
( 

( 

""~ McGill University ~ ~ School of Computer Science 

Taskell: a concurrent constraint programming 
language 

Clément Pellerin 

A thesis submitted to the Faculty of Graduate Studies and 
Research in partial fulfillment of the requirements of the 
degree of Masters of Science 

Copyright, Clément Pellerin, November 1991 

------------------------------------------------------------
3480 University St • Montreal. Canada. H3A 2A7 



Abstract 

Taskell is a'l instance of the concurrcnt constraint programming framework cc. TIl(' 

frh.mework is parametcrized by a choice of constraint system. The constraint system of 

Taskell is the set of fiuite tn'cs v. ith equality. The choice of constraint system makcs 

Taskell similar to conl'urrcnt logic programming languages. \V11e11 computing with 

pa.rtial information the notioll ùf readillg and writillg memory becomes illcohercut. 

The framework r('places these operations by ask and tell respectively. \Ve 110pe to 

\ludt'fstalld this llew paradigm by studying implementations of cc languages. Taskell 

is a parallcl implementation of a cc language writtell in Concurrcnt ML. 

Résumé 

Taskell ('st un langage de programmation concourant avec contrainte membre de la 

famille cc. Le système de contraintes de Taskell comprend les égalités d'arbre fini. 

Taskell est similair(' à, un langage concourant de programmation logique à cause de 

SOI1 systè1llf' d(' contraintes. Les notions de lecture et d'écritUle de la mémoire ne 

:;;o11t pn.'i cohl~r('ntcs lorsque l'on calcule avec de l'information partielle. La famille cc 

remplace ces opérations par ask et tell respectivement. Nous esperons comprendre 

mieux ce nouveau paradignH' en étudiant l'implantation de langage cc. Taskell est 

Ulle implantation pa.rallèle d'un langage cc écrite en ML Concourant. 
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Chapter 1 

Introduction 

1.1 Subject of the Thesis 

This thesis df'scribes a prototype implf'lllentation of a concurrent constraillt p1'o­

grammillg laugl'age. The implf'lllcntation is writtf'n in the parallc! programmiug 

language CML. Th(' language w(' imp!f'mented is a member of the cc (for concurrent 

cOllst.raiut) frallH'Work illV<'btigatf'd by Saraswat[SarS9]. \V(' say cc is a fl'étlllcwork 

hl'callst' it fOrlllS a family of languages. The framcwork is paramet<'I'iz('d hy a choice 

of eOllstraillt sySt.Plll. Each instanc(' ha. .... its specifie cOllstraiut system but it bhal'es 

the same (·OI}('Ufl·('Ut. PWC('b:-:' language. This thl'sis debcrihps t h(' implclllentation of 

au iust.auc(' of cc Whl'!P the cOIl1->traillt sy:-:.tPIll ib ulllfi('atiou ()\'el' Huite tlees. 

A program writt('11 iu a cc lallgllag(' computes with pClsblhly illCOmpll't<, informa­

tion. As ('X('CU t ion progrf'bSl'S, COllbist f'ut iuformat ion is added, nc\,pr l'et l'act pd. This 

giv<'s riSl' to a IH'W paradigm that sllhslllllt'S llondf'tcrminate data-flow alld eoucUflPllt 

logic prograuuuing aIllong ot }H'rs. \\,p hopp to ull<kr:-:.talld t lit' fp(lsi hili ty of COllClIr­

l'l'lit prograllllllillg iu t his 1->tyl<'. \\r(' an' tryillg to ulld<'rstalld t his Ilew paradigm by 

implt'lllt'Iltillg it aud ruuuillg progUUllS iu our implcmcutatioll. The cX!H'l'iCllCC gaillccl 

in writiug cc progralll1-> will ht'lp lluprovc ally futurl' impl<'lll<'htatioll efforts. 

Givell tllat cc languages an' concurrent, it is particularJ.y ill~tl1lctivc ta study 

tht' int,l'raction b('t\V('{'1l proC('88('8. Concurrent programs arc diffieult to design and 

illlpl('lllt'llt.. Th('r(' arc more opportunities to make mistakes. Once a mistakc is 
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present it is harder to filld and correct. Our lI11plt'lllt'utat iOll rah plodu('(' Cl Il ill'P ul 

an execution run, from whirh the' (,OUCUlTt'lll'y i!o. r"adily appan'Ilt. TIlt' pIO~rallll\lI't 

cau gra...,p the behavÎor of a plOgram fWIIl ~t udyillg its traCt'. 

Our cc lallguagt' is callt'd Taskell l an anagram of t hl' won 1~ ask allIl Il,11 ",llIclt 

form the ba.."ic COllllllllllicatiw pIlIJlitl\'('~ III tht' cc pmadiglll). \\'t' ch OS!' tht' :-'~'J1ta\ 

to be faithflll to tll(' ba .... ic a. ... k-tl'll llotatlOll. Tht' sylltax ~h()ulcl 1)(' ('!t'al' tn all~'(\lIt' 

who has read the ha."ic papen; on the cc paradigm. 

The implelllt'utatlOll iil wnttl'u iu COUCUrIPut r-.IL or Cl\1L fllr shortlH"p!)ll] 

This is also the targpt lallgllag(' of our compilt,r. TIlt' compiler \lM':" a U'('ur~l\'l' dt'M'I'1l1 

parser with SOllll' t'flor H'CO\·l'ry. \VIH'll tl.(' pmM' trel' is (,oll~tl'Ilctt'd withollt l' 1'1'11 t, II 

is trau:'!lated iuto CML ill Olle pa.,",s. TIH' output ran })(' 1';('('l1tl·<I ollCt' if. i:-.lillkl'c\ ",it Il 

the rnn-tinH' hy:'!tf'lll. Tht' IUIl-tillH' :'!y:'!t('l11 is n':'!}><Hlsihh' for pl'Oct'SS lllatU\gt'llll'llt alld 

cOllstraillt solYillg. CML do(':,; not ha\'(' an imph'IlH'lItatioll OH a pal'allt'l lIUlI'hillt'. 

though Olle is in pl'qlaration. \VlI('11 it <!c){'s, Wl' will autollmtically haVI' :\ palall(·1 

implemcntation of our lallguagp workiug ou a parall('lllladlÎul'. 

\Ve have test('d our ~yf>t('lll with a s('t of sampI!' pwgraIllS. SOllH' of till'Ill al(' 

given in chapter 5. In aH apP<'IHlix wC' gin' a cOlllpll'tp f'xélmpll', \Vith tht' ~()1I1(,( .. tllf' 

output of the ('ompill'r, and the trhet' of the t'X('('utlOU. OUP cau f!;l'I. au o\,('wll idl'a 

of how the syf>te1l1 WOI k!-> from thi:'! eXéllllplc'. 

The origins of COll!->t ;'alut plOgraIllll1illg date }Jétck to t he' sixti(·l'l. lu Il M'II:-.(', 

Sutherland's Sketchpad glaphical pl'ogram[SlltG3] was ba .... pd ou C()tl~ttaillll'l. Lat('l, 

the la.nguage iu Stede"s tlH':-.il>[Ste80] élwl wOlh by Uowillg OH THINGLAB[BoIÎ!), 

Bor81] elaborated t h(' idt,a. ... of C'OIll'lt mint progl êllIlllliug, Th('b(' parly ,,11'01 t:.; WI'I (' 

succcssfui in !lO far cu" till'Y W<'11t, hut lackpcl W'\l('ndity to \)(' truly g('ll('l(ll-PIll }lO!">I' 

languages. The work of L<'ler is sJ><,cial in t his l'('gard, H .... tlll' goal of hi" lallgllag" 
Bertrand is to bimplify the Cl(,èltioll of ll('W C'oIl:'!traiut lauguagt':.; ll1->iug ilU allgllll'lltl'" 

rewriting sYbtem[L(·188}. The traditiollal hrandl of eoustra.\ut ploguullluing is :..till ail 

active area of l'('search. 

The late 1980's has sccn the introduction of coustraillts to tite fit-lcl of logi .. 

programmmg, The COllstraint logic programming schclIu' CLP aro:.;e froIll il lll'I'd 
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to providc a thcorctical fOUlldatiou to the mauy extensions of Prolog[JLMS6]. The 

('oncurwnt constraillt programmillg languagC' framework cc cau be vicwcd as a bcncr­

alization of CLP to the parall('l case, but in fact it arose as an attcmpt to givc a della 

l'>cmantics to the various parallel extC'nsions of Prolog: Concurrcnt Prolog[Sha87], 

PARLOG[CG86, Gre87, CoISO] and Guarded Horn Clauscs[Ued8tia, Ued86b]. 

1.2 Chapter Summaries 

III chaptcr 2 wc reviC'w logic programming. Many ext~l1sions of logic programming 

have b<'cn propos('d, most have onl)' an operational ~cl.lcl.ntics. This is unfortunatc 

lJ{'cau~c the d<'clarative semalltics of logic programmillg is one of its grcat allcgcd 

advallt.élW's. It. is pos:-.iblp tn givc él d<ylaratiw s(,IllélntÏcs tn mau)' of these extensions 

hy int.rodllcing t hl' Ilot ion of ('om,t raiut s in logk programming. The constraillt logic 

prograulJllillg ~dH'Ill<' off('r~ a dedarativ(' ~('mantic~ to lllany extensions that were once 

ollly <'xplained op <,rat ;·mall)'. 

Chapter 3 cOllsidel b t IH' (,OllCIlITent logic programming languages. These lan­

gllélg('S V1<'W tlu' PXI'('ution of a logic progral1l as a coll('ctioll of pro cesses that COlll-

1l\11IlÏ<'at<· with f'ach ot11er throllgh sharrd variabl('s. Procrsbes sYllchrouize on the 

availahility of <lat a, i./·., t IH')' WaIt unt il a variabl(' grts inM antm,t<'C1. These languages 

hav(' cOIllIllitt('c!-choic(' HOlldt'tpl1uillislll also ~.IlOWll as don 't-carc llondetcrminism. 

The commit 0lwwtor il'> a ty{><' of ('ut generaJized to thr parallcl case. 

Chaptt'r 4 t'xplaills thr cc fraIllework for ('onCUl'H'ut cOlldraint programming. 

III a von Nf'UlllaIlll lallgnag<" tht' lllclllory is a valuation mappillg variables to values. 

lu this frauH'work, t hl' Illt'lllory is rf'plac('d by a ston" which is a constraillt. ou the 

VaI'lhbl('s that ma,)' onl)' pal tially SIH'cify them. \Vith su ch a store, the notions of 

J't'adillg and writiug variabl<'f, })('('OIllC ill('oht>reIlt. For example, a variable in the store 

lllight 1)(, uncon1-.traiued, readiug this variable shollid rcturn infillitely many values. 

Absigning a valu<' to a variable Illight have aIl impact. on many other variables through 

th(' ('oust raillts t hat werr im posed betwecll them and the variable we assigned. Instead 

cc l'('plact's l'rad and writr by ask and tell. A process can ask if a constraint c is already 
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entailed by the store. It will succced if c is entailt'd, sllsp<,ud if C llla)' or may Ilot Ill' 

entailed, and it will fail prccisely Wht'll the store already t'ut ails 'Il'. A proC('SS calL 

tell a constraillt c. The store is augmented with this uew const.mint., il. h('{>Olllt'S t II(' 

conjunctioll of the old store with c. The store must l'l'main cOllsistellt. The plOgl'illll 

is considered erroncous if a tell makes the store inconsÎstent. 

Chapter 5 descrihes the sYlltax of Taskell. \Ve rdatc OU!' syntax wit.h llw <lll(' 

used in Saraswat's thcsb[Sar89]. Our syntax tends to sp<,l1 out. tlll' ua\ll!'s of tllt' 

opcrators in full. Procedures are relations as in logie prograll1111ÎIlB. \Vt' show a Sl" or 
sarnple programs to get a fcel for prograulluing, in Taskell. 

Chapte: 6 describes our implel1lélltatioll strategy. The Taskell cOlllpi1pr alld 

its output arc writtell iu Concurrrut l\IL[Rpp!H]. CML is a V<'ry-high l('\'('} lan­

guage. This helpcd the implelllelltatioll }weal1f;(' w(' ("ouM rd)' on CML for pWt'('l".l". 

management, inter-process coml11ullÏ<'atiull and garbag('-collPetiou. Our C'olllpill'r llS(':-­

recursive descent to parse a Taskell program in olle pass. The ahstract syut:lX '1'1'(' 

produced is translatcd inta CML in a second pa.'lS, The out.put can 1)(' link('d \Vit.h tll<' 

run-time system to form an ext:'cutahle. Parallelislll iu Taskell is vpry filw-gntlll. 'l'II<' 

processcs in Cl\1L are a perfect match bccH,use they an' VNy light.-weight[nI'JlDIJ. 

In the last chapter wc g,ive our conclusions, Followillg t.he last dmpt('r b liB np 

pendix showing a session with the system. A salllple prognull is takl Il from dlap!l'r ;). 

The translation of the compiler is shown, and the trac<, of its eXt'Clitioll i!> giV<'lI. TIH' 

reader is refcrrcd to chapter 6 for an explallation of the appt'udix. 
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Chapter 2 

Constraint Logic Programming 

lu this chapter we look at constraillt logic programmingor CLP. We start by reviewing 

the fUlldamentals of logic programming. We then survey sorne extensions that were 

proposcd in order to alleviate some shortcomings present in logic programming. Two 

extensions specifically attract our attention: incorporating functional programming 

into logic programming and unification of infinite rational tenus. These extensions 

are very ad hoc, most were presellted by givillg their operation al scmantics with 110 

correspolldence in logic. The accomplishment of CLP is to give a thcoretical f01111-

dation to these diverse ideas. CLP is a seheme, it is parameterized by a choiee of 

constraillt system. Many logic programming languages can he reconstructed as in­

stéLnC('S of CLP with a suitable constraint system. For example, Colmerauer only 

gave an operation <lI s('mantics to Prolog II, but Prolog II is a CLP language. Its con­

straint. system is cqllality and disequality over rational trees. Hence, the denotational 

semantics of Prolog II is givell by that of CLP. 

2.1 Standard Logic Programming 

Logic programming studies the use of first-order logic for computation. It started 

as an application of automated theorem proving technology to the design of a p1'o­

gramming language. A major advance was made in 1965 when Robinson proposed 

n'solution as the single infe1'ence rule in a first-order theory[Rob65]. Resolution is 
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well-suited for computer applications becausl> it lweds only 011<' illft'n'llt't' mit' 1\1Id Il 

works by refutatioll which means it cau be impll'lllt'uted with ba,ekwanls dHlÏlliup,. 

Though Robinson is given credit for rl'solution, lllost of tht' ide<l." wert' antidpatt'd in 

the proof-theoretic invl'stigations of Herbrand[Her30]. 

Resolution needs sentenccs to be writtt'Il a.., a st't of dausps. lu 1971, Kownbki 

observed that we cou Id restrict logic programs to a sd of Hom clamit's wit.hollt Il 

great 10ss in expressive power. This improvcd t\lC' ptficit'llcy H'lllarkahly. lu t}j(' 

early seventies Colml'rauer and his tcam, illfiuenced by Kowalski, dpV<'lopl'd PlOlog 

(for PROgrammillg in LOGic). Prolog is the first and t.lH' Illost wielllIy kllOWU logÏ<' 

programming language. 

This section is based on the survey of Shapiro[ShaS9]. Wl' d('seri!>(' tlll' syllt.ax or 
a logic program. A tenu is a variable (e.g. X, Y) or a f\ludion symboi of aI it.y n ~ 0 

applied to n terms (l'.g. c, f(X, 1,2)). An atom is a formula of t.l\(' fonll 1'(1'1, ... , 1~,) 

where p is a predicate of arity n and Tl, ... , Tn art' tprms. A <!"filli t,(, dalls(' (or clatHi(' 

for short) is a formula of the fOfIU A +- BI, ... ,Bn (11 ~ 0) wh('[(' A is au at.Olll 

and B 1, ••• , Bn lS a sequence of atoms. il is called the clanH(' h('ad and BI," . , Un i\.s 

body. A unit clause is a clause with n = 0, wc repr('H('ut it with A - t.1'11<'. Alogie 

program P is a fini te set Cl,' .. , Cn of dcfinitc clauses. A goal is Il :-;1'<[ll('lH'(' of at.outs 

BI, ... , Bn. Each atom in a goal is called a goal atom. TIl(' I>n)(·(,(lIm' for a pl'I'dieat.r' 

p of arity n is the set of clauses in the program P whos(' lwad is au at.Ol!l fOlllll'd wit.h 

the predicate p of arity n. To make a loose comparisoll, w(' cau :-,ay f\ludiou sytllhol:-i 

are the data structures of logic languages, atoms are the st IÜ('llH'llt.s, clalls('s an' Hw 

procedures and goals are statements wc ask the system tu proV<'o 

Consider a clause A +- B 1, ... , 8 n (n ~ 0). Let:t: l, ... , X k Iw t.he variables 

appearing in the head and let YI, ... , YI be the variables appcm iug ill the hody bu t, 1I0!. 

in the head. The clause can he read: for aU Xl, ••• ,Xk, A if therc l'XiHts YI, ... , YI Hllch 

that B1 and ... and Bn. Consider a goal BI, ... , Bn. Let YI, ... , YI he the val'iahlm, 

appearing in the goal. It can be read: therc cxists YI, ... ,YI 8u('h that DI and ... IlIHI 

Bn. Consider the program Cl, ... ,Cn, wherc each Cr if) a dcfinite clause. It cau 1)(' 

read as the conjunction of the clauses: Cl and ... and en. 
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Kowalski was the first tG give a procedural interpretation ta logic programs. 

The theorem prover is viewed 8..<) an interpreter for procedure caUs initiated by a 

goal staternent. Each procedure, when caUed, is free ta caB vU other procedures. 

A computation stops wh en no more proc('dure caUs can b(' made. A definite clause 

A +- BI, .. " Bm can be viewed as a procedure definition. The variables appearing 

in the head are the formaI parameters. The variables appearing in the body but not 

in the head are the local variables. In a procedurallanguage, this clause is equivalent 

to: 

procedure A(x}, ... ,Xk) 

var Yi, ... , YI 

begin 

caU BI 

caU Bn 

end 

Sirnilarly, the attempt to prove a goal BI, ... , Bn can be viewcd as a sequence of 

procedure calls. Unification is used for pararneter passing, assignrnent, data selection 

and data construction. 

We will describe the sernantics of a logic prograrn with a transition system. 

lu arder to expr<,ss a single transition step we need the definitions of substitution, 

unification and ll10st general unifier (mgu). A substitution is a function from variables 

ta tenus that is the ideutity except on a finite subset of variables. A substitution () 

cau be written as {Xl H Tl, .. . ,Xn H Tn }, where the XI 's are variables and the 

'n 's are tenus, X. ::j; 1'., and X. i-= X} for i i-= j. {Xi H T.} is called a binding for 

X. and X. is said to be bound to 1'. in the substitution. The application of () ta the 

variable X is denoted X (J. '\le have X 0 = X if X fi. {Xl, ... , X n}, otherwise X is Xi 

and XO = T •. A substitution is genera1ized to a function from tenns to terms. Let 

T be a tcrm, if T is the variable X. thcn T8 = 'n, if T is a variable not belonging to 

{X}, ... , Xn} then T8 = T, otherwisc T is sorne function symbol f of arity k applied 

to its arguments Al, ... ,Ak, and T8 = f(A t 8, ... , Ak8). Applying () to T is called 
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instantiating T by 0, TO is caUed an instance of T. 

A substitution () is a unifier of two tenus Tl and T2 if TI () = T20. Th<' lluifica t ion 

algorithm tak,~s two tenus and finds a unifier for tht'se two tellus if Olll' ('xists. 'l'Ill' 

composition of two substitutions 01 and 62, writtcu 0102 is tilt' fllllctlOlI \'('slIltillg l'rom 

applying 01 first and then (}2 to the r('sult. L('t (JI = {XI ..-.. TI .... ,X" ..-.. 'f~,}. 

and (}2 = {YI ..-.. SI, .. " Yk H S",}, then Olfh. = {Xl H Tilh, ... ,XII H TII01 , \'\ H 

S1l"'! Yk H Sd where in this set bindings of the fonn X. t--> X, 1IIt' (it'Id!'(! alld 

bindings for 1~ are omitted if}~ = .\) for SOllle J. Tlws!' In,tricti()l1~ lIla\w SIIII' 

01()2 fulfills the conditions in the definitioll of suhstitutioll. Nutt' tItal nlmpositioll ol 

substitutions is associative so parcnthescs are Ilot uc('dt'd in pxprl'HSiOIlS Iii,!' (JI ... (J/I' 

A unifier J-l is a most gcucral unifier of two tenus TI and ]2 if fOl ('\,(,Iy Huilhol () 

of Tl and T2 , we call find a substitution (1 snch that (} == l'a TIH' uuifient iOIl algotil hm 

finds most genen.l unifiers. The functioll mgu(T) ,12) r('tllrn~; a lllOHt gPIH'ml 1I11i1h'l 

of Tl and T2 if one exists and fails othcrwbe. 

The occurs-check is a step in the unification algoritlllll. It. is l'('quil'('cl 1.0 r,llI11-

ant.ee termination. The occurs-chcck dctcrmillcs if a variabh' is })J('s('ut in a t('lïll. 

Before the unification algorithm binds a variable X to a t('l'lll T, it IISPS t.lw O('('IIIH­

check to see if X occurs in T, If it does, the unification fails, othel'wise X is hOlllld 

toTo 

Computation in logic programming is a se arch for a proof. The plOgnull J> b 

the set ofaxioms, the initial goal G is what needs to he proven. The proof ('<Ul \)(' 

extracted from the path the computation went through. 

A state of the computation is a pair (G; fJ) whcn' G is ft goal aIld () is il sub­

stitution. The initial sta,te is (G; é.) wl!erc G is the initial p,oHI and f: Îs tll<' ('Ill pt.y 

substitution or identity funetion. Thcre arc two killds of t(,l'llliual st atl's <!('!H'lIdillg 

on the result of the computation. The computatiou is ~\l('('('f,f,flll if Il. tf'l'llIillat('H iu 

astate (true; fJ). The substitution in the terminal state r<~strict('d to tlll' varia\)ltoh or 
the initial goal is the answer substitution. The initial goal installtiatf'd by tlw aW;WI~1 

substitution is a logical consequence of the program as cau h(~ cOllcllldecl frolll tIJ(' 

proof. The computation fails if it cnds in astate (fa.il; ()). In tlmt ea.,>e, t.ho eOluput:t-
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tion could Ilot be extended to form a proof of the initial goal either because the initial 

goal if) unprovahle or possihly hecause a had choice was made earlier which does not 

lead to a proof. 

We denote by (G; O) -+ (6; Ô) the transition from state (G; 0) to state (G; ê). 
In resolution, one nceds to rename the variables in a clause so it doesn't have any 

variahl<,s in common with the goal. This is called renaming the variables apart, and 

the rcsulting clause is callcd a variant of the clause. This ellsures we can reuse the 

saIlle clause more than once in the same computation. 

There are two transition rules: 

Ilcdllce 

Fail 

(Al, .. . , Ai,." ,An; 0) -+ (Al, ... ,At-l, BI, ... ,Bk, AHI ... , An)Ô; OÔ) 

if mgu(Ai, A) = Ô for a renamed-apart dause A +- BI, ... , Bk of P. 

(Al, ... ,An; 0) -+ (fail; 0) 

if for some i, and for every renamed-apart clause A +- B., ... , Bk of P, 

wc have mgu( A"A) = fail. 

A computation of a program P on a goal G is a finite (or infinite) sequence 

of states SI, 82, ... such that SI = (G, é) is the initial state, Si -+ StH for every 

consecutive pair of stat<,s and if the sequence is finite of length k then Sk is a terminal 

state (truc, O) or (fail, O). 

The transition system is non-deterministic in the sense used in automata the01'y, 

i.e., one is int<,rested in the existence of one sllccessful computation path. Failure 

lll<,allS that all paUlS fail. This is implemented by depth-first search of the state space 

with backtrackillg on failure. 

2.2 Extensions of Logic Programming 

Res('archers have proposed many extensions to logic programming, see for instance 

[DL86]. We will COllccntratc on three extensions: unification with equality, introduc­

illg fUllctiollS in logic programming and unification over rational trees. Our discussion 
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remains superficial because wc arc le8s interested in the:' eXh'usious thnll sho",illg IIH' 

diversity of ideas that are C'ucompassrd br CLP. 

Unification with equality, Equality in Prolog is wry \wak h<'('llUSC it is b:u;('d 

on unification. Two tenus are t'quaI if tlH'y an' sYlltactically t.h(' sallie, llufol'tullatl'ly 

this means two t('nll~ that an' !-'(,lllautirally ('qnal but. sYlltactimlly ditt'<,1t'llt will Ilot 

unify. For pxample, 2 + 2 = 1 + 3 will IlOt. un if y ('\'('U thollgh ·1 i~ t'quaI t 0 .1. 'l'Ill' 

unification algoritllll1 ran often hl' gelll'rahzed 10 unif)' two tenlls ",h('\1('\'('1' tlu'y an' 

equaI in sorne equatiollal theory. This aigoritlull is rallt'cl E-lIuifÎt'at iou. 

