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ABSTRACT

INTERPRETATION OF GRAVITY DATA DUE TO FAULTS AND DIKES

BY

BIJON SHARMA

Formulas are given for the gravity amomalies of:several types
of two-dimensional faults and dikes,such as a single fault cutting a series
of beds, several parallel faults cutting a bed or a dike inclined at an
arbitrary angle to the vertical.

Meth.ds of interpretation of the gravity anomalies of - two-
dimensional structures based upon the first and the second horizontal
derivative qf gravity are discussed .Expressions are obtained showing the
relationships between the parameters of the various two-dimensional str-
uctures and the position and amplitude of the second .derivative maximum
and minimum.

The Fourier transform formulas for the gravity anomalies of
the two-dimensional structures are derived. For small values of w ,the
Fourier transforms give valuable information about the parameters of the
structures.Under favorable conditions the amplitude spectrum of the Four-
ier transforms can give information about the depth as well as the incli-
nation of the anomalous mass.

The validity of the new formulas and the suitability of the
new interpretation techniques are tested by comparing results obtained

from field measurements with the known geology of the structures.
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LIST OF SYMBOLS AND VARTABLES

The following is a list of some of the important symbols

and variables used in this thesis:

Universal gravitational constant.
Horizontal distance.
Vertical depth.

Depths to interfaces 1, 2 .. . N+ I.
respectively.

x/zi
Density contrast expressed in gm/cc.

Density of a particular bed or formation
expressed in gm/cc.

Vertical displacement of a fault.
Vertical displacement of a fault.

Vertical displacements due to faults 1 and 2,
respectively.

Thickness of a bed.

Thickness of a bed or the vertical extent of
a dike.

Dip of the fault plane or of a dike.
Complement of the dip angle = % - o
Half-width of a dike.

Width of a dike.

Half the horizontal distance between two parallel

faults.
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£1(x)

f"(x)
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dx ? dx

og
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agf

az

(vi)

Horizontal distances of secondary faults 1 and
2 from the principal fault.

The vertical component of the gravity anomalies
due to a single block, a fault cutting a single
bed, a fault cutting a series of beds and a
dike, respectively.

2Gp(wid COtwid._ log sinwid).

eid - B-
X +-xb
tanB + .
Z.
i

’ ! .
2Gp(wid coty, .t - log 31nwid').

e.." - B.

X X
+ (0]

tanB + ~
i

First horizontal derivative of f(x).

Second horizontal derivative of f£(x).

The gradient or the first horizontal derivative
of the gravity anomalies g_, g, and &2 respect-
X s’ °f

ively.

The first vertical derivative of the anomalies
8 and 8> respectively.

dgs
X 7= - g,- Similar expressions hold for Gf(x)

dx
and Gm(x).

Second derivative of the gravity anomaly due to
a fault.

The minimum of gM".

The maximum of g'.



F(w)
F{f(x)}
R(w) -
X( w)

Fl(w) ) Fz( w)

R (w) 5 Xy (w)
Rz(w) ) Xz(m)
F_(0), Fplw), F_(w)

FlS (-w), Flf( m), Flm( w)

FZS(N)’ sz(w)’ Fzm(d)

6( @)
Rls(w)’ Xls(m)

RZS(N)’ XZS(m)

Ry o(w), Xyp()

(vii)

Horizontal distance from the fault trace to
the point where the second derivative vanishes.

Horizontal distance from the fault trace to the
point where the second derivative is a minimum.

Horizontal distance from the fault trace to the
point where the second derivative is a maximum.

Parameter of Fourier transformation called the
tfrequency?.

Fourier transform of the function f(x).
Fourier transform of the function f(x).
Real part of F(w).

Imaginary part of F(w).

Fourier transforms of the first and second
horizontal derivatives of f(x), respectively.

Real and imaginary parts of Fl(w).

Real and imaginary pa;ts of Fz(w)f

Fourier transforms of 8ss Bp and & respectively.
Fourier transforms of

dgs dgf dsm respectively.

dx,d.-x:-)dx’

Fourier transforms of
d2 d2 d2
Es s En respectively.

2 2 2
i & axd

Dirac té' function.

Real and imaginary parts of Fls(w), respectively.
Real and imaginary parts of FZS(w), respectively.
Real and imaginary parts of Flf(w), respectively.

Real and imaginary parts of sz(w), respectively.



le(m), le(w)

Rzm(w)’ sz(w_)

g+oo.

&0
&L
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(viii)

Real and imaginary parts of Flm(w) , respectively.
Real and imaginary parts of Fzm(w) , respectively.

Limiting value of the function g(x) as x —-» oo0.

Limiting value of the function g(x) as x =--> -co0.

810 for x>0.
{g-oo for x <O.
g - &(x).

Half the fundamental wavelength of the Fourier
series.

Fundamental frequency of the Fourier series.
Fourier harmonics.

J-1 .

Sine and cosine coefficients in the Fourier
Expansion of the function f(x).

Sine and cosine coefficients in the Fourier
Expansion of the function ft(x).

Sine and cosine coefficients in the Fourier
Expansion of the function fm(x).



CHAPTER I

INTRODUCTION

In the gravitational method of prospecting, small lateral
variation in the gravitational pull is measured on the earth's surface.
The physical property of the subsurface material which produces the
variation in the gravitational pull is small changes in density. Many
geological structures produce appreciable variations in the gravity
field due to the density contrast between these materials and the
surrounding medium., When the variation in the earth's gravitational pull
is of sufficiently large magnitude itAis often possible to detect the
presence of anomalous mass distribution from a knowledge of the

variation of the field of gravity.

Compared to the total attraction of the earth, the variation
produced by the subsurface anomalous mass distribution is very small,
and very sophisticated instrumentation is necessary to detect such
small differences in the gravitational field. The advent of very high
sensitivity portable gravimeters around 1935 greatly accelerated geo-

physical exploration by the gravity method.

Among the geologic structures favorable for exploration by
the gravity method are faults, dikes, synclines and anticlines. The
density differences between these structures and the surrouﬁding medium
often produces appreciable variations in the earth's graviﬁational field.

Depending upon the size and shape of the anomaloys mass distribution, the



gravity anomaly curve also shows wide variations; however, a general

idea about the shape of the structure can often be obtained from the

shape of the gravity curve.

In spite of the great value of gravity in the search for oil
and minerals, the interpretation of gravity data is often primarily
qualitative. The commonest method of interpreting the gravity data
is by assuming some simple shape for the causative body and then
trying to match the observed anomaly with the calculated anomaly of
the assumed structure. As an example, the gravity anomaly produced by
a geologlc fault is often analyzed by matching the observed anomaly
with the calculated anomaly due to a single step with a'vertical edge.
Interpretation based upon this simple model can give reliable inform—
ation only under the most favorable geologic conditions. Usually
faults cut through a series of beds of different densities and thick-
nesses; replacing the entire series of beds by a single bed of uniform
density is a common simplifying assumptién, but it is not always valid.
Moreover, in the step model for a fault, we assume that the down~thrown
side of the fault is at such a large depth that it has negligible
effect on the gravity observations; this also is an important assumption

which is often not wvalid.

Several authors have discussed the theoretical gravity anomaly
produced by faulted structures. Perhaps the best known of these is Shaw
(1932) who discusses the gradient and curvature anomaly due to a
single block terminated by a fault at an arbitrary angle. Other

papers relating to gravity anomaly by faults have also appeared before
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as, for example, Hedstrom (1938), Barton (1938), Nettleton (1942),
Hubbert (1948), and Romberg (1958). All of these papers have been
very qualitative and are all based upon the simple model of a block
terminated by a vertical or inclined fault. An interpreter faced with
the préblem of interpreting the gravity anomaly of a fault to extract
the maximum information from his gravity data often has to rely upon

the simplified models discussed above.

An attempt is made in the present work to obtain more
quantitative information from gravity data over two~dimensional
faﬁlts and dikes. Expressions giving the gravity anomalies of various
kinds of two-dimensional faults and dikes are derived. The gravity
anomaly of a fault cutting through a number of beds of different
densities and thicknesses and the effect on the gravity anomaly of
the down-thrown side of the fault is discussed. Interpretation
techniques are discussed for obtaining guantitative information about

the parameters of two-dimensional faults and dikes.

The starting point for obtaining the gravitational attractlon
of two-dimensional structﬁres discussed in this paper is a new formula
giving the gravitational attraction of a single block terminated by a
fault at an arbitrary angle. This formula, derived by Geldart (1966),
differs from other single block formulas,_such as those given by Jung
(1930) and Heiland (1946), in that the new formula is simpler and more
readily adaptable to obtaining formulas for other more complicated two-

dimensional structures.



For interpreting the gravity anomalies of two-dimensional
faults and dikes, the methods of interpretation based upon the
derivatives and the Fourier transform of the gravity data afe discussed.
The use of the horizontal derivative or the gradient of the gravity
anomaly due to a single block truncated by a fault at an arbitrary
angle is discussed by Shaw (1932). Rosenbach (1954) has successfully
utilized the high resolving power of the second derivative to make a
detailed study of the Rhine graben in Europe. Romberg (1958), while
emphasizing the high resolving and amplifying power of the second
derivatives, has pointed out certain inherent weaknesses of the second
derivative method of interpretation. Firstly, according to Romberg,
second derivatives are calcﬁlaﬁed from the differences between small
variations in gravity and hence are greatly affected by small errors.
Secondly, the second derivatives of grévity do not resemble the
structure that caused them and no information about the size of the
structure can be obtained from the second derivative profiles. In
spite of these shortcomings, several authors have shown that second
derivatives, when used in conjunction with gravity, can be a very
powerful tool in interpreting gravity data. In the present work,
expressions for the gradient and the second derivative of some two-
dimensional structures are derived and methods of interpreting the
gravity anomalies of these structures based upon the use of these

derivatives are discussed.

A second method of interpretation based upon the Fourier

transformation of the raw gravity data is also discussed. By the



Fourier transformation, the gravity anomaly is transformed from the
original distance domain into the frequency domain. If we transform

the data into the frequency domain and then carry out the interpretation,
we obtain certain advantages; firstly, in transforﬁing into the
frequency domain, a new function is obtained which is easier to handle
than the original function; secondly, in finding the Fourier transforms

all available gravity data are used in the interpretation.

Dean (1958) pointed out that electrical filter theory has
considerable applications to the spectrum analysis of potential field
data since many sampling operatipns, such as calculations of derivatives,
also upward and downward continuation of fields, are exactly analogpus
to the filtering action of electrical network. Odegard and Berg (1965)
made frequency analysis of several bodies of simple geometric shapes
such as cylinder, sphere, single fault with a vertical edge, and have
shown how the depth and size of the causative body may be obtained from
. the frequency spectrum of the anomaly. In the present work, Fburief
transform formulas are derived for a wide variety of geologic structures,
such as a single block truncated by a fault at an arbitrary angle,
faults cubtting a series of beds having different densities and thick-
nesses, dikes, etc. Techniques are discussed for obtaining information
about the parameters of the two-dimensional structures from the frequency

spectrum of these anomalies. -

To verify the validity of the new formulas and to investigate
the usefulness of the interpretational techniques, several gravity

surveys were carried out over known faults and a dike. Since the



geology of the surveyed structures is fairly well known, the value of
the new formulas and interpretational techniques can be evaluated by

comparing the results from our interpretation with the known geology

of the structures.



CHAPTER IT .

GRAVITY ANOMALIES OF FAULTS AND DIKES

Gravity Anomalies For Single Blocks

General: The formula and curves for a single block will be discussed
in some detail because these are fundamental in obtaining results for
more complicated forms. In addition the results for a single block
can be applied in studying faults with very large displacements and

therefore have intrinsic value in fault interpretation.

Discussion of the Formulas: The basic formulas are derived in Appendix
A where it is shown that the vertical component of gravity, 8g> due
to a horizontal semi-infinite block truncated by a plane dipping at an

angle o is given by

. R
g = 2Gp(m=a)t + x sin a(Fz—Fl) e e e (D)

2Gp (1/2748)t + x cos B(F,~F; ) e .. (D)

G is the universal gravitational constant, ¢ the density contrast, t
the bed thickness, x the distance from the fault trace to the given
point, and B the complement of the dip angle, o . The function Fi’

where i = 1,2, is defined by the relations

F, = 2Gp(¢icotyi - log sin?i),
g = (6, -B), tano, = tan$ +x/2,

i» By = depth to top and bottom of the block respectively.



Figure 1 shows the relationship between the various para-
meters. The distance x is positive when P is to the right of the
fault trace; all angles are measured in the clockwise direction, B and

Qi being measured from the vertical, ® and wi from the fault plane.

Formula (1) holds when the block is to the right of the
fault plane. When the block is to the left of the fault plane, the

formula becomes

g = 2000 - x sin°o(F,F,) Y 6 )

= 26p(1/27-B)t - x cos” B(F,~F, ) C e (1)
?

+ gy = 2uGpt.

Thus, g

It is shown in Appendix A that &g has the following limiting

values:

g, ~ Owhenx = = o or when o = +7,
= 2uGpt whenx = + o or when a = O,
= 2nGp(m-o)t when x = O or when Z; = +o®.

If all the dimensions in Figure 1 are multiplied by the factor
k, the angles, ?l and ub, are preserved and consequently the factor
(FZ_Fl) remains the same. Therefore g, is increased by the factor k.
This fact has been noted in several papers, but its full value has not
been appreciated by most interpreters. It is invaluable in deriving

curves for various depths or thicknesses from a few standard curves,
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also in reducing observed data to a standard thickness of bed or depth.

The function, Fi’ can be regarded as an even function of mi
(see Appendix A). Therefore the term (Fz-Fl) is unaltered when ¥; and
¥y both change signs. If gQ_denotes the value of g for given values
of x and g while g_ is the value of & corresponding to the values of

-x and -8, then

_21Gpt,

g, T8

. '
hence : : g, = gs.
Therefore the curves corresponding £o negative values of‘B can be
obtained by reflecting the curve for g; in the axis of 85> as shown
in Figure 2. The curves for block A and block B add up to give 2aGpt
at every point, whereas the value for block B at x =+ X, is the same
as the value for block C at x = = X,. The sum of the intercepts for
block A and either block B or block C eqﬁals 2mGpt. Because of this
relation, curves are not required for negative values of é, that is,

x greater than 900.

Curves for single blocks: gy can be expressed in terms of threé para-
meters: the dip, thickness and depth of the block. Figures 3-6
illustrate the effects of varying each of these parameters. In
calculating the values for these curves, p was given the value unity
and all dimensions expressed in units of 1,000 ft. This results in

a value of 4.06L mg/1,000 ft for 2Gp. Except for Figure 5, the curves

are for blocks of unit thickness; this rather large thickness, together



2Gp( sm+p)

g =2nGoth '
. f

— 2Gp( i)t

X=mVE <<

— X=4+VO

-8

AR\
7

SO,

FIG. 2. Relation between gg and algebraic signs of x and /3 .

(8,9

=~ == (0.5,1.5)

DISTANCE, x
+15
!

+10 +20
1 1

FIG. 3. Variation of g5 with dip.
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with the large value of p, results in amomalies which are approximately
an order of magnitude larger than those commonly encountered in field

work, a fact which should be kept in mind in studying the curves.

To simplify the discussion and labelling of the curves, the
expression (zl, 22) will be used to designate specific blocks; thus,
(0.5, 1.8) refers to a block extending from a depth of 500 £t to a
depth of 1,800 ft. This notation will be used later in an expanded

form to designate faults as well.

Figure 3 shows the effect of varying the dip. Curves are
given for two blocks at different depths, the intermediate curves

being omitted for the shallow block.

The striking feature about the curves in Figure 3 is that
all curves for a given depth are essentially identical in form. A
tracing of any one of the curves, if translated parallel to the x~axis
without rotation, can be made to coincide with any other curve for the
same depth. Although the curves coincide within the accuracy of
plotting, the agreement 1s probably not mathematically exact. Exact

agreement requires the existence of an equation of the form

gs(x, ) = g (x+h, o)

where gs(x,a) denotes that & is regarded as a function of x and @ and

the quantity h is independent of x.

If two faults having dip angles & and o, intersect at the

surface of the ground, the gravity curves resulting from the faults



truncating a given bed will be separated as in Figﬁre 3. Let h be the
horizontal distance between corresponding'points on the two cﬁrves. If
one of the faults is displaced-an amount h away from the other in the
proper direction, the two curves will coincide, that is the value of

g at any point is the same for both faults. If a vertical section is
now drawn as in Figure 4, it will be found that the twoafaults inter-
sect at a point O which is slightly above the center line of the bed.
Probably this relation is equivalent to the statement that a point O
can be found such that the values of 8 for the infinitely long wedges,

OAC and OBD, are approximately equal for every point on the surface.

The invariance of curve shape as the dip varies permits one
to interpolate readily for the intermediate values of dip. Also, if |
the location of the surface trace of the fault is known, the dip could
be found by comparing the observed curve with the curves in Figure 3

(assuming p and t are known).

Figure 5 illustrates the effect of varying the block thickness.
Results are given for two blocks, one having its upper surface coincid-
ing with the ground surface, the other having its upper surface at a
depth of 4 units. For each block, curves are given for t = 0.25, 0.50,
and 1.0 units. The dip is 90° for all curves except the dotted curwve
corresponding to a = 15° which illustrates the translation of the

curve resulting from the change in dip.

The curves are asymptotic to the horizontal lines given by

g5 = 0 and g = 2nGpt = 3.19, 6.38, and 12.77 mg respectively for the



V)

t=1, 270

+5 +10 .15 +20
DISTANCE, x

FIG. 5. Effect on gg of varying the block thickness.
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three sets of curves. The slopes of the curves at the origin depend
upon both the depth and the thickness, except when z, = 0, when the

slope is infinite ?egardlesslof the thickness (see Appendix A).

The curves in Figure 6 show the manner in which g changes
as the depth, Zqs varies when the dip is 90°. As the depth approaches
infinity, the curve approaches the horizontal straight line correspond-

ing to
g, = 1/2(2mGpt) = 6.38 mg when t = 1.

The curves for other values of dip can be visualized by mentally
displacing the appropriate curve, to the left for a less than 900,
to the right for a greater than 900, the amount of the displacement
depending upon o and the depth. For a given o and t, the intercept
on the g, axis is 2Gp(m-a)t. O and O" are two such intercepts

~ corresponding to o = 60° and o = 120° respectively.

The range of the anomaly, that is, the difference between the
values of g for x = + ®, is often used to obtain the quantity (rt).
If p is known, t can be found in this way, after which the depth 24
could be obtained by comparison with curves such as those in Figure 6.
However, if t cannot be found, the ratio (t/z)) can be determined from
the slope of the gravity curve. It is showﬁ in Appendix A that the

slope of the curve for 8 at x =0 is

-— = 26 sin“a log(1l + t/zl).

For a given block, the slope at x = O is a maximum when the dip is 90°.
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FIG. 6. Effect of depth on gs.
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If it were possible to rotate the fault plane, the gravity curve would
be displaced laterally without any appreciable change in shape as o

is varied. This would cause the origin to move along the curve, each
point on the curve becoming the origin in its turn. The slope at the
origin would reach its maximum when o became 900; however, becaﬁse the
curve would not change shape, this maximum slope would be identical with
the maximum slope along the entire curve. Conséquently, regardless of |
the actual dip, the maximum observed slope of the gravity curve is

equal to 2Gp log(l + t/z7) from which the ratio (t/zl) can be found

if p is known.

The curves in Figures 3-6 can be applied in the limiting case
of a fault having infinite displacement provided the constant term
equal to 2Gpob due to the lower block (see Appendix A) is taken into

account where necessary.
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Gravity Anomaly Of A Fault Cubting A Single Bed

Discussion of Formula: In Appendix B it is shown that the vertical

component of gravity due to the normal fault shown in Figure 7 is
- -~ L 2
gr = 2nGpot + x sin” af(F-Fy) - (F)~ ) e e (2

For the reverse fault represented by the cross-hatched beds in Figure

7, the formula becomes

g;_- = 2mGpt - x sin® “{(Fz'Fl) - (FA'FB)} c e .. (2N

When the anomaly corresponding to gp Or g; is obtained from
field data, the constant term 2nGpt will be removed automatically, at
least in large part, when the regional effect is removed. Thervefore
it will be dropped from these formulas also, except when the effect
of varying t is being considered. When this is done, the anomalies
produced by a normal fault and the corresponding reverse fault differ

only in algebraic sign.

If the signs of both B and x are changed in the expression for
s the only effect is to change the sign of B> hence curves are not

required for negative values of B.

Figure 8 illustrates the general relationship between the
geometry of the fault and the resulting anomaly (for positive p). The
negative anomaly is always over the downthrown side. For a normal
fault the amplitude of the negative anomaly is larger than that of the

positive, the opposite being true for a reverse fault. The fault
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curves presented in Figures 9-16 correspond to AB, that is, a normal
fault with B positive (a between 0° and 900), but curves for the other

cases can be obtained from them readily with the aid of Figure 8.

The notation used to designate single blocks will be adapted
to the description of faults. Thus, a fault is denoted by the
expression (Zl’ Zys Bgs Zh); for example, the fault (1, 4, 3, 6) is a
normal fault displacing a 3,000 fﬂ.bed from a depth of 1,000 ft to a

depth of 3,000 ft (depths to the top of the bed).

Curves for fault anomalies: The expression for gp can be written in
terms of four parameters: the dip, fault displacement, bed thickness,
and depth to the top of the upper block. The effects of varying

these parameters are shown in Figures 9-16. In these curves p and t

are equal to unity as before, except for t in Figures 13 and 14.

Many of the properties of the curves in Figures 9-16 are
well known in a qualitative sense, for example, the increase in
amplitude and width of the anomaly as the bed thickness and displacement
are increased, the decrease in amplitude and increase in width of the
anomaly as the entire fault is moved downward. ILess predictable,
however, are the variations in amplitude and position of the anomaly
as the dip is varied, the remarkable similarity in slope of the curves
for a given 21 in the region between the fault trace and the.minimum,

the wide range of slopes of the curves at the origin.

Probably the most striking feature of the curves is the large

effect resulting from changes in dip. The curves are symmetrical about
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the origin for vertical dip; as @ decreases from 900, the negative

anomaly increases while the positive anomaly decreases and both move

away from the origin.

