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“It is wrong to think that the task of physics is
to find out how Nature is.

Physics concerns what we say about Nature.”

-Niels Bohr
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Abstract

Atmospheric aerosols are colloidal suspensions of condensed particles and the

air surrounding them. Aerosols are found in all environments and are a source

of uncertainty in global climate models and a contributor to poor air quality.

Aerosol particles range in size from tens of nanometers to several micrometers

in diameter. Aerosol particles with spherical equivalent diameters below

100 nanometers are among the most numerous. Certain particles in this

size range may also possess multiple distinct liquid phases within a single

particle. As the diameter of atmospheric aerosol particles decreases below 100

nanometers the surface area-to-volume and interfacial area-to-volume ratios

of these particles become increasingly large. Thus any unique phenomenon

occurring at these two phase boundaries plays an increasingly important role.

The equilibrium surface composition of well-mixed particles under high

relative humidity conditions is determined first, along with the corresponding

bulk phase composition following the partitioning of species to and from the

surface phase. This allows for a better understanding of the role of surface

effects on cloud droplet activation of aerosol particles. It was found that

aerosol particles will experience substantial enrichment of organic compounds

and depletion of inorganic electrolytes at a three-dimensional surface phase.

This leads to large reductions in the critical supersaturation necessary for

cloud condensation nuclei activation in many systems.

Next, the role of interfacial tension under lower relative humidities was

explored by comparing four approaches to modeling interfacial tension at a

two-dimensional liquid–liquid or liquid–surface interface. The inclusion of in-
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terfacial tensions at both interfaces had competing effects wherein the liquid-

liquid interfacial tension suppressed phase separation and the liquid-surface

interfacial tension encouraged it. For particles with spherical equivalent di-

ameters less than approximately 30 nanometers, the effect of the liquid–liquid

interface became stronger than the liquid–surface interface, and phase sep-

aration was suppressed. The degree of this suppression depended on the

model for interfacial tension that was used.

Lastly, machine learning models were developed to predict the pure-

component surface tensions of atmospherically relevant organic compounds.

Three different types of inputs to characterize the molecular structure, namely

simplified elemental ratios, Molecular ACCesS (MACCS) keys, and Morgan

fingerprints, were used to train four different kinds of models, extreme gra-

dient boosting, random forest, decision tree, and k-nearest neighbors. It was

found that the extreme gradient boosting models performed the best, regard-

less of input types, and that MACCS key-based models had the best balance

of input complexity and model performance.
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Résumé

Les aérosols atmosphériques sont des suspensions collöıdales de particules

condensés et de l’air qui les entoure. Les aérosols sont présents dans tous

les environnements et constituent une source majeure d’incertitude dans

les modèles climatiques mondiaux ainsi qu’un facteur important de mau-

vaise qualité de l’air. La taille des particules d’aérosols varie de quelques

dizaines de nanomètres à plusieurs micromètres de diamètre. Les particules

d’aérosol dont le diamètre équivalent sphérique est inférieur à 100 nanomètres

sont parmi les plus nombreuses. Certaines particules de cette taille peuvent

également présenter plusieurs phases liquides distinctes au sein d’une même

particule. à mesure que le diamètre des particules d’aérosols atmosphériques

diminue en dessous de 100 nanomètres, les rapports surface–volume et surface

interfaciale–volume de ces particules deviennent de plus en plus importants.

Par conséquent, tout phénomène unique se produisantà la limite de ces deux

phases joue un rôle de plus en plus important.

La composition superficielle à l’équilibre de particules bien mélangées

dans des conditions d’humidité relative élevée est déterminée en premier

lieu, ainsi que la composition correspondante de la phase en vrac après le

partage des espèces vers et à partir de la phase superficielle. Cela permet

de mieux comprendre le rôle des effets de surface sur l’activation des gout-

telettes de nuage des particules d’aérosol. Il a été constaté que les particules

d’aérosol subissent un enrichissement substantiel en composés organiques et

un appauvrissement en électrolytes inorganiques au niveau d’une phase de

surface tridimensionnelle. Cela conduit à des réductions importantes de la
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sursaturation critique nécessaireà l’activation des noyaux de condensation

des nuages dans de nombreux systèmes.

Ensuite, le rôle de la tension interfaciale sous des humidités relatives

plus faibles a été exploré en comparant quatre approches de modélisation

de la tension interfacialeà une interface bidimensionnelle liquide–liquide ou

liquide–surface. L’inclusion de tensions interfaciales aux deux interfaces a eu

des effets concurrents, la tension interfaciale liquide–liquide supprimant la

séparation des phases et la tension interfaciale liquide–surface l’encourageant.

Pour les particules dont le diamètre sphérique équivalent est inférieurà env-

iron 30 nanomètres, l’effet de l’interface liquide–liquide est devenu plus fort

que celui de l’interface liquide–surface, et la séparation des phases a été sup-

primée.

Enfin, des modèles d’apprentissage automatique ont été développés pour

prédire les tensions de surface des composants purs des composés organiques

importants pour l’atmosphère. Trois types d’entrées différents, les rapports

élémentaires simplifiés, les clés MACCS (Molecular ACCesS) et les empreintes

digitales de Morgan, ont été utilisés pour entrâıner quatre types de modèles

différents : le renforcement du gradient extrême, la forêt aléatoire, l’arbre de

décision et les voisins les plus proches. Il a été constaté que les modèles de

renforcement du gradient extrême étaient les plus performants, quel que soit

le type d’entrée, et que les modèles basés sur les clés MACCS présentaient

le meilleur équilibre entre la complexité de l’entrée et la performance du

modèle.
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Contributions to Original

Knowledge

This work presents three novel frameworks for exploring the importance of

surfaces and interfaces in atmospheric aerosol particles. Chapter 2 presents

a framework for computing the composition of a coupled bulk and surface in

aerosol particles with sizes ranging from the micrometer to tens of nanome-

ters. The importance of bulk–surface partitioning for aerosol–cloud interac-

tions is discussed, since such partitioning changes both the Kelvin and Raoult

effect terms in the Köhler equation. The model developed in this chapter is

compared to past measurement data and is in good agreement with past

experiments. This is the first model that can simultaneously account for

changes in the surface composition of an aerosol particle while maintaining

mass balance and thermodynamic rigor.

Chapter 3 explores the role of interfacial tension in phase-separated aerosol

particles. This chapter presents the first model that can account for the in-

terfacial tension between two liquid phases and between the surface and bulk

phases in an aerosol particle. It is the first model to rigorously examine the

role of particle size in phase separation, an interaction that has been observed

experimentally but not modeled from a theoretical basis.

Chapter 4 examines a key assumption made in Chapters 2 and 3, that

of pure-component surface tensions. It develops three different machine

learning-based models that can predict the pure-component surface tension

of atmospherically relevant organic compounds with a high degree of accu-
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racy. It is the first model of its kind to account for such a broad range of

functional groups in its training data.
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Thesis Outline

The work in this thesis aims to better understand the surface and interfacial

properties of atmospheric aerosol particles. Chapter I introduces atmospheric

aerosols and their importance to human health and the global climate sys-

tem. Chapter I also introduces the thermodynamic principles and numerical

models used to study the properties of atmospheric aerosol particles.

Chapter 2 introduces a theoretical framework for determining the com-

position of the surface phase of finite-volume aerosol particles and cloud

droplets. It was found that bulk–surface partitioning can substantially mod-

ify the composition of the surface phase relative to the bulk phase below it,

and that the inclusion of these properties may lead to large deviations from

simplified models for the activation of cloud condensation nuclei.

Chapter 3 compares different treatments of interfacial tension at liquid-

liquid phase boundaries in aerosol particles. This chapter also explores the

role that interfacial tension plays in suppressing or encouraging liquid-liquid

phase separation in aerosol particles as a function of particle size. It is

shown that more extreme treatments of interfacial tension better reproduce

measurements in highly immiscible systems, while less extreme treatments of

interfacial tension better reproduce measurements in more miscible systems.

The inclusion of interfacial tensions between bulk phases and between the

bulk and surface phases leads to reductions in the onset relative humidity of

liquid-liquid phase separation as a function of particle size.

Chapter 4 develops novel machine learning-based approaches for predict-

ing the pure-component surface tension of individual compounds in an aerosol
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particle. This directly addresses one of the key assumptions used in Chap-

ters 2 and 3. It was found that the extreme gradient boosting approach

provided the most accurate predictions of surface tension, and that MACCS

keys provide the best balance of structural information about a molecule

without requiring excessive input information. A simplified model that can

be used with aerosol mass spectrometer data was also developed for compar-

ison to more detailed models and for applications to field data with limited

organic structure information.

Chapter 5 concludes the work presented in this thesis and describes future

research that may be based on the findings included herein. Chapters A, B,

and C contain supplementary information, figures, and tables that corre-

spond to Chapters 2, 3, and 4, respectively.
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1.1 Atmospheric Aerosols

Aerosols are a type of colloidal system made up of condensed-phase parti-

cles or droplets and the gas that surrounds them. Atmospheric aerosols are

aerosols in which the surrounding gas phase is the ambient air. Throughout

this work, the term “aerosol” will be used to refer to atmospheric aerosol

particles. Such atmospheric aerosols are found in all regions of the Earth,

with variations both spatially and temporally (Kaufman et al., 2002). Al-

though their concentrations are highest in the lower troposphere near emis-

sion sources, aerosols are also vertically distributed from ground level to the

stratosphere (Gras, 1991; Gupta et al., 2021).

The size, composition, and location of aerosols can impact the interac-

tions that a group of particles can have with the global climate system. The

interactions between aerosols, clouds, and the climate are poorly constrained,

as aerosols can exert both direct and indirect effects on the climate (Sein-

feld et al., 2016; Boucher et al., 2013). Aerosols can both reflect and absorb

light directly, as a function of their composition, altitude in the atmosphere,

and structure (Andreae and Gelencsér, 2006; Quinn et al., 2008). In ad-

dition, atmospheric aerosols may act as cloud condensation nuclei (CCN)

to form liquid cloud droplets or as ice nucleation particles (INP) to form

solid ice crystals in the atmosphere. The number and size of cloud droplets

and ice particles indirectly impact the climate system by increasing or de-

creasing cloud properties such as albedo, lifetime, and precipitation efficiency
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(Twomey, 1974; Albrecht, 1989). Both the direct and indirect climate effects

of atmospheric aerosols are governed by the microphysical properties of in-

dividual aerosol particles. There are a variety of ways by which aerosols are

classified. The simplest method, often used by regulatory agencies, involves

classifying particles by their size, where particles with spherical equivalent

diameters less than 2.5 µm are classified as fine, and particles with spheri-

cal equivalent diameters greater than 2.5 µm as coarse. Coarse particles are

typically formed through mechanical actions such as sea spray, dust storms,

and pollen emissions. Such coarse particles have high inertia and short at-

mospheric lifetimes, making them less relevant for both human health and

climate change. Fine aerosols can form through direct emission or through

secondary processes, such as the photo-oxidation and subsequent condensa-

tion of gas-phase organic compounds, in the atmosphere.

Within the ultrafine regime of aerosols, there are distinct peaks in the log-

normalized number concentration as a function of particle diameter. These

peaks are also called “modes” by aerosol scientists. The mode corresponding

to the smallest aerosols is the nucleation mode. Particles in this mode typi-

cally have spherical equivalent diameters of 1 nm to 20 nm. These particles

form when molecules of a single compound, i, are saturated in an environ-

ment and begin to cluster. A new particle will form if a molecular cluster

of i grows and overcomes the energetic penalty for growth, known as the

nucleation barrier (Abraham and Zettlemoyer, 1974):

∆G = −4

3
r3p
RT

Vi

lnS + 4πr2pσ
◦
i (1.1)

In the above equation, ∆G is the change in Gibbs energy, rp is the radius

of the molecular cluster or particle, R is the gas constant, T is temperature,

Vi is the molar volume of i, S is the saturation ratio with respect to i, and

σ◦
i is the surface tension of i. If a system is supersaturated with respect to

i, then the first term will always be less than 0; however, the second term

cannot be neglected in cases of extremely small molecular clusters and may
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lead to ∆G becoming greater than 0, despite S > 1. The particle radius

at which the penalty of high surface energy is exceeded by the energy freed

from gas-to-particle partitioning is known as the critical radius and is the

location of the aforementioned nucleation barrier. Clusters of molecules that

do not reach this critical size will eventually evaporate back into the gas

phase, while those that grow to this critical radius will continue to grow into

larger particles.

Aerosols with diameters between 20 nm and 100 nm fall into the Aitken

mode. These particles grow in a similar manner to the previously men-

tioned nucleation mode particles. However, unlike nucleation mode particles,

Aitken mode particles grow primarily through the heterogeneous condensa-

tion of many different gas-phase compounds onto an existing particle. This is

in contrast to the homogeneous nucleation of one dominant gas-phase com-

pound that drives the formation of nucleation mode particles. Particles in

the Aitken mode have relatively short lifetimes, as once they reach sufficient

sizes, collision and coagulation processes begin to quickly increase particle

sizes while decreasing their number concentration (Hinds, 1982).

Should multiple Aitken mode particles collide and coagulate into a single

particle, the new particle may enter the accumulation size mode. Aerosols in

the accumulation mode typically have spherical equivalent diameters between

100 nm and 1000 nm. Accumulation mode particles can also be directly emit-

ted through processes such as the release of soot particles from incomplete

combustion (Andrew Gray and Cass, 1998). Particles that grow larger than

the accumulation mode may activate into cloud droplets or be removed by

gravitational settling. Because the rates of formation and removal are com-

parable for particles in this size mode, aerosols in the accumulation mode

have high number concentrations (Guevara, 2016; Hinds, 1982).

1.1.1 Aerosol Composition

The composition of aerosol particles varies based on their location (Hallquist

et al., 2009; Zhang et al., 2007; Kaufman et al., 2002) and formation mech-
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anism (Jimenez et al., 2009; Hallquist et al., 2009). Broadly, aerosols are

composed of inorganic and organic species. Inorganic compounds in aerosols

include water, electrolyte species, and inorganic carbon. Water is ubiquitous

in the atmosphere and may be found in aqueous aerosols from the conden-

sation of water vapor or from direct emissions, such as sea spray (Thomas

et al., 2022).

There are many inorganic electrolytes found in aerosols. Common in-

organic cations include sodium (Na+), ammonium (NH4
+), calcium (Ca2+),

potassium (K+), and magnesium (Mg2+) (Seinfeld and Pandis, 2006; John-

ston and Wexler, 1995). These cations may come from different sources.

For example, sodium is typically emitted from sea spray, whereas ammo-

nium forms from heterogeneous acid-base reactions when gas-phase ammo-

nia (NH3) emitted by agricultural activities partitions into aqueous particles

(Nair and Yu, 2020). Calcium, potassium, and magnesium may all be emit-

ted from mineral dust.

Inorganic anions of importance include sulfate (SO4
2– ), bisulfate (HSO4

– ),

chloride (Cl– ), and nitrate (NO3
– ) (Seinfeld and Pandis, 2006). Sulfates and

bisulfates can be emitted naturally through processes such as volcanic erup-

tions or form from photochemical oxidation of sulfur dioxide emitted from

fossil fuel combustion or dimethyl sulfide emitted by the oceans (Andreae

et al., 1985; Seinfeld and Pandis, 2006). Nitrates typically form through

photochemical reactions that lead to the oxidation of reactive nitrogen ox-

ides (NOx ) (Weng et al., 2020).

Inorganic carbon includes elemental carbon, carbonate ions (CO3
2– ), and

methane sulfonic acid (CH3SO3H). Elemental carbon is primarily emitted

from a variety of sources such as soot from combustion processes (Xu et al.,

2021). Carbonate ions form from the partitioning of carbon dioxide into

aqueous particles (Yin et al., 2022). Methane sulfonic acid is principally

formed by the oxidation of dimethyl sulfide (Andreae et al., 1985). Other

inorganic compounds found in aerosol particles include heavy metals such
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as mercury (Hg), which can be emitted through volcanic eruption, mining,

fossil fuel combustion, or other heavy industries (Ariya et al., 2015).

Much like their inorganic counterparts, organic aerosol (OA) compounds

can be anthropogenic or naturally emitted. Anthropogenic sources of organic

compounds include heavy industry and incomplete combustion (Lund et al.,

2023). Natural sources of organic compounds include cellular respiration

and photosynthesis (Weng et al., 2020). Many organic compounds that are

found in aerosols are not directly emitted; rather, they undergo secondary

photochemical reactions before partitioning into the particle phase. Organic

particles that contain the products of secondary chemistry are known as

secondary organic aerosol (SOA) particles, while those containing compounds

that are directly emitted in the particle phase without undergoing additional

chemical reactions are known as primary organic aerosol (POA) particles.

It is important to note that an individual aerosol particle may contain a

mixture of both POA compounds and SOA compounds (Mahrt et al., 2022).

The secondary atmospheric processes that lead to the formation of SOA

can include processes such as photo-oxidation and subsequent reduction in

volatility of gas-phase volatile organic compounds (VOCs). Reduced-volatility

organic compounds include semi-volatile organic compounds, intermediate-

volatility organic compounds, low-volatility organic compounds, and extremely

low-volatility organic compounds (SVOCs, IVOCs, LVOCs, and ELVOCs re-

spectively). ELVOCs can nucleate to form new particles as mentioned above,

while SVOCs, IVOCs, and LVOCs can only condense onto pre-existing par-

ticles in the Aitken or accumulation modes. Because of the complexity of

the chemical reactions in the atmosphere, up to 20% of SOA compounds in

the particle phase have been characterized at the molecular structure level

(Chen et al., 2020). Furthermore, both POA and SOA may be further mixed

with the inorganic species mentioned above.

