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Abstract

Recent technological advances facilitating the acquisition of spatial observational data
and an increasing awareness of issues of spatial pattern and scale have fostered the
development and use of statistical methods for multi-scale analysis. These methods
can be interesting tools to improve our understanding of natural systems, but their
use must be guided by a good comprehension of the statistics and their assumptions.
This thesis is an effort to develop a coherent framework for multi-scale analysis and to
identify theoretical, statistical and practical issues and solutions. After defining termi-
nology and concepts, several methods are compared using a common dataset in Chapter
2. The geostatistical method of regionalized multivariate analysis is identified as pos-
sessing several advantages, but shortcomings are identified, discussed and addressed
in two manuscripts. In the first one (Chapter 3), a mathematical formalism is pre-
sented to characterize the spatial uncertainty of cokriged regionalized components and
an approach is proposed for the conditional Gaussian co-simulation of regionalized com-
ponents. In the second manuscript (Chapter 4), the theory underlying coregionalization
analysis is discussed and its robustness and limits are assessed through a theoretical
and mathematical framework. The assumptions underlying the method and the high
levels of uncertainty associated with its use highlight problems with the interpretation
of results, and issues with the application of probabilistic models in a spatial context
(Chapter 5). Coregionalization analysis with a drift (CRAD), presented in detail in two
co-authored publications, is proposed as a sensible alternative for multi-scale analysis.
In Chapter 6, CRAD is used in an application to discuss the role of scale in site-specific
agricultural management and study the relationships between spatial structure and
temporal heterogeneity in soil variables. In Chapter 7, the use of CRAD is extended to
the multi-scale causal modelling of relationships between physical factors, tree species
distribution and soil variables in a forest ecosystem. These applications show the great
potential of multi-scale analysis to facilitate ecological understanding, but highlight
the need for further development of ecological theories to generate precise expectations
about process-pattern linkages within and across scales.
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Résumé

Des avancées technologiques récentes facilitant l’acquisition de données observation-
nelles spatiales, et la conscientisation grandissante des chercheurs aux problèmes d’échelles,
ont favorisé le développement et l’utilisation de méthodes statistiques d’analyse multi-
échelles. Ces méthodes peuvent être des outils intéressants pour améliorer notre com-
préhension des écosystèmes, mais leur usage nécessite une bonne connaissance des
théories statistiques et des hypothèses qui leur sont sous-jacentes. Cette thèse a pour
but de contribuer au développement d’un cadre conceptuel cohérent pour l’analyse
multi-échelles en identifiant des problématiques et des solutions théoriques, statistiques
et pratiques. La terminologie et les concepts appropriés sont d’abord définis. Ensuite,
dans le chapitre 2, plusieurs méthodes sont comparées en utilisant un jeu de données
commun. La méthode géostatistique d’analyse multivariable régionalisée semble offrir
plusieurs avantages, mais certains problèmes sont identifiés, discutés et traités dans
deux articles publiés. Le premier (chapitre 3) présente un formalisme mathématique
servant à caractériser l’incertitude spatiale des composantes régionalisées cokrigées et
propose une approche pour la co-simulation conditionnelle Gaussienne de composantes
régionalisées. Dans le deuxième article (chapitre 4), l’analyse de corégionalisation est
discutée et la robustesse ainsi que les limites de cette méthode sont évaluées selon
une analyse théorique et mathématique. Les postulats de cette méthode et le haut
niveau d’incertitude lié à son utilisation mettent en évidence des problèmes associés à
l’interprétation des résultats et à l’application des modèles probabilistes dans un con-
texte spatial (chapitre 5). Pour remédier à ces problèmes, l’analyse de corégionalisation
avec une dérive (CRAD), détaillée dans deux publications, est proposée comme méth-
ode alternative pour l’analyse multi-échelles. Au chapitre 6, la méthode CRAD est
utilisée pour discuter des questions d’échelle en agriculture de précision et des liens
entre l’hétérogénéité spatiale et temporelle dans les variables du sol. Au chapitre 7,
l’utilisation de CRAD est étendue à la modélisation causale multi-échelles des rela-
tions entre les facteurs physiques, la distribution des espèces d’arbres et les variables
du sol dans un écosystème forestier. Ces applications démontrent le grand potentiel
de l’analyse multi-échelles pour faciliter la compréhension des écosystèmes. Par contre,
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Résumé

les résultats révèlent également la nécessité de poursuivre le développement de théories
écologiques pour permettre l’identification des processus expliquant les patrons spatiaux
à différentes échelles.
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Chapter 1

Introduction

Spatial structure is an essential functional component of all ecosystems. For hundreds
of years, scientists have divided the environment into similar climatic zones, geomor-
phic setting, forest type or stand characteristics. Structuring of the environment allows
us to make predictions as to the types of vegetation, the volume of precipitation, the
frequency of fires or the amount of nitrogen in the soil. Without it, not only would
ecosystems be dysfunctional, but ecological science would be impossible, or at least
irrelevant. In the realms of classical statistics, however, spatial structuring of the en-
vironment has been considered as a problem, preventing independence of field obser-
vations. For several decades, ecological research has been carried without regard to
spatial structure (Legendre, 1993).
Recent concerns over phenomena such as global warming, loss of biodiversity, food

production or timber supply have enhanced the need to estimate ecological variables
at the landscape or planetary scale. This is made very difficult by the fact that typical
ecological field experiments are carried at a variety of scales determined by the needs
and tradition of each discipline. In order to integrate scales of research and scale-up
from field studies to global ecosystem modelling, there is a growing need to understand
the spatial patterns of ecosystem properties, to see what processes govern those patterns
and to assess the robustness of our theories across scales (Levin, 1992).
Fortunately, recent technologies such as global positioning systems, remote sensing

and automated sampling devices have made available spatially intensive and extensive
datasets. The parallel development of geographic information systems, spatial statistics
and the exponential increase in computational power have made the analysis of those
datasets much easier. These new capabilities allow scientists to ask questions about the
spatial structure or scaling behaviour of natural systems that were completely out of
reach before the emergence of such tools. However, several ecological theories have to
be revised or re-invented to account for space and scale (Wiens, 1999) and considerable
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Chapter 1 Introduction

effort is required by the scientific community to understand the new tools and measure
their usefulness for answering specific questions about ecosystem behaviour. Those
urgent needs have contributed to the recent emergence of the disciplines of ecosystem
and landscape ecology.
One of the key challenges of these new disciplines is the need to deal with the over-

whelming complexity of ecosystems (Wiens, 1999; Jorgensen and Muller, 2000). The
presence of multiple causal factors, scale-dependencies and spatial dependence makes
the study of single variables and relationships extremely difficult. Several authors have
criticized the traditional ’reductionist’ approach to ecosystem studies in which single
factors are isolated and studied independently of the whole in favour of a more plural-
istic and holistic approach, which embraces complexity rather than imposing simplicity
upon ecosystems (Allen and Starr, 1982; Levins and Lewontin, 1985; O’Neill, 1986;
Jorgensen, 1997; Wiens, 1999). On the other hand, such ecosystem studies are often
based on observational data and are considered by many to be too descriptive, phe-
nomenological and lacking general frameworks. Contributions from various fields of
ecology have thus called for logically designed, rigorous frameworks for understanding
ecosystem processes from observational data (Vepsäläinen and Spence, 2000).
Forested and agronomic systems are in the midst of this new scientific, environmental

and social context. In the fields of vegetation science, soil science and agronomy, there
has been a gradual shift in the scales of study, the hypothesis formulated and analytical
methods used. Each of these fields has adapted or developed methods to address the
issues of pattern and scale. Very few studies, however, have studied empirically the
interactions between vegetation, environment and soil through space and scale. Such
studies are essential before we can start answering questions pertaining to pressing
environmental issues in terrestrial ecosystems.
In the section that follows, I will briefly review the published literature on the con-

cepts of space and scale in ecology, on the causes of spatial pattern in soil-plant systems,
on the methods of spatial analysis, on the conceptual approaches to address the con-
cept of scale, and on the problem of understanding natural systems in the presence of
complexity. In the next section, and in the rest of this doctoral thesis, the focus will
be switched to the multi-scale analysis of spatial observational data. The particular is-
sues related to multi-scale analysis will be discussed and the objectives of this doctoral
research project will be presented.

2



Chapter 1 Introduction

1.1 Space and scale in ecology
The concepts of space and scale have extremely varied definitions. Spatial structure,
spatial pattern or spatial autocorrelation are often used interchangeably. Griffith (1992)
outlines that there is no universal and simple definition of spatial autocorrelation and
he describes the following nine meanings found in the literature : 1) Self-correlation at-
tributable to the geographical ordering of data, 2) a descriptor of the nature and degree
of certain types of map pattern, 3) an index of the information content latent in geo-
referenced data, 4) a diagnostic tool for spatial model misspecification, 5) a surrogate
for unobserved geographic variables, 6) a nuisance in applying conventional statistical
methodology to spatial data series, 7) an indicator of the appropriateness of, and pos-
sibly an artifact of, areal unit demarcation, 8) a spatial process mechanism, and 9) a
spatial spillover effect.
In a more technical statistical definition, the term serves to designate the property

of random variables that take values, at pairs of sites a given distance apart, that are
more similar (positive) or less similar (negative) than expected for randomly associated
pairs of observations (Legendre, 1993). Legendre and Legendre (1998) and several
others differentiate between autocorrelation and spatial dependence. Autocorrelation
arises from the direct influence of an organism on its surrounding environment. For
instance, the presence of a fern at a given location may be due to the fact that the
parent from which it comes is located a short distance from it. Spatial dependence,
or false autocorrelation, describes the spatial structure in one variable that is due to
its interaction with other spatially distributed variables. An example may involve the
presence of patches of certain species of ferns on zones of different moistures.
The importance of spatial structure in the functioning of ecological systems has been

recognized for several decades. Nevertheless, from the 1950s to the 1970s, the dominant
paradigm was that ecological dynamics took place in spatially homogeneous local habi-
tats (Wiens, 1999). The extensive use of controlled experiments and quadrats of specific
sizes in ecological research and standard homogeneity assumptions (Wiens, 1989) have
limited the possibilities of explicitly accounting for spatial pattern. The incorporation
of spatial heterogeneity into ecological concepts and studies only started in the late
1970s and became widespread by the mid 1980s. The drivers behind this shift in at-
tention were numerous, from the increasing availability of spatially explicit datasets to
the lack of success of traditional approaches in spatially heterogeneous environments.
Scale has also acquired several common technical meanings (reviewed in Schneider,

2001). In its simplest form, however, the concept of scale is extremely simple: it refers

3



Chapter 1 Introduction

to physical dimensions of observed entities and phenomenon. It should be possible
to assign dimension and units (cm, kg, km2, etc.) to measurements of scale (O’Neill
and King, 1998). As mentioned in numerous other places, scale should not be used to
describe levels which are concepts without precise physical dimensions, such as a stand,
an ecosystem or a landscape (see Allen and Hoekstra, 1992 for a thorough discussion).
Pickett et al. (1994) make an interesting distinction between what they call ’thing’

ecology and ’stuff’ ecology. For them, ecological studies of discrete entities are closer
to ’thing’ ecology, while the analysis of continuous variables is closer to ’stuff’ ecology.
Things are not present everywhere on the landscape, while Stuff refers to pools or fluxes
that have values everywhere on the landscape (Fig. 1.1). Things are tangible entities
such as animals, plants, agricultural fields and lakes. Concentrations of soil nutrients,
air temperature, water depth or terrain attributes represent ’stuff’. For ’things’, the ap-
plication of the concept of scale is rather straightforward. They have spatially discrete
boundaries, and their scale may refer to the dimensions (height, width, weight, etc.) of
those boundaries. Once we define a convention to measure the dimensions of ’things’,
each ’thing’ can only be attributed a given scale. For example, the scale of a given tree
may be defined by its diameter at breast height or by its height. Similarly, an agricul-
tural field is a ’thing’ to which we can attribute a dimension such as a width or area.
However, the application of the concept of scale to ’stuff’ is more problematic because
the lack of defined boundaries precludes a measurement and thereby an attribution of
scale. It requires a certain discretization of the variable’s spatial structure into spatial
features or ’things’ (patches, bumps, ridges, waves, etc) that can be measured. The
separation between ’things’ and ’stuff’ is also a matter of scale. For example, plant
abundance can be treated as a continuous variable at larger scales although plants are
’things’ at small scales. Similarly, soil variables can be considered ’stuff’ at small scales
and be classified into discrete zones (’things) in soil survey maps.
In the terminology used throughout this thesis, I separate the scale concepts into

broad categories. The scales of observation, also referred to as the measurement or
sampling scales, are the scales at which the data is collected and is composed of the
grain size, sampling distance and the extent. The grain size represents the size of the
sampling units (quadrats, cores, etc), while the sampling distance is the typical distance
between sampling units. Soil scientists often use a very small grain size and a much
larger sampling distance while vegetation scientists require a larger grain size. Scales of
variation is a general term to describe sizes of spatial features, independent of the scale
of observation. Scales of analysis are completely determined by the framework of the
analytical methods. They are the sizes and shapes of spatial features as depicted by

4



Chapter 1 Introduction

Figure 1.1: Things are entities that are not present everywhere on the landscape. Stuff
refers to pools or fluxes that have values everywhere on the landscape.

each statistical method. Obviously, the scales of observation impose constraints on the
scales of analysis. The lower bounds are set by the grain size and sampling distance,
while the upper bounds are set in part by the sampling extent.
We can define intrinsic, or characteristic scales as properties of the ’true’ population,

or the scales of variation describing the patterns in the natural system (Wu and Li,
2006), independent of the observer. Whether such intrinsic scales are actually accessible
in practice, or even ’exist’, can be questioned and depends on the philosophical position
one takes.
Before the 1980s, very little attention was given to the concept of scale in ecology

(Schneider, 2001)but since then, its importance has been gradually endorsed by ecolo-
gists (Wiens, 1989; Levin, 1992; Mac Nally and Quinn, 1998; Thompson et al., 2001).
The problem of scale has two components (modified from Schneider (2001)): first, most
ecological information is collected at scales smaller than that of modern day environ-
mental issues. Although some technologies, such as remote sensing, are available for
collecting information over large areas, they measure few ecosystem parameters, such
as reflectance. Because of the traditions of each discipline and the sizes of living organ-
isms, most ecological research has been conducted at fairly small scales (Wiens, 1989).
First attempts at transposing such studies to broader scales to generate estimates of
pools and fluxes at the global scale have shown that this is a very daunting task. The
second component of the problem of scale is that the processes operating at a given
scale may not operate at smaller or larger scale. Such scale-specific processes leading

5



Chapter 1 Introduction

to scale-dependent patterns have been found in aquatic systems (Levin, 1992), in soils
(Goovaerts and Webster, 1994; Dobermann et al., 1997; Crawley and Harral, 2001) and
in vegetation assemblages (Crawley and Harral, 2001).
For ’things’, the concept of scale-dependence is easily understood. Entities have

definable spatial boundaries imposing a mutual exclusion with other entities of the
same type at scales equal to or slightly greater than the size of those boundaries. For
example, when sampling trees on quadrats of 10 m2 in a mature coastal forest where
trees are large and widely spaced, we do not expect to measure more than a few trees,
if any. This can be perceived as a carrying capacity of the environment, not in terms
of resources but simply in terms of space. Trees species that tend to occur in the same
stand may still be negatively correlated at small scales because of this, and may exhibit
a scale-dependent relationship. The effect that biological entities (organisms) have
on their surroundings and on other organisms may generate also scale-dependencies.
A classic example is the interactions between predators and prey. At small scales, a
negative association results from the fact that both are rarely found in close proximity
while at larger scales both species inhabit the same area and are therefore positively
associated (Rose and Leggett, 1990). This small scale interaction does not need to be
negative however, some processes positively influence the presence of other organisms,
at least of the same species, in their surroundings (e.g. dispersal, clonal growth, etc.).
As long as we remember that the identification of scale requires the discretization of the
pattern into spatial features, the concept of scale-dependence can be seen as applying
to ’stuff’ as it applies to ’things’. However, there is no obligate negative small scale
relationship between variables representing ’stuff’ and spatial features defined from
’stuff’ can be nested within larger spatial features. The issue of scale-dependence is
thus much more complex for ’stuff’ than it is for things.
In one of the landmark articles in the development of the understanding of scale in

ecology, Simon Levin (1992) argued that the problem of pattern and scale is the central
unifying problem in ecology. There is, according to him, a growing need to study
and understand how pattern and variability change with the scale of description and
to develop laws for simplification, aggregation, and scaling (Levin, 1992). Thompson
et al. (2001) refer to this as an ecological topology, “how our scales of information [. . . ]
affect our understanding of ecological processes.”

6
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1.2 Causes of spatial patterns in soil-plant systems
Spatial structure is an essential functional component of all ecosystems. Ultimately,
every pattern can be considered ‘spatial’ depending on the scale of observation, and
every ecological process could be considered as either creating or preventing the creation
of spatial pattern. At the scales typical of ecological research, spatial patterns arise
either from the morphological characteristics of organisms, from biotic interactions
between organisms, from environmental controls or from disturbance.
Obviously, not all organisms have the same shape and size. The morphology of a given

individual or species induces one or several scales of pattern (Kershaw, 1963). In plants,
morphological characteristics of a species may determine the density of individuals and
the pattern of influence of individual plants on the surrounding environment. In forests,
the effect of the morphological characteristics of trees is particularly pronounced due
to the high variability in the structure of different tree species, and their long range of
influence. Examples of ways by which trees can affect their surrounding environments
include stemflow (Gersper and Holowaychuk, 1971), litter fall properties (Ferrari and
Sugita, 1996), localized uptake of nutrients and water or by generating microclimates
through shading and moisture retention (Binkley and Giardina, 1998). Individual trees
have been documented to affect spatial patterns in understory vegetation (Crozier and
Boerner, 1984), soil chemical properties (Zinke, 1962; Lodhi, 1977; Boettcher and Kalisz,
1990), soil micro-organisms (Nantel and Neumann, 1992) and earthworm abundance
(Boettcher and Kalisz, 1990).
Biotic interactions between plants and species groups may help to generate spatially

structured, or patchy, plant communities. Clonal growth and other modes of vegetative
reproduction may produce patches of varying sizes in which other species tend to be
excluded (Rackham, 1991). In trees, species such as Fagus grandifolia, Ulmus sp. and
Populus sp. have been shown to form clones by means of suckering. Tilman (1994) sug-
gests that dispersal and competitive interactions may also allow many species to survive
together on physically homogeneous sites, even if one of the species has a competitive
advantage over other on resource utilization. With sample and simulated data, Frelich
et al. (1993) showed that spatial patterns in a sugar maple and hemlock stand could be
created on sites with uniform soil and topography. They hypothesized that long-term
interactions between the two species, perhaps related to the creation of proper seedbed
conditions by the parent trees for understory germination and to the invasion pattern
of hemlock, could be sufficient to explain the patchy structure of both species. Other
mechanisms, such as allelopathy, may create or prevent the creation of spatial patterns.
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Long-term geological and geomorphological history has created a cross-scale mosaic
of different rock types, deposits and topographical features on the earth’s surface. Al-
though we often think of these processes as mostly operating at large scales and varying
more between ecosystems than within ecosystems, a number of geomorphological pro-
cesses may induce micro to meso-scale variation. At these scales (<10 km), patterns
are normally constituted of landforms derived from exogenic processes, such as moraine
ridges, fluvial sand bars, small glacier valleys or aeolian sand deposits. According
to Wilding et al. (1994), we should expect the spatial variability in soils to increase
with the nature of the parent material in the following order: loess<till<fluvial de-
posits<pyroclastic and tectonic materials<drastically disturbed materials. A number
of studies have shown that microtopography can have an effect on the depth of the
forest floor, the distribution of tree species, the forest floor temperature and moisture
and bacterial populations (Dwyer and Merriam, 1982; Beatty, 1984; Ruel et al., 1988).
On much larger spatial scales in humic soils of France, Arrouays et al. (1998) found
good correlations between the topographical features extracted from a digital elevation
model and soil organic carbon. The effect of geomorphological heterogeneity has also
been related to vascular plant species richness at both the patch scale (Burnett et al.,
1998) and the landscape scale (Nichols et al., 1998).
Considerable research has been devoted to the effect of disturbance on the spatial

structure of terrestrial ecosystems. At the local scale, patterns in soils may be gen-
erated due to tree falls (Beatty, 1984), whereas on broader scales the catastrophic
blowdown created by a tornado (Peterson and Pickett, 1995), the effect of historical
landuse (Motzkin et al., 1999), insects, diseases (Chokkalingam and White, 2001) or
fires (Rebertus et al., 1989) may generate a wide array of spatial patterns in both soil
and vegetation. Disturbances may induce patterns that are extremely gradual but they
are more often patchy or discrete.

1.3 Methods of spatial analysis
Spatial structure has different meanings depending on the technique with which it
is described or studied. The approaches developed to characterize and study spatial
structure can broadly be classified in three categories: point pattern, surface pattern
and landscape metrics. The first two serve to study spatial structure from sampled data
whereas the latter helps to describe the spatial arrangement of mapped data (modified
from classifications of Legendre, 1993 and Fortin, 1999).
Point pattern analysis aims to describe the distribution of individual objects, such as
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trees, in space. Surface pattern analysis comprises a whole array of methods, mostly
centered on the description of spatial autocorrelation and mapping. Correlograms and
variograms are direct tools for characterizing spatial autocorrelation. Other surface
pattern methods include spectral analysis, fractal analysis, trend surface analysis and
neighbourhood matrices.
The other approach to studying spatial structure is to transform mapped/population

data into a mosaic of patches. Landscape metrics then serve to describe the spatial
arrangement and geometrical properties of those patches. These methods are often
carried within Geographic Information Systems.
French and South African schools of mining and geology preceded ecologists in their

attention to spatial patterns. Matheron (1963a, 1965) based on earlier work from Krige
(1951) and others (Cressie, 1990), laid out the foundations of geostatistics. The the-
ory of regionalized variables, at the core of geostatistics, states that any spatially dis-
tributed (regionalized) variable possesses two components: a local, random aspect and
a structured aspect that requires a functional representation (Journel and Huĳbregts,
1978). Based on this theory, several geostatistical methods have been developed for
describing the spatial continuity of variables (variography), optimal spatial estimation
(kriging) and uncertainty assessment (simulation). Although the ability of geostatistics
to describe spatial patterns is widely recognized, most of the attention of geostatistical
research has been focused on methods of estimation, simulation and uncertainty analy-
sis. The use of geostatistics for exploratory data analysis is fairly limited. Despite now
widespread use of geostatistics in several fields, the fundaments of geostatistical theory
have been developed with mining and geological applications in mind.
Spatial structure has always been a central theme for soil scientists. Approaches to

studying soil spatial variability can be divided in two principal categories: soil classifi-
cation and geostatistics, the former of which largely predated the latter in history (this
discussion follows Heuvelink and Webster, 2001). In soil classification the landscape
is seen as a mosaic of patches of different soil types within which the soil is consid-
ered relatively uniform. These patches are separated by sharp boundaries where the
observed differences are greater than elsewhere. The variability of each soil type is
usually described in vague terms and qualitatively. This methodology dominated soil
science research for several decades. It was not until the late 1960’s that soil scientists
began studying soil variation in a systematic way. First studies looked at the accuracy
of maps and saw spatial variation as a nuisance that reduced map quality (Burrough
et al., 1994). Accumulation of evidence showed the continuous nature of numerous
soil properties and the inadequacy of the discrete model of soil variation for describing
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continuous landscapes.
The first uses of kriging and geostatistics in soil science date from the early 1980’s

(e.g. Burgess and Webster (1980)). Since then, geostatistics have become a widespread
tool for observing the spatial variability of soil variables and generating continuous soil
maps (reviews can be found in Burrough et al., 1994; Goovaerts, 1999; McBratney et al.,
2000; Heuvelink and Webster, 2001). The term ’pedometrics’ was coined to categorize
quantitative methods of analysis in soil science (Heuvelink and Webster, 2001). The
development of geostatistical applications in soils has contributed to a gradual change
in the way soil scientists perceive soils. In many applications, spatial variability is no
longer seen as a nuisance but as a useful tool for understanding soils and soil forming
processes.
Although the two approaches described above seem like a clear dichotomy, attempts

have been made to merge classification and geostatistics, taking advantage of the ability
of geostatistics to deal with continuous variation and of the power of classification in
discrete soil landscapes (Heuvelink and Webster, 2001). Examples of hybrid techniques
are stratified variograms and fuzzy set theory (McBratney and de Gruĳter, 1992). de
Gruĳter et al. (1997) show that fuzzy set theory can be merged with geostatistics in
order to obtain continuous maps of data-derived soil classes.

1.4 Conceptual approaches to scale
A number of conceptual frameworks have been developed in recent years to address the
question of scale in ecology. Among, them hierarchy theory has probably been the most
influential. Hierarchy theory suggests that the organization of a system into a hierarchy
can be the natural consequence of the evolution of complex systems (O’Neill, 1986;
Allen and Starr, 1982). Although much of the discussion is based on rate differences
and “temporal hierarchies”, hierarchies can be defined based on a variety of criteria and
are, therefore, dependent on the observation set. For example, O’Neill (1986) point out
that hierarchies defined by functions or processes (i.e. in an ecosystem approach) can
be of little relevance to define a hierarchy of species (i.e. a population approach) and
vice-versa. This is due to the fact that different species can achieve the same functions,
and multiple functions can be achieved by the same species. The theory states that
many complex systems can be divided into levels of organization, assembled together
in a hierarchy. Most interactions occur within levels and interactions between levels are
limited. Levels higher than the focal level, which are larger in scale and slower in time,
set boundary conditions or constraints for lower levels and lower levels “aggregate” to
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influence the focal level. Dynamics from lower levels are considered too rapid for the
problem of interest and dynamics at higher levels are considered too slow. Therefore, it
is assumed that interactions within level can be studied without consideration to higher
and lower levels. An important prediction of the theory is that a hierarchy of process
rates should translate into multiple scales of pattern on the landscape. However, the
detection of multiple scales of variation does not necessarily indicate that the system
is hierarchically organized (O’Neill, 1986).
Although hierarchy theory generates interesting questions about the complicating

effects of scale, it has still been unable to provide efficient analytical methods for ad-
dressing those issues (Wiens, 1999). Moreover, the theory mentions that the hierarchies
observed are not universal in nature, that they depend on the problem and observation
set. This has been considered a major limitation to the generalization of the concept.
Nevertheless, several studies have been conducted to test some assumptions of hierarchy
theory and its implications for the structure of ecosystems. Using transect data and
four different analytical procedures, O’Neill et al. (1991)found multiple scales of pattern
on a semiarid grassland, on a shrub-steppe system and in a deciduous forest. Holling
(1992) compiled data from a wide array of ecosystem types and observed clumps in the
body-mass distribution of animals. He suggests that this is caused by a small number
of plants, animals and abiotic processes which structure ecosystems and establish domi-
nant frequencies and associated discontinuous spatial structures. Cullinan et al. (1997)
used postulates of hierarchy theory to combine the scales of pattern of each individual
species within a community to estimate the scales of pattern obtained through remote
sensing. For some, hierarchy theory is a framework that has very direct applications;
for others, it is a heuristic framework for thinking about ecosystems.
Even outside of the well developed framework of hierarchy theory, we may still rec-

ognize that there are levels, or domains of scales, within which patterns do not change
or change monotonically with changes in scale (Wiens, 1989). Between those domains,
there may be sharp transitions from one set of controlling factors, to another set of
factors, in which interactions may be more chaotic or unpredictable. Whether or not
ecosystems are hierarchically structured has great significance for ecological research. A
strong hierarchical organization would allow processes to be studied in a scale-specific
manner or within domains of scale. A lack of hierarchical organization would mean
that interactions between components of the system occur equally at all scales. This
would prevent studies from choosing scales of research that correspond with true levels
of species-environment assemblages.
Numerous authors have suggested general processes to explain the scale-dependent
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nature of biotic assemblages. In some studies, patterns at large scales have been pos-
tulated to be caused by the underlying physical environment, whereas smaller scale
patterns were postulated to arise from biotic interactions (Brown, 1984; Levin, 1992;
Cullinan et al., 1997). A change in scale may also be associated with a change in pre-
dictability of patterns. The stochastic nature of small scale patterns may make them
unpredictable, while the more regular and slower nature of larger scale processes may
make large scale patterns more predictable (Levin, 1992). Reed et al. (1993) found that
the relationship between environment and species composition increased with the grain
size (quadrat size) but decreased with the extent of sampling. Another widespread hy-
pothesis in vegetation science is the idea that scales of variation are related to stage of
succession. For example, plant communities in earlier succession could be more hetero-
geneous than late successional stages (Greig-Smith, 1952). Schaefer (1993) could not
validate this hypothesis in a taiga plant community regenerating after fire.
Fractal geometry Mandelbrot (1983) has been extremely influential in the recent

concern over the problem of scale (Xu et al., 1993; Halley et al., 2004). This theory
demonstrates that very complex, multi-scaled patterns can arise from simple mech-
anisms. Such mechanisms may occur at small scales and still structure larger scale
processes. Fractals thus emphasize the possible prevalence of cross-scale mechanisms,
whereas hierarchy theory highlights scale-specific processes and interactions. Burrough
(1983) explains the potential use of fractal concepts in soil sciences. He describes soil
variables as fractals because increasing the scale of mapping continues to reveal more
and more detail. However, these fractals are not ’ideal’ because soils generally lack
properties of self-similarity. Moreover, fractal models generally have unlimited a priori
variances. Although contributions have indicated that this could be the case for some
soil variables (Bell et al., 1993), this goes against some general conceptions of variability
in soils and geostatistical assumptions of stationarity (Webster, 2000).

1.5 The challenge of understanding in the presence
of complexity

In a landmark paper in ecology, Levin (1992) suggested that “the key to prediction and
understanding lies in the elucidation of mechanisms underlying observed patterns”. Un-
derstanding is defined by (Pickett et al., 1994) as “an objectively determined, empirical
match between some set of confirmable, observable phenomena in the natural world
and a conceptual construct.”
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When simple problems are assessed (i.e. simple conceptual constructs and observable
phenomena with few elements), traditional falsificationist and experimental models may
provide the best approach towards understanding. From the classification described in
Diamond (1986), spatial observational studies can be considered ’natural snapshot ex-
periments’, in which “one observes only a final steady state [...], but not the trajectory
that lead to it”. However, the word ’experiment’ may be avoided because they lack con-
trol and repeatability (Wiens, 2001). The context in which such studies are conducted,
much like landscape ecology studies, is in sharp contrast to that of traditional exper-
imental studies. Inadequacies of the falsificationist and reductionist approaches when
dealing with complex ecosystems have been described by many (Levins and Lewontin,
1985; Vepsäläinen and Spence, 2000; Taylor and Haila, 2001). “[. . . ] the potential
process-pattern linkages are likely to be sensitive to the details of the spatial configura-
tion of a mosaic and [. . . ] simple experiments are likely to omit key components among
a web of interacting elements.”(Wiens, 1999). For Quinn and Dunham (1983), a strong
adherence to the hypothetico-deductive research framework may be counterproductive
when multiple causal factors are interacting.
The appreciation of the overwhelming complexity of ecosystems has lead to the de-

velopment of ecosystem ecology and of new tools and theories that attempt to formally
address complexity instead of ignoring it. Landscape ecology later developed in the
same general philosophy as ecosystem ecology but with a strong emphasis on spatial
patterns and scaling issues and with a close association with technologies such as ge-
ographic information systems and remote sensing. According to Wiens (1999), the
mantra of landscape ecologists could be ’embracing complexity’.
One of the greatest challenges of ecosystem and landscape ecology is generating

understanding in the presence of complexity. Quinn and Dunham (1983) suggest that an
objective of biological research should be to assess the relative contributions of a number
of causal agents operating simultaneously. Vepsäläinen and Spence (2000) recommend
that ecologists dealing with complex systems should not try to find simple universal laws
or theories which are not put in the context of the local contingencies, because these
are doomed to fail. They argue that we should instead develop general explanatory
frameworks, that are “road maps to solutions rather than solutions themselves”. The
goal of these frameworks should be to reach bounded generalizations about the elements
of the system. Patterns and processes that we wish to study establish the focal level of
the generalization. It is then necessary to delineate the upper-level boundary conditions
and the lower level conditions that determine the possible states of the focal level.
Thus, the requirement for explicit, coherent and logically constructed theoretical
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frameworks does not imply that these are the goals of ecological inquiry. The goal still
needs to be obtaining useful generalizations. Cooper (1998) suggests that generaliza-
tions should be categorized in a continuous space between theoretical principles, causal
generalizations and phenomenological patterns. With spatial observational studies, it
may be very difficult to obtain purely causal generalizations, or universal laws applica-
ble to very broad systems. However, we must avoid to remain completely descriptive,
blocked in the contingency of the local system. Rather, the objective should be to go
as far as possible along the continuum from pure contingency to pure cause, from the
description of phenomena to the identification of processes.

1.6 Multi-scale analysis as a tool to generate
understanding

1.6.1 What is multi-scale analysis?

Vegetation scientists generally use sampling quadrats that range in size from a few
centimeters to several meters, depending on the types of species sampled. Sampling
cores used in soil science are rarely more than a few centimeters in size. To study
the spatial structures of soils or vegetation, scientists thus have to collect samples on
transects or quadrats. I define here spatial observational studies as any study for which
data is recorded on a fixed small scale support at spatially referenced locations and
for which spatial location is inherently taken into account in the analysis. Typically,
spatial ’observations’ are recorded on a series of quadrats, adjacent or not, or on a quasi-
punctual support at locations on a grid or transect. In spatial observational studies,
all sampled variables are treated as ’stuff’. This definition thereby excludes methods
based on the discretization of spatial patterns into patches, such as landscape metrics
(Fortin, 1999).
Methods of multi-scale analysis are defined here as statistical procedures that attempt

to separate the variation in total variables sampled in a spatial observational study into
scale-specific components of variation (this definition is expanded in Chapter 2).