The fault curves can be used to illustrate the fundamental
ambiguity of gravity interpretation. If overlays of the curves are
made, it will be found that increasing 24 by a small amount gives
approximately the same result as changing the dip by the appropriate
amount. Iikewise, a small displacement of a thick bed can cause the
same change as a large displacement of a thin bed provided the dips
are chosen judiciously. Consequently, the geometry of a fault cannot

be worked out from the gravity data alone.

In the majority of interpretive problems, the fault anomaly
cannot be isolated accurately, often as a result of the superposition
of several effects. In addition, sub-surface data are usually non-
existent or at most very sketchy. Under circumstances such as these,
it is folly as well as wasted effort to attempt to make a precise
interpretation in terms of dip of the fault plane, bed thickmess, and
displacement. Nevertheless, the foregoing curves will be useful in
defining the limiting values of the fault parameters and in analyzing

the causes of changes in the anomaly between adjacent profiles.

Determination of the fault parameters: On certain auspicious occasions

a well-isolated fault will occur in an area where regional effects can
be accurately removed. Provided sufficient sub-surface information is

available, the geometrical parameters of the fault can then be found
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using the gravity and geological data in conjunction with the fault

curves.

The problem can no doubt be solved in several ways. The
method outlined here has the virtues of simplicity and as much accuracy
as the nature of the problem warrants. It requires that the density
contrast and thickness be known for the bed producing the anomaly; the
solution is then obtained from measured values of the amplitudes of the
negative and maximum anomalies, 8 and 815 and the distance-between themn.
When the dip is small, the gravity maximum, 815 is small and the results
become inaccurate. The method is usable for o =‘300, but breaks down
by the time o has decreased to l5°. However, other techniques probably

would run into similar difficulties under the same circumstances.

The ratio (go/gl) is aﬂmeésure of the asymmetry of the fault
curve and will be denotéd by the letter A (the minus sign being dis-
regarded). For a vertical fault, A is of course equal to unity.

Values of A have been computed for dips of 30o and 60° (a few values

were computed for 150 dip also - see below) Jor a series of faulté with
upper blocks (0,1), (0.5,1.5), ....,(k,5), and for lower blocks (0.5,1.5),
(1,2)5e000...(24,25). The results may be summarized as follows:

(1) A decreases slowly as the displacement increases and as
29 decreases,

(2) A has a value between 2.6 and 3.0 for 60° dip, between 9
and 14 for 30o dip, except under the following conditions: (a) z, = 0 —
in this case A is abou£ 2.6 or 9 for small displacement and decreases to

2.3 or 6 for a displacement of 24 units, (b) z # 0, Zy 2 10z, -- when
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gz, = 10z A has the'value 2.6 or 9 and decreases thereafter as the

3 r
displacement increases until it reaches the value 2.3 or 6 when z3 =

5021.

A less extended series of caleculations for 15° dip gave
values of A in the range 25-40, but the positive anomaly is so small
for this dip that it is unlikely that meaningful results can be obtained

when the dip is this small.

Multiplying all the dimensions of a fault by a scale factor
has no effect on A. Moreover, A is independent of the density contrast,
p. Consequently A must depend only upon the dip and the ratlios z3/z1
and t/zl. The result of varying these ratios over a wide range is-
relatively small, as shown above. Therefore, to the first approximation,
A can be considered to be a function of dip only. Thus the dip can
be found from the value of A on the basis of the above summary or by
interpolation in Figure 17. If it is found later that zl.is
approximately zero or that Zg is greafer than lOzl, a second approximation

could be made; however, this probably will rarely be justified.

The principal limitation in finding the dip is the difficulty
in finding a sufficiently accurate value of the maximum, 8- The
accuracy with which the regional is removed will be critical, particularly
when the dip is less than 45°. Assuming that A is accurate within 10% |
for 60° dips and within 20% for 30° dips, it should be possible to

determine the dip within approximately + 10°.

The next step after finding the dip is to locate the fault
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trace. The abscissae of g and g1 will be represented by X, and Xy
(minus signs being ignored). The ratio B ==xb/ki was calculated for
the same series of faults that were used in calculating A. It was
found that B behaves in much the same way that A_does. The results

may be summarized as follows:

(1) when zy > 0.5, @ > 30°, then 1.0 < B £ 1.1,
(2) when z; =0, and o =60°, then 1.0 £ B £ 1.2,

(3) when z; =0, and «=30°, then 1.0 < B ¢ 1.3.

Thus, to the first approximation, the fault trace can be taken as the
point midway between the locations of the gravity maximum and the
gravity minimum. The maximum error resulting from this assumption is

about 15%.

Once the dip and the fault trace location are known, it is
possible to find 1 and Zg provided p and t are known. Th;‘procedure
is to multiply Bys 815 Xy and X by the appropriate conversion factor
to convert them to values corresponding to a bed of unit density
contrast and unit thickness (the conversion factor being l/poto where
P and to are the actual values for the given bed), aﬁé thén make

use of the appropriate charts of Figures 18-23 to obtain zq and ZB.

Referring back to Figures 11 and 12, as the lower block is
moved downward, the upper block being fixed, the minimum moves downward
and to the left. The loci of the minimum gravity value are plotted in

Figures 18-21 for dips of 90°, 60°, 30°, and 15° (the latter curves
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being principally of academic interest) for blocks of unit thickness
and a series of values of 29 and 23. The curves sloping downward to
the left are obtained by keeping Z fixed and allowing 23 to vary. The
curves sloping downward to the right correspond to 23 fixed and Zq
variable. For given values of z; and Z3, the minimum, 8q2 and its
abscissa, X, are fixed by the coordinates of the point of intersection
of the two curves specified by the values of 24 and 23. Conversely,

if &, and x_ are given, zq and z3 are fixed by the parameters of the

two curves intersecting at the point (Xb’go>'

The curves in Figures 22 and 23 are the loci of the maximum
value, 81> for dips of 30° and 60° (the curves for a = 750 are omitted
because they have little practical value). These curves are not
required normally; they are redundant because the data for the maximum
have already been used to find A and B and, through them, the dip and
Xy However, the curves may be useful in those instances where the
ratio (23/21) is large or 2, very small such that the quantities A and

B lie outside the usual range of values.

Calculation of curves: 1In spite of the large number of curves given in

this paper for single beds and faults, occasions will arise where other
curves, or perhaps more accurate curves, are required. If a large
number of curves is required for a definite range of parameters, the
obvious solution is to program Formula (2) for a digital computer.
However, even if this is done, it may be necessary at times to obtain

a small number of curves for special values of the parameters. There-
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fore a rapid method of calculating g or'gf using a desk calculator
is a valuable adjunct to the interpretation techniques given earlier.

The following methods have been used for this purpose.

(a) Formula (1) was programmed for a computer for various
values of the dip, Z15 and t; fault anomalies were then found by

subtracting the effects of the appropriate blocks.

(b) A computer was used to calculate values of the function

F(v), where

F(y) = 2Gp(¥ cot ¥ - lbg sin ¥),
for 0 <y <180; to obtain &> wi is calculated from the relations

y; = ©; - B, tan 9, = tan B +x/7;, 1 =1,2,3,k4,
the corresponding values of F, obtained and substituted in Formula (2).

(c) Isolated values of g_ or g, can be found by using the
results calculated in (a) or (b) above and then multiplying all
dimensions and gravity values by a scale factor to give the required

value of gy Or 8p-
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Fault Cutting A Series Of Beds

In the discussion of the gravity anomalies of two-dimensionai'
fault above, it is assumed that the fault truncates a single bed of-
uniform density. However, a fault cutting a single bed of uniform
density is most unusual. More often, faults cut through a series of
beds of different densities and thicknesses. If the densities and
tﬁicknesses of the different beds vary widely then the interpretation
based on replacement of the series of beds by a single bed of ﬁnifonm

density may be quite inaccurate.

To obtain the expression for the gravitational attraction of
a féult truncating a series of beds, we refer to'Figure 24 in which
FFt is a normal fault cutting through N different beds of densities Oi,
Ops O3 eeeceesecsOp If H denotes the gravitational effect due to the
part of the beds lying to the right of the fault plane FF! and below
~ the surface at d;pth %,, then from equation (1), after omitting the

constant term, we have

H = x coszeEl(Lz-Ll) Foy(TgLy) + v

1
+ ON( LI\H-l-LN) + Or( LI\H-l-LI\H-l ):,

where o,, is the density of the material immediately below the Nth ‘bed

P
in the upthrown side, the functions L, and L; for i = 1,2,3, <« (ML)

are defined by the relations
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L, = 2G(wi cot y, - log sin wi)

t t ? ?

L, = 2G(1pi cot y; - log sin wi)

= . = X
l!Ji = Gi - B3 tan Oi tan B + 7y
N r x
wi = Oi - B; tan ei = tan B + 2!
i
z; = 3z + 8§ where 8 is the vertical displacement of the
fault.

t
Similarly, if we denote by H the gravity effect of the part of the
beds lying to the left of the fault plane and below the depth Zq5 then

from equation (1), after omitting the constant term, we get

t

_ 2 ' t 1
H = -x cos®B l}o(Li_Ll> + ol(Lz—Ll) e P

' t
ON(LN+1_LN{|
where 9, is the density of the rocks immediately above the first bed

on the downthrown side of the fault plane.

The observed gravity anomaly due to the fault, &2 is given by

g = e+ = oos8[ (oge) (L) + (o) (pTg) + o -

+ (040 (Tygy imﬂ e )

The limiting values of the above functions when x is very large may

be obtained following the same procedure as in the case of the single
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block. As x becomes very large, wi approaches the value & or o-m

according as x is positive or negative. When x is positive and much -

larger than z.,

i
e
L Bl
Y. cot Y. = o cot a+(acscza-cot a)—j*
i i , <
|z
: . =%,
. rt, . _ i 1
Log(sin ¥ ;/sin ¥;) = -( - )cot o

; ' sin UJ
Hence L. . 2G Ep cot lb - \P cot IP - 1og( )

g Ly =
sin IP
2 4; =2 1_21
= 2G| ( @ ¢sc” a - cot a)( ) )cot o
_ _2Ga (&
- 2 ( )
sin”o
_ 2 _2Ga __g) -
and gm = X cos B sj_nza(x Eoo ol_) + (01-62) F oo e e e

(o azﬂ

= 2G6éa (or-co)

It can be shown, in a similar way, that for large negative

values of x, the limiting value of & is

g, = <GS (ot-'ﬂ)(o,l,-oo)
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Hence the total change in gravity due to the fault is
2‘"G5 (UI.'-GO ) . . L] e e (Ba )

The last result shows that thé'total change in gravity due to a fault
ﬁrunqating a series of beds is determined by the density difference
(cr-co), the dispiacement of the fault 6 and is independent of the dip
of the fault plane o or the density of the intermediate beds. Knowing
the density difference (or—co), the displacement of the fault can be
obtained. This result is similar to the expression for the gravity
charige due to a single block, thé£ is, 2mGpt, this also being independ-

ent of the dip of the fault plane.

In equation (2) for a fault truncating a single bed, it is
assumed that 0, = 0, SO that &n is zero for large positive and negative

values of x.

If the fault truncating the N beds has sufficiently large
displacement thét on one side of the fault plane we have N beds of
different thicknesses and densities and on the other side of the fault
plane a material of uniform density Oys then the equation giving the

gravity anomaly of such a fault may be written as

g; = jx cos<B [Eol-oo)(Lz—Ll) + (02-00)(;3—L2) +

(oy-0,,) (LN+1-LN)]

Following the same line of argument as in the case of the single block,

it can be shown that the limiting values of the above function for very
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large positive and negative values of X may be written as

%;+ = 20 [301_°o>t + (02-00)t2 + ven (oNroo)tﬁ]

t ,
g, = 2G(a~1) [}ol-oo)tl + (02—00)t2 + v (ampoo)té]
respectively.
Where ti = Zi+l"‘zi;i = l, 2, 3, ses s N

Hence the total change in gravity is equal to
2nG l:(ol-co)tl + (o,m0 )b, + .ue (cN-oo)t1£|

Figure 25 shows the curves for the gravity effect of a series
of four beds truncated by a normal fault dipping 60°. In curve I all
four beds have the same density 2.5 gm/cc and the same thickness 0.5
units while o, and o, are both 2.0 gn/cc. This curve has a prominent
maximum and minimum, the minimum haviﬁg a slightly larger amplitude
than the maximum. The effect of changing °. from 2.0.to 2.1 gm/cc but
keeping all the other variables, including O3 the same- is shown in
curve II of the same Figure. This curve also has a prominent maximum
and minimum but the amplitudes of the maximum and the minimum in this
curve are larger compared to curve I. In curve III, O, is changed to
2.5 gm/cc while all the other variables are kept the same as in curves
I and II. The difference between curves I and II on the one hand and

curve III on the other is striking, although the density distributions

are the same except for O, The effect of giving lower density to one
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of the intermediate beds is shown in curves IV and V of Figure 25. In
curve IV all the beds have the same thickness (0.5 units), © o and &3
are equal to 2.0 gm/cc while the densities of all the other beds are
2.5 gm/ce. This curve also does not show any maximum or minimum and
the general shape of the curve is the same as curve II. In curve V,
Iy and o, are equal to 2.0 gm/cc and the densities of all the other
beds are 2.5 gm/cc. The general shape of curve V is very similar to
~curve IV exceptlng that near the fault trace curve IV has a slightly

larger amplitude than curve V.



Parallel Fa.ults

The faults encountered in gravity prospecting are not alwéys
the simple case of displacement of rocks along a single plane. A
major fault is often accompanied by a number of secondary faults

approximately parallel to the principal fault trend.

The gravity anomaly of the principal fault and the associated
secondary faults may be readily obtained when the principal and the
secondary faults lie parallel to each other. In Figure 26 is shown
the principal fault Fl and the secondary fault F2 truncating a bed of
density oy at an angle B with the vertical. Let 2h be the distance
between the two faults and let Gl and 62 be the displacements of the
bed due to .the two faults Fl and F2 as shown in Figure 26. To find
the gravity expression of the above fault we add together the express-
ions for the gi'avity effects of individual blocks. In this way, we

get
g, = (x- h)cos<8 {(cl-oo)(I.B—LA)} +
(x - h)coszﬁ{( sz-co)(LC-IB)} + (x +‘h)cos28{(01—00)(I.F-LE)}
+ (x = h)eos”8{(a,m0 )(I-L))

+ (x + h)oos 8 {(aymo, )(LgrTp)} + (x + h)oos”8 {(oy=ay ) (L))
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= L6 -
= (x - h)cos 8 {(og=0,)(LgLy) + (5,70,)(LLp)
+ (02—01)(LD-LC)} + (x + h)eos®8 { (0,-0_ ) (Tp-Lg)
+ (050 )(LgLp) + (02-01)(I.H-LG)}
= (x - h)cos®8 { oz-ol)(LD;LB') + (&l_oo)(LC-LA)}
+ (x + h)cos® g__{(oz-ol)(lH-LF) + (op-0 W11y}

The total change in gravity due to the parallel fault may
be obtained following the same procedure as in the case of mulﬁiple
beds. By calculating the limiting values of each term in the expression
for g_ it can be shown that for very large values of x in the posifive

and negative directions, the total change in gravity due to the parallel

fault is given by
27G( 02-00)( al+52)

Thus, the total change in gravity due to the two parallel faults depends
upon the density contrast (02-06) and is independent of the density of
the bed itself. Also, the total change in gravity is proportional to

the total displacement (6I+62) of thé two faults and does not depend upon

the individual values of 61 and 62.

The four curves in Figure 27 show the gravity anomalies of

two parallel faults for different values of the parameters h, 61 and 52.
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In curve I ofAFigﬁre 27 the displacemeﬁt 62 is zero and the displace-
ment & due to.the fault F, is equal to 0.6. This curve, in effect
therefore, represents the gravity anomaly of a single fault Fl. In
curves II, TIT and IV the total displacement due to the two faults is
kept fixed at 0.6 whilé the individual values of 61 and 62 are varied.
The difference between curve I and the remaining three curves is
coﬁfined mainly to the region between the two fault traces, the differ-
ences between the four curves being very small whenever x is greater
than about 3(6i+62). For large 51 the gravity anomaly in between the
two parallel faults decreaées (curve IV) compared to the case of the

fault having small 8 (curve III). .

The influence of parallel faults on the gravity anomaly under
slightly different geologic conditions may also be obtained by combining
the effect of the gravity anomalies of single blocks. Figure 28 could
represent a major fault and two parallel secondary faults, the net
effect of faulting being to bring basement rocks of density Oy near to
the surface. The beds of densities o and 9, could be due to deposition
of sedimentary rocks during the period of faulting. The effect of the
secondary faults in this case is tp produce two step-like structures
at distances D1 and D2 from the principal fault. ILet Z15 Zos 23 and Z),

represent the depths from the surface to the different gcologic horizons

as shown in Figure 28.

To find the combined effect of all the three faults on the
gravity profile, we first of all consider the principal fault. The

effect of the upper block of thickness Zy=Zq and density contrast
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py = 0g-0; can be obtained from Formula (1) and is given by

‘ 2
£, = xPcos B(Lz—Ll)

The functions Ll and L2 are defined in the case of a fault cutting a

series of beds.

In order to find the superimposed effect of the second fault
upon the principal fault we consider the'gravity anomaly of thé block
of thickness ZB-Zé and density contrast Py- The effect of this block,v
however, has to be displaced to the right by an amount Dl beforé adding
to the effect of the principal fault, since the fault trace‘of the
principal fault is at a distance Dl to‘the:left of the secondary fault.

Hence, using Formula (1) the effect of this block, after displacing by

Dl’ is given by

£, = (x - Dl)pl coszB(q3 - GQ)

The functions G3 and G2 are similar to the functions Li in the case of a
' fault cutting a series of beds, excepting that in G2 and G3 the distance
x is replaced by (x - Dl). The effect of the third fault can, similarly,
be obtained by finding the effect of the block of thickness Z) ~%g and
density contrast Py = Op=0, and displ#cing it by an amount D2. From
Formula (1), the effect of the third fault on the gravity anomaly is

given by

f

5 = (x = Dy)p, cos”B(H, - Hy)

The functions HL and H3 are the same as the functions Li for the case
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of a fault cutting a series of beds excepting that in Hh and H, the
distance x is replaced by (thz).
The total observed gravity anomaly on the surface of the earth is merely

the sum of the effects of all the three faults and is given by

' .
g, = f,+I,+1, R 5

where fl, f2 and f3 are as defined previously.

It can be shown that when x is positive and very large with respect to

LI T ) 'l .
Dl and D2 the limiting value of gp is given by
' = 200(pt. + ot + t,)
&p = P11 T P12 T Pots

'
Similarly, for very large negative values of x the limiting value of gp

is given by

"= 26(a=)(p.t. + Pt + 0.b.)

ﬁence.the total change in gravity due to the three faults is equal to
2nG(pltl + p1t2 + pztB)

Figure 29 shows three curves based upon equation (4). In
curve (1) the parameters of the different geological horizons are as

follows:

2586, 2, = 32518, z, = 925 ft z, = 2325 ft.

]
]

1,500 £t , D, =-3,000 ft.

og = 2.85 gm/c.c., o, = 2.67 gu/c.c., O, = 2.47 gm/c.c.
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" Figure 29 Gravity anomalies of parallel faults . - -
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Curve (1) resembles the curve over a single fault and does not indicate
the presencé of the secondary faults. The small variations in the
gravity anomaly could not.be detected because the widths of the two
steps Dl and D2 are much too small. The effect of the secondary
faults, hokever, are clearly observed in curve (2) which corresponds to
the same three parallel faults as in curve (1) except that Dy, D, and
Z5 have been increased to 2,000, 4,000 and 525 ft respectively. In curve
(2) the effect of the first step is more pronounced than the effect of
the second step because the former is much shallower than the latter.

In curve (3) the parameters of the three parallel faults are identical
with those in curve (2) excepting that the thickness of the deepest
bed,.tB,‘haS beeh increased from 1,400 to 1,800 ft. The effect of this

increased thickness is to reduce the variations in gravity near the

faults compared with those of the thinner bed.
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Gravity Anomaly Of A Dike

The expression for the vertical component of gravity due to
a single block may be used to calculate the gravity effect of the dike
ABCD shown in Figure 30. The gravity anomaly due to ABDC is obtained
by subtracting the effect of the semi-infinite block CDEF from that of

the semi-infinite block ABEF.

If we measure the anomaly from the center of the dike, the
expression ;‘or the gravity aﬁomaly of the dike may be put in a slightly
different manner. If g (x) and g,,(x) represent the gravity anomalies
‘of the blocks ABEF and CDEF when the anomaly is measured fxn'ombthe block
traces Ot and O respectively, then the gravity anomaly gd- of the dike

when measured from O is given by:
g3(x) = gylx +x)) = goex - x,)
Using equation (1) the function gd(x) is given by:

= cos?B[(x + x)(Fy = F1y) = (x = %)y = Fp i) o o oo (5)

&3
where Fy, = 2Gp(lbid cot ¥, 4 - log sin wid)
X e xo
Y59 = 64~ B3 tan 0.4 = tan B + z
P = 2Go(V . cot ¥ . - log sin ¥ )
34— 2GelV;4 cot V4~ log sin ¥, 4
' ' X + p.9
? = - . =

i =1, 2.



Figure 30

,Pér'ameters and variables used in calculating gg '
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| The limiting values of the function g5 for large positive and
negative values of x may be oﬁtained following the same procedure as in
the case of é single block. For very large positive values of x, wi
approaches the value o, the inclination of the dike from the horizontal.

For the first term within the bracket in equation .(5), when (x - xo) is

positive and much larger than z,,

bo# a-a/(x-x)

i
¥, cot IPi = a cot o + (o e - cot a)zi/(x - xo)
Log(sin IPZd/sin lbid) = {- t/(x - xo)} cot @

Hence the limiting value of the first term is 2Gpat. A similar analysis
for the second term within the bracket for very large values of x in
the positive direction also gives the limiting value of 2Grot. There-
fore as x becomes large, g 7l approaches zero. For very large negative
values of x, the limiting values of each term within the bracket is zero

hence the limiting value of the function 84 is again zero.

As x approaches zero, the function g4 does not reduce to a
simple form for an arbitrary angle of inclination B of the dike.