E-unification is achic"cd by adding a t('rm H'w\itlll{!. sy!-,tt'Ill 10 tilt' PlOlo!l, t'Il­

gine. Computation proceeds by narrowillg, a prOf!'SS similar to aIt('l1latillg 1 (':-.olnt.ioll 

and term rewriting. The lIsrr ran writp his OWIl mies to gllidl' IllI' It'writillg p1'OI'I':-':-'. 

Unfortunatcly, tbis can Icad to probl<'IllH !><'C1l.lIhe tlll'l!' il) 110 llIo:-.t g('llNal lllli!iPI. 

For example, it is not possible to writ{' rul('s for a!-lsociativity. SOllll' !-'yHIl'lJIs a:-;­

sume the tenn rewriting rules arc confluent. EQLOG iH ail pxampip of Pro!og \Vil 11 

equality[GM8G). 

Introducing functions into logic p:i:'ogramming FUllctiollal prograllllllillg 

is based on two kcy concepts: reduction of exprl'SSiOllS ln ét llonual fOl'lll aile! ,\­

abstraction for abstracting over expressions to mak(' fuuctioll:-'. FllUdiollH art' lirst.­

class values, they can be bound to a variable, pétss(,d arollllcl il.'-; argllllH'lIts ilwl Il'· 

turned as the l'l'suit of a function. 

Functional programmillg has sa me advalltagcs OV('l' Iogie pro{!.nulllllillg[B L8Gj: 

the functional formalism is more readable than the rdatioual 011<', tlH' rl'cllldioll t.u 

normal form is backtracking-frec, Jazy evaluation cau hauclle iufillit.(, streams, I.YI>I' 

systems arc more advanced and À-abstraction allows th(' c1<'atioll of éLllonylllolls ('lIllC­

tions on-thc-fly. 

Logic programming hru; sorne advantagcs too: it cau compute with iUCOIUph'!.(' 

data structures, i.e., tcrms that contain unbound variahlrs, I)l'('dic,,:,('s are 1111111 i­

directional 80 arguments are not strictly input or output and it eau ('Xpl'CSS cOl1st.1'Ilill!.~ 

better because a constraillt is nothing more than a relation. 

Prolog has a few built-in functions, mostly for arithmctic expressions. Tlw 
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program has to trigger the evaluation of an expression with the lis' predicate. The 

prograrnmf'r has to rnake sure every variable in the expression is already bùund, 

otherwise the program is ahorted with an error. The programmer cannot add to the 

Sf't of huilt-in f\luctions. 

Iutroducillg fUIlctions into logic programming tries to alleviate these prob­

lC1Ill; while n·taining its aelvantages. Bellia and Levi survey previous efforts in thnt 

directiou[BL8G]. One posf>ible solution is to use semalltic unification which is essen­

t.iallya foun of narrowing. FUNLOG is alogie programming language with fUllctions 

lUI."icd on scmalltic ullification[SY86]. 

Unification over rational trees. The o('curs-chcck is required by the unifi­

catiou algorithm to forbiel the creation of billdil1gs of the fonn X = f(X) where a 

variabl(\ is as:·üglled a tenu cOlltailling an occurrence of itself. The solution of thosc 

equations i., an illfillite term. In our example, X is the tenu f(l(l( ... ))). Most Pro­

log illlp!l'lllelltations do Ilot pprform the occurs-check for efficiency reasons. In those 

impl(\lIll'utations, i t is possible to create infini te tenus. U llfortullately, the unification 

nlgorithm may fall into an illfinite loop WhCll unifyillg two infillite tenus. The salUe 

problcm happcns when it comes time to print the value of an infinitc tenn. For these 

re(180n8, logic programlll<,rs ar(' taught to avoid creating infini te ten11S. 

The type of illfillitc t.eUl1S appearing in logic programs is called a rational trcc. 

A rational tree has t.he important property that it has only a finite Humber of distinct 

subtrecs. If you merge aIl the nodes in a rational tree that arc the root of the salUe 

sllbtr<'C, you will bl' left with a fillite graph. A rational tree is infinite if and ollly if 

t.11(,1"e is a cycle in the graph. In unification, a cycle forms whell a variable v is bound 

t.u a tenu contaillillg v. 

ColuH'rauer was lookillg for a way to justify the omission of the occurs-ch( ck He 

gave a unification algorit.hm for rational trces[Co182, Co184, Co186]. It does not necd 

the occms-check because it halldlcs illfinite rational trees correctly. The algorithm is 

guaranteed to terminate becausl' it looks at every different subtrce only once and therc 

is ouI)' a finite llumber of those. Subsequently his algoritlull has been improved. The 

latest algorithm[Jaf84, MR84] is a simplification of the linear unification algorithm of 
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Martelli and Montanari[MM82J. 

To explain his algorithm, Colml'ra\H'r r('casts t 11(' probl('lll of Iluifyinr; two tl'nll:-. 

into the problem of solvillg a SYSÜ'1ll of equations. For ('xélmph" ullifyin~ p(a,lI) with 

p(X, Y) givm that X = a and r is unhoulld is the !Oam(' t hing as ~ol\'ing t ht' sy:.tt'III 

of eqnations: {X = a, p( a, b) = p(X, }r) }. This sy~t('lll is ~ol\'abl(\ 1)('C1\ UM' it l'l'du!'('s 

to {X = a, Y = b}. A Ilice theory of unificatiou iu this :.<'ttill~ is ~i\,(,ll in [Ll\1l\188]. 

Colmerauer impleml'nted his algorithm in il PlOl()~ sy:.tt'l1\. lIt' t'alh'<ll.is lall­

guage Prolog II. A goal in Prolog II is éI seqUt'llC{' Al,'" 1 A" \\'11('\(\ A, il' ail at 0111 

or an equation Tl = T2• A stat{' of the computation iH il pa.ir (G; E) wh{'lP G' is 

a Prolog II goal and E is a systrlll of rquatiolls in 801\'('<1 fOlm (for il ddillitioll of 

solved form s('e [CoIS.t]). Th{' initial stat(' is (G, E) wl1<'1'(' G is thf' init.ial ~oal i1ud ::.' 

is the empty system of (\quations. Prolog Il leplac{ls the unification of ail atolll A, 

with the head of a clau!>.:' A. by tht' equatioll AI = A. The ullificat.ion SI\('('(·('<ls if 

Ê = E U {A, = A} is solvabk. Ê is k<'pt in solved fonu. Equat.iolls in a goal 111(' 

simply added to the system of equatiolls provided the angll1t'ut('d HyHt.t'lIl is solvnlJ!t·. 

There are three transition mIes: 

Rcduce atom 

(A1! ...• Ai, ... ,AnjE) -+ {Al, ... ,Ai-l,B., ... ,Bk.A,+I ... ,AlliÊ} 

if AI is an atom, 

A +- BI, ... , Bk is a rcnamed-apart clause of P. 

Ê = EU {Ai = A} is solvable, 

and Ê is in solved form. 

Rcduce equation 

Fail 

(AI, ... ,A;, ... ,AnjE) -+ {Al,'" ,A'-l,A'+I ... ,An;Ê} 

if Ai is an equation Tl = T2, 

Ê = EU {Tl = T2 } is solvable, 

and Ê is in solved forrn. 

(Al, ... , A" .. . , An; E) -+ (fail; E) 

if Ai is an atom, 
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and for cvery renamed-apart clause A +- Bh"" Bk of P, 

EU {AI == A} is not solvable, 

or AI is an equation TI = T2, 

and Eu {TI == Td is not solvable. 

The computation is succc~~fui if it terminates in astate (true; E). The answcr is the 

value E assigns to tb variables of the original goal. The computation fails if it cnels 

in astate (fail; E). This transition system like the one for standard logic program­

ming is non-d(>tNmiuistic. The impll'mentation of Prolog II sharcs its backtracking 

mechanism wi th Prolog. 

Prolog II is eV<'1l more expressive since it allows discquality as a primitive. A 

disequality is a formula of the fonn X ~ Y. In Prolog, if you want to say X shoulcl 

not he p(a,b) yOIl have to write not(X = p(a,b)). This introcluces problems with 

lu'gation a.c.; failure[Nai86]. Good Prolog implementations wait until X has a value 

b('fore dwckiug if it unifies with p(a,b). In Prolog II, you cau say dif(X,p(a,û)) 

to express t,hat X and p(a, b) are differel1t. If later YOU say X == pey, Z) then the 

('quatioll solvef knows either Y i= a or Z i= b. Disequalities are kcpt as long as 

t.hey are not guarantl'ed to hold. It is possible for a goal to terminate bdore enough 

information is kuown to makc that guarantee. In that case, discqualitics are part of 

the answer. For t'xample, the answer for the goal ?-dif(X,p(a,b)),X == p(Y, Z), is 

X = p(l',Z), 1" ~ a or Z i= b. 

A state of the computation is really a triple (G; E; 1) where E and G arc as 

befol'c and 1 is a syst.em of disequali ties. The transition rule for the atom dif( Tl, T2) 

adds Tl i: T2 to 1 if this is consistent with E, and fails otherwise. The system 1 ma)' 

be simplifi(>d l'very time thl're is an equatioll addcd to E. A successful computation 

t.erminates in a statp (truc; E; J). The answer is the value E assigns to the variables 

in tht' original goal subject to the restrictions in J. Wc do not give this transition 

sysh'lIl brcause the llext. section has a more general treatmellt. 
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2.3 Constraint Logic Programming 

Most extensiolls to logic programmillg an' \'t'l'y ad hoc and art' l'xplaill1'd 0lH'rat iounlly 

with little conll('ctioll to logk. The COUl'.tlltÏllt log1(, plOgralllllling :-.('11 1'111 t' CLP IS ail 

attempt to un if y tlwse extpllsiollS into a formai t ht'Ol~ [.1L1\ 18G]. ('LP l~ parallld 1'1 il.l'd 

by a domain of valu('s D and its a.%ociatl'd C()ll~tIaillt :-.y~tI'lIl C. Il cali \1(' vic\\'I'd 

as a family of languagf's eaeh Oll<' ou a diff('rpllt dOlllillll For t'Xilillpll" 1111' fil~t CLI> 

language implemented at, suell was CLP('R.)[H.J:\P87] It~ du III a 111 i:-. 1\\1':-'1'\ of Il'al 

numbers and the cOllstraillts that cau ht' put ou tlll'lll all' 1'{l'laiJIÎ(':-' aud illl'qualttil';-' 

Computing with constraillts ha.,> two grmt bmdits o\"t'I :-.1 alldm d lOl!.ic pl ogl alll­

ming. First the values can he takell dil'<,ctly fWIll tIlt' dOluaill, Ihl'~' 11I'pd Iloi !H' l'Olkd 

sYlltactieally. For examplt', in Prolog, a ratiouallllllll!H'r r/,II cali 1)(' (·oth·t! il." t(.r, ,II). 

None of the buiIt ·in arithmdic fUllctious will WOI k ou t hi:-. 1 ('P\('h('ut at lOlI, 1I0\. ('\'l'Il 

for numbers of the form .1'/1. Furth('l'lUOH" /'(1, G) i~ Ilot l'qllal 1 () f( 2, l (}) bpl'a \I~I' 

they arc syntactically diff/'H'Ilt. Thp rat ioual ulIIulH'IS f()llow tilt' U:-' Il al ail! hl1\l't il' 

laws in a CLP language wit h ratioual nUlllbprs in t!1I' <!Olllaill. TIl!' :-'('(,olld I)t'Ill'Ii t 

is the prulling of the sr arch spac('. I3acktmckillg dptp\'ts faihlll':-' ct 1>OHff'non, 1))1('1' Il 

is ah'cady too late. \Vorse, it goes back to tht' la('st choie(' poillt Il'gmdl('M'; of tl1t' 

cause offailure. l'Il(' illterprd('r will oftc'Il rediscowr tlH' !-,tlllH' faillln' agaill allli agaill 

untH it finds the cause of the failurp. A CLP lallglla~(' C(ln Il~l' t Ill' ('OW.,t IHIllI:.. t () l'Il t 

down the search Rpace li pr1.Ort, hefOH' a faiIun' happ('u:.. TIl!' illl('I»H'I,('1 llIay Hwl 

that a set of constraints is unsolvablc aud backt.rack illllllpc!iat"ly lIIstl':lCl of ~(,:lJ('hillf') 

beyond that point. This i(ka wa."l uRcd extpllsivdy in tIw laugllagl' CIfIP to soIr!' 

constraint satisfactioll problcms[Hcn8!J]. 

The parameterization of CLP is important. h<'('all!>(' alllllem!>('Il-> of t.IH· scllC'lIl!' 

share the same semalltics. It tllrns out that unification is uot ('('lItrai to 11('1 bwud'~ 

theorem. Jaffar, Lassez and Maher wcrc able to pro\'(' a Hpi hWlld·lilœ tIl<'OrClll 1('. 

placing unification by constraint satir.,factiou[.JL87]. The t.h('or('lIl mak('H wry f{·w 

assumptions on the cOl1strail1t system. In particular, it <lOCI-> Ilot dp»t'wl 011 t,lj(' kiwi 

of constraint system used. This is why the semanticH cau be giwll for a da .. ,>~ (Jj 

languages aU at once. 
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The propertif's nee{!f·d hy the theorem are: solution compactlless and satisfac­

tion complet'·IH'sl->[CohDO]. A constraint Sybt<.'Ill is solution compact if ewry value 

in the dOIIlaill cau b .. rf'prf>l->(,lltf'd by a posl->ibly iufiuitc ,>et of cOllstraints. lu otht'r 

words, the COll!>t ra III tl-> IIlll!->t he' fillf' ('uough so we can t alk about ('very c!<.'lllent in 

the' domain. \V.· alM) l'f'(JlIin' the' cOlllplelllC'llt of a cOIl~traint to be IC'prcscntable a.~ 

the' uuion of a l'ORbI hly illfinite' !->C't of COIli-!t raints. A cOlll>traillt ~ystem is satisfaction 

cOlllp!f·t" if ('V('ry (,oIli-!traillt ih ('itlH'f provably satisfiahlC' or provahly llnsatisfiablc. 

This if.; llec(kcl by tht' r('futation pro(,f'durc, if a set of constraints is unsatisfiable, it 

is gllarautct'd to 1)(' I('("ogllized a.s buch in finit(, ~in1('. 

A CLP goal i~ a hl'C{Ul'IlCC Al, ...• An where A. il' t'ithf'r an atolU or a constraint. 

A stat(· of thf' computation il' a pair (G; a) wherc G is a goal and a is a cOl1straillt 

(·<fllival<·nt. to tilt' conjunction of aIl the cOllstraints imposed so far. As with Prolog II. 

CLP replan'l'> the unificatioll of an atolll A. with the hf>ad of a clause A br thc equatioll 

A. = A. TIl<' unificat.ion su('c('('ds if the constraint a /\ (A. = A) lS ~oh'able in the 

cOlll:>traillt syst(,lll C. This is written C F (1' /\ (A. = A). If A. is a constraint c, thcll 

it is addcd to CT providcd CFa /\ c. There are three transition rules: 

H('duc(' atom 

(At, . .. ,A., .. . ,An; a) --. (Al, ... , AI-l, BI, .. . , Bk, Ai+! ... , An; â) 

if Ai is an atom, 

A +- El, .. . ,Bk is a renamed-apart clause of P. 

â = a /\ (A. = A), 

and â is solvable in C. 

Hc'ducc constraint 

Fnil 

(Al, ...• Aj, ... ,An;a) --. (Al •... ,A.-1,A.+1 ... ,An;â) 

if A. is a eonstraint c, 

il = a A c, 

and fi is solvable in C. 

(A., ... ,A., ... ,An;a) --. (fail;(1') 

if AI is an atom, 
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and for every rellamed-apart claus{' A +- n" .... BI.. of P. 

0' " (AI = A) is uusat isfiablt' in C, 

or AI is a cOllstraint c, 

and (J " C is ullfolatisfiahl<' in C. 

Again. this transition systrlll i" IlOIl-clt't(,l'lllillÎstic. CLP il\lph'llH'lItatiol1s hl\('kt l'al'!, 

to the latest choire point WIWIl failuH' is dl't{'ctl·(l. CLP Illa)' pI'l'fol'lIl a lW/mOl pl'llllÎII!', 

when the computation fails l){'('al}!o.(' a COll!o.tramt (' I!o. 111l~ati~fiablt, ill CT. 

The answcl' is the final set of (,ollt>tl'aillt:... projl,('lt'd out(l th" \'aIiablt·s III tlll' 

original goal. Hcn' w{' src a gH'at foItn'ugth of C'LP. lt:... ahility to prodll(,(' :-'Ylllholit 

output. \Vhcu t hl' ('xad \'ahlt's of \'aI iabk:... an' Hnknowll, t hl' iut 1'1 p\'l't Pl' i8 on t'II n bit­

ta print thl' rdatiou:...hip !Jf'twI'<'ll thelll. Fol' <'xélIllplf', tlll' <l1I8W('1' to a CLP(R) qlll'I \' 

might be: X > 4,)' = 3 * X. 

OftC'u an ('xtellhioll to logi(' programming ('an hl' vit'wl'd a:.; au ill:...tmll'l' of ('LI> 

with a suitahlc choire of (,Oll~traÎllt f,ystclll. Standard logic pwgrallllllil1g Îs HU \II~t aill'I' 

of CLP. Hs domain is thp set (Jf fiuitp trt'es with sYlltactic ('<[ualily (,ollstraillls. 'l'Ill' 

domain of Pl'olog with t'qnality if:) tll<' fil't of finitt' t\'t'I'~ hllt ith (·oll:...twillt h)':...ll'lll \t:n .. 

a more powerful <'quality. E-uuificatioll i:.. a guid(' for how tlll' l'oustwilll :"01\'('1 \\'Ili k:-. 

Similarly fol' fuuetional plOgramlllillg in !ogic plOglallll1llll/!,. S('lIIé1l1t il' lllufica t jon 1:-. 

an algorithm for hol\'illg tht, ('quality (·ou:-,trailltH. TIll' dOlllillll of PlOlog II is 1\\1' :"'1'1 

of rational treps. Its cOllstraint s)'htelll ha . .., l'qllality aud di:,,(·qllaiIty. \V(' haVI' all/'ady 

scen CLP('R). Othl'1' CLP lallguag('~ illclud(' CAL u\,('r tlH' dOlllaill of (pm,sih!y 1I1l1l' 

linear) polYllomials, CHIP OVl'r nnite dOlllaiuh, !>oolpèlu !l'llll:''' aud mtioualllllllllll'I:-'. 

CLP(E·) over the domaill of l'>triug:.. or l'('gular hl'tS. and PlOlog II! o\w finit" dOlllfll\l:.... 

rational trccs and booleall t<'l'IllS 

To achievc rea.<.,o11ahl" effidellcy, thp constraint solVl'r is ('xP('<'IPc! to balldl!· 

the frequent cascs quickly. Hopefully thesc will 1)(' the' ea,';i"ht collstraiuts to sol\'(' 

There will be othcr cOllfltraint:; that are rOllsidt'l'ahly hard<'r to :-.olV<', In CLP(n), 

one can easily ask for a :-,ollltioll to Fermat's last tlH'off'IIl, but th(' all:..W('I' b IIO! 

easy to find. Oue thing wc cau do is to dclay halldling liard (,ol1:..haiut.s. \Vlwll a 

hard constraiut is encollutered, it is Ilot chccked for foIatisfia.bility. II. i:-, put a."i<l(· alld 
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(~xccutiOIl continues. Oue hopes the constraint cau be simplified Ly the addition of 

information a.<) the ex('cution progresses. Thc hard co~straints arc reconsidered WhCll 

(·uough information hé).', b(,l'Il gathpr('d to turn them iuto simple cOllstraints. 

Thc hard coIl~t.raiuts in CLP(R) arc llon-liucar cOll~traiuts. Thcy are dclayed 

\lutil tlwy t)(,COIlH' liIH'ar. A coust raint is ~implified WhCll OUf' of its variables is 

iustalltiat<'d. R('placiug a v'lriabh' by its ,,~lue can n'duce the degree of a constraillt. 

As more variabl('~ an' illstantiatf'd, the constraiut cvmtually becomes linear. For 

pXll.lllple, the goal'1 X * Y + Y = 8, X + }' = 5, X > 1 has the solution X = 3, Y = 2 

hut th(' iUh'rprptpr call1lot fiud it. The constraint X * Y + }' = 8 i8 dclayed bccause it 

i~; uot lilll'ar. Now the' goal? - X * Y + Y = 8,X + y = 5,])(X) cau be 801\'('d if p(X) 

hillcls a vahl(' to X. A1->sulll<' p( X) biucls X to 3. Th('u the first const l'aint is resull1cd 

1H'C'élUM' 3 * Y + Y == 8 is uow liu{'ar, and the intcrpreter fiuds th(' solution[.HvI87]. 

CLP is parallH'teriz('d by a domain. You choos(' anoth(,l buitaLle domaill and 

you haV<' a Il('W languag(', This gives motivation to try to reuse large parts of the code 

h<>t.W('l'll CLP impl(·IllPlltatious. \Ve can change tilC implcmelltatioll of CLP(X) iuto 

CLP(Y) if we [('plan' thl' :-,ol\'('r for X by a solver for Y. This will work as long as the 

solver is w('l1 :-,('parat('<l flOIll t ht' ft'ht of tht' system. The interface betwccIl the systcm 

aud tIlt' sol\'('r 1->hould 1)(' ~llIa11 but g<'lwral ellough to be stalldardizcd across many 

solvcrs. lu plètctic<" aIl of th(' languages listcd ahove were dcycloped indepcndcutly 

and tlH'y do Ilot shan~ code. Lim and Stuckey haye dcvclopcd a CLP shell lllaking 

it t'Hsi('r to lmilcl CLP implelllelltatiolls[LSDO]. In principle, you could rc .. implement 

t 11('8c lallguagl'S withill this shell so they aIl share the same code. 
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Chapter 3 

Concurrent Logic Programming 

In this chapter we look at concurrent logic programmillg. Tlwl(-' is a, lot. of parallt'lislll 

available in logic programs. AND-parallelism COIll('S from solving in paralll'l ail tilt' 

goal atoms in a goal. OR-parallelism cOllles ftom ttyillg aH Il'l('vaut. clalls('s in pilr­

aUel whcn reducing a goal. AND-paralklislll :-.ol\'('s sub-parts of a goal in paralkl, 

while OR-parallelism finds alternative SOllltlOlll'> to a goal in parallel. The diffklllty 

of implcmellting AND jOR-paralldislll togcther ha .... !Pd t () two 1'('sPéll'ch din'ct,iolls 

being pursued: 1) parallelizing Prolog with OR-paralklislll by llucovNiug illlplkit 

parallelism and 2) committed-choice coneUlTcut logic plOglilllllllillg languages \Vitll 

explicit AND-parallelism. The origill of thesc languag('fI can be trac('cl ta t.ll<' pl ()­

cess intcrpretatioll of van Emden and ùe Luccna[vEdLF82]. III the'il" lllodpl, ft go,,1 

atom is a pro cess and a goal îs a network of procPI)I'>PS cOUlllllluieat.iug through shm "cl 

variables. Clark and Gregory introdu('('d sYllchronizatioll and ("()mmitted-choi('(~ 1l01I­

determinism[CG81]. Synchronization if, achieved hy waitillg for variahl('s t,o 1)(' ill­

stantiated. In a committ.cd-choicc language, a goal evaillat('s the gua.l'ds of uuifyillg 

clauses and commits to one with a SUCCCRsful gllard. TIWf(' is ollly one solutiol1 f01\1I<I, 

there is no backtracking. A gual'd can cOlltaill a I1ser pl'cdicate which ealls a gl\il/ cl 

and so on. Flat languages restrict the guard to }w a COlljullction of goal atollls takt'JI 

from a set of primitive prcdicates. The grcaü'r birnplicity of fiat lallgua.gps o\ltw(~igh:-. 

the sma1110ss in expressive power. The complexity of sorne of thcse issu!!:.;, CSP('­

cially in Concurrent Prolog, is what lcd Saraswat to propose concurrent COlll'>traillt. 
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programming and the cc framework. 

3.1 Parallelism in Logic Programs 

Most stlldies find there is ample opportllnity for parallelism in logie programs, and 

it is ea..'iy to find, not like the imperative languages where it has to be unraveled. 

The evaluatioll of a goal forms 3-n AND-OR tree, solving a goal impHes searching 

through this AND-OR tree. The reduction of an atom is an OR-node, the resolvents 

with the candidate clauses are the children of the OR-node. A conjunctive goal is an 

AND-node, the atoms in the goal are the ehildrcn of the AND-node. There are threc 

widely recognizcd sources of parallclism in logic programs: 

• Within unification. 