1.6.2 Why multi-scale analysis?

One of the main postulates of this doctoral thesis is that methods of multi-scale analysis
are important tools that will help us reach generalizations and facilitate understand-
ing of natural systems in spatial observational studies. Multi-scale analysis can be
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conducted with a variety of objectives in mind, some of which are summarized below.
Assess same-scale relationships. Multi-scale analysis may allow focusing on variables

with similar spatial structuring and with stronger relationships at each scale while
reducing the attention on variables without significant contributions at those scales.
This may facilitate the identification of possible cause-effect relationships. The patterns
and relationships at larger scales may help us identify the boundary conditions affecting
the focal scale. The patterns and relationships at smaller scales can define the possible
states at the focal scale (based on Vepsäläinen and Spence, 2000).
Define and summarize the spatial structure of studied variables. The description of the

spatial structure of variables with complex spatial patterns can be very difficult. Maps
showing zones of high or low abundance may prove inadequate to describe properly the
spatial structures. Methods for multi-scale analysis may be used to provide a summary
of the spatial structure of each variable by quantifying the amount of variation found
at different scales of observation.
Separate the contingent variation from the consistent patterns. At the heart of any

method of exploratory data analysis is the desire to separate the variation that is
contingent on the observation set from the patterns that are consistent. For achieving
this, the notion of repetition is crucial. In classical exploratory analysis, the criteria for
consistency can be extremely varied, whether we look for binary relationships, gradients,
groups in multiple species, etc. In spatial analysis, the consistency describes the spatial
entities defined from the data. Is the size, shape and structure of the entities the same
throughout the sampling site or is it different for different sections of the site? Small
scale spatial features may repeate themselves more on a sampling site of fixed extent
than larger scale ones. Thus, scale can be used as a surrogate for consistency and can
be used to identify patterns that are more likely to be generalizable. This idea will be
a central point of interest in this thesis.
Isolate scale-specific components. There may be a discrepancy between the scale at

which information is required and the scale at which it is available. In such cases, multi-
scale analysis may be used to isolate or filter out scale-specific components occurring
within the grain size and the extent of the study. For example, a large scale component
extracted by multi-scale analysis could be used as a layer in a larger scale model.

1.6.3 Challenges in multi-scale analysis

Ultimately, the focus of inference in multi-scale analysis are the characteristic scales.
They are the inherent properties of the natural systems around which our research
objectives are defined. Characteristic scales are never directly accessible to the scientists
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and, as was outlined above, their existence can even be questioned. When dealing with
’things’, this debate can be somewhat futile because the definition of the entity to which
a scale is attributed is generally clear (though not always, see Allen and Hoekstra, 1992).
However, when dealing with groups of ’things’ or with ’stuff’, the choices of concepts,
definitions, scales of observation and methods of analysis will have a greater influence
on the final results of the analysis simply because the exact definition of what it is
that we must measure is not as clear. Since spatial observational studies treat all the
sampled variables as ’stuff’, these issues are crucial here.
The scales of observation and the scales of analysis act as filters separating the sci-

entist from characteristic scales (Fig. 1.2). The scales of observation act as a first filter
that greatly affects how the studied natural system will ultimately be perceived by the
scientist. The problems related to the contingency of the observation set are a central
issue in multi-scale analysis. The extent of the sampling grid imposes a limit to the
largest observable scales while the grain size and sampling distance impose limits to
the smallest scales.
The scales of analysis act as a second filter separating the scientist and the natural

system. The greatest difficulty of multi-scale analysis lies in the fact that the decom-
position of total variables into scale-specific components is not unique. This idea is
conveyed in the geographical context by the Modifiable areal unit problem (MAUP,
Openshaw, 1985; Jelinski and Wu, 1996). The MAUP recognizes that inferences or
statistical measures may change according to the boundaries of the zones chosen to
describe the data (zoning problem) and according to the scale at which the data is
aggregated (aggregation or scale effect). Different methods of multi-scale analysis will
have a different approach to identify spatial features in the data (different zoning) and
to determine the scales at which variation is to be decomposed (scale effect).
In recent years, methods of multi-scale analysis have undergone intensive development

and have been applied extensively in ecology and agronomy. Several of these methods
have been developed in other fields of research, such a mining or image processing, before
being used in ecological or agronomic applications. Even within their originating fields,
the development of methods of statistical analysis is often carried in the laboratories
of mathematical or statistical theoreticians and the results are published in specialized
journals. The mathematical formalism and the heavy use of specialized jargon often
makes those publications inaccessible to the practitioner. Perhaps more importantly,
those methods can be developed with objectives that can be unrelated to the objectives
of the practitioners. The result of this process is that statistical methods are often
misunderstood by practitioners and can be misadapted to their needs.
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Figure 1.2: Scales perceived by the researcher are filtered by the scales of observation
and the scales of analysis specific to each method.

Geostatistics provides a good example of the problems related to these issues. De-
veloped in the fields of mining and geology, the theory of geostatistics was laid with
objectives specific to those fields and with a jargon particular to those fields. The theory
of geostatistics is probably the statistical approach that possesses the most elaborate
frameworks for addressing practical and theoretical problems related to the characteri-
zation of spatial structures, spatial estimation, spatial uncertainty and scale. Although
geostatistical methods have been increasingly applied to multiple fields of research, to
this day, the theory is often misunderstood. One particular method of geostatistics,
regionalized multivariate analysis, was proposed as a powerful method for multi-scale
analysis. It offers several advantages over existing methods and combines the abilities
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Figure 1.3: Establishing better linkages between concepts and statistical tools are fun-
damental to generate better ecological understanding. A better understand-
ing can help develop new concepts and improve statistical methods.

to detect dominant scales of variation, to assess scale-dependent relationships between
variables and to estimate scale-specific components of variation.
While scientists increasingly collect spatial datasets in an attempt to improve their

understanding of spatial pattern and scale in natural systems, there is an increasing
need for better linkages between concepts, statistical tools and ecological understanding
(Fig. 1.3). Coherent conceptual frameworks are needed that address the issues of spatial
pattern and scale. Methods of multi-scale analysis have to be consistent with the
conceptual frameworks and with the research objectives of the practitioners. The use
of statistical methods that are coherently developed and properly used by practitioners
should help the generation of ecological understanding. Based on the results of the
analysis it may be possible to make different choices for the analysis, or even modify
the existing statistical methods, and obtain new results. The process can be repeated
until a satisfactory solution is found.
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1.7 Objectives and outline
The main objective of this doctoral research project is to provide better linkages be-
tween concepts, statistical methods of multi-scale analysis and ecological understanding,
by focusing more particularly on the geostatistical method of regionalized multivariate
analysis. Chapter 2 will provide an overview of methods available for multi-scale anal-
ysis. The analysis of the same dataset with all methods, as well as the use of a common
language to describe the features of each method will facilitate the comparison between
methods. This chapter will identify regionalized multivariate analysis as possessing
several advantages over other methods of multi-scale analysis, but potential problems
with the method will be identified and addressed this chapter and in the two following
chapters. In Chapter 3, the use of kriging of regionalized components for providing
scale-specific components of variation that are consistent with the linear model of core-
gionalization is questioned and an alternative based on conditional co-simulation is
proposed. In Chapter 4, the question of uncertainty in coregionalization analysis is
addressed. A theoretical framework is developed to characterize the different aspects
pertaining to the uncertainty and a mathematical formalism is presented to quantify the
uncertainty. The use of some simple scenarios highlights the high levels of uncertainty
associated with coregionalization analysis. In Chapter 5, a framework for discussing the
problem of inference in spatial and multi-scale analysis is presented and used to provide
a critical analysis of coregionalization analysis. The logic leading to the development
of a new approach for multi-scale analysis, called coregionalization analysis with a drift
(CRAD), is presented and the approach is briefly described. The approach is described
in detail in two co-authored research articles (Pelletier et al., 2009a,b). In Chapter 6,
CRAD is applied in an agronomic setting to discuss the problems of inference and study
the relationships between spatial structure and temporal heterogeneity. In Chapter 7,
the use of CRAD is extended to perform multi-scale causal modelling of the relation-
ships between trees and soils in a forest ecosystem. The Conclusion will return to the
important points of the thesis and highlight new research needs.
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Comparison of methods for
multi-scale analysis

The increasing awareness of the issue of scale in all areas of environmental sciences
has fostered the development and use of numerous statistical methods for scaling and
for multi-scale analysis. These methods originated from various field of research such
as geography, signal processing, image processing, ecology, geology and mining. Their
application has led to new findings and has helped the development of theories in all
areas of research. The variety of sources has created a very diverse language with differ-
ent definitions for concepts such as scale, scale-dependence, autocorrelation and spatial
pattern. The true meaning of concepts can get blurred by mathematical formalism
or evasive statistical concepts. Also, practitioners don’t always have clear and precise
objectives before conducting the analysis. It can then become very hard to match the
world views and objectives of the practitioner to those implicit in the statistical meth-
ods. The development and use of methods for multi-scale analysis must thus be guided
by coherent conceptual and analytical frameworks.
A particular type of exploratory multi-scale analysis focuses on the separation of

variables from a spatial observational dataset into multiple scales of variation. These
datasets are generally sampled on a grid of points or quadrats covering a single region
and are rarely replicated. Studied variables are generally considered to be continuous
(i.e. ’stuff’) and their spatial distribution is often complex enough so that the decom-
position of a total variable into multiple scales of variation does not have a unique
solution.
In this Chapter, a selection of methods proposed for the multi-scale analysis of spa-

tial observational data in the fields of ecology and agronomy will be described and
compared. All methods are broadly classified as spatial deterministic or probabilistic.
Deterministic methods are further classified into drift estimation methods, graphical
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methods and orthogonal decomposition methods. The probabilistic approach of re-
gionalized multivariate analysis is the discussed. To facilitate the comparison, each will
be used to analyze the same dataset, comprised of tree height data on two transects
in the Morgan Arboretum. Although the capabilities of each method for multivari-
ate analysis will be described and discussed, the focus in this chapter will be on the
identification of dominant scales of variation and the separation of the total variables
into scale-specific components in the univariate case. The objective is to provide an
overview of the variety of methods for multi-scale analysis and to compare the different
approaches in simple terms and on a common ground. The intention is not to provide
an exhaustive description of each method, as this is published elsewhere.

2.1 Description of dataset
The dataset used below to compare the different procedures constitutes of LIDAR
(Laser Detection And Ranging) elevation data covering the Morgan Arboretum, a
forested area of 250 hectares on the western part of the island of Montréal in Southern
Québec. The forest of the Arboretum is dominated by deciduous vegetation on a variety
of geomorphological types. The LIDAR data was acquired by Lasermap Image Plus in
May 2002 from an airborne sensus. It was separated by the company into two layers,
one covering ground points and another for non-ground points containing primarily re-
flections from tree and shrub branches. The complete dataset is comprised of over 1.9
million points for the ground layer and three million points for the canopy layer. For
the purposes of this study, two transects were generated from the canopy layer with
512 points separated by two m for a total of 1022 m for each transect (Fig. 2.1). A
dyadic number of sampling locations (512) was chosen to facilitate the use of some of
the methods described below.
The first transect (Transect I), was selected to cover a relatively uniform section that

is dominated by American beech, eastern hemlock and red maple on a fluvial deposit
of variable thickness. This transect was selected to represent a dataset without large
scale pattern but with some apparent small scale variation. Transect II was selected
to cover a catena that ranges from a fluvial ridge to a glacial till along an elevation
gradient. The associated vegetation varies from a American beech-red maple forest to a
sugar maple-hickory forest along the same gradient. Each location along the transects
was assigned the average value of the LIDAR elevations within a one m radius around
this location. For Transect I, this gave an average of 3.32 and 1.05 points per location
for the canopy and ground layers, respectively, and 3.41 and 2.43 for Transect II. The
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Figure 2.1: Location of the two transects in the Morgan Arboretum.

canopy height data used in the following comparisons was obtained by subtracting the
ground layer values from the canopy layer values along the transect (unstandardized
values are plotted in Fig. 2.2, standardized values are used in all subsequent analyses).
In order to facilitate the interpretation of results, 100 simulated random variables

were generated on a transect of the same length as the others. These variables consisted
of non-spatially distributed numbers with a normal distribution (N(0, 1), white noise).
Where relevant, the methods presented below were also performed on the simulated
random transects for comparison purposes.

2.2 Classification of methods

2.2.1 Spatial deterministic methods

In the deterministic formalism, a variable is seen as possessing a fixed value at each
sampling location. In the non-spatial case, the sample data are analyzed with no
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Figure 2.2: Unstandardized canopy height data along Transects I and II

reference to the notion of random variables or to the location of the samples. Thus, all
measures are global properties of the pooled samples. This can include simple statistics,
such as a sample mean or a (pseudo) sample variance, or graphical representations such
as histograms (Wiens, 1999). In deterministic methods of spatial analysis, the location
of the samples is used in the analysis, but the notion of random variables is not used.
In the context of multi-scale analysis, we will define three types of spatial determin-

istic models. A first group of methods separates the data into spatial and residual
components:

z(u) = m(u) + e(u)

where m(u) is a deterministic spatial, or drift, component at the spatial location u and
e(u) is a residual (non-spatial and non-random) term. These are not generally con-
sidered suitable for multi-scale analysis since they only extract one spatial component
corresponding to a unique scale from the spatial dataset. However, two of them will
be discussed here, trend surface analysis and local drift estimation procedures, because
they will be important in the subsequent discussion in later chapters. Single scale
methods, especially the local procedures, are extensively used in Geographic Informa-
tion Systems when the datasets are in the form of rasters. Other methods exist that
perform the same type of decomposition, including smoothing splines (Silverman, 1985)
and median polish (Cressie, 1986).
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A second group of methods decompose the total variable into a number (S) of scale-
specific spatial components zs(u):

z(u) =
S∑
s=1

zs(u)

Because the components are generally defined as orthogonal (their scale product is
zero, ∑u zs(u)zs′(u) = 0), the sums of squares for the S components add up to the
total sum of squares. This orthogonality allows the addition of multiple scale-specific
components to obtain components comprising “bands of scales”, for example: small,
medium and large scale variation. These methods will be referred to as orthogonal
decomposition methods and three of them will be described here: the discrete Fourier
transform (DFT), principal coordinate analysis of neighbourhood matrices (PCNM,
DBEM), and the discrete wavelet transform (DWT).
A third group of deterministic methods for multi-scale analysis attempts to change

the scale of observation in order to infer the scales of variation in the data. Unlike the
first type of methods, such methods do not decompose the total variables into scale-
specific components. Rather, they generally provide a representation of the variance
as a function of scale of observation. This group comprises a large variety of meth-
ods, but four of them will be described here: the blocked quadrat variance methods
(TTLQV, 3TLQV), lacunarity analysis, the continuous wavelet transform (CWT) and
experimental variograms.

2.2.2 Spatial probabilistic approaches

With probabilistic methods, the sample values are used to describe properties of a
larger (theoretical) population that is only partially sampled. In classical (non-spatial)
probabilistic methods, sample values are assumed independent and each sample value
contributes equally to the estimation of the population parameters. Generally speaking,
the objective of probabilistic methods is inference or generalization beyond the sample
data. Geotatistics was originally developed in a mining context by Danie Krige (1951),
Georges Matheron (1962; 1963b; 1963a) and others (Cressie, 1990) as a response to
the inadequacy of classical statistical methods for analyzing complex spatial data. At
the core of the geostatistical methods is the probabilistic theory of random functions,
which puts together the notions of randomness and spatial structuring. To understand
random functions, we can imagine an infinite number of spatial locations in an infinite
space. At each location, an imaginary variable possesses a unique value. A given field
of finite shape and dimension can be located at random within the infinite space, giving
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rise to a realization of the variable within the field. This variable is random because
there is an infinite number of possible realizations depending on the location of the field,
yet it is also spatially structured. The type of spatial structure is expressed through the
autocovariance function, or variogram function (depending on the type of stationarity),
characterizing the random function. The variogram and autocovariance functions are
not spatial laws linking specific values of the realizations at different locations, they are
parameters of the random function that describe expected values, or averages over an
infinite number of values in an infinite space.
Regionalized multivariate analysis comprises a set of geostatistical techniques for

multi-scale analysis based on the linear model of coregionalization (LMC), which sees
total variables as the result of superimposed random functions. These methods allow
the separation of the variance of total variables into scale-specific variance components
and the estimation of scale-specific spatial components corresponding to the scales of
the LMC. These methods will be extensively discussed here and in the subsequent
chapters.

2.3 Drift estimation procedures

2.3.1 Trend surface analysis

Trend surface analysis (TSA) is a simple method of spatial analysis in which a polyno-
mial function of a chosen order is fitted to the sample data by a regression (least-squares)
technique (Gittins, 1968). Depending on the order chosen, the scale of the variation
captured by the function will change, with lower orders describing larger scale variation.
Nevertheless, the number of terms of the polynomial function increases rapidly as the
order increases. Thus, the use of TSA is generally limited to the extraction of the larger
scale spatial structure and the order of the polynomial rarely exceeds four or five.

2.3.2 Local drift estimation procedures

In contrast to TSA, local drift estimation procedures give a smoothed representation
of the sequence of data rather than a global model linking values at each point. The
simplest case is a moving average approach in which a window of a given size centered on
each sampling point is specified and all sample values within the window are averaged.
The average value is assigned to the center unit and this calculation is repeated for
each sampling location. The appearance of the smoothed representation is thus entirely
based on the data sequence and the window size. Larger windows will provide smoother
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Figure 2.3: Comparison of original data (black line) and single scale spatial components
obtained with trend surface analysis (blue line) and moving average (red
line) on the three transects.

estimated drifts while the complexity of the total variable will be gradually retained as
the window size decreases. Instead of using the average, a polynomial of low order can
be fitted inside each window to capture more elaborate spatial structures.

2.3.3 Comparison of methods

TSA was used to extract spatial components on the two transects with a polynomial
of order six (Fig. 2.3, blue lines). The trend surface only captures 2.4 percent of
the variation in Transect I, while it captures 24.6 percent on Transect II. The moving
average approach was used on the three transects (Fig. 2.3, red lines) with a window
size of 75 m, chosen to capture variation at a scale similar to TSA. The drift component
captures 6.4 and 30 percent of the variation in the total variable on Transects I and II,
respectively. With the two methods, the mean spatial component calculated over the
100 simulated random transects consist of straight lines with an overall sample mean
near zero).
The two methods capture very small amounts of the variation on Transect I indicating

the inability of those methods to capture small scale variation. The drift components
captured by TSA are smoother than those captured by the local procedures. Local
procedures have the advantage over TSA of being ’model-free’, meaning that there is
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no predefined model for the spatial structure they capture in the total variable. Because
of this lack of model, the scale corresponding to a drift obtained with the local procedure
may be difficult to infer. This method should however be more flexible for capturing
more varied types of spatial variation. The complexity of the component obtained with
the local procedures is expected to increase with decreasing window size. Thus, both
of these methods are better suited to the extract large scale variation in a dataset.

2.4 Orthogonal decomposition methods

2.4.1 Discrete Fourier transform

Methods for spectral analysis were originally developed for time series analysis, signal
processing and physics (Diggle, 1990), and were used in several ecological applications
(Hill, 1973; Platt, 1975; Ford and Renshaw, 1984; Renshaw, 1997; Denny et al., 2004;
Saunders et al., 2005). The discrete Fourier transform (DFT), also called harmonic
analysis, is a method of spectral analysis that can be used for multi-scale analysis
by decomposing the signal (total variable) into a series of orthogonal cosine waves of
specific frequencies called Fourier frequencies. In the context of multi-scale analysis,
the frequency, or equivalently the wavelength, characterizing each wave corresponds to
a specific scale of variation. Each wave can be expressed in the form

zs(u) = Ascos(ωsu+ φs)

where ωs is the fixed frequency corresponding to each wave, while the amplitude As
and phase φs are adjusted globally to the data. The periodogram, or auto-spectrum,
describes in graphic form the amplitude (y axis) as a function of frequency (x axis)
characterizing each wave. For a transect of even length L with N regularly spaced
sampling points, only N/2 waves (plus an intercept) are needed to express the total
variation; the first wave then has a wavelength of L, the second of L/2, and so forth
until the N/2-th wave, corresponding to the Nyquist frequency that has a wavelength
of 2L/N . Although individual cosine waves show clear patterns of periodicity, the sum
of multiple cosine waves can give rise to any type of spatial pattern. In fact, the sum
of all waves described in the periodogram is always equal to the total variable. This
means that any total variable on a transect with N sampling points can be perfectly
reconstructed from N/2 waves.
The use of DFT for bivariate and multivariate analysis remains somewhat limited.

Nevertheless, for bivariate and multivariate analysis, the cross-periodogram between
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two variables is calculated in a way similar to the auto-spectra (Priestley, 1981, p.
694). It highlights scales of periodic fluctuations that are shared between two vari-
ables. Another approach for multivariate analysis would be to independently separate
each total variables into scale-specific components with the DFT and to use standard
methods of multivariate analysis on those components.
The DFT can be readily used for analyzing regularly spaced two-dimensional data

(Renshaw and Ford, 1983) and it is possible to modify the method for use with irregular
grids. However, without modification, the use of the DFT on irregular grids will yield
imperfectly formed waves and the scale of the spatial features represented by such
’waves’ can be somewhat ambiguous. The method can be modified to yield perfectly
formed waves, but this comes at the cost of loosing the orthogonality between waves.

2.4.2 PCNM and DBEM

Principal coordinate analysis of neighbourhood matrices (PCNM) was first presented
by Borcard and Legendre (2002) as a method for the multi-scale analysis of multivariate
spatial data. It has since been classified by Dray et al. (2006) into a broader family of
methods called distance-based eigenvector maps (DBEM). An empirical comparison of
PCNM and geostatistics can be found in Bellier et al. (2007). In PCNM, a number of
orthogonal wave-like spatial components representing specific scales of variation (PCNM
variables) are obtained through a decomposition of a truncated distance matrix. In the
DBEM approach, a similarity matrix, or spatial weighing matrix, is used as the basis for
the decomposition instead of the truncated distance matrix. Similarly to the DFT, the
amount of variation explained by those waves is determined by a least-squares fitting
of the PCNM variable to the total variable.
When applied to datasets with regularly spaced observations, it can be shown that

the PCNM variables are a series of sine waves and the method is very similar to spectral
analysis. Each PCNM variable can be described by a function of the form

zs(u) = as + bs sin(cs + dsu)

where as, bs, cs and ds are constants specific to each PCNM variable and u is loca-
tion along the transect. In fact, with our example dataset (see below), all odd PCNM
variables nearly correspond to the Fourier frequencies while the even variables corre-
spond to fractional frequencies. In contrast to spectral analysis, in PCNM, the exact
frequency and phase of the PCNM variables are entirely determined by the sampling
grid configuration. Relative to DFT, the lack of phase adjustment in PCNM allows a
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larger number of orthogonal sine waves to be obtained from a given sampling configu-
ration. Although it was originally proposed by Borcard and Legendre (2002) that one
should only retain the PCNM variables that correspond to positive eigenvalues, it can
be shown that the N PCNM variables are needed, including the ones with negative
eigenvalues, to capture the total sample variance. In other words, twice as many waves
are needed in PCNM to capture the same variation as in the DFT. A smaller number
of scale-specific components can be obtained by adding bands of scales corresponding,
for example, to small, medium and large scales. For doing this, permutation testing
can be performed to determine which PCNM variables contribute significantly to the
variation in the dataset (Borcard and Legendre, 2002).
In PCNM and DBEM, the decomposition of each total variable into PCNM vari-

ables is performed and the resulting scale-specific components can be subjected to any
standard method of multivariate analysis (Borcard and Legendre, 2002; Borcard et al.,
2004). PCNM does not require special modifications for datasets with irregularly spaced
sampling locations. However, the PCNM variables do not describe perfect sine waves
when applied to irregular sampling schemes and the scale(s) depicted by such wave-like
functions can be somewhat ambiguous. Dray et al. (2006) suggested that the DBEM
approach allows more regular waves to be obtained on irregular grids if a proper sim-
ilarity matrix is used. This method is highly dependent on the similarity matrix used
to perform the decomposition.

2.4.3 Discrete Wavelet transform

One of the main limitations of DFT and PCNM is the requirement that the a function
be fitted to the whole signal at each scale. This implies that such methods are more
appropriate for datasets exhibiting periodicity and a rather regular form, without iso-
lated peaks or troughs. Wavelet analysis comprises a family of methods that is better
suited for datasets exhibiting such irregularities. It was developed mainly in the areas
of signal and image processing (Torrence and Compo, 1998; Hubbard, 1998), and it
has been used considerably in ecology (Dale and Mah, 1998; Csillag and Kabos, 2002;
Keitt and Urban, 2005; Saunders et al., 2005). The mathematical and theoretical for-
mulation of wavelet analysis is somewhat complicated; only the important points will
therefore be discussed here. Instead of using a sine wave as a basis for the multi-scale
decomposition of the data sequence, the wavelet transform uses a dilated and trans-
lated basic local function, called a wavelet (Lark and Webster, 2001; Csillag and Kabos,
2002; Keitt and Urban, 2005). Two forms of decomposition can be distinguished, the
discrete wavelet transform (DWT, also called multi-resolution analysis) and the contin-
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uous wavelet transform (CWT). The latter will be discussed in the next section. In the
simplest formulation of DWT, a data sequence of length N = 2S (a dyadic length) is
divided into S levels of decomposition. At the s-th level, the data sequence is divided
into N/2s windows, each spanning 2s sampling locations. Within each window, the
amplitude of the dilated wavelet function is adjusted to the data. Wavelet coefficients
reflect the amplitude of the wavelet function fitted to the data sequence within the win-
dows. A high positive or negative value indicates a good match between the function
pointing, respectively, upwards or downwards and the data sequence. In the context
just described, the choice of wavelets for DWT is generally limited to those providing
an orthogonal basis for the decomposition. These include, the ’Haar’, ’Daubechies’ and
’Coiflet’ families.
Similarly to PCNM and DFT, DWT results in a separation of the data sequence into

a hierarchy of orthogonal scale-specific spatial components. Unlike the other methods,
however, DWT yields scale-specific components with juxtaposed spatial features of the
same size, but of different amplitudes. The ’phase’ of each wavelet is determined by
the window locations and is therefore generally not adjusted to the data. Modifications
to the method have been proposed to prevent artefacts caused by this lack of phase
adjustment (Keitt and Urban, 2005). In DWT, the number and scales of the scale-
specific components are imposed by the number of sampling locations.
In order to assess scale-dependent relationships, the wavelet covariance can be calcu-

lated from the product of the wavelet coefficients for two variables (Keitt and Urban,
2005). Another approach for multivariate analysis would be to independently sepa-
rate each total variable into scale-specific components and to use standard methods of
multivariate analysis on those components, as in PCNM and DFT. The application of
DWT to irregular transects and grids poses similar challenges as the DFT. Its use is
thus generally restricted to regular transects and grids.

2.4.4 Analysis of transect data

The DFT, PCNM and DWT were applied to Transects I and II. For PCNM, code
was written in the Matlab language (The Mathworks, 2008) to implement the original
method described in Borcard and Legendre (2002). For the DWT, the Coiflet wavelet
(Fig. 2.4) was used as the basis for the decomposition because it provides a relatively
smooth function. The ’ribbon plot’ in Figure 2.5 depicts the first 25 DFT waves, or
scales, fitted to the data sequence of Transect II. The same was done for the first 50
scales of PCNM (Fig. 2.6) and the 7 scales arising from the DWT decomposition (Fig.
2.7). The periodograms for Transect I (Fig. 2.8) and II (Fig. 2.9) are shown for DFT
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Figure 2.4: Coiflet wavelet basis used in the CWT analysis of transects.

Figure 2.5: Ribbon plot showing the first 25 scales of the DFT decomposition of the
total variable on Transect II.

and PCNM. To facilitate the interpretation of the results and the comparison with
other methods, wavelength is used on the x-axis of periodograms and variance on the
y axis. Scale-specific components were grouped (summed) to perform a decomposition
of the total variables at large scale, medium scale, small scale, and non-spatial. Waves
1-3, 4-10, 11-30 and 31-255 were added accordingly for DFT; Waves 1-7, 8-19, 20-63
and 64-255 for PCNM; 1-2, 3-4, 5 and 6-7 for DWT. The spatial components are shown
for Transects I (Fig. 2.10) and II (Fig. 2.11).
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Figure 2.6: Ribbon plot showing the first 50 scales of the PCNM decomposition of the
total variable on Transect II.

Figure 2.7: Ribbon plot showing the seven scales of the DWT decomposition of the
total variable on Transect II.
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Figure 2.8: Periodogram for DFT and an equivalent representation for PCNM, showing
variance as a function of wavelength for Transect I. The dashed vertical line
in the lower graph represents the separation of positive (to the left) and
negative (to the right) eigenvalues for PCNM. The horizontal lines repre-
sent the average periodograms computed over the 100 simulated random
transects.
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Figure 2.9: Periodogram for DFT and an equivalent representation for PCNM, showing
variance as a function of wavelength for Transect II.
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2.4.5 Comparison of orthogonal decomposition methods

A general scheme emerges from the description of the orthogonal decomposition meth-
ods. A global adjustment of the phase, or a local adjustment of the amplitude of the
spatial functions, comes at the cost of a smaller number of orthogonal levels available
for the decomposition. This problem is partly related to the Heisenberg uncertainty
principle, which, if adapted to our context, states that a better description of the local
features (e.g. with a local adjustment) implies a worst description of the scale (fewer
levels), and vice-versa (Hubbard, 1998, p. 54). When the objective is to identify pre-
cisely scales of variation, or periodicities, fewer levels in the decomposition implies that
spatial features may be present in the dataset at scales that are in between the scales
of the decomposition, and can be described improperly or incompletely by the analy-
sis. A lack of phase adjustment implies that spatial features with the same size and
shape as the features depicted by the spatial components, but with a different phase,
can be missed partially, or even completely. When the amplitude is adjusted globally,
repeated spatial features of the same shape and size as the spatial function, but with
varying amplitude, may be improperly described. PCNM provides the greatest number
of levels, but a lack of phase and local amplitude adjustment (as is apparent in Fig.
2.6, all waves start at the beginning of the transect). The DWT allows an adjustment
of the local amplitude, but supplies fewer levels in the decomposition (Fig. 2.7). Note
that none of the orthogonal decomposition methods adjusts both the phase and the
local amplitude.
The mean periodogram, and equivalent representation for PCNM, over the 100 simu-

lated random transects consists of a straight line at a low variance value (Figs. 2.8 and
2.9). This does not necessarily imply, however, that each random variable is described
by such a periodogram. In fact the simulated random transects have periodograms
containing peaks at randomly distributed wavelength values. By contrast, the peri-
odograms for both transects have higher peaks at long wavelengths indicating that the
total variables are spatially structured. There appears to be a larger amount of large
scale variation (approximately 30 m and more) for Transect II than Transect I.
From Fig. 2.10 and 2.11, we can see however that despite the important differences

between methods, the medium and large scale components are similar for all three
methods, whereas the small scale components for PCNM and DFT are similar but
noticeably different from that of DWT. From these decompositions, it is obvious that
the shapes of scale-specific components is constrained by the shapes of spatial functions
specific to each method (sinusoidal waves for PCNM and DFT, wavelet functions for
DWT). Another choice of wavelet function in DWT would have provided a different
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decomposition of the signal. When the actual spatial features differ from the nice
rounded shapes of the sinusoidal waves or of the Coiflet wavelet, the goodness of fit
between the two may be poor. Also, the small scale components seem to contain
some extraneous variation that does not coincide with the spatial features found on
the transects. This problem is less apparent for DWT due to the local amplitude
adjustment.
For all three methods, the choice of what constitute small scale spatial and non-spatial

variation remains subjective and troublesome. Note that for this particular dataset, the
use of contiguous neighbourhoods for obtaining the averages representing values along
the transect alleviated problems related to aliasing (Diggle, 1990). In spectral analysis,
aliasing is the interference of spatial variation at scales smaller than that of the Nyquist
frequency with variations at larger scales. If a strictly punctual support had been used,
spatial variations at scales smaller than the sampling distance would have appeared
as larger scale variation due to aliasing. This issue amplifies the difficulties related to
identifying spatial from non-spatial variation with orthogonal decomposition methods.
In all orthogonal decomposition approaches, it is possible to use significance tests

to identify scale-specific components that contribute more importantly to the variation
in the total variables. This was suggested as being an important aspect of PCNM
(Borcard et al., 2004). Results not shown indicate that for both PCNM and DFT, scale-
specific components at larger scales are much more frequently found to be significant
by permutation tests than components at small scales. Significance tests have been
proposed as a means to obtain a parsimonious model (Borcard et al., 2004; Bellier
et al., 2007). However, performing significance tests on each scale-specific components
before adding them to form ’bands’ (e.g. small scale, large scale, etc) may not make the
model more parsimonious since each ’band’ can be considered a (single) scale-specific
component. The focus of a parsimonious model should perhaps be to keep the number
of bands small.

