = o. The remainder of the proof 

follows as in the sufficiency part. 

Let us apply the theorem to obta.in the 

u. M. V. u. estimate of g(À) = e-X(1 +À) where ~ 
is the parameter of a Poisson distribution. Now, in 

.Ill 

sec ti on 2.4, we have shown that 2_ Xi has a Pois son 
'•1 

distribution with parameter n~. Also it is easy to 
~ 

show that ?-xi is a sufficient statifltic for ~ • 
'"' l'li 

Then, let t 

m(X) = e-nÀ 

= 2_ Xi. From ( 10) we have that 
t-.1 

and kt = nt/t! • Thus, we may obtain 

from the identity 

f ~ 't..t = ~ 
1::, .. o t JW\ ().) 

"'t -tl . 
Comparing the coefficients of À t gives 

so that 

~t = c."_,)t-, '~ + ') 
(t:-,)1 \ t 

is the 

u. M. v. u. estimate of the probability that the Poisson 

random variable takes on value 0 or 1. 
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4.6 The Poisson Prooess 

In section 2.6 it was shawn that 2ÀT has 
'l. 

a ~ 2.Jn distribution where T is the a mount of obs~rv-

ation requir~d for exa.ctly n events to occur in a. 
.,__ 

Poisson process. Using this fact we may obtain a confid­

~nce interval for À having confidence coefficient 1 -E. 
'2 

From tables of th~ lL2.~r~ distribution obtein C and D 

su oh that 

t 2 \T 0 j = p c. b. ~ \- E:-

Now, given the event 

c.. ~ < 
b - <. 

1T lT 

and a point est imate of À say À f ' we can m:inimize 

the maximum percentage deviation of À' from À by 

se lee ting C.+D -
4T 

In this case the maximum p~rcentage deviation of À ' 
from ~ , wi tb respect to ';.. ', occurs wben 

and is 

As the number n of events observed increases, 

decreases. Thus, from ll~m tables a value for n 

can be obtained so as to provide an estimate "1\ ' 

having maximum percentage deviation ~ less than sorne 

given positive value, all at a confidence level 1 - E:. 



As a second problem, suppose that an estima te 

À' of ~ is d("'sired such that for given f > 0 and ~ 
p { 1 )...'- >d ~ ~ 1 ~ \- E: 

Let Tn be the 11 time" required for n events to occur. 

Put "" B.,_ c. = .::...,:. 
2./'11. 

Observe the Poisson process for 1 
2cTn 

units of 11 time", 

and define the random variable X as the number of 

events occuring. Then 

'>._' -== '2. c.. T.m X 
is the desired point estimate for \. • For 

and 
E{ \'1 = 2 cT"' E t 'i-1 -=- À 

Yt\'1 = Ef\'12
- À

2
- Ltc,_T""1. 

From Tchebycheff 1 s inequality we have, finally, that 

\- E: 

The resulta given in this section·were developed b~ 

Birnbaum [ S ] • 

> 0 
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Chapt~r Five 

The Truncat~d Poisson Distribution 

5.1 Introduction 

This chapter deals w:i.th the problem of point 

estimating the parameter of a truncated Poisson distrib­

ution. The emphasis is placed on the simplest and most 

useful case of truncation, that is, truncation of the 

zero class. To begin, a very g(l'!neral procedure for ob-

taining the maximum likelihood estimate of a truncated 

distribution is present~d. Then, a discussion of the 

case of trunce.tion on the right is given, a case where 

no unbiased estimates of the parameter exist. The final 

section offers a rather extensive discussion of the 

case of truncation on the left. 

5.2 The Iterative Maximum Likelihood Procedure 

A "truncated" Poisson distribution is one in 

which a certain subset A of the sample space, o, 1, 2, 

of the complete distribution, is missing. The probabil­

ities of the remaining values x are 

( '-Lë~>..,_\~~ 
"'tt:A ,.~ J 

Thus, a random~size n, drawn from the truncatl")d 

P·oisson distribution, will not conta.in values from A. 

••• 



Hartley [ 4o] provides an lt~rative approach 

to maximum likelihood estimation from lncomplete data 

that is applicable to an~r discrete distribution for which 

a maximum likelihood procedure for the complete distrib­

ution is available. Although in many esses special 

methode are simpler {for example, when tables are avail­

able), Hartley 1 s [ 40 J method applies to the many cases 

where no such special methods exist. 

First of all, we shall introduce notation, and 

then, outline the procedure for obteining the maximum 

likelihood estimate of X, the paramete" of a suitable, 

yet unspecified, discrete distribution having p. d. f. 

f(x;À). Next we shall give Hartley 1 s proof that the pro-

cedure does provide the maximum likelihood estimate. 

Now, let: 

Ai"- be the set of permissible values, labelled 

by 1, and A- be the set of missing values, labelled 

by j. Th us the union of A* and A is the sample spa ce 

of the complete p. d. f. ' f(x;À). Let: 

n1 - be th (Ill observed frequency of value i, 

n j- be the unknown, unobservt"ld frequency of 

v e 1 u.e j , j E: A , 

0 nj-be th("' e-th estimate of nj, 

n- be the observed sample size, 

1 

0 n'- be the e-th estimate of th~ total number 

of missing frequencit"ls, that is 0 n' = L_ cnj, 
lE: A 

e A* 
' 
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f( i; 'f..) -be the probabili ty that 

f{ j; ~) -be the probabili ty that 

x = :1.' 

x = j 
' 

i e A*, 

j ~ A' 

and finally, let 

Then the procedure for obtaining the maximum likelihood 
,~ 

estimate, /\ , is: 

1. For all jE A, mak~ initial, probably rough, est­

imat~s of the missing frequencies nj, and denote 

2. 

th"!!~ se esttma.tes by on j • Compute ont = L 0 n;. iE:A . 
Using the given ni and the on.1 compute an initial 

estima.te of À ' denoted by 1À, from the expression 

:for in the complete case. For the purposes of 

illustre.tion, when th~ maximum likelihood e stimate of 

À in the complete case is th~ 

LLftlt + 
~e A.• 

mean, we have, 

2_ -1. Q l'Il--t' 
jE.A<l o 

/Y\ + o/Y\
1 

3. Using 1 ~ compute 11 improved11 estimates, 1 nj, of 

4 . 

the missing frequencies nj from 

f(.j> ,'}.) 
\- ·ft}..) 

and then obtain 1 n' = L 1 nj • . ,.. 

With the ni and the "i&~roved" 
11 1mproved11 estimate 2X, of ~ , from 

compute an 



5. Continue this procedure, obtaining "1mproved" estim­

ates 1 ~, 2 À, ••• , c ~' un til li tt le chan(lt"! occurs 

in the estimates of À • Th~n th~ final estimate 

is an approximation to the maximum likelihood estimate 

of À , and the approximation may be made to any 

desired number of decimal places. This compl~tes 

the procedure. 

We now attempt to estahlish the validity of 

the procedure. To distinguish the proof from the pro­

cedure gi ven' we shall use the symbol e to re fer to 

the parameter of th~ discrete random variable x, 

rather than À • Let x take on values belonging to two 
-~ 

mutually exclusive and exhaustive sets, denoted by A 

and A. The probabilities for i ' A* and j ~ A are 

denotedby f(i;9) and f(j;&), resp~ctively. Clearly, 

L t(qe) + L f( ·;e) =1 i.~A ~ ~~A Ô 

Let f(~) = ~ f(j;Q). Take a randorn sample from the 
.A. 

population o}& x, and l~t n1 denote the number of 

observed values i. The truncation of values j E A 

accounts for the fact that no values j occur. Now, 

the maximum likelihood equa.tion for the estimation of 

the parameter in the case of truncation is 

L J'Y\· [ f<''(i.\e) 
+ .ç''l(el l c 

1. 

{(t; e) t~ A* 1- +c~ l 

where .ç (l\ ( l) ê) = ~f(~ie) and f'l} ( e) ~f(e) - -
~B ~e 

( ~l 
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D~fine auxiliary variables n , for each 
j 

j E. A, by 

/'{\1 = .M 

Then, ( ~4-·) bec ornes 

l_ 'Yh .ç<'>(i.;e) 
i.~At. .f(t ;e) 

-tCà;e) 
l- .t'Ce) 

+ 
.çc'l ( i ·~ e) 

f (j) & l 

Note that equation (6) is th~ maximum likelihood 

equation for a complete sample of size 

observed cell frequencies and 

ative proc~dure yields solutions 

and 

1\ 

a - ~ ~e 

/), = .)(JJIM 

n + n' 
' 

with 

Then the iter-

of equations ( 5) and ( 6), and so (4), all, of 

{S) 

(~} 

course, on the ascumption that the iterativ~ procedure 

converges. Hart ley [ 4-o J maintains that the convergence 

is extremely rapid in 30 exemples that he has worked outo 

To obtain a value for the variance of the 
1\ 

maximum likelihood estimate, 9 , define L(e) to be 

th~ likelihood function, and 

1\ 

Recalling that the e-th estimate of e 

fact the.t 

namely, 

1\ 

1(8)=0, 
Q 

we have an estimate of 

1\ 

c. e - e 

= 
1\ 

<: e- e 

ce and the 
1\ 

Lee ( e) ' 
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The quantity 
" 

is called the "rate of change 
ce-e 

of score" by R.A. Fisher. Thus, an estimate of the 
Il. 

variance of e is: 

Hartley 1 s very general method is illustrated 

in his paper with the Poisson distribution. the method 

has the advantage that it applies to all cases of 

truncation. However, iteration involves mucb time and 

computation, so that for those distributions having 

widespread application, such as the Poisson, a more 

efficient procedure is sought for. 

5.3 Truncation on the Right 

Let the set A, referred to in section 5.2, 

consist of the values d+1, d+2, ••• where d > 0 is a 

fixed inte~er called "the truncation point". "Permissible" 

values ar~ then 0, 1, 2, ••• , d. Let X be a truncated 

Poisson random variable with parameter À , and taking 

qn values x= 0, 1, 2, ••• , d with probability 

F(d) x! 
where 

(ll 

l8) 
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We shall now prove that an unbiased ~stimate 

for the parameter À does not exist in this special case 

of truncation on the right. For, assume that an unbias­

ed estimate for ~ does exist, e.nl'l is denoted by 

where is a random sample 

of aize n taken from thA truncated Poisson distrib-

ut ion ( 7}. Then the joint p. d. f. of x ••• x 
1 ' ' n 

~-"'~TI ~ >0, 1 [ ~ e -" >-'].m 
~,-1 x~\ L _ 

• T~O ~l 

80 that d. ~ -j'(\)... J'(\ 

L L \(~.) ... ,x~) e. lT \:.:: 
:t, .... o x"'ll.=o ~si X·\ ~ .. = 

Lt. ~·~~r 

The left sid~ of (10) is a polynomial of degree nd 

in X, while the right side of (10) is a polynomial 

of degree {nd + 1) in À. This implies that the 
\JM+I 

coefficient of A be zero, that is, that 

( 
1 1 ti! ) 

./'(\ 

be zero, which is of course imposslble for finite d 

and n. Thus no unbia.sed estima te exists. 

Moore L 52. 1 has auggested a simple estimate 

for the parame ter À • From { 7) we note that 

is 

(10 \ 



_),\?C 
e. À 

If, from a set of observations from (7), we have n x 

as the number of x values observed, and n, the total 

number of observations, then we may s~lect, as an est­

imate of ~ , the quantity 

~ / EÀ-1 
AM = ~ ~M,.; 2 JY\~ 

'X:::.o 

Moore [ S2..] ha.s obtained an expression for the mean 

and variance of À m, 

\ -

~amely, J.-\ ci 

~X p (x'>\)- ( ?;_r("·l '>-\) (~"' p(-. i ).j 
~( ~p<";>-\r 

and 

bx'plcr; >-l- ( t.xp<-x;'>-l r 
where we have defined p(x;}...) in s~ction 2.2 to be 

-')._\.:x:/ 
pC~;'>-)= e 1\ ~\ 

It may be noted from (11) that À has e bias which 
m 

decreaaes as n incr~ases. An estimate for the var-

is 

l \\) 
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A maximum likelihood procedure for estimating 

)... is given by Cohen [ 1'3 ] • From ( 9) we have the 

form, is 

Thus 

Setting (12) equal to zero and solving for À gives 

the maximum likelihood estimate, Â 
' 

that is, 

"X = }. f(J.-,) 
"f ca\ 4 

where -x is the sample mean, Lx nx /n and F(d) 

is defined in (8). 

as a function of À 

X:b _ 

Cohen L 13] provides tables of x 

and d~ for ).. from o.oos to 

14.5 and d from 1 to 34, with ~ given to 5 
-decimal places. When x and d are given, 'Â is 

obtained accure.tely from the tables by inv~rse linear 

interpolation. 

into ( 13) and obtain 

-x: ~] -=.0 
:x:\ 

a polynomial equation of degree d in \ having exact­

\" 
ly one positive root. If a more accurate value for A 

is desired, (14) may be solved by one of the s~veral 

standard, iterative methods of determining roots of 

polynomial equations. 
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The variance of 't. , say V { ~},. is found to be 

Vi~ 1 'e : 1-a ( ~) 
where 

'Y-a(>.) = ( FC~) y-
FCJ-,)[:FCd) +\ p<à>~)J- ~FCd) pCJ.-1·> >.) 

where p(d;\) = - ~\d 
e ft • 

d. 
Cohen [ l "3 J provides a. table 

of the variance function )ld(À), as a function of ~ 

and d, for d = 2 {1) 14 and À goin~ from 0.001 

to 15. 

Murakami, Asai and Kawamura ( S'3 ] have also 

\" obtained the maximum likelihood estiœate A for this 

particular case of th~ truncated Poisson distribution. 

They suggest the use of nomograms for obtaining 

-given x and d. However, th~ir approach does not 
\"' offer as eccurat~ values for A as thf't of Cohen ( 13 J • 

Murakami, et al ( ~1] examine the relative efficiency 

of Moore's estimate, ~m' compared to the maximum 

'" . likelihood estimate A They determine an approximate 

expr~ssion for V(~m), and using it, determine the ratio 

For given r = 1 (1) 10 this ratio is plotted as a 

fu net ion of }.. , wi th ~ ran"d ng from 0 to 1 0. They 

conclude that, although the variance of the maximum 

likelihood estimate is smaller for all r than th~ 
. 

vari~nce of Moore's estimate, the ease in obtaining the 

latter outweighs the advantares of better ~fficiency. 



55 

However, the tables provided by Coh~n [ 13 ] permit one 

to det~rmine quickly end accurstely, and so, the 

consistent and asymptotically efficient maximum likeli­
\." 

hood estimate, A , seems to be preferable in this 

particular case of the truncated Poisson distribution. 

5.4 Truncation on the Left 

Let the set A, referred to in section 5.2, 

consist of the values 0, 1, 2, ••• , c where c >o. 

is a fixed integer called "the truncation point". 

"Permissible" values are then c+1, c+2, ••• • Let X 

be a random variable having a truncated Poisson dis­

tribution with parameter ~ and p. d. f. 

where .c. 

F (c) == 2_ e-).'1_-r 
1""-=-o ï\ 

A simple procedure for estimating ~ is given 

by Rider [ C:.s] • Let a random sample of si ze n be 

taken from (15)· and let nx be the numbers of x 

va.lues obst"~rved, x = c+1, c+2. • • • • Let N be the 

total number of thl" observations, assuming that we have 

sampled from a complete distribution~ and that the ob-

servations actually observeà form only a parot of thfll!! 

"complete" sample. Define 

...,.. = lo 

co 

(15) 

{Il.) 
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00 

,-, : LxM~ 
-x;= C.tl 

co 

and T'l. -::;:. L -x: ... .1'{\T. \18) 

"lC: C'tl 

c:.. 

Also let To
1 

:::. N L ?C-r;).) +To 
-r:o 

<:. 
1 N L1- ~(-t')'>.) T, T, -::. + 

'1"-::.o 

c:.. 

and T,..' = t\l L .,. ... ~(-t) '>.l + \.,_. 
"j"so 

where Th~n w~ may tek~ T1 
1/T0

1 , 

and T2 '/To'' to be estimates of ).. and >-.+~2, 

respeotively. Th us T,' = ~ 0 

and T'l-' = (}. + \._) To \ 

Substituting (19), (20) enii (21) into (2?.) and 

(23) gives 

-r"l. - ( >-.-\- '><~·) Ta - N e_).. ~ c+' (').. + ~ -+,) <2.s) 

c! 
Solving (24) and (25) for À gives us Rider' s ( b.8 J 
estima te -r .. - (,.-. .. ,) T, 

\R -------
T,- c..lo 

This estimate has th~ advantag~ of being easy to obtainj 

however, it has the disadvantages of being biased and 

in~f'fioient. 



57 

Tate and Goen [ 7 7 J mention a simple estimate 

for À • Let 

U (x) = 
c 

Then an estimate for À 

For the special case when 

is 

c = 0 
' 

x = c + 1 

x > c + 2 

. . . ' x ) 
n 

is 

Plackett 1 s estimate, Àp, which shall be considered 

shortly. The estimate Vc(x1 , ••• , xn) is superior to 

Rider's estimate, ~ R' for two reasons. It is unbiased 

and simpler to compute. 

To obtain the maximum likelihood estimate of 

' 
sa;; -;. 

G J we note from ( 15) that the lik~lihood 

function is o0 ~ ).. x 

l -=- l (-x., ... > x .... ) ~~c) == TT ~ e- ~ 
:x:=-c.+' 1-fCc..) -x\ 

00 

80 that o~L - L [ :x. 

~" 'X:<:.+\ ~ 
Equating (27) to zero~ we arrive at 

where 

1- l=Cc.-•) 

\- F'Cc.) 

The case of truncation at zero, that is, 

where c = 0 
' 

in (28) gives 

is especially important. 

-~ \- e o 

Putting c = 0 

\'L.6) 

('lB) 



58 

David and Johnson L2 \ ] derive {29) and maintain that 

" it does not seem possible to obtain an explicit express­

ion for ( 11 , and imply that tables would be helpful. 

Irwin L 1.4'3] derives an expliclt expression 

for from {29) in the form of a Lagrange series. 

First 

and by Lagrang~'s expansion, _ 
- -'1-x:. 

--x. l. _\ 

);. =-x- =x.e +~ ~ 
~ 2' ~~ 

00 L ~-r-• (x <!-X)~ 
1'":. \ T ~ 

= "X 

Using Stirling' s Theorem Irwin [ 4-~] demonstrates that 

the series is convergent for x > 1 but only satisfact-

orily for x> 2. He illustrates the applicability of 

\Ao this expansion by obtaining A from data given in 

Finney and Varley [ '2..b ] on the distribution of eggs laid 

in unopened flower heads of the black knapweed by the 

Knapweed gall - fly. 

Finney and Varley [ 2'] maintain that (29) 

can be solved rapidly by it~rative or int~rpolatory 

"' processes and a table for direct reading of \,. and 

·-as functions of x could easily be constructed 
1\ 

where N is the total number of ob:=>ervations and V(~ .. ) 

" is the variance of ~~ • 
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David and Johnson [ 'l \ ] and Rider [ foS l have 

provided tables for solution of (29) but thes-. tables 

are inadequate. Cohen [ P+ 1 provides adequa.te tables 

for solution of (29) for 

x= 1.0005 (0.0005) 1.005 (0.005) 1.250 

( 0. 01 ) 1 • 75 ( 0. 05 ) 5 • 00 ( 0.1 ) 11 • 0 

and 11.0 to 12.5 • 

Linear int~rpolation using the tables offers accuracy 

to at l~ast 3 decimal places and usually 4. A folded 

saale chart of ~ = x - h as a function of -x is given 

when a quick solution of {29) is desired. By putting 

c = 0 in {26) we obtain 

Thus, an asymptotic expression for the variance of ~o , 

V(}: .. ) is 

1-C~) - ( -~)'l. 
'- e 

where 

Also, it is easy to see that 

~ ~ v(\:.) b 2'>-
.Nt ./'(1 

Cohen l Pt ] giVI""S a table heving 'X-C~) tabulated for 

\ ranging from 0.001 to 14.5' and a gr a ph of r:c~) 
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plotted against \ • 

Two relatively simple methods for obtaining 

an estimate of À for the case of truncation on the 

left with c = 0, are due to Plackett [ bO J and David 

and Johnson [2\ J. Plackett suE~ests usinÇ. the unbiased 

estima te 

The efficiency of \ p is always greater than 95%, and 

the estimate is exceptionally easy to calculate. The 

variance of À p can be shawn to be exactly 

An unbiased estimate for V(~p) is 

( M ~? + 2Jtl1- ) 1 .M 1.. 

David and Johnson l 'l.l l suggest the method 

of moments. Let M 1 
1 and M t 

2 
be the first and second 

population moments about the origin, respectively, of a 

Poisson distribution truncated at zero. Let 

be the corresponding samp.le moments. Th en 
co 

_)..\-x: 
N\,' = L ). 

~ e ' - ,_-e:-5-. 
);. :. 1 (\-ë)..) )C. ~ 

Cl() _)..\x )., ..\-- ).. i.. 
tv\~ L -x.l. e - -

(\-e:-)..) Je-::.\ ( 1-e:-).) :d 

01:.) 

\ L :x:. Mx. l'M, -
)::0. \ 

tn 

m1 ' ' m ' 2 

\'31) 
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and 

Solving (31) and (32) simultaneously we have 

~ = M,' 
M.' 

which suggests an estimate for\, namely, 

An approximation to the variance or ~ + 1 is 

vp..~.,} ~ ().+>l:H!.-'l 

An approximation is also made of the relative efficiency 

or the 0 orude" moments estimate A compared to the 
1\ 

maximum likelihood estimate À~ • Their ratio is 

v { ~ .. J - )... ( e. \_ 1 ) 

\J t À} ( )...+1) ( € ).. - ~- 1 ) 

l '33) 

David and Johnson [ '2\ 1 evaluate (33) for a rew values 

of ~ and obtain values ranging from 0.72 to 0.87 • 
\ , ..... ' Of the two simple estimates ror A, Àp and A 

Plackett 1 s ~ p is superior. 