These mixtures may be external, where different particles in a popula-

tion have different compositions, or internal, where a single particle contains

7
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Figure 1.1: Pie charts show the average mass concentration and chemical
composition of fine aerosol particles: organics (green), sulfate (red), nitrate
(blue), ammonium (orange), and chloride (purple), as measured by an aerosol
mass spectrometer. Figure reproduced with permission from Zhang et al.
(2007).
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a combination of inorganic and organic species. The interactions between wa-

ter, secondary and primary organic species, and inorganic electrolytes lead

to atmospheric aerosols becoming highly complex matrices of different com-

pounds that may adopt complex morphologies and mixing states. Figure 1.1

(reproduced with permission from Zhang et al. (2007)) shows the relative

contributions of organic species and specific inorganic species as measured

by aerosol mass spectrometers at different monitoring sites around the world.

1.1.2 Aerosol Morphologies and Mixing States

In the previous section, the complexities of aerosol composition were dis-

cussed. Because organic compounds and inorganic compounds may not al-

ways have favorable energetic interactions, a single well-mixed aerosol con-

taining organic and inorganic compounds may undergo a phenomenon known

as liquid–liquid phase separation (LLPS). The result of LLPS is the formation

of two or more distinct condensed phases coexisting inside a single particle.

Liquid–liquid phase separation in aerosol systems occurs through one of

three mechanisms: nucleation and growth, spinodal decomposition, or growth

of a new phase from the surface. Which mechanism occurs depends on where

the system is (initially) located in the phase diagram. The first mechanism,

nucleation and growth, occurs when a particle’s composition state enters a

region of its phase diagram in which a single homogeneous phase becomes

thermodynamically metastable (Zuend et al., 2010). Small stable nuclei of a

new phase may form which then grow over time as the surrounding material

diffuses toward them. This process is typically observed when the system is

in the metastable region. In order for phase separation to occur in this region,

an energy barrier must be overcome. The second mechanism by which LLPS

can take place, spinodal decomposition, occurs when a particle enters into a

region where the homogeneous phase becomes unstable as the energy barrier

to form a new phase vanishes completely, known as the spinodal region. In

the spinodal region, there is no energy barrier for phase separation. Rather,

small fluctuations in composition grow spontaneously throughout the system,
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leading to the formation of different phases. The key difference between the

mechanisms lies in the nature of the initial phase separation: nucleation and

growth involve a discrete, localized initiation of phase separation, while spin-

odal decomposition involves a continuous, system-wide separation process.

The final mechanism involves an increasingly distinct surface forming, which

eventually overcomes the energetic penalty to form a complete phase leading

to LLPS (Song et al., 2012).

Such phase-separated particles can exist in multiple geometric morpholo-

gies. The simplest phase-separated morphology is that of a particle with two

distinct phases in a radially symmetric “core–shell” configuration. Typically,

the inorganic-rich aqueous phase, α, is the “core” and the lower polarity

organic-rich phase, β, forms the “shell” enveloping it (Reid et al., 2011).

A slightly more complex configuration is known as partially-engulfing and

occurs when the inner core of the particle is only partially covered by a

lens of phase β (Kwamena et al., 2010; Reid et al., 2011; Ciobanu et al.,

2009; Song et al., 2012, 2013; Shiraiwa et al., 2013). Such a configuration

may occur even if there is sufficient material in phase β to completely cover

phase α (Kwamena et al., 2010). Graphical depictions of core-shell and

partially-engulfed particles are shown in Fig. 1.2 (reproduced with permis-

sion from Gorkowski et al. (2020)). More geometrically complex configura-

tions of two-phase particles have also been identified (Kucinski et al., 2019).

These three-dimensional configurations may be further complicated by the

presence of additional phases. Particles with three or more liquid phases

may display combinations of spherical core-shell configurations, partially-

engulfed, or other configurations (Huang et al., 2021; Kucinski et al., 2019).

Additionally, should the concentration of inorganic electrolytes be sufficiently

high in an aerosol particle (reaching a critical ion activity product), they may

crystallize out to form an additional solid phase.

The presence of LLPS has important implications for aerosols. Concen-

trations of species differ across different phases, which may lead to different
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Figure 1.2: LLPS aerosols may exhibit “core-shell” structure where an
organics-rich phase β completely encapsulates an aqueous phase α or
”partially-engulfed” structure where phase β forms a semi-spherical lens on
phase α. Figure reproduced with permission from Gorkowski et al. (2020).
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heterogeneous chemistry occurring in phase α than in phase β. Likewise, the

physical properties of individual phases may differ. One such example can

be found in the viscosity of the different phases, where phase α may have

substantially lower viscosity than phase β, which may exhibit a glass-like vis-

cosity (Lilek and Zuend, 2022; Gervasi et al., 2020; Slade et al., 2019; Reid

et al., 2018). Such differences in viscosity can lead to limitations in the reac-

tive uptake of compounds, including isoprene epoxydiols (IEPOX) (Schmed-

ding et al., 2019, 2020). Such glassy phases may also serve as effective ice

nucleation sites under freezing conditions (Wagner et al., 2012; Wilson et al.,

2012; Schill and Tolbert, 2013). Phase-separated aerosols may also have dif-

ferent interactions with incoming and outgoing radiation, thus impacting the

Earth’s energy balance. It is believed that under certain conditions, like a

soot particle surrounded by an organic shell, a phase-separated aerosol may

have a so-called lensing effect, which causes it to magnify radiation absorp-

tion (Lang-Yona et al., 2010). Likewise, the enrichment of elemental and

organic carbon on the exterior of phase-separated compounds may impact

the amount of radiation those particles absorb (Fard et al., 2018).

1.1.3 Aerosol-Cloud-Climate Interactions

In addition to absorbing sunlight, aerosols can also scatter incoming or outgo-

ing radiation. This is known as the aerosol direct effect on the global climate

system. The direct radiative effect of aerosols depends on their optical prop-

erties, which vary with their chemical composition and size. For example,

aerosols containing primarily inorganic sulfate scatter incoming solar radia-

tion, leading to an overall cooling effect (Quinn et al., 2008). In contrast,

elemental carbon and many forms of organic carbon absorb solar radiation,

contributing to a warming effect (Andreae and Gelencsér, 2006).

Beyond their direct effects on the climate system, aerosols can also indi-

rectly impact the climate through their interactions with clouds. A subset of

aerosols act as cloud condensation nuclei (CCN), around which water vapor

condenses to form cloud droplets. The efficiency by which a particle acts
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as a CCN is determined by its composition and size. These effects can be

demonstrated by the Köhler equation (Köhler, 1936):

S = aw exp

(
4σMw

RTρwDp

)
. (1.2)

In the above equation, S is the droplet’s equilibrium saturation ratio

of water vapor, aw is the chemical activity of water in a droplet, σ is the

droplet surface tension, Mw is the molar mass of water, ρw is the density

of water, and Dp is the particle diameter. Particles containing compounds

that readily take up water vapor undergo hygroscopic growth and increase

in diameter. Hygroscopic compounds are typically inorganic electrolytes and

highly polar organic compounds such as dicarboxylic acids and sugars (Zhang

et al., 2021; Pöhlker et al., 2023). However, dissolved inorganic ions typically

raise the surface tension of the particle, which increases the influence of the

exponential term in the above equation. Other compounds, which are usually

more hydrophobic, may not readily take up water vapor, but instead have low

pure-component tensions and thus reduce a CCN’s effective surface tension,

σ.

Much like Eq. (1.1), there is a maximum in S, Scrit, as determined by

Eq. (1.2). Should the ambient saturation ratio be less than the maximum

of S in Eq. (1.2) for a given particle, said particle will grow to the value

of Dp corresponding to the ambient saturation ratio and will not become

a cloud droplet. If the ambient saturation ratio is larger than Scrit, then

the particle will continue to grow into a cloud droplet until it is removed

by precipitation or evaporation due to entrainment of warmer or drier air

in the cloud. As mentioned above, there are competing effects of aerosol

composition on Eq. (1.2). Increases in hygroscopic compounds will increase

water uptake and increase the water content of a particle at a given RH.

Surface tension-reducing compounds will reduce the energetic penalty for

expanding a highly curved surface, such as that of a CCN, despite reducing

the amount of water that an individual particle will take up at a given RH
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level. Figure 1.3 (reproduced from Davies et al. (2019) under a Creative

Commons Attribution 4.0 License) shows an example of a Köhler curve for

a 50 nm ammonium sulfate particle amnd the effects of reducing σ using

various parameterizations on a Köhler curve.

To simplify calculations of aerosol water uptake and CCN activation,

Petters and Kreidenweis (2007) introduced a single-parameter model of hy-

groscopic growth, known as κ-Köhler theory, in which aw is related to the

current volume of water in the particle, Vw, and the initial dry particle (so-

lute) volume, Vdry, as follows:

1

aw
= 1 + κ

Vdry

Vw

. (1.3)

The κ value for a multicomponent solution can be determined by a volume-

fraction-based linear weighting of the κ values of the individual components.

By combining Eqs. (1.2) and (1.3) with an assumption about σ, critical su-

persaturations of aerosol particles can be calculated given their composition

and dry size (Petters and Kreidenweis, 2007). However, the applicability of

κ-Köhler theory to ultrafine particles may be more limited (Topping et al.,

2016). Indeed, κ in Eq. (1.3) assumes a constant σ in its calculation without

any sort of surface effects on water uptake. Measurement derived κ values

may assume σ = σw even if that is not the case and thus may be inaccurate.

The availability of CCN influences cloud droplet number concentration

(CDNC), which in turn affects cloud albedo and lifetime. High concentrations

of aerosols generally lead to more numerous and on average smaller cloud

droplets, assuming the total cloud liquid water content remains constant.

This increases cloud albedo. This is known as the first aerosol indirect effect,

or Twomey effect (Twomey, 1974). Smaller droplets are also less efficient

at coalescing into larger drops and possibly drizzle or rain drops, typically

leading to longer-lived clouds, which is referred to as the second indirect

effect, or the Albrecht effect (Albrecht, 1989).

14



Chapter 1 : Introduction

Figure 1.3: (A) an example of a Köhler curve for a 50 nm dry-diameter
ammonium sulfate particle. (B) the impact of reducting surface tension on a
Köhler curve. Figure reproduced from Davies et al. (2019) under a Creative
Commons Attribution 4.0 License.
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Aerosols may interact with clouds beyond forming liquid cloud droplets,

as they may also serve as nucleation sites for ice crystal growth. However, an

aerosol that serves as an efficient CCN may not be an efficient INP and vice

versa (Kanji et al., 2017). Indeed, the mechanisms by which ice crystals form

in the atmosphere are different from those by which cloud droplets form, as

liquid water does not spontaneously freeze when the ambient temperature

is below 273 K. Said spontaneous freezing only occurs when the ambient

temperature is much lower (around 237 K (Matsumoto et al., 2002)). Thus,

ice nucleating particles are necessary to initiate the formation of ice in super-

cooled droplets in the atmosphere. The following is a brief summary of the

mechanisms by which an aerosol particle may serve as an INP. The primary

mechanisms for ice nucleation are deposition nucleation, immersion freez-

ing, contact freezing, and condensation freezing. In deposition nucleation,

ice forms directly on the surface of an aerosol particle directly from the va-

por phase. This occurs when humid air is supersaturated with respect to

ice and the temperature is sufficiently low. Immersion freezing occurs when

an aerosol particle is already immersed in a supercooled liquid droplet and

induces ice formation within the droplet as the temperature drops below a

particle-dependent threshold. Contact freezing involves an aerosol particle

initiating ice formation upon contacting a supercooled droplet from the ex-

terior. Condensation freezing is a process where water vapor first condenses

onto an aerosol particle, forming a liquid droplet that then freezes as the

temperature continues to decrease. Each of these mechanisms depends on

the specific properties of the aerosol particle, such as its composition, surface

characteristics, and size, as well as the environmental conditions, including

temperature and supersaturation levels (Kanji et al., 2017).

As previously mentioned, the interactions between aerosols, clouds, and

the climate are highly complex and warrant further study. Indeed, they are

one of the largest sources of uncertainty in global climate models (Boucher

et al., 2013; Seinfeld et al., 2016). Many of these impacts on cloud formation
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Figure 1.4: A summary of the direct and indirect effects of atmospheric
aerosols and their interactions with the global climate system. Figure repro-
duced with permission from Li et al. (2022)

.

are governed by fundamental thermodynamic principles and thus require

accurate models of aerosol thermodynamic properties to better understand

them.
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1.2 Modeling Aerosol Thermodynamics

1.2.1 Activity Coefficients and Non-Ideal Mixing

In classical thermodynamics, the Gibbs energy of a well-mixed aerosol sys-

tem, including the gas phase, can be represented by the following equation:

G = TS + PV +
∑
i

µini. (1.4)

where T is temperature (K), S is entropy (JK−1), P is pressure (Jm−3 or Pa),

V is volume (m3), ni is moles of component i, and µi is the chemical potential

of species i (Jmol−1). Many SOA particles are not simple mixtures of ideally

behaved organic compounds; they may also contain species such as water

and inorganic electrolytes. The inclusion of aqueous inorganic compounds

mixed with organic species leads to stronger deviations from ideality in the

mixing behavior of these SOA species. These deviations from ideality lead

to modifications in the gas-particle partitioning of water and organic species

through modified Raoult’s Law:

Pi

P ◦
i

= xiγi (1.5)

where Pi is the partial pressure of species i in the gas phase, P ◦
i is the

saturation vapor pressure of (pure) species i, xi is the mole fraction of i in

the condensed phase, and γi is the mole-fraction-based activity coefficient of

i in the liquid phase. The energetic contributions of non-ideal mixing in a

single homogeneously mixed particle can be expressed as a component of the

chemical potential:

µi = µ◦
i +RT ln(xiγi) (1.6)

where µ◦
i is the reference state chemical potential R is the gas con-

stant, and T is the temperature. The product of the mole fraction and

the concentration-dependent activity coefficient is known as the chemical ac-
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tivity and can be thought of as the effective concentration of i in a given

phase. In more extreme cases, non-ideal mixing can lead a homogeneously

mixed aerosol of organics and inorganics to split into an inorganic-rich phase

(α) and an organics-rich phase (β). More than two distinct phases have also

been observed, where phase β may split into higher and lower polarity-rich

organic phases (Huang et al., 2021). In the event of phase separation, the

Gibbs energy now becomes:

G = TS + PV +
∑
ϕ

∑
i

nϕ
i µ

ϕ
i (1.7)

where ϕ is the phase index. In the event of phase separation, the chem-

ical activity or effective concentration for each species must be equal across

distinct phases. For example the effective concentration of water must be

the same across phases. The effective concentration of a solute must also

be equal for that solute across all phases but it may differ from the effective

concentration of water and so on.

1.2.2 The Aerosol Inorganic–Organic Mixtures Func-

tional groups Activity Coefficients model

Accurate values of the activity coefficient for each species present in a par-

ticle are critical in order to fully represent the chemical mixing thermody-

namics of a particle. There are past models that have been used for non-

aerosol systems, including the UNIversal quasi-chemical Functional Groups

Activity Coefficients (UNIFAC) model (Fredenslund et al., 1975; Hansen

et al., 1991). The UNIFAC model predicts the activity coefficients of non-

electrolyte compounds in a solution through a functional group contribution

approach. Functional groups are individual components of a molecule, for

example, a hydroxyl group (OH) or a methyl group (CH3). Thus, instead of

a solution of molecules, the UNIFAC method treats a system as a “solution

of groups” (Fredenslund et al., 1975). The following is a brief summary of
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the UNIFAC method for predicting activity coefficients. The activity coeffi-

cient of a species in a solution is assumed to be a combination of a residual

contribution (γR
i ) and a combinatorial contribution (γC

i ).