2.5 Graphical methods

2.5.1 Blocked quadrat variance methods

Blocked quadrat variance methods were among the first to be proposed for the analysis
of spatial patterns in ecology. The first method originally presented by Greig-Smith
(Greig-Smith, 1952) was based on the blocking of a series of contiguous quadrats into
successively larger blocks, followed by a nested analysis of variance at each block size.
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The relatively strict requirements of this method and criticisms directed towards it
have led to the development of modified blocking technique, such as the two-term
local quadrat variance (TTLQV) and the three-term local quadrat variance (3TLQV),
developed by Hill (1973). A more recent extensive discussion can be found in Dale
(1999) and Ludwig and Goodall (1978), and a comparison with wavelets in Dale and
Mah (1998). With TTLQV, sampling units are summed into larger and larger blocks,
and the average squared difference between adjacent units is calculated for each block
size. This is then used to express variance as a function of block size. Peaks in this plot
are interpreted as dominant scales of the spatial pattern. The 3TLQV method is very
similar, but its computation involves groups of three adjacent quadrats instead of two.

2.5.2 Lacunarity

Developed by Mandelbrot in the context of fractal geometry (Mandelbrot, 1983), the
concept of lacunarity was first applied to binary data. It was later applied to ecological
data and adapted for the analysis of quantitative variables (Plotnick et al., 1996; Larsen
and Bliss, 1998; Dale, 2000; Saunders et al., 2005). Lacunarity at a given scale measures
translational invariance, or how similar different regions of a geometric object are to
each other, with high lacunarity indicating higher dissimilarity between regions. As in
blocked quadrat variance methods, sampling units are summed into successively larger
block sizes. For each block size, lacunarity is calculated as a ratio involving the variance
of the summed units and the square of their mean (Saunders et al., 2005):

Λ(s) = 1 + variance(ws)
mean(ws)2

where ws denotes the set of sums of the sampling units located within blocks of size s.
Results obtained from this ’gliding box’ approach can suffer from edge effects, especially
as the block size increases (Feagin et al., 2007). In the context of multi-scale analysis,
as lacunarity generally decreases with increasing block size, dominant scales in the data
are inferred from inflection points, or abrupt changes in the relationship between block
size and lacunarity displayed on a log-log scale.

2.5.3 Continuous wavelet transform

The Continuous Wavelet Transform (CWT) combines elements of spatial functions and
graphical methods. The principle is essentially the same as that of the DWT: a di-
lated and translated wavelet function is adjusted to the data to yield scale-specific
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components (Torrence and Compo, 1998). However, CWT does not aim to perform a
decomposition of the signal into orthogonal components. Instead, an arbitrary (theo-
retically unlimited) number of scales is chosen for the decomposition. At each scale,
a given wavelet function centered on each sampling location is adjusted over the data
sequence. Because the wavelets are overlapping and the scales are not orthogonal, the
CWT therefore yields a lot of redundant information and the interpretation of results
in CWT is different than in DWT. A typical output of CWT is a wavelet spectrum in
which the variance captured by wavelets is expressed as a function of position and scale.
The wavelet spectrum is the continuous equivalent to the ribbon plots shown above.
If one sums the square of the wavelet coefficients at a given scale, a wavelet variance
diagram, or global wavelet spectrum, is obtained. An advantage of CWT over other
graphical methods described above is that there is a direct correspondence between
values on the x-axis and scales of variability. The cross-wavelet transform calculated
from the products of the CWT coefficients for two variables can be used for multivariate
analysis (Torrence and Compo, 1998; Grinsted et al., 2004).

2.5.4 Experimental variograms

The experimental semi-variogram (variogram) is closely related to a variety of methods
that rely on the squared differences of cross-products of samples as a function of distance
(e.g. Geary’s c and Moran’s I correlograms). In the univariate case, the direct variogram
represents graphically the semi-variance statistic γ̃(h), defined as the average squared
difference between values at all possible pairs of sampling units a given distance h apart,
as a function of distance. That is,

γ̃(h) = 1
2N(h)

N∑
u=1

(z(u)− z(u+ h))2

where u is sampling location and N(h) is the number of pairs at a distance lag h. If
the variable is spatially structured, its values at locations close together will be more
similar and the difference between these values will be smaller than values at locations
far apart. In such cases, semi-variances are low at small distances and they increase
with increasing distance. Values of γ̃ generally tend to become equally similar after a
certain distance and the direct variogram attains a plateau. The larger are the spatial
features in the data, the more distance there will be before this plateau is reached. If the
size of spatial features approach or surpass the size of the sampling domain, a plateau
will not be reached. For a non spatially structured variable, semivariance values will be
almost constant at all lags and the variogram then approximates a straight horizontal
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line.
Experimental variograms can also be used to perform bivariate and multivariate

analyses. The cross variogram γ̃ij(h), used to represent the spatial relationship between
two variables (zi, zj), is calculated in a way similar to the direct variogram:

γ̃ij(h) = 1
2N(h)

N∑
u=1

(zi(u)− zi(u+ h))(zj(u)− zj(u+ h))

However, its values may be positive of negative, depending on the sign of the relationship
betwen the variables as a function of distance. The codispersion coefficient defined as

γ̃ij(h)√
γ̃i(h)γ̃j(h)

can be slightly easier to interpret since its values range from -1 to 1. Because
the strength or the sign of the cross semi-variance or codispersion coefficient may change
significantly with distance, these tools are often used to show whether the relationship
between two variables changes as a function of scale (i.e. is scale-dependent).
For multivariate analysis, variance-covariance matrices may be calculated at each

lag from all possible combinations of direct and cross variograms. These matrices can
then be used to perform various distance-based ordination methods, such as princi-
pal components analysis. This approach was described in various contexts (Noy-Meir
and Anderson, 1971; Ver Hoef and Glenn-Lewin, 1989; Goovaerts, 1992) and was re-
cently formalized and popularized by Wagner (2003) into the framework of ’multi-scale
ordination’. Wagner (2004) also presented a procedure to perform direct multi-scale or-
dination through canonical correspondence analysis. A generalization of the approach
was proposed by Couteron and Ollier (2005) to allow an application with more varied
types of ordination methods.

2.5.5 Analysis of transect data

Both TTLQV and 3TLQV were applied to Transects I, II, and the 100 simulated random
transects (Figs. 2.12 and 2.13) for block size (side lengths) ranging from the smallest
distance between points on the transect (2 m) to a fourth of the transect length (256
m). The average variance over the 100 random transects is shown in the two figures.
For Transect I, a dominant peak can be seen at approximately 115 m on the TTLQV
graph, while the 3TLQV shows a large peak at 125 m with smaller peaks at 25, 185
and 235 m. For Transect II, a dominant peak at 100 m with a significant increase at
larger block sizes based on the TTLQV analysis and a dominant peak at 100 m with
smaller peaks at 175 m and a sharp increase at large block sizes based on the 3TLQV
approach.
Lacunarity analysis was performed on the data of Transects I and II, as well as
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Figure 2.12: Graphical representations of variance as a function of observation scale for
the graphical methods for Transect I. The dashed line represents the mean
statistic over the 100 simulated random transects.

the 100 simulated random transects, for block sizes ranging from 2 to 256 m. As the
method only works properly with positive numbers, the data were transformed to be
in the [0-1] range prior to analysis. The lacunarity graphs show a generally decreasing
pattern for both transects (Figs. 2.12 and 2.13). Lacunarity is higher for Transect II
than Transect I and is consistently higher for both transects than for the mean over the
random transects. This indicates a greater amout of aggregated patches of various sizes
(more spatial structure) for Transect II. Inflection points are not easily discernable for
either transects, making the identification of dominant scales of variation difficult.
The Matlab wavelet toolbox (The Mathworks, 2008) was used to perform CWT on

the Lidar dataset. The Mexican hat (Sombrero) wavelet was used to separate the data
into 84 scales. The local wavelet spectra are represented in three-dimensional form for
Transects I and II (Figs. 2.14 and 2.15), while the global wavelet spectra are in shown
in Figs. 2.12 and 2.13. The global spectrum for Transect I shows dominant scales of
variation at approximately 50 m with less large scale and small scale variation. Transect
II has more variation at large scale with a peak at 55 m. The local wavelet spectra
indicate that fluctuations on Transect I are, in general, more regular than those on
Transect II, which are more localized.
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Figure 2.13: Graphical representations of variance as a function of observation scale for
the various graphical methods for Transect II.

Experimental direct variograms were computed for distance classes ranging from 10
to 250 m with 10 m spacing every with extra lags at 2.5, 5 and 7.5 m to measure semi-
variances at short distances (Fig. 2.16). The experimental variograms for Transect I
shows smaller semi-variances at short distances (<10 m), with a slight gradual increase
thereafter. A similar pattern is present on the semi-variogram for Transect II with even
smaller semi-variances at short distances (<15 m) and a more pronounced increase at
larger distances. This would indicate that small scale spatial features are present in
both transects, but the amount of large scale variation is greater on Transect II. As
expected, the mean variogram for the simulated random transects consists of a straight
line (γ̃ = 1) indicating no spatial variation.

2.5.6 Comparison of graphical methods

Except for CWT, the x-axis in the graphs showing variance as a function of ’scale’ (Figs
2.12 and 2.13) cannot be directly associated with a scale of variation. A variance value
at a given ’scale’ in the graphical methods results from the combined effect of spatial
features of all sizes located throughout the site. Conversely, spatial features of a given
size (or scale) present on the site will not affect values at a unique distance, but at all
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Figure 2.14: Three-dimensional representation of the CWT local wavelet power spec-
trum for Transect I.

distances. This is partly discussed for the experimental variogram in Goovaerts (1992)
and Wackernagel (2003). To see the implications of this, imagine a data sequence made
of one large bump followed by a series of small bumps. Small and large bumps will affect
the variance at each distance or block size. Thus, graphs calculated for this transect
using TTLQV, 3TLQV, lacunarity and the experimental variogram will not be able to
identify the lack of medium scale spatial features. In fact, their interpretation might
even lead one to conclude that medium scale spatial features are dominant on the site.
The analysis of the LIDAR data revealed that the interpretation of results from

blocked quadrat variance methods and lacunarity can be somewhat difficult. For a
trained eye, these graphical representations may give useful information about the spa-
tial structure of the variables, but they seem to be unstatisfactory tools for analyzing
patterns of variation at multiple scales.
The CWT offers the advantages of providing a quantification of variance as a function

of scale of variation, which is easily interpretable, and as a function of location, making
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Figure 2.15: Three-dimensional representation of the CWT local wavelet power spec-
trum for Transect II.

it suitable for transects that show irregularities. However, this method remains limited
to one-dimensional and regularly spaced datasets. While other graphical methods can
be applied to two-dimensional grids, only the experimental variogram can be easily
applied to irregular datasets in one, two or three dimensions.

2.6 Regionalized multivariate analysis
Matheron (1982) identified the difficulty of applying methods of spectral analysis with
irregular grids in more than one dimension. He proposed a geostatistical alternative for
estimating scale-specific components for single variables and ’factors’ describing varia-
tion at specific scales shared between variables. From the French ’analyse krigeante’,
the approach was translated to ’factorial kriging analysis’ (Goovaerts, 1992). It was
later popularized and incorporated into the larger framework of regionalized multi-
variate analysis (Wackernagel et al., 1989; Goulard, 1989). In the terminology used
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Figure 2.16: Experimental direct variograms for Transects I and II. The blue horizontal
line is the mean variogram computed over the 100 random transects.

here and in the subsequent chapters, regionalized multivariate analysis is comprised of
two methods: coregionalization analysis (CRA) and cokriging of regionalized compo-
nents. The former is needed to perform the latter. The approach has been applied,
for example, in soil science (Goovaerts, 1994; Webster et al., 1994; Bocchi et al., 2000;
Castrignano et al., 2000a; Lin, 2002; Bourennane et al., 2003; Lark and Papritz, 2003),
hydrology (Goovaerts, 1993) and remote sensing (Van Meirvenne and Goovaerts, 2002),
but applications in ecology remain limited.

2.6.1 Coregionalization analysis

Coregionalization analysis comprises a set of geostatistical techniques for multi-scale
analysis based on the linear model of (co)regionalization (LMR, LMC). In the LMR, a
total random function is described as resulting from the superimposition of independent
stationary random functions (Z = ∑S

s=1 Zs), each characterized by different variogram
functions,
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γ(h) =
S∑
s=1

γs(h) =
S∑
s=1

bsgs(h, ϕs)

where bs is the sill associated with the basic variogram function gs characterized by a
model and range ϕs. The range corresponds to the value of distance beyond which the
values from the realizations are expected to be equally dissimilar, and the sill corre-
sponds to the expected value of the squared difference between such values. For any
stationary random function, the variogram function is a mirror image of the autoco-
variance function. Not all continuous functions expressing covariance as a function of
distance can correspond to mathematically possible spatial structures, a particular class
of ’allowed’ autocovariance functions is generally used, including the spherical, expo-
nential and Gaussian models. Variogram functions start at a value of zero at the zero
distance, and attain a fixed semi-variance value (sill) at the distance corresponding to
the range. An exception is the nugget effect, used to define non-spatially distributed
RF, which has a variogram consisting of a straight line (a constant), with no range
value.
In the linear model of coregionalization (LMC, Journel and Huĳbregts, 1978; Wacker-

nagel, 2003), the same variogram functions, with same models and ranges, are associated
with all possible combinations of direct and cross variograms giving rise to sill matrices,
also called coregionalization matrices, (Bs) specific to each variogram function.

Γ(h) =
S∑
s=1

Γs(h) =
S∑
s=1

Bsgs(h, ϕs)

In practical applications, experimental variograms of the sampled total variables are
used as estimators of the variograms of the multivariate total random functions. Fitting
the same set of basic variogram functions (the LMC) to all possible combinations of
direct and cross experimental variograms yields a set of sill matrix estimates B̂s:

Γ̂(h) =
S∑
s=1

Γ̂(h) =
S∑
s=1

B̂sgs(h, ϕs)

The sill matrix estimates B̂s can then be treated as variance-covariance matrices
and be used in various methods of multivariate analysis (e.g. correlations, principal
components analysis, redundancy analysis). The analysis of coregionalization matrices
referred here as coregionalization analysis (Wackernagel, 2003) is often misleadingly
referred to as factorial kriging analysis even when kriging is not performed (Goovaerts,
1992; Bocchi et al., 2000; Castrignano et al., 2000a).
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Table 2.1: Range and sill estimates resulting from the LMR fitted to experimental var-
iograms for transect I and II.

Nugget Spherical Gaussian

Ranges

Transect I - 20 m 160 m

Transect II - 20 m 170 m

Sills

Transect I 0.61 0.22 0.08

Transect II 0.41 0.31 0.4

For the LMR and LMC to make sense in practical applications, it must be reasonable
to treat the total variables as resulting from superimposed first and second-order sta-
tionary random functions. This implies that the mean and variance of the total variables
should be reasonably similar throughout the study site. As we will see in subsequent
Chapters, the stationarity assumption does not imply that practitioners must ’believe’
that the studied variables are the result of random functions, it is merely a requirement
for the interpretation of results and application of the method to be sensible.
A LMR comprised of a nugget effect, a spherical model and a Gaussian model was

fitted to direct experimental variograms for Transects I and II. These models were
chosen to properly capture the pattern found in the experimental variograms for both
transects. Variogram ranges were estimated by least-squares (Pelletier et al., 2009b)
and sills were estimated by the use of the Generalized Least-squares algorithm described
in Pelletier et al. (2004) (Fig. 2.17, Table 2.1). Range estimates indicate that similar
scales of spatial variation are present in both transects. However, sill estimates for the
spherical and Gaussian models are higher for Transect II than for Transect I, indicating
stronger spatial structure as well as a greater variation at larger scales for the former.
The larger nugget effect for Transect I indicates more micro scale spatial and non-spatial
variation.

2.6.2 Cokriging of regionalized components

In classical geostatistical applications, the modelling of the experimental variograms is
rarely the ultimate objective of the analysis. It is often a preliminary step before the
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Figure 2.17: Linear model of regionalization fitted to direct experimental variograms
for Transects I and II. The nugget effect model (dashed blue line), the
spherical model (green line), the Gaussian model (red line), and the sum
of the three models (solid black line) are shown.

estimation of values at unsampled locations or the estimation of spatial means. This is
carried with methods of kriging, which are geostatistical procedures of interpolation that
use a form of weighted local averaging, in which weights are obtained to minimize the
estimation error and to provide an unbiased estimator (Isaaks and Srivastava, 1989).
The standard kriging equations make use of the summed direct variogram functions
obtained from the fiited LMR, to provide estimates of the total variable. In cokriging,
the auto and cross variogram functions of the LMC are used in a system of equations
to obtain weights for all the total variables in order to improve the estimation of each
variable.
Matheron (1982) proposed a modification of the cokriging system to obtain estimates

of the spatial components, or regionalized components, from the LMR and LMC for
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each variable at both sampled and unsampled locations. The method also allows the es-
timation of regionalized factors that are used to represent spatially the variation shared
by groups of variables at the scales corresponding to the variogram functions. It was
then adapted and popularized by Goovaerts (1992), Wackernagel (2003) and others.
The kriging system used for regionalized components and factors is different from the
standard kriging system in that it uses the total variable to ’condition’ the estimation
of spatial components at each scale (equations are presented in Chapter 3). While
the standard kriging system provides an exact estimator (the values estimated at the
sampling locations coincide with the observed values of the total variable) regionalized
components are not observed directly, and therefore cannot be estimated exactly. Nev-
ertheless, the sum of regionalized component estimates at the sampling gives back the
observed value of the total variable. Since they are scale-specific components, regional-
ized components for each variable could be used to perform statistical analyses in place
of coregionalization matrices.
For the analysis of LIDAR data, the same variogram functions, sills and ranges

obtained above in the LMR were used in a program written in Matlab to perform
cokriging of regionalized components (Fig. 2.18). The ranges of Gaussian models (160
and 170 m) were used to define the radii of local neighbourhoods for the estimation.

2.6.3 Discussion of regionalized multivariate analysis

2.6.3.1 Scales of the variogram and autocovariance functions

It is common practice in applications of regionalized multivariate analysis to use the
variogram range as a descriptor of the scales of variation found in the studied spatial
variables. To assess the relevance of this practice, partial realizations from three var-
iogram functions (Gaussian, spherical, exponential) with a unit sill and two different
ranges (20 and 40 units) were generated on a transect with the same random seed (Fig.
2.19). Clearly, different types of variogram functions with the same sill and range give
rise to partial realizations with significantly different spatial structures. For a given
range value, the partial realization of the Gaussian model is much smoother than either
realization of the spherical or exponential model, which both contain significantly more
small scale variability. It is interesting to note that the difference between realizations
drawn from the same variogram function but different ranges (20 vs. 40 units) varies
a lot with the type of function. The difference is more pronounced for the Gaussian
model, and almost unnoticeable for the exponential function, the spherical function
falling in-between.
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Figure 2.18: Cokriged regionalized components corresponding to the spherical model
(green line) and the Gaussian model (red line) for Transects I and II.

From this example, it is very clear that, to describe scales of variation of random
functions, 1) the variogram range is inappropriate, if used alone, and 2) the type of
variogram model is extremely important. Simulated realizations can help us perform a
qualitative classification of which models possess more small or large scale variability,
but how can we express quantitatively the scales of variation corresponding to different
models?
To help us achieve this, we can turn to the probabilistic methods of spectral analysis.

Any random function can be seen as the superimposition of an infinite number of
sinusoidal waves, each characterized by a specific frequency, or wavelength (Priestley,
1981; Diggle, 1990; Denny et al., 2004). As we have seen with DFT, although each
wave is clearly periodic, realizations derived from their superimposition do not need to
be periodic. In fact, combinations of sinusoidal waves can be used to give rise to any
spatially structured patterns. Under the stationarity assumption, random functions
can be defined equivalently from their autocovariance function or their power spectrum
(spectral density function, density spectrum), which describes the energy, or variance,
of a random function as a function of frequency. In fact, the autocovariance function is
the cosine Fourier transform of the power spectrum. As frequencies range from infinitely
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Figure 2.19: Comparison of realizations derived from a spherical, Gaussian and Expo-
nential variogram functions with a unit sill and a range of 20 units (black
line) and 40 units (blue line). All realizations were obtained with the same
random seed.
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small to infinitely large values on the power spectrum, wavelengths range from infinitely
large to infinitely small values. Power spectra corresponding to Gaussian, spherical and
exponential variogram functions are shown in Figure 2.20 (Equations can be found in
Schabenberger and Gotway (2005), p.199). The advantage of the power spectrum over
the autocovariance function is that sinusoidal waves can be easily interpreted in terms
of scale of variation, through their wavelength.
However, the scales of variation are difficult to infer from the power spectrum due to

the non-linearity of scale if wavelength is reported on the x-axis. For this reason, I have
developed an expression to express the spectral density function as a linear function of
wavelength (a ’wavelength spectrum’):

ζ(λ) = 1
λ2ψ( 1

λ
)

where ψ( 1
λ
) is the spectral density function expressed in terms of wavelength. Like the

density spectrum, the area under ζ(λ) is equal to the semi-variogram sill. This graph,
with the wavelength of sinusoidal functions expressed linearly on the abscissa, can be
more easily interpreted and gives a more intuitive depiction of scales of variation. Using
this representation with the same functions as above (Fig. 2.20), we can reiterate our
earlier statement that the range of a variogram function is not a satisfactory measure
of scales of variation. For a given range, Gaussian functions possess much fewer small
scale spatial features than either the spherical or exponential model. For the Gaussian
and spherical functions, the distribution peaks at approximately 0.3 times the value of
the range, while the exponential function peaks close to zero. From each peak value,
the variance corresponding to spatial features of larger sizes decreases, and eventually
reaches zero asymptotically (for an infinitely large wavelength). Realizations from the
three models thus possess spatial features much smaller and much larger than the range.
The pattern of distribution is greatly dependent of the type of variogram function used.
This clearly indicates that linking variogram range and scale of variation warrants

extreme caution. In practical applications of the LMR and LMC, the type of variogram
models used should greatly affect the results of the analysis. If simulated realizations
derived from known variogram functions contain variation at multiple scales, it implies
that in practical applications, a given variogram function will capture variation in total
variables over multiple scales also. We may then wonder whether it is sensible to use
superimposed functions to capture variation in a total variable.
Several contributions have considered the basic premices of the LMC, that the spatial

pattern in all total variables can be characterized by the same set of basic variogram
functions, to be too rigid (Ver Hoef and Barry, 1998; Stein, 1999; Lark and Webster,
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2001). Those criticisms are certainly valid if the variogram functions are simply seen as
means of capturing variation at the specific scale corresponding to their range. From
the results presented here, the variogram functions in the LMC rather captures bands of
scales. A small number of properly choosen variogram functions should then be able to
capture the variation found in a wide variety of total variables. From this perspective,
the assumptions of the LMC seem less stringent.

2.6.3.2 Use of regionalized component estimates

Being based on weighted averages, kriging resembles local drift estimation procedures
described above. However, the scale of the spatial structuring found in the regionalized
components is imposed by the autocovariance function defined in the LMC. This allows
the different types of spatial structuring on Transects I and II to be nicely captured by
the regionalized component estimates (Fig. 2.18), while still corresponding to specific
scales of variation. It may then be appealing to use regionalized components to perform
multivariate methods of analysis in place of the coregionalization matrices.
Before considering this option, however, one must understand the effects of a phe-

nomenon known as the ’smoothing effect’ of kriging in geostatistics. Due to this effect,
the properties of kriging estimates never correspond exactly with the properties of the
random function model, as the kriging system aims to minimize the error variance and
to provide an unbiased estimate of the total variable. This system is not designed to
reproduce the exact structure of the total variable as defined by the random function
model. To obtain maps that look like realistic representations of the total variables
under this model, conditional (co)simulation can be performed by adding to the kriged
estimates a simulated random component that compensates for the smoothing effect
(Davis, 1987; Alabert, 1987; Goovaerts, 1997, 2001). This way, several simulated maps
can be obtained that share the pattern of kriging estimates while differing by the added
simulated random deviation.
The kriging system for regionalized components is unique in that the components

corresponding to each structure are all obtained from the same total variables. Thus, the
smoothing effect in this context has the additional effect that regionalized component
estimates for different structures are not orthogonal, although they are orthogonal in
the random function model (Matheron, 1982). The analyses at the scales corresponding
to the basic variogram functions may therefore provide redundant information about
the structure of the observed total variables. The exact effects of this redundancy,
along with the characteristics of the smoothing effect in factorial kriging have not
been discussed in the literature. Also, these effects prevent the direct application of
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the standard conditional (co)simulation algorithms for the simulation of regionalized
components. Alternatives for the simulation of regionalization components have not
yet been proposed.

2.7 Summary
An important point for the comparison of methods of multi-scale analysis are the possi-
bilities and objectives of each method. Orthogonal decomposition methods focus on the
separation of total variables into scale-specific components. This makes them suitable
both for the detection of dominant scales of variation and for conducting separate and
independent analyses on scale-specific components. Graphical methods provide means
to detect dominant scales of variation but do not separate patterns into scale-specific
components, making them unsuited for independent analyses at multiple scales. Re-
gionalized multivariate analysis can be used both for the detection of dominant scales
and the separation into scale-specific components.
The different methods of multi-scale analysis cannot all be used on the same type of

dataset. In the way they have been described here, DFT, DWT, TTLQV, 3TLQV, la-
cunarity and CWT are restricted to either regular one-dimensional transects or regular
two-dimensional grids. For some of them, such as DFT and DWT, modifications can be
applied to allow their use on irregular grids, but these modifications further complicate
the analysis and interpretation of results. Although PCNM can be directly used with
irregular grids, results can be nonsensical on highly irregular grid patterns. Experi-
mental variograms, regionalized multivariate analysis, DBEM, trend surface analysis
and local drift estimation procedures are all directly applicable to regular and irregular
transects and grids.
All the approaches discussed except DWT and CWT are global approaches that

provide an overall quantification of dominant scales of variation in the dataset. They
are therefore more applicable for datasets with relatively regular patterns throughout
the study sites. The DWT and the CWT appear more suitable for datasets containing
more local irregularities.
The interpretation of the results from several of the methods arrived at similar con-

clusions pertaining to the large scale structure of the two transects, with Transect II
containing considerably more large scale variation. With the blocked quadrat variance
methods and lacunarity, it was more difficult to infer scales of variation. The quantity
and structure of the small scale variation differed more between the different approaches.
This is likely due to the lack, in most approaches, of an objective procedure to identify
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and quantify the non-spatial and spatial variation in the dataset. In regionalized mul-
tivariate analysis, the nugget effect modelling provides such a procedure, conferring a
distinct advantage to this method over the other methods.
Overall, it seems that regionalized multivariate analysis offers several advantages

over the other methods. It can be used with various regular or irregular datasets, it
can be used to quantify the variation at multiple scales and to generate scale-specific
components.
The comparative analysis of methods for multi-scale analysis presented in this chap-

ter demontrated that each method must be used with a proper understanding of its
assumptions, mathematics and capabilities. Each represents a different conception of
spatial structure, spatial features and scale and will highlight different aspects of the
patterns found in the dataset. The methods described here are thus not equivalent
tools to perform multi-scale analysis, although some may prove to be complementary.
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Linking paragraph

The following two chapters present co-authored manuscripts that were previously pub-
lished in scientific journals. They cover the uncertainty associated with the two ’steps’
involved in regionalized multivariate analysis: coregionalization analysis and cokriging
of regionalized components. Chapter 3, published in Geoderma (Larocque et al., 2006),
addresses the issue of spatial uncertainty of (co)kriged regionalized components, and
presents a new procedure to perform the joint conditional Gaussian co-simulation of
regionalized components. Note that throughout this chapter, the linear model of core-
gionalization will be considered appropriate and adequate. Chapter 4 was published in
Mathematical Geology (now Mathematical Geosciences, Larocque et al., 2007) and pro-
vides an assessment of the limits and robustness of coregionalization analysis. Chapter
5 revisits the content of those chapters.

Larocque, G. Dutilleul, P., Pelletier, B, and J. W. Fyles. 2006. Condi-
tional Gaussian co-simulation of regionalized components of soil variation.
Geoderma 134(1), 1-16.

Larocque, G. Dutilleul, P., Pelletier, B, and J. W. Fyles. 2007. Charac-
terization and quantification of uncertainty in coregionalization analysis.
Mathematical Geology 39, 263-288.
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Chapter 3

Conditional Gaussian co-simulation
of regionalized components of soil
variation

3.1 Abstract
Stochastic simulations are increasingly used to represent and characterize the spatial
structure and uncertainty of soil properties. Due to the potential presence of scale
dependencies, simulations of the total variables can represent a mixture of spatial com-
ponents operating at different scales, which may be better interpreted separately. While
coregionalization analysis and factorial kriging provide means to characterize and es-
timate scale-specific components of variation, no methods are available that allow a
proper representation of their spatial structure and an assessment of their spatial un-
certainty. In this paper, the formulation of cokriging of regionalized components and
regionalized factors is first reviewed, after which a method for the conditional Gaus-
sian co-simulation of regionalized components and regionalized factors is presented. We
highlight the need for performing conditional simulations for all structures jointly to re-
duce the correlation between components for different structures and avoid any bias on
the sum of simulated components. Simulations obtained with this method adequately
represent both the specific features of, and the uncertainty associated with, each scale
of variation, as modeled in a coregionalization analysis. The method is applied to an
agronomic dataset to characterize the spatial uncertainty of regionalized components
of plant available phosphorous and potassium in the soil and illustrate advantages of
this new simulation approach.
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Keywords: Factorial kriging, coregionalization analysis, spatial uncertainty, scale
dependence, conditional stochastic simulations.

3.2 Introduction
Geostatistical methods are now an essential part of the toolbox of most pedometricians
and of many soil scientists. While the variogram and kriging have been preferred tools
to characterize the spatial distribution of soil variables and obtain optimal maps, the
importance of uncertainty assessment is also increasingly recognized (see Goovaerts,
2001). Conditional stochastic simulations are among the methods used to assess the
uncertainty associated with spatial estimates (i.e., the spatial uncertainty). Kriging and
cokriging estimates are known to minimize the local error variance, but fail to reproduce
histograms of original variables, modeled variograms or correlations between variables
(Goovaerts, 2000). In contrast, the objective of conditional stochastic simulation is
to generate realizations that reproduce those global statistics, conditional to the data
values, and realistically represent the spatial structure of the variables. In the simulation
approach, multiple realizations are needed for a complete assessment of the spatial
uncertainty.
Until now, conditional simulation methods have aimed at reproducing characteristics

of total variables, as determined from the variogram modelling. However, thanks to
methods such as coregionalization analysis, it has become clear that spatial patterns
of variables and relationships between variables are often scale-dependent because of
different processes operating at different scales. Numerous applications of coregional-
ization analysis in soil science have confirmed the presence of such scale-dependencies
(Goulard and Voltz, 1992; Goovaerts et al., 1993; Goovaerts and Webster, 1994; Webster
et al., 1994; Dobermann et al., 1995, 1997; Bocchi et al., 2000; Castrignano et al., 2000a;
Lin, 2002; Bourennane et al., 2003). Estimated or simulated maps of total variables
can then represent a mixture of components operating at different scales, which may
be better interpreted separately. With methods grouped under the heading ’factorial
kriging’, it is possible to obtain scale-specific spatial estimates for each variable, called
regionalized components, and for components of variation shared by a group of vari-
ables, called regionalized factors (Goovaerts, 1992). Despite their ability to deal with
scale dependencies, these methods do not provide estimates possessing characteristics
of the fitted variogram models, such as the autocovariance structure and the structural
correlations between variables.
It is also well known that kriging estimates are mostly affected by the fitting of the
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variogram model at short distances (Isaaks and Srivastava, 1989, pp. 301-308). For
this reason, it is often advised to obtain soil samples on a regular grid as well as on
a number of randomly chosen locations at relatively short distances from points on
the regular grid. Such a sampling design can provide reliable variogram estimates at
short distances and ensure that the nugget effect estimated from the experimental var-
iogram is predominantly comprised of measurement error, as opposed to micro-scale
variation. In such cases, or whenever the nugget is thought to arise from measurement
error, conditional co-simulations performed on the total variable inappropriately rep-
resent the true spatial structure of the variable. Note that Marcotte (1995) proposed
a post-processing approach based on factorial kriging that removes the nugget effect
from a given realization following the conditional simulation of the total variable, and
improvements were suggested by Bourgault (1996).
To our knowledge, no published study has attempted to develop a mathematically

rigorous framework for performing conditional simulations of regionalized components
or regionalized factors. Such simulations would adequately represent both the specific
features of, and the uncertainty associated with, each scale of variation. In this pa-
per, the formulation of cokriging of regionalized components is reviewed prior to the
presentation of a method for the conditional Gaussian (co-)simulation of regionalized
components. The method is applied to an agronomic dataset to characterize the spatial
uncertainty of regionalized components of plant available phosphorous and potassium
in the soil. A corresponding method for the conditional Gaussian co-simulation of
regionalized factors is also presented.