The most desirable estimates for parameters 

are unbiased, and have minimum variance among all un­

biased estimates. Tate and Goen [ 77] have derived 

the uniformly minimum variance unbiased {U. M. v. u.) 
estimate for À , for the general case of the Poisson 

distribution truncated on ~he left at c ~o. However, 

they only provide adequate tables for the case c = o. 
A limited solution to the case where c = 1 is also given, 

Their development follows. 
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Let X be the truncated Poisson random vari-

able having p. d. f. given by (15) and characteristic 

function denoted by ~ 
0 

(eX.). Let X1 , ••• , Xn be a 

random sample of size n from (15) and let 

\."' \ 

It is easy to demonstrate the completeness of Tc as 

well as its sufficiency for the family t p(x; ">.)} , 
defined in section 2.2 • According to Tuke;y [8\ J, 
T

0 
is also sufficient for the family { P.=*(x;}-,c)J • 

Treat the case c = 0 first. The character-

istic function of 

= 

Now, the p. d. f. of T0 , denoted by p 0 (t), can be 

obtained by the inversion formula for characteristic 

functions, as follows 

l3~) 



where 

0 

S(t, n) defines a Stirling number of the second kind. 

Jordan [ 4\4. ] and Riordan [ loq 1 define Stirling numbers 

and also 

and 

establish the two following rP-lations 

S<t. .M): S Ct:-• ..M-,) + J'(l. S(-t.-,l.M) 
\ ) 

t 

sc t+I)JV\TI) - 2_ ( ~ ) s ( i)ft\) 
t .. X\ ô 

Now, suppose the.t 'K'., ( t) is an unbiased statistic for ).... 

based on T0 , then since T0 is a complete and suff­

icient statistic for the family { p*~( x;~' 0 )1 , ~0 ( t) 

is unique and has minimum variance (Lehmann and Scheffe 

( 48]). Thus 

But (36} 

80 tha.t 

l_ ~(-t) )\tft\\ SCt\JV\) - "' 
t•.M tl (e.'>--\)~ 

implies that oO 

)\ JYl L -~t JV\\ SC-t,""') (e-t) - -t=.N\. -t:\ 

(40) bec ornes oQ 
IX) 

L_ ~+' S(tlJA) L tet) ~t s (t,.M) '::=. 

t=M t\ t•M. t.! 

{ '31) 

(~o) 

('Il) 
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Equating the coefficients of À t in (41) and using 

(38} results in 

where 

'}:.~ (1:.) ~ t S(t-'rM) 
S(t,.M.) 

s ( 1:-\, .M-\) 

S(t,.M) 

From (43) and Miksa ['5o] 's tables of S( t, n) for 

n = 1 ( 1 ) t wi th t = 1 ( 1 ) 50, Tate and Goen ( 17 ] 

offer a table of C(n, t) for n = 2 (1) t - 1 with 

t = 3 (1) 50 correct to 5 decimal places. Fbr large 

t, that is, t >>n, Jordan L '+4-] and Ri ordan L b9 ] 

Nll 

l43) 

s\ t, n) c an be making 

~ (t) 

The approximation (44) is satisfactory for 2 < n <. 15 

and ·t,:: 51. 

If the variance of >:( t) is denoted by 6 ~ , 

Tate and Goen [17] have proved that 

< < 
( 

-À \. ->-) J'tl \-e _,...e 
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We shall now continue Tate and Goen [17] 1 s 

development for the case when c > o. The statistic, 

defined in {34), 

~~ (o~) ; 

= r 
Using a similar method to that used in the case where 

c = 0 , 

where 

where ki= O, 1, 2, ••• , n with 

t = n { c+1 ) , n ( c+1 ) + 1 , 

to be 

i = 1 , 2, ••• , c+2 

••• 

T , c 

(145) 

and the summation is taken over all k1 , ••• , 

that k1 + ••• + kc+2 = n. Note that Sn~t = 
k auch c+2 
S(t, n). 

Along the lines used in the c = 0 case we 

obtain the following expression for the u. M. v. u. 
estimate of À 

l1&.1} 
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Jordan [ 44J defines 
~t'- t . 

Cp~• =- L_ (-t)ô+' ('d\-') S(~}~-r) 
·r=v•• a 

and proves that 

This recurrence relation permits one to tabulate the 

cp,i • From (46)' <48) and {37) we have for c = 
1 

s.M)t :. ( 
i:.-"'"" t-1..M. ) 

Thus for c = 1 , (47) redUCAS to 

"" ~1 (t.) =-t C.t-.M-1) t-'l--1 

c t-.NI, 1:- '1..1'1\ 

A table in Jordan enables the estimation problem to be 

solved for n = 1, 2, ••• , 5 with 2n + 1 < t < n + 6. 

More extensive tables of ëp i are required so as to 
Y\ ' 

permit evaluation of ~ 1 (t) over a greater region of 

n and t. No practical solution seAms likely by this 

method for c > 1 • 

To conclude this section we present Roy and 

Mitra [1~] 1 s derivation of the u. M. V. u. estimate 

(48) 

1 , 

e'l-

of when 9 is the parameter of a p. s. d. truncated 

on the left (the complete p. s. d. is defined in section 

4.4). To conform with their notation let the truncation 

point be s - 1 instead of c. Let X be the random 

variable having the power series distribution (p. s. d.) 

truncated on the left at s - 1 • 'l' he p. d. f. of x is 
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'lC 

p \ "'A =')Cl = o.c~) e 
l J -t"s (e) 

where 

We notice that the truncated Poisson distribution ( 15) 

has this form when e :h 
' 

s = c + 1 , a(x) = 1/x! and 

f s {6 ) ;;;; e À [ 1 - F{c)J • By similar arguments to tho se 

used in section 4.4 the U. M. V. u. estima te of a 
n.'t' 

positive integral power of the parameter, Q is 

Cs ( -l-.,.,,M) 

c~u:,..M) 

0 t "- Jill S-\ 'T 

J'il 

where T = and = L. n a< xi> wi th 
i.-= 1 s i.:.• 

the summation L s 
being over integral values 

auch that x1 + x2 + ••• + xn = t and xi~ s. It can 

be shown that 

where C0 {t, n) = C(t, n). Thus {51) enables us to 

evaluate C8 (t, n) for all s, t and n, although it 

certainly appears to be a tedious chore for large s. 

For s = 1 
' 

the.t is truncation at zero, {51 ) reduces 
.M-1 

c, (-t,.M) = L (-·)~ c~! c<t~ ... -<i) 
1 :>0 4 

where C( t, n) is defined in section 4.4 . Applying 

('+Cl) 

(So) 

to 

(52) 

the theory to the Poisson distribution truncated at zero, 

(SI) 
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(52) simplifies to 

{Sl) 

Roy and Mi tra Llo ] have tabulated u1 1(t) obtainable 
' 

from (53) and (50)' for n = 2 (1} 10 and t = 2 (1) 96. 

Note that u1 1(t) is the u. M. V. u. estimate of }.. , 
' 

and is identical to Xo( t), developed by Tate and Goen L77] • 

We are now prepared to suggest a nrocAdure for 

estima ting \ when the zero cla.ss is missing from the 

Poisson distribution. Use the u. M. v. u. estimates, 

tl)( t) and u1 1 ( t), whenever possible, that is, when 
' 

1 < n < with 1 < t < 50' -
:'V-

n = t > 51 , P"se \ .. ( t) -
n = 1 with t ~51' 

or 

n = 2 ( 1 ) 10 l Use u1 1 ( t) 
t = 2 ( 1) 96 ' 

For the regions 2 < n < 15 with t > 51 and n > 16 -
with t >> n use either the apnroximation 

tc tl ~ ~ [' - (~~·t'] 
or the maximum likelihood estimate \: , obtainable 

from Cohen [ IL~-1 's tables. Outside the se regions, use 

\~, it the tables permit, and Plackett' s estimatA, ).. p 

if they do not. If no tables are available, Plackett 1 s 

estimate is recommended. 
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Chepter Six 

Censored and Other Special Poisson Distributions 

6.1 Introduction 

Censored Poisson distributions have not been 

as thorou,c::hly investir:ated by statisticiens as the 

truncatAd Poisson. Among the main topics in this chap­

ter is Hartley [ 4o J' s iterative maximum likelihood 

procedure for estimating the parameter ~ in a most 

general case of censorins. The maximum likelihood est-

imates of the parameters of two special cases of the 

truncati:ld Poisson, as well as a modified Poisson diAtrib­

ution, are dealt with. 

6.2 The Censored Poisson Distribution 

Let n be the number of x values observed 
x 

in a random sample of fixed size n from a Poisson 

population. Classically, this is a "censored" population 

if the numbE>rs n are eRch knovm for 
x 

unknown, except for their total number, 

x~ c, and are 
00 

L nx, for 
X.-=<-+1 

:x> c, where c i.s a positive inte r called the "point 

of censorship". Hartley [ ~o] deals with a more general 

situation which he terms "grouped frequencies" censoring. 

Here, the entire population is divided into mutually 

exclusive groups of frequencies. If a random sample is 

teken, only the total number of observations in each 

group is known. 
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We shall consider those rliscrete distributions 

having maximum likelihood Eolutions in the complete case. 

Since the complete Poisson distribution ha.s a maximum 

likel:thood solution the treatment given applies to the 

censored Poisson distribution. Let us introduce the 

notation. Suppose that the entire population of the 

discrete random variable x is divided into G groups, 

labelled by g, where g = 1, 2, ••• , G, and thet the 

values of x in each grou~ are labelled by j, where 

j = 1, 2, • • • • Let ~ 1 + ( ild ) ).. ) =- p { ~,.. i ~ ~ ~ .ih. ~ ~ J 

t ( ~ i ~) = t- f(i,,) ').) = llH, 1j, r-ut 1 
is the paramAter of the discrete random 

and 

where
1 

À 

variable x, and L is the summation over all j. 
6 

Let 

(\) 

Ng = total number of obseY'vations in g-th group, 

= e-th estimate of the j-th frequency in 

the g-th group 

and n = 
n = 

the total number of observations, so that 
G 

LN 
%=1 g • 

Hartley [ 4o ] suggests the following procedure for ob-
'\ \" 

taining the maximum likelihood estimate of ~ , say A • 

1. Inspect the group frequencies Ng and estimate 

roughly the values 0 n1g, 0 n2g, ••• for each g. 

2. Using the compute an initial estimate, 1 ~, 
of the maximum likelihood estimate -.:-

1\ , using the 

maximum likelihood solution for the complete case. 

For purpose s of illustra ti on, if the para.meter is 
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estimated by the mean in the complete case, we have 

t')\= Z- X.. o.Mi~ ('1.) 
~·j 

where the summation, L , is over ell arrangements 
à·'l 

of j and g. 

3. Using, 1À, compute "improved" estimates of the 

individual frequencies, say, n 
1 og' 1n? , ••• , .. g 

with IMià = ~ t(~lj,l ~~) 
F(~·>,\) 

compute e.n "improved" estimate of \ 4. Using the 

' 
say 

JY\. 

5. Repeat the procedure until there is little change in 

the cÀ• The final value for c ).. is an approxima­

tion to the maximum likelihood estimate • 

The proof that this procedure yields the 

maximum likelihood estimate is similar to the one given 

by Hartley [ l+o] for truncated distributions described 

in section 5.2 • Again, we denote the parameter by S 

to di.stinguish the proof from the procedure. The max­

imum likelihood equation for the "grouped frequencies" 

situation is G-

L t\\~ F (,) ( ~) e) 
0 -~--~ F(d)e) 

F(')(61e) 'dF(~;e) 
o e 

where 

(l) 



72 

Define auxiliary random variables by 

./'(\ . -
1ô 

N~ .f Ci , ~ ·) e) 

F(ô>e) 
Detecting that implies 

we may rewrite (3) as 

where 

L L JY\~d 
à- ~ 

- ! .ç ( 1) ( ~ ) ô ) a) 
ô 

.çc'l(~)~}e) - o 

.f(i,~ \e) 

_ d .rc.~\r,e) 
?se 

Now (5) is the maximum. likelihood equations for a 

llf.l 

(S) 

complete di~tribution having observed frequencies, nj,g 

with n = L 2._ n • Thus, the procedure outlined, if 
1 d j ,g 

it converges, will yield solutions to (4) and (5), 

and s o , t o ( 3 ) • 

Murakami, A sai, and Kawemura [ 5'3] examine 

maximum likelihood estimation in a classically censored 

PoisRon population. Thus, the nx are known for x~ c' 
cO 

and only Ln 
"G>tC.•H X 

is knovm for x > c. Let the Poisson 

ra.ndom variable x have parame ter }.. . The likelihood 

function for this censored case is ~ M-~' 

L = (.;.J [tT p(xi~lmj l b.rf""i~)J 
where n 1 = L nx and n = L nx, and of course, 

x.:o "X;:::.o 

p(x; À) = e-À ~X/x! • Take the natural logarithm of 

(b) 

(6) and differentiate partially with respect to ~ , to 

arrive at 
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c:. 

L - m + \1) 

Set ting = 0 gives us the maximum likelihood 

equation, which turns out to be quite complicated. To 

obtain a solution for '>-- say >:. nomograms are con-
' ' 

structed as fol1ows. Put 

2.. XMx 
"' ( 1 - ~ r- (~ ,<)) \= -;;:. \ 

'-""' 

where 

and r= 
Now, for a given fixed value c, and several different 

~ fixed values p, graphs of q vs A may be construct-

ed. This has be en done by Murakami et al [ 5 "3] for 

c = 1 {1) 10. 

Moore's estimate, À M' discussed in section 

5.3, may also be used as an estimate of ~ in the 

classical censored case. Murakami et al [ 53] obtain 

a slightly more accurate expression for the variance of 

~M' V(~M). They plot the ratio V(~ )/V{ÀM) against À 

for c = 1 (1) 10. For small À the efficiency of~ M 

is high, but for larger À , À M is considerably in­

efficient. 



6.3 Two Special Cases of the Truncated Poisson Distribution 

Let X be a random variable having p. d. f. 

l8J 

where ~ > 0 and 0 ~ ~ ~ 1. For example, consider the 

distribution of biological organisme among colony sites, 

where no migration occurs between sites. Assume that 

that sites are distinct and countable, and that each has 

constà.nt probability 9 of being selected. Once a 

site is selected, assume that the number of organisme there 

is a truncated Poisson distribution with missing zero 

class and par~meter ~. Then the random variable, defined 

as the number'of organisme counted if a single site is 

selected at randon, has the distribution represented by 

(8). Note that when 9 -· 1 we have the truncated Poisson 

distribution with missing zero class as a special case 

of { 8). 

Cohen [ IS l demonstrf.\tes a maximum likelihood 

approach to the problem of estimating the parameters ~. 

and e of ( 8). Take a random sample of size n from 

(8), and let n 0 be the numbers of zeroes observed, 

and * n ' the number of observations greater than zero, 

so that n 0 + n* = n. Then the likelihood function is 

l'flo m* nlfl,. e-).. ~ ~ i. 
_ (1-e} e --~:---

. (1-e- } -x· 1 
L-=-1 "' 

( '\) 
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Taking the natural logarithm of {9) and differentiating 

with respect ta )... , and equating ta 

'o~\L _ [lVI" + JI\~ 1 _e~~>- J 
Taking the natural logarithm of (9) 

zero, gives 
IV\ .. 

lr-L~ 
~"='1 \ 

-0 

and differentiating 

wi.th respect ta e , and equating ta zero. gives 

Ô~l _ J'(\ >r .N\o ----- = 0 
~e e ( \-e) 

Sol ving ( 1 0) for the max1mum likelihood estimate of À , 
A 

)\ we obtain 

where 

Solving (11) for the maximum likelihood estimate of e , 
1\ 

~ we obtain " * e = m 
m 

Equation (\2) is identical ta ( 29) in section 5 .4 

( IC> l 

lll) 

tIl.) 

and can be solved for given i* by consulting the tables 

in Cohen [lit ] • Cohen [ 1 S 1 fit s ( 8 ) t o data from 

Beall and Rescia [ 3 1 (the number of European corn -

borers on small unit areas of a field as observed in 1937) 

and demonstrates the superior1ty of (8) over the 

complete Poisson distribution in this case. 

Now, to compute the asymptotic variances of 
A f\ 

~ and & 
' 

note that 

(1-e)'-
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'd2.~L • [ i* _, J 
(\~e..-)..)1-ô ')..'1- =-/'{\ \ .. 

and cl"l.~l è)..~l 
0 (IJ) 

;je ô\ - d\ ?le 
':=. 

Th en 

and 

where and 

From (13} we see that ê and ~ are asymptotically 

independant. It is also easy to see that 

Let x 

)... ~ V\~l L '2.>-
roe 1 ) -:Më 

be a random variable 
0 

-), \ 
( \-Q) e. ,, 
1- e_). ( t+ e ).) 

.e-).. ~'X. 

( ->- \ ->-) \ I-.e. -e"'e :x.. 

having p. d. f. 
~-=<> 

where À > 0 and 0 ~ 9 ~ 1 • Wi th \3 = 1 , ( 14) i s 

the p. d. f. of the truncated Poisson distribution with 

missing zero class. As an example, let a random vari-

able be th~ number of inseet eggs per nest where each 

nest must have et least one egg •. Due to faulty observ­

ation, a proportion of ones, say B , are overlooked 

or ignored. This random variable than has the distrib­

ution given by (14). 

Cohen [ 1~ 1 obtains the maximum likelihood 

À ~ " estimates for and e J and e • Take a ranàom 

sa.mple of size n from the population, and let n1 



77 

be the number of ones in the sample. The likelihood 

function is 

such that where lJ is the product over all xi's 

x
1 

> 1. By settinp; d~ l and 3~L 
'de ~ 

each equal to 

zero, we obtain the 

and À 

and .IV\ X 

rnl 

where ~ 

maximum likelihood 
-~ \ 

(1-e) e " 

e~-e 
- \-e 

"YY 

- Lx, 
.: ... 1 

l'YI. 

equations for e 

(\5' l 

lU:~) 

Let n* be the number of observations greater than one, 

so that n* = n - n1 • Solving ( 16) for 9 p:ives us 

" the maximum likelihood estimate, G 
X' 

where 

" (mi-Nh~ } e = 

-· x 

m• 

~·, l 

where nx is the number of observed x values. Sub-

stituting (17) into (15) results in 
. ~ 

"i ~ = ( 1 - e- ) = h ( )\ ) 
\- .e:'t.(\+À) 

It is interesting to note thRt is independant of 

the number of ones in th~ sample. Thus, if sorne ones 

{\Q) 



78 

are known to be missing, the maximum likelihood approach 

ignorAs the entire class of ones. To evaluate (18) 

for Â , Cohen [ 1 f., l bas tabulated b( '>. ) for 

'f. = 0 (0.10} 13.900 with b{~) given to 4 decimal 

\" places. For quicker evaluation of A a folded scale 

graph of 6 = x* - >.. as a runction of is plotted. 
" Only a slight sacrifice is made in accuracy. Now, 9 

may be obtained from (17). 

Using standard procedure, Cohen [ lb 1 obtains 

an expression for the asymptotic variance or 'Â , na.me-

ly \J t ~1 V' ).. ~()..) 
M• 2 

where '( (~) 
[ \ - e- \ ( \ .r ). ) J 

-::::. 

( l- e- ~) l- )...2 e-}\ 

Cohen L \{, 1 tabulates 1- (}...) for À. = 0 (0.1) 1.0 (0.5) 5 {1) 10 

and 15. ThB distribution (14) is fitted to data from 

Va.rley giving the number of gall - ce1ls produced in the 

flower hea.ds of the knapweed by larvae of the knapweed 

gall - fly in 1936, and a satisfactory fit results. 

6.4 A Modified Poisson Distribution 

Let x be a random variable having p. d. f. 

i">..(,+e") "X-:. 0 

( 1-~) \e-'>- JC.,.. 1 (\~) 

w(~·, '>-,e) -
ë).''f.:~ -:J.. = 'l, "3l ••. 

}:.\ 

where ~ > 0 and o!: G < 1 • As an example, let a 
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random vari~ble be the number of defects present per 

given unit, end let e be the probability of m1sclass-

1fy1ng an item contain:ing one dAfect by considering it 

as containing no defects. ThAn this random vari9ble 

hss dtstribution {19). For 6 = O, (19). reduces to 

the complete Poisson p. d. f •• 

Cohen [ 17 ] determines th~ maximum likAlihood 

estimates of ~ and ~ , say 
,.. 

and a . Take a 

random sample of size n from the population and let 

n
0 

be the number of zero observations, and n
1

, the 

number of ones observed. The likelihood function is 

[ 
}., lMo lt -~J .m, T\ - ~ ~~ 

L =- e- (He>. )J ~ \-Q) '>..e. 1;.1 e ~\ 

where ~ is the product over all x1 's that are greater 

than one. By set ting ~~L and ~~L each equal 
'd\ à a 

to zero we ob tain the maximum llkelihood equations 
Hl 

2-x, 
J'(\<:> e 0 

( 2.0) 
\:t + ./Y\ -

\ 1 ~e). 

l'n., - 0 
<. 21) 

( \-e) 

Eliminating 9 from (20) and {21) gives 

\'L- ( i- \ + ~)" 
"' 

( '1.1} 

where i = l;- x. 1 Jn 

Simplifying (21 ), we have 
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.IV\o + .N\ \ 

Solving the quadratic (22) for ~ gives 

1\ 

The estima te e may be obtained by substituting (24) 

into (23). 

Cohen l '71 deter>mines the asymptotic 

variances and covariances 

Yt >:} "' 
}.(1+'>-) 

M( \.\-}.--e_-),) 

\Il ê! "' 
(t-e) ( \ + e \- e e- '>- ) 

m >-. e->- ( H· ~--e-~) 

c<5\l"~Ul. ( ~) ê) ~ ( \-e) 
.M ( '+ ~- e -À) 

and 

The di stribut ton ( 19) is fi tted by Cohen ( q ] to 

data from Bortkiewic z [ \\ J on thE' number of deaths 

from the kick of a herse in ten Prussian Army Corps 

over the twenty years 1875 - 18947 efter the data is 

suitably sltered. 

