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ABSTRACT 

INTERPRETATION OF GRAVITY DATA DUE TO FAULTS AND DIKES 

BY 

BIJON SHARMA 

Formulas are given for the gravit y anomalies of several types 

of two-dimensional faults and dikes,such as a single fault cutting a series 

of beds, several parallel faults cutting a bed or a dikeinclined at an 

arbitrary angle to the vertical. 

Meth~ds of interpretation of the gravit y anomalies of·two­

dimensional structures based upon the first and the .second horizontal 

derivative of gravit y are discussed.Expressions are obtained showing the 

relationships between the parameters of the various two-dimensional str­

uctures and the position and amplitude of the second,derivative maximum 

and minimum. 

The Fourier transform formulas for the gravit y anomalies of 

the two-dimensional structures are derived. For small values of (.V ,the 

Fourier transforms give valuable information about the parameters of the 

structures.Under favorable conditions the amplitude spectrum of the Four­

ier transforms can give information about the depth as weIl as the incli­

nation of the anomalous mass. 

The validity of the new formulas and the suitability cf the 

new interpretation techniques are tested by compar.ing results obtained 

from field measurements with the known geology of the .structures. 
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LIST .OF Sn:œOLS AND VARIABLES 

The following'is a list of some of the important symbols 

and variables used in this thesis: 
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• z.l\H-l 

Universal gravitational constant. 
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Density contrast expressed in gm/cc. 

Density of a particular bed or formation 
expressed in gm/cc. 

Vertical dis pla cement of a fault. 

Vertica'l displacement of a fault. 
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respectively. 

Thickness of a bed. 

zi+l - zi· 

Thickness of a bed or the vertical extent of 
a dike. 

Dip of the fault plane or of a dike. 

Complement of the dip angle 

Half-width of a dike. 

Width of a dike. 

Half the horizontal distance between two parallel 
faults. 
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2 from the principal fault. 

The vertical component of the gravit y anomalies 
due to a single block, a fault cutting a single 
bed, a fault cutting a series of beds and a 
dike, respe"ctively. 
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1 

0id
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First horizontal derivative of f(x). 

Second horizontal derivative of f(x). 

The gradient or the first horizontal derivative 
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The first vertical derivative of the anomalies 
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dgs x- - g. dx s Similar expressions hold for Gf(x) 
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Second derivative of the gravit y anomaly due to 
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point where the second derivative is a minimum. 
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point where the second derivative is a maximum. 
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'frequency' • 

Fourier transform of the function f(x). 
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horizontal derivatives of f(x), respective~. 
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CHAPTER l 

INTRODUCTION 

In the gravitational method of prospecting, small lateral 

variation in the gravitational pull is measured on the earth's surface. 

The physical property of the subsurface material which produces the 

variation in the gravitational pull is small changes in density. Many 

geological structures produce appreciable variations in the gravit y 

field due to the density contrast between these materials and the 

surrounding medium. When the variation in the earth's gravitational pull 

is of sufficientlY large magnitude it is often possible to detect the 

presence of anomalous mass distribution from a knowledge of the 

variation of the field of gravity. 

Compared to the total attraction of the earth, the variation 

produced by the subsurface anomalous mass distribution is very small, 

and"very sophisticated instrumentation is necessary to detect such 

small differences in the gravitational field. The advent of very high 

sensitivity portable gravimeters around 1935 greatlY accelerated geo­

physical exploration by the gravit y method. 

Among the geologic structures favorable for exploration by 

the gravit y method are faults, dikes, synclines and anticlines. The 

density differences between these structures and the surrounding medium 

often produces appreciable variations in the earth's gravitational field. 

Depending upon the size and shape of the anomalo~s mass distribution, the 
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gravit y anomaly curve also shows wide variations; however, a general 

idea about the shape of the structure can often be obtained from the 

shape of the gravit y curve. 

In spite of the great value of gravit y in the search for oil 

and mineraIs, the interpretation of gravit y data is often primarily 

qualitative. The commonest method of interpreting the gravit y data 

is by assuming some simple shape for the causative body and then 

trying to match the observed anomaly with the calculated anomaly of 

the assumed structure. As an example, the gravit y anomaly produced by 

a geologic fault is often analyzed by matching the observed anomaly 

with the calculated anomaly due to a single step with a vertical edge. 

Interpretation based upon this simple model can give reliable inform­

ation only under the most favorable geologic conditions. Usually 

faults cut through a series of beds of different densities and thick­

nesses; replacirig the entire series of beds by a single bed of uniform 

density is a common simplif.ying assumption, but it is not always valid. 

Moreover, in the step model for a fault, we assume that the down-thrown 

side of the fault is at such a large depth that it has negligible 

effect on the gravit y observations; this also is an important assumption 

which is often not valid. 

Several authors have discussed the theoretical gravit y anomaly 

produced by faulted structures. Perhaps the best known of these is Shaw 

(1932) who discusses the gradient and curvature anomaly due to a 

single block terminated by a fault at an arbitrary angle. Other 

papers relating to gravit y anomaly by faults have also appeared before 
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as, for example, Hedstrom (1938), Barton (1938), Nettleton (1942), 

Hubbert (1948), and Romberg (1958). AlI of these papers have been 

very qualitative and are aIl based upon the simple model of a block 

ter.minated by a vertical or inclined fault. An interpreter faced with 

the problem of interpreting the gravit y anoma~ of a fault to extract 

the maximum information from his gravit y data often has to re~ upon 

the simpltfied models discussed above. 

An attempt is made in the present work to obtain more 

qua.ntitative information from gravit y data over two-dimensional 

faults and dikes. Expressions giving the gravit y anomalies of various 

kinds of two-dimensional faults and dikes are derived. The gravit y 

anoma~'of a fault cutting through a number of beds of different 

densities and thicknesses and the effect on the gravit y anoma~ of 

the down-thrown side of the fault is discussed. Interpretation 

techniques are discussed for obtaining quantitative information about 

the parameters of two-dimensional faults and dikes. 

The starting point for obtaining the gravitational attraction 

of two-dimensional structures discussed in this paper is a new formula 

giving the gravitational attraction of a single block terminated by a 

fault at an arbitrary angle. This formula, derived b.1 Geldart (1966), 

differs from other single block formulas, such as those given by Jung 

(1930) and Heiland (1946), in that the new formula is simpler and more 

readilY adaptable to obtaining formulas for other more complicated two­

dimensional structures. 



-4-

For interpreting the gravit y anomalies of two-dimensional 

faults and dikes, the methods of interpretation based upon the 

derivatives and the Fourier transform of the gravit y data are discussed. 

The use of the horizontal derivative or the gradient of the gravit y 

anomalY due to a single block truncated by a fault at an arbitrar,r 

angle is discussed by Shaw (1932). Rosenbach (1954) has successfu~ 

utilized the high resolving power of the second derivative to make a 

detailed stuqy of the Rhine graben in Europe. Romberg (1958), while 

emphasizing the high resolving and amplif.ying power of the second 

derivatives, has pointed out certain inherent weaknesses of the second 

derivative method of interpretation. FirstlY, according to Romberg, 

second derivatives are calculated from the differences between small 

variations in gravit y and hence are greatlY affected by small errors. 

SecondlY, the second derivatives of gravit y do not resemble the 

structure that caused them and no information about the size of the 

structure can be obtained from the second derivative profiles. In 

spite of these shortcomings, several authors have shown that second 

derivatives, when used in·conjunction with gravit y, can be a ver,y 

powerful tool in interpreting gravit y data. In the present work, 

expressions for the gradient and the second derivative of some two­

dimensional structures are derived and methods of interpreting the 

gravit y anomalies of these structures based upon the use of these 

derivatives are discussed. 

A second method of interpretation based upon the Fourier 

transformation of the raw gravit y data is also discussed. B.1 the 
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Fourier transformation, the gravit y anomaly is transformed from the 

originai distance domain into the frequency domain. If we. transform 

the data into the frequency domain and then carry out the interpretation, 

we obtain certain advantages; firstly~ in transfor.ming into the 

frequency domain, a new function is obtained which is easier to handle 

than the original function; secondly,. in finding the Fourier transforms 

all available gravit y data are used in the interpretation. 

Dean (1958) pointed out that electrical filter theory has 

considerable applications to the spectrum analysis of potential field 

data since many sampling operations, such as calculations of derivatives, 

also upward and downward continuation of fields, are exactly analogous 

to the filtering action of electrical network. Odegard and Berg (1965) 

made frequency analysis of several bodies of simple geometric shapes 

such as cylinder, sphere, single fault with a vertical edge, and have 

shown how the depth and size of the causative body may be obtained from 

. the frequency spectrum of the anomaly. In the present work, Fourier 

transform formulas are derived for a wide variety of geologic structures, 

such as a single block truncated by a fault at an arbitrary angle, 

faults cutting a series of beds having different densities and thick­

nesses, dikes, etc. Techniques are discussed for obtaining information 

about the parameters of the two-dimensional structures from the frequency 

spectrum of these anomalies •. 

To verity the validity of the new formulas and to investigate 

the usefulness of the interpretational techniques, several gravit y 

surveys were carried out over known faults and a dike. Since the 
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geology of the surveyed structures is fairly weIl known, the value of 

the new formulas andinterpretational techniques can be evaluated by 

comparing the results from our interpretation with the known geology 

of the structures. 
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CHAPTER II 

GRAVITY ANOMALIES OF FAULTS AND DlKES 

Gravit y Anomalies For Single Blocks 

General: The formula and curves for a single block will be discussed 

in some detail because these are fundamental in obtaining results for 

more complicated forms. In addition the results for a single block 

can be applied in studying faults with very large displacements and 

therefore have intrinsic value in fault interpretation. 

Discussion of the Formulas: The basic formulas are derived in Appendix 

A where it is shown that the vertical component of gravit y, gs' due 

to a horizontal semi-infinite block truncated by a plane dipping at an 

angle a is gi ven by 

. . . . . (1) 

. . . . . (l') 

G is the universal gravitational constant, p the density contrast, t 

the bed thickness, x the distance from the fault trace to the given 

point, and a the complement of the dip angle, a • 

where i = 1,2, is defined by the relations 

F. = 2Gp(lP..cotlP.. - log sinl/l.), 
J. J. J. J. 

The function F., 
~ 

tan 0i = tan a + x/zi ' 

Zi' z2 = depth to top and bottom of the block respective~. 
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Fïgure l shows the relationship between the vario1ls para-

meters. The distance x is positive when P is to the right of the 

fault trace; aIl angles are meas~edin the clockwise direction, a and 

0i being measured from the vertical, a and $i from the fault plane. 

Formula (1) holds when the block is to the right of the 

fault plane. When the block is to the left of the fault plane, the 

formula becomes 

Thus, 

values: 

, 
g + g = 2nGpt. s s 

..... (l"') 

It is shown in Appendix A that gs has the. following limiting 

g = ° when x = - 00 or when a = +n, s 

= 2nGpt when x = + 00 or when a = 0, 

= 2nGp( n-a)t when x = ° or when zl = + 00 • 

If aIl the dimensions in Figure lare multiplied by the factor 

k, the angles, ~ and $2' are preserved and consequent~ the factor 

(F2-FI ) remains the same. Therefore gs is increased by the factor k. 

This fact has been noted in several papers, but its full value has not 

been appreciated by most interpreters. It isinvaluable in deriving 

curves for various depths or thicknesses from a few standard curves, 
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also in reducing observed data to a standard thickness of bed or depth. 

The function, Fi' can be regarded as an even function of Wi 

(see Appendix A). Therefore the term (F2-Fl ) is unaltered when t/Jl and 

t/J2 both change signs. If g+ denotes the value of gs for given values 

of x and a while g_ is the value of gs corresponding to the vaiues of 

-x and - S, then 

hence 

Therefore the curves corresponding to negati ve values of a can be , 
obtained by reflecting the curve for gs in the axis of gs' as shown 

in Figure 2. The curves for block A and block B add up to give 2~Gpt 

at ever,y point, whereas the value for block B at x = + Xo is the same 

as the value for block C at x = -xo. The sum of the intercepts for 

block A and either block B or block C equals 2~Gpt. Because of this 

relation, curves are not required for negative values of S, that is, 

o 
oc. grea ter than 90 • 

Curves for single blocks: gs can be expressed in terms of three para­

meters: the dip, thickness and depth of the block. Figures 3-6 

illustrate the effects of var,ying each of. these parameters. In 

calculating the values for these curves, p was given the value unit Y 

and aIl dimensions expressed in units of 1,000 ft. This results in 

a value of 4.064 mg/l,OOO ft for 2Gp. Except for Figure 5, the curves 

are for blocks of unit thickness; this rather large thickness, together 
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with the large value of p, results in amomalies which are approximately 

an order of magnitude larger than those commonly encountered in field 

work, a fact which should be kept in mind in studying the curves. 

To simplify the discussion and labelling of the curves, the 

expression (zl' z2) will be used to designate specifie blocks; thus, 

(0.5, 1.B) refers to a block extending from a depth of 500 ft to a 

depth of l,BOO ft. This notation will be used later in an expanded 

form to designate faults as weIl. 

Figure 3 shows the effect of varying the dip. Curves are 

given for two blocks at different depths, the intermediate curves 

being omitted for the shallow block. 

The striking feature about the curves in Figure 3 is that 

aIl curves for a given depth are essentially identical in form. A 

tracing of any one of the curves, iftranslated parallel to the x-axis 

without rotation, ~an be made to coincide with any other curve for the 

same depth. Although the curves coincide within the accuracy of 

plotting, the agreement is probably not mathematically exact. Exact 

agreement requires the existence of' an equat.ion of the form 

where g (x,a) denotes that g is regarded as a function of x and a and s s 

the quantity h is inde pendent of x. 

If two faults having dip angles <J. and Cl2 intersect at the 

surface of the ground, the gravit y curves resulting from the faults 
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truncating a given bed will be separated as in Figure 3. Let h be the 

horizontal distance between corresponding points on the two curves. If 

one of the faults is displaced an amount h away from the other in the 

proper direction, the two curves will coincide, that is the value of 

gs at any point is the same for both faults. If a vertical section is 

now drawn as in Fïgure 4, it will be found that the two faults inter-

sect at a point 0 which is slight~ above the center line of the bed. 

Probab~ this relation is equivalent to thestatement that a point 0 

can be found such that the values of gs for the infinite~ long wedges, 

OAC and OBD, are approximate~ equal for every point on the surface. 

. The invariance of curve shape as the dip varies permi ts one 

to interpolate readi~ for the intermediate values of dip. Also, if 

the location of the surface trace of the fault is known, the dip could 

be found by comparing the observed curve with the curves in Figure 3 

(assuming p and tare lmown). 

Figure 5 illustrates the effect of varying the ~lock thickness. 

Results are given for two blocks, one having its upper surface coincid-

ing with the ground surface, the other having its upper surface at a 

depth of 4 units. For each block, curves are given for t = 0.25, 0.50, 

and 1.0 units. ·0 . 
The dip is 90 for aIl curves except the dotted curve 

corresponding to a = 150 which illustrates the translation of the 

curve resulting from the change in dip. 

The curves are asymptotic to the horizontal lines given by 

gs = 0 and gs = 2nGpt = 3.19, 6.3B, and 12.77 mg respective~ for the 
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FIG. 4. Geometrical relationship between equivalènt faults. 
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three sets of curves. The slopes of the curves at the origin depend 

upon both the depth and the thickness, except when zl = 0, when the 

slope is infinite iegardlessof the thickness (see Appendix A). 

The curves in Figure 6 show the manner in which gs changes 

as the depth, zl' varies when the dip is 9'00
• As t4e depth approache~ 

infinity, the curve approaches the horizontal straight line correspond-

ing to 

The curves for other values of dip can be visualized by mentally 

displacing the appropriate curve, to the" left for a less than 900
, 

to the right for a greater than 900
, the amount of the displacement 

depending upon a and the depth. For a given a and t, the intercept 

on the gs axis is 2Gp ( 'If-a)t. 0' and Olt are two such intercepts 

corresponding to a = 600 and a = 1200 respectively. 

The range of the anomaly, that is, the difference between the 

values of gs for x = ± 00, is often used to obtain the quantity (Pt). 

If P is known, t can be found in this way, after which the depth zl 

could be obtained by comparison with curves such as those in Figure 6. 

However, if t cannot be found, the ratio (t/zl ) can be determined from 

the slope of the gravit y curve. It is shown in Appendix A that the 

slope of the curye for gs at x = 0 is 

dgs 2 
dx = 2Gp sin a log(l + t/zl ). 

Eor a given block, the slope at x = 0 is a maximum when the dip is 900
• 
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If it were possible to rotate the fault plane, the gravit y curve would 

be displaced laterally without ~appreciable change in shape as a 

is varied. This would cause the origin to move along the curve, each 

point on the curve becoming the origin in its turn. The slope at the 

origin would reach i ts maximum. when a be~ame 900
; however, because the 

curve would not change shape, this maximumslope would be identical with 

the maximum. slope along the entire curve. Consequent~, regardless of 

the actual dip, the maximum. observed slope of the gravit y curve is 

equal to 2Gp log(l + t/zl ) from which the ratio (t/zl ) can be found 

if p is known. 

The curves in Figures 3-6 can be applied in the limiting case 

of a fault having infinite displacement provided the constant term 

equal to 2Gpdt due to the lower block (see Appendix A) is taken into 

account where necessary. 
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Gravit y Anoma~v Of A Fault Cutting A Single Bed 

Discussion of Formula: In Appendix B it is shown that the vertical 

component of gravit y due to the normal fault shown in Figure 7 is 

• • • • • (2) 

For the reverse fault represented by the cross-hatched beds in Figure 

7, the formula becomes 

• • • . • (2') 

, . 
When the anoma~ corresponding to gf or gf 1S obtained from 

field data, the constant term 2nGpt will be removed automatically, at 

least in large part, when the regional effect is removed. Therefore 

it will be dropped from these formulas also, except when theeffect 

of varying t is being considered. When this is done, the anomalies 

produced by a normal fault and the corresponding reverse fault differ 

on~ in algebraic signe 

If the signs of both S and x are changed in the expression for 

gf' the on~ effect is to change the sign of gf' hence curves are not 

required for negati ve values of 13. 

Figure B illustrates the general relationship between the 

geometry of the fault and the resulting anoma~ (for positive p). The 

negative anomaly is always over the downthrown side. For a normal 

fault the amplitude of the negative anoma~ is larger than that of the 

positive, the opposite being true for a reverse fault. The fault 
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curves presented in Figures 9-16 correspond to AB, that is, a normal 

fault with S positive (a between 00 and 900
), but curves for the other 

cases can be obtained from them readi~ with the aid of Figure S. 

The notation used to designate single blocks will be adapted 

to the description of faults. Thus, a fault is denoted by the 

expression (zl' z2' z3' z4); for example, the fault (l, 4, 3, 6) is a 

normal fault displacing a 3,000 ft bed from a depth of 1,000 ft to a 

depth of 3,000 ft (depths to the top of the bed). 

Curves for fault anomalies: The expression for gf can be written in 

terms of four parameters: the dip, fault displacement, bed thickness, 

and depth to the top of the upper block. The effects of var,ying 

these parameters are shown in Figures 9-16. In these curves p and t 

are equal to unit Y as before, except for t in Figures 13 and 14. 

Many of the properties of the curves in Figures 9-16 are 

weIl known in a qualitative sense, for example, the increase in 

amplitude and width of the anoma~ as the bed thickness and displacement 

are increased, the decrease in amplitude and increase in width of the 

anoma~ as the entire fault is moved downward. Less predictable, 

however, are the variations in amplitude and position of the anoma~ 

as the dip is varied, the remarkable similarity in slope of the curves 

for a given zl in the region between the fault trace and the minimum, 

the wide range of slopes of the curves at the origine 

Probab~ the most striking feature of the curves is the large 

effect resulting from changes in dip. The curves are symmetrical about 
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the origin for vertical dip; as A decreases from 900
, the negative 

anoma~ increases while the positive anomaly decreases and both move 

away from the origin. 

The fault curves can be used to illustrate the fundame.ntal 

ambiguity of gravit y interpretation. If overlays of the curves are 

made, it will be found that increasing zl by a small amount gives 

approximately the same result as changing the dip by the appropriate 

amount. Likewise, a small displacement of a thick bed can cause the 

same change as a large displacement of a thin bed provided the dips 

are chosen judicious~. Consequently, the geometry of a fault cannot 

be worked out from the gravit y data alone. 

In the majority of interpretive problems, the fault anoma~ 

cannot be isolated accurately, often as a result of the superposition 

of several effects. In addition, sub-surface data are usually non-

existent or at most very sketchy. Under circumstances such as these, 

it is folly as weIl as wasted effort to attempt to make a precise 

interpretation in terms of dip of the fault plane, bed thickness, and 

displacement. Nevertheless, the foregoing curves will be useful in 

defining the limiting values of the fault parameters and in analyzing 

the causes of changes in the anoma~ between adjacent profiles. 