3.3 Cokriging of regionalized components
Coregionalization analysis is a necessary step before regionalized components can be
estimated by cokriging (Goovaerts, 1992, 1997; Wackernagel, 2003). It is entirely based
on variogram modelling through the linear model of regionalization (LMR, univariate
case) or linear model of coregionalization (LMC, multivariate case). In the LMC, the
same number and types of basic variogram functions are fitted to all direct and cross
experimental variograms computed for a number of variables (Journel and Huĳbregts,
1978). Each function in the nested model corresponds to a scale-specific component
of variation that is assumed orthogonal to components at other scales. The matrices
of coefficients (i.e., sills) of those functions, called coregionalization matrices, are then
used as variance-covariance matrices to perform multivariate analyses, such as principal
component analysis.
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Factorial kriging methods aim at estimating components corresponding to variogram
functions in the LMR or LMC (original work by Matheron, 1982, or more accessibly,
see Goovaerts, 1997). Two methods can be distinguished: (co)kriging of regionalized
components and factorial cokriging. In the univariate case, both are identical and
use a modified kriging system to estimate regionalized components corresponding to
variogram functions of the LMR. In the multivariate case, cokriging of regionalized
components shares this same objective but uses cross-covariances, as modeled in the
LMC, in a cokriging system. In factorial cokriging, also called multivariate factorial
kriging, coefficients resulting from the factorization of coregionalization matrices are
used to estimate regionalized factors (Wackernagel, 2003). Below, we focus on region-
alized components, but a description of factorial cokriging and conditional Gaussian
co-simulation of regionalized factors is presented in the Appendix.
In what follows, it is assumed that coregionalization matrices corresponding to S

(> 1) structural variogram models are known (in practice, they are estimated in the
LMC) prior to estimating or simulating regionalized components for p variables, whose
distribution is multi-Gaussian, under the second-order stationarity assumption. It will
also be assumed that p > 1, although the development is valid for p = 1. When
the regionalized components are estimated by simple cokriging, estimated values of a
regionalized component on No nodes are expressed as linear combinations of the total
variables observed on Nn sampling points:

z∗s = WT
s z (3.1)

where z is the Nnp x 1 vector of ‘total observations’ and Ws, the Nnp x Nop matrix of
simple cokriging weights, is obtained by solving

KWs = ks (3.2)

with K =


K11 · · · K1p
... . . . ...

Kp1 · · · Kpp

 and ks =


k11,s · · · k1p,s
... . . . ...

kp1,s · · · kpp,s

 ,

where Kjj′ (j, j ’=1, . . . , p) is the Nn x Nn matrix of total covariances between variables
j and j’, calculated from the sills βjj′,s (s = 1, . . . , S) and the Nn × Nn autocorrelation
matrix ρ(n),s:

Kjj′ =
S∑
s=1

βjj′,sρ(n),s; (3.3)
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kjj′,s is the Nn x No matrix of structural covariances between variable j at the sampling
points and variable j’ at the nodes, calculated from the sill βjj′,s and the Nn x No matrix
of autocorrelation ρ(n,o),s at structure s:

kjj′,s = βjj′,sρ(n,o),s (s = 1, . . . , S) (3.4)

The cokriging system in Eq. (3.2) aims at locally minimizing the variance of the dif-
ference between estimated and true regionalized components, so the cokriging estimator
is the best linear unbiased estimator (BLUE). This property results in a well-known
smoothing effect for the cokriging estimator (Goovaerts, 1997), which has two impor-
tant consequences. First, the estimated regionalized components do not have the same
autocovariance structure as that modeled in the LMC (Marcotte, 1995). Second, the
structural correlations between variables calculated from estimated regionalized com-
ponents can be biased with respect to the ones calculated from coregionalization matrix
estimates. In fact, the variance-covariance matrix of the regionalized components at
structure s, as modeled in the LMC, is

var(zs) = K(o),s, (3.5)

where K(o),s is the Nop x Nop matrix of node-to-node covariances calculated from the
Kronecker product (⊗) of the p x p coregionalization matrix Bs and the No x No node-
to-node autocorrelation matrix ρ(o),s:

K(o),s = Bs ⊗ ρ(o),s. (3.6)

Note that K(o),s=ks if cokriging is performed on the sampling points. From Eqs. (3.1)
and (3.2), it follows that the variance-covariance matrix of the cokriging estimator of
the regionalized components at structure s is given by

var(z∗s) = WT
s KWs = kTs K−1ks 6= K(o),s (3.7)

and the variance-covariance matrix of cokriging errors is

ΣE
s = K(o),s − kT

s K−1ks. (3.8)

Similarly, the covariance between the cokriging estimator of regionalized components
at two different structures (s 6= s′) is given by

cov(z∗s, z∗s′) = WT
s KWs′ = kTs K−1ks′ . (3.9)
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Therefore, although the modeled value of the covariance between regionalized compo-
nents from different structures is zero in the LMC, it follows from Eq. (3.9) that the
covariance between estimated components at two different structures (s 6= s′) is not
null. Consequently, we have:

ΣE
s,s′ = −kTs K−1ks′ . (3.10)

It must be underlined that even when cokriging of regionalized components is per-
formed on the sampling points (i.e., K(o),s=ks), the quantities ΣE

s and ΣE
s,s′ are not

zero and a smoothing effect affects the cokriging estimates. For cokriging estimates of a
nugget effect component, negative autocorrelation is induced over very short distances
producing what could be called a ’roughing effect’.

3.4 Conditional Gaussian co-simulation of
regionalized components

Hereafter, we extend the theory of cokriging of regionalized components to generate
conditional simulations of regionalized components. Classically, conditional realizations
are simulated by adding a pseudo-random component with a variance-covariance matrix
equal to that of cokriging errors. For regionalized components, this implies:

zcss = z∗s + zEs , (3.11)

where zEs = LE
s εs, with LE

s , the lower triangular matrix arising from the LU decom-
position (e.g., a Cholesky factorization) of ΣE

s (ΣE
s = LE

s [LE
s ]T ), and εs, a vector of

N (0,1) pseudo-random numbers. Note that the following equation is equivalent to Eq.
(3.11) :

zcss = L21,sL−1
11,sz + L22,sεs, (3.12)

where L11,s,L22,s and L21,s arise from the following LU decomposition:
 L11,s 0

L21,s L22,s

 U11,s U12,s

0 U22,s

 =
 K ks

kTs K(0),s

 . (3.13)

Equations (3.12) and (3.13) are derived from the adaptation of the LU decomposition
method described in Davis (1987) and Alabert (1987), to the conditional simulation of
regionalized components.
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However, when Eq. (3.11) or Eq. (3.12) is used to simulate regionalized compo-
nents for each structure separately (more specifically, zEs is simulated independently
of zEs′ , hence cov(zEs , zEs′) = 0), the variance-covariance matrix of the sum of simulated
regionalized components is

var(
S∑
s=1

zcss ) =
S∑
s=1

var(z∗s) + 2
S−1∑
s=1

S∑
s′=s+1

cov(z∗s, z∗s′) +
S∑
s=1

var(zEs )

+2
S−1∑
s=1

S∑
s′=s+1

cov(zEs , zEs′) +
S∑
s=1

S∑
s′=1

cov(z∗s, zEs′)

=
S∑
s=1

kT
s K−1 ks + 2

S−1∑
s=1

S∑
s′=s+1

kT
s K−1 ks′

+
S∑
s=1

(
K(o),s − kT

s K−1 ks
)

+ 0 + 0

=
S∑
s=1

K(o),s + 2
S−1∑
s=1

S∑
s′=s+1

kT
s K−1 ks′

6=
S∑
s=1

K(o),s. (3.14)

It follows that the variance of the simulated total variables obtained by the addition
of simulated regionalized components is likely to be greater than that observed on the
sampled variables (i.e., on the total data values). Therefore, we suggest instead to work
with all zEs (s = 1, ..., S) simultaneously, which provides an NopSx 1 random vector
z
�

E with variance-covariance matrix

var(z
�

E) =


ΣE

1 · · · ΣE
1,S

... . . . ...
ΣE
S,1 · · · ΣE

S

 , (3.15)

where ΣE
s (s = 1, . . . ., S) are given by Eq. (3.8) and ΣE

s,s′ by Eq. (3.10). Eq. 3.14
then becomes
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var(
S∑
s=1

zcss ) =
S∑
s=1

kT
s K−1 ks + 2

S∑
s=1

S∑
s′=s+1

kT
s K−1 ks′

+
S∑
s=1

(
K(o),s − kT

s K−1 ks
)

+ +2
S−1∑
s=1

S∑
s′=s+1

−kT
s K−1 ks′ + 0

=
S∑
s=1

K(o),s. (3.16)

This way, all regionalized components can be simulated simultaneously by

z
�

cs = z
�

∗ + z
�

E = z
�

∗ + LEε, (3.17)

where LE is the lower triangular matrix arising from the Cholesky factorization of
var(z

�

E) (LE[LE]T = var(z
�

E)), ε is an NopS x 1 vector of N (0,1) pseudo-random num-
bers and z

�

∗ is the vector containing the cokriging estimates of regionalized components
for all variables and all structures. From Eq. (3.16), it appears that the auto- and
cross-covariance structures that are modeled in the LMC, within and among structures
as well as for the total variables, are preserved by conditional simulations obtained with
Eq. (3.17).
Conditional simulations can be obtained equivalently by

z
�

cs= L21L−1
11 (1⊗ z) +L22ε, (3.18)

where 1 is the S x 1 vector of ones, and L11, L22 and L21 arise from the following LU
decomposition:

 L11 0
L21 L22

 U11 U12

0 U22

 =



K k1 k2 · · · kS
kT

1 K(o),1 0 · · · 0
kT

2 0 K(o),2
. . . ...

... ... . . . . . . 0
kT
S 0 · · · 0 K(o),S


. (3.19)

Note that Eq. (3.19) can be rewritten so that the LU decomposition of one matrix
of size Nnp x Nnp and that of one matrix of size NopS x NopS are needed instead of
the decomposition above that involves an (Nnp + NopS) x (Nnp + NopS) matrix (see
Alabert, 1987 for details).
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It should be mentioned that with datasets comprising a large number of points or vari-
ables, the matrix var(z

.

E) may become very large and its LU decomposition may become
unworkable. In such cases, the field can either be separated into partially overlapping
zones, as proposed by Alabert (1987), or the algorithm developed by Vargas-Guzman
and Dimitrakopoulos (2002) may be adapted. Moreover, the conditional simulation
of regionalized components in a sequential simulation framework, in which simulations
would be performed for each grid node separately, is made difficult by the fact that
simulated values are generated for each regionalized component, while the original con-
ditioning data are only available for the total variables. Thus, a sequential simulation
would have to use two types of conditioning data with different spatial properties: the
total variables on the original sampling points and the previously simulated regionalized
components on the grid nodes. Instead, when simulations of regionalized components
are to be obtained on a large number of nodes outside of the original sampling points,
one can proceed in two steps: 1) Obtain simulated regionalized components on the
original sampling points with the method described above; 2) for each structure sep-
arately, use the regionalized components simulated on the original sampling points as
conditioning data in a procedure such as sequential conditional Gaussian co-simulation
(Gomez-Hernandez and Journel, 1994) or direct sequential co-simulation (Soares, 2001).
This is justified because regionalized components simulated for different structures on
the original sampling points are generated to be independent of one another.
Strictly speaking, the co-simulation approach requires a multi-Gaussian distribu-

tion of the original data (Journel and Huĳbregts, 1978). It is generally recommended
to transform all variables to normal scores before performing the simulations and to
back-transform simulated values to ensure a good reproduction of the histograms of
original data (Goovaerts, 1997). In the co-simulation of regionalized components, a
back-transformation is impossible because there are no sampled data that correspond to
the simulated data. Furthermore, cokriging estimates obtained on the sampling points
cannot be used as a basis for normal score transformation because their distribution
is altered by the smoothing effect discussed above. We are thus left with two options:
1) Transform each variable to a normal score without back-transforming the simulated
regionalized components; 2) Assume an approximate multi-Gaussian distribution for
the sampled data without transforming them to normal scores. The true regionalized
components are, by definition, never accessible from the sampled data. There is thus
little ground on which to speculate about their exact distribution in practice. If the
distribution of the total observations is close to normality, our inclination is to suggest
option 2), which will lead to simulated regionalized components whose sum will have a
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distribution close to that of the sampled data.

3.5 Case study

3.5.1 Objectives

In this section, the method described above for the conditional Gaussian co-simulation
of regionalized components is applied to an agronomic dataset to characterize the spatial
variation in soil phosphorus and potassium and obtain maps that adequately represent
the scale-specific spatial structure and uncertainty of those variables. We will use this
case study to illustrate how scale-specific structures and correlations between variables,
as modeled in the LMC, are reproduced on simulated regionalized components, and how
the uncertainty of those structures and correlations can be examined from simulated
regionalized components.

3.5.2 Site description

The experiment was carried in Ste-Brigide, Québec, Canada (73o03’W, 45o20’N), in
two adjacent agricultural fields with similar management history. The two fields had
been under a corn-barley-soybean-alfalfa crop rotation for several years, and had been
fertilized with uniform applications of inorganic fertilizers and dairy cattle manure.

3.5.3 Soil sampling and analysis

The soil sampling followed from the combination of a staggered regular grid (266 points)
with spacing of 20 m in the width orientation of the fields and a random grid (58
points) with points at various distances from their nearest neighbors on the regular grid,
providing a total of 324 points (Fig. 3.1). In November 2000, the spatial coordinates of
grid points were recorded with a Global Positioning System with differential corrections
from a radio beacon. A composite soil sample was taken from the top 15 cm over a 1-m2

surface surrounding each point. Samples were air-dried and ground to pass through a
2-mm sieve. Extractable phosphorous and potassium levels (now referred to as P and
K) were determined from soil samples using the Mehlich-III extractant (Carter, 1993).

3.5.4 Statistical analysis

To improve normality, a Box-Cox transformation (Box and Cox, 1964) was applied
to the data (i.e., total observations) for each soil variable separately. Each set of
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Figure 3.1: Map of the sampling scheme, made of the combination of 266 points on a
staggered regular grid (•) and 58 randomly located points (∆).

transformed data was standardized to a zero mean and a unit variance prior to further
statistical analysis. Isotropic direct and cross experimental variograms were computed
using distance classes (15-m intervals), in addition to one lag located at 7.5 m to
evaluate the semi-variance at short distances (Fig. 3.2). After close examination, it
was determined that the combination of one nugget effect, one short-range (30 m)
spherical model and one long-range (150 m) Gaussian model would be appropriate to
model all variograms. The LMC was fitted using the generalized least-squares algorithm
developed by Pelletier et al. (2004).
The Gstat software (Pebesma and Wesseling, 1998)was used with parameter values

following from the fitting of the LMC, to perform simple cokriging of the total variables
on a 1-m resolution raster (Fig. 3.3A). Programs were written in the Matlab language
(The Mathworks, 2002) to compute simple cokriging estimates (Fig. 3.3B-C) and vari-
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Figure 3.2: Direct and cross experimental variograms and models fitted by generalized
least squares.

ances of cokriging errors (Fig. 3.4) of the regionalized components for each variable
on a raster. Simple cokriging and conditional Gaussian co-simulation of regionalized
components (Eq. (3.17)) were also performed in Matlab to obtain estimates and 1000
conditional co-simulations of regionalized components on the original sampling points.
Experimental variograms evaluated from these estimates and simulations are displayed
in Fig. 3.5, while variances, covariances and correlation coefficients calculated from
them are reported in Table 3.1. The first two simulations were used in the Gstat condi-
tional sequential Gaussian co-simulation routine with parameters associated with each
structure, to obtain simulations of regionalized components on a raster (Figs. 3.6B-C
and 3.7B-C). The three maps of regionalized components (including the nugget effect)
for a given conditional co-simulation and variable were then summed to obtain one
simulation of the total variable (Figs. 3.6A and 3.7A). When estimating or simulating
onto a raster, a circular neighbourhood with a radius equal to the maximum range of
the variogram model(s) involved was used.
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Figure 3.3: Maps obtained by simple cokriging of the two total variables (A) and simple
cokriging of regionalized components for the short-range spherical (B) and
long-range Gaussian (C) components.
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Figure 3.4: Maps of the variance of the cokriging error of the short-range spherical
(A) and long-range Gaussian (B) components for P and K. Variances were
divided by the corresponding direct variogram sill to obtain a proportional
quantification of the variability of cokriging errors.
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Figure 3.5: Direct and cross experimental variograms for the cokriging estimates of
regionalized components on the sampling points (•) and the average exper-
imental variograms of 1000 conditional co-simulations of regionalized com-
ponents on the sampling points (◦). The solid line represents the variogram
model for each structure as fitted in the LMC.
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Figure 3.6: Maps of two simulations for P obtained by conditional co-simulation for
the total variable (A), and the short-range spherical (B) and long-range
Gaussian (C) regionalized components.
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Figure 3.7: Maps of two simulations for K obtained by conditional co-simulation for
the total variable (A), and the short-range spherical (B) and long-range
Gaussian (C) regionalized components.
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3.5.5 Results and discussion

The use of a random grid in this study allowed variogram estimates to be obtained at
short distances (Fig. 3.2). Therefore, it may be reasonable to assume that the nugget
effect fitted in the LMC (Table 3.1) arises from experimental error rather than micro-
scale variation. Consequently, conditional simulations of the total variables generated
without a nugget effect should more appropriately represent the true spatial character-
istics of the variables. They can simply be obtained by summing the simulated short-
and long-range regionalized components for each variable (Figs. 3.6B-C and 3.7B-C).
Focusing on spatially structured components, the correlation between K and P (Table

3.1) is moderately positive at the short-range spherical structure (0.55), but is negative
at the long-range Gaussian structure (-0.40). This is illustrated by the cokriged and
simulated maps of the regionalized components (Figs. 3.3, 3.6 and 3.7): maps for K and
P have similar patterns for the short-range component and generally opposite patterns
of peaks and troughs for the long-range component. Such scale dependence is usually
interpreted as reflecting the presence of different controlling factors acting on the vari-
ables at the scales described by each variogram model. However, due to the smoothing
effect of kriging, the spatial structure of short-range components is inadequately rep-
resented by the cokriged maps (Fig. 3.3). In fact, the comparison of experimental
variograms (Fig. 3.5) shows that the smoothing effect is clearly noticeable in the cok-
riging estimates for the nugget effect component (for which negative autocorrelation is
also observed at very short distances) and short-range components, even when cokrig-
ing is performed on the sampling points. Therefore, simulated short-range components
(Figs. 3.6B and 3.7B) better represent the complexity of the small scale spatial struc-
ture. By contrast, variograms (Fig. 3.5) and maps of cokriging estimates (Fig. 3.3)
and conditional co-simulations for the long-range component (Figs. 3.6C and 3.7C)
are generally similar because the Gaussian model describing the long-range component
captures virtually no variation at scales smaller than the distance between adjacent
grid points.
The proportion of variance of cokriging errors for the short-range components of K

and P is large, but is nearly identical for both variables (Fig. 3.4). In contrast, this
proportion is much smaller for the long-range components, but significantly higher for
K than for P. Consequently, the short-range components of both variables are quite
dissimilar from one simulated realization to the next (Figs. 3.6B and 3.7B), and al-
though realizations of long-range components are generally similar, they tend to differ
more for K than for P (Figs. 3.6C and 3.7C). In this context, an interesting use of a
series of such simulated realization would be to identify potentially high or low values in
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Chapter 3 Co-simulation of regionalized components

scale-specific patterns, by building empirical confidence intervals on regionalized com-
ponent estimates at each node. On average, however, these are not expected to differ
significantly from confidence intervals calculated from the cokriging estimates (for the
center) and the variance of cokriging errors (for the width).
The variances and covariances calculated from the cokriging estimates of regionalized

components are smaller than the corresponding sill estimates (Table 3.1). There is a
much better agreement between the mean values of variances and covariances of the
co-simulated regionalized components and the sill estimates, especially for the nugget
effect and the short-range spherical structure. However, in this case study, the correla-
tions evaluated from the cokriging estimates of regionalized components are relatively
close to those calculated directly from the sill estimates. As expected from Eq. (3.9),
the correlation between cokriging estimators of regionalized components for different
structures is larger than for their co-simulated counterparts (Table 3.1). With one ex-
ception (i.e., the long-range Gaussian structure in the direct variogram of P), the sill
estimates fall within the empirical 95 percent confidence intervals built for the vari-
ances and covariances calculated from conditional co-simulations. This also holds true,
in all cases, for correlation coefficients. Therefore, while providing a truly independent
analysis at each scale, conditional co-simulations of regionalized components are more
appropriate descriptors of the variation of, and relation between, variables than the
cokriging estimators.

3.6 Conclusions
To our knowledge, this study is the first detailed attempt at expressing the spatial un-
certainty of regionalized components. One must keep in mind that the interpretation of
regionalized components, both estimated and simulated, is greatly dependent on the va-
lidity of the results from coregionalization analysis. Thus, a complete assessment of the
spatial uncertainty of regionalized components will need to incorporate the effect that
the uncertainty of variogram model parameter estimates has on the cokriged estimates.
Nevertheless, this study clearly shows that co-simulations of regionalized components
and factors provide a useful addition to the already well-developed methods of core-
gionalization analysis and factorial kriging, by representing both the specific features
of, and the uncertainty associated with, each scale of variation. Any application that
can make use of stochastic simulations can potentially make use of conditional stochas-
tic co-simulations of regionalized components. The addition of scale to the conditional
simulation framework could prove extremely useful for generating maps without exper-
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imental error, studying scale-specific propagation of uncertainty in a variety of transfer
functions (e.g., hydrological models or crop models), and studying the spatial uncer-
tainty in multi-scale multivariate analyses.
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3.8 Appendix
The system of equations for conditional Gaussian co-simulation of regionalized factors
is very similar to that described for regionalized components in the body of this paper.
Factorial cokriging first requires the decomposition of the coregionalization matrices
with, among other possibilities, principal component analysis (Goovaerts, 1992):

Bs = QsΛsQT
s = AsAT

s , (3.20)

with
As = QsΛ1/2

s (3.21)

where Qs is the matrix of eigenvectors and Λs is the diagonal matrix of eigenvalues.
Estimators of regionalized factors are then provided by

y∗s = WT
F,sz, (3.22)

where the matrix of factorial cokriging weights WF,s is obtained by solving

79



Chapter 3 Co-simulation of regionalized components

KWF,s = As ⊗ ρ(n,o),s. (3.23)

The variance-covariance matrices of the estimates of regionalized factors and the asso-
ciated cokriging errors are given respectively by

var(y∗s) = WT
F,sKWF,s = AT

s ⊗ ρT
(n,o),sK−1As ⊗ ρ(n,o),s (3.24)

and
ΣE

F,s = As ⊗ ρ(o),s −AT
s ⊗ ρT

(n,o),sK−1As ⊗ ρ(n,o),s (3.25)

From Eq. (3.24), it appears that, although regionalized factors are defined to be or-
thogonal in Eq. (3.20), their cokriging estimates are not guaranteed to be orthogonal
and hence, their variance-covariance matrix and autocorrelation structure are not main-
tained.
Similarly, the covariance between the estimators of two regionalized factors and that

between the corresponding cokriging errors are respectively given by

cov(y∗s,y∗s′) = WT
F,sKWF,s′ = AT

s ⊗ ρT
(n,o),sK−1As′ ⊗ ρ(n,o),s′ (3.26)

and
ΣE

F,(s,s′) = −AT
s ⊗ ρT

(n,o),sK−1As′ ⊗ ρ(n,o),s′ . (3.27)

A matrix var(y
�

E), similar to var(z
�

E) in Eq. (3.27), can then be built from all matrices

ΣE
F,s and ΣE

F,(s,s′). Following the same logic as for the simulation of regionalized compo-
nents, conditional simulations of all regionalized factors can be obtained simultaneously
by

y
�

cs = y
�

∗+y
�

E=y
�

∗+LEFε, (3.28)

where y
�

∗ is the vector containing all regionalized factors y∗s estimated by simple factorial

cokriging and LEF is the lower triangular matrix arising from the LU decomposition of
var(y

.

E).
A fundamental feature of regionalized factors simulated this way is that their variance-
covariance matrix is the identity matrix, so their orthogonality and autocovariance
structure are maintained.
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Chapter 4

Characterization and quantification
of uncertainty in coregionalization
analysis

4.1 Abstract
Coregionalization analysis has been presented as a method of multi-scale analysis for
multivariate spatial data. Despite an increasing use of this method in environmental
and earth sciences, the uncertainty associated with the estimation of parameters in
coregionalization analysis (e.g., sills and functions of sills) is potentially high and has
not yet been characterized. This article aims to discuss the theory underlying coregion-
alization analysis and assess the robustness and limits of the method. A theoretical
framework is developed to calculate the ergodic and fluctuation variance-covariance
matrices of least-squares estimators of sills in the linear model of coregionalization. To
adjust for the positive semidefiniteness constraint on estimated coregionalization matri-
ces, a confidence interval estimation procedure for sills and functions of sills is presented.
Thereafter, the relative importance of uncertainty measures (bias and variance) for sills
and structural coefficients of correlation and determination is assessed under different
scenarios to identify factors controlling their uncertainty. Our results show that the
sampling grid density, the choice of the least-squares estimator of sills, the positive
semidefiniteness constraint, the presence of scale dependence in the correlations, and
the number and range of variogram models, all affect the level of uncertainty, some-
times through multiple interactions. The asymptotic properties of variogram model
parameter estimators in a bounded sampling domain impose a theoretical limit to their
accuracy and precision. Because of this limit, the uncertainty was found to be high for
several scenarios, especially with three variogram models, and was often more depen-

81



Chapter 4 Uncertainty in coregionalization analysis

dent on the ratio of variogram range to domain extent than on the sampling grid density.
In practice, in the coregionalization analysis of a real dataset, the circular requirement
for sill estimates in the calculation of uncertainty measures makes the quantification of
uncertainty very problematic, if not impossible. The use of coregionalization analysis
must be made with due knowledge of the uncertainty levels and limits of the method.
Key words: least-squares estimators of sills, direct and cross variograms, multi-scale
analysis, positive semidefiniteness, ergodic, estimation and fluctuation variances, struc-
tural correlations and coefficients of determination.

4.2 Introduction
Increasing awareness about the existence of scale dependencies in spatial data sets has
motivated the development of analytical methods to separate scales of variation and
describe relationships between variables at multiple scales. Coregionalization analysis,
sometimes referred to as ’factorial kriging analysis’, comprises a set of geostatistical
techniques designed for multi-scale analysis of multivariate spatial data (Wackernagel,
2003, chap. 28). These techniques rely on sill matrices (coregionalization matrices)
estimated in a nested variogram model. In regionalized multivariate analysis, coregion-
alization matrix estimates are submitted to methods of data analysis such as structural
correlations, principal component analysis (PCA) and redundancy analysis (RDA). To
date, most applications have used structural correlations or PCA, or both (Goovaerts,
1992; Goulard and Voltz, 1992; Goovaerts et al., 1993; Goovaerts and Webster, 1994;
Webster et al., 1994; Dobermann et al., 1997; Bocchi et al., 2000; Castrignano et al.,
2000a,b; Lin, 2002; Bourennane et al., 2003). To our knowledge, the only application
of regionalized RDA is by Goovaerts (1994). Variogram parameter estimates can also
be used in a modified cokriging system to estimate regionalized components or factors
(Matheron, 1982; Goovaerts, 1997, chaps. 5 and 6), or used to perform conditional
Gaussian co-simulation of regionalized components and factors (Larocque et al., 2006).
Despite the increasing use of these methods, the different aspects of the uncertainty

associated with the estimation of sills in coregionalization analysis have not yet been
documented. As variogram modelling is often seen as a preliminary step towards krig-
ing, more attention has been paid to characterizing the uncertainty of kriged values
than that of variogram model parameter estimates. The choice of variogram model
parameter values that minimize uncertainty is often carried out indirectly by compar-
ing the observed and kriged values (e.g., cross-validation; Isaaks and Srivastava, 1989,
pp. 351-368). Most studies on variogram uncertainty have focused on the ergodic
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variance, defined as the variance of the difference between the experimental variogram
and the variogram of the random function (theoretical variogram). In this context,
Pardo-Igúzquiza and Dowd (2001) and Ortiz and Deutsch (2002) have shown how the
uncertainty associated with a single direct experimental variogram can be quantified
theoretically or through simulations, and how this uncertainty can be transferred to
variogram model parameter estimates. They have shown that in applications, the eval-
uation of the uncertainty associated with variogram model parameter estimates must
make use of the model parameter estimates themselves. This circular problem is due
to the fact that variogram uncertainty is not only dependent on the characteristics of
the sampling scheme, including the number of sites and their spatial location (War-
rick and Myers, 1987; Webster and Oliver, 1992; Pettitt and McBratney, 1993; Müller
and Zimmerman, 1999), but also on the spatial structures and scales of variation of the
processes and the estimation methods used to fit the variogram model (Müller and Zim-
merman, 1999; Ortiz and Deutsch, 2002). Pardo-Igúzquiza and Dowd (2003) propose
an assessment of variogram parameter uncertainty based on the maximum likelihood
approach.
Following Matheron’s (1989; original French version, 1978) theory and terminology,

model parameters defined within a spatially bounded sampling domain can be consid-
ered objective only if they satisfy certain criteria. One of those criteria is that they
must have a deterministic counterpart (a ’regional magnitude’), which could be ob-
tained without modelling if we had complete knowledge of the regionalized variable
within the sampling domain. Another criterion concerns the asymptotic properties of
model parameter estimators. From a modelling point of view, parameters said to be
’micro-ergodic’ can be rigorously determined by the knowledge of one realization of the
random function within the sampling domain. An internal evaluation of the models (a
’sorting out’ operation) is needed to identify micro-ergodic parameters. Only those can
be considered objective.
For example, the regional variogram is a regional magnitude that can be unam-

biguously defined from a complete knowledge of the regionalized variable within the
sampling domain. When an increasing number of samples are collected within a given
domain (this is referred to as ’infill asymptotics’ by Cressie (1993)), the variogram
model parameter estimates do not necessarily converge to the parameter values of the
theoretical model. Instead, they converge to the values provided by the fitting of the
model to the regional variogram. The fluctuation variance, defined as the variance of the
difference between regional and theoretical variograms (Matheron, 1965, p. 227; Chilès
and Delfiner, 1999), can be used to assess the objectivity of the parameters defining a
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variogram model: a low fluctuation variance implies an objective meaning, whereas a
high fluctuation variance implies no more than a ’conventional’ meaning. According to
Matheron (1989), parameters with a conventional meaning should disappear from the
practical application of models and the final formulation of conclusions.
The variance of the difference between experimental and regional variograms, in the

model, is the estimation variance of the variogram (Matheron, 1965). When this esti-
mation variance is low, the model fitted to the experimental variogram is expected to
summarize adequately the spatial structure of the variable within the sampling domain,
whether the fluctuation variance of the variogram is low or high. In a slightly differ-
ent context (i.e., using a simulated region from which many samples are collected),
Marchant and Lark (2004) present a procedure to calculate the ’non-ergodic error’
(Matheron’s estimation variance), assuming the ’ergodic variogram’ (theoretical var-
iogram) is known. Their results emphasize the key distinction that must be made
between the regional variogram and the theoretical variogram when characterizing var-
iogram uncertainty.
In this study, we assess theoretically the uncertainties associated with the estimation

of sills and functions of sills in the framework of the probabilistic model that serves
as a basis for coregionalization analysis, that is, the linear model of coregionalization
(LMC). The main hypothesis formulated in the LMC is that the total variables result
from the superimposition of scale-specific structural components and that all the vari-
ables share the same scales of variation. That superimposition represents a potentially
important source of uncertainty in the model due to the ’interference’ between struc-
tural components. Also, at the center of coregionalization analysis are variogram model
parameters (i.e., sills), for which there are no deterministic counterparts that can be
defined without having recourse to the LMC. In other words, sills and functions derived
from them do not exist independently of a model and can never be considered ’objective’
in Matheron (1989) sense. Due to this, we will below define the notion of fluctuation
variance of sills, but it will be used as a heuristic tool to discuss the hypotheses and
limits of the models rather than as an indicator of the objectivity of model parameters.
Comparing the fluctuation and ergodic variances will allow us to separate the effects of
the sampling scheme from other factors controlling the uncertainties of sills and func-
tions of sills. Also, the positive semidefiniteness constraint on coregionalization matrix
estimates and the iterative nature of LMC fitting algorithms (Goulard, 1989; Pelletier
et al., 2004) are expected to affect the distribution of sill and correlation estimators,
and will thus require some numerical approximations.
The main objective of this study is to discuss the theory underlying coregionaliza-
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tion analysis and assess the robustness and limits of the method. To achieve this, we
first establish a framework to characterize uncertainty in the context of coregionaliza-
tion analysis. Secondly, we present theoretical calculations of ergodic and fluctuation
variance-covariance matrices of the direct and cross variograms and sills in the LMC.
Thirdly, we combine those theoretical calculations with a simulation procedure to ad-
just for the positive semidefiniteness constraint and obtain confidence intervals for sills
and derived functions (i.e., structural correlations and coefficients of determination).
Finally, we use those confidence intervals to quantify uncertainty under different theo-
retical scenarios with known parameters. An approach based on theoretical scenarios
is privileged because of practical problems posed by the recursive requirement for vari-
ogram model parameters in the evaluation of their own uncertainty. This will allow us to
identify factors controlling uncertainty and to study the plausible levels of uncertainty
in practical situations.