Beginning with γC
i ,the combinatorial term is calculated by first computing

the overall surface areas (qi) and volumes (ri) of each molecule present in a

solution from the molecule’s functional groups:

qi =
∑
i

Qkn
k
i (1.8)

and

ri =
∑
i

Rkn
k
i (1.9)

From the absolute surface areas and volumes, the mole-fraction-weighted

averages of both qi and ri are calculated:

θi =
xiqi∑
j xjqj

(1.10)

and

ϕi =
xiri∑
j xjrj

, (1.11)

where θi is the mole-fraction-weighted average surface area of i and ϕi

is the mole fraction weighted average of volume of i. The equation for the

combinatorial term can then be defined as follows:

ln γC
i = ln

ϕi

xi

+
z

2
qi ln

θi
ϕi

+ Li −
ϕi

xi

∑
j

xjLj. (1.12)

Note that there are two additional variables in the above equation, z and Li.

z is the coordination number of i and is assumed to be 10. Li is defined as

follows below:

Li =
z

2
(ri − qi)− (ri − 1). (1.13)
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In order to calculate the residual contribution, the surface area of each func-

tional group, k, (Qk) present is calculated. Because the UNIFAC method

relies on the so-called solution of groups approach, the fraction of each group

k relative to the total number of functional groups across all species, j, must

be calculated:

Xk =

∑
i xin

k
i∑

m

∑
j xjnm

j

. (1.14)

The normalized surface area of each functional group (Θk) relative to the

total number of functional groups (summing over group index m) is then

calculated as follows:

Θk =
XkQk∑
m XmQm

. (1.15)

The values of Qk and Θk are used along with an additional term, Ψk,m. Ψk,m

is calculated as follows:

Ψk,m = exp (
−ak,m
T

) (1.16)

where ak,m is the interaction energy between k and other functional groups

(herem). The final equation for the residual term of a non-electrolyte activity

coefficient thus becomes

ln γR
i =

∑
k

nk
i

(
ln Γk − ln Γ

(i)
k

)
, (1.17)

where Γk is calculated as follows:

ln Γk = Qk

(
1− ln

∑
m

ΘmΨm,k −
∑
m

ΘmΨk,m∑
nΘnΨn,m

)
. (1.18)

Γ
(i)
k is a reference value, calculated using Eq. (1.14) through Eq. (1.18) in the

case of a pure solution of i where the mole fraction of i, xi, is 1. It is important

to emphasize that while the UNIFAC method is useful in many situations,

it does have limitations. Indeed, because the UNIFAC method does not ac-

count for the presence of inorganic electrolyte interactions, it is not useful
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in situations where said species may be present, such as aerosol particles.

Past approaches to predicting the activities of compounds in aerosol systems

have included extensions of the Brunauer–Emmett–Teller and and Guggen-

heim–Anderson–de Boer adsorption isotherms to higher solute concentrations

(Dutcher et al., 2011). Others have included the Extended Aerosol Inorgan-

ics Model (E-AIM) Project (Wexler and Clegg, 2002), the extended UNI-

FAC (X-UNIFAC) model (Erdakos et al., 2006), and the LIFAC model (Yan

et al., 1999). the UNIFAC approach in combination with the LIFAC model

was extended to account for inorganic–organic interactions in the Aerosol

Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOM-

FAC) model (Zuend et al., 2008, 2011).

The AIOMFAC model calculates activity coefficients as the combination

of a short-range contribution (γSR
i ), based on the UNIFAC method described

in the preceding paragraphs; a medium-range contribution (γMR
i ); and a

long-range contribution (γLR
i ); such that the AIOMFAC-predicted activity

coefficient for neutral species is computed as

ln γi = ln γSR
i + ln γMR

i + ln γLR
i . (1.19)

γLR
i accounts for the ionic strength of inorganic electrolytes in the solvent,

and γMR
i accounts for cation–anion interactions, ion–dipole interactions, and

ion-induced dipole interactions. In the case of anion and cation electrolyte

species, the AIOMFAC-predicted molality-based activity coefficient (γ
(m)
i ) is

calculated as follows:

ln γ
(m)
i =

(
ln γ

SR,(x),∞
i + ln γ

MR,(x),∞
i + ln γ

LR,(x),∞
i

)
− ln

(
Mw∑
s′ x

′
sMs

+Mw

∑
j

mj

)
.

(1.20)

In Eq. (1.20), γ
SR,(x),∞
i , γ

MR,(x),∞
i , and γ

LR,(x),∞
i are the mole-fraction-based
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short range, medium range and long range activity coefficient contributions

with respect to an infinite dilution reference state in pure water for an ion.

x′
s is the electrolyte-free mole fraction of each neutral solvent component in

the solution and mj is the molality of ion j. This final term on the right

side converts the electrolyte activity coefficients from mole-fraction-based to

molality-based. The specific derivations for the calculations of ln γMR
i , ln γLR

i ,

γ
SR,(x),∞
i , γ

MR,(x),∞
i , and γ

LR,(x),∞
i in mixed inorganic–organic systems are too

lengthy to fully describe here and can be found in Zuend et al. (2008).

The AIOMFAC model has been extended multiple times to account for

atmospherically relevant organic functional groups and inorganic electrolytes

(Zuend et al., 2011; Ganbavale et al., 2015; Yin et al., 2022). The AIOMFAC

model can predict activity coefficients over an extremely high range of con-

centrations for species. This is a critical feature, as mixed inorganic-organic

aerosol particles equilibrated to environmental conditions at low relative hu-

midities may exhibit extremely high solute concentrations. Similarly, the

AIOMFAC model is capable of predicting activity coefficients in the highly

dilute, water-vapor-supersaturated regime of relative humidities, which is

critical for modeling cloud droplet activation properties. The approach used

by the AIOMFAC model is also thermodynamically consistent, such that it

always obeys the Gibbs–Duhem relation. A consequence of this relation is

that given the concentrations and activity coefficients of all species except

for one, the activity coefficient of the remaining species can be calculated

from the others without computing it directly (Matthews, 2000).

1.2.3 Surface Thermodynamics

It should be noted that Eq. (1.7) neglects an often forgotten additional term

that is present in multi-phase systems. At the boundary between two distinct

phases, there exists an energetic penalty, σ. In the case of a gas–liquid

phase boundary, also referred to as a surface throughout this work, σ is

commonly referred to as the surface tension. Correspondingly, at a liquid–

liquid boundary, σ is commonly referred to as the interfacial tension. Note
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that throughout the remainder of this work, surface will exclusively refer to

a gas–liquid phase boundary and interface will refer to a liquid–liquid phase

boundary. Thus, with the inclusion of surface and interfacial tensions, a more

complete expression for G, which accounts for said penalties is as follows:

G = TS + PV +
∑
ϕ

∑
i

µϕ
i n

ϕ
i +

∑
ι

σιAι + lτ. (1.21)

σι represents the energetic penalty at interface ι (Jm−2), Aι is the area of

interface iota (m2), l is the energetic penalty at a three-phase junction line

(Jm−1) and τ is the length of the three phase junction line (m). The net

energetic contribution of lτ , should a three phase line occur in a system,

is thought to be several orders of magnitude lower than the contribution of∑
ι σ

ιAι (Amirfazli and Neumann, 2004).

In macroscopic systems, the energetic contribution of
∑

ι σ
ιAι is assumed

to be negligible; however, in systems with high surface (and interfacial) area

to volume ratios, such a term warrants further exploration. The following

sections will introduce and summarize existing research on the role of surface

and interfacial tensions on atmospheric aerosols.
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1.3 Aerosol Surface Properties

Given that the surface area of an individual spherical (aqueous) aerosol parti-

cle will always be larger than any interfacial areas present within the particle,

the role of aerosol surface properties will be explored first. The surface area-

to-volume ratio of a sphere scales inversely with its radius, making this ratio

particularly significant for ultrafine particles. Assuming that the surface of

a particle is represented by a monolayer of molecules in contact with the

gas phase—an assumption that is further explored in this thesis—spherical

particles with diameters smaller than 100 nm will have a substantial propor-

tion of their molecules present at the surface. For instance, in a pure water

droplet with a diameter of 50 nm, approximately 4% of the water molecules

will be found in the surface monolayer, while in a droplet with a diameter of

3 nm, more than half of the water molecules will reside at the surface.

As mentioned in section 1.1, aerosol particles do not consist of single pure

compounds; rather, they are complex mixtures of organic compounds, water,

and inorganic species. Different species may exhibit different effects on the

surface of a solution. Compounds that reduce the surface tension from the

pure solvent (typically, although not always, water in the case of aerosol par-

ticles or cloud droplets) are often referred to as “surface-active” compounds

or more commonly “surfactants.” Likewise, compounds that raise the sur-

face tension above that of the pure solvent are often called “tensoions.” It is

thought that surfactants may exhibit more favorable interactions in a surface

monolayer than in the interior bulk phase of a solution. This is likely due

to the fact that surfactants have both more and less polar regions in their

molecular structure. In a surface monolayer, such non-polar regions may

point towards the gas phase while polar regions of the molecule are oriented

towards the solvent in the bulk phase. The inverse is likely true for tensoionic

species, which are highly polar and thus prefer to remain completely solvated

in the aqueous bulk of a droplet.

These differences in molecular properties lead to a phenomenon known as
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bulk–surface partitioning, wherein the composition of the surface layer of a

species is different from that of the underlying bulk as surfactants partition

from the bulk to the surface and tensoions partition from the surface to the

bulk. The exact size (or thickness) of the surface layer is a matter of ongoing

debate (Davies et al., 2019; Ovadnevaite et al., 2017; Ruehl et al., 2016; Malila

and Prisle, 2018). However, if one assumes that a single molecular monolayer

is sufficient to describe the surface of a particle, then aerosol particles with

spherical equivalent diameters less than 100 nm will have a non-negligible

fraction of total particle-phase material present in their surface phase. Thus,

the composition of the bulk and surface of an aerosol particle are inherently

coupled.

Numerous models linking surface composition and surface tension have

been developed in recent years (Sorjamaa et al., 2004; Nozière et al., 2014;

Gérard et al., 2016; Petters and Petters, 2016; Ruehl et al., 2016; Ovadnevaite

et al., 2017; Kroflič et al., 2018; Malila and Prisle, 2018; Gérard et al., 2019;

Kleinheins et al., 2023, 2024). The redistribution of material between the

bulk and surface can influence the equilibrium morphology of an aerosol

particle depending on its size. Even in macroscopic systems, liquid–liquid

phase-separated particles can adopt non-spherical, partially engulfed mor-

phologies based on their surface properties (Binyaminov et al., 2021). The

enrichment and depletion of surface-active species may, therefore, affect the

conditions under which an aerosol particle undergoes LLPS as a function of

its size and activates and grows into a cloud droplet.

The impact of surface tension modification by surfactants on cloud droplet

activation has been studied extensively for decades (Facchini et al., 1999,

2000; Topping et al., 2007; Ovadnevaite et al., 2017; Prisle et al., 2010, 2008,

2011). The conditions under which a hygroscopically growing aerosol parti-

cle activates into a cloud droplet were first described by Köhler (1936), as

previously mentioned in section 1.1.3. The importance of the global maxi-

mum of a particle’s equilibrium saturation ratio, Scrit, as given by Eq. (1.2),
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determines the conditions under which the particle activates into a cloud

droplet.

Equation (1.2) contains two effects. The first effect, also known as the

solute or Raoult effect, is contained in aw. The exponential term of Eq. (1.2)

represents the Kelvin (or surface) effect. These two effects compete: the

Raoult effect reduces the supersaturation needed for an aerosol or cloud con-

densation nucleus (CCN) to activate into a cloud droplet, while the Kelvin

effect increases the critical supersaturation. A common reason for consider-

ing these effects to be in competition is as follows: as surface-active species

deplete from a droplet’s interior “bulk” to populate the surface during hy-

groscopic droplet growth, their reduced concentration in the bulk typically

raises aw while simultaneously lowering σ. However, it is important to note

that this competition is not always inevitable. In particular, for multicompo-

nent organic–inorganic particles with substantial non-ideal mixing, such as

those exhibiting LLPS, bulk–surface partitioning of low-polarity surfactants

can lead to reductions in both surface tension and aw (e.g. Ovadnevaite et al.,

2017).

While the κ-Köhler theory previously described in section 1.1.3 may yield

reasonable predictions for many systems, particularly for particles in the ac-

cumulation mode or larger sizes composed of highly soluble components, it

neglects bulk–surface partitioning and the high surface area-to-volume ratios

of ultrafine particles. This omission warrants further investigation. Vari-

ous methods exist for determining the surface composition at a gas–liquid

interface, each relying on different assumptions, such as the location and

dimensionality of the interface and the inclusion of system-dependent fit pa-

rameters. One classical approach is the Gibbs two-dimensional (2D) dividing

surface (or plane) theory, which relates changes in surface tension (dσ) to the

surface excess concentration (Γi) and changes in the chemical potential (dµi)
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of component i in the bulk solution (Gibbs, 1874):

dσ = −
∑
i

Γidµi. (1.22)

In this context, the term surface excess concentration refers to the difference

between the concentration of component i on the Gibbs dividing plane and

its concentration in the interior bulk phase. Consequently, negative values

of Γi are possible if the component preferentially partitions into the bulk

solution, resulting in a lower surface concentration. The precise location of

the Gibbs dividing plane is crucial in this approach, yet ambiguous based on

an arbitrary definition applied. It is typically chosen such that the surface

excess concentration of the primary solvent (usually water) is zero, making

the plane’s position a system-specific, composition- and size-dependent pa-

rameter. Determining the Gibbs dividing plane’s location presents challenges

since it is defined within the interfacial region between two phases but may

not correspond exactly to the outer edge of the surface monolayer (which

itself may not be well defined at the atomic level).

Building on Gibbs’ theoretical framework, the semi-empirical Szyszkowski–

Langmuir isotherm for bulk–surface partitioning was developed (Szyszkowski,

1908):

σ = σw(T )− ASL ln

(
1 +

BSL

CSL
i

)
, (1.23)

where σw is the surface tension of pure water at the temperature of interest,

ASL and BSL are system-dependent fit parameters, and CSL
i is the concen-

tration of solute i in the bulk liquid. While simpler and often adequate for

specific systems, such as interpreting laboratory studies, this equation’s pre-

dictive power is limited due to the inclusion of two fit parameters for each

chemical system.

A third approach to modeling bulk–surface partitioning, introduced by

Jura and Harkins (1946), involves semi-empirical fitted models relating sur-
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face concentrations to surface tension:

σ = σw(T )− (ACF
0 − ACF

i )mσ, (1.24)

which describes an insoluble compressed film (CF) at the liquid–gas interface

using a 2D equation of state. Here, ACF
0 represents the maximum possible

surface adsorption, ACF
i is the current surface adsorption of component i,

and mσ is a term relating changes in surface tension to changes in surface

concentration. When coupled with an isotherm relating bulk and surface con-

centrations, this equation provides a direct method to connect bulk solution

concentrations to surface concentrations.

While Eqs. (1.22), (1.23), and (1.24) have primarily been developed and

used to describe liquid–gas interfaces, they have also been employed to inter-

pret macroscopic systems such as LLPS. Recent studies have generalized the

concepts of LLPS for application in interpreting droplet microphysics (e.g.,

Nozière et al., 2014; Ruehl et al., 2016; Ovadnevaite et al., 2017). As previ-

ously discussed, LLPS systems can adopt different morphologies depending

on their surface properties, with small and ultrafine particles often taking

on core–shell or partially engulfed morphologies (Ciobanu et al., 2009; You

et al., 2014; Malila and Prisle, 2018; Binyaminov et al., 2021; Gorkowski et al.,

2020). LLPS systems are of particular interest due to their prevalence in the

atmosphere. Most, if not all, SOA particles formed under atmospheric con-

ditions will exhibit some degree of internal phase separation (Kroflič et al.,

2018; Zhang et al., 2021). As such, the ability to accurately describe bulk–

surface partitioning and interfacial behavior in LLPS systems is critical for

accurately predicting their properties and behavior in the atmosphere. This

is particularly true for ultrafine particles with high surface area-to-volume

ratios and irregular, non-spherical morphologies. As previously mentioned,

such particles have the potential to exhibit significant deviations from tra-

ditional Köhler theory, particularly in terms of cloud droplet activation and

growth dynamics.
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1.4 Aerosol Interfacial Properties

Turning now from the exterior surface of an aerosol particle to the inte-

rior, the liquid–liquid interface will be discussed. Similar to the bound-

ary between a gas and a condensed phase, the interface between two con-

densed phases—especially two liquid phases—can exhibit analogous phenom-

ena, such as the enrichment or depletion of certain compounds (Hua et al.,

2016). There have been various efforts to measure the contribution of the

liquid–liquid (LL) interface to the overall energy of a particle and to deter-

mine whether bulk phase depletion plays a role at this interface. Historically,

it has been assumed that the energetic contributions from LL interfacial ten-

sion in typical aerosol particles are negligible for particles where the Kelvin

effect is also minor (Russell and Ming, 2002; Zuend et al., 2010). However, re-

cent studies suggest that the LL interface’s contribution to the Gibbs energy

of a particle may have a small but notable impact on the relative humidity

(RH) at which the particle undergoes LLPS during dehydration (Ohno et al.,

2023; Kucinski et al., 2019; Ott et al., 2021).

To gain a better understanding of the role of interfacial tension and its

interaction with phase separation and particle morphologies, predictive mod-

els of interfacial tension and the associated changes in phase composition are

required. Several approaches have been proposed for predicting liquid–liquid

interfacial tension; a brief overview is provided in the following.

The simplest approximation for the interfacial tension between two liquid

phases α and β, σαβ, is obtained by taking the absolute difference between

the hypothetical gas–liquid surface tensions of the two phases (σα and σβ)

when each is considered in isolation:

σαβ =
∣∣σα − σβ

∣∣ . (1.25)

The above equation, known as Antonov’s rule (Antonov, 1907), may provide

a reasonable first-order approximation of interfacial tension for some systems.
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However, it is ultimately an empirical method and lacks thermodynamic rigor

(Makkonen and Kurkela, 2018; Winter, 1995). An alternative approach for

determining the interfacial tension between two liquid phases was proposed

by Girifalco and Good (1957), based on Antonov’s rule, with additional con-

siderations for the molecular interactions between the two phases:

σαβ = σα + σβ − 2ϕ
√
σασβ, (1.26)

where ϕ is a system-specific interaction parameter. It has been shown that

ϕ is constrained by the following inequality:

ϕ ≥
(
1− σαβ

σα

) 1
2

. (1.27)

In qualitative terms, ϕ tends to be lower in systems where the primary molec-

ular interactions differ, such as dispersion forces in phase β and hydrogen

bonding in phase α (Girifalco and Good, 1957). It is important to mention

that any parameterization of interfacial tension must inherently reduce to 0

in a single well-mixed particle. For a single well-mixed phase where σαβ = 0,

ϕ can only be equal to 1.