Determination of the fault parameters: On certain auspicious occasions 

a well-isolated fault will occur in an area where regional effects can 

be accurately removed. Provided sufficient sub-surface information is 

available, the geometrical parameters of the fault can then be found 
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using the gravit y and geological data in conjunction with the fault 

curves. 

The problem can no doubt be solved in several ways. The 

method outlined here has the virtues of simplicity and as much accuracy 

as the nature of the problem warrants. It requires that the density 

contrast and thicImess be Imown for the bed producing the anomaly; the 

solution is then obtained from measured values of the amplitudes of the 

negative and maximum anomalies, go and gl' and the distancebetween them. 

When the dip is small, the gravit y maximum, gl' is small and the results 

become inaccurate. The method is usable· for a = 300
, but breaks down 

by the time a has decreased to 150
• However, other techniques probably 

would run into similar difficulties under the same circumstances. 

The ratio (go/gl) is ~.measure of the asymmetry of the fault 

curve and will be denoted by the letter A (the minus sign being dis­

regarded). For a vertical fault, A is of course equal to unity. 

Values of A have been computed for dips of 300 and 600 (a few values 

were computed for 150 dip also - see below) .L'or a series of faults with 

upper blocks (0,1), (0.5,1.5), •••• ,(4,5), and for lower blocks (0.5,1.5), 

(1,2), ••••••• (24,25). The results may be summarized as follows: 

(1) A decreases slowly as the displacement increases and as 

zl decreases, 

(2) A has a value between 2.6 and 3.0 for 600 dip, between 9 

and 14 for 300 dip, except under the following conditions: (a) zl = 0 -

in this case A is about 2.6 or 9 for small displacement and decreases to 

2.3 or 6 for a displacement of 24 units, (b) zl r 0, z3 ~ 10zl -- when 
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Z3 = 10zl' A haS the value 2.6 or 9 and decreases thereafter as the 

displacement increases until it reaches the value 2.3 or 6 when z3 = . 

50zr 

A less extended series of calculations for 150 dip gave 

values of A in the range 25-40, but the posi ti ve anomaly is so small 

for this dip that it is unlikely that meaningful results can be obtained 

when the dip is this small. 

Multiplying aIl the dimensions of a fault by a scale factor 

has no effect on A. Moreover, A is inde pendent of the density contrast, 

p. Consequently A must depend only upon the dip and the ratios z3/z1 

and t/zl • The result of varying these ratios over a wide range is 

relatively small, as shown above. Therefore, to the first approximation, 

A can be considered to be a function of dip only. Thus the dip can 

be found from the value of A on the basis of the above summar,y or by 

interpolation in Figure 17. If it is found later that Zl is 

approximately zero or that z3 is greater than 10z1, a second approximation 

could be made; however, this probably will rarely be justified. 

The principal limitation in finding the dip is the difficulty 

in finding a sufficiently accurate value of the maximum, gl. The 

accuracy with which the regional is removed will be critica1, particularly 

when the dip is less than 450
• Assuming that A is accurate with1n 10% 

CI 

for 600 dips and within 20% for 300 dips, it should be possible to 

determine the dip within approximately ± 100
• 

The next step after finding the dip is to locate the fau1t 
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trace. lhe abscissae of go and gl will be represented by Xo and xl 

(minus signs being ignored). The ratio B = XO/Xl was calculated for 

the srume series of faults that were used in calculating A. It was 

found that Bbehaves in much the srume way that A does. The results 

may be summarized as follows: 

(1) when,zl ~ 0.5, a ~ 300
, then.l.O ~ B ~ 1.1, 

(2) when zl = 0, and a = 600
, thenl.O ~ B ~ 1.2, 

(3) when zl = 0, o and 0(. = 30 , then 1.0 50 B ~ 1.3. 

Thus, to the first approximation, the fault trace can be taken aS.the 

point midway between the locations of the gravit y maximum and the 

gravi ty minimum. The riJaximum error resulting from this assumption is 

about 15%. 

Once the dip and the fault trace location are kn~wn, it is 

possible to find zl and z3 provided P and tare known. The . procedure 

is to multiply go' gl' xo' and xl by the appropriate conversion factor 

to convert them to values corresponding to a bed of unit density 

contrast and unit thickness (the conversion factor being l/p t where o 0 

Po and to are the actual values for the given bed), and then make 

use of the appropriate charts of Figures 18-23 to obtain zl and z3. 

Referring back to Figures II and 12, as the lower block is 

moved downward, the upper block being fixed, the minimum moves downward 

and to the left. The loci of the minimum gravit y value are plotted in 

Figures 18-21 for dips of 900
, 600

, 300
, and 150 (the latter curves 
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being principa1~ of academic tnterest) for blocks of unit thickness 

and a series of values of zl and z3. The curves sloping downward to 

the 1eft are obtained by keeping zl fixed and allowing z3 to vary. The 

curves sloping downward to the right correspond to z3 fixed and zl 

variable. For given values of zl and Zn, the minimum, g , and its 
-' 0 

abscissa, x , are fixed by the coordinates of the point of intersection o 

of the two curves specified by the values of zl and z3. Conversely, 

if go and Xo are given, zl and z3 are fixed by the parameters of the 

two curves intersecting at the .point (xo,go). 

The curves in Figures 22 and 23 are the loci of the maximum 

value, gl' for dips of 300 and 60
0 

(the curves for a = 750 are omitted 

because they have little practical value). These curves are not 

required normally; they are redundant because the data for the maximum 

have already been used to find A and Band, through them, the dip and 

xo. However, the curves may be useful in those instances where the 

ratio (z3/zl) is large or zl very small such that the quantities A and 

B lie outside the usual range of values. 

Calculation of curves: In spite of the large number of curves given in 

this paper for single beds and faults, occasions will arise where other 

curves, or perhaps more accurate curves, are required. If a large 

number of curves is required for a definite range of parameters, the 

obvious solution is to program Formula (2) for a digital computer. 

However, even if this is done, it may be necessary at times to obtain 

a sma11 number of curves for special values of the parameterJ. There-
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fore a rapid method of calculating gs or gf using a desk calculator 

is a vàluable adjunct to the interpretation techniques given earlier. 

The following methods have been used for this purpose. 

(a) Formula (1) was programmed for a computer for various 

values of the dip, zl' and t; fault anomalies were then found by 

subtracting the effects of the appropriate blocks. 

(b) A computer was used to calculate values of the function 

F(1/J), where 

F(1/J) = 2GP(1/J cot 1/J, - log sin 1/J), 

for 0 ~1/J~BO; to obtain gf' 1/Ji is calculated from the relations 

1/J. = 0. - (3, tan 0. = tan 13 + x/z., i = 1,2,3,4, 
J. J. J. J. 

the corresponding values of Fi obtained and substituted in Formula (2). 

(c) Isolated values of gs or gf can be found by using the 

results calculated in (a) or (b) above and then multiplying ail 

dimensions and gravit y values by a scale factor to give the required 
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Fault Cutting A Series Of Beds 

In the discussion of the gravit y anomalies of two-dimensional . 

fault above, it is assumed that the fault truncates a sin~le bed of· 

uniform density. However, a fault cutiing a single bed of unifor.m 

density is most unusual. More often, faults cut through a series of 

beds of different densities and thicknesses. If the.densities and 

thicknesses of the different beds var.y wide~ then the interpretation 

based on replacement of the series of beds by a single bed of unifor.m 

density may be quite inaccurate. 

To obtain the expression for the gravitational attraction of 

a fault truncating a series of beds, we refer to Figure 24 in which 

FF' is a normal fault cutting through N different beds of densities 0"1' 

02' 03 •••••••••• 0N· If H denotes the gravitational effect due to the 

part of the beds ~g to the right of the fault plane FF' and below 

the surface at depth zl' then from equation (1), after omitting the 

constant term, we have 

where a:!;' is the density of the material imm.ediate~ below the Nthbed 
, 

in the upthrown side, the functions ~ and Li for i = 1,2,3, .•.••. (N+l) 

are defined by the relations 
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, " , 
L. = 2G(W4 cot W. - log sin W.) 
~ .....~' ~ 

w. = 0. - S· tan 0. = tan 13 + ~ 
~ ~ 

, 
~ Z. 

~ 

, , , x W. = 0. 13; tan 0i = tan 13 + -, 
~ ~ z. 

~ 

Zi = zi + ô where ô is the vertical displacement of the 

fault. 
, 

Similarly, if we denote by H the gravit y effect of the part of the 

beds lying to the left of the fault plane and below the depth zl' then 

from equation (1), after omittingthe const,ant term, we get 

where cr is the density of the rocks immediatelY above the first bed o 

on the downthrown side of the fault plane. 

The observed gravit y anomaly due to the fault, ~, is given by 

The limiting values of the above functions when x is very large may 

be obtained following the same procedure as in the case of the single 
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As x becomes very large, W. approaches the value a or a-~ 
~ 

according as x is positive or negative. When x is positive and much . 

larger than zi' 

Hence 

and 

w· = 
~ 

a -
z . 
.:l:. 
x ' 

2 z. 
= a cot a + (a csc a - cot a).2-

x ' 

, 
Log(sin 1/J .jsin !/J.) 

~ ~ 

, 
L. - L. 
~ ~ 

= 2Ga (_J5.) 
. 2 x 

s~n a 

. 2 
~ = x cos a 

( sin I/Ii)~ - log , 
sin 1/1. 

~ 

(
z. -z ~ \ (Z ~ -z i \ ] 

a - cot a) ~x 7- ~x 7cot .:J 

. . . . . 

It can be shown, in a similar way, that for large negative 

values of x, the limi ting value of ~ is 
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Hence the total change in gravit y due to the fault is 

2nGô(0 -0 ) r 0 
. . • • • (3a) 

The last result shows that the total change in gravit y due to a fault 

truncating a series of beds is deter.mined by the density difference 

(0 -0 ), the displacement of the fault ô and is inde pendent of the dip 
~ 0 . 

of the fault plane a or the density of the inter.mediate beds. Knowing 

the density difference (or-oo)' the displacement of the fault can be 

obtained. This result is similar to the expression for the gravit y 

change due to a single block, that is, 2nGpt, this also being inde pend-

ent of the dip of the fault plane. 

In equation (2) for a fault truncating a single bed, it is 

assumed that o~ = 0
0 

so that 9m is zero for large positive and negative 

values of x. 

If the fault truncating the N beds has sufficient~ large 

displacement that on one ~ide of the fault plane we have N beds of 

different thicknesses and densities and on the other side of the fault 

plane a material of unifor.m density 0
0

, then th~ equation giving the 

gravit y anoma~ of such a fault may be written as 

Following the same line of argument as in the case of the single block, 

it can be shown that the limiting values of the above functionfor very 
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large positive and negative values of x ~ be written as 

respectively. 

where t i = zi+l - zi ; i = l, 2, 3, ...... N 

Hence the total change in gravit y is equal to 

Figure 25 shows the curves for the gravit y effect of a series 

of four beds truncated by a normal fault dipping 600
• In curve l aIl 

four'beds have the same density 2.5 gm/cc and the same thickness 0.5 

units while 0'0 and 0;r are both 2.0 gm/cc. This curve has a prominent 

maximum and minimum, the minimum having a slightly larger amplitude 

than the maximum. The effect of changing 0' trom 2.0 to 2.1 gm/cc but ,r . 

keeping ail the other variables, including 0' , the same· is shown in o 

curve II of the same Figure. This curve also has a prominent maximum 

and minimum but the amplitudes of the maximum and the minimum in this 

curve are larger compared to curve 1. In curve III, 01"' is changed to 

2.5 gm/cc while ail the other variables are kept the same as in curves 

l and II. The difference between curves l and lIon the one hand and 

curve Illon the other is striking, although the density distributions 

are the same except for O'r' The effect of giving lower density to one 
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of the intermediate beds is shown in curves IV and V of Figure 25. In 

curve IV aIl the beds have the same thickness (0.5 units), cro and cr
3 

are equal to 2.0 gm/cc while the densities of aIl the other beds are 

2.5 gm/cc. This curve also does not show any maximum. or minimum and 

the general shape of the curve is the same as curve II. In curve V,· 

cro and cr2 are equal to 2.0 gm/cc and the densities of aIl the other 

beds are 2.5 gm/cc. The general shape of curve V is ver,y similar to 

curve IV excepting that near the fault trace curve IV has a slightly 

larger amplitude than curve V. 
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Parallel Faults 

The faults encountered in gravit y prospecting are not always 

the simple case of displacement of rocks along a single plane. A 

major fault is often accompanied b.1 a number of secondary faults 

approximately parallel to the princ~pal fault trend. 

The gravit y anomaly of the principal fault and the associated 

secondary faults may be readily obtained when the principal and the 

secondary faults lie parallel to each other. In Figure 26 is shown 

the principal fault FI and the secondary fault F2 truncating a bed of 

density crI at an angle 13 with the vertical. Let 2h be the distance 

between the two faults and let ôl and ô2 be the displacements of the 

bed due to the two faults FI and F 2 as shown in Figure 26. To find 

the gravit y expression of the above fault we add together the express­

ions for the gravit y effects of individual blocks. In this way, we 

get 
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The total change in gravi ty dueto the parallel fault may 

be obtained following the same proce~ure as in the case of multiple 

beds. B.Y calculating the limiting values of each ter.m in the expression 

for gp it can be shown that for very large values of x in the positive 

and negative directions, the total change in gravit y due to the parallel 

fault is gi ven by 

Thus, the total change in gravit y due to the two parallel faults depends 

upon the density contrast (02-00) and is independent of the density of 

the bed itself. Also, the total change in gravit y is proportional to 

the total dis placement (ôl +ô2) of the two faults and does not d€pend upon 

the individual values of t\ and ô2• 

The four curves in Figure 27 show the gravit y anomalies of 

two parallel faults for different values of the parameters h, ôl and ô2• 
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In curve l of Figure 27 the displacement ô2 is zero and the displace­

ment ôl due to. the fault FI is equ.a.l to 0.6. This ·curve, in effect 

therefore, represents the gravit y anoma~ of a single fault FI. In 

curves II, III and IV the total displacement due to the two faults is 

kept fixed at 0.6 while the individual values of ôl and ô2 are ~raried. 

The difference between curve l and the remaining three curves is 

confined main~ to the region between the two fault traces, the differ­

ences between the four curves being ver.y small whenever x is greater 

than about 3(ôl +ô2). For large ôl the gravit y anoma~ in between the 

two parallel faults decreases (curve IV) compared to the case of the 

fault having small ôl (curve III). , 

The influence of parallel faults on the gravit y anomaly under 

slightly different geologic conditions may also be obtained by combining 

the effect of the gravit y anomalies of single blocks. Figure 23 could 

represent a major fault and two parallel secondar.y faults, the net 

effect of faulting being to bring basement rocks of density oB near to 

the surface. The beds of densities al and O2 could be due to deposition 

of sedimentar.y rocks during the period of faulting. The effect of the 

secondar.y faults in this case is to produce two step-like structures 

at distances Dl and D2 from the principal fault. Let zl' z2' z3 and z4 

represent the depths from the surface to the different gcologic horizons 

as shown in Figure 23. 

To find the combined effect of aIl the three faults on the 

gravit y profile, we first of aIl consider the principal fault. The 

effect of the upper block of thickness z2-zl and density contrast 
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Pl = crB-crl can be obtained from Formula (1) and is given by 

The functions LI and L2 are defined in the case of a fault cutting a 

series of beds. 

In order to find the superimposed effect of the second fault 

upon the principal fault we consider the gravit y anomalY of the block 

of thickness z3-z2 and density contrast Pl. The effect of this block, 

however, has to be displaced to the right by an amount Dl before adding 

to the effect of the principal fault, since the fault trace of the 

principal fault is at a distance Dl to theleft of the secondar,yfault. 

Hence, using Formula (1) the effect of this block, after displacing by 

Dl' is given by 

The functions G3 and G2 are similar to the functions Li in the case of a 

fault cutting a series of beds, excepting that in G2 and G
3 

the distance 

x is replaced by (x - Dl). The effect of the third fault can, similarlY, 

be obtained by finding the effect of the block of thickness z4-z3 and 

density contrast P2 = crB-cr2 and displacing it by an amount D2• From 

Formula (1), the effect of the third fault on the gravit y anomalY is 

given by 

The functions H4 and H3 are the same as the functions Li for the case 
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of a fault cutting a series of beds excepting that in H4 and H3 the 

distance x is replaced by (x-D2). 

The total observed gravit y anomaly on the surface of the earth is merely 

the sum of the effects of all the three faults and is given by 

where f l , f 2 and f3 are as defined previously. 

It can be shown that when x is positive and very large with respect to 
, 

Dl and D2 the limiting value of gp is given by 

, 
Similarly, for very large negative values of x the limiting value of g 

p 

is given by 

Hence the total change in gravit y due to the three faults is equal to 

Figure 29 shows three curves based upon equation (4). In 

curve (1) the parameters of the different geological horizons are as 

follows: 

zl = 25 ft , z2 = 325 ft , z3 = 925 ft z4 = , 

Dl = 1,500 ft D2 = '3,000 ft. , 

2325 ft. 

"B = 2.85 g;n/c.c., '(11 = 2.67 g;n/c.c., 'cr = 2.47 g;n/c.c. 2 
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Curve (1) resembles the curve over a single fault and does not indicate 

the presence of the secondar,y faults. The small variations in the 

gravit y anomaly could not be detected because the widths of the two 

steps Dl and D2 are much too small. The effect of the secondar.y 

faults, however, are clearly observed in curve (2) which corresponds to 

the same three parallel faults'as in curve (1) except that Dl' D2 and 

z2 have been increased to 2,000, 4,000 and 525 ft respectively. In curve 

(2) the effect of the'first step is more pronounced than the effect of 

the second step because the former is much shallower than the latter. 

In curve (3) the parameters of the three parallel faults are identical 

with those in curve (2) excepting that the thickness of the de'epest 

bed, t 3, has been increased from 1,400 to 1,800 ft. The effect of this 

increased thickness is to reduce the variations in gravit y near the 

faults compared with those of the thinner bed. 



• 
- 54 -

Gravit y Anomalv Of A Dike 

The expression for the vertical component of gravit y due to 

a single block may be used to calculate the gravit y effect of the dike 

ABCD shown in ·Figure ,30. The gravit y anomaly due to ABDC is obtained 

by subtracting the effect of the semi-infinite block CDEF from that of 

the semi-infinite block ABEF. 

If we measure the anomaly from the center of the dike, the 

expression for the gravit y anomaly of the dike may. be put in a slightly 

different manner. If g, (x) and g" (x) represent the gravit y anomalies 

of the blocks ABEF and CDEF when the anomaly is measured from the block 

traces 0' and Olt respectively, then the gravit y anomaly gd of the dike 

when measured from 0 is given by: 

Using equation (1) the function gd (x) is given by: 

where Fid = 2GP($id cot $id - log sin $id) 

x-x 
$id = 0id - a . tan 0id tan a + 0 = , z. 

J. 

1 , , , 
Fid = 2Gp(l/Iid cot $id - log sin $id) 

, , x+x . 0 , = eid - a . tan 0id = tan a + 
lJ.ïd 

, z. 
J. 

i = l, 2. 
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The limiting values of the function gd for ~rge positive and 

negative values of x may be obtained following the same procedure as in 

the case of a single block. For very large positive values of x, ~. 
~ 

approaches the value a, the inclination of the dike from the horizontal. 

For the first term within the bracket in equation ·(5), when (x - xo) is 

positive and much larger than zi' 

~i r!= a - z./(x - x ) 
~ 0 

tk. cot $. -;- a cot a + (a csc2a - cot a)z./(x - X ) 
~ ~ J; 0 

Log(sin ~2d/sin ~id) ..... {- t/(x - xo)} cot a 

Hence the limi ting value of the first term is 2Gp at • A similar analysis 

for the second term within the bracket for very large values of x in 

the positive direction also gives the limiting value of 2GPat. There-

fore as x becomes large, gd approaches zero. For very large negative 

values of x, the limiting values of each term within the bracket is zero 

hence the limiting value of the function gd is again zero. 

As x approaches zero, .the function gd does not reduce to a 

simple form for an arbitrary angle of inclination 8 of the dike. 