4.3 Uncertainty in the framework of the LMC
Before fitting a model to direct and cross experimental variograms in the context of
coregionalization analysis, one must first choose the number, type and range of basic
variogram models as well as the variogram estimator. Once these choices are made, all
the variables are represented, in the model, as the result of the superimposition of S
random structural components:

Z(u) =
S∑
s=1

Zs(u) (4.1)

where {Z(u) |u ∈ D} is a second-order stationary vector random function, with Z(u) =
(Z1(u), . . . , Zp(u))T , D ⊂ Rd and d ≥ 1. For a given structure s, the permissible basic
variogram function gs characterizes Zis(u) (i = 1, . . . , p) and the positive semidefinite
coregionalization matrix Bs defines the variance-covariance matrix of the p x 1 random
vector Zs(u) for any u. Because structural components Zs(u) and Zs′(u) for s 6= s′

are assumed orthogonal (i.e., statistically independent), the variance-covariance matrix
of Z(u) is given by V = ∑S

s=1 Bs. Similarly, the p × p matrix containing the values
of direct and cross (theoretical) variogram model values at lag h, denoted Γ(h) and
referred to as ’theoretical variogram’ hereafter, is given by:

Γ(h) =
S∑
s=1

Γs(h) (4.2)

or
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Γ(h) =
S∑
s=1

Bsgs(h) (4.3)

where Γs(h) (s = 1,. . . , S) denote matrices of values for the theoretical structural var-
iogram models. Equation (4.3) defines the linear model of coregionalization (Journel
and Huĳbregts, 1978, p. 172). It must be noted that Vargas-Guzman et al. (2002) have
proposed a modification of the linear model of regionalization (p = 1) in which the
random structural components are not assumed orthogonal. Though appealing, this
approach could become very difficult with more than two structures or in the multi-
variate framework of the LMC, due to the uncertainty associated with supplementary
models that would have to be fitted.
A given realization of the structural random functions that would entirely cover a

bounded sampling domain D would provide a set of structural components characterized
by regional structural variogram matrices ΓR

s (h). Such structural components would
not be perfectly orthogonal because the values of cross regional variograms between
components of different structures, denoted ΓR

s,s′(h) (s 6= s′), would not be exactly zero.
It follows that regional total variogram matrices resulting from their superimposition
are given by:

ΓR(h) =
S∑
s=1

S∑
s′=1

ΓR
s,s′(h). (4.4)

The variance of the difference between regional and theoretical variograms,

Var
(
ΓR(h)− Γ(h)

)
is defined as the fluctuation variance of the variogram (Matheron, 1965, p. 227).
In practice, we only have access to experimental variogram matrices Γ∗(h) evalu-

ated from a finite sampling scheme. The variance of the difference between exper-
imental and theoretical variograms, Var (Γ∗(h)− Γ(h)), defines the ergodic variance
of the variogram, while the variance of the difference between experimental and re-
gional variograms (in the model), Var

(
Γ∗(h)− ΓR(h)

)
, is the estimation variance of

the variogram.
An important point to note is that the fluctuation variance of the variogram can

be expressed, in theory, at any lag within the limits of the sampling domain, whereas
the choice of lags for the evaluation of the ergodic variance is limited by the sampling
scheme. Nonetheless, at the lags at which the experimental variogram is evaluated, the
ergodic variance is equal to the sum of the estimation and fluctuation variances:

Var (Γ∗(h)− Γ(h)) = Var
(
Γ∗(h)− ΓR(h)

)
+ Var

(
ΓR(h)− Γ(h)

)
. (4.5)
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Thus, similar values for the ergodic and fluctuation variances of the variogram imply a
small estimation variance and hence, an experimental variogram close to the regional
variogram.
Until recently, most studies on variogram model parameter uncertainty have char-

acterized the ergodic variance. For sills, this is the variance of the difference between
experimental and theoretical sills, Var

(
B̂s−Bs

)
. Let B̂R

s (s = 1,. . . , S) denote the sill
matrices that would be obtained by fitting the LMC to regional total variograms. These
regional sills are not likely equal to the theoretical sills Bs. We define the variance of
the difference between regional and theoretical sills, Var

(
B̂R
s −Bs

)
, as the fluctuation

variance of the sills. This fluctuation variance can provide insight into the minimum
uncertainty that can be achieved within a given sampling domain. A similar reasoning
applies to functions of sills, such as structural correlations or coefficients of determi-
nation. The equality above (Eq.(4.5)) does not extend to sills because sill estimates
(B̂s) are dependent on the lags at which the experimental variogram is evaluated. This
poses a problem for defining estimation variances for sills and functions of sills. For
this reason, we will focus on the calculation of ergodic and fluctuation variances in the
following sections.

4.4 Theoretical characterization of uncertainty in
the LMC

Below, we give the theoretical expressions for the ergodic and fluctuation variances and
covariances of direct and cross variograms, as well as the mean value and the ergodic
and fluctuation variance-covariance matrices of the ordinary least-squares (OLS) and
generalized least-squares (GLS) estimators of sills in the context of coregionalization
analysis. We show calculations for both estimators, and will present results for them
in a later section, to facilitate the identification of factors controlling the uncertainty.
Also, Pelletier et al. (2004) demonstrated that those sill estimators were the least effi-
cient (OLS) and the most efficient (GLS). Even though we work under the assumption
that the basic variogram functions gs(h) (s = 1,. . . , S) in Equation (4.3) are correctly
specified, while the coregionalization matrices Bs (s = 1,. . . , S) need to be estimated,
the calculations presented below require prior knowledge of all variogram model pa-
rameters, including Bs. In practice, this leads to a well-known circular problem, which
will be discussed in a later section. Any uncertainty related to the identification of the
number, type and range of variogram models could be the object of another contribu-
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tion.

4.4.1 Ergodic variances and covariances of variograms

In its most general form, the classical variogram estimator can be expressed as a bilinear
form

γ∗ij (h) = zTi A (h) zj (4.6)

where z = (z(u1),. . . , z(un))T is the data vector for the random function Z at a set of
n sampling locations {u1,. . . , un} and A(h) is the spatial design matrix

A(h) = [η(h)−M(h)]
2N(h) (4.7)

where M(h) is the n x n binary matrix (muu′) with muu′ = 1 if the vector linking
sampling locations u and u′ corresponds to lag h and muu′ = 0 otherwise, η(h) is the n
x n diagonal matrix (ηuu) with ηuu = ∑n

u′=1 muu′ (the number of neighbors for sampling
location u at lag h), and N(h) is the number of pairs of observations at lag h.
Let γ∗ij =

(
γ∗ij(h1), ..., γ∗ij(hK)

)T
denote an experimental variogram (direct if i = j

and cross otherwise) at distance lags {h1,. . . , hK}. Pelletier et al. (2004) showed that
the entry (hk, hk′) of the variance-covariance matrix Σγ∗ĳ

of the experimental variogram
involving variables i and j can be calculated as follows

Cov
(
γ∗ij(hk), γ∗ij(hk′)

)
=

S∑
s=1

S∑
s′=1

[(βij,sβij,s′ + βii,sβjj,s′) tr (ρsA(hk)ρs′A(hk′))] (4.8)

where (βij,s) = Bs, and ρs is the n × n matrix of values of the basic correlation function
at structure s for the n sampling locations. From Equation (4.8), it follows that the
variance of the experimental variogram at a given distance lag is smaller when 1) the
number of pairs of observations involved in its computation is larger, and 2) when the
spatial correlation between those pairs is weaker.
Equation (4.8) can be generalized to evaluate the entries of the K x K covariance ma-

trix Σγ∗ĳγ
∗
i′j′

, which contains the covariances between the cross experimental variogram
involving variables i and j at lag hk and the cross experimental variogram involving
different variables i′ and j′ at lag hk′ :
Cov

(
γ∗ij(hk), γ∗i′j′(hk′)

)
=∑S

s=1
∑S
s′=1 [0.25 (βii′,sβjj′,s′ + βjj′,sβii′,s′ + βij′,sβji′,s′ + βji′,sβij′,s′) tr (ρsA(hk)ρs′A(hk′))]

(4.9)
This formula simplifies to calculate the covariances between a direct and a cross

experimental variogram (i = j and i′ 6= j ′), between direct experimental variograms
(i = j and i′ = j ′), for a single cross experimental variogram (i = i ′ and j = j ′), and for
a single direct experimental variogram (i = i ′ = j = j ′).
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4.4.2 Ergodic variances and covariances of sills

To simplify things, but without loss of generality, consider a situation in which p=2,
so there are p(p+1)

2 = 3 experimental variograms, γ∗11, γ∗12 and γ∗22, and one vector of
least-squares estimators of sills for each of them, β̂11, β̂12 and β̂22. The simultaneous
least-squares fitting of all direct and cross variogram models gives

β̂ = Φγ∗ (4.10)

where β̂ is the 3S x 1 random vector (β̂T11, β̂
T

12, β̂
T

22)T and Φ (3S x 3K ) can be seen

as a 3 x 3 diagonal matrix with
(
GTG

)−1
GT or

(
GTΣ−1

γ∗ĳ
G
)−1

GTΣ−1
γ∗ĳ

(i, j = 1, 2)
as the diagonal S x K block entries in the case of an OLS fitting or a GLS fitting,
respectively; G denotes the K x S matrix of values of the basic variogram functions.
We now make use of Equation (4.9) to obtain the theoretical covariances between

all possible combinations of least-squares estimators of sills for direct and cross ex-
perimental variograms. In this case, the theoretical covariance matrices Cov(β̂11,β̂12),
Cov(β̂11,β̂22) and Cov(β̂12,β̂22) can be obtained as follows. Let Ω denote the variance-
covariance matrix of the 3K x 1 random vector g* = (γ∗11

T ,γ∗12
T ,γ∗22

T )T , namely

Ω =


Σγ∗11

Σγ∗11 γ
∗
12

Σγ∗11 γ
∗
22

Σγ∗11 γ
∗
12

Σγ∗12
Σγ∗12 γ

∗
22

Σγ∗11 γ
∗
22

Σγ∗12 γ
∗
22

Σγ∗22

 . (4.11)

The 3S x 3S ergodic variance-covariance matrix of β̂ and its 3S x 1 expected value are
given by

Var(β̂) = ΦΩΦT (4.12)

and
E(β̂) = β. (4.13)

Equations (4.12) and (4.13) do not require the Gaussian assumption on γ∗, and
readily follow from the application of matrices in statistics (Searle, 1971) and the fact
that the random vector β̂ in Equation (4.10) is a linear function of γ∗. Equation
(4.12) clearly shows how the uncertainty of experimental variograms transfers to sills
estimates, since Var(β̂) is a function of Ω. Equation (4.13) confirms that in the absence
of constraint of positive semidefiniteness on sill matrix estimates, there is no bias in
theory in any of the least-squares estimators of sills.
As we will see in later sections, knowing the theoretical variances of, and covariances

between, sill estimators for direct and cross experimental variograms at the same struc-
ture and at different structures is important for (i) assessing the effect of constraining
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sill matrix estimates to be positive semidefinite in the LMC and (ii) evaluating the
uncertainties associated with the resulting sill estimates and the derived structural cor-
relations and coefficients of determination.

4.4.3 Fluctuation variances and covariances of variograms

By considering the regional variogram at a given lag as a random variable, Matheron
(1965) obtains a theoretical expression for the fluctuation variance of the direct vari-
ogram:

Var[γR(h)− γ(h)] = Var[γR(h)] = 1
2K(h)2

ˆ
D∩D−h

ˆ
D∩D−h

G(x,x′;h)dxdx′ (4.14)

with, under the Gaussian assumption for the distribution of increments of the random
function (e.g., z(x+ h)− z(x)),

G(x,x′;h) = [γ(x− x′ − h) + γ(x− x′ + h)− 2γ(x− x′)]2. (4.15)

In the two-dimensional space, the value of the geometric covariogram K(h) is the area
of the intersection of the domain D with its translation by h, denoted |D ∩D−h|.
The double integral (Eq.(4.14)) involves two points x and x′ sweeping independently
D ∩ D−h. Therefore, it corresponds in reality to a quadruple integral involving the
coordinates of points x and x′.
In the omni-directional case, with h= (h,θ) where h = ‖ h ‖ is the Euclidean norm

of h and θ denotes the angle that h forms with some reference axis, an average value
of the regional direct variogram at distance lag h is given by

γR(h) = 1
2π

ˆ 2π

0
γR(h, θ)dθ (4.16)

so that

Var[γR(h)] = 1
2π

ˆ 2π

0

 1
2
∣∣∣D ∩D−(h,θ)

∣∣∣2
ˆ
D∩D−(h,θ)

ˆ
D∩D−(h,θ)

G(x,x′; h,θ)dxdx′
 dθ.

(4.17)
We now generalize that expression to obtain the fluctuation covariance between the

cross variogram involving variables i and j and the cross-variogram involving variables
i’ and j’ at any pair of distance lags.

Cov[γRij(h), γRi′j′(h′)] = 1
4π2

ˆ 2π

0

ˆ 2π

0

1
4
∣∣∣D ∩D−(h,θ)

∣∣∣ ∣∣∣D ∩D−(h′,θ′)

∣∣∣
×
(´
D∩D−(h,θ)

´
D∩D−(h′,θ′)

(
G
ii′ (x,x

′;h,h′)G
jj′ (x,x

′;h,h′)+Gij′ (x,x′;h,h′)Gji′ (x,x′;h,h′)
)

dxdx′
)

dθdθ′ (4.18)

where
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Gij(x,x′;h,h′) = [γij(‖x−x′ − h‖)+γij(‖x−x′+h′‖)−γij(‖x−x′‖)−γij(‖x−x′+h′ − h‖)].

Like Equation (4.9), Equation (4.18) simplifies to calculate the variance of, or covari-
ance between, any direct or cross variogram at any distance lag. Equation (4.18) could
be used in theory to represent Cov[γRij(h), γRi′j′(h′)] as a continuous surface. However,
the exact evaluation of this function, either analytically or numerically, seems rather
impractical. Instead, we have developed a relatively simple simulation algorithm that
approximates the value of Cov[γRij(h), γRi′j′(h′)] for different combinations of lags h and h′

(see Appendix 1), in order to build covariance matrices ΣγRijγ
R
i′j′

(i, i ′, j , j ′ = 1, ..., p)
between regional variograms. Results not shown here indicate a tight correspondence
between the fluctuation variances obtained with our simulation algorithm and the er-
godic variances obtained with theoretical calculations (Eq.(4.9)) for very dense grids
within an equivalent sampling domain.

4.4.4 Fluctuation variances and covariances of sills

The regional sills β̂Rij,s represent the sill estimates that would be obtained by fitting
a model to the regional variograms evaluated at K lags from an infinite number of
sampling points in D. The fitting of a given model to all direct and cross regional
variograms simultaneously would provide

β̂
R = ΦRγR (4.19)

where ΦR is the block diagonal matrix made of matrices

(
GTG

)−1
GT or

(
GTΣ−1

γRij
G
)−1

GTΣ−1
γRij

for an OLS or a GLS fitting, respectively. To obtain the fluctuation variance-covariance
matrix of sills, the regional version of the variance-covariance matrix Ω (Eq.(4.11)),
denoted ΩR, must be built from all ΣγRijγ

R
i′j′

. The fluctuation variance-covariance matrix
involving all sills is then provided by

Var(β̂R − β) = Var(β̂R) = ΦRΩR[ΦR]T (4.20)

and their expected value is
E(β̂R) = β. (4.21)

When S > 1, the fluctuation variance (Eq. (4.20)) originates both from the super-
imposition of structural components and from the fluctuation variance of variograms
before superimposition. For a given structure, the latter variance alone can be quanti-
fied by setting S = 1 in the calculations above, that is, by using Equation (4.20) in the

91



Chapter 4 Uncertainty in coregionalization analysis

absence of the other structures.

4.5 Accounting for the positive semidefiniteness
constraint

The classical variogram estimator is known to be unbiased (Cressie, 1993, p. 71),
and so are least-squares estimators of slopes in linear models, including sills in the
LMC when the ranges are correctly specified (Searle, 1971; Pelletier et al., 2004). This
is, however, before sill matrix estimates are submitted to the constraint of positive
semidefiniteness; thereafter, some bias may be expected. The constraint may also have
an effect on the variance of sill estimators. We present below a confidence interval
estimation procedure to evaluate uncertainty from simulated sill matrices constrained
to be positive semidefinite. The center and length of a confidence interval will provide
information about the bias and dispersion of the point estimator on which it is built.
Consider the p(p+1)

2 S x 1 multivariate normal distribution with mean β and variance-
covariance matrix ΦΩΦT for sill estimates obtained from the fitting of a model to
experimental variograms by least squares (the Gaussian assumption was verified em-
pirically on unconstrained sill estimates). In what follows, the matrix ΦΩΦT can be
replaced by ΦRΩR[ΦR]T to obtain confidence intervals for regional sills and functions
derived from them.
Step 1- Simulate a p(p+1)

2 S x 1 vector of sills from the multivariate normal distribution
N (β, ΦΩΦT ):

β∗ = Lε+ β (4.22)

where L is the lower triangular matrix arising from the Cholesky decomposition of
ΦΩΦT and ε is a p(p+1)

2 S x 1 vector of N (0, 1) pseudo-random numbers.
Step 2- Use the vector β* to build p × p sill matrices B∗s and perform the spectral
decomposition of B∗s = QsΛsQ

T
s , where Qs contains the eigenvectors and Λs is the

diagonal matrix of eigenvalues (s = 1,. . . , S).
Step 3- For each structure s, set any negative eigenvalue in Λs at zero to obtain Λ+

s .
New, positive semidefinite simulated matrices of sills are then given by B∗+s = QsΛ+

s QT
s

(s = 1,. . . , S).
Step 4- Different functions of the sills can be evaluated from B∗+s , including structural
correlation coefficients, ρ∗s , defined as β∗+ĳ,s√

β∗+ii,s β
∗+
jj,s

, and structural coefficients of determi-

nation (ρ∗2s if p=2).

92



Chapter 4 Uncertainty in coregionalization analysis

Step 5- Repeat Steps 1-4 a large number of times (e.g., 10,000).
Step 6- For each structure separately, sort in ascending order the sills obtained for
direct and cross variograms at Step 3 and the functions of sills evaluated at Step 4.
Confidence intervals are then obtained by calculating the percentiles corresponding to
a given confidence level. With 10,000 simulations and a confidence level of 0.9, the
500th and 9,500th sorted values of sills and structural coefficients provide the lower
and upper bounds of the confidence intervals, while the arithmetic mean is used as
center.
Results not presented here revealed an excellent agreement between confidence in-

tervals obtained with this procedure and those obtained empirically through simulated
partial realizations of the associated vector random function. Because of this agreement,
we rely on theoretical calculations adjusted for the positive semidefiniteness constraint
for the quantification of uncertainty in the following section.

4.6 Quantification of uncertainty under different
scenarios

We will now use the theoretical calculations of previous sections under different scenarios
to quantify the respective uncertainties associated with the estimation of sills and func-
tions of sills. By doing this, one of our objectives is to assess the relative importance of
factors potentially controlling uncertainty, including the positive semidefiniteness con-
straint on sill matrix estimates, the number of structures or variogram models (S), the
number of sampling locations on a square regular grid (n), the ratio of variogram range
to sampling domain extent, and the presence of scale dependence in the correlation
between variables. We define eight scenarios combining different values of S (1, 2, or 3)
and various patterns of scale dependence (Table 4.1). For each scenario, grid sizes are
12 by 12 (n = 144), 15 by 15 (n = 225), 20 by 20 (n = 400), 30 by 30 (n = 900), and
50 by 50 (n = 2500). The extent of the sampling domain corresponds to the size of the
sampling grid in distance units (e.g., the 12 by 12 grid size is used in a 12 units by 12
units domain), so that the horizontal and vertical distances between adjacent nodes on
the grid are always slightly greater than one unit. In all cases, the number of variables
(p) is fixed to two.
Variograms were evaluated up to the 4-unit distance lag for scenarios A, B, D, and E,

and up to the 8-unit distance lag for scenarios C, F, G, and H. Distance lag increments
of 0.5 and 0.25 units were used, respectively, to calculate the ergodic and fluctuation

93



Chapter 4 Uncertainty in coregionalization analysis

Table 4.1: Description of Scenarios in Terms of the Theoretical Values of the Parameters
Scenario Variogram

model
(structure s)

Range Direct
vari-
ogram
sills
(β11,s,β22,s)

Cross
vari-
ogram
sill
(β12,s)

Struct-
ural
corre-
lation
(ρs)

Structural
coefficient
of deter-
mination
(ρ2

s )

A 1 Nugget - 0.3333 0.2357
√

0.5 0.5
B 2 Spherical 3 0.3333 0.2357

√
0.5 0.5

C 3 Spherical 6 0.3333 0.2357
√

0.5 0.5
D 1 Nugget - 0.3333 0.2357

√
0.5 0.5

2 Spherical 3 0.3333 0.2357
√

0.5 0.5
E 1 Nugget - 0.3333 0.2357

√
0.5 0.5

2 Spherical 3 0.3333 -0.2357 −
√

0.5 0.5
F 1 Nugget - 0.3333 0.2357

√
0.5 0.5

2 Spherical 3 0.3333 0.2357
√

0.5 0.5
3 Spherical 6 0.3333 0.2357

√
0.5 0.5

G 1 Nugget - 0.3333 0 0 0
2 Spherical 3 0.3333 0.1826

√
0.3 0.3

3 Spherical 6 0.3333 0.2582
√

0.6 0.6
H 1 Nugget - 0.3333 0.2357

√
0.5 0.5

2 Spherical 3 0.3333 -0.2357 −
√

0.5 0.5
3 Spherical 6 0.3333 0.2357

√
0.5 0.5

variance-covariance matrices. For each scenario, coregionalization matrices Bs and the
ergodic variance-covariance matrices were used in the algorithm for the adjustment for
positive semidefiniteness, to build 0.9 confidence intervals from 10,000 B∗+s , ρ∗s and ρ∗2s .
Coregionalization matrices Bs and the fluctuation variance-covariance matrices were
used in the algorithm for the adjustment for positive semidefiniteness, to build 0.9
confidence intervals from 10,000 BR∗+

s , ρR∗
s and ρR∗2

s .

4.7 Results and discussion

Entries of the ergodic and fluctuation variance-covariance matrices of direct and cross
variograms are presented graphically in Figures 4.1 and 4.2 for scenario F and in Figures
4.3 and 4.4 for scenario H. Ergodic variance-covariance matrices of GLS sill estimators,
calculated for the 15 x 15 grid size under the scenarios with S = 2 (Table 4.2) and S = 3
(Table 4.3) are presented without and with adjustment for the positive semidefiniteness
constraint. Confidence intervals built on the OLS and GLS estimators of sills in direct
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Figure 4.1: Ergodic variance-covariance matrices of the direct and cross variograms
(above) and their ergodic covariance matrices (below) for the 15 x 15 grid
under scenario F described in Table 4.1.

and cross experimental and regional variograms are presented in Figure 4.5 for scenarios
A, B and C with one structure, in Figure 4.6 for scenarios D and E with two structures,
and in Figure 4.9 for scenarios F, G and H with three structures. Results for structural
correlations and coefficients of determination are presented in Figures 4.5 (S = 1), 4.7
and 4.8 (S = 2), and 4.10 and 4.11 (S = 3). While the uncertainty measures are
represented graphically through confidence intervals (CI), to simplify our discussion we
will loosely use the term ’bias’ to describe the discrepancy between the theoretical value
of the parameter and the empirical mean of the estimator and the term ’variance’ to
describe the length of the CI.
Effect of the Positive Semidefiniteness Constraint
The effect of the positive semidefiniteness constraint can be observed by compar-

ing the variances of sill estimators without and with the adjustment for the constraint
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Figure 4.2: Fluctuation variance-covariance matrices of the direct and cross variograms
(above) and their fluctuation covariance matrices (below) for the 15 x 15
grid under scenario F described in Table 4.1.

(Tables 4.2 and 4.3). In each of our scenarios, the theoretical sill matrices were cho-
sen to be positive semidefinite, while the structural coefficients of determination were
defined to be moderate (Table 4.1). Accordingly, a larger variance of sill estimators
before adjustment implies a lower proportion of simulated sill matrices that are posi-
tive semidefinite and a more pronounced effect of the constraint. The constraint then
results in a decrease of the variance of direct variogram sill estimators, since it forces
the estimates to be non-negative (β̂11,s ≥ 0, β̂22,s ≥ 0), and of the variance of cross
variogram sill estimators through the Cauchy-Schwarz inequality (

∣∣∣β̂12,s

∣∣∣ ≤ ∣∣∣β̂11,s β̂22,s

∣∣∣).
The observed effect is more important when three variogram models are used in the
LMC, in particular for spatially autocorrelated structures (Table 4.3).
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Figure 4.3: Ergodic variance-covariance matrices of the direct and cross variograms
(above) and their ergodic covariance matrices (below) for the 15 x 15 grid
under scenario H described in Table 4.1.

4.7.1 Factors controlling uncertainty

Below, we discuss the effects of five main factors influencing the uncertainties of the
variogram, sill estimates and structural coefficients of correlation and determination in
the context of coregionalization analysis: the range of autocorrelation relative to the
sampling domain extent, the number of superimposed structural components, the sam-
pling scheme (the grid density and configuration within the sampling domain), the sill
estimator, and the presence of scale dependence in the correlations between variables.
Perhaps the most important elements of discussion are the interactions between these
factors.
By definition, fluctuation variances depend on the size and shape of the sampling

domain, but not on the sampling scheme. For the nugget effect when S = 1, the fluctu-
ation variance of the sill is exactly zero because the variance of the sample variance for
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Figure 4.4: Fluctuation variance-covariance matrices of the direct and cross variograms
(above) and their fluctuation covariance matrices (below) for the 15 x 15
grid under scenario H described in Table 4.1.

non-autocorrelated data is asymptotically zero, regardless of the extent of the sampling
domain. Concerning spatially autocorrelated structures (spherical structures, S = 1, 2
or 3), the fluctuation variance of sills and structural coefficients of correlation and de-
termination is proportional to the ratio of variogram range to sampling domain extent,
a smaller ratio allowing a greater repetition of the spatial features within the domain,
thereby providing a better basis for the estimation of model parameters (with lesser
uncertainty). This issue, which has been previously discussed (e.g., Matheron, 1989,
p. 84; Marchant and Lark (2004)), explains the gradual decrease of the fluctuation
variances as the extent of the sampling domain increases. It also explains the smaller
fluctuation variances for the short-range spherical structure compared to the long-range
spherical structure for a given sampling domain (S = 1 or S = 3).
The portion of fluctuation variances that is caused by the superimposition of struc-
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Figure 4.5: 90% confidence intervals for direct and cross variogram sills, structural cor-
relations and structural coefficients of determination for the nugget effect
(scenario A1), short-range spherical (B1) and the long-range spherical (C1)
variogram models. Each scenario is described in Table 1. Confidence inter-
vals were obtained, respectively, from ergodic variances calculated for the
OLS estimator (•), fluctuation variances calculated for the OLS estimator
(◦), ergodic variances calculated for the GLS estimator (4), and fluctu-
ation variances calculated for the GLS estimator (N). All intervals were
generated with adjustment for the positive semidefiniteness constraint. The
dotted lines represent the theoretical values.
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Table 4.2: Entries of the Ergodic Variance-Covariance Matrix of GLS Sill Estimators,
without and with the Adjustement for the Positive Semidefiniteness Con-
straint, Calculated for the 15 x 15 Grid under Scenarios D and E Described
in Table 4.1

Unadjusted Adjusted

Scenarios D E D E

Direct

Nugget 0.0047 0.0047 0.0047 0.0046
Nugget-Sph(3)a -0.0052 -0.0052 -0.0051 -0.0048
Sph(3) 0.0115 0.0115 0.0114 0.0107

Direct-Cross

Nugget-Nugget 0.0033 0.0010 0.0033 0.0011
Nugget-Sph(3) -0.0036 0.0002 -0.0036 0.0004
Sph(3)-Sph(3) 0.0081 -0.0023 0.0080 -0.0028

Cross

Nugget 0.0035 0.0027 0.0035 0.0026
Nugget-Sph(3) -0.0039 -0.0029 -0.0038 -0.0026
Sph(3) 0.0086 0.0063 0.0085 0.0058

Direct-Direct

Nugget 0.0024 0.0007 0.0024 0.0006
Nugget-Sph(3) -0.0026 -0.0007 -0.0026 -0.0004
Sph(3) 0.0057 0.0011 0.0057 0.0007

aSph(3): spherical variogram model with range 3.

tural components can be evaluated by comparing values for the same structural compo-
nent at S = 3 (scenario F), S = 2 (D, excluding the long-range spherical model) and S =
1 (A, B, C). This comparison shows that the fluctuation variances of sills and structural
coefficients of correlation and determination are directly proportional to the number of
basic functions used to fit the LMC to total variograms. Even with an infinite number
of sampling locations within a given domain, the estimation of sills for a given structure
is complicated by the presence of other structures, due to the cross covariances between
structural components (Eq.(4.4)). The large difference between fluctuation variances at
S = 1 and S = 3 may suggest that the cross covariances between structural components
(superimposition effect) have a far greater role to play in controlling the uncertainty
when S = 3 than the ratio of variogram range to sampling domain extent. However, the
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Table 4.3: Entries of the Ergodic Variance-Covariance Matrix of GLS Sill Estimators,
without and with the Adjustement for the Positive Semidefiniteness Con-
straint, Calculated for the 15 x 15 Grid under Scenarios F, G and H Described
in Table 4.1

Unadjusted Adjusted

Scenarios F G H F G H
Direct

Nugget 0.0068 0.0068 0.0068 0.0068 0.0067 0.0066
Nugget-Sph(3)a -0.0096 -0.0096 -0.0096 -0.0090 -0.0087 -0.0078
Nugget-Sph(6)a 0.0013 0.0013 0.0013 0.0012 0.0012 0.0010
Sph(3) 0.0384 0.0384 0.0384 0.0344 0.0338 0.0289
Sph(3)-Sph(6) -0.0326 -0.0326 -0.0326 -0.0271 -0.0266 -0.0210
Sph(6) 0.0616 0.0616 0.0616 0.0503 0.0500 0.0456

Direct-Cross

Nugget-Nugget 0.0048 0.0018 0.0021 0.0048 0.0018 0.0021
Nugget-Sph(3) -0.0068 -0.0029 -0.0012 -0.0064 -0.0028 -0.0002
Nugget-Sph(6) 0.0009 -0.0005 -0.0002 0.0009 -0.0005 0.0000
Sph(3)-Sph(3) 0.0271 0.0161 0.0030 0.0246 0.0149 -0.0027
Sph(3)-Sph(6) -0.0230 -0.0165 -0.0057 -0.0198 -0.0147 -0.0031
Sph(6)-Sph(6) 0.0435 0.0365 0.0154 0.0365 0.0319 0.0171

Cross

Nugget 0.0051 0.0037 0.0039 0.0050 0.0036 0.0038
Nugget-Sph(3) -0.0072 -0.0053 -0.0052 -0.0067 -0.0048 -0.0040
Nugget-Sph(6) 0.0010 0.0003 0.0007 0.0008 0.0001 0.0005
Sph(3) 0.0288 0.0229 0.0200 0.0263 0.0208 0.0141
Sph(3)-Sph(6) -0.0244 -0.0208 -0.0173 -0.0211 -0.0178 -0.0106
Sph(6) 0.0462 0.0421 0.0333 0.0396 0.0363 0.0268

Direct-Direct

Nugget-Nugget 0.0034 0.0006 0.0010 0.0034 0.0005 0.0009
Nugget-Sph(3) -0.0048 -0.0010 -0.0008 -0.0045 -0.0009 0.0000
Nugget-Sph(6) 0.0006 -0.0007 0.0001 0.0005 -0.0006 0.0002
Sph(3)-Sph(3) 0.0192 0.0075 0.0017 0.0168 0.0061 -0.0014
Sph(3)-Sph(6) -0.0163 -0.0093 -0.0022 -0.0133 -0.0072 0.0010
Sph(6)-Sph(6) 0.0308 0.0229 0.0051 0.0246 0.0187 0.0042

aSph(3) and Sph(6): spherical variogram models with ranges 3 and 6.
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Figure 4.6: 90% confidence intervals for direct and cross variogram sills of the nugget
effect (D1 and E1) and the short-range spherical (D2 and E2) variogram
models under scenarios D and E described in Table 4.1. Results for direct
variograms are identical for scenarios C and D and are therefore presented
once. See caption of Figure 4.5 for the meaning of symbols.

sharp increase of fluctuation variances when S = 3 as the range of autocorrelation of the
structural component increases entails that the superimposition effect predominantly
exacerbates the effect of the ratio of variogram range to sampling domain extent. This
implies that achieving a low fluctuation variance in coregionalization analysis with S >

2 requires a ratio of variogram range to sampling domain extent much lower than what
is usually recommended in standard variography. For example, Journel and Huĳbregts
(1978, p. 94) advise that variogram analysis should not include distances exceeding
half of the longest side of the sampling domain.
Although we did not quantify the estimation variance explicitly, the effect of the

sampling scheme can be studied by comparing the fluctuation and ergodic variances.
On the basis of the results for the GLS estimator of sills with S = 1 and S = 2, we
see that in most cases the ergodic variance could be lowered by having a denser grid
within the same domain. In particular, this would provide a better characterization
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Figure 4.7: 90% confidence intervals for structural correlations for the nugget effect (D1
and E1) and the short-range spherical (D2 and E2) variogram models under
scenarios D and E described in Table 4.1. See caption of Figure 4.5 for the
meaning of symbols.

of lags at short distances, which is important for the GLS estimator (see below). At
S = 3, however, a denser sampling scheme would help reduce the ergodic variance
for the nugget effect and, to a lesser degree, for the short-range spherical structure,
but would not be of much use for improving estimation for the long-range spherical
structure because of the high fluctuation variance. When designing a sampling scheme
with the objective of performing coregionalization analysis, a compromise must thus
be found between a sampling scheme that allows a characterization of the variogram
at distances smaller than the range of autocorrelation, and a small ratio of variogram
range to sampling domain extent. Thus, the ideal sampling scheme for performing
coregionalization analysis in the presence of multiple structures should be both intensive
and extensive, which is often difficult to achieve in practice.
By definition, the GLS estimator of sills uses the variance-covariance matrices of the

variograms in the fitting of the LMC. By doing so, it generally gives more weight to
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Figure 4.8: 90% confidence intervals for structural coefficients of determination for the
nugget effect (D1 and E1) and the short-range spherical (D2 and E2) vari-
ogram models under scenarios D and E described in Table 4.1. See caption
of Figure 4.5 for the meaning of symbols.

variogram ordinates at short distances, which have a smaller fluctuation variance and
smaller fluctuation covariances with ordinates at other lags, thereby reducing the effect
of the high fluctuation variance of the variogram at longer distances (Figs. 4.2 and
4.4). This explains the very small fluctuation variances of the GLS sill estimator and
the derived coefficients of correlation and determination when S = 1 and 2, compared
to the OLS estimator. However, the GLS estimator cannot correct for uncertainty that
is present at all lags in the variogram, as a consequence of the sampling scheme or of
the superimposition of the structural spatial components. When the uncertainty of sill
estimates originates from those factors, the differences between the two estimators are
reduced. For example, for the long-range spherical structure with S = 3, the fluctuation
variances of sills for the two estimators are close, suggesting that in practice, the high
variance of sills due to the superimposition effect will prevent the proper estimation
of the variance-covariance matrix used in the GLS estimator. Thus, the efficiency of
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Figure 4.9: 90% confidence intervals for direct and cross variogram sills for the nugget
effect (F1, G1 and H1), short-range spherical (F2, G2 and H2) and long-
range spherical (F3, G3 and H3) variogram models under scenarios F, G
and H described in Table 4.1. Results for direct variograms are identical
for scenarios F, G and H, and are therefore presented once. See caption of
Figure 4.5 for the meaning of symbols.

the GLS estimator of sills is affected by the presence of multiple structures, although it
generally remains more efficient than the OLS estimator, or equally efficient at worst.
Concerning the pattern of correlation between variables, the ergodic variance of sills

for cross variograms is larger in scenario F (with intrinsic correlations) than in scenarios
G and H (with scale-dependent correlations), whereas the ergodic variance of sills for
direct variograms is unaffected (Fig. 4.9). These results are consistent with those ob-
tained by Pelletier et al. (2004), and originate from Equations (4.8) and (4.9), in which
sills for different structures are combined in the calculations of Σγ∗ĳ

and Σγ∗ĳ γ
∗
i′j′
. Per-

haps surprisingly, the variances of estimated structural coefficients are generally larger
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Figure 4.10: 90% confidence intervals for structural correlations for the nugget effect
(F1, G1 and H1), short-range spherical (F2, G2 and H2) and long-range
spherical (F3, G3 and H3) variogram models under scenarios F, G and
H described in Table 4.1. See caption of Figure 4.5 for the meaning of
symbols.

in scenarios G and H (with scale-dependent correlations) than in intrinsic scenario F.
However, we must bear in mind that, in practice, the estimated structural coefficients
of correlation and determination are calculated from β̂11,s, β̂22,s and β̂12,s, so their vari-
ances are dependent on the covariances between sill estimators (Tables 4.2 and 4.3).
Furthermore, the cross experimental variogram is computed from the same two vectors
of observations that are used to compute the two direct experimental variograms. The
resulting covariance between direct and cross empirical variograms, which is related
to the strength of the corresponding structural correlation (Figs. 4.1-4.4), affects the
covariance between sill estimators at a given structure. From Table 4.2, it is possible
to calculate, for example, that the correlation between direct and cross variogram sill
estimators at the spherical structure is greater in scenario D (0.8165) than in scenario
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Figure 4.11: 90% confidence intervals for structural coefficients of determination for the
nugget effect (F1, G1 and H1), short-range spherical (F2, G2 and H2) and
long-range spherical (F3, G3 and H3) variogram models under scenarios F,
G and H described in Table 4.1. See caption of Figure 4.5 for the meaning
of symbols.