In the case of phase separation, there is a special case where ϕ =
(
1− σαβ

σα

) 1
2
.

In such a case, Eq. (1.26) reduces to Eq. (1.25). However, the applicability

of this equation to systems with more than two components or with com-

pounds that are soluble in both phases remains uncertain (Makkonen and

Kurkela, 2018). Equation (1.26) was further refined by Fowkes (1962, 1963)

to better account for dispersive and non-dispersive contributions to interfa-

cial tension. Such an approach requires accurate estimates of the dispersive

and non-dispersive contributions to the surface energies of both phases, which

can limit its practical application in cases which systems are poorly charac-

terized, such as those of atmospheric aerosol particles.

As mentioned earlier, certain atmospheric aerosol systems have been ob-
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served to undergo LLPS for particles with large diameters, whereas parti-

cles with similar compositions but smaller diameters may not undergo LLPS

(Kucinski et al., 2019; Freedman, 2020; Ott and Freedman, 2020; Ohno et al.,

2023). It is believed that for sufficiently small diameters, the high surface-

area-to-volume ratios of aerosol particles create an energetic barrier from

the combined effects of surface and interfacial tensions, inhibiting the forma-

tion of additional phases (Ohno et al., 2023; Freedman, 2020). Additionally,

the composition of aerosol particles, particularly the presence of different

inorganic electrolytes, complicates the size-dependent LLPS behavior. For

instance, Ott et al. (2021) report that particles containing sodium cations can

phase-separate at smaller sizes than similar particles containing ammonium

cations.

In summary, a similar energetic penalty to surface tension exists at the

boundary between any two liquid phases, including a finite-depth surface

and the bulk. The sum of this interfacial tension and the surface tension

at the gas–liquid boundary forms the measurable surface tension that can

be directly observed. Various methods have been proposed to determine

the interfacial tension between two liquid phases, using thermodynamic the-

ory, semi-empirical approaches, and system-specific fits to experimental data.

The combined energetic contributions from these interfaces lead to differ-

ences in the total Gibbs energy between a well-mixed and a phase-separated

particle. Greater differences in Gibbs energy occur in particles with higher

surface/interfacial-area-to-volume ratios. Such differences in Gibbs energy

may be large enough to reduce the onset aw of LLPS or even completely sup-

press LLPS. While the onset aw of LLPS may be reduced with the inclusion

of interfacial tension treatments, the onset RH of LLPS is also a function

of the Kelvin effect and thus may increase or decrease with the inclusion of

both surface and interfacial tension treatments. Prior to this thesis research,

no predictive model accounted for the coupled feedbacks of aerosol particle

size and three-dimensional morphology on the conditions under which a par-

32



Chapter 1 : Introduction

ticle will separate into two (or more) liquid phases or remain homogeneously

mixed. The work described in Chapter 3 aims to close this gap while provid-

ing a thermodynamically consistent framework for solving such a complex

problem in a single particle.
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1.5 Pure Component Surface Tensions

A major source of uncertainty in both surface and interfacial tension esti-

mates is the pure–component surface tension of each individual species, σ◦
i .

Accurate estimates of this value for each species are necessary for both bulk–

surface partitioning calculations and estimates of interfacial tension. While

some compounds, such as water and some simple organic compounds, have

numerous measurements for their surface tensions at different temperatures,

many other compounds do not have such data available. Further complicat-

ing this issue is the fact that the individual species inside an aerosol particle

are poorly characterized, and thus finding measured surface tension values or

proxy values from structurally similar compounds is challenging. Likewise,

the reference state surface tension values for inorganic electrolyte compounds

are also a matter of debate (Dutcher et al., 2010; Wexler and Dutcher, 2013).

One method used in fields beyond atmospheric science is known as quan-

titative structure–property relationships (QSPR) (Yee and Wei, 2012; Chen

et al., 2020). The principle of QSPR is that molecules with similar struc-

tures will have similar properties. This approach is similar to functional

group-based approaches, such as that of the AIOMFAC model, but with ad-

ditional information about the relative positions of functional groups within

a molecule. This additional structural information can be encoded through

the use of molecular fingerprints. Molecular fingerprinting is a technique that

translates a molecule’s structure into a series of integer codes that represent

atoms and functional groups, as well as their relative positions. There are

many techniques for molecular fingerprinting, including Molecular ACCess

System (MACCS) keys and Morgan fingerprints, which have been used for

QSPR predictions for different molecular properties (Consonni et al., 2023).

Of the two fingerprinting methods described above, MACCS keys are

slightly simpler. MACCS keys consist of 166 pre-defined molecular patterns

and structures (Durant et al., 2002). Each MACCS key is associated with a

SMARTS (SMiles ARbitrary Target Specification) code that matches a tar-
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geted substructure. SMARTS are based on the Simplified Molecular Input

Line Entry System (SMILES) notation, which is a method of representing

molecules as a single string of characters. As an example the SMILES for D-

Glucose (C6H12O6) is “C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O”

where the “@” represents left-handed chirality and “@@” represents right

handed chirality. From a SMILES, the corresponding MACCS keys can be

generated. Since MACCS keys only describe 166 unique molecular features

or patterns, they may not be able to represent more complex and nuanced

patterns in a molecule. MACCS keys may also struggle to accurately de-

scribe larger molecules in fields such as biochemistry (Kuwahara and Gao,

2021). The more complex of the two fingerprinting methods is Morgan finger-

prints. Morgan fingerprints encode more data about a molecule’s structure;

however, they are more abstract and thus less human-readable. They nu-

merically encode each individual atom in a molecule and describe the atoms’

neighboring atomic substructures in terms of a radius of adjacent atoms,

which collectively encode the the whole molecular structure (Morgan, 1965).

Additionally, recent advances in the field of artificial intelligence and ma-

chine learning (ML) have led to the development of predictive QSPR mod-

els once a sufficiently large database of information is compiled to train a

model (Chen et al., 2020). There have been past approaches attempting to

use ML techniques to predict the surface tension of individual organic com-

pounds (Sanjuán et al., 2020; Randová and Bartovská, 2016; Soori et al.,

2021; Rafie et al., 2023; Ojaki et al., 2023; Mousavi et al., 2021; Lazzús et al.,

2017; Lashkarbolooki and Bayat, 2018; Pierantozzi et al., 2021; G. R. Pazuki

and Sahranavard, 2011; Tiejun Xu and Khanghah, 2019); however, many

of these attempts have been on simplified datasets or confined to specific

compound classes rather than on broad databases of highly functionalized

organic compounds. For example, Sanjuán et al. (2020) used surface ten-

sion values of 87 different alcohols and compared models based on various

combinations of temperature, molecular shape, and critical physicochemi-
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cal properties. Models that depended on temperature, critical temperature,

critical pressure, critical volume, molar volume, and acentric factor had the

best correlations with the measurements in question (Sanjuán et al., 2020).

Roosta et al. (2012) used an artificial neural network with a single hidden

layer and 20 nodes and was able to accurately predict the surface tensions of

organic compounds based on their critical and reduced properties, along with

others, and their specific gravity at the compound’s boiling temperature.

Lazzús et al. (2017) used 46 different functional groups, the molecular

weight of the compound, and the absolute temperature to predict the sur-

face tension of different ionic liquid compounds using an artificial neural

network with one hidden layer of 30 neurons. Lashkarbolooki and Bayat

(2018) specifically examined the surface tension of alkanes and alkenes using

an artificial neural network and the simplified inputs of temperature, critical

temperature, and number of carbons. Mousavi et al. (2021) also examined a

functional-group-based approach for determining the surface tension of ionic

liquids. Pierantozzi et al. (2021) used a neural network with a single hidden

layer and 41 neurons, which took reduced, critical, and boiling point temper-

atures, along with the acentric factor from organic acids as inputs, to predict

the surface tension of those acids.

While a combination of various ML techniques and functional group-

based approaches may have a high degree of flexibility for many QSPR ap-

proaches, such approaches may not be able to adequately represent numerous

compounds, spanning various compound classes of atmospheric relevance, to

a high degree of accuracy. As an extreme example, cis–trans isomerism may

lead to substantial differences in pure component surface tension (Ciccia-

relli et al., 2007). Therefore, accurate descriptions of molecular structure are

necessary to describe molecules for inputs into ML-based techniques to pre-

dict pure-component surface tensions. It is noted in Chapters 2 and 3 that

accurate predictions of pure component surface tensions are necessary for

more rigorous treatment of bulk–surface partitioning and its interactions with
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LLPS. Thus chapter 4 compares four novel ML-based frameworks and three

different sets of molecular descriptors for predicting pure-component surface

tensions of highly-complex and atmospherically-relevant organic compounds.
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2.1 Preface

In chapter I, the importance of atmospheric aerosol surface properties in

relation to their interactions with clouds and past methods for modeling

aerosol surface properties were discussed. Now, a method for modeling the

equilibrium partitioning of species between the surface and bulk of an aerosol

particle is described. The aim of chapter 2 is to determine the relative impor-

tance of the competing effects of surface tension depression and bulk-phase

enrichment on cloud droplet activation. Chapter 2 was reproduced with

modifications from Schmedding and Zuend (2023).
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2.2 Abstract

Atmospheric aerosol particles and their interactions with clouds are among

the largest sources of uncertainty in global climate modeling. Aerosol par-

ticles in the ultrafine size range with diameters less than 100 nm have very

high surface area to volume ratios, with a substantial fraction of molecules

occupying the air–droplet interface. The partitioning of surface-active species

between the interior bulk of a droplet and the interface with the surrounding

air plays a large role in the physicochemical properties of a particle and in the

activation of ultrafine particles, especially those of less than 50 nm diameter,

into cloud droplets. In this work, a novel and thermodynamically rigor-

ous treatment of bulk–surface equilibrium partitioning is developed through

the use of a framework based on the Aerosol Inorganic–Organic Mixtures

Functional groups Activity Coefficients (AIOMFAC) model in combination

with a finite-depth Guggenheim interface region on spherical, finite-volume

droplets. We outline our numerical implementation of the resulting modified

Butler equation, including accounting for challenging extreme cases when

certain compounds have very limited solubility in either the surface or bulk

phase. This model, which uses a single, physically constrained interface thick-

ness parameter, is capable of predicting the size-dependent surface tension of

complex multicomponent solutions containing organic and inorganic species.

We explore the impacts of coupled surface tension changes and changes in

bulk–surface partitioning coefficients for aerosol particles ranging in diame-

ters from several µm to as small as 10 nm and across atmospherically relevant

relative humidity ranges. The treatment of bulk–surface equilibrium leads

to deviations from classical cloud droplet activation behavior as modeled by

simplified treatments of the Köhler equation that do not account for bulk–

surface partitioning. The treatments for bulk–surface partitioning laid out

in this work, when applied to the Köhler equation, are in agreement with

measured critical supersaturations of a range of different systems. However,

we also find that challenges remain in accurately modeling the growth be-
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havior of certain systems containing small dicarboxylic acids, especially in

a predictive manner. Furthermore, it was determined that the thickness of

the interfacial phase is a sensitive parameter in this treatment; however, con-

straining it to a meaningful range allows for predictive modeling of aerosol

particle activation into cloud droplets, including cases with consideration of

co-condensation of semivolatile organics.
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2.3 Introduction

Atmospheric aerosols are suspensions of condensed particles and the gas

which surrounds them. They can be a major contributor to poor indoor

and outdoor air quality. Exposure to poor air quality is the leading envi-

ronmental risk factor for premature mortality globally (Cohen et al., 2017;

Burnett et al., 2018). Beyond their public health effects, the role of at-

mospheric aerosols and of aerosol–cloud interactions in the global climate

system, remains one of the least understood processes in climate models

(Boucher et al., 2013). Some light-absorbing aerosols exhibit a positive di-

rect radiative forcing, while others mostly scatter solar radiation and exhibit

negative direct radiative forcing. The magnitude and sign of the local or

regional direct radiative forcing depends on numerous factors including an

aerosol’s composition, size distribution, geographic location, season, and al-

titude in the atmosphere (Bellouin et al., 2020). Furthermore, atmospheric

aerosols interact with clouds and precipitation, thereby contributing to im-

portant indirect effects on Earth’s climate that are poorly constrained (Sein-

feld et al., 2016). Therefore, it is of the utmost importance to understand the

physicochemical properties and microphysical processes of aerosol particles,

including aerosol–cloud–radiation interactions, as these drive their impacts

on the climate system.

Aerosol particles exist over a broad range of sizes. Differently sized par-

ticles frequently originate from distinct sources or form through unique pro-

cesses. Particles in the nucleation mode are primarily formed via the spon-

taneous condensation of gaseous compounds to create or extend a tiny con-

densed phase. Similarly, Aitken mode particles may form by the continued

growth of nucleation mode particles through condensation of gaseous species

or coagulation of condensed particles. Particles in the nucleation mode or

Aitken mode are collectively referred to as ultrafine particles. Accumula-

tion mode particles form through coagulation and agglomeration of smaller

Aitken mode particles in the air. The largest aerosols, such as mineral dust
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and sea spray particles, are primarily composed of inorganic compounds and

typically form via mechanical processes.

As aerosol particles decrease in size, they are more likely to originate from

and grow through complex multiphase chemical reactions. Many fine and ul-

trafine aerosol particles are composed of organic compounds that form via

oxidation reactions of volatile organic compounds (VOCs)or intermediate-

volatility organic compounds (IVOCs) in the gas phase. Many of the prod-

ucts of these reactions are lower in volatility and partition into condensed

particles. Semivolatile and low-volatility organic compounds (SVOCs and

LVOCs) may also be emitted and partition into particles with minimal pro-

cessing in the gas phase. Organic aerosol particles, or components thereof,

formed through gas-phase or multiphase chemistry are known as Secondary

Organic Aerosols (SOA) (Jimenez et al., 2009; Hallquist et al., 2009); for a

complete list of abbreviations and symbols, please refer to Tables A.2 & A.3

in Appendix B. Within a condensed phase additional chemical reactions may

proceed. This is particularly notable in low-viscosity aqueous aerosol parti-

cles and cloud droplets, those droplets provide aqueous media wherein numer-

ous laboratory and field observations have observed the formation or trans-

formation of SOA through chemical processing, e.g., Ervens et al. (2011).

For certain species these reactions can further reduce their volatility, effec-

tively “trapping” said species in the particle phase. For example, isoprene

expoxydiols (IEPOX) are known to undergo acid-catalyzed reactions in aque-

ous SO4
2– -containing particle phases (Surratt et al., 2010). The IVOCs and

VOCs which lead to the formation of SOA can be biogenic (e.g. isoprene

or monoterpenes) or anthropogenic (e.g. toluene, xylene, naphthalene) (Ng

et al., 2007; Chan et al., 2009). Observational studies have concluded that

the majority of SOA material is derived from biogenic precursors (Zhang

et al., 2007).

The internal mixing state and geometries of aerosol particles are varied.

Aerosol particles that are emitted by primary emission from biomass burning
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often take the shape of long agglomerations of individual spherical particles

(Pokhrel et al., 2021), while aqueous inorganic-rich particles and soluble SOA

are thought to be approximately spherical. The frequent presence of liquid–

liquid phase separation (LLPS) can complicate the shape aspect. LLPS

particles may form radially symmetric structures with an organic-rich “shell”

(phase β) covering an inorganic-rich “core” (phase α) or other, geometrically

more complex structures, such as a partially engulfed morphology, wherein

the particle is no longer radially symmetric nor perfectly spherical. In a

partially engulfed particle, phase β does not spread completely over phase α

and leaves a portion of phase α exposed (Song et al., 2013, 2012; Ciobanu

et al., 2009; Shiraiwa et al., 2013). These particles are also called “russian

dolls” or “janus particles” and interact with radiation differently than their

core–shell counterparts (Lang-Yona et al., 2010). Furthermore, should phase

β of core–shell phase-separated particles become a highly viscous liquid or

even glassy, it can limit the reactive uptake of different species (Schmedding

et al., 2020, 2019; Zhou et al., 2019; Kuwata and Martin, 2012).

Since the surface area to volume ratio of a sphere scales with the inverse

of its radius, said ratio becomes of great importance for ultrafine particles.

If the assumption is made that the surface of a particle is represented by a

monolayer of molecules in contact with the gas phase, an assumption further

explored in this study, then spherical particles with a diameter less than

100 nm will have a non-negligible quantity of molecules present at their

surface. For example, in a pure water droplet with a diameter of 50 nm,

∼ 4% of the water molecules will be present in the surface monolayer while

more than half of the water molecules in a pure droplet with a diameter of

3 nm will be present in the surface monolayer.