( 23) 
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Ghapter Seven 

The Pascal Distribution 

7.1 Introduction 

In section 3.3 the Pascal, or negative -

binomial distribution was introduced and several of its 

properties developed. The Pascal distribution is an 

extension of the Poisson series in which the parameter 

of the Poisson distribution is not constant but varies 

continuously with a distribution proportional to that 

of chi - square. In more formal language, the Pascal 

ra.ndom variable is a compound Poisson random variable 

with respect to a chi - square or a gamma compounder. 

Und~r certain conditions it has a limitlng Poisson 

distribution. In this chapter, point estimates of the 

two parameters, k and p, are obtained for both the 

complete Pascal distrjbution and the truncat~d Pascal 

distribution. Once these estimates have been obtained, 

the expected frequencies may be computed using the re­

currence relation in section 3.3 • Thus, the two major 

problems in fi tting the Pasca.l distribution to observed 

data are solvPd. 

7.2 Two Simple Methods of Estimàtion for the Complete 

Pascal Distribution 

From section 3.3, we notice that a Pascal 
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distribution with parameters k and p, and probability 

generating function (p. g. f.) 

( -~ 
,-p~) 

where k > 0' p > 0 and q - p = 1 ' has centr~ü 

moments p.,' -= ~ p 

and 

(1) 

The method of moments estimates can be obtained as follows. 

Take a random sample of si.ze n and let n be the 
x: 

number of x VPlues observed. Let the first and second 
,.. 1 "· \ 

sample moments, f· and p. .. ' be 
CIQ 

,.., L.. x .Mx, /ro p.. -
~ ...... 

oQ 

and "' z_ 'X.1. ./V}~ /~ }J.\. = 
"lC"'-0 

"' "' Th en the moment estimates, k and p, are 
.. '1,.. 

"' ;;.. { - " 1 " \ 'l- 1\ 1 
(:U 

fJ.,. }A. fA• 

and "' "' 
/~ p :. p, (ll 

Equation (3) is a fully efficient equation of estima-

tion. Anscombe [ 1 has shown that the effic l9ncy of 

( 2) is at least 0. 90 for 1}, small values of kp when 

p < 1/6, 2} large valuAs of kp when k > 13, a.nd 

3) moderate values of kp when il_:t_pJ..._U{_~_gl ~ 15 • 
p 

"' He also sbows that the large sample variance of k is 



"')'2. + }J., 

A second simple method of estimation is the 

m~thod of the zero proportion. Let n 0 be the number 

of zeroes in the sample. From sectton 3.3 we hsve 

Po= ,-t 
and 

where po is the probability of obta:lninp; a zero. 

Equations <4) and ( 5 ) suggest the.t estimates, say 
v v 
k and p, may be obtained from 

v 

~ ( 1 + f) =~ (~) ~ 

and 
v 

i. 1 ~ p : 

Equation {6) may be solved by iteration. Select a 

trial value for k auch that tbe left side is greater 

than the constant rifht s1de. Then, select a trial 

value for k auch that the left side is less than the 

(SI 

(C.) 

l7l 

ri.rht sida. Interpolation between these two trial values 
v 

gives a first 9Pproximation of k. The process may be 

repeated to obtain any desired accuracy. For efficiency 

at least 0.90, n
0 

must be greater than or equal to 

n/3. 
v v 

Once k i s ob tai ned, p is determined from ( 7). 

Anscombe [ l ] has shown that the large sample vari-
v 

ance of k is 

where 
R = 
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7.3 Maximum Likelihood Estimation for the Complete 

Pascal Distribution 

From section 3.3 we note that a random 

variable x havin~ the Pascal distribution has p. d. f. 
x. --i-x 

?" ~ ( ~ +:- \) p 5 
where p > o, k > 0 is an integer~ and q - p = 1 • 

From (8) we have 
(-~ ~ ")(;) dR.m Px. :x 

= 
à-r f '+ f 

and 6~ P~ ~ & (~+-;r-1) \ d. ~ (~-·)\ ~ (1+~) - -oi ~~ ct~ 

- F ( ~+~-,)- F (~-~)- k (l+p) 

:::. l 1 
-+ \ - ~(Hp) - +- +"· it i+\ ~+)(-\ 

where 

Take a random sample of size n from (8) and let nx 

be the number of x values observed. Then, the maximum 

"' " likelihood estimetes, p and k, are the solutions for 

p and k, respectively, of the following maxi~1m 

likelihood equations 
..0 L /f\~ ~~ p"L 

')".:o d? 
-( l+p) :t.-::..0 

- J(\ c x- ~r) = 0 

OQ 
? (t+p) 

1.6) 

l<n 

{\0) 

( \2.) 

and L~~ ~~P-.: - L.M~ [ .!.+ __:___ .... + .-2-- 1- lVI~( 1+p) 
-x: =-o ~~ '),(.. .... o 'fi! ~+\ ~+"X.-\ 

f A x. - JV\ ~ (ITp) = o (\'S) 
= 

')C. -:.0 (~+J:.) 



where 

and 

Simplify { 12) 

8 5 

co:) 

A x = ~ J'l\-x:t-1 
r' 0 

and ( 13) to 
" " 

"X = ~? 
cO 

and L A x. J<l~( 1-+ :x. 
) = " " X::o { -\-'X. ~ 

Fisher [ 27 J terms the express :ion 

the 11 score" for the trial value ki. By trial and error, 

combined with linear :interpolation, a value k, making 

the score "vanish" is obtalned, and this value of k is 

" 1\ 
the maximum likelihood estimate, k. Then p is simply 

round from ( 14). Bliss [ 7 ] fits the Pascal distrib-

ution to data from Ga.rman [ 3o 1 on the counts of red 

mites on apple leaves with the param~ters estimated using 

{114) 

US} 

the maximum likelihood technique and a very good fit resulta. 

The sample mean, x, is the maximum likeli-

hood estimate of the mean kp of the Pascal distribution. 

Using (1} it is a simple matter to show that the 

variance of x, V(x), is given by 

v ( j) = h ( p+ 1 ) 

M. 

" Now, the variance of the maximum likel:i.hood estimat_e k 
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is the reciprocal of the amount of information about k, 

where, according to Fisher (27], the amount of informa­

tion about k is the rate at which the score (16) is 

decreasing as it passes the zero point. A fast way to 

compute an approximation to the variance is as follows. 

Suppose that during the trial and error procedure of 

" 
obtainin~ k, z1 and z1+1 , are two values of the 

"score" (16), the first, zi, being just below zero, 

and the second, z1+1 , just above zero. Let ki and 

ki+
1 

be the corr~sponding trial values of k. Then an 

approximation to the variance of is 

~~Tl - t~ 

Bliss [ 7 ] mainte.ins that for the cases of "over -

dispension11 (that is, cases where the sample variance 1 

s2, exceeds the sample mean, x) the Pascal distrib-

ution is generally more useful than distributions such 

as the Neyman Type A distribution ( Neyman [ S&l- j), the 

Thomas double Poisson distribution ( Thoma.s [ 1q 1) , and 

the Polya distribution ( Anscombe [ 1 ] } . 
7.4 The U. M. V. U. Estimate of e"t" 

The theory developed by Roy and Mitra (lo] for 

power series distributions and discussed in section 4.4 
applies to the Pascal distribution when k is a known 

positive inteeer, as in problems of inverse binomial 

sampling. Now, {8) has the form of (3) in section ~-.4 



if we let 

and 

P = ___ e ___ 
< 1 - e ) 
a(x) = 

87 

and 

f(e) = (1 -e )-k • 
Let x1 , 

with p 

••• , xn be a random sample of size 

replaced by tl/( 1 - e ) • Let T = 

n from (8) 
.rn 

?- x 1 , then 
~-=· 

it can be easily shown that T has p. d. f. 

( 

D t i.111 Pt"T-=t} = "l(.M+tt-,) e (\-e) 

Then from section 4.1+, where C(t, n) and ur(t) are 

originalmy defined, we have 

and u,. (-t) 

where t [r) = t ( t-1 ) • • • 

0 
-t. [,.] 

( t-r+1 ) • Th en given 

by ( 18), is the U. M. V. U. 
~ 

estimate of e ' where 

r is a given positive integ~r. In particular, the 

u. M. v. u. estimate of e is 

u.(t) 

[ 
0 t <.' -
1:. 1:: ~ ' iMtt-\ 

and the U. M. V. U. estimate of the variance of u1 ( t) 

(18) 
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is, using (~} in section 4.4, 

{.M-t 

?.5 Two Moment Methods of Estimation for the Truncated 

Pascal Distribution 

In this section, the simplest and most import-

ant case of truncation, truncation ~wey from the zero 

class, will be examined. If (8) represents the complete 

Pascal distribution, then the truncated Pascal distrib-

ution is represented by 
x - ~-x. 

r.: = ch;-') v. \ 
(\-\-~) 

( \ <t) 

If the central moments of the complete Pascal distribution 
1 

are denoted by r.,.' the central moments of the truncat-
1 

ed Pascal distribution, say fo-r, are given by 

fA'~ 1 ( 1- f" ) 
In particula.r, , _p j JJ 

P.o• = Rr ( \- \-"') 

Po~ - { P [ ( ~ ~ ') r + J 1 ( \- ,-~ ) 

and 

Take a random sample of size n from (19) and let nx 

be the number of x values observed, where, of course, 

x> 1. Then let 

t1o) 

{u) 

('B) 
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-""' L --:t:.'l..Mx.. " 1 2 " \ 

}lot = :x .NI-s. Jlc'l. -
-x, ..... l -:c .... \ 

J'(\ ..).{1. 

00 

" 1 l- :1.."3/Y\"A, 
and 1-Jo"J: -

~-::.1 

./VI. 

~>,\ ... , " \ 
Note thst J>.o•' JJ0 ,_ and plo3 are consistrnt estimates of 

1 \ 1 
J.>.ot, ;J.o• and }J-oa , respectively. Eliminating k and 

( 1 - q-k) from (21), (22) and (23), we obtain the 
V\. 

moment estimate, P, for p, 
" 1 " 1 

}J:o-. - f:o'Z. 
.. \ 

}J.r.. - 1 
,A. 1 ,. ' 

fJ-ot. - Mo• 
A \ 

/'At.• 

Now, from (21) and {22)· we obtain 

' f'_o~ :::: ( ~ + \) p + \ 
}Jo• 

Once p has been evaluated using (24), we may eval-

"' ua.te the moment estima.te, k, from (25). This moment 

method of estimation is simple, yet very inefficient, 

due to the introduction of the third moment about the 

origin. 

A possible iterative method of moments, using 

" 1 

l'l&) 

only the first two aample moments, and jJ. .. ~. , follows. 

First, we shall rewrite equation (21) in the form 

--i. 
\ 

Take the natural logarithm of 

~ 
' )Ào1 

both aides in 

=-~('-~) 
J-At.l 

(26) 

l'U) 

so that 

ll71 
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Substitute (25) into (27) elimineting k, that is, 

(26) 

where 
\-

and 1- .NVII -, 
p.o, 

Rearranging (28) we obtain 

.lW\\= p ..em_ ( .;m'l. + p ~M~J - p 
~p 

Now, the estimate for p, say 
... 
p, may be obtained from 

(29} by trial and error and linear interpolation, in a 

similar manner to that used in section 7.2 to solve 

equation ( 6). Once 
... 
p has been obtained, the 

estimate of k, is obteined from (25). This method 

yields estimates having hiçher efficiency than the first 

method of moments; however, it appears to be a rather 

tiresome chore to solve (29). 

7.6 Maximum Likelihood Estimation for the Truncated 

Pascal Distribution 

As in section 7.5 we shall deal with the 

Pascal distribution truncated at zero. David and 

Johnson [ '2.1 ] obtain the maximum likelihood equations 

for estima.ting k and p. Denote the estime.tes by 
1\ i\ 

k 0 and p 0 • Take a random sample of size n from the 

truncated Pascal distribution representsd by (19). 
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Let n be the number of x x values observed. 

the likelihood function is 

so 

giving 

and 

Note that (30} 

nCII) p 1 .lVI-x. 

L= 'X. 
"X.:. 1 

co 

lM L = L J'(l:T. k R. \ 
-x .... \ 

"' i_ JI\~ f J. .2.. C-1!•-.:.-o) \ -
"X=\ Ln 

+ ... 

b- (\-f4) 
is similar to equation (10) 

l31) 

belon~ing 

to the complete case. From (30) and (31) we conclude 
1\ 1\ 

that the maximum likelihood estimetes, k 0 and p
0

, 

are the solutions for k and p, respectively, of the 

following two e~uations 
oQ 

L .IY\~~(i 1x) _ .\k(l+p) 

(1-\-~) 
and 

x = ~? 1 ( \- '\-~ ) 
where 

and 1 1 1 -+--+ ... +---
~ ~+\ ~+x-\ 

(32.} 

l''3'3') 

Then by a very difficult iteration process the estimates, 

" " k 0 e.nd p 0 may be obtained from ( 32) and ( 33) • 
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Hartley [ 40 J has developed a more convenient 

iterative procedure l'or obtajnine·: the maximum likelihood 

estimate:;. Suppose that n 0 is the unknown number of 

~eroes missing, so that N = n + n 
0 

is the "complete" 

sample size. Using equations (12) end (13), related 

to the complete case, we define 

and 

P(-~l ~) - ( .M.+J{Io) ( -i- ~?) 
p (H-?) 

00 

k({,r) -=- 2_ A-x _ (MT.Mo) ~(\+?) 
x.=o ( i+~) 

where x is th-3 mean of a complete sample of size 

n + n
0

• Now, the parameters k and p, and also n 0 , 

can b~ estimated usin~ (34) and (35), and also 

l '35) 

Mo = -N\. p(o l~lp) /( 1- p(o)~lp)) ("3~) 
where p(O;k,p) is the probability that a complete 

Pascal random variable, having paramete~s k and p, 

will ta.ke on the velue, zero. ·Select, arbit:rari1y, 

th " i t 1 t"t" " hi h i 1 t k ree p vo a quen 1,1es , w c are s_mp e o wor. 

with, say k = 1, 1/2 and 1/3. For each of these values 

of k, repeated use is made of (34) and (36), as 

is .illustrated for k = 1/2 ln the followinr; steps. 

1} Let k = 1/2. Choose a roug:h estimate of n
0

, 

say 
0

n
0

, and compute a fjrst estimate of p, say 1p, 

from ( 3 t1- ) , th at i s 
01> 

,p = 'X 2 L X. Mx 
- "X.:. C> 

~ 
/'(l ~ 0 Mo 
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2) Compute p(O; 1/2, 1p) from (8), that ls, 

3) Now, compute an "improvedn P!Stimate of n
0

, say 

1n
0

, from 

\-p(o)'h1'p) 
4> After 2 1/2 cycles of this procedure have been 

carried out, we obtain "improving" e stima.te s of no, 

ono, 1no and 2no• Let ~1 = 1no - ono and 

~2 = 2no - 1no• Now, assume that the procedure 

continues producing further 11 improving" estimates 

3no, 4no, • • • with associated differences è 3' 

b 4' . . . ' defined by ~i = in -0· i-1no for 

1 = 3' 4, ••• • Assume that the differences 

••• form a geometrical progress-

5) 

ion with constant factor q = ~ 2/~1. The sum to 

infinity of ~ 3 , Ç 
4

, • • • is ~2q/(1-q). Thus, 

the limit of 2n
0

, 3n
0

, 

denote by n 0 (1/2), is 

. . . ' which we flhall 

Compute the final 11 improved" estimate of n 0 , 

n0 (1/2), from 

Using n
0

( 1/2), 

p( 1/2), from 

( 37). 

obtain a final estimate of 

{"'37) 

P, se. y 



These 5 steps are repeated for k ~ 1 and k = 1/3, 

and the corresponding estimates of p, G<1) and 
1\ 

p(1/3), are obtained, as well e.s the estimates of' n
0

, 

n 0 (1) and n 0 (1/3), respectively. For each k and 

its corresponding n
0
(k) end p(k), K(k, p) can be 

evsluated from (35). Thus a table may be formed 

k 

1 

1/2 

1/3 

1\ 

p(k) 

1\ 

p( 1) 

p( 1/2) 

p( 1/3) 

K(k, p) 

K( 1 , p( 1 ) ) 

K(1/2, p(1/2}) 

K ( 1 /3 , p ( 1 /3 ) ) 

By inverse interpolation between k and K{k, p) in 
1\ 

the table, a value for k, say k, can be found making 

K(k, p) = o. By direct interpolation between k and 
1\ ~ 

p(k) in the table, a value for p(k), corresponding 
1\ 1\ 

to k, say p, can be found. The maximum likelihood 

estimates are then k and " p. A final remark should 

be made about the selection of the pivota1 values for 

k (here k = 1, 1/2, and 1/3). Since ~he pivotal 

values of k should cover the maximum likelihood est-

imate, 
,.. 
k, a sound procedure is to compute p(k) for 

k = 1 and then depending upon the sign of K(k, p(k)), 

choose pivotai values of k > 1 or k < 1. Estimatew 
A A 

of the variances and covariances of k and p can be 

obtained by noting that 
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("'3"1) 

and l \H)) 

"" "" """' where V(k), V(p) and Cov.(k, p) are estimates of 

" V( k), " V(p) and "' " Cov. ( k, p) , rAspectively, where "V" 

~efers to variance and "Cov" refers to covariance. For 

details, re fer to Hart ley [ 4o]. 



96 

Chapter Eight 

The Neyman Type A Distribution 

8.1 Introduction 

The Neyman Type A distribution was introduced 

in section 3.4 as a generalized Poisson distribution, 

and a few of its p~operties were determined. Under 

certain conditions it has a limiting Poisson distribution. 

In this chapter, we examine the moment method, and the 

maximum likelihood method of estimation for the para­

matera of both the complete Neyman Type A distribution, 

and the truncated Neyman Type A distribution with the 

zero class missing. 

8.2 1he Complete Neyman Type A Distribution 

Let ~ and À be the parameters of the c om-
1 

plete Neyman Type A distribution, then the method of 

moments provides simple estimates' r and 'Â 1' of À 

and ~ 
1

, respectively. From section 3.4 the first 

two central moments, f-1 ' and f 2 ' , are 

fA,' :. ~ ).., 

and 
\ p. .... :. 

Take a random sample of aize n from the complete 

\2.) 

Neyman Type A distribution, and let nx be the number 

of x values observed. Let the consistent estimates of 
OQ 

P-1 ' and /-A-2 ' be L Je JV\1r. 
" 1 

fA-• 
'l."O 

-
./'r\. 
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and 

Solving ( 1 ) and {2) simultaneously fer "' 
and "1 J 

indic a tes that •• take the following, as estimates of À 

and À, 1 ~ " 1 

/~ - )Al 

1\ 1 

and 
,.,., - 1 

Shenton [ 'l 1 ] bas developed a procedure fer 

obtaining the maximum likelihood estima tes, -.;. and 'Â 
1 

et ~ and À 1 1 respectively. Let Px denote the probab­

ility that the complete Neyman Type A random variable X 

takes •n the value x. Using the recurrence relation { \7) 

from section 3.4 we have 
x 

and 

lli - e.-~ \ ).., p'X-"r - p"' 
o).. - L 1 

,. ... 0 ,., 

6?~ :x. P:x. (:x.+ l' P:x.+t - = -~ ).., À, ).., 

( '3' 

( 14\ 

From (3) and <4> we obtain the maximum 11kel1hood equations - ciO 

L L 
oc:. 

Jfl:x. ~P-x Ji),_ ( ~+1) Px+\ L .I'Ox. =.0 (5) » - - -Px -"X. so '):,.::.0 hÀt Px ""t.::.o 

oc (liC) ($> 

and L ~Px l L ./{)x(~) R., ..NI x. ".}( 1'1\x - :::.0 (C..) 

Px. d ).., - -"l::o ":1(.\:.0 >-, 'X::... /.., Px 
where nx is the num.ber of x values observed in a sample 
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of size n taken from the complete Neyman Type A distrib­

ution. Let i be the sample mean and put 

ll-x:. = C x:+ , ) P~+, ( 1) 

Px 
then equations ( 5) and (6) reduce to 

oO 

L JVl~ rrx. = ).. ).., .JY\ (8) 
-x;::.o .. 
Z_ Ji\x. 1r ~ = JVIX {c.'fl 

and 

);.:.o 

Equations (8) and (9) can be combined more advantageously, 

so that (lo) 

and 
(Il) 

Equations (10) and ( 11 ) must be solved for the estimates, 
"' 1\ ~ and X 

1
• Shen ton [ 1 1 1 defi nes 

00 

F ( ~.) = L. Ml: "1T 11; - ..h\ i: 

where ~ is considered to be eliminated by 

differentiating F(À1 ) with respect to ~ 
1 

( 10). Then 

gives 

F <·• ( }-,) = f .NI, (x+•) [rx. e\ ?x:+' 
;x.:.o p:J:-'2. el\, 

Now, t>LP4 :. ~ J\ + 6\>x 
n, 6}. a>., 'à'>., 

= _ x r (-xH) P-x:+l _ rx.J 
~: L )...>--, 

Substituting (14) into (13) gives ~ 

( "',+J L 
where 

+ j(.~ 
~, 

(l'l.) 

( IS) 



99 

1\ 

The maximum likelihood estimate X1 may be obtained as 

follows. Let ~•i· be an ith estimate of 'Â 1 , then a 
1\ 

eloser approximation is À11 -.+, , given by 

{11) 

1\ 

The initial estimate, )...,,, , may be determined using the 

method of moments. Repeated use of (17) is made until 

there is little change in 'tl, • The final value for ~,,;. 
will be a good approximat-ion to the maximum likelihood 

" estima te, ~ 1 • " Once A 1 is obtained, the maximum likeli-

hood estimate, 
\/1, 
A, is obtained from (10). 