However, for a vertical dike (B = 0) the expression at x = 0 reduces to

z X 3z X x + 7
_ 2, 1% %, -1 T h
g4 hGox l:xo tan Z, % tan 2 - 1/2 log( 2 )]

when the vertical extent of a dike is much -greater than the width, the
% _

quantity x_/ 2, is very small and tan™T E-Q- is approximately equal to

bd : 2

= Hence the expression for a vertical dike at x = O becomes

)
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2 2
Z b X +z
. 1 -1°0 _ o} 1
gy * hGox [; - ;; tan —; 1/2 log(;;rzfzzgi] e o o oo (52)
o 2

When the dike reaches the surface, z, =0, tan—l(xb/zl) ==% , and

zg : o
gy = AGpx [1+1/2 1og(1 +—2) R C1))
X '
z, '
= hprb log(;;) when Zy > > X e oo« . (5¢2)
When the depth of burial, 215 is much greater than Xys
b4 b'd Z x
ban™m 2 2 2 L4ap™h 2 = 1 hence
1 1 o] 1
z2) :
g = hprb log(EI e« oo . (5d)

Figure 31 shows curves for four vertical dikes, one having a
vertical extent of 5 units (the dashed curve) and the others a vertical
extent of 2 units. Comparing the dashed curve with that for the dike
extending from 0.0l to 2.01, we see that the increase in vertical extent
increases the maximum value and broadens the anomaly considerably.
Comparison of the curves for the dike with vertical extent 2 units shows
that increasing the depth to the top from 0.0l to 0.1 unit has a small
effect on the anomaly while increasing the depth to 1.0 unit has a

marked effect on the peak values.

Figure 32 shows the effect of varying the width of a vertical
dike from 0.03 unit to 1.0 unit, zy and z, being kept fixed at 0.01
and 4.0L units. The anomaly for the dike of width 0.03 unit is very

small; it has a small peak near the center of the dike and the anomaly
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Figure 32 Relation l_)etween gq and the width of a vertical dike
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deéreases very slowly‘for distances greater than 1 unit on eithef side
-of the center of the dike. As the width of the dike increases, the
aﬁoﬁaly increases very sharply and the horizontal gradient of the
anomaly at a given distance from the center of the dike is lérger than

for the thinner dikes.

The curves in Figure 33 show the effect of varying the angle
of inclination of a dike. The solid-line curves in Figure 33 are
gravity anomalies of dikes of width 0.05 unit and vertical extent 4.0
units whose angles of inclination have been varied from 0° to 80° from
the vertical. As the inclination changes from the vertical the curves
become asymmetrical about the center of the dike, the anomaly decreasing
more quickly away from the direction of inclination of the dike than in
the opposite direction. As the angle of inclination increases, the
asymmetry increases until, for an angle of inclination of 800, the

curve resembles the characteristic curve for a single block or a step.

The effect of changing the width and depth of a dike inclined
at 60° is shown by the dashed curve in Figure 33. As the width is
increased from 0.05 to 0.2 unit, keeping 2 =0.1,8 = 60°, the anomaly
increases from 0.33 to 1.35, a four-fold increase; however, the general
shape of the two curves continues to be quite similar. For a dike inclined,
at 60° the effect of increasing the depth to the top from 0.0l to 0.20
unit can be seen by comparing theldashed curve with the dash-dot curve.
It is interesting to note that the change in the anomaly resulting from
. the increase in depth is very slight in the direction of inclination of

the dike but is large in the opposite direction.



 “‘?1%6.01'°' . L' _f” | .Aﬂll_ :
' 'zz.=..4‘01" N ///’\.2

—— W =0.05, z =001 / A
;_7-w =0.20, zl=o'.ol ; .
__;_;—w_ —_—_'OV‘.'2O, zl=‘ 0.20 /

1 = 1.0 gm/
. /2 « ccéo‘;\/,
7 | .

FIG 33. Variation of gdf with dip.
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! CHAPTER IIT

DERTVATIVES OF THE GRAVITY ANOMALIES

General: Since the expressions giving the gravity anomalies of the two-
dimensional faults and dikes are functions of the space coordinates, x
and z, these expressions can be differentiated with respect to x and z

to givé the two derivatives of the gravitational field.

For two-dimensional.bodies, the derivatives with respect to ¥
is zero since the body is assumed to extend to infinity withput change
in the y~-direction. The derivative of the gravity field with respect to
the variable x is called the horizontal derivative of gravity, or more
commonly the gradient. The derivative with respect to z is known as

the vertical gradient.

The gradient of the gravitational field may be defined as the
rate of change of the vertical component of gravity in the horizontal
direction. If g1 and =% represent the gravity values at two points in
the horizontal plane situated a distance Ax apart, then the horizontal

derivative H is given by

g = lm B8 g
AX —-=» o0 Ax ox

Since the gravitational field is conservative, the force of gravity may

be expressed as the negative gradient of a scalar potential function U,

that is,

U

0q
=3

i

1
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where &p is the total gravitational field. The vertical component of
gravity is then

° -§-I-J- .
T T ¥y ?

og
|

hence the horizontal derivatives of the vertical component of gravity

are given by

B _y = -0 and & =y = -'—QEE
X - Xz oxoz dy ya dydz

As mentioned earlier, the horizontal gradient Uyz is zero for

a two-dimensional body.

The gradient was of fundamental importance in the older torsion
balance technique since it is one of the two quantities directly measur-
able by the torsion balance."The other was the horizontal directive
tendency (H.D.T.), or the differential curvature as it is called by séme
authors. The differential curvature gives a measure of the distortion
of the equipotential surface due to the disturbing mass; it is equal to
the difference between the reciprocals of the ﬁinimum and the maximum
radii of curvature of the equipotential surface at a point multiplied
by the value of gravity at the same point. Ihus, the differential

curvature, R, is
1 1
R = g(?- —'——)
P1 P2

where Py and py are the maximum and minimum radii of curvature of the

equipotential surface.

The quantities measured by the torsion balance are UZ and
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Uiy where
N A A
A.v ayz' 9% > Txy dxdy

U being the gravitational potential. It can be shown that

20

U. = -Rcos A, —=L = tan 2A
A Uy

Differentiating the gradient with respect to x we obtain
higher order horizontal derivatives. One of. these higher order
derivatives, the second horizontal derivative, is of particular import-

ance to us; it is denoted as

KX ax axzaz

Differentiation of the gravity anomaly function with respect
to z gives the vertical derivatives of gravity. . In general, the vertiéal
derivatives are distinct from the horizontal derivatives and have
entirely different properties. The first vertical derivative of gravity
or the vertical gradient as it is sometimes called, is defined as the
rate of change in the vértical direction of the acceleration due to
gravity. If g and g, are the gravity effects due to an anomalous
body at two points, one of which is a distance Az vertically above the

other, the vertical gradient of gravity is defined as

. ] _ 1m 85”8 _ g
vertical gradient = AZ —=> 0 bz T 9z

In terms of the gravitational potential the vertical gradient of gravity

is given by

2 = .5
@ )
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Differentiating the above expression with respect to z, We
obtain the higher order vertical derivatives. One commonly used higher
order vertical derivative is the second vertical derivative of gravity
obtained by differentiating the gravity field twice with respect to z or
by differentiating the expression for the gravitational potential three

times with respect to z. The second vertical derivative of gravity is

denoted as

N R
2% 377 325

Since the gravitational field satisfies Iaplacet!s equation, we have for
a two-dimensional body

g ds oo

Z

Therefore, for a two-dimensional body the second horizontal derivative is
identical with the second vertical derivative except for algebraic sign.
Tt is of interest to note that for a two-dimensional body (except for a
change in the sign) the first vertical derivative is identical with

the differential curvature. This follows from the fact that the
gravitational potential also satisfies Iaplacet!s equation, hence

= 0
ox 37_,2

Since the derivatives with respect to y are zero, the differential
2y
2 L2

ax’

curvature is merely

Thus, differential curvature =

A Fu _ 2
&xz
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The use of the derivatives of gravity in the interpretation
of gravity maps have been discussed by several authors. A compléte
gravity ﬁap of an area contains, in principle, all of the information
needed to describe the gravity field and all of its spatial derivatives.
The calculation of the vertical derivatives of gravity is very useful

if we want to emphasize the effect of small shallow structures at the

expense of the larger and deeper structures.

Consider the simple example of two identical spheres, one of
which is located at a depth twice that of the other below the surface

of the earth. The gravity anomaly due to one of the spheres is given

by
g = G&
B

where m is the mass of the sphere,
7 is the depth to the center of the sphere,
x the horizontal distance of the point of observation

from the point on the surface directly above the center

of the sphere, and rz = x2 + 22.

If we differentiate the expression for the gravity anomaly with respect
to z, we get the first and second vertical derivatives of gravity,

98 _ G x? - 222
9% r5

and

32 §222 - §x22
£ = 30mz 5
r

3z2

The above expressions have the following maxima:
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at x=0, . g =

ol

) 2Gm
wormxml) oS

. 2 4 :
- 2 g\ . _ _ 162 /3 Gm
at x ‘—i z , (322> = = 343 7 A
max

vf?' z

Thus, the maximum values of g, %f and 2g vary inversely as the second,
oz _

N

third and fourth powers of the depth.

The’effect of taking the successive derivatives is, therefore,
to accentuate greatly the effect of shallower structures'compared to
thdée at greater depths. This is very useful in many situations in
gravity interpretation where it is found that the effect of small -
anomalies at shallow depths are completely masked by larger and deeper

features.

Another advantage of the derivatives of the anomaly, g, in
.comparison with g itself is that they have a higher resolving power,
that is, they can distinguish between two masses much closer together
than can gravity. ZFElkins and Hammer (1938) have given an analyticai
treatment to the problem of resolving buried masses by gravity and its
derivatives. We will follow their approach to show for the case.of é
sphere thé superior resolving power of the derivatives of gravity over

gravity.

Let the effect (gravity or its derivatives) of each one of

the two identical spherical bodies 1 and 2 (Figure 34) be denoted by

®(x). Since the body 2 is situated at a distance’d to the right of the



: >

FIG 34.. Resolving power of gravity and the second vertical
. derivative of gravity
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origin its effect will be represented by ¢(x - a) and similarly the
effect of the other body 1 will be represented by ox + a). The anomaly
observed at the surface is the combined effect of {:he two bodies, that
is, ¢(x) = e(x+a)+ o(x-a). Assuming that o(x +a) and &(x - a)
are analytical in the neighborhood of the point x = a, then the derivat-
ives of each of these functions with respect to x may be expanded in a

Taylorts series. Writing f(x) = d¢(x), we obtain
dx

. 2 -
f(x+a) =f(a) +xfr(a) +2§- f“(a)‘+-32—3- frer(a) + ., .,

2
flx -a) == f(a -x) =~ f(a) +xft(a) - 52- (a) +3-23- frev(a) +. ., .

The relationship between the first two expressions in the last line

follows from the symmetry of &(x).

P(x) = flx+a)+ flx-a)

I

2 x f£1(a) +3£f"'(a).+ e e

The curve ¥(x) reach'és the resolution limit when a depression just

begins to form on the graph of Y(x) at the origin (Figure 34). Geometric-
ally, this condition is satisfied when a triple tangent occurs to the
graph of ¥x) at x =0 or uﬂ(x);has roots x = 0 three times. This
condition will be satisfied if ft(a) = 0. Hence the condition on

the parameters for the limiting case of resolution is ft(a) =0 or

m(a) = 0.

Thus in order to find the required condition on the parameters s

we should find the second derivative of the function &(x) and then equate
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it to zero at x =a. In Figure 34 are shown two identical spheres
situated at a distance ?2a' apart. We wish to find the minimum distance
t2at between the two spheres at which the combined effect of the two
spheres gives the indication of the presence of two separate masses.

The vertical component of gravity due to a sphere is given by

-

g = Cuz/r’
Taking ¢(x) = g and differentiating twice gives

#(x) = 30mz(hx" - z°)/r

Substituting x = a and equating the expression to zero, we have a/z =
+ 1/2. Hence the minimum distance at which they can be resolved t_>y
gravity is

R2a = 3
In order to find the resolving power by the second vertical derivative
we have the function ¢(x) = Qg‘nz:(-.?.zzi"-?- 3 x2) . Differentiating this

equation twice with respect to x and then equating it to zero at x = a,

we obtain the result 2a/z = 0.64. Thus we see that the second vertical

derivative has a higher resolving power than gravity itself.
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The Horizontal Derivative Of Gravity Due To A Single Block

The expression for the horizontal derivative of gravity due

to a single block is derived in Appendix A, the result being

dgy
T = cos"B(R,Fy) + ER(ay - 2,0,) N ()

Figure' 35 shows the plot of the horizontal derivative of
gravity due to a normal fault dipping a.ﬁ 30o and cutting a horizontal
bed with upper and iower surfaces at depths of 1.0 and 2.0 units. This
curve was obtained from the gravity profile by taking the difference
between tw§ gravity values at two closely spaced points along the
profile and dividing the difference by the distance between the two
points. The gradient curve of Figure 35 attains its maximum value
vertically above the inclinéd face of the block. To locate the maximum,
we differentiate the expression for the gradient with respect to x and
then equate the result to zero. Writing X, for the value of x

corresponding to the maximum gradient, we find

d_?.c (%%- = 0 = = %{g (cos 20, - cos 2611‘)
hence cos 202 = cos 201
Therefore, 02 = el or 02 = - Ol :
Since tan Oi = tanB + -ZJ-S-
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Graphs of 4&g
dx

and Gs(x) for a single block



-73 -

we must have x = 0O if 6, = 053 this value of x gives % for
g
d-d-}-c- (gf) but the 1imit of the indeterminate ratio is not zero. Thus,

for a maximum we must have

0, = - Ol, that is, tan 0, = - tan Ql

X b'd

m m
hence, (tans + P )_= -(ta.ns + z )

2 1

Z. B
_ 172

or xm = 2tan8 (EI-—

+22

The maximum gradient is located at a point in between Q and Q!

in Figure 35 since the coordinates of Q and. Q! are (-zl tanB) and

(—22 tanB) respectively, and
2zl Z, .
z, tanB < P tang < Z, tang .
) 1 2

We therefore conclude that no matter what the inclination of the fault
may be, a vertical hole drilled at the point of the maximum gradient

of gravity will always intersect the faulted face of the bed.

It is shown in Appendix A that the gra.ciient for a single block
at x =0 is given by

48,

rpe 20pcosB log(l + t/zl)

For a given block the gradient at x = 0 is a maximum when the block is
vertical (8 = 0). As the dip of the'fault plane is changed, the gravity
curve is displaced laterally without any appreciable change in the

shape. A method has been discussed earlier for finding the dip of the
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fault plane of such a block by comparing the observed curve with the

given theoretical curves, provided the location of the fault trace on

the surface of the earth is known.

If an approximate position of the fault trace is known, the
following procedure may be adopted to find a rough value of the dip'

of the fault plane. The gradient over a single block is given by

T = 00326 (F )+ (lel zlbz)

Multiplying both sides of the above equation by x and transferring the

first term on the right side to the left of the equation, we have

dg
xdjc— - X cOS B (F2- l) = 2Gp(z11pl - zzvpz)

Since x coszs (F2-Fl) is equal to the gravity anomaly of the block, the
above equation becomes

dg
c—“-; - g, = 260(z ¥ - z,¥,)

If we denote the left side of the above equation by Gs(x) s & new

function of x, we can obtain the value of the new function at any point
along the profile by multiplying the gradient at the point by the

distance from the fault trace, then subtracting the value of gravity at
that point. The limiting value of G,(x) at certain points on the x-axis

may be used to obtain information about the dip of the block.

We have, since v, = 0, - B,

G (x) = 2Gp(zlwl - zzwz) = 2Gp(zlel - z202) + 2GABt
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As x =-» O, el and 0, both approach B so that

lim _
X =2 0 Gs(x) =0

As x ==» + ®, O, and ©

N , both approach 7/2 so that

o D Gyl0) = —wGet + 2608t = 2pt(sn/2) = ~2eat.

As x —=» - @, ©, and ©, both approach -1/2 so that

lim _ : _
X 3 - o Jg(X) = mipt + 2008t = 2Gpt(6+«r/2) = 20p(m-a)t

Besides the origin, there is a second point where G (x) = O.
This point may be found by equating the right side of the above equation

for G,(x) to zero. We thus have,

or, since t = z, -z , zl(el -B) = z2(e)2 - B)

hence z1 {tan-l(tanB - %) - B} = zz{tan_l(tanﬁ - fg) -'.B}

that is,
7 tan_l(tans - Xy g ta.n-l(tans - %) = g(z, - z,)
2 Z, 1 Zq 2 1

The last equation shows that by noting where Gs(x) becomes zero we can
find one of the three unknown quantities (B8, Z1, and 22) » provided the

other two are known.
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As mentioned earlier, the function G (x) approaches the values
2Gp (8= %) and 2Gp(B+-%) for very large values of x in the positive and
negative directions. Hence the sum and difference of these two values

of Gs(x) gives LGpBt and 27mGpt.

Figure 35 shows the graph of Gs(x) calculated from the gradient
curve in the same diagram. Since the graph of Gs(x) was not extended to
large enough distances on either side of the fault plane, the curve does
not attain the limiting values which are of interest to us. The
theoretical limiting values are 10.6 and -2.15 and these are reached

approximately when x = + 20.
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The Horizontal Derivative For A Fault Cutting A Single Bed

The horizontal derivative of gravity due to a fault truncating

a single bed is given by (see Appendix A)

dgf _ 2 2Gp
-d-x— = cos B{(FZ—Fl) = (FZI-—FB)} + ( x )(Zl‘pl-ZZwZ - ZBwB-’-ZLI‘wll-)

whe:r'ev\p:.L = @ -8B i = 1, 2, 3 and 4.

Multiplying both sides of the above equation by x we have

T = xieos®s {(7F) - (7,7, (

xdx = X‘,Llcos B (Fz— l) i FZI-—FB }+ 2G‘p lepl-zz‘pz - ZBwB-’_ZLI-wlI—)
Since x cosze(Fz--Fl-Fh—i-FB) = gp, transferring the first term on the
right side of the above eqﬁation to the left of the equation gives

(x) d&p B

Ge(x) = xg5 -8 = 2Gp(zlvpl - 2,0, ~ 2311:3 + 24"%)‘

Since ¥, = Gi ~ B, and (zz-zl) = (ZI.;_ZB) = t, the thickness of the
bed, we get

Ge(x) = 260(z,0 - 32,0, - 250 + Zheh)

The limiting values of the angles 91, 02, 93 and 914_ as x
approaches zero is B. Hence the limiting va'.lue of Gf(x) at x =0 is
zero. As X approaches + cor - o, the limiting values of the angles
05 6y 03 and 6 are 1/2 or -7/2 respectively. Hence the limiting
value of the function Gf(x) is also zero for very large positive and

negative values of x.
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The Horizontal Derivative For A Fault Cutting A Series Of Beds

The horizontal derivative of gravity for a fault truncating
a series of beds may be obtained following the same procedure as in the

case of the single block. The gravity anomaly of the fault shown in

Figure 2/ is given by (see equation 3)

g, = X coszslgoo-ol)(lnl—ln;_) + (01-02)(L2-L;) Fee e

+ (a ~q )(LN-l-l I\H-l):,

The horizontal derivative of &n then becomes

G_‘Eg = gm+2GE0 o)(zll,ti-zlwl)+. . o e

dx X X

t b {
+ (o) (B Vg - Zl\m“ﬁmﬂ

. _ r ot
Since wi = Oi— B and wi —Gi-B,
d &, &n 2G
a';c- == = % (Go-ol)(zlel - zl@l) + . . .
2GRs(c_~0_)
+ (o) )(ZN+1 W1 T I\H—leN+lﬂ_ X
h § = z,
where = g - 23

Multiplying both sides of the above equation by x we obtain

the function, Gm(x), given by
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Gm(x) = x%’- g, = 2G Eco—cl)(zie;_ - zlel) e

(0,-0,.) (3,1 ©; )| - 20688(c )
+ (oyro 2y Oy ~ ZI\I-I-lel\H-l:) = 2GB8L0 =0,

As x approaches zero, each' of the angles G)l, 02 cesencs GN 41

? ' :
e e 0 0 e - (
Ol oo NEFL approaches B. Hence, as X approaches zero,

lim _
X == 0 Gm(X) =0

As x approaches + ® or - oo the limiting values of the angles

T ? .
O Oy eeveeesOpgs O Oy «ereensBp are n/2 or -7 /2 respectively.
Hence, ‘
lim = Te(0 -0 ) - 26B8(0 ~
X —=» Gm(x) RG -2-8( ) r) 2G (oo or)
™
— 268(0 -0 )(3 - B)
and
lim = - ocX -0 ) — 2GB8(0 —
X == = 00 Gm(.x) - G 35 8(00 C‘r) 268 (oo oI')

= -268(0 -0 )(B + -g-)

Thus, the limiting values of Gm(x) depend upon the fault
displacement, 6, the angle of the fault plane, B , and the density
contrast between the topmost bed and the bed below the Nth one. The
sum and difference of the limiting values of Gm(x) for very large
positive and negative values of x is ~LGBS( UO-Ur) and 21TG5(00-0r)

respectively. If the density contrast (oo-cr) is known, the displace-
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ment of the fault, 6 , and the dip of the fault plane, (m/2 - 8),

can be found.
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The Second Derivative Due To A Single Block

The horizontal derivative of gravity due to a single block

is given by (see Appendix A4)

dg g
s _ 2s , 26p _
= = %t % (29 - 25¥,)

The second horizontal derivative gf gravity due to a single

block is also derived in Appendix A, the result being
2

d7g :
s _ _GP -
2
[ a gs '
dz.f2
dzgs
Iimiting values of >
dx
d2gs
(a) Iimiting values of S as Zy —-—-= » O.
dx
. X
Since tan G_L = tanB +7T ,
5
™
ag Zq ===—=3» 0, tan@l ------ » + a.ndGl —————— > 3
and cos 201 ------ > cosm = =1
d’g
Hence ( Z) = - _('_}sz_ (1 + cos 292) = _ 28 20
dx x 2

Z lq)
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d°g
(b) Iimiting values of ——2-3' as x
5 dx
d~g .
S lim
We have ( )=
X => 0 ax2 X =3
- 1im
X =
— lim
X ==
AS X =m—m——sd > 0 Oi ——— B,
tan 6, = tanB + Z}-
i
Therefore, tan2 Oi =
Hence
2
lim d s >= lim
X =—3>» O dxz X e
= - 2Gpt(

1 - tan® ©

- %:; (cos 2 @, - cos 2 OJE,

1 - tan® 0

___G‘_g{. 2
x l+’f,am'2 62

e

—

2 2
2(tan 0, - (tan el)

‘1 4+ tan

Go
X

since

2 2X
tan“B (1 + -—-—Zi tanS) ,

.