Many ultrafine aerosol particles are complex multicomponent systems

and contain numerous surfactant and tensoionic species in differing concen-

trations. These species modify the surface tension of a particle (Sorjamaa

et al., 2004; Nozière et al., 2014; Gérard et al., 2016; Petters and Petters,
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2016; Ruehl et al., 2016; Ovadnevaite et al., 2017; Kroflič et al., 2018; Malila

and Prisle, 2018; Gérard et al., 2019). In finite-volume systems, surfactants

may become depleted out of the particle interior, likewise tensoionic species

may become increasingly concentrated in the particle interior. This may in-

fluence the equilibrium morphology of an aerosol particle for a given size.

Even in macroscopic systems, it is possible for LLPS particles to adopt non-

spherical partially engulfed morphologies based on their surface properties

(Binyaminov et al., 2021). The surface enrichment and depletion of species

may affect the conditions under which an aerosol particle will activate and

quickly grow into a cloud droplet.

The impact of surface tension modification by surfactants on cloud droplet

activation has been known and studied for decades (Facchini et al., 1999,

2000; Topping et al., 2007; Ovadnevaite et al., 2017). The conditions under

which a hygroscopically growing aerosol particle will activate into a cloud

droplet were first stated by Köhler (1936), recognizing the importance of

the global maximum of a particle’s equilibrium saturation ratio, Scrit, as

expressed by the following equation:

S = aw exp

(
4σMw

RTρwDp

)
. (2.1)

Here, σ denotes the effective surface tension of the particle at the air–

liquid interface. Mw and ρw are the molar mass and density of water, respec-

tively. R is the gas constant, T is the temperature, and Dp is the diameter

of the particle. The so-called solute or Raoult effect is captured by the water

activity, aw, whereas the exponential factor captures the Kelvin effect. These

two effects are often considered to be in competition with one another since

the Raoult effect decreases the supersaturation necessary for an aerosol (or

cloud condensation nucleus, CCN) to reach activation into a cloud droplet

while the Kelvin effect increases the critical supersaturation. Note that val-

ues of S are often reported as percentages, in which case the value of Eq. (2.1)
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is multiplied by 100%. A common reason for considering this a competition

is the following: as surface-active species are depleted from a droplet’s inte-

rior “bulk” to populate the surface during hygroscopic droplet growth, their

lowered concentration in the bulk will typically raise the value of aw while

simultaneously decreasing the value of σ by lowering the effective surface

tension. However, we note that there is not necessarily a competition. In

particular, in multicomponent organic–inorganic particles with substantial

nonideal mixing, such as in cases with LLPS, the bulk–surface partitioning

of low-polarity surfactants can lead to both a relative lowering of surface

tension as well as of aw (e.g. Ovadnevaite et al., 2017).

In an effort to simplify calculations of aerosol water uptake and CCN ac-

tivation, Petters and Kreidenweis (2007) developed a single-parameter model

of hygroscopic growth, commonly known as κ-Köhler theory, wherein aw can

be related to the current volume of water in the particle Vw and the starting

dry particle (solute) volume, Vdry, through the following equation:

1

aw
= 1 + κ

Vdry

Vw

. (2.2)

The value of κ for a multicomponent solution can be found from a volume-

fraction-based linear weighting of the κ values of individual components.

The combination of Eqs. (2.1) and (2.2), along with an assumption about

σ, allows for the calculation of critical supersaturations of aerosol particles

given only their composition and dry sizes (Petters and Kreidenweis, 2007);

however, the utility of κ-Köhler theory is thought to be more limited for

ultrafine particles (Topping et al., 2016).

While κ-Köhler theory may provide reasonable predictions for many sys-

tems, including particles in the accumulation mode or of even larger sizes

that are composed of highly soluble components, its neglect of bulk–surface

partitioning treatments in combination with the high surface area-to-volume

ratios of ultrafine particles is worth exploring in greater detail. There are
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numerous methods for determining the surface composition at a gas–liquid

interface, all of which rely on various assumptions, such as the location and

dimensionality of said interface and the inclusion of various system-dependent

fit parameters. One of the classical methods is the Gibbs 2-dimensional (2D)

dividing surface (or plane) approach, which relates the change in surface ten-

sion of a solution (dσ) to the surface excess concentration (Γi) and change in

chemical potential dµi of component i in the bulk solution via (Gibbs, 1874):

dσ = −
∑
i

Γidµi. (2.3)

The term surface excess concentration may be misleading in this case since

it is defined as the difference between the concentration of i on the Gibbs

dividing plane and that in the interior volume of a bulk phase adjacent to

the plane. Thus negative values of Γi are possible if i partitions preferentially

into the bulk of a solution and has consequently a lower concentration at the

surface. The definition of the location of the Gibbs surface is of the utmost

importance when utilizing this approach. Its location is typically selected

such that the surface excess concentration of the first species (usually the

main solvent, e.g. water) is precisely 0, thus making that 2D plane location

a system-specific, composition- and size-dependent parameter. Determining

the location of the Gibbs dividing plane presents additional challenges since

the location of the surface is defined to be located within the interfacial

region between 2 phases, but may not necessarily be found at the same

radial position as that of the “outside” edge of the monolayer of molecules

found at the boundary of a phase.

From the theoretical framework laid out by Gibbs, the semi-empirical

Szyszkowski–Langmuir isotherm for bulk–surface partitioning was developed

(Szyszkowski, 1908):

σ = σw(T )− ASL ln

(
1 +

BSL

CSL
i

)
. (2.4)
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Here, σw is the surface tension of pure water at the temperature of interest,

ASL and BSL are system-dependent fit parameters, and CSL
i is the concen-

tration of solute i in the bulk liquid of the system. While simpler as an

approach and adequate in many system-specific cases (such as the interpre-

tation of laboratory studies), the predictive power of this equation is limited

due to the inclusion of two fit parameters for each chemical system.

A third treatment for modeling bulk–surface partitioning of different

species was introduced by Jura and Harkins (1946). It combined semi-

empirical fitted models relating surface concentrations to surface tension as

follows:

σ = σw(T )− (ACF
0 − ACF

i )mσ. (2.5)

This equation describes an insoluble compressed film (CF) at the interface

between a liquid and a gas with a 2D equation-of-state for bulk–surface parti-

tioning. ACF
0 is the maximum surface adsorption possible, ACF

i is the current

surface adsorption of i, and mσ is a term relating the change in surface ten-

sion to the change in surface concentration. This equation, when coupled

with an isotherm relating bulk and surface concentrations, is capable of de-

scribing the surface tension as aerosol particles grow hygroscopically when

exposed to increasing RH (Ruehl et al., 2016). In macroscopic systems, the

approaches of (Szyszkowski, 1908) and (Jura and Harkins, 1946) assume that

the enrichment or depletion of species at the particle surface has a negligi-

ble effect on the bulk particle composition; however, in ultrafine particles,

depletion of surface active species from the bulk phase may become impor-

tant. This bulk depletion effect has recently come under scrutiny (Prisle

et al., 2010; Bzdek et al., 2020; Lin et al., 2020) and has already been con-

sidered previously by Sorjamaa et al. (2004), who considered binary systems

of water and the surfactant sodium dodecyl sulfate (SDS). They noted that

Köhler curve calculations should include the effect of bulk depletion since

neglecting this effect led to unrealistically low critical supersaturation condi-

tions. These results were supported by laboratory measurements of ternary
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water–SDS–sodium chloride systems taken by (Prisle et al., 2008).

While many organic species present in the atmosphere are expected to be

strongly surface-active, there are others classified as weak surfactants, includ-

ing organosulfates (Hansen et al., 2015), certain components in mixtures of

marine SOA and POA (Ovadnevaite et al., 2017), and aliphatic dicarboxylic

acids (Ruehl et al., 2016). The surface enrichment of these compounds is diffi-

cult to predict, currently inaccessible experimentally (for airborne particles),

and potentially showing complex interactions with particle size (Sorjamaa

et al., 2004; Sorjamaa and Laaksonen, 2007; Davies et al., 2019; Ovadnevaite

et al., 2017).

2.3.1 Prior treatments of bulk–surface partitioning in

aerosol systems

There have been numerous methods developed for predicting the bulk–surface

partitioning of aerosol chemical species, the following is a summary of recent

works. Briefly, Sorjamaa et al. (2004) used an approach based on the 2D

Gibbs dividing surface theory and found that the depletion of water-soluble

surfactants may have a substantial impact on Köhler curves through both

surface tension depression and modification of the Raoult effect as surfac-

tants are depleted from the bulk. They report that failing to account for

both surface and bulk effects in growing aerosol particles may lead to under-

predictions of the critical supersaturation, particularly at higher organic mass

fractions. Prisle et al. (2008) used the semi-empirical Szyskowski equation

(Szyszkowski, 1908) to model the bulk–surface partitioning of various fatty

acids with increasing carbon chain length. Importantly, they noted that us-

ing the surface tension of pure water while accounting for changes to the

Raoult effect from bulk–surface partitioning, led to good agreement with

experimental data and less costly calculations; however, the use of accurate

values of aw that accounted for bulk–surface partitioning were critical. These

assumptions were more thoroughly explored by Prisle et al. (2010), wherein
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they found that particles with at least 50% of their mass composed of surfac-

tant species required more accurate treatments of surface tension depression

than considering σ to be the same as that of pure water. In systems with

lower concentrations of surfactants it was noted that the surface tension may

be similar to that of pure water at the point of CCN activation. Despite

this, an evolving surface tension depression in growing aerosol particles that

have not yet activated may play a role in their growth and activation behav-

ior (Ovadnevaite et al., 2017; Davies et al., 2019). Further complicating the

issue is a lack of measurements of surface tension on sub-500 nm diameter

particles.

Romakkaniemi et al. (2011) included a Szyskowski–Langmuir treatment

of bulk–surface partitioning to droplets containing methylglyoxal, a semivolatile

species and moderate surfactant. They found that treating the surface as a

hypothetical 2D plane that mixes ideally led to over one order of magnitude

increase in the total particle-phase concentration of methylglyoxal, further

confirming the importance of bulk–surface exchange treatments. Beyond

Szyskowski–Langmuir isotherm-based treatments of bulk–surface partition-

ing, other equations of state have been employed, including 2D van der Waals

models, compressed film models, and LLPS-based models of bulk–surface

partitioning (Ruehl and Wilson, 2014; Ruehl et al., 2016; Ovadnevaite et al.,

2017). The compressed film model of Jura and Harkins (1946); Ruehl et al.

(2016) was also utilized by Forestieri et al. (2018) to examine long-chain fatty

acid coatings on sodium chloride particles to mimic sea spray aerosols. It was

found that different surfactant species may have large effects on CCN acti-

vation through both their impacts on σ and the effective hygroscopic growth

parameter κ under high RH conditions. They note that compounds tradi-

tionally thought of as highly surface active, like the fatty acids in their study,

may not have as large of an impact on CCN activation as others (Forestieri

et al., 2018).

The treatment of bulk–surface partitioning was also studied using an
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AIOMFAC-based coupled liquid–liquid equilibrium and gas–particle parti-

tioning calculation (Ovadnevaite et al., 2017; Davies et al., 2019). The ef-

fective surface tension was estimated based on the predicted LLPS phase

compositions and the surface coverage by an organic-rich shell phase, con-

strained to be of a defined minimum thickness δβ,min. This approach found

that LLPS aerosols can be strongly affected by surface tension reductions,

yet weakly by changes to the Raoult effect following bulk–surface parti-

tioning (Ovadnevaite et al., 2017; Davies et al., 2019). The treatment of

bulk–surface partitioning in the LLPS-based approach was primarily due to

bulk equilibrium LLPS, organic surface coverage, and gas–particle partition-

ing, which directly account for substantial nonideal mixing. However, other

more detailed effects, such as a size-dependent feedback from bulk–surface

partitioning on LLPS phase compositions and liquid–liquid–interfacial-phase

partitioning and energy effects were not accounted for. Furthermore, this

approach did not depend on any assumptions about the maximum thickness

of the interfacial region, only a prescribed minimum thickness (Ovadnevaite

et al., 2017). Likewise, a subsequent study by Davies et al. (2019) compared

a compressed-film model and three versions of AIOMFAC-based bulk–surface

partitioning models. The first AIOMFAC-based approach involved using a

full (unconstrained) liquid–liquid equilibrium calculation. This methodology

assumed that the organic-rich phase β would form a spherical shell around

phase α if there was sufficient material, otherwise phase β formed a partial

spherical shell of thickness δβ,min over phase α. An area-weighted mean of

pure component surface tensions based on the areas of each phase exposed

to the gas phase was used to determine the effective droplet surface ten-

sion. The second approach involved assuming a complete phase separation

among organics and aqueous inorganic electrolytes, with only water allowed

to partition between both phases and the assumption that the organic species

formed a film, i.e. a partial monolayer or up to multiple molecular layers at

the droplet surface. In case of insufficient organic material for forming a com-
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plete monolayer over the droplet, the effective surface tension of the droplet

is computed as the surface coverage area-weighted average of the pure or-

ganic species surface tension and the surface tension of water. These two

treatments of surface tension provided a good and predictive estimate of the

upper and lower bounds of the measured critical supersaturation of a CCN,

given the initial dry composition of the particle.

Malila and Prisle (2018) developed a semi-empirical monolayer-based

bulk–surface partitioning model based on an extension of an earlier method

developed by Laaksonen and Kulmala (1991) wherein the surface tension

of a droplet was related to a surface-composition-weighted average of pure-

component surface tensions (σ◦
i ):

σ(xb, T ) =

∑
i σ

◦
i Vix

s
i∑

i Vixs
i

. (2.6)

Here, Vi and xs
i are the molar volumes and surface mole fractions of i, re-

spectively. Coupled with mass conservation, this equation must be solved

iteratively from a given droplet size and overall composition. It is important

to note that pseudo-binary approximations must be made for Eq. (2.6) for

systems with three or more components and that the iterative solution must

be optimized for each system tested, which somewhat limits the utility of

this approach as a predictive tool.

Vepsäläinen et al. (2022) conducted a comparative study examining the

differences between the 2D Gibbs adsorption model of Prisle et al. (2011), the

simplified complete partitioning model of Prisle et al. (2011), the compressed

film model of Ruehl et al. (2016), a partial monolayer model based on Ovad-

nevaite et al. (2017), the monolayer model of Malila and Prisle (2018), and

a simple bulk-composition-based model that did not allow for bulk–surface

partitioning. In their study, the hygroscopic growth of 50 nm particles of

different, moderately surface-active dicarboxylic acid species were modeled.

It was noted that the more complex models for bulk–surface partitioning,
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those which allowed for the partial partitioning of species between the bulk

and surface, had the best agreement with measured critical supersaturations.

Despite the agreement between the more complex models with measured crit-

ical supersaturations as a function of dry particle size, they predicted varying

degrees of bulk–surface partitioning for different species and, thus, different

equilibrium compositions for the bulk and surface of the droplet. A related

model comparison by Vepsäläinen et al. (2023) was also extended to systems

including stronger surfactant species, such as myristic acid. In that recent

work, it was also noted that the various bulk–surface partitioning treatments

from Vepsäläinen et al. (2022) were in agreement at low surfactant mass frac-

tions; however, there was disagreement at higher surfactant mass fractions.

Other recent work with thermodynamics-based models have attempted

to predict the degree to which surfactants may cover an aerosol particle

(surface) at equilibrium, with many surfactant species expected to have a

surface coverage on the order of 60–85%, while some surfactant remains

dissolved in the particle bulk, both for compositions below and above the

critical micelle concentration (McGraw and Wang, 2021).

While simplifying assumptions about bulk–surface partitioning are rea-

sonable for macroscopic systems, in the case of ultrafine particles, the com-

peting effects of interior bulk phase depletion and surface accumulation are

complex and must be considered. Recent experimental findings have high-

lighted that even for larger droplets on the order of several micrometers

which contain non-ionic surfactant species similar to those found in atmo-

spheric aerosols, varying surface tensions may be exhibited across particle

sizes (Bzdek et al., 2020). Thus, a rigorous framework for determining the

equilibrium bulk–surface partitioning of a droplet is necessary to better un-

derstand the size-dependency of bulk–surface partitioning and related surface

tension impacts in aerosol systems. Ideally, such a framework is predictive

in design; i.e., it does not need to be fine-tuned or fitted specifically for every

system or size range of interest. In the following, we introduce and evaluate
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Figure 2.1: Conceptual diagram of bulk–surface partitioning in a single-bulk
phase spherical aerosol particle or cloud droplet. The thickness of the finite-
volume surface phase is represented by δ.

such a framework by extending the AIOMFAC-based gas–particle partition-

ing calculations to include a distinct surface phase present between aerosol

particles and the surrounding gas phase; see Fig. 2.1.