Equation (17} is a very tedious equation to work 

with. Douglas [ 22] bas constructed tables which eonsider­

ably shorten the work. Let 
\ -~, 

« = 1\e 

then Po and p from {lb) in section 4.; are 
x d-).. 

Po=- e 
_}.'>..'X dO 

?~ L 
;c ,.. 

and - e ' T « "X) 0 -
x.~ ,.. .... 0 ,..\ 

?o ~~~ \ ( \(\) 
= p.,_ 

-;-! 
OQ 

where 
\ -- [ -x:. ~ 

/A-x.:::; e. .,.. c:J. 

.,.....0 ~\ 
1 

If we let p = ~~ then from ( 1~) we may obtain the x 1 

;v. x. 

relation 
?X.+\ ~~ P~ P~ llo) -

('X.+I) 

Using (Z.O) the maximum likelihood equations ( 10) and ( 11 ) 
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" " 
become ).. ~. - x 

and 

Now, from {12) and (13) we have 

F ( ~,) = ~. t_ .M:T. p.r_ - .JVl x l'li) 

00 

and f' (\) ( ).., \ = f. -Mx P~ - ( H~ ~ 1) L_ -M-,.1~ 
-..:.:o -:r.-:=.o 

(ll) 

where qx = px{px+1 - p ) x • Douglas ( '2. 2.] has tabulated 

Px and qx for <X = o.ooo (0.001) 0.03 (0.01) 0.3 (0.1) 3.0 

and x= 0(1)19. Using equations ( 17) and ( 18) in 

( 17) in ste ad of { 12) and ( 15)' speeds us the calcul-

at ion of ~ 
1 

considerably. Douglas [ '2 2..1 .fits the complete 

Neyman Type A distribution to data on the European Corn­

Borer, given in Neyman ( s~] , and a good fit resulta. 

8.3 The Truncated Neyman Type A Distribution 

We eonsider the special case of truncation where 

the zero class is missing. If Px is the complete Neyman 

Type A probability, then the truneated Neyman Type A 

probability is 
p')t 1 = 

'- R. 

'"'­The method of moments estimates, ~- and ~~~ 1 ot the para-

meters ~ and )... 1 , are obtained in a manner similar to that 

of the complete case. That is, 

and 



101 

-r 1> - "1 1 ""' p., ~01 
ob 

A \ 

bu~ J m J.Àt -
where 

c:Q 

and " 1 b ~·~~ 1 J(l 
M"L '::t 

Sometimes equations (2~) and (2$) lead to negative 

estimates, so that, ~. and 'ta are only obtained when 

rough ideas as to the values of the parameters, ~ 
1 

and 

À, are desired. 

l'l.'à) 

Along lines similar to those used in the complete 

case we obtain the maximum likelihood equations 

't-o ).:'.,., tU,) 

\- ts: :. 

and 
"' ,,.. 

P. - /\ot \- .., e. -:=. 

where ~o and ~o' are the maximum likelihood estim.ates 
" (\ 

of ~ and À 1 1 respeotively, and P 
0 

and 1\ x are the 

expressions, P
0 

and X' with )... and À 1 replaced by 

1\ '" ~... and f\o, , respeotively, and finally 1 where 
oO 

lM 
_, LX .NI~ :x. = 

');. .,., 

Write 
- '>., 

00 

L_ .iV\ 1(. 1\" F (~,\ - \- \)ce ('2.8) 
..::= 1 

_, 
.){\Y. 



where p ' = 0 
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P. and both -rr x 
1 - p 

0 
A 

complete case. Thus, if A"'')~ is an 
A 

and cp x are as in the 

1\ 

1 th estima te of }..o, , 

a closer approximation is, ~c.• L.+,, given by 
l 

1\ 1\ 

If ~c.• is an 1 th e stimate or Ào , a cl oser approximation 

given by 

" 
~0 ~ ... = 

1 

~1 

" 

e
- ~Ot' ( \- e.- ~C>II~H 1 J 

l '?Ill 

The work involved in using {30) and (31) la much greater 

than that involved in using (12) and {13) in the complete 

case. To shorten the amount or labour Douglas [ ] has 

introduced a procedure similar to that used in the complete 

case. Omitting the details, the maximum likelihood equat-

ions are expressed as 
xo \::, ( ( \- P, ) = x' 
" 

and 
1\ - ).01 

\- P ... e 

where Px is Px wi th )\ and À 
1 

and 

\"o replaced by A and 
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Again the tables of px and qx provide a more efficient 

means of obtaining the maximum likelihood estimates. To 

illustra te the procedure Douglas [ '2..2.] fi ta the truncated 

Neyman Type A distribution to data of leaf counts supplied 

by Goodall [ -'3'2. ] , and ob tains a good fit (} .. ~ = 6 .8) • 

A procedure similar to that given in section ?.6 

(Hartley [4ol ) may be used to determine the maximum 11ke-

11hood eatimates of \ and À • 
1 



Chapter lfine 

The Poisson v Binomial Distribution 

9.1 Introduction 

In section 3.5, the Poisson v Binomial distrib­

ution was introduced and a few of its pr.operties determined. 

Under certain conditions it has a limiting Poisson distrib­

ution. There are two major problems in fitting a fairly 

complicated distribution: 1) point estimation of the para­

matera, and 2) determination of the expected frequencies 

using the estimates of the parameters. Both of these prob­

lems are treated in this chapter. 

9.2 Simple Methods of Estimation 

Let X be a random variable having the Poisson 

Binomial distributien with parameters À and p and 

{Il 

where ~ > o, p > o, q > 0 and p + q = 1, and n is a 

positive integer. From section 3.5, the first two central 

moments are }-'~ = \ph\. l'2.) 

and fJ.~ ~ \~.., [ )..p.M + p (.M-1) + Il (3) 

Let a random sample of aize N be taken from ( 1 ) and let 

nx be the number of x values observed. Let 
00 

/N .... L "XM'lt p, = 
~-=o 
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and 

Assume that n is known. Solving (2) and {3) for 

and p, we obtain the method of moments estimates, )\ 

"" and p, 

and 

for \. and p, respectively, 
,. 1 'l. 

~ (M-1} fù• 
=("' ... ,'l.. ~\, 

}J."' - p., - p, I.M. 
V\ "'' .. ,'l. ,., 
o M,. - M, - #• 
\ - 1 ; A\ 

( M-\) })., 

A second simple method of estimation is the 

method of sample zero frequency. Let n be the number 
0 

Il 

of zeroes in the sample. If X v 
and p are the estimatea 

of À and p, respectively, then they are obtained from 

>:: p = ;.: 1 Jn 

and Jo/\·= N e-~[1- (i-f)MJ 

McGuire, Brindley and Bancroft [ 4q J remark that 

usetul values of n are n = 2, 3 or 4, sinee the Poisson 

~ Binomial distribution approaehes the Neyman Type A dis­

tribution rapidly as n inoreases and p deoreases. Sprott 

[13] investigates the effieieney of both these simple methods 

for n = 2. Only for very small p 1s the eff1ciency of the 

method of moments high. The effieieney of the method of 

sample zero frequeney ia around 0.90 tor p ~ 0.3 but much 
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lower for other values of p. For both methode the effic-

iency approaches zero as p approaches one. These simple, 

relatively inefficient, methods are useful for providing 

initial estimates· in long iterative procedures. 

9.3 Maximum Likelihood Estimation 

Sprott [ 13] has developed the following maximum 
1\ 

likelihood procedure for obtaining the estimates, ~ and p, 

of ~ and p, respectively. We assume that the value of 

n is known. From section 3.5 the probabilities, 

satisfy the recurrence relation 
x. .,. L ( ~:~) .1'1\-,.-1 

P-x_,.. Px+\= JV\Àe 
? ' ("X:+I) ""::.o 

Put S,(-x.) i_ \_~ ( ":) 
;x JV\"1"- "X 

::. P r 
-r:.o ,.~ 

QQ 

p ' x 

Then s'l. (r.) 'dS,C~) L \. ~-\ ("":) P\ ~-<->< = = 
ci\. -r-:.o (t-•)\ 

( ~+1) \ s, c~+•) 4- 'X S', ( )t) - ./(\.)... .)V\~~ 

Similarly, it can be shown that 
dS',(-x.) x 51 (x) (x+-t) S 1 (-r;-H) -

àp ~ p 
Now s1 (x) = ~ s1 (x) - À.. e Px, so that ln p = ln Take x 

(~) 

(S) 

((..} 

(7) 

a random sample of size N from (1) and let n be the 
x 

number of x values observed. The maximum likelihood 

equations are 

(~) 
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and -:=.0 

Equations (8) and (9) reduoe to 

'" f\ -JV\"P =x 
cA 

and l ( p) =- L -'Vlx l= (x.) - N = o (H) 

where FC~) = (~+,) ?-x:+' (11.) 

.m ~? P:r. 
oCl. 

'i = b JoJV\~ 1 N 
and 

To evaluate the maximum likelihood estimates, ~ and ;, 

1s a rather long procedure. First, note that from (10) 

and (11) that ~ 

~ L ( p) "" 2 -M,. Ç,_ ("') _ N 
~:a $",(x) 

(13) 

Thus if we let L( 1 )(p) = d L(p), we have 
QO dp 

i L(') ( p) =. L .Mx. [ 'S,(,\ .,\1·~' \ - 'S ,_(" Î ~)1 + L ( p) \lqJ 

:X:=-o p [~,('l-)]2 
Using the method of deriving (6) and not1o1ng from (10) 

that 

1\ 

p 



108 

Now, eubetitute (15) and (16) into {14), making use 

or { 12), so that 
ob 

( 1 ~- Îr ) JV'~ ~H"~ L(o) ( n = L .M"- F(l< {..;_. -- (n) 
" 

X::.o p .IV\r 
1\ 

Now, the maximum likelihood estimate p may be evaluated. 

" ith estimate or " Let pi be the p, then a closer approx-

" imation to p is given by Newton 1 s formula, 

- P·-- ~ 

(\8) 

By repeated application ot (18) we obtain as good an 

" approximation tor p as desired. The rough initial estimate, 

p
1

, may be obtained by either the method of moments or 

the method or sample zero rrequency. If the number or zeroea 

in the sample is large the latter method is tavoured. Once 
" ~ p has been evaluated, A may be determined from ( 10). 

Finally, the probabilities P can be determined recursively x 
using <4>. Thus expected frequencies may be computed and 

the Poisson v Binomial distribution .fitted to the data. 

Sprott [ 1"3] fits the Poisson v Binomial distribution to 

data .from .McGuire et al [ 49 ] with the parameters estimated 

by the method ot moments {)(2(
5

) = 18.90), the method or 

sample zero .frequency ()L2 (
5

) = (.40) and the maximum 
2 likelihood method (][ (

5
) = 9.88). The implication or the 

paper is that for small p, say less than o.;, the method 

of sample zero .frequency may be used, and the maximum like­

lihood method tor larger values of p. 

Sprott [ l 3] determines expressions tor the 
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variance and covariance of the maximum 11kelihood estimates, 

~ and ;. Details are emitted here. If "V" refers to 

variance and 

and 

where 

and 

and 

"Cov" 
' 

to covariance, 

Co"J (~ lf) ::- I >.~ 
D~, N"l.. 

T).~ =- ,, A + -.Me +(-M-t) P\ 
N .M~ 

~ ==- J(\1.. \ ... A + M \_ ( 1- ..NL. +~) N 
QQ 

I)..~ 
: - J'(\.~~ A + ,Mt + p A -= 2 ç:c") Px. - \ 

l\,\ ' -x,::o 

Gurland and Shumway [ -se J have developed a simpler 

procedure tor obtaining the maximum likelihood estimatea and 

computing the Poisson v Binomial probabilities than the pro­

cedure suggested by Sprott [13] • He suggests using the 

recurrence relation (4) to determine the probabilitiea. 

The argument against this idea is twofold: 1) the comput­

ation of successive probabilities using (4) is tedious 

because the formula is long and each probability depends on 

all the preceding ones, and 2) any errors made along the way 

are carried by all the succeeding probabilities. 

-------------------------- ----····-·~·--······---·---··· 
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can be ( 1 ) 

\\~) 

where 

and 

From ( 19) and (20) we ob tain 

P:x.+, - t f=_ Pt~1 
(:c+t) 

where 
p(1t] = P.r.::~·+O. 1 fAt.J<J 

(u) 

From (20) we notice that it is possible to consider Pt~ 

as the xth factorial moment of the random variable nr 

where 

Thus, 

r is a Poisson random variable with parameter ~ • 
:x 

fc•l - E. J (,..T) L•lJ : E { b s(,, ,'} J'/1' "'"'] 

: f.- s(x1<) NI i Et r'J 
. 

:z:. ' ~ til 
~ f.-s(~,q"''E[f-SC<,i).,. J 

'X ~ • -l- Z sCx1\.)ft\~ S'(L'1i) ol.d (2.3} 

.. :1 2-:' 
where the s(x,i) are Stirling numbers of the first kind 

and the S(i,j) are Stirling numbers of the second kind. 

Now, the numbere s(x,i) and S(i,j) can easily be obtained 

from the recurrence relations 
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and 

Stirling numbers are defined and discussed in Riordan [~q] 

and Richardson [~6 ] • For gi ven values of n, ~ and x, 

fl-a) may be evaluated from (23). Then p (..,..1 may be determined 

from (22). The Pr.,J have been tabulated by Gurland and 

Shumway [ "1 e J for n = 2, x = 0 ( 1 ) 9 and <::.l = 0.10 ( 0.02) 1 .1 0. 

Theo (21) is the simpler recurrence relation promised. 

It is possible to calculate each probability from the one 

immediately preceding it, and also, to do so with little labour. 

The computation of probabilities is, of course, 

only possible when we have numerical values for the parameters, 

À and p. A shorter procedure for obtaining the maximum 

likelihood estimates, '" A and 
A 
p, follows. Let 

'\ ['!t) =- Pr..,..] ( P[x+o - P[~ ) 
then (17) may be rewritten in the form 

a() OQ 

L('Y ") = ' [C\'\-,) .L""x. P(,:) - {(,·"-•) f +\ J :;. '""'~ \N] 
p ~"1 X pi J.:o ' ). 

Gurland and Shumway [?>~] have also tabulated q[ ... J for 

the same values of n, x and ~ am pv! Thus equation (24) 

is easier to manipulate than Sprott's equation (17). Am 

before the estimates X and ~ are obtained from ( 18) 

and ( 1 0). 

To compute the variances and covariance of 

and p, Sprott [ î3] has shown that the quantity 

(2!f) 
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('l.s) 

must be computed. Rewrite (25) in the form 
oCI 

A - ' ) "l.. n 
- ,_)...l. '2. L__ p(iJ l-x_ - \ 

!fi \ 'X:.o 

Thus A may be determined using the tables and the estimates 

of the parameters. 

The probabilities P may also be computed by x 
a procedure involving matrices developed by Gurland and 

Shumway [~l]. Equation (23) may be written in matri:x 

notation as 
SN S 1\ 

where 

N = 

A- (L) S:: 

and 

( 

s (1)1) 0 

S :. 3C~,,) S611.) 

S(Jy'(\> ,) 

Write A = SN~ and P = 

( 

P. 
pl. 
. 

p""' 
where 

-
J'V\ 0 

0 .Nt,_ 

sC•,•) o 
-s:h, 11 $('1.,1..) 

then P = BA/\ 

( 2.4) 

B = 

a o ... o 
o B'l.. ('l1 J 

o . . . Bftlll, 



and P = e 
0 • 
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The matrix A has the triangular form 

Gurland and Shumway [ "31 ] have tabulated the matrix A 

for n = 2. 3, 4 and m = 10. To compute the probabilities 

Px, .t'irst ob tain the mat rix B from ( 28) and 1\ from 

(26). Then matrix P may be obtained from (27). This 

method also offers a great improvement in speed and aocur­

acy over the direct use of the recurrence relation <4>. 

9.4 The Minimum Chi-Square Method 

Gurland and k'atti [ "'35] oonsider the minimum 

chi-square method of estimating the two parameters, ~ and 

p, of the Poisson v Binomial distribution. We again assume 

that n is known. The most useful values of n are small, 

say 2, 3 and 4, since the Poisson v Binomial distribution 

rapidly approaches the Neyman Type A distribution with 

increasing n. Suppose that "'\ 1 , 1' 2 and -r 
3 

are different 

tunctions of À and p. having consistent estimates, t
1

, 

t2 and t3, respeotively. Let .If'" aad t be the matrices 

(1'1 '1'2 -f3) and ( t1 t2 t3), respeetively. Barankin 

and Gurland [ 2. ] show that the estimates t which minimize 
( 1\ _, ( )' Q -= t-Jj') _cl_ t.. -i' (l.C\) 

" are asymptotically the beat, where _(2 is a consistent 

estimate of the covariance matrix, ~, of t, and {t-~) 1 

is the transpose matrix of (t-~). After differentiating, 



114 

the estimation equations are 

and 

&-t _A-1 (t-"1')' 
ô).. 

~4' _Q-1 (t.-""f)' 
'Op 

( "So) 

The solutions of (;o) and (31) for À and p, are the 
\" 1\ 

minimum chi-square estimates, denoted by A and p, resp-

ectively. We shall now sketch the method of obtaining the 
1\ A 

asymptotic generalized variance of the estimates, À and p. 

From (30) and (31} we have 

[Ô11 Q -Il({:-~ )J " = Q 
d ~ ~,.. L1 x- " 

lf ")? 
and 

:..0 

E:xpanding ( t-1') 1 in powers of (À-À) " and (p-p), and 

neglecting all second order and higher terms, we obtain 

~1' .s:L _, ~-1'' ( ~ -"' ) 
~ >- à c>-, f) r -r 

asymptotically, 

~ ~-1 (t-1') 1 -

~).. 

'(,-f ..c2- 1 '0--1 \ ( ';\ - ).. ) 
df "d(~lf) f - p 

is more explicitly written as 

d-t _a-' ( t-1') \ 
dr 

è'1 \ 

and 

where the matrix 

(35') 

ÔJt, d~\ 

~ ~r 
o1',. d-4"1. 
0~ ~ 
d"'f'!> d-'t'!. 
~). "d? 

The generalized variance G is then 
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Suppose that we select the first two factorial 

cumulant a, Kt)) and Kc-.11 and the nature.l loge.ri thm of the 

zero proportion, ln P
0

, as pe.rticular cases of "1' 1 , 1 2 
" " "' and 1' 

3 
respectively. Let Kcü, Kt ... J and the ln P0 be 

consistent estimates of Kt,.-l1 Kt ... l and ln Po, respectively, 
... " 1\ 

so that the matrix t = (KC•1 K( .. l ln P ) is a consistent 
Q 

estima te of the matrix 1' = (Kl:•l Kt,.1 ln P 
0
). From section 

3,5 we have that for the Poisson v Binomial distribution 

and 

Using ( 36)' (37) and (38) the estimation equations 

(30) and (31) become 

~ ~ {L._.M_P_.M_<.M_-,_> r,__'l.._\L.,_~_,_) _n_" _-'_(_~_C·l __ ~t:_ ... l_~_~_) 
(-Mp .A\(-M-•)P,_ ,~, )..éi.-' (~p ""(.M-')rl- \~') 

and 
( ~-1 ) A ( '- ) 

\ - 1 'l(./t\-1) p -~ LL-1 kt•) -~C"-l .\k P .. 

l \ 2-(M-\) P -~ ""-' ) _â_-' ( mp 

The covariance matrix, ~ , of t is the symmetric matrix 

N 

1 1'1- 1 1 ' 1 
}J.-...- p., Jl3- 1'11 }1'1. -p., 

\ ' \ 
)J.l - JAl fA,.. 

1 -,.,_ 
• -p ... 

_1 __ \ 

fe 

Now ...o..-' can be written in the form KA, where K = NIN..QI 

and [\ is the symmetric matrix 
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1 1 "\.- \ 1 \ 1 1 \ 1 1 1 

JJ."- IJ.'I. - ~- fl-1 p. .... -}A, +- /J.?. p.. P.~ - fJ.-... p. ... 
Po r .. 

1\ 1 1 1 1 1 ,,... 
1"" ' 1 p., p.-., -}Al 1 - +Ill p. ... -IJ.. - p., P"t. - fA• f-s 

P .. p .. 
' 1 1 1 1 '\.. 1 \ '( 1 t\.) 1

3 
p., Jl"- - jJ-,. lA~ /A"" -~, jJ."$ l'~ , .... -~· -p. ... 

+ l P·t·f'A~ ,""" 
- P1 

Si nee (59) and (40) are homogeneous of degree zero in ..C]_ , 

_a_-' may be replac ed by 1\ wi th the cons tant K omi tted. 

Take a random sample of size N from the population. Com-
" \ ... \ ... 1 

pute the sample moments fA 1 , p.2 , p.
3 

,.., 
and p. 4 and 

the data using 0() 

-b ~: JOr-/N 
1\ 

and Jlto 1 N 

1\ 

P f'rœ 
0 

where nx is the number of x values observed. Tben the 

matrix 1\ and ln P may be determinèd. The sample 
0 

f'actorial moments may be obtained from the equations ,. ... \ 
k' c., - p., 

1.-
1\ \ 1\ A \ "' and k:r;,. .. J - }ll.. p., p, 

Equations {39) and <4o> enable one to tabulate \ as a 

function of p. However, Gurland and katti [s~J have not 

formed auch a table. As they stand, the two equations may 

be solved by an iterative trial and error process with an 

initial value of p taken to be a simple number near the 

method of moments estimate of p. 

Gurland and Katti [~s] illustrate the procedure 

with an example from MoGuire et al [ ~~J. They fit the Poisson 

v Binomial distribution to t~e data, estimating the parameters, 
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À and p, by the 1} method or moments 

2) the method or the rirst moment and the zero :frequency 

{1[24 = 5.57), 3) the maximum likelihood method 
2 (x.- 4 = 5. 71 ) 

and 4> the minimum chi-square method (~ 24 = 6.71 ). 

