McGill University
School of Computer Science

Taskell: a concurrent constraint programming
language

Clément Pellerin

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the
degree of Masters of Science

Copyright, Clément Pellerin, November 1991

3480 University St ¢ Montreal ¢ Canada ¢ H3A 2A7

Abstract

Taskell is an instance of the concurrent constraint programming framework cc. The
framework is parameterized by a choice of constraint system. The constraint system of
Taskell is the set of finite trees with equality. The choice of constraint system makes
Taskell similar to conrurrent logic programming languages. When computing with
partial information the notion of reading and writing memory becomes incoherent.
The framework replaces these operations by ask and tell respectively. We hope to
understand this new paradigm by studying implementations of cc languages. Taskell

is a parallel implementation of a cc language written in Concurrent ML.

Résumé

Taskell est un langage de programmation concourant avec contrainte membre de la
famille cc. Le systtme de contraintes de Taskell comprend les égalités d’arbre fini.
Taskell est similaire & un langage concourant de programmation logique a cause de
son systeme de contraintes. Les notions de lecture et d'écritute de la mémoire ne
sont pas cohérentes lorsque 1'on calcule avec de ’'information partielle. La famille cc
remplace ces opérations par ask et tell respectivement. Nous esperons comprendre
micux ce nouveau paradigme en étudiant I'implantation de langage cc. Taskell cst

une implantation paralléle d’un langage cc écrite en ML Concourant,

—

Bt R TR T L L

To Lise, Pierre, and Chris

for making this possible.

‘.‘{df‘

Acknowledgments

This research was funded by NSERC, FCAR and the School of Computer Scicence,

I wish to thauk Prof. Chris Paige for believing in me when it counted. I could
not have finished my masters at this time if he had net been there. He went beyond
his duty as a professor on many occasions. He has groan to be a friend more than
an advisor and I wish him well.

I'd like to thank Prof. Prakash Panangaden for his joyful assistance and guid-
ance. When I was unhappy with my topic, he offered this one. I offer him this
implementation.

Thanks to Prof. Laurie Hendren for teaching me ML and showing me her com-
piler written in ML. I also thank her for the role model she gave me. She’s the proof
someone like me can one day be a professor.

I would like to thank my fellow student Gilles Pesant now at Université de
Montréal. He read my manuscript and made numerous correctiwns,

Thanks to Piof. Gerald Ratzer for letting me be his teaching assistant for so
long. I also wish to thank all the other individuals that were part of my life at McGill.

Special thanks go to John Reppy who served as my CML guru. It is not always
that you have the opportunity to talk to the original designer of the language you are
using. His timely 1espouse to my electronic messages were always beneficial. When
all else failed, I could always count on him to solve my problem. I remember the time
when T thought there was a bug in CML, John proved me wrong and he even told
me how to fix mine!

Je remercie ma tendre amie Nicole Lachance qui m’a rendu heurcux pendant
tout le temps nécessaire a ces travaux et pour longtemps encore j'espére. J'ai éerit
ces quelques lignes en frangais pour étre certain qu'elle puisse les lire. Je t’ai promis

si souvent que j’étais sur le point de finir. C’est fait.

Contents

1 Introduction
1.1 Subject of the Thesis

1.2 Chapter Summaries

.........................

.......................

2 Constraint Logic Programming

2.1 Standard Logic Programming

....................

....................

2.2 Extensions of Logic Programming

.....................

2.3 Constraint Logic Programming

3 Concurrent Logic Programming

3.1 Parallelism in Logic Programs

3.2 Parallelizing Prolog

............................

3.3 Concurrent Logic Programming Languages

...............

3.4 Committed-choice Non-determinism

...............

3.5 Synchronization

..............................

4 Concurrent Constraint Programming
4.1 The Ask and Tell Primitives
4.2 The Process Language

.......................
........................

4.3 Implementation Considerations

4.4 Implementations of cc

..........................

5 The Programming Language Taskell
5.1 Definitionof Taskell

5.2 Examples of Taskell Programs

6 Implementation

6.1 ImplementationIssues
6.2 Overview of the Implementation
6.3 Concurrent ML
6.4 The Taskell Compiler
6.5 The Run-time Systemof Taskell
6.6 Implementation of Variables
6.7 Debugging

7 Conclusions

A Sample Session

40

45
16
50
51
N
59

69

75

78

e

List of Figures

5.1 The syntax of Taskell.

6.1 Separation into modules

6.2 Dependencies between modules

......

6.3 Correspondence hetween Taskell features and CML features

6.4 Translation schemas for procedures

6.5 Translation schemas for agent combinators. . . .

............

6.6 Translation schemas for constraints and values.

6.7 The ML datatype for Taskell values

............

6.8 The algorithm for merge_class(X,Y)
6.9 The unification algorithm for asks.
6.10 The unification algorithm for tells,
6.11 The unification algorithm for tells (continued). . .
6.12 Trace messages from the solver

....................

6.13 Trace messages from variables |

vi

i

s
&

Chapter 1

Introduction

1.1 Subject of the Thesis

This thesis describes a prototype implementation of a concurrent constraint pro-
gramming langvage. The implementation is written in the parallel programming
language CML. The language we implemented is a member of the cc (for concurrent
constraint) framework investigated by Saraswat{Sar89]. We say cc is a framework
hecause it forms a family of languages. The framework is parameterized by a choice
of constraint system. Each instance has its specific constraint system but it shares
the same concurrent process language. This thesis describes the implementation of
an instance of cc whete the constraint system is unification over finite trees.

A program written in a cc langnage computes with possibly incomplete informa-
tion. As execution progresses, consistent information is added, never retracted. This
gives risc to a new paradigm that subsumes nondeterminate data-flow and concurent
logic programming among others. We hope to understand the feasibility of concur-
rent programming in this style. We are trying to understand this new paradigm by
implementing it and running progiams in our implementation. The experience gained
in writing cc programs will help improve any future implementation efforts.

Given that cc languages are concurrent, it is particularly instructive to study
the interaction between processes. Concurrent programs are difficult to design and

implement. There are more opportunities to make mistakes. Once a mistake is

present it is harder to find and correct. Our implementation can produce a trace ol
an execution run, from which the concurrency is readily apparent. The programmer
can grasp the behavior of a program fiom studying its trace.

Our cc language is called Taskell (an anagram of the words ask and tell wiieh
form the basic communicative primitives 1 the c¢ paradigm). We chose the syntas
to be faithful to the basic ask-tell notation. The syntax should be clear to anyone
who has read the basic papers on the cc paradig.

The implementation is written in Concurtent ML or CML for short[Rep9o)
This is also the target language of our compiler. The compiler uses a tecursive deseent
parser with some ertor recovery. When the paisce tree is constructed without erron, it
is translated into CML in one pass. The output can be executed once it is linked with
the run-time systenm. The tun-time system is respousible for process managetnent and
constraint solving. CML does not have an implementation on a parallel machine,
though one is in preparation. When it does, we will antomatically have a parallel
implementation of our language working on a parallel machine.

We have tested our system with a set of sample programs. Some of thew are
given in chapter 5. In an appendix we give a complete example, with the soutee, the
output of the compiler, and the trace of the execution. One can get an overall idea
of how the system works from this example.

The origins of constramnt programming date back to the sixties. In a sense,
Sutherland’s Sketchpad graphical program[SutG3] was based on constraints. Later,
the language in Steele's thesis[Ste80] and work by Borning on THINGLAB[B;7Y,
Bor8l] elaborated the ideas of constraint programming. These early efforts were
successful in so far as they went, but lacked geuerality to be truly general-puipose
languages. The work of Leler is special in this regard, as the goal of his language
Bertrand is to simplify the cieation of new constraint languages using an angmented
rewriting system{Lel88]. The traditional branch of constraint programming is still an
active area of research.

The late 1980's has scen the introduction of constraints to the ficld of logic

programming. The constraint logic programming scheme CLP arose from a ueed

P

to provide a theoretical foundation to the many extensions of Prolog[JLM86]. The
concurrent constraint programming language framework cc can be viewed as a gener-
alization of CLP to the parallel case, but in fact it arose as an attempt to give a clean
semantics to the various parallel extensions of Prolog: Concurrent Prolog[Sha87],

PARLOG[CG86, Gre87, Col89] and Guarded Horn Clauses[Ued86a, Ued86h).

1.2 Chapter Summaries

In chapter 2 we review logic programming. Many extensions of logic programming
have been proposed, most have only an operational seinantics. This is unfortunate
because the declarative semantics of logic programming is one of its great alleged
advantages. It is possible to give a declarative semantics to many of these extensions
by introducing the notion of constraints in logic progiamming. The constraint logic
programiming scheme offers a declarative semantics to many extensions that were once
only explained operationally.

Chapter 3 considers the concurrent logic programming languages. These lan-
guages view the execution of a logic program as a collection of processes that com-
municate with each other through shared variables. Processes synchionize on the
availability of data, i.e., they wait until a variable gets instantiated. These languages
have committed-choice nondeterminism also hnown as don’t-care nondeterminism.
The commit operator is a type of cut generalized to the parallel case.

Chapter 4 explains the cc framework for concurient constraint programming,.
In a von Neumann language, the memory is a valuation mapping variables to values.
Inn this framework, the memory is replaced by a store, which is a constraint on the
ariables that may only partially specify them. With such a store, the notions of
reading and writing variables become incoherent. For example, a variable in the store
might be unconstrained, reading this variable should return infinitely many values.
Assigning a value to a variable might have an impact on many other variables through
the coustraints that were imposed between them and the variable we assigned. Instead

cc replaces read and write by ask and tell. A process can ask if a constraint ¢ is alrcady

entailed by the store. It will succeed if ¢ is entailed, suspend if ¢ may or may not he
entailed, and it will fail precisely when the store already entails ~e, A process can
tell a constraint ¢. The store is augmented with this new constraint, it becomes the
conjunction of the old store with ¢. The store must remain consistent. The progrim
is considered erroneous if a tell makes the store inconsistent.

Chapter 5 describes the syntax of Taskell. We relate our syntax with the one
used in Saraswat’s thesis[Sar89]. Our syntax tends to spell out the names of the
operators in full. Procedures are relations as in logic programming. We show a set of
sample programs to get a feel for programming in Taskell.

Chapter 6 describes our implementation strategy. The Taskell compiler and
its output are written in Concurrent ML{Rep91]. CML is a very-high level lan-
guage. This helped the implementation becanse we could rely on CML for process
management, inter-process communication and garbage-collection. Our compiler uses
recursive descent to parse a Taskell program in one pass. The abstract syutax tree
produced is translated into CML in a second pass. The output can be linked with the
run-time system to form an executable. Parallelism in Taskell is very fine-grain. The
processes in CML are a perfect match because they are very light-weight{Rep91].

In the last chapter we give our conclusions. Following the last chapter is an ap
pendix showing a session with the system. A sample program is taken from chapter 5.
The translation of the comniler is shown, and the trace of its exccution is given, The

reader is referred to chapter 6 for an explanation of the appendix.

& i, N

S

Chapter 2

Constraint Logic Programming

In this chapter we look at constraint logic programming or CLP. We start by reviewing
the fundamentals of logic programming. We then survey some extensions that were
proposed in order to alleviate some shortcomings present in logic programming. Two
extensions specifically attract our attention: incorporating functional programming
into logic programming and unification of infinite rational terms. These extensions
are very ad hoc, most were presented by giving their operational semantics with no
correspondence in logic. The accomplishment of CLP is to give a thecoretical foun-
dation to these diverse ideas. CLP is a scheme, it is parameterized by a choice of
constraint system. Many logic programming languages can be reconstructed as in-
stances of CLP with a suitable constraint system. For example, Colmerauer only
gave an operational semantics to Prolog II, but Prolog II is a CLP language. Its con-
straint system is cquality and disequality over rational trees. Hence, the denotational

semantics of Prolog II is given by that of CLP.

2.1 Standard Logic Programming

Logic programming studies the use of first-order logic for computation. It started
as an application of automated theorem proving technology to the design of a pro-
gramming language. A major advance was made in 1965 when Robinson proposed

resolution as the single inference rule in a first-order theory[Rob65]. Resolution is

5

well-suited for computer applications because it needs only one inference rule and it
works by refutation which means it can be implemented with backwards chaining,.
Though Robinson is given credit for resolution, most of the ideas were anticipated in
the proof-theoretic investigations of Herbrand{Her30).

Resolution needs sentences to be written as a set of clanses. In 1971, Kowalski
observed that we could restrict logic programs to a set of Horn clauses without a
great loss in expressive power. This improved the efficiency 1emarkably. In the
early seventies Colmerauer and his team, influenced by Kowalski, developed Prolog
(for PROgramming in LOGic). Prolog is the first and the most widely known logic
programming language.

This section is based on the survey of Shapiro[Sha89]. We describe the syntax of
a logic program. A term is a variable (e.g. X, Y) or a function symbol of atity n > 0
applied to n terms (e.g. ¢, f(X,1,2)). An atom is a formula of the form p(TY,...,T})
where p is a predicate of arity n and T1,...,T, are terms. A definite clause (or elause
for short) is a formula of the form A — DBy,...,B, (n 2> 0) whete A is an atom
and By,..., B, is a sequence of atoms. A is called the clanse head and By, ..., D, its
body. A unit clause is a clause with n = 0, we represent it with A «— true. A logic
program P is a finite set C},...,Cr of definite clanses. A goal is a sequence of atoms
By,...,B,. Each atom in a goal is called a goal atom. The procedure for a predicate
p of arity n is the set of clauses in the program P whose head is an ator formed with
the predicate p of arity n. To make a loose comparison, we can say function symbols
are the data structures of logic languages, atoms are the statements, clauses are the
procedures and goals are statements we ask the systemn to prove.

Consider a clause A « By,...,B, (n > 0). Let xy,...,z; be the variables
appearing in the head and let yy,. ..,y be the variables appearing in the body but, not
in the head. The clause can be read: for all zy,..., 2y, A if there exists y), ...,y such
that By and ... and B,. Consider a goal By, ..., B,. Let yy, ...,y be the variables
appearing in the goal. It can be read: there exists yy, ...,y such that By and ... and
B,. Consider the program Ci,...,Cy, where each C, is a definite clause. It can be

read as the conjunction of the clauses: C; and ... and C,.

Kowalski was the first tc give a procedural interpretation to logic programs.
The theoremn prover is viewed as an interpreter for procedure calls initiated by a
goal statement. Each procedure, when called, is free to call cu other procedures.
A computation stops when no more procedure calls can be made. A definite clause
A « DBy, ...,B, can be viewed as a procedure definition. The variables appearing
in the head are the formal parameters. The variables appearing in the body but not
in the head are the local variables. In a procedural language, this clause is equivalent

to:

procedure A(z,...,2)
var Yi,..., Y
begin

call Bl

call B,

end

Similarly, the attempt to prove a goal B;,...,B, can be viewed as a sequence of
procedure calls. Unification is used for parameter passing, assignment, data selection
and data construction.

We will describe the semantics of a logic program with a transition system.
In order to express a single transition step we need the definitions of substitution,
unification and most general unifier (mgu). A substitution is a function from variables
to terms that is the identity except on a finite subset of variables. A substitution ¢
can be written as {X; — Ti,...,X, — T,}, where the X,’s are variables and the
T}’s are terms, X, # T,, and X, # X, for ¢ # j. {X; — T} is called a binding for
A, and X is said to be bound to T, in the substitution. The application of 8 to the
variable X' is denoted X6. We have X0 = X if X ¢ {Xj,...,X,}, otherwise X is X;
and X0 = T,. A substitution is generalized to a function from terms to terms. Let
T be a term, if T is the variable X, then T8¢ = T;, if T is a variable not belonging to
{X1,..., Xy} then T9 = T, otherwise T is some function symbol f of arity & applied
to its arguments A,,..., A, and T8 = f(A:8,...,A0). Applying 6 to T is celled

7

e A

-

™

T T L b MO

R AR % $ 3 S RN e AT 3

e SRR T

A 5

A

instantiating T by @, T@ is called an instance of T.

A substitution 6 is a unifier of two terms T and T5 if 18 = T,6. The unification
algorithm takes two terms and finds a unifier for these two terms if one exists. The
composition of two substitutions 8, and 8, written 8,6, is the function resulting from
applying 6, first and then 6, to the result. Let 6, = {X; — T},..., X, — T,},
and 0, = {Y; — Sy,..., Y = S}, then 6,6, = (X} = Ty, ... N, = T,0,.Y]
S1y.+ o, Y = S} where in this set bindings of the form X, — X, ae deleted and
bindings for Y, are omitted if ¥, = X, for some ;. These restrictions make sure
6,0, fulfills the conditions in the definition of substitution. Note that composition ol
substitutions is associative so parentheses are not needed in expressions like ¢ -+ 0,.

A unifier p is a most general unifier of two terms Ty and 15 if for every unilicr ¢
of T and Ty, we can find a substitution o such that § = o The unification algorithm
finds most geners] unifiers. The function mgu(7},75) returns a most general unitien
of T\ and T3 if one exists and fails otherwise.

The occurs-check is a step in the unification algorithm. It is required to guai-
antee termination. The occurs-check determines if a variable is present in a term.
Before the unification algorithm binds a variable X to a term T, it uses the occurs-
check to see if X occurs in T. If it docs, the unification fails, otherwise X is bound
toT.

Computation in logic programming is a scarch for a proof. The program /? is
the set of axioms, the initial goal G is what needs to be proven. The proof can he
extracted from the path the computation went through.

A state of the computation is a pair (G;8) where G is a goal and € is a sub-
stitution. The initial state is (G;¢) where G is the initial goal and € is the empty
substitution or identity function. There are two kinds of terminal states depending
on the result of the computation. The computation is successful if 1t terminates in
a state (true;6). The substitution in the terminal state restricted to the variables of

the initial goal is the answer substitution. The initial goal instantiated by the answe
substitution is a logical consequence of the program as can be concluded from the

proof. The computation fails if it ends in a state {fail;#). In that case, the computa-

tion could not be extended to form a proof of the initial goal either because the initial
goal is unprovable or possibly because a bad choice was made earlier which does not
lead to a proof.

We denote by (G;6) — (G;8) the transition from state (G;6) to state (G;6).
In resolution, one needs to rename the variables in a clause so it doesn’t have any
variables in common with the goal. This is called renaming the variables apart, and
the resulting clause is called a variant of the clause. This ensures we can reuse the
same clause more than once in the same computation.