However, for a vertical dike (8 = 0) the expression at x = 0 reduces to 
. 2 2 

[
Z2 1 x zl 1 x x + Zl)~ gd = 4Gpx - tan- ....Q. - - tan- ....Q. - 1/2 log (~ 2 

o x z2 x zl + 
o 0 Xo z2 

when the vertical extent of a dike is much·greater than the width, the 
x 

small and tan -1 ....Q. is approximateJy equal to 
z2 

quantity xo/z2 is very 
Xo 
z • 

2 
Hence the expression for a vertical dike at x = 0 becomes 
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When the dike reaches the surface, zl = 0, tan-l(xo/Zl ) 

2 

~ 4Gpxo [1 + 1/2 10g(1 + ) ~ 
o 

Z2 
~ 4Gpx log(-) when 

o Xo 

When the depth of burial, zl' is much greater than xo' 

x -1 0 tan -
zl 

Zl -1 Xo 
- tan - = l, hence 
Xo zl 

• • • • • (5a) 

• • (5b) 

· . . • . (5c) 

• • • • • (5d) 

Figure 31 shows curves for four vertical dikes, one having a 

verticalextent of 5 units (the dashed curve) and the others a vertical 

extent of 2 units. Comparing the da shed curve with that for the dike 

extending from 0.01 to 2.01, we see that the increase in vertical extent 

increases the maximum value and broadens the anoma~ considerab~. 

Comparison of the curves for the dike with vertical extent 2 units shows 

that increasing the depth to the top from 0.01 to 0.1 unit has a small 

effect on the anoma~ while increasing the depth to 1.0 unit has a 

marked effect on the peak values. 

Figure 32 shows the effect of varying the width of a vertical 

dike from 0.03 unit to 1.0 unit, zl and z2 being kept fixed at 0.01 

and 4.01 units. The anoma~ for the dike of width 0.03 unit is very 

small; it has a small peak near the center of the dike and the anoma~ 
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decreases ver,y slow~ for distances greater than l unit on either side 

of the center of the dike. As the width of the dike increases, the 

anoma~ increases ver,y sharp~ and the horizontal gradient of the 

anoma~ at a given distance from the center of the dike is larger than 

for the thinner dikes. 

The curves in Figure· 33 sh~w the effect of var,ying the angle 

of inclination of a dike. The solid-line curves in Figure 33 are 

gravit y anomalies of dikes of width 0.05 unit and vertical extent 4.0 

units whose angles of inclination have been varied from 00 to BOO from 

the vertical. As the inclination changes from the vertical the curves 

become asynnnetrical about the center of the dike, the anoma~ decreasing 

more quick~ away from the direction of inclination of the dike than in 

the opposite direction. As the angle of inclination increases, the 

asynnnetr,y increases until, for an angle of inclination of 800
, the 

curve resembles the characteristic curve for a single block or a step. 

The effect of changing the width and depth of a dike inclined 

at 600 is shown by the dashed curve in Figure 33. As the width is 

increased from 0.05 to 0.2 unit, keeping ~l = O.l,S = 600
, the anoma~ 

increases from 0.33 to 1.35, a four-fold increase; however, the general 

shape of the two curves continues to be quite similar. For a dike inclined. 

at 600 the effect of increasing the depth to the top from 0.01 to 0.20 

unit can be seen by comparing the dashed curve with the dash-dot curve. 

It is interesting to note that the change in the anomaly resulting from 

the increase in depth is ver,y slight in the direction of inclination of 

the dike but is large in the opposite direction. 
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CHAPTER III 

DERIVATIVES OF THE GRAVITY ANOMALIES 

General: Since the expressions giving the gravit y anomalies of the two-

dimensional faults and dikes are functions of the space coordinates, x 

and z, these expressions can be differentiated with respect to x and z 

to give the two derivatives of the gravitational field. 

For two-dimensional bodies, the derivatives with respect to y 

is zero since the body is assumed to extend to infinity without change 

in the y-clirection. The derivative of the gravit y field with respect to 

the variable x is called the horizontal derivative of gravit y, or more 

common~ the gradient. The derivative with respect to z is known as 

the vertical gradient. 

The gradient of the gravitational field may be defined as the 

rate of change of the vertical component of gravit y in the horizontal 

direction. If gl and g2 represent the gravit y values at two points in 

the horizontal plane situated a distance ax apart, th en the horizontal 

derivative H is given by 

H = =!& 
Clx 

Since the gravitational field is conservative, the force of gravit y may 

be expressed as the negative gradient of a scalar potential function U, 

that is, 
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where gT is the total gravitational field. The vertical component of 

gravi ty is then 

ôU 
g = - ôz ; 

hence the horizontal derivatives of the vertical component of gravit y 

are given by 

..2,g = Uxz 
ôx 

= -ô2u 
ôxôz 

, . ô2u 
= - ôyôz 

As mentioned earlier, the horizontal gradient U is zero for , yz 

a two-dimensional body. 

The gradient was of fundamental importance in the older torsion 

balance technique since it is one of the two quantities direct~ measur-

able by the torsion balance. The other was the horizontal directive 

tendency (H.D.T.), or the differential curvature as it is called by some 

authors. The differential curvature gives a measure of the distortion 

of the equipotential surface due to the disturbing mass; it is equal to 

the difference between the reciprocals of the minimum and the maximum 

radii of curvature of the equipotential surface at a point multiplied 

by the value of gravit y at the same point. Thus, the differential 

curvature, R, is 

where p 2 and Pl are the maximum and minimum radii of curva ture of the 

equipotential surface. 

The quantities measured by the torsion balance are UA and 
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U.xy where 

U~ = 

U being the gravitational potential. It can be shown that 

2U 
U . = -R cos À, --M. = tan 2'-

â Uâ 

Differentiating the gradient with respect to x we obtain 

higher order horizontal derivatives. One of·· these higher order 

derivatives, the second horizontal derivative, isof particular import-

ance to us; it is denoted as 

Hxx: 
- _I.& = 

a.x;2 

Differentiation of the gravit y anoma~ function with respect 

to z gives the vertical derivatives of gravity •. In general, the vertical 

derivatives are distinct from the horizontal derivatives and have 

entire~ different properties. The first vertical derivative of gravit y 

or the vertical gradient as it is sometimes called, is defined as the 

rate of change in the vertical direction of the acceleration due to 

gravit y • If gl and g2 are the gravit y effects due to an anomalous 

body at two points, one of which is a distance âz vertical~ above the 

other, the vertical gradient of gravit y is defined as 

lim. vertical gradient = â z __ ~ 0 

In terms of the gravitational potential the vertical gradient of gravit y 

is given by 

= -!3r. 
(E2 
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Differentiating the above expression with respect to z, we 

obtain the higher order vertical derivatives. One commonlY used higher 

order vertical derivative is the second vertical derivative of gravit y 

obtained by differentiating the gravit y field twice with respect to z or 

by differentiating the expression for the gravitational potential three 

times with respect to z. The second vertical derivative of gravit y is 

denoted as 

Since the gravitational field satisfies Laplacets equation, we have for 

a two-dimensional body 

2 2 
~ + :z2 = O. 

Therefore, for a two-dimensional body the second horizontal derivative is 

identical with the second vertical derivative except for algebraic signe 

It is of interest to note that for a two-dimensional body (except for a 

change in the sign) the first vertical derivative is'identical with 

the differential curvature. This follows from the fact that the 

gravitational potential also satisfies Laplacets equation, hence 

Since the derivatives with respect to y are zero, the differential 

a2u 
curvature is merelY 2 • 

dx 

Thus, differential curvature 
__ a2u 

ax:2 
a~ 

= - az2 = 

. " .~. 
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The use of the derivatives of gravit y in the interpretation 

of gravit y maps have been discussed by several authors. A complete 

gravit y map of an area contains, in principle, all of the information 

needed to describe the gravit y field and aIl of its spatial derivatives. 

The calculation of the vertical derivatives of gravit y is ver,r useful 

if we want to emphasize the effect of small shallow structures at the 

expense of the larger and deeper structures. 

Consider the simple example of two identical spheres, one of 

which is located at a depth twice that of the other below the surf~ce 

of the earth. The gravit y anomaly due to one of the spheres is given 

by 

where 

g = G m& 
-? 

m is the mass of the sphere, 

z is the depth to the center of the sphere, 

x the horizontal distance of the point of observation 

from the point on the surface directly above the center 

of the sphere, and r 2 = x2 + z2. 

If we differentiate the expression for the gravit y anomaly with respect 

to z, we get the first and second vertical derivatives of gravit y, 

2 2 
= Gm (x - 2z ) 

r 5 

and 

The above expressions have the following maxima: 
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at x = 0 , 

a t x = + 2z . (l&) = 2Gm 
- 'az max 25 {5 z3 

at x =± 2 -z 
{3 

162 Il Gm 
= - 343 "'7 z4 

a a2 . 
Thus, the ma:x:imum values of g, .g. and ~ vary inversely as the second, 

third and fourth powers of the depth. 

The effect of taking the successive derivatives is, therefore, 

to accentuate greatly the effect of shallower structures compared to 

those at greater depths. This is ver,y useful in many situations in 

gravit y interpretation where it is found that the effect of small 

anomalies at shallow depths are completely masked by larger and deeper 

features. 

Another advantage of the derivatives of the anomaly, g, in 

comparison with g itself is that they have a higher resolving power, 

that is, they can distinguish between two masses much closer together 

than can gravity. Elkins and Hammer (1938) have given an analytical 

treatment to the problem of resolving buried masses by gravit y and its 

derivatives. We will follow their approach to show "for the case of a 

sphere the superior resolving power of the derivatives of gravit y over 

gravity. 

Let the effect (gravit y or its derivatives) of each one of 

the two identical spherical bodies land 2 (Figure 34) be denoted by 

~(x). Since the body 2 is situated at a distance~a to the right of the 
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origin i ts effect will be represented by ~(x - a) and similar~ the 

effect of the otherbody l will be represented by ~(x + a). The anomaly 

observed at the surface is the combined effect of the two bodies, that 

is, l/J(x) = ~(x + a) + ~(x - a). Assuming that ~(x + a) and <l>(x - a) 

are analytical in the neighborhood of the point x = a, then the derivat-

ives of each of these functions with respect to x may be expanded in a 

Taylorfs series. Writing f(x) = dW(x), we obtain 
dx 

. 2-2 
f(x + a) = f(a) + xff(a) + ~ flt(a)" + 6" f"'(a) + .... 

x2 -2 f(x - a) = - f(a - x) = - f(a) + xf' (a) - T f'I'(a) + 7: fIt '(a) + ... 

The relationship between the first two e~ressions in the last line 

follows from the synnnetry of w(x). 

l/J'(x) = f(x + a) + f(x - a) 

= 2 xf'(a) + ~ f"'(a) + 

The curve l/J(x) reaches the resolution limit when a depression just 

begins to form on the graph of l/J(x) at the ori~ (Figure 34). Ge ometric-

al~, this condition is satisfied when a triple tangent occurs to the 

graph of l/JCx) at x = 0 or l/J' (x) . has roots x = 0 three times. This 

condition will be satisfied if f'Ca) = O. Hence the condition on 

the parameters for the limiting case of resolution is f'Ca) = 0 or 

<l>n(a) = O. 

Thus in order to find the required condition on the parameters, 

we should find the second derivative of the function <l>Cx) and then equate 
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it to zero at x = a. In Figure 34 are shown two identical spheres 

situated at a distance '2a' apart. We wish to find the minimum. distance 

'2a' between the two spheres at which the combined effect of the two 

spheres gives the indication of the presence of two separate masses. 

The vertical component of gravit y due to a sphere is given by 

Taking ~(x) = g and differentiating twice gives 

Substituting x = a and equating the expression to zero, we have a/z = 

± 1/2. Hence the minimum distance at which they can be' resolved by 

gravit y is 

2a = z 

In order to find the resolving,powerby the second vertical derivative 

_ 3.Gmz:(2z2 - 3x2 ) we have the function ~(~) - Differentiating this r:7 . 
equation twice with respect to x and then equating it to zero at x = a, 

we obtain the result 2a/z = 0.64. Thus we see that the second vertical 

derivative has a higher resolving power than gravit y itself. 
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The Horizontal Derivative Of Gravit y Due To A Single Block 

The expression for the horizontal derivative of gravit y due 

to a single block is derived in Appendix A, the result being 

• • • • • (6) 

Figure 35 shows the plot of the horizontal derivative of 

gravit y due to a normal fault dipping at 300 and cutting a horizontal 

bed with upper and lower surfaces at depthsof 1.0 and 2.0 units. This 

curve was obtained from the gravit y profile by taking the difference 

between two gravit y values at two closely spaced. points along the 

profile and dividing the difference by the distance between the two 

points. The gradient curve of. Figure 35 attains its maximum value 

vertically above the inclined face of the block. To locate the maximum, 

we differentiate the expression for the gradient with respect to x and 

then equate the result to zero. Writing xm for the value of x 

corresponding to the maximum gradient, we find 

hence 

Therefore, e = e or e 2 1 2 

Since tan e = tanS + 2S. 
i z. 

l. 
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we must have x = 0 if 01 = 02; this value of x gives g for 

~ (&gS) but the limit of the indeterminate ratio is not zero. Thus, 
dX dX 

for a maximum we must have 

02 = - 01' that is, tan 02 = - tan 01 

hence, ( tan/3 + Xm) = -(tan/3 + ~) 
z2 . zl 

or 

The maximum gradient is located at a point in between Q and Q' 

in Figure 35 since the coordinates of Q andQ' are (-zl tanS) and 

(-Z2 tan/3) respectivelY, and 

We therefore conclude that no matter what the inclination of the fault 

may be, a vertical hole drilled at the point of the maximum gradient 

of gravit y will always intersect the faulted face of the bed. 

It is shawn in Appendix A that the gradient for a single block 

at x = 0 is given by 

For a given block the gradient at x = 0 is a maxim~ when the block is 

vertical (/3 = 0). As the dip of the fault plane is changed, the gravit y 

curve is displaced laterally without any appreciable change in the 

shape. A method has been discussed earlier for finding the dip of the 
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fault plane of such a block by comparing the observed curve with the 

given theoretical curves, provided the location of the fault trace on 

the surface of the earth is known. 

If an approximate position of the fault trace is known, the 

following procedure may be adopted to find a rough value of the dip 

of the fault plane. The gradient over a single block is given by 

dgs 2 
dx = cos a 

Multiplying both sides of the above equation by x "and transferring the 

first term on the right side to the left of the equation, we have 

Since x cos2a (F2-Fl ) is equal to the gravit y anomalY of the block, the 

above equation becomes 

If we denote the left side of the above equation by Gs(x), a new 

function of x, we can obtain the value of the new function at any point 

along the profile by multip~g the gradient at the point by the 

distance from the fault trace, th en subtracting the value of gravit y at 

that point. The limiting value of Gs(x) at certain points on the x-axis 

may be used to obtain information about the dip of the block. 

We have, since I/J i = e i - a, 
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As x --~ 0, 01 and 02 both approach S so that 

lim 0 GS(X) = 0 x --~ . 

As x --~ + 00, 01 and 02 both approach 1T/2 so that 

lim G (x) = -1TI"'~t + 21"'-A13t = 21"'-At(13-1T/2) = _21"'..Aat. x __ :- 00 s UJoI UJoI UJoI UJoI 

As x --~ - 00, 01 and 02 both approach -1T/2 so that 

lim G (x) - 1TGpt + 2GpSt = 2Gpt(13+rr/2) = 2Gp(1T-a)t 
x--~ -00 s -

Besides the origin, there is a second point where Gs(x) = O. 

This point may be found by equating the right side of the above equation 

for Gs(x) to zero. We thus have, 

hence 

that is, 

The last equation shows that by noting where Gs(x) becomes zero we can 

find one of the three unknown quantities (13, zl' and z2)' provided the 

other two are known. 
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As mentioned earlier, the function Gs(x) approaches the values 

2Gp(S- ~) and 2GP(S+~) for ver,v large values of x in the positive and 

negative directions. Hence the sum and difference of these two values 

of Gs(x) gives 4GpSt and 2'ITGpt. 

Figure 35 shows the graph of Gs (x) calculated from the gradient 

curve in the same diagram. Since the graph of Gs (x) was not ex"tended to 

large enough distances on either side of the fault plane, the curve does 

not attain the limiting values which are of interest to us. The 

theoretical limiting values are 10.6 and,-2.15 and these are reached 

approximate~ when x = ± 20. 



• 
- 77 -

The Horizontal Derivative For·A Fault Cutting A Single Bed 

The horizontal derivative of gravit y due to a fault truncating 

a single bed is given by (see Appendix A) 

where~. = o. - B; i = l, 2, 3 and 4. 
~ ~ 

Multip~ng both sides of the above equation by x we have 

Since x cos2B(F2-Fl-F4+F3) = gf' transferring the first ter.m on the 

right side of the above equation to the left of the equation gives 

Since ~i = 0i - B, and (z2-zl) = (z4-z3) = t, the thickness of the 

bed, we get 

The limiting values of the angles 01' 02' 03 and 04 as x 

approaches zero is B. Hence the limiting value of Gf(x) at x = 0 is 

zero. As x approaches + 00 or - CD, the limiting values of the angles 

0:L' 02' 03 and 04 are n/2 or -'lT/2 respectively. Hence the limiting 

value of the function Gf(x) is also zero for very large positive and 

negative values of x. 
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The Horizontal Derivative For A Fault Cutting A Series Of Beds 

The horizontal derivative of gravit y for a fault truncating 
. 

a series of beds may be obtained following the same procedure as in the 

case of the single block. The gravit y anomaly of the fault shown in 

Figure 24 is given "by (see equation 3) 

Thé horizontal derivative of 9m then becomes 

c:l~ 
dx 

Since 
, , 

1/1. = 0. - (3 and 111. = 0. - (3 , 
J. J. J. J. 

where 
, 

ô = z. - z. 
J. J. 

Multiplying both sides of the above equation by x we obtain 

the function, Gm (x), gi ven by 
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As x approaches zero, each. of the angles 01' 02 ••••••• 0N+l , 
t t 

01 ••••••• 0N+l approaches S. Hence, as x approaches zero, 

As x approaches + CD or - 00 the limiting values of the angles 
t t t 

~, 02 ••••••• 0N+l' 01' 02 ••••••• 0N+l are n/2 or -n /2 respectively. 

Hence, 

and 

lim 
x --~ 

lim 
x --~ 

G (x) 
00 m 

G (x) 
- 00 m· 

= 2G n ô (a _a ) _ 2GSô(a _a ) 
2' 0 r 0 r 

= - 2G~8(a _a ) - 2GSô(a _a ) 
2 0 r 0 r 

'II' = -2Gô(a -a )(S + 2) o r 

Thus, the limiting values of G (x) de pend upon the fault m 

displacement, Ô, the angle of the fault plane, a , and the density 

contra st between the topmost bed and the bed below the Nth one. The 

sum. and difference of the limiting values of Gm(x) for very large 

positive and negative values of x is -4GSô(a _a ) and 2nGô(a _a ) oro r 

respectively. If the density contrast (ao_a
r

) is known, the displace-
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ment of the fault, ô , and the dip of the fault plane, (~/2 - B), 

can be fOlmd. 
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The Second Derivative Due To A Single Block 

The horizontal derivative of gravit y due to a single block 

is given by (see Appendix A) 

The second horizontal derivative Sf gravit y due to a single 

block is also derived in Appendix A, the result being 

d2 
gs 

dx2 = - GP (cos 29 - cos 29 ) x 2 l 

d2 
~ Limiting values of 

dx2 

d2g 
(a) Limiting values of ~ as zl -----~ O. 

dx 

Since tan 0:r. = tan a + ~ , 
~ 

• • • • • (7) 

as zl -----~ 0, 
'II' 

tan 0:L ------> ± 00 and '\ ------~ 2 

Rence 

and cos 291 ------~ COS'll' = -1 

2 

C~~) = - Gp (1 + cos 29) = - 6Qe. cos2 9 x 2 x 2 
zl=o 
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d2g 
(b) Limiting values of --7 as x ---;..~->O. 

2 dx 

We have 
lim (d gs) __ lim 

x --)0 0 dx2 x --~ o[ ~ (cos 2 O2 - cos 2 01~ 
2 

= lim 
x --;. °t 

ggf -tan 

x l + tan2 

As x ------> 0 

= lim 
x --)t 

0. ------> a, 
3. 

tan 0. = tana + x 
3. z. 

3. 

since 

Therefore, tan2 0. = tan2a (1 + 2x) 
3. z. tana ' 

Hence 

lim 
x --,)0 

3. 

O2 1- tan: el ~ 
0 2 l + tan 01 

Figure 36 shows the second vertical derivative of gravit y 

over a 200 ft thick block cut by a vertical fault for various values 

of the depth of the block. For a vertical fault the maximum and the 

minimum are of equal amplitude and occur at equal distance from the 

fault trace. When the block is at the surface, the second derivative 

is infinite at x = 0, but the maximum value diminishes rapid~ as the 
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• depth of burial is increased. The dashed line curve in the srume figure 

shows the effect of increasing the thickness of the block. 

Figure 37 shows the effect on the second derivative of 

changing angle of inclination of the fault. The· maximum and minimum 

are no longer equal and they occur at different distances from the fault 

trace. 

It was shorm earlier that the distance from the fault trace to 

the zero value of the second derivative (for positive S) is given by 

To find the points where the maximum and minimum of the second 

derivative occur on the x-axis we differentiate the expression for the 

second derivative with respect to x and equate the result to zero. 