The er:ficiency or the minimum chi-square method is 

tabulated :for all combinations o:f n = 2, 3, 5, ~= 0.1, 

0.3, 0.5, 1.0, and 2.0 and p = 0.1, 0.3 and 0.5. A 

general high efficiency prevails throughout the region 

2 ~n ~ 15, 0 <À~ 2, and 0 < p ~ 0.5. The e:fficiency 

o:f the method o:f the sample zero :frequency is tabulated for 

the same À , n and p, and generally high ef:ficiencies 

prevail, each value being only slightly below that o:f the 

minimum chi-square method. The ef:ficiency o:f the method of 

moments is tabulated and generally, the values are very low. 

From the table one would conclude that only for p << 0.1 is 

the e:f:ficiency satis:factory, that is, around 0.90. 

Gurland and katti [ 3S] conclude, mainly on the 

basis of the high efficiency resulta, that the ainimum chi­

square method, using the :first two factorial cumulants and 

the logarithm o:f the zero :frequency, May be used instead of 

the asymptotically efficient maximum likelihood aethod, when 

the parameters are in the region for which the tables are 

constructed. Beyond this region the Poisson v Binomial may 

be replaced by other simpler distributions, auch as the Poisson 

distribution in one limiting case. 
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Chapter TeR 

The Poisson v Pascal Distribution 

10.1 Introduction 

The Poisson v Pascal Distribution was introduced 

ia section ;.6 as a generalized Poisson distribution and a 

tew ot its properties were developed. Under certain con­

ditions it bas a limiting Poisson distribution. In this 

ehapter we are eoneerned with titting the distribution te 

observed data. The two major problems in fitting distrib­

utions to observed data are 1) computation ot the expected 

frequeneies and 2) estimation of the unknown parameters. 

Three simple "ad hoc" methods ot estimation, as well as the 

maximum likelihood method, are investigated. 

10.2 Three Simple Methods ot Estimation 

The three "ad hoe 0 methods eonsidered in this 

section permit quick evaluation of the estimates, however, 

these estimates are all lesa efficient than the asymptotieally 

efficient maximum likelihood estimates. 

Before we consider the methods of estimation we 

shall establish s011.e needed relations between various moments 

and cumulants. Let u(t) and v(t) be the tactorial moment 

generating tunction and the faetorial cumulant generating 

tunotion, respectively, of any random variable. More ex­

plicitly, let fJ-cTJ and kt.,.) be the rth faetorial 11..ment and 
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the rth factorial cumulant, respectively, so that 

o. C-t l = f t<-Lr:r) tT 1"'" \ 
'\=-0 

and v(t.) = L_ kc~J -1:.,./ ,.\ 
T:.c 

Now by definition u(t) and T(t) 

v(t.) : ~ \,\(-\:) 

are related as follows 
li\ 

By differentiating both sides ot (1) we can establish the 

following 

(2) 

The first "ad hoc" method to be considered is the 

method of the first three factorial cumulants. From section 

3.6 we may deduce that the factorial moment generating function, 

u( t}, of the Poisson V Pascal distribution is 

u C-t) = e ~ [ t \- P <' +-t) 1-ft -'J 
where \ > O, p > o, k > 0 and q- p = 1. Then, the 

factorial cumulant generating function, v(t}, is 

vtt) ~ \ [ h- r(l+t.)r~- '] 

('3) 

(If.) 

From (4) we may obtain the first three factorial cumulants 

"'[.•1 = ~{p ~ ["L] = À~ (-l+l) p 1.. 

lS) 

and 

3 

'- = \~ (~-H) ({+1..) p 
(\ (3] 1 

1\ " 1\ 

Now let f-c•J' ~00 and fr_:~J be consistent estima tes of the first 

three factorial moments fJ.c'J, f(:&.] and ft:ü, respectively, and 



121 

" " 
;. 

let l-(t.,J , Kt-..1 and Kc;.J be coneistent estimatea of Kt•l, \-t't"-:l 

and kt.~, reapectively. Solving the equations (5) simult­

aneously for )... , k and p, suggeats that the eatimates of 

~ "' "" ~, k and p, say ~, k and p, respeatively, be taken as 

... t. " " 
2. 1-rr. ... l - "'[•) \-'(' h1 

" 
~ ::: 1-\t•J 

and tp 
V\ 

"'" " " 'fo obtain k, p and }::: numerically, compute f\o, Mt')..J and 
... 1\ " " 

Peu from the data, then o ompute K[•1, kbl and t\r-;1 from 

equations {2), and substitute into (6). ~enerally, this 

method is favoured among the "ad hoc" methode when the aample 

mean and variance are large. 

The second "ad hoc" method is the method of the 

first two factorial moments and the propertion of zeroes. 

Let P
0 

be the propertion of zeroes, or the probability of 

obtaining the value zero. We shall obtain three simultaneous 

equations involving ln 

1<\t•J and Kt:t.J with their 

" koo, respectively, and 

)..."'- ""' the estimates, k 
' 

and 

PG, 1-\t:•l and Kt-.J. By replacing 1n P0 , 

" ... 
conaistent estimates ln P

0
, kt•l and 

solving for )\' k and p, we obtain 

"" and p, reapectively. That is 

k:l ... l =- \~p 't. ( {_+,) 

- \( ,-~- 1) 
The last of these equations is obtained from (12) in section 

3 .6, and the fil"St two, from The estimates "' "' p, k and 
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are then obtained from 

p ~ [ \ + (~:~) 
\( (1:1 

"- '1. {~ k[1..) "!:-::. - 1 \-( Ul ('),(\o) 

"' " p Kr.J { "' p 
" "' " ,. 

" From the data we ob tain }lr.-J, /Jt-.J and Po, and then, \\(>li \'( [1.] 

(2). 
\A """ ~ are obtained from The estima tes p, k and oan 

then be obtained .from (8)' (9) and ( 10). Equation (8) 

can be solved by an iterative trial and error process. The 

method of the first two factorial moments and the proportion 

o.t zeroes is generally favoured among the "ad hoc" methods 

when the sample mean and variance are moderate and the 

proportion of zeroes observed is large. 

The third "ad hoc" method is the method of the 

first two factorial moments and the ratio of the .first two 

frequencies. From 

and 

so that 

Solving (11) and the first two equations of (5), simult­

aneously .for \ 1 k and p, and replacing kul, \<r.,.:l and 
,.. " ,.. 1\ 

P/P1 by their consistent estimates \{u1, \-\cl.Jand Pc/P1 , 

respectively, we obtain the estimates p
1 

k and )\, ot p, 

k and ~ , respectively, as follows 

(8) 
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{ A. 

~= " 
and = "'[.,.'l l\t(l \1'3)) (,") 

" "' ) 
~f 

"' "' " 
kto p 

"' " PjP1 , P.r•J and tJc.,1 are computed from the data, then, k' t:.:s 

" and K[.;t.J are computed from (2). Equation ( 12) can be 

"" solved for p by an iterative trial and error procedure, 
"" , ...... 

and then k and A may be obtained from (13) and (14), 

respectively. This "ad hoc" method is favoured when the 

first two frequencies are relatively large. 

Kat ti and Gurland [ 3'=>] have computed tables of 

the efflciencies of the three "ad hoc" methode. The region 

of tabulation in all cases is 0.1 ~ À ~ 5.0, .1 .::: p ~ 1.0 

and 0.1 .::: k.::: 2.0 • The method of the first three factorial 

moments has generally poor efficiency. However, the other 

two methode have generally, high efficiency values, and one 

of them may be used (which one depends upon circumstances) 

without much loss of information. Since the Poisson v Pascal 

distribution rapidly approaches the Neyman Type · A distrib-

ution as k ~co and p ~ 0, only small values of k need 

be considered. For ~-~~ the Poisson v Pascal distribution 

approaches either the Pascal distribution or the Poisson 

distribution, so that only small values of ~ need be 

c onsidered• 

Katti and Gurland [ "3~] have fitted the Poisson 
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Pascal distribution to two sets of data from Beall and Reao1a 

[ 31 with the parameters estimated for the first set by the 

method of the first three factorial moments (l( 2
8 = 9.58), 

and for the second set, by the method of the first two fact­

orial moments and the zero frequency (jl 2
8 

= 6.88). For 

comparison purposes, the Neyœan Type A distribution was 

fitted to both the first set of data (~29 = 42.97) and 

the second set of data (~29 = 13.75). The Poisson v Pascal 

gives a relatively good fit. 

10.3 Maximum Likelihood !stimation 

The efficiencies of the second two "ad hoc" methode 

are high, still it is of value to be able to obtain the 

asymptotically efficient maximum likelihood estimates, 

especially if a simple enough procedure involving tables and 

auch can be developed. We shall now give the rather long 

" "' derivation of the maximum likelihood estimates, À , k and 
A. 

p, of À , k and p, respectively, of the Poisson Y Pascal 

distribution as found in Gurland and Shumway [17]. From 

section 3.6 we have that the Poisson v Pascal probabilities, 

p J 
x 

are given 

Px = 

where ~ > o, k > o, p > 0 and q - p 

ing ( 15) with respect to \ and p, 

~?x: (>:+•)it- VX+I 

0~ 
-

~ ~ 

(1~) 

= 1. By differentiat-

respectively, we have 

x Px. - Px. 
\~ 
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and 

The se 

(lb) 

and (n) 

where n x is the observed number or x values in a sample 

o:r size N, 
Mx.. = C.x:·H) p X+l 

<lC \-ip plt 
and 

(;,' - .:~ x Ji~._ 1 N 

Equations (16) and {17) reduce to 
Glt:l 

L ( p) - L .M~ Ml:. - N = 0 {\Q) 

and 

Now, we must obtain ~~x' so as to obtain the third maximum 

likelihood equation. Let g(z) and h{z) be the probability 

generating funetions (p.g.f.'s) of the Poisson V Pascal 

distributions, respective{y. Then \[{( ) J 
"'[ (\-pi:,- - 1] =è -1 

~ (:e) =- e -=- e 

and Pascal 

and lof~"') = - ').. ~ (-. )-{.(~) ~ ( 1;- ?"') 

Using Leibnitz 1 s formula we hav~ ( ') 

~-x. d~(:t) _ \ [f_ (:) ~ dc11 (., )-C• (t) (-.--r-1) 11 _t_ \x-· 
ci~]!; o ~ -r=o 6 -o ~l-P~ J 

-b ( ~) 1<'\tl-t(·-·~) .e,.(rr" ~ 
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P-x. 
1 (-x)(è)\ l2.l) 

Now, = -, 'l. ~ ~c 
"X. 

so that d ?x. = ~ ~ ~(~>(.,) l 
d~ ~~ x\ =è~() 

1 d'le ~ ~(:) \ \?.3) = -:d di! 
'X 

d~ 2;-:.o 

Also, if ïf'l' is the rth Pascal probability, 

1\1:' ' J.,. -{(~) l l2.~&.) --,..\ dZ~ :Z::.o 

Thus, substituting (21), (22) and (24) into (23) 1 

-:x:.-t lj,.. 'lt 
-:x:.-"' L 

d Px. = À L l-x-1:') . ô ,..à -x-.,. - r'\ ir -.::-"t- \ {ul 
we obtain [ \ 1 P.· li" i 0 k ] 

6-\ "t:::.t> d -:o 'T"'O 

Using equations {4) and (23) from sections 3.2 and 3 .6 

where 

The B x 
r are 

r = 1 (1) 8 

"X. "X-1'" 

B...- = L .,... 
\ 'lC-T ( ):-T)( ):-"t"+t) 

tabulated by Gurland and Shumway t '17] for 

and x= 2 (1) 9 • Equation (26) may be 

written in matrix notation 

b. 'l') 
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" ( ;: ··) s: 0 P, 
~ 

... 0 

= JYI~ 
p1. (la} 

N )\ (f- ~,) p"3 s~ B{ 

a--· 1 ••• e:-· 
pl'nl-1 

Now, let k be fixed, and differentiate L(p), given by 

( 18)' with respect to p, treating ).. as a funotion of p 

{this is valid because of (19)). Then 

p 1 = ~ \):(. __ ("1:+t) P:x:+\ ( \+-i?) + ")C ?x (~+,) + \ ~ 
;.. .Tp - co ~~'1. ~f "' ? 

and L''l( p) = aJ<~) • = L Jll, M. [{ + .. 1 - L\ M~ (i + ~ f )J hl'l) 

p ? J;:o { p p 
We are now equipped to obtain the maximum likelihood estimates, 

\." " " " , p and k. 
\"" 1\ 

First, obtain initial estimates ~ 1 , p1 and 

" k1 , from the method of the first three factorial moments. 
/' A 

Then calculate an improved estimate of p, say p2 , from 

Newton 1 s equation 

,... 
" Calculate an improved estimate, k2 , of k, from the matrix 

" estimate, ~2 , equation {28). Then, obtain an improved 

of 'À from ( 19)' whieh is 
' 

~" '" /-{~ " 1.. - fJ., P~ 

This procedure is repeated until no substantial change 

occurs in the estimates. 

Once the parameters À , k and p have been 

estimated, the expected frequencies may be computed by com-
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puting the probabilities Px using the recurrence relation 

(~~ in section 3.6. However, this has two drawbacks, already 

mentioned in conneotion with the Poisson v Binomial distrib-

ution. First, the formula is long and each probability de­

pends upon all the preoeding probabilities, and secondly, 

errors made in oomputing any one probability are carried 

along by the succeeding probabilities. Gurland and Shumway 

[~1] have developed a matrix procedure which shortens the 

labour. The probabilities Px, given by (15), may be 

rewritten as 1 

~, fcxJ 
"')('., 

where 
\ 

and f'.J.[xj 

where (kr)fx) = kr(kr+1) ••• 
\ 

that we may treat flt~)as the 

(kr+x-1). Now, (31) suggests 

xth tactorial moment of kr, 

where r is a Poisson random variable with parameter c:J... 

Consider equation 00 ( 31 ) , 
\ )" l4-) - ct ,. 1 \ 

?- c~J ::::. L-- ( -i"'") e <:!~. f-'t" • 
,.. .... 0 

"f ~ * i - d ,.( \ =- L L- $ (-x,i) ( ~.,.) e oJ.. ,.. • 

-r=; i~~ ~ i (L) ,j_ Tl 
= L I L S._r;(:.:\~)~ sc~)t) (t) e- d.. .,.\ 

.,. -:o 6'"'' i. =-1 

= i.. t__ S'" (x, i) Sfi \tH i \t bt) 

a::::' C:=l 

where S(j,i) are Stirling numbers of the second kind and a~e 

disoussed in Riordon [ b~] , and the S*(x,j) are defined 

by the expansion 
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~(x.)= ~(;( -r lJ .. · (X +x-\) 
;x, . 

~ z_ ~~(~)~)~ô 
·r=' 

The S*(x,j) can be shown, easily enough, to satisfy the 

recurrence relation 

S"'(x+'l~)= s~(~)i-') +"X- s~c-:t:)~) 
and so, a table may be constructed as in the case of the 

Stirling numbers of the tirst and second kinds. Now equations 

(30) and (32) may be written in matrix notation as 

where 

1\ 

p 

and 

where 

-

= 

P = B s~ k.$. 1\ = 8 A*'/\ 

(L) 
p, 
R 

P~ 

S (Ill) 0 

~ 0 ... 0 

() ~"1. • 

s• (,),) o 

s~c1.,1) ~-v(1. 1 1.) 

0 

s; S6 1 ') 'S ( 'l,'l-) . 
- ' • . 

s (.fVv\11) S Cv"' , .J.fV\) 

B, 0 0 

0 B'L. 

0 

-.:: 
Bx = Po J_ ~ 

~~ x.\ 

Now A~ = ~K~ has the triangular form 

( '3'1) 
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~ l 

À, 0 0 

A~ ~ Â: ..... 

À~ 
~~ A_ 

and is tabulated by Gurland and Shumway [~1]. Thus the 

probabilities Px may be obtained by determining the matrix 

P form (33). The matrix procedure offers a great improve-

ment in speed and accuracy over the use of the recurrence 

relation (l~ in section 3.6. 
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Chapter Eleven 

Confidence Intervals 

11.1 Introduction 

We now consdier the problem of obtaining confid-

ence intervals for the parameter ~ of the complete Poisson 

distribution. Since only a single parameter is involved, 

Fisher 1s concept of fiducial limits and Heyman 1 s concept of 

a confidence interval (although they differ basicly) may 

each be considered in terms of the other. Then, the term­

inology will be a convenient blending of that of both "schools". 

There are basicly two types of confidence intervals, non­

randomized and randomized. For the former, it is not possible 

to make "exact" statements as to the probability that the 

interval contains the parameter. For example, we may only 

say that the probability is at least 0.95 that the confid-

ence region contains the parameter. Randomized confidence 

intervals involve the performing of an aux111ary experiment 

using tables of random numbers and permit one to make "exact" 

probab111ty statements, auch as, the probability is 0.95 

that the confidence region contains the parameter. In this 

chapter we diseuse both types of confidence intervals. A 

brief section deals with the Poisson process and the special 

approach that may be used. We conclude the chapter with a 

short discussion of confidence intervals based on approximations. 
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11.2 Non-randomized Confidence Intervals 

Suppose that x is a single observation of a 

discrete random variable having parameter1ï, and that, on 

this basis, we desire a "confidence interval", denoted by, 

'(x)' su ch that, given O<E<1, 

p { 1ï ~ $;():) \x} "> \-€: 
h) 

We call 1 - E: the "confidence coefficient". Such a region, 

~(x), may be constructed, according to Neyman [ss], as 

follows. For each 1f , determine an "acceptance region11
, 

denoted by A(lr), as a subset of the sample space such that 

p t x .., A ( \l") \ 1r} > '-E: h > 

Then, let ~ (x) c onsist of th ose values and only th ose 

values ~ whose corresponding acceptance region A(T) con­

tains x. Then the so-constructed Ô(x) satisfies (1). 

For, let 1ro be the actual value of the parameter and x 0 , 

the observed value of the random variable. Tben 

p t -x. E- A ( 1io) l ïla} d. l-e:. 

But, by the definition of ( (x
0
), "1\cE:~(x0 ) if and only if 

x
0 

t A("lfo), so that 

Thus b (x0 ) satisfies (1 ). 

For the Poisson distribution, the parameter is 

ïf = À and the sample space consista of the non-negative 

integers. Given 1 - E: , for each À we consider acceptance 

regions A{À) as consisting of consecutive, non-negative 
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integers, x
1

, x
1
+1, ••• , x2 , auch that 

1 ~~- ).. "X Pf ""' A(>-) J "'" b_ e.- :~ "' ,_'" t 1l 

Now, x1 and x2 in (3) are not unique, so that re­

strictions upon them shall follow, and for each restriction, 

a different confidence interval shall result. 

The first restriction defines the familiar "central" 

confidence intervals considered by Gar.wood [~1] , Ricker [~1] 

and Pearson and Hartley [ '3;11 • They are often referred to 

as the "usual" or "standard" confidence intervals. Choose 

and such that x is the largest integer so that 
~~-\ -).~ -.::. 

2_ e t\. 6: §.. 
~;~ ~~ k 

and x2 is the smallest integer so that 
~ -'>-\. 'lt l" 

Le~~!:. 
'):: 'lC').+\ 'X~ 2. 

Garwood [ "31] constructs tables giving è 1 (x) = (À.
1 
(x), \

2
(x)), 

where À. 1 (x) and ~ 2(x) are the lower and upper limita, 

respectively, to the confidence interval for À , for x= 

9 (1) 50, using the fact that Poisson sums can be expressed 

as integrals over gamma and chi-square distributions. Thus, 

for the lower tail, we see from section 2.3 that, 

l_' e-). '6_,; ::. 
'1.-::;o ~~ 

se-tt_ x,-t clt - \- pl T ~ )\J 
( 'l,-t)! 

= 

where T is a gamma random variable with parameter x1 and 

is a chi-square random variable with 2x1 degrees 
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of freedom. For each given x1 , a value for ~ can be 

round from chi-square tables. A similar jreatment is used 

for the upper tail. Once the aceeptance regions are deter­

mined, the confidence regions are easily obtained. Ricker ['7] 

gives tables of confidence limite for 1 - ~ = 0.95 and 

0.99 and x= 0 (1) 50. The Poisson sums are obtained 

from tables given in Soper [lL] and Whitaker [~~1. For 

x > 50, Ricker [ 1.:. 7] suggests using the normal approximation 

to the Poisson distribution. Crow and Gardner L \9] have 

determined an accurate approximation to b 
1 

(x) by averaging 

the two large sample approximations, the normal approximation 

with continuity correction and the square root normal approx-

imation with continuity correction. Both these approx­

imations were e stablished in section 2.8. If "'u. and \l-
the upper and lower confidence limita, 

\.u_ l "' x + ..!. ir.,.l. ± l ±. g~ )..\.. J - e \ 2 r 

respectively, then 

(-x::!: \/"1.) + ~ 
8 

are 

where f~ is the upper 100Ej2 Yo point of the standard 

normal distribution. Central confidence intervals are, of 

course, non-randomized, and are larger than necessary to have 

the parameter oovered with probability at least 1 - E. 

The two tails each have probability lesa than E: /2 of con­

taining the parameter. 

A second restriction upon x1 and is due to 

Sterne [ l 'l-] • Let the acoeptance region, denoted by A2(}..), 

oonsist of the values x having the largest probabilities. 

Thus, for each À , the most probable value of x is a 
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member of A2(~), the second most probable value is also a 

member, and so on, until {3) is satisfied. The acceptance 

region A ()..) 
2 

is determined according to Crow and Gardner[lq], 

by proceeding continuously from small values to larger values 

of À , starting at À = 0, and altering x
1 

and x
2 

so as 

to maintain ( 3). Suppose that for )\ =À 
0

, the acceptance 

is x
1

, x
1
+1, ••• , x1+r = x2 • Then 

Yt+'l'" '-

I_ e- r.o ~~ ~ \-G 
X-=l:t X\ 

Now, because of the definition of Sterne 1s acceptance region, 

no probability sum of less than r+1 terme is as large as 

1 - ~ for ~ = À
0

• Because of the inequality {~) in 

section 2.3, no probability sum of less than r+1 terms is 

as large as 1 - & for ).. > ~0 • Thus, combining the se two 

statements, we have that the length of the acceptance cannot 

decrease with increasing ~. It is then desirable to keep 

the acceptance region at the same length, if possible, as ~ 

increases. Let \ be the value of \ that maximizes 

Then, the same length is maintained, if 

at "" =\ . 
Yt"llY,.+I 

possible, by sub­

It i e-)..~~ 
~~'Cl y:.'· 

drops to 1 - ~ before such a substitution is possible, the 

acceptance region must be enlarged to x1 , x1+1, ••• , x2+1. 