There are two transition rules:

Reduce
(A1, .., Airer Aps8) = (AL, .., Ao, B, oo Br, A .., Ay)B;66)
if mgu(4;,4) = 6 for a renamed-apart clause A — By,..., B; of P.
Fail
(A1,...,Ay; 0) — (fail; 0)
if for some i, and for every renamed-apart clause A « By,...,B; of P,

we have mgu(A,,A) = fail.

A computation of a program P on a goal G is a finite (or infinite) sequence
of states sy, sg,... such that s; = (G,e) is the initial state, s; — s, for every
consecutive pair of states and if the sequence is finite of length k then s; is a terminal
state (true, 8) or {fail, §).

The transition system is non-deterministic in the sense used in automata theory,
i.c., one is interested in the existence of one successful computation path. Failure
means that all paths fail. This is implemented by depth-first search of the state space

with backtrackiug on failure.

2.2 Extensions of Logic Programming

Researchers have proposed many extensions to logic programming, see for instance
[DL8G]. We will concentrate on three extensions: unification with equality, introduc-

ing functions in logic programming and unification over rational trees. Our discussion

9

e

remains superficial because we are less interested in the extensions than showing the
diversity of ideas that are encompassed by CLP.

Unification with equality. Equality in Prolog is very weak because it is based
on unification. Two terms are equal if they are syntactically the same. Unfortunately
this means two terms that are semantically equal but syntactically ditferent will not
unify. For example, 2 + 2 = 1 + 3 will not unify even though 4 is equal to 4. The
unification algorithm can often be generalized to unify two terms whenever they are
equal in some equational theorv. This algorithm is called E-unification.

E-unification is achieved by adding a term rewriting system to the Prolog en-
gine. Computation proceeds by narrowing, a process similar to alternating 1esolution
and term rewriting. The user can write his own rules to guide the rewriting process.
Unfortunately, this can lead to problems because there is no most general uuifier,
For example, it is not possible to write rules for associativity. Some systems as-
sume the term rewriting rules are confluent. EQLOG is an example of Prolog with
equality|[GM8G).

Introducing functions into logic programming Functional programming,
is based on two key concepts: reduction of expressions to a normal form and M-
abstraction for abstracting over expressions to make functions. Functions are first-
class values, they can be bound to a variable, passed around as arguments and re-
turned as the result of a function.

Functional programming has some advantages over logic programming|[BL8G]:
the functional formalism is more readable than the relational one, the reduction to
normal form is backtracking-free, lazy evaluation can handle infinite streams, type
systems are more advanced and A-abstraction allows the cieation of anonymous func-
tions on-the-fly.

Logic programming has some advantages too: it can compute with incomplete
data structures, i.e., terms that contain unbound variables, predicaies are wulti-
directional so arguments are not strictly input or output and it can express constraints
better because a constraint is nothing more than a relation.

Prolog has a few built-in functions, mostly for arithmetic expressions. The

10

program has to trigger the evaluation of an expression with the ‘is’ predicate. The
programmer has to make sure every variable in the expression is already bound,
otherwise the program is aborted with an error. The programmer cannot add to the
set of built-in functions.

Introducing functions into logic programming tries to alleviate these prob-
lems while retaining its advantages. Bellia and Levi survey previous efforts in that
direction[BL8G]. One possible solution is to use semantic unification which is essen-
tially a form of narrowing. FUNLOG is a logic programming language with functions
based on semantic unification[SY80].

Unification over rational trees. The occurs-check is required by the unifi-
cation algorithm to forbid the creation of bindings of the form X' = f(X) where a
variable is assigned a term containing an occurrence of itself. The solution of those
cquations is an infinite term. In our example, X is the term f(f(f(...))). Most Pro-
log implementations do not perform the occurs-check for efficiency reasons. In those
implementations, it is possible to create infinite terms. Unfortunately, the unification
algorithm may fall into an infinite loop when unifying two infinite terms. The sane
problem happens when it comes time to print the value of an infinite term. For these
reasons, logic programmers are taught to avoid creating infinite terms.

The type of infinite terms appearing in logic prograins is called a rational tree.
A rational tree has the important property that it has only a finite number of distinct
subtrees. If you merge all the nodes in a rational tree that are the root of the same
subtree, you will be left with a finite graph. A rational tree is infinite if and only if
there is a cycle in the graph. In unification, a cycle forms when a variable v is bound
to a term containing v.

Colmerauer was looking for a way to justify the omission of the occurs-check He
gave a unification algorithm for rational trees[Col82, Col84, Col86]. It does not need
the occurs-check because it handles infinite rational trees correctly. The algorithm is
guaranteed to terminate because it looks at every different subtree only once and there
is only a finite number of those. Subsequently his algorithm has been improved. The

latest algorithm[Jaf84, MR84] is a simplification of the linear unification algorithm of

11

Martelli and Montanari[NMM82}.

To explain his algorithm, Colmerauer recasts the problem of unifying two terms
into the problem of solving a system of equations. For example, unifying p(a,b) with
p(X,Y) given that X =a and Y is unbound is the same thing as solving the system
of equations: {X = a, p(a,b) = p(\,Y)}. This system is solvable because it reduces
to {X =@, Y = b}. A nice theory of unification in this setting is given in [LMNNSS].

Colmerauer implemented his algorithm in a Prolog system. He called Lis lan-
guage Prolog II. A goal in Prolog II is a sequence 4,,..., 4, whete 4, is an atom
or an equation 77 = Ts. A state of the computation is a pair (G; E) wheie G is
a Prolog II goal and F is a system of equations in solved form (for a definition of
solved form sce [Col84]). The initial state is (G,) where G is the initial goal and ¢
is the empty system of equations. Prolog Il 1eplaces the unification of an atom A,
with the head of a clause A by the equation A, = A. The unification succeeds if
E=FEuU {A, = A} is solvable. Eis kept in solved form. Equations in a goal are
simply added to the system of equations provided the angmented system is solvable,

There are three transition rules:

Reduce atom
(A1y.... Aiye o A EY = (A1 .o A, By oo By Ay - A E)
if A, is an atom,
A « B,,...,B; is a renamed-apart clause of .
E = EU {A; = A} is solvable,
and E is in solved form.
Reduce equation
(A1y... Aiyeo A EY = (A1, A Ay o Ay EB)
if A; is an equation T = T,
E = EU{T, = Ty} is solvable,
and E is in solved form.
Fail
(A1,..., A, ..., Ay E) — (fail, E)

if A; is an atom,

12

and for every renamed-apart clause A «— By,..., B of P,
E U {A, = A} is not solvable,

or A, is an equation Ty = T,
and EU {T| = T.} is not solvable.

The computation is successful if it terminates in a state (true; E). The answer is the
value E assigns to thL» variables of the original goal. The computation fails if it ends
in a state (fail; F). This transition system like the one for standard logic program-
ming is non-deterministic. The implementation of Prolog II shares its backtracking
mechanism with Prolog.

Prolog II is even more expressive since it allows disequality as a primitive. A
disequality is a formula of the form X # Y. In Prolog, if you want to say X should
not be p(a,b) you have to write not(X = p(a,b)). This introduces problems with
negation as failure[Nai8G}. Good Prolog implementations wait until X' has a valuc
before checking if it unifies with p(a,b). In Prolog II, you can say dif(X, p(a,b))
to express that X and p(a,b) are different. If later you say X = p(Y,Z) then the
cquation solver knows either Y # a or Z # b. Disequalities are kept as long as
they are not guaranteed to hold. It is possible for a goal to terminate before enough
information is known to make that guarantee. In that case, discqualities are part of
the answer. For example, the answer for the goal ?-dif(.X, p(a,b)),X = p(Y, Z), is
X=pY,Z2),Y #aor Z #£0.

A state of the computation is really a triple (G; E;I) where E and G are as
before and I is a system of disequalities. The transition rule for the atom dif(73,75)
adds T} # T5 to 1 if this is consistent with E, and fails otherwise. The system I may
be simplified every time there is an equation added to E. A successful computation
terminates in a state (true; E;T). The answer is the value E assigns to the variables
in the original goal subject to the restrictions in I. We do not give this transition

system because the next section has a more general treatment.

13

2.3 Constraint Logic Programming

Most extensions to logic programming are very ad hoe and are explained operationally
with little connection to logic. The constraint logie programming scheme CLP s an
attempt to unify these extensions into a formal theony [JLM8G]. CLP i parameterized
by a domain of values D and its associated constiaint system C. It can be viewed
as a family of languages each one on a different domam For example, the fiust CLP
language implemented as such was CLP(R)[HJIM*87] Tts domam is the set of 1eal
numbers and the constraints that can be put on them are equalities aud inequalitios

Computing with constraints has two great benefits over standard logic program-
ming. First the values can be taken directly fiom the domain, they need not he coded
syntactically. For example, in Prolog, a rational number ¢/y can be coded as r(r, y).
None of the built-in arithmetic functions will work on this representation, not even
for numbers of the form x/1. Furthermoie, r(1,5) is not equal to r(2,10) beeause
they are syntactically different. The rational numbers follow the usual anthmetic
laws in a CLP language with rational numbers in the domain. The second benefit
is the pruning of the scarch space. Backtracking detects failuies a posteron, onee it
is already too late. Worse, it goes back to the latest choice point regardless of the
cause of failure. The interpreter will often rediscover the same failure again and again
until it finds the causc of the failure. A CLP language can use the constiamts to cut
down the search space a priori, before a failure happens The interpreter may find
that a set of constraints is unsolvable and backtrack immediately instead of searching,
beyond that point. This idea was used extensively in the language CHIP to solve
constraint satisfaction problems[Hen89].

The parameterization of CLP is important because all members of the scheme
share the same semantics. It turns out that unification is not central to Herthrand’s
theorem. Jaffar, Lassez and Maher were able to prove a Herbrand-like theorem 1e-
placing unification by constraint satisfaction[JL87]. The theorem makes very few
assumptions on the constraint system. In particular, it does not depend on the kind
of constraint system used. This is why the semantics can be given for a class of

languages all at once.

14

e’

M,

The properties needed by the theorem are: solution compactness and satisfac-
tion completeness[Coh90]. A constraint system is solution compact if every value
in the domain can be represented by a possibly infinite set of constraints. In other
words, the constraints must be fine enough so we can talk about every element in
the domain. We also require the complement of a constraint to be 1epresentable as
the union of a possibly infinite set of constraints. A constraint systemn is satisfaction
complete if every constraint is either provably satisfiable or provably unsatisfiable.
This is needed by the refutation procedure, if a set of constraints is unsatisfiable, it
is guaranteed to be 1ecognized as such in finite time,

A CLP goal is a sequence A4y, ..., A, where A, is either an atom or a constraint.
A state of the computation is a pair (G; o) where G is a goal and ¢ is a constraint
equivalent to the conjunction of all the constraints imposed so far. As with Prolog II,
CLP replaces the unification of an atom A4, with the head of a clause A by the equation
A, = A. The unification succeeds if the constraint o A (4, = A) 1s solvable in the
constraint system C. This is written C |= o A (A, = A). If 4, is a constraint ¢, then

it is added to o provided C = ¢ A c. There are three transition rules:

Reduee atom
(A1,..., Ay, .. Apo) = (A1, A1, B, ..., By Aigr .., Ay 6)
if A; is an atom,
A « LEy,..., DB is a renamed-apart clause of P.
6=0A(A, =A),
and ¢ is solvable in C.
Reduce constraint
(A1, . A .. Ago) = (A, ., Ao, Ay .., Ay 6)
if A, is a constraint ¢,
d=0Ac,
and 4 is solvable in C.
Fail
(A, .. A Ay o) — (fail; o)

if A, is an atom,

15

and for every renamed-apart clause A — By,..., By of P,
o A (A, = A) is unsatisfiable in C,
or A, is a constraint c,

and o A c is unsatisfiable in C.

Again, this transition system is non-deterministic. CLP implementations backtrach
to the latest choice point when failure is detected. CLP may perform a prors pruning,
when the computation fails because a constramt ¢ 1s unsatisfiable in o.

The answer is the final set of constraints projected onto the vagiables m the
original goal. Here we see a great strength of CLP. 1ts ability to produce symbalic
output. When the exact values of variables are unknown, the intetpreter is often able
to print the relationship between them. For example, the answer to a CLP(R) query
might be: X > 4,Y =3+ X

Often an extension to logic programming can be viewed as an instance of CLP
with a suitable choice of constraint system. Standard logic programming is an mstaiee
of CLP. Its domain is the set of finite trees with syntactic equality constraints. The
domain of Prolog with equality is the set of finite trees but its constiaint system hos
a more powerful equality. E-unification is a guide for how the constiaint solver works
Similarly for functional programming in logic programming. Semantic unification is
an algorithm for solving the equality constraints. The doman of Prolog 11 is the set
of rational trees. Its constraint system has equality and disequality. We have alicady
scen CLP(R). Other CLP languages include CAL over the domain of (possibly non-
linear) polynomials, CHIP over finite domains, boolean terms and 1ational nmmbers.
CLP(X*) over the domaiu of strings or regular sets, and Prolog T over finite domanns,
rational trees and boolean terms

To achieve reasonable efficiency, the constraint solver is expected to handle
the frequent cases quickly. Hopefully these will be the easiest constraints to solve
There will be other constraints that are cousiderably harder to solve. In CLP(R),
one can easily ask for a solution to Fermat’s last theorem, but the answer is not
easy to find. One thing we can do is to delay handling hatd constiaints. When a

hard constraint is encountered, it is not checked for satisfiability. It is put aside and

16

P

execution continues. One hopes the constraint can be simplified by the addition of
information as the execution progresses. The hard coastraints are reconsidered when
enough information has been gathered to turn them into simple constraints.

The hard constraints in CLP(R) are noun-linear constraints. They are delayed
until they become lincar. A constraint is simplified when one of its variables is
instantiated. Replacing a variable by its value can reduce the degree of a constraint.
As more variables are instantiated, the constraint eventually becomes lincar. For
example, the goal 7 X +Y +Y =8 X +1Y =5, X > 1 has the solution X =3,Y =2
but the interpreter cannot find it. The constraint X xY 4+ Y = 8 is delayed because it
is not linear. Now the goal 7-X Y +Y =8, X + Y =5, p(.X') can be solved if p(.X)
binds a value to X. Assume p(.X) binds X to 3. Then the first constraint is resumed
because 3* Y + Y = 8 is now linear, and the interpreter finds the solution[JM87].

CLP is parameterized by a domain. You choose another suitable domain and
you have a new language. This gives motivation to try to reuse large parts of the code
between CLP implementations. We can change tue implementation of CLP(X) into
CLP(Y) if we replace the solver for X by a solver for Y. This will work as long as the
solver is well separated from the rest of the system. The interface between the systemn
and the solver should be small but general enough to be standardized across many
solvers. In practice, all of the languages listed above were developed independently
and they do not share code. Lim and Stuckey have developed a CLP shell making
it easier to build CLP implementations[LS90]. In principle, you could re-implement

these languages within this shell so they all share the same code.

17

Chapter 3

Concurrent Logic Programming

In this chapter we look at concurrent logic programming. Thete is a lot of parallelism
available in logic programs. AND-parallelism comes from solving in parallel all the
goal atoms in a goal. OR-parallelism comes from trying all relevant clauses in par-
allel when reducing a goal. AND-parallelism solves sub-parts of a goal in parallel,
while OR-parallelism finds alternative solutions to a goal in parallel. The difficulty
of implementing AND/OR-parallelism together has led to two research directious
being pursued: 1) parallelizing Prolog with OR-parallelism by uncovering implieit
parallelism and 2) committed-choice concurrent logic programming languages with
explicit AND-parallelism. The origin of these languages can be traced to the pro-
cess interpretation of van Emden and de Lucena[vEALF82]. In their model, a goal
atom is a process and a goal is a network of processes communicating through shaied
variables. Clark and Gregory introduced synchronization and committed-choice non-
determinism|[CG81]. Synchronization is achiceved by waiting for variables to he in-
stantiated. In a committed-choice language, a goal evaluates the guards of unifying,
clauses and commits to one with a successful guard. There is only one solution found,
there is no backtracking. A guard can contain a user predicate which calls a guaid
and so on. Flat languages restrict the guard to be a conjunction of goal atoms taken
from a set of primitive predicates. The greater simplicity of flat languages outweighs
the small loss in expressive power. The complexity of some of these issues, espe-

cially in Concurrent Prolog, is what led Saraswat to propose concurrent constraint

18

programming and the cc framework.

3.1 Parallelism in Logic Programs

Most studies find there is ample opportunity for parallelism in logic programs, and
it is ecasy to find, not like the imperative languages where it has to be unraveled.
The evaluation of a goal forns an AND-OR tree, solving a goal implies searching
through this AND-OR tree. The reduction of an atom is an OR-node, the resolvents
with the candidate clauses are the children of the OR-node. A conjunctive goal is an
AND-node, the atoms in the goal are the children of the AND-node. There are threc

widely recognized sources of parallelism in logic programs:

o Within unification.

Unification is a good target for parallelization since it is performed so often during
execution, Unfortunately, studies have shown that it is inherently sequential
[Yas84, DKM84][Kni89, section 10 for a survey]. There is little hope of finding a
parallel algorithm much faster than the sequential linear algorithm of Paterson
and Wegman[PW78].

o OR-parallelism.

In general, many clauses can be used to reduce a goal. The Prolog interpreter
chooses the first one, and backtracks to try the other ones. We can also try
all the clauses in parallel. If there are k candidate clauses to reduce a goal,
k goals are produced, one for each candidate clause. All these goals are then
solved in parallel. This is called OR-Parallelism, because a solution of any onc
of these goals is a solution of the original goal. In short, OR-parallelism explores

alternative solutions to a problem in parallel.

e AND-parallelism.

A goal is made up of a conjunction of goal atoms. The Prolog interpreter solves

them from left to right in depth-first fashion. We can solve all the goal atoms

19

in parallel. This is called AND-parallelism because all the goal atoms must be

solved to form a solution for the entire goal. AND-parallelism solves sub-parts

of the same problem in parallel.

We have to be careful with AND-OR parallelism because it can waste computa-
tion compared to Prolog’s evaluation order. Prolog is working on one possible solution
at a time. The children of an OR-node are looking for multiple solutions at the same
time. When only one solution is needed, the first one to be found will be reported,
but time and space will have been wasted searching for alternative solutions. The
children of an AND-node are working on the same goal. If one of the children fails,
then its siblings to the right will have done useless work. Nevertheless, searching the
AND-OR tree in parallel is generally beneficial.