Unification is a good target for parallelization sinee i t is performed so often cl uring 

cxecutioll. Unfortunately, studies have shown that it is inherently sequential 

[Yas84, DKM84] [Kni89, sE>ction 10 for a survey]. There is little hope of finding a 

parallel algorithm much faster than the sequentiallinear algorithm of Paterson 

and Wegman[PW78). 

• OR-parallelism. 

In general, many clauses ean be used to reduce a goal. The Prolog interpreter 

chooses the first one, and backtracks to try the other ones. We can aiso try 

aIl the clauses in parallel. If there are k candidate clauses to reduee a goal, 

k goals arr produccd, one for cach candidate clause. AlI these goals are thcn 

solved in pamllel. This is called OR-Parallelism, because a solution of auy one 

of t.hese goals is a solution of the original goal. In short, OR-parallelism explores 

alternative solutions to a problem in parallel. 

• AND-pllmllelism. 

A goal is made up of a eonjunction of goal atoms. The Prolog interpreter solves 

them from left to right in depth-first fashion. We can solve all the goal atoms 
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in parallel. This is called AND-parallelism hl'rause aH thl' goal ntoms llllllit bl' 

solved ta form a solution for the elltire goal. AND-parall('lislll salves Hub-parts 

of the same prohlem in parallel. 

We have to he car('ful with AND-OR parallt'lism bt'('ause it eau Wlk..,tC COlllputa­

tian compared to Prolog's evaluation arder. Prolog is working Oll OUt' possible solutioll 

at a tirne. The children of an OR-nodl' arc lookillg for lllultipl(' solutious nt. t.h!' S1I1I\(' 

time. When ouly one solution is necded, tht' first Ollt' t.o ht' found will )(' n·port.(·d, 

but time and space will have been wasted s('arehing for altpmativ(' solut.iolls. TI1<' 

children of an AND-node are working on the :'lame goal If Oll(' of tlU' childl'<'ll fails, 

then its siblings to the right will have dalle us('}('ss work. Nt'v(·l't.lu·l('ss, s('archiug t.ht· 

AND-OR tree in parallel is generally hmeficial. 

Executing a program in parallcl involvcs lllè\llaging a S(,t of (·uviI'OUIlH'ut.s. Ali 

environment contains the set of variables created sa far, if th('y are illstallt.iat.pd or 

not, and if so, to what values. The rhildren of an AND-nodp an' part of n sillgll' 

goal, they spare the same environ ment inht'ritcd from thp parent.. \Vhm OU(' of t1l1' 

children binds a variable in the parent (,IlvirollIlH'ut, this is ftlltolllat.ically Sl'('1l by 

the other children. This is how communica.tion \wtWl'('ll pro('('ssps is (l,ehi('v('<l. Th<' 

children of an OR-node are indcpelld('ut goals. They share the ~,alll(, ('UviroUlllCUt. /IS 

their parent but the hindings they makc are their OWIl and hhould uot ))(' s('CIl I>y 

othcrs. In a sense, they start with a different COlJY of tht' ellviroullH'ut, so the' goals 

do not affect each other in any way. For example, the sallU' variable Illay w«'11 lin\,(, 

conflicting values in different goals. This is how we ppt indPIH'lHl('ut solutiolls. 

Unfortunately, the multiple bindings crcated hy OR-paralh'Iihlll aJl(I th(' Hharilll!, 

created by AND-parallelism is difficult to implemrllt. Thil> I<'~lIlt('d in !,wo l'<'n(,lll'('1! 

directions being pursued[Cla90]: 1) parallelizing Prolog with OR-parallelihltl aud ~) 

the creation of committed-choice concurrent logie programll1iug lauguagcs to tak(' 

advantage of AND~parallelism. In this thesis, we arc mostly couccmed with tlw 

latter. 
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3.2 Parallelizing Prolog 

Sorne pc ,pIe argue that writing parallel programs is difficult and a good strategy 

to use parallcl machines is to uncover implicit parallelism from sequential programs. 

The responsibility for exploiting this parallelism rests on the compiler. Parallelizing 

compilers for Fortran have b(\en available for some time now. 

In the field of logic programming, some rcsearchers are working on parallelizing 

compilers for Prolog. They exploit OR-parallelism present in sequential logic pro­

grams. They also exploit AND-parallC'lism as long as the AND-parallelism goals do 

Ilot have variables in common. This is called illdependent AND-parallelism. The Ilet 

effcct is to cnaure a variable is nevel' shared by two concurl'ently executillg goals. In 

turn, this guarautecs thcrC' will be at most one binding gcncrated for each variable, 

thcreby eliminatillg the problclll of multiple bindings. This greatly simplifies the im­

plementation. OR-parallclism creates multiple bindings but thcse are implcmcntcd by 

multiple indcpcndent copies. A copy will have at most Olle binding. The restriction 

that makcs the implelllC'lltatioll practical is also its greatest weakness: OR-parallel 

pl'ocesses cannot communicate because they cannot shal'e variables. 

AURORA is aIl cxample of an existing system. It is a prototype OR-parallel 

implcmelltation of the full Prolog language for shared memory madünes[LBD+88]. 

3.3 Concurrent Logic Programming Languages 

The first pl'ocess interpretation of logic programs was given by van Emden and de 

Lnccna[vEdLF821. In thcir model, a goal atom is a process and its state is representecl 

by its arguments. AND-parallelism is used to execute pro cesses concurrently. A goal 

is vicwcd as a network of pro cesses communicating through shared variables. 

Parallelism in 10gic pl'Ograms is very fine-grain becam~e pro cesses are very short­

livcd. The bchavior of a process depends on the clause used to leduce it. If the 

clause has au empty body, the process halts. If the clause has a unit body, the 

proccss changes its state. If the clause has a conjunctive body, the pro cess spUts into 

several concurrent processes. For example, when the pro cess pO reduces with the 
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clause pO +- pl(X),p2(X), it will create two processes pl (X) and p2(X). TIH'y l'/\ll 

communicate through the shared variabl(l X. 

The process pl(X) can send a value to p2(.\") by illstantiatillg X to MH1W VI\\\\\'. 

Sinee a logie variable can on1y be assignf'd Ollce, it S('('lllS w{' l'an (,olllllllll1Ï1'at!' af 

most one value thmllgh X. This is truc but for exampl<" X cau 1)(' illstautiat('d 10 

a Hst ceIl [vIY]' t.hereby sending the vah\(' l'and Cl"f'ating a. lH'W shan'ct variabll' \'. 

The processes can rccurse with pl(Y) and ])2(1') for anothl'r rouud. \\,hl'Il llSt'I! t.hi:-; 

way, the shared variable is an incrl'Illentally coustl uct('d list ê\ctiug lik(' a. st l't'Hill of 

messages betwcen the proccsses. More geuC'rally, .\" l'au lw any shart·d dat.a st.md,Hll' 

cooperatively and incrementally constructcd. 

Clark and Gregory, infiucnced by CSP (Comnmnicat.illg SC'(l'H'utial PWC('S:-'l'S), 

refined these ideas and introduccd committf'd-choice llOll-dctcrmiuÎ:Hll and syu('!tro­

nization into logic programs[CG81]. Th<,ir "Rclat.ional Language" was Vl'ry ïulllll'II­

tial. It is the aucestor of many concurrent logic progralllllliug languag<'s, iudlldillg 

Concurrent Prolog, PARLOG, GHC and Strand. 

3.4 Committed-choice Non-determinism 

Clause selection is different in a concurrent logic progrmnlllillg lallguagt'. Im;t<'ltll or 
don't-know non-determinism with backtracking as in Prolog, tlu'y exhihit dou't-('al'l' 

non-determinism also called committed-choice llOll-detNlllinism. A dllll~(, A '- GI/J 

has three parts: a head A, a guard G and a body Il. Gis iL seC!upw'c of goallüollIH 

G l , ... , Gk , while Il is a sequence of goal atoIlls BI,' .. , Bn. The wrtkal bar is tlH' 

commit operator. \Vhen a guard is cmpty, the clause can IH' simplifie<l t.o A 4- li, 

this is eql1ivalent to A +- truelB. A unit clause is equival<'Ut to A 4- trueltru('. 

A goal is a sequence Al, ... , Am. This goal is f('duccd hy ~i('lectillg an a.tOlll AI ill 

the sequence. The guards of aIl clauses ullifying with At an' evaillated in pataUd, If 

there are no clauses unifying with At or if aH guards fail, th eu the' who}e comput.atioll 

fails. Otherwise, there is at least one clause with a successful gllétld. Oue bllc11 elltlls(' 

is chosen and the goal commits to it. The evaluation of the othcr gnarcls is a.borted. 
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Thcre is no backtracking, the other clauses will not he tried later. Only one solution is 

gcnerated. A guard has to be written in such a way that it is successful only when its 

clause is certain to generate a solution if one exists, otherwise, the goal may commit 

to the wrong clause and the solution will be missed. A computation may fail wh en 

in fact the goal has ~oluti\ms. 

A guard cau coutain a us{'r predicate, this predicate may invoke Ilew guards 

aud so on. The guards may be nested arbitrarily deep. The computation fonTIs an 

AND-OR trce. A guard is an AND-node and clause selection for n user predicatc in 

a guard is an OR-node. 

OIlly th<.' guard of the chosen clause may have side-effects. The atomicity of 

clause selection is {'nsured by the requirement that at most one hinding for each 

sharcd variable is ever gel1erated. A clause cannot instantiate the variables in the 

goal until tlH' goal has committed to this clause. A clause head cannot instantiate 

the variahl<,s in tlw goal because those bindings will have to be removed if the goal 

commits to another clause. For the same reason, a guard cannot instantiate variables 

in the goal. 

\-Vilat happens if a clause tries to instantiate variables in the goal before the 

goal bas committed varies among languages. III PARLOG, a compile-time check 

guaralltees thi8 will never happen, but this is undecidable in general. The check 

call ollly be an approximation of the full test. In practice, PARLOG relics on the 

programmer t., avoid the situation. In GHC, a guard will suspend when it trics 

to installtiatt! a variable in the goal. The clause will be considered again when the 

variable ha." been installtiated by ~ome concurrently executing pl'Ocess. Of course, 

the clause will be reconsidered only if the goal has not committed to another clause 

bcfore thel1. 

In Concurrent Prolog, tllf' guards are evaluated in their own envil'Onment, GIm­

Har to OR-parallelism. The head and the guard are allowed to instantiate goal vari­

ables but this is Ilot visible outside the guard. A clause with a successful guard is 

ChOSCll for cOllllnitmellt. The envirollment of the chosen clause is merged with the 

goal to form the environment of the resolvent. The goal can commit if allnew bind-
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ings of the resolvent environment. cau bl' made with a singlt' multipll' a~~ignllll'Ilt. Ir Il 

billding fails, then none of th{' bindings ar{' madp. Tl! {' hilldillgs an' madt' visi bit, a ft 1'1' 

the whole assigllmellt succe('(ls. If they \\"ere mad{' visihI(' ('nrli('l', t hl'II 1 hl' (l~~igllllll'lll 

eould fail and these bindings would have to b(' f('tractl'd. Othel" COlH'\IIT('lIt IH'()(,I'~hI'S 

could see these bindings befoft, the)' wert' },t'tract('d and clau:-.t' s('kel iOIl wOllld uol IH' 

atomic. 

The atomic operation in PARLOG, GHC and St.ralH\ is bin<\illg li sillglp "al'ialllt·. 

Bindings are made as unification proct'{'ds, hut uuificalioll it~df is Ilot nloJllÎ!'. III 

Concurrent Prolog, bill~;llg a set of variahles is tlll' atolllic op<'latioll. Tlti~ i~ 11(·('(11-<1 

to merge the environment of the goal with t.ht' l'llvirollllll'Ut. of tht' dl()!-.('Il gllilld. 

The difficulty of support.illg user pn'dicat(·s in gUaI c1!-. has dil (·ct <'d li t 1 ('Ill iOIl 

towards the flat variants of the C'OlH'lln eut logie pl ogl allllllillg lallgllag<,s. 1 JI li lia 1. 

language, only a set. of primitive pn'dieates can appl'èH in a gllanl. For t lU' la.lIgllagt·s 

we mentioned, this incllldes maillly unification and arit.hllletÎe t.(':--ts. A lIat lallgllag(' 

is easier to implemcnt bccause the computation dOl'H not forlll au AND-OH t 1'('(', 

instead it forms a fiat collection of processcs. 

For example, the susp{,Ilsion mie in CHC is difficult to imph'lll<'Ht l)I'caus(' t1H' 

interpreter must know at which lcvcl of the trrc tilt' variahles heloug t.o[Tay88]. '1'1\(,1<' 

is no need for this in Flat Guarded Horn Claus{'s (FCHC). TIH' primitiws in FGIlC 

guards are test-only automatically suspellding predicates, i.t'., tlu'ir argullH·llt.S mw.,t. 

be instantiated otherwise thcy suspcnd. This togeth{'r with tlw flal.IH·ss of th(· t.H·(· 

guarantees a guard willnever installtiate a goal variahll'. Tlu'}'e is HO !H'('cl fOI lUI 

elaborate runtime clwck[ClaDO]. 

Most implemcntatiolls of concurrent logic programmillg languages m'(' for t Il<' 

fiat subset. It seems the greater simplicity of flat languages olltweighs the slllallloh:-­

in expressive power. 
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3.5 Synchronization 

Synchronizatioll is achieved by waiting for variables to be installtiated. For example, 

the reader of a stream will suspend until the shared variable is instantiated announcing 

the arrivaI of the next clement. How synchronization is accomplished difl'ers amollg 

languages. PARLOG 111lf'~ mode declaratiol1s. For each argument of a predicate, the 

mode declaratioll ~pecifies if it is input or output. A mode declaration applies to a 

whole procedure, Le., aIl clauses with the same predicate namc and same arity. A 

clause suspends if il. trics to iu~talltiate an input drgument, 80 processes sYllchronizc 

by waiting for input. lu GHC, a guard suspends if it trics ta bind goal variables. 

lu Concurrent Prolog, syuchronization comes from rcad-only unificatioll. Vari­

ables cOllle iu two typf's: X'? is the read-only variable associated with the writnble 

variable X. Uuificat.ion of two tenus suspends if an attempt is made to illstuntiate ct 

n'ad-only variable. Thc unification may resume whcn the variable is illstantiated by 

binding the writable variable. The read-only attribute is adynamie property dcter­

miu('d at run-tillw. The propert.y is transitiv(': if a writablc variable X is bound to a 

rend-ouly variable Y'?, thcn X becomes read-only. Read-only unification cncourages 

the use of unification whcn matching is intcnded. This is a source of bugs. The Ïlll­

plcmclltation of COllcurr<.'ut Prolog rcquir<.'s distributed atomic read-ouly unification. 

This is very difficult to implcment and not very efficient. 

The problcms in Concurrent Prolog with read-only unification and the atomic 

lUcrgc of cllvirolllllcnts Icd Saraswat to se arch for a simpler theory. The result was 

the concurrent COllstraillt programming framework discussed in the ncxt chapter and 

implemellted in Taskell. 
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Chapter 4 

Concurrent Constraint 

Programming 

This chapter is based on the book "G'oncmTent G'onstraint P1'O!J1'Umwin!J" hy SIIl'a)-;\\,al 

[Sar89]. Concurrent constraint programming is thr syutlH'sis of COllSt.lItillt. Log!!' 

Programming and the committed-choicC' concurreut. logic pro~lïlllllllill~ Ij\I1~lIal1,1's. 

From CLP, it adopts computing with coustraiuts and plOp,ralllH in da\l~al fOl Ill. FlIllll 

Concurrent Prolog, it adopts parallelism and guard(>d HOlll clall:"('s. '1'0 this, il aeldl-> 

parallelism in the constraillt solver and sYllchrouizatioll has(\d ou what. ('lUI h(' iuf('j'l'l'<! 

from the constraints, 

Concurrent constraint programming replaces the mmal view of llH'lIlory hy t.lll' 

store, a constraint on the variables that may only part.ially :"pl'dfy t.hplll. Ha/:..o 

replaces the notion of reading and writing mClllory by tlll' prilllitivps a..',,;k lmd t.PlI. 

The cc framework is parameterizcd by a COl1straint sysU'lIl. Diff'Cl!'ut. rl!oi('('s of 

constraint system gives various cc instances. Proccs:.,{'s iu the frallll'wOl kalI' ('all('d 

agents. The framework defines a proccss language with ft spt of agl'ut (,olllbinatOlI->. A 

cc instance may retain only a subset of the availablc comhillatOis. III lllOl>t iU:..tllll('('S, 

ap agent may engage in a primitive operation or it can ::-,plit iuto lIlultipl(' a~('lltH, il 

ran make a dependent choice, it can hide a variable from the outHide (~llviroIIIIWllt. 01 

it can make a procedure caU. CLP, most conr,urrent logie programmiug 1 angllage:.. , 

Janus, aocc and Taskell are aU instances of cc. 
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4.1 The Ask and Tell Primitives 

Constraint programming cannot Shd.ïC the usual view of memory !Olllld in most lan­

guages. Traditionally, the memory can he thought of as a valuation, Le., a mappillg 

from variabll's to values. R('ading IlH'mory means consulting this mapping for the 

value of a variablf' aud writing Ill('mory modifirs tlH' mapping for bubsrqllent reads. 

The coucepts of r('ading and writing hrCOllH' incohrH'nt in the pr('s('ucc of cOllstraillts. 

The cOllstraiuts clescrib(' thp rl'lationship betwi'en variahl<,s but Ilot llt'ccssarily thcir 

values. A variable may br con~traill('d but not determillrd by aIl the cOllstIaints 

postcd 50 far. This variahh' cou Id tal.<' our of possibly mally values. No single \'ulue 

retufll<'d by th(' rP1-td opewtion can capture this llluitiplicity be·cause l'('uel ouly workb 

ou groUllÙ values. Assiguing a value to a variable may flx the valut' of uther variables 

thl'Ough th(' cOIlst.raillts that were imposcd Oll tlWlll. This propagation of cOllstraillts 

iH lackiug in tht' write operation because write effects only olle variable. 

The cc framework r('places lllcmory by the store. The store is a l'l'presentation 

of the conjullction of th(, constraillts impobed so far. It is always kcpt consistent 

1.0 eusure th(' fl'élsibility of a solution. As n<'w cOllstraillts are imposed, they reflue 

the values of variahlŒ. The read and write memory operations are replaccd by the 

primitives bloeking ask and atomic tell respectively. 

Let c he Home constraillt and A be an agent. Processes in cc are called agents. 

A blockillg ask has the fol'lu: ask( c) -+ A. !ts behavior is as follows: if c is cntailecl 

by the store theu carry out the proccss A, otherwise suspend. A blocking ask may 

rCSUllle ouly whell otIler ag<,uts have added enough information to infer c from the 

store. This SllSP<'llSioll lllt'chanisIll is the source of synchronizatioll in cc. Ask is 11 

stable opC'ratioll: if the ask may procecd in the currellt store, if. could also proceed in 

any (\xt<.'llsiollS of the store (because information is never retraeted from the store). 

Ask behaves like a guard in concurrent logie programming languages. In praetice, it 

is used as a COllditional. 

Let c he SOIlle constraillt, (T be the eurrent store and a' be the new store. The 

bdlavior of tel1(~) is as follows: if a 1\ c is consistent then atomically let a' = a 1\ c, 

Le., augment t.he store with this new constraint, if (T 1\ c is inconsistent then abort the 
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whole program. Tell adds information to the store by imposillg Ul'\\' l'ollstraillts. Ir 

a tell makes the store inconsistellt, the wholc program is abol'tt,(l. lu nn iUl'Ollsi~tt'lIt 

store, aIl asks are cutailed. This leads to Il11COllt rolkd Iwh1\viol' lH'c1\uSP nll n:.;ks Ulay 

proceed. This situation is considefcd a pl'Ograulllliug l'nor. Thc fllll-tiult' sysll'lll 

should abort the program and signal the' ('rror. 

Like CLP, cc is paramderizpd by a constraillt systt'lll e. Frolll e Wl' l'l'quil'l> tht' 

possibility to talk about partial information through primitivp and pOHHibly COlnpOl\lld 

constraints. Wc l'equire a notion of consistcllcy to kllOW whkh l'onstraint.s l'au huid or 

the same object, and fiually, a notion of cntailmcnt to kIlOW what. WI' ('atl iufpr frOlll 

a set of constl'aints. 

The on1y explicit constraints in CLP arc primit.ive l'oustraillts. COlllpOlllld 

constraints are built-up by the evaluation procedure. For ('xlUuplp, ('()Ujllllct ious ill (' 

fOl'med sequentially by the comma opcrator, and disjUll('tiollS art' t'xplol't'd OUl' hr:lllt'h 

at a time through alternative clauses and backtrarking. lu cc, tiU' (,()Ilstraint.s HW)' 

be eithcr primitive or compound. 

Wc will use e F c, read "e entails c" to menu c is true in thc ('ou:-.t.raillt Hysll'1I1 

e. For a store a, (3)a is the cxistclltial closure of (J (J over aIl variabl('H. Thl' l'ollowillg 

dcfinitions will be uscd in the description of ask and tell bclow: 

(J answers c ife Fa=> c 

Le., when the store contains enough information tn cut.ail 

c. 

(j suspends c if CF (3)«j A c) and C F (3)(a A -,c) 

(j accepts c 

(j rejects c 

i.e., when the store does not contaill ellough informatiou 

to entail c. 

if C F (3) (a Ac) 

i.e., when c is consistent with the store. 

if e ~ (3)«(J A c) 

i.e., when c is inconsistent with the store. 
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Wc can now give a definition for hlocking ask: ask(c) -+ A 

when (J answers c behave as A 

when (J suspends c suspend this agent until (J answers c and thcn bc­

have as A 

and the definition of atomie tell: tell(c) 

wh en (J accepts c a' = a " c 

atomically augment the store with c and 

terminate this agent 

when (J rejects c abort the whole program 

Ask aud tell primitives arc messages to the constraint sol ver in the store. The1'e 

i8 little contention in the store b('causp the solver can be highly parallel. There is 

littl<, need for locks bccause t11e1'e is only a benign form of change: adding consistent 

information. In this setting, it is casy to solve multiple asks in parallel, and it is also 

possible to havp multiple tells solvcd in parallel. 

Saraswat ddinrs other oprrations like l'ventual tell, inform and check. \\Te 

motivate eventuai tell in the section on implcmentation considerations below. Info1'm 

i8 like tell but it sllcc<,cds ollly if some new information lS addcd to the store. Check 

tests to see if a constraint i8 consistent with the store without actually addillg the 

rOllstraillt. Inform and check give some of the power of the var predicate in Prolog. 

4c2 The Process Language 

Processes in cc are called agents, multiple agents execute in parallel. The framcwork 

defilles a pro cess languagc with a set of agent combinatol's (sueh as Il, + below). A 

cc instance may l'etain ouly a subset of the available combillators. Choosing more 

combinat ors makcs the language more powerful, but this illcreases the complexity of 

t.he implementation. \Ve describe an inst.ance by its choice of eonstraint system and 

its subsct of agent combillators. 

Agcnts do Ilot commullicate directly with each other. There is no notion of 

sClldillg a message to a specifie agent as there is in CSP. Instead agents communicate 
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through shared variables in the store. Syuchrollizatioll arises hCCl\USl' ask hehaws likl' 

a blocking reccive wait ing for t h{' information tell will S<'lI(1. 

An agent llla}" pugage in a primitive oppratioll, it CHU split iuto lUlIltiph' ap,l'llt:-., 

it can make a dept'udellt choin', il cau hide a variabh' from tll!' olltsi<ll' ('U\"iWUlIh'lll 

or it can mak(' a pro('('duH' calI. The s)'lltax and the h('haviol' of tht'sp l'()llIhillat()l~ 

are introduced hdow, 

The effect of A 1 Il A2 is to run .41 and .42 in parallt,l. 

Choires an' made with a...,k(cIl -+ Al + ... + ask(('u) -+ Ali' lu this l'OU­

text, ask(ct } is eallcd a guanl. A gllard is 0Pl'Il if its l'ollstraillt h; ('utaih'd by Ill(' 

store. The choiee opt'rator has the following efft'l't: if aH gllanls Sllsp('wl tll1'\1 it :-'I\~­

pends, othf'l'wifle it llOll-det.el'millistically choos('s an 0IWU guani and it 1H'1t1l\'('~ li!.t' 

its guarded ag(·ut. For ('xal1l pl('. if guard2 i:-. l'ut ailtod, tlll'll Hl<' choie(' Opl'l'at or llla)' 

choosc to bchavc likc .42• The dlOice opf'rator iH uf'('(ll'd wh<'11 tlH' gIlHl(}:., arc' 11(11 

mutually disjoint, otherwise the COmpOlH'llt asks muId 1)(' l'lill ill palal!!'l with titi' Il 
combillator. 