(l+ta.n201)(l+tan2 02)

1L
(&g_g_ xta.nB(zzg, zi)
o' x

(1 + tan“8)~

sin 28 coszB)

Z1%9

}

2
61

Figure 36 shows the second vertical derivative of gravity

over a 200 ft thick block cut by a vertical fault for various values

of the depth of the block.

For a vertical fault the maximum and the

minimum are of equal amplitude and occur at equal distance from the

fault trace.

When the block is at the surface, the second derivative

is infinite at x = 0, but the maximum value diminishes rapidly as the

H
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Figure 36
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depth of burial is increased. The dashed line curve in the same figure

shows the effect of increas‘ing the thickness of the block.

Figure 37 shows the effect on the second derivative of
changing angle of inclination of the fault. The maximum and minimum

are no longer equal and they occur at different distances from the fault

trace.

It was shown earlier that the distance from the fault trace to

the zero value of the second derivative (for positive B) is given by

%, Z
x = =2 tanB ;—1‘7‘_—5—
1 2
To find the points where the maximum and minimum of the second
derivative occur on the x-axis we differentiate the expression for the

second derivative with respect to x and equate the result to zero.

Thus
d2g cos 260 cos 206
dx dx2 ' dx X X
thst is, % (COSx2@2) _ % (cosx201>
We have
20 do
_d_(cos i) 1 2 . de;
ax " = - x2 cos 206, - sin 201 ix
X
Now, tan 6. = tanB + —
23
do. cosze.
and rr iR
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d ( cos 202> 1/ ' 005262>
Hence =\ =x 7/ = - > <cos 202 + 2 x sin 262. 7
- X , 2
Therefore,
c0s20 | cos29.:L
cos 20. + 2 x sin 20 = cos 20. + 2 x sin 20
2 2 22 1 1 Zl
or
c03202 coszG):L
cos 20, + 2 x sin 20 4+1 = cos 20, + 2 x sin 20 + 1
2 2 Z, 1 1 Zl
Writing X = o] £ = q tan 6. = tan B + we have
Zq 1 ? Zo 2 ? i 9 >
1- tanzei 1 - (tan 8 + qi)'2
cos ZGi = ) = > s
1 + tan"0; l+(tan8+qi)
2 x sin26, cos 0, L ko, tan O,
Z; = Aoy tan 85 o0 = T Ean%, )2
-L,.qi(tan B + ql)
{l + (tan B + q:l._)z}2
Then,
cos 20. + 2 x sin20, cosze.
E, = -~ < =41
] Z.

1

1 - (tan B + q:.L)I+ + h.qi(tan B + qi) +{1 + (tan 8 + qi)z}"2
{l + (tan B + qi)z}2

2{1 + (tan B + q;)(tan B + qu)}
{l + (tan B + qi)2}2

2(se028 + hq,tanf + 3qi2)

(se<326 + 2qstanB + qi2> 2
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d7g_
Thus, to find the points where Z is a maximum or minimum,
. dx .

we must solve the equation

By cross multiplying and. collecting like powers of x in the

above equation, we obtain a polynomial of the fourth degree in x of

the form
axl"'+baé+cx2+dx+e = 0
where the coefficients a, b, ¢, d and e are given by
a = 6(z§ - zé)

_ 2 2 .
b = 8 tanB (zl-zz)[zl+z2+ hizy Zz]

o
1

2 2 2 2 2 2 2
2(2.'l - 22) {(Zl + 16 z %y +. 22) tan“B + (zl + 22)}

d = 82z

(, 2 2 2 2 2
1 %o (zl - 22) tanB {(Zl + 4 2y 3, F 22) tan“B + (zl + zz)>

e = (z?_ - zg) (z?_ zg) secB (6 seczﬁ‘- 8)

The above polynomial in x has at least two real roots. These
give the distances of the maximum and minimum of the second derivative

from the fault trace.

The calculation of the roots of the polynomial is a long and
tedious process. The problem, however, can be solved very easily in
a digital computer. A computer program has been written which calculates

the coefficients of the polynomial from given values of B, 24 and Z, and
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then finds the roots of the polynomial to any degree of accuracy desired.

It is seen in Figure 37 that the amplitude of the minimum is
very sensitive to change in the inclination of the block. Calculations
of the position and amplitude of the minimum of the second derivative

curve, therefore, will be very useful in determining the inclination of

the fault plane.

The great amplifying effect of the second derivative on
shallow structures is seen in Figure 36. Hence sharp maxima and minima

of large amplitude are clear indications of a shallow structure.

Separate curves showing the positions and the magnitudes of
the maximum and minimum due to a single block were not drawn since it
will be seen later that the éurves for_a single block will approach very
closely the curves due to a fault truncating a single bed when the lower
block is at great depth. Hence these curves for large values of 23 ﬁill

be a very good approximation to curves for the second derivative for

the upper block alone (see Figures 4O0-4L).
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The Second Horizontal Derivative Due To A Fault

Truncating A Single Bed

The horizontal derivative of the gravity anomaly due to a
fault truncating a single bed may be obtained by combining the effect
of two individual beds on either side of the fault plane. Following
the same procedure as in the case of the single. block, therefore, the

second derivative over such a fault is given by

2
d"g »
f _ =Gp
2 = = (cos 20, - cos 20, + cos 263 - cos 204). ... (8
. 2
d &p
Limiting values of = >
dx’

Limiting value as 2;_ ==» 0

Since tan @ = tan$ + =
Z
1
T
at Z) = 0, tan 91 = o, 91 =3 hence
cos 201 = gos T = =1
Hence
lim d'?'gf _ap o o o
Z) —> © 5 = X(l+00322+cos.’2.3—cos.’%l")

ax
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Limiting value as X ——» 0O

We have - -
Lin dzgf - An g (cos20, - cos20, + cos20, - c0s20, )
X —» 0 5 = X -=> 07, 2 i 3 L
dx’
1 - tan“0, .
Substituting cos20. = ' , tano, = tan B+,
1 2 i Z.
1 + tan™o, i
i
We have
L _ L 2(1 _ L
tn % 2 x tang(<- - )+ x (22-22_
f _ ) 1 2
ax 2 X X
sec 6+-—+2tan6 sec 6+—2-,+2ta.ns;-
4y Zo 2
2
2Xx tanB(-zl'- - ;]‘-) +x2(-i2- - -l?j)
- 20p 3.k 29 7%
X 2 2
' (seczﬁ + X—E + 2tanB 'g-c-)(seczﬁ + %~ + 2tans -J-c-)
_ 72 23 Z2 ZA
3 L
- 4Gptans _1___1___1_+_1_)

If the displacement is very large in the above expression, Zg and Z),

are large compared with zj and Zys hence < and L can be neglected.
Zg Z),

Therefore, for a fault with large displacement, the limiting value of

the second derivative at x' = (0, is given by




- 91 -~

1im d2gf 5
X --» 0 =3 = = 20pt sin2B cos”B (
dx’ ,

1
)
zy 2,
This is the same expression as the i:l'_miting value of the second derivative

over a single block at x = 0.

d gf
Points on the x-axis where 5 = 0
dx

Equating the expression for the second derivative to zero, we obtain

2
d~g

£ ~G + =
— = =P (cos R0, - cos 20; .cos293 - cosZGA) 0

-dx
Thus at the point where the second derivative vanishes, we must have

cos.2e2 - 003291 = coszeh - c052@3

Substituting for cose, in terms of X, z; and /3 in the above expression

and writing q; = x/z; where 1 =1, 2, 3, 4, we have

c0s20, - €0s20, = (cosze2 + 1) = (cos2@; + 1)

_ : 1 1
‘2( 5 - > )
l+tza.ne)'2 1+ tan~6

1
[ 2 2
(tang + ql) - (tanB + q2)
{l +(tanB + qz)z}{l + (tanB + ql)z}
|
— 2 2

2 2 2 2 2
sechB +(q:L + qz)sec B + 2(q:L + qz)tanBsec B + 2q;q,tan B+

22
2q;0,(a; + q,)tanB + qjq;.

= D(ql ’ q.?,)
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At the point where the second derivative vanishes we must have
D(Cll s q2) = D(QB ’ qli-)

By cross-multiplying the above expression on either side of the equal
sign and collecting like powers of x we obtain a polynomial of the

5th degree in x of the form

D it + O+ A+ ex + £ = 0

where the coefficients a, b, ¢, d, e and f are given by
a = 2(z2 - zl) (zl - zB)
b = 2(z2 - zl)(zlz2 - ZBZL'_)tanB

2
2

2g

c = 2(z zg- zizi)sec
2

d = l;(zl + zh)(zg Z5 = z?_ zZ)tanBsecZB
e = (22 - zl){ z§ zi (Zl + 22) - zi zg (Z'3 + Zh-)
+ 82, 3, Zg %) (z2 7y = g zh)tanzesecze}sechfi
f = 2(z2 - Zl)(zl 7, Zg Zh)(ZB' z) = % zz)ta'nBsecl"B
The abm.re polynomial has at least one real root which gives the position
on the x—~axis where the second derivative becomes zero. A program was

written which first calculates the five coefficients from the given

values of Zy s %y 5 33 > Zl«- and B , then calculated the roots of the

polynomial by the Newton-Raphson method.

Figure 38 shows the second derivative graph over a fault which
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cuts a single bed, the plane of the fault making an angle of 60° with
 the vertical. The depths from the sprface to the four horizons Zqy s

Zy 5 23 > and 'zh are 0.5, 1.0, 1.5 and 2.0 units. The second derivative
graph shows two zero points - the first one close to the fault trace
and the second one further away on the down-thrown side of the fault.
On opposite sides of the first Zero point there is a maximum and a
minimum located at the points x = -0.7 and x = -1.75. The magnitudes

of the two extrema are almost the same, the minimum being slightly

higher than the maximum.

d2g

Maxima and Minima of g: To find the distance of the minimum and
dx

5 maximum from the fault trace;, we solve
d ;

- g
the equation % (—-—g) = 0 by the Newton-Raphson method as mentioned

above.

The Newton-Raphson method is based on the assumption that the

curve has no inflexion point along QP (see Figure 39). The function f£(x),

whose roots we are interestedzin finding, has an inflexion point which
d"g

is near the point x| where g is zero. After finding X, We choose
' dx

two starting points, one (xo + &x) and the other (xo - Ax) where Ox

is a small qp.antity which keeps the starting points of the Newton-
Raphson calculations away from the inflexion point of f(x). The quantity
A x is obtained by trial and error. In this way, after a few iterations,
two roots of f(x) may be obtained giving Xiox and X in’ the abscissae

of the maximum and minimum of the second derivative. After calculating

the roots of the equation, the computer calculates the values of the



- Figufe 39. Calculation of roots of a polynomial by ;‘the,N_eﬁv&ton—Raphson method
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of the second derivative at these points, thus giving the maximum and
: d2g

the minimum values of the second derivative. The equation EEE(-—-fg)
dx

whose roots are obtained by the Newton-Raphson method to get xﬁmax and

x" . is derived in Appendix C.
min

Figures 40-44 show the graphs of the amplitude versus abscissae
of the second derivative maximum and minimum. Figure 40 refers to a
vertical fault. Since for a vertical fault the two extrema are equal in
amplitude and symmetrical about the fault trace, the curve corresponds to
both the maximum and minimum second derivative. In this figure, zi, the
depth to the upper block of the faulted bed, is kept fixed, while the
lowér block is mo&ed downwards in successive steps to a maximum depth of
32 units. The two numbers at the ends and to the left of each curve
refer to the minimum and maximum values of Zge It is seen in Figure
4O that, for small values of.zl, the magnitude of the second derivative
increases much more rapidly than does its position as Zg is increased,
while for large values of 245 the magnitude and positioﬁ of the second
derivative change equally rapidly as Zg changes. Furthermore, as z3 is
increased keeping 4 fixed, a condition is eventually reached where any
further-increase in Zg produces very little change eithef in the
magnitude or position of the second derivative extrema. Points in
these curves for the largest value of Z35 therefore, willlgive‘a good
approximation to the position and magnitude of the second derivative
extrema for a single faulted block of thickness one unit whose upper

surface is at a depth as shown in the curves.

Figures 41 and 42 are the plots of the amplitude of the second
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derivative minimum due to a fault dipping at.BOO and 60°. The abscissae
in these curves, however, are not x" ., but Gd;ﬁn - xo) (this quantity
is the distance between the minimum and the point where the second
derivative vanishes, hence can be obtained from the observed data whereas
to find x"min we must know the location of the fault trace). The numbers
beside each curve have the same meaning és in'Figure 40. TUnlike the
curves for the vertical fault, the curves in these two figures show

that, as Zg is increased keeping 24 fixed, the amplitude of the second
derivative minimum attains a maximum value, then swings around and
decreases élowly, so that further increase in 23 does not prgduce large

changes either in gt . or xm . .
g g min min

The curves in Figures 43 and 44 show the amplitudes of the
maximum second derivative plotted as a function Of.(x“max - xo) for the
same series of faults as in the case of the minimum. For the range of
values of the parameters chosen for these curves, the maximum second
derivative does not show any turning point and it appears to be a curve

with slowly varying slope.

The curves in Figures 4O0-4L are for the same series of faults
as those in Figures 18-23 which give the position and size of the gravity
maximum and minimum. In Figures hO—hh'the faults aé zero depths have
been omitted since, when the upper block reaches the surface of the

earth, the second derivative extrema become infinitely large at x = 0.

Figure 45 shows three profiles across a fauit cutting a bed of

thickness 0.5 unit, the upper block of the faulted bed being at the
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surface of the earth. The second derivative becomes infinitely large
at x=0 but decreases very rapidly as we go away from the trace and is
essentially zero at distances of 2 units or more. The effect on the
second derivative of lowering the second block to a depth of 32 units is
shown by curve (2) of Figure 45. The general shape of this curve is the

same as curve (1) but the decrease in the second derivative as we go away

from the fault trace is not as rapid.

In curve (3) the fault has a dip of 30°. The dip causes some
changes in the second derivative values near the inclined face of the

'fault, but the dominant features of this curve are the same as those of

the other two curves.
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The Vertical Gradient Of Gravity.

(a) The vertical gradient of gravity due to a single block and a fault:

The expression for the vertical gradient of gravity due to a single block

is derived in Appendix D, the result being

qgcoszg + qzsinZB + l>

s _ 2,201
= - " 2Gpcos 8{2_ tanB log(

q]2_c0s28 + qlsinzﬁ +1

2 -2
-l( q,tang + sec B) -1 (qltanB + - sec B)}
+ tan - tan
gl

%
. . . . . (9)
X
where g. = -=— as before.
2 Zi
The vertical gradient of gravity due to a fault cutting a single.

bed is also derived in Appendix D and is given by
qgcoszB + q,sin28 + 1 qécoszB + qgsin2g + l)} '

og
—£ _ (- 2Gpc0828) -%—tanﬂ log{( >
. 4q

00828 + qls:LnZB +1 qicoszB + qhsinZB + 1

g,tang + se028 g-tang + se023
T =1{ =2 ~1{ 71
an } - tan
92 : il

2 2
_- [ 3;tanB  + sec™B q,tang -+ sec™B
+ tan l( 3 )— tan—l( ke >
% %,

c v ... (10)
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Figure 46 shows the curvés of the veftical gradient of gravity
for several single blocks and faults. The solid line curves of Figure
L6 correspond to vertical faults while the dashed line curves are for
faults dipping at 300. It is evident that the shallower blocks have
much greater vertical gradient anomalies than the deeper blocks showing
that vertical gradient accentuates shallow structures. Comparing the .
curves in Figure 46 with those in Figure 36, page 83, for the second
derivative effect over single blocks, it is séen that the second
derivative effect is confined to a small region near the fault plane
while the vertical gradient effect extends to far greater distances.
Furthermore, as the depth of burial of the anomalous mass varies, the

change in the second derivative is much larger than that of the vertical

gradient.

The dashed line curve in Figure 46 shows that as the angle of
dip of the fault plane increases towards 90°, the maximum and the minimum

of the vertical gradient are shifted towards the inclined faces of the

fault plane.

The limiting value of the vertical gradient as x approaches

gzero is derived in Appendix D and is given by:

o8 ]
( azs) = Qpsin2B log(;g)
X=0 1
and
9g Z, Z
2
( f) — Gpsin2B log —3-2 .
92 ‘v 1%,
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This shows that, knowing the vertical gradient of gravity
directly over the fault trace, we can obtain information about the angie
of inclination of the fault plane and the depths to the different geologic

horizons from the surface of the earth.

Equations 9 and 10 giving the vertical gradient of gravity
for a single block and a fault are more complicated than the correspond-
ing equations 7 and 8 giving the second derivative effect over a single
block and a fault. Since the properties of the vertical gradient are not
greatly different from those of the second derivatives, the use of the

vertical gradient for interpreting faults will not be discussed further.
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CHAPTER IV

The Fourier Trqpsfoig Of Gravity Data

General: TFor a two~dimensional body; the gravity anomaly is usually
expressed as a function of the distance, x. By making a Fourier trans-
formation, the gravity anomaly can be transformed from the original
‘distance domain, x, into the frequency domain, w. If we transform the
data into the frequency domain, then carry out the interpretation, we
obtain certain advantages over interpretation based on the raw data;
firstly, in transforming into the frequency domain, an entirely new
function is obtained which is more easily handled than tﬁe original
function; secondly, in calculating the Fourier transform, all available
gravity data are used so that none of the gravity data are réjected.in

the interpretation.

Odegard and Berg (1965) have made frequency analysis of
gravitational fields of several bodies of simple geometric shapes, such
as the cylinder, the sphere, the single block with a vertical edge, and
have shown how the depth and s;ze,of the causative body may be obtained

rom the Fourier transform of the gravity data.

The basic transform formula discussed in this section is the
transform of equation (1). The Fourier transform of the right-hand side
of (1) is not readily calculable; howeVer, we can calculate the transform
of the second derivative, and from this transform we can easily obtain

the transform of g.
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Fourier transforms: The Fourier transform of the function f(x) is

defined by the relation

Flw) = £(x)e ™ Fax e e e (11)
- 00
provided the integral exists for all real values of ®w., The Fourier trans-

form, F(w), is in general a complex quantity, that is,
F(u) = R(w) + 3x(0) = a(@)el*®)

R(w), X(w), A(w) and #(w) being real functions of w. A(w) and ¢(w) are
called the Fourier spectrum and phase of f(x). ' The function f£(x) can be

obtained from the transform, F(w), through the formula

(e 9]
£(x) = -zl—n Pw)ed ®dw .. (12)
- 00

The notation f£(x) <~—-» F(w) is used to indicate that f(x) and F(w)
are transform pairs. The Fourier transform of f(x) will also be written

in the operator form F{f(x)} on occasion.

By differentiating both sides of equation (12) with respect to

X, it will be seen that

q° n
.d_xﬁf(x) e > (3u)"F(w) c e e .. (13)

d2.g

()]

Fourier transform of

N

dx

@ As mentioned earlier, the Fourier transform of the right side of
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(1) is difficult to obtain. We shall, therefore, calculate the
transform of the second derivative, ___2_s_ , and use (13) to obtain
dx

the transform of g.

Writing K for (Gp), the expression given in Appendix A for

the second derivative of g can be written

dzgs ~-K
&2— == (cos R0, - cosZOl)
= '%{(l + cos.202) -1+ 0052@1)}
= "%{-{(l + tanz(-)z)-l + (1 + tan® l)-l}
I )
~ where H = (l+‘<’,i2)-13 £y = tane; =a +z_};- ;a8 = tang, i = 1, 2

If we write F2s (w) for thé Fourier transform of the expression

in (14), then we have the following transform pairs:

e, P, ()
4—————-—) w
dx2 2s
dg F,_ (w)
s 2s .
dx ‘_—-—-—-) jw e e o o @ (15)
g - a5 Fzs(w)
s 4 . 22
(Jw)

When calculating FZS(w) , the constant term 2Gp(w - a)t does not enter

into the calculations, hence it will not appear in the transform for gs.
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2
dgs

dx2

Appendix E where it is shown that the real and imaginary parts of the

The Fourier transform of the function is derived in

transform F2s(“’) for a single block are given by

-z

1.
st(w) = ¢ Me 51n(hl + ¢) e o e .. (162)
—uz |
Xzs(w) = -c Me cos(h1 + ) e« o o . (16b)
1/2
where M = {1 - 2e-chos(waT) + e_sz}
tang = sin(uwaT) —
cos(wT) - e
T = 2y - 2; = Thickness of the bed

The real and imaginary parts of the transform for a fault
cutting a single bed are also given in Appendix E and are equal to

-Wz

Rya(w) = c Mie 1sin(hl+¢ + n) . e ... (172)
—le
ng(w) = =c MNe cos(hl+¢+ n) e e o o . (17b)
1/2
where N = {1 - 2e_wscos(wa(5) + e—2w6} :

bann = sin(waé) .

cos(wad) - e’
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= 23 - z, = Vertical displacement of the fault.

Tn the above expression of the Fourier transform of a fault, it we let

S

§ go to infinity, the transforms¥ R2 f(w) and X2 f'(m) will approach the
transform of the anomaly due to the upper block alone. Hence transforms

for single blocks may be obtained from the transforms for a fault by

assuming the fault to have infinite displacement.