Executing a program in parallel involves managing a sct of environments. An
environment contains the set of variables created so far, if they are instantiated or
not, and if so, to what values. The children of an AND-node are part of a single
goal, they share the same environment inherited from the parent. When one of the
children binds a variable in the parent environment, this is automatically scen by
the other children. This is how communication between processes is achieved., The
children of an OR-node are independent goals. They share the same environnment as
their parent but the bindings they make are their own and should not be seen by
others. In a sense, they start with a different copy of the environment, so the goals
do not affect each other in any way. For example, the same variable may well have
conflicting values in different goals. This is how we get independent solutions.

Unfortunately, the multiple bindings created by OR-parallelisin and the sharing
created by AND-parallelism is difficult to implement. This resulted in two research
directions being pursued{Cla90]: 1) parallelizing Prolog with OR-parallelism and 2)
the creation of committed-choice concurrent logic programming languages to take
advantage of AND-parallelism. In this thesis, we are mostly concerned with the

latter.

20

3.2 Parallelizing Prolog

Some pe ple argue that writing parallel programs is difficult and a good strategy
to use parallel machines is to uncover implicit parallelism from sequential programs.
The responsibility for exploiting this parallelism rests on the compiler. Parallelizing
compilers for Fortran have been available for some time now.

In the field of logic programming, some researchers are working on parallelizing
compilers for Prolog. They exploit OR-parallelism present in sequential logic pro-
grams. They also exploit AND-parallelism as long as the AND-parallelism goals do
not have variables in common. This is called independent AND-parallelism. The net
cffect is to ensure a variable is never shared by two concurrently executing goals. In
turn, this guarantees there will be at most one binding generated for each variable,
thiereby eliminating the problemn of multiple bindings. This greatly simplifies the im-
plementation. OR-parallelism creates multiple bindings but these are implemented by
multiple independent copies. A copy will have at most one binding. The restriction
that makes the implementation practical is also its greatest weakness: OR-parallel
processes cannot cominunicate because they cannot share variables.

AURORA is an example of an existing system. It is a prototype OR-parallel

implementation of the full Prolog language for shared memory machines[LBD*88].

3.3 Concurrent Logic Programming Languages

The first process interpretation of logic programs was given by van Emden and de
Lucena|[vEdLF82]. In their model, a goal atom is a process and its state is represcnted
by its arguments. AND-parallelism is used to execute processes concurrently. A goal
is viewed as a network of processes communicating through shared variables.
Parallelism in logic programs is very fine-grain because processes are very short-
lived. The behavior of a process depends on the clause used to reduce it. If the
clause has an empty body, the process halts. If the clause has a unit body, the
process changes its state. If the clause has a conjunctive body, the process splits into

several concurrent processes. For example, when the process p() reduces with the

21

AT

clause p() « pl(X),p2(X), it will create two processes p1(.X) and p2(X). They can
communicate through the shared variable X.

The process p1{\') can send a value to p2(X) by instantiating .\" to some value,
Since a logic variable can only be assigned once, it scems we can communicate at
most one value through X. This is true but for example, X can be instantiated to
a list cell [v|Y], thereby sending the value v and creating a new shared variable Y.
The processes can recurse with pl(}") and p2(Y") for another round. When used this
way, the shared variable is an incrementally constiucted list acting like a stream of
messages between the processes. More generally, X can be any shared data structure
cooperatively and incrementally constructed.

Clark and Gregory, influenced by CSP (Communicating Sequential Processes),
refined these ideas and introduced committed-choice non-determinism and synchro-
nization into logic programs[CG81]. Their “Relational Language” was very influen-
tial. It is the auncestor of many concurrent logic programming languages, including,
Concurrent Prolog, PARLOG, GHC and Strand.

3.4 Committed-choice Non-determinism

Clause selection is different in a concurrent logic programming language. Instead of
don’t-know non-determinism with backtracking as in Prolog, they exhibit don't-care
non-determinism also called committed-choice non-determinism. A clause A « G|13
has three parts: a head A, a guard G and a body B. G is a sequence of goal atoms
Gi,...,Gi, while B is a sequence of goal atoms By, ..., B,. The vertical bar is the
commit operator. When a guard is empty, the clause can be simplified to A « I3,
this is equivalent to A — true|B. A unit clause is equivalent to A + true|true.

A goal is a sequence Ay,. .., A,,. This goal is reduced by selecting an atom 4, in
the sequence. The guards of all clauses unifying with A, are evaluated in parallel. If
there are no clauses unifying with A, or if all guards fail, then the whole computation
fails. Otherwise, there is at least one clause with a successful guard. One such clause

is chosen and the goal commits to it. The evaluation of the other guards is aborted.

22

There is no backtracking, the other clauses will not be tried later. Only one solution is
generated. A guard has to be written in such a way that it is successful only when its
clause is certain to generate a solution if one cxists, otherwise, the goal may commit
to the wrong clause and the solution will be missed. A computation may fail when
in fact the goal has solutivuns.

A guard can countain a user predicate, this predicate may invoke new guards
and so on. The guards may be nested arbitrarily deep. The computation forms an
AND-OR tree. A guard is an AND-node and clause selection for a user predicate in
a guard is an OR-node.

Only the guard of the chosen clause may have side-effects. The atomicity of
clause selection is ensured by the requirement that at most one binding for cach
shared variable is ever generated. A clause cannot instantiate the variables in the
goal until the goal has committed to this clause. A clause head cannot instantiate
the variables in the goal because those bindings will have to be removed if the goal
commits to another clause. For the same reason, a guard cannot instantiate variables
in the goal.

What happens if a clause tries to instantiate variables in the goal before the
goal has committed varies among languages. In PARLOG, a compile-time check
guarantees this will never happen, but this is undecidable in general. The check
can only be an approximation of the full test. In practice, PARLOG relics on the
programmer t.» avoid the situation. In GHC, a guard will suspend when it trics
to instantiate a variable in the goal. The clause will be considered again when the
variable has been instantiated by some concurrently executing process. Of course,
the clause wili be reconsidered only if the goal has not committed to another clause
before then.

In Concurrent Pro.og, the guards are evaluated in their own environment, sim-
ilar to OR-parallelism. The head and the guard are allowed to instantiate goal vari-
ables but this is not visible outside the guard. A clause with a successful guard is
chosen for commitment. The environment of the chosen clause is merged with the

goal to form the environment of the resolvent. The goal can commit if all new bind-

23

-

ings of the resolvent environment can be made with a single multiple assignment, 1f a
binding fails, then none of the bindings are made. The bindings are made visible after
the whole assignment succeeds. If they were made visible earlier, then the assignment
could fail and these bindings would have to be retracted. Other concurrent processes
could see these bindings before they were retracted and clause selection would not he
atomic.

The atomic operation in PARLOG, GHC and Strand is binding a single variable.
Bindings are made as unification proceeds, but unification itself is not atomie, In
Concurrent Prolog, binding a set of variables is the atoniic operation. This is needed
to merge the environment of the goal with the environment of the chosen guand.

The difficulty of supporting user predicates in guatds has ditected attention
towards the flat variants of the concurrent logic programming languages. In a flat
language, only a set of primitive predicates can appear in a guard. For the languages
we mentioned, this includes mainly unification and arithmetic tests, A flat langnape
is easier to implement because the computation does not form an AND-OR tree,
instead it forms a flat collection of processes.

For example, the suspension rule in GHC is difficult to implement beeanse the
interpreter must know at which level of the tree the variables belong to[Tay88]. Thete
is no need for this in Flat Guarded Horn Clauses (FGHC). The primitives in FGHC
guards are test-only automatically suspending predicates, i.¢., their arguments must
be instantiated otherwise they suspend. This together with the flatness of the tree
guarantees a guard will never instantiate a goal variable. There is no need for an
elaborate runtime check|[Cla90].

Most implementations of concurrent logic programming languages are for the
flat subset. It seems the greater simplicity of flat languages outweighs the small loss

in expressive power.

24

i,

3.5 Synchronization

Synchronization is achieved by waiting for variables to be instantiated. For example,
the reader of & stream will suspend until the shared variable is instantiated announcing
the arrival of the next element. How synchronization is accomplished differs among
languages. PARLOG nses mode declarations. For each argument of a predicate, the
mode declaration specifies if it is input or output. A mode declaration applies to a
whole procedure, i.c., all clauses with the same predicate name and same arity. A
clause suspends if it tries to instantiate an input argument, so processes synchronize
by waiting for input. In GHC, a guard suspends if it tries to bind goal variables.

In Concurrent Prolog, synchronization comes from read-only unification. Vari-
ables come in two types: X7 is the read-only variable associated with the writable
variable X. Unification of two terms suspends if an attempt is made to instantiate a
read-only variable. The unification may resume when the variable is instantiated by
binding the writable variable. The read-only attribute is a dynamic property deter-
mined at run-time. The property is transitive: if a writable variable X is bound to a
read-only variable Y7, then X becomes read-only. Read-only unification encourages
the use of unification when matching is intended. This is a source of bugs. The im-
plementation of Concurrent Prolog requires distributed atomic read-only unification.
This is very difficult to implement and not very efficient.

The problems in Concurrent Prolog with read-only unification and the atomic
merge of environments led Saraswat to search for a simpler theory. The result was
the concurrent constraint programming framework discussed in the next chapter and

implemented in Taskell.

25

Chapter 4

Concurrent Constraint

Programming

This chapter is based on the bock “Concurrent Constraint Programming” by Saraswat
[Sar89). Concurrent constraint programming is the synthesis of Constiaint Logic
Programming and the committed-choice concurrent logic programming languages.
From CLP, it adopts computing with constraints and programs in clausal form. From
Concurrent Prolog, it adopts parallelism and guarded Hoin clauses. To this, it adds
parallelism in the constraint solver and synchronization based on what can be inferred
from the constraints.

Concurrent constraint programming replaces the usual view of memory by the
store, a constraint on the variables that may only partially specify them. It also
replaces the notion of reading and writing memory by the primitives ask and tell.
The cc framework is paramecterized by a constraint system. Different clioices of
constraint system gives various cc instances. Processes in the framework are called
agents. The framework defines a process langnage with a set of agent combinators, A
cc instance may retain only a subset of the available combinators. In most instances,
ar agent may engage in a primitive operation or it can split into multiple agents, it
can make a dependent choice, it can hide a variable from the outside environment o1
it can make a procedure call. CLP, most concurrent logic programming languages,

Janus, GDCC and Taskell are all instances of cc.

26

4.1 The Ask and Tell Primitives

Constraint programming cannot shaic the usual view of memory !ound in most lan-
guages. Traditionally, the memory can be thought of as a valuation, i.e., a mapping
from variables to values. Reading memory means consulting this mapping for the
value of a variable and writing memory modifies the mapping for subsequent reads.
The concepts of reading and writing become incoherent in the presence of constraints.
The constraints describe the relationship between variables but not necessarily their
values. A variable may be constrained but not determined by all the constraints
posted so far. This variable could tale one of possibly many values. No single value
returned by the read operation can capture this multiplicity because read only works
on ground values. Assigning a value to a variable may fix the value of vther variables
through the constraints that were imposed on them. This propagation of constraints
is lacking in the write operation because write effects only one variable.

The cc framework replaces memory by the store. The store is a representation
of the conjunction of the constraints imposed so far. It is always kept consistent
to ensure the feasibility of a solution. As new constraints are imposed, they refine
the values of variables. The read and write memory operations are replaced by the
primitives blocking ask and atomic tell respectively.

Let ¢ be some constraint and A be an agent. Processes in cc are called agents.
A blocking ask has the form: ask(¢) — A. Its behavior is as follows: if ¢ is entailed
by the store then carry out the process A, otherwise suspend. A blocking ask may
resume only when other agents have added enough information to infer ¢ from the
store. This suspension mechanism is the source of synchronization in cc. Ask is a
stable operation: if the ask may proceed in the current store, it could also proceed in
any extensions of the store (because information is never retracted from the store).
Ask behaves like a guard in concurrent logic programming languages. In practice, it
is used as a conditional.

Let ¢ be some constraint, o be the current store and ¢’ be the new store. The
behavior of teli{2) is as follows: if o A ¢ is consistent then atomically let o/ = g A ¢,

i.e., augment the store with this new constraint, if o A ¢ is inconsistent then abort the

27

L e]

e KRBT Ko VI)

i e v S W C

whole program. Tell adds information to the store by imposing new constraints. 1f
a tell makes the store inconsistent, the whole program is aborted. In an inconsistont
store, all asks are entailed. This leads to uncontrolled behavior because all asks may
proceed. This situation is considered a programming error. The run-time system
should abort the program and signal the error.

Like CLP, cc is parameterized by a constraint system C. From € we require the
possibility to talk about partial information through primitive and possibly compound
constraints. We require a notion of consistency to know which coustraints can hold of
the same object, and finally, a notion of entailment to know what we can infer from
a set of constraints.

The only explicit constraints in CLP are primitive constraints, Compound
constraints are built-up by the evaluation procedure. For example, conjunctions awe
formed sequentially by the comma operator, and disjunctions are explored one branch
at a time through alternative clauses and backtracking. In ce, the constraints may
be either primitive or compound.

We will use C = ¢, read “C entails ¢” to mean ¢ is true in the constraint system
C. For a store a, (3)a is the existential closure of o ¢ over all variables. The following,

definitions will be used in the description of ask and tell below:

oanswersc ifClFo=c¢
i.e., when the store contains enough information to cutail
c.

o suspends ¢ ifC = (3)(o0 Ac)and C = (3)(o A -¢)
i.e., when the store does not contain enough information
to entail c.

o acceptsc ifClE(3)oAc)
i.e., when c is consistent with the store.

o rejects ¢ ifCHE(3)oAc)

i.e., when ¢ is inconsistent with the store.

28

@ We can now give a definition for blocking ask: ask(c) — A

when o answers ¢ behave as A
when o suspends ¢ suspend this agent until ¢ answers ¢ and then be-

have as A

and the definition of atomic tell: tell(c)

when o accepts ¢ o' = o Ac
atomically augment the store with ¢ and
terminate this agent

when o rejects ¢ abort the whole program

Ask and tell primitives are messages to the constraint solver in the store, There

is little contention in the store because the solver can be highly parallel. There is

little need for locks because there is only a benign form of change: adding consistent

information. In this setting, it is casy to solve multiple asks in parallel, and it is also

possible to have multiple tells solved in parallel.

Saraswat defines other operations like eventual tell, inform and check. We

motivate eventual tell in the section on implementation considerations below. Inform

is like tell but it succeeds only if some new information is added to the store. Check

tests to see if a constraint is consistent with the store without actually adding the

constraint. Inform and check give some of the power of the var predicate in Prolog.

4.2 The Process Language

Processes in cc are called agents, multiple agents execute in parallel. The framework

defines a process language with a set of agent combinators (such as ||, + below). A

cc instance may retain only a subset of the available combinators. Choosing more

combinators makes the language more powerful, but this increases the complexity of

the implementation. We describe an instance by its choice of constraint system and

its subset of agent combinators.

Agents do not communicate directly with each other. There is no notion of

sending a message to a specific agent as there is in CSP. Instead agents communicate

yiney,

29

-

through shared variables in the store. Synchronization arises because ask behaves like
a blocking receive waiting for the information tell will send.

An agent may engage in a primitive operation, it can split into multiple apents,
it can make a dependent choice, it can hide a variable from the outside environment
or it can make a proceduie call. The syntax and the behavior of these combinators
are introduced below.

The effect of A, || A is to run A, and A; in parallel.

Choices are made with ask(c)) — 4 +--- + ask(e,) — A,. In this con-
text, ask(c,) is called a gnard. A gnard is open if its constraint is entailed by the
store. The choice operator has the following effect: if all guards suspend then it sus-
pends, otherwise it non-deterministically chooses an open guard and it hehaves like
its guarded agent. For example, if guard, is entailed, then the choice operator may
choose to behave like A4y, The choice operator is needed when the guards are not
mutually disjoint, otherwise the component asks could be run in parallel with the ||
combinator.

Saraswat also defines tell guards. The agent tell(ey) — A + .-+ tell(e,) —
A, will behave as 4, in the store o A ¢, only if ¢, is consistent with o and + was the
chosen branch. Tell guards that are not chosen do not have any effect on the store.
Tell guards may compete to bind a variable. For example, in a store where X s
unbound, the agent tell((X' =1) — A} + tell(.X =2) — A4, will behave as A if .\
was bound to 1, or it will behave as Ay if X was bound to 2. A choice operator may
have mixed ask and tell guards.

The effect of the existential closure 3x.A is to behave as A with the variable »
local to A. It hides x from other agents by creating a new variable local to A,

An agent makes a procedure call with the syntax p(X), where X is a vector of
values or variables. Procedures are only defined once, choices have to be programmed
explicitly with the choice operator. Recursion is allowed.

A program is a collection of procedures and an initial agent. A procedine

definition looks like this:
proc p(zi,...,Zk)

30

(inner definitions)
A

where A is an agent. A procedure may have nested procedures as in a nested-block
language.

A computation may go on forever or terminate. If a computation terminates it
can either fail with an inconsistent store in which case the program is erroncous, or
it terminates normally in which case the result of the computation is the final store.
A program may terminate if all agents have terminated or if all remaining agents are
suspended. Note that deadlock is not necessarily an error.

The cc framework is not merely a committed-choice language. There are
other combinators like the OR-parallel scarch operator which is possibly implemented
through backtracking. With this operator, we sce that CLP is a special case of cc.
One needs to rewrite the clause selection as an explicit OR-parallel search, there is no
parallel operator since everything is sequential and the same constraint system is used
for CLP and cc. The flat concurrent logic programming languages are also a special
case of cc. Clause selection must be written explicitly with the choice operator. The
constraint system C is the set of finite trees with equality constraints.

It is possible to give a transition system for cc. Saraswat gives such a transition
system in his thesis[Sar89]. The paper by Saraswat and Rinard gives the semantics
of cc as a reactive congruence through bisimulation[SR90]. The subscquent paper
by Saraswat, Rinard and Panangaden gives the semantics of cc agents as closure
operators[SRP91].

4.3 Implementation Considerations

In this section we examine some issues raised by the implementation. Eventual tell
is motivated by the desire to spread the store in a distributed memory architecture.
A weak entailment relation is needed to simplify the solver. Each Agent may answer
its own query so the store need not be an active entity. Suspended agents may be

aborted if we can find out they will be suspended forever. Finally, the store may be

31

garbage collected to reuse the storage.