E (-0.2689). Scale-dependent correlations thus reduce the ’coherence’ between direct
and cross variogram sill estimates, leading to a higher uncertainty in the functions de-
rived from them. This result can be of major significance in regionalized multivariate
analysis, and has, to our knowledge, never been discussed in this context.
The structural coefficients of determination and, to a lesser degree, the structural

correlations tend to be biased upwards in all scenarios involving two or three structures
(Figs. 4.7-4.8 and 4.10-4.11). This bias seems to result from complex effects of the
multiple interactions between factors controlling the uncertainty of sill estimates, and
its strength appears to be proportional to the variance of sills estimators. Only the
coefficients of correlation and determination for the nugget effect in scenarios D and F
do not present such a bias.
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To summarize, in scenarios with one structure the use of the GLS estimator in the
fitting of the LMC corrects for the fluctuation variance and the uncertainty is predom-
inantly controlled by the sampling scheme. In scenarios with one nugget effect and
one spatially autocorrelated structure (S = 2), the uncertainty increases due to the
superimposition effect, but the sampling scheme remains the dominant factor. When
there are more than one spatially autocorrelated structure (S = 3), the uncertainty
is the combined outcome of the fluctuation variance, the superimposition of structural
components and, for the structural coefficients of correlation and determination, the
presence of scale dependence in the correlations between variables.

4.7.2 Practical Implications

In the coregionalization analysis of a real dataset, the definition of an acceptable level
of uncertainty depends on the judgment and objectives of the user. Our theoretical
results provide a general idea of the levels of uncertainty for different scenarios that can
be compared to practical situations.
From a purely probabilistic perspective, the uncertainty assessment must be made

on the basis of the ergodic variances. Figure 4.9 shows that at smaller grid sizes (n
= 144 or n = 225), structural correlations computed from sill estimates give little
information about the relationship between variables at different scales in the scenarios
with 3 structures. At an intermediate grid size (n = 400), one can detect the sign
of the theoretical structural correlation but not its magnitude, and larger grids (n >
900) are needed to identify its sign and general strength with confidence when S = 3.
The uncertainty of estimated structural coefficients of determination in scenarios with
3 structures is even more problematic, since only a general idea of the strength of the
theoretical coefficients can be gathered with larger grids. By comparison, estimated
structural correlations in scenarios with 2 structures can be interpreted with some
confidence at most grid sizes; only the CIs for structural coefficients of determination
with smaller grids cover a large proportion of their possible range ([0, 1]) when S = 2.
It follows that results from previous uncertainty assessments made in the contexts of
standard variography and kriging are likely not applicable to coregionalization analysis.
The number of sampling locations and the extent of the sampling domain required in
coregionalization analysis could be higher than in other kinds of applications. For
example, Webster and Oliver (1992) recommended n = 100 as minimum and preferably
n = 150 or 225, to keep variogram uncertainty within reasonable limits for standard
variography. Many published applications of regionalized multivariate analysis have
reported structural correlations computed from sill matrices estimated in a LMC with
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three variogram models (including one nugget effect), using relatively small grids (n <
300). Our results strongly suggest that the uncertainties under many of such scenarios
would be high enough that little confidence could be attributed to the interpretation
of the structural correlations reported.
Assuming that the type and range of the basic variogram models represent adequately

the regional variogram, the relative proximity of the ergodic and fluctuation variances
of sills can be seen as an indicator of the agreement between the model fitted to the
experimental variogram and the regional variogram, regardless of the size of the fluc-
tuation variance. However, ergodic and fluctuation variances with similar values does
not imply that, in practice, sill estimates will necessarily describe something that is
relevant about the scales of variation of the regionalized variable within the sampling
domain. As mentioned in the Introduction, the sills and functions of sills do not have
an unambiguous meaning outside of the LMC. Therefore, a high fluctuation variance
of sills necessarily implies that the parameters of the model are not micro-ergodic. In
practice, this means that the probabilistic model that constitutes the LMC is likely not
the tool of choice to separate multiple spatial scales of variation unless the sample data
cover regions much larger than the scales of variation of the phenomena under study.
To what degree can sill estimates be used in practice to quantify their own uncer-

tainty and that of derived functions? As shown by the theoretical equations above,
sill matrices are a key component of the quantification of uncertainty in coregionaliza-
tion analysis. In practice, these matrices can only be estimated, so that our ability
to evaluate uncertainty from a real dataset is impeded by the uncertainty of sill es-
timates. The circularity of the problem therefore makes the precise evaluation of the
structure-specific uncertainty from a real dataset very problematic, if not impossible.
Alternatively, to investigate the uncertainty levels from a given sampling scheme and
domain, the user could choose different combinations of theoretical parameters corre-
sponding to plausible, best-case (e.g., short variogram range, one or two structures, no
scale dependence) and worst-case (e.g., longer ranges, three or more structures, strong
scale dependence) scenarios. From those, confidence intervals could be generated with
theoretical calculations adjusted for the positive semidefiniteness constraint, and used
to determine whether the uncertainty levels appear acceptable.

4.7.3 Closing remarks

Since its beginnings, the primary focus of geostatistical research has been on local es-
timation and the associated uncertainty of local estimates. In this framework, it is
certainly sound to use nested variogram models in order to improve local estimation
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through a better variogram fitting. In coregionalization analysis, however, sill estimates
are submitted to a method of data analysis, which puts the variogram models, their
interpretation and the uncertainty associated with the estimation of their parameters
at the forefront. In a LMC, the variables are viewed as sums of spatially superimposed,
random structural components characterized by variogram models. In this article, we
have shown that a proper identification of the characteristics of such nested models is a
difficult task. We have quantified and discussed the uncertainties for sills and functions
of sills from bivariate data. All other things being equal, our results suggest that uncer-
tainty in regionalized PCA, where structural correlations are used, could be lower than
in regionalized RDA, where structural coefficients of determination are analyzed. Be-
cause of the high level of uncertainty that we found when the observed spatial patterns
are assumed to result from superimposed random structural components, alternative
approaches must be sought that identify scale-specific characteristics in multivariate
spatial data sets, while reducing uncertainty. Nevertheless, the uncertainty obtained
in the context of coregionalization analysis may prove acceptable when one variogram
model (with or without a nugget effect) is sufficient to properly characterize the spatial
structure of the dataset or when the available data is abundant and covers extensive
regions (e.g., in remote sensing applications).
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Appendix 1
A relatively simple algorithm was developed to approximate the values of fluctuation
covariances between a cross variogram involving variables i and j and another cross
variogram involving variables i′ and j′. This provides a numerical approximation to the
integral in Equation (4.18).
For a given combination of distance lags h and h′:

1. At each step (τ), simulate a pair of vectors, one of length h made of points x and
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xe (xe = x + h) and one of length h′ made of points x′ and x′e (x′e = x′ + h′),
each randomly located within the domain D.

2. From the simulated vectors x, xe, x′, x′e, evaluate Gτ
ii′ , G

τ
jj′ , G

τ
ij′ , and Gτ

ji′ , with

Gτ
ij = [γij(‖xe − x′‖) + γij(‖x′e − x‖)− γij(‖xe − x′e‖)− γij(‖x− x′‖)]

where ‖x− x′‖ represents the Euclidean distance separating points x and x′.

3. Repeat steps 1 and 2 a large number (Nsim) of times.

4. The approximate value of the fluctuation covariance at distance lags h and h′ is
provided by

Cov[γRij(h), γRi′j′(h′)] ≈
1

4Nsim

Nsim∑
τ=1

Gτ
ii′G

τ
jj′ +Gτ

ij′G
τ
ji′ .

Fluctuation covariances approximated with this algorithm have the advantage of being
totally independent of any sampling scheme within a given domain. For the results
presented in this paper, we used Nsim = 2.5× 106.
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Chapter 5

Inference in spatial observational
studies

5.1 Introduction
Inference is at the core of any scientific research. Most science aims to identify from
a given dataset, patterns that are consistent or generalizable. Inferential statistics is
“the process of drawing conclusions about the nature of some system on the basis of
data subject to random variation” (Upton and Cook, 2006). In classical non-spatial
inferential statistics, the sample data is treated as a random outcome from a refer-
ence theoretical population. In what could be called an ’orthodox’ view of inferential
statistics, the properties of the sampled variables are used as estimators of the ’true’
population parameters. For example, the sample mean is seen as an estimator of the
’true’ population mean. Implicit in this view is the idea that the data are only an
imperfect approximation of some idealized reality.
Matheron (1978, 1989) proposes a reversal of perspectives from this orthodox ap-

proach in his ’Estimating and Choosing’, an essay on the objectivity of probabilistic
statements in the geostatistical context. In Matheron’s view, a strict adherence to the
classical statistical approach can lead scientists to have more faith in the model than
in the data. The data should be considered as the reference for truth, not the model.
Models are subjective and should be considered ’chosen’. The choice of proper inferen-
tial (or probabilistic) models is particularly important and challenging since, underlying
their use, comes a set of assumptions pertaining to the population that should be de-
scribed. For Matheron, there is no randomness in nature; it lies in the models that
we ’choose’ to describe nature. In the same perspective, Webster (2000) asks ’is soil
variation random?’. He concludes that soil variation is definitely not random but that
we may not be far wrong when using models that assume that it is. The real concerns
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should be about the appropriateness of our models for achieving specific purposes.
Unfortunately, the inference focus, or the exact view of the population that must be

described in practice, is not always stated explicitely in scientific studies, or not even
reflected upon. Practitioners often use statistical methods as ’ready-to-use’ packages
without examining their underlying assumptions or the inference focus implicit in them.
Researchers should clarify their research objectives and understand properly the chosen
models, rather than having a blind faith in them. The view of the population and the
inference focus implicit in those models have to comply with the research objectives.
We must thus strive to choose the appropriate models that will be suitable for achieving
specific research objectives. Following the principles of Ockham’s razor, or parsimony
principle, these models should be as simple as possible, but as complicated as necessary.
The role of models and the question of infence is even more problematic in the context

of spatial analysis. The classical paradigms of inferential statistics were developed in a
context where spatial structure was ignored, or was considered a nuisance. In spatial
analysis, the localized aspect of the sampling and the presence of spatial structuring
render the application of the ’classical’ paradigms of statistical inference difficult, if not
problematic. In this Chapter, I demonstrate that these issues are particularly crucial
in the context of spatial observational studies and multi-scale analysis and examine the
specific aspects related to inference that are most important in this context. In a first
part, I discuss the important concept of stationarity and differentiate the concepts of
ergodicity and micro-ergodicity. In the second part, I illustrate the importance of those
concepts using the example of the simple linear correlation coefficient. In the third
part, I summarize the important results of previous chapters and discuss the question
of inference in regionalized multivariate analysis. I then describe a new approach for
multi-scale analysis, coregionalization analysis with a drift (CRAD), that was developed
to provide a coherent and consistent alternative to existing methods.

5.2 Stationarity, erdogicity and micro-ergodicity
Statistical concepts such as stationarity and ergodicity are often misunderstood. For
one, they are intimidating concepts that are not always directly relevant to the appli-
cations of the methods in practice (Chilès and Delfiner, 1999). Also, such statements
as “non-stationary data” are often found in the literature and can be quite misleading.
It must be emphasized here that these concepts characterize the statistical models, not
the data. In Matheron’s sense, we generally choose models that are stationary and
ergodic to describe the data. Asking whether a given dataset is stationary or ergodic
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is simply senseless (Myers, 1989).
Stationarity is a property of random function models defined in an infinite space. For

a second-order stationary random function, the expected value at any location is equal
to the mean of the random function. Likewise, the covariance between values of the
random function at two spatial locations is only a function of the distance separating
them (Chilès and Delfiner, 1999, p. 16). In practical situations, if we choose to describe
a given dataset with a stationary random function, it has to be reasonable to assume
that the studied phenomenon is relatively homogeneous in space. Its mean value has to
be relatively constant over the study area and its spatial structure has to be reasonably
repeated within the study area. Such assumptions are clearly unreasonable if large scale
spatial structures or localized peaks are perceived in the data or if the types of spatial
structuring are perceived as being clearly different in different regions of the study area.
Ergodicity is also a property of models. It assures a coherence between the sample

statistics evaluated from realizations and the population parameters. With standard
(non-spatial) statistical models, the statistics evaluated from an infinite number of
values from a given realization generally correspond with the parameters of the random
variable (their expected values), regardless of the zone covered by the realization. Such a
model can thus be said to be ergodic. For example, the mean obtained from the infinite
number of values for a given realization derived from an identically and independenly
distributed random variable model (i.i.d. or nugget effect model) is exactly equal to
the mean parameter of the random variable. This is because each value of the random
variable is independent from the other values, regardless of its location. So even within
a bounded sampling domain, such models are internally consistent and ergodic.
Stationary random functions defined in an infinite sampling domain are also generally

ergodic (although there can be exceptions, Chilès and Delfiner, 1999). If the size of the
sampling domain in which realizations of a random function are found is increased
until it becomes infinite (increasing domain asymptotics), the mean obtained from the
realizations will converge to the mean of the random function and the average covariance
between values obtained from the realizations will converge to zero.
In practice, however, we generally only have access to one bounded sampling domain

and the notion of ergodicity may not be very useful. Matheron (1971) coined the term
micro-ergodicity for discussing what happens when the ergodicty concept is applied
to random functions within a limited sampling domain. To understand this simply,
we must appreciate that it is impossible to fit an infinite number of spatial features
with a non-negligible size within a fixed area. Therefore, the characteristics of the
combination of the spatial features within the area will differ, although perhaps only
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slightly, from the parameters calculated from the infinite number of spatial features. We
can easily recognize that this difference will be stronger for larger, and potentially less
numerous, spatial features than for smaller, and therefore potentially more numerous,
spatial features. Imagine an infinite number of marbles of different sizes forming a
’population’, with a size distribution following a fixed probabililty distribution. Now
imagine that we randomly select enough marbles to fill a bowl of a specific size. The
bowl will contain marbles of various sizes. The average size of the marbles within the
bowl will always be different, perhaps only slightly, from the mean size given by the
probability distribution. Doing this for multiple bowls, we can calculate the average
difference between the mean size of the marbles within the bowls and the mean of
the infinite number of marbles. This difference will be higher if the marbles are, on
average, larger and if the bowls are smaller. A model is said to be micro-ergodic if the
statistics measured from realizations within a limited sampling domain (the marbles
filling the bowl) are always equal to the model parameters. If it is micro-ergodic, it is
then necessarily ergodic. Just like the marbles in the bowl, a random function model
limited within a bounded sampling domain cannot be strictly micro-ergodic.
In Chapter 4, the notion of fluctuation variance was used to highlight that if variogram

model parameters are ergodic they are generally not micro-ergodic. Even if an infinite
number of samples within the bounded sampling domain were taken, some uncertainty
would still remain on the variogram model parameters. This was shown by the fact
that a good proportion of the ergodic variance (variance of the difference between the
estimates and the random function parameters) is actually composed of fluctuation
variance (variance of the difference between the estimates obtained on realizations and
the random function parameters). Matheron (1978, 1989) recognized this fact but
emphasized that the parameters that pose problems are the ones defining the behaviour
of the variogram function at large distances. At small distances, the variogram model
parameters have a much smaller fluctuation variance and they could be considered
micro-ergodic to a reasonable degree. Matheron used this to justify the use of the
random function approach for local estimation purposes, even in the context of a limited
sampling domain. He noted that it is the parameters of the variogram at short distances
that have the greatest impact on the estimation uncertainty. Those same parameters
also happen to be micro-ergodic.
The concept of micro-ergodicity highlights an interesting contradiction. Micro-ergodicity

is defined by applying the notion of egodicity within a bounded sampling domain. Model
parameters that are reasonably micro-ergodic are more robustly estimated within the
sampling domain because they are obtained from more repetitions (more marbles in
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the bowl). It is therefore more likely that they correspond to actual patterns that ex-
tend beyond the limits of the domain. Thus, by choosing models with micro-ergodic
parameters to describe a dataset, we obtain, in practice, parameter estimates that are
likely more generalizable outside of the limits of this domain.

5.3 Assessing correlations within a bounded
sampling domain

Imagine that we wish to describe the correlations between two sampled variables at the
scale of the sampling domain. This amounts to determining the average correlations
between the sample values at any location within this given domain. In geostatistical
terms, the focus of inference in this case are the properties of the regionalized vari-
ables, which is a conceptualization of continuous variables within a localized area (the
domain). For example, the total amount of iron ore in a given deposit, or carbon in an
agricultural field, represents the total pool of the regionalized variable. In this view,
there is nothing beyond the limits of the domain. The variable corresponds to a physical
reality that could be completely accessed if the field was completely sampled and it is
independent of any model (Matheron, 1970, 1978). This reference point is understand-
able in the mining and geological context where geostatistics were developed, since ore
deposits are always limited in extent and mining companies don’t have access to unlim-
ited territories for mineral exploration. It is often referred to as the estimation of spatial
means. Because it is considered continuous, there is an infinite number of possible val-
ues for the variable, even within the limited extent of the study area. Therefore, any
measure characterizing regionalized variables has to be defined with spatial integrals.
For example, the average linear correlation between two regionalized variables i and j
would be given by:

corrR(zi, zj) = 1
D

ˆ
D

(zi(u)− zRi )(zj(u)− zRj )√
(zi(u)− zRi )2(zj(u)− zRi )2

du

where zi(u) is the value of variable i at location u and zRi is the mean of the regionalized
variable j over the field of area D (zRi = 1

D

´
D
zi(u)du).

Obviously, it is impossible in practice to have access to the regionalized variable
completely. This would involve sampling the entire volume of the domain on a punctual
support (infinitely small points). Therefore, the properties of regionalized variables have
to be estimated from fragmentary samples. Alternatives for achieving such a task are

116



Chapter 5 Inference in spatial observational studies

examined below.
The first option, the simplest one, is to follow a completely deterministic approach

in which the sampling scheme is assumed to exhaustively capture the variability within
the field. Descriptive statistical measures are then calculated without recourse to prob-
abilistic models. For example, the simple linear correlation between sample values is

corr(zi, zj) = 1
N

N∑
u=1

(zi(u)− zi)(zj(u)− zj)√
(zi(u)− zi)2(zj(u)− zi)2

where zi(u) is the value of variable i at sampling location u and zi is the sample mean
for a sample of size N . The results obtained with this approach are entirely dependent
on the adequacy of the sampling design. However, no assumptions of independence
between samples are required, and thus, spatial autocorrelation has no effect. The type
and scale of spatial variability found within the sampling domain have no effect on the
estimation of this model parameter. Discussions pertaining to stationarity, normality
or ergodicity are simply irrelevant in this case.
These discussions become important if we hope to obtain uncertainty measures on the

correlation coefficients describing how far the statistics calculated from the fragmentary
data are to the same statistics measured on the regionalized variables. This is the realm
of inferential statistics. Uncertainty describes how far sample statistics calculated from
the data are, on average, to the ’real’ population parameters, as seen through the model.
Since the population to describe is tied to a model, uncertainty is also necessarily tied
to a model. Uncertainty measures are thus greatly dependent on the proper choice of
models to perform specific tasks. For example, we can choose to obtain a probability
of significance of the correlation coefficients by using the ’Student’ t-test. For doing
this correctly, we would need to assume that the sample is random and i.i.d. (not
spatially structure; nugget effect). Strictly speaking, this model is internally consistent
because it is ergodic and micro-ergodic (see above). However, its assumptions are clearly
not appropriate for characterizing spatially structured data. The presence of spatial
structure in the variables makes the assumption of independence between sample data
unreasonable.
Alternative tests have been devised that account for the spatial structure (autocor-

relation) in the variables. For example, Dutilleul’s modified t-test (Dutilleul, 1993)
obtains the probability of significance of the correlation between variables by adjust-
ing the sample size to account for autocorrelation. The assumptions of such models
are certainly more reasonable with spatially structured data. However, their focus of
inference is the characterization of the properties of the random function, instead of
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the properties of a realization limited within the sampling domain, it. As we have seen
above, a stationary random function model is ergodic but not micro-ergodic (except
the nugget effect mode). In fact, through infill asymptotics (by letting the number
of samples become infinite within a fixed area), the probability of significance of the
’Student’ t-test will converge to zero as the number of samples increases. However, by
accounting for the effect of the spatial structure, the probability of significance obtained
with the modified t-test will converge, on average, to a fixed non-zero value.
Within a bounded sampling domain, we are thus faced with having to choose one

model that has unreasonable assumptions but that is internally consistent, or one that
has reasonable assumptions but that is not internally consistent. This does not mean
that either or both approaches are wrong. In the context of a bounded sampling domain
presented in this section, significance testing is perhaps not even necessary. Switching
the focus of inference to the generalization of patterns outside of the limits of the
sampling domain, the modified test would become the obvious choice.
An alternative would be the use of the design-based approach (de Gruĳter and ter

Braak, 1990; Brus and de Gruĳter, 1997; Gregoire, 1998), in which a probabilistic model
is built by assuming that the sampling was performed randomly, while the values of the
variables, and the populations, are regarded as fixed. Subsamples are repeatedly taken
from the total set of samples to generate a reference distribution (Gregoire, 1998).
The probabilities of significance and uncertainty measures are derived by using this
reference distribution as a benchmark. The design-based approach can be considered
micro-ergodic, leading to coherent uncertainty measures consistent with the focus of
inference. However, the design-based approach cannot be extended to perform spatial
or multi-scale analysis in the context of spatial observational studies, so it will not be
further discussed here.

5.4 Inference in coregionalization analysis
When dealing with a single dataset, the definition of spatial structure and the decompo-
sition of spatial variables into multiple scales of variation is not unique and is inherently
subjective, each method of analysis carrying with it a different conceptualization of scale
and a different approach for separating scales (Chapter 2). Thus, on top of the localized
aspect and the presence of spatial structuring, the question of inference in multi-scale
analysis is made even more problematic by the subjectivity of the scale concept.
As explained in Chapter 2, the scales depicted by experimental variograms do not

correspond to scales of variation. Each lag contains contributions from spatial features
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of all sizes located within the sampling site. Withouth modelling, a decomposition of
the variation in the total variable into scales of variation cannot be obtained. Thus,
although for a trained eye, experimental variograms may give a wealth of qualitative in-
formation concerning the spatial structure of each variable and the spatial relationships
between them, they are not suited for multi-scale analysis.
In Chapter 2, it was shown that a correspondence can be made between variogram

functions derived from the modelling of the experimental variogram and scales of vari-
ation. However, it was also shown that the range a variogram functions does not
correspond to a single scale of spatial variation. Each function actually represents a
probability distribution of scales of variation (Fig. 2.20 on page 54) with a peak value
smaller than the range. Different types of variogram functions with the same range have
different probability distributions. Accordingly, the range is not an adequate descriptor
of the scales of variation found in a variable. In the context of spatial observational
studies and multi-scale analysis, the choice of variogram model as a whole has important
implications for the results of the analysis. They are even more crucial for the applica-
tion of the LMC, or when superposed variogram functions are used to characterize the
total variables.
In Chapter 3, it was shown that the properties of kriged regionalized components

are greatly dependent on, but differ from, the variogram model parameter estimates.
Due to the smoothing effect of kriging, regionalized components for different structures
are not orthogonal. Also, they generally contain less small scale spatial variation than
realizations derived from their corresponding variogram functions, and the correlations
between kriged regionalized components for different variables are not equal to the cor-
relations obtained from sill matrix estimates. Uncertainty measures were thus obtained
on kriged local estimates corresponding to regionalized components, thereby allowing
the conditional Gaussian co-simulation of regionalized components that have proper-
ties consistent with the variogram model parameters. These approaches are appropriate
insofar as the application of the LMC is considered appropriate.
In Chapter 4, it was made evident that the problems related to micro-ergodicity are

aggravated when multiple variogram functions are superimposed. When two or more
spatial variogram functions are used to characterize a variogram, it was shown that if the
model chosen to describe the data (LMC) happened to be the right one, we wouldn’t
be able to estimate its parameters properly. That is, even if the sampling intensity
was extremely large. This was highlighted by the high estimation variances when two
spatial variogram functions are used. We can only hope to retrieve the ’true’ model
parameters with reasonable uncertainty if the sampling domain extent is extremely
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large when compared to the variogram ranges. Only then can the fluctuation variances
in the LMC attain reasonably low values. The factors that have greatest effects on the
fluctuation variance are the number of variogram models and the ratio of variogram
range to domain extent. The sampling density had a greater effect on the estimation
variance allowing, most notably, a better estimation of variogram model parameters at
short distances.
The issues pertaining to micro-ergodicity and uncertainty are even more problematic

for the correlation coefficients and coefficients of determination used to assess the rela-
tionships between variables. Results not presented in Chapter 4 and my own experience
with the use of the LMC with real datasets showed that, with multivariate datasets, the
estimated coregionalized matrices are often poorly conditioned and are very close to not
being positive definite. This is especially problematic when the number of variables is
large. As an effect of this, coefficients of multiple determination in a multiple regression
or redundancy analysis involving multiple independent variables are often very close to
one. This effect is caused in part by the high uncertainty levels associated with the
LMC. Also, if the studied variables differ in spatial structuring and scales of variation,
their experimental direct and cross variograms will have varied shapes. When fitting
the variogram models, this may lead to the LMC algorithm more frequently having to
force coregionalization matrices to be positive definite resulting in a poorly conditioned
matrices. This effect could be seen as a symptom of the inadequacy of the LMC model
for a given dataset.
The model that underlies coregionalization analysis (the LMC) is thus not appropri-

ate for multi-scale analysis in many circumstances. The most important assumptions
underlying its use, such as stationarity and superimposed spatial processes with mul-
tiple scales of variation, are often not reasonable and it is not internally consistent as
highlighted by the lack of micro-ergodicity of the model. In most geostatistical applica-
tions, such as the characterization of ore deposits, problems related to micro-ergodicity
are ignored because the variogram model parameter estimates are ultimately used to
perform local estimation. By opposition, the lack of micro-ergodicity in the LMC is
a major concern for multi-scale analysis since variogram model parameters are, ulti-
mately, the focus of inference.

5.4.1 Coregionalization analysis with a drift

Coregionalization analysis with a drift (Pelletier et al., 2009a,b, Appendix) was de-
veloped to overcome the shortcomings of the LMC and to obtain an approach for
multi-scale analysis that is both coherent and internally consistent. The basic princi-
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ple is to use a combination of deterministic and probabilistic approaches, using each
where they are most appropriate. As was seen in Chapter 2, drift estimation proce-
dures are appropriate and flexible for capturing variation at larger scales. Orthogonal
decomposition methods were equally efficient on regular transects and grids, but their
application to irregular datasets was more problematic. Conversely, the application of
the random function approach is more problematic at larger scales due to uncertainty
and microergodicity problems. As discussed in Chapter 2, through variogram modelling
of the nugget effect, the LMC is the only approach that provides a coherent procedure
for separating the non-spatially structured variation from the small scale variation.
Coregionalization analysis with a drift combines a random function approach (LMC)

for capturing small scale and non-spatial variation and a deterministic approach for
capturing larger scale variation. In the CRAD model, the total variable is described as

Z = m+
S∑
s=1

Zs

where m is a deterministic drift (trend) component and Zs (s = 1, ..., S) are random
functions associated with different variogram functions. For parsimony and for avoid-
ing unreasonable assumptions related to the superimposition of multiple spatial random
functions, the number of random components is generally restricted to two: one nugget
effect component and one spatially structured component (e.g. spherical, exponential,
Gaussian). In a first step in CRAD, each sampled variable is decomposed into a de-
terministic drift and a residual component (Pelletier et al., 2009a). As described in
Chapter 2, the deterministic drift component can be obtained by adjusting global func-
tions, such as low order polynomials, or by using a local procedure where the drift is
estimated at each sampling location using a moving window. The local means, for the
local procedures, and the parameters of the polynomial model, for global procedures,
are estimated for each variable separately by iterative Generalized Least Squares. In
this way, the spatial stucture of residuals and the spatial configuration of the sampling
locations are taken into account when obtaining weights. In the second step, an LMC
is fitted to all combinations of direct and cross variograms involving residuals of all
variables jointly (Pelletier et al., 2009b). Ranges and sills of the variogram functions
are estimated by iterative Generalized Least Squares, yielding estimated sill matrices
associated with the non-spatial (nugget effect) and small-scale spatial components (e.g.
spherical model), as well as an estimated range for the spatially structured variogram
function that is common to all variables.
The simulation experiments by Pelletier et al. (2009a) have shown that local proce-
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dures are more efficient at retrieving complex, patchier, drifts than the global proce-
dures. In a univariate context, they have shown that parameters of the spatial autoco-
variance of the residuals were retrieved with good success. Multivariate coefficients in a
bivariate (simple correlation or regression) or multivariate (redundancy analysis) anal-
ysis also had lower uncertainty in CRAD when compared with CRA (Pelletier et al.,
2009b).
The method of conditional Gaussian co-simulation of regionalized components pre-

sented in Chapter 3 can be used in CRAD to obtain spatial representations that have
properties corresponding to the variogram model characterizing the small scale spatially
structured component, and to the nugget effect.
Coregionalization analysis with a drift is a method of analysis that is coherent and

internally consistent, and that has reasonable assumptions in the context of the multi-
scale analysis of spatial observational studies. By restricting the application of the
probabilistic approach to small scales, the model underlying CRAD at small scales is
both ergodic and reasonably micro-ergodic. Thus, small scale patterns obtained in this
manner are likely to be more generalizable outside of the limits of the sampling domain.
In contrast, characteristics of the larger scale components are seen as being limited to
the sampling domain. They are thus coherently captured by a deterministic model that
takes into account the probabilistic nature of the model used for small scale components
in its adjustment by Generalized Least Squares.