Fourier spectrum A, f( w)

The Fourier spectrum A, f(m) of the fault anomaly may be

written as

} 1/2

he(w) ={Ry5w) + 2y %(w)

= ¢ MNe e e e o o (182)

Hence Iog Azf(w) = Logc - wzy + f?,]; Log{l + e—2wT—2e_chos(waT)}

+ -2]= Log{ 1+ e_2w5-2e-m6c:os(wa.5 )}
* . . L L (l8b)
If w >> T and w >>8, the graph of log Azf(m) versus & is

approximately a straight line. Hence for sufficiently large values of

W,

*
Strictly speaking, R(w) and X(w) are not transforms but merely the real
and imaginary parts of a transform; however, it is convenient to refer
to them as transforms and this practice will be followed in subsequent

pages.
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Log A2f(w) = Log ¢ — wzy

_ 4 :
) = g 108 App(w)
Also the intercept of the straight line at w = O gives the result
Azf(O) = ¢ = 2nGpcosB. Thus, from the graph of log Azf(w) for large
values of w, we can find zq from the slope and B from the intercept,

the latter requiring a kmowledge of p as well.

d2

Fourier transform of >
dx

From eqpatioﬁ (3) it can be seen that the gravity anomaly,
&2 of a fault truncating a series of N beds is equivalent to the combined
gravity anomaly due to N + 1 single blocks each of thickness §, the
blocks being at depths Zys By e e e oo 0w Iy and having density
contrasts (ol - oo), (02 - 01), e e e (0r - ON) respectively.
Formulas (16a) and (16b) can be used to calculate the Fourier transform
of eébh block individually and then the real and imaginary parts of the

N + 1 blocks can be added up separately to give and real and imaginary

a2
parts of the transform of 5m_
dx2
dz Consequently, the real and the imaginary parts of the transform

of 5 are given by
dx
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—~uzy -z,
R2m(w) = cR{ple sm(hl + ¢) + Pe s:.n(h2 + ¢). +
-7,
N+ .
e oo et . sm(hN+l+ ¢)}
‘ e oo e (192)
—wz, ~uz,, '
sz(w) = - cR{ple 4 -cos(h:L + ¢) + P8 cos(h2 + ¢) +
. L. . -mz . !
N+L
cee e + Ppyg® cos(hN_i_:L + ¢)}
- e e« .. (190)
' 1/2
where R = {l - Ze—wécos(thanB) + e-2w6}

tan¢ = sin(wétant) 5 by = (wzita.nB + B)

cos(wdtanB) - &*

= - = - G =0 o0
PL T 917 %> P2T% "% e Py T T
The amplitude spectrum of the transform of & is a complicated

function and it is doubtful that any useful information can be obtained

from it.
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Determination of Rz(ug And Xz(w) From The Field Data

In order to find Az(w) as a function of ®w we must find Rz(w)
and Xz(w) as functions of w. This can be done by making a harmonic

analysis of the observed gravity data.

A function f(x) which is periodic with period 2L and which
satisfies certain conditions of continuity can be represented by the

complex Fouvier series
+jnwox
f(X) = 'E ane e« o o o o (20)
n= -oo
the complex coefficients, o, being given by

i L . . ‘
_ 1 -Jnw x .
¢ n 2L, / f(x)e dx , o = 7.

L

Obviously @ is the conjugate complex of Ot_n.

The function 'f(x) can also be represented by the real Fourier

series !
00
ao .
f(x) = 5 + E (ancosnwox+bn31mwox) e e e .. (21)
n=1

where the coefficienﬁs are given by the expressions

L
a, = -:-LI-‘/ f£(x)cosnw xdx

-L

It

L
1 .
b, T / f£(x) sinnw xdx.
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The two sets of coefficients are related as follows:

)5

a, = @ + o = Rel @}, b = j(o -2

1 -1

—2Im{ an} s

Re { } and Im { } denoting the 'real part of' and the 'imaginary part of?

respectively.

Assume that the obéerved gravity anomaly, g(x), has been
represented by a Fourier series similar to equation. (21), the interval

(-L, L) being sufficiently large that

gx) = 0, # > 1%,

The Fourier series will represent the gravity anomaly as
accurately as desired within the interval (-L, L); outside this interval,
however, g(x) vanishes while the series reproduses the gravity anomaly

"in each interval (¢, ¢ + 2L), c being an arbitrary constant.

The complexAFourier coefficient in the series representing g(x)
is closely related to F(w), the Fourier transform of g(x). Thus, we
have |

6 ] = —]-'—- L —,jnwox ’ l @ -jnwox
n 2L g(x)e dx = 3T g(x)e dx

=L »
-

= L
- 2L F(nwo)
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Therefore,
=X = 4
a, = T Rel Flaw,) }= T R(nmo)
10000(22)
- 1 - -1
b, = -1 Tm{ F(nwb)‘} = -3 X(nmo)

Thus, by analyzing the field data to find a and b , we can
obtain the values of R(nwo) and X(nwo) with an accuracy which theoretically

can be made as high as we wish by increasing L sufficiently.

If we write
© v
' = E i
fr(x) (anlcosnwox + bn131nnmdx)
n=1L '

m N
114 = 1
and f1r(x) E (anzcosnwox + bn231nnmox) ,
n=1 .

the values of the coefficients P bnl’ a5 and bn2 can be found by

differentiating equation (21). The results are

8, = (nwo)bnl (-n.mo. a,
« e o & o (23)
_ _ L2 2
b = (—nwo)a.nl = (-n W )bn

n2

" For very large values of x in the positive and negative directions
from the fault trace, the function Ep is approximately equal to zero, hence
by choosing L very large, the coefficients an and bn in the Fourier series

representing gp should be approximately equal to R2f(nmo) and X2f(nwo)'

The gravity anomaly due to a single block as well as the anoma$y

1
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due to a fault truncating a series of beds for certain combinations

of density, do not approach zero for large positive and negative values
of x, hence the method described above is not directly applicable to
the calculation of transforms of such anomalies. However we can use
one of the following methods to find transforms of anomalies which

do not approach zero values for large positive and negative values

of x.

Method No. 1 -

Let g(x) in Figure L7 be the gravity anomaly due to a single
block or a fault truncating a series of beds. The first derivative
of g(x), g'(x), shown in Figure 47, is a well-behaved function in
that it rapidly goes to zero for large positive and negative values
of x. A Fourier analysis performed on gt(x) will give the
coefficients a1 and bnl' The Fourier coefficients an and bnl are

related to R(nmo) and X(nwo) as follows:

a = -R—l- (nw ) = jnw R(nwo)
nl L o o L
X X(nw )
- _4 - s 0
bnl L (nwo) 8 T

Thus, once we have the transforms Rl(nwo) and Xl(nwo) » the transforms
R(nwo) and X(nwo) can be readily calculated, thus giving the transforms

of g(x).



- FIG 47,
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FIG 48.
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Method No. 2

Let g, a.n_d.-g_oo be the limiting values of g(x) as x
approaches + oco. Then we define a new function gr, such that

- 8y, 100 2

= “8_» x 2 0.

Then the function G(x) defined by the equation

G(x) = g, - &(x)

approaches zero as X approaches + oo.

The Fourier transform of g, can be obtained by finding the
Fourier( transforms of j;he two step functions of amplitudes g _*mand
~8_o0 separately and then adding the two results to give the Fourier
transform of gy. Thus, if gl( w) be the Fourier transform of the

step of amplitude 81002 WE have,

o0
gl( w) =/ g—l-ooe—jmdx
-0

0
= 3 -vj Et-jurb
8o Iim /{ e dt

€ ==>» O



- 122 -

_ . 1
= 8 D ST W)

€ ==>» 0O

8o l:'n'G(m) + -J%’J ¥

where 6(w) is the Dirac '8! function or the unit impulse function,

defined by

8(w) = wat o = 0

©
and / S(w)dw = 1
-00

Similarly, the transform gz(w) of the step of height -g_

B = -g_oo[:wé(w -jiw]

Hence the Fourier transform of g is gl(w) + gz(w)

is given by

(800 T 8Boo)
Juw

= (g, -8 ) 0@+
Except for the point w = 0, the real part of the transform of

gr, is zero. There will, however, be a contribution from the imaginary

(8,00 * 8.00)
part of the transform of g; for every w equal to = .
L q »

To fine the Fourier transform of g(x), therefore, we first
calculate the Fourier coefficients of .the function G(x) = {gL - g(x)}

in the usual manner. If an' and bn' be these coefficients, the real

3*
See Papoulis, 1962.
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and imaginary parts of the transform of g(x) is given by

R -
L T %
8o T 8
X . -+00 *~00
L - (bn' + . :Ln_mo ) . e @ L] . (21:];) )

Theoretical examples

Example No. 1: In this section we use equations (2) and (8) to calculate

the anomaly and its derivatives, then analyze these data as though they
had been obtained in the field. The calculations listed below were made
for a fault with the following parameters:

= 0.5 z, = 1.5 z3 = 1.0 z4 = 2.0

P = 1.0 B = 60° 1L

71

12.4

(a) g(x) and g"(x) were calculated,

(b) harmonic analysis of the results in (a) gave the two sets of
coeff1c1ents,/(an, bn) and (anz, bnz)’ as functions of (nwo), that is,

as functions of n, since w, was the same for all calculations,

(e¢) values of (anz, bn2> were calculated from the values of (an, bn)

using equation (23),

(4) R2f(nwo) and X2f(nwo) were calculated as functions of n using

equations (17a) and (17b), after which equation (22) gave a0 bn2’

(e) Rf(nwo) and Xf(nwo) were obtained from the results in(d) using

equation (15), after which equation (22) gave a.> b.
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If we regard the values of g(x) obtained in (a) as représenting
field data obtained under perfect field conditions, then the coefficients
obtained in (b) and (c) are based upon field data while the coefficients
obtained in (d) and (e) representltrue values. The two sets of coefficients

are compared in various ways in Figures 49-53.-

Figure 49 compares a  obtained in‘(b) above with (1/L) Rf(nwo)
obtained in (é). The agreement between the'two sets of valueé is exact
within the accuracy of plotting so that the two curves merge into one.
Figure 50 shows the relation between b, and -(1/1) Xf(nwo); the latter

gives a smooth curve about which the curve of bn oscillates with decreasing

amplitude.

Figures 51 and 52 compare values of (1/L) R2f(nwo) and
-(1/1.) XZf(nuB) with (anz, bnz) obtained in (b) and (¢). In Figure 51,
the three curves coincide within the plotting error, whereas in Figure 52,
-(1/1.) Xéf(nu%) and b_, obtained in (b) coincide to give a smooth curve
about which the b , values obtained in (c) oscillate with an amplitude

which seems to increase slowly with increasing n.

The disparity between Figures 49 and 51 on the one hand and
Figures 50 and 52 on the other is striking. The two curves which
deviate ffom the smooth theoretical curves representing the transforms
=(1/L) Xf(nub) ana -(1/L) X2f(na6) are curves of b obtained in (b) and
b, obtained from b (procedure (c)). Both of these curves depend upon
the harmonic analysis of the gravity anomaly, and further study shows that

the osciilatory nature of these curves is due to neglect of the tails of
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the anomal;} beyond the points x =+ L. The effect of reducing theée

té.ils by increasing L from 12.4 to 100 can be seen by comparing Figures

52 and 53; the latter shows almost perfect agreement between bn?. -and

-(1/1) X, f(nmo) éxéebt for low values of n. Thus, provided L is taken
sufficiently large, bn and bn2 agree very closely with the theoretical
values given by the imaginary parts of ﬁhe Fourier transform. However, even
when L is much less than this value, accepﬁable values. of the transforms

can be obtained by smoothing the curves of b, and bn2 to remove the

oscillatory part.

In order to find the amplitude spectrum, A, f(nwo) , it is not
necessary to carry out a Fourier analysis of the second derivative of the
gravity anomaly. A2 f(nmo} can be obtained directly from the Fourier
coefficients, a, and bn, obtained by Fourier analysis of the gravity

anomaly as shown below:

The second derivative spectrum can be written as

Ayplna) = /R;f%(nwo) + X, 02 (w )

2 2 2
= (nwo) /Rf (nwo) + X, (nwo) ,
since R,, = (jnw )2R
2f _J o’ °f
and X o = (jnw )2X
2f o’ O

Dividing both sides of the above equation by L, and using the relations

1 1 .
a, =7 R(nwo), b, =-71T X(nwo), we obtain,
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A
T2f(me). - _ 2 2 2
T = (nmo) a~ +b
A, (nw ):
and Log{ —g-f—i—&-} = 2 Log(nmo) + %‘ Log (anz + bn2>'

Hence A2 f(n ‘”o) may be obtained from the Fourier coefficients, an and bn.
The above equation was used to plot the curve in Figure 54. The slope
of the amplitude spectrum in the linear region gives Z| = 0.5 and the
intercept corresponding to the straight line portion of Jf‘,he curve gives

B = 60°.

Example No. 2: Using equation (1), the gravity anomaly, g5» Was calculated

for a single block having the following parameters:

= 1.0, 3, = 2.0, B =60 p = 10 en/c.c.

a1
In order tdé calculate the Fourier transform of the above anomaly, method
No. 2 on page 121 was used. A Fourier analysis was performed on the
function (gL - gs) , obtained by subtracting the anomaly from 8 o for
negative values of x, from g oo for positive values of x. If anf and bn'

are the Fourier coefficients of the function (gL - gs) and a, and bn the

Fourier coefficients of the function - then

a, = an' except at w = O
. =b'+(g+oo+g_oo)
n n ano

Figure 55 shows that, except for small values of w, the
R (nw ) -
s'T o

agreement between a, and I is very good. In Figure 56, the
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theoretical values of Xs(nwo) are compared with the Fourier coefficients
' bn and bﬁ-'; as in the cas]é' of the fault, the bn coefficients oscillate

about the theoretical graph and acceptable values of the transform can

be obtained by smoothing out the coefficient graph.

- The amplitude spectrum, A, (nw ), for the transform of the

second derivative of gs' is shown in Figure 57, plotted as a function ovf
the order of the Fourier harmonic, n. The slope of the amplitude graph
in the linear part gives z) = 1.1 and intercept of the linear part gives

B = 56°,

Determination of fault parameters: Certain geometrical properties of
the fault can be expréssed.in terms of the Fourier coefficients. ILet us

~ define S and S! according to the relations

0. o
1 1
S = ?/ Rz(w)dw , St = ;/ Xz(w)dm.

o (o]

Referring to equations (léat®) and (16b?) in Appendix E, the typical terms

in the expressions for S and St due to a single block are given by

o 00 '
-z Wz
I =/ e sinhdw , It =/ e coshdw , h = wztanB + B
) o ' A

/ Integrating by parts twice and solving for I and I' gives
I = cosB sin2B/z I' = cosBcos2B/z

Substituting these results in equations (16at) and (16b?), we find for a -

% single block
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_ 2K cos~B sin28 (— - —')
s Tay gy

%))
I

St = -~ 2Kcos26 cos2B (;‘ - 'z']"')
S. _ 2 1

Similarly, for a fault cutting a single bed, the corresponding functions,

Se and SfY, are given by

Sp = 2KcosBs1n28(—-%+l Z—l-)
) 1 %3 I

Sp! = —2KcoszB cos2B (E]:- ;%- -Zl'- -ZL)
. R 1 3 L

Referring to equations (19a) and (19b), we find that S and s ! fora

fault cutting a series of beds are given by

P o
S, = 2GS cosBs:LnZB( +Zzz,+....—--1-\lﬂ'——)
ll 2°2 N+lN+l
2 Py ) P L
8, 1.= -2G68cos”Bcos2B (5 + 07 + ... )
171 272 B2 N+l

where &6 = Displacement of the fault

The functions S and S! are related to the Fourier coefficients a.n2 and

b ~ as follows:

n2
© o ®
1 L L R
= 1 = L = (& § w
5 m / Rz(w)dm 1r a'n2dw (w) Y
) ) -y
However, a_.6® = a . {n (_2_1r - (n l)( )} = L4 so that
2 “n2 n2 2L L n2°?
© o
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oo’ (o)
Similarly st = E b, = “’02 g nb_
n=L n=L

Hence the functions S and St may be found by suming the Fourier

coefficients a5 and bn2’ or a, and bn'

After S and S! have been found, we can obtain 8 by taking the
ratio of S and S'; ﬁhus
tan28 = -~ §/st
In obtaining values of S and S' from thé coefficients a0 and bn2’ it
is found that fhe sums of the coefficients converge very slowly to S
and S' when zl'is small, hence a large number of coefficients are

necessary to get a good estimate of S and S'.



- 139 -

- Iimiting Values Of The Transforms As w ——» 0

Useful information about the parameters of ‘two-dimensional
faults can be obtained by taking the limits of the Fourier transform
functions as w approaches zero. Ebcpression; for the limiting values
of the transforms of a single b.lock,‘ a fault c.utting a singie bed and
a fault cutting a series of beds are derived in Appendix F. These
limiting values are

Single block:
(a) Lim R (w) =  nGoTtand (2 + Z5) L. e (252)

w —==> 0

(b) Iim Xs(w) = ZﬂGp[-g-(zl+zz)-T Iim (%{, e o« + .« . (25b)

W == 0 W —=> 0

= -0

Fault cutting a single bed:

(¢) Lim Rf(w) = =21mGpTS8 tanB e o+ o . (25¢)
W ==3> O

(d) Lim Xp(w) = -20CT8 - v e e (254)
W - 0

Fault cutting a series of beds:

(e) ILim Rm(w) = nGBtanBEzN_'_l(or -0) +6(cr - oo)] .« . . (25e)

W ==%» O

(f) Iim Xm(m) = 7wGs EZI\H-l(OI‘ -5) + G(Gr - oo)

e e e . . . (258)
28 (N + 1)(<:r - oozl :

w

- lim
g— W == 0
S Pt 5 %

ZN+1

where ¢ =
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Thus by extrapolating curves for R(w) and X(w) tow = 0 we éaﬁ find
certain parameters of two-dimensional structures. As an example,

'in Figure 55, the graphs of the coefficients a '. and the transform
.Rs(nwo) have the same limiting value 1.7 at @ = 0. Such extra-

T polation is possible only if the curves are approximately
straight lines near w = 0. By plotting a large number of theoretical
curves for a fault it is found that the slope near ® .= 0 _c.ha.nges quite

rapidly for |B|> L|.5° hence the results obtained by extrapolation will

not- be very accurate for faults dipping less than 450.
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Approximate Values Of T And 8

For a fault cutting a single bed an approximate value of
the thickness .T can be found when zZq and B are known and when it 1is
assumed (or known) that T is small and § is large. In the same way,
8 can be found when it is small and T is large. In practice this
means that the one to be found is less than about 3,000 feet while

the other is greater than about 4,000 feet.

The amplitude spectrum of the transform of the gravity
anomaly due to a fault cutting a single bed can be obtained by a
combination of equations (18a) and (15): Thus, the amplitude spectrum

Af is given by,
-7

' L 1/2
Af( w) = (29—2—){1 - 2e_chos(thanB + e-ZmT '
w

s Y/ 2}

{l - Ze—wscos(tha.nB) + e
where ¢ = 2uGpcosB.

Let us assume that T is large while § is relatively small.
Then as @ increases, the bracket involving terms in T approaches
unity much more quickly than terms in §, hence for moderately large

values of w the above expression reduces to

. ce 1 -wé =2wd
Af(w) = 1 - 2¢"*%cos(wétanB) + e

W

To solve for 8, we take two values of w, say u and w2, and determine
L
Af(wz) ‘

the ratio 1 = Since B8, Zys W and w, are known, T is a
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function of 8 only; thus

. -(an -2(016
1~ 2e cos(wlétanB) + e

' -m26 -2w26
1-2e cos(wzﬁta.nB) +e

Tz(f;)“e(“’l""z)zl
AR}

L] L] L] . . (26)
1§t is the only unknown in this equation, hence it can be found by

numerical methods of solving the equation.
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The Fourier Transform Of The Dike Anomaly

From equation (5), the gravity anomaly of a dike is given

by

8y = 00828 Bx + xo)(F;d - ,F]'.d) - (x - xo)(de" Fld)]

To find the Fourier transform of the right-hand side of the above

expression, we note from the shift theorem of the Fourier transform

that, given

then flx = x ) €—————= > e ° pw).

Using equation (15) and the above formula, the Fourier transform of the

dike anomaly may be written as

+jux —Jux. :
o} o
B e FZS(w> -e FZS(w)
gd - b . ‘2
(JUJ) 2

d g,
where FZS(w) is the PFourier transform of the second derivative '2
ax’

of the gravity anomaly g  due to a single block (see equations (16a)

and (16b)).

Writing Fd( w) for the right-hand side of the last expression,

we have
2jsinux  F,_ (w)

Fd(m) = - —— . (27) -

W

= Rd(w) + de(w)
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2

The Fourier transform F2s(m) of the function - Z is derived in
X

Appendix E. Substituting for FZS(m) in equation (27) we obtain

_wzl

Fd(w) = - 2jcMsinix 2735—{%in(hl + ¢) - jcos(hl +'¢)}

e oo (28)
where ¢, M, T, ¢ are defined in the same way as in equations (16a) and

(16b).

The amplitude spectrum Ad(w) of the dike anomaly may now be

written as

i

Ad(m)

1/2
{ R0 + xdz(m} -

-z 1/2
2c sinuncoe l{ 1+ e_2wT-2e-chos( wTtanB )} -

- 2
- w
ce e e (29)
From equation (28),
~wz,
-QCSinmxoMe cos (hl + ¢)
Rd(w) = = R 51029
—2csinux Me sin(hl + ¢)
and Xd(w) = 5 A ¢510)))
w .

Taking the logarithm of the expression in (29) we obtain
Iog Ad(w) = Iog (2c) + ILog (sinwxo) - wz) - 2 Log

+ -2]= Log{l + e-sz-Ze—chos(thanB)}
e ool (31)
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T is usually fairly large for a dike, hence we assume that the last

term in the above expression is unity.

Furthermore, for_(mxo)2 < "2’ log (sinwxo) can be expanded in a

Taylorts series, so that

(wxo)2 (mxo)lF (“’Xo)é
Log (sinux ) = Log (wX,) - —2— - —g5~ - 5835

... (32)

The quantity x for a dike is usually very small (of the order of 0.2
or less); for wx, < 1 all the terms excepting the first in equation (32)

are negligible. With these simplifications equation (31) may be written

as
Log Ad(m) = Log (2¢c) + Log (ux) - wz, - 2 Log w

2cx
o)

= Mg(m )-—ml

We define a new function B(w) given by

Blw) = wAd(w)
Hence log B(w) = log A&(w) + log w
= log (2cxo) - wzg - . . ... (33)
Then the slope of the aboﬁe equation gives 2, and the intercept at w =0
gives us the value of log (2cxo) = log (4mCp xbcosB). Thus, knowing o,
the density contrast and xo; the half-width of the dike, B can be obtained.

Alternatively, knowing p and B, X, can be obtained.

In order to calculate B(w), we must first find Rd(w) and Xd(w).