Eventual Tell. To implement atomic tell efficiently, we need shared memory.
Shared-memory machines do exist but they do not scale as well as distributed memory
machines. Two possibilities for implementing cc on a distributed memory machine is
to replicate the store on many nodes, or to split the stote onto many nodes. These
open many interesting avenues but they are not easy to imiplement.

Another possible solution is to use a local store on cach node and a global
store. Agents tell constraints in the local store, possibly checking consistency locally
but delaying the consistency check in the global store. Periodically the local store is
combined with the global store and a full consisteney check 1s performed. The store
is now responsible for consistency checking. We can define a new primitive called
eventual tell. The call etell(c) adds ¢ to the local store consistently and terminates,
The constraint ¢ will eventually migrate to the global store and be checked for global
consistency at that time.

Ask is still a stable operation, an agent may simply wait longer because the
information it is waiting for is sitting in a local store on another node. The information
will eventually propagate to the global store and this will 1esume the ask. The
operation etell(c) is not atomic, for example the agent etell(X = 1) ||etell(X = 2) may
succeed even though the values of X are inconsistent. Eventually, the bindings for .V
will migrate to the global store and the program will aboit because the inconsistency
will be detected at that stage. This only happens with erroneous programs.

Deep guards in concurrent logic programming languages are closely related to
eventual tell. When a guard is evaluated, the bindings it makes are not scen by the
other goals. This is like making bindings in a local store. When the clause commits,
the bindings of the guard are made available to the other goals. This is like migrating,
constraints from the local store to the global store. The local store of the guards that
were not chosen will never migrate to the global store. The evaluation of a guard
begins in a new local store so it does not sce the effect of an old unsuceessful guard.

Weak Entailment Relations. Some constraints are hard to solve. We saw

how the CLP implementation puts the hard constraints on a suspension ¢ueue. In

32

cc the same effect is achieved by weakening the entailment relation. We may wish to
wait for more information before we infer a constraint ¢ even when the store logically
entails ¢. For example, an entailinent relation might be too weak to infer that X =2
from the store X * X = 4. The agent ask(X = 2) — A will be suspended even
though the store logically entails the constraint. Ask remains a stable operation, but
the suspended asks may have to wait longer. The advantage is a greatly simplified
implementation of the solver.

We can also simplify the tell operations. We may wish to suspend a tell un-
til an implied ask is entailed. In the implementation of naive arithmetic, all ar-
guments to functions must be ground before the function can be applied. This
can be done by introducing implicit asks in constraints. For example, tell(X =
Y + Z) implicitly asks that Y and Z both be ground. This tell is equivalent to
ask(integer(Y') A integer(Z)) — tell(X =Y + Z). Implied asks can be used to test
the types of operands as above. Previously, a tell was either consistent and it termi-
nated, or inconsistent and the program failed. Now a tell may suspend because one
of its implied asks suspends.

Another way to simplify the constraint system is to specialize the constraints
to either ask or tell but not both. An ask-only constraint can be used in an ask
but not in a tell. Similarly a tell-only constraint can be used in a tell but not in an
ask. Typically, value constructors are tell-only while type recognizers and component
selectors are ask-only.

Aborting infinitely suspended agents. If the store entails =¢, then the
constraint ¢ will never be entailed and the agent ask(c) — A will suspend forever. In
some constraint systems it is possible to determine that —c is entailed when checking
to sce if the store answers c¢. In that case, the implementation may wish to abort the
agent to save storage because this is observationally indistinguishable to an infinitely
suspended agent.

Agents may answer their own query. An ask checks if its constraint
is entailed by sending a query to the store and waiting for the reply. The solver

will eventually get around to this request, and try to solve it. If the constraint is

33

entailed, the solver will reply with a message to resume the ask. If it realizes the
negative of the constraint is entailed, it will reply with a message to abort the ask.
Otherwise, the solver remembers the request (or a simplification of it). These requests
are reconsidered when more information is added to the store.

The agent is blocked waiting for the reply throughout the time the solver is
working on its behalf. While the agent sits idle, the solver had to fork a worker
thread to solve this constraint. It seems more economical if the solver could horrow
the thread of control of the agent instead of forking a new thread. The store is no
longer an active entity since the agents answer their queties for themselves. This
saves on the number of processes as well as two interprocess communications because
the request need not be sent nor replied. This is a common technique in remote
procedure call implementations.

Garbage Collection. As defined, it secins the store will keep on increasing by
the addition of new constraints. The solution is the same one found in LISP systems
The store should be garbage collected. Portions of the store guaranteed not to he
needed anymore can be reused. For example, the constraint X' < 5 may be disearded
if it is known that X < 2. Each constraint system will handle this differently. For

some constraint systems, this may not be obvious at all.

4.4 Implementations of cc

There are many implementations of cc languages. Most were not conceived as iu-
stances of cc. The cc framework was born out of the attempt to unify the many
variants of concurrent logic programming languages. Understandably, most of these
languages can be seen as instances of cc. One notable exception is Concurrent Pro-
log. The subtleties of read-only unification and merging the envitonments cannot he
modeled in the framework.

Janus is the first language specially designed as an instance of cc[SKLI0,
SKL89]. Janus has a clausal syntax closer to GHC than the cc syntax we definer

here. The constraint system of Janus is designed so a constraint can never fail. The

34

hasic data types are bags, or multi-sets based on the theory of non well-founded sets,
rational (infinite) trees and updatable arrays. Janus has the two-occurrence restric-
tion originally found in Doc[Hir86]: a variable can occur at most twice in a clause.
Furthermore, the occurrences are classified as either a teller or an asker. A teller has
write capability to a variable; an asker has read capability. Capabilities are consumed
after only one use but they may be passed as arguments without consuming them.
Askers and tcllers are created in pairs so an asker knows there is a teller that may
possibly instantiate the variable, and the teller knows there is an asker ready to read
the value it has produced. The two-occurrence restriction seems very drastic, nev-
ertheless, most logic programming techniques can be used in Janus. This includes
producer-consumer interactions, short circuits, incomplete messages and messages
into the future. Bags are used to get many to one communication. This makes it pos-
sible to write servers respecting the two-occurrence restriction. Janus has a sequential
implementation running on top of SICStus Prolog[Deb91].

The domain of values of the language ‘Guarded Definite Clauses with Con-
straints’ or GDCC is the set of rational polynomials. Its solver is a parallel im-
plementation of the Buchberger Algorithm. To the author’s knowledge, GDCC is
the first parallel implementation of a language specifically designed as an instance
of cc[Haw91]. The language Taskell described in the following chapter is another cc

instance implemented in parallel.

35

Chapter 5

The Programming Language
Taskell

This chapter describes the programming language Taskell, a member of the cc family.
Each member of cc is characterized by its constraint system and its set of agent
combinators. The constraint system of Taskell is the set of finite trees with equality.
Taskell also has naive arithmetic on integers. The agent combinators are procedure
calls, 1| for parallel execution, new for existential closure and choice for selective
behavior. The main procedure declares the variables that are printed at the end of
the computation for the results. The syntax of Taskell is given in figure 5.1, it closely
resembles the syntax used in chapter 4. After the language is described, the last
section illustrates its use with a set of sample prograins demonstrating list processing
capabilities, tightly-coupled producer-consumer relationships and non-deterministic

processing.

5.1 Definition of Taskell

The syntax of Taskell is given in figure 5.1. Symbols in the syntax have the following
meaning: a word between (angle-brackets) is a syntactic category, the character |
means ‘or’, the character ¢ is the empty string, the ellipsis in (cat) sep ... sep (cat)

means either the empty striug ¢, or (cat) , or else two or more (cat) separated by

36

sep. Other characters are in typewriter font and appear explicitly in the program.

One of our design principle was to minimize the use of special characters, there-
fore we chose to spell the name of operators explicitly instead of using symbols. Non-
alphanumeric characters are used for punctuation only. We feel this makes Taskell’s
syntax casy to learn and remember. The following paragraphs discusses the rationale
for our design.

The following keywords are reserved: and, ask, begin, choice, end, in, isint,
istree, new, or, proc, tell.

A program begins in the procedure called main, so the body of main is the initial
agent. One cannot send arguments to main even though it has parameters. These
variables contain the results of the computation at termination and are printed at the
end of the execution. Taskell does not have other I/O mechanisms. A procedure can
have internal procedures as in a nested-block language. Free variables in the body
arc resolved with lexical scoping. A procedure body is a single agent, possibly built
from the parallel combinator ||. The scope of the parallel combinator is delimited
by a pair of enclosing braces. The biaces are necessary to remove any ambiguity in
the scope of new. It is possible to enclose a single agent in braces to make the scoping
more explicit. It is legal to always put braces after an ask or a new eveun though they
are not nccessary in all cases. The definition of a procedure with no arguments needs
the parentheses, e.g., proc fred(), which is called with an empty list of arguments.

The symbol | | approximates the parallel symbol ||. The symbol ‘=>’ in blocking
ask is meant to point to the agent executed after the constraint is entailed. The guards
in a choice are separated by the symbol ‘+’. The plus sign denotes the union of possible
choices available to the agent. A guard looks like a regular ask because if the guards
are all disjoint, the choice operator is equivalent to all these asks running in parallel.
We chose to use => in guards instead of -> to remove some of the confusion created
by the two uses of ask. Using => also helps error recovery in the parser. Taskell docs
not have tell guards, but these could be a future extension.

The values in the domain are integers and finite trecs. A finite tree is made

up of a root name and a list of children separated by commas. The root of the tree

37

(program) = proc main ({var), ... , {var)) (procs) begin {agent) end
{procs) = (proc) (procs) | €

(proc) = proc (name) ((var) , ... , (var)) (procs) begin {agent) end
(agent) = (ask) | (tell) | (new) | (par) | (call) | (choice)

(ask) = ask((ask-constramnt)) -> (agent)

(tell) = tell((tell-constraint))

(new) = new (var) , ... , (var) in (agent)

(par) = { (agent) 11 --- 1| (agent) }

(call) = (name) ((value) , ... , (value))

(chaice) = choice { (guard) + --- + (guard) }

(guard) = ask((ask-constraint)) => (agent)

(ask-constraint) = ((ask-constraint)) |
(ask-constraint) and (ask-constraint) |
(ask-constraint) or (ask-constraint) |
isint((value)) |
istree((name) , (integer) , (value)) |
(value) = (value) |
(value) > (value) | (value) >= (value) |
(value) < (value) | (value) <= (value)
(tell-constraint) = ((tell-constraint)) |
(tell-constraint) and (tell-constraint) |
(value) = (value)
(value) = ((value)) | (var) | (integer) | (tree) |
| (value) - (value) |
| (value) / (value)

(value) + (value)
(value) * (value)

(tree) = (name) | (name) ((value) , ... , {value))
{var) = (name)

(integer) = (digit) | (digit) (integer)

(name) = (alpha) | {alpha) {alphanum)

Figure 5.1: The syntax of Taskell.

38

. uﬂq‘\

fred(10, X) is fred, its first child is the integer 10, and the second child is the
variable X. A tree with no arguments is written without parentheses, for example
fred is a nullary tree. Inside a constraint, a (name) is either a nullary tree or a
variable. The compiler can determine which one because variables must be declared
in a parameter list or in a new. By convention, variables start with a capital letter,
but this is not enforced.

Constraints are always enclosed in parentheses. And has higher precedence than
or. The multiplicative operators (* and /) have higher precedence than the additive
ones (+ and -). All arithinetic operators are left associative. One can use parenthescs
to override the default precedence. The relational operators are <, <=, > and >=. They
take two arguments and they cannot form chains: 1 < X < 10 must be written 1 <
X and X < 10.

Taskell has equality constraints between two values, for example X = Y, X = 1
or 2 = 3. Note that imposing the last constraint would make the store inconsistent.
The ask-only constraint isint(X) can be used to ensure that X is an integer. The
argument can be any value but it will be most useful if X is a variable. This constraint
suspends until its argument is instantiated.

Taskell implements naive arithmetic through binary functions. These functions
take two integer arguments and return an integer. There is an implied ask on cach
argument to guarantee they are both integer. For example, the agent tell(X = Y *
Z) is equivalent to the agent ask(isint(Y)) -> ask(isint(Z)) -> tell(X = Y *
Z). The implied asks ensure that arithmetic is always performed on ground integer
values. The relational operators expect their arguments to be integers. They have
similar implied asks.

The ask-only constraint istree(r, n, t) isentailed only if t is a tree with root
r and its arity is n. This is a restricted form of existential quantification equivalent
to JAg,...,Ay t =1(Ag,...,A,). Taskell does not have this form of existential quan-
tification. Istree contains the arity explicitly to distinguish between trees with the
same root name but different arity. Note that the arity must be an integer constant,

it cannot be an integer valued expression.

39

TE L Um e LT Eooa e o ¥

e B T W

e

It is possible to create cyclic structures in Taskell. These can create infinite

loops in the run-time system. The following agent demonstrates the problem:

new X, Y, Z in

{tell(X=£(X))] tell(Y=£(Y)) || ask(X=Y) -> tell(Z=1)}

The first two tells succeeds because X and Y are unbound, but the ask will loop trying
to check if X=Y 1s entailed.

Taskell is obviously an instance of cc. It can also be viewed as a concurrent
logic programming language. The language closest to it is Flat Guarded Horn Clauses
Taskell is flat in the sense that guards can only be a conjunction of system constraints,
there are no procedure calls in guards. A disjunction in a guard can be viewed as
a short-hand for two guards with the same guarded agent. Taskell’s unification is
not atomic, bindings are made as the unification procecds. This distinetion is not
as important as in FGHC because it should only be visible in cases leading to an

inconsistent store. These programs are considered erroncous and will be aborted.

5.2 Examples of Taskell Programs

This section gives a feel for programming in Taskell by listing some sample programs.
The examples include an append procedure, a merge of two lists and the constiuction
of an admissible list.

The first program demonstrates simple list handling capabilities, it computes
the result of appending the list (1) to the list (2 3). The answer is Ans = cons(1,
cons(2, cons(3, nil))) which is the full form of the list (1 2 3). Append tests
its first argument, if it is nil it stops immediately, if it is a cons cell, it names its car

and cdr X1 and X2, puts X1 in the iesult and calls itself recursively.

(* A program appending the list(1) and (2 3) *)
proc main (Ans)
proc append (X, Y, 2)

40

P

begin {
ask(X=nil) -> tell(Y=2Z)
Il ask(istree(cons,2,X)) ->
new X1, X2, Z1 in {

tell(X=cons(X1,X2))
Il tell(Z=cons(X1,Z1))
|| append(X2,Y,Z1)
}
}
end

begin
append(cons(1,nil), cons(2,cons(3,nil)), Ans)
end

The second program is a demonstration of tightly coupled interaction between
agents, it is inspired by a similar program in [Sar89]. The problem is to compute an ad-
missible list, i.e., a list made up of pairs (X,Y) represented by the tree cons3(X,Y,2)
where Z is the rest of the list, with the following properties. The second element
of a pair is twice the first element: Y = 2 xX. The first element is three times the
second element of the previous pair: X = 3 * previousY. The double procedure
looks at one pair at a time and sets the value of the second element to twice the
value of the first clement. It does that for all pairs in the list. The triple proce-
dure inspects a pair and expands the list if the element has not exceeded a threshold
(30000). The main procedure foris three agents, one to guarantee the doubling re-

quirement, one to guarantce the tripling requirement and one to initialize the list.

This program will continuously switch between the double and the triple agents.
The double agent needs the first element before it can compute the sccond element,
and triple needs the second element before it can decide to expand the list or not.
The answer is L = cons3(1, 2, cons3(6, 12, cons3(36, 72, cons3(216, 432,
cons3(1296, 2592, cons3(7776, 15552, cons3(46656, 93312, nil)))))))

(* A program to compute an admissible list =)

proc main (L)

) I
I

]

proc double (L)
begin {
ask(istree(cons3,3,L)) -> {
new X, Y, L1 in {
tell(L=cons3(X,Y,L1))
|| tell(Y=2%X)
|} double(L1)

}

end

proc triple (L)
begin {
new X,Y,L1 in {
tell(L=cons3(X,Y,L1))
Il ask(Y<30000) ->
new Y1,Z,L2 in {
tell(Li=cons3(Y1,Z,L2))

Il tell(Y1=3*Y)
Il triple(L1)
}
Il ask(Y>=30000) ->
tell(L1=nil)
}
}
end
begin {
double (L)

Il triple(L)
|| new S,U in tell(L=cons3(1,S,U))

end

The following program is the standard example for the need of choice, it tests

a merge procedure by merging a list of ones and a list of twos. The producer builds

42

a list of Max length by repeating the value in Id. If the desired length is attained it
stops the list, otherwise it adds a copy of Id to the list and calls itself recursively.
Once the two producers in main have terminated, L1 will be a list of twenty 1’s, and
L2 will be a list of thirty 2’s. The merge procedure can stop as soon as one of the list
is exhausted. Otherwise it non-deterministically picks one list with an available cons
cell, adds the cell to the result and calls itself recursively. Merge flips its argument in
an attempt to be more fair between the two lists. The producers construct the lists
as they are merged, but merge will never get ahead of the producer since the istree

guard will suspend until the cons cell is available.

(* A program to merge a list of ones with a list of twos *)
proc main (L)

proc producer (N, Max, Id, L)
begin {
new L1, NN in
choice {
ask (N>Max) => tell (L=nil)
+ ask (N<=Max) => {
tell (L = cons(Id, L1))
[l tell (NN = N+1)
|| producer (NN, Max, Id, Li)

end

proc merge (L1, L2, L3)
begin {
new L11, L22, L33, Item in
choice {
ask (L1 = nil) => tell (L3 = L2)
+ ask (L2 = nil) => tell (L3 = L1)
+ ask (istree(cons,2,L1)) => {
tell (L1 = cons(Item,L11))

43

PRI R

B T ¢ A AT T e v

A LR AR R R 5 [JETR SNSRI WSS TR BT Maf T o e W

Il tell (L3 = cons(Item, L33))
Il merge (L2, L11, L33)
}
+ ask (istree(cons,2,L2)) => {
tell (L2 = cons(Item,L22))
Il tell (L3 = cons(Item, L33))
|| merge (L22, L1, L33)

end

begin
new L1, L2 in {
producer (1, 20, 1, L1)
Il producer (1, 30, 2, L2)
I} merge (L1, L2, L)

end

44

P

Chapter 6

Implementation

The implementation of Taskell has to address two issues: how is the specific constraint
system implemented and how are the process combinators implemented?