Once the acceptance regions A2(À) have been determined, the 

confidence regions, denoted by & 2 (x), are easily obtained. 
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A third type of confidence interval is due ta a 

slight modification of Sterne 1s acceptance region by Crow 

and Gardner [ 19]. If in the process of determining Sterne 1s 

acceptance region, we replace x
1 

by x2+1 at the value of ~ 

where f_" e- >. À"' 

')::'XI+I )C' 

first equals 1 - f: 
' 

different accpetance 
~ <::)_).., ")(. 
L- ..._ 1\ drops ta 

\ 
"J.-::. 'lC, 'le . 

instead of at ').. = \ , we obtain a 
l:', .. flt ... +\ 

region, which we denote by A3 (~). If 

1 - E: be fore the substitution is 

possible, the acceptance region is enlarged to x1 , x1+1, ••• , 

x
2
+1. The confidence regions obtained by this modification 

are denoted by ~ 
3 

(x) and have be en tabulated by Crow and 

Gardner [ \~ 1 for 1 - E. = o.Bo, 0.90, 0.95, 0.99 and 0.99 

and x= 0 (1) 300. 

Crow and Gardner [ 19 ] compare the confidence 

intervals ~ 1 (x), è 2(x) and ~ 
3

(x) by considering their 

lengths and respectively, and computing the 

relative percentage deviations 100(d1 - d3)/d1 and 

100(d1 - d
2

)/d
1 • The improvement of ( 

3
(x) over ~ 

1 
(x) 

is appreciable for small values of x and decreases as x 

increases. The relative improvement of b 
3

(x) over [ 
2

(x) 

is also appre~iable for small x. Of all non-randomized 

confidence intervals for À , b 2{x} and & 
3 

(x) have the 

shortest total lengths for a given confidence coefficient. 

In addition, ~ 3(x) has the advantage over ~ 2 (x), of having 



137 

the smallest upper confidence limita. However, all three 

ot ~ 1 (x), b'
2

(x) and ~3 (x) are at a disadvantage when one­

sided confidence intervals are desired. 

11.3 Randomized Confidence Intervals 

A shortcoming of the confidence intervals, ~ 2(x) 
and ~ 

3 
(x), is tliat there is no statement possible about 

the probabilities, first that the parameter lies below the 

lower confidence limit, and second, that the parameter lies 

above the upper confidence limit. When the statistician is 

interested in only one limit (suoh as the opper limit of the 

average number of defects on a manufactured item), this 

additional information is des,ired. Stevens [ 7 5" j introduces 

randomized confidence intervals as an interesting solution 

to the problem. 

Let X be a Poisson random variable having p.d.f. 

given by 

where À > o. Defi ne G(x, '}..) as 

(r(~·))\) -

Define the lower 

the solution for 

OCl 

L ~C-r)\) = 
1"'-=X. 

p 
0 

11m1t of \ , 

À of 

(ij) -x\ 

0() 

L e-" 'A,.. (S) 

1'\ 1"=--):. . 
denoted by '\

0
(x), as 

((.) 

where P0 is a given real number such that 0 < P
0 
~ 1 and 
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\ {0) is defined to be identioally zero. Similarly, define 
0 

the upper P limi t of À , denoted by \ 1 (x), as the 
1 

solution for ~ of / ( ') \ 0 l7l 
\.S :r+t, " = - ,, 

From (5) we have that 

Similarly, from ( 5) we have 

(e) 

~\ ('>-.) 6 G-(~+1)'\) -"' \ -r. e , ~ -n 
= 

à)\ - \ )C. 

From ( 6)' (7)' (8) and ( 9) we have s }..(~\ 
-aG(}..) J. \ -:: ~(> 

0 ~,(-y.\ 

and l -U)..) .l.).. =- 1- P, 
0 

and h ( ~) 
1 

supply limita to the parameter ~ , 

oorresponding to any pair of signifioanae levels, p and 
0 

P1 • Now, suppose that x is the observed value of the 

Poisson random variable, and let 

where z is any number belonging to the reatangular distrib­

ution and ohosen from a table of random numbers. We note that 

both x and z are uniquely determined if y is given. 

Let y
0 

= x 0 + z
0 

where x
0 

and z 0 , and so y 0 , are 

fixed. Then from simple probability concepts we have 

Pf ~ ~ ~o) - P( ~>Xo} + p l ~ ~ "·1 p i ;! ~ ~. J 
- G- { "'fo+ \) ). ) +- f ( l:o) ).. ) ( \- ~<)) 

~ 
=2;., G( M~+l) \) + ( \-=2-a) G ( Xo) \) 

( lo) 
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Di.t'ferentiate both aides with respect to ", and drop the 

zero suffixes on x and zo, so that 
0 

.{~(\) - ~ -R, (~ ') + (,-~) ~I)C=t) 
_)..\ ")(. 

).. -x:-\ 

(\-:t)é _l_ = ~-e + 
~ c --c.-t) l 

(u) 

For any given x, there exista an hz(À) .t'or each possible 

value of z. Thus to make hz(~) unique the .t'ollowing rule 

is employed. Perform the main experiment and obtain a value 

x of the Poisson random variable. Then, one, and only one 

selection is made, .t'rom a table of random numbers, of the 

value z. The unique distribution, hz(~), thus determined, 

is called "the fiducial distribution ofÀ "· The fiducial 

limita, obtained by integrating hz(À), always lie wholly 

wi thin the limi ts obtained for }. by the Ricker [ ~ 11 or 

Ga~wood [11 ] approach. Two useful properties are displayed 

by the resulting confidence limita: 1) Because of the 

continuous nature of the random variable y, probability 

statements may be made in terme of equalities rather than 

inequalities. 2) The probabilities, first, of the parameter 

lying below the lower fiducial limit, and second, of the 

parameter lying above the upper fiducial limit, are easily 

obtained. 

Suppose that À 
0 

and À 
0

' are the lower limita 

corresponding to the observed value x, and x+1, respect­

ively 1 obtained from Garwood [3\ ] , Ricker [ b1 ] or 

Pearson and Hartley [ 59J. We shall calculate the lower 

fiducial limit of Stevens' method by interpolating between 



the two consecutive values of y, that is, y= x and 

y= x+1. But first, we must obtain the functional relation­

ship between y and ~. For a lower limit, corresponding 

to any given, fixed probability P, we have 

p -: ~ (s (x-+ 1) ~) + ( \-~) (r (-x:) "') ( n.) 

so tha t d \) )f -\- ~? à\ 
d~ - ~~ ~ ~ 

- - p6:;\) + {. (~) _& - 0 

d%:-
(r~) 

Rearranging ( 13) we ob tain 
\ 

A~ p ( -.c .) ~) 
= - ~~+ xC\-=t) d~ {:& ('~) 

Since the equation (12) approaches G{x+1,~) • P, the 

equation appropriate to the value y = x+1 , as z approaches 

one, ~ is a continuous runction of z, although the 

derivative dÀ is discontinuous at integral values of y. 
dy 

{{ àl- ) ~\ 
Now ~'" ) ( rl'>-) t- (1s) w :::: ~%: ~ ~ d~ 

From ( 14) and (15) we obtain the following resulta, 

i~ \'è~o ""~ - x. ) 

~«..\ \ - 2.... - \ 
} d=è1- ~:. \ \a .ù\ and 

d.~ "2=-1 
-

Let \o5 be Stevens 1 lower tiduc 18.1 li mit. U sing Taylor' s 

series and either expanding about the point 

panding about z = 1 , we obtain 

z = 0 
' 

or ex-

\.la) 



or 

In summary, then, to caloulate Stevens' fiducial limits, 

proceed as follows. For the lower fiduoial limit, ~, 

ob tain .from sui table tables (Pearson and Hartley [ S9 ] ) 

( \~) 

the lower limits corresponding to the observed value o.f x, 

and also, x+1. Denote the se by \
0 

and \ 0
1 , respeotively. 

Obtain a value for z 

numbers. It z ~ 1/2, 

by re.ferring to a 

compute d>..l 
dz z=O 

table of random 

and 

from (16} and (17). Then compute \os from (19). If 

z > 1/2, compute "os from (20). The same basie procedure 

is used to obtain Stevens' upper fiduoial limits. Thus, 

Stevens' useful, randomized fiducial limite may be obtained 

.from existing tables of confidence intervals by a simple 

interpolation procedure. 

To conolude our treatment of randomized confidence 

intervals for the Poisson parameter we present the concept 

o.f the Neyman - shortest unbiased confidence interval as 

given in Blyth and Hutchinson [~ ]. Generally, a random 

subset A o.f the possible values of a parameter ~ is an 

"unbiased" confidence interval for ~ with confidence 
' 

coefficient 1 - E-
' 

if the following two conditions hold. 

P( \E A l\} :! \-€: TM\. (l.o) 

p { \ 1 
Ec Â \>,} L p [ "Ec Â 1 \ J t .jl \\ 



A 11 uniformly" Neyman - shortest confidence interval, A, 

is one which, in addition to satisfying (20) and {2l], · 

als o minimize s P( À 1 E A 1 ~ ) for all pairs \ ' and " • 

A process of randomization is needed for the construction 

of such confidence intervals when the random variable involved 

is discrete. 

Let X be the Poisson random variable with para­

meter ~ and let Y be a random variable having the rect­

angular distribution, such that X and Y are independent. 

Eudey [ 2. '3 J has shown that a uniformly meat powerful un-

biased test of ~~ ~ \ ~ \ iÇ 

14\: ).. -:/= "'* 
having significance level 1 - cJ... and based on a single 

observation X, is given by the acceptance region 

A ( )...,. ) = [ (r,~) 1 r.+ ~. !:. ""+d != -.,+ 'o',} 
where x 0 and x1 are integers and 0 ~ ~0 ~ 1, 0 ~~1 

More specifically the conditions (23) and (24) are 

(x,-'),,.) [Pt~.'-" ~ x,-1 l ~1- <!-] - :x. Pf x• "• \ 4} + "'' Pf x~x. \ '~-•} 
( l: 1- "Xo) Pl ")::: :Xo \ \.} 

( 4 _ ).,., ) ~f :x • .,>: f, x,-1 1 >-..1- oi] -Jr. P ["" •10 [ \.,.} h 1 P [x= "• h.} 
c~\- :(.,) Pt~=~\\ ~} 

(1.5) 



Eudey [L3] 's test is unique except for the way in which 

randomization is carried out. Blyth and Hutchinson [ ~ 1 
have tabulated Neyman - shortest unbiased confidence intervals 

for the Poisson parameter, À , for ~ = 0.95 and 0.99 and 
')C+~ - o.o1 Co.o1) C.\o( o.o'l.) c:~c( a,oS) t.oo (o.l) 10.0 

\O,c( O.'l.) 40·0 ( 0.5) 5S ,0 ( 1) 2.50 

using an ILLIAC digital computer. For given values of \~ 

and ~ , trial values of x 0 and 

(25) and (26) until both ~ 0 

interval [ 0, 1]. 

x
1 

were substituted into 

and '6 1 were in the 

Blyth and Hutchinson [ ~ ] , in comparing Stevens' 

fiduc ial li mit s wi th tho se based on Eude y [ '2 31 's re sul t s, 

show that Stevens' are shorter for 1.6 <x+ y~ 9.4 and 

longer elsewhere. However, it should be mentioned that 

shortness is not the only criterion of desirability for 

confidence intervals. 

11.4 The Poisson Process 

Often it is possible to interpret observations as 

resulting from the continuing Poisson prooess characterized 

by the parameter \ • In suoh a case, observations stating 

the number of events during a certain amount of observation, 

or, the amount of observation, T, required for a certain 

number of events, n, to occur, are possible. From experi-

mental designs based on this type of observation, confidence 

intervals and test of hypotheses, involving the parameter ~ , 

may be determined. 



In section 2.6 we have shown that 2 \T has a 

chi-square distribution with 2n degrees of freedom. Thus, 

given confidence coefficient 1 - ~~ numbers C and D may 

be round from chi-square tables so that 

Pt c.: ~ 2)... T ~ D J -= l- E: 

Thua ( C , .1L ) 
2"f 2T 

is a confidence interval for ~ having 

confidence coefficient 1 - '= • 

If two Poisson processes, characterized by ~· 
1 

and À 
2

, are to be compared by arriving at conclusions 

concerning the ratio o = ~2/À1 , a confidence interval 

for <S can be easily constructed. Let T1 and T2 be 

the amounts of observation required for 

to occur in the \ 1 - Poisson process and 

process, respectively. Then 2 )\. 1T1 and 

events 

- Poisson 

have both 

chi-square distributions with 2n1 and 2n2 degrees of 

freedom, respectively. Then the statistic 

'l. X 1t\ 1 _2._~-~-~-l.. -.::::. t1 M1. 

2 ""' 2. "" ~ T ... ..M, "'1 '"'l- ... 

F 

has the F distribution with degrees of free-

dom. Given confidence coefficeint, 1 - E, two numbers C 

and D may be round from tables of the F distribution 

auch that 

Th us 1"~-M' C ) is a confidence interval for 
"T\ JI/\).. 

having confidence coefficient 1 - ~. 



Birnbaum ( 4 ] shows that it two Poisson processes 

characterized by À 1 and "- 2 may be observed simultaneously, 

then a confidence interval for 0 =À 2/ )...1 can be obtained. 

Let and be the number of events occuring in the 

À1 - and À 2 - Poisson processes, respectively, during a 

fixed amount of observation. Let p be the probability 

that, starting at a certain "time" 
' 

the first event to 

occur will come from the ~1 - Poisson process. Clearly, 

then, p = )..., 
• Then 1 - p is the probability that 

)\, +\l 
the first event will come from the ~ 

2 
- Poisson process. 

We may treat the observations x1 and as the number of 

"successes" and "failures", respectively, of a binomial 

sample. Using any of the procedures developed for obtaining 

confidence intervals for the "proportion" parameter of a 

binomial distribution, we may obtain a confidence interval 

for p. If (C, D) is the confidence interval for p having 

confidence coefficient 1 - ~, then (D-1, C-1) is a 

confidence interval for 'X having confidence coefficient 1 - ~. 

11.5 Approximate Confidence Intervals 

In section 2.8 we showed that the statistic 

where the x1 , i = 1, 2, ••• , n are independant Poisson 

distributions each having parameter À , has an asymptotic 

normal distribution with mean \ and variance ~/n. This 

tact may be used to form an approximate confidence interval 



for ~ when n is large •. Let the desired confidence 

coefficient be 1 - é. Then, from standard normal tables, 

a real number ~"' can be found such that 

p { - ~" ~ ~- ~ ~ + ~'" } v.. \- ç:; 
i )...jp.. 

The resulting confidence interval for ~ is the asymptot-

ically shorte st 100 ( 1 - lé) io confidence interval. Let the 

upper and lower confidence limits for \ be ~u. and \~,. , 

respectively. Then 

~- ~ ( ~ + 2î) _'L 

+ -y:_ - 0 

and solving for \ gives 
1-. 

~ J Pi. d.=. 'i + ~ +--
~L 2_NI. 'L J'(\.,.. JV1. 

(1.1) ~\A 1 
We have also shown in section 2.8 that the statistic 21x 

has an asymptotic normal distribution with mean 2 ~and 
variance 1/n. Thus 

P(- ~· {: 2~ ( ~ -1î) fo ~--J ~ 1-~ 
Solving for the upper and lower confidence limita, \u. and 

respectively, we 

"~ l -
~L j 

have 

+ 

As we have already mentioned in section 11.2, Crow and 

Gardner [ \~ ] have averaged (27) and (28) to obtain a 

remarkably accurate approximation to the Garwood [ 'Jl] and 

Ricker [ fDJ ] confidence intervals, ~ 
1 
(x). When terms of 

order 1/n are neglected, both (27) and (28) simplify to 

~l.\] x. + ~L ~ 
a result commonly seen. 

- ----------- --------



11.6 Concluding Commenta 

The dirferent methods of obtaining confidence 

intervals discussed in this chapter are in the main based 

on a single observation of the Poisson random variable. 

However, because of the additivity property of the Poisson 

distribution, established in section 2.4, the sum of n 

independant Poisson random variables each having parameter 

À, is again a Poisson random variable, and has parameter 

n~. A random sample of aize n can be taken and a confidence 

interval obtained for n~. Thus a confidence interval for 

À is obtained based on n observations of the Poisson 

random variable. 

Most of .the distinctions made between the different 

confidence intervals discussed in this chapter are appreciable 

only for small samples. In the majority of cases, the normal 

approximate confidence intervals and the simple Garwood [31] 

and Ricker [b7] confidence intervals are satisfactory. 



Chapter Twelve 

Hypothesis Testing 

12.1 Introduction 

In this chapter we deal with the problem of 

hypothesis testing for the Poisson distribution. Goodness 

of fit and homogeneity tests are inTestigated. The Poisson 

distribution truncated at zero is briefly discussed. In 

continuation of our treatment of the Poisson process, a 

chapter is offered, and the simplicity of the methode in­

volved should be noted. The problems of hypothesis testing 

and combing tests when observations are from a discrete 

distribution are considered in.the final two chapters. 

12.2 Goodness of Fit Tests 

Suppose that the sample space of a Poisson random 

variable x is divided into a finite number r of mutually 

exclusive and exhaustive cells or classes 

Let P1 ' • • •' Pr where be the probabilities 

that an observation chosen at random falls in s 1 , s2 , ••• , Sr, 

respectively. Take a random sample of aize n from the 

population and let o1 , o2 , ••• , or be the number of 

observations falling in s1, s2, ••• ,sr, respectively, 
l' 

wo that ~ oi = n. We wish to test the null hypothesis 

H that the population has a Poisson distribution with known 
0 

parameter À • Then consider the quantity called "the chi-



square of the grouped sample" 

lL 2 = t_ ( 0~- .NI~·.) 1.. (1) 

..... \ .tYl. p, 

If the null hypothesis H 
0 

is true, · npi will be the ex-

pected number of observations falling in si, where i = 
be small, so that 

~ 2 is apparently a convenient measure of the deviation of 

the hypothetical Poisson distribution from the actual dis­

tribution of the population. Now, under the null hypothesis 

1' 2' ••• , r and the value of 1- 2 will 

H0 , the random variables ë1 , o2 , ••• ,or have a multi­

nomial distribution with parameters n and P1 , P2 , ••• , Pn_1 • 

Cramér [ \8] (P. 417- 419) proves that y_2 hasan 

asymptotic chi-square distribution with r-1 degrees of 

freedom. As n ->oe , the multinomial distribution approachea 

the multivariate normal, so that )L 2 , which can then be 

written as the sum of r-1 standard normal random variables, 

has a chi-square distribution. The most significant aspect 

of this result is that the limiting distribution of "X- 2 is 

independent of the original Poisson distribution, and only 

depends upon the number of cella r. Large values of y_ 2 

indicate a peor fit so that the critical region of the test 

is selected to be the "right-hand" tail of the chi-square 

distribution with r-1 degrees of freedom. When n is 

fairly large the chief source of discrepancy is that the 

exact distribution of y_ 2 is discontinuons whereas the 

approximating distribution is continuons. The standard 

correction for continuity may be applied. Since the random 



variable~ 2 has a finite range and its continuous approx­

imation, infinite range, there exists a tendenoy to over­

estimate the true probabilities near the end of the "right­

hand" tail. For i'inite n, the approximation is satisfaoto~y 

for most purposes if npi ~ 5 where i = 1, 2, ••• , r. 

It is desirable, if acouraoy is not forsaken, to have the 

oells eaoh as small as possible so that as little information 

as possible from the sample is lost. Cram~r [ l<a ] shows 

that under the null hypothesis the mean and variance 

of Y- 2 are Etf-~~ - T-\ 
(2) 

..,.. 

and Vt'tJ = 2(~-•) + ~ [ ~ i ('"3) 

Thus, if the number of observations n is so small as to 

rule out the application of the chi-square test some inform­

ation may be obtained from (2) and (3). The well- known 

resulte of this paragraph apply, of course, to any discrete 

hypothetioal distribution whether it is Poisson or not. 

Suppose that we now wish to test the null hypothesis 

H0 that a population has a Poisson distribution with unknown 

parameter. The chi-square test may be used to test the 

11 goodness of fit" of the Poisson distribution to a random 

sample taken from the population. The unknown parameter 

may be estimated by the manimum likelihood estimate, the 

sample mean x. Cram~r [ \8 J ·(P. 424 - 434) shows that 
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,.. 
where pi is pi with the parameter estimated by -x 1 has a 

chi-square distribution with r-2 degrees of freedom. Then 

a right - tail test based on lL2 may be used to test the 

goodne ss of fit. 

As Fisher [ '2. e J points out, JL. 2 , as a measure 

of discrepancy, may be inaccurate with x is small and the 

Poisson series short {that is, small r), since an indication 

of discrepancy may then come chiefly from frequencies with 

small expectation. Fisher [ 2.S J proposes a "generalized 

measure of deviation" ~ 

L = L 0~ -B-vt. ( 0~ ) 

i. -=-1 Hl ~· 

(5 J 

which he describes as "the logarithmic difference in likeli-

hood between the most likely Poisson series and the most 

likely theroetical series without restriction". The statistic 

-2L has an asymptotic chi-square distribution when the Poisson 

parameter is large. Cochran [ 12 J also investigates the 

statistic L and suggests that the likelihood approach is 

more appropriate than thé ~ 2 approach as a test criterion. 