Sal'aswat also defilles tell guards. Thc ageut t<,ll( cd -t AI + ... + t pll( (',,) -, 

An will bchave as A. in the store (J A l'. unly if c. is (,ollsistPllt wit li a Ill1d 1 was tlll' 

ChOSCll branclI. Tell guards that aI c uot dlOS('1l do HOt. ha.\'(' auy d[('('t, 011 t Il<' :-,1 ( li ('. 

Tell guards may compcte to billd a variable. For exalllpl(', in a ~tOl(' wlwj(' X j:... 

unboul1d, thc agent tdl(X = 1) -+ Al + tell(X = 2) -+ A" willlH'haw il.'" AI if X 

was boul1d to 1, or it will bchave as .42 if X was bOUlld to 2. A ehoiee 0\l('mt,or llllly 

have mixed ask and tell guards. 

The effect of tilt' existclltial closure 3;1'.A is to bchav{) as A wi th t.l1<' varinl lit' .1' 

local to A. It hides x from other ag<,nts by crcating a n{'w va.ria.hle l' local tn A. 

An agent makes a procedure call with the syntax ]J(X), whcre X is Il WC'1,O! (JI 

values or variables. Procedures are ollly d('filled once, ('hoices have te> Iw »logI'a\lIl1lt'd 

explicitly with the choice opcrator. Rcc\lrsioll is allowed. 

A program is a collection of procedures and an initial agent. A Ill'O(·pd Il 1 l' 

dcfinition looks like this: 

proc P(Xl'" . ,Xk) 
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A 

where A is au agent. A procedure may have uested procedures as in a nested-block 

language. 

A computation Ulay go on forever or tcrminatc. If a computation terminates it 

('un either fail with an incom,istf'nt store in which case thc program is erroncous, or 

it terminatf's normally in which case the re~mlt of the computation is the final store. 

A pro gram may tel'Illillate if al! agents have t('rmillatcd or if aIl remailling agents arc 

sllspcud('d. Note that deadlock is Ilot necessarily an error. 

The cc framework is not l11en'l) a committcd-choice language. There are 

otlH'r combiuators like t.he OR-parallcl search opcrator which is possibly implemcllt.ecl 

t.hrough backtrackillg. With this operator, wc see that CLP is a speeial case of cc. 

Due llpeds to rewrite the l'lause srl('ction as an explicit OR-parallcl search, therc is no 

paralll'i 0IH'rator billCC everything is sequelltial and the l'lame eonstraint system is uscel 

for CLP and cc. The fiat concurrent logic programmillg languages are also a special 

('ase of cc. Clause Sf'lcction must be written explicitly with the ehoicc operator. The 

constraint system C is the set of finite trees with equality cOllstraints. 

It is possiblf' to give a transition system for cc. Sara.<;wat gives sueh a transition 

system in his thcsis[Sar89]. The paper by Saraswat and Hinard gives the semantics 

of cc as a l'eadive congruenc~ thl'ough bisimulation[SR90]. The subsequent paper 

by Sal'aswat, Rinard and Panang.wen gives the semantics of cc ag~nts as c10sure 

Ol)('rators[SRP91] . 

4.3 Implementation Considerations 

In this section we examine sorne issues raised by the irnplementation. Eventual tell 

is ll10tivatcd by the dcsirc to spl'ead the store in a distributcd memory architecture. 

A wcak cntailmellt relation is needcd to simplify the solver. Each Agent may answer 

its OWll qucry so the store need not be an active entity. Suspended agents may be 

abol'tcd if w(' can filld out they will be suspended forever. Finally, the store ma.y be 
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garbage collected to reuse the storagr. 

Eventual Tell. To implcll1Cllt atomic trll effici(,llt ly, W(' IU'l'd shan'd lllt'lllory . 

Shared-memory machines do exist but they do Ilot sealt' as well il." dist rihntt'd llll'lllOly 

machines. Two possibilities for implel1lentillg cc OIl ft tlistrihntt'(lllll'Illory llladtiw' is 

to replicate the store on many nodrs, or to split tIlt' stOH' Ollto JIlall)' 1l0dl'S. Thl's\' 

open many illteresting avenues but t,}H'y an' Ilot ('m,y to illlpIl'lIl(·lIt. 

Another possible solution is to use a local store ou l'adl uodl' aIHI a glohal 

store. Agents tell constraillts in the local store, possihly dH'('killg (,Ollhist.l'\ll·y locally 

but delaying the consistency check in the global 8t01'('. f>('l'lodically tlH' local stO!(' is 

combined with the global store and a full consistl'lley dll'('k IH 1)('lforIlH'(l. TIl<' stOJl' 

is now responsible for cOllsistellcy checkillg. \Vt' can (1<'filll' a 1lI'\V prÎlllit.iw ('all,,<1 

eventual tell. The caU et<'ll( c) adds c to the local store eOllsistl'utly and tNlIlillalt·s. 

The constraint c will cvcntually migratc to the global store and 1)(' dH'clw<i fOI' glohnl 

consistency at that timc. 

Ask is still a stahle operation, an agent may simply wait lougpr I)('('allsl' t.he 

information it is waiting for is sitting in a local store on auothN uode. The iufonllat.iolJ 

will eventually propagate to the global store and tItis will ll'SllllH' t.hl' lu.;k. 'l'hl' 

operation etell( c) is Ilot atomic, for example the agent ('tell( X == 1) Il ctl'll( X == 2) lllHy 

succeed even though tht' values of X are iUCOllsistl'ut. EVl'ntllally, tll(' billdillgs for X 

will migrate to the global store and the program will abOI t Iw('(tu:-.p tlll' iUCOll:-.isl Pllcy 

will be dctcctcd at that stage. This only happells with ('lTOlll'OIlS plOgralllS. 

Deep guards in concurrent logic programlllillg laugllag!'s al(' closPly relat('d t,o 

eventual tell. When a guard is cvaluated, the billdiugs it mak('f) are llot SC<'1l by tlll' 

other goals. This is likc making bindings in a loeal stOle. \Vh('ll the dause eOllllllit.:-., 

the bindings of the guard are made available to the 01.11<'1' goal:-,. This is likc lIligmtillg 

constraints from the local store to the global store. Thp local store of t.he gllanls th al, 

were not chosen will never migrate to the global store. Th<, ('valuatiou of Il gllltrd 

begins in a ncw local store so it does Ilot sec the effed of an old uwmeccssful gllILld. 

Weak Entailment Relations. SOIn{' constraints are hard to solve. Wc saw 

how the CLP implementation puts the hard constraints on a suspension queue. III 
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cc the same effect is achieved by weakening the entailment relation. We may wish to 

wait for more information before we infer a constraillt c even wh en the store logically 

entails c. For example, an entaihllent relation might be too weak to infer that X. = 2 

from the store X. * X = 4. The agent ask(X = 2) -+ A will be suspended even 

though the store logically elltails the constraint. Ask remains a stable operation, but 

the suspendcd asks may have to wait longer. The advantage is a greatly simplified 

implemcntation of the sol ver. 

Wc can algo l:iimplify the tell operations. Wc may wish to suspend a tell un­

til an irnplicd ask is cntailcd. In the implementation of naïve arithrnetic, aU ar­

guments to functions must be ground before the function can be applied. This 

cau be dOllc by iutroducillg implicit asks in constraints. For example, tell(X = 

y + Z) irnplicitly asks that Y and Z both be ground. This tell is equivalent to 

ask(integcr(Y) A illtcger(Z)) -+ teU(X = Y + Z). Implied asks can be used to test 

the types of operallds as above. Previously, a tell was either consistent and it termi­

nated, or inconsistent and the program faHed. Nowa tell may suspend because one 

of its implied asks suspends. 

Anothcr way to simplify the constraint system is to specialize the constraints 

to cithcr ask or tell but not both. An ask-only constraint can be used in an ask 

but not in a tell. Similarly a tell-only constraint can be used in a tell but not in an 

a..,k. Typically, value constructors are tell-only while type recognizers and component 

sclectors arc ask-only. 

Aborting infinitely suspended agents. If the store entails ,c, then the 

cOllstraillt c willllcvcr he entailed and the agent ask(c) -+ A will suspend fOl'ever. In 

SOllle constraillt systems it is possible to determine that ïC is entailed when checking 

to sec if the store allswers c. In that case, the implemelltatioll may wish to abort the 

agent to save storagc because this is obscrvationally illdistinguishable to an infinitely 

suspcnded ag<'llt.. 

Agents may answer their own query. An ask checks if its cOllstraint 

is C'lltailed by scnding a query to the store and waiting for the rcply. The sol ver 

will eventllally gct around to this request, and try to solve it. If the constraint is 
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entailed, the solver will reply with a message to resume the ask. If it l'calizes t.lu' 

negative of the constraint is entailed, it will reply with a lll('ssag(' to uhort tilt.' ll.~l\. 

Otherwise, the solver rem('mbers the requcst (01' a simplification of it). Tlws() l'<'<}\1('st s 

are reconsidered when more information is addcd to the aton'. 

The agent if. blocked waiting for the J'('ply thronghout. tIlt' tillll' t.hp 801\'('1' is 

working on its hehalf. While the agent sits idlc, tht' 801,,<,1' h:ul to fork a \\'Ol'kN 

thread to solve this constraillt. It sccms 1110H' pcollolllicai if thl' solwl' cOIIM horrow 

the thread of control of the agent instead of fOl'king a IH'W t.hn'ad. 1'11<' st on' is 110 

longer an active entity since the ag<,uts allsw('r their qtWl h's for t.h<'IllS(,\WS. Th is 

saves on the number of pro cesses as well as two intcrproC('SH COllllllllllicat.iollS !)('('1tIlSl' 

the request nced not be sent nor rcplicd. This is a COllllllOll tI'('huiql\(' ill n'llIo!." 

procedure calI implcmentatiol1s. 

Garbage Collection. As dcfined, it sceUlS the ston' WIll kp('p Oll ill('l'('ll.'iillg l>y 

the addition of new COl1straints. The solution is the sanw one fOlJlld iu LISP sysll'lllS 

The store should he garbage collected. Portions of the ston' !!,uarant (,(,cl HOt, t 0 11<' 

needed anymore can be reuscd. For example, the cOllstraillt. X < [) may !)(' dir-wanlC'<l 

if it is known that X < 2. Each constraint system will halldl(· this dim'n'lltly. Fol' 

some constraint systems, this may not he obvious at aU. 

4.4 Implementations of cc 

There are many implementations of cc languages. Most were Ilot conccived as iu­

stances of cc. The cc framework was born out of the att<'lllpt to uuify tht' IUHlly 

variants of concurrent logic programming languages. Ullclerstalldahly, most of th<'l'll' 

languages can be seen as instances of cc. One notable cx('C'ptioll is COllC'llrrcllt Pro­

log. The suhtleties of rcad-only unification and IIlcrgillg tht' t'IlVilOllllWUts call1lOt. he 

modeled in the framework. 

Janus is the first language specially designed as an instance of cc[SKLDO, 

SKL8D]. Janus has a dausai syntax doser to GHC than the cc syntax wp clcfilled 

here. The constraint system of Janus is designed so a constraint can never fa,il. 'l'Ill' 
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basic data types are hags, or multi-sets based on the theory of non well-founded sets, 

rational (infinite) trees and updatahle arrays. Janus has the two-occurrence restrk­

tion originally found in Doc[Hir86]: a variable can occur at most twice in a clause. 

Furthermore, the occurrences are dassified as either a toIler or an asker. A teller has 

write capabUity to a variable; an asker has read capability. Capabilities are consumed 

after ollly on(' use hut th('y may he passed as arguments without consuming them. 

Askcrs and tcllers arc crcated in pairs 80 an asker knows there is a teUer that may 

possihly installtiatc the variable, and the teller knows thorc is an asker rcady tû read 

the value it has produced. The two-occurrence restriction 8eems very drastic, nev­

ertheless, mûst logic programming techniques can he used in Janus. This includes 

produecr-cousumer interactions, short circuitl>, incomplete messages and messages 

iuto t.he future. Dags arc uscd to get mally to one communication. This makes it pos­

sible to write servcrs rcspecting the two-occurrencc restriction. Janus has a sequcntial 

implementation rtlnnillg on top of SICStus Prolog[Deb91]. 

The domain of values of the language 'Guarded Definite Clauses with Con­

straints' or GDCC is the set of rational polyuomials. !ts solver is a parallel im­

plementation of the Duchberger Algorithm. To the author's knowledge, GDCC is 

the first parallcl implcmcntation of a language specifically dcsigned as an instance 

of cc[Haw91]. The language Taskell described in the foUowing chapter is another cc 

instance implcmcnted in parallel. 
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Chapter 5 

The Programming Language 

Taskell 

This chapter describes the programming language Taskelt, a mcmlwr of the cc falllily. 

Each member of cc is charaderized by its constraillt system and it.s sd of ag<'1l1. 

combinators. The constraint system of Taskell is the set of fillite I.rc('s wit.h ('<lllali t.y. 

Taskell also has naive arithmetic on integcrs. The ag<,nt ('ombiuatOls an' pl'o('{,dlll{' 

caUs, Il for paraUc1 execution, new for exist<'utial cJoslln' aud choice fOl l'H'kel.Îv{' 

behavior. The main procedure declarcs the variables that an' priul<'d al, tlH' ('1Ie1 or 

the computation for the results. The syntax of Taskell is giV<'u in tif.!,Ill'(' 5.1, il. dosdy 

resembles the syntax used in chapter 4. After the language is <!<'s('rilwd, Hl<' las/' 

section illustrates its use with a set of samplc programs d<'lllonstratillg list pro('('ssil1g 

capabilities, tightly-coupled producer-consumcr relationships and non-cletl'l'Illillist.i(' 

processing. 

5.1 Definition of Taskell 

Tbe syntax of Taskell is given in figure 5.1. Symbols in the syntax have thl' followillg 

meaning: a word between (angle-brackets) is a sylltactic category, the c:haradpl' 1 

means 'or', the character é is the empty string, the ellipsis in (cat) sep ... s('p (cal) 

means either the ernpty str~lJ.g E, or (eat) , or else two or more (cat) s('parat<'d by 

36 

• 



{ 

sep. Other characters are in typewri ter font and appear explicitly in the prof;;ram. 

One of our design principle W8.') to minimize the use of special characters, there­

fore wc chose to spell the name of operators explicitly instead of using symbols. Non­

alphanumeric characters are used for punctuation only. We feel this makes Taskell's 

syntax easy to learn and remember. The following paragraphs discusses the rationale 

for our design. 

The following keywords are reserved: and, ask, begin, choice, end, in, isint, 

istree, new, or, proe, tell. 

A program begins in the procedure called main, so the body of main is the initial 

agent. One cannot send arguments to main even though it has parameters. These 

variables contaill the rcsults of the computation at termination and are printed at the 

end of t.he execution. Taskell does not have other 1/0 mechanisms. A procedure can 

have internai procpdures as in a nested-block language. Free variables in the body 

arc rcsolved with lexical scoping. A procedure body if') a single agent, possibly built 

from the parallel combinat or Il. The scope of the parallel combinat or is delimitcd 

by a pail' of cudosillg braces. The blaces are necessary to remove any ambigllity in 

the scope of new. It is possible to enclose a single agent in braces to ll1f1ke the scopillg 

more explicit. It is legal to al ways put braces after an ask or a new even t.hough thcy 

are not llecessary in a11 cases. The definition of a procedure with no ?L'guments needs 

the purcnthescs, e.g., proe fredO, which is called with an empty list of arguments. 

TIH' symbol Il approximates the parallel symbol Il. The symbol '->' in blockil1g 

ask is llleant. to point to the agent executed a/ter the constraint is elltailed. The gual'c1s 

in a choice are st'parat.ed by the sY1l1boi '+'. The plus sign denotes the union of possible 

('hoices available to the agent. A guard looks like a regular ask because if the guards 

arc aIl disjoint, the choice operator is equivalent to aIl these asks running in pal'allel. 

\V<' chos(' to \1S(' => in gual'ds instead of -> to remove some of the confusion createcl 

by tht' t.wo uses of ask. Usillg => also helps error recovery in the parser. Taskell does 

IlOt. have tell guards. but these cou Id be a future extension. 

The values in the d01l1ain are integers and finite trces. A fil1ite tree is macle 

up of a root HUille and a list of childrcn separated by commas. The root of the trec 
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(program) == proe main ( (var) , ... , (var) ) (p1'Ocs) begin (lLgent) end 

(proes) == (proc) (procs) 1 ê 

(proe) == proe (name) ( (var) , .,. , (var) ) ÜJrocs) begin (a!l(~lIt) end 

(agent) == (ask) 1 (tell) 1 (new) 1 (par) 1 (caU) 1 (choice) 
(ask) == ask( (ask-constramt) ) -) (agent) 
(tell) == tell ( (tell-constraint) ) 
(new) == new (var) , '" • (var) in (agent) 
(par) == { (agent) Il ... Il (agent) } 
(caU) == (name) ( (value) , ... , (value) ) 
(choice) == choice { (guard) + ,.. + (guard) } 
(guard) == ask ( (ask-constmint» => (agent) 
(ask-constraint) == ( (a:;k-constramt) ) 1 

(ask-constraint) and (ask-constmint) 1 

(ask-constraint) or (nsk-constraint) 1 

isint( (value) ) 1 

istree( (name) • (intcgc7') , (value) ) 1 

(value) = (value) 1 

( value) ) (value) 1 (value) )= (value) 1 

( value) < (value) 1 (value) <= (value) 
(tell-constraint) == ( (tell-constraint) ) 1 

(value) 

(tree) 
(var) 
(integer) 
(name) 

(tell-constraint) and (tell-constmint) 1 

( value) = (vaine) 

== ( (value) ) 1 (var) 1 (integer) 1 (tr'ee) 1 

( value) + (value) 1 (1Ialue) - (value) 1 

( value) * (value) 1 (value) / (value) 
== (name) 1 (name) ( (value) , ... , (value) ) 

== (name) 
== (digit) 1 (digit) (integer) 
== (alpha) 1 (alpha) (alphanum) 

Figure 5.1: The syntax of Taskell. 
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fred(10, X) is fred, its first child is the integer 10, and the second child is the 

variable X. A trce with no arguments is writtcn without parenthescs, for exal11ple 

fred is a nullary tree. Insidl' a constraint, a (name) is either a llullary tree or a 

variable. The compiler can determine which one because variables must be declared 

in a param<,ter list or in a new. By convention, variables start with a capital lcttcr, 

but this is not cnforcl'd. 

Constraints are always cnclosed in parentheses. And has higher preccdenee thall 

or. The multiplic::ativc opcrators (* and 1) have highcr prcccdcllcc thall the additive 

oues (+ and -). Ali arithmctic operators are left associative. One can use parelltheses 

to override the default preccdencc. The relational operators are <, <=, > and >=. They 

tnke two argunwnts and they eanllot fonu chains: 1 ( X < 10 must be written 1 < 

X and X < 10. 

Taskell has equality constraillts between two values, for example X = Y, X = 1 

or 2 = 3. Note that imposing the last constraint would make the store inconsist,ent. 

The flsk-only eOllstraint isint (X) can he used to ensure that X is an integer. The 

argument call be any value but it will be ll10st uscful if X is a variable. This cOllstraint 

suspends ulltil its argument is instantiated. 

Taskell implcments naïve arithmctic through binary funetions. These functions 

take two intl'ger a:guments and return an integer. There is an implied ask on each 

arguIU(lnt to guarant('e they are both integer. For example, the agent tell (X :;: y * 

Z) is equivalent to the agent ask(isint(Y» -) ask(isint(Z» -> tell(X = Y * 

Z). The implied asks ellsure that arithmetic is always performed 011 groulld integer 

values. The relatiollal operators expect thcir arguments to be intcgcrs. They have 

similar implicd asks. 

The ask-only cOllstraint istree (r, n, t) is cntailed only if t is a tree with root 

rand its arity is n. This is a restrictcd form of existential quantification equivalcllt 

t.o 3At, ... , AA t = r(At, ... , An). Taskell does not have this fonn of cxistential quan­

tificatioll. Istree contains th(' arity explicitly to distinguish between trees with the 

saUle mot llame but differcllt arity. Note that the arity must be an integer constant, 

it canllot be an intcger valued expression. 
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It is possible to croate cyclic structun's in Taskell. Tht'sc cau cn'lltl' illtinitl' 

loops in the run-time system. The following agrnt demollstrat.es t.lH' prohl('lll: 

new X, Y, Z in 

{tell(X=f(X» 1 1 tell(Y=f(Y» 1 1 ask(X=Y) -> tell(Z=1)} 

The first two tells succeeds because X and y are unbonnd, but tlH' ask willloop t.ryill/!. 

t.o check if X=Y 1S entailed. 

Taskell is obviously an instance of cc. It cau also bl' vÎl'wl'd as a ("OIll'IllT('ut 

logic programming language. The language closcst to it is Flat. GllalCll'd lIom ('1:\lIsl':-' 

Taskell is fiat in the sense that guards cau only be a ('onjulld,ion of systl'lll COli:.>! minl:-" 

there are no procedure calls in guards. A disjullct.ioll in a gllalll call Ill' vit,\\'(·d élS 

a short-hand for two guards with the samc guan!<'d ag('ut. Taskell'1'> lIuilil'atiolJ IS 

uot atomic, bindings arc made as tilt' unification proct'elb. Thi~ di~tiHdi()1l is Hill. 

as important &'i in FGHC because it should ouly 1)(, visi!>l(' in ca.-;(':'> II'1ulillg 1.0 illI 

inconsistent store. These programs arc cousidcred errOll('()IlH alld will 1)(' abolI 1'(1. 

5.2 Examples of Taskell Programs 

This section gives a feel for programming in Taskell by listing Home snlllple proglallls. 

The cxamples include an appcnd procedure, a Illcrge of two lists and tlU' COllstl \l('I,ÎOII 

of an admissible list. 

The first program demoustratt's simple list hauclling capahilitil'S, it compul PS 

the result of appending the list (1) to the list (2 3). The Illlswer il'> Ans = cons (1, 

cons (2. cons (3, nil») which is thc full fonn of the lil-lt (1 2 3). Append 1.('1'>1 ~ 

its first argument, if it is nil it stops immediatcly, if it is a COliS ccll, it lllUlll'S its cal 

and cdr Xl and X2, puts Xl in thc lesult and caUs itsclf recursively. 

(* A program appending the listel) and (2 3) .) 

proc main (Ans) 

proc append (X, Y. z) 
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begin 

end 

bagin { 

} 

end 

ask(X-nil) -) tell(Y-Z) 
Il &sk(istree(cons,2,X» -) 

new Xl, X2, Zl in { 
tell(X-cons(Xl,X2» 

Il tell(Z-cons(Xl,Zl» 
Il append(X2,Y.Zl) 

} 

append(cons(l,nil). cons(2,cons(3,nil», Ans) 

Thc second program is a dcmonstration of tightly couplcd interaction bctWCCll 

agcnts, it is inspircd by a similar program in [Sar89]. The problcm is to compute an ad­

missible list, i.e., a list made up of pairs (X, y) represellted by the tree cons3(X, Y, Z) 

wherC' Z is the rest of the list, with the following properties. The second elemcnt 

of a pair is twice the first clement: Y = 2 * X. The first elemcnt is threc times the 

spcond clement of the previous pair: X = 3 * previousY. The double procedure 

looks nt one pair at a time aud sets the value of the second clement to twice the 

value of the first clemcnt. It docs that for aU pairs in the list. Thc triple proce­

dure illspects a pair and expallds the list if the clement has not exceeded a threshold 

(30000). Thc main procedure for!\S three agents, one to guarautee the doubliug re­

quin'llleut, one to guaralltee the tripling requirement and one to illitialize the list. 

This progralll will cont.illuously switch bctween thc double and the triple agents. 

The double ag(,llt. lwcds the first el('mellt bcfore it can compute the second clement, 

and triple llccds the second elelll(,llt bcfore it cau decide to expalld the list or not. 

'1'11<' illlswer is L = cons3(l, 2, cons3(6, 12, cons3(36, 72, cons3(216, 432, 

cons3(1296, 2592, cons3(7776, 15552, cons3(46656, 93312, nil»»») 

(. A program to compute an admissible list .) 

proc main (L) 
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proc double (L) 
begin { 

ask(istree(cons3,3.L» -) { 
nev X, y, Li in { 

tell(L-cons3(X,Y.Ll» 
Il tell (Y-2*X) 

} 

} 

end 

Il double (L!) 
} 

proc triple CL) 

begin { 
new X. Y • L1 in { 

tell(L-cons3(X.Y.Ll» 
Il ask(Y<30000) -) 

} 

} 

end 

nev Yl.Z,L2 in { 
tell(Ll-cons3(Yl.Z.L2» 

Il tell (Yl-3*Y) 
Il triple (Li) 

} 

1 1 ask(Y>-30000) -) 
tell (Ll-nil) 

bagin { 

} 

end 

double(L) 
Il triple (L) 

Il new S.U in tell(L-cons3(1.S,U» 

The following program is the standard example for the ncpd of choice, it tl':-.t:-. 

a merge procedure by merging a Hst of oucs and a Hst of twos. Thl' pro(hH'er bllild.., 
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a list of Max length by repeating the value in Id. If the desired length is attained it 

stops the list, otherwise it adds a copy of Id to the list and caUs itself recursively. 