The implementation of Taskell is written in Concurrent ML, a language based ou
message passing between concurrent sequential processes. The Taskell compiler takes
a source file and produces a Concurrent ML program in another file. The compilation
process is described by the mapping from the source language to the Concurrent ML
intermediate code.

Many issues in this chapter depends on the specific constraint system of Taskell.
For example, since the constraint system of Taskell is equational, equivalence classes
play an important role. Agents may suspend for two reasons: they may wait for a
variable to be instantiated, or for two variables to be merged in the same equivalence
class.

The naive arithmetic operators of Taskell are value returning functions with
implied asks on their arguments. This unifies the treatment of arithmetic in asks and
tells.

Our implementation solves both asks and tells in parallel. Because of this, vari-
ables are implemented as processes with a protocol between agents and between other
variables. The protocol is motivated and described. A variable process implements a
sct of variables that have been equated, we call this set an equivalence class. Finally,

we give the unification algorithm used by agents to solve ask and tell constraints.

45

6.1 Implementation Issues

Amount of parallelism. In choosing the architecture of the implementation, the
amount of parallelism is a key design decision. The agents execute in parallel and
they all access the shared store. Clearly, parallelism in the store operations is very
important. We will concentrate on ask and tell since other store operators are just
variations of these. There are different options depending on how many asks and tells
we solve in parallel.

The first option is to serialize all asks and tells into one stream of requests,
Inside the store is a process that reads the requests one by one and excentes them
in order. Some requests can be solved immediately, others have to wait in quenes.
Solving a request may reactivate other requests which are then dequened and solved.
The whole request is the atomic action except that queued requests may define a
smaller atomic action. Serialization may seem strange for a concurrent language hut
it is the most sensible thing to do in a simulation wiitten in a sequential language.
For example, QDJanus fits in this category. Serialization is also useful for debngging,
purposes.

The next option is to run agents in parallel and solve multiple asks concurrently
with a single tell. Tell requests arec meiged into a single stream to be read by a
process in the store as above. For an atomic tell, an agent must block until its tell
request is processed by the teller. Eventual tell is achieved if the agent continues
immediately after inserting its tell request into the stream. The local store is the
stream of requests and consistency is checked later by the teller when it reads that
request from the stream. Ask requests are conceptually solved by the store, but since
an asker is blocked until the constraint is entailed, the store can borrow the asker's
thread of control to solve the request. The end result is that agents solve their own
ask. An ask checks the entailment of a constraint, it does not change the store. If it
needs to modify the store in order to carry out an inference, this cau be done in a
local environment which will be discarded later. We expect an ask will not disturh
the execution of another ask running concurrently, hence an asker does not have to

worry about the execution of other asks. This leaves the asker to worty about the

46

execution of the tell. The tell may change the store as the asker is trying to solve its
constraint. You need a form of atomicity in the actions of the tell so that askers can

account for a changing store.

Atomicity. The most interesting approach is to solve both asks and tells in
parallel. This requires locks as can be seen by the following example. Let A; be the
agent tell(X=1) and let A, be the agent tell(X=2). A trace of the agent A; || Aj
might be:

Aj: determine the value of X is Unbound
Az: determine the value of X is Unbound
A;: set X=1

Ag: set X=2

The store should be inconsistent but this was not detected. One must be careful with
locks because it is easy to fall into deadlocks. A lot of the complexity in the solver
involves atomicity issues. The section on the implementation of variables will discuss
inany small probleins encountered in trying to solve asks and tells in parallel. Many
details concern the atomicity of operations on variables.

Suspension mechanisms and consistency. The following discussion is only
meaningful for equality constraint systems. Agents may suspend for two kinds of
cqualities to be entailed. The agent ask(X=2) needs the value of X to check it against
the value 2. Compare this to the agent ask(X=Y). The constraint X=Y may be entailed
if X and Y have no value but are bound to each other. That is why the solver separates

the suspension requests in two categories:

e An instantiation suspending agent for the variable X suspends until X is instan-

tiated because the agent needs the value of X.

¢ An cquation suspending agent for the variable X suspends until X is equated to
another variable Y. This will happen if the equivalence class of X is merged with
the equivalence class of Y. The value of X can be equal to the value of Y even if

the class of X is not equal to the class of Y, so the equation suspending agents for

47

X are resumed when X is instantiated. An agent resumed because the variable

X was instantiated will probably choose to become an instantiation suspending
agent for Y.

There are some alternatives when implementing ask. In the first alternative,
the constraint is checked for consistency in depth-first fashion. A sub-problem is
solved completely before another sub-problem is attacked. The asker may suspend
waiting for a variable to be instantiated or waiting for two variables to be equated
even though the rest of the constraint is clearly meonsistent. For example, take
the agent ask(p(X,1)=p(2,2)) -> A when X is unbound. The second argument
of p obviously contradicts the equality constraint, but this agent will nevertheless
suspend waiting for the value of X. The semantics of cc suspends this ask infinitely,
so the behavior is correct but we may take more space than necessary. The advantage
of this scheme is that it is casy to program. The blocked asker nuplicitly remembets
what sub-problems remain to be solved in the constraint. When it is resmned beeanse
its waiting condition is satisfied, it simply continues where it left off.

The second alternative tries to find possible inconsistencies as soon as possible,
At the end of the consistency check, there remains a list of sub-problems that were
not solved because they would have blocked. There is a choice for which variable
to suspend on. One can choose the first variable in the first sub-problem, but other
variables of intcrest may become instantiated before that one which may render the
constraint inconsistent. This cannot be recognized inunediately sinee the process is
waiting for the instantiation of the first variable. In that case, it is haid to justify the
effort spent in the first phase when checking the consistency. One can disjunctively
wait on all the variables in the unsolved sub-problems and resume as soon as on of
those is instantiated. Then one must reconsider the sub-problems in which the newly
instantiated variable appear.

One has to balance the advantage of aborting an agent early through the de-
tection of some inconsistency and the work performed to find the inconsistency. o
that reason, Taskell’s implementation follows the first scheme.

Naive arithmetic. The operators in naive arithmetic wait until their argu-

48

* %‘ﬂ‘

ments are instantiated before they compute the result. This is done by implied asks
on the arguments. There are many alternatives for how to handle the implied asks

and returning the result.

1. The naive arithmetic operators like + are data constructors. Asks and tells must
handle the implied asks themselves. This complicates solving asks and tells
unnecessarily specially for tells because they must be rcady to suspend if an

implied ask suspends, whereas they could not suspend before.

2. The naive arithmetic operators are constructors and the implied asks are com-
piled in place into explicit asks. The compiler must know the implied asks which
make them harder to change. This has the other disadvantage that it increases

the program text.

3. The naive arithmetic operators are functions that perform the implied asks and
return the result of a constructor to describe the constraint., The asks and
tells must handle the constraint themselves but they are easier to solve since
the implied asks are guaranteed to hold. This is how Taskell handles relational

operators like <.

4, The naive arithmetic operators are functions that perform the implied asks and
return the arithmetic result. The treatment of arithmetic is uniform for both
asks and tells because they never see the arithmetic operators, they only sece the
integer results. This assumes the arguments to functions are evaluated before
the function is applied, which is a reasonable assumption. Taskell uses this last

alternative to implement naive arithmetic.

Compound constraints. Taskell has conjunction in both ask and tell and
disjunction in ask. These are easy to implement because they can be rewritten simply
in terms of other agents. The agent ask(c; and ¢9) -> A can be implemented with
ask(c;) -> ask(cy) -> A. The agent tell(c; and cp) can be implemented with
tell(c;) || tell(cy). Disjunction in ask is similar to a choice with the same agent

in all the branches, ie., the agent ask(c; or ¢3) =-> A can be implemented with

49

choice { ask(c;) => A + ask(cp) => A}. Using the sequentiality of the target
language, this simplifies to choice { ask(c;) => () + ask(¢y) => O}; . where
() means do nothing. Taskell does not have disjunction in tell constraints because it
would need disjunction in its constraint system. Disjunction is tells cannot be casily

rewritten in terms of other agents.

6.2 Overview of the Implementation

The implementation of Taskell went through some changes. The study of QDJanus
was beneficial but it is sequential and we wanted a parallel implementation. At tist,
we decided to solve asks in parallel and tells sequentially. There was a process callid
the teller. Agents sent their tell requests to the teller to be solved. The teller was
sequential process so there was only one tell performed at a time. A variable was an
ML reference because its value needed to be changed at the tine it was instantinted.
The value could also be changed without instantiation because an unbouund vaiable
contained a list of agents waiting for its instautiated value. CML could guarantee
atomic assignment in the following sense. If an asker reads a variable while a telles
is assigning a new value, the asker would read the old or the new value hut not
mix of the two. The teller also handles requests to suspend until a specin. A variable
is instantiated. The teller would have to resume these agents because it is the only
process that can instantiate a variable.

Unfortunately, references are not guaranteed to work in the parallel implemen-
tation of CML, the atomicity of assignment is simply a side-effect of the current
sequential implementation. The atomicity could be guaranteed with the use of lochs
on variables. Unfortunately, locks are not built into CML, they must be simulated
with processes. This means, you send an acquire request to the lock, do the operation
on the variable, and then send a release request to the lock. Since a viniable needs
a process, we could put the state of the variable in the process and let it 1espond
directly to requests for variable operations like get_value and set_value. Since i

variable process is sequential, there would ouly be one request executed at a time,

50

Translator
Compiler modules | Parser

Scanner

Translator

Run-time system | Variable

Domain
User program Prog
Utilities Utility

Figure 6.1: Separation into modules

giving the same effect as a lock. The new scheme gives us the apparatus we need
to solve asks and tells in parallel, we can expect it will work on distributed memory
parallel machines because it does not rely on unsafe propertics of references.

The Taskell compiler reads a Taskell program from a file and produces a Con-
current ML program in another file. The program can be run by loading it into CML
with the Taskell run-time system alrecady loaded. The compiler is made up of a scan-
ner, a parser and a code generator called the translator. The run-time system is made
up of the solver and a module implementing variables as threads. Figure 6.1 lists the
modules in the implementation. The Domain module describes the types of values
and the constraints that form the constraint system. The Utility module contains
useful functions like member that are not in the ML library. Figure 6.2 describes the
dependencies between the various modules. From the figure, we see the compiler and

the run-time system are somewhat independent.

6.3 Concurrent ML

Concurrent ML was designed recently by John Reppy at Cornell University[Rep90,
Rep9l]. It is a superset of Standard ML of New Jersey that supports concurrency

and communication between processes. The current version timeshares a single UNIX

51

<__Prog >
< Solver 7>
Utllity

Figure 6.2: Dependencies between modules

process for all Concurrent ML threads. A truly parallel version ruuning on a wmulti-
processor is under way When it becomes available, we automatically have a parallel
implementation of Taskell running on a parallel machine.

Standard ML is a higher-order polymorphically typed language originating from
Edinburgh[MtH90, Mt91]. Type inference makes type declarations largely unneces-
sary while remaining strongly typed. This saves a lot of time in programming but
may make error messages hard to understand. ML consists of a functional and an im-
perative subset. Most variables are given a value throngh binding, the value of these
variables cannot be changed after it is bound. Assignment is allowed on variables bhut
they must be declared of type ref. Variables of type ref are called teferences.

Concurrent ML is built around the model of communicating sequential processes
and message passing. Communication is synchronous, 1.e, a send ot a 1eceive blocks
until its partner arrives. CML processes are created dynamically. Messages ane
sent on channels that are also created dynamically. It is possible to send channels
in messages, making the communication network highly dynamic. Futhermone, the
communication operations are first-class values. It is possible to build deseriptions of
protocols and exccute them later, and even send them atound. This type of value is
called an event. Executing an event is called synchronizing on an event and is done
with the function sync (event). One advantage of events is the added expiressive

power of the selective communication in Concurrent ML for which the set of choices

92

-an be computed dynamically. This is in contrast to Ada in which the set of choices
in a select are frozen at compile time because it appears textually in the program.
Occam’s ALT statement shares the same limitation. Commnunication as a first-class
value is the topic of John Reppy’s Ph.D. thesis[Rep92).

CML reclaims processes as part of its garbage collection. A process is reclaimed
if it is blocked on a channel, and no other active process has access to that channel.
These processes would block forever because there can never be a process available
to form the conuection. Process reclamation simplifies programming because the
programmer is relieved from terminating those processes explicitly. Without recla-
mation, terminating processes would be difficult because CML does not have an
abort statement: a process can terminate itself but it cannot abort other processes.

CML processes are implemented with continuations. Process creation and task
switching are particularly efficient in CML, contrary to other continuation based
concurrency schemes. The memory organization of CML puts everything on the
licap and this makes a call with current continuation a constant time operation.

The module system of Standard ML is based on the concepts of structures,
signatures and functors. A modules is a structure, the interface of a module is a
signature. A signature is the type of a structure because it gives the type of the
components of the module. A functor is a parameterized module, it can be applied
to arguments to yield a stiucture. These names were chosen by analogy to their
mathematical meaning. For exarmple, a functor is a form of higher-order function,
lience its name. Functors are compiled once, but can be applied any number of times.
To implement separate compilation, you write all your modules as functors and you
apply them to link your application together,

We chose Concurrent ML for the implementation of Taskell because it is a very
high level functional language with novel communicetion facilitics. We have greatly
simplified the implementation by choosing Concurren. ML as the target language of
our translator. Many features of Taskell are inherited from similar features of CML.
In particular, Taskell's lexical scoping, procedure calls, garbage collection, process

management, synchronization and termination detection all come from CML. Other

53

R e B S

<o

features of CML not shared by Taskell were also useful, including communication as

first-class values and interprocess communication,

6.4 The Taskell Compiler!

The Taskell compiler is made up of a scanner, a parser and a code geuerator called the
translator. The parser requests the tokens from the scanner one at a time, The parser
uses recursive descent to build an abstract syntax tree. The complete tree is sent to
the translator, which uses a tree walk to translate it to Concurrent ML in oue pass,
The parser tries to recover from errors by looking ahead for the expeeted token o
some synchronizing token. The error recovery is based on the exeeption mechanism
of Standard ML. The scanner and parser can print debuggiug messages if a flag is o
turned on.

The compiler maps Taskell features to CML features. Fignie 6.3 gives the
correspondence between them. Most items are self explanatoty except for an agewt
continuation: this is where a blocking ask will resume if its constraint is entailed, For
example, the agent continuation of ask(X=1) => A is the agent A An agent s o
process evaluating an expression, while an agent continuation is an expression that
may be evaluated by an agent. CML has continnations, but they are not necessany
in this case because A-abstraction is sufficient.

Figures 6.4 to 6.6 show in detail the translation schemas applied by the transla-
tor. T is the translation function from Taskell to CML. The compiler has equivalent
schemas from the abstract syntax trece to CML. The function T on the left hand
side expands to the right hand side. The function T on the right hand side stands
for the result of applying T to the argument. Characters i typewrater font appein
explicitly. A word in wtalics stands for some construct. Words 1 #alies on the vight
hand side stand for some stiing taken from the argument of T

All elements of the domain have type value once in CML. The value dati

type is shown in figure 6.7. The constructor Tree has the type value. Integers are

YThe scanner and parser were inspired by the SIL compiler written by Prof. Lautic Hendren,

54

ol

N

Taskell CML

program structure
procedure definition | function definition
agent thread

agent continuation | A-expression

new let newvars in ...end
ask function call to ask
tell function call to tell
choice function call to choice
procedure call function call

parallel combinator | series of spawns
constraint data constructors

naive arithmetic function calls

Figure 6.3: Correspondence between Taskell features and CML features

wrapped in the constructor Int to give them the type value. Variables are also of
type value because they can be used where constants can be used. The coustructor
for variables is Var. It is not visible in figures 6.4-6.6 because it is hidden in the
function new. The constructor FN in the schema for || and the constructor Names in
the schema for main are needed to correctly infer the types of their argument. The
request data type is explained fully in section 6.6.

The translator outputs a structure called Prog containing two functions. The
function main is the translation of the Taskell program. The function run is needed
to start execution of main. A CML program is started by calling the function doit
with two arguments, the first azgument is a function to be evaluated by the initial
process, it takes no arguments and returns no value. The second argument is the time
slice for preemptive scheduling. CML requires a function like doit because it is not
vet possible to change the read-eval-print loop in Standard ML. The Taskell program

is started by calling Prog.run (). The appendix shows the output of the compiler

55

o

Tlproc main(vi, ..., v,) procs begin A end] =
structure Prog =
struct
local open Domain Solver in
fun main () = let
val v; = new()
val v, = new()
T[procs]
in
answer (Names [(v;, "u1™), ..., (v,, "v,")1);
T[A]
end
fun run _ =

RunCML.doit (main, SOME 20)
end

end

Tlprocy, ..., proc,] = tun T[proc,}
and T[procy)

.
.
.

and T{proc,]

Tlproc name(vy, ..., v,) procs begin A end] =
name(v), ..., vp) = let
T[procs]
in
T{4]
end

Figure 6.4: Translation schemas for procedures.

56

i Tlask(c) -> A] = (ask(T[c]);
T[A]
)

T[tel1(c)] = tell(T|c])

Tlnew vy, ..., v, in A] = let
val v; = new ()

val v, = new ()
in
T{A]

end

TI{A1 11 - || Ax}] = (fork (FN (fn) = T[A]);

fork (FN (fn () => T[An.-1]):
T[A.D
)

T[choice {ask(ci) => A; + .- + ask(cy,) => A,}] =
choice [
(fn (ev) => (guarded(T[c], ev); T[Ai])),

(fn (ev) => (guarded(T[c.], ev); T[A.]))
]

T[name(ay, ..., an)] = name(T[a1], ..., Tla.])
Figure 6.5: Translation schemas for agent combinators.

57

Tle1 and e} = (T[e1] And Tle2})

T[ey or) = (Tle1) or Tfea])

T[isint(e)] = Isint(T[e])

Tlistree(r, n, e)] = Istree("r", n, TleD

Tler =ea] = (Tler] == Tles})

Tle, op e3) = (Tle1] opop Tle2])

T[integer_constant] = Int (integer_constant)

T[rame(a,, ..., a,)] = Tree("name", n, (Tla]. ..., Tl 1

Tfname] = name

Figure 6.6: Translation schemas for constraints and values.