2.4 Theory and Methods

In his seminal works, Gibbs (1874) defined the following equation capable of

expressing the so-called “free” energy of a thermodynamic system (G) with
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negligible energetic contributions from surfaces and interfaces as:

G = U − TS − PV. (2.7)

Here, U is the internal energy of the system, T is temperature, S is entropy,

P is pressure, and V is the volume of the system. Taking the derivative of

Eq. (2.7) and then integrating with respect to the number of moles of i in the

system (ni) at constant T and P gives the following equation for a system

with k components:

G =
∑
k

µknk. (2.8)

Using the information given in Eq. (2.8), the equilibrium composition of

a closed multiphase system can be found when its energy is at its global

minimum. However, in order to accurately predict the chemical potential

of each component in a system, physicochemical mixing models must be

employed to account for non-ideal mixing effects on the chemical potential

of i in a liquid-state bulk phase b as given by:

µb
i = µ◦,b

i +RT ln(abi), (2.9)

where, µ◦,b
i is the standard chemical potential, R is the gas constant, and abi

is the (chemical) activity of i. The activity of a species is a unitless value

which represents the “effective concentration” of component i on a chosen

composition scale (e.g. mole fraction or molality) as determined by non-

ideal mixing in a given phase of a system. Under equilibrium conditions,

the chemical potentials of a component must be equivalent across all phases

(e.g., Zuend et al., 2010). A useful choice, often employed when calculating

µi for multiple phases of a system, is that µ◦
i is defined to be identical for all

phases. With that definition, also the activities of a species must be equal

in all coexisting phases for a system at equilibrium. In order to accurately

predict the various abi over a wide range of solution compositions, complex
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mixing models, such as the AIOMFAC model, must be employed to account

for molecular interactions, shape and size differences.

The AIOMFAC model is a state-of-the-art thermodynamic mixing model

capable of accurately predicting the chemical activity of species in atmo-

spheric aerosol systems in a thermodynamically rigorous and consistent man-

ner. AIOMFAC can be considered as a major extension of the UNIversal

quasichemical Functional Groups Activity Coefficients (UNIFAC) model by

Fredenslund et al. (1975), since AIOMFAC includes the treatment of aque-

ous electrolytes and interactions between ions and organic molecules. UNI-

FAC itself is a group-contribution model derived from the UNIversal QUAsi-

Chemical (UNIQUAC) theory of liquid mixtures developed by Abrams and

Prausnitz (1975). The UNIQUAC theory and model is a local composition

model for mixtures of non-electrolyte components that generalizes the orig-

inal quasi-chemical theory of Guggenheim (1952) to mixtures consisting of

molecules of various shapes and sizes (while Guggenheim’s quasi-chemical lat-

tice model was restricted to spherical molecules of approximately equal sizes).

The development of the UNIQUAC model, the UNIFAC group-contribution

version, and subsequently extended variants like AIOMFAC, are therefore all

deeply rooted in an advanced statistical mechanics treatment of mixing and

interactions amongst different molecules in solution based on the local com-

position principle and are more rigorous than Guggenheim’s two-component

lattice gas model. AIOMFAC has been updated numerous times to include

many atmospherically relevant inorganic cations, anions, and organic func-

tional groups, so that this model can represent a large number of mixed

organic–inorganic aerosol systems, including systems with tens to thousands

of components (Zuend et al., 2008, 2011; Yin et al., 2022).

If two or more distinct phases (phases are here indexed by superscript

ϕ) are present in a system at constant temperature and pressure, Eq. (2.8)

may need to be expanded to account for the energy associated with the

boundaries between the phases. This can be achieved via the addition of a
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term accounting for the interfacial energy per unit area (σ) scaled by the

area of the interface (A) (e.g., Aston and Herrington, 1991):

G =
∑
ϕ

∑
j

µϕ
jN

ϕ
j + σA. (2.10)

The interfacial Gibbs energy contribution can be important for microscopic

systems, in which the contribution gains in magnitude relative to the collec-

tive energy content of the bulk volume of the phases. This interfacial Gibbs

energy is therefore of interest in the context of small aerosol particles and

cloud droplets. In the case of macroscopic systems, the interfacial energy

term can usually be neglected due to its comparably tiny contribution.

Gibbs defined interfacial energy (or tension) as the excess energy at-

tributed to the 2-dimensional boundary present between two phases. How-

ever, the choice to describe the boundary between two phases as a 2D surface

and deciding its exact location presented several problems, because real sys-

tems may exhibit concentration gradients near an interface. To account for

this, Guggenheim introduced the concept of a 3-dimensional (3D) interfacial

phase, which includes the boundary between two distinct phases and the

concentration gradients of species therein (Guggenheim, 1940). While often

on the order of a molecular monolayer or bilayer in depth, such an interfacial

compartment can be treated as a distinct phase and must abide by the ther-

modynamic equilibrium conditions. Given the above-mentioned challenges

when using Gibbs’ 2D surface treatment and in order to more easily con-

nect geometrically confined interfacial and bulk phases in a mass-conserving

finite-volume system, the approach of Guggenheim’s 3D interface is adopted

in our framework. Thus, for application to fine and ultrafine particles, we

introduce an interface with a small but finite thickness (δ). We will focus in

the following derivations on particles of spherical shape (droplets).

Following the approach of Cai and Griffin (2005), species adsorbed onto

or absorbed into the surface of an aerosol particle contribute to the total
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volume of the particle. Thus, the interface only extends from the limit of the

particle’s radius inward and the total number of condensed-phase molecules

of i (ntot
i ) is defined as the sum of the number of molecules of i in the bulk

(nb
i) and in the surface (ns

i ):

ns
i + nb

i = ntot
i . (2.11)

If the surface of an aerosol is chemically distinct from the underlying bulk

phase, then a particle with one condensed (here liquid) bulk phase, a distinct

surface phase, and the surrounding gas phase, will satisfy the criterion of

equivalency of chemical potentials at equilibrium, as mentioned previously.

As described by Aston and Herrington (1991), the chemical potential of a

surface can be defined by differentiating Eq. (2.10) for a surface phase with

respect to the molar amount of component i in the surface ns
i :(

∂Gs

∂ns
i

)
T,P,ns

j ,A

=

(
∂Gs

∂ns
i

)
T,P,ns

j ,σ

−
(
∂Gs

∂A

)
T,P,ns

i

×
(
∂A

∂ns
i

)
T,P,ns

j ,σ

. (2.12)

This leads to the following expression for the chemical potential of a surface

phase:

µs
i = ξsi − σAi, (2.13)

where ξsi =

(
∂Gs

∂ns
i

)
T,P,ns

j ,σ

, σ is the surface energy per unit surface area of the

solution (i.e. the interfacial energy per unit area of the gas–liquid interface),

and Ai =

(
∂A

∂ns
i

)
T,P,ns

j ,σ

is the partial molar area of i. Ai can be found for a

finite-depth Guggenheim surface phase of a spherical particle as follows:

(
∂A

∂ns
i

)
T,P,ns

i ,δ

=

(
∂A

∂r

)
T,P,ns

i ,δ

∂ns
i

∂r

. (2.14)
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Here, the change in surface area of a sphere with respect to its radius is:(
∂A

∂r

)
T,P,ns

i ,δ

= 8πr (2.15)

and the volume of the finite-depth surface phase on a spherical droplet is:

vs =
4

3
π(r3 − (r − δ)3). (2.16)

Differentiating Eq. (2.16) with respect to the particle radius assuming a con-

stant surface depth leads to(
∂vs

∂r

)
δ

= 4π(2δr − δ2). (2.17)

Equation (2.17) can be converted into an expression for
∂ns

i

∂r
with the inclu-

sion of the molar volume of i in the surface (V s
i ). This value is assumed to

be the same as the bulk molar volume of pure i, which can be calculated by

dividing the molar mass (Mi) by the liquid-state density (ρi). This yields

∂ns
i

∂r
=

4π(2δr − δ2)

V s
i

. (2.18)

Combining Eqs. (2.15) and (2.18) along with the assumption that the

molar volumes are additive in order to determine ns
i leads to Eq. (2.19) for

the partial molar area Ai:

Ai =

(
∂A

∂ns
i

)
T,P,ns

j ,σ

= V s
i

2r

2δr − δ2
. (2.19)

In the extreme case of the depth of the interface approaching the value of a

droplet’s radius, limδ→r of Eq. (2.19) reduces to
2
r
V s
i . In the opposite limiting

case of a macroscopic system, in which δ ≪ r and δ2 ≈ 0, the limr→∞ of

Eq. 2.19 is 1
δ
× V s

i . Integrating partial molar areas by Euler’s theorem leads
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to

A =
∑
j

ns
jAj (2.20)

for a multicomponent system with j = 1, . . . , k different species present. Note

that for cases in which the surface phase extends beyond monolayer thickness,

Eq. (2.20) indicates that the Ai values will not necessarily correspond to the

area per molecule located directly at the 2D gas–liquid surface.

Returning to Eq. (2.13), the intrinsic chemical potential, ξsi , of compo-

nents in the surface phase can be formulated analogously to that of a liquid

phase (Aston and Herrington, 1991):

ξsi = ξ◦,si +RT ln(asi ). (2.21)

Here, ξ◦,si is the intrinsic standard chemical potential and asi is the activity

of i in the surface phase. In the case of pure component i, Eq. (2.13) yields:

µ◦,s
i = ξ◦,si − σ◦

i A
◦
i (2.22)

where σ◦
i is the surface energy per unit area of pure component i. For a more

general multicomponent surface phase, Eq. (2.13) becomes:

µs
i = µ◦,s

i +RT ln(asi ) + σ◦
i A

◦
i − σiAi. (2.23)

Assuming that A ◦
i ≈ Ai under all conditions, defining µ

◦,s
i = µ◦,b

i , and further

requiring that at equilibrium the chemical potentials of species across phases

are equal, the effective surface tension of a multicomponent solution can be

isolated to form the following equation:

σi = σ◦
i +

RT

Ai

ln

(
asi
abi

)
. (2.24)

At equilibrium all σi values must be equivalent to a common value, the effec-

61



Chapter 2 : Bulk–Surface Partitioning

tive solution surface tension (σ) . In this case, Eq. (2.24) can be recognized

as the Butler equation (Butler and Kendall, 1932; Sprow and Prausnitz,

1966). Employing Eq. (2.24) for each component in a system, along with

Eq. (2.11), leads to a system of equations for the equilibrium composition

of a 3D Guggenheim interface. These equations can be solved iteratively

in a nested manner in combination with the AIOMFAC-based gas–particle

partitioning and liquid–liquid phase separation algorithms laid out in Zuend

et al. (2010) and Zuend and Seinfeld (2013).

2.4.1 Calculation of Surface Composition

In order to determine the composition of the surface phase in practice, a

system of equations which allows maximum freedom of variable ranges, yet

simultaneously satisfies the volume balance constraints of the 3D interface, is

required. Furthermore those equations must not modify variables that should

be held constant during the calculation of partial derivatives. For this pur-

pose, we have developed a conforming implementation within the extended

AIOMFAC equilibrium model. We begin by introducing a term representing

the fractional amount of component i relative to the total amount of i in the

particle phase:

εi =
ns
i

ntot
i

, (2.25)

where ns
i denotes the molar amount in the surface phase and ntot

i is the total

molar amount of i available for partitioning (a constant during partitioning

calculations). From the values of rp and δ, the total volume of the surface

phase is calculated according to Eq. (2.16). Likewise ns
i , ρi, and Mi can be

used to determine the volume of i in the surface phase. The fraction of the

total surface volume occupied by i is given by

fi =
vsi
vs

=
vsi∑
j v

s
j

. (2.26)

We now define a new variable, ζi, expressing the fraction of i in the surface
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relative to its assigned volume range such that

ζi v
rg
i + vmin

i = vs⋆i , (2.27)

where vrgi = vmax
i − vmin

i and vmax
i and vmin

i are the respective maximum and

minimum possible surface volume contributions. vs⋆i is the unnormalized

surface volume contribution of i. The values of ζi can vary in the range from

0.0 to 1.0; however, there can be non-zero vmin
i values for some components

(e.g. for water at very high RH) in order to achieve volume closure between

the targeted geometric surface shell volume and the (unnormalized) volume

as calculated by summing up the surface quantities, such that vmin
i ≥ 0 and

vmax
i ≥ vmin

i . For a given particle composition, rp, and δ, both vmin
i and vmax

i

are species-specific constants. As such, vmin
i can be determined depending

on whether all other components j ̸= i can occupy all of the surface volume

if they are at their maximum abundance in the surface. If this is the case,

then vmin
i = 0. Otherwise, vmin

i > 0. This leads to

vmin
i = max

[
vs −

∑
j,j ̸=i

vmax
j , 0

]
. (2.28)

Here, vmax
i is the maximum possible volume in the surface phase, less than

or equal to vs, such that

vmax
i = min

[
ntot
i × Vi, vs

]
. (2.29)

Returning to ζi, Eq. (2.27) can be rearranged as

ζi =
vs⋆i − vmin

i

vmax
i − vmin

i

. (2.30)

For a given value of ζi, v
s⋆
i can be computed and then normalized to find fi
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via

fi =
vs⋆i∑
j v

s⋆
j

(2.31)

and a value for vsi can be determined via

vsi = fi × vs. (2.32)

We note that such calculated fi and vsi values may violate the condition that

vsi ≤ vmax
i . This issue is remedied by introducing the relative deviation of ac-

tual to targeted surface phase volume as an additional equation (constraint)

to be solved alongside with the equations describing the partitioning of k−1

components. From vsi , variables n
s
i and εi can be computed via ns

i =
vsi
Vi

and

then applied in Eq. (2.25) to obtain εi.

2.4.2 Initial guess generation

An initial guess for the surface composition of a given particle can be derived

from a first calculation for a non-partitioning (superscript np) case. In this

trivial case, the relative compositions of the surface and bulk phases are set

to be identical, such that xs
i = xb

i and f s
i = f b

i . From this case, an estimation

of ζnpi can be computed given that:

fnp
i =

ntot
i Vi∑

j n
tot
j Vj

(2.33)

and

vs⋆,npi = min (fnp
i vs, vmax

i ), (2.34)

to yield

ζnpi =
vs⋆,npi − vmin

i

vmax
i − vmin

i

. (2.35)
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Given the definition that ai = xiγi for neutral components (and a±,i =
m±,i

m◦ γ±,i for electrolytes), Eq. (2.24) can be rearranged to the following form:

ln

(
xs
i

xb
i

)
= (σ − σ◦

i )
Ai

RT
− ln

(
γs
i

γb
i

)
. (2.36)

As long as the same nonideal mixing model is used for bulk and surface

activity coefficients (in this case, AIOMFAC), the activity coefficient ratio

on the right-hand side of Eq. (2.36) is equal to 1 (only in this non-partitioning

case). For a spherical particle of known surface volume vs as well as f s
i , and Vi

values, the non-partitioning assumption enables the calculation of the molar

phase amounts and the surface-to-bulk molar ratios,
ns
i

nb
i
. Using a composition-

weighted mean of the pure-component surface tensions for σ allows for the

evaluation of Eq. (2.36), which yields
xs
i

xb
i
. For neutral components (mole

fraction scale), the obtained mole fraction ratios can then be converted into

a (new) guess for the set of εi values as follows:

εguessi =
ns
i/n

b
i

1 + (ns
i/n

b
i)

=
xs
i

xb
i

∑
j n

s
j∑

j n
b
j

. (2.37)

For electrolyte components with activities defined on molality scale, the cor-

responding bulk–surface partitioning guess is generated via scaling by the

surface-to-bulk phase mass ratio:

εguessi =
xs
i

xb
i

∑
l n

s
lMl∑

j n
b
lMl

, (2.38)

where the summation index l covers non-electrolyte components (i.e. sol-

vents) only. Using the determined set of εguessi values, Eq. (2.24) can be

evaluated to obtain updated activity coefficient ratios,
γs
i

γb
i
, as well as an up-

dated weighted-mean estimate of the surface tension, which can then once

more be evaluated with Eq. (2.36) and processed to obtain an updated εguess

vector. If desired, one can expand on this approach by using the determined
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activity coefficient ratios (in this case kept fixed) together with a set of dis-

tinct guesses for potential equilibrium σ values in Eq. (2.36), yielding a set

of initial guesses for the εi values. Systematically generating more than one

initial guess is useful when the subsequent numerical solution of the system

of nonlinear equations, given by Eqs. (2.24) or (2.40), is unsuccessful in case

of the first initial guess evaluated – or to further explore whether more than

one solution may exist. In our modern Fortran implementation, the system

of equations is solved by a modified, bound-constrained version of Powell’s

hybrid method (Moré et al., 1980, 1984). Our extensive numerical testing

suggests that this approach results in a fast and robust method for finding

the equilibrium bulk–surface partitioning state for a given overall particle

composition, radius and interfacial thickness.

2.4.3 Model Assumptions

A key piece of information that is necessary to solve Eq. (2.24) is the liquid-

state pure-component surface tension, σ◦
i , at given temperature. In this work,

σ◦
i values of organic components were taken from published data (Hyvärinen

et al., 2006; Riipinen et al., 2007; Booth et al., 2009) or, in the case of glu-

taric acid, extrapolated from high concentration data of a binary aqueous

solutions (Booth et al., 2009). For inorganic electrolyte components, σ◦
i was

calculated using the approach for estimating pure molten salt surface ten-

sions as described in Dutcher et al. (2010). Organic compounds with poorly

constrained σ◦
i values were assumed to have values of 35 mJm−2. In addi-

tion, there are physical constraints applied to the surface phase thickness δ

in this study. The lower limit of δ was selected to be 0.15 nm, or the ap-

proximate length of a single alkane C–C bond. The upper bound for δ was

selected to be 1.0 nm for all systems tested, which is the approximate length

of 3 water molecule diameters. An alternative assumption was also tested:

a treatment where δ is a function of particle or surface phase composition;

however, there is limited information on how exactly δ should change as a

function of composition. Therefore, in this test case it was assumed that
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a simple weighted average of molecular lengths based on the surface mole

fraction in the particle phase could be used. These molecular lengths were

computed based on V for each species and the assumption that the molecular

length scale can be approximated by the side length of a volume-equivalent

cube. Following the calculation of the surface composition, δ was updated

and the surface composition was recalculated. This process was repeated

iteratively until convergence (within a set tolerance) to a stable δ value. It is

also important to note that Eqs. (2.24) and (2.40) cannot be solved directly

for a species which is completely insoluble in either the surface or the bulk

phase. As such, the relative surface tension deviations, to be solved for from

these equations, are scaled by a smooth (∼ rectangular step) weighting factor

expressed by the following function:

∆σi =
σi − σ̄

|σ̄|+ τσ
× εi(1− εi)

εi(1− εi) + 100
√
ϵ · exp

[
−
√
εi(1− εi)

] . (2.39)

Here, ϵ is the floating point machine precision employed, σ̄ the weighted

mean surface tension and τσ a tolerance value, typically set to 0.1 Jm−2.