We shall now present a test for deviation in the 

zero frequency. Section 12.4, dealing with the Poisson dis­

tribution truncated at zero, may be read along with this 

paragraph. Sometimes it happens when using a goodness of 

fit test, that the quanti ty f- 2 is significant bec a use the 

zero observation is over - represented. Thus, a method of 

examining whether or not the zero frequency is responsible 
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for the significant Y- 2 is of value. Let n , where 
x 

x= o, 1, 2, ••• , be the number of x values observed in a 

random sample of aize n taken from a population that is 

Poisson under the null hypothesis H
0

• Let n 1 = n - n
0

• 

Let ~2p be the total c~i-square quantity, that is 

--x.-2. p -= L ( .N\~- .M pC-x) \"1-
~-:::o .N\ pC'1.) 

where p{x) are the complete Poisson probabilities. Let 

~2T be the chi-square quantity for the Poisson distribution 

truncated at zero, that is 
oCl '2. 

.,_ L ( ..1'1\x.- .M' p'(")) '"K,.T = 
~:.\ ../'(\, r •ex.) 

where P' {x) are the truncated Poisson probabilities. 
2 by Define )L Z 

L.. 
~ l.p ~ 1.T ~~= 

Then X- 2 Z has a chi-square distribution with one degree of 

freedom and may be used to detect significant departures 

in the zero frequency. 

Similarly, a maximum likelihood ratio goodness of 

fit test may yield a significant value of L. Let LP 

be the total L, that is 

L P = t_ ..M.-r. ~ ( JI(\')(. ) 

l>= 0 ..N\. ~ ( 'L) 

and let LT be the "L value" for the Poisson distribution 

truncated at zero, that is 
co 

Define Lz by 
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Then -2Lz has an approximate chi-square distribution with 

one· degree of freedom, and may be used to test the zero 

frequency. Both the approaohes mentioned are only valid for 

large samples. 

An exact expression may be easily obtained for·the 

probability that a certain number, say n 0 , of the observ­

ations in the sample are "zero" observations. The problem 

is equivalent to a classioal occupancy problem where the 

zero observation corresponds to a oell being empty when 
00 

T = ~ n objecta are plaoed in n cella. The probability 
"J."'O X 

that n0 objecta or observations are zero observations •ay 

be determined 

= 
MT 

Thus, to detect both positive and negative departures of 

where r 1 
smallest 

and 

where o( 

Values of 

the expeoted we set up a oritical region 

c = f ""-•1 .Mo • o, '• >o ·· 0 TH a..wJ. .Mo• T,+•, .. ' 1 M-•,1 
is the largest positive integer and r 2 , the 

positive integer suoh that 
'1\-l 

2_ PJII\ 0 

c:::... ".J /1-
J.\o"'o 

M. 

L PM .. b. cl/,_ 
.A'Io-=- 1"1.+\ 

is the upper limit to the significance level. 

11 ror have been tabulated in Stevens [7b] and 
r! 



in Fisher and Yates [ 2.9 J so that the values of Pn 
0 

may be obtained with only a little computation. If n is 

large, the normal approximation may be used (see Weiss [~~J ). 
If T >> n, 

tribut ion 

p 
no 

may be approximated by the Poisson dis-

(see Feller [ 2s] (P. 94)), 

P ,..,-}.,...Hl.., 
.M.,. ~ = " 

- 'T/Nt 
where \::: n e • Th us Pn may be obtained from Poisson 

0 

Tables. 

12.3 Homogeneity Tests 

a) The Index of Dispersion Test 

Suppose that a random sample consiste o~ n 

observations x1 , x2 , ••• , xn from a Poisson population, 
M. 

and that T = ~ xi• We have seen in section 4.4 that T 
\=1 

is a sufficient statistic for the Poisson parameter. If T 

and n are fixed, the conditional random variables 

x 1 , x2 , ••• , xn may be treated as multinomial random 

variables each having probability 1/n, so that the condit-

ional probability of the observations is 

T~ (lb) 

= T/n = i. We would like to 

p {-x,)~'->"' ')-x- \ \).M} = 

We note that E { x1 1 T ; n 1 
test the null hypothesis H0 that each of the observations 

x1, x2 , ••• , Xn arise from the same Poisson population and 

not from a compound Poisson population. The chi-square test 

applied to the conditional observations yields the well-known 
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quantity I 

I= . (ï) 
v=t 

Cram;;r [lB] {P. 445 - 449> discusses the chi-square test 

as a test for the homogeneity of a number of samples, and in 

so doing, shows that I is approximately a chi-square random 

variable with n-1 degrees of freedom. Hoel [ 4-1 ] considera 

approximations for the first four moments of I and from his 

work it appears that the chi-square approximation is highly 

satisfactory for i ~ 5. For slightly smaller x the 

approximation is still fairly accurate for the Poisson dis­

trioution (but not for some other distributions such as 

the binomial distribution). Rao and Chakrava"Tti [ fcl5] have 

also investigated the chi-square approximation and conclude 

that it yields 0 good" resulte for x > 3 but that it "may 

be misleading" if i < 1. It should be noted that the 

numerator of I equals n times the sample variance and 

that under the null hypothesis H0 , the denominator is also 

an estimate of the variance of a Poisson distribution. 

Thus, in cases where the sample •s non-homogeneous and 

"over-dispersion" occurs, the quantity I will be large, 

so that a right tail test based on the chi-square -distribution 

1s possible. This test is sometimes called ''the variance 

test of homogeneity". If 1t so happens that exact probab­

ilities are desired, the expression ( b) may be used. 



b) The Likelihood Ratio Test 

Suppose that we wieh to test the null hypothesis 

H0 that each of the n observations comes from the same 

Poisson population having parame ter ~ against the al ter­

native hypothesis H1 that each of the n observations 

comes from different Poisson populations and having parameters 

~1' ~2 , ••• ,\n as in part a) of this section. Thus we 

wish to test 

The likelihood functions of the sample x1 , x2 , ••• , xn 

under H
0 

where 

and 

respectively, 

After the maximizing process we obtain the maximum likelihood 

" 
,. 

functions L(H0 ) and L(H1 ) of L(H0 ) and L(H1 ), resp-

ectively, to be _.,. T 
" (T/.~to) l ( ~o) - e 

"" 
M 

Tixd 
" -T -x, \'::ol 

and L(\.t,)= e TI X; 

~ -:::.\ ~l 

Thus the maximum likelihood ratio is 

(-r /.NI) 
T 
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M 

so that k 1\ = T ~\- T -&...M.- Lx, ~:x~ 
~::::. 1 

If T/n is large 1 -2 ln 1\. has an approximate chi-square 

distribution with n-1 degrees of freedom. Then 1 the 

maximum likelihood ratio test based on the statistic -2 ln À 

may be used to test H
0 

against H1 • The statistic s -2 ln 1\ 

and the index of dispersion I are asymptotically equivalent 

so that neither is preferable to the other when x is large. 

Uader H0 the expectation of a particular value x of the 

Poisson series x= 0, 1, 2, ••• is given by 

-'A "':r. """x. = ...NI. e -
:.::\ 

If the class expectations Dlx are small, Cochran [ I"L.] 

suggested that the statistic -2 ln 1\ is preferable to I. 

Also, when class expectations are small Fisher [~a] gives 

examples of samples 1llustrating the superiority of the 

statistic -2 ln A • Rao and Chakrava~ti [bs] , in a 

follow up of Fisher [2B 1 's work, come to the conclusion 

that for small samples and/or small x, then -2 ln f\ 
has advantages over the index of dispersion I. They remark 

that for small samples I "tends to be heavily grouped" so 

that the value of I having "a cumul>ative probability less 

than or equal ho 5% may aotually correspond to a much lower 

level of significance because of the gaps in I". Using 

-2 ln A 0 much closer percentages are obtained and consequent­

ly it has better chance of rejeeting the null hypothesis" • 
.M. 

A table gives values of L x12 sueh that all values ct 
'"'' 
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~ xi2 greater than or equal to the tabulated values are 
~ ..,., 
signiricant at lesa than or equal to 5%, for T = 3 (1) 10 

and n = 3 (1) 10 (10) 100. The actual cumulative probabil-

ities accompany each tabulated 
""' 
~ x 2 value and are ob­
;=-1 1 

tained using the exact probability expression ( b ). A 
"n 

similar table deals with the statistic L x ln x involved 
.... \ i 1 

in the likelihood test. 

c} Conditional Tests 

The basic approach of this sectiob was originated 

by Przyborowski and Wilenski [ (,'2.1 • We rirst consider Hoel [4!.] 's 

rollow up of their paper. Let x1 and 

rrom Poisson populations having means À1 

x2 be observations 

and ~ 2 , resp-

ectively. We wish to test the hypothesis 

\.\(): \~ ,.. -}\, 

\.\\ : \,_ 
'-. T 

'1\, 

where r is a speciried number. The probability 

x1 and x2 is given by 
- '>., -x, - \ .... '>.. --c.._ 

r h.)x ... ) - e ""' 
e '\,. 

";(, \ ~\ 

Put f = \1 + ~ 2' p = ~\ and m = x 1 ).., + )\'). 
may rewrite 

and the hypothesès (8) 

t\o: 

may be rewritten as 

p :: \ 

1-\\ : p > 
l+'l" 

+ x2. 

(e) 

or obtaining 

Then we 
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A diagram of the sample space follows. It should be noted 

that for e~ch diagonal line, m • x1 + x2 equals a positive 

integer. 
e 
1 

(, 

s 

o, "t. '3 q 't.·r s 
x, 

The probability p(x1 ,x
2

) given by (~) ean be looked on 

as the product of 

1) the chance 

two chances, namely, 
-p. J'M. 

yCJ'M If-A) =e 1:!:­
/'M.\ 

the probability that the point (x1 ,x
2

) falls on the line 

m = x1 + x2 

and the chance 2) 
X .JWI-XI 

.lW\\ p 1 (1-p) l•e>) 

x,\ (M\-X't\\ 

the probability that for a given m, the observed partition 

into x1 and m - x1 , occurs. ~ 

To test the hypotheses we seek a critical region~such that 

where ol is the significance level. However, because of 

the discreteness of x1 and x2 , no such region exista. 

If m and p are large, the binomial function ( 1o) can be 

approximated by a continuous normal function, and an~ -region 



160 

on each line m = x1 + x2 can be determined so that 

pt J:U ~ ~ [,,,,,) .... """0 x.u, w-11 {..Il. .N.. ~} = ol.. 

The totality of such ~-regions, determined for m = 0, 1, 2, ••• , 

constitutes a critical region C of size ~ , which is 

independent of f because the probability that a point 

(x1' x2) lies in the critical region is 
coQ 'Xt -M-X, ~ 

L -1-J. JIN\. L v't\ ~ p ( t~p) I__e-P-L~ e. -#:-\ = r:l. .J.. C :x:,\ (.M-x,)\ -
JM.:;.Q ..NIA. .,/M.\ ..J\'fl. :O.<) 

Among all the similar critical regions C that may be 

determined as outlined there exista a 1best 1 critical region 

in the Neyman - Pearson sense, for testing 

~o: p :;;: po 

H, : P = ~' 
if there exista a best eritical region on each diagonal line 

m = x1 + x2 • The best critical region on auch aline, if 

it exista, is a region satisfying 

f { ;x, Î po) f: ~ 

t(x,) p,) 
where f is the continuous normal function and k is a 

lll} 

constant determined so that the probability under H
0 

of 

a point (x1 ,x2 ) falling in the critical region is ~. 

Writing condition (1\} more explicitly and letting q1 = 

1 - p 1 

which may be altered to 
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2 

where c is a con~tant independant of x1 • Let xo be the 

value of x1 such that 

p f :x,> "):,j f ~ P·} =ct (rs) 

then { 12.) holds tor x1 > xo provided P1 > Po· Th us the 

region defined by { 13') is a 1best 1 critical region for 

alternative hypothe
1

ses of the form H
1 

: on the 

line m = x1 + x
2 
•. The totality of all such regions for 

m = o, 1, 2, ••• cbnstitutes a 1best' critical region A 

similar treatment applies to testing with alternative 

hypotheses of the form H
1 

: p
1 

< p
0

• Przyborowski and 

Wilenski [ G:.2. J deal wi th the special case where the null 

hypothesis is H0 :. r = 1 and so H
0 

: p = p
0 

= 1/2. 

They chose to work with the binomial function rather than 

approximate it by some continuous function. In t esting 
lio: f ~ ,f.t_ 

\-\\ : ~ -:f 1/l.. 

they determined a c~itical region c* as follows. For each 

m, m = o, 1, 2, ••• , let w(m,d) be all the sample points 

(x
1 

,x
2

) falling on the diagonal line m = x1 + x2 and 

satisfying x1 ~ k{m,~) and x1 ~ m - k{m,~) where k{m,~} 

is the largest 

The totality of regions w(m,ol.) 

auch that 

L r:J. --
'}... 

for m = o, 1, 2, ••• 

( 11.) 

constitutes a critical region of size less than or equal to ~ • 
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They state that the test "seems likely to be as efficient 

as any other alternative test in detecting departures in p 

from 1/2". A table gives the boundary values k(m,~} for 

m = 1 {1) 80 and ol. = 0.01, 0.05, 0.10 and 0.20. The 

power function of the test is given by 

and bas been computed by Przyborowski and Wilenski [. ~2.] tor 

r = 2 { 1 ) 15 ( 5 ) 50 and p = 0 • 0 ( 0.1 ) 0 • 5 wi th d... = 0. 1 0 ' 0. 05 • 

Boel [4~] points out that the approach of Przyborowski and 

Wilenski [ Co1.. J bas the disadvantage that special tables or 

charte are needed. Boel [4L] , besides using a continuous 

approximation for the binomial function, suggests a turther 

modification of Przyborowski and Wilenski [~~J . Be chooses 

x
0 

to be the integer whieh most nearly satisfies (1~}, 

rather than the smallest integer for wbieh the left side 

does not exeeed ot • Boel [ 41..] remarks that there are only 

two values of m, namely m = 3 and 9, for m ~ 30 for 

which the chi-square test and his modification of Przyborowski 

and Wilenski [ ID2 ] 's paper might yield different decisions. 

In conclusion, it seems that the conditional tests 

offer nothing that is of any great advantage, and so either 

the chi-square approaeh or the likelihood approach it to be 

preferred. 
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12.4 The Truncated Poisson Distribution 

The special case of truncation at zero will only 

be considered. From section 5.4 we have for c = 0 that 

the truncated Poisson probabilities are 

e-" "2 
p.,_(~;>..)o)=( -À) l 

\-e "X'., 

given by 

First, we derive an exact expression for the probability of 

the observed frequenoies. Let nx be the number of x 

values observed from the trunoated Poisson population. Let 

/'il = 1._ ..IV\ x. 
X-:1 

~ 

and T=- l_-xm~ 
):.:. t 

The eonditional probability of n r :~·}/T~~ n is 

p {-M.,~~} ... \JV\} = .M\ ... ~-• ( l~e-l<) -x\ TI M"J;.! 
~ .. , 

.M! 
-J\1\'>. \' e. (ISJ 

= n I'II:.J ("X~ t'~ ( t- e-). rY\ 
"1:"'"1 

given n is given by 

( \~) 

which may be obtained by noting that the probability gener­

ating funotion of a trunoated Poisson random variable is 

f e->- \x r x = i i"T>- <: )" = 

X:\ ( \- e.-).. ) "X ! 'X"' 1 ( \-ê}.) :X: l 

cO 

L P~(:t) ~lo) ~x. = 

so that the probability generating function of the random 

variable T is 



From expressions {15) and {16) we obtain the oonditional 

probability of n
1

, n2 , ••• given T and n to be 

Pt m., ... ,, ... \ T •"" 1 "" P{ ..,., -.,, .. ·I.N11 1 P~ TL.} 

..tn \ T! 
:::. 

~ {i,Jv\) IT .Nl~J (xl (''~ 
Il'\ 

= L (-1)1 (~) (N\-i )T 

d -:.c. ~ 
= 6.,/'(\oT 

where 

We note that due to the suffioienoy of the stat1st1c T 

{ see Tukey [ 81 ] ) , the expression for P( n1 , n2 , , 1 T ,n) 

1s independent of the parameter À.. The expression ( 17) 

may be used to compute cumulative probabilities. 

If we wish to perform a goodness of fit test on 

the data we may use either the chi-square statistic 
"" '2. Y-1. -= \ ( .M"l;.- .Ml,.) 

T L JIM. 
)C.: 1 le. 

or the likelihood ratio statistic ... 
l î : L JV\x ~ ( :x ) 

')(-: 1 x. 

where the expected frequenoies mx, x= 1, 2, ••• , are 

given by 

JVV'\ 1C. = !Y\ 



165 

and the parameter À is estimated, as we have seen in 

section 5.4, by the formula 

~ = 
l- e-f.. 

T 

Both 1.\ and -2lT have asymptotic chi-square distributions 

with m-1 degrees of freedom. As in section 12.3 there is 

little to choose between the two statistics îf..\ and -2 LT 

if the class frequencies 1\'h~ are large, while the likelihood 

ratio statistic is preferable if class frequencies are small. 

The "accuracy" of either statistic may be investiga~ed by 

compuùing cumulative probabilities using the expression {17). 

Rowever, as computations are lengthy, this is only practical 

for small samples. 

We would now like to consider the problem of testing 

the homogeneity of a random sample x1 , x2 , ••• , xn • The 

statistic in the truncated case that corresponds to the Poisson 

tindex of dispersion is M 

1 T = L ( :x;, - x: ji. ) l. 

~"'' "i*(l-1-).-i*) 

-* 1 )-. 1 where x = -- = • The statistic T has an asymptotic m 1 _ 9-X 

chi-square distribution with Jn-\ degrees of freedom. We 

shall now develop the likelihood ratio statistic. The 

likelihood function of the random sample . . . , X· n 

under the null hypothesis R0 of a homogeneous sample is 

L( ~o) "'T 

i;::. \ 
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maximizing 
)... 

L(H ) 
0 

T = --

satisfies the equation 

The likelihood function under H1 , the hypothesis of a 

non-homogeneous sample is m 

e.-).. ~ "'· "'• 
l ( ~h) : n-(-, --e--=-'~-,-)-x-.-l -

{a.\ 

The value of À i' i = 1, 2, ••• , n , maximizing L(H1 ) 

satisfies 

:::r. 

Thus, the likelihood ratio becomes 

1\T :. e:JVI )..( T ) M "T/ n~ e-)..; ~ \~' 
ÀM. .... , '>.~ 

The statistic -2 ~ 1\1 has an approxima te chi-square 

distribution with lVI.- 1 c!egrees of freedom. Thus both the 

statistics I, and -'l~ (\.T may be used to test the 

homogeneity of the sample. Aga in, the statistic - '2 ~ {\T 

is to be preferred to I, when class expectations are small. 

12.5 The Poisson Process 

Birnbaum [ 5 J offers solutions to certain 

problems in hypothesis testing when it is natural to conceive 

of the observations as originating from a ~-Poisson process. 

Let T be the amount of observation required for a specified 

number of events n to occur in a \-Poisson process. Then 

we have seen that 2 ~ T has a chi-square distribution with 

2n degrees of freedom. Thus we may test at significance 

level ..J.. , the hypotheses 
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where À 
0 

> 0 1 s a real number. A number ~ may be found 

from chi-square tables such that under the null hypothesis H0 

P { L \ 0 -~ ? ~ j -=- eX 

If the observed value of T exceeds r /2 Ào we re ject 

H
1 

: \. > ~0 • Otherwise we 

accept H • 
0 

in favour of 

A similar approach may be used to test H 
0 

• • 

Suppos·e that t wo Poisson p.rocesses characterized 

by À 
1 

and ~ 2 may be observed simultaneously. Let the 

amount of observation t be the same in both cases. From 

section 2.6 we have that the number of events observed in 

the respective processes x
1 

and x2 have Poisson distrib­

ution wi th parameters f 1 = )..1 t and f 2 = À.2 t, respect-

ively. Let 

We may think of x 
1 

as the number of "successes" observed 

in a series of n trials where a "success" refers to an event 

occuring from the À 
1
-Poisson process, so that the probabili ty 

of a "success" is 

p = (lB) 

1-\-0 

Thus, we may treat and as a sample from the binom-

ial distribution having parameters m = x
1 

+ x
2 

and p. We 

may test H0 : f" 1 = f 2 or \_ 1 =).. 2 against H
1 

: f" 1 ~ fA2 
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or ~ 1 '# ~2 by testing H0 : p = 1/2 against H1 : 

p # 1/2 beeause of (18). This may be done using any pro-

eedure for testing binomial parameters. For the sake of 

simplieity Birnbaum [ 5] 1 s detailed discussion of the test 

procedure and of the duration of the experiment is omitted. 

Suppose that two Poisson prooesses, oharaoterized 

by À 1 and 'A 
2 

are separated in spaee 

and T2 are the amounts qf observation 

n1 and n2 events, respeotively. Then 

have chi-square distributions with 2n1 

of freedom, respeotively, 

'1 \,1j / J= = 2M, 

or t ime and that T1 

required to observe 

2 "1 T1 and 2~2T2 
and 2n2 degrees 

hasan F- distribution with (2n1 , 2n2 ) degrees of freedom. 

We wish to test at signifieanoe level ~ , the hypotheses 

l-\o: \,-::. \,_ 

l·k \,-::J:.\'l. 