58

datatype value = Unbound
| Bool of bool
| Char of string
| Int of int
| Tree of string * int * value list

| Var of variable

and variable = Variable of request CML.chan

Figure 6.7: The ML datatype for Taskell values

on two different programs as well as a trace of their execution.

6.5 The Run-time System of Taskell

The translator outputs calls to the functions: ask, tell, new, choice, fork and
answer. These are defined in the solver and imported by the statement open Solver.
The program produced by the compiler is not functional, as can be expected since it
closely resembles the source program. The following paragraphs describe the CML
functions that are used in the translation schemas.

The function ask takes a constraint ¢ and returns only when c is entailed by
the store. Ask solves the constraint itself by sending messages to variables. It may
abort the agent if it discovers that the negation of ¢ is entailed by the store. It scems
that ask takes a function and an agent continuation as arguinent ask(e, A), but it
is simpler to use the sequentiality of the target language and implement this with
(ask(c); A) instead. This trick is not applicable to guards.

The function tell takes a constraint ¢ and augments the store with this new
constraint. Tell solves the counstraint itself by sending messages to variables. As it
does this, it checks the consistency of ¢ in the store. If the store becomes inconsistent,

it aborts the whole program with an error.

59

7

The function new takes no arguments. It creates a new variable and returns it
wrapped in the constructor Var to give it the type value. Part of creating a variable
involves launching a process to handle the requests for that variable.

The function choice takes a list of branches as arguments, A branch is a
function that solves a guaid and possibly executes its guarded agent. Choice forks
one guard process for each branch. The guards report back to the choice agent which
picks the successful branch. That branch is then allowed to execute its guarded
agent. This leaves the other guards pending, they will be garbage colleeted by CML
eventually. There are no provisiens for tell guards internally.

The argument of a branch is a Concurrent ML event, it describes the communi-
cation between the guard and the choice agent. The event is built by the choice agent
and sent to the branch when it is forked. A branch uses its event to 1epott suceess to
the choice agent. If the communication succeeds, it means this is the chosen branch
and it can execute its guarded agent. It is very important that a branch be a function
because it delays the cvaluation of the implied asks in the guard until the branch is
forked, otherwise an implied ask might suspend the whole chioice agent before it lias
time to launch the branches.

The choice combinator is difficult to implement iuside only one process. 1f all
the guards suspend, the process will need disjunctive wait to wake up whenever a
guard has more information. It is easier if each guard is exccuted by a new process,
The agent doing the choice remains as a manager for the gnard solvers. The guards
report to the choice manager. The manager determines the outcome by picking an
open guard and executing its guarded agent. The other guard processes either abont
themselves or they are reclaimed when they try to report to the manager.

The choice combinator in Taskell is implemented in two different ways. The first
implementation picks the first guard to terminate successfully. This is the hehavio
of committed-choice concurrent logic programining languages. Solving a guad is
simplified because it does not have to report failure or suspension. A gaard can he
implemented directly with a call to ask, followed by a message send to the inanager to

report that this guard is open. The ask will return only if the constraint is entailed,

60

ﬁ——_

iy

“

so the report will be sent only if the ask is successful. The first guard to report is
the one picked hy the manager.

The second implementation waits until all guards are either blocked or ter-
minated, then it picks one at random among those who terminated successfully. If
none terminated successfully and there are blocked guards then it blocks, otherwisc
it aborts. This implementation tries to be as fair as possible. Unfortunately, it can-
not usc ask directly because it needs to report success, suspension or failure to the
manager. The code to solve a guard is almost identical to solving an ask except for
these small differences.

The function fork takes an agent continuation and forks a new process to
evaluate it. It returns immediately to the caller. This is a call to the CML function
spawn, but it returns nothing instead of the new process ID.

The function answer takes a list of pairs as argument. Each pair is a variable
with its printable name. Answer is the mechanism by which the system knows which
variables form the result at the end of the execution. The printable names are needed
because they are not available at run-time.

The run-time system must detect the termination of the program to print the re-
sult of the computation at that time. CML has a built-in termination detection algo-
rithm for robust termination of programs. The function logServer("serverName",
initFn, termFn) informs CML that aserver should be initialized when the program
starts and finalized at termination. The function initFN will be called to initialize
the server at the beginning of the execution. The function termFN will be called
to finalize the server at termination. Taskell uses this facility to print the result of
the computation. The termination function of Taskell receives the list of variables to
print from the function answer in main. The values of the variables are printed onc
to a line in the format Name = Value. Taskell tries to eliminate all variables from the
right-hand-side by printing their value, but it cannot eliminate unbound variables, It
invents new names for these in the following sequence T1, T2, and so on. A new name
is generated only if the equivalence class doesn’t have a name already. The number of

cquation printed is always the same as the number of variables in the result. Taskell

61

-

does not try to minimize the output by adding more equations,

6.6 Implementation of Variables

Section 6.2 explained why variables were implemented as processes. The value of
a variable changes from unbound to some ather value when it is instantinted. Iy
Standard ML one would use a reference and assign the value to the variable when it
is instantiated. In Concurrent ML, shaited references are not g rantoed to work in
the presence of concurrency. Since we need atomicity i some variabie operations and
the only form of synchronization in Concurrent ML 1s thiough communication, we
implement variables as processes. Agents must send messages to variables to request
an operation on variables. This section develops the protocol used hetween agents
and variables. There are many details one has to be careful about in order to assue
atomicity and to avoid deadlock.

For an agent, a variable X is repiesented by a chanunel, The agent can pet
the value of the variable by sending a request on the channel. The request can
be current_value or instantiated_value. The variable X is implemented with o
process reading its channel for requests sent by agents. The vaddable responds toa
current_value request by returning the value of the variable at this time regardless
if it is instantiated or not. Non-instantiated variables retuin the value Unbound. T'he
response to instantiated_value requests depetds on the status of the viniable An
instantiated variable returns its value immediately. An unbound variable puts the
request in a queue. The requester becoues an mstantiation suspending agents of X
Other types of requests may make the agent an equation suspending agent of X.

The process implementing a variable is actually 1esponsible for the whole equiv-
alence class. When a variable X is equated to the variable Y and they are hoth un-
bound, then the equivalence class of X is merged mto the equivalence elass of Y therehy
delegating the responsibility of X to Y. The process for X disappears. This kind of
delegation is trivial to implement in CML being one of the main applications of

communication as a first-class value.

62

The communication behavior of a variable is represented as a value called an
event. Each variable process carries its event as part of its state. The event of
X deseribes the communication behavior of the variable X, similarly, the event of Y
desceribes the communication behavior of the variable Y. The function sync applied to
an event executes the behavior described by that event. Synchronizing on the event
of X returns a request for the variable X.

The equivalence class of X can be merged with the class of Y by building an event
describing the behavior resulting from behaving as X and Y. In particular, the new
class must accept requests fiom variables i the class of X and 1equests from variables
in the class of Y, but requests are read one at a time, so the next one will come from
cither the class of X or the class of Y. Therefore the new class must behave as the event
of X or the event of Y depending on the availability of 1equests. The function choose in
CML produces an event describing exactly this behavior. The new compound cvent
we assigh to Y 1s thus choose [eventX, eventY]. The variable Y will now accept
tequests from all channels it was already handling plus those previously handled by
X. The variable Y does not have to know which channels were handled by X because
this is all encapsulated in eventX. At fitst, a variable will ouly listen to one channel
but other channels are added every time a class is merged in The reason delegation
is 50 casy is because choose computes its branches dynamically whereas for example
select in Ada has a fixed set of branches determined from the program text at
compile time.

The protocol between agents and variables also involves messages between two
variables. To merge the equivalence class of X into Y, X must send its event to Y. The
ariable X must also send its suspending agents. The instantiation suspending agents
of X are added to the instantiation suspending agents of Y. The equation suspending
agents of X may or may not be released depending if the vaiiable they are waiting for
is in the class of Y, similarly, the equation suspending agents of Y may or may not he
released depending if the variable they are waiting for is i the class of X. This can
only be determined if we keep a list of the variables that ate members of the class.

The representation of variables in this list is the same as the one used in agents. Each

63

item in the list is a channel. Thus variable processes have a list of channels in then

state describing the variables in its equivalence class,

The agent ask(X=Y) =-> A needs to test the equality of the two variables. Two
variables are equal if they have the same value, or if they are in the same class
The agent may assume that X and Y are instantiated, and if not, it can cheek the
cquivalence classes:

valueX = fetch.value(X), X is unbound
valueY = fetch.value(Y), Y is unbound

X and Y are instantiated to 2 by another agent
classX = fetch.class(X)

classY = fetch_class(Y)

compare classX and classY

The classes may be different but the variables are equal because their value is 2. This
problem arises because fetching the value of the variable and the fetehing the class
are not atomic operations. The solution is to use a function that 1eturns hoth the
value and the class at the same time:

(valueX, classX) = current_value(X),

This means that current_value returns two values, the first is bound to valueX and
the second is bound to classX.

Testing the equality of two unbound variables brings up the problem of repre-
senting an equivalence class and comparing two classes to see if they ate the sae.
The natural choice for an equivalence classis to represent it by the list of its variables
The class of X is obviously equal to the class of Y if the two list of variables are the
same. Nevertheless the lists could be different and yet X and ¥ could he iu the sane
class. The problem arises because fetching the equivalence class of two variables is

not an atomic operation.

Consider the following scenario: the agent A; executes ask(X=Y) -> A, the
agent A exccutes {tell(X=Z) || tell(Z=Y)} and the three variables X, Y and Z
are all unbound. The following actions happen in this order:

64

P4,

»

A;: let (valueX, classX) = current.value(X), X is unbound

Aj: merge class of X into Z
Az: merge classof Z into Y

A;: let (valueY, classY) = current.value(Y)

Now the variable X is in the class of Y but classX # classY. A better test would be to
check membership of X in the list classY and if it is not, then Ay becomes an equation
suspending agent of Y. We have to fetch the class of X in any case because we don’t
know if it is uninstantiated. We can optimize the test by evaluating classX = classY
or clse member(X, classY). Note that member(Y, classX) would not woik heie

because classX has outdated information.
Consider the simplified agents A; executing ask(X=Y) => A and A, executing
tell(X=Y). Both variables are unbound and the following actions happen in that

order:
Aj: let classX = fetch_class(X)
A: let classY = fetch_class(Y)
A): send a Wait_merge(X) request to Y
A, merge class of X into Y

At Y receives the Wait_merge(X) request

The variable Y receives a request to wait until X is in this class but X is already in the
class, The variable Y must check that X is not in its list of variables before queuning
the new suspending agent.,

This same precaution is necessary with merge requests. Consider the agent A,
executing tell(X=Y) and the agent A, executing the same thing. These agents must
foteh the class of the variables to see if they are already instantiated, but in this case

both variables are unbound. Let the following actions happen in order:
A let (valueX1, classX1l) = current.value(X)

Ay: let (valueX2, classX2) = current.value(X)

65

ok S AT EA ARG PR

Ay let (valueYi, classY1) = current_value(Y)
Ag: let (valueY2, classY2) = current_value(Y)
A;: send a Merge(X) request to Y

A;: Y merges X into its class

Az: send a Merge(X) request to Y

The variable Y will receive a Merge(X) request from Ay but X is already in s class
We do not want the list of variables to contain duplicates nor do we want to have
more complicated events than necessary. Mote importantly, we do not want to elease
the suspending agents of X twice. For that reason, when a vanable receives o merpe
request, it should check first if the varable is not alicady m the list of variables,
Deadlock can occur if two variables try to mutually metge themselves, Consider

the agent A; exccuting tell(X=Y) and the agent A4, executing tell(Y=X) Both
variables are unbound. Let the following actions happen m order:

Ay let (valueX1, classX1) = current._value(X)

i

Ay let (valueY2, classY2) = current_value(Y)
A;: let (valueY1l, classY1) = current_value(Y)
Az: let (valueX2, classX2) = current.value(X)
A,: send a Merge(X) request to Y

Ajy: send a Merge(Y) request to X

A;: Y sends a Merge me(Y) request to X

Azt X sends a Merge me (X) request to Y

This causes deadlock because Y expects X to take over, while X expects Y to tuhe
over. The deadlock can be avoided by imposing a partial order on vasiables, The
agent tell(X=Y) may go ahead if X > Y, otherwise it is 1ewritten as tell(Y=X).

Alternatively, we can impose an ordering on equivalence elasses. Unfortunately, CML

66

has no notion of ordering among channels. Variables cannot be compared, nor can
we compare equivalence classes.

CML does have a notion of ordering among process ID’s. We redefine the
1epresentation of the equivalence class as a pair formed by a process ID and a list
of variables. That process ID comes from the process that answered the request for
the current_value. The ordering of equivalence classes is based exclusively on the
process ID field distegarding the list of variables. We can also redefine the equality
test for equivalence classes. Two classes are the same if the process ID’s are the same
or if the list of variables intersect. The process ID is the same if the same process is
tesponsible for these two variables. The list of variables may be different, but since
ariables are always added and never removed from the list, this means they aie in
the same class. When merging X into Y, the process for X will disappear, so the class of
X will have a different process ID before and after the merge. We can still recognize
efficiently that these two classes are the same by putting the varnables of X at the
heginning of the list of variables in Y (remember that the process ID of Y is the one
preserved). Therefore the two lists will interseet on the first variable. A full check
of intersection is expensive. We can have an efficient conservative estimate for when
classes are equal by looking at the process ID’s and the first variable in the list. It is
conservative because sometimes the classes will intersect but it will not be 1ecognized.

So far, the vanables were always unbound. We will sce that Wait merge and
Merge requests may fail because the vatiable has been mstantiated by the time the
request was teceived, When this happens, an agent must fall back to the case when the
variable is instantiated in the first place. Consider the agent A, exccuting ask (X=Y)
-> 4 and the agent A; executing tell(Y=3). Both variables are unbound at the
beginning. Let the following actions happen in order:

Ay let classX = fetch_class(X)

Ay let classY = fetch_class(Y)

Ay: send a Wait merge(X) request to Y
Ay instantiates X to 3

Ay Y receives a Wait_merge request

67

o

The variable Y receives the Wait merge request after it was instantinted. The con-
straint X=Y may be entailed if X is instantiated to 3, it does not have to be in the
cquivalence class of Y. The Wait merge request will fail, this will give a chance to the
agent A; to become an instantiation suspending agent for X Similarly, instantiating a
variable may fail. For example, the agent tell(X=2) may try to instantiate X but by
the time the request arrives to X, it is already instantiated. The ageut should inpose
the equality of the two values.

We have scen we can merge the classes of two unbound variables and we c¢an
instantiate a variable with a value. We can also instantiate an unbound vatiable hy
merging it with an instantiated variable. We first send a Merge_into(Y) request to
the unbound variable X. This will fail if X was instantiated by the time tlis request
was received, in that case, the agent should impose the equality of the two values,
Otherwise, X sends a Merge me(X) request to the instantiated variable Y. This wall
always succeed. All suspending agents of X are released by Y bhecause the vaniable is
now instantiated. The event of X is merged with the event of Y, and X disappewns.

A further improvement would be to merge two instantiated variables when then
values are the same. This can be confirmed by an ask or be imposed by a tell, The
current implementation does not attempt to do this because it never changes the
value of a variable once it is instantiated.

We summarize the interface between agents and variables. When we say o
function fails we mean it returns an indication that the operation was not perfored

The function current_value(X) returns the value and the class of the vai-
able X. It never suspends because it may return the value Unbound. The funetion
instantiated_value(X) returns the instantiated value of the variable X. 1t will sus-
pend until X is instantiated.

The function set_value(X,V) instantiates the variable X to the vadue V. If X s
already instantiated by the time this request arrives, then set_value fails and the
uscr should check the consistency of the value of X and V.

The function mergeu.or.instantiated(X,Y) suspends until X and Y are cqua-

ted, i.e., until they are merged into the same equivalence elass. This 1outine could

68

fail when X is instantiated, but instead it returns the value of X. This routine is used
when an agent is asking if X=Y and X and Y are both unbound and not in the same
equivalence class. The agent becomes an equation suspending agent of X for Y. This
1outine returns if X is instantiated because X and Y may have equal values but not be
in the same class.

The function merge_class(X,Y) merges the equivalence class of X and Y. The
user should guarantee classX < classY if both variables are unbound. This routine
seuds the request Merge_into(Y) to X. If X is unbound when it receives this recuest,
then it sends the request Merge me (X) to Y. The equivalence class of X will be merged
into the class of Y. This always succeeds because you can always merge an unbound
variable with another variable and X cannot become instantiated at that stage (it
1s busy with the merge request). Figute 6.8 shows the algorithm in detail If X s
iustantiated by the time it receives the Merge_into 1equest tlhien merge_class fails.
The user can t1y tomerge_class(Y,X) toinstantiate the vaiiable Y by merging it into
the class of X. This will fail if Y was instantiated by the time this request arrived to
Y. Then the user should check the consistency of the value of X and Y. This algorithm

is given with the rest of the unification algorithm in figure 6.9 to figure 6.11.

6.7 Debugging

The implementation has a set of switches to turn debugging statements on and off.
There are separate switches for the scanner, parser, solver and variable modules. Of
particular interest are the messages from the solver and the variables because they
give a trace of the execution of the Taskell progiam. The solver has messages for
the operators ask, tell and choice. A message is always preceded by the process ID
of the process wiiting the message. An ask will print two messages, one when it is
called, and one for the result. These two messages will be separated by messages
{from other agents, but they can be paired by looking at the process ID. The result
‘an be entailed or inconsistent. A tell will also print two messages, one wlen it

is called and one for the result. The result can be accepted or inconsistent. An

69

L

This code is executed by the variable X:

When receive a Merge_into(Y) request
if member (Y, ListOfVarsX) then

X is already merged with Y so nothing needs to be done

else if X is instantiated then

elsc

reply that X is alveady instantiated

X sends a merge.me(X) request to Y with its event, instan

tiation and equation suspending agents and list0OfVarsX.