The weighting factor (expression after ×) on the right-hand side of Eq. (2.39)

evaluates to near 1.0 in most cases and smoothly transitions to substantially

smaller values only as i becomes very close to insoluble in either the surface

phase or bulk phase, in which case εi approaches either 1 or 0. Therefore, in

cases of extremely limited solubility of i in the surface or bulk, the contri-

bution of i to the system of equations used to solve for bulk–surface equilib-

rium is diminished (a desired property, since the numerical uncertainty grows

near the limits of solubility and numerical precision limitations become sub-

stantial). We note that the weighting factor is computed prior to (but not

during) numerically solving the system of equations and is only updated if

deemed necessary afterwards, such as when the solver was unsuccessful for

set numerical tolerances and the equations solving needed to be repeated.

Furthermore, a closely related weighting factor, which is normalized by the
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sum of weightings such that the resulting fractional weights sum to 1.0, is

used in the calculation of the weighted mean σ̄ value during the process of it-

eratively solving the system of equations (i.e. solving simultaneously solving

Eq. (2.39) via Eq. (2.24) for all components).

An additional assumption made in this study concerns the computation

of activity coefficients. It is assumed that there are no modifications to the

calculation (by AIOMFAC) of activity coefficients in the surface phase com-

pared to the bulk phase. Lane (1983) introduced a common exponential

correction factor, t, that is applied to the calculated activity coefficients of a

surface phase, such that γs
i =

(
γs,calc
i

)t
. The introduction of such an expo-

nent is motivated by the idea that activity coefficients in a surface, affected

by some limitations in the molecular packing options, may deviate slightly

from those calculated for a bulk phase of identical composition and temper-

ature. However, estimated values of t are system-dependent, yet often close

to unity (Lane, 1983). Because the inclusion of additional semi-empirical

terms limits the flexibility of the targeted predictive capability of the model

developed in this work, it is assumed that t = 1 for all systems.

Returning to Eq. (2.24), if an alternate assumption is made about the

partial molar areas, specifically that A ◦
i ̸= Ai, then the expressions previ-

ously leading to Eq. (2.24) result in:

σi = σ◦
i

A ◦
i

Ai

+
1

Ai

RT ln

(
asi
abi

)
. (2.40)

and A ◦
i can be found for a pure droplet of i analogous to Eq. (2.19), with the

only modification being that the interfacial thickness used is that of the pure

component, i.e. set δ = δ◦i . If it is assumed that only a monolayer of molecules

form the surface of a pure-component droplet then δ◦i can be estimated based

on the molecular size of i. With this information, Eq. (2.40) can be employed

with Eq. (2.11) and Eq. (2.39) in the same manner as Eq. (2.24) to form

a system of equations for solving numerically the equilibrium bulk–surface
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partitioning problem.

2.5 Results and discussion

2.5.1 Comparison of measured and predicted surface

tension

In order to determine the validity of the described predictive model, compar-

isons were made to measurements for a selection of atmospherically relevant

binary systems. Figure 2.2A shows the predicted surface tension (utilising

AIOMFAC with Eq. 2.24) as a function of the total particle-phase concentra-

tion of glutaric acid in a binary water–glutaric acid droplet that was allowed

to grow hygroscopically from a starting dry diameter of 5 µm to the point

of cloud droplet activation, corresponding to a diameter of approximately

10 µm. This scenario allowed us to compare predicted surface tensions to the

bulk tensiometry and optical tweezers measurements taken by (Bzdek et al.,

2016). The three curves shown in Fig. 2.2A correspond to three different

values of δ: 0.1 nm, which is the approximate length of a single carbon–

carbon bond; 0.3 nm, which is the approximate length scale of a single water

molecule (the same value was also used as a minimum thickness in models

by Davies et al. (2019) and Ovadnevaite et al. (2017); and 1.0 nm, which

corresponds to the approximate size of a single glutaric acid molecule along

its longest axis.

It is shown that assuming a thinner interfacial thickness value leads to

a surface tension curve which is highly sensitive to the overall concentration

of glutaric acid in the droplet. Analogously, an interfacial thickness that is

larger will require greater changes in the total particle-phase concentration

of an organic species in order to observe a similar decrease in surface tension.

In addition to the binary water–glutaric acid system, Bzdek et al. (2016) also

analyzed a binary water–sodium chloride system of the same size using the

bulk tensiometry and optical tweezers approaches. Shown along with these
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data in Fig. 2.2B are bulk measurements by Ozdemir et al. (2009). While

the surface tension increases with salt concentration in this case, a similar

behavior can be seen in the surface tension vs. concentration curves for the

inorganic electrolyte system, wherein the curve is sensitive to the selection

of δ. However, for the system shown in Fig. 2.2B, the sensitivity of the

modeled surface tension to the value of δ is opposite of that for surface-active

organic species. This is likely due to the fact that electrolytes preferentially

partition into the bulk phase; therefore, a thinner interface will contain a

higher mole fraction of water (at a specific wet diameter) and requires greater

concentrations of electrolytes to increase a droplet’s surface tension.

Additional sensitivity comparisons were performed to determine the ef-

fect of modifying σ◦
i by ±10%. It was found that glutaric acid was more

sensitive to modifications in the value of σ◦
glutaric than NaCl, which was very

weakly sensitive to increases in σ◦
NaCl and somewhat sensitive to reductions

in σ◦
NaCl. Overall, using δ = 0.3 nm leads to surface tension predictions in

better agreement with the measurements shown for large droplets or macro-

scopic solutions. This suggests that a molecular monolayer assumption for

representing the surface phase is a relatively good model, at least for the

systems shown in Figs. 2.2A and 2.2B.
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Figure 2.2: Predicted and measured surface tensions for (A) a binary water–
glutaric acid system and (B) a binary water–sodium chloride system as a
function of solute concentration in water at 298 K. The area shaded in grey
represents the predicted surface tension bounded by the proposed limits for
δ of 0.1 nm and 1.0 nm. The solid black line is the predicted surface tension
for δ = 0.3 nm. Also shown in (C) and (D) are the same systems as (A)
and (B) respectively but with the assumption that Ai ̸= A ◦

i leading to a
modified form of the Butler Equation (Eq. 2.40) and the testing the surface
composition based approach for determining δ.
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Figures 2.2C and 2.2D show the effects of exploring different assumptions

of Eq. (2.24) along with the same measurements from Figs. 2.2A and 2.2B.

The modified Butler equation, which assumes that A ◦
i ̸= Ai (Eq. 2.40

in this work) consistently overestimates the surface tension of the water–

glutaric-acid-system and only agrees with the water–NaCl system at very

low concentrations. Assuming that δ is surface composition-dependent also

leads to poor agreement with experimental data at high concentrations for

the water–glutaric-acid system and better agreement at low concentrations.

For the water–NaCl system, it can be seen that the opposite is true; the

composition-dependent δ leads to good agreement at higher concentrations

than lower concentrations. The combination of Eq. (2.40) and a surface

composition-dependent δ leads to poor agreement across all concentrations

shown for the water–glutaric-acid system and only gives good agreement for

the water–NaCl system at low concentrations.

It is important to note that the sizes of the droplets analyzed in Bzdek

et al. (2016) are large relative to the more numerous but substantially smaller

atmospheric aerosol particles of importance in cloud formation. However,

there is a paucity of surface tension data available for droplets in the sub-

500 nm size range, since it is extremely difficult to measure the surface tension

of atmospherically relevant aerosol particles that are freely suspended while

at sizes near or below the wavelengths of visible light. Recent developments

in atomic force microscopy have allowed for surface tension measurements of

sub-500 nm particles to be taken Lee et al. (2017) directly and are indeed

promising as a source of measurement data at that size scale. In the present

study, such measurements were not analyzed because placing the droplet

on a glass substrate introduces a second interface, the substrate–droplet in-

terface, which may modify the partitioning behavior of different species as

well as affect the geometry of the droplet from spherical to approximately

semi-spherical. At the moment, the framework laid out in this work is only

capable of handling spherical geometries with a single gas–droplet surface;
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the inclusion of interfaces between two condensed phases and the treatment

of non-spherical geometries is the subject of future work.

2.5.2 Bulk phase depletion

While the measured particles associated with the data from Fig. 2.2 are large,

the effects of bulk–phase depletion cannot be neglected entirely. Figures 2.3A,

2.3B, and 2.3C show surface tension as a function of particle size and δ for

binary water–adipic acid systems of particles with dry diameters of 1.0 nm,

10 nm, 100 nm, 1 µm, 10 µm, 100 µm, 1 mm, and 1 cm (ranging over 8

orders of magnitude).

It is shown that even highly dilute particles with dry diameters below

100 µm have different surface tensions at the same total mole fraction of

adipic acid in the condensed phase. If the value of δ decreases, the surface

tension curves for larger dry diameters converge, and bulk phase depletion is

only noticeable for the smallest particles. If δ is increased to be more similar

to the molecular length scale of the solute species (∼ 0.45 nm), there is better

agreement between modeled and measured surface tension values in the larger

sized droplets. Increases in δ also increase the minimum concentration of

solute necessary to decrease the surface tension from that of pure water

for all particle sizes; however, smaller particle sizes are more responsive to

this change than larger ones. A method for determining this dependence is

by taking the concentration of solute (cdσi ) at which the change in surface

tension with each additional molecule of solute added is the greatest; in other

words, the global extrema (minimum for surfactant species and maximum for

tensoionic species) of dσ
dXtotal

i
.

Figure 2.3D shows how Xdσ
i varies as a function of size for the binary

water–adipic acid system. Droplets with initial dry diameters on the order

of 1 µm may still experience mild bulk-depletion effects depending on the

selection of the interfacial thickness value, with larger δ values leading to more

pronounced bulk-phase depletion effects at larger sizes. Moreover, we note

that the value of Xd2σ
i is strongly dependent on δ at larger sizes compared

73



Chapter 2 : Bulk–Surface Partitioning

Figure 2.3: Predicted surface tensions of a binary water–adipic acid system
across 8 orders of magnitude in dry particle diameter (see legend in panel C)
for interfacial thickness values of (A) 0.1 nm, (B) 0.3 nm, and (C) 0.5 nm.
(D) The specific concentrations of adipic acid for which the surface tension
is the most sensitive to changes in the overall mole fraction of adipic acid
as a function of dry diameter and δ. Also shown in (A), (B), and (C) are
measurements taken by Riipinen et al. (2007) and Booth et al. (2009).

to smaller ones, with a doubling of the interfacial thickness from 0.15 nm to

0.3 nm leading to approximately 3 orders of magnitude increase in the value

of Xdσ
i for particles with dry diameters larger than 1 µm. This same change

in δ for particles with dry sizes below 100 nm leads to differences of about 2

orders of magnitude or less. Thus, we demonstrate that bulk-phase depletion

may modify surface tension as a function of particle composition on particles

up to the micrometer size scale.

The bulk–surface concentration ratio
xsurf
i

xbulk
i

is independent of the volume

ratio and represents the physicochemical partitioning coefficient. Figure 2.4
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shows these mole fraction ratios for each species in a ternary water–glutaric-

acid–sodium-chloride system as a function of equilibrium saturation ratio

(S). Monodisperse particles consisting of a 1:1 molar ratio of glutaric acid

to sodium chloride, with dry diameter values ranging from 10 nm to 500 nm,

were allowed to grow hygroscopically until the point of cloud droplet activa-

tion (while maintaining the same solute masses, i.e. no gas–particle parti-

tioning of glutaric acid considered). In this test, a forced 1-phase calculation

was performed (only allowing a single bulk liquid phase to exist), which pre-

vented the particles from undergoing LLPS at compositions where that would

be favorable. The value of δ was held constant at 0.3 nm and Eq. (2.24) was

employed.

It can be seen that glutaric acid, while only a weakly surface-active com-

pound compared to lower-polarity organics, is nevertheless strongly enriched

in the surface of the particle across all particle sizes, especially at higher

values of S. The predicted surface tension for each particle is also shown.

The difference in σ of particles is largest at both very low and very high

values of S with all of the σ values being most similar for saturation ratios

between 0.675 and 0.725. However, particles with diameters below 25 nm ex-

hibit greater deviations from the behavior of their larger counterparts. These

smallest particles both achieve a slightly lower minimum surface tension and

slightly higher surface tension values under low aw conditions. This may be

driven by the fact that under these conditions, more tensoionic species must

be present in the surface due to limited amounts of both water and organic

species. However, this effect is still quite weak even at such small particle

sizes.

If Eq. (2.40) is employed for bulk–surface equilibrium predictions, the

δ◦i values for water, glutaric acid, and sodium chloride are calculated based

on their molecular sizes. This leads to modified bulk–surface partitioning

behavior as shown in Figs. 2.5A and 2.5B. The assumption that A ◦
i ̸= Ai

effectively modifies the value of σ◦
i by multiplying it by the ratio

A ◦
i

Ai
. In
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Figure 2.4: Predicted bulk–surface partitioning coefficient (
xsurf
i

xbulk
i

) of (A) wa-

ter, (B) glutaric acid, and (D) sodium chloride present in a forced single-
bulk-phase particle at T = 298 K. A molar dry solute ratio of 1:1 was used
in all cases. (E) Predicted effective surface tension for several particle dry
diameters as indicated by color. Right column (composition bar graphs):
shown are the mole fractions of each species in the surface and the bulk
phase (α) for a particle of 25 nm dry diameter.
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the macroscopic case, where r ≫ δ, then limr→∞
A ◦

i

Ai
=

δ◦i
δ
, showing again an

important effect of the calculated or assumed value of δ. In the case of species

for which δ◦i < δ, a stronger affinity for the surface results, while for δ◦i > δ, it

is expected that species i would have a weaker affinity for the surface phase.

Notably, the feedbacks on the partitioning behavior of one species can still

modify the bulk–surface partitioning of other species since modifications to

the composition of the surface phase will modify the activity coefficients for

all species in the phase.

In Fig. 2.5, it can be seen that the assumption that δ = δ◦water leads to de-

creased partitioning of water as both glutaric acid and sodium chloride show

an increased affinity for the surface phase. This also modifies the effective

solution surface tension. In the case where δ = δ◦water, σ is consistently lower

than the values predicted by Eq. (2.24). In the case where δ lies between all

of the values of δ◦i , σ predicted by Eq. (2.40) is lower than the value predicted

by Eq. (2.24) when the solution is highly concentrated in both organic and

inorganic solutes (low aw) and higher than the Eq. (2.24) in more dilute cases

(high aw). These findings suggest that it is best to assume that A ◦
i ≈ Ai for

most systems.

2.5.3 Köhler curves

Numerous different test systems have been used in laboratory experiments

and modeling studies to better understand the role of bulk–surface parti-

tioning on the behavior of CCN both before and after activation. One such

system that will now be considered has been studied in experiments and the-

ory by Ruehl et al. (2016). They generated 150 nm (dry diameter) mixed

suberic acid–ammonium sulfate particles corresponding to a spherical 50 nm

diameter ammonium sulfate core coated with a 50 nm layer of suberic acid.

Figure 2.6A shows the Köhler curve calculated via Eq. (2.1) with the assump-

tion that aw in that equation is determined from the bulk phase composition

of the particle. Figure 2.6B also shows a particle with the same organic vol-

ume fraction as Figure 2.6A, but of a water-free diameter of 40 nm instead
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Figure 2.5: The effect of implementing a modified form of the Butler equation
(Eq. 2.40) with the assumption that A ◦

i ̸= Ai for a water–glutaric acid–
sodium chloride system with a 1:1 water-free molar ratio of glutaric acid

to sodium chloride on (A) the bulk–surface partitioning coefficient,
xsurf
i

xbulk
i

,

and (B) predicted surface tension, σ. All calculations were performed at a
temperature of 298 K.
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of 150 nm. Different interfacial thicknesses (δ) are shown including the val-

ues determined by the compressed film model used in (Ruehl et al., 2016).

The resulting behavior of the Köhler curve is highly sensitive to the value

of δ; particularly as δ approaches the lower limit of physically realistic val-

ues. The shape of these Köhler curves are determined by the point at which

the surface tension of the particle becomes similar to that of pure suberic

acid relative to a given saturation ratio. In systems with δ values that are

smaller the surface remains is enriched in suberic acid at higher S values

than systems with larger δ values. This lowered surface tension at high S

values may lead to modifications of the shape of the Köhler curve, including

the branch at sizes greater than the critical wet diameter for CCN activation.