The procedure is exactly the same as that outlined in the section on fault

interpretation, pages 116~118, hence further discussion here is unnecessary.
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Theoretical Fxample

In this section we calculate the Fourier coefficients
obtained from the gravity expression of the dike anomaly given by

equation (5). We then compare the Fourier coefficients with the

Rd(nwo) Xd(nmo)
transforms T 9 - I - -The calculations were made for a

dike with the following parameters:

z; = 0.5, 2, = 2.5, x, = 0.2, B = 60°,
m
) p = 1.0, wo\ =T = 0.291, L = 10.8
Ry
a, and T(nwo) are compared in Figure 58. Within the accuracy of

plotting the two graphs are indistinguishable and so the graph of
the transform merges into the graph of - Similarly, in Fig}tére 59,
we see that the graph of b also merges into the graph of - T,q'(nmo)
so that the twe are indistinguishable. Figure 60 shows the graph of
log {B(nab)/L} versus n. The slope of this graph in the linear

region gives 2z, = '0.14.9 and the intercept at n ++ 0 gives B = 61°.
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Limiting Values Of Ry(w) And X,(u)

The limiting values of the functions Rd(w) and Xd(w) as

w -=» 0 are of interest.

From equation (30a), page 1ik,

—g

Rd(w) = —(-i—g-) sinux  Me Leos (hl + ¢)
: 1/2
‘Substituting M = {1 + e-zmT-Ze—chos(meanB)} -
hy = “’zltanB + B,
and  tan$ = —=sin(uTtanB) —
cos(uwltanB) - e
in the above expression, we have,
2¢ —Wgy !
Rd(w) = = (—2- sinuxo) e cos(mzztanB ‘+ B)-e cos(a’szltanB + B)

e o e s o (31})
Taking a typical term in the above expression, we can write

Iim - (2—; sinmxo) e % cos(uztanB + B)
W == O w )

(2cw}£o)

_ =ILim .
= ———=—|(1 ~ wz)cosB - sinB (wztanBZ,
w —-=> 0 m2 l:

~ —lim (ZCXO) cosB - wzcosB - wz -Silnﬁ
W =3 0 w cosB

. 2cx
@ ~Tim o 2
o> o B cosB(l - wzsec“B).
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If we take into consideration both terms within the square bracket in

equation (34), we obtain

Zcxo‘ 9
Iim Rd(w) = = Lim cosB sec B(wzl - wzz)
W =—3 0 W -=3 O
= ZcxoTsecB
= 4G px T . e ... (35)

A similar analysis for the imaginary part gives
Iim Xd(w) = 0
W =—> O
Provided the slope of the a, Versus n curve does not change
very rapidly near the origin, we can extrapolate the curve to w =0

and so find the value of the product xoT, provided p is known.

In Figure 58, the intercept obtained by extrapolating the

curve to w =0 is 0,92. The calculated value is 0.94.
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CHAPTER V

Field Examples

Genefal: Tn order to test the validity of some of the formulas
derived earlier, several gravity surveys were made over known faults
and dikes during the summers of 1965 and 1966, Each survey is

described separately in the following sections.

The elevation measurements at the stations were made with
a quick-set Zeiss surveying level capable of giving readings accurate

to the nearest 0.0l foot within a horizontal range of 40O feet or

less.

The pressure in the vacuum chamber of the gravimeter was
checked and the gravimeter recalibrated before thé start of the survey.
The performance of the gravimeter was excellent during most of thg i
survey with drifts rarely exceeding 0.02 mgls/hr. There were, however,
a few days when the gravimeter drifted by as mudh as 0.1 mgls/hr. This
comparatively large drift of the gravimeter is believed to be a
temperature effect because it invariably occurred on Vvery hot, humid
days. In order to correct for the gravimeter drift, the base station
was revisited every hour or so. The drift was found to vary almost
linearly with time, hence readings of all stations occupied in between

two readings at the same base station were corrected by assuming linear

drift.

The Worden gravimeter used was model No. 506 with a dial
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constant of 0.1071 mgl/Div and a sensitivity of 0.0l milligals.

The locations of the various gravity surveys are shown in

the index map of the St. Iawrence Lowlands in Figure 61.
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Delson Fault Area

Introduction: A detailed gravity survey over the Delson fault area

near Montreal was carried out in 1965 for the purpose of determining
some of the fault parameters by the application of some of the
formulas derived earlier. The geology of the area is comparatively
.well known so that interprétation based on these formulas may be

directly compared with the geology of the area.

The Delson fault area is situated about fifteen miles to
the southeast of Montreal and covers the area between Iatitudes 45°1916m
and 45°2418", Longitudes 73°36'W and 73°30" W. Five profiles were
taken at right angles to the strike of the fault, as indicated on the
geologic map of the area (Clark, 1955). There are several roads
crossing the area so that gravity surveys in most cases could be

carried out along these roads.

The topography of the area is smooth with eleﬁations of most
stations ranging between 100 and 200 feet above sea level. The lack of

large relief renders it unnecessary to make topographic corrections.

The rate of change of gravity with latitude is equal to

| 1.307/Sin2¢ mg/mile where ¢ is the Iatitude of the station. Since the
present area of survey is located very near to the 45° Iatitude, the
variation in gravity due to change in Iatitude may be taken to be

linear and equal to 1.307 mg/mile. The free air and Bouguer corrections

were applied in the usual manner assuming a density of 2.0 gm/c.c.
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for the overburden.

The first gravity survey of the area was made by R.J. Uffen
of the Dominion Observatory of Ottawa in 1954. The results of Uffents
survey were published by Thomson and Garland (1957). Uffents work Was
in the nature of a very broad regional survey with station spacing |
between 2-10 miles. D. McDonald carried out a gravity survey of the
St. ILawrence Lowlaﬁds in 1964 for his Master's thesis in the Department

of Mining Engineering and Applied Geophysics, McGill University.

. The geology of the Delson fault area has been dealt with quite
exhaustively by T.H. Clark in his Department of Mines (Quebec) reports
of the Montreal area (Clark, 1952). The formations present in the area,
according to Clark, are flat lying with dips rarely exceeding five
degrees. The entire area is covered with glacial drift of average
thickness 50 feet. Below this overburden are disposed sedimentary
rocks of Ordovician agé belonging to different groups, such as the
Chazy limestones, the Trenton limestones, the Utica shales and the Lorraine
shales. The occurrence of the Potsdam sandstone of the upper Cambrian
series underlying the Ordovician is postulated because of the outcfop
of Potsdam sandstone in the Iaval and Iachine areas. Further, as
reported by Clark, a well drilled just north of the village of St. Hubert
reached Potsdam sandstone at a depth of 3,965 feet. Since drilling was
discontinued after’ penetrating only five feet of sandstone, the adtual
thickness of the formation is uncertain: however, it is reasonable to
expect that the Potsdam formation extends over the entire St. Jean-

Beloeil areas. Pre-cambrian basement rocks are believed to underlie

the Cambrian.
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The presence of glacial drift makes it almost impossible to
observe the Delson fault at the surface. The evidence for the
existence of the fault is the fact that in the Delson area, flat lying
Utica beds are observed at the surface, while in the Caughnawaga area
just to the west the surface beds are flat lying Chazy beds. The
attitude of the Chazy and the Utica cannot be reconciled without
postulating a major dislocation striking approx1mately east-west.
Moreover, at St. Jean, which is in the eastern extremlty of the present
area, the succession is Trenton, Black River and Chazy whereas two
miles to the north of this occurrence there is exposure of Utica at
Delson. The Delson fault has been used to-explain these breaks in
stratigraphy. The strike direction of the Del=on fault as postulated
by following the outcrops of the Chazy and the Utica is fairly well

established and is shown by the line xx' in the Bouguer anomaly map

in Figure 62.

Thicknesses of the various sedimentary formations in the St.
Jean-Beloeil areas are given by Clark (1955), based upon various well
logs and also from measurements of exposed rocks wherever available.
An approximate section through the Delson fault is shown in Figure 63

as deduced from Clark'!s report.

From geological evidence the Delson fault is believed to be

vertical with a throw of about 900 feet down to the north.

The density figures of the different formations of Figure 63

are based on measurements made by McDonald (1964) and Saxov (1956).
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Observations: Figure 62 shows the Bouguer gravity anomaly map of the

Delson area. Altogether, 202 stations were occupied along five

profiles perpendicular to the strike direction of the fault. Station

sﬁacings in most cases were 400 feet but this was reduced to 300 feet

in certain parts of the profile. The contour interval in Figure 62

is 0.2 milligals.

The general pattern of the gravity anomaly contours in Figure
62 shows that the gravity decreases from the south to the north. The
spacings between contours is a minimum at the center of the map and
becomes}wider at the southern and the northern parts of the mép and the
contours bend down quite sharply at the.south-east corner of the map.
This bending of the contours is believed to be due toAthe influence of

a second fault, the so-called Tracy Brook fault, which strikes in the

north-south direction.

Profile A-B is drawn perpendicular to the contours of the
Bouguer anomaly as shown in Figure 62. Since the gravity anomaly
contours are fairly regular at the central part of the map the influence
of the Tracy Brook fault on profile A-B may be considered negligible

and whatever anomaly is obtained, may be attributed ﬁo the Delson fault.

The gravity anomaly across the Delson fault along profile A-B
(Figure 65) resembles the characteristic graﬁity ﬁrofile across a single
block or of a fault truncating a series of beds. The total change in
the gravity due to the Delson fault as measmred from profile A-B is 2.3

milligals. If this change is entirely due to the density difference
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between the Chazy and the Utica beds, then we have approximately,

g = 2mG(oy - o)t

where g = Total change in gravity due to the Delson fault.
= Density of the Chazy beds.
0, = Density of the Utica beds.

t = Thickness of the Utica beds.

The density of the Utica shale is about 2.60 gm/c.c. and of
the Chazy limestone beds 2.71 gm/é.c., and‘the Utica is about 300 feet
thick. Hence, the total change‘in the gravity is 0.4 mgls. This is -
far too small to explain the 2.3 milligals obtained from the field
data. The possibility that the other Paleozoic beds below the Chazy
formation may add significantly to. the anomaly is ruied out since the
Beekmantown beds below the Chazy beds have virtually the same density
as the Chazy beds and the low density Potsdam beds below the Beekman-
town will have a negative effect, thereby reducing the total anomaly.
To account for the large gravity anomaly, therefore, we must look for
some other sources of high density rocks besides the Paleozoic. The
Precambrian rocks have a high density and are believed to underlie the

whole of this area. The contribution of these high density rocks to

the gravity anomaly therefore can account for the comparatively large

gravity anomaly of the Delson fault.

In order to apply the gravity formula to a fault truncating

the series of Paleozoic formations and the basement, the section through

the Delson fault was simplified as shown in Figure 64. The Utica and
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the Trenton beds in the above figure are assigned the density of 2.68
gn/c.c. Ve, therefore, have a fault truncating a series of beds and

the basement. The total change in gravity due to such a fault, from

equation (3a) is

)

g, = Z"G(%U -ioo

where &n is the total change in gravit& due to the fault
00 is the average density of the Utica and the Trenton beds
Ur is the density of the basement.

Substituting the respective values of the densities the.total change

in gravity due to the Delson fault is given by

g, = 2M(2.90 - 2.68)8 = 2.3

From above, the displacement '6' of the Delson fault is 820 feet.

This value for the displacement of the Delson fault agrees very closely
with the value estimated by Clark which is 900 feet at the Mercier
Bridge (aﬁout g miles £o the north-west of the present area) and 800

feet at the Menard corner (about 10 miles to the south-east of the

present area).

Figure 66 shows the gradient profile across the Delson fault.
This gradient curve was obtained from the gravity profile A-B by
taking the difference in the observed gravity values between two closely
sbaced points and dividing this difference by the distance separating
the two points. The gradient attains the maximum value.of O.47 milli-

gals per 1000 feet near x = - 0.3. Thus the position of the maximum
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gradient is very close to the fault trace, indicating that the Delson
fault is very nearly vertical. However, for a vertical fault, the
maximum‘gradient occurs directly over the fault trace and the gradient
curve is perfectly symmetrical about thé fault trace. The gradient
curve of Figure 66 is not ﬁerfectly symmetricél, the gradient decreasing
slightly more rapidly on the north side than on the south side. This
shows that.the Delson fault dips very steeply to the north. In order
to obtain an approximate value of the inclination of the fault plane,

we calculate the following function:

g,

Gu(x) = x5 - &y
where 8n is the gravity anomaly of the Delson fault.
Tt is shown earlier that the limiting values of Gm(x) for very large
values of x in the positive and negative directions have the values
2G6(oo -0 r)(% - 8) and -2G6(oo - or)(% + B) respectively. Hence the
sum of the limiting values of Ghﬂx) in the positive and negative
directions has the value AGBG(Gr - oo). Thus, knowing the limiting

values of Gm(x) and §, an approximate value of 8 may be obtained.

Figure 66 shows the function Gm(x) calculated for the Delson
fault from the gradient and the gravity profile over the fault. The
limiting value of qm(x) from Figure 66 appears to be about 1.0 and
-0.8 milligals so that the sum of the two limiting values is about 0.2
milligals. Substituting § = 0.9, (or - oo) = 0.22 gives B = 0.12
radians or 7 degrees. We thus conclude that the Delson fault is a high

angle normal fault whose fault plane dips about 830 towards the north.
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To find the depth to the baéement we use the value of the
maximum gradient. It was shown earlier that for a single fault the

horizontal gradient is given ‘by

dg
= = 2Gpsina Log(l + —%)
x Zq

For a fault truncating a series of N beds the expression for the
horizontal gradient at x = 0 is derived in Appendix B (see equation 3b)

and is given by

% = 2Gcos‘23{pl I,Og(l-*--z-‘?i) +0, I:Og(l—i--zﬁz-)
e e P Log(l+z_6'_>}
N+1
py = (P =Py q)s 1512 ... X
end ey = (3 -oy)

From above it is clear that in order to calculate the depth to the
basemeﬁt s B2 we require the knowledge of the depths from the surface
to the top of each bed and also the densities of each bed. Since the
depths are unknown, an approximate solution may be obtained by giving
a uniform density to the Paleozoic sediments and assuming that the

entire gradient is due to the basement step at depth Zpey *

It was shown earlier that the maximum slope of the gravity
curve for any value of o is very nearly equal to the maximum slope for
o = 90°. Hence the formula for the maximum gradient of the basement

step becomes
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dg,
- s
= = 2c—(or - o) Log(l + ZN+l)

where o is the density of the basement rocks.

is the average density of the Paleozolc sediments.

al

N+L is the depth to the basement on the south side of the

fault.
Substituting in the above equation the values obtained earlier for the
maximum gradient and the displacement 6, and taking ¢, = 2.90 gm/c.c.,
o =2.68 gm/c.c., we find thé value 1300 feet for the depth to the
basement on the south side of the Delson fault. From geological
considerations, the actual depth to tﬁe basement should be somewhat

greater, probably about 1500-1800 feet.

@
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Interpretation: The gravity anomaly of the Delson fault does not

approach zero values for large positive and negative values of x on
either side of the fault trace. The first derivative of the anomaly,
however, approaches zero values as shown in Figure 66. In order to
obtain the transform of the gravity anomaly of the Delson fault,
iherefore, we perform a Fourier analysis of the first derivative of
the gravity anomaly. As mentioned in the last chapter, the Fourier
coefficients, a1 and bnl’ of the first derivative of the anomaly will
be proportional to the Fourier transforms, Rl(nwo) and Xl(nwo) respect-
ively. Having obtained Rl(nwo) and Xl(nwo)’ the Fourier transforms,
R(nwo) and X(nwo), of the gravity anomaly or the transforms, Rz(nwo)
and Xé(nwo), of the second derivative of the anomaly can be obtained -as

discussed in the last chapter.

The fundamental wavelength {(2L) chosen for Fourier analysis of
the gravity data is 21.21 units., This interval was divided into 100
equal increments, Ax = 0,2121 units. The first derivative was obtained
by taking the gravity difference across each increment, 4 x, and then
dividing the difference by 0.2121. The ratio is approximately equal
to the derivative at the mid-point of each increment. The Fourier
coefficients, a1 and bnl’ of the first derivative, g'(x), of the
gravity anomaly are obtained by carrying out the following summations

x=L

Z ’giL(x)cos (nwox)A x

x= =L
x=I

1 : .
b, =T E g'l(x)sn.n(nwox)Ax

x= -L

Hi-

nl
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- _ 2r _ 6.2832 _
where w, = Fundamental wavelength = T, .ol = 0.3022

' The entire operation for the calculation of the coeffiéients
was performed on the IBM 7044 computer. The data fed into the computer
comprised walues of L, w and the 101 gravity values at the beginning
and end of each of the 100 equal increments. The computer first
calculates the derivative and then carries out the summations to give

the Fourier coefficients, a1 and bnl'

‘ The resulting Fourier coefficients, a1 and bnl’ are shown
in‘Figure 67. For a perfectly vertical fault, the coefficients bnl
should all be zero. Since the bnl coefficients obtained from the
fiéld data are not all zero but have small values, we can conclude that

the Delson fault instead of being vertical, is slightly inclined.

As w approaches zero, the limiting values of Rl(w)-and Xl(w)

are given by (see Appendix F)
Rl(m) = 21G8(o, - oo),
Xi(w) = 0

Producing the curve a4 backwards, it is seen that at n = 0,

it has the value 0.22. - Therefore, we have

(o) .
fli—— = 0.22 = 2%§£ (qr - oo)
or Rl(O) = 2nG6(oT - co) = 2.33.

This corresponds to § = 820 feet. From equation (3a), the total change
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)s

in gravity, 8ns due to a fault cutting a series of beds is 211G6(or -0,

hence we find
g, = 21rG6(or -co) = Rl(O)

As discussed in the last chapter, a second method of obtaining
the Fourier transform of the gravity anomaly, g(x), is by making a
Fourier analysis of the function G(x). The function G(x) is obtained
by subtracting g(x) from g oo when x is positive and by subtracting
g(x) from “£_ when x is negative. The coefficients, an' and bn',
obtained by a Fourier analysis on G(x), are shown in Figure 68. It

is shown in Appendix F that for very small values of w, the coefficients

a.n' and bn' are approximately given by

at = M{ZZN_*_]_ (;-or) +<S(ao —or)} e o oo . (3%9)

n L
= IGS o
Hence the dip of the fault plane can be obtained from the relation
a !
tan = £ .
n

From Figure 68 the limiting values of an' and bn' at n =1 are

-0.02 and -0.18 respectively. Hence it follows that tanf = 0.1l and

B = 6°.

Equation (39b) can also be used to find an approximate value for
the depth to the basement if the displacement of the fault 6, the average
density o of the sedimentary rocks, the density of the basement s and

the density of the rocks immediately above the first bed on the downthrown
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side, o ,, are known. Substituting § = 0.82 (obtained previously)
and o, o, and o resbectively equal to 2.71, 2.90 and 2.68 gm/c.c.
in equation (39b), the depth to the basement 2., on the south side
of the Delson fault is found to be 1400 feet. The depth estimated

on the basis of geological information is around 1500-1800 feet.
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The St. Rose Fault

Introduction: The St. Rose fault, which strikes almost exactly east-

west, is located around Iatitude A5OAO' N. The area surveyed was about
15 miles to the north-east of Montreal. Several profiles were taken at

right angles to the strike of the fault.

Previous gravity surveys in the St. Rose fault area by Uffen
(1957) and Hosain (1965) indicate that the anomaly of the St. Rose fault
is small, of the order of a milligal or so. Therefore, gravity stations

were established at intervals of 300 feet or less at most places.

The general topography of the area is flat with elevations of
most stations around 100 feet above sea leyel. The large intfusives
in the St. Iawrence Lowlands, such as Mt. Royal, Mt. Bruno and Mt. St.
Hilaire, are too far away from the present area of survey to have

appreciable gravitational effect.

The St. Rose fault area is underlain throughout by sedimentary
rocks of Cambrian, Ordovician and Silurian ages. Pre-cambrian basement
rocks are believed to underlie the entire area. The sedimentary rocks

are very flat lying with dips rarely exceeding 2°.

There is no surface evidence of the St. Rose fault in the
entire area. In order to explain the juxtaposition of the flat lying
sedimentary beds at certain places, however, it is necessary to postulate

a dislocation in the form of a fault (Clark, 1952).

Deep well logs are not available in the area of survey. Some
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information about the general stratigraphy of the area can be obtained
from the St. Hubert No. 1 well at St. Hubert airport (about 12 miles
to the south of the area) and the Mallet test hole No. 1 at St. Therese

(about 22 miles to the west of the area).

Based upon data from the above two wells and also the
Department of Mines (Quebec) geologic reports of Clark (1952), the
section through the St. Rose fault appears to be approximately as shown
in Figure 69. The thickness of the Potsdam sandstone overlying the
Precambrian varies widely from place to place. It is believed that the
downthrow of the St. Rose fault is abqut 500 feet and the dip of the

fault plane almost vertical.

The density information in Figure 69 was obtained from density

measurements made by Saxov (1956), McDonald (196L) and Hosain (1965).