This always succeeds because X cannot he instantiated at
that stage, it is busy exccuting this line

This code is executed by the variable Y:

When receive a Merge me (X) request

eventY = choose [eventX, eventY]

if Y is instantiated then

else

release X's instantiation suspending agents and

release X's equation suspending agents

append X's instantiation suspending agents to Y's instantin

tion suspending agents
let Susp be the empty list

for each equation suspending agent A of X
if member (A, ListOfVarsY) then
release A
else insert A into Susp
for each equation suspending agent A of Y
if member (A, ListOfVarsX) then
release A
else insert A into Susp
let Y's equation suspending agents = Susp
let ListOfVarsY = append (ListOfVarsX, ListOfVarsY)

Figure 6.8: The algorithm for merge_class(X,Y)

70

case int(2) = int(y)

check 1 =j
case int(z) = var(X)

ask var(X) = int(z)
case int(z2) = anything else

inconsistent

case tree(rlnl,al) = tree(r2,n2,a2)

check r1 =r2 and nl = n2 and ask al, = a2, Vi (0<1<nl)
¢ase tree(rlnl,al) = var(X)

ask var(X) = tree(rlnl,al)
case tree(rlnl,al) = anything else

inconsistent

case var(X) = var(Y)
let (valueX, classX) = current.value(X)
let (valueY, classY) = current_value(Y)
if valueX # unbound and valueY # unbound then
ask value X = valueY
else if value X = unbound and valueY # unbound then
ask instantiated_value(X) = valueY
clse if valueX # unbound and valueY = unbound then
ask valueX = instantiated.value(Y)
else
if merge_ornstantiated(X,Y) = instantiated then
if merge_or_instantiated(Y,X) = instantiated then
ask instantiated_value(X) = instantiated_value(Y)
else done
else done

case var(X) = anExpr
ask instantiated_value(X) = anExpr

Figure 6.9: The unification algorithm for asks.

71

case int(z) = int(7)

check ¢ = j

case int(z) = var(X)

tell var(X) = int(z)
case int(¢) = anything else

inconsistent store

case tree(rl,nl.al) = tree(r2,n2,a2)

check rl=r2and nl=n2 and tell al, = a2, Vi (0 <2< nl)

case tree(rl,nlal) = var(X)

tell var(X) = tree(rl,nl,al)

case tree(rl,nl,al) = anything clse

mconsistent store

case var(X) = var(Y)

let (valueX, classX) = current.value(X)
let (valueY, classY) = current_value(Y')
if valueX # unbound and valueY # unbound then
tell valueX = valueY
else if valueX = unbound and valueY # unbound then
if merge_class(X.Y) = instantiated then
tell instantiated _value(X) = valueY
else done
else if valueX # unbound and valueY = unbound then
if merge_class(Y,X) = instantiated then
tell valueX = instantiated value(Y)
else done
else
swap XandY if X <Y
if merge-class(X,Y) = instantiated then
if merge_class(Y,X) = instantiated then
tell instantiated_value(X) = instantiated_value(Y')
else done
clse done

Figure 6.10: The unification algorithm for tells.

72

ekl

case var{(X) = anExpr
let (valueX, classX) = current.value(X)
if valueX # unbound then
tell valueX = anExpr
else if set_value(X,anExpr) = instantiated then
tell valueX = anExpr

else done

Figure 6.11: The unification algorithm for tells (continued).

inconsistent tell will abort the execution. A choice will print one or two messages.
The first one gives the number of guards and the second one gives which guard is
selected when there are two o1 more guaids to choose fiom. Each guard will also
print two messages like an ask. Figure .12 sunmmarizes the messages from the solver.

There is a switch to turn messages from all variables on or off. When it is on,
ariables will print the type of request they receive as they receive them. The requests
can be current_value, instantiated_value, set_value, wait_merge, merge_into
or merge.me. The process ID of the requester is printed on the left, the process ID
of the variable is printed next, followed by the type of request. The arguments of
the requests are not printed because it would produce too much output. Figure 6 13
summarizes the messages from variables,

Printing the trace messages in the solver requires the value of the variables
in the constraints. In tuin this would generate trace messages from variables that
are not applicable to any agent combinator. Instead, the values of variables in trace
messages are read with the request untraced_value that behaves as current_value
but does not print a trace message.

Two trace messages will never be intertwined because a trace message is built in
a string and printed with a single print statement and CML input/output stateiments

are atonie.

73

[process-ID] .
[process-ID] :
[process-ID]

[process-1D] ;
[process-ID] :
[process-ID] :

[process-ID] :
(process-1D] :

ask(constraint)

ask(constraint): entailed
ask(constraint): inconsistent
tell(constraint)
tell(constraint): accepted
tell(constraint): inconsistent

choice between n guarded agents

guard i selected

Figure 6.12: Trace messages fram the solver

[caller-process-ID] :
[caller-process-1D] :
(caller-process-ID] :
[caller-process-1D} :
(caller-process-ID]
[caller-process-1D]

variable
variable
variable
variable
variable

variable

Lvariable-process-1D] :
Lvarable-process-1D] :
{variable-process-1D] -
{veriable-process-1D] :
[variable-process-1D]

Lvariable-process-1D]

74

current.value
instantiated_value
set_value
wait._merge
merge.into

merge._me

Figure 6.13: Trace messages from vatiables

Chapter 7

Conclusions

This thesis describes a parallel implementation of a concurrent constraint program-
ming language. The constraint system of Taskell is the sct of finite trees with equal-
ity. This constraint system is very close to first order terms with equality used
in most logic programming languages. Taskell turned out to be powerful enough
to express a variety of coucurrent programming problems, for example, tightly cou-
pled producer-consumer relationships, client-server relationships and non-determinate
computations.

As a programing paradigm, the cc framework is a natural outgrowth of logic
programming. The ask and tell primitives allow one to capture the notions of syn-
chronization and communication in a perspicuous manuner. Thus it is usually cleal
when one needs to use ask and tell in various situations. Unfortunately, when the
constraint system is weak, one is sometimes forced into using convoluted encodings to
express simple programming idioms. For example, the agent ask(3 X1, X2. X =
node(X1,X2)) -> A where A uses X1 and X2 must be written in Taskell: new X1, X2
in {ask(istree(node,2,X)) -> {tell(X=node(X1,X2) || A}}, because Taskell
does not have existential quantifiers in constitints.

Ask accomplishes co-routining between processes and thus at the operational
level, one can arrange complex patterns of control flow. However, because of the
simple constraint based semantics, the programmer can think in more logical terms,

for example viewing parallel imposition of constraints as conjunction and viewing ask

75

o

as a conditional.

CML is a very effective prototyping language for concurtent problems. Unfor-
tunately, you need a fast machine with a lot of memory for aceeptable petformance,
The paging behavior of CML in small memoties is partieulanly bad. Nevertheless we
found that CML provided most of the concurtency idioms that one newds,

The implementation was simplified enotmonsly by the chotee of CML as 0w
target language. Many features of Taskell are whenited from CML, including lexaeal
scoping, procedure calls, garbage collection, process management, svuehtonization
and termination detection. The coding effort concentrated on the compiler, constyaint
solving and equivalence classes as processes.

CML allowed us to implement ouly the features that are specifie to Taskell, It
is difficult to extiact from the code the pieces that are independent of the constiut
system becanse most of these were inherited from CMUL. For that teason, this imple-
mentation of Taskell may serve as a model more than a starting point for other cc
implementations.

CML more or less forced us to use processes for variables, something we did
not want to do originally. Fortunately, processes in CML are very lightweight | they
take little memory and context switch is fast. Communications as first-class values
simplified the merge of two equivalence classes. Delegation of tesponsibilities is al-
most trivial in our case. Taskell relies on the implementation of events to realize the
binding between variables. Theie 1s an extensive hody of litetatuie on this probletn
concurrent logic programming. Out of the many schemes proposed, we cannot expect
CML’s will be optimal for this application.

The cc family is parametenized by a choice of constraint system and agent
combinators. The agent combinators fix the process language and the constrant
system fixes the type of constraints we can work with and the entailment relation.
In theory, the process language is wmdependent of the constraint system. This is not,
Liowever, bourne out by our experience.

It is tempting to build a cc shell that given a constraint solver and a choice of

agent combinators would produce a cc implementation for that instance. We snspect

76

u.'*

a shell with that much generality is bound to fail because the agent combinators have
a big impact on how the constraint solver is written. For example, if the parallel-or
combinator is supported by backtracking then the solver should trail the modifications
it makes to the store. If tell guards are allowed in a choice, then it needs to attempt
a change to the store without leaving a trace if it is not the chosen guard. This can
he done with locks on variables together with deadlock avoidance or with copics of
the store.

The agent combinators cannot be chosen independently of the coustraint solver
You cannot add a combinator that was not planned by the solver. The reason a
CLP shell is successful is because all instances of CLP share the same set of agent
combinators. A cc shell could be useful as long as the solver is tailored to the sct of
agent combinators. The shell could provide process scheduling and a user inteiface

for example.

(4

e

Appendix A
Sample Session

This appendix demonstrates the implementation through a stunple session We [irt
explain how to run a Taskell program in our implementation. The user has to load
Taskell in Concurrent ML. It is possible to create a version of CMIL Taskell alicady
loaded but this requires a lot of disk space (4ND). The progran is translated ito
CML, and the output is left in a file with extension .m1. This file mnst loaded mito
CML. The user can clioose to turn trace messages on or off by assigning to the debng
switches. Finally, the program is launched by evaluating Prog.run ().

In summary, the steps to execute a Taskell program are:

% cml

- use "taskell.ml";

- translate "yourProgramName";

- use "yourProgramName.ml";

- Solver.print_trace := true; (* if you want a trace %)
-~ Variable.print_trace := true;

- Prog.run Q);

The sample session is split into two parts. Each pait explains a program, lists
the source file, shows a trace of execution and then lists the output of the compiles
on the source file. The script has been edited to 1educe the number of messages when

ML is loading files. Chapter 6 explains the meaning of the trace messages, section 6.7

78

pives a short summary. The CML program produced by the compiler is explained in
section 6.4.

The first program is a demonstration of trace messages from variables. Show-
ing messages from variables makes the trace more difficult to follow. Normally you
would choose to trace only agent combinators, because the tiace becomes much more
apparent. That is what we do 1 the second part. The point of this example is to
show the messages between vanables in a straightforward program. The progran is
in the file showvars, it is translated into Concurrent ML, and the translated output
in the file showvars ml 15 loaded The trace messages are turned on for variables
and for the solver, and the execution is launched. The program assigns the value 3
to the variable X through another variable in 1ts equivalence class. The choice agent
suspends until X is mstantiated. The answer is the value of X spelled out: three.

The trace can be understood as follows: the variables Y, X1, X2, X3 and X aie
the processes [6], [9], [10], [11] and [12] respectively. The agent tell(X1=X2) is
the process [14], the agent tell(X3=3) is the process [15], the agent tell(X2=X3)
is the process [16] and the agent tell(X=X1) is the process (6].

At linc 4, the variable X3 gets the value 3, this is teported on line 8. The agent
tell(X2=X3) would normally merge X3 into X2 because of the ordering on vatiables,
but since it recogmzes that X3 is alicady instantiated on line 10, it tries the opposite,
i.e., it tries to instantiate X2 by merging it into X3 on line 13, success is 1eported
on line 17. On line 14, tell(X=X1) instiucts X to merge itself into X1 because these
variables are unbound (line 9 & 12) and X is bigger in the variable ordering. Success
is reported on line 18. At this stage, X3 handles X2 and they are instantiated to 3, X1
handles X and they are still unbound. tell(X1=X2) thinks that X2 is uninstantiated
becanse it got the value on line 11, before X2 was instantiated on line 15, Meaging
X2 into X1 will fail on line 19 because X2 is already instantiated. The agent tries
to instantiate X1 instead by merging it into X2 on line 20. Success is reported on
line 22. This instantiates the variable X. The third guard is sclected because it is
the only consistent one. This instantiates the value of Y to three and the exccution

terminatoes.

79

. Script started on Tue Nov 12 08:31:13 1991

% cat showvars

proc main (Y)

begin
new X1,X2,X3,X in 4
choice {
ask(X=1) => tell(Y=one)
+ ask(X=2) => tell(Y=two)
+ ask(X=3) => tell(Y=three)
+ ask(X>3) => tell(Y=big)
}
Il tell(X1=X2)
Il tel1(X3=3)
Il tell(X2=X3)
Il tell(X=X1)
}
end
% cml

Concurrent ML, version 0.9.5, July 12, 1991
Standard ML of New Jersey, Version 0.71, 23 July 1991

- use "taskel.ml";
(opening taskell.ml]

[opening utility-sig.ml)
[opening scanner-sig.ml]
(opening parser-sig.ml]
[opening translator-sig.ml]
(opening domain-sig.ml]
lopening variable-sig.ml]
[opening solver-sig.ml]

[opening utility.ml]
[opening scanner.ml]

80

[opening parser.ml]
{ [opening translator.ml]
[opening domain.ml]

[opening variable.ml]

[opening solver.ml]

- translate "showvars";

- use "showvars.ml";

[opening showvars.ml]

structure Prog :

sig

val main : unit -> unit

end

val run :

*a -> unit

[closing showvars.ml]

- Variable.print_trace := true;
- Solver.print_trace := true;

- Prog.run ();

{6]:

W 0 ~N O b WA

[6]:

—_ e
W N = O

»:ﬁ?"‘ﬂ

[16]:
[14]:
[15]:

[16]:
[14]):
[6]:

[16]):

[15]: tell(T1 = 3)
{16]:
[14]):
{15):

tell(T1 = T2)
tell(T1 = T2)

variable [11]:

tell(T1 = T2)

variable [10]:

variable [9]:
tell (Tt = 3):

variable [12]:
variable [11]:
variable [10]:

variable [9]:

variable [10]:

set_value

current_value
current_value
accepted

current value
current_value
current_value
current_value

merge_into

81

14 [6]:
15 [10]):
16 [12]:
17 [16]:
18 [6]:
19 [14]:
20 [14]:
21 [9]:
22 [14]:
23 [13]:
24 [20]:
25 [17]:
26 [20]:
27 [20]:
28 [18):
29 [19]:
30 [171:
31 [17):
32 [18]:
33 [18]:
34 [19]:
35 [19]:
36 [13]:
37 [13]:
38 ([13]:
39 [13]:
Answer:
Y = three

Ok

variable [12]: merge_into

variable [11]: merge_me
variable [9]: merge_me

tell(T1 = T2): accepted

tell(T1 = T2): accepted
variable [11]: merge_into
variable [9]: merge_into
variable [11]: merge_me

tell(T1 = T2): accepted

choice between 4 guarded agents
variable [11]: instantiated_value
ask(3 = 1)

ask(false = true)

ask(false = true): inconsistent
ask(3 = 2)

ask(3 = 3)

variable [11]: instantiated_value
ask(3 = 1): inconsistent

variable [11]: instantiated_value
ask(3 = 2): inconsistent

variable [11]: instantiated_value
ask(3 = 3): entailed

guard 3 selected

tell(T1 = three)

variable [7]: set_value

tell(Ti = three): accepted

82

- "Z
Stopped

P

% cat showvars.ml

structure Prog =
struct
local open Domain Solver in
fun main () = let
val Y = new()
in
answver (Names [(Y,"Y")]);
let
val X1 = pew()
val X2 = new()
val X3 = new()
val X = new()
in
(
fork (FN (fn () =>
choice [
(fn (ev) => (guarded(((X==Int(1))),
tell((Y==Tree("one",0,[])))
)),
(fn (ev) => (guarded(((X==Int(2))),
tell((Y==Tree("two",0,[])))
)),
(fn (ev) => (guarded (((X==Int(3))),
tell((Y==Tree("three",0,[])))
),
(fn (ev) => (guarded(((X>>Int(3))),
tell((Y==Tree("big",0,(1)))
))
]
));
fork (FN (fn () =>
tell ((X1==X2))
»;

83

ev);

ev);

ev);

ev);

fork (FN (fn () =»>

tell ((X3==Int(3)))
)
fork (FN (fn () =>
tell((X2==X3))
));
tell((X==X1))
)
end
end

fun run _ =
RunCML.doit(main, SOME 20)
end

end

84

The second program is a demonstration of tightly coupled interaction between
agents. The admissible program is discussed in section 3.2. The double and triple
agents execute in parallel but they alternate in instantiating the tail of the admissible
list. The messages from variables have been turned off to reduce the output. The
messages ask(true = true) or ask(false = true) arc generated by the guaids of
the tiiple agent Relational operators are implemented as functions that retuin a
constraint. Their implied ask are not printed because they tend to generate a lot
of output of the form ask(Isint(:)), where 1 is an integer constant. You can sce
from the tell requests of the from tell(X=i) that the values in the list ate created
in increasing order, demonstrating the alternation between the double and the triple

agents.