Under the null hypothesis H 
0 

we have 10 

that a real number ~ may be found from F - tables suoh that 

p { ""?. T, > ~1 =al. 
M. T._ 

If n2T1 _, eomputed from the observations, is greater than 
n1T2 

~ we reject Ho : \1 = ~2 in ravour or H1 • Otherwise we 

aeoept Ho• 

Wald [<al] has developed "the sequential probability 
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ratio test" for testing null hypotheses against one-sided 

alternatives. We will very briefly outline the testing pro­

cedure as applied to the ~ -Poisson process and given in 

Birnbaum [ S] • We wish to test at significance level <:;1(. 

hypotheses of the form 
t-\o : \-= \.o 

\-l, ~ \ = \.b + b. 

where ~ > 0 is a real number. Let the variable x be the 

number of events observed in the À -Poisson process, and the 

variable t, the corresponding amount of observation per­

formed. Observe the process only as long as the variables 

x and t satisfy the inequality 

b + st L :x:. '- o..+ st 
where o. = ~( ~) ~( ~~ ) 

'>..o+.Ô. 

b ~ ( \~~) ~ ( '>-.,o ) - \o -1- è, 

and s - ~ -e.. ( \. ) 
~o+Ô 

and ~ is the desired maximum probability of rejecting H
0 

when ~ ~ À
0

, and ~ is the desired maximum probability 

of rejecting H0 when À ~ \ 0 + /1. Then, observation of the 

process will be stopped if either x < b + st or x~ a + st. 

Ir stoppage is because of x~ a+ st, we reject H
0 

: 

\ =" in favour of H • Otherwise, we accept H0 • 
0 1 

12.6 Tests of Significance in Discrete Distributions 

In this section we deal with discrete probability 
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density functions in general. Let x be a discrete random 

variable having sample space x= o, 1, 2, ••• , k where k 

is a positive integer or ~ and probability density function 

p(xl~} where ~ is a single unknown parameter. We wish 

to test \-\o: \-:::- ~o 

1-\1 : ~ ') '>..o 

Let the desired significance level be ~ and let the 

critical region of the test be Ca t x \ x= O, 1, 2, ••• , cJ 

where c is the smallest value of x auch t hat 
~ L p(x\'>.~) L o{ 

The cumulative probabilities in (ICI) may be determined from 

special tables in the case of the Poisson or binomial distrib-

utions. If an observation of x is taken and the value 

belongs to C the null hypothesis H is rejected in favour 
0 

of H • 
1 

baoks. 

Although this test is simple it has several draw-

First, the aize of the test is less than the signif-

icanoe level. This means that the probability of rejecting 

the null hypothesis H 
0 

when it is true is smaller than the 

desired value d • Also, 1best 1 tests in the sense of Neyman 

and Pearson are not possible as no two regions can be found 

having exactly the same aize. 

To overoome these drawbacks Pearson [57] and 

Tocher [ 'ao ] propose the performing of an auxiliary experi-

ment. We present Tooher[eo) 's contribution here and 

Pearson (s1] 's, in section 12.7. In both cases the es sent-
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ial idea is that of adding "a continuous dimension" to 

the sample space of x which permits the application of 

the theory for continuous sample spaces. We wish to find 

a 1best 1 test for testing at s1gn1ficance level a(, the 

hypotheses 1--\o: \-=- )..o 

1-\, : \ = \, 

First, let the likelihood ratio 1\ of the value x be 
x 

and order the sample points such that 

1\1 ~ 1\.-a.. "'> ... 

('2.0) 

and such that if 1\ x = 1\ x+1 , then p(x 1 À 
0

} ~ p(x+1 1 ~ 
0
). 

If 1\ x = 1\ x+1 and p( x 1 À 
0

} = p( x+1 1 À 
0

} then, 

p(x 1 À 
1

} = p(x+1 lÀ 1 ) and the events x and -x+1 are 

equiyalent in a certain sense and so may be pooled together 

and considered to be a single event having probability 

2p(x 1 À } • 

Any set of numbers f •x 1 where 0 _! •x ~ 1 

and x = 1 , 2, ••• , k defines a test procedure _Q_ ( w ) x 

which rejects 

if the value 

H0 in favour of H
1 

with p~obability "x 

x is observed. Let r = L "x p(x l ~1). ,. ... 
" We desire a test procedure L2. ("x} auch that the set 

and 

satisfies the two conditions 
~ 

L~~ p(xl~o) 
~~l 

ft 

L ~~ r(~' ~,) 
'1:: l 
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" "X:-:. 'r&t ... r'Xo 

Def'ine l•x1 such that -x. 

" e al- L p(-x\~ .. ) 
Wx - = "')Co:. îC'.,+I 

'1"'' 
p Ct: .. + 1 1 '>-.. ) 

0 ;x ~ "X,.+ 1. 

where x
0 

is the value of' x 
Jfo 

L p(x\\.,) !:: o( 

satisf'ying 
Yotl 

L L p(x\ '>.to) 

fix p(x 1 \ ). Let 
:X:=-1 

We now show that 

so that 

):., 

:>. L ( 1-w,J ( 1\~- f\.,.,) \' ("" 1\.) ( -.) 
X=t :i 

4- L W-,. ( 1\ x:+\- f\x.) p{x: \À .. ) 

From. ( 2.1') we have that the right-hand side of' ( 2.4) 

" is a positive quantity, so that ~ ~ ~· The equality holds 

only if' 

'X-::. 'Xo+l. . . . {.: 
) ) 

and 

f 
\-Wx:. 

W"J. 

Theretore, equally powerful test procedures only differ 
Il. 

trom n { •x) in the w values assigned to the value 

{1.3) 

x= x 0 + 1. The test procedure is as follows. Take an 

observation, and 8all it xo. If xO " {x 1 x = o, 1, 2, •••• x~ 



reject H • 
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If xO = x 0 + 1 , perform the auxiliary ex-

periment by selecting a number between 0 and 1 from a 

table of random numbers, and call it z0 • If 
-x .. 

0 
d.. - L f (X 1 '>.o} 

~ f: e -= ___ ...:;;-x;_=-.;_• -----

P ( :Xo+l 1 \Cl) 

reject H
0 

in favour of H1 .* We also note that 

Pt (_ \ ~o} ~ ?;-W:~- p ( X\ \Cl) =. o{ 

Thus the test J:l(;x) has the following two points in 

its fayour : 

(lS} 

1) The probability of rejecting the null hypothesis H
0 

when it la true is known exactly and equals the desired 

'Value cJ... • 

2) 
A. 

The test _{]_ { wx) is a 1best' test in the sense of 

Neyman and Pearson. 

Toeher [eo] extends the concepts of Neyman and Pearson 

in testing to inelude unbiased test procedures and also, 

testing composite hypotheses. 

To counterbalance the advantages of the auxiliary 

random experiment there are two disadvantages : 

1} From the same experimental data different decisions 

as to the rejection or acceptance of the null hypothesis 

are possible. 

2} Onder certain experimental conditions computations may 

prove troublesome ( see Lancaster [4-b J). If the probability 

p( x
0 

+ 1 1 \
0

) is large, the number of observations of 

x 0 + 1 may be large; so that the auxiliary random experi-
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ment may have to be used repeatedly, thus it is possible 

that the effect of the auxiliary random experiment may be 

greater than the effect of the remainder of the experi­

mental data in the decision to reject or accept the null 

hypothesis. Lancaster [4~] offers an approach which 

avoids the se difficulties. Lancaster [ 4-t] selects the 

median probability 

?_ 

as test function. If x 0 is the observed value of x 

the rule of rejection is to reject H0 if 

~ (Xc.) L- d._ 

( 2. '-) 

When this rule is applied to the observation x 0 + 1 it 

is equivalent to a rule of rejection when e ~ 1/2' where 

9 is given by ( 45). The decision based on the rule ( '2, 7.) 

will always be the same for given 

experiemntal data. Lancaster [lib 1 
H and a given set of 

0 

considera the agree-

ment between the auxiliary random experiment and the median 

probability approach and concludes that there is 75 ~ 

agreement in marginal cases and 100~ agreement in all 

other cases. Both approaches may involve lengthy comput­

ations, however the median probability bas a "good approx­

imation" in the crude chi-square distribution as is shown 

in Lancaster ( 4~] • 
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12.7 The Combination ot Tests 

As conditions often differ from experiment to 

experiment it is desirable to have some method of combin­

ing a number of independant experimenta which have all 

been planned to test a common hypothesis. It continuous 

distributions are involved there is little difficulty; 

however, the matter is not so simple in the case of discrete 

distributions. We shalldeal with discrete distributions 

in general. 

Lancaster [ij7 ] mentions the need tor an adequate 

procedure for combining independant experimenta when the 

number of observations in any experiment is small and dis-

crete distributions are involved. 

It will be helpful to have in mind the procedure 

generally used in the eombination of tests involving a 

continuous distribution. Let x be a continuous random 

variable with probability density function p(x) defined 

as a positive quantity for a~ x~ b and zero elsewhere. 

Then a random variable y defined by 

~ : ) p ( .. ) d:x. 

has the uniform distribution in [o, 1]. Clearly, the 

random variable 1 - y is also uniformly distributed in 

[o, 1l. It is then easy to show that the random variables 

-2 ln y and -2 ln (1-y) each have chi-square distrib­

utions with 2 degrees of freedom. Also, if M is the 
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median of the distri~ution p{x)h defined suoh 

S p(-..)cl>t = Î pb:).!x = ~ 
o. j M 

that 

then the random variable y 1 defined by 

2 ~\c,.)h "'f,t\1 
o. 

2. c r(x) .h. 

is uniformly distributed in [o, 1], so that -2 ln y' 

has a chi-square distribution with 2 degrees of freedom. 

These resulta may be used to combine a number of independ­

ent tests as follows. Let xi be the oontinuous test 

statistic of the 1th e~periment where i = 1, 2, ••• , 1 

and let p{xi 1 H
0

) be its probability density funotion 

under a null hypothesis H0 , oommon to the 1 experimenta. 

Defi ne Yi and Yi' for i=1,2, . . . , 1 by 

~; - r<: p ( "'' 1 ~-) ch:. 
~· • 

and 
2. r· p (-,:; 1 ~) cl. .. , x· L. M· \ - .. 

( 

~· - ~~ . - r 2.. .. p ( xd H t>) J.x.: x~>M~ 
:lq 

where Mi is the median of the distribution given by 

p{xi H ) and ai and bi are related to xi as a 
0 

and b are related to x. Then the three statistios 

Q1 , ~~ ~ defined by 

~ 

Q,-=- - '2 L ~~: 
l=l 

~ 

Ql- =- 2 L ..e.. (1-~d 
~=\ 

) 
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and 

each have a chi-square distribution with 2R degrees of 

freedom. The statistics Q
1 

and Q
2 

are used in single-

tail tests while is used in two-tail tests. 

The question arises as to whether or not a 

similar procedure may be used for discontinuous distrib­

utions. D~vid and Johnson [~o] have partly answered 

the question. Let x be a discrete random variable 

taking on values 1' 2' ••• , k with probabilities p1, 
il. 

p2' ••• ,pk where k is .fini te or ~ and z Px = 1. 
~=-l 

. 
De fine vi and ui by ~ 

I_ V· - px. .. -
x: ... 1 

~-1 

and Ut ::. Lr~ + _E C.::l,l.l•" 1~ 
'):. .... l 1. 

Then we define the new random variables v and u as 

taking on values vi and ui, respectively, for i = 
1, 2, ••• ,k. It is easy to verity that 

and 

and also 

and 

and 

(~) 

(l.Cf) 



178 

and in particular 

It is interesting to examine these resulte and compare 

them with the continuous case. First, the random variable 

v is defined in an analogous manner to the continuous 

random variable y. However, the expectation of v is 

greater than 1/2, the expectation of y. The random 

variable u is defined as a slight modification of v, 

so as to have expectation equal to 1/2. The variance of 

u is slightly smaller than 1/12, the variance of y. 

As k ~DO the moments of u approach those of a random 

variable that is uniformly distributed in [ ~~ 1). David 

and Johnson [2o] numerically investigate the departure 

of u and v from rectangularity for x both a Poisson 

and a binomial random variable. The conclusion is that the 

assumption of rectangularity for u and v may be mis-
. 

leading. The minimum departure oocurs when all the pi 

values are equal. The random variable -2 ln ~ is anal-

ogous to the continuous random variable -2 ln y which 

has a chi-square distribution with 2 degrees of freedom. 

After some manipulation we obtain the r = 1, 2, 

- (-l)T i [ ~ ( \- X~l~- ~ ~ 1 ~-
••• 
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where d is an operator defined by ed = E and E is 

the shift operator defined on any funotion of n, f(n), 

suoh that E f(n) = f(n+1). The oumulants of -2 ln u 

may be obtained from (Jo), although the resulting express-

ions are rather long. As k _.,.oc 
positive direction for i • 1, 2, 

and 

. . . ' 
pi-~ 0 from the 

k the moments of 

-2 ln u tend to those of a random variable having a chi­

square distribution with 2 degrees of freedom. That is 

k.,. E 5 - 1. ~ u} .,. = 2..,... ,. ! 
{<.-'> .,_, ) p<-'>O t . 

The statistic -2 ln u is also considered by Lancaster [47] 

where it is denoted by ): t2 • The mean value of -2 ln v 
m 

on the assumption that v is uniformly distributed is 

denoted by )[ 2 m by Lancaster [ 47] and is given by 

r:,(- 2~v) .lv 1 (V;- v;.,) 

J 
where vi is the observed value of v. Acoording to 

Lancaster [ 47 J both Y: 2 m and ~ t2 m may be approxim­

ated by the chi-square distribution with 2 degrees of 

freedom. The statistic ~ 2m has mean equal to 2 and 

variance slightly less than 4. The quantities )[ 2m or 

~ •2m may be obtained for each of the 
2 experimenta and the sum of the Jé m 1s 

l independant 

e>r the JL 12 m ' s 

will have an approximate chi-square distribution with 2~ 

degrees of freedom. The statistic )L t2m is to be preferred 
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to JL- 2 be cause 1 t can be more easily evaluated. Both 
m r •2 m and Y- 2 m are superior to -2 ln v looked upon as 

a chi-square random variable. 

A radically different approach to the problem 

of combining independant experimenta follows from the work 

of Eudey [ '2."3] ~ Stevens [ lS] ~ Tocher [ so ] , and Pearson [57 J . 
The basic idee. is to add a continuous uniformly distributed 

random variable tot he discrete random variable, so that 

the sum will be a continuous random variable, and the 

procedure already outlined for continuous random variables, 

applicable. The idea has already been discussed in section 

11.3 and 12.6. Let x be a discrete random variable having 

probability density function p(x) where X = 1, 2 k , ••• J 

and k is finite or o0 • Let z be a eontinuous random 

variable uniformly distributed on [ 0, 1] and independant 

of x. Define a random variable y as in section 11.3 by 

~-=-X+:& 

We note that y is a continuous random variable. Now 

P{ ~ ~ ~oJ = ~1 1x LX 0 J + ~~ p(ro) 

; L pC"L) + ~,. ~ (x'l) 
X:= 1 

for any values x0 and z0 of x and z, respectively. 

Drop the zeroes on x0 and z0 and define y(x,z) by 
"1:-1 

~ C-rl~) = ?-. pC<i) -\- ~y c~) 
â ~\ 

Then y(x,z) is a continuous random variable and is unif~mly 

distributed on [ 0~ 1 ]. Then -2 ln y(x,z) is a chi-square 
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random variable having 2 degrees of freedom, so that a 

number of independant experimenta may be combined. It is 

interesting to note that the mean of -2 ln y(x,z) is 

is -v' t2 
/'-"' m• JL 2m and that the median of -2 ln y(x,z) 

Pearson [ 57] 

fixed x. 

and 

also provides the following resulta for 

El~ ~ -i.. ~ ~ (x>=)J ~ 2. 

vt ~ ~ -1.. ~ 'ôc-x,t=lJ z 4-

E\_ ~{-2~0C1C 1t)1 ~ ~~~~ 4 

vt ~ ~ -2 ..k1(x,;;)} L.. 4-

These are to be compared with 2 and 4, the mean and 

variance, respectively, of a random variable having the 

chi-square distribution with 2 degrees of freedom. 

We conclude this chapter with a brief comparison 

of the approaches offered by Lancaster [ lf-1) and Pearson 

[s7] . When small samples are involved there is some 

uncertainty as to just how accurate Lancaster [41] 1 s two 

statistics are. Tocher ( So] has shown that for a fixed 

~ignificance level the test based on y(x,z) is more power­

ful in the sense of Neyman and Pearson than any other test. 

Also the test procedure is as quick to carry out as that in­

velving ~ 12m' and much quicker than that of~ 2m• The 

main argument against the use of y(x,z) is that it seems 

difficult to have to make a decision to reject or accept a 

null hypothesis on the basis of an auxiliary random experi-

ment which is in a sense independant of the observations 
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of the random variable x. Either Lancaster [47] 1 s 

~ 12 m or Pearson [ 671 1 s -2 ln y( x ,z) may be used in 

combining a number of independent tests, depending upon 

the specifie nature of the tests, the accuracy desired, 

and the experimentera convictions regarding the use of the 

auxiliary random experiment. 



Chapter Thirteen 

Topics for Original Research 

The complete Poisson distribution has been 

thoroughly investigated, and excellent tables have been 

formed of probabilities, estimates and confidence intervals. 

There is still researoh to be done with the truncated and 

oensored Poisson distributions. 

The Poisson distribution trunoated on the right 

was disoussed in section 5.3 and it was noted that an 

unbiased estimate for the parameter ~ in this case does 

not exist. Now, for any 1nteger m < d where d is the 

trunoation point, we have that 
JWI ).. "X 

so that 

L-x e- ~ 
\ :::: "X"=o -x;\ 

-'l'Il-l L_ e_). "'-x 
-x.:o xl 

is an estimate for ~ , where Dx is the number of x 

values observed in a sample. An interesting aspeet of 

this estimate for "'- is that it is independetit of.the 

trunoation point d. By putting m = d we obtain 

Moore [51] 1 s estimate À M• If the trunoation point d 
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is known, the maximum likelihood estimate may be ob-

tained from Cohen [151 's tables. If d is unknown, the 

maximum likelihood estimate of d is 
A 

~ = ..JV\Ao..f'ol. f Je':~ :x:l) .. • ) :r ..... } 

where x1 , x2 , ••• , xn is a random sample of size n. 

" An investigation of d may be worthwhile. First, we 
" determine an expression for the probabilities of d 

lVI 

PP="} = L_( ~) \l"j <" V~-J 12,·,{ j "·: .. = "1--~"} 
"-= 1 

where 

Jtl ( <>1-\ À . l'Y\-~ -),. ~ ~ 

= ~ ( ~ ) f ~~~) ~ Fe(4): l 

( F ( .. ) r -( F(~-·) r 
( (:(c\))m 

F(ct) 
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" Since d is an estimate of d we are interested 
,... 

in the probability that d takes on the value d, that is 

We may note that 

~ pl~ =d1 = ~ [ \ - ( FCà-t) )MJ -
JV\_,.00 F-Cd) 

..«\-'> <A;) 

" thus d is a consistent estimate of d. The mean of d 

f'l\ m 
( F(cl )) -( f(cJ-\)) 

( F(<l) r" 

Thus d is an "under-estimate" of d having a negative 

bias. However, we have that 

~ E.tà} =cl 
-M-'>OQ 

" The variance of d after a little manipulation is found to be 
2. 

In summary of the case of truncation on the right, if both 

d and ~ are unknown, d may be estimated by d, and 

then ~ may be obtained from Cohen [\3] 1s tables. 

The Poisson distribution truncated on the left 
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'at c was discussed in section 5.4. If the truncation 

point c is known two simple estimates for ~ are 

Rider [b9] 's ÀR and the unbiased estimate given in 

Tate and Goen [ 77] , V c (x1 , x2 , ••• , xn). The maximum 

likelihood estimate of' À , À is the solution for \.. 

of equation (28) in section 5.4, that is 

i. :. )... ( 1- != (c-') J 
(\- F<d J 

However, tables are only available for the case where 

o = 0 ( see Cohen [ \4- 1 ) • Complete tables giving \ as 

a function of x for different values of c would be 

valuable. If the truncation point c 1s unknown c + 1 

may be estimated by the maximum likelihood estimate 

" 
( c. + t) =- JMiM. t'X:,) :r.,.) ... ) 1(-} 

where x1 , x2 '· ••• , x
0 

We shall now examine (c 

" of ( o + 1 )' are gi ven by 

is a random sample of size n. 
A.. 

+ 1) briefly. The probabilities 
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.rn 

\- F(~) 
-'t-').._ ol. 

+ e ' 
1- F(c.) (\-Rd)ot\ 

J'fi ln 

( 1 - F (J-I)) - ( \ - F ( <~.) ) 

( 1- F(c)) ~ 

1\ 

1- F(..t) 

\- F (c} 

The probability that the estimate (c + 1) takes on the 

value c + 1 is then given by 

( 
\- F(c+•) )JY\ 
1- F<c.) 

We may also note that 

~ P{ c~' = c.+,1 = ~ [ \ ( 1- FCc.t-t))"']-
../IA~ IR J Ji\-")~ \- f(,) 

-" 

We now obtain the mean of the estimate (c + 1) 

" 

'[ ~ [(H·c~-·l)'"-- ( ~-~<~ltJ 
( 1-F(c.}) 

o(. ":- C.+l ' 

1- F(~) 

1- F(c) 

so that (c + 1) is an "over-estimate" of c + 1 having a 

" positive bias. The variance of (c + 1) is f~und to be 
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aO 
1 

Once an estimate for c has been obtained, an estimate for 

~ may be obtained by the methods already discussed. 

In section 6.2 the censored Poisson distribution 

was discussed. Let nx be the number of x values ob­

served in a random sample of size n. Then if nx is known 

for all x ~ c and only the total number of observations 

is known for x > c M(&"l!'akami et al ['53] have constructed 

.1\o~t~ograms to facilitate determination of the maximum 

likelihood estima te of À • However, the se graphs are not 

very accurate, and tables would be more useful. Other 

cases of censoring, such as the case where nx is known 

for x ~ c and only the total number of observations is 

known for x< c, may be treated in a similar manner. 

The generalized Poisson distribution obtained by 

assuming that the parameter ~ o:f a Poisson distribution 

has the normal distribution truncated away from negative 

real numbers may be considered. If we impose the restrict-

ing condition that the mean and variance be equal, a 

relatively simple generalized distribution results. No 

details are given as it is not at all certain at this time 

that this idea is of practical value or not. If the idea 

is useful, there is of course, a large number of estimation 

and fitting problems to be considered. 
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