Observations: The observed and residual gravity profilés across the

St. ﬁose fault are shown in Figure 71. The total amplitude of the anomaly
from peak to peak is just over a milligal. If the observed gravity
anomaly is due solely to the density difference between the limestone and
the shale beds, then theoretically, the total change in gravity from the
single block formula is 2mGpt. Since the density contrast between the
limestone and the shale beds is about 0.20 gm/c.c. and the thickness

of the shale beds 400 feet, the total change in gravity due to the shale-
limestone contact is 1.02 mg. This value for the total change in gravity
for the shale-limestone contact agrees closely with the change in the

observed gravity anomaly over the St. Rose fault. However, the distinct



- 176 -

SURFACE , _
g—— prier | 10-40' —N
e T - 400' LORRAINE AND
TRENTON 10000 | UTICA _ SHALES S=2.56
. LIMESTONE T . - SR
o ‘l s =2.76 | ~ TRENTON
LIMESTONE 800" oo m1. R
o LIMESTONE
- BEEKMANTOWN - L T
poLomrTE 1600 . - " BEEKMANTOWN
l . 1600 *
ye=2.21 ) DOLOMITE
POTSDAM . |
SANDSTONE: y S=2. o |
| - %-POTSDAM SANDSTONE -
BASEMENT ‘ —
5 =2090

BASEMENT

FIG 69. Section through the St.Rose fault area

Ir
g — . DRIFT 10-40° B T N
| -1
. 400'  SHALES |
o . G = 2,54

/

LIMESTONES and 3000° . LIMESTONES and

' DOLOMITES | ~ DOLOMITES

I o=2.72 G=2,72

BASEMENT

@ | | ' " e = 2.90 BASEMENT

FIG 70. Simplified section for the St.Rose fault area



88.0 [~

87.0

—

' REGIONAL -
86.0 :

85.0

2.0

1,0

FIG 71 Observed and residual gravity anomaly across the St.Rose fault




_178_

maximum and the minimum suggest that the observed anomaly cannot be due
to a single block alone. The possibility that the sedimentary beds are
folded or that intrusives produce the gravity maximum and minimum can

be ruled out since, from the known geology of the area, the sedimentary
beds are very gently dipping and there is no evidence of any intrusives
in the area. Formula (3), giving the gravity anomaly of a fault
truncating a series of beds was used té calculate the gravity anomaly

of the St. Rose fault from the known densities and thicknesses of the
different beds as given in Figure 69. If the basement is also -faulted
and contributes to the observed anomaly, then the calculations show that
the basement density must be about 2.7 gm/c.c. in order that the gravity
anomaly have a maximum and a minimum. While the density of the basement
is known to vary widely, the most probable range of basement density is
between 2.80 to 2.96 gm/c.c. Considering variations of the section
shown in Figure 69, it was concluded that no reasonable combination of
bed thicknesses and densities resuited in a gravity anomaly exhibiting

a maximum and a minimum wherever the basement density is in the range
2.80 to 2.96 gm/c.c. “Moreover, the maximum and minimum can be explained
if we assume that the faulting is confined to the sedimentary rocks above
the basement so that the deepest faulted bed is the low density Potsdam

sandstone (average density 2.50 gn/c.c.).

A simplified section through the St. Rose fault is shown in
Figure 70. In this section the limestones and dolomites are lumped as
a single bed of density 2.72 gm/c.c. The only other beds in this

section with different density are the shale beds at the top and the
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sandstone beds at the bottom, both of these having densities of about

2.54 gm/c.c. The above section through the St. Rose fault, therefore,

approximates the case of a fault truncating a single bed of density

contrast 0.18 gm/c.c. and thickness 3,000 feet.

%
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Interpretation: The graphs of the coefficient a, and b, obtained from
a Fourier analysis of the gravity anomaly over the St. Rose fault are
shown in Figure 72. The ratio an/bn at n = 1 is about 0.18. Hence
tanB = =0.18, showing that the fz;.ult plane‘ of the St. Rose fault has

a dip of about 80°. The approximate equality of the amplitudes of the
gravity maximum and minimum is further confirmation that the fault plane

of the St. Rose fault is near]y vertical.

A2(nwo)
Figure 72 shows the graph of Log{—-L——— calculated from

the coefficient sets (a.n, bn). For large values of n the slope of
A (nw ) ‘

Log{—z—L—o—-} approaches zero, showing that the depth to the first

block is very small. This is confirmed by observations in the field

which show that the glacial drift overlying the fault is about 20 feet -

thick.

An approximate value of the product T8 can also be obtained
from the values of an and bn at n = 0. The smoothed-out curve of bn,
when extrapolated backwards, intersects the y-axis at about 0.52. From

Appendix F, at n = 0, we have

< b ) L 2mGpT§
n - L
n=0

Substituting bn = 0.52 and p = 0,18 in the above equation, we find that
76§ = 2.1. With this value of T6, equation (2) was used to calculate the
gravity anomaly of a fault. A series of curves were drawn varying )
from 0.1 to 1.0 and the resulting curves were then compared with the

observed gravity anomaly. It was found that the best fit with the

observed gravity anomaly can be obtained with a fault having the following
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parameters:
— = _10°
Z; = 0.03 B 10 :
Z, = 3.52 p = Density contrast = 0.18
2, = 0.65 T = 3.5

Figure 73 affords a comparison between the observéd gravity

anomaly and the theoretical anomaly due to the above fault.
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The Logan Fault

Introduction: The survey area is situated about 70 miles to the east

of Mbntreal. tIogants Line! is the name given to the zone of dislocation’
separating the St. Lawrence and the Champlain vélleys from the Appalachian
highlands. This zone of dislocation extends in a north-easterly direction
from Iake Champlain to a point about 100 km south of Quebec City. Logan's
Line has been drawn principally to explain several stratigraphic
peculiarities, and the precise nature of the faulting, if any exists,

is not known.

Logants fault is believed to be a high angle thrust, the older
Sillerian formation (interbedded shales and sandstones) being thrust up
with respect to the younger ané more dense St. Germain complex (shales
and calcareous limestones). The denéity contrast is about 0.04 gm/c.c.

(based on several well cores in the area).

Observations: The reduced Bouguer anomaly curve is shown in Figure 74i.

Figure 75 shows the residual Bouguer anomaly curve after removing the
regional. This curve has a prominent maximum and minimum and resembles
the curves due to a fault cutting a single bed. The subsequent inter-
pretation by the Fourier transforms is, therefore, based on the

assumption of a fault cutting a single bed.
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Interpretation: Figure 76 shows the plot of as bn and log,{f-z—(-;l—‘wi-)-}
from the gravity data. From the log{fxz—.(%a-)gl} curve we get B = 650
for p = 0.04 gm/c.c. and B =70° for p = 0.05 gm/é.c. The smoothed
graph of log f&g;fgz (shown by dotted line in Figure 76) for large'
values of n is almost horizontal which shows that Zq is practically
zero. This agrees with the observation in the field where it is

found that the Sillerian outcrops in the vicinity of the fault.

Seismic evidence shows that the thickness of the Sillerian
bed is greater than 6,000 feet. Equation (26) was used, therefore, to
obtain values of '8! for a series of values (wl, wz). The mean value
of t8t obtained in this way is 2,500 feet.

In Figure 77 is shown the theoretically calculated graphs of
a,s bn and log {EEELO)} for the anomaly over a fault having approx-
imately the same parameters as those estimated for the Logan fault.

The general shapes of the three graphs in Figure 77 agree well with

the graphs of the corresponding quantities in Figure 76.
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Diabase Dike in Grenville Township

Introduction: A gravity survey was carried out to investigate a diabase
dike in Grenville township, the survey area being about seventy miles

west of Montreal.

Philpotts (1961) in his geological report of Grenville town-
ship has given the results of detailed mapping in this area. Grenville
township lies north of the faulted contac£ between the Precambrian rocks
of the shield and the Paleozoic formation of the St. Lawrence Lowlands.

The area is believed to be underlain by Precambrian basement rocks.

The diabase dikes in Grenville township are Precambrian rocks
intruded into the older Grenville and Morin series. The older formations
are mostly quartzites, quartzofeldspathic gneisses and crystalline lime-
stones. The rocks in the vicinity of the particular dike investigated

in this thesis are mostly crystalline limestones.

Iike most dikes in this area, the dike surveyed strikes almost
exactly east-west. The dike reached the surface, and therefore its

outline can be observed in the field. The width of the dike is about

200 feet and it dips almost vertically.

Observations: Two gravity profiles taken across the strike of the dike

are shown in Figure 78. Gravity readings were taken at intervals of
thirty feet along these profiles. In Figure 79 is shown a gravity profile
taken perpendicular to the gravity contours of Figure 78. This gravity
pfofile appears to be almost symmetrical about the center of the dike;

however, a closer examination of the profile reveals that the anomaly
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drops off a little faster towards the south than towards the north.
This shows that the dike is dipping north at an angle slightly less

than 900.

'
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Interpretation: It was shown in an earlier chapter that for a vertical
dike the maximum anomaly always occurs over the center of the vertical
dike and if the dike'reaches the surface of the earth, the maximum

anomaly over the center of a vertical dike is given by (see equation

1 2
Z;,pro E. +5 log - }:'

Assuming our dike to be vertical, a value for the vertical extent of

(5b) p. 57)

N

the dike can be obtained, since p and X, are known approximately. The
measured density contrast between the diabase and the crystalline Llime-
stone is 0.2 gm/c.c. and from field observation X, is about 0.1; the

maximum anomaly is about 0.54 mg, hence the vertical extent of the dike

is about 900 feet.

A Fourier analysis performed on the gravity data of Figure
79 gave the Fourier coefficients a, and bn shown in Figure 80. It was
shown earlier that extrapolating the coefficient graphs, a, and bn, to

n = 0 gives the following results:

~ 4T
(an)n=0 L Gox T
(bn>n=0 =0

Tt can be seen in Figure 80 that extrapolation of a, ton =0 is
difficult. A second difference extrapolation formula applied to the
coefficient graph gave the value of a, at n =0 of 0.44. This gives a

value of 600 feet for the vertical extent of the dike.
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From the coefficient graphs the function log{-icl(nwo)}

was calculated and plotted in Figure 80. Further analysis of this

graph was not attempted because the curve does not show anj definite

trend for large values of n.

&
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DISCUSSION

Thé gravity anomalies of two-dimensional faults and dikes
discussed in this thesis are based upon the expression for the gravity .
anomaly of a single block terminated by a fault at an arbitrary angle
of inclination. Although this single block formula is gratifyingly
simple'and is easily adaptable for calculating the gravity anomalies

of a large number of other two-dimensional structures, certain

. simplifying assumptions were made in deriving this formula. The first

principal assumption is, of course, that the faults are two-dimensional,
whereas in actual situation they are three-dimensional. This, probably,
is a minor source of error in cases where the fault runs to a consider-
able extent in the strike direction. The second assumption made in

the single block formula is that the faulted beds are all horizontal
al£hough in actual situation the beds are usﬁally dipping in some
direction. The application of the single block formula to the case of
beds which are not horizontal is bound to introduce some errors which
will increase as the dip of-tﬁe beds increase from the horizontal. In
most cases it will be seen that the effect of steeply dipping or
severely folded beds will be reflected on the gravity anomaly itself,

so that necessary caution may be applied in such situations. The

third simplifying assumption is that the fault plane is a plane surface
with a constant dip. Usually, however, the fault plane is a curved
sﬁrféce and the curvature of the fault plane ﬁay change quite rapidly
with depth. Again, the rocks in the vicinity of the fault plane are

usually highly fractured and this zone of fracture, called the tfault-
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zone!, may be quite extensive so that assumption of a sharp density
contrast across the fault plane may not always.be strictly valid.
Corrections for some of these assumptions may be possible; but the
resulting equations would be so complicated that it is doubtful
whethef they would have any practical utility. The case of a single
block dipping at an angle from the horizontal is treated in Appendix
A but the resulting equation is muéh more complicated than the
corresponding equation of a horizontal block so that no further
investigation was made with the dipping block formula. It may be
mentioned that the limitations of the single block formula discussed
so far are present in all the single block formulas previously

published, so that no easy method is available at the moment of getting

around them.

Coupled with the inherent limitations of the single block
formula, there are some peculiar difficulties posed by the fault
problem. Probably the most serious of these problems is the isolation
of the fault anomaly from the influence of the neighbouring masses.
Since the observed gravity anomaly on the surface is the combined effect
of all the subterranean masses, the success of the methods will depend
to a large extent upon how accurately the effect of the neighbouring
masses can be removed from that of the fault‘énomaly. The problem of
isolating the gravity anomaly of a dike may'also be serious when the

dike occurs with other stratigraphic features.

The other difficulty that one faces in interpretating the fault

%& or the dike anomaly, a difficulty which is common to all gravity problems,
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is the proper choice of densities for the overburden and the subterranean
masses. In many new areas of investigation, the density information may
be non-existent or very scanty.' Also, laboratory measurements of
densities of core samples may not be truly representative of densities

at depths. Wherever feasible, methods are given in this thesis which
will enable us to obtain information about some parameters of the under-
ground structure without any density information. As an example, the
ratios of the amplitudes of the gravity anomaly of a fault cutting a
single bed and also the ratio of the amplitﬁde of the second derivative of
the anomaly are independent of any density considerations and the dip

of the fault plane is shown to be strongly dependent upon these ratios.

Due to its inherent weaknesses, the gravity method has so far
been used principally as a reconnaissance tool pfior to more detailed
survey by other methods. An attempt is made in this thesis‘to show that
when geological situations are favofable, gravity can be more than a mere
reconnaissance tool and it can give quantitative information about the
parameters of the two-dimensional structures. For the field examples
given in this thesis, the calculated values for the parameters all seem
to lie within about 10 percent of the values estiﬁated from the geological
information. It should be mentioned, however, that the field examples
chosen were more or less ideal structures from the point of view of
application of the formulas. The éedimentary beds were almost perfectly
horizontal, the regional trend was fairly well established and the general
topography was very flat lying. The simplifying assumptions made in the
derivation of the formulas and the interpretation techniques are, there-

fore, moreor less valid. For a successful apblication of the methods,



B

- 200 -

therefore, all available geological, drill~hole and other pertinent

information must be taken into consideration.

In some cases, more than one method is given in this thesis
for calculating the same quantity. The reason for this is that although '
the different methods are not entirely independent of each other, some
of the methods are more objective than the others. When a situation |
warrants a very accurate estimation of a parameter of the two~-dimensional
structure, it will be interesting to find out if the same guantity
calculated by the two different methods agree. As an example, it is
shown that the ﬁhrow ofla fauit‘cutting a series of beds can be obtained
very easily from the total change in the gravity anomaly due to such a
structure provided the density contrést between rocks in the overburden
and the baéement is known. The same quantity can also be obtained by
calculating the Fourier transfofm of the first derivative of the anomaly
and taking the limit of the real part of the transform as w tends to
zero. While calculations by both the methods should give identical
reéults, the second method is more objective while the first method has
the virtue of simplicity and ease of comprehension. The throw of the
Delson fault calculated by both these methods gives the same result which

in turn agrees very well with the geological estimate.

Tn situations where a precise estimation of the parameters is
not necessary; a qualitative idea about the geological structure may be
obtained from the large number of curves given in this thesis. As an
example, an approximate idea about the manner in which the gravity anomaly

of a dike changes with the change in the parameters can be obtained from
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Figures 31-33 showing the gravity anomaly of a dike as its parameterg
are varied. Situations may also arise when more cufves are needed to
interpret a given anomaly than those given in this thesis. In such
situations, a desk calculator can be used or some of the formulas can
be programmed in a digital computer after approximate values of the

parameters have been obtained.

The accuracy of interpretation by the Fourier transform method
depends to a large extent upon the choice of the value of L, the half-
wavelength, used in calculating the Fourier coefficients. Since the
accuracy increases as L increaseé, it is of great importance that we
have gravity data at as large a distance as possible from the fault
trace. The situation in the case of the dike is not as serious, since
the width of a dike is usually small and the gravity anomaly becomes
very small at a relatively short distance from the dike. The grid
interval chosen for calculating the Fourier coefficients depends upon
the gradient of the gravity anomaly itself. If the anomaly changes
slowly, i.e. it has a small gradient, the grid spacing may be relatively
large. On the other hand, if the anomaly has large gradients at some
parts of the curve, the grid interval must be so chosen that no part of
the anomaly with a large gradient is neglected. The grid spacings also
determine the highest harmonic that we can obtain from the Fourier
analysis of the gravity data. The wavelength of the highest harmonic

obtainable is equal to twice the grid spacing chosen.

Calculations involved in obtaining the Fourier transforms of

the gravity data are long and tedious. An IBM 7044 digital computer has
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been used to make all the calculations in this thesis. In order that
the method of interpretation by the Fourier transforms may be readily
usable, a comprehensive scheme for obtaining the Fourier transforms

from the gravity data will be very useful and needs further investigation.



- 203 -

CONTRTBUTIONS TO KNOWLEDGE

The formulas for the gravity anomaly of a single block and
for a fault cutting a single bed are given by Geldart et al. (1966).

The original contributions to knowledge claimed in this thesis are as

follows:

1) Derivation of a formula giving the gravity anomaly of a fault

cutting any number of beds having any density distribution and thickness

of the different beds.

2) Derivation of a formula giving the gravity anomaly of several

parallel faults cutting a bed.

3) Derivation of the formula giving the gravity anomaly of a

dike inclined at an arbitrary angle and having any vertical extent.

L) From a combination of the gradient and the gravity anomaly
profiles across a fault, simple expressions are obtained which give
information about the parameters of the two-dimensional fault such as

the dip of the fault plane and the throw of the fault.

5) Expressions are obtained in a polynomial form for the
positions of the zero, the maximum and the minimum of the second

derivative profile across a fault.

6) Expressions are obtained for the vertical gradient of gravity

across a block and a fault cutting a single bed.
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7) The Fourier transform formulas are obtained for the gravity
anomalies across a single block, a fault cutting a single bed, and a

fault cutting a series of beds and a dike.

8) Expressions are obtgined for the Fourier spectrum of the
gravity anoﬁalies across a fault and a dike. The Fourier spectrum is
shown to contain information about the depth and the inclination of
the anomalous structures. Under suitable circumstances, valuable

information about the throw and the thickness of the faulted bed can

also be obtained from the Fourier spectrum.

9) Simple expressions are obtained for the limiting values of
all the Fourier transform formulas for very small values of w. These
limiting values are of particular interest because these can give quick

and reliable information about some parameters of the two-dimensional

structures.

10) A method is given for obtaining the Fourier transforms of the
field data by making a Fourier analysis of the data. By slight adjust-
ments, this method can be used for obtaining the Fourier transforms of

all types of two-dimensional structures discussed in this thesis.

11) The suitability of the new formulas and the applicability of
the interpretation techniques are tested on the gravity anomalies across
three faults and a dike. The results obtained by the new methods are,

in most cases, in very good agreement with the known geology of the

surveyed areas.
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APPENDIX A

Gravity Anomaly of a Semi-infinite Bed

The attraction of an infinitely long straight line of
density p per unit length is 2Gp/r, G being the gravitational constant,
r the distance from the given point to the line. Starting from phis
expression, the vertical component of gravity at the poiﬁt P in Figure

81l for the semi-infinite plane corresponding to the positive half of

the XY plane is

0
2Gp/ cos £ dy/r
o

n/2
= 2Gp//’ dg
-0

= 2Gp(1/27 + 0).

1°]
1

When a is infinite or b zero, 0 equals 1/2m and g = 2nGp,
the familiar result for an infinite plane. When the quantity’a’is

negative, the point P is left of the x-axis and © is negative.

Figure 82 shows a horizontal bed of thickness t truncated by
a plane dipping at an angle a. The vertical component of gravity at P
is given by
Z, '
2Gp (1/27 + 0)dz
41

_ 2,
Go(mt + 2/ edz.)
41

[1e]
o
I



206 - B

' 4

" +X

FIG 8l1. Calculation of attraction of a semi-infinite
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Since tan® = tang + x/z,
therefore dz = =x 00526 cscz(e - g)de,
and Jedz = =x coszﬁ[yecscz(e - B)déﬂ

= x coszﬁ[?cot(e - B) - log sin (© - BEl.
Writing ¥, = (Oi -B8), i=1, 2, and
F; = 2Gp(¥;coty; - log sin ¥s)s
and noting that
(coty, - cowl) = (AC-BC)/CP in Figure 82,

the final result can bé written

g, = 26p(1/21 + Bt +x cos®B(Fy = F)) .+ . . . (11)

= 2Gp(m - &)t +x sinzd(F2 - Fl) e e .. ()

The quantities x, @,-B, ©, QZ’ wl, ¢2 are positive as shown
in Figure 82. Thus, x is positive when P is to the right of the fault
trace, B and Oi are positive when measured in a clockwise direction from
the vertical, o and wi are positive when ﬁeasured in a clockwise direction
from the fault plane. If a is greater than 1/2n, B is negative and the

fault dips downward to the right.

The term log sin wi is meaningless if sin wi is negative.
However, the quantity F; always appears in pairs, such as (F, - Fl),
representing the effects of the upper and lower surfaces of a bed. In
these expressionslthe two values of wi always have the same sign, hence
the expression (F2 - Fl) contains the term log(sin wz/sin wl) where the

ratio of the sines is always positive. Also, the quantity, wicot wi’

6D

- is always positive. Therefore Fi can be regarded as an even function of



FIG 82, Calculation of &g for a semi-infinite truncated
" bleck e

FIG 83. Calculation of g for a dipping plane
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wi having the same value regardlesslof the algebraic sign of wi.

To obtain the gravity effect of a truncated bed lying to the
left of the fault plane, the effect of an infinite bed is added to the
effect of a truncated bed to the right of the fault plane, the latter

having a negative density. The result is

g =wmhxﬁ¥mé4@ L))

26Go(1/21 - B)t - x coszB(Fz = F) ... (1)

]

'
Also, g + 8 = 27nGpt.

Limiting values of g : g depends upon several parameters as well as the

variable x, and the limiting values of g in certain cases are important.

(a) x approaches + c0. As x becomes very lafge, wi approaches
the value o or (o - ), according as x is positive or negative. When x

is positive and much larger than Z4,

. ".

v,

5 (¢ - Zi/x)

2
¥, cot ¥, acot a + (a csc” a- cot o)z, /x,

- (t/x)cot o,

. ".

log (sin ¥, /sin wl)
21mGpt.

and 8

In the same way it can be shown that 8 approaches zero as x

approaches - o0,

(b) x approaches zero. When x = 0, wi is also zero,

hence .
X(wicot wi) = x(y¥j/tan ¥;) = O,
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x log(sin wz/sin wl) = x log (rl/rz) = 0,

therefore, when x = 0,
g, = 2Gp(m - a)t = 26p(1/27 + B)t.

(¢) o approaches O or m (B approaches + 1/2m). When B is

equal to + 1/2m, Oi also equals + 1/27 and V. vanishes. Therefore the

term (F, - F,) reduces to 2Ge log(rl/rz), so that

I
l

8- 2nGpt when a« =0, i.e., B = + 1/2m,

= 0 when a=17, i,e., B = - 1/2m,

(d) Depth to the top of the bed approaches zero. As 2]

approaches zero, el approaches + 1/2m according as x is positive or

negative. Therefore, when z, = 0,

Py = o 1/2m - B when x is positive,

= g~1 = -(1/21 + B) when x is negative.