Thus 

2 
~ (COS 202 _ cos 201 ) ~(d gs)= 0 = dx 2· dx x· x dX 

that is, ..9:.. (COSx202 ) d (COS 201 ) 
= 

dx dx x 

We have 

1 2 da 
- cos 20. - - sin 20. -l:. x2 ~ x ~ dx 

Now, tan 0. = tanS + 1f.. 
~ z. 

~ 

d0. 2 cos 0. 
-l:. ~ = dx z2 

and 
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Hence 
Ji (COS 202) 
dx x 

Therefore, 

or 

Writing 

Then, 

~ = 
zl 

cos 20. 
~ 

ql ' 

z. 
~ 

= 

~ = q2 tan 0. = tan a + qi ' we have 
z2 

, 
~ 

1 - tan20. 1 - (tan a + ~)2 
~ = , 

2 2 
1 + tan ai 1 + (tan a + ~) 

= 40. tan 0. cos4a. 
''''1. ~ ~ 

. 4% ,tan ai 
= (1 + tan2a. )2 

~ 

cos 2a. + 2 x sinaa. cos2a. 
E. = -- --. - ~--- ~ ~ + l 
~ z. 

= 

= 

= 

~ 

l - (tan a + qi)4 + 4qi (tan a + qi) +{ l + (tan a + %)2}2 

{l + (tan a + qi)2}2 

26 + (tan a + %)(tan a + 3qi)} 

{ l + (tan a + % )2} 
2 

2(sec2a + 4q. tan a + 3q.2) 
]. ~ 
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2 dgs Thus, to find the points where is a maximum or minimum, 
dx

2 

we must solve the equation 

Ey cross multiplying andcollecting like powers of x in the 

above equation, we obtain a polynomial of the fourth degree in x of 

the forro. 

ax4 + ~ + cx
2 + dx + e = 0 

where the coefficients a, b, c,·d and e are given by 

a 

b = [" 2 2 8 tanS (zl - z2) zl + z2 + 4zl zJ 

2. a { 2. 2 2 2 2} c = 2(Zl - z2) (zl + 16 zl z2 + z2) tan S + (zl + z2) 

d = { 2 2 2 2 2)} 8 zl z2 (zl - z2) tanS (zl + 4 zl z2 + z2) tan S + (zl + z2 

2 2 2 2· 2 
(6 2 - 8) e = (zl - z2) (zl z2) sec S sec S. 

The above polynomial in x has at least two real roots. The se 

give the distances of the maximum and minimum of the second derivative 

from the fault trace. 

The calculation of the roots of the polynomial is a long and 

tedious process. The problem, however, can be solved ver,y easilY in 

a digital computer. A computer program has been written which calculates 

the coefficients of the polynomial from given values of S, zl and z2 and 
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then finds th~ roots of.the polYnomial to any degree of accuracy desired. 

It is seen in Figure 37 that the amplitude of the minimum is 

very sensitive to change in the inclination of the block. Calculations 

of the position and amplitude of the minimum of the second derivative 

curve, therefore, will be very useful in determining the inclination of 

the fault plane. 

The great amplif,ying effect of the second derivative on 

shallow structures is seen in figure 36. Hence sharp maxima and minima 

of large amplitude are clear indications of a shallow structure. 

Separate curves showing the positions and the magnitudes of 

the maximum and minimum due to a ~ingle block were not drawn since it 

will be seen later that the curves for a single block will approach very 

closely the curves due to a fault truncating a single bed when the lower 

block is at great depth. Hence these curves for large valu~s of z3 will 

be a very good approximation to curves for the second derivative for 

the upper block alone (see Figures 40-44). 
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The Second Horizontal Derivative Due To A Fault 

Truncating A Single Bed 

The horizontal derivative of the gravit y anomaly due to a 

fault truncating a single bed may be obtained by combining the effect 

of two individual beds on either side of the fault plane. Following 

the same procedure as in the case of the single block, therefore, the 

second derivative over such a fault is given by 

2 
d gf = 

dx2 

2 
d gf 

Limiting values of . 2 
dx 

Limiting value as zJ.: -,. 0 

x Since tan 01 = tanS + -
z ' l 

at 

cos 201 = cos 'If = -1 

Hence 

• • • • (8) 

'If 
°1 = 2 hence 
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Limiting value as x --:. 0 

We have· 

lim - GP (cos202 - cos29. + cos203 - cos20
4

) 
x-~ox . ~ 

Substituting cos20i = 
2 l - tan o. 
~ 

2 ' l + tan o. 
tan0. 

~ 
= tans+~ 

z. ' 
~ 

~ 

We have 

lim 
- $e. x --)- 0 . x 

( 1 l ) 2 (1 1) 2 x tanS - - - + x 2 - Z 
zl z2 zl z2 

2 2 
( 2 x x)f 2 x x) sec S + 2 + 2tana z \sec a + 2: + 2tana z-

z . l z- 2 
. l 2 

If the displacement is very large in the above expression, z3 and z4 

are large compared with zl and z2' hence z~ and z~ can be neglected. 

Therefore, for a fault with large displacement, the limiting value of 

the second derivative at x = 0, is given by 



lim d2g
f 

x--+o~ = 
dX 
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- 2Gpt sin2 (3 cos2 
(3 ( 1 ) 

, zl z2 

This is the same expression as the limiting value of the second derivative 

over a 

Points 

single block at x = o. 
2 

d gf 
on the x-axis where --:2 = 0 

dX 

Equating the expression for the second derivative to zero, we obtain 

Thus at the point where the second derivative vanishes, wemust have 

cos2f2 ,;.. cos201 = cos20
4 

- cos20
3 

Substituting for cos2ei in terms of x, zi and~ in the above expression 

and writing qi =x/zi where i = 1,2,3,4, we have 

cos202 - 00s2<1. = (cos202 + 1) - (cos201 + 1) 

= 2( 1 2 - 1 2 ) 
1 + tan 02 1 + tan 01 
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At the point where the second derivative vanishes we must have 

B.Y cross-multiplyingthe above expression on either side of the equal 

sign and collectL~g like powers of x we obtain a polynomial of the 

5th degree in x of the form 

a:x.5 + bx4 + . c~ + dx2 + ex + f = 0 

where the coefficients a, b, c, d, e and f are given b.Y 

b = 2(z2 - zl)(zl z2 - z3z4)tana 

2 2 2 2 2 
c = 2(z2 z3 - zl z 4 )sec S 

The above polynomial has at least one real root which gives the position 

on the x-axis where the second derivative becomes zero. A program was 

written which first calculates the five coefficients from the given 

values of zl ' z2 ' z3 ' z4 and 8 , then calculated the roots of the 

polynomial by the Newton-Raphson method. 

Figure 3$ shows the second derivative graph over a fault which 
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cuts a single bed, the plane of the fault making an angle of 600 with 

the vertical. The depths from the surface to the four horizons zl ' 

z2 ' z3 ' and z4 are 0.5, 1.0, 1.5 and 2.0 units. The secondderivative 

graph shows two zero points - the first one close to the fault trace 

and the second one· further away on the down-thrown side of the fault. 

On opposite sides of the first zero point there is a maximum and a 

minimum located at the points x = -0.7 and x = -1.75. The magnitudes 

of the two extrema are a1m.ost the same, the minimum being slightly 

higher than the maximum. 

2 
d gf. 

Maxima. and Minima. of 2. To find the distance of the minimum and 
dX 

2 
maximum from th~ fault trace, we solve 

. d d gf 
the equation (----) = 0 bv the Newton-Ra~hson method as mentioned dx dx2." .I:"'~ 

above. 

The Newton-Raphson method is based on the assumption that the 

curve has no inflexion point along QP (see Figure 39). The function f(x), 

whose roots we are interested2in finding, has an inflexion point which 
d g 

is near the point x; :where dx~ is zero. After finding xo' we choose 

two starting points, one (xo + me) and the other (xo - LUc) where b.x 

is a small quantity which keeps the starting points of the Newton­

Raphson calculations away from the inflexion point of f(x). The quantity 

/), x is obtained by trial and error. In this way, after a few iterations, 

two roots of f(x) may be obtained giving x and x . , the abscissae 
max lIlJ.n 

of the maximum and minimum of the second derivative. After calculating 

the roots of the equation, the computer calculates the values of the 
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of the second derivative at these points, thus giving the maximum
2
and 

. d (d gf) 
the minimum values of the second derivative. The equation di' --'2 

dx 
whose roots are obtained by the Newton-Raphson method to get xtt

max and 

X". is derived in Appendix C. 
mJ.n 

Figures 40-44 show the graphs of the amplitude versus abscissae 

of the second derivative maximum and minimum. Figure 40 refers to a 

vertical fault. Since for a vertical fault the two extrema are equal in 

amplitude and symmetrical about the fault trace, the curve corresponds to 

both the maximum and minimum second derivative. In this figure, zi' the 

depth to the upper block of the faulted bed, is kept fixed, while the 

lower block is moved downwards in successive steps to a maximum depth of 

32 units. The two numbers at the ends and to the left of each curve 

refer to the minimum and maximum values of z3. It is seen in Figure 

40 that, for small values of zl' the magnitude of the second derivative 

increases much more rapidlY than does its position as z3 is increased, 

while for large values of zl' the magnitude and position of the second 

derivative change equally rapidljr as z3 changes. Furthermore, as z3 is 

increased keeping zl fixed, a condition is eventually reached where any 

further increase in z3 produces very little change either in the 

magnitude or position of the second derivative extrema. Points in 

these curves for the large st value of z3' therefore, will .give·a good 

approximation to the position and magnitude of the second deriyative 

extrema for a single fau1ted block of thickness one unit whose upper 

surface is at a depth as shown in the curves. 

Figures 41 and 42 are the plots of the amplitude of the second 
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derivative minimum due to a fault dipping at300 and 600
• The abscissae 

in these curves, however, are not xn. but (xn. - X ) (this quanti ty 
III.1.!l III.1.!l 0 

is.the distance between the minimum and the point where the second 

derivative vanishes, hence can be obtained from the observed data whereas 

to find xn. we must know the location of the fault trace). The numbers mn . 

beside each curve have the same meaning as in Figure 40. Unlike the 

curves for the vertical fault, the curves in these two figures show 

that, as z3 is increased keeping zl fixed, the amplitude of the second 

derivative minimum attains a maximum value, then swings around and 

decreases slow~, so that further increase in z3 does not produce large 

changes either in gn. or x" . • mn mn 

The curves in Figures 43 and 44 sl;low the amplitudes of the 

maximum second derivative plotted as a function of (xn - x ) for the max 0 

same series of faults as in the case of the minimum. For the range of 

values of the parameters chosen for these curves, the maximum second 

derivative does not show any turning point and it appears to be a curve 

wi th slow~ varying slope. 

The curves in Figures 40-44 are for the same series of faults 

as those in Figures lB-23 which give the position and size of the gravit y 

maximum and minimum. In Figures 40-44 the faults at zero depths have 

been omitted since, when the upper block reaches the surface of the 

earth, the second derivative extrema become infinite~ large at x = o. 

Figure 45 shows three profiles across a fault cutting a bed of 

thickness 0.5 unit, the upper block of the faulted bed being at the 
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surface of the earth. The second deri:vative becomes infinitely large 

at x = 0 but decreases very rapidlY as we go away from the trace and is 

essentially zero at distances of 2 units or more. The effect on the 

second derivative of lowering the second block to a depth of 32 units is 

shown by curve (2) of Figure 45. The general shape of this curve is the 

same as curve (1) but the decrease in the second derivative as we go away 

from the fault trace is not as rapide 

In curve (3) the fault has a dip of 30°. The dip causes some 

changes in the second derivative values near the inclined face of the 

fault, but the dominant features of this curve are the same as those of 

the other two curves. 
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The Vertical Gradient Of Gravity. 

(a) The vertical gradient of gravit y due to a single block and a fault: 

The expression for the vertical gradient of gravit y due to a single block 

is derived in Appendix D, the result being 

ags 2 {l (q~COS2S + Q2sin2S + l ) 
az = - 2Gpcos S 2" tanS log 2 2 

qlcos S + ql sin2S + l 

• • • • • (9) 

where x as before. 

The vertical gradient of gr~vity due to a fault cutting a single. 

bed is also derived in Appendix D and is given b,y 

agf 
az 

• • • • • (10) 
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Figure 46 shows the curves of the vertical gradient of gravit y 

for several single blocks and faults. The solid line curves of Figure 

46 correspond to vertical faults while the da shed line curves are for 

faults dipping at 300
• It is evident that the shallower blocks have 

much greater vertical gradient anomalies than the deeper blocks showing 

that vertical gradient accentuates shallow structures. Comparing the 

curves in Figure 46 with those in Figure 36, page 83, for the second 

derivative effect over single blocks, it is seen that the second 

derivative effect is confined to a small region near the fault plane 

while the vertical gradient effect extends to far greater distances. 

Further.more, as the depth ofburial of the anomalous mass varies, the 

change in the second derivative is much larger than that of the vertical 

gradient. 

The dashed line curve in Figure 46 shows that as the angle of 

dip of the fault plane increases towards 900
, the ma.:x:imum and the minimum 

of the vertical gradient are shifted towards the inclined faces of the 

fault plane. 

The limiting value of the vertical gradient as x approaches 

zero is derived in Appendix D and is given by: 

(~) 
az x=o 

and 

(~) az x=o 

z2 z3 
= Gpsin213 log z z 

l 4 
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This shows that, knowing the vertical gradient of gravit y 

directly over the fault trace, we can obtain information about the angle 

of inclination of the fault plane and the depths te the different geologic 

horizons from the surface of the earth. 

Equations 9 and 10 giving the vertical gradient of gravit y 

for a single block and a fault are more complicated than the correspond­

ing equations 7 and B giving the second derivative effect over a single 

block and a fault. Since the properties of the vertical gradient are not 

greatly different from those of the second derivatives, the use of the 

vertical gradient for interpreting faults will not be discussed further. 
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CHAPTER IV 

The Fourier Transform Of Gravit y Data 

General: For a two-dimensional body, the gravit y anomaly is usually 

expressed as a function of the distance, x. B.r making a Fourier trans­

formation, the gravityanomaly can be transformed from the original 

'distance domain, x, into the frequency domain, w. If we transform the 

data into the frequency domain, then carr,y out the interpretation, we 

obtain certain advantages over interpretation based on the raw data; 

firstly, in transforming into the frequency domain, an entirely new 

function is obtained which is more easily handled than the original 

function; secondly, in calculating the Fouriertransfor.m, aIl ~vailable 

gravit y data are used so that none of the gravit y data are rejected in 

the interpretation. 

Odegard and Berg (1965) have made frequency analysis of 

gravitational fields of several bodies of simple geometric shapes, such 

as the cylinder, the sphere, the single block with a vertical edge, and 

have shown how the depth and size.of the causative body may be obtained 

f~om the Fourier transfor.m of the gravit y data. 

The basic transform formula discussed in this section is the 

transform of equation (1). The Fourier transfor.m of the right-hand side 

of (1) is not readily calculable; however, we can calculate the transfor.m 

of the second derivative, and from this transform we can easily obtain 

the transform of g. 
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Fourier transforms: The Fourier transform of the function f(x) is 

defined by the relation 

F(w) = j 00 r(x)e -j"",dx 

-00 

. . . . . (li) 

provided the integral exists for aIl real values of W. The Fourier trans-

form, F(w), is in general a complex quantity, that is, 

F(W) = R(w) + jX(w) = A(w)ej.(~) , 

R(W), X(w), A(w) and $(w) being real functions of W. A(w) and $(w) are 

ca lIed ·the Fourier spectrum and phase of f(x). The function f(x) can be 

obtained from the transform, F(w), through the formula 

• • • • • (12) 

The notation f(x) ~--~ F(w) is used to indicate that .f(x) and F(w) 

are transform pairs. The Fourier transform of f(x) will also be written 

in the operator forro. F{f(x)} on occasion. 

B.r differentiating both sides of equation (12) with respect to 

x, it will be seen that 

2 d .g 
Fourier transform of ~ 

dx2 

• • • • • (13) 

As mentioned earlier, the Fourier transform of the right side of 
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(1) is difficu1t to obtain. We sha11'2therefore, ca1culate the 
d g 

transform of the second derivative, ---f, and use (13) to obtain 
dx 

the transform of g. 

Writing K for (Gp), the expression given in, Appendix A for 

the second derivative of gs can be written 

d2 

dx!s = -~ (cos 202 - cos201 ) 

• • • • • (14) 

x 
~ . = tan0· = a + - a = tan Q, i = l, 2. 

J. J. Z. ' ... 
J. 

If we write F2s (w) for the Fourier transform of the expression 

in (14), then'we have the following transform pairs: 

dg s 
dx ~------~ • • . •• (15) 

When ca1culating F2s (w), the constant term 2Gp(n - a)t does not enter 

into the ca1culations, hence it will not appear in the transform for g. 
5 
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d2g 
The Fourier transform of the function ~ is derived in 

d:x: 
Appendix E where it is shown that the real and imaginary parts of the 

transform F2s (w) for a single block are given by 

-wz 
R2s (w) = c Me lsin(hl + ~) • • • • • (16a) 

-WZ l X2s (w) = -c Me cos(hl + ~) 

1/2 
where M = {l - 2e-wTcos(wa.T) + e-2wT } 

tan~ = sine I.IaT) 

T - = Thickness of the bed 

2 
d gf 

Fourier transform of --2 
dx 

(16b) 

The real and imaginary parts of the transform for a fault 

cutting a single bed are also given in Appendix E and are equal to 

-WZ
l c MNe sin(hl + ~ + n) 

-WZ 
X2f (w) = -c MNe lCOS(hl + ~ + n) 

where N 
. -WÔ -2wô 1/2 

= {l - 2e cos(waô) + e }. 

tann = sin(waô ) 
wô 

cos(waô) - e 

• • • • • (17a) 

• • • . • (17b) 
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ô = z3 - zl = Vertical displacement of the fault. 

In the above expression of the Fourier transfor.m of a fault, it we let 

ô go to infinity, the transfor.ms* R2f (oo) and x2f(oo) will approach the 

transfor.m of the anomalY due to the upper block alone. Renee transfor.ms 

for single blocks maybe obtained from the transfor.ms for a fault by 

assuming the fault to have infinite displacement. 

Fourier spectrum A2f(oo) 

The Fourier spectrum A2f( 00) of the fault anomalY may be 

written as 

= 
-tIZ 

l 
c MNe . . . . . 

l { -200 ô -wô } + 2 Log l + e -2e cos(ooaô) 

(18a) 

. . . . • (18b) 

If 00 » T and 00 »ô, the graph of log A2f(w) versus 00 is 

approximatelY a straight line. Rence for sufficient~ large values of 

w , 

* StrictlY speaking, R(oo) and X(oo) are not transforms but merelY the real 
and imaginary parts of a transform; however, it is convenient ta refer 
to them as transfor.ms and this practice will be followed in subsequent 
pages. 
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Z = 1 

Also the intercept of the straight line at 00 = 0 gives the result 

A2f(O) = d = 2nGpcos~. Thus, from the graph of log A2f (oo) for large 

values of 00, we can find zl from the slope and ~ from the intercept, 

the latter requiring a lmowledge of p as well. 

Fourier transform of 

From equation (3) it can be seen that the gravit y anomaly, 

~, of a fault truncatinga series of N beds is equivalent to the combined 

gravit y anomaly due to N + 1 single blocks each of thickness ô, the 

blocks being at depths zl' z2' • ' •••.• zN+l and having density 

contrasts (01 - 00)' (02 - 01)' ••••• (o~ - oN) respectively. 

Formulas (16a) and (16b) can be used to calculate the Fourier transform 

of each block indi vidually and then the real and imaginary parts of the 

N + 1 blocks can be added up separately to give and real and imaginary 

d2 
parts of the transform of ~. 

d.x2 

2 Cons equent ly , the real and the imaginary parts of the transform 
d~ 

of ---z are given by 
d.x 
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. . . . . 

sin(wôtan8 ) 
; 

cos(wôtan8) _ eWô 

• • (19a) 

•• (19b) 

The amplitude spectrum of the transfor.m of 9m is a complicated 

function and it is doubtfu1 that any usefu1 information can be obtained 

from it. 
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Determination of R2(w) And XQ(w) From The Field Data 

In order to find A2 (W) as a function of w we must find R
2

(w) 

and ~ ( w) as functions of w. This can be done by making a harmonic 

analysis of the observed gravit y data. 

A function f(x) which is periodic with period 21 and which 

satisfies certain conditions of continuity can be represented by the 

comp1ex Fou~ier series 

00 +jnW x 
a e 0 
n . . . • • (20) f(x) =~ 

n= -00 

the comp1ex coefficients, an' being given by 

1i1. . _ _ -Jnw x 
a n - 21 . f(x)e 0 dx , 

-L 

1T 
w = o 1 . 