Such behavior can be seen in the blue curve of Fig. 2.6A .

Also shown in panels A and B of Fig. 2.6 are AIOMFAC-based predictive

treatments of bulk–surface partitioning and CCN activation for such systems,

as discussed in prior work (Ovadnevaite et al., 2017; Davies et al., 2019).

These prior treatments both assume a surface with adjustable depth, con-

sideration of LLPS and, in the presence or absence of bulk LLPS at higher

aw values, the calculation of an effective surface tension using a volume-

fraction-weighted mixing rule of the pure-component surface tension values

based on the bulk liquid phase compositions (and area fractions in case of

LLPS) in contact with the droplet surface. In this case, both simulations

used δ = 0.3 nm and the same pure-component surface tension values as

used in the more detailed approach developed in this work. Briefly, these are

two thermodynamic model variants for the computation of droplet surface

tension as a function of composition, size, and temperature, introduced by

(Ovadnevaite et al., 2017) (see their supplementary information) and also

discussed and applied by (Davies et al., 2019).

AIOMFAC-Equil is a full “bulk” equilibrium model, including gas–particle

partitioning and liquid–liquid phase separation (LLPS), but without con-

sideration of bulk–surface partitioning. In the context of surface tension
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predictions, a procedure for the post-processing of model outputs has been

introduced by (Ovadnevaite et al., 2017), which assumes a core–shell droplet

morphology in the case of LLPS. The AIOMFAC-Equil model treats the

droplet surface tension as the surface-area-fraction-weighted average of the

surface tensions of the present liquid phases (when no complete shell is formed

by an organic-rich phase). The initial surface tensions of those phases are

computed based on a volume-fraction-weighted mean of the pure component

surface tensions.

The “AIOMFAC-CLLPS with organic film” model variant assumes com-

plete LLPS among organics and inorganics (except for water) at all RH lev-

els. It further assumes that all organic species in the droplet are present

in a water-free layer at the surface of the droplet, while all electrolytes are

present in an (aqueous) core phase of the droplet. The surface tension of

the droplet in this model is equal to the surface tension of the organic film

(phase), assuming complete coverage by the organic phase, or the surface-

area-fraction-weighted average of the organic phase and the electrolyte-rich

aqueous phase, should there be insufficient organic material to completely

cover the droplet (Davies et al., 2019). The AIOMFAC-Equil. prediction

leads to substantially higher critical supersaturations than observed, because

this model variant ignores bulk–surface partitioning in the case of a single

bulk phase present at higher RH, as in the system of Fig. 2.6. In contrast, the

AIOMFAC-CLLPS variant with an imposed organic film assumption agrees

reasonably well with the measured critical supersaturations. Indeed, if δ is

assumed to be 0.3 nm for both prior AIOMFAC-based treatments (in those

cases setting the minimum thickness of the surface phase), then the calcu-

lation by the AIOMFAC-CLLPS variant with an organic film represents the

measured data better than the approach laid out in this work. However, if

the δ value is lowered, then the bulk–surface equilibrium approach from this

study shows excellent agreement with the measured peak supersaturation

and, importantly, does not rely on the same simplifying assumptions as the
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organic-film-based calculation.

Figure 2.6B demonstrates the effect of particle size (dry diameter of

40 nm) and bulk–surface partitioning on CCN activation, since the devia-

tions from classical Köhler curve behavior (using a fixed surface tension, that

of pure water) are more pronounced in both the δ = 0.3 nm and δ = 0.15 nm

cases. In the example of Fig. 2.6, the AIOMFAC-Equil. prediction is rep-

resentative of a classical Köhler curve, since that model does not predict

LLPS in the high-aw range close to the CCN activation point for this sys-

tem. Clearly, in the case of ultrafine particles, a more detailed treatment of

bulk–surface partitioning and associated surface tension evolution leads to

notable deviations from classical behavior. Indeed a more detailed and ther-

modynamically rigorous treatment of bulk–surface partitioning leads to bet-

ter agreement of the activation conditions in comparison to laboratory studies

of water–suberic-acid–ammonium-sulfate particles than previous AIOMFAC-

based treatments.
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Figure 2.6: Köhler curves for ternary water-suberic acid-ammonium sulfate
particles at 298 K at an organic volume fraction of 0.88 and with a water-
free diameter of (A) 150 nm (B) 40 nm. Also shown in (A) are the measured
SScrit and the critical wet diameter measured by Ruehl et al. (2016). (C)
and (D) show the calculated Köhler curves if the assumption is made that
A ◦

i ̸= Ai leading to the modified Butler equation (Eq. (2.40)), as well as the
effect of modifying δ as a function of overall particle composition. (E) and
(F) show the calculated σ values for the systems shown in (C) and (D).
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Table 2.1: Critical wet diameter and supersaturations for the Köhler curves
shown in Figure 2.6.

Ddry = 150 nm Ddry = 40 nm
Model type δ [nm] A ◦

i Dcrit

[nm]
SScrit

[%]
Dcrit

[nm]
SScrit

[%]

Eq. (2.24) δ = 0.3 nm A ◦
i = Ai 1127.0 0.13 216.8 0.84

Eq. (2.24) δ = 0.15 nm A ◦
i = Ai 1153.4 0.09 296.3 0.64

Eq. (2.40) δ = f(xsurf
i , ..., xsurf

k ) A ◦
i ̸= Ai 1505.8 0.12 208.8 0.85

Eq. (2.24) δ = f(xsurf
i , ..., xsurf

k ) A ◦
i = Ai 1118.3 0.14 212.29 0.81

Eq. (2.40) δ = 0.3 nm A ◦
i ̸= Ai 1540.4 0.11 190.9 0.89

AIOMFAC-Equil δ = 0.3 nm – 929.2 0.15 124.1 1.1
AIOMFAC-
CLLPS, organic
film mode

δ = 0.3 nm – 1713.0 0.09 108.1 0.62

To further demonstrate the predictive power of the model developed in

this work, an isoprene SOA system was considered as well. This system

consists of water and 21 semivolatile isoprene photo-oxidation products, as

proposed for a simplified isoprene-derived SOA representation in previous

modeling work (Rastak et al., 2017; Gervasi et al., 2020). Because of the

higher volatility of some of the isoprene SOA species, the effects of organic

co-condensation (or more generally gas–particle partitioning) during hygro-

scopic growth should also be analyzed to better understand atmospheric im-

plications of such aerosol systems. Concentrations simulated by the Master

Chemical Mechanism (Jenkin et al., 2015, 1997, 2012) were used as inputs

for the “co-condensation enabed” case (Rastak et al., 2017) (see table A.1 in

Appendix B). A distinct case, in which the organic composition of the parti-

cle was fixed, termed the “co-condensation disabled” case, was also used for

comparison. In that case, the equilibrium composition of the particle was

taken from a bulk equilibrium gas–particle partitioning calculation at 0.1%

RH and then fixed for the organics (essentially rendering them nonvolatile),

such that only water could partition between the gas and particle phases

in subsequent computations. We note that for this isoprene SOA system,

the values of the various σ◦
i have not been measured. We therefore assumed
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that σ◦
i = 35 mJm−2 for all species, which is in line with the assumptions

made in Davies et al. (2019); Ovadnevaite et al. (2017) (see figure A.7 in Ap-

pendix B for an analysis of the framework sensitivity to σ◦
i values). Based on

experiments as well as AIOMFAC LLPS equilibrium computations for bulk

solutions, this system is not expected to undergo LLPS at any RH (Rastak

et al., 2017).

Figure 2.7A shows the Köhler curve for a particle of 25 nm in dry diameter

with co-condensation enabled and disabled. Figure 2.7B shows the contri-

bution of the Raoult effect for both systems shown in Fig. 2.7A. Likewise

Fig. 2.7C shows the contribution of the Kelvin effect for the same system.

The inclusion of co-condensation of organic species leads to substantial re-

ductions in Scrit for this system through modifications to both the Raoult

effect and the Kelvin effect.

2.6 Theoretical and atmospheric implications

2.6.1 Theoretical implications

One source of uncertainty in the approaches to bulk–surface partitioning

described in Sect. 2.3 is determining the effective partial molar area of a

given species, Ai, in a mixed surface phase and how that value may differ from

the molar area of pure i, A ◦
i . A common assumption is that the apparent

molar area can be calculated from the molar volume (Vi) of a species as

Ai = V
2
3

i and that the molar area of a species in solution is the same as its

pure-component value Ai ≈ A ◦
i . Table 2.2 lists the partial molar areas of

numerous organic species calculated using Eq. (2.19) for particles of three

distinct diameters and δ = 0.15 nm or δ = 1.0 nm. Those diameter choices

serve to demonstrate a size dependence in this parameter when calculated

via Eq. (2.19). Also shown are the size-independent partial molar areas when

computed under the Ai = n
1
3
AV

2
3

b,i assumption or with the empirical approach
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Figure 2.7: (A) The effect of including co-condensation of SVOC species for
an aqueous 21-component system of isoprene-derived SOA (Rastak et al.,
2017; Gervasi et al., 2020) with Ddry = 23 nm. (B) The bulk-phase water
activity, corresponding to the contribution of the Raoult effect to the Köhler
curves shown in (A). Panel (C) shows the Kelvin effect term’s contribution
to the curves in (A). For the co-condensation-disabled case, the particle’s
water-free composition was taken at RH = 0.1% and then only water was
allowed to partition to and from particles with this dry composition. For a
detailed description of the system components, see Table A.1 in Appendix A.
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developed by Goldsack and White (1983):

Ai = 1.021× 108 × V
6
15

c,i V
4
15

b,i , (2.41)

where Vc,i and Vb,i are the critical and bulk molar volumes. It should be

noted that the scaling factor in Eq. (2.41) requires that the values of Vc,i and

Vb,i are input in units of cm3mol−1; the equation then returns Ai in units of

cm2mol−1. In the mathematically sound framework developed in this work,

the values of Ai are weak functions of particle radius rp; however, they are

stronger functions of the value of δ, with smaller δ values leading to smaller

Ai values.

Another important assumption made regarding the treatment of Ai, is

the assumption that the density of i in the surface phase (ρsi ) is equivalent

to that of the pure component value of a (bulk) liquid state. Currently, all

AIOMFAC-based bulk solution calculations make the assumption that the V

and related ρi of a species do not change as a function of solution composition

and that the total volume of a phase is a linearly additive function of the

individual component molar volumes times their molar abundance. Other

studies have noted that ρsi may differ from ρbi and that lower values of ρsi may

lead to better agreement between surface tension models and experimental

data (Defay et al., 1966).

It should also be noted that deviations in activity coefficients are possible

when comparing surface versus bulk phases of the same molar composition.

As mentioned in Sect. 2.4.3, the introduction of a single exponential scal-

ing factor (t) for all component activity coefficients in the surface phase has

been used in the past as a fit parameter in order for binary solution sur-

face tension curves to better match experimental data without violating the

Gibbs–Duhem relation. This t value may be thought of as treating the sur-

face phase nonideality as taking place at a different temperature than that

of the bulk phase, since RT ln [(γs
i )

t] = R(tT ) ln [(γs
i )]. Therefore, one may

argue that the value of t should be constrained such that the temperature
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change remains physically realistic. Thus, a value of t = 25 is physically

unrealistic for a system at 298 K which shows substantial nonideal mixing,

since it would mean that the surface phase nonideality would be behaving

as if it were at 7, 450 K. The inclusion of t also introduces an additional fit

parameter that is likely unique for each system, thus limiting the predictive

power of the model introduced in this work. Use of exponent t in combination

with an unconstrained fit leads to better agreement with points below cloud

droplet activation for some of the Köhler curves presented in Ruehl et al.

(2016), such as a ternary water–succinic–acid–ammonium-sulfate, water–

pimelic-acid-ammonium-sulfate, and water–glutaric-acid-ammonium-sulfate

particles. However, those fitted t values must be combined with rather ex-

treme values of δ and σorg for good agreement with the experimental data

at both the CCN activation point and at points below activation (see Ap-

pendix B Figs. A.3–A.5 for examples).

The framework laid out in this work is incapable of simultaneously match-

ing the growth data points and critical supersaturation point reported by

Ruehl et al. (2016) for water–malonic-acid-ammonium-sulfate particles (see

Appendix B Figs. A.3). Further explorations of variations in the activity

coefficients of species in the surface phase are warranted to better under-

stand how these activity coefficients may differ in value from those of a bulk

solution with the same molar composition.

The explicit treatment of the dissociation of organic acids under dilute

aqueous conditions is not considered in regards to its role in bulk–surface

partitioning in this study. Under highly dilute conditions, such as those

found in activating CCN, many dicarboxylic acids may partially or fully

dissociate. It is possible that consideration of such acid dissociation may

lead to modifications of both the surface enrichment and bulk depletion of

different species as well as enhancements of the solute effect via an increase in

dissolved ionic species. Explicit treatments of organic acid dissociation and

resulting interactions among various additional ions in an AIOMFAC-based
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model framework are thus a direction to be explored in future work.

An alternative approach to using the framework laid out in this work is

to use other statistical mechanics models to predict the surface tension as

a function of bulk solution composition. A simplified statistical mechanics-

based approach for surface tension predictions was developed by Wexler and

Dutcher (2013), which relies on a single physically constrained fitted parame-

ter, r, which represents the average number of water molecules displaced by a

solute molecule at the surface. As shown in Figure A.8, this model had a root

mean square error of 2.90 mJm−2 in comparison to measurements of surface

tension for a (macroscopic) binary water–ethanol system (Ernst et al., 1935).

In comparison, the model developed in this work has a root mean square er-

ror of 2.930 mJm−2, when using our default assumption that the thickness

of the interface is δ = 0.3 nm. The fitted value of r as reported by Wexler

and Dutcher (2013) is 3.00. If the number of water molecules displaced by

an ethanol molecule at the surface of a droplet is assumed to be determined

based on the respective values of Awater and Aethanol, then the number of

water molecules displaced by an ethanol molecule in the surface phase is

3.02. Despite both models being in good agreement in the macroscopic case,

it is important to note that their statistical mechanical model does not di-

rectly account for bulk-phase depletion in volume-constrained systems. For

a comparison of various other frameworks for estimating the surface tension

of liquid solutions and/or atmospheric aerosol particles, we refer the reader

to the recent work by Kleinheins et al. (2023) and Vepsäläinen et al. (2022,

2023).

2.6.2 Atmospheric implications

The effect of bulk–surface partitioning on Köhler curve shapes is evident

for submicron-sized aerosol particles. Even the use of relatively “thick”, yet

reasonable, δ values (> 0.5 nm) still exhibit substantial suppression of the

critical supersaturation and modifications to the shape of the Köhler curve

for the particle size range prior to reaching the CCN activation point under
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growth conditions. The inclusion of the thermodynamic treatment of equi-

librium bulk–surface partitioning outlined in this study leads to simulated

droplets that will grow to larger diameters at lower relative humidities than

classical Köhler theory would otherwise suggest. If the value of δ is lowered,

Köhler curves may exhibit a second local maximum as the CCN surface ten-

sion approaches that of pure water after the point of droplet activation. This

behavior suggests that particles with very thin surface phases are more likely

to activate into cloud droplets (for a given dry diameter). Clouds which form

from rising air parcels populated by surfactant-containing particles may ex-

hibit substantially higher cloud droplet number concentrations than those

forming from air parcels of comparable particle size distributions, but lack

in aerosol particles of lowered (yet evolving) surface tensions.

Figure 2.8A shows the critical supersaturation for CCN activation of par-

ticles with the same condensed phase composition as those of Fig. 2.6, with

Ddry values ranging from 25 nm to 130 nm. Similarly, Fig. 2.8B shows parti-

cles that grow under the same input parameters as used for Fig. 2.7, with dry

sizes from 25 nm to 130 nm. The colored horizontal bands shown in Fig. 2.8

correspond to the typical supersaturation values experienced by aerosol par-

ticles in marine (blue), clean continental (green), background (orange), and

urban polluted (brown) cloud base conditions, according to the classification

by Pinsky et al. (2014).

If the AIOMFAC-Equil. model is used to determine the CCN acti-

vation conditions, particles with Ddry between approximately 60 nm and

75 nm would not be predicted to activate in continental clouds for both

systems shown. For the isoprene-derived SOA system, in particular, the

inclusion of both equilibrium co-condensation of SVOCs and bulk–surface

partitioning leads to larger modifications in predicted Scrit, especially for

Ddry > 50 nm. This can have important implications for both the radiative

forcing effects of resulting clouds and for the precipitation formation micro-

physics in these clouds, since lowering the critical dry diameter for typical
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Figure 2.8: Critical supersaturations vs. dry diameter as predicted by the
AIOMFAC-Equil. model, the AIOMFAC-CLLPS with organic film model,
and a model from this work (Eq. 2.24) for (A) water–suberic acid–ammonium
sulfate particles and (B) water–isoprene-SOA particles. The horizontal
shaded bands represent distinct regimes of maximum supersaturations en-
countered by aerosols in either marine (blue), clean continental (green), back-
ground (orange-yellow), or urban polluted (brown) conditions at cloud base,
as reported by Pinsky et al. (2014).

peak supersaturation experienced at cloud base conditions may lead to sub-

stantially increased cloud droplet number concentrations (depending on the

present aerosol number–size