(¢) Depth to the top of the bed approaches infinity. Writing

Zy = 24 + t, and allowing zq to approach infinity, it will be seen that ei

approaches B, hence in the 1limit \Pi vanishes. Also

sin \pz/sin Yy = I‘l/r2 = 1

when 3z, is infinite. Therefore (F:2 - Fl) vanishes for z; infinite, and

g, = 2Gp(7m - o)t = 2Go(1/27m + B)t
when Zq is infinite. This is the same value as that at x = 0 when Zq is

finite.
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Derivative of g with respect to x: Omitting the constant term, we have

_ 2
g, = X cos B(F2 - ‘Fl)

Then,
dg : ' dF, dF
s _ 2 2,2 1
&= = ©°°s B(F2—F1)+x cos B(dx - dx)
Since F, = 2Gp(tbicot v - log sin wi) ,
We have: ,
dFi 5 du’i
T = 2Gp(cot Y. = ¥ cscTY - cot wi)-a;
2 doi
= —2G:°tpi csc wiEJ?
— 2 2
= -RGpy, csc wi(cos Gi/zi)
Therefore,
. 2 2
il_gE _ §§ o x COSZB wzcos 92 _ lplcos 01)
dx X . 2

. . 2
z,5in w2 zsin 'Pl

From Figure 82, we see that

_x  _ A _ 4

. J

Slani cosB cosBcosOi
nece o Ze 2 5y _ay) (6)

ax x | x ‘P1¥1 7 Z2¥2 Tt

When x = 0, the second term is indeterminate; however, on
substituting

— —_— R 2
b; = 0, -8 = tany; = (x/zi)cos B,

the term reduces to zero for x = 0, hence, at x =0,
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— = 20p sinza log(r2 rl)

2Gp sina log(l + t/zl)

I

= 00 Wwhen z2; = 0.

Second derivative of £ with respect to x: Differentiating 53; in

(6), we have

2
dx2 2 'x d 1 l Zo¥ x V1 dx 2 dx
X
de de
2G 1 2 .
= 5oy g - %E) 5 using (6),
= =2Gp, 2, _ 2
- (cos 6; - cos 02)
G
= 33(0082@1 - 003202) N (AR

Formula for a dipping bed: To obtain the result for a dipping bed, it

@

is necessary to return to the formula for the attraction of the infinite
straight line and derive the formula for a dipping semi-infinite plane.
Referring to Figure 83, ABCD represents a portion of a plane which is
infinite in the +4x and -x directions and which dips downward to the
right at an angle ¢. Taking the y'-axis as the projection of the y-axis

onto this plane, the vertical component of gravity at P is
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yf
g = 2pr cos. £ dy!/r.

0
But ~y' = c sin (& - 0)/cos (& + ¢),
r = ¢ cos (6 ~ ¢)/cos (£ + ¢),

so that

g = .?.Gp/cos £ dg/cos (& + ¢)
= 2Gp/ cos (® - 0) dw/cos w

where w = &+ ¢, and the limits of the integral are w; = ¢+ &,
w = ¢- 0. The final result is

2Gp cos¢|:(0+ E) + tan ¢ log {cos (¢ - ©)/cos (¢ + E)}]

L]
I

2Gp cos¢[(@+ E) + tan ¢ log (r/c)].

If the dipping plane goes to infinity in the down-dip direction,
r is infinite and consequently g also becomes infinite. Therefore one
must use beds of finite length in the direction of the dip. However, the
resulting formula, equivalent to equation (1), is so complex that it is

useless from a practical viewpoint.
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APPENDIX B

Gravity Anomaly of a Dipping Fault

From Figure 7 it is evident that the gravity expression

for a fault can be obtained by adding together equations (1) and (1)

giving the result
B .2 |
g = 2nGpt + x sin a{(FZ - Fl) - (Fh_ - F3)} cee e (2)

| The first term on the right-hand side represents the effect of

the unfaulted infinite bed, the second the offect of displacing part of

this bed.

Iimiting values of;gfi Iimiting ﬁalues are easily found by considering
the limiting values for the two truncated beds making up the fault. The
expression for g can be regarded as the sum‘of the effect of an
infinite bed and the ef?ects of two truncated beds which differ only

in the sign of p and the depth to the upper surface of the bed. Hence,
for those cases where the 1imitiﬁg value of g is independent of depth,

the limiting value of g, is 2nCGt. These cases are:

(a) x = £ o,
(v) x = 0,
(¢c) o = Oor o =T1.

As the displacement of the fault becomes very large, the effect
of the lower bed approaches 20p(m - a)t, that is, (FI+ - FB) approaches
zero. Therefore, for infinite displacement,

g = 2mGpt + X sinza (F2 - Fl).
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Derivative of Ep with respect to x: Proceeding as for the single bed,

one obtains

dg, 2 )
75 = sin a{(Fz—Fl) - (F/.,.-FS) + (ZGp/x)(lel—ZZ‘pZ—ZBwBﬂhwh),'
At x =0, the last bracket on the right—hénd side has a

limiting value of zero, hence the slope becomes

der
dx

= 20Gp sina log (ZZZB/leh)

~ 20p sine logl (L +a)(1 +b)/(L +a +b)}
where a = t/zl, b=1+ d/zl, d being the displacement. For z; =0,
the slope at the origin is infinite. For large displacement the slope

at the origin becomes

dgf

_ .. 2
= = 2 Gp sin“a log (1 +a).

Derivative of g with respect to x: From equation (3) we have,

g, =% coszs lj(ol - oo)(L]'_ - Ll) + (02 - ol)(L; - L2) + veee

st
(o = GN)(LI\Hl—LI\I-*-l):l
Differentiating each term within the brackets in the above expression

and using equation (6), we have

dg, &
- 26 v _ ot
&~ x ox {pl(zl“‘l - 2y¥y) + eplagly = 3g¥) +.ee
( L)
Prp Py Vim 2L }
where_pi = 0 =0, 43 i=1,2, ... N
and Py = 9" %
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At x =0,

& _ 2 (1 +-8 8
3% = 2Gcos B{pl log (1 + Zl) +p, log (1 + 22)

+ log (1 +

e ¢ o o pN+l Z

8 )} .. .. (30)
N+L
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APPENDIX C

2

on (8 gf)
Roots of the Equation =' "3/ T 0]

dax

Equation (8A), p.89 .glves

2
4
dxz
Differentiating
£(x)
where
Hy

- Ge -
- (cos2(92 cos20, + 003293 + cosZOh)

The derivative of f(x) is given by

Fr(x)

:
where H.
i

where | A
and P

with respect to x and writing q = ZL , we find
i
2
d’g
d ( f) Gp
= —=\—=/ = = H, -H +H, -H)
dx dxz x2 2 1 3 4
8q; tang + 6ql + 2sec?p
- T2 2
sec B + 2qitgn8 + q
_ 2 gt ! vt
= - £(x) - (H, - Hy + Hy Hh)
8q.tanp + 12q.
_1)5% i A 2 2,2
—x3 5 -Pz(hqi +12qitan8+

+ L;.qil" + l,.qitanBsec2B + 12qj_3tan8)}
= 8q;tang + 6qi2 + 23e026

= sec*s + qil"' + 6q12tan28 + 2qi2 + l,.qitanBsecZB + l,,qu tanB
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APPENDIX D

The Vertical Gradient of Gré,vity Over a Single Block-

The vertical gradient of gravity due to a block may be obtained
by differentiating &g with respect to z. We shall, however, obtain the

vertical gradient expression from first principles.

From Appendix A, the vertical component of gravity at the point

P in Figure 82 for the semi-infinite plane corresponding to the positive

half of the XY plane is

Substituting cos§ = z/r and differentiating the above
expression with respect to z, we obtain for the vertical gradient of

gravity at P for the semi-infinite plane

og : o 9 Z
9% = 2Gp/ -a_Z-(—E)dX'
/o r
0
— L 22
= 2Gp/ > (1 - 2)d.x
o r r
/2
= -ZGJ = cos 2§ dx
- /-0
= - Gp sin20
7

To obtain the vertical gradient of gravity due to a block
whose upper and lower surfaces are at depths 4 a.nd.zz, we integrate

the above expression between the limits zZq to Zoe Hence the vertical
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gradient of gravity due to the block is

2 Z

2 2 2
—a—s- = -Cp sin20 o _  _ogp] - sinOcos0dz .
2 Z . Z"_"‘
Zl . zl
s X
Since tan® = tanB + gl

referring to Figure 8k, we have

cos@ = 1
\/ sec?B + ZJ;—ta.nB + xz/z2
and sin® = tans + x/z

ﬁecze + zftans + xz/z2

Substituting these values of sin® and cos® in the integral, we have

-

1
3 2
8y _ x + ztanB
S RGP 2 2 2
z 2%sec B + 2xztanB + X
1

(—2Gpcos28) -Jé‘tans log

. C]_l

(qgcoszB + qzsin26 + 1

coszB + qlsinZB +1

‘ g,tanB + sec28 g-tang + seczsvz.,

2 -1 2 -1 =1
+ cos” B4 tan ~tan j
%4 |

%
' e . (9)

The Vertical Gradient Over a Fault Truncating a Single Bed

To obtain the vertical gradient of gravity over a fault truncating

a single bed, we subtract from equation (9) the effect of a similar second
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tomﬁ“!'-zx—;_

. FIG 84,
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block whose surfaces are at depths 23 and z L The vertical gradient of

gravity over such a fault is, therefore, 'given by

2 2 2y 2 2 2
3%, Sin28 (zzsec B + 2xz,tank + x )(zBSec B + 2xzgtan + X )

— = (=20Gp) log
b (zjz_seczﬁ + 2letan8 + xz)(ziseczs + .2xzhtan6 + x2)

9z

z z
+ coszs{tan_l(tans + -;Zseczs) - tan-l(ta.ne +'J—c]=sec23) + tan-l(tans +

HEE

sec28) ;tan_l(tané +%seczs)E . . . . (10)

o
Limiting value of —5>as X => 0

As x approaches zero the argumentsof both inverse tangents in
(9) approach o and henceé all the angles approach 7/2 and cancel each

other. Therefore,

lim ags Zy
X ==> 0 ('8_5 = (psin28 log (-Z—-)
1

dg

Limiting value of 'd_zf' as x -=>» O

Applying the result for the single block, the limiting value of

a_gi_'_ as X -=> -0 is given by

0z
9go | 2%
=z = Gpsin2B log
Z leh
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APPENDIX E

2
d g

dx2

Fourier Transform of

From equation (14), we have

2
d g -1 -1
s 2K 2 2
5 - -——x{(l-i-tanez) - (1 + tan"e;)
b'd
1 -?-c— = -}—c— — . = d =
where tan@i tanB + 2, a + 2, Ei, a = tanB, i =1, 2.

The Fourier transform of the typical term in the above expression

o0 .
g JUX
Fplw) = - 2K — . &
oo X1+ &)

. @© -Jjmg
= _2KeJma = dE2 e e e (36)
- (£ -a)(1+¢&)

Equation (36) can be evaluated by contour integration in the complex plane.

is given by

where m = wz

Writing z = x + jy, so that z is the complex variable (instead of depth),
and referring to Figure 85, the path ‘of integration is along the real
a.xibs from A to C, then back to A along the semi-circle D T‘Arhose radius R
is large compared to unity. The point z = a is avoided by making a small

detour along the semi~-circle B. Then,
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FIG 85, Contour integration in the complex plane

Sy S
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. R .
' e ™ay P / e Iy + / e IMgy
(z-a)(42%) /. (x-a)(14) (z-a)(1+29) 4 (2-2)(1+29)

As R approaches infinity the last integral vanishes. Also, when the
. =jmz =jma
e

radius of B is smll, = = , (z -a) = -rcos¢ - jrsing
1 2 2
¢ ¢+ 2 1+a
= -red?, dz = - jreJ®d¢. Therefore,
/ e—jmz dz_ . e-—jma. ™ o = . "e—jma
D (z-a)1+22)  1+2%o0 (1 +a%)
Hence
iz 00 - —ima
e ™4y e I ™ax + jme J
(z - a)(1 + z°) (x - a)(L+x%) (1 +2a°)

=00

In the limit, when r = 0, the above equation is exact.

The left-hand side of the last equation equals - 27 times
the residue at z = - j, the only singularity enclosed by the path of

integration. Therefore, the left-hand side equals

— oms lim (z + j)e-‘jmz _ —me
J g == =j (Z _ a)(l + 22) (a. + J)

so that

00} . .
e _ e 9™ 4x 4 sme IR
@+3) ") @-a)a+x) (@+ad)

and we obtain finally

(00 .
me

- ) s i
(x—a)(l+x ). (1 +a){(a e }
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| Thus,
TK .y =m(l=ja) | .
Fpw) = ("2—‘2‘> (a - )em(3-32) 4 5
1l+a _
( 2 ﬂK) “acosma + sinma) + j{e_m(asinma - cosma)+ 1
l+a _
1 _ 1 _ 2 e s
But 5.~ 5 = cos B, and we can take out cosf inside
(1 +a%) (1 + tan®B)

the brackets and so obtain the result

Fo(w) = ¢ E_oz{sinh - jcosh} + jcosB]
Where ¢ = 21K cosB = 2m GpcosB,
h = (ma +B8) = (wztanB + B)

let F S(w) = st(ib) + ‘jXZS(w)' Adding together the effects
of the two interfaces, we obtain

—-WwzZ -le

st(w) = c(e 2sinh2 - sinhl) . e . . . (16ar)
~Wa !
Xzs(w) = =c(e cosh, - e coshl) « e o o . (16bT)
Also, Z, zq + T, hence
—uz —wz
e “simh, -e Tsinh;
-z
-~ e * {e"stin(hl + wltanB) - sinhl}
= Me sin(hl + ¢)
Wz ~uz,
and e cosh2 -e cosh:L
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=Wz

= e l{

e-mTcos(hl + wTtanB) - coshl}

—wzy
Me cos(hl + ¢)

]

1/2

where tan¢ = —ﬂKM— s M = { 1+ e-zmT-Ze-mTcos(thanB )}
wT
cos(wTtanB) - e
Hence
~wZ
st(w) = cMe §in(hl + ) e oo . (16a)
-wzi
XZS(m) = —cMe cos(h:L + ¢) : e e (léb)
Considering next tﬁe case of a fault, we write
T = Zy =29 = z), - Zg v= thickness of the bed,
§ = Zy = 2%y = Z) =By = displacement of the fault.
Then,
—wzh —w23 -w23
(e sinhh -e sinh3) = Me sin(h3 + ¢)
so that

~-Wwz --(I)Z3

Ryp(w) = clf {e ls:'m(hl +9) e Jsinlny + ¢)}

-(ﬂzl
= cMNe sin(hl + ¢ + 1)

Similarly we find

=Wz

Xo(w) = clie 1

cos(hl + ¢ + n)

where tan n = sin(wStanB) —

cos(wétanB) ~ e

1/2
N = {1 + e—2w6 -2e—mﬁcos(w6tan8)}
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APPENDIX F

Limiting Values of the Fourier Transforms as w ——» 0O

Iimiting value of R&(w) as w—=—=» 0

We have from equations (1l6at) p. 225 and (15) p. 111,

-7

-0g ' .
Rs(w) = ——(:TE l:e 2sin(w22tan6 +B) - e lsin(wzltanﬁ + Bi—]

We shall first calculate the limiting value of the typical term in the

above expression, that is,

Lim [ce_wzs@(mztanB + B)
W -—=» O 2

L -0
Expanding the numerator in powers of w and neglecting terms involving
cubes and higher powers of w, we obtain

122

. (1 - wz + =0z
cw_L:I: ° D) 2 lEosB(wzta.nB) + sinB(1l - wzzztanzﬁ)]
=-{)
= o sing lim < (L - wz +26%°)(L + wz - 20%z%tan’8)
W==> O
22 2
= -Z-sinB]im (“’Z sec23-2>
Weed O o

The limiting value of RS(w) may be obtained by adding together

the effects of the two interfaces at zq and 2.2
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Hence lim Ro(w) = £ sinBsec26(22 - 22)
S 2 2 1
W ==%» O

]

TrC-thanB(zl +z2) e« o . (25a) |

In the same way, we find that

X ( . [¢] —wZZ -wzl ‘
w) = - e cos(wz tanB + B) - e cos(wz,tanB + B)
S (jw)2 2 1
As before,
Iim . e~ eos(uztanB + B)
W ==>» 0 w?.
(1 - v +’% o’e) - 1 22 2
= ¢ lim - | cosB(1 - 5 w“z“tan“B) - sinB(wztan B)
6 o 2 tT2
(1 - vz + 5 %7 2, 122 2
= ¢ cosB lim > (I—wztanB—sztan B)

Ww==>» 0 w

= ¢ cosB lim -15 (1 - wzsec B + % mz_zzsec'?'ﬁ)

W= 0 W
w/2(a - 1) - ulz, - Zl)j

hence, lim Xs(w) = ¢ secB lim 5
W= O W == 0 : "
' T . 1
= 2nGp [:—2— (z4 + z,) =T lim (5):,
W =-=3 0
e« .« . (25b)

The limiting value of Rf(w) can be obtained by adding to the

above result for Rs(m) the effect of the interfaces at depths 23 and z L

Thus, 1im Rf(w)

1erTta.nB(z2 +2. -~z =132 )
W =-=» O

1 "3 b

= - 2nGpTstans : e o o . (250)
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Similarly, we have

. . 2
Iim Xf(w) cTsecB 1lim {m (Zl + 2y = 2g - Zh) }
W == O W =3 O -

= =2¢8Tsech

2

= _2ﬂGp6T s o o o (25d)

Timiting values of R (w) and X (u) as g-——3 O

From equations (19a), p. 115 and (15), p. 111, we have

R _§ % ~%2
Rm(w) = (;w)z{ple sin(hl +¢) + pye s'in(h2 +¢) +

-y
N-+L .
.. P s:l.n(hN_*_l+¢)}

The above equation is equivalent to the sum of the transforms of the
.gravity anomalies of N + 1 single blocks., The limiting value or Rm(us)
can be obtained by finding the limiting value of the transform for each

block separately by the use of equation (25a) and then summing the effect

of all the (N + 1) blocks. Since z;' = 23 + 8, we thus have
) E.I;l ] Rm(m) = nGStanB{pl(zl + zlf) + p2(22 + zzf) o e e

¢ Py (o ZN+1')}

nGGtanB{z(plzl tpyZy t oeees pl\H—lzN+l)

+8(op - co)}
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Now,
Py + Py + eeen Py
= zl(ol - oo) + Z2(02 - cl) + vene ZN+1(°I' - crN)
= ~(ogzy +opty + oty + el opb) FopaL
= %P1 T P T (% m 9
- 0%, + ot +.... ot
iere 5 = 1711 Ny
ML
= Mean density of the top (N + 1) beds.
Hence
Lim Rm(m) = vGétanB{2zN+l(cr -0) + 5(0’r - oo)} .« . (25e)
w==» 0
Similarly,
. E_; . Xm(w) = wG6{2zN+l(or -0) + G(Ur - co) .

om0 1) (o - oo)}
w=-=> 0 W

= -0 . o .. (257)
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Limiting values of R, (w) and XILQ) as w_=-—> O

From equations (16a) and (15), pJll-R the Fourier transforms
Rl(m) and Xl(w) of the first derivative of the gravity anomaly, g,

are given by

c(e 2sinh, - e sinh. )
15 w
-z —-wz
-c(e 2cosh e Tsimh )
R (w) - 2 1
13 w

To find the limiting value of Rls(w) as w ——» O we expand the
terms within brackets in powers of w and neglect terms containing powers

of « greater than the first. Taking a typical term, therefore, we have
% e “%cos(uztansg + B)
= '%(l - wz){ cosB -~ sin(uwztanB)sinp }

= CCOSB(l - wz)(1l - wztan B)

= CCOSB(l ~ wzsec B)

Combining the effects of the two interfaces at 21 and Z,, We

have

Lim RlS(w) = EEQEE(Zz - zl) wsecZB

W ——» O

le

cTsecB

= 2nGpT
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A similar analysis for the imaginary part gives

% e “Usin(wztans + 8) = % sing
Therefore,
Lim X(w) =0
B -3 O 1S
The limiting values of the transform of the first derivative
.of gp can be obtained by adding to the results for a block the effect
of the two interfaces at 23 and Zh' It is evident that both le(w) and

le(m) tend to zero as w tends to zero.

Limiting value of Ff{gL - f(x)} as w = 0

If 8100 and 8_oo 2Te the limiting values of f(x) as x approaches
+00 and -o00 respectively, the corresponding limiting valuesof the function
g# - f£(x) are (gL - g#oo) and (gL + g—a) respectively. It has been shown
in Chapter IV that the Fourier transform of the function £(x) may be

written in terms of the transforms of the functions g - £(x) and g

F{gL - f(x)} - r{e)} - el ()}

The limiting values of the left-hand side of the above equation can be

Thus,

obtained by finding the limiting values of the two transforms on the

R.H.S. of the equation.

It has been shown in Chapter IV that
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oo t 8
F{gL} = '+°°jw =2+ (g, - 8.,) 8w
2_3;%% (8, = 8.y ) 8(0)

-

since g o0 +t8 o = total change in gravity due to the block. Then

from the above equations plus equations (25a) and (25b), page. 228

LinF {gL - gS(X)} = | Lim -23'—291 + (g, = B G(wj

W —-—> O w-->» O

- EGtha.nB(zl + 22) + j{vaT(zl + zz)

- 2nGpT Iim (%)}:l
W ==3>» O

(g, = 8o ) S(w) - 1GpTtans(zy + z,)

- jnGpT(zl + 2.2).
If RS' and XS' are the real and the imaginary parts of the limiting

values of FQ g, - £(x){ , we then have
L

Rg' = m(g,, - g o) 8(w) - mGpTtans(z, + 22) . ... (38a)
and _

Xyt = - nGbT(zl + zz) . . .. (38b)
since &§(w) = O when o # 0, for very small values of w the limiting

value RS' is approximately given by

Rg' = - ﬂGtha.nB(z:L + z2) e . . . (38c)
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For a fault cutting a series of N beds, the corresponding

limiting values Rm' and Xm' for very small values of w are given by

Rt = _ﬂGGta,nBEzN_I_l(O'r - .C-)'-) + G(Ur - Ooﬂ R -.' . o (39&.)

Xt = -nGs 2ZN+1(°r -0) + G(Gr 'Uoﬂ « o .. (390)

Oozl + Ultl + e ONtN

Z

- where T =
N-+L



EE ,
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