Obviously a is the conjugate comp1ex of a • 
n ~ 

The function f(x) can a1so be represented by the rea1 Fourier 

series 

00 

f(x) = ""7'l + (a cosnw x + b sinnw x) ao ~ 
'" non 0 

• • • • • (21) 

n=l 

where the coefficients are given by the expressions 

an = -L1f1 f(x)cosnwoxdx 

-1 
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The two sets of coefficients are related as fo11ows.: 

a = a + a = 2Re{ a } 
n n -n n ' 

bn = j(a - a ), n -n 

= -2Im{ a } , 
n 

Re { } and Im { } denoting the frea1 part Off and the fimaginary part Off 

respectively. 

Assume that the observed gravit y anomaly, g(x), has been 

represented by a Fourier series similar to equation. (21), the interva1 

(-L, L) being sufficiently large that 

g(x) 0, 

The Fourier. series will represent the gravit y anomaly as 

accurately as desired within the interva1 (-L, L); outside this interva1, 

however, g(x) vanishes whi1e the series reprodu-ees the gravit y anomaly 

. in each interva1 (c, c + 2L), c being an arbitrary constant. 

The comp1ex Fourier coefficient in the series representing g(x) 

is c10sely relatedto F(w), the Fourier transform of g(x). Thus, we 

have 

~
(J) .w 

1 -JD oX 
2L g(x)e dx 

-roi 
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Therefore, 

an =. t Rel F(n .. o) } = t R(n .. o) ( 

\ • • • • • (22) 

b
n 

= - l lm { F(nw ) } = _ l X(nw ) 
L 0 . L 0 

Thus, by analyzing the field data to find an and bn, we can 

obtain the values of R(nw ) and X(nw ) with an accuracy which theoretically o 0 

can be made as high as we wish by increasing L sufficiently. 

If we write 

OJ 

f'(x) =L (a lcosnw x + b Isinnw x) nOn 0 

n=l 

and ftt(x) =t (a 2cosnw x + b 2sinnw x) , non 0 

n=l 

the values of the coefficients anl, bnl, an2 and bn2 can be found by 

differentiating equation (21). The results are 

(nw )b l 
2 2 an2 = = (-n ... )a } o n o n 

. • • • • (23) 

(-nwo)anl 
2 2 bn2 = = (-n w )b o n 

For ver,r large values of x in the positive and negative directions 

from the fault trace, the function gf is approximately equal to zero, hence 

by choosing L ver,r large, the coefficients an and bn in the Fourier series 

representing gf should be approximately equalto R2f(nwo) and X2f(nwo). 

The gravit y anomaly due to a single block as weIl as the anoma~ 
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due to a fault truncating a series of beds for certain combinations 

of density, do not approach zero for large positive and negative values 

of x, hence the method described above is not direct~ applicable to 

the calculation of transforms of such anomalies. However we can use 

one of the following methods to find transforms of anomalies which 

do not approach zero values for large positive and negative values 

of x. 

Method No. 1 

Let g(x) in Figure 47 be the gravit y anoma~ due to a single 

block or a fault truncating a series of beds. The first derivative 

of g(x), g'(x), shown in Figure 47, is a well-behaved function in 

that it rapidly goes to zero for large positive and negative values 

of x. A Fourier ana~sis performed on g' (x) will give the 

coefficients anl and bnl • The Fourier coefficients anl and bnl are 

related to R(nwo) and X(nwo) as follows: 

RI R(nw ) 
0 anl = T (nwo ) = jnw 

0 L 

X X(nw ) 
bnl = t (nw

o ) -jnw 0 = 
0 L 

Thus, once we have the transforms Rl(nwo) and Xl(nwo)' the transforms 

R(nwo) and X(nwo ) can be readi~ calculated, thus giving the transforms 

of g(x). 
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Method No. 2 

Let g+oo and. -g-oo be the limiting values of g(x) as x 

approaches ± 00. Then we define a new function gL such that 

= -g 
-00 

x > 0 

x ~ 0 

Then the function G(x) defined by the equation 

G(x) = gL ~ g(x) 

approaches zero as x approaches ± 00. 

The Fourier transform of gL can be obtained by finding the 

Fourier transforms of the two step functions of amplitudes g+ro and 

-g-oo separate~ and then adding the two resu1ts to give the Fourier 

transform of gL. Thus, if gl(w) be the Fourier transform of the 

step of amplitude g+a:>' we have, 

= g 
+00 

e: -~ 0 

-jEt-jwt . 
e dt 
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where ô(w) is the Dirac 'ô' function br the unit impulse function, 

defined by 

ô(w) = 00 at w = 0 

= 0 III 1= 0 

and i 00 o(w)dOJ = l 

-00 

Simi larly , the transform g2(w) of the- step of height-:-g~oo 

is given by 

Hence the Fourier transform of gL is gl(w) + g2(1Il) 

(g+oo + g 00) 
= 'Ir (g - g ) ô (w) + .-

+00 -00 Jill 

Except for the point III = 0, the real part of the transfor.m of 

gL is zero. There will, however, be a contribution from the imaginary 
(g+oo + g-oo) 

part of the transfor.m of gL for every w equa.l to -
III 

To fine the Fourier transform of g(x), therefore, we first 

calculate the Fourier coefficients of-the function G(x) = {gL - g(x)} 

in the usual manner. If an' and bn ' be these coefficients, the real 

* See Papoulis, 1962. 



- 123 -

and imaginary parts of the transform of g(x) is gi ven by 

R a , 

g_~}-oo)} 
L n 

X (b , + 
L n 

0 

• • • • • (24) 

Theoretical examples 

Example No. 1: In this section we use equations (2) and (8) .to calculate 

the anoma~ and its derivatives, then ana~ze these Qata as though they 

had been obtained in the field. The calculations listed below were made 

for a fault with the following parameters: 

P = 1.0 B = 600 L = 12.4 

(a) g(x) and gn(x) were calculated, 

(b) harmonic ana~sis of the results in (a) gave the two sets of 

coefficients ,-(an' b ) and (a 2' b 2)' as functions of (nw ), that is, n n n 0 

as functions of n, since w was the same for aIl ca1culations, o 

(c) valùes of (an2, bn2 ) were ca1culated from the values of (an' bn ) 

using equa tion (23), 

(d) R2f(nwo) and X2f(nwo) were ca1culated as functions of n using 

equations (17a) and (17b), after which equation (22) gave an2, b
n2

, 

(e) Rf(nwo) and Xf(nwo) were obtained from the resu1ts in(d) using 

equation (15), after which equation (22) gave a , b • 
n n 
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Ifweregard the values of g(x) obtainedin (a) as representing 

field data obtained under perfect field conditions, then the coefficients 

obtained in (b) and (c) are based upon field data while the coefficients 

obtained in (d) and (e) represent"true values. The two sets of coefficients 

are compared in various ways in Figures 49-53." 

Figure 49 compares an obtained in (b)above with (l/L) Rf(nwo) 

obtained in (~). The agreement between the two sets of values is exact 

within the accuracy of p10tting so that the two curves merge into one. 

Figure 50 shows the relation between bn and -(l/L) Xf(nwo); the latter 

gives a smooth curve about which the curve of bn oscillates with decreasing 

amplitude. 

Figures 51 and 52 compare values of (1/1) R2f(nwo) and 

-(l/L) X2f(nw ) with (a ?' b 2) obtained in (b) and (c). In Figure 51, o n..... n 

the three curves coincide within the p10tting error, whereas in Figure 52, 

-(l/L) ~f(nwo) and bn2 obtained in (b) coincide to give a smooth curve 

about which the bn2 values obtained in (c) osci1late with an amplitude 

which seems to increase slowly with increasing n. 

The disparity between Figures 49 and 51 on thè one hand and 

Figures 50 and 52 on the other is strildng. The two curves which 

deviate from the smooth theoretical curves representing the transforms 

-(l/L) Xf(nwo) and -(l/L) X2f(nw
o) are curves of bn obtained in (b) and 

bn2 obtained from bn (procedure (c)). Both of these curves depend upon 

the harmonie analysis of the gravit y anomaly, and further study shows that 

the oscilla~ory nature of these curves is due to neg1ect of the tai1s of 
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the anomalY beyond the points x =± L. The effect of ,reducing these 

tails by increasing L from 12.4 to 100 can be seen by comparing Figures 

52 and 53; the latter shows almost perfect agreement bétween bn2 and 

-(l/L) X2f(nwo) except for low values of n. ,Thus, provided L is taken 

sufficientlY large, bn and bn2 agree very closelY with the theoretical 

values gi ven by the, imaginary parts of the Fourier transform.. However, even 

when Lis. much less than this value, acceptable values of the transforms 

can be obtained by smoothing the curves of bn and bn2 to remove the 

oscillatqry part. 

In order to find the amplitude spectrum, A2f(nwo)' it is not 

necessary to carry out a Fourier analYsis of the second derivative of the 

gravit y anomalY. A2f(nwo) can be obtained directlY from the Fourier 

coefficients, an and bn, obtained by Fourier analYsis of the gravit y 

anomalY as shown below: 

The second derivative spectrum'can be written as 

Dividing both sides of the above equation by L, and using the relations 

an = t R(nwo)' bn = - t X(nwo)' we obtain, 



A2f(n~),," 
L 

- Dl -

{
A2f (nw 

)}' l 2 2) 
and Log L 0 = 2 Log(nw

o) + '2 Log (an + bn • 

Hence A2f(n wo) may be obtained from the 'Fourier coefficients, an and bn • 

The above equation was used to plot the curve in Figure 54. The slope 

of the amplitude spectrum in the linear region gives zl = 0.5 and the 

intercept corresponding to the straight line portion of the curve gives 

Exa.mple No. 2: Using equation (1), the gravit y anomaly, gs' was calculated 

for a single block having the following parameters: 

Z2 = 2.0, = 1.0 gJIJ.jc.c. 

In order tè calculate the Fourier transform of the above anomaly, method 

No. 2 on page 121 was used. A Fourier analysis was performed on the 

function (gL - g ), obtained by subtracting the anomaly from -g for s ' -00 

negative values of x, from g+oo for positive values of x. If a , and b , 
n n 

are the Fourier coefficients of the function (gL - gs) and an and bn the 

Fourier coefficients of the function gs' th en 

an = a , 
n 

except at w = 0 

bn 
b , + 

(g+oo + g-oo) 
= n Lnw 

0 

Figure 55 shows that, except for small values of w, the 
R (nw ) 

s 0 6 agreement between an and L is very good. In Figure 5 , the 
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theoretical values of Xs(nwo) are compared with the Fourier coefficients 

bn and bn '; as in the cas~ of .the· fault, the bn coefficients oscillate 

about the theoretical graph and acceptable values of the transform can 

be obtained by smoothing out the coefficient graph. 

The amplitude spectrum, A2s (nwo)' for the transform of the 

second derivative of gs is shown in Figure 57, plotted as a function of 

the order of the Fourier harmonie, n. The slope of the amplitude graph 

in the linear part gives zl = 1.1 and intercept of the linear part gives 

a = 560
• 

Determination of fault parameters: Certain geometrical properties of 

the fault can be expressed.in terms of the Fourier coefficients. Let us 

define Sand S' according to the relations 

St = * f ex> lS2(,,)dI.>. 
o 

Referring to equations (16a~and (16b') in Appendix E, the typical terms 

in the expressions for S and S' due to a single block are given by 

(00 -wz 
l =) 0 e sinhdw , l' f

oo -wz 
= 0 e coshdw , h = wztana + a 

Integrating by parts twice and solving for l and l' gives 

l = cosa sin2ajz 

Substituting these results in equations (l6a t ) and (16b t ), we find for·a . 

single block 
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2 1 1 S = 2K.cos a sin2a (- --) ·s z2 zl 

2 1 1 S , = - 2Kcos a cos2a (- --) 
s . z2 zl 

. Similarly, for a fault cutting a single bed, the corresponding functions, 

Sfand Sf" are given by 

2' 
Sf = 2K cos B sin2B 

2 S , = - 2Kcos B cos2B 
f 

(..1. _ .1. + .1. _ ..1.) 
z2 zl z3 z4 

(.1. ..1. .1. ..1. ) 
z2 zl z3 z4 

Referring to equations (19a) and (19b), we find that Sm and S , for a 
.m 

fault cutting a series of beds are given by 

+ 
P2 

+ .... P N+l , ) 
z2z2' zN+lzN+l 

+ 
P2 

+ 
P Ntl , ) 

z2.z~' zN+lzN+l 

where ô = Displacement of the fault 

Zi' = zi + ô, i = l, 2, • • • N + 1 

The functions S and S'are related to the Fourier coefficients an2 and 

bn2 as follows: 

S -_ 1
11 
[00 R

2
(/')d /" 100 

o W W = ~ 0 an2dw 

',. 211 (n _ 1)(211)} However, a 6~ = an2 {n (2L) n2 2L 
00 èo 

S Lan2 2I2 = = - II.) n a . 
o n , 

n=l n=l 

00 
= (1) \' a .~~ 

11 L n2 
n=l 

11 
= L an2 ' so that 
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00 

Similar ly w2[n~ 
o n 

n=l 

Hence the functions S and St may be found by summing the Fourier 

coefficients a 2 and b 2' or a and b • nn n n 

After S and S' have been found, we can obtain B by taking the 

ratio of S and S'; thus 

tan2B = - sis' 

In obtaining values of S and S' from the coefficients a 2 and b 2' it . n n 

is found that the sums of the coefficients converge very slowly to S 

and S' wh en Zl-is small, hence a large number of coefficients are 

necessary to get a good estimate of S and S'. 
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Ifj.mi ting Values Of The Transforms As W --~ 0 

Useful information about the parameters of two-dimensional 

faults can be obtained by taking the limits of the Fourier transform 

functions as w approaches zero. Expressions for the limiting values 

of the transforms of a single block, a fault cutting a single bed and 

a fault cutting a series of beds are derived in Appendix F. These 

limiting values are 

Single block: 

(a) Lim Rs(w) = 
w --:~ 0 

(b) Lim x (w) s 
w --~ 0 

= -0) 

Fault cutting a single bed: 

(c) Lim Rf(W) = -21TGpTô tana 
W --~ 0 

(d) Lim Xf(w) = -21TGpTô 
W --~ 0 

Fault cutting a series of beds: 

(e) Lim Rm(W) = 1TG6tanaGzN+I (Or 
w--~o [ 

- cr) -MS (0 r 

(f) Lim X (w) m 
W --~ 0 

= .G<\ rN+1 (0" - ocr) + .s(or - 00) 

2.s(N + l)~Or - 0o~ 

where 0 = 

N 
o zl + '~l o. t . 

. 0 1= 1 1 

ZN+l 

- lim w--~o j 

• • • (25a) 

• • • (25b) 

• • • (25c) 

• • • (25d) 

• • • • (25e) 

(25f) 
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Thus by extrapolating curves for R(w) and X(w) to w = 0 we can find 

certain parameters of two-dimensional structures. As an example, 

in Figure 55, the graphs of the coefficients an t .. and the transform. 

Rs(nwo ) have the same limiting value 1.7 at w = o. Such extra-

L 
polation is possible on~ if the curves are approximate~ 

straight lines near w = O. By plotting a large number of theoretical 

curves for a fault it is found that the slope near. w = 0 changes quite 

rapid~ for 1 si> 450 hence the results obtained by extrapolation will 

notbe very accurate for faults dippingless than 45°. 



- 141 -

Approximate Values Of T And ô 

For a fault cutting a single bed an approximate value of 

the thickness.T can be found when zl and B are known and whenit is 

assumed (or known) that T is small and ô is large. In the same way, 

8 can be found when it is small and T is large. In practice this 

means that the one to be found is less than about 3,000 feet while 

the other is greater than about 4,000 feet. 

The amplitude spectrum of the transfor.m of the gravit y 

anomaly due to a fault cutting a single bed can be obtained by a 

combination of eq~tions (18a) and (15)'~ Thus, the amplitude spectrum 

Af is given by, 

~ ~l 
. (ce 00

2 
l){ l _ 2e -<>Ir cos ( ooTtana + e -2WT J 

~l _ 2e-OOôcos(OOôtana) + e-2OOô l/2} 

where c = 21TGpcosB. 

Let us assume that T is large while ô is relatively small. 

Then as 00 increases, the bracket involving terms in T approaches 

unit Y mu ch more quickly than terms in ô, hence for moderately large 

values of 00 the above expression reduces to 

. ce -oozl {-ooô -2ooÔ} 1/2 
Af(oo) ~ 002 1 - 2e cos(ooôtanB) + e 

To solve for ô, we take two values of 00, say OJ. and 00
2

, and determine 
. Af(ool ) 

the ratlo t = A
f

(00

2
). Since B, zl' 001 and 002 are known, t is a 
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function of Ô only; thus 

. -w1ô -2w Ô 
1 - 2e cos(w1ôtana) + e 1 

-w2 ô -2w
2

ô 
1 - 2e cos(w2 ôtana) + e . 

. . . . • (26) 

'ô t is the only unlmown in this equation, hence it can be found by 

numerical methods of solving the equation. 
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The Fourier Transform Of The Dike Anomalv 

From equa tion (5), the gravi ty anomaly of a dike is gi ven 

by 

To find the Fourier transform of the right-hand side of the above 

expression, we note from the shift theorem of the Fourier transform 

that, given 

f(x) ~-----~ F {w} , . 

then 
-jUK 

f(x - xo) ~-----~ e 0 F( w). 

Using equation (15) and the ab ove formula, the Fourier transform of the 

dike anomaly may be written as 

gd ~-------)o 

+jooc -.jwx: 
e 0 F

2s
(w) - e 0 F

2s
(W) 

(jw)2 

where F2s (w) is the Fourier transform of the second derivative 

of the gravit y anomaly gsdue to a single b10ck (see equations 

and (16b)).. 

we have 

Writing Fd(w) for the right-hand side of the last expression, 

2jsinwxo F2s (w) 

w2 • • • • (27) 
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d 2g 
The Fourier transfor.m F2 (00) of the function ~ is derived in 

s dx 
Appendix E. Substituting for F2s (OO) in equation (27) we obtain 

• • • • • (28) 

where c, M, T, ~ are defined in the same way as in equations (16a) and 

(16b). 

The amplitude spectrum Ad (/.Il) of the dike anomaly may now be 

written as 

From equation (28), 

and 

-ooz 
-2csinWKoMe lcOS(h1 + ~) 

1J.j2 

-wz 
-2csinWKoMe I sin(h1 + ~) 

tl-

1/2 

• • • • • (29) 

• • • (30a) 

• • • • • (30b) 

Taking the logarithm of the expression in (29) we obtain 

Log Ad(w) = Log (2c) + Log (sinw.xo ) - ooZ1 - 2 Log w 

1 f -2ooT -ooT (' )} + 2 Log \ 1 + e -2e cos wTtanS 

• • • • • (31) 
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T is usual~ fair~ large for a dike, hence we assume that the ~st 

term in the above expression is unity. 

2 Furthermore, for (wxo) < n2, log (sinwx ) can be expanded in a 
o 

Taylor's series, so that 

• • • (32) 

The quanti ty Xo fora dike is usua~ very small (of the order of 0 ~ 2 

or less); for wXo ~ 1 aIl the terms excepting the firstin equation (32) 

are negligible. With these simplifications equation (31) may be written 

as 

(
2CX) 

= Log ---2. - wz w 1 

We define a new function B(W) given by 

B(w) = wAd(w) 

Hence log B(w) = log A~(w) + log w 

= log (2cxo) - wZl 

Then the slope of the above equatiol1 gives zl and the intercept at w = 0 

gives us the value of log (2cxo) = log (4nGp xocosS). Thus, knowing p, 

the density contrast and xo' the half-width of the dike, Scan be obtained. 

Alternative~, knowing p and S, Xo can be obtained. 

In order to calculate B(w), we must first find Rd(w) and Xd(w). 

The procedure is exact~ the same as that outlined in the section on fau1t 

interpretation, pages 116-118, hence further discussion here is unnecessary. 
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Theoretical Example 

In this section we calculate the Fourier coefficients 

obtained from the gravit y expression of the dike anomaly given by 

equation (5). We then compare the Fourier coefficients with the 
Rd(nwo) Xd(nwo) 

transforms L ' - L.· The calcula tions were made for a 

dike with the following parameters: 

X o = 0.2, 

p = 1.0, 
1T 

00
0 

= L = 0.291, L = 10.8 

Rd 
T(nwo) are compared in Figure 58. Within the accuracy of 

plotting the two graphs are indistinguishable and so the graph of 

the transform merges into the graph of an. Simi la rly, in Figure 59, 
Xd we see that the graph of bn also merges into the graph of - ~(nwo) 

so that the two are indistinguishable. Figure 60 shows the graph of 

log {B(nC1b)/L} versus n. The slope of this graph in the linear 

region gives zl = 0.49 and the intercept at n"" 0 gives B = 610
• 
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The limiting values of the .functions Rd(oo) and Xd(oo) as 

00 -~ 0 are of interest. 