5.5 Concluding remarks
Statistical models should not be regarded as being true or false, nor right or wrong, but
should be regarded as being useful, or not, for achieving specific objectives. Practition-
ers generally choose statistical methods that will allow them to attain their objectives,
but not enough attention is generally paid to the assumptions underlying inferential
statistical models. Probabilistic models, which are at the core of inferential statistics,
have a focus of inference that may not correspond to the practitioner’s objectives. In
this Chapter, I have demonstrated that this issue is of significant importance in the
context of spatial observational studies, even for simple statistics such as the linear
correlation coefficient.
Matheron (1978) argues that although statistical models are always subjective and

should be considered ’chosen’, we must attempt to minimize the effect of their choice
on the final results of the analysis. Through my experiences with the use of a LMC
involving more than one spatial variogram functions with real datasets, I noticed that
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small changes in the model choices (variogram functions, variogram range, lag distances,
etc.) often had large effects on the final results of the analysis. From the discussions
in this chapter and the preceding one, it appears that this ’instability’ of the LMC
can be attributed to the interrelated issues of uncertainty and inference. Since the
LMC has consistently high levels of uncertainty with realistic scenarios and sampling
designs, its focus of inference and assumptions are likely not appropriate for practical
applications. Despite its extensive use in several fields of studies, these questions had
not been thoroughly examined in the literature on coregionalization analysis.
CRAD was developed with the objective of providing a method for multi-scale anal-

ysis that would be less dependent on model choices and that would have reasonable
assumptions. Altough CRAD was shown to be coherent and internally consistent in
this chapter and in Pelletier et al. (2009a,b), we still need to assess whether the method
can be useful and adaptable in practical applications. The next two chapters provide
examples of the use of CRAD in agronomic and forest ecology applications.
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Chapter 6

The issue of scale in site-specific
agricultural management of soil
nutrients: a case study

Site-specific agricultural management (SSM), also called precision agriculture, is the
management of soil fertility and agricultural crops at a scale smaller than that of the
whole field (Plant, 2001). Several factors explain the rapid development of SSM in recent
years. Firstly, technological advances such as combines equipped with yield monitors,
global positioning systems, variable-rate fertilizer systems and high-resolution sensors
of various kinds are allowing unprecedented capabilities for mapping soil and crop vari-
ability and monitoring changes through time. Secondly, due to financial pressures,
producers are increasingly interested in minimizing fertilizer inputs while maximizing
crop yield. Thirdly, ground water pollution, greenhouse gas emissions as well as other
environmental problems have brought strong incentives to reduce nutrient burden in
agricultural soils.
Although technologies for mapping the within-field variability in yield and for the

spatial application of fertilizers are already available to producers for most crops and
in most regions of the world, other conditions must be met if SSM is to become widely
accepted. First, the economic and environmental benefits of using SSM must outweigh
the costs. Significant increases in yield or decreases in fertilizer inputs must result from
the change in strategy compared to the uniform management system. Plant (2001)
outlines three criteria that must be satisfied in order to justify this change to SSM:
1) significant within-field spatial variability must exist in factors that influence crop
yield, 2) it must be possible to identify and measure causes of the variability and 3)
the information from these measurements must be useable to modify crop management
practices to increase profit or reduce environmental impact. This logic follows very
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closely that of Whelan and McBratney (2000).
Even if the soil properties and abiotic factors responsible for the within-field patterns

in yield have been identified, not all of those causal factors can be managed. Very
few studies have been published that distinguish the manageable variables from the
unmanageable and the conditions under which variation can or cannot be controlled.
In industrial agriculture, the soil properties that are normally managed include: N,
P and K through fertilizer inputs; soil organic matter, through manure amendments;
and soil pH, partially controllable with lime applications. However, it is very clear
that a single site-specific application of inputs cannot completely control within-field
variability. It is well known that controlling variables like soil pH and soil organic
matter can only be done partially and in the long term. If yield is limited by soil water
content, soil texture or topography, it will be very hard, if not impossible, to develop a
SSM plan to have an effect on yield.
Although it has received little explicit attention in the literature, the issue of scale

is of central importance for assessing the viability of SSM. Cahn et al. (1994) outline
that the benefits of variable rate fertilizer applications may be highest for nutrients
exhibiting larger scale variation and spatial patterns that are temporally correlated.
The high cost of soil sampling and analysis renders the generation of detailed soil
maps impractical. Soil maps can be generated from fewer sampling points for soil
properties with smoother spatial patterns and larger scale variation. Also, it can be
hypothesized that soil nutrients with larger patches or zones are easier to manage with
modern farming equipment than nutrients with smaller patches. Soil nutrients that
have spatial patterns that are consistent from year to year will be easier to manage
than those that are temporally heterogeneous.
The use of ’indicator’ variables that are easy to measure has also received a lot of

attention in SSM. For example, electrical conductivity can be measured with on-the-go
sensors and has been shown to be correlated to a number of soil properties (Johnson
et al., 2001; Heiniger et al., 2003). The use of remote sensing (Moran et al., 1997) and
topography (Fraisse et al., 2001) for delineating zones for SSM have also been examined.
By its very definition, the application of SSM is restricted to the management of

within field variation. Thus, the questions pertaining to assumptions and inference
within a bounded sampling domain described in Chapter 5 are particularly relevant for
the choice of the statistical methods for data analysis. In this case study, a dataset
collected in two adjacent agricultural fields will be used to study the within- and
between-year relationships between soil nutrients and the relationships between scales
of variation and temporal heterogeneity. The field-scale relationships will be studied
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and contrasted with the within-field spatial relationships. The CRAD method will be
used for multi-scale analysis to identify variables that contain variation at a manage-
able scale and that are temporally correlated. The usefulness of electrical conductivity
measurements from a VERIS sensor and elevation obtained from a digital elevation
model as indicator variables for other nutrients will also be addressed.

6.1 Study area and dataset
The field study was carried out in Ste-Brigide, Québec, Canada (73◦ 03’, 45◦ 20’ N), in
two adjacent agricultural fields with similar management history. The two fields had
been under a corn–barley–soybean–alfalfa crop rotation for several years, and had been
fertilized with spatially uniform applications of inorganic fertilizers and dairy cattle
manure. The crops in 2000, 2001 and 2002 were soybean, corn and corn, respectively.
In 2000, the fields received about 30 t/ha of solid dairy manure. Basic field operations
were standard: the fields were moldboard plowed every year when the fields were in
annual crops. Inorganic nitrogen, phosphorus and zinc were applied at seeding and urea
was applied later in the growing season.
The soil sampling grid was designed as a combination of a staggered regular grid (266

points) with spacing of 20 m in the width orientation of the fields and a random grid (58
points) with points at various distances from their nearest neighbors on the regular grid,
providing a total of 324 points (Fig. 6.1). In November 2000, the spatial coordinates
of grid points were recorded with a Global Positioning System (GPS) with differential
corrections from a radio beacon. In June 2002, the GPS was used to navigate back
to the same coordinate locations. For each of the two years, a composite soil sample
comprising three sub-samples within an area of a 1-m2 surrounding each point was
taken from the top 15 cm. A moist soil subsample was taken and stored at 4 ◦C
until analysis for inorganic nitrate using a KCl extraction procedure (Maynard and
Kalra, 1993; now referred to as NO3). The remainder of each sample was air-dried
and ground to pass through a 2-mm mesh sieve. Extractable phosphorus, potassium,
magnesium, calcium and aluminium levels (now referred to as P, K, Mg, Ca and Al)
were determined from soil samples using the Mehlich-III extractant (Sen Tran and
Simard, 1993; P was determined with Lachat autoanalyzer, other nutrients with atomic
absorption flame emission). Percent organic matter (OM) was determined by loss on
ignition (Tiessen and Moir, 1993). Soil sand, silt and clay content were measured by
the hydrometer method (Sheldrick and Wang, 1993). To avoid collinearity, only sand
content was included in statistical analyses. In the spring of 2001, a Veris 3100 on-the-go
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Figure 6.1: Map of the sampling scheme, made of the combination of 266 points on a
staggered regular grid (•) and 58 randomly located points (∆).

sensor linked to a differential GPS for intensive measurements of electrical conductivity
was used to sense the whole study site in the spring of 2001, giving a total of 4491
electrical conductivity readings. The average electrical conductivity value (EC) of all
Veris sensing points within a 5-m radius around each point on the soil sampling grid
was used in the analysis. Elevation values were surveyed at 457 locations regularly
spaced throughout the field with the use of a ’total station’. A digital elevation model
with grid points every meter was generated with spline interpolation from the surveyed
values (Fig. 6.2). Then, each location on the soil sampling grid was attributed the
closest value on the elevation model (Elev).
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Figure 6.2: Three-dimensional perspective of the digital elevation model of the two ad-
jacent agricultural fields looking North-North-East. The highest difference
is 5 m between low elevations (green) and higher elevation (gray).

6.2 Statistical analysis
The simple linear correlations for soil properties were calculated between variables sam-
pled in 2000, as well as EC (Table 6.1), and between variables sampled in 2000 and the
same variables sampled in 2002 (Table 6.2).
All possible combinations of experimental direct (γ̂i(h)) and cross variograms (γ̂ij(h))

were calculated at distances from 0 to 240 m with lag distances every 15 m. Experi-
mental direct variograms for soil variables sampled in 2000 are shown in Fig. 6.3) and
associated cross variograms are shown in Fig. 6.4. To facilitate the interpretation of
the strength of relationships, hulls of perfect correlations, calculated as ±

√
γ̂i(h)γ̂j(h),

are also shown. These represent the highest and lowest possible values of the cross
semi-variances possible between two variables, given the direct variograms for each
variable.
The CRAD method (Pelletier et al., 2009a,b, Chapter 5) was used to perform multi-

scale analysis on all soil variables using the local drift estimation procedure with a linear
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Table 6.1: Simple linear correlation coefficients between variables sampled in 2000.
pH OM P K Mg Ca Al NO3 Sand EC Elev

pH 1 -0.14 -0.11 -0.38 0.49 0.72 -0.62 -0.27 -0.01 0.31 0.07
OM 1 0.32 0.28 -0.08 0 0.22 0.39 0.12 -0.09 0.26
P 1 0.17 -0.24 -0.09 0.04 0.3 0.09 0.00 0.23
K 1 -0.13 -0.1 0.44 0.46 -0.08 -0.03 -0.11
Mg 1 0.76 -0.7 -0.15 -0.37 0.57 -0.28
Ca 1 -0.65 -0.11 -0.40 0.58 -0.31
Al 1 0.26 0.22 -0.48 0.09
NO3 1 0.14 -0.04 0.13
Sand 1 -0.42 0.74
EC 1 -0.35
Elev 1

Table 6.2: Correlation coefficients between years.
Correlation Coefficients

pH-pH 0.8495
OM-OM 0.4441

P-P 0.7533
K-K 0.5755

Mg-Mg 0.8158
Ca-Ca 0.8572
Al-Al 0.9229

NO3-NO3 0.2018
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Figure 6.3: Experimental direct variograms for total soil variables sampled in 2000. The
blue line is the sample variance (1 for standardized variables)

function fitted within the windows. The window sizes used for all variables were selected
in values between 100 and 300 m in radius. Variograms of residuals were modeled with
a spherical model with an estimated range of 35 m and a nugget effect. The modelled
variograms of residuals for variables sampled in 2000 are shown in Fig 6.5. Maps of
small scale (spherical model) regionalized components obtained by kriging (Chapter
3) and maps of large scale (drift) components represented with delaunay triangulation
for variables sampled in 2000 are shown in Figs 6.6 and 6.7. Scale-specific correlation
matrices corresponding to the nugget effect, the spherical model and the drift (pseudo
correlations in this case) are shown in Fig. 6.3. Figure 6.8 illustrates the proportion of
variance at each scale for the same variables sampled in 2000 and 2002 as well as the
covariance between those variables.
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Table 6.3: Scale-specific correlation matrices obtained with CRAD for soil variables
sampled in 2000 and electrical conductivity. (-) indicates the absence of
correlations due to the lack of variation at this structure for the variable.

Nugget effect
pH OM P K Mg Ca Al NO3 Sand EC Elev

pH 1 0.33 - 0.37 - 0.63 - -0.19 0.23 -0.43 -
OM 1 - 0.34 - 0.32 - 0.21 -0.26 -0.32 -
P - - - - - - - - -
K 1 - 0.59 - 0.53 -0.02 -0.08 -
Mg - - - - - - -
Ca 1 - 0.32 0.18 -0.43 -
Al - - - - -
NO3 1 0.02 -0.04 -
Sand 1 -0.48 -
EC 1 -

-
Spherical

pH OM P K Mg Ca Al NO3 Sand EC Elev
pH 1 0.06 0.07 -0.12 0.27 0.68 -0.25 0.07 -0.2 0.55 -
OM 1 0.43 0.3 0.07 0.4 0.31 0.76 -0.07 0.51 -
P 1 0.43 0.03 0.28 -0.01 0.61 -0.22 0.21 -
K 1 0.2 0.14 0.27 0.54 0.09 0.24 -
Mg 1 0.54 -0.42 0.22 -0.3 0.36 -
Ca 1 -0.25 0.28 -0.41 0.74 -
Al 1 0.33 0.27 -0.19 -
NO3 1 0.07 0.41 -
Sand 1 -0.03 -
EC 1 -
Elev -

Drift
pH OM P K Mg Ca Al NO3 Sand EC Elev

pH 1 -0.53 -0.24 -0.82 0.68 0.78 -0.83 -0.84 0.1 0.34 0.10
OM 1 0.32 0.49 -0.46 -0.5 0.5 0.73 0.23 -0.55 0.22
P 1 -0.1 -0.55 -0.59 0.25 0.38 0.65 -0.5 0.53
K 1 -0.47 -0.49 0.79 0.58 -0.37 -0.19 -0.37
Mg 1 0.96 -0.89 -0.78 -0.43 0.85 -0.36
Ca 1 -0.85 -0.84 -0.46 0.78 -0.42
Al 1 0.78 0.07 -0.66 0.03
NO3 1 0.19 -0.65 0.15
Sand 1 -0.66 0.96
EC 1 -0.61
Elev 1
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Figure 6.5: Variograms of residuals in CRAD modelled with a nugget effect and a spher-
ical function with a range of 35 m for the variables sampled in 2000 and
EC.

6.3 Results and discussion

6.3.1 Field-scale correlations

In traditional (non site-specific) farming practices, fertilizers are applied uniformly to
the whole field and yield is assessed on a field-by-field basis. In standard agronomic
practices, a few samples are taken from the entire field to obtain a composited average
for specific soil properties. Such values comprise variation at all scales smaller than the
field. In this case study, an average of 31 samples per hectare were taken, far exceed-
ing the standard recommendations for obtaining field-scale averages used to determine
fertilizer applications. For example, in Ontario the nutrient management regulations
specify that a single soil sample cannot represent more than 10 ha (Reid, 2007).
Due to the high density of sampling, it is reasonable to assume that the field-scale cor-

relations (Tables 6.1 and 6.2) represent adequately the field-scale relationships without
a recourse to statistical inference. Electrical conductivity is moderately correlated with
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Figure 6.8: Scale-specific proportions of variance for the same variables sampled in 2000
and 2002 for the non-spatial (nugget effect), small scale (spherical model)
and large scale (drift) components.

Mg, Ca and pH (positively) and with sand and Al (negatively). Between-year correla-
tions are relatively weak for NO3 and OM, but moderate to strong for other variables
(Table 6.2). For producers, these field-scale relationships may ultimately determine the
controls on the total yield that will be obtained for a given field.

6.3.2 Spatial patterns and relationships

The direct variograms for total variables sampled in 2000 (Fig. 6.3) show that three
main types of patterns can be defined: semi-variances for pH, Mg, Ca, Al, Sand, EC and
elevation increase in a generally linear fashion beyond the value of the sample variance
(value of 1) without reaching a plateau; semi-variances for NO3 are nearly constant,
except at the first lag; OM, P and K have intermediate variograms with values increasing
gradually to reach a plateau close to 1. For the first group of variables, spatial structures
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Table 6.4: Correlations between scale-specific components for the same variables sam-
pled in 2000 and 2002.

Non-spatial Small scale Large scale
pH-pH - 0.68 0.98
OM-OM 0.74 - 0.71

P-P - 0.73 0.95
K-K 0.18 0.77 0.79

Mg-Mg - 0.48 0.97
Ca-Ca 0.38 0.80 0.97
Al-Al - 0.68 0.99

NO3-NO3 0.24 0.08 0.76

are likely present on the site with a scale of variation approaching or exceeding the size
of the field. Using a variogram model with a sill for them would be problematic because
they do not reach a plateau. Variogram functions without a sill would need to be used
instead, leading to the false perception that these variables contain unlimited variance.
The assumption that these total variables can be treated as the result of a stationary
random function model is therefore not reasonable.
An important point to make is that there are no necessary relationships between field-

scale spatial means for single variables and the spatial distribution of variables. For
example, one could imagine two regionalized variables with the same mean and variance,
but completely different spatial distributions. However, there is an obligate relationship
between the field-scale correlations between variables and their scale-specific correla-
tions. When two variables have a correlation close to 1 (or -1) at the field scale, they
necessarily have the same (or opposite) spatial patterns and there can be no scale de-
pendency in the correlations between them. Conversely, a weak correlation between two
variables at the field scale may indicate strong correlations of different signs at different
scales. This is evident from the observation of field scale correlations (Table 6.1) and
cross variograms (Fig. 6.4). Variables that have a strong correlation at the field scale,
such as Mg and Ca, also have similar variograms and their cross variogram have values
close to the hulls of perfect correlation. Other combinations of variables, such as P and
K, or K and NO3 have weaker field-scale correlations and cross variograms that do not
follow the patterns shown by the hulls. This could be an indication of scale-dependent
correlations.
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6.3.3 Multi-scale patterns and relationships

From the generally smooth aspect of maps of large scale components in Figs 6.6 and 6.7
(lower panels), it is clear that the local drift estimation procedure adequately captured
large scale variation in the data. The large scale components have a finite sample
variance that represent the magnitude of the variation at this scale within the limits
of the field. The residual component can then be reasonably treated as the result of
a second-order stationary random function and be modeled by a short-range spherical
variogram function and a nugget effect (Fig. 6.5).
From the CRAD results, we can observe that the same groupings of variables defined

from the patterns in the variograms can also be observed from the proportion of variance
captured at each scale (Fig. 6.8). Variables with experimental variograms that did not
seem to reach a plateau (pH, Al, Mg, Ca) have a large, but finite, amount of variation
at large scale, with less than 40 % small scale variation and very small amounts of non-
spatially distributed variation. EC and Sand had similar proportions with 34, 24 and
44, and 15, 35 and 50 %, respectively, of non-spatial, small and large scales variations.
Elevation was entirely captured by the large scale drift component. Results for pH
and Sand are in general agreement with the review of several studies by Whelan and
McBratney (2000) which shows that soil texture had generally a small nugget effect
(21 %, on average) and variograms with a short range (63 m) and pH had a very small
nugget effect (12 %) and a range of 105 m.
Phosphorus has a small (in 2000) or absent (in 2002) nugget effect, together with a

large proportion of small scale variation and a moderate amount of large scale variation.
Potassium has a similar proportion of variation at the three scales. Likewise, in Whelan
and McBratney (2000), semi-variograms computed for P and K had, on average, nugget
effects representing respectively 71 and 78 % of the total within-field variation, but fairly
long autocorrelation ranges (180 and 157 m).
Nitrate is characterized by a large proportion of variation at the nugget effect (ap-

proximately 60 %) and at the small scale (35 %) with very small amounts of large
scale variation. The variation in organic matter is also predominantly composed of
non-spatial and small scale variation, although the results for the two years differ in
the respective proportions of each. We note that the very large amount of non-spatial
variation for OM in 2002 may suggest an unidentified source of errors, potentially in
the laboratory procedures. Hence, we are cautious about using and basing interpre-
tation on these data. Cahn et al. (1994) also found nitrate to contain a lot of small
scale variation but the soil organic carbon in their fields in Illinois was predominantly
composed of large scale variation.
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In modern farming practices, soil nutrients that are generally managed with soil
amendments are phosphorus, potassium, nitrogen and, to some extent, organic matter.
Interestingly, in our results these are the variables that contain the most variation
at scales smaller than what can be managed by site specific amendment applications.
Zones that would be delineated from maps of small scale components (Figs. 6.6 and
6.7) would be smaller than the scale of operation of modern machinery, or at least
smaller than what could be economically viable to manage. Nitrate and organic matter
are also characterized by very weak temporal correlations (Fig. 6.8). For nitrate, both
the lack of large scale variation and the lack of temporal correlation could be attributed
to the great mobility of nitrate in soils. The lack of temporal correlation in organic
matter may be attributed to tilling practices, manure applications or inconsistencies in
laboratory analysis.
At the large scale, higher elevations have a higher sand content, lower concentrations

of base cations, and lower electrical conductivity and phosphorus (Table 6.3). This
general large scale pattern would likely be difficult to manage with site-specific appli-
cations since it appears related to the geomorphological conditions of the site. Sites in
the region are of fluvial origin and the presence of a river less than 1 km away from the
fields would tend to indicate that fluvial sand ’bars’ were deposited at higher elevations
in the central portions of the field. Thus, variables with more variation at larger scales
such as Ca, Mg, Al, Elev and Sand would be very difficult to manage.
At small scales, correlations between EC, Mg, Ca, pH and OM are moderately pos-

itive. From Figs. 6.6 and 6.7, it appears that small scale patterns in those variables
are at least partly related to the longitudinal furrows apparent on the digital elevation
model (Fig. 6.2). The furrows are remnants of a previous parallel surface drainage sys-
tem. The observed nutrient patterns could be attributed to the long term accumulation
of cations and organic matter in the furrows. Although the furrows are clearly apparent
in the digital elevation model, their effect cannot be assessed by using elevation since
the drift component completely captured the elevation gradient present in the field.
Overall, electrical conductivity is well correlated with several soil properties, indicat-

ing that it may be a good indicator of a soil’s nutrient regime. However, in this study,
EC was shown to be mostly related to variables that are harder to manage such as Ca,
Mg, Al and Sand content. Its large scale component was moderately correlated to that
of nitrate and organic matter, but these variables had limited amounts of large scale
variation. For the two fields studied here, topography was a good indicator of the large
scale variation in many variables, especially sand content. Those relationships could be
tied to the the specific geomorphology of the area and may not be generalizable beyond
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this site.
An interesting result arising from the CRAD analysis is that there is a stable rela-

tionship between scales of variation and temporal heterogeneity. Variables that contain
a greater amount of large scale variation are more temporally correlated. Conversely,
variables with more non-spatial and small scale variation have spatial patterns that are
more variable from year to year. This could be explained in part by the greater mobility
of those nutrients in the soil. Interestingly, a small proportion of variation in NO3 was
at large scales. If those results were found to be general patterns in agricultural fields,
this would imply that spatial heterogeneity and scales of variation could be used as
surrogates for temporal correlations. Variables that contain a large amount of variation
at small scales are less likely to be temporally correlated. It is therefore not worthwhile
investing in the site-specific management of those variables. The focus should instead
be on variables with greater amounts of large scale variation, since they are thus likely
to have patterns that are stable through time.

6.4 Concluding remarks
The issue of scale appears to be a crucial aspect for the assessment of the viability
of SSM. Results presented here have highlighted interesting relationships between the
manageability of nutrients, the scales of variation, the correlations between variables
and the temporal correlations of variables.
The patterns at a manageable (large) scale were more coherent and easier to explain.

The large scale component in all variables was significantly more temporally correlated
than the small scale and non-spatial components. Overall, the relationships between
variables were stronger at larger scales, even for variables that had small proportions of
large scale variation. Topography was a good indicator of the large scale distribution
in soil sand content. Electrical conductivity showed good correlations with several soil
nutrients, especially base cations, with the strength of correlations increasing with scale.
The soil sampling grid used in this study is much denser than grids typically used

for whole-field or site-specific management. A sampling grid that is significantly less
dense would not allow the use of multi-scale analysis but may allow the generation of
interpolated maps. Such maps would only reveal, with less accuracy, the larger scale
patterns. Conveniently, those patterns are at a manageable scale and show stronger
relationships. It may thus not be worthwhile investing time and money for the collection
of soil samples at distances smaller than manageable scales.
Unfortunately, the manageable nutrients (NO3, P and K) had smaller amounts of
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large scale variation than the soil properties that are difficult to manage, and had spatial
patterns that were less correlated temporally. In the fields sampled in this study, it may
thus not be worthwhile investing in site-specific fertilizer applications because the zones
that would be defined from large scale patterns in NO3, P or K would encompass only a
small proportion of the total variation in these nutrients. The effects such site-specific
applications would have on yield, or on nutrient leaching, would therefore be marginal.
It may nevertheless be worthwhile applying lime preferentially in more elevated areas
of the fields to increase calcium content and pH in those areas.
Ultimately, the assessment of the viability of SSM is not complete without the in-

vestigation of patterns in yield and of correlations between soil nutrients and yield. If
yield does not exhibit large scale patterns, the site-specific management or soil nutrients
may not have an effect on yield. In this study, inconsistent yield data were provided by
the producer, thereby preventing the inclusion of yield data in the statistical analysis.
Some partial analyses have revealed an overall weak correlation between yield and most
soil nutrients. Even without good correlations between soil nutrients and yield, it may
still be worthwile conducting site-specific management to prevent problems related to
over-fertilization (e.g. to prevent nitrate leaching Delgado et al., 2005).
In this study, CRAD proved to be an efficient method to decompose the variation in

variables with various spatial patterns into scale-specific components. The stationarity
assumptions were clearly not reasonable for several variables in this dataset, thereby
making difficult the application of many methods described in Chapter 2, including
CRA. In the specific context of SSM, where the interest is restricted to within-field
variation, the use of a deterministic drift component with finite variance for describing
large scale variation in CRAD was certainly more sensible than the use of a random
function model. Thus, the assumptions underlying CRAD were reasonable and al-
lowed us to perform multi-scale analysis in a framework that is coherent and internally
consistent.
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Chapter 7

Scale-specific causal modelling for
understanding tree-soil interactions
in a southern Québec forest

Forest ecosystems are characterized by two seemingly contradictory aspects that are re-
lated to scale. On the one hand, at large scales, they are spatially structured, organized
and predictable. Tree species are generally found in relatively predictable associations,
or forest cover types, on specific kinds of deposits as determined by their silvicultural
characteristics. By knowing the characteristics of a given soil, one can often predict
with reasonable confidence, from the pool of regionally available species, the species
that will be found in a given stand. On the other hand, the complexity of the in-
terrelations between and among trees and soils at small scales appears overwhelming.
The large number of variables that are interacting and interdependent, and the role
of chance, imply that predicting which tree will grow where and understanding the
tree-soil interactions at small scales is extremely difficult, if not impossible.
Datasets collected in forest ecosystems often lead to poor predictive power and non-

significant relationships because the total variation is included in the statistical analysis.
The unstructured small scale variation may add a large amount of noise that interfere
with the more organized large scale variation. The explicit scale-specific quantification
of predictable components of variation in trees species distributions and soil variables
has generally been lacking in forest ecology.
In recent years, the metacommunity concept has been suggested as a useful way to

think about linkages between environmental heterogeneity biotic processes and spatial
scales in ecology. The theoretical and empirical work related to metacommunities has
been classified into four overall paradigms based on the importance each gives to the
effects of envionmental heterogeneity and dispersal processes (Leibold et al., 2004).
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The ’neutral model’ and the ’patch dynamic’ paradigms assume that strong spatial
structuring of species is the result of dispersal limitations or to local extinction and
colonization, and not the result of environmental heterogeneity. In the ’species sorting’
paradigm, species are seen as not limited by dispersal and are distributed along envi-
ronmental gradients based on associated niche differences. The ’mass effect’ paradigm
recognizes that the differences in population sizes between different patches may lead
to flows of infividuals through dispersal between patches, leading to some species being
found outside of their optimal habitat.
In reality, we can appreciate that any of these theories may apply best to specific

regions or scales, at least to some degree. ’Neutral models’ may be more appropriate
in areas, or scales, where the environmental variations are more uniform while ’species
sorting’ would apply better in areas, or scales, where large environmental variation is
present. Also, population ecologists recognize that certain species may behave differ-
ently depending on their niche requirements. In a forest setting, we could hypothesize
that tree species that are specialized to specific areas may be well sorted along environ-
mental gradients, while generalists may be more dispersal limited.
While the metacommunity concept could be useful in forest ecosystems for under-

standing the drivers underlying the spatial structure of tree communities, few theories
are available that address the spatial structure in soil properties and the interrelation-
ships between trees and soils. Since trees are known to have siginificant effects on soils
(Binkley and Giardina, 1998), we could expect that the community structure of the
trees will leave a footprint on the soil properties. Soil properties have been shown to
be spatially structured through geomorphic processes and trees have been shown to
respond to variations in soil nutrients (Burnett et al., 1998). Community dynamics can
therefore be influenced by the spatial structure of the soil properties.
Causal modelling is an approach of exploratory statistical analysis in which the hy-

pothesized directions of interactions between variables are described and, using various
statistical methods, the relative effects of the different predictors are assessed. In this
framework, causality refers to the hypothesis that changes occurring in one variable
have an effect on changes in another (causality resides in the hypothesis only (Legendre
and Legendre, 1998)). The causal modelling framework has been used to assess the
respective effects of space and environmental factors on a set of dependent variables
(e.g. plant species abundances). In this framework, variation in the dependent vari-
ables explained by environmental factors is often referred to as ’spatial dependence’,
while the unexplained spatial variation is considered ’spatial autocorrelation’ (Legendre
and Legendre, 1998). The former is seen as a deterministic influence of environmen-
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tal factors while the latter is assumed to arise from biotic processes associated with
the measured variable, such as dispersal. The approach presented by Borcard et al.
(1992) combines partial canonical analysis with trend surface analysis. The spatially
distributed variation in each variable is captured by a trend surface model fitted to the
data. The variation in the dependent variables is partitioned between that explained by
the environmental variables, the spatial matrix and the combined effects of environment
and space. One of the drawbacks of this method is that the trend surface analysis only
captures the larger scale spatial variation (Meot et al., 1998). Pelletier et al. (1999)
used both trend surface analysis and neighbourhood matrices to capture the spatial
distribution in forest floor variables. They showed that although there was an overlap
between the variation explained by these two methods, the former tended to capture
the large-scale patterns whereas the latter was better able to capture the micro-scale
patterns.
More recently, principal coordinate analysis of neighbourhood matrices (PCNM Bor-

card and Legendre, 2002; Borcard et al., 2004) and distance-based eigenvector maps
(DBEM, Dray et al. (2006)) were proposed as extensions of the canonical partitioning
approach to include multiple scales of analysis. The advantages and drawbacks of this
method are discussed in Chapter 2. Coregionalization analysis with a drift (CRAD)
should provide an interesting alternative for causal modelling at multiple scales that
overcomes some of the shortcomings of PCNM and DBEM. Most notably, the model
used in CRAD remains parsimonious by restricting the number of scales to three, while
PCNM provides a large number of scales. The separation of non-spatial and spatial
variation, that was shown to be a problematic aspect of PCNM and DBEM, is con-
ducted explicitely in CRAD by the modelling of the nugget effect. Also, CRAD can
be readily used on regular or irregular transects and grids, while the interpretation
of scales on irregular transects in PCNM, and to a certain extent in DBEM, can be
problematic.
In this study, the combination of CRAD and causal modelling through partial re-

dundancy analysis will be used to study the scale-specific interrelationships between
tree species distribution, soil variables and physical factors in a temperate deciduous
forest of southern Québec. The sampling grid used in this study was selected to cover
a topographical and geomorphological gradient associated with large variations in soil
conditions and tree species composition. Because of the strong variations occurring
over the relatively small area covered by the grid, the study site could be seen as a
’scale model’ of landscape level spatial variations. The causal model used is a very
simple one where the physical factors have unidirectional influences on soil properties

144



Chapter 7 Multi-scale analysis of tree-soil interactions

and tree species, while the influences between trees and soils are bi-directional. The use
of such scale-specific causal models should provide some insights into the complicating
or facilitating effects of scale for understanding the functioning of the forest ecosystem.

7.1 Study area and dataset
The dataset used in this study was collected in the Morgan Arboretum, a forested area
of 245 hectares located in the West Island of Montreal, Québec. In the fall of 1998,
a systematic sampling grid composed of 124 points spaced by 50 m was laid down
using a compass and hip chain. Geographical coordinates of the grid points were sub-
sequently recorded with a global positioning system with differential corrections from
a radio beacon. The sampling grid was localized to cover a gentle topographical gradi-
ent associated with different geomorphological conditions and forest cover types. The
more elevated areas are characterized by a sub-mesic to sub-hygric fluvial sand deposit
of variable thickness (approximately 0.2 to 4 m) underlain by a lacustrine clay layer.
The soil profile has a moder humus form with small amount of organic matter in the
top layer of mineral soil (Ahe horizon). It is covered by a natural forest dominated by
American beech (Fagus grandifolia) and red maple (Acer rubrum). The lower lying ar-
eas are dominated by a mesic glacial till deposit derived from a calcareous bedrock with
a mature forest dominated by sugar maple (Acer saccharum) with a smaller abundance
of white ash (Fraxinus americana), bitternut hickory (Carya ovata) and american bass-
wood (Tilia americana). The central portion of the grid is characterized by a sub-hygric
lacustrine clay deposit with a diverse forest composed of species such as red maple, sil-
ver maple (Acer saccharinum), shagbark hickory (Carya cordiformis) and black ash
(Fraxinus nigra). Areas of the grid dominated with sugar maple are managed as a
sugar bush while most of the forest encompassed by the grid is partially managed for
firewood by selective cutting.
At each sampling point, the basal area value for each tree species was inventoried

using a factor two prism. While a total of 35 tree species were identified in this inventory,
only species that were present at more than 10 sampling locations were included in the
statistical analysis (Table 7.1). Fixed volumes of mineral soil were collected with an
aluminum core at depths of 0-15 and 15-30 cm and, where present, forest floor (LFH)
was collected using a fixed area template. The weight of soil within the core and the
volume of the core were used for the bulk density calculations of mineral soil samples,
while the area of template, the depth of the LFH layer and the weight of samples were
used for forest floor samples. The mineral soil was ground and sieved to pass through
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a 2 mm mesh. Larger woody debris were removed from the forest floor samples prior
to grinding in a coffee grinder. Laboratory analysis was carried out on all the soil and
forest floor samples for percent organic carbon content by a wet oxidation and back
titration method (Tiessen and Moir, 1993). These values were then converted to total
soil organic carbon content by adjusting for bulk density. On the 0-15 cm samples only,
Mehlich-III extracted K, P, Mg and Ca (Sen Tran and Simard, 1993; P was determined
with Lachat autoanalyzer, other nutrients with atomic absorption flame emission), as
well as pH in water were measured (Hendershot et al., 1993). Magnesium was not
included in the statistical analysis due to its very high correlation with calcium. A
KCl extraction procedure was used to determine the available nitrate and ammonium
concentrations prior to and after a 28 day incubation (Hart et al., 1994; with Lachat
autoanalyzer). The difference between these values was used to provide an indicator
of nitrification and ammonification rates in the soil. On the 15-30 cm samples only,
particle size analysis was carried for determination of sand, silt and clay content with
a pre-treatment for organic matter removal. To avoid problems related to collinearity,
only sand content was included in the analysis.
The elevation and slope at each sampling location was extracted from a one meter

resolution digital elevation model generated from LIDAR (Laser detection and ranging)
data acquired by Lasermap Image Plus in May 2002 from an airborne census (same
dataset as Chapter 2). Table 7.2 provides a summary of the soil variables and physical
factors used in the statistical analysis.