Once the two producers in main have terminated, Li will be a list of twenty 1 's, and 

L2 will he a list of thirty 2's. The mergc procedure can stop as soon as one of the list 

is cxhausted. Othcrwise it Ilon-dcterministically picks onc list with an available cons 

cclI, adds the ecU to thc rcsult and caUs itself rceursivcly. Merge flips its argument in 

an attcmpt to bc morc fair betwcf'n the two lists. The producers construct the lists 

as they arc merged, but merge will never get ahead of the producer since the istree 

guard will suspend until the cons cell is available. 

(* A pro gram to merge a list of ones with a list of twos *) 

proc main (L) 

proc producer (N, Max, Id, L) 
begin { 

} 

new Li, NN in 
choiee { 

} 

ask (N)Max) -> tell (L-nil) 
+ ask (N<-Max) -> { 

} 

tell (L - cons(Id, Li» 

1 1 tell (NN • N+i) 
Il producer (NN. Max, Id, Li) 

end 

proc merge (L1, L2, L3) 
begin { 

new Lll, L22, L33, Item in 
choice { 

ask (Li - nil) -> tell (L3 • L2) 
+ ask (L2 • nil) -> tell (L3 • Li) 
+ ask (istree(cons,2,Li» -> { 

tell (Li • cons(Item,Li1» 
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begin 

end 

} 

} 
end 

} 

Il tell (L3 - cons(Item, L33» 
Il merge (L2, Ll1. L33) 

+ ask (istree(cons.2,L2» -> { 

} 

tell (L2 • cons(Item,L22» 
Il tell (L3 • cons(Item, L33» 
Il merge (L22. Ll, L33) 

new Ll, L2 in { 

} 

producer (l, 20, l, Ll) 
Il producer (l, 30, 2, L2) 
Il merge (Ll, L2, L) 
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Chapter 6 

Implementation 

The implementation of Taskell has to address two issues: how is the specifie eonstraint 

system implemented and how are the process eombinators implemented? 

The impleIllelltatioll of Taskell is written in Concurrent ML, a language based 011 

message passing bt'twecll concurrent sequential processes. The Taskell compiler takes 

a sour('(~ file and produtcs a Concurrent ML program in another file. The compilation 

proceRH is described by the mapping from the source language to the Concurrent ML 

illtermcdiate codt'. 

Many issues in this chapter depends on the specifie constraint system of Taskell. 

For example, since the constraint system of Taskell is equational, equivalence classes 

play an important role. Agents may suspend for two reasons: they may wait for a 

vnriablt' to be illstalltiatcd, or for two variables to he merged in the same equivalel1ce 

class. 

The naive arithmctic operators of Taskell are value returnil1g fUl1ctiol1s with 

implicd asks on thcir arguments. This unifies the treatmel1t of arithrnctic in asks and 

tdls. 

Our impl<,mentation solves both asks and tells in parallel. Because of this, vari­

ables arc implemelltl'd as proccsscs with a protoeol between agents and hetween other 

variables. Tht' protocol is motivated and described. A variable process implements a 

set of variables that have becn equated, we calI this set an equivalence class. FinalIy, 

wc giv<, the unification algorithm used by agents to solve ask and tell constraints. 
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1 6.1 Implementation Issues 

Amount of parallelism. In choosillg the architpctnre of t.1H' imph'llH'ut.at.ioll, tIlt' 

amount of parallelism is a k('y dt'sign decision. Th(, ag{'nts ('x('cnte in pa 1<\ 11('1 nud 

they aH access the shared store. Ch'arl)', paralklism in tht' store 0lwratiolls is wry 

important. We will concentrate on ask and tell sinc(' othpr st(ne opt'l'atol's an' jus! 

variations of these. Therc arc diffcrent options dep<'l\diug ou how many asks and t.l'!ls 

we solve in parallel. 

The first option is to scrializ<, aIl asks and t<'lls illtO Olle stream of rt'qIH'H(,H. 

Inside the store is a proccss that reads t.he rf'questH OIl(' by one and cxecu!.('s I.llc l lll 

in order. Some reqnests can be solvcd immediately, ot.hprs havp t.n wail. in '1\1('\1('1'>. 

Solving a rcquest may rcactivate other rC<}l1rsts whieh an' t.1H'1l <lt-qIlPIlPc\ and solvpd. 

The whole request is the atomic action except that quc'ued n'quest.H ma)' dt'IiI\(1 il 

sma11er atomic action. Serialization may 8celll 8t.rallge for a l'OllCnrn'llt. lallgnagc' lml 

it is the most sensible thing to do in a simulation Wlittrll in a. s('<{m'utial langll1\W'. 

For example, QDJanus fits in this category. Scrializatioll is aIso Ilseflll for C!<'hllggillg 

purposes. 

The next option is to run agents in parallcl and solve llluitipl<, a.';ks COIlCIIl1'('lIl.Jy 

with a single tell. Tell requests arc lll('I g('{l iuto a single 8tU'am to 1)(' n'ael by H 

pro cess in the store as above. For au atoIUic tdl, an agl'ut lllllSt bloc\{ \lutH its 1,,11 

rcquest is processed by the teller. Evclltual t.pll is achipv<,d if t.he agclIt. cOllt.illllPS 

immediately after inserting its tell H'qlwst iuto tll<' htl'<'alll. The local Hl,Ol(' is t.llI' 

stream of requests and consi~tency is chccked later hy t11(' t"l1('r wh('11 it n'adH t.ltal 

request from the stream. Ask requests arc couecptually :-,o}wd hy the' Hto1'c, huI. silj('(' 

a,n asker is blockcd ulltil the coustraiut is eutaihl, tlt(' !>torc cau borrow the nskt'r's 

thread of control to solve the rcqu('~t. The elHl result is that ageuts solve tlwi1' {)WII 

ask. An ask checks the entailmcllt of a ('ou:-,traillt, il, clocs 110t chang() the stow. If i t. 

needs to modify the store in order to carry out au iufereucc, this call be dotte in 1t 

local environment which will be discardcd lat.er. We expect au ask willllot clbt,lll'b 

the execution of another ask rUIlning concurrcntly, hence aIl askcr does uot have tu 

worry about the execution of other asks. This lcavcs the a . .,ker to worry about t.h(~ 
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execution of the tell. The tell may change the store as the asker is trying to solve its 

constraint. You need a form of atomicity in the actions of the tell so that askers can 

aceoullt for a changing store. 
Atomicity. The most interesting approach is to solve both asks and tells in 

parallcl. This [('quires locks as can be seen by the following example. Let Al be the 

agent tell (X=1) and let A2 be the agent tell(X=2). A trace of the agent Al Il A2 

lllight be: 

Al: determine the value of X is Unbound 

A2 : determine the value of X is Unbound 

Al: set X=l 

The store should be inconsistent but this was not detected. One must be careful with 

locks because it is casy to faU into deadloc\cs. A lot of the complexity in the solver 

illvolves atomicity issues. The section on the implementation of variables will discuss 

mally small problems encountered in trying to solve asks and tells in parallel. Many 

details ronccrn the atomicity of operations on variables. 

Suspension mechanisms and consistency. The following discussion is only 

ll1üalliugful for (lqualit.y cOllstraillt systems. Agents may suspend for two killds of 

equalitics to 1)(' elltailed. The agent ask(X=2) lleeds the value of X ta check it against 

th<, value 2. Compare this to the ag('llt ask(X=Y). The constraint X=Y may be entailed 

if X aud Y have no value but are bOUlld to each ot.her. That is why the solver separates 

t hl' suspension requests in two categories: 

• An instantiation suspending agent for the variable X suspends until X is instan­

tiated b('cfiuse the agent llccds the value of X . 

• An cquatwn suspcnding agent for the variable X suspends until X is equated to 

auother variablt.' Y. This will happen if the equivalence c1ass of X is merged with 

the rquivalence c1ass of Y. The value of X can be equal to the value of Y even if 

the class of X is not equaI to the class of Y, 50 the equation suspending agents for 
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X, are resurned when X is instantiated. An ageut rcsulllt'd b('caUSl' tIlt' variabh' 

X was instantiated will probably choose to bCCOIlle au iustalltiat.iou SllSPl'llllillg 

agent for Y. 

There are sorne alternatives wh en impll'Illputillg ask. In t.he first, altt'lllat.iw, 

the constraint is checked for consistcncy in dppth-first fa .. .,hiou. A snb-plOIMlll is 

solved cornpletely before another sub-problelll is attack('(l. Thp askpr lllay I>llspl'lld 

waiting for a variable to be illstautiat('d or waiting for two variabh's tu hp l'qnalt'd 

evell though the rest of tht' cOllstraillt is cll'arly llH·onsil>tt'llt. For ('xélmplt', t,al\(' 

the agent ask(p(X,1)=p(2,2» -> A WhCll X is lIuho1\ud. Till' HI'coud arglll Il l'Il 1 

of p obviously coutradicts the cqllality constraint, but this ag('Ilt will 11('\'('1 t.h('ll'sS 

suspend waiting for the valuc of X. The semanties of cc HUS)H'1111s this w"k infinill'ly, 

so the behavior is correct but wc lllay takc more Splt('(' thall 1\('("('HI>111 y, l'hl' advallt agI' 

of this scheme is that it is easy to progralll. Till' hlock('d a . ..,kl'l ll11plidt Iy l<·llll'llllH'u .. 

what sub-problerns remain to be solvcd in the cOllstraint. \VIH'll il. i), )('Slllll('(ll)('("l\lI!"1(1 

its waiting condition is satisfied, it simply continurs wht'l(' it kft. off. 

The second alternative tries to find possible incOllSisl('uri('S a:-; soou 11."1 llossilJt(·. 

At the end of the consistency chet'k, thcre l't'mains a li1->t of Muh-probl!'llls t.hat. WPl'l' 

not solved because they would have blocked. Thrn' is a dlOict' for which \'ill in 111<· 

to suspend on. One can choose the first \'ariahlt· in tilt' fir~t. sllh-PlOhll'lll, lm\. Ot\lI'l 

variables of intcrest may become instantiatt'd b('forc that OIH' wliich lIIay 1('W1<'1 titi' 

constraint inconsistent. This cannot he recognized illllll<'diat<'ly ),iIW(' Iht' 1>l()("('SS is 

waiting for the instantiation of the first variable. In that. cas(" it is IUlld t,o jll~t.iry 1 hl' 

effort spent in the first phase wh en chcckillg the consistclIcy. Ou(' CHII (li:-,jUlldivp)y 

wait on aU the variables in the unsolved sub-problcllls aud rl'i"lUlll<' <I.e., ~()()ll as Oll of 

those is instantiated. Then one must reconsider the sub-prohlems iu which th(' ll<'wly 

instantiated variable appear. 

One has to balance the advantage of aborting an agC'ut parly throllgh UH' d('­

tection of sorne inconsistency and the work performed ln fiud the illeowüsten('y. FOI 

that reason, Taskell's implementatioll follows the fil'f-it seheme. 

Naive arithmetic. The operators in naive arithmdic wait \lntH their argu-
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monts are instantiated before they compute the result. This is donc by implied asks 

on the arguments. Thcre are many alternatives for how to handle the impIied asks 

and returning the rcsult. 

1. The naive arithmctic operatols like + are data constructors. Asks and tells must 

haudl(' the implied asks themsclves. This complicates solving asks and tells 

unnecessarily specially for tells because they must be ready to suspend if an 

implied ask sUfopeuds, wh creas they cou Id not suspend before. 

2. The naive arithrnetic operators are constructors and the implied asks are C0111-

piled in place iuto explicit asks. The compiler must know the implied asks which 

makc them harder to change. This has the oth('r disadvalltage that it increases 

the program text. 

3. The naive arithmctic operators are functions that perform the implied asks and 

rcturu the result of a construetor ta dcseribe the constraint. The asks and 

tells must handlc t.he constraint themselves but they are casier to solve sinee 

the impli<,d a.",ks are guaranteed to hold. This is how Taskell handles relational 

opcrators like <. 

4. The naive arithmetic operators are funetions that perform the implied asks and 

return the arithmctic l'l'suIt. The treatment of arithmetic is uniform for bath 

asks and tells b('cause they never sec the arithmetic operators, they only sec the 

integcr r('sults. This assunws the arguments to functions arc evaluatecl before 

tht' fUllction is applied, which is a reasonable assumption. Taskell uses this last 

altC'rnativ<, to implclllcllt naive arithmetic. 

Compound constraints. Taskell has conjunction in bath ask aud tell and 

disjunctioll in ask. Tll<'se are easy to implcmcnt beeausc t.hey can he rewrittcn sim pl.)' 

in terms of other ag('nts. The agent ask(c} and C2) -) A cau be implemented \Vith 

ask(c}) -) ask(c2) -) A. The ag<,nt ten(c} and C2) can be implementecl \Vith 

tell(e}) Il tell(c2). Disjunetion in ask is similar to a choice with the same agent 

in all the bralldll'S, i.e., the ag<,nt ask(c} or C2) -) A can be implementecl \Vith 
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1 choice { aSk(Cl) => A + ask(c2) => A}. Usillg tht' l'wqlH'utiality of tlll' tillgl'! 

language, this simplifies to choice { ask(cl) => 0 + ask(cl) ::;) O}; A wh('\(' 

o means do nothing. Taskell do('s Ilot ha,'c disjuudioll in \t'll {'011stmiuts lH't'a\l~\' lt 

would need disjunction in its constraillt sYSt<'lll. Disjuuctioll is tl'US ('aunot IH' l'a:-.ily 

rewritten in terms of othf'r agents. 

6.2 Overview of the Implementation 

The implementation of Taskell wellt through sorne changes. Tht' stntly of qD.JtIlIII:-i 

was beneficial but it is sequential and wc wanlt,cl a parallt'I impl{,llll'ut.nt.loll. At. liI:-il. 

we decided to solve asks iu paralld and tells SC(}lU'utially. Tlu'n' was il P\'O('('S8 call1·t! 

the teller. Agents sent their tell rcquests to the t-dh'r to he solVl'd. TIl(' t.dl<'l' was a 

sequential process so therc was only one tell performed at êl tiUH'. A val'iahlt, was élll 

ML reference bccause its value ll('cdcd to bc changcd al. the t.illH' it. was inst.itul iale·t!. 

The value could also be challgC'd without installtiatiou 1)('('(\IlS(' au \Il1bO\llld V;\1 iahk 

contained a list of agents waiting fOl its iustautiat,('d valut'. CML ('0111<1 /!,II<IIHIlI!'(' 

atomic assigllmellt in the following smse. If au aJ-ikpr reads il \'ariahll' wltih' a 1,,11('1 

is assignillg a llCW value, thC' askcr would 1'('ad tilt, 01d or th(' U('W valtH' bllt. lIO\' il 

mix of the two. The teller also handlps H'qucstl:> to susp<'uc) ullt.il a. SIH'dh,.l variabll' 

is instantiated. The teller would ha\'(' to reSUlllC th<'sc ageuts I)l'caus!' il. iH t II(' ollly 

pro cess that can illstalltiate a variahle. 

Unfortunately, refereuccs are Ilot guarallt<'('cl to work in tlu' paraJlpl illlP}C'IIII'IJ· 

tation of CML, the atomicity of assignllH'ut is simply Il sidc,-<,m,l't of 1.1)(' ('11111'111 

sequential implernclltation. The atomicit.y ('oul<1 Il<' gnanmt('('d wit.h t Ill' \1:-'(' of I()('k~ 

on variables. Unfortullately, locks are not built. illto CMI~, tlH'j' lllll:-'!. 1)(' Hillllllall'd 

with processes. This llleaus, you scud an acquin' reqlH'st to t hl' lock, do tlj(' 0P('\fLl,ioll 

on the variablC', and the11 !·wud a I"elea.<;(' n'quest to th(' lock. SiIlC'e il Val Ilthl<- lI('('d~ 

a process, wc could put the statc of the variable in the PI'O(,(':-'S alld kt it lC'sJl()wl 

directly to requests for variable operations like get_value aud set_value. 8il((,(' a 

variable process is scqucntial, therc wou Id only be one \'(~CjIlP1>t (,Xf~('Utl'r1 al. a lillll', 
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Figure 6.1: Separation into modules 

giving the same effect 88 a lock. The new scheme gives us the apparat us we need 

to solve 8.'iks and tells in parallel, we can expect it will work on distributed melllory 

parallel machines because it does not rcly on unsafe properties of references. 

The Taskell compiler reads a Taskell program from a file and pro duces a Cou­

('lurent ML program in anuther file. The program can he l'un by loading it iuto CML 

with the Taskell run-time system already loaded. The compiler is made up of a scau­

UN, a pa.rscr and a code gellerator called the translator. The run-time system is made 

n}> of tht' solV<'l' and a module implelllenting variables as threads. Figure 6.1 lists the 

modult's in tilt' impl('lllentatioll. The Domain module describes the types of values 

aud th(' l'ollstraillts 1.hat l'orm the constraillt system. The Utility module contains 

\lsdnl fUllctions like member that arc not in the ML library. Figure 6.2 describes the 

d<'lH'udeucÎes betw('('n the various modules, From the figure, we see the compiler and 

the l'lm-time system are somewhat indepcndellt. 

6.3 Concurrent ML 

Concurrent ML was designed recently by John Reppyat Cornell Ulliversity[Rep90, 

RepUl]. It is a superset of Standard ML of New Jersey that supports concurrellcy 

and coullllunicatioll between processes. The eurrent version timeshares a single UNIX 
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UtilUy 

Figure 6.2: Depelldellcies betwe<"ll llloduh's 

process for aIl Concurrent ML thr('ads. A truly parallpl \'t'l'sion ntllUÎllg Olt Il mlllt j­

processor is undcr way Whcl1 it b('COllWS availahh" W{' illltolllatically lJa\'l' a pmiliid 

irnplementat.ion of Taskell rtllluillg on a parallrllllachilH'. 

Standard ML is a higher-order polymorphically ty!H'd lallguavp origillat iug t'r{)lll 

Edinburgh[MtH90, Mt91]. Type illf('rru('(' makeH tyP{' cI('dilIa! iOUH Imgdy 1I111I('('P,'i­

sary while remainillg strongly typed. This baveH Cl lot of t,in\{' in plogllllllllliug bllt 

may make error nwssages hard to ullderHt.and. ML (,olLl-listl-l of a [ulIctiollal and 'Ill illl­

pcrativc subset. 110st variables arr giV<'1l a vah\{> through billcliug, th(' v"bll' or t hl'h(' 

variables cannot b(' ('hallg<,d aft<'f it iH bOllUd. AHHigllllj('Jlt b allo\',;('<! ou Val ialJI"s bill 

t.hey must be declar<·d of type re!. Variabl('s of type ref an' call<'d 1 ('f(,\ <'W·{'S. 

Concurrent ML if> uuilt arOlllld the lllocld of CO III 1111 J1licat illg :-.('ql\('llt iit! pl ()('(':-':-'(':-' 

and message passing. COlllll1Ulli('atioll is !-.yuC'hrouoll!-., U', il M'ud 01 a l('('piv/! blc}('b 

ulltil its partner arriws, CML pro('('!-.S('l-> aH' en'at('d <lyu:unÎ('ally. ~l(':-,:-,a!!,{':-, il Il' 

sent on Challll<'l!', that are abo creatpcl dYlléll1li('ally. It i~ po:-.:-.iIJll' 10 ~('l1d c1UlIllI<'!:-' 

in messages, makillg the collllllunicatioIl IId WOI k highly dyuéll1li('. FUJt.lH'llll()J(', Ut<' 

communication operations arc fir~t-dass ·/alu('s. It is pO:-'~lhl<, to b\lil<l (ksnipti()l1~ or 
protocols and exccute thrlll latcr, and ('WH sf'ud tlH'lll iUollllCl. This ty)lP of valll!' i:-. 

called an evcnt. Executing au evellt is callcd bYllchroniziug ou ail l'wut aurl is <1011<' 

with the functioll sync (evcnt). One advautage of {'Vf'llts i:-. the ad<lpd l'x}Jll':-.:-.iv<' 

power of the selective communication in Concurrent ML for which tll<' set of dHJin':-. 
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ean he computed dynamically. This is in contrast to Ada in which the set of choices 

in a selcct are frozen at compile time because it appears textually in the program. 

Occam's ALT statcmcut sharcs the same limitation. Communication as a first·elass 

value is thc topic of John Rcppy's Ph.D. thesü.[Rep92]. 

CML redaim!-. proC('hb('S a.<; part of it& garbagC' collection. A process is reclaimccl 

if it is hlock(·d ou a chauud, and no oth('r active proccss has access to that chan11el. 

TIlC'se pro('('S1>PS wOllld block fOl ('ver becausc ther(' can ncver be a proccss available 

to fonu the COllllcetioll. PlOCC&S rcclamation simplifies Plogrammiug becausc the 

programmer is rdi('v('ù from terminating those processes explicitly. \Vithout l'cela­

matiou, terminating proceSS('S wOllld be difficult bccause CML do('s Hot have an 

I\,I>0rt fotateUH'nt: a proccss ('an terminate itsclf but it cannot abort oth('r processes. 

CML proC(\SIlPS are implellH'nted with continuations. Proc('ss creation and task 

switchillg arl' particlliarly efficient in CML, contrary to other continuation based 

concurr('llCY schemps. The lllemory organization of CML puts cycrything on the 

henp and this makps a caU with C'urrent continuation a coustant time operatiou. 

The lllodul(\ syfotem of Standarù ML is based on the concepts of st.ructures, 

sigllatur('s and functors. A modules is a structure, the intrrface of a module is a 

signature. A siguat.ul'<' is the type of a structure bccausc it givcs the type of th<.' 

compollC'uts of th<.' module. A functor is a parallleterizcd module, it cau be applied 

to arguments t,o yidd a stIUcture. These narnes werc chosell by analogy to thcir 

mat}wlllatical llH'allillg. For exar;Iple, a functor is a form of highcl'-order function, 

heuc(' its uallle. Fuuctol'S are compiled OUCC, but can be applied any number of till1l's. 

To implcll1Cllt scparate compilation, you write aIl your modules as fUllctors and you 

apply tlWlll to lillk your application togrther. 

\Vc chose COllcurrent ML for thp implem('Iltation of Taskell because it is a very 

high lcvel fuud.ioual language wit.h novel communic., tion facilitics. \\le have greatly 

simplified thl' illlpll'IlH'utatioll by choosing Coucurrelh ML as the target lauguage of 

our translator. ~lallY featuf(\s of Taskell are inherited from similar f('aturcs of CML. 

lu part.icular, Taskell's lexical 8coping, procedure caBs, garbagp collection, proccss 

mallag('lllellt, sYllchrollization and tcrmillation detection aIl come from CML. Other 
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fcatures of Cl\t1L not shared by Taskell Wl're also USt'ful. illcludillg COllllllllllil'at ion a~ 

first-class values and illterproress commllllication. 

6.4 The Taskell Compiler! 

The Taskell compiler is nutdp IIp of a scalllll'l., a parst'r and Il co<1(' gt'lll'rator ('albl t hl' 

translator. The parser requests tht"' tokPllS from thp SCélllll<'l' 011<' at Il tinH'. 'l'Ill' pal:-'('I 

uses recursive dc&ccnt to ouild an abstraet sYlltax tn't'. TIll' (,olllpll'tt' 11'1'(' is :-'('111 1 () 

the trallslator, whi('h uses a trel' walk to translatt' it. to Coucurreut i\lL ill 011(' pa,>s. 

The parser tril's to rl'cover from ('rrors by lookillg alH'ad fOl t.h(' C'X)wctl'tl t okt'II III 

somc synchrol1izing tokl.'ll. Till.' eIï'or n'covt.'ry is ha.<;pc! ou t III' l'XCl'pt iOll lll(·cll1I Il i:-'1l1 

of Standard ML. The scanuer and parSl'r cau print ddH\!!,gill!!, lIlPssap,('s il' a lia!', is ;\ 

tumed on. 

The compiler maps Taskell features to CML fl'atI\lPs. Figllll' G.3 gi\'l':-' tll<' 

correspolldellce oetweell thelll. Most itellls an' st'lf explanatoty ('x('Ppt. ['or ail a).',\' Il 1 

continuation: this i8 whcl'{, a blocking ask will rt'SllllH' if ils ('(ltl:-.lwil1t is ('lIlnil('(1, FOI 

examplc, the agmt continuation of ask(X=l) -) A is Iht' apPll1 ..1. All H).',('llt. i:-. d 

proccss evaluatillg an CXPl'{'Sr-.iOll, whill' au a!;('llt t'out inua! i(l\l is HIl <,Xl)! ('S~.i()ll ! ha t 

may he cvaluatNl by an agent. CML has cont.iauélt iOllS, hut tlll'Y 111'<' ilOt. IH'('(':-'SHI y 

in this case bccause À-abstraction is sllffiril'ut. 