From equation (30a.) , page 144, 

Substituting 

and 

2 -ooz
l 

Rd (00) = -( oo~1 sinwx:o Me cos (hl + cp) 

1/2 

M = {l + e-2wT-2e-wTCOS(wTtana l} . 

tan cp = sine ooTtanS) 
ooT ' cos( wTtanS) - e 

, 

in the above expression, we have, 

• • • • • (34) 

Taking a typical term in the above expression, we can write 

Lim 
00 --li> 0 

_ (2c sinwx ) e-ooz cos(ooztanS + 13) 
002 0 

-Lim (2cwx:o ) E ~ = ~ 2 (1 - wz)cosS - sinS (ooztanS) 
00 --,. 0 

00 

-Lim (2CXoT . 2~ Sln = cosS - oozcosS - ooz --13-
00 --~ 0 00 cos 

-Lim 2cx 
2 = __ 0 cosS(l _ wzsec 13). 

00 --~ 0 00 
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If we take into consideration both ter.ms within the square bracket in 

equation (34), we obtain 

2cx 
= - Lim ~ cosS sec2S(wzl - wz2) 

W --~ 0 

= 4'ITGpx T o 

A similar analysis for the imagina.'ry part gi ves 

Lim 
W --~ 0 

= 0 

. • (35) 

Provided the slope of the an versus n curve does not change 

very rapidly near the origin, we can extrapolate the curve to W = 0 

and so find the value of the product xoT, provided p is known. 

In Figure 58, the intercept obtained by extrapolating the 

curve to W = 0 is 0.92. The calculated value is 0.94. 
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CHAPTER V 

Field Emmples 

General: In order to test the validity of sorne of the formulas 

derived earlier, several gravit y surveys were made ovet known faults 

and dikes during the summers of 1965 and 1966~ Fach survey is 

described separatelyin the.following sections. 

The elevation measurements at the stations were made with 

a quick-set Zeiss surveying level capable of giving readings accurate 

to the nearest 0.01 foot within a horizontal range of 400 feet or 

less. 

The pressure in the vacuum chamber of the gravimeter was 

cheCked and the gravimeter recalibrated before the start of the survey. 

The performance of the gravimeter was excellent during most of the 

survey wi th drifts rarely exceeding 0.02 mgls/hr. There were, however, 

a few days when the gravimeter drifted by as much as 0.1 mgls!hr. This 

comparatively large drift of the gravimeter is believed to be a 

tempe rature effect because it invariably occurred on very hot, humid 

days. In order to correct for the gravimeter drift, the base station 

was revisited every hour or so. The drift was found to vary almost 

linearly with time, hence readings of aIl stations occupied irl between 

two readings at the same base station were corrected by assuming linear 

drift. 

The Worden gravimeter used was model No. 506 with a dial 
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constant of 0.1071 mgl/Div and a sensitivity of 0.01 milligals. 

The locat~ons of the various gravit y surveys are shown in 

the index map of the St. Iawrence Lowlands in figure 61. 
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Delson Fault Area 

Introduction: .A detailed gravit y survey over the Delson fault area 

near Montreal was carried out in 1965 for the purpose of determining 

some of the fault parameters by the application of some of the 

formulas derived earlier. The geology of the area is comparatively 

.well known so that interpretation based on these formulas may be 

directly compared with the geology of the area. 

The Delson fault area is situated about fifteen miles to 

the southeast of Montreal and covers the area between Latitudes 45°l9'6tt 

and 45024'8", Longitudes 73°36'W and 73030' W. Five profiles were 

taken at right angles to the strike of the fault, as indicated on the 

geologic map of the area (Clark, 1955). There are several roads 

crossing the area so that gravit y surveys in most cases could be 

carried out along these roads. 

The topography of the area is smooth with elevations of most 

stations ranging between 100 and 200 feet above sea level. The lack of 

large relief renders it unnecessary to make topographie corrections. 

The rate of change of gravit y with latitude is equal to 

1.307 Sin2$ mg/mile where $ is the Latitude of the station. Since the 

present area of survey is located very near to the 450 Latitude, the 

variation in gravit y due to change in Latitude may be taken to be 

linear and equal to 1.307 mg/mile. The free air and Bouguer corrections 

were applied in the usual manner assuming a density of 2.0 gm/c.c. 
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for the overburden. 

The first gravit y survey of the area was made by R.J. Uffen 

of the Dominion Observatory of ottawa in 1954. The results of Uffents 

survey were published by Thomson and Garland (1957). Uffen's work was 

in the nature of a very broad regionalsurvey with station spacing 

between 2-10 miles. D. Mc Dona Id carried out a gravit y survey· of the 

St. Lawrence Lowlands in 1964 for hls Master's the sis in the Department 

of Mining Engineering and Applied Geophysics, Mc Gill University. 

The geology of the Delson fault area has been dealt with quite 

exhaustive~ by T.H. Clark in his Department of Mïnes (Quebec) reports 

of the Montreal area (Clark, 1952). The formations present in the area, 

accérding to Clark, are flat lying with dips rare~ exceeding five 

degrees. The entire area is covered with glacial drift of average 

thickness 50 feet. Below this overburden are .disposed sedimentary 

rocks of Ordovician age belonging to ~fferent groups, such as the 

Chazy limestone~ the Trenton limestones, the Utica shales and the Lorraine 

shales. The occurrence of the Potsdam sandstone of the upper ~brian 

series under~g the Ordovician is postulated because of the outcrop 

of Potsdam sandstone in the Laval and Lachine areas. Further, as 

reported by Clark, a weIl drilled just north of the village of St. Hubert 

reached Potsdam sandstone at a depth of 3,965 feet. Since drilling was 

discontinued after'penetrating on~ five feet of sandstone, the actual 

thickness of the formation is uncertain: however, it is reasonable to 

expect that the Potsdam formation extends over the entire St. Jean­

Beloeil areas. Pre-cambrian basement rocks are believed to underlie 

the Cambrian. 
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The presence of glacial drift makes it almost impossible to 

observe the Delson fault at the surface. The evidence for the 

existence of the fault is the fact that in the Delson area, flat lying 

Utica beds are observed at the surface, while in the Caughnawaga area 

just to the west the surface beds are flat lying Chazy beds. The 

attitude of the Chazy and the Utica cannot be reconciled without 

postulating a major dislocation striking approximate~ east-west. 

Moreover, at St. Jean, which is in the eastern extremity of the present 

area, the succession is Trenton, Black River and Chazy whereas two 

miles to the north of this occurrence there is exposure of Utica at 

Delson. The Delson fault has been used to explain these breaks in 

stratigraphy. The strike direction of the DeJ~on fault as postulated 

by following the outcrops of the Chazy and the Utica is fair~ weIl 

established and is shown by the line .xx' in the Bouguer anomaly map 

in Figure 62. 

Thicknesses of the yarious sedimentary formations in the St. 

Jean-Beloeil areas are given by Clark (1955), based upon various well 

logs and also from measurements of exposed rocks wherever ayailable. 

An approximate section through the Delson fault is shown in Figure 63 

as deduced from Clark's report. 

From geological evidence the Delson fault is believed to be 

vertical with a throw of about 900 feet down to the north. 

The density figures of the different formations of Figure 63 

are based on measurements made by McDonald (1964) and Saxov (1956). 
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FIGURE 62. P1ease see fo1d~r at the back of the thesis. 
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Observations: Figure 62 shows the Bouguer gravit y anomaly map of the 

Delson area. Altogether, 202 stations were occupied along five 

profiles perpendicular to the strike direction of the fault. Station 

spacings in most cases were 400 feet but this was reduced to 300 feet 

in certain parts of the profile. The contour interval in Figure 62 

is 0.2 milligals • 

. The general pattern of the gravit y anomaly contours in Figure 

62 shows that the gravit y decreases from the south to the north. The 

spacings between contours is a minimum at the center of the map and 

becomes wider at the southern and the northern parts of the map and the 

contours bend down quite sharply at the south-east corner of the map. 

This bending of the contours is believed to be due to the influence of 

a. second fault, the so-called Tracy Brook fault, which strikes in the 

north-south direction. 

Profile A-B is drawn perpendicular to the contours of the 

Bouguer anomaly as shown in Figure 62. Since the gravi ty anomaly 

contours are fairly regular at the central part of the map the influence 

of the Tracy Brook fault on profile A-B may be considered negligible 
. 

and whatever anomaly is obtained, may be attributed to the Delson fault. 

The gravit y anomaly across the Delson fault along profile A-B 

(Figure 65) resembles the characteristic gravit y profile across a single 

block or of a fault truncating a series of beds. The total change in 

the gravit y due to the Delson fault as measured from profile A-B is 2.3 

milligals. If this change is entirely due to the density difference 
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between the Chazy and the Utica beds, then we have approximate~, 

where gl = Total change in gravit y due to the Delson fault. 

CJl = Density of the Chazy beds. 

CJ
2 = Density of the Utica beds. 

t = Thickness of the Utica beds. 

The density of the Utica shale is about 2.60 gm/c.c. and of 

the Chazy limestone beds 2.71 gm/c.c., and the Utica is about 300 feet 

thick. Hence, the total change in the gravit y is 0.4 mgls. This is 

far too small to explain the 2.3 milligals obtained from the field 

data. The possibility that the other Paleozoic beds below the Chazy 

forma tion may add significantly to the anomaly is ruled out since the 

Beekmantown beds below the Chazy beds have virtually the same density 

as the Chazy beds and the low density Potsdam beds below the Beekman­

town will have a negative effect, thereby reducing the total anomaly. 

To account for the large gravit y anomaly, therefore, we must look for 

some other sources of high density rocks besides the Paleozoic. The 

Precambrian rocks have a high density and are believed to underlie the 

whole of this area. The contribution of these high density rocks to 

the gravit y anomaly therefore can account for the comparatively large 

gravit y anoma~ of the Delson fault. 

In order to apply the gravit y formula to a fault truncating 

the series of Paleozoic formations and the basement, the section through 

the Delson fault was simplified as shown in Figure 64. The Utica and 
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the Trenton beds in the above figure are assigned the density of 2.68 

gm/c~c. We, therefore, have a fault truncating a series of beds and 

the basement. The total change in gravit y due to such a fault, from 

equa ti on (3a) is 

f!. = 21T G( cr - cr ) 
'1Il. I:' 0 

where ~ is the total change in gravit y due to the fault 

cr is the average density of the Utica and the Trenton beds 
o 

cr is the density of the basement. 
r 

Substituting the respective values of the densities the total change 

in gravit y due to the Delson fault is given by 

~ = 2mJ(2.90 - 2.68)ô = 2.3 

From above, the displacement 'ô' of the Delson fault is 820 feet. 

This value for the displacement of the Delson fault agrees ver,y closelY 

with the value estimated by Clark which is 900 feet at the Mercier 

Bridge (about 8 miles to the north-west of the present area) and 800 

feet at the Menard corner (about 10 miles to the south-east of the 

present area). 

Figure 66 shows the gradient profile across the Delson fault. 

This gradient curve was obtained from the gravit y profile A-B by 

taking the difference in the observed gravit y values between two closelY 

spaced points and dividing this difference by the distance separating 

the two points. The gradient attains the maximum value of 0.47 milli-

gals per 1000 feet near x = - 0.3. Thus the position of the maximum 
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gradient is very close to the fault trace, indicating that the Delson 

fault is very near~ vertical. However, for a verticalfault, the 

maximum gradient occurs direct~ over the fault trace and the gradient 

curve is perfect~ symmetrical about the fault trace. The gradient 

curve of Figure 66 is not perfect~ symmetrical, the gradient decreasing 

slight~ more rapidly on the north side than on the south. side. This 

shows that the Delson fault dips very steep~ to the north. In order 

to obtain an approximate value of the inclination of the fault plane, 

we calculate the following function: 

~(x) 
d~ 

=xëbC-~ 

where ~ is the gravit y anoma~ of the Delson fault. 

It is shown earlier that the limiting values of ~(x) for very large 

values of x in the positive and negative directions have the values 

2Gô(cro - cr r)(~ - a) and -2Gô(cro - crr)(~ + a) respectivelY. Hence the 

sum of the limiting values of ~(x) in the positive and negative 

directions has the value 4Gl3ô(crr - cro). Thus, knowing the limiting 

values of Gm(x) and ô, an approximate value of 13 may be obtained. 

Figure 66 shows the function ~(x) calculated for the Delson 

faultfrom the gradient and the gravit y profile over the fault. The 

limiting value of Gm(x) trom Figure 66 appears to be about 1.0 and 

-0.8 milligals so that the sum of the two limiting values is about 0.2 

milligals. Substituting ô = 0.9, (cr r - cro) = 0.22 gives 13 = 0.12 

radians or 7 degrees. We thus conclude that the Delson fault is a high 

angle normal fault whose fault plane dips about 830 towards the north. 
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To find the depth to the basement we use the value of the 

maximum gradient. It was shown earlier that for a single fault the 

horizontal gradient is given by 

dg 
---2. 
dx 

For a fault truncating a series of N beds the expression for the 

horizontal gradient at x = 0 is derived in Appendix B (see equation 3b) 

and is given by 

d~ 
dx 

+ • • • • PN+l Log(l + -!--) 1. 
N+l 5 

Pl' = (P. - P. 1); i = l, 2, •••• N 
l l-

From above it is clear that in order to calculate the depth to the 

basement, zN+l' we require the knowledge of the depths from the surface 

to the top of each bed and also the densities of each bed. Since the 

depths are unknown, an approximate solution may be obtained by giving 

a uniform density to the Paleozoic sediments and assuming that the 

entire gradient is due to the .'basement step at depth zN+l' 

It was shown earlier that the maximum slope of the gravit y 

curve for any value of a is very nearly equal to the maximum slope for 

a = 900
• Hence the formula for the maximum gradient of the basement 

step becomes 



where 

d~ = 
dx 
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- ô ) 2G(0 - 0) Log(l + -
r zN+l 

o is the density of the basement rocks. r 

o is the average density of the Paleozoic sediments. 

zN+l is the depth to the basement on the south side of the 

fault. 

Substituting in the above equation the values obtained earlier for the 

maximum gradient and the displacementô, and taking or = 2.90 gm/c.c., 

cr = 2.68 gpjc.c., we find the value 1300 feet for the depth to the 

basement on the south side of the De1son fault. From geologica1 

considerations, the actua1 depth to the basement should be somewhat 

greater, probably about 1500-1800 feet. 
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Interpretation: The gravit y anomaly of the De1son fau1t does not 

approach zero va1u~s for large positive and negative values of x on 

either side of the fau1t trace. The first derivative of the anomaly, 

however, approaches zero values as shown in Figure 66. In order to 

ob~ain the transfor.m of the gravit y anomaly of the De1son fau1t, 

therefore, we perfor.m a Fourier analysis of the first derivative of 

the gravit y anomaly. As mentioned in the last chapter, the Fourier 

coefficients, an1 and bn1, of the first derivative of the anomaly will 

be proportiona1 to the Fourier transfor.ms, R1(nwo) and X1(nwo) respect­

ively. Having obtained R1(nwo) and X1(nw
o)' the Fourier transfor.ms, 

R(nwo ) and X(nwo)' of the gravit y anomaly or the transfor.ms, R2(nwo) 

and X2(nwo)' of the second derivative of the anoma~ can be obtained'as 

discussed in the last chapter. 

The fundamenta1 wave1ength (21) chosen for Fourier ana~sis of 

the gravi ty data is 21. 21 uni ts • This inter1J'éi.1 was di vided into 100 

equ.a.1 increments, tix. = 0.2121 units. The first derivative was obtained 

by ta king the gravit y difference across each increment, 6 x, and then 

dividing the difference by 0.2121. The ratio is approximate~ equ.a.1 

to the derivative at the mid-point of each increment. The Fourier 

coefficients, an1 and bn1, of the first derivative, g'(x), of the 

gravit y anomaly are obtained by carr.ying out the fo11owing summations 

x=L 

an1 = .1 ~ g~ (x)cos(nwox)6 x L 
x= -L 
x=L 

.1 L r bn1 = gl (x)sin(nwox) 6 x L 
x= -L 
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= Fun~ental wavelength = 211' 
2L 

= 6.2832 = 
21.21 0.3022 

The entire operation for the calculation of the coefficients 

was performed on the IBM 7044 computer. The data fed into the computer 

comprised values of L, 00
0 

and the 101 gravit y values at th~ beginning 

and end of each of the 100 equal increments. The computer first 

calculates the derivative and then carries out the summations to give 

the Fourier coefficients, anl and bnl• 

The resulting Fourier coefficients, anl and bnl, are shown 

in Figure 67. For a perfectlY vertical fault, the coefficients bn1 

should aIl be zero. Since the b 1 coefficients obtained from the . n 

field data are not aIl zero but have small values, we can conclude that 

the De1son fault instead of being vertical, is slightlY inclined. 

As 00 approaches zero, the iimiting values of Ri(w).and Xl(w) 

are given by (see Appendix F) 

Producing the curve an1 backwards, it is seen that at n = 0, 

it has the value 0.22 •. Therefore,.we have 

== 211'Qô(0' - 0' ) 
T 0 

= 2.33. 

This corresponds to ô = 820 feet. From equation "(3a), the total change 
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in gravit y, ~, due to a fault cutting a series of beds is 21TGô(a:r - (0)' 

hence we find 

As discussed in the last chapter, a second method of obtaining 

the Fourier transform of the gravit Y anomaly, g(x), is by making a 

Fourier analysis of the function G(x). The function G(x) is obtained 

by subtracting g(x) from g+oo when x is positive and by subtracting 

g(x) from -g when x is negative. The coefficients, a , and b " 
-00 n n 

obtained by a Fourier analysis on G(x), are shown in Figure 68. It 

is shown in Appendix F that for very small values of w, the coefficients 

an' and bn ' are approxima. tely gi ven by 

a , 1TGôtanS {. 2 (a - a ) + <5 (a - a )} 
n L zN+l r 0 r • • • • • (39a) 

• • • • • (39b) 

Hence the dip of the fault plane can be obtained from the relation 
a , 

n 
tanS = b , • 

n 

From Figure 68 the limiting values of a t and b t at n = 1 are n n 

-0.02 and -0.18 respectively. Hence it follows that tanS = 0.11 and 

S =€= 60
• 

Equation C39b) can also be used to find an approximate value for 

the depth to the basement if the displacement of the fault <5, the average 

density a of the sedimentary rocks, the density of the basement a , and 
r 

the density of the rocks immediately above the first bed on the downthrown 
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side, a , are known. Substituting Ô = 0.82 (obtained previouslY) 
r 

and cr, ar and ao respectivelY equa1 to 2.71, 2.90 and 2.68 gm/c.c. 

in equation (39b), the depth to the basement zN+1 on the south side 

of the De1son fau1t is found to be 1400 feet. The depth estimated 

on the basis of geo1ogica1 information is around 1500-1800 feet. 



- 174 -

The St. Rose Fault 

Introduction: The St. Rose fault, which strikes almost exactlY east­

west, is"located around Latitude 45040' N. The area surveyed was about 

15 miles to the north-east of Montreal. Several profiles were taken at 

right angles to the strike of the fault. 

Previous gravit y surveys in the St. Rose fault area by Uffen 

(1957) and Hosain (1965) indicate that the anomalY of the St. Rose fault 

is small, of the order of a milligal or so. Therefore, gravit y stations 

were established at intervals of 300 feet or less at most places. 

The general topography of the area is flat with elevations of 

most stations around 100 feet above sea level. The large intrusives 

in the St. Lawrence Lowlands, such as Mt. Royal, Mt. Bruno and Mt. St. 

Hilaire, are too far away from the present area of survey to have 

appreciable gravitational effect. 

The St. Rose fault area is underlain throughout by sedimentary 

rocks of ~brian, Ordovician and Silurian ages. Pre-cambrian basement 

rocks are believed to underlie the entire area. The sedimentary rocks 

are very flat lYing with dips rarelY exceeding 20
• 

There is no surface evidence of the St. Rose fault in the 

entire area. In order to explain the juxtaposition of :the fIat lying 

sedimentary beds at certain places, however, it is necessary to postulate 

a dislocation in the form of a fault (Clark, 1952). 

Deep well logs are not available in the area of survey. Some 
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information about the general stratigraphy of the area can be obtained 

from the St. Hubert No. l weIl at St. Hubert airport (about l2 miles 

to the south of the area) and the Mallet test hole No. l at St. Therese 

(about 22 miles to the west of the area). 

Based upon data from the above two wells and also the 

Department of Mines (Quebec) geologic reports of Clark (1952), the 

section through the St. Rose fault appears to be approximately as shown 

in Figure 69. The thickness of the Potsdam sandstone overlying the 

Precambrian varies wide~ from place to place. It is believed that the 

downthrow of the St. Rose fault is about 500 feet and the dip of the 

fault plane almost vertical. 