7.2 Statistical analysis
All the variables were standardized to a zero mean and unit variance prior to the sta-
tistical analysis. Experimental variograms of the total variables were calculated for
distances from 50 to 300 m with lags every 50 m (Fig. 7.3). Coregionalization analy-
sis with a drift (CRAD, Pelletier et al. (2009a,b)) was used to separate the variation
in the total variables into scale-specific components of variation. The large-scale drift
components (Fig. 7.5-7.8) were estimated with the local procedure in which a polyno-
mial of order 1 (plane) is used to model the drift within the window. Optimal window
sizes for each variable ranged between 100 and 200 m. The sample covariance matrix
between drift components was used to describe large scale variation in the subsequent
analyses. All possible combinations of direct and cross-experimental variograms of the
residual components (Fig. 7.4) were modeled with a spherical variogram model with
an estimated range of 150 m and a nugget effect. The resulting sill matrix estimates
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Figure 7.1: False color composite aerial image of the Morgan Arboretum showing the
systematic sampling grid (red dots) used in this study.
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Figure 7.2: Three dimensional perspective of the ground surface of the Morgan Arbore-
tum obtained with LIDAR technology showing the systematic sampling grid
(blue dots). The largest difference between higher elevations (green) and
lower elevations (yellow) on the area covered by the grid was 15.5 m.
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Table 7.1: Most frequent species found in the tree inventory that were included in the
statistical analyses.

English name Latin name Acronym Average
basal
area

(m2/ha)

Number of
sites
where
found

Sugar Maple Acer saccharum Marsh. AcSa 8.8 83
American Beech Fagus grandifolia Ehrh. FaGr 6.3 77
Red Maple Acer rubrum L. AcRu 3.9 70
American Basswood Tilia americana L. TiAm 2.4 61
White Ash Fraxinus americana L. FrAm 2.0 60
Bitternut Hickory Carya cordiformis (Wangenh.) K. Koch CaCo 1.6 38
Red Oak Quercus rubra L. QuRu 1.3 44
Shargbark Hickory Carya ovata (Mill.) K. Koch CaOv 1.1 29
Silver Maple Acer saccharinum L. AcSi 0.7 12
Yellow Birch Betula alleghaniensis Britton BeAl 0.5 16
Black Ash Fraxinus nigra Marsh. FrNi 0.4 12

Table 7.2: Description of soil variables and physical factors
Variable Short Name Mean Standard

deviation

Soil variables

Total soil organic carbon (kg/m2) tC 6.54 1.36
Total soil organic carbon 0-15 cm (kg/m2) tC(0-15) 4.22 1.02
Total soil organic carbon 15-30 cm (kg/m2) tC(15-30) 2.00 0.79
Total organic carbon in forest floor (kg/m2) tC(FF) 0.34 0.68
Extractable potassium (ug/g) K 98.30 71.00
Extractable phosphorus (ug/g) P 23.93 20.32
Extractable calcium (ug/g) Ca 1389.42 1209.07
Mineralized nitrate (ug N-NO3/g) dNO3 19.41 33.95
Mineralized ammonium(ug N-NH4/g) dNH4 120.56 85.11
pH in water pH 5.70 0.62
Physical factors

Sand content (%) Sand 53.64 24.53
Elevation (m above sea level) Elev 41.86 4.87
Slope (%) Slope 3.43 3.13
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Figure 7.3: Experimental variograms of total variables.

were used in the multivariate analysis to describe the non-spatial (nugget effect) and
medium scale (spherical model) components. Maps of the medium scale components
were obtained by cokriging of regionalized components (Figs. 7.5-7.8, see Chapter 3 for
methodology).
Covariance matrices corresponding to each scale of variation were used to perform

partial correlation analyses and multivariate causal modelling. The total matrices (Cs)
were divided into physical factors (Cs

PF ), soil variables (Cs
SV ), trees (Cs

TR) and other
covariance components as follows:
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Figure 7.4: Variograms of residuals in CRAD fitted with a nugget effect and a spherical
component (solid line).

Cs =


Cs
SV Cs

SV TR Cs
SV PF

Cs
TR Cs

TRPF

Cs
PF


After transforming the scale-specific covariance matrices to correlation matrices (Rs),
the partial correlations between and among soil nutrients and trees adjusted for the
effects of physical factors were calculated as follows:

Rs
SV ∪TR|PF

= Rs
SV ∪TR

−Rs
SV ∪TRPF

[
Rs
PF

]−1 [
Rs
SV ∪TRPF

]T
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Partial correlations calculated in this way are shown in Tables 7.3, 7.4 and 7.5.
Direct and partial redundancy analyses (van den Wollenberg, 1977; Legendre and

Legendre, 1998) were used to assess the multivariate total and scale-specific relation-
ships between physical factors, soil nutrients and trees. Assymmetrical (unidirectional)
effects of physical factors on soil nutrients and trees were assessed with direct redun-
dancy analysis. For example, the covariance of soil nutrients predicted by physical
factors was given by

Cs
ŜV (PF ) = [Cs

SV PF ] [Cs
PF ]−1 [Cs

SV PF ]T

and the r-square statistic was given by

r2,s
ŜV (PF ) =

tr(Cs
ŜV (PF ))

tr(Cs
SV )

where tr is the trace operator. The amount of variation for each variable at each scale
and the proportion explained by physical factors (r2,s

ŜV (PF ) and r2,s
T̂R(PF )) are shown in

the form of bar charts in Figure 7.9. The interactions between soil nutrients and tree
species interactions bi-directional and assessed with partial redundancy analysis. For
example, the covariance of soil nutrients predicted by trees while adjusting for the
physical factors was given by

Cs
ŜV (TR|PF ) =

[
Cs
SV TR Cs

SV PF

]  Cs
TR Cs

TRPF

Cs
PF

−1  Cs
SV TR

Cs
SV PF

−
[Cs

SV PF ] [Cs
PF ]−1 [Cs

SV PF ]T

and the r-square statistic was given by

r2,s
ŜV (TR|PF ) =

tr(Cs
ŜV (TR|PF ))
tr(Cs

SV )
Total and scale-specific multivariate path diagrams shown in Figure 7.10 were generated
by combining direct and partial redundancy analyses. Note that although the arrows
representing the relationships between trees and soils are depicted as unidirectional,
they really indicate a two-way interaction between trees and soils. However, the strength
of the tree effects on soils and of soil effects on trees are not equal, hence the use of
two unidirectional arrows instead of one two-directional arrow. To avoid collinearity
between carbon at the different depths and total carbon, the latter (tC) was not included
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in this partial redundancy analysis.

7.3 Results and discussion
From the maps of large scale drift components and the variograms of residuals (Fig.
7.4), we can conclude that the CRAD method with the local drift estimation procedure
adequately separated the total variables into smoothly varying large-scale drift com-
ponents and residual components that share similar small and medium scale spatial
structures. The assumption that the residuals for all variables can be viewed as the re-
sult of second-order stationary random functions sharing the same variogram functions
(nugget and spherical model) is more reasonable than the same assumption on the total
variables.

Large scale patterns

The large scale components of variation in soil variables and trees are better predicted
by physical factors than the non-spatial or medium scale components (Fig. 7.9). The
large scale direct effects (adjusted for the effects of physical factors) of trees on soil
variables or soil variables on trees are relatively weak. The soil variables and trees
species distribution at large scales in the area covered by the grid are thus tightly
associated with the gradient in topography and soil texture. This is summarized in the
multivariate path diagram (Fig. 7.10).
By observing maps of drift components (Figs. 7.5-7.8) we can observe that more

elevated areas are on sandy soils (fluvial sand deposit) with an accumulation of carbon
in the forest floor and comparatively less carbon in the mineral soil. The soil pH,
the availability of calcium and potassium, and nitrification in those areas is relatively
low. These areas are dominated by Fagus grandifolia and Acer rubrum with lower
abundances of Betula alleghaniensis. Areas on the lower end of the topographical
gradient are have an intermediate sand content (glacial till deposit, loamy texture).
The soils have a higher pH as well as a higher calcium and potassium content, and are
characterized by a higher nitrification rate and a mull humus form with an accumulation
of organic carbon in the top 15 cm of mineral soil. These areas are dominated by Acer
Saccharum with a smaller abundance of Carya cordiformis, Fraxinus americana and
Tilia americana. The dominance of Acer Saccharum in those sites may be partly
attributed to the management of the area as a sugar bush.
Another pattern clearly visible at the large scale but not directly tied to the elevation
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Chapter 7 Multi-scale analysis of tree-soil interactions

Figure 7.9: Proportion of variation at each scale for each variable. The height of the
bar corresponds to the variance for that variable at that scale. The dark
grey portion corresponds to the variation explained by physical factors.
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Chapter 7 Multi-scale analysis of tree-soil interactions

Figure 7.10: Multivariate path diagrams from the partial redundancy analysis showing
the interrelationships between physical factors, soil variables and trees for
the total variables and for scale-specific components of variation. The size
of the circles for each group of variable at each scale is proportional to the
percentage of variation for this group at this scale (percentages shown in
the circles). The size of the arrows is proportional to the r-square statistic
associated with the redundancy or partial redundancy depicted by the
arrow (values are shown beside the arrows).
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Chapter 7 Multi-scale analysis of tree-soil interactions

gradient is the association between species such as Acer saccharinum, Fraxinus nigra,
Carya ovata, and Tilia americana in two patches located near the middle of the grid
(see the large scale map for Acer saccharinum in Fig. 7.8). These are areas of the
Morgan Arboretum that are on a poorly drained lacustrine clay deposit (patch in the
middle) or on a very shallow fluvial sand deposit over lacustrine clay (smaller patch
near the lower-left edge of the grid). They are characterized by a low sand content
and a relatively high ammonification rate. In the large scale pattern of sand content,
these patches are superposed with the elevation-sand gradient described above. This
explains why, for example, the large scale pattern in Acer saccharinum is only partially
explained by physical factors (Fig. 7.9).
Thus, in the area covered by the grid, the geomorphology of the site represented

by the gradients in elevation and soil texture appears to be the overriding dominant
factor that control the pH in the soil, the abundance of calcium and potassium, and
the allocation pattern of carbon in the forest floor or in the top layer of mineral soil.
Tree species that are specialized for the site conditions described by the gradient show
clear patterns of association with the physical factors at large scales. Tree species that
occur on different ends of this gradient thus have negative pseudo correlations. For
example, Acer saccharum and Acer rubrum have clearly opposite large scale spatial
patterns (Fig. 7.6 and 7.7) as is shown by the strong negative a correlation (-0.9) at
large scales. On the contrary, species co-occurring on the same end of the gradient have
positive pseudo correlations at large scales. For example, Acer saccharum has strong
positive pseudo correlations with Carya cordiformis (0.67) and Fraxinus americana
(0.71). These species thus have maps of large scale components with similar patterns
(Fig. 7.6 and 7.7).
An interesting aspect of the large scale relationships is that few variables contain a

large amount of large scale variation that is not explained by physical factors. The
small amount of unexplained large scale variation in the tree species indicates that pro-
cesses such as dispersal or competitive interactions may not be significantly controlling
the distribution at this scale. In other words, the large scale pattern in trees can be
considered spatially dependent as opposed to spatially autocorrelated.

Medium scale patterns

Even if less variation in physical factors is captured by the medium scale component,
the effects of physical factors on tree species distribution and soil variables are still
relatively strong at the medium scale (Figs. 7.9 and 7.10). The direct effects of soil
variables on tree species are also noticeably stronger than at the large scale, while the
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direct tree effects on soil variables have a similar strength as at the large scale. The
medium scale component captured no variation in total carbon (tC), total carbon in
the 15-30 cm layer (tC(15-30)), phosphorus (P) and Acer saccharinum.
Almost all the medium scale variation in the soil variables (0.8+0.19=0.99) is ac-

counted for by the combination of physical factors and tree species (Fig. 7.10 and 7.9),
while a great percentage of the variation in trees (0.85) is accounted for by physical
factors and soil variables. Since the interaction between trees and soils is bi-directional,
the r-squares linking them should not be seen as indicative of causal relationships.
Rather, it indicates the overall concordance between the medium scale patterns in the
two groups of variables.
The smaller amount of variation explained by physical factors at the medium scale is

evidence that either unmeasured physical factors, management or disturbance related
factors or biotic processes such as competitive interactions and dispersal are partly
responsible for spatial structuring at this scale. The greater strength of the tree-soil
interactions at the medium scale show that the processes that determine the tree species
distribution also determine, to a certain extent, the distribution of soil variables at this
scale. If biotic processes are controlling the medium scale tree species distribution,
then trees are altering the conditions of the soil in return, to induce spatial structuring.
Alternatively, if unmeasured physical, management or disturbance related factors affect
the medium scale distribution of the soil variables, those factors and the soil variables
are jointly controlling the tree species distribution. In any event, it is impossible to
assess the exact direction of influence of trees on soils and soils on trees. Also, tree-
soil interactions may be exacerbated by the presence of feedback loops, such as those
involved in the nutrient cycle between plants and soil.
The interesting patterns occurring within the glacial till areas, where the medium

scale patterns are noticeably different than the large scale patterns, are a good example
of the complexity of the interactions involved. For example, the correlations between
Acer saccharum and other species that were strong and positive at large scales are weak
(Carya cordiformis, 0.05) or negative (Fraxinus americana, -0.14) at the medium scale.
The correlations between Acer saccharum and calcium and total carbon in the 0-15
cm layer that were positive at large scales (Ca, 0.76 and tC(0-15), 0.61) are negative
at medium scales (Ca, -0.06 and tC(0-15), -0.47), while the correlations between those
variables and Fraxinus americana (Ca, 0.62 and tC(0-15), 0.68) remain positive. This
would indicate that, within the glacial till, zones that are dominated by Acer saccha-
rum have a lower calcium content and have less organic carbon than zones where Acer
saccharum co-occurs with other species such as Fraxinus americana or Carya cordi-
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Chapter 7 Multi-scale analysis of tree-soil interactions

formis. In a study conducted in the Morgan Arboretum, sugar maple has been shown
to have acidic litter that may lead to gradual deterioration of site conditions (Côté and
Fyles, 1994). Although the slightly negative correlation with calcium would seem to
provide evidence for this, the positive partial correlation of Acer saccharum and pH
(0.36) does not support this effect at this scale on our study site. This species has
also been shown to favor nitrification and nitrate leaching, which may gradually lead
to depletion of the soils’ nitrogen status (Lovett and Mitchell, 2004). This is supported
by the positive partial correlation with nitrification (0.26). Thus, our results show clear
evidence of a non-uniform spatial distribution of species within the glacial till sites that
is partly associated with differences in soil conditions. However, the complexity of the
interrelationships between and among soil conditions and tree species prevent the direct
identification of causal mechanisms.

Non-spatial patterns

The variation that was considered as non-spatial, and that was captured by the nugget
effect, in this study is comprised of sampling errors, analytical errors, identification er-
rors for tree species and uncertainty in the global positioning system. The nugget effect
also captures a component of the spatial varation in the variables at a scale smaller
than the minimum distance between the sampling locations (50 m). Because of its lin-
ear behavior at short distances, the spherical model used for modelling the experimental
variograms of residuals likely provides a conservative estimate of the amount of spatial
small and medium scale variation and an overestimate of the amount of non-spatial
varation. Soil variables have often been shown to have a fractal-type of behavior (Bur-
rough, 1983), with denser and denser sampling grids revealing more and more spatially
structured small scale variation. A recent study reveals that soil organic matter is spa-
tially structured at the nanometer scale (Lehmann et al., 2008). Thus, we would expect
that variables measured without error from a very intensive dataset would contain al-
most no nugget effect. The spherical model is a conservative compromise that attempts
to extrapolate the behavior of the variogram at short distances from the behavior at
larger distances. It does captures some, but not all the small scale variation in the
dataset. Thus, although the analysis used in this study has distinguished three scales
(non-spatial, medium and large scale), in the discussion that follows, ’small scale’ will
refer to the (unmeasurable) component of the nugget effect that is spatially structured.
Although the non-spatial variation comprises nearly half of the total variation in

soil variables and tree species distribution, the amount of variation explained by non-
spatial physical factors is small (Fig. 7.10). This may be partly attributed to the lack
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of variables in the group of physical factors that account for variations in microsite
conditions, such as micro-topography. However, the r-squares between tree species and
soil nutrients for the non-spatial variation are larger than at the large scale. This would
support the idea that a proportion of the non-spatial variation is actually comprised of
small scale spatially structured variation partly shared by tree species and soil variables,
given that measurement errors in trees and soils are likely independent.
Trees are spatial entities that have a non-negligible size at small scales (see the

discussion on ’Things’ in Chapter 1). This simple fact imposes some constraints on
the possible small scale correlations observed between trees. As opposed to two soil
variables, two trees cannot be found at the same location. The size of the trees imposes
a mutual exclusion at scales close to their canopy width which should ’propagate’ to
small scales. Thus, with a small measurement scale, such as that given by the prism, we
cannot expect to obtain a high abundance of multiple tree species at any given spatial
location. This is partly evident from the lack of strong partial correlations and the
non-spatial partial correlations between trees in Table 7.5.

Cross-scale patterns in trees

As was discussed above, the tree species that are clearly associated with the topograph-
ical and geomorphological gradient showed a large amount of variation at large scales.
These species could be considered ’specialists’ for the site conditions on which they are
found. Conversely, species such as Quercus rubra and Betula alleghaniensis are charac-
terized by a small amount of variation at large scales and were poorly explained by the
physical factors. Within the set of conditions covered by the grid, these species could be
considered habitat generalists that thrive on sites with varied site conditions, but that
are never particularly abundant on any site. Such a pattern is likely generalizable, to
some extent, to different sites and different scales. Within the set of conditions covered
by a given area at a given scale, the specialist species will be associated with specific
site conditions and will likely show clear patterns of spatial structuring, depending on
the spatial structuring of the physical factors. Generalist species will have spatial dis-
tributions that are more independent of the environmental conditions, and will thus
exhibit less spatial structuring.

Cross-scale patterns in soil variables

The amount of spatially structured variation in soil variables appears to be related to
the proportion of their overall pools in the physical environment and to the importance
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of fluxes between trees and soils. Soil variables that contain a lot of spatially structured
variation are tightly linked to the physical factors of the site. For example, calcium and
potassium are mineral nutrients available in higher concentrations on glacial tills due
to the presence of a calcareous bedrock and the good water holding capacity of the soil
that prevent leaching. Variables that are not spatially structured (e.g. tC and P) are
greatly affected by biotic processes and are present in low quantities in the physical
environment. Soil variables with moderate spatial structuring (e.g. pH, dNO3) are
affected both by biotic processes and by the physical environment.
Soil organic carbon was shown to be related, among other factors, to soil texture

(Arrouays et al., 1995), topography (Bergstrom et al., 2001; Arrouays et al., 1998)
and tree species (Finzi et al., 1998; Giardina et al., 2001). In the Arboretum, these
factors appear more important for determining the spatial structure in the pattern
of carbon distribution within the profile than the total amount of carbon in the soil.
The combination of topography and soil texture determine to a great extent whether
the carbon will be located in the forest floor (mor or moder humus form on sand)
or in the top layer of mineral soil (mull humus form on loams and clay soils). The
presence of species such as Fagus grandifolia that have a litter that is low in nutrients
and high in lignin on the moder humus form and of species with more liberal nutrient
use strategies, such as Acer saccharum, on the mull humus forms help to maintain or
enhance this allocation pattern. Thus, the allocation pattern of carbon in the forest
floor (tC(FF)) or in the top layer of mineral soil (tC(0-15)) is spatially structured. The
lack of spatial structuring in the pooled amounts of carbon in the soil (tC) seem to
indicate that, although there can be significant spatial structuring in turnover rates,
inputs to and from the soil are in a relative equilibrium throughout the site. The higher
decomposition rates in some areas (e.g. on the glacial tills), are necessarily matched
by higher inputs of carbon through litterfall, and vice-versa. This is evidence that soil
organic carbon pools may be ultimately controlled by factors, such as climate, that
operate at scales larger than the Arboretum.

7.4 Concluding remarks
In this chapter, I have demonstrated that the combination of multi-scale analysis
(CRAD in particular) and causal modelling can be useful tools to generate under-
standing in ecology. For one, these methods allow us to separate the total variation
in a dataset into components that are intelligible and predictable from components
that are not. The large scale variation was shown to be related to physical factors
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and correlations between variables were in general stronger. Non-spatial components of
variation were weakly correlated and poorly explained by physical factors. Interestingly
and perhaps unfortunately, a large proportion of the total variation was found in the
non-spatial component.
These results highlight that numerical models that try to predict the quantities of

soil nutrients or the abundance of trees species at any location on the landscape with
reasonable confidence may fail due to the large amount of non-spatial or micro-scale
variation in many variables. Such models however may have more success in explaining
the large scale patterns. For total soil organic carbon even large scale modelling may
be prove difficult due to the lack of spatial structure and its lack of relationships with
physical factors. However, the pattern of allocation of carbon in the top soil or in the
forest floor was much more spatially structured and easily predictable at large scales.
Similarly, the spatial distribution of specialist species may be more easily explained
than that of generalists. Nevertheless, since soil properties and tree species abundances
are more easily sampled with small sampling units, the combination of causal modelling
and multi-scale analysis may provide some tools to extract information on large scale
patterns from small scale datasets that would be useful to calibrate larger scale models.
The results from this study suggest that different metacommunity paradigms may

apply at different scales. At large scales, environmental determinism was the dominant
control on both the tree species distribution and the soil variables, bringing support
for the species sorting paradigm. At the medium scale, a larger amount of unexplained
variation in the tree species would suggest a greater effect of dispersal and a support
for the mass effect paradigm. A purely neutral model in which spatial variation in trees
would be completely independent of physical factors, was not supported by this study.
Our study points out that the unexplained small and medium scale variation in trees
and soil variables is relatively tightly linked.
Understanding the interrelationships between trees and soils, and the changes in the

nature of those relationships with scale, would be faciliated by coherent and well devel-
oped conceptual frameworks that would lead to the formulation of testable hypotheses.
New theories are needed that integrate the metacommunity concepts and ecosystem
dynamics and tackle the complicating, or facilitating, effects of scale.
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Conclusion

”Statistics are no substitute for judgment.” - Henry Clay

When I started this project (which was originally a masters project), I was, similarly
to many ecologists, unfamiliar with geostatistics and with most methods of multi-scale
analysis. As an ecologist looking for methods of spatial analysis, the published sta-
tistical literature proved to be intimidating and somewhat overwhelming. However,
geostatistics appeared to offer a very elaborate framework for spatial analysis and re-
gionalized multivariate analysis had been fairly recently presented as an interesting
approach for multi-scale analysis. At the time, no statistical software were easily ac-
cessible to perform regionalized multivariate analysis. This lead me and a research
collaborator (Dr. Bernard Pelletier) to write new Matlab programs, and adapt existing
ones, to perform coregionalization analysis. While this task proved difficult and time-
consuming, it allowed us to develop an improved knowledge of geostatistical techniques
in general and of coregionalization analysis in particular. Unfortunately, when we at-
tempted to analyze ecological datasets with the Matlab programs, the results seemed
very sensitive to the particular choices of variogram models, lag distances on the vari-
ograms, number of variables in the analysis, and several other factors. Moreover, when
we attempted to perform multiple regression or redundancy analysis from sill matrices,
we consistently obtained r-squares close to one. As ecologists, this appeared surprising
and unsatisfactory.
These results forced us to question the theory underlying regionalized multivariate

analysis and to look for alternatives. With the help of an experienced spatial statisti-
cian (Dr. Pierre Dutilleul), we explored several avenues in an attempt to identify the
problems associated with the methods and to find possible solutions. Originally, this
quest was conducted in a somewhat orthodox framework in which the statistical models
are ultimately seen as a reference for truth, or as objective depictions of reality. By
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doing this we were missing out on two important and interrelated aspects. Firstly, there
are no spherical models in nature; statistical models are tools to represent reality, but
they are not the reality. Secondly, in multi-scale analysis, the separation of total vari-
ables into scale-specific components of variation is not unique and inherently subjective.
These two aspects are tied to the questions of uncertainty and inference. Any measure
of uncertainty will depend on the choice of models used to perform the analysis, and
on the foci of inference implicit in them. Matheron’s ’Estimating and choosing’ (1978)
provided an interesting perspective on these problems by emphasizing the importance
of proper choices of models and introducing the concept of micro-ergodicity to discuss
the problem of inference in a limited sampling domain. It then appeared that the prob-
abilistic model that constitutes the linear model of coregionalization had an underlying
focus of inference that may not be appropriate in practical situations where data is
obtained in a limited sampling domain (Chapters 4 and 5).
Another area of exploration in the search for solutions was the use of cokriged re-

gionalized components, or versions of them obtained in modified cokriging systems, in
place of coregionalization matrices to perform multi-scale analysis. However, as I have
highlighted in Chapter 3, cokriged components for different scales are not independent
and provide some redundant information betwen scales. I have also shown that the
only way to obtain regionalized components that comply with their representations in
the linear model of coregionalization is through the simulation of all components corre-
sponding to the different variogram functions jointly. Although the approach can prove
useful for a variety of purposes, the results obtained from it are greatly dependent on
the adequacy of the linear model of coregionalization.
This then lead to the development of coregionalization analysis with a drift in an

attempt to obtain a method of multi-scale analysis that is coherent, and that has a
reasonable focus of inference that should be more appropriate in practical applications.
By the use of a deterministic approach to capture the large scale components, CRAD
addresses the issues of uncertainty, inference and unreasonable assumptions inherent in
the linear model of coregionalization. Yet, the approach retains the ability of the linear
model of coregionalization to describe the patterns and relationships at small scales
and to separate the small scale spatial and the non-spatial components of variation.
These aspects, combined with the possibility of using CRAD with regular or irregular
transects and grids, should give the method an advantage over other existing methods
of multi-scale analysis (Chapter 2).
Matheron (1978) refers to the external objectivity of models as ’the sanction of prac-

tice’, or the ability of models to succesfully attain research objectives of practitioners
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through repeated uses in a wide variety of situations. Although the use of CRAD has
still been limited, we have started to assess the external objectivity of the method. The
two case studies (Chapters 6 and 7), have shown that CRAD was able to decompose
the variation in total variables showing very diverse types of spatial distributions. The
CRAD approach was successfully used to perform scale-specific bivariate correlations
in an agronomic setting (Chapter 6), scale-specific redundancy analysis to study the
relationships between physical factors and forest biodiversity (Pelletier et al., 2009a,b)
and partial redundancy analysis in the framework of multivariate causal modelling to
study the interrelationships between physical factors, soil variables and tree species
distribution (Chapter 7).
This journey has taught me the importance of improving linkages between concepts

and statistical tools (Fig. 1.3). Some of the methods of multi-scale analysis discussed in
Chapter 2 appeared to be lacking strong conceptual foundations and their application
to ecological datasets may lead to misleading or confusing results. The development
and use of methods of analysis should be guided by thorough conceptual frameworks
that describe in detail the perceptual filter used by the scientist when attempting to de-
scribe and understand natural systems. These frameworks should be organized around
precise definitions of concepts and terms. Practitioners should not have a blind faith
in statistical methods, and they should not see the principles of statistics as ’dogmas’
that apply to every situation. Not only should practitioners have better knowledge of
statistical methods, they should also strive to improve their understanding of models
and assumptions underlying them. In fact, statistical methods of analysis could be seen
as mere extensions to their conceptual frameworks or even as mathematical representa-
tions of them. More collaboration is thus needed between statisticians and practitioners
in order to obtain statistical methods that comply with the needs and frameworks of
practitioners.
The localized aspect of spatial observational data may seem like an important ob-

stacle for reaching generalizations and for improving our understanding of natural sys-
tems. However, we cannot be content with remaining completely descriptive, blocked
in the contingency of the local patterns. In this thesis, I have supported the fact that
multi-scale analysis, in combination with methods of multivariate analysis, may help us
understand the particular conditions under which patterns occur and should allow us to
formulate better hypotheses about mechanisms or processes. However, the elaboration
of coherent conceptual frameworks in the context of spatial observational studies can be
a daunting task. Although issues of space and scale have received tremendous attention
in the recent ecological literature, it seems that the development of ecological theories
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that address those issues is still in its infancy. The context in which spatial observa-
tional studies are carried out, much like landscape ecology studies, forces ecologists to
rethink exisiting research paradigms. Until ecological theories are further developed to
generate precise expectations on issues of spatial analysis and scale, the use of tools
for spatial and multi-scale analysis to generate ecological understanding may remain
difficult.
To paraphrase Gomory (1995), multi-scale analysis may prove to be an appropriate

statistical mechanic that can help separate the knowable unknown from the truly un-
knowable. The gradient of ’knowability’ may be associated with a gradient in scale.
Results from the two case studies in this thesis and the one in the Pelletier et al.
(2009a,b) have shown that correlations between variables, or r-squares between groups
of variables, are generally greater at the large scale than at the small scale or non-
spatial components. This result can likely be generalizable to many types of natural
systems. Physical factors operating at larger scales may define the boundary condi-
tions constraining the dynamics of the natural systems and should impose some spatial
structuring that will be shared by multiple variables in the system. Small scale pro-
cesses may be more stochastic in nature and lead to patterns that are harder to predict.
While the empirical identification of processes underlying larger scale patterns may be
in the realm of the knowable unknown, processes controlling the exact small scale spa-
tial structuring may prove to be truly unknowable. The true challenge of ecologists
may be to develop adequate frameworks to explain the variation at intermediate scales,
where patterns are structured but controlled by a large number of interrelated factors.

Contributions to knowledge

In the introductory chapter, and throughout this thesis, I have contributed to the
development of a conceptual framework for multi-scale analysis that is simple, practical
and coherent. I believe that I have contributed to bridging the gap between concepts,
statistical tools and ecological understanding.

Statistical contributions

• In Chapter 2, I provide a comparison of multiple methods for multi-scale analysis.
Through a simple classification scheme, and a common terminology and dataset,
methods are compared on even grounds and in an framework that should be
accessible to practitioners.

• I have shown that despite important differences in their mathematical represen-
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tations, PCNM and DFT are nearly equivalent methods for performing multi-
scale analysis. Procedures classified as orthogonal decomposition methods (DFT,
PCNM, DWT) provide similar results when multiple scale-specific components
are superimposed to perform decomposition of the total variables into a small
number of scales.

• I have shown that inferring scales of variation from the graphical methods of
multi-scale analysis can be problematic.

• The representation of the variogram functions as spectral density functions that
are a linear function of wavelength was, to my knowledge, presented for the first
time in this thesis in Chapter 2. Through this intuitive representation, I have
shown that the range of the variogram functions are inadequate descriptors of the
scales of variation. Variograms represent a probability distribution of scales that
is greatly dependent on the type of variogram function and that always has a
mode lower than the range. This was the first account of the exact interpretation
of the variogram in terms of scales of variation.

• In Chapter 3, I present the first detailed published method for expressing the
spatial uncertainty of regionalized components and I use it to develop the first
procedure for simulating regionalized components.

• While methods of coregionalization analysis have been extensively used in several
fields of research, the characterization and quantification of uncertainty associated
with the method had never been undertaken before. In Chapter 4, I provide
the first detailed account of the different constituents of uncertainty and present
several mathematical expressions that are not found elsewhere in the literature.
The high levels of uncertainty highlighted in this Chapter may have important
implications for the future use of coregionalization analysis.

• In Chapter 5, I have shown that the issue of inference should be a particular
area of concern when using spatial probabilistic models within a limited sampling
domain. The notions of ergodicity and micro-ergodicity can be useful concepts
for discussing this issue.

• I have contributed to the development of coregionalization analysis with a drift,
which is probably the most carefully elaborated method of multi-scale analysis
available today. This method is based on strong statistical and conceptual foun-
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dations and provides a flexible approach for multi-scale analysis that should be
easy to use by practitioners.

Contributions in ecology and agronomy

• To my knowledge, the agronomic case study in Chapter 6 presents the first use
of methods of multi-scale analysis to study the relationship between scales of
variation in soil variables and their temporal correlations. The main result from
this study was that variables that contain a large (small) amount of variation at
large scales tend to have patterns that are more (less) correlated in time. This
result is likely generalizable to many types of natural systems.

• The forest ecology case study was a first attempt to study the interactions between
physical factors, soil variables and tree species distributions at multiple scales
through the use of scale-specific multivariate causal modelling.
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