Figures 6,4 to 6.6 show in detail th(' tran~latioll s('hp!Uas applit'tl by t Il<' t mw",l'l­

tor. T is the translation function froUl Taskell to CML. Tlu' (,()lIlpilp!, lIas ('lJl1ival<'111 

schemas from the abstra('t syntax tn't' to CML. TIH' f\ludion T ou 1.111' ]('ft. band 

side expands to the right hand ~ide. The fUllctioll T OH tilt' IÏ!;lIt Imud hidl' hl and:. 

for the result of applyillg T to thr arguIllf'ut. Chara('\('r~ III typewrl ter f01l1. aplH':t[ 

explicitly. A word in da lies stands for SOIlle cou:-.tru('t. \\'ouls III zlalu'.'I 011 t.lt(' 1 igld 

hand side stand for some string tak('ll flOm the algulll('lIt of T 

AU clements of the domain have type value once in CML. 'l'III' value data 

type is shown in figure 6,7. The constructor Tf('e has tIlt' tyP(~ value. Iutt'g('I:-' 1I1C' 

lThe scanner and parser werc illspired by the SIL rOInpi!('r written hy Prof. Lau1Ï(' IIf'lIdl!'u. 

54 



e" , ... 1 Taskell ICML 

program structure 

procedure definition funrtion defillition 

agent thread 

agent continuation À-expression 

Ilew let ncwvars in ... end 

ask fundion calI to ask 

tell functioll call to tell 

choice functioll calI to choice 

procedure call function call 

paraUcl combinator series of spaWllS 

constraint data COllstructors 

naive arithmetic fUllction caIls 

Figure 6.3: Corrcspondence betwecn Taskell features and CML fcatures 

wl'apped in the COllstmctor Int to give them the type value. Variables are also of' 

tyP(~ value h('CIUlSe tl1<'Y cau be uscd whcre constants cau be used. The COllstructor 

for variables is Var. It is not vl~ible in figures 6.4-6.6 bceause it is hidd(,ll in the 

f\ludiou ne". The coustructol' FN in the schema for Il and the COllstructor Names in 

tlw Sdl<'llla for maln arc uc('ded to correctly iufer the types of their argulllent. The 

request data type is explaÎlH'd fully in section 6.6. 

Th(' trallslator outputs a structure caHed Prog containillg two functions. The 

fUllctioll main is the trauslatiou of the Taskell program. The function run is needccl 

to start executioll of main. A CML program is started by calling the fUllctioIl doit 

with two arguull'nts, tht' fin;t a~ gumeut is a fuuctiou to be cvaluated by tlw initial 

proCt'ss, it takt's no arguIlll'nts and rcturns no value. The secoud argument is the timc 

slÎ<'t' fol' pn\('lllpti\'t' schedulillg. CML requires a function likc doi t because it is Bot 

rt't possibl(' to challg(' the l'ead-cval-print loop in Standard ML. The Taskell program 

is startt'd by l'alling Prog. run O. The appendix shows the output of the compiler 
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T[proc main ('Ill , ..•• 'lin) procs begin A end] _ 

structure Prog -
struct 

local open Domain Solver in 
fun main () • let 

in 

end 

val 'Ill - newO 

val Vn - nev () 
T(procs] 

T(A] 

fun run _ • 

end 

end 

RunCML.doit(main, SOME 20) 

T[procl' ...• procnJ == fun T[procI1 

and T(proc2J 

T(proc name(vl, •..• vn) procs begin A endJ _ 

name(ul • ...• un) • let 

Tlprocs] 
in 

T(A) 
end 

Figure 6.4: Translatioll schemas for pfo('C'dllll·S. 
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( 
T[ask(c) -) A) == ( ask(T[c); 

T(A) 
) 

T[tell(c») == tell(T(c) 

T[new V). • •• , Vn in A) == let 

val V) - nev 0 

val tin - new 0 
in 

TlAJ 
end 

T[{AI Il ... Il An}) :: ( fork (FN (fn 0 -> T(Al); 

) 

fork (FN (fn 0 -> T[An-ll> l 

T[An» 

T[choiee {ask(cI) -> Al + ... + ask(cn ) -> An}) = 
choiee [ 

(fn (ev) -> (guarded(T[ct). ev); T[Atl», 

(fn (ev) -> (guarded(T[cn ). ev); T[An)) 
] 

T[1larne(at • ... , an») :: name(T[al), ...• T[an) 

Figure 6.5: Translation schemas for agent combinators. 
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T[isint(e)] == IsintCT[e]) 

T[istree(r. n. e)] _ Istree("r ll. n, T[c]) 

Tl integer_constant] == Int (integer_constant) 

T[name(al • ...• an)] == Tree("name". n. [T(ull ..... T[a,,]]) 

Tl name] !E name 

Figure 6.6: Translation schemas for COIlstraÎllts and valtu's . 

.... 
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datatype value = Unbound 

Bool of bool 

Char of string 

Int of int 

Tree of string * int * value list 

Var of variable 

and variable = Variable of request CML.chan 

Figure 6.7: The ML datatype for Taskell values 

011 two clifferent programs as well as a trace of their execution. 

6.5 The Run-time System of Taskell 

The translat.or outputs calls to the functions: ask, tell, new, choice, fork and 

answer. These an' defined in the solver and imported by the statement open Solver. 

The IJrogram produ('ed br the compiler is not functional, as can be expected since it 

clost'ly resC'mbll's the sourcc program. The following paragraphs describe the CML 

fllllctiollS t.hat are 11s('d in the translation schemas. 

The fllnctioll ask takes a constraint c and returns only whell c is entailed by 

t.1l(' store. Ask sol\'('8 the ('onstraillt. itsclf by seuding messages to variables. It may 

ahort. the agent if i t discovers that. the Ilegation of c is entailcd by the store. It sccms 

thnt ask tak('s a. function and au ageut continuation as argUlll(\llt ask (c. A), but it 

is simplf'r t.o US(' the s('(}l!entiality of the target language and implement this with 

(ask (l'); il) illstt'ad. This trick is Ilot applicable to guards. 

Thr fUllctioll tell tak<.'s a con8traint c and augmcnts the store with this llew 

cOllstraint.. Tell 801\'('s the cOllstraint. itself by sending messages to variables. As it 

dors this, it ch('('ks the cOllsistency of c in the store. If the store becomcs illconsistent, 

it. abo1'ts the whole program with an erroI'. 
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The function new takt's no arguments. lt creatC's a tH'W \'ariablP a1Hl l'd,Ul1IS il 

wrapped in the constructor Var to give it the type value. Part of t'l'cating a \'atinbh­

illvolves laullching a proc('ss to halldle tht> rcq\H'sts for that variahll'. 

The function choice takps a lil:>t of branches H." argumeuts. A hrandl is il 

function that soln'l> a guald and possihly cx('cuü's its gual'<kd ageut. Choice fot1\t'> 

one guard proCl'SS for eaeh 1)1a11('h. Th(' guards replHt back to tlll' choicl' agput whkh 

picks the succcssfui brancll. That brauch is thcu allow('d to ('X('('utc i tH guard(,ll 

agent. This leaves the other gualds pClldillg, tlH'y will h(' garhag(' ('olll'd('<l by CMI.., 

evcntually. Tllf're arc no provisions for tell guards intl'rnally. 

The argument of a brallch is a COllCUlTl'llt ML ewut, il. dl's('ribcs t.lH' COllllllllUi­

cation between the guard and t h(' choic(' agl'llt. The ('W'ut is 1milt. by tlH' choie(' Hp,I'ut 

and sent ta the brandi Whl'll it is forkpd. A brancll UH('S its i'V<'ut to Il'pOl t H1H'(,(,HH t.u 

the choice agent. If the communication sllcceeds, it llH'élllS t his iH th .. ('hOHl'll bmu('!t 

and it can execute its gllarded agent. It i8 very impOlt.ant. that a l>léllll'h 1)(' a flllldi()11 

because it delays the l'valuation of the illlpliPd askH in th(, r,uaId untH t.he brauc!l j:-. 

forkcd, otherwise an implied ask lllight suspend the whole dlOln' ag('nt. 1)('t'o['(' it. llèlt'> 

time to launch the branches. 

The choicc combiuator is difficult to implemcut imiide ont y 011<' pr(}('('~s. If al! 

the guards suspend, the pro cess will llced dis jUil ct ive wait. to wake up WlH'Ill!Wl il 

guard has more information. It is casier if each guard is ex<,cutt'd by Il UPW plO(,(·:-'S. 

The agent doing the choiee remains as a managt'r for tht' gllatd solvet's. 1'h<.' r,ulInb 

report to the ('hoice mauager. The mauag<'l dd efmill('S the OIlt.COllle hy picl\ÎlI[; il 11 

open guard and executillg its guan!ed ag<,nt. Tl\(' otlH'r [;uaId proeess('s dtlwI' nl)(Jl t 

thcmselves or they arc reclailll<'d WhCll they try to l't'pOl t to th(' lllHuagpl'. 

The choire combillator iu Taskell is illlplellH'uted in two difr('l<~llt ways. TIJ(' li 1;-,1. 

implementatioIl picks the first gllard tn tprmiuat(' i>ll('('(,~~,flllly. Thi:. is the 1H'!lILviol 

of committcd-choicc concurrent logie progmmmiug lallgllag(·s. Solvillg a gl1md is 

simpHied because it dùes Ilot have to report failUle or ~WiP('llHioll. A glla.nl ('llll IH~ 

implcmrnted directly with a caU to ask, followed hy a message selld to the lIlauag('}' 1.0 

report that this guard is open. The ask will return ouiy if the com,traÎut is elltaÎI('d, 
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so the report will be sent only if the ask is successful. The first guard to report is 

th(! one picked by the manager. 

The second imph'mentation waits ulltil all guards are either blocked or te1'­

millated, t}1<'11 it picks one at random amollg those who termiuated succcssfully. If 

none termiuatl'd succcssfully and there arc blocked guards then it blocks, othcl'wise 

it aborts. Thi!o> implpllH'utatioll tries to be as fair as possihle. Ullfortunately, it cnll­

Ilot use ask din'etly b('causc it l)('('ds to report l'uccess, suspensiou or failure to the 

manager. The eocl(' to solV<' a guard is almost idcntical to solving an ask except for 

these sIllaU differPllccs. 

The f\ludion fork tak('s an agent continuation and forks a l1ew process to 

pvaluate it. It retul'1lS immediatdy to the caUN. This is a calI to the CML functioll 

spa'Wn, but it returus nothillg instead of the ncw proc('&S ID. 

The fUllction ans'Wer tnkes a list of pairs as argument. Each pair is a variable 

with ils prilltablt, uame. Answer is the mcchanislll by which the system kumvs which 

variables fonn the result at the end of the execution. The prilltable names are neecled 

bpcaus(' they an' Ilot availabl<' at run-time. 

The l'lln- t.ime system lllust detect the terminatioll of the program to prillt the 1'e­

suIt of th<, computation at that time. CML has a built-in termination detcctioll algo­

rithm for robust tenniuatioll of programs. The function logServer (1/ S erverN arne 1/ • 

ini tFn. termFn) illforms CML t.hat a servel' sho\11d be illitializcd wheu the prognull 

starts and fillalizNI at tellllillatioll. The function ini tFN will be called to illitializc 

t.he servel' at th<, begiulling of th(' cxecution. The fUllction termFN will be callcd 

t.o fillalizc th<, Sl'f\'(,f at tcrminatioll. Taskell uses this facility to print the l'csuIt of 

tllt' computatiou. The terminatioll function of Taskell receivcs the list of variables to 

priut from th<, fUllctioll answer in main. The values of the variables are prillted oue 

to a liut> in thl' format Name = Value. Taskell trics to eliminate aU variables from the 

right.-halld-side by printillg their value, but it cannot climinatc ullbound variables. It 

illvents Ilew lléUll('l'\ for thcsc in the following sequeIlce Tl, T2, and so on. A new lU1l1lC 

is geuf'l'éüt'd only if tht, equivalpIlce class docsn 't have a name alrcady. The llumber of 

('quatioll pI'Îllt<,d is always the' Salll(' as the number of variables in the resuIt. Taskell 
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1 does not try to minimize the output by adding more t'quations. 

6.6 Implementation of Variables 

Section 6.2 explaillcd why variables W(·I'<.' impl<'IlIl'llt('d as lll·()l·(·~:-.t':'. '1'1\1' \'.du(' \lI' 

a variable chang<'S fro111 unbound to SOllH' (]thel' vall1~' W}l('l1 il. i~ ill:-.talltiat('\l. III 

Standard ML Oll{' would us(' a refl'fell('(, and a.r.;Sigll the' \,alut' to tlll' \'atinhlp \\'IH'II il 

is instantiatcd. In Coucurreut ML, shaI('d l'('fpn'lIc(,s an' 1I0t p,lU n\llt,'('d to work ill 

the preseuce of concurreucy. Sinec wc IH'(,il atomiclty 1lI ~Ol\l(' \'al'iab~:, op('lati()ll~ l\IId 

the only form of synchronizatioll in COllCUlT('ut l\lL IS t}IIOIlAll (,Oll1lllllllicat jOli, \1'1' 

implement variables as pron"ises. Agl'llts 111l1~t S('lHl lll<'hSap,I'~ to Val ia I>ll's t () l'1''1l1l'hf 

an operation on variables. Thb sectiou (kVl'lopf> tht' PI()tOl'OIIl~t'd Iwt\\'('('11 agi'llth 

and variables. Thcrr are maIly dt'tails OlH' has tn \)(' can'ful ahout iu onkr to '1.."~III1' 

atomicity and to avoid deadloek. 

For an agent, a variahl(· X is repleseuted hy a. chamwl. 'l'Ill' H!!,('\lt. \'all gl'l 

the value of the variable hy srn(ling a r<'qu('st ou th<, challlll'l. 1'111' l'I'CJlIl'st l'ail 

be current_value or instantiated_value. TIlt' variahlt· X is illlpl('lIIl'lIt('d \Vit h il 

proccss reading its clLaIlll('1 fol' n'ql1('~ts M'ut by a~('llts. The ViU iallll' 1 l'SpOll\ Is t Il il 

current_value requcst by rcturning tht, valui' of tilt' \'ariabl!' al this tillll' Il'g1lldlt'h'l 

ifit is installtiated or IlOt. Nou-illstautiatl'd variahll's Il'tllIll tlli' vahl(' Unbound. 'l'III' 

rcsponse to instant iated_value n'q\l(,hb d('P<'l1<1s OB th(' ~t al Il~ of t hl' Vill iithli' Ali 

il1stantiated variable returns its valuC' illlIll('(liatrly. Au IlIlbolllld vari:Lbli' JlU t still' 

request in a queue. The reqIH'btf'r ))('COIlH'S au lIlstautiatiou :-'U:-'!H'lllhu!!, a!!,l'lIts of X 

Othcr types of requcsts ll1ay maki' th{' a!!,put an 1'<Iuat IOll :'1I~i>(,llilill).!, apPllI of X. 

The proccss implelllelltiug a varia!>l" is <let Ilally l('~Jl()II~l blP fOl t III' wlloll- ('<1 \1 i v­

alence class. \Vhen a vaI'Ïahk X il, C'qllat('d to the variabll' Y and t.III'Y aI (' I)()! h 1111-

bound, then the equivalt'llcc dass of X if> lllprgpd lllto t h" ('qllival(,lH'(~ da.% of Y t IlI'l l'by 

delcgating the rcspoll[o)ihility of X to Y. The !>l'O('('I'If> for X disapIH'lU1';' Tllis kiwI of 

dclcgatioll is trivial to implcmellt in CML bcing Olle of tlH' Illaiu app!icat Îou:-. of 

communication as a first-class value. 
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The communkation bchavior of a variable is repref>ented as a value called au 

<'v<mt. Each variahle prO('('88 carries its eV<'llt as part of its statc. The eycnt of 

X d('seril)('s dl<' cOllullunication behavior of the variable X, ~imilarly, the CVCllt of Y 

dChCTihes the ('OIllIl1\lllÏcatioll IH'havior of the vmiablc Y. The fuuction sync applicd to 

/lU ('Wllt CX('<,ut('s th/' lwhavior described by that e'n'ut. SYUC'hrolliziug on the C\'cut 

of X f<'tUrIlS a r('(l'lI'st for th" variahle' X. 

The eqllivalellc(' da.,>s of X cau hl' lllrrged with th(' cla.<;s of Y by buildiug an cvent 

deserihiug the hehavior r(,~llltillg from h('havillg as X and Y. In particlllar, the IlC\\' 

class lIlust ru'('('pt f('(IIH'~ts fwm variables lU the cla.<;s of X and 1<'<}11<'Sts from variablc~ 

in the cla . .,s of Y, hllt l('(IIH'stf> art' n'ad 011<' at a tillH" 1'>0 tIH' Ilext Olle will COIlle from 

Pi tlu'l' the' clas:-. of X 01' t lu' da.<,:-. of Y. TIII'rl'fon' the upw da.,>s lllllst bphavc as the cwut 

of X or thp ('v('ut of Y dl'J)('wliug ou the' availahili ty of 1 Pqll('~ts. Th!' fUIlctioll choose in 

CML prodll<'('S au ('\'('ut de:-.cribillg exactly this hehaviol'. The uew compouud C\'L'ut 

wc' assigll to Y IS 1 huI'> choose [ eventX, eventY ]. TIl(' Vat iahlC' y will nO\\' a('cept 

H'qU('~t:-. from ail chaIluds il. wa. ... already haudling plus t hose previously h<llldlcd by 

X. Th(' variahle' Y dops IlOt. ha\'(' to kllOW which chaullpls W(,l'l' halldled h)' X bccaubc 

this is aIl t'llcapbulat<'d in eventX. At filbt, a variab\(> w1l1 ouly lil'>teu to Olle channel 

hut ot.h('l' ChallllC'ls an' ad(J<'d cv('ry tiul<' a class is lllC'rgt'd in The rcaSOll dclegatioll 

is so ('él.'';Y is b('cau:-.(' choose computes its braudH's d~'llêllnically Whereêl'; for exalllpic 

select in Ada ha ... a fixed bpt of branches dct<'l'll1iucd frolll the progralll tcxt at 

COlll pilp t.illlP. 

TIl<' ))l'Oto('ol hd,\\,(,Cll ag('uts aud variahl<,s also illvolV<'s lllcl'>sagC's bet,,"ccll t\\'o 

variahl<,s. To lll('l'gC' tll<' ('<}uivaleu('p da.<;s of X iuto Y, X must 8('IHl it!'> cveut to y, The 

variablt' X mu:,t abo s('ud its sll~p('udillg agellt!o,. TIll' inst aut in t IOU snspC'lldillg agentfl 

of X an' add('d to t ht' iust aut iat ion :,u~p{,lldillg agellt:-. of Y. Tht' equal ion fluspellclillg 

ag!'llts of X llla)' 01' lllay not Il(' IplPa .. <,pd dt'llelldiug if tht' variable thC')' me \vaitiug for 

is in t hl' das:, of Y, :,imilarly, t hp ('quation busppudillg agt'lltb of y llla)' or llla)' not be 

l't'It'aM'd d('IH'lldiug if tht' variablt' thpy art' waiting for i~ III th<, cla~s of X. This can 

ouI)' h(' d(,t.<'rmillC'd if wc' k('('p a list of t he variables that me lllcmbrrs of the cla~,s. 

Thl' 1'<'Pl'{'St'lltatioll of variabh's in this list is the same as the Olle used in agents. Each 
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item in the list is a channel. Thus variabll' prort'sst's han' a list of dWlllll'ls in t lll'Il 

state describing the variabl('s in its eqllivall'llc(' cl1l.<is. 

The agent ask(X=Y) -) A lU'pd!'. to t{'st tll(' t'quality of tl\l' t"'ll \,lIl'illh}I':-'. T",u 

variables are ('quai if thej' havI' the saIlll' valUt" 01' if t IH')' an' in th" S:tllll' dil:-'~ 

The agent may assume that X and Yan' illstantiatl'd, and if not. il. l'aH dH'd~ t hl' 

cquivalence classes: 

valueX = fetch_value(X), X is ullboUlId 

valueY = fetch_valueCY), Y is UUhOllllcl 

X and Y arc instantiatpd to 2 by auoth('l' agt'llt. 

classX = fetch_classCX) 

classY = fetch_class(Y) 

compare classX and classY 

The classes may be differeut. Imt thl' variahles an' ('quai !>{'CilIlS(I thl'il' valll!' is:!. Thh 

problem arises bccausl' f('t('hing tht' value of the varia.bll· aud tilt' f(·t ('hillf.', t III' rla:-.:--. 

are not atomic operations. The solution is to US(' a fUllction t.hat Idlll'llS bot Il tIlt' 

value and the class at the same tiIll{': 

(valueX, classX) = current_value(X), 

This means that current_value returns two values, tll<' first is houud t,o valueX Hlld 

the second is bOUll0 to classX. 

Testing the equality of two llllbouud val'iabl!'s brings IIp tll(' prol>IPlII of {('pll" 

scnting an equivalen('(' claSH and eOlllparillg two da . ..,s('s to S('(' if t.lH')' ml' th!' ~alll('. 

The natural choice for an t'qllival('l}('(' da.'is i~ to J'('pr('~!'llt it by tlH' li1->t. of ils VIII iablr·:-. 

The class of X is ohyiously l'quaI to th!' class of Y if t II(' two list of Val lal,JI's al l' 1111' 

same. Neverthcl{'l'>s the Ii:-,t/) ('ouid he diff('l'('ut aud yet X aud Y ('ollid bl' in t hl' ~êllll!' 

cIass. The problcm ari~c~ \)('cau1'lC fddlÎlIg the equival('IlC'(' da.'is (Jf two \'ill iabl«':-' 1"> 

Ilot au atomic operation. 

Considcr the followiug sccnario: the agent Al exp('utp:-, ask(X=Y) -> A, titi' 

agent A2 exccutes {tell(X=Z) Il tell(Z=Y)} and tIl(' thn'(' variablps X, Y alld Z 

arc aU unbound. The followillg actions happcn in this order: 
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Al: let (valueX, classX) = current_value(X), X is unbound 

A2 : rncrge class of X into Z 

A2: m<,rge class of Z into Y 

A): let (valueY, classY) = current_value(Y) 

Now the variable X il'> in the class of Y but classX ::f. classY. A better test would be to 

check membcrbhip of X in the list classY and if it is 110t, thm Al becomcs an equatiou 

sllspeudillg aw'ut of Y. \VI' haV<' to fl'teh the class of X in ally case bceausc wc don 't 

kllOW if it is uIlili~talltiat('(l. \Vp cau optimizc the test by cvaluatillg classX = classY 

or l'h,(' member(X. classY). Notp tItat memberCY, classX) would not wOlk helc 

IlI'('lUu,1' classX ha .... outdatrd information. 

Cousider t.l\(' f>illlplifi('d agC'uts Al cxccutillg ask{X=Y) -) A and A2 exccutiug 

tell(X=Y). IJot.h variablrs arc unbound and the following actions happcn in that 

ol'<!pr: 

A): let classX = fetch_class(X) 

Al: let classY = fetch_class(Y) 

Al: scud 1\ Wait..merge(X) requcst to Y 

A2: lllcrge rlass of X iuto Y 

A): Y rcccivcs th(' Wai t ...merge (X) request 

The variable Y rrccivcs a reqllcst to wait until X is in this class but X is alreacly in tlH' 

dm,s. The variahlt' Y must eheck that X is Ilot in its list of variables before qucllillg 

t.11(' l)('W SllSP('IHlillg ageut. 