% cat admissible
proc main (L)

proc double (L)
begin {
ask(istree(cons3,3,L)) -> {
new X, Y, L1 in {
tell(L=cons3(X,Y,L1))
Il tell(Y=2#X)
Il double(L1)

}

end

proc triple (L)
begin {
new X,Y,L1 in {
tell(L=cons3(X,Y,L1))
I} ask(Y<30000) ->
new Y1,Z,L2 in {
tell(Li=cons3(Y1,2,L2))

85

hed

Il tell(Yi=3»Y)
Il triple(L1)
}
Il ask(Y>=30000) ->
tell(Li=n1l)
}
}
end
begin {
double (L)

Il triple(L)
{1 new S,V in tell(L=cons3(1,S,U))
}

end

% fg

- translate "admissible"
- use "admissible.ml"
(opening admissible.ml]
structure Prog :
sig
val main : unit ~> unit
val run : ’a <> unit
end
[closing admissible.ml]

- Variable.print_trace := false;

- Prog.run ();

[9]: ask(Istree(cons3,3,Ti))

[6]: tell(Ti = cons3(1, T2, T3))

[16]: tell(T1 = cons3(T2, T3, T4))

[6]: tell(T1 = cons3(1, T2, T3)): accepted

86

[9]:
[9}):

(16]):
[21]):
[22]:
[21]):
[22):
[10]:
{171:
[10]:
(17]:
[26]:
[27]:
[26]:
[27]:

[9]:

(31]:

[9]:

[36]:
[31]:
(37]:
(37]:
[(36]:
[17]:
[17]:
[32]:
[32]:
[41]:
[42]:
[41]:
(42]:

[9]:

[46]:

[9]:

[51]:
[46]:
[52]:
[52]:

ask(Istree(cons3,3,T1)): entailed
ask(Istree(cons3,3,T1))

tell(T1 = cons3(T2, T3, T4)): accepted
tell(cons3(1, T1, T2) = cons3(T3, T4, T5))
tell(T1 = 2)

tell(cons3(1, T1, T2) = cons3(T3, T4, T5)): accepted
tell(T1 = 2): accepted

ask(false = true)

ask(true = true)

ask(false = true): 1nconsistent

ask(true = true): entailed

tell(Tt = cons3(T2, T3, T4))

tell(T1 6)

tell(Tt = cons3(T2, T3, T4)): accepted
tell(T1 = 6): accepted
ask(Istree(cons3,3,T1)): entailed

tell(T1 = cons3(T2, T3, T4))
ask(Istree(cons3,3,T1))

tell(cons3(6, T1, T2) = cons3(T3, T4, TS))

tell(T1 = cons3(T2, T3, T4)): accepted
tell(T1 = 12)
tell(T1 = 12): accepted

tell(cons3(6, Ti, T2) = cons3(T3, T4, T5)): accepted
ask(false = true)

ask(false = true): inconsistent

ask(true = true)

ask(true = true): entailed

tell(T1 = cons3(T2, T3, T4))

tell(T1 = 36)

tell(Tt = cons3(T2, T3, T4)): accepted
tell(T1 = 36): accepted

ask(Istree(cons3,3,T1)): entailed

tell(T1 = cons3(T2, T3, T4))
ask(Istree(cons3,3,T1))

tell(cons3(36, T1, T2) = cons3(T3, T4, T5))
tell(T1 = cons3(T2, T3, T4)): accepted
tell(T1 = 72)

tell(Tt = 72): accepted

87

[51]:
(32]:
[47):
[32]:
[47]:
[56]:
[67]:
[56]:
(67]:
[9]:

[61]:
[91:

[66]:
(61]:
{e7]:
[e7]:
[66]:
[47]:
[62]:
{47]:
[62]:
[(71]:
[72]:
[71]:
[72]:
[ol:

[76]:
[9]:

[81}:
[76]:
[82]):
[82]:
[81]:
[62]:
[77]:
[62]:
(771:
(86]:

tell(cons3(36, Ti, T2) = cons3(T3, T4, T5)): accepted
ask(false = true)

ask(true = true)

ask(false = true): inconsistent

ask(true = true): entailed

tell(T1 = cons3(T2, T3, T4))

tell(T1 = 216)

tell(TL = cons3(T2, T3, T4)): accepted
tell(T1 = 216): accepted

ask(Istree(cons3,3,T1)): entailed

tell(T1 = cons3(T2, T3, T4))
ask(Istree(cons3,3,T1))

tell(cons3(216, T1, T2) = cons3(T3, T4, T5))

tell(T1 = cons3(T2, T3, T4)): accepted
tell(T1 = 432)
tell(Ti = 432): accepted

tell(cons3(216, Ti, T2) = cons3(T3, T4, T5)): accepted
ask(false = true)

ask(true = true)

ask(false = true): inconsistent

ask(true = true): entailed

tell(Tt = cons3(T2, T3, T4))

tell(T1 = 1296)
tell(T1 = cons3(T2, T3, T4)): accepted
tell(T1 = 1296): accepted

ask(Istree(cons3,3,T1)): entailed

tell(T1 = cons3(T2, T3, T4))

ask(Istree(cons3,3,T1))

tell(cons3(1296, Ti, T2) = cons3(T3, T4, T5))

tell(T1 = cons3(T2, T3, T4)): accepted

tell(T1 = 2592)

tell(T1 = 2592): accepted

tell(cons3(1296, T1, T2) = cons3(T3, T4, T5)): accepted
ask(false = true)

ask(true = true)

ask(false = true): inconsistent
ask(true = true): entailed
tell(T1 = cons3(T2, T3, T4))

88

[877: tell(Tt
[861: tell/T1 = cons3(T2, T3, T4)): accepted

[87]: tell(T1 = 7776): accepted

[9]: ask(TIstree(cons3,3,T1)): entailed

[91]: tell(T1 = cons3(T2, T3, T4))

[o]: ask(Istree(cons3,3,T1))

(96]: +tell(cons3(7776, T1, T2) = cons3(T3, T4, T5))
[91]: tell(T! = cons3(T2, T3, T4)): accepted

[971: tell(T1 16552)

(97]: tell(T1 = 15552): accepted

[96]: tell(cons3(7776, T1, T2) = cons3(T3, T4, T5)): accepted
[77]1: ask(false = true)

[92]: ask(true = true)

(77): ask(false = true): inconsistent

[92]: ask(true = true): entailed

[101]: tell(T1 = cons3(T2, T3, T4))

[102]: tell(T1 = 46656)

[101]: tell(T! = cons3(T2, T3, T4)): accepted

[102]: tell(T1 = 46656): accepted

[9]: ask(Istree(cons3,3,T1)): entailed

[106]: tell(T1 = cons3(T2, T3, T4))

[9]: ask{(Istree(cons3,3,T1))

[111]: tell(cons3(46656, Ti, T2) = cons3(T3, T4, T5))
[106]: tell(T1 = cons3(T2, T3, T4)): accepted

[(112]: tell(T1 = 93312)

[112]: tell(T1 = 93312): accepted

{111]: tell(cons3(46656, T1, T2) = cons3(T3, T4, T5)): accepted
[92]: ask(true = true)

[107]: ask(false = true)

[92]: ask(true = true): entailed

[107]: ask(false = true): inconsistent

[92]: tell(T1 = nil)

[92]: tell(Ti = nil): accepted

[ol: ask(Istree(cons3,3,T1)): inconsistent

7776)

Answer:

L = cons3(i, 2, cons3(6, 12, conn3(36, 72, cons3(216, 432,

89

cons3(1296, 2592, cons3(7776, 15552, cons3(46656, 93312, nil)))))))
(8)'4

"z
Stopped

% cat admissible.ml

structure Prog =
struct
local open Domain Solver in
fun main () = let
val L = new{()

fun double (L) = let
in
(
(ask(Istree("cons3",3,L));
(
let
val X = new()
val Y = new()
val L1 = new()
in
(
fork (FN (fn () =>
tell((L==Tree("cons3".3,[X, Y, L1]1)))
2);
fork (FN (fn () =>
tell((Y==(Int(2)**X)))
));
double(L1)

end

90

)
)

end

and triple (L) = let
in

(
let
val X = new()
val Y = new()
val L1 = new()
in

(
fork (FN (fn (OO =>
tell((L==Tree("cons3",3,[X, Y, L11)))
));
fork (FN (fn () =>
(ask(’'\<<Int(30000)));
let
val Yi = new()
val Z = new()
val L2 = new()
in
(
fork (FN (in () =>
tell ((Li==Tree(“cons3",3,[Y¥1, Z, L2]1)))
)
fork (FN (fn () =>
tell((Y1==(Int (3)**Y)))
));
triple(L1)

end

MK
(ask((Y>=»=Int(30000)));
tell((L1==Tree("nil",0,{1)))

91

7Y

#

end
)
end
in
answer (Names [(L,"L")]);
(
fork (FN (fn ()
double(L)

H
v

));
fork (FN (fn ()
triple(L)
));
let
val S = new()

1t
v

val U = new()
in

tell((L==Tree("cons3",3, [Int(1), S, U])))
end

)

end

fun run _ =
RunCML.doit (main, SOME 20)
end
end

92

Bibliography

[BL86]

[Bor79)

[Bor8l]

[CGs81]

[CG86]

[Cla90]

[Coh90]

[Col82]

[Col84]

Marco Bellia and Giorgio Levi. The relation between logic and fundctional lan

guages: a survey. Journal of Logic Programmaina, 3(3) 217 236, Ociober 1986

A. H. Borning. ThangLab —A Constramt-Orientcd Sunulation Laboratory. PhD
thesis, Stanford University, March 1979. Xerox PARC Techmieal Repot SS1,
79-3.

A. H. Borning. The programming language aspects of ThingLab, o coustiamt
oriented simulation laboratory. ACM Transactions on Progranining Languayges
and Systems, 3(4):353-387, October 1981.

Keith Clark and Sceve Gregory. A relational language for paadlel progiamnng,
In Proceedings of the ACM Couference on Functional Programming Languages
and Computer Arclutecture, pages 171 178, October 1981 Repnmted m chap-
ter 1 of [Sha87].

K. L. Clark and S. Giegory. PARLOG:" Parallel programnung in logic ACA
Transactions on Programmang Languages and Systems, 8(1):1 49, Janwuy 1986

A revision appears in chapter 3 of [Sha87].

K. L. Clark. Parallel logic programmng. The Computer Journal, 33(6):482 443,
1990.

Jacques Cohen. Counstraint logic programming languages. Communications of
the ACM, 33(7):52-68, July 1990.

Alain Colinerauer. Prolog and infinite terms. Tn K. A, Clink and S.-A. Twnlund,
editors, Logic Programmang, APIC Studies in Data Processing No 16, pages
231-251. Academic Press, 1982

Alain Colmerauer. Equations and inequations on finite aud mfinite tiees o
Procecedings of the 2nd International Conference on fifth Generation Computer

Systems, pages 85--99, Tokyo, November 1984.

93

[CUIBG]

[Col8Y)

[Deb]

[DKM84]

(21.86)

[G:M8G]

[G1087]

[Haw91]

[Hen89]

[Her30]

(11ir86]

[HIM*87]

Alain Colmeraner Theoretical model of Prolog 11 In M. van Cancghem and
D. H. D. Warren, editors, Logic Programming and its Applcations, chapter 1.
pages 3 31 Ablex Pub., 1986

Towm Colon. Programining i PARLOG International Series in Logic Program-
ming. Addison-Wesley, 1989

Saumya K. Debiay QD-Janus A prolog implementation of Janus. Unpub-
lished vote, Department of Computer Science, Umiversity of Arizona, Tucsou.
AZ 85721, USA, debray@es.arizona.edu, May 1991.

Cynthia Dwoik, Pans C. Kanellakis, and John C. Mit-hell. On the sequential

nature of umfication Journal of Logie Programmang, 1(1):35-50. 1984,

Doug DeGroot and Gary Lindstiom, editors Logie Proyramming, Functions
Relutions and Equations. Prentice-Hall, 1986

Joseph A Goguen and José Meseguer. EQLOG: Equality. types, and genene
modules for logic programmmg In Doug DcGroot aud Gy Lindstiom. edi-
tors, Logic Programmang, Functions, Relations and Equations, pages 295 363
Pirentice-Hall, 1986

Steve Gregory. Parrallel Logic Programmang an PARLOG The Language and Its
Implementation, International Series in Logic Programming, Addison-Wesley.,
1987

David J. Hawley The concuirent constraint langnage GDCC and its parallel
constraint solver. In KL1 Workshop. Institute for New Gerneration Computer

Technology (ICOT), 1991.

Pascal Van Hentenryck Constraint Satisfaction wn Logic Programmang. MIT
Press Seiies in Logic Programming. MIT Press, 1989.

Jacques Herbrand Recheiches sur la théoie de la démonstiation. Trevaur de
la Société des Sciences et de Lettres de Varsowe, Class ITT Sci. Math. Phys , 33.
1930.

Masaluro Hirata. Programming language Doc and its self-description, o1, X =
X considered harmful. In Proceedings of the rd Conference of Jupan § ociety of

Software Science and Technology, pages 69-72, 1986

Nevin Heintze, Joxan Jaffar. Spiro Michaylov, Peter Stuckey, and Roland Yap.
The CLP(R) programmer’s manual, version 2.0 Technical report, Department
of Computer Science, Monash University, Australia, 1987.

94

[Jaf84]

[JL87]

[JLM80]

[IM87]

[Kni89]

[LBD*&8)

[Lel88]

(LMMSS]

(LS90]

[MM82]

Joxan Jaffar. Efficient unification over infinite tetms New Gencration Conput
g, 2:207 219, 1981

Joxan Jaffar and Jean-Louis Lassez. Constramt logie programuung, T Procood
wmgs of the 1{th ACM Symposwum on Principles of Programming LTanguag s
pages 111 119, Mumch, January 1987 Pull paper m Techcal Report 86,74,

Department of Computer Science, Monash Uniiversity, June 1986

Joxan Jaftar, Jean-Louis Lassez, and Miuchael J Maher A logie programnune,
language scheme In Doug DeGroot and Gy Lindstiown, editas, Logee

grammang, Functions, Relations and Equations, papes 11T 167 Prentice Hall
1986.

Joxan Jaffar and Spno Michaylov Methodology and nuplementation of o CLP
system In Jean-Lows Lassez, editor, Proeecdings of the Jth International Cou
ference on Lagie Programuing, pages 196 218 Melbourne, NMay 1987 AL
Press.

Kevin Knight Unification. a multidisciphimary swmavey ACA Computing Su
veys, 21(1)'93 124, March 1989,

E. Lusk, R. Butler, T Disi, R Olson, B Overbeck. R Stevens, DH D Wanen
A. Calderwood, P Szeredi. S Haridi, P Biand, M Catlsson, A Ciepielewsh
and B. Hausman The auwrora or-parallel prolog system. In Proceedings of 1h
International Conference on Fifth Genevation Cowmpuler Systems, pages 819

840, ICOT, Tokyo, 1988

Wm Leler Constramt Programming Languages, Thewr Speeifreation and G
eration. Addison-Wesley, 1988.

Jean-Louis Lassez, Michael J. Maher, and K. Maniot, Unification revisitad 1y
Jack Minker, editor, Foundations of Deductive Databases and Logie Progiain

mang, chapter 15, pages 587 620 Morgan Kaufiman, 1988

Pierre Lim and Peter J Stuckey A constramd logie progranunng shell, T
P. Deransait and J. Maluszyuski, editors. Programmung Language fospdenicn-
tation and Logic Programmiang, Lectine Notes i Compnter Seiwence 456 pars
75-88. Linkoping, Sweden, 1990 Springer-Verlag

Alberto Martelli and Ugo Montanati. An efficient, umfication algorthm - AC'A

Trancations on Programmung Languages and Systems, 4(2) 258 282, Apuil 1982

[MR84)

[M191]

[Mt1190]

[Nwi8G]

(PWT8]

[Repdo)

[Repal]

[Rep92)

[RobGb)

[Sar89]

[Sha87]

[Sha89]

[SKL89]

[SKLOO]

Alberto Martelli and Gianfranco Rosst Efficient winfication with infimte tenms
in logic programmmg In Procecdings of the International Conference on Fifth

Generation Computer Systems, pages 202 209, 1084
Robin Miluer and Mads tofte Commentary on Standard ML MIT Press, 1991

Robm Milner, Mads tofte, and Robert Harpex The Definition of Standard ML
MIT Press, 1990

Lee Naishh Negation ard Control in Pioloy Lecture Notes i Compnter Sci-
cnce 238 Spunger-Veilag, 1986

M § Paterson and M N Wegman. Lincar unification. Journal of Computer
and System Scwnces, 16.158- 167, 1978.

Jolin H. Reppy Concurient Programmnmg unth Events -The Concurrent ML
Manual, Noveriber 1990 Updated for Version 09 5, July 1991.

Johm I Reppy CML A lugher-order concmirent language. In Proceedings of
the Conference on Programnuang Lenquage Design and Tmplomentation, pages

293 305, Toronto, Canada, June 1991 published as SIGPLAN Notices 26(06)

John H Reppy. Hwgher-order concurrency PLD thesis. Compater Science De-
partient, Coruell University, Ithaca, NY, January 1992, forthcounng

J A, Robmson. A machine-ontented logic based on the resolution principle
Journal of the ACM, 12(1)-23 41, January 19635.

Vijay A Saraswat Concurrent Constraint Programmang Languages. PhD thesis,
Canegie-Mellon University, January 1989. To appear in Doctoral Disseitation
Award and Logic Programming Sedies, MIT Press, 1991.

Ehud Shapuo, editor. Concurrent Prolog, Collected Papers, volume 1 & 2 of
MIT Press Series in Logie Programmang. MIT Piess, 1987.

Ehud Shapiro The family of concurrent logic programunng languages. ACA
Computing Surveys, 21(3):412 510, September 1989.

Vijay A. Saraswat, Ken Khan, and Jacob Levy Programming i Janus Tech-
nical 1eport, Xerox PARC, Decemnber 1989,

V.ny AL Saraswat, Ken Khan, and Jacob Levy. JANUS: A step towards dis-
tributed constramt programming. In Proceedings of the Noith American Con-
ference on Logic Programmang, Austin, Texas, October 1990. Full paper is a
technical report fiom XeroX PARC, December 1989.

96

Pty vt

[SR90)

[SRF91])

[Ste80]

[Sut63]

[SY$6)

[Tay88])

[Ued8Ga]

[Ued86b]

[vEdLF82]

[Yas84]

Vijay A Sarasat and Martin Rinard Concunient constiaint programmune, Iy
Proceedings of the 17th ACM Sympostum on Proceiples of Programnanyg Tan

guages. pages 232 241, San Francisco, Januay 1990

Vijay A Sarcswat, Martin Rinard, and Prakash Panangaden Semantic foun
dations of concutrent constrant programmme, b Proccedimgs of the toth ACY

Symposwum on Prnciples of Programming Languages, 1991

Guy L. Steele The Definstron and Implomentation of « Computer Progrananing
Language Based on Constiants PhD thesis, MIUT, Canbuidee, NMALD Mapust
1980. Techcal Report MIT-AL TR 795

Ivan Sutherland Slctehpad A man-machie graphical compancation systom

Outstanding Dissertations m Computer Saence Garland Pubhshiung Ine | 1964

P A, Subrabinanyam and Jie-Hua You FUNLOG o computational modd
integrat'ng logie programmung, wind fnctional programmang, T Dovg DeGhoat
and Gay Lindstrom, editors, Logqie Programning, Funchions, Rolalions and

Eyuations, pages 197 108 Prentice-Hall 1986

H. Taylor Localizing the GHC suspension test 1n K Bowen and R.A howal-1
editors, Proceedugs of the fifth Intcrnational Conforence Symposium on Logi

Programming. pages 1257 1271 MI'T Press, 1988

Kazunoti Ueda Guded hotn dlanses In B Wada, editor, Logie Programming
1985, Lecture Notes i Computer Science 221, pages 168 179, 1936 A 1ovicion
appears m chapter 4 of [Shag7)

Kazunon Ueda Guarded Horn Clauses PhD thesis, University of "Tokyo, 1956

M. H. van Emden and G J de Lucena Filho, Predicate logie as a langage ol
parallel programoung In K. A, Clark and S-A Twnlund, editors, Logee Pio-
grammang, APIC Studies i Data Processiug No 16, pages 189 198 Acawdenn
Press, 1982,

Hiroto Yasuura Ou parallel computational complexity of wmfication ln Procead
wmgs of the 2ud International Confevence on fifth Generation Cosputer Systomns
pages 235 243, Tokyo, November 1984,

97