The density information in Figure 69 was obtained from density 

measurements made by Saxov (1956), Mc Dona Id (1964) and Hosain (1965). . 

Observations: The observed and residual gravit y profiles across the 

St. Rose fault are shown in Figure 71. The total amplitude of the anoma~ 

from peak to peak is just over a milligal. If the observed gravit y 

anoma~ is due sole~ to the density difference between the limestone and 

the shale beds, then theoretical~, the total change in gravit y from the 

single block formula is 2nGpt. Since the density contrast between the 

limestone and the shale beds is about 0.20 gm/c.c. and the thickness 

of the shale beds 400 feet, the total change in gravit y due to the shale­

limestone contact is 1.02 mg. This value for the total change in gravit y 

for the shale-limestone contact agrees close~ with the change in the 

observed gravit y anomaly over the St. Rose fault. However, the distinct 
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maximum and the minimum suggest that the observed anoma~ cannot be due 

ta a single block alone. The possibility that the sedimentary beds are 

folded or that intrusives produce the gravit y maximum and minimum can 

be ruled out since, from the known geology of the area, the sedimentary 

beds are very gent~ dipping and there is no evidence of any intrusives 

in the area. Formula (3), giving the gravit y anomaly of a fault 

truncating a series of beds was used to calculate the gravit y anomaly 

of the St. Rose fault from the known densities and thicknesses of the 

different beds as given in Figure 69. If the basement is alsofaulted 

and contributes to the observed anoma~, then the calculations show that 

the basement density must be about 2.7 gm/c.c. in order that the gravit y 

anomaly have a maximum and a minimum. While the density of the basement 

is known to vary wide~, the most probable range of basement density is 

between 2.S0 to 2.96 gm/c.c. Considering variations of the section 

shown in Figure 69, it was concluded that no reasonable combination of 

bed thicknesses and densities resulted in a gravit y anomaly exhibiting 

a maximum and a minimum wherever the basement density is in the range 

2. SO to 2.96 gm/ c • c • Moreover, the maximum and minimum can be explained 

if we assume tilat the faulting is confined to the sedimentar,y rocks above 

the basement so that the deepest faulted bed is the low density Potsdam 

sandstone (average density 2.50 gm/c.c.). 

A simplified section through the St. Rose fault is shown in 

Figure 70. In this section the limestones and dolomites are lumped as 

a single bed of density 2.72 gm/c.c. The only other beds in this 

section with different density are the shale beds at the top and the 
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sandstone beds at the bottom, both of these having densities of about 

2.54 gm/c.c. The above section through the St. Rose fault, therefore, 

approximates the case of a fault truncating a single bed of density 

contrast 0.18 gm/c.c. and thickness 3,000 feet. 
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~erpretation: The graphs of the coefficient an and bn obtained from 

a Fourier ana~sis of the gravit y anomaly over the St. Rose fault are 

shown in Figure 72. The ratio anlbn at n = l is about 0.18. Hence 

tanS ~ -0.18, showing that the fault plane of the St. Rose fault has 

a dip of about 800
• The approximate equality of the amplitudes of the 

gravit y maximum and minimum is further confirmation that the fault plane 

of the St. Rose fault is nearly vertical. 

{ 
A2(nw )J 

Figure 72 shows the graph of Log L 0 calculated from 

the coefficient sets (a , b ). 

{ 
A2(nw )} n n 

Log L 0 approaches zero, 

For large values of n the slope of 

showing that the depth to the first 

block is very small. This is confirmed by observations in the field 

which show that the glacial drift overlying the fault is about 20 feet 

thick. 

An approximate value of the product Tô can also be obtained 

from the values of an and bn at n = O. The smoothed-out curve of b , 
n 

when extrapolated backwards, intersects the y-axis at about 0.52. From 

Appendix F, at n = 0, we have 

2'11'GpTô 
L 

" 

Substituting bn = 0.52 and p = 0.18 in the above equation, we find that 

Tô ~ 2.1. With this value of Tô, equation (2) was used to calculate the 

gra vi ty anomaly of a fault. A series of curves were drawn varying ô 

from 0.1 to 1.0 and the resulting curves were then compared with the 

observed gravit y anomaly. It was found that the best fit with the 

observed gravit y anomaly can be obtained with a fault having the following 
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parameters: 

zl = 0.03 S = _100 

z2 = 3.52 p -. Density contrast -. O.lB 

z3 = 0.65 T = 3.5 
. 

4.14 ô 0 .. 6 z4 = = 

Figure 73 affords a comparison between the observed gravit y 

anomaly and the theoretical anomaly due to the above fault. 
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The Logan Fault 

Introduction: The survey area is situated about 70 miles to the east 

of Montreal. 'Logan's Line' is the name given to the zone of dislocation' 

separating the St. Iawrence and the Champlain valleys from the Appalachian 

highlands. This zone of dislocation extends in a north-easter~ direction 

from Iake Champlain to a point about 100 km south of Quebec City. Logan's 

Line has been drawn principal~ to explain several stratigraphie 

peculiarities, and the precise nature of the faulting, if any exists, 

is :p.ot known. 

Logan's fault is believed to be a high angle thrust, the older 

Sillerian formation (interbedded shales and sandstones) being thrust up 

with respect to the younger and more dense St. Germain complex (shales 

and calcareous limestones). The density contrast is, about 0.04 gm/c.c. 

(based on several weIl cores in the area). 

Observations: The reduced Bouguer anoma.ly curve is shown in Figure 74. 

Figure 75 shows the residual Bouguer anoma.~ curve after removing the 

regional. This curve has a prominent maximum and minimum and :resembles 

the curves due to a fault cutting a single bed. The subsequent inter­

pretation by the Fourier transforms is, therefore, based on the 

assumption of a fault cutting a single bed. 
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Interpretation: figure 76 shows the plot of an' b
n 

and IOg{ A:2(~o) } 
ç A2(nw )} 

from the gravi ty da ta. From the log t . L 0 curve we get a ~ 650 

for p = 0.04 gm/c.c. and a = 700 for p = 0.05 gm/c.c. The smoothed 
A

2
(nw ) 

graph of log L 0 (shawn by dotted line i~ Figure 76) for large 

values of n is almosthorizontal which shows that zl is practical~ 

zero. This agrees with the observation in the field where it is 

found that the Sillerian outcrops in the vicinity of the fault. 

Sei smic evidence shows that the thickness of the Sillerian 

bed is greater than 6,000 feet. Equation (26) was used, therefore, to 

obtain values of 'ô' for a series of values (wl , w
2

). The mean value 

of 'ô' obtained in this way is 2,500 feet. 

In Figure 77 is shown the theoretical~ calculated graphs of 

{
A2 (nw )} 

bn and log L 0 for the anoma~ over a fault having approx-

imate~ the same parameters as those estimated for the Logan fault. 

The general shapes of the three graphs' in Figure 77 agree weIl with 

the graphs of the corresponding quantities in Figure 76. 
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Diabase Dike in Grenville Township 

~roduction: A gravit y survey was carried out to investigate a diabase 

dike in Grenville township, the survey area being about seventy miles 

west of Montreal. 

Philpotts (1961) in his geological report of Grenville town­

ship has given the results of detailed mapping in this area. Grenville 

township lies north of the faulted contact beiween the Precambrian rocks 

of the shield and the Paleozoic formation of the St. Lawrence Lowlands. 

The area is believed to be underlain by Precambrian basement rocks. 

The diabase dikes in Grenville township arePrecambrian rocks 

intruded into the older Grenville and Morin series. The older formations 

are mostly quartzites, quartzofeldspathic gneisses and cr,ystallirle lime­

stones. The rocks in the vicinity of the particular dike investigated 

in this thesis are mostly cr,ystalline limestones. 

~ke most dikes in this area, the dike surveyed strikes almost 

exactly east-west. The dike reached the surface, and therefore its 

outline can be observed in the field. The width of the dike is about 

200 feet and it dips almost vertically. 

Observations: Tw'o gravit y profiles taken across the strike of the dike 

are shown in Figure 78. Gravit y readings were taken at intervals of 

thirty feet along these profiles. In Figure 79 is shown a gravit y profile 

taken perpendicular to the gravit y contours of Figure 78. This gravit y 

profile appears to be almost symmetrical about the center of the dike; 

however, a closer examination of the profile reveals that the anomaly 
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drops off a little faster towards the south than towards the north. 

This shows that the dike is dipping north at an angle slightly less 

o than 90 • 
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Interpretation: It was shown in an earlier chapter that for a vertical 

dike the maximum anoma~ always occurs over the center of the vertical 

dike and if the dike reaches the surface of the earth, the maximum 

anomaly over the center of a vertical dike is given by (see equation 

(5b) p. 57 ) 

Assuming our dike to be vertical, a value for the vertical extent of 

the dike can be obtained, since p and Xo are known approximate~. The 

measured density contrast between the diabase and the cr,ystalline lime­

stone is 0.2 gm/c.c. and from field observation Xo is about 0.1; the 

maximum anoma~ is about 0.54 mg, hence the vertical extent of the dike 

is about 900 feet. 

A Fourier ana~sis perfor.med on the gravit y data of Figure 

79 gave the Fourier coefficients an and bn shown in Figure 80. It was 

shown earlier that extrapolating the coefficient graphs, an and bn , to 

n = 0 gives the following results: 

(b } =0 - 0 n n 

It can be seen in Figure 80 that extrapolation of an to n = 0 is 

difficult. A second difference extrapolation formula applied to the 

coefficient graph gave the value of an at n = 0 of 0.44. This gives a 

value of 600 feet for the vertical extent of the dike. 
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From the coefficient graphs the function log { ~(nwo)} 
was calculated and plotted in Figure 80. Further ana~sis of this 

graph was not attempted because the curve does not show any definite 

trend for large values of n. 
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DISCUSSION 

The gravit y anomalies of two-dimensional faults and dikes 

discussed in this thesis are based upon the expression for the gravit y . 

anomaly of a single block terminated by a fault at an arbitrary angle 

of inclination. Although this single block formula is gratifyingly 

simple and is easily adaptable for calculating the gravit y anomalies 

of a large number of other two-dimensional structures, certain 

simplifying assumptions were made in deri ving this formula. The first 

principal assumption is, of course, that the faults are two-dimensional, 

whereas in actual situation they are three-dimensional. This, probably, 

is a minor source of error in cases where the fault runs to a consider­

able extent in the strike direction. The second assumption made in 

the single block formula is that the faulted beds are all horizontal 

although in actual situation the beds are usually dipping in some 

direction. The application of the single block formula to the case of 

beds which are not horizontal is bound to introduce some errors which 

will increase as the dip of the beds increase from the horizontal. In 

most cases it will be seen that the effect of steeply dipping or 

severely folded beds will be reflected on the gravit y anomaly itself, 

so that necessary caution may be applied in such situations. The 

third simplifying assumption is that the fault plane is a plane surface 

with a constant dip. Usually, however, the fault plane is a curved 

surface and the curvature of the fault plane may change quite rapidly 

with depth. Again, the rocks in the vicînity of the fault plane are 

usually highly fractured and this zone of fracture, called the 'fault-
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zone.', may be quite extensive so that assumption of a sharp density 

contrast across the fault plane may.not always be strictly valide 

Corrections for some of these assumptions may be possible; but the 

resultihg equations would be so complicated that it is doubtful 

whether they would have any practical utility. The case of a single 

block dipping at an angle from the horizontal is treated in Appendix 

A but the resulting equation is much more complicated than the 

corrésponding equation of a horizontal block so that no further 

investigation was made with the dipping block formula. It may be 

mentioned that the limitations of the single block formula discussed 

so far are present in aIl the single block formulas previously 

published, so that no easy method is available at the moment of getting 

around them. 

Coupled with the inherent limitations of the single block 

formula, there are some peculiar difficulties posed by the fault 

problem. Probably the most serious of these problems is the isolation 

of the fault anomaly from the influence of the neighbouring masses. 

Since the observed gravit y anomaly on the surface is the eombined effeet 

of aIl the subterranean masses, the sueeess of the methods will depend 

to a large extent upon how aeeurately the effeet of the neighbouring 

masses ean be removed from that of the fault.anomaly. The problem of 

isolating the gravit y anomaly of a dike may also be serious when the 

dike oeeurs with other stratigraphie features. 

The other diffieulty that one faces in interpretating the fault 

or the dike anomaly, a diffieulty whieh is eommon to aIl gravit y problems, 
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is the proper choice of densities for the overburden and the subterranean 

masses. In many new areas of investigation, the density information may 

be non-existent or ver,y scanty. Also, laboratory measurements of 

densities of core samples may not be truly representative of densities 

at depths. Wherever feasible, methods are given in this thesis which 

will enable us to obtain information about some parameters of the under­

ground structure without any density information. As an example, the 

ratios of the amplitudes of the gravit y anomaly of a fault cutting a 

single bed and also the ratio of the amplitude of the second derivative of 

the anomaly are independent of any density considerations and the dip 

of the fault plane is shown to be strongly dependent upon these ratios. 

Due to its inherent weaknesses, the gravit y method has so far 

been used principal~ as a reconnaissance tool prior to more detailed 

survey by other methods. An attempt is made in this the sis to show that 

when geological situations are favorable, gravit y can be more than a mere 

reconnaissance tool and it can give quantitative information about the 

parameters of the two-dimensional structures. For the field examples 

given in this thesis, the calculated values for the parameters all seem 

to lie within about 10 percent of the values estimated from the geological 

information. It should be mentioned, however, that the field examples 

chosen were more or less ideal structures from the point of view of 

application of the formulas. The sedimentary beds were almost perfectly 

horizontal, the regional trend was fair~ weIl established and the general 

topography was very flat lying. The simplifying assumptions made in the 

derivation of the formulas and the interpretation techniques are, there­

fore, moreor less valide For a successful application of the methods, 
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therefore, aIl a~ilable geological, drill-hole and other pertinent 

information must be taken into consideration. 

In some cases, more than one method is given in this thesis 

for calculating the same quantity •. The reason for this is that although 

the different methods are not entirely inde pendent of each other, some 

of the methods are more objective than the others. When a situation 

warrants a very accurate estimation of a parameter of the two-dimensional 

structure, i twill be interesting to find out if the same quanti ty 

calculated by the two different methods agree. As an example, it is 

shown that the throw of a fault cutting a series of beds can be obta·ined 

very easily from the total change in the gravit y anomaly due to such a 

structure provided the density contrast between rocks in the overburden 

and the basement is known. The same quantity can also be obtained by 

calculating the Fourier transform of the first derivative of the anomaly 

and taking the limit of the real part of the transform as w tends to 

zero. While calculations by both the methods should give identical 

results, the second method is more objective while the first method has 

the virtue of simplicity and ease of comprehension. The throw of the 

Delson fault calculated by both these methods gives the same result which 

in turn agrees very weIl with the geological estimate. 

In situations where a precise estimation of the parameters is 

not necessary, a qualitative idea about the geological structure may be 

obtained from the large number of curves given in this thesis. As an 

example, an approximate idea about the manner in which the gravit y anomaly 

of a dike changes with the change in the parameters can be obtained from 
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Figures 31-33 showing the gravit y anomaly of a dike asits parameters 

are varied. Situations mayalso arise when more curves are needed to 

interpret a given anomaly than those given in this thesis. In such 

situations, a desk calculator can be used or some of the formulas can 

be programmed in a digital computer after approximate values of the 

parameters have been obtained. 

The accuracy of interpretation by the Fourier transfor.m method 

depends to a large extent upon the choice of the value of L, the half­

wavelength, used in calculating the Fourier coefficients. Since the 

accuracy increases as L increases, it is of great importance that we 

have gravit y data at as large a distance as possible from the fault 

trace. The situation in the case of the'dike is not as serious, since 

the width of a dike is usually small and the gravit y anomaly becomes 

very small at a relatively short distance from the dike. The grid 

interval chosen for calculating the Fourier coefficients de~ends upon 

the gradient of the gravit y anomaly itself. If the anomaly changes 

slowly, i.e. it has a small gradient, the grid spacing may berelatively 

large. On the other hand, if the anomaly has large gradients at some 

parts of the curve, the grid interval must be so chosen that no part of 

the anomaly with a large gradient is neglected. The grid spacings also 

determine the highest harmonic that we can obtain from the Fourier 

analysis of the gravit y data. The wavelength of the highest harmonic 

obtainable is equal to twice the grid spacing chosen. 

Calculations involved in obtaining the Fourier transforms of 

the gravit y data are long and tedious. An IBM 7044 digital computer has 
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been used to make aIl the calculations in this thesis. In order that 

the method of interpretation by the Fourier transforms may be readily 

usable, a comprehensive scheme for obtaining the Fourier transfor.ms 

from the gravit y data will be very useful and needs further investigation. 
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CONTRIBUTIONS TO KNOWLEDGE 

The formulas for the gravi ty anoma.ly of a single block and 

for a tault cutting a single bed are given by Geldart et al. (1966). 

The original contributions to knowledge claimed in this thesis are as 

follows: 

1) Derivation of a formula giving the gravit y anoma.ly of a fault 

cutting any number of beds having any density distribution and thickness 

of the different beds. 

2) Derivation of a formula giving the gravit y anoma.ly of several 

parallel faults cutting a bed. 

3) Derivation of the formula giving the gravit y anoma.ly of a 

dike inclined at an arbitrary angle and having any vertical extent. 

4) From a combination of the gradient and the gravit y anomaly 

profiles across a fault, simple expressions are obtained which give 

information about the parameters of the two-dimensional fault such as 

thedip of the fault plane and the throw of the fault. 

5) Expressions are obtained in a polynomial form for the 

positions of the zero, the maximum and the minimum of the second 

derivative profile across a fault. 

6) Expressions are obtained for the vertical gradient of gravit y 

across a block and a fault cutting a single bed. 
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7) The Fourier transform formulas are obtained for the gravit y 

anomalies across a single block, a fault cutting a single bed, and a 

fault cutting a series of beds and a dike. 

8) ~pressions are obtained for the Fourier spectrum of the 

gravit y anomalies across a fault and a dike. The Fourier spectrum is 

shown to contain information about the "depth and the inclination of 

the anomalous structures. Under suitable circumstances, valuable 

information about the throw and the thickness of the faulted bed can 

also be obtained from the Fourier spectrum. 

9) Simple expressions are obtained for the limiting values of 

aIl the Fourier transform formulas for ver,r small values of w. These 

limiting values are of particular interest because these can give quick 

and reliable information about some parameters of the two-dimensional 

structures. 

10) A method is given for obtaining bhe Fourier transforms of the 

field data by making a Fourier analysis of the data. B.1 slight ad just­

ments, this method can be used for obtaining the Fourier transforms of 

aIl types of two-dimensional structures discussed in this thesis. 

Il) The suitability of the new formulas and the applicability of 

the interpretation techniques are tested on the gravit y anomalies across 

three faults and a dike. The results obtained by the new methods are, 

in most cases, in very good agreement with the known geology of the 

surveyed areas. 
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APPENDIX A 

Gravi ty Anomalv of a Semi-infini te Bed 

The attraction of an infinite~ long straight line of 

density p per unit length is 2Gp/r, G being the gravitational constant, 

r the distance from the given point to the line. Starting from ~his 

expression, the vertical component of gravit y at the point P in Figure 

81 for the semi-infinite plane corresponding to the positive half of 

the x:y plane is 

g = 2Gp fOO cos ~ dy/r 
0 

1'/2 = 2Gp d~ 

-0 

= 2Gp(1/2~ + e). 

When a is infini te or b zero, 0 equals 1/ 2~ and g = 2~Gp, 

the familiar result for an infini te plane. When the quanti ty • a.' is 

negative, the point P is left of the x-axis and 0 is negative. 

Figure 82 shows a horizontal bed of thickness t truncated by 

a plane dipping at an anglè a. The vertical component of gravit y at P 

is given by 

OOz. ) 
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FIG 81. Ca1cu1ation of attraction of a semi-infinite 
horizontal plane 
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Since tanÇ) = tana + x/z, 

therefore 

and 

Writing 

and noting that 

dz = -x cos2 a csc2 (El - a)dEl, 

reiz = -x cos2a&Elcsc
2

(El - a )d~ 
= x cos2a[Elcot(El - a) - log 

~. = (El. - a), i = l, 2, and J. J. 

FJ.. = 2Gp(~.cot~. - log sin ~J..)' J. . J. 

sin 

(cot~2 - cot~l) = (AC-BC)/CP in Figure 32, 

the final result can be written 

• • • • (1) 

The quantities x, a, ·13, Ell , El2, ~l' ~2 are positive as shown 

in Figure 32. Thus, x is positive when P is to the right of the fault 

trace, a and Eli are positive when measured in a clockwise direction from 

the vertical, a and ~i are positive when measured in a clockwise direction 

from the fault plane. If a is greater than 1/2n, a is negative and the 

fault dips downward to the right. 