This Sitlll(' 1>1('Citlltioll il, Ilt'('('ssary with nwrge reqllests. Considcr the agcnt Al 

PX('('utillg tell(X=Y) and the agpnt ... h ('Xecutillg the same thing. These agents must 

ft'teh t lu' dass of t Il(' \'ariahlps to sP(' if tlu'y art' already iustantiated, but in this case 

hot h val'Îahlt's aH' unho\lud. Lt,t the followillg actions happen in order: 

Al: Id (valueXl, classXl) = current_value(X) 

.-h: lt,t (valueX2, classX2) = current_value(X) 
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Al: let ('1dueY1, classYl) := current_value(Y) 

A2 : let (valueY2, classY2) := current_value(Y) 

Al: send a Merge(X) r('(p1('5t to Y 

Al: Y lllNges X iuto its cla. ... s 

A2 : send a Merge (X) l"l'<llH'st to Y 

The variable Y will re("{'jw a Merge(X) rl'qu('st frol1l .-12 Iml X b aln'illl)" in 11:-, ('Ia:-,~ 

\Ve do not waul. thc list of yal'iahlC's to coutain dllplicatl's UOl' d() \\'1' Willlt III Ita\'I' 

more complicat('d eveuts than uC'('{'~sary, Mm (' illlport H.lltly, \\'1' lIn Hot wallt t 0 ll'it'a~l' 

the suspC'nding ag('llt~ of X twicI', For that l'<'H .. ..,OIl, w11<'11 il \'allahl(' 1'I·('(·i\,(·t-{ il IIl1'lg(' 

requcbt, it should dH'('k fin,t if th!' yanahll' is llol al!c;lIly III 1111' li:-.! (If \,illiabl,'s, 

Dcadlock cau 0('('111' if two variabk:-. t l'y t () lIlut ually Ill('l ~(' t IW\ll:-,(·1 \,(':-" C'1I11:-.idt·l 

the agent Al exccutiug tell(X=Y) and tll<' ag('lIt :\2 (·XI'\'I\IIU).', tell(Y=X) Bulh 

variahles arc Ul1bOllnd, Let t hl' following l'let i()ll~ hapJ>('ll 111 (lI d( '1 ' 

Al: let (valueXl, classXO := current_value (X) 

A2: let (valueY2, classY2) := currenLvalueCY) 

Al: let (valueYl, classYl) := currenLvalueCY) 

A2: let (valueX2, classX2) := current_valueCX) 

Al: send a Merge (X) reqlH'st to Y 

A2: send a Merge(Y) H'qucst tu X 

Al: Y sends a Merge..me(Y) request to X 

A2 : X sends a Merge..me (X) requ('st to Y 

This causes deadlock lwcause Y experts X to takl' OVl'l', whill' X l'XP('('!:-' Y 1 Il 111"/' 

over, The deadlock can he IlVoi<!<'d hy imposing a partial md('r ou ViLl iabl(·:-., 'l'III' 

agent tell(X=Y) ma}' go ah('ad if X ~ Y, oth('rwisc it. is I('Writtl'U a .... tell(Y=X), 

Alternati"cly, we cau impose au orderillg on cquivalellu' cla,%l's, U 11 for! 1I11a! ply, CM L 
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has no notion of orùerillg among channcls. Variables cannot be compar<,d, uor call 

Wl' compare equivalpllrc cla.~ses. 

CML d(}('s haw a notion of ordcring among procesR ID's. \Ve redefillc the 

l('pl('~('lltation of t}w pqllivalellcc cla..~s as a pair formed by a proccss ID and a list 

(jf va ri ab 11'[-,. That pro(,P~1-> ID COlues from the procpss that answered the r<'quest for 

th(' current_value. TIll' onkrillg of equivalencc cla .. ,>sPs is bascd cxclusivcly ou the 

jllOCCSI-> ID fipld di~l('gaIdiIlg thp lir-.t of valiahl('s. \\'e CélU abo r('ddiuc the equality 

1 ('st for ('quival('w'(' cla .. ,>r-.('s. Two da .. .,~cs are the salll(' if the proce~s ID 's are the samc 

or if tIlt' Iist of vaIiahks illt.'rr-.('ct. TIl<' JHOCCSb ID ib tll<' saIlle if the béllllC pro cess is 

lespollbible fOl tl1('s(' two vélIiahl('s. The libt of variables may he diff('rcllt, but sincc 

mriahh'~ an' always added aud 11('\'('1' f('lllov('d fwm the hbt, t his 1ll<.'êtUS the)' aIe in 

t lU' SaIW' cla ... s. \\'11<'11 Ill('rging X iuto Y, the proc('ss for X will disap!><,ar, sC) the class of 

X will ha\'(' Cl diff('}'('ut. IHO('('M'; ID before and aft('r the lllerge. \\'(' rau btill recognizl' 

l'Uki('utly t hat t,lu'!>(' two cla.'>.'>ps a1'(, the hUm(' by puttiug t hl' varIables of X at the 

lH'giulliug of the li:-.t. of \'ariabl('~ in Y (rclll(,ll1ber that the plOCCSS ID of Y is the oue 

pl'<'!-;('rv<'<I), Therl'fon' th<, two lihts will illt('rS('ct ou the tilht variable. A full check 

of iutl'rs('ctioll is ('XIWllhiw. We can ha\'(' an efficient eouhervative cstilllatc for \\'hC11 

da .. <ises éU'(' ('quaI by lookiug at the proC('SS ID's and tIlt' tirst wu iable in the liht. It is 

('olls('rvativp h('cau!'>(' sOlll<'times tll<' cla.,.,ses will iutNseet but it Willllot he lecogllizcd. 

So far, tli(' vanahh'h W<'1'(' always llubound. \V(, will seC' that Wal t-Illerge and 

Merge n'(l'l<'hts lllay fail IH'ca UbP t he val iahlr ha..., lwcn lllsLmt iat<'d by the t illlC t la' 

J('qupst. wa.<; l('('('jwd, Wh('ll t his happeus, an ag('ut must faIl back to the Cét.<,(' whcu the 

\'ariahl<' is Ïllstautiat('d in th(' tirst place. COllsidrr the agent .41 cxceutillg ask(X=Y) 

-) A Hud tll<' ageut A:.! ('x('cutillg tell(Y=3). Both variables arc UUbOUlld at the 

I)('giullillt!,. Lpt the' followillg actiollh happl'll in arder: 

Al: let classY = fetch_class (y) 

Al: sl'ud a Wai t..merge (X) request to Y 

A2: iustalltiatrs X to 3 

Al: Y l'l'ceÎves a Wai t..merge request 
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The variable Y receivcs the Wait..merge n'qul'st aftt'l" it \Vas illstHutialt'll. 'l'hl' ('01\­

straint X=Y may be entailt'd if X is illstantialed 10 3. il do('s 110t ha\'(' to 1)(' iu Ihl' 

cql1ivalence class of Y. TIl(> Wait..merge 1"('quI'st will fail, thil-. will !!>i\'(' il, challel' tu 1 ht' 

agent Al to bcrollle an ill~tantiati()n sUSpt'lHling agput for X Similady, illstalltliltillg;\ 

variable ma)' fail. For l'xamplt>, th(\ ag<,nt tel1(X=2) lllay Ir)' 10 illstnlltiatl' X bill ho\' 

the time the reqlH'st arriws to X, it is already illstalltiat<·d. TIl(' H!!>('llt I-ihould illlPllM' 

the equality of the two valul's. 

\Vc have SC('1l we cau mcrge the classes of two llllhollud variahh's alld \\'1' cali 

instantiate a variable with a valu('. \Ve cau also illstallt.iatl' au lI11!lllll\lll "<ll iailll' \,." 

rncrging it with au instantiated variable. \V{' first. ~(,lHl il Merge_intoCY) 11'«111':-.1 II) 

the unbollnd variable X. This will fail if X was illstallt.iatc'd br tht' tilllt' t.llls II'qlll':-.1 

was reccived, in that Cé\S{', th{' ag('lIt hhOllld illll>Ol-.(' th(' ('(pwlit.\' or 1 hl' t.\\O \':dlh'~, 

Othcrwise. x S{,IHls a Merge...me(X) 1'('<1I1I'st to tht' ill:--talltJatl'll \'jlliahll' y, Thi:-. wdl 

al ways succced. AIl SUSP<'IHlillg agrnts of X an' H'll'il .. <;('d Il}' Y 1)('1';\11:-'(' 1 ht' \'.11 ialllt' i:-. 

now instantiated. The C\'<'11t of X is lllcrg('d wit h \ hl' ('\'('111 or Y, alld X (lt:-.a PI H'nt s. 

A furthrr improvellH'llt would hl' to lll<'l-gt' two iu:--t aul iat ('d val in bit ':-- \\,111'11 1111'11 

values are the same, This can IJ{' COllfimll'd by élH a.o;.;k or 1)(' illlP0:-'I·d hy a \1,11. 'l'III' 

CUITent implrmcutatioll do('s Ilot attelllpt to do this hec<lns(' it Ill'\'('l' ('hallg('~, IllI' 

value of a variabl(' onc(' it is in:--t alltiat('(l. 

We sUIrlmarize tlH' illt<'rface 1)('lw('('n agents and variahll's. WI1<'1I \VI' :-.ay :t 

functioll fails wc mean il. rcturus au indication that tll{' o{ll'rat iOll \Va."> ilOt. pt'l rOI Illl'd 

The fundion current_valueeX) l'('tUrIlS the valllc and tll<' clal'.s of the' \';111-

able X. It never suspends b('('al1~(' it Illa)' rdurIl tht' valllt' Unbound. TIlt' fllllt'l iOIl 

instantiated_value CX) retl11118 th(\ ill~ta.lltiated vahl{' of t.lw vmiahlt, X. lt. will ~ll:-,­

pend until X is inl'>talltiatl'd. 

The fUllctioll set_valueCX, v) illstalltiates the' variabll' X to 1 Ill' valllc' V, If X 1'-. 

alrcady illstautiat('d by tht' tiUl<' this n'q\l('~t ltrriv('s, tlwll set_value fails alld t Ill' 

usel' should check the COllhist('IlCY of the valtw of X allt! v. 
The fUllctioll mergel&_OLlnstantlated(X, y) !'>1I"'[H'IHb IIl1til X alld Y il Il , ('Cpld­

tcd, Le" until they arc ll1erged iuto the f>H,Ul<' i'(l'lÎvalt'lu'(' t'la .. ..,s. This 10ut ill\' 1'(JIll.! 
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fail WlWll X is illstalltiated, hut instead it rcturns th<, value of X. This routine is Il:-.pd 

wh('u an agent is askillg if X=Y and X aud Y are both llllbound and uot ill t hl' ~alJl(1 

equivaleu('(' class. TIH' agent b('coIIles au ('C!uatiou l'>uspendillg agent of X for Y. Thi:-. 

loutiuc' rl'tufllh if X i1. in~tantiat('d b('caul'>(, X and Y lllay ha\'(' cquai valucs but 110t 1)(' 

in the same cla. ... s. 

The function merge_class (X, y) Ulcrg<'o the ('(luivale!1cc dass of X and Y. The 

tiser should guaranh'c claseX < classY if hoth variabIC's an' unbouncl. This routill(' 

:-.eIHls the f('qlH'ht Merge_into(Y) to X. If X is ullhollnd whell it recei\'('s this rccllwl'>t, 

th<'n if. s('wls tl1(' }('(llH'ht Merge.llle (X) to Y. The eC}uivalcnc(' cla.% of X will be lllergl'd 

illto thp cla .. % of Y. This alwaYH ~u('('<'('ds h<'caus<, you ('au always lllerge an 1111boll11<1 

variablt, wit h allot!wr varia hl<' and X eal1not be('ollll' illst nut iated a t t hat :-,t age (it 

IS husy with tll(' IllNg(' l"f'quP1.t). Figlll(' 6.8 shows the algorithm in d(,tail If X 1-" 

i llst.antiatpcl hy th(' t.inl<' i t l"eCt'i vcs the Merge _into 1 eCpH'st t lH'Il merge _clas s fnib. 

1'11(' 118('1' cau tI)' to merge_class (y ,X) tü instantiate the vélliable Y by llH'lgiug it illto 

th(' dasli of X. ThiH will fail if Y was illstalltiated by the tillle this l<'qt1l'St arri\'cd lo 

Y. Tl\(·u th(' u~er l'>hould cll<'ck th(' consistpucy of thc value of X alld Y. This algorithlll 

is giV<.'u with tlu~ mit of the unificatioll algorithm in figure 6.D to figure 6.11. 

6.7 Debugging 

TIll' implclll('utatioll has a set of switches to turn debugging statemellts 011 and off. 

Th('re ar<, s('parat(' switches for the scanner, parsrr, solver and variable modules. Of 

part.i<,ular iut('rest are the messages from tht> sol',"er and the varialJIl's becaU5e they 

gi\'e a tract' of th<, ('X('cutlOn of the Taskell progléllll. The Holwr has messages for 

t Il(' 0lwratol's ask, tpll ami ('hoic('. A lllCl'>Sag<' is always pr('c('ckd Ily the proCCbS ID 

of tit(, IH'OC(,SS wlitillg the llll'bsag<'. An ask Will}Hint two messages, Olle wheu it is 

t'allt'd, and OUl' for the l't'suit. Th('oC two messages will 1)(' l'>eparated hy messages 

t'rom othl'l' ag('uts, bllt tlu'y cau 1)(' paired hy lookillg at thl' IH'OCC~S ID. The rc~ult 

cau h<, entailed or inconslstent. A tell will also prillt two messages, Olle WhCll it 

is ('aJI('d and 011(' for the' r('sult. The l'('sult cau hl' accepted or inconsistent. An 
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1 This code is exe«.'uted by the variable X: 

When rcccive a Merge_into(Y) rt'qUCHt 

if member(Y. ListOfVarsX) thl'u 

X is already llu'rgt'd wit h y tll1 not.hi1\)1; HI'I'I b t Il \ II' dlll \1' 

else if X ill intltant.ia.t.<'d t.hen 

cIse 

rcply tlH\t X is ah'c,\tly illstallt.iat.l'll 

X scmis il merge..me(X) rcqlH'Ht. t.o Y wit.h it.s l'VI'Ilt., ill~t.lll 

tiatioll aud c(l'mtion 1111111)('ll<lillg agl'uts mlll llstOfVarBX. 

This always sllccet'ds h{'ca,use X (·aullot. IH' ill~t ,Lili ial,'d olt 

that st.age, it. is IJlllly ('xecutillg t,lus li Ill' 

This code la cxecutcd by the variable Y: 

Whcn receive a Merge..me (X) requ!'st 

eventY= choose [eventX. eventY] 

if y is installtiatcd then 

eL~e 

rclease X's installt.iatioll SllspCllIlillg agl'Ilts alld 

rclcase X's l'qllat.iou suspelldillg agl"ut,s 

appcnd X'II inst.allt.iat.ioll SllHpcwling agl'lIt.s t Il y,:-, ill,>t.allt i:L 

tion sUfoIpeuding a.gent.s 
let Susp be the ()mpty list 

for ea,ch equa.tioll suspcnding agl'Ilt A uf X 

if member<A. LlstOfVarsY) 1.111'11 

l'dense A 

cIse inscrt A illt.o Susp 

for ea.ch equatioll suspclldmg :lW'1l1, A of y 

ifmember(A. ListOfVarsX) tllf'll 

rPll'alw A 

cIse insert A iut.o Susp 

let y'8 equation sllspeuding ageut.:; = Susp 

let ListOfVarsY = append(ListOfVarsX. LlstOfVarsY) 

Figure 6.8: The algorithm for merge_class (X. y) 
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calle int(,) = int(j) 

chcck i = j 
CIJ.lle int(i) = var(X) 

ask var{X) = iut(t} 

case hM 1) = anythiug l'Ise 

illconsistput 

case trec(rl,nl,al) = trcc(r2,u2,a2) 

check rI = r2 a.nd nI = n2 a.nd ask al, = a21 Vi (0 $ ~ $ nI) 

(':IJ.IIC trcc(rl,nl,a.1) = var(X) 

ask va.r(X) = tredrl,nl,al) 

('IJ.II!! tr('c{ rI ,nI ,nI) = anything clsc 

illCollsist,eut 

('a.'!!! val'(X) = varey) 

let (valucX, classX) = currcIlLvalue(X) 

lct (valueY, dassY) = curreIlLvalue(Y) 

if 1}(Û1LCX '1= Ilubouud and value Y '1= un1>ound thcu 

n,sk 1JalueX = value Y 

nlse if valuf'X = lIUbOlllld and valueY 1= unbollud th(m 

ask iust.aut.iat()(Lvalllc( X) = value Y 

clsc if vulllCX 1= ll11boUllO ami value Y = unbound thcn 

ask 1JalucX = iusta.utiat('cLvalllc( Y) 

cisc 

if Ul<'l'gc_or iusta,lltiatcd(X ,Y) = iustantiated then 

if mcrgc_or Jnstautiated(Y,X) = instantiated thcn 

ask instantiated_value(X) :;: iustantiated_value(Y) 

clse douc 

cIse done 

('I\.'!ü va.r(X) == allExpr 

ask instrultiatc<Lvalue(X) = anExpr 

Figure 6,9; The unification algorithm for asks. 
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~ .... 

case int( i) = illt(j) 

check i = j 

case int(i) = var(X) 

tell var(X) = int(t) 

case int(i) = allything cIse 

inconsistcllt store 

case tree(rl,nl.al) = tree(r2,n2,a2} 

check rI = r2 and nI = n2 and tcll aI, := (12, "Il lO ~ ~ ~ 1/1) 

caae trec(rl,nl,al) = var(X) 

tell var(X) = trcc(rl,nl,al) 

case trcc(rl,nl,al) = allyt.hing elsc 

iuconsist.(>llt. st.on' 

case vl\.r(X) = var(Y) 

let (valueX, classX) = currcllLvaluf'(X) 

let (vulueY, classY) = currcllLvaluc(Y) 

if valueX # unbouud and valtlcY # lluboUlld t.ItI·1l 

tell value X = valueY 

cIse if valucX = \lUhOUlld aud valucY # IlUhOlllld tlwu 

if mcrgf'_dn.'is(X.Y) = iustallt.iatcd t.heu 

t,dl iust.alltiat.ceLvaluc(X) = veûu!'Y 

cIse donc 

eise if valueX # unbound and valuE Y = UnbO\llld t hen 

if mcrgc_class(Y,X) = instantiated t.hen 

eise 

tcll valueX = installtiatcILvalue(Y) 

cIse done 

swap X and Y if X < Y 

if merge .. dass(X,Y) = installtiated theu 

if merge_dass(Y,X) = instant.iatecl t.heu 

tell inst.antiatcd_valuc(X) = iustaut.iatC'(Lvalul!( Y) 

cIse donc 

dsc donc 

Figure 6.10: The unification algorithm for t(·lb. 
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casc var{X) = allExpr 

let (valueX, classX) = currcnLvaluc(X) 

if 1}(ÛUeX "# unhoulld thcn 

tell value X = anExpr 

cIse if scLvalue( X ,rulExpr) = iustantiatcd thell 

tell valueX = a.nExpr 

cise donc 

Figurc' 6.11: The unification algorithm for tt'US (contillued). 

illC'OllsistCllt tell will abort the exccutiOll. A choice will print one or two messages. 

The fil'st one giVl's the lllllllhe>r of gllards alld tht' second om' givcs whicll guanl i~ 

se!('ctt>d WIU'll t.h('J(' an' two 01 more> gUaIds to cllOo:'!e f1Olll. Each gua.rcl will nbo 

print two m('ssag('~ likt' au rl.,>k. Flgurp li.12 sUllllllariz('~ tht' messages from the solvel'. 

The1'(' il-, ft ~wltch to tllln uH'sbag('S from aIl variables on or off'. \Vhen it is OH, 

variahles willl>lillt thp type' off('q\l{'~t the)' rect'i\'t' as tht'y re('eive tht'lll. The reque:-,ts 

cau he current-value, instantlated_value, seLvalue, wai t-IIlerge, rnerge_into 

or merge..me. TIH' pl'O('<'ss ID of the' n'questt'r is print('d on the left, tht' prOC'CbS ID 

of tlll' variahl(' is printcd IH'xt, followed Gy the typt' of requebt. The arguments of 

t.1H' r('(Illt'sts art' not priuh·d becau:.,e it would producl' too llluch output. Figure 6 13 

sUllllllaI'izes th(' lll('l-,l-,ag('l-, [IOIll variablel->. 

Prilltillg t.h(' trace Ill('l-,l-,ag(\f, il1 the solve1 rcquircs the value of the variables 

in t.1lt' collstraillts. In tmn thb would gCllcrate tracc messages from variables t1tat 

an' 1Iot applicabl<' to any agent rombillator. Illstead, the valucs of variables in trace 

llH'Ssag('s an' n'ad with tll<' r('<}\1('5t untraced_value that bchavcs as currenLvalue 

but. do('s not print a tran' lllt'I->f,ag{'. 

Two tmn' nH'hsag<'s willllevcr be intcrtwincd bccausc a trace message is built in 

a string él.lHll>I·int('d with a single print statcmcnt and CML input/output statclllcllts 

an' atolllic. 
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[process-ID] : ask (constmint) 

[proccss-ID] : ask(constmint) : entailed 

[process-IDJ : ask ( constmint) : inconsistent 

[proccss-ID] : tell (constmint) 

[process-IDJ : tell (constmint) : accepted 

[process-ID] : tell(constmint) : inconsistent 

[process-IDJ : choice between n guarded agents 

[process-ID] : guard i selected 

Figure 6.12: Trace lllcIlsagc8 from tIlt' 801wl' 

[caller-process-ID] : variable [variaMe-process-IDJ : currenLvalue 

[caller-process-ID] : variable [ lIanable-proccss-1 D] : instantiated_value 

[caller-process-IDJ : variable [variablc-proccss-ID] : set_value 

[caller-process-IDJ : variable [variablc-proass-ID] : wait.merge 

[caller-process-IDJ : variable [var'iablc-process-ID] : merge_into 

[caller-process-ID] : variable [variablc-l)1'ocess-IDJ : merge.me 

Figure 6.13: Trace messages from vmiabl<'s 
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Chapter 7 

Conclusions 

This thesis describcs a parallel implcmentation of a concurrent cOllstraint program­

lllillg language. The cOllstraint system of Taskell is the set of finite trecs with cquaI­

it.y. This cOllstraillt syi'>t<'m if:, very clos(' to first order tenns with cquality uf:,cd 

in most logie programlllillg languages. Taskell tUfI1('d out to be powerful enough 

t.u rxpress a vlll'i<'ty of l'OllCnrrcnt programming problems, for example, tightly cou­

p1<'<1 produc('r-COllsulllN rplationships, elient-server relationships and non-dctcrmillat<:' 

(,OUlpU t.atiolls. 

As a programming paradigm, the cc framcwork is a natural outgrowth of logic 

progralllmillg. The a~k and tell primitives allow Olle to capture the notions of S)'11-

l'hrollizatioll and COlllllllluÎC'atiun in Cl pcrspicuous mallllCr. Thus it is nsually dC1ll 

wll<'11 UlH' IH'cds to US(' ask and t pli in varions sit1latiolls. U llfortllllatrly, ",heu the 

{,OllstUlÏllt ~ystl'Ill is w('ak, OIH' is sOlllctimcs forccd into usiug eOllvollltcd cncoclillgs tu 

('XI>1'('SS himpl(' plOgraIllllling idioIllS. For example, thc agl'llt ask(3 Xi, X2. X = 

node(Xl,X2» -) A WhNP A IISP8 Xi and X2must be \\Tittcn in Taskell: ney Xi, X2 

ln {ask(istree(node,2,X» -) {tell(X=node(Xl,X2) Il A}}, because Taskell 

cloes uot ha\'(' exi8tputial qUêlut.lfh·rs in COllstI 'tiuts, 

Ask aC('Olll pli~IH's co- rOll t illing bet.W('t'll processcs and thus at the opcratiol1étl 

l('wl, out' cau arrange ('Olllpl<'x pattrrns of control fiow. Howevcr, because of the 

simple rOllstraillt. bas('d st'lllantics, the programmer cau thillk iu more logical tcrms, 

for exumpll' vi('willg paralll'i imposition of constraints as conjullctioll and viewing ask 
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as a cOllditional. 