The term log sin ~i is meaningless if sin ~i is negative. 

However, the quantity Fi always appears in pairs, such as (F2 - Fl ), 

representing the effects of the upper and lower surfaces of a bed. In 

these expressions the two values of ~i always have the same sign, hence 

the expression (F2 - Fl ) contains the term log(sin ~~sin ~l) where the 

ratio of the sines is always positive. Also, the quantity, ~icot ~i' 

is always positive. Therefore Fi can be regarded as an even function of 
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Wi having the same value regardless of the algebraic sign of Wi. 

To obtain the gravit y effect of a truncated bed lying to the 

left of the fault plane, the effect of an infinite bed is added to the 

effect of a truncated bed to the right of the fault plane, the latter 

having a negative density. The result is 

AIso, 

Limi ting values of g: gs depends upon several parameters as weIl as the s 

variable x, and the limiting values of gs in certain cases are important. 

(a) x approaches ±~. As x becomes ver,r large, W. approaches 
~ 

the value a or (a - ~), according as x is positive or negative. When x 

is positive and much larger than zi' 

W· 
~ 

(a - z./x) 
~ 

Wi cot Wi acot a + (a 2 cot a)z./x, csc a-
~ 

log (sin W2 /sin WI ) - - (t/x)cot a, 

and gs 2~Gpt • 

In the same way it can be shown that gs approaches zero as x 

approaches - 00. 

(b) x approaches zero. When x = 0, Wi is also zero, 

hence 
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therefore, when x = 0, 

g = 2Gp(~ - a)t = 2Gp(1/2~ + 8)t. s 

(c) a approaches ° or ~ (8 approaches ± 1/2~). When 8 is 

equal to ± 1/2~, 0i also equals ± 1/2~ and 1/Ji vanishes. Therefore the 

term (F2 - FI) reduces to 2Gp 10g(rIlr2), so that 

gs = 2~Gpt when 

= ° when 

a = 0, i.e., 

a = ~, i.e., 

8 = + 1/2~, 

8 = - 1/2~. 

(d) Depth to the top of the bed approaches zero. As zl 

approaches zero, 01 approaches ± 1/2~ according as x is positive or 

negative. Therefore, when zl = 0, 

1/Jl = a = 1/2~· - 8 when x is positive, 

= a-~ = -(1/2~ + 8) when x is negative. 

(e) Depth to the top of the bed approaches infinity. Writing 

z2 = zl + t, and allowing zl to approach infinity, it will be seen that 0i 

approaches 8, hence in the limit 1/Ji vanishes. Also 

sin 1/J2/ sin 1/Jl = r-!r2 = l 

when zl is infinite. Therefore (F2 - FI) vanishes for zl infinite, and 

g = 2Gp( ~ - a)t = 2Gp(1/2~ + 8)t s 

when zl is infinite. This is the same value as that at x = ° when zl is 

finite. 
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Derivative of gs with respect to x: Omitting the constant ter.m, we have 

Then, 

Since 

We have-

Therefore, 

dg s 
dx 

F. = 2Gp(~. cot ~. - log sin ~.), 
]. J. J. J. 

dF. 
---1.= 
dx 

2 dljJ. 
2Gp(cot I/Ji - ljJi csc I/Ji - cot ljJi) ~ 

2 d0i - -2GPtp,. csc lP..-
d J. J. x 

= -2GpljJ. csc2 1/J.(cos20./Z.) 
J. J. J. J. 

From Figure 82, we see that 

hence 

x 
sinljJ. 

J. 

= --!f.... = cosl3 

z. 
J. 

cosl3cos0. , 
J. 

• • . • (6) 

When x = 0, the second term is indeterminate; however, on 

substituting 

I/J. = 0. - 13 
J. J. 

= tan 1jJ. 
J. 

the ter.m reduces to zero for x = 0, hence, at x = 0, 
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= 00 when Z l = O. 

dg 
Second derivative of gs with respect to x: 

(6), we have 

Differentiating s . -1.n 
dx 

. . . . (7). 

Formula for a dipping bed: To obtain the result for a dipping bed, it 

is necessary to return to the formula for the attraction of the infinite 

straight line and derive the formula for a dipping semi-infinite plane. 

Referring to Figure 83, ABCD represents a portion of a plane which is 

infinite in the +x and -x directions and which dips downward to the 

right at an angle~. Taking the y'-axis as the projection of the y-axis 

onto this plane, the vertical component of gravit y at P is 
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y' 

g = 2Gp f cos 1; <!:yt Ir. 
o 

But y' = c sin (; - 0)/cos (; + $), 

so that 

where 

r = c cos (0 - $)/cos (~ + $), 

g = 2GPJCOS ~d;/cos (;+ $) 

= 2Gp 1 cos (Dl - 0) dW/cos W 

W = ; + $, and the limits of the integral are wl = ~ + ;, 

W = $ - 0. The final result is o 

g = 2Gp COS$G0 + ~) + tan $ log {cos ($ - 0)/cos (~+ ~)}J 

= 2Gp cos $[( 0 + ~) + tan $ log (r/cB. 

If the dipping plane goes to infinity in the down-dip direction, 

r is infinite and consequent~ g also becomes infinite. Therefore one 

must use beds of finite length in the direction of the dip. However, the 

resulting formula, equivalent to equation (1), is so complex that it is 

useless from a practical viewpoint. 
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APPENDIX B 

Gravit y Anomal.v of a Dipping Fault 

From Figure 7 it is evident that the gravit y expression 

for a fault can be·obtained by adding together equations (1) and (ltt) 

gi ving the result .. 

• • • • (2) 

The first term on the right-hand side represents the effect of 

the unfaulted infinite bed, the second the effect of displacing part of 

this bed. 

Limiting values of Bf~ Limiting values are easily found by considering 

the limiting values for the two truncated beds making up the fault. The 

expression for gf can be regarded as the sum.of the effect of an 

infinite bed and the ef~ects of two truncated ~eds which differ only 

in the sign of p and the depth to the upper surface of the bed. Hence, 

for those cases where the limiting value of gs is inde pendent of depth, 

the limiting value of gf is 2lTGpt. These cases are: 
1 

(a) x = ± 00, 

(b) x = 0, 

(c) a = ° or a = lT. 

As the displacement of the fault becomes ver.y large, the effect 

of the lower bed approaches 2Gp(lT - a)t, that is, (F
4 

- F
3

) approaches 

zero. Therefore, for infinite displacement, 

gf = 2lTGpt +x sin2a (F2 - Fl ). 
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Derivative of gf with respect to x: Proceeding as for the single bed, 

one obtains 

At x = 0, the last bracket on the right-hand side has a 

limiting value of zero, hence the slope becomes 

dgf = 
dx 

= 2GP sin2a log{ (1 + a)(l + b)/(l + a + b)} 

where a = t/zl , b = 1 + d/zl , d being the displacement. For zl = 0, 

the slope at the origin is infinite. For large displacement t~e slope 

at the origin becomes 

dg! = 2 me 2 Gp sin a 10 g (1 + a). 

Derivative of l1n with respect to x: From equation (3) we have, 

Differentiating each term within the brackets in the above expression 

and using equa tion (6), we have 

where Pi = a. - a. 1; i = l, 2, ••• N 
]. ].-

and PNtl = aY' - oN 
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At x = 0, 

d~_ 
dx 2Gcos a Pl log (1 + --) + P2 log (1 + --) 2 t ô Ô 

zl z2 

+ •••• PN+l log (1 + ~)} 
zN+l 

(3b) 
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APPENDIX C 

2 1L(d gf) Roots of the Equation = 0 
dx dx2 

Equation (8), p.8~ .gives 

Differentiating with respect to x and writing qi = ~ ,we f~d 
l. 

where 

H. 
l. 

= 
8Cl:i. tan 13 + ~ + 2sec213 

2 2 sec 13 + 2qi tanS + qi . 

The derivative of f(x) is given by 

2 t t t t 
Ft(x) = - - f(x) - (H - H + H - H ) x 2 1 3 4 

where 

+ 4qi 4 + 4~ tan13sec
2

a + 12qi3tana) } 

where 2 2 A = 8qi tana + 6qi + 2sec a 

and 
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APPENDIX D 

The Vertical Gradient of Gravit y Over a Single Block 

The vertical gradient of gravit y due to a block may be obtained 

by differentiating g with respect to z. We shall, however, obtain the s . 

vertical gradient expression from first principles. 

From Appendix A, the vertical component of gravit y at the point 

P in Figure 82 for the semi-infinite plane corresponding to the positive 

hall of the x:y plane is 

Substituting cos~ = z/r and differentiating the above 

expression with respect to z, we obtain for the vertical gradient of 
. 

gravit y at P for the semi-infinite plane 

= 2GP(OO 1
2 

(1 _ 2~2) dx 
Jo r r 

= _ Gp sin20 
z 

To obtain the vertical gradient of gravit y due to a block 

whose upper and lower surfaces are at depths zl and.z2, we integrate 

the above expression between the limits zl to z2. Hence the vertical 
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gradient of gravit y due to the block is 

sin2e" dz 
z 

sinecosedz, 
z 

Since tane 
x 

= tanl3 + -
z ' 

referring to Figure $4, we have 

cose 
l 

= 

1 2 x 2/ 2 
sec 13 + ~anl3 + x z 

and sine = tanl3 + xLz 

( 2 x ,2/ 2 
\ sec 13 + ~anl3 + x z 

Substituting these values of sine and cos0 in the integral, we have 

âg 
--.s. 

âz ~
Z2 

= -2G x + ztanl3 
p 2 2 2 

z sec 13 + 2xztanl3 + x 
zl 

The Vertical Gradient Over a Fault Truncating a Single Bed 

To obtain the vertical gradient of gravit y over a fault truncating 

a single bed, we subtract from equation (9) the effect of a similar second 
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FIG 84. 
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block whose surfaces are at depths z3 and z4' The vertical gradient of 

gravit y over such a fault is, therefore, given by 

• • • • (10) 

ag
s Limi ting value of Tz as x --~ 0 

As x approaches zero the argumentsof both inverse tangents in 

(9) approach 00 and hence aIl the angles approach n/2 and cancel each 

other. Therefore, 

lim ag 
x -;. 0 (a :) = 

dgf Limiting value of Cf:Z as x -~ 0 

Applying the result for the single block, the limiting value of 

agf as x --~ ·0 is given by 
dZ 

agf = 
az 
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APPENDIX E 

Fourier Transform of 

2 
d gs 

dx2 

From equation (14), we have 

2 
2K { 2-

1 d gs 
= - x (1 + tan 02) 

d x2 

where tan0. x x = tanS +- = a +- = 
J. z. z. 

J. J. 

(1 + tan201 ) -IJ 

~. ; 
J. 

a = tanS, i = l, 2. 

The Fourier transform of the typical term in the above expression 

is given by 

100 e-jw:x: 
= - 2K -x""';( 1~+-~-2-) dx 

-00 

• ~ • • (36) 

where m = wz 

Equation (36) can be evaluated by contour integration in the complex plane. 

Writing z =x + "jy, sa that z is the complex variable (instead of depth), 

and referring to Figure 85, the path of integration is along the real 

axis from A to C, then back to A along the semi-circle D whose radius R 

is large compared to unity. The point z = a is avoided by making a small 

detour along the semi-circle B. Then, 
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FIG 85. Contour integration in the complex plane 
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f 
As R approaches infinitythe last integra1 vanishes. A1so, when the 

- -jmz -jma 
radius of B is sma11, -e 2 ~ e , (z - a) = - r cos~ - jrsin~ 

1 + z 0 1 + a2 

- jrej~d$. Therefore, 
o~_ 

= - reJ ,dz 

lez -jmz -jma jW 011' -jma e dz 0 e 0d~ .J e = = 
- a)(l + z2) 

. 2 J 
(1 + a2) 1 + z 0 

Hence 

jez -jmz 

100
00 

-jmx o -jma e dz e dx: + ,]1re 
- a)(l + z2) (x - a)(l + x2 ) (1 + a2) 

In the limit, when r = 0, the above equation is exact. 

The 1eft-hand side of the last equation equa1s - 21rj times 

the residue at z = - j, the on~ singularity enc10sed by the path of 

integration. Therefore, the 1eft-hand side equa1s 

lim {( z + rj) e - jmz } 
- 21rj Z __ ~ 0 2 

-J (z - a)(l + z ) 

-m -1re = (a + j) 

so that 

-m -1re 
Ca + j) 

and we obtain fina1~ 
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Thus, 

= (2+':2) [e -m(acosma + sinma) + j { e -m(asinma - cosm)+ l} J 
But 1 1 2 2 = 2 = cos f3, and we can take out cosf3 inside 

(1 + a ) (1 + tan (3) 
the brackets and so obtain the result 

Where 

F2 (w) = ct_OZ {S:ilJh - jCOsh} + jCOS~ 
C = 2nK cosf3 = 2n Gpcosf3, 

h = (ma + (3) = (wztanf3 + (3) 

Let F2S(W) . = R2S(W) + jX2S (w). Adding together the effects 

of the two interfaces, we obtain 

-wz -wz 
= c(e 2Sinh2 - e lsinhl ) (16a' ) 

. • . . • (16b') 

Alsa, z2 = zl + T, hence 

-wz -wz 
e 2sinh2 - e lsinhl 

-wz l -wT 
= e {e sin(hl + wTtan(3) - sinhl } 

-wz 
= Me lsin(hl + cp) 

and 
-wz -wz 2 1 e cosh2 - e coshl 
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"-ooz 
= Me 1coS(h1 + ~) 

where tan~ = 
1/2 

_...;s;.;i:;:.:n,.,< oo;;;.:Tt::..:;;::;:a:;:.:n.:;;.B 4) _; M = {1 + e -2ooT -2e -ooT cos (ooTtanB )} 
cos(ooTtanB) _ e ooT 

Hence 
-ooz 

= cMe l sin(h
1 

+ ~) {16a) 

• • • • (16b) 

Considering next the case of a fau1t, we write 

T = z2 - zl = z4 - z3 = thiclmess of the bed, 

ô = = displacement of the fau1t. 

Then, 
-ooz -ooz 

(e 4Sinh4 - e 3 sinh3 ) = 

so that 
-wz -ooz 

R
2f

(oo) = cM {e l sin(h
1 

+ ~) - e 3sin(h
3 

+ ~)} 

-ooz 
= cMNe l sin(h1 + ~ + n) 

Similar ly we find 

where tan n = sin(ooôtanB) 

cos(ooôtanB) _ e OOô 

1/2 

[ 
-2ooÔ -wô ( )}-N = 1 + e -2e cos ooôtanB " "" 
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APPENDIX F 

Limiting Values of the Fourier Transforms as 00 --~ 0 

Limiting value of RSC 00) as 00 --~ 0 

We have from equations (16a') p. 225 and (15) p. Ill, 

We shall first calcula te the limi ting value of the typical term in the 

above expression, that is, 

Ii.m fce -oozsin( ooztanS + S )~ 
oo--~ 0 2 

'- -00 

Expanding the numerator in powers of 00 and neglecting terms involving 

cubes and higher powers of 00, we obtain 

= 

= 

c lim 
w--~ 

122 
(1 - wz + ~ z ) E 2 2 2 \1 

o ~oo2 cosS(ooztanS) + sinS(l - 00 z tan a~ 

c sinS lim o{ (1 - wz + ~iz2)(1 + wz _~2z2tan2a1 
w--~ 

( 22 2 ) c . S lim 00 z sec S - 2 '2 sJ.n 
W-_:) o 00

2 

The limiting value of RS(oo) may be obtained by adding together 

the effects of the two interfaces at zl and z2 
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Hence c. 2 (2 2) = 2 SlnaSeC a z2 - zl 

• • • • (25a) 

In the same way, we find tha t 

As before, 

c { e -"'cos(~tana + al} Lim 
00 --~ 0 

= c lim 
w --~ 0 

1 2 2 
(1 - wz + 2 00 z ) r,." 1 2 2 2 J 

002 " [osa (1 - 2" w z tan a) - sin8(ooztan 'a J 
122 

(1 - ooz + 2 00 z ) (. 2 1 2 2 2 
. 2 l - ooztan a - 2 w z tan a) 

00 
= c cosa lim 

00 --~ 0 

= 1 2 1 2 2 2 
c cos6 lim ;2 (1 - oozsec a + 2 oo.z sec 6) 

00 --1* 0 00 

hence, lim 
w --~ 0 

• • • • (25b) 

The limiting value of Rf(oo) can be obtained by adding to the 

above result for RS(OO) the effect of the interfaces at depths z3 and z4. 

Thus, lim 
00 --~ 

= - 21TGpTôtan6 • • • • (25c) 



Similarly, we have 

llm 
00 --7> 0 
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= -2côTseca 
2. 

= -2'ITGpôT. 

Limiting values of R (00) and X (00) as 00--1 0 m m 

• • •• (25d) 

From equations (19a), p. 115 and (15), p. Ill, we have 

I\n(00) = 

The above equation is equivalent to the sum of the transforms of the 

gravit y anomalies of N + 1 single blocks.. The limiting value or I\n(w) 

can be obtained by finding the limiting value of the transfor.m for each 

block separately by the use of equation (25a) and then summing the effect 

of aIl the eN + 1) blocks. Since Zif = zi + ô, we thus have 

llm 
00 --~ 0 
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Now, 

= Mean density of the top (N + 1) beds. 

Hence 

Lim R (w) 
w--~ 0 m 

Simi la rly, 

Lim X (w) 
w --? 0 m 

Lim 2ô(N + 1) (a - a )} r 0 

w --~ 0 w 

= -00 . • • . (25f) 



- 231 -

Limiting values of R1(w) and ~(w) as w --~ 0 

From equations (16a) and (15), p.lll~ the Fourier transforms 

Rl(w) and Xl(w) of the first derivative of the gravit y anoma~, gs' 

are given by 
. -wz -wz 
cee 2sinh2 - e lSinh

l
) 

w 

-wz2 -wz 
-cee cosh

2 
- e lsinhl ) 

w 

To find the limi ting value of ~S ( w) as w --~ 0 we expand the 

ter.ms within brackets in powers of w and neglect terms containing powers 

of ~ greater than the first. Taking a typical ter.m, therefore, we have 

c -wz ( ") w e cos wztanS + S 

- ~(l - wz){ cosS - sin(wztanS)sinS } 

oh ccosS(l )(1 2 ) w -wz - wztan S 

ccosS( 2 ) - w 1 - wzsec f3 • 

Combining the effects of the two interfaces at zl and z2' we 

have 

Lim RlS(w) 
ccosf3( 2 = w z2 - zl) wsec f3 

w --~ 0 

. cTsecS 

. 
2'lTGpT = . 
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A similar analYsis for the imaginar,r part gives 

Therefore, 

c -wz ( ) w e sin wztanS + S -

Lim XIS(w) = 0 
W --~ 0 

c . Q W S1.n.., 

The limiting values of the transform of the first derivative 

of gf can be obtained by adding to the results for a block the effect 

of the two interfaces at z3 an~ z4. It is evident that both Rlf(w) and 

Xlf(w) tend to zero as w tends to zero. 

Limiting 'va,±ue of F [gD - feX)} as w --~ 0 

If g:.w.v... and g are the limiting values of f(x) as x approaches 
TU.J -00 

+00 and -00 respectivelY, the corresponding limiting valuesof the function 

gL - f(x) are (gL - g+oo) and (gL + g-od respective~. It has been shown 

in Chapter IV that the Fourier transform of· the function f(x) may be 

written in terms of the transforms of the functions gL - f(x) and gL. 

Thti.s, 

The limiting values of the left-hand side of the above equation can be 

obtained by finding the limiting values of the two transforms on the 

R.H.S. of the equation. 

It has been shown in Chapter IV that 



- 233'-

= 

since g+oo + g-oo = total change in gravit y due to the block. Then 

from the above equations plus equations (25a) and (25b), page, 2.2.8 

If R ' S 

values 

and 

= r Lim 2~GpT + 1T(g+oo - g-oo) ô(w)l E --~ 0 JW J 

- 21TGpT Lim 
W --:)l 

and XS' are the real and the imaginary parts 

of F {gL - f(X)} , we then have 

of the limiting 

• • • '. (3Sb) 

since ô(w) = ° when w f 0, for very small values of w the limiting 

value RS' is approximately given by 

R ' S . • . . OSc) 



- 234 -

For a fault cutting a series of N beds, the corresponding 

limiting values R , and X , for ver,y small values of w are given by m m 

R , = -. Gd tanll EZN+l (crr - al + ~(cr - cr ,j m r 0 
. . . . (39a) 

X , = -nGô ~ZN+I(ar - a) + ô(a - croD m r . . . . (39b) 
0, • 

- aozl + altI + .•.. aNtN where a = 
zN+I 
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