CML is a very effectiw prototyping lallgllap,(' for COIH'lIW'lIt prohklll~, t Til 1'1)1-

tunatcly, you u{'ed a fa.'it machill(l wi t h a lot of IlH'1Il0r~' for lU'Ct'pt a bl(' P('l ('llllllalt('(', 

The pagillg behaviof of CML in SmallUH'lllOlil's i~ JlaltlC'lllatl~' !lad, :'\l'\'I'ttlll'k:--s \\1' 

found that CML provided Illost of t hp (,01\I'un l'Ill'y idiolll~ t hal Olll' 1l1 'I'(b, 

The il11 plellH'llt at ion was !->illl plifit'd l'IlOlIllOll:--l\' by 1 h(' dloÎc(' of CM L a:-- (Ill t 

target lallgllagp, ~lally fl'èlturl'H (lf Taskell aH' lllIJl'II1t 'd flOlll CML, iUl'lIl(!JlIg 1I'\lI'.tl 

scoping, procedure caIli'>, garhagl' colle'l'llllll, Jll()('I':--~ Ilt:lUagl'llll'lll, !-',\'I)('ltl()lIj,~at illll 

and tenniuation (lPt('d iOIl. Th(, ('odill~ dfol t ('OIU'('lItt ntpd Oll t hl' l'olllpikr, ('(lll:-.1 1 a i lit 

solving and equivalpllcc rlassps a.<.; proCl'SSPS, 

CML allowecl liS to impl('llH'ut oui)' t h{' fl'at 111'<':-; tha t nt (' hl}(lcilk 1,0 Taskell. 1 t 

is difficult to f'xtwct from the cod(' 1.11(' piccl's that an' iUdpI)(ludt'ut. of 1 h(' ('OIl~1 talll t 

system bcralls(' m()~t of t hcse wen' iulu'ritpd from CML, Fol' t hat lI\HSOII, Illih illlplll­

lUrutation of Taskell may serve as a lllodel Illon' thall Ct st arl ing poillt l'CIl' ot h(l, cc 

im plcmcnt at iOlls, 

CML morc or 1<'88 fore'cd us to U8P processPH for vatiahks, :-'Olll<'lhillg \\'(' dit! 

uot wallt to do origillally, Fortullatcly, procpsses in CML Hl'{' \'l'l'y ligllt\\'<'ighl, 1 hl',\' 

takc lit tIc mClllory and l'Olltl'xt s, ... itl'h i8 fèl..'it, COllllllllukat iOlls (\.'i firhl-da!">s va IIlI'~ 

simplified the llH'rge of two l'quivah\llCP cla.'is(\s, D"ll'galioll of l!'spow .. ,hiliti(·~ is HI­

most trivial iu 0111' Ca.'>P. Taskell rdi(':-, 011 the illlpll'lIlt'utntioll of ('V('III:-, tl) Il'aliz(' 1 Ill' 

billding betw(,Pll variabh's, Thel(' lS ail (\Xt<\IlS1W' hody of litl'wtlll(' ou t hh .. \1l1l1J!I'!11 III 

concurrent logi(' progralllllli1l~, 011 t of t IH' lllall)" 1'I('hI'UH\S propos('cl, Wc' CillIllol l'X P( '('1 

CML's will be optimal for thi:-. application. 

Thc cc family i& paralll('tcllzed by a choicc of cOllstraillt. SyhtclIl Itlld agllllt 

combinators, 1'h(' agPllt combinators fix tlw procpss language' élll(l t1/1' COllsI Will 1 

system fixes the type of cOll~traillts wc can work with aud the entailulI'llt l('lat iOll, 

In them·y, the procrss lallguage is mdep(\lHknt of the eonstmiut syst.(~lll, Thi:-, is 1101, 

howevcr, bournc ont by our exppri{'ucc, 

ft is tcmpting to build a cc sIu'lI that given a coustraillt :-,olv( r alld IL dt{)Î<'(' (JI' 

agent combinators would produce a cc implerncntation for that im,tatl<'(\, \VI' :-'1\:-'1>1'1'\ 
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li she11 with that mueh g('nerality i:-, bound to fail b<,caus(\ the agent combiuators haye 

a hig impact ou how tlH' eon~traint sol ver is writtell. For examplc, if the parallel-or 

('ombinator i8 ~upport('d hy backtracking tll<.'u the 50}\"('r should trail the lllodificatioll~ 

it mak('s to the btor('. If t('11 gllanb an' allO\\'('d in a choice, theu it needs to att<'lllpt 

Il ('hang{~ to the st()f(' withollt le·aving a trace if it is Ilot the chosc11 gllanl. This eau 

IH' doue with locks on variables togdher with dcadlock avoidancc or with copies of 

t.he ",tofe. 

The agent comhinators cannot he ch08e11 illdependently of the constraint solye!" 

You caunot aeId a cOlllbillator that was Ilot plallned by the solver. The rcason iL 

CLP 8he11 is suecesbful is becausc all instances of CLP share the same set of agent 

('()Illbillators. A cc shcll could be useful a.., long a.<; the solver is tailored to the set of 

agent (,olllhillator~. The she11 could provide process schrduling and a user intl'l face 

for pxalllpl{'. 
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Appendix A 

Sample Session 

This appendix drIl10nstrates the impl<'11lCutatioll t.hrollV,h Il s:uupl(' ~1'~~1()11 \ \\, li 1 '.1 

explaill how to rUll a Taskell program in our illlpl<'lllputatilll1. TIlt' IISI'!, lla~ t () hic! 

Taskell in Concurrent ML. It is possiblp to Cl'<',ÜP a V('l~ioll of CML Taskell nI! ('ild\ 

loadcd but this requires a lot of disk ~pacc (o.l~lh). Th(, plOgralll i:-. tlilll~latl'd 111111 

CML, and the output is left in a file with ('xt('llsioll .ml. This fill' 1l1ll~t loadl'c! 111111 

CML. The user cau choose ta turn tra('(' lll('Ssag<'s OB or off' by aSliÎguillg 10 t Ill' dl·1Jilg 

switchcs. Finally, the program is lauIlrhed hy (,v:lluatillg Prog. run (). 

In summary, the steps ta cxecute a Taskell progralll nI'(': 

y. cml 

- use "taskell.ml"; 

- translate "yourProgramName"; 

- use "yourProgramName.ml"; 

- Solver.print_trace := true; (* if you want a trace *) 

- Variable.print_trace := true; 

- Prog.run 0; 

The sample session is split iuto two parts. Each pal t pxplaill'> 11 plOgWIII, li~h 

the source file, shows a trace of cxccutiOll and tlH'll li~t~ the output of t Il<' ('(JI11pil('! 

on the source file. The script has bccn cditcd to lcduœ th(' lIumlwl' of u\l'~:-.agc~ \VIlC'lI 

ML is loading files. Chapter fi cxplaint-i the Irl<>auiug of the traœ Iltel)l)agc's, ~('l'ti(J1l G.7 
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v,ives a ~hort bummary. The CML program producpd hy till' compiler is cxplaiucd in 

:..(·('tion 6.4. 

The fir"t program is a dt'Illonstratioll of trace mes&ag('s fWIll \,ariablt'H. Silo\\"­

illg message" from variahl<'H make:.. HU' trace more difficul t to follow. 1'\ orlllnll~' J'U1\ 

woulcl ehoosc to traCf' ollly av,<,ut (,olllhinators, bccau!'.c tllC' tl ac(' becoll1cs umch l11OH' 

appnn·llt. That i~ what wC' do lU the :''l'<,oud part. The point of this eXêllllple is to 

:..how the UH'~:..av,(':.. l}I'tWI'('Il véHlabkb in a strmghtfor",ard progralll. TIl(' proglHlU is 

iu th" fil(, showvars, it is tlêlIlblat('d iuto COllClIlT('llt flIL, and tIl(' tInu~Iated output 

ill tll<' fil(' showvars ml 1:" IOêl<kd TIl(' tIaC(: lIl('bbagPb aIl' tUIlIC'd ou fol' \'miahll'b 

/lmi for tl11' bol\'«'r, awl t Il(' ('X('cutiOll is laul1ched. The plOgWIll assiglls the "alue 3 

t 0 tll<' varia),I(' X t III ollv,h aunt her val iahl(l in lb ('qui ValpllCl' dahs. Thl' dwit'e ,lgeut 

hIlSIH'IHls uutll X ib lllbtantiatl'd. Thp Hll:..w('r i::, th(' vaIne of X bpdkcl ont: three. 

Th(l trac(' can 1)(' UUdl'lbtood ab folImv/" tlll' variables y, Xl, X2, X3 nad X itI(· 

th(' 1>I'o('('SS('S [6], [9], [10], [11] and [12] rCbPcctiwly. The agmt tell (Xl=X2) ib 

the pl'OC(,SH [14], tIl<' agcut tell(X3=3) is tht' pWCPI">l:i [15], the ageut tell(X2=X3) 

is tllP 1>10C('SS [16] êlud tl1p ag<'Ilt tell(X=X1) is t11(' plOCCSb (6]. 

At. liUlè 4, tht' variabl<' X3 gl'ts the value 3, this is leportt'd ou liue 8. The ageut 

tell (X2=X3) woul(l uOl'mally lIU'lg!' X3 iuto X2 h('('au:..(' of the ordcriug on vaIiables, 

but. siuc(' il. l't'coglllZ('b that X3 is aht'ady in~talltIat('d on Hue 10, it trics the opposite, 

i.('., il. trips to iIl~tautiatc X2 il)' IllPlgillg it iuto X3 on liue 13, &IlCCCSS is lcportcd 

ou lili<' 17. Ou lillt' 14, tell(X=X1) illstlllcts X to luc'Ige Itself iuto Xl bccauE,C' tliese 

variahlt,s art' Iluho\lud (lilH' !) &: 12) and X is biggt'r iu the variable Olderillg. Succc::;:-; 

is !'l'port('d oulili(' 18. At tilib :-,tage, X3 halHlleb X2 aIut tlH',Y me iu&tautiated tu 3, Xl 

han(Hes X Hnd th('y an' htill ullbollUd. tell(Xl=X2) tlllllk!-> thrlt X2 ib IlUill&talltiatcd 

beeallse it got thl' valtH' ou line 11, before X2 \Vas ill&talltiated on liue 15. t-.IcIgiug 

X2 illt.O Xl will fail on IillP 19 h('cHuse X2 is alr('ady ill&tautiatcd. The agent trics 

to installtiate Xl instead hy lllergiug it illto X2 on tine 20. Succcss is rcportccl on 

liu(' 22. This illst alltiates the variable X. The third guard is sclccted lx'cause it is 

t.Jl(' ouly COIlsistt'llt 011('. This illstantiatcs the valuc of Y to three and the cxccutiOll 

tl'rllliuat('~. 
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Script start.d on Tue Nov 12 08:31:13 1991 

% cat showvara 

proc main (y) 

begin 

new X1.X2.X3.X in ~ 
choie. { 

ask(X-O -> 
+ ask(X-2) -> 
+ ask(X-3) -> 
+ ask(X>3) => 

} 

Il tell(X1-X2) 
Il tell (X3-3) 

Il tell (X2-X3) 

Il tell (X-X!) 
} 

end 

% cml 

tell (Y=one) 
tell(Y-two) 
tell (Y=three) 
tell (Y=big) 

Concurrent ML. version 0.9.5. July 12. 1991 
Standard ML of New Jersey. Version 0.71. 23 July 1991 

- use "taskel.ml"; 
[opening taskell.mll 

[opening utility-sig.ml] 
[opening scanner-s1g.ml] 
[opening parser-sig.ml] 

[opening translator-sig. ml] 
[opening domaln-sig.ml] 
[opening variable-sig.ml] 
[opening solver-sig.ml] 

[opening utility.mll 
[opening scanner.ml] 
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if 
\~ 

[opening paner. mlJ 

[opening translator.mlJ 

[opening domain.mlJ 

[opeung vanable .ml] 

[openlng solver.mlJ 

- translate "shovvars"j 

- use Il showvars . ml" j 

[opening showvars.ml] 

structure Prog : 

sig 

val main : unit -) unit 

val run : 'a -) unit 

end 

[closing showvars.ml] 

- Variable.print_trace :- truej 

- Solver.print_trace :- true; 

- Prog.run 0; 

1 [15J: tell(Tl - 3) 

2 [16] : tell(Tl - T2) 

3 [14) : tell (Tl • T2) 

4 [15] : variable [11]: set_value 

5 [6] : tell (Tl • T2) 

6 [16] : variable [10] : current_ value 

7 [14] : varuble [9]: current_value 

8 [15] : tell (Tl = 3): accepted 

9 [6] : varl.able [12J: current .. value 

10 [16] : variable [11] : current_value 

11 [14] : variable [10] : current_value 

12 [6] : variable [9] : current_value 

13 [16] : variable [10] : merge_into 
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14 [6] : variable [12] : merge_into 

15 [10) : variable [11] : merge_me 

16 [1:2] : variable [9] : merge_me 

17 [16]: tell(Tl = T2): accepted 

18 [6] : telleTl = T2): accepted 

19 [14] : varlable [11] : merge_l.nto 

20 [14] : varl.able [9] : merge_l.nto 

21 [9] : varl.able [11J : merge_me 

22 [14] : tell (Tl = T2): accepted 

23 [13] : cholce between 4 guarded agents 

24 [20] : varlable [11] : instantiated_value 

25 [17] : ask(3 .. 1) 

26 [20] : ask(false = true) 

27 [20] : ask(false = true): inconsistent 

28 [18] : ask(3 = 2) 

29 [19] : ask(3 = 3) 

30 [17] : variable [U] : instantiated_value 

31 [17] : ask(3 = 1): inconsistent 

32 [18] : variable [11J: lnstantiated_value 

33 [18] : ask(3" 2): l.nconSl.stent 

34 [19] : variable [11] : lnstantlated_value 

35 [19] : ask(3 = 3) : entalled 

36 [13] : guard 3 selected 

37 [13] : tell (Tl = three) 

38 [13] : varlable [7] : set_value 

39 [13] : tell(T1 .. three): accepted 

Answer: 

y .. three 

Ok 
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- -z 
Stopped 

y. eat showv&ra.ml 

structure Prog • 
struct 

local open Domain Solver in 

fun main () • let 

val Y • newO 
in 

answer (Names [(y. "Y") J) ; 
let 

in 

val Xl - newO 
val X2 - newO 

val X3 • newO 

val X • newO 

( 

fork (FH (fn () -> 
choiee [ 

] 

» j 

(fn (ev) -> (guarded«(X==Int(l»). eV)j 
tell «Y--Tree ("one" • O. []») 

» • 
(fn (ev) -> (guarded«(X·~Int(2»). eV)j 

tell «Y··Tree ("two" • O. [] ») 
» • 
(fn (ev) -> (guarded«(X==Int(3»). eV)j 

tell «Y-=Tree ("three" • O. [] ») 
» • 
(fn (ev) -> (guarded«(X»Int(3»). eV)j 

tell «Y·.Tree ("big" .0. []») 

» 

fork (FH (fn () -> 
tell «Xl •• X2» 

» : 
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) 

end 
end 

fork (FN (fn () .> 

tell«X3--1nt(3») 
» ; 
fork (FN (fn () .) 

tell «X2 •• X3» 
» ; 
tell «X •• Xl) ) 

fun run _ -

RunCML.doit(main. SOME 20) 
end 

end 
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The second program is a dcmonstration of tightly couph'd iuteractiou lJt'tW('('1l 

IlgC'lltS. Thf' admissihle program is discubscd in section 0.2. TIl(' dOllble' Hud tIipl(' 

agmlts pxccute in paralld but thcy altcruate in installtiatillg th(' tail of the adllli:-.:-.il!ll' 

lbt. The Jll('ssag('s from variablps have bC(,11 tUrll('d off to l'('duc(' the output. Tl\(' 

llWl>l-.élW·S ask(true = true) or ask(false = true) arc gcu{'rated by the gUHl<I., of 

the tl iplp agt'ut Relationai opcratorl> are implplll{,lÜPÙ as [lIllctious that l'et lIllI Cl 

C'onstmillt. Thpir implil'd a • .,k an' uot printC'd ))(\CélUSC' th{'y t{'ud to gPllt!l'Htc a lot 

of output of the [OrIU ask(Islnt(,», wIU'f(' 1 il'> au integcr coustant. l'ou CHU ~t'l' 

frolll the tell rC'(I'l<'sts of t Il(' from tell (X=i) t hat the vahH'H in the lil>t aI e t'l'l'at ('d 

in iU('J'pa.sing 01 deI', dt'molll>t rat illg tlH' alt.pluutioll betWI.'C'll the dou bit, and t hl' tri pl(' 

ag{'llts. 

% cat admissible 

proc main (L) 

proc double CL) 
begin { 

} 

ask(istree(cons3,3,L» -) { 
new X. Y, Li in { 

tell(L-cons3(X,Y,Li» 
Il tell (Y-2*X) 
Il double(Ll) 

} 

} 

end 

proc triple (L) 
begln { 

new X,Y,Li in { 

tell(L-cons3(X,Y,Ll» 
Il ask(Y<30000) -) 

new Yi,Z,L2 in { 

tell(Ll-cons3(Yi,Z,L2» 
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} 

} 

end 

) 

Il tell(Yl-3*Y) 

Il triple(Ll) 

Il ask(Y)-30000) -) 

tell(Ll-n1l) 

begin { 

double(L) 

Il triple (L) 

Il new S.U in tell(L-cons3(1.S,U» 
} 

end 

'!. fg 

- translate "admissible" 
- use "admissible.ml" 

[open1ng admissible.ml] 
structure Prog : 

sig 
val main : unit -) unit 
val run : 'a -) unit 

end 

[closing admissible.ml] 

- Variable.print_trace := false; 

- Prog.run 0; 
[9] : ask(Istree(cons3,3,Tl» 

[6] : tell(Tl - cons3(l, T2, T3» 
[16]: tell(Tl· cons3(T2, T3, T4» 

(6): tell(Tl = cons3(1. T2, T3»: accepted 
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(9]: ask(Iatree(cons3,3,T1»: entailed 

(9]: aak(Istree(cons3,3,T1» 

[16]: tell(Tl· cons3(T2, T3, T4»; accepted 

[21J: tell(cons3(l, Tl, T2) • cons3(T3, T4, T5» 

[22]: tell(Tl - 2) 

[21J: tell(cons3(l, Tl, T2) • cons3(T3, T4, T5»: accepted 

[22]: tell(Tl = 2): accepted 

(10]: ask(false· true) 

[17]: ask(true = true) 

[10]: ask(false = true): lnconsistent 

[17]: ask(true = true): entalled 

[26]: tell(Tl = cons3(T2, T3, T4» 

[27): tell(Tl = 6) 

[26J: tell(Tl = cons3(T2, T3, T4»: accepted 

[27]: tell{Tl = 6): accepted 

[9J: ask(Istree(cons3,3,Tl»: entailed 

[31]: tell(Tl = cons3(T2, T3, T4» 

[9]: ask(Istree(cons3,3,Tl» 

(36]: tell{cons3(6. Tl, T2) • cons3(T3, T4, T5» 

[31]: tell(Tl = cons3(T2, T3. T4»: accepted 

[37): tell(Tl = 12) 

[37J: tell(Tl = 12): accepted 

[36]: tell(cons3(6, Tl, T2) • cons3(T3, T4. T5»: accepted 

[17]: ask(false = true) 

[17]: ask(false - true): lnconsistent 

[32J: ask(true = true) 

[32J: ask(true = true): entailed 

[41]: tell(Tl = cons3(T2, T3. T4» 

(42]: tell(Tl = 36) 

[41]: tell(T1 = cons3(T2, T3, T4»: accepted 

[42]: tell(Tl = 36): accepted 

[9]: ask(Istree(cons3,3,Tl»: entailed 

[46]: tell(Tl = cons3(T2, T3, T4» 

[9]: ask(Istree(cons3,3,Tl» 

[51J: tell(cons3(36, Tl, T2) • cons3(T3, T4, T5» 

[46J: tell(Tl = cons3(T2, T3, T4»: accepted 

[52]: tell(Tl· 72) 

[52]: tellCT1· 72): accepted 
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[51]: tell(cons3(36, Tl, T2) = cons3(T3, T4, T5»: accepted 

[32]: ask(false· true) 
[47] : 

[32] : 

[47] : 

[56] : 

[57] : 

[56] : 

[57] : 

[9] : 

[61] : 

[9] : 

[66] : 

[61] : 

[67] : 

[67] : 

[66] : 

[47] : 

[62] : 

[47] : 

[62] : 

[71] : 

[72] : 

[71] : 

[72] : 

[9] : 

[76] : 

[9] : 

[81] : 

[76] : 

[82] : 

[82] : 

[81] : 

[62] : 

[77] : 

[62] : 

[77] : 

[86] : 

ask(true = true) 

ask(false = true): inconsistent 

ask(true = true): entailed 

tell(T1 = cons3(T2. T3, T4» 

tellCT1 = 216) 

tell(T1 = cons3(T2, T3, T4»: accepted 

tell(T1 = 216): accepted 

ask(Istree(cons3,3,T1»: entailed 

tell(Tl = cons3(T2, T3. T4» 

ask(Istree(cons3,3,T1» 

tell(cons3(216, Tl, T2) = cons3(T3. T4, T5» 

tell(Tl = cons3(T2, T3. T4»: accepted 

tell(Tl = 432) 

telleT1 = 432): ac~epted 

tell(cons3(216, Tl, 12) • cons3(T3. T4, T5»: accepted 

ask(false = true) 

ask(true = true) 

ask(false = true): inconsistent 

ask(true = true): entailed 

tell(T1 = cons3(T2, T3, T4) 

tell (Tl = 1296) 

tell(Tl = cons3(T2, T3, T4»: accepted 

tell(Tl = 1296): accepted 

ask(Istree(cons3,3,Tl»: entailed 

tell(T1 = cons3(T2, T3. T4» 

ask(Istree(cons3,3,Tl» 

tell(cons3(1296, Tl, T2) = cons3(T3, T4, T5» 

tell(Tl = cons3(T2, T3, T4»: accepted 

tell (Tl = 2592) 

tell(Tl = 2592): accepted 

tell(cons3(1296, Tl, T2) • con83(T3, T4, T5»: accepted 

ask(false = true) 

ask(true = true) 

ask(false = true): inconsistent 

ask(true = true): entailed 

tell(Tl = cons3(T2, T3, T4» 
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[87] : 

[86] : 

[87] : 

[9] : 

[91] : 

[9] : 

[96] : 

[91] : 

[97] : 

[97] : 

[96] : 

[77] : 

[92] : 

[77] : 

[92J: 

tell (Tl = 7776) 

tell(Tl = cons3(T2, T3, T4»: accepted 

tell(Tl = 7776): accepted 

ask(Istree(cons3,3,Tl»): entailed 

telleTl = cons3(T2, T3, T4» 

ask(Istree(cons3,3,Tl) 

tell(cons3(7776, Tl, T2) = cons3(T3, T4, T5» 

tell(Tl = cons3(T2, T3, T4»: accepted 

tell(Tl = 15552) 

tell(Tl = 15552): accepted 

tell(cons3(7776, Tl, T2) = cons3(T3, T4, T5»: accepted 

ask(false = true) 

ask(true = true) 

ask(false = true): ~ncons~stent 

ask(true = true): entailed 

[101]: tell(Tl = coos3(T2, T3, T4» 

[102]: tell(Tl = 46656) 

[101]: tell(Tl = cons3(T2, T3, T4»: accepted 

[102]: tell(Tl = 46656): accepted 

[9]: ask(Istree(cons3,3,Tl»: entalled 

[106]: tell(Tl = cons3(T2, T3, T4» 

[9] : ask(Istree(cons3,3,Tl» 

[111]: tell(cons3(46656, Tl, T2) = cons3(T3, T4, T5» 

[106]: tell(Tl = cons3(T2, T3, T4»: accepted 

[112]: tell(Tl = 93312) 

[112]: telleTl = 93312): accepted 

[111]: tell(cons3(46656, Tl, T2) = cons3(T3, T4, T5»: accepted 

[92]: ask(true = true) 

[107]: ask(false = true) 

[92]: ask(true = true): entailed 

[107]: ask(false = true): incons~stent 

[92]: tell(T1 = nll) 

[92]: tell(T1 = nil): accepted 

[9]: ask(Istree(cons3,3,T1»: inconsistent 

Answer: 

L = cons3(l, 2, cons3(6, 12, con~3(36, 72, cons3(216, 432, 
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cons3(1296. 2592, cons3(7776. 15552. cons3(46656. 93312, nil»)))))) 
Ok 

~z 

Stopped 

% cat admissible.ml 

structure Prog = 
struct 

local open Domain Solver in 

fun main () = let 

val L = newO 

fun double (L) • let 

in 
( 

( ask(Istree(lcons3".3.L»; 
( 

let 

val X • newO 
val Y = newO 

val L1 • newO 
in 

( 

) 

end 

fork (FN (fn () => 
tell«L==Tree("cons3".3.[X, Y, Li]») 

) ) ; 

fork (FN (fn () => 
tell«Y==(Int(2)**X») 

) ) ; 

double(L1) 
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) 

) 

) 

end 

and triple (L) ::: let 

in 
( 

let 

val X = nevO 

val Y ::: nevO 

val L1 = nevO 

in 
( 

fork (FN (fn () => 

tell «L:::=Tree (" cons3" , 3, [X, Y, LU») 

» : 
fork (FN (fn () => 

» : 

( ask('~«Int(30000»); 

let 

in 

val Y1 = newO 

val Z ::: newO 

val L2 = new () 

( 

) 

fork (FN (fn () => 
tell «L1==Tree ("cons3" , 3 , [Y1, Z, L2)) 

» ; 
fork (FN (fn () => 

tell«Y1==(Int(3)**Y») 

» : 
triple(L1) 

end 

( ask«Y>=>=Int(30000»); 
telle (Ll==Tree(" nil",O, []») 
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'",-

ln 

) 

) 

end 

) 

end 

am.wer (Names [(L, ilL")]); 

( 

fork (FN (fn () => 
double(L) 

» ; 
fork (FN (fn () => 

triple(L) 

» ; 
let 

in 

val S .. newO 

val U • newO 

tell«L==Tree("cons3",3, [Int(1) , S, U]») 

end 

) 

end 

fun run _ .. 

end 

end 

RunCML.doit(main, SOME 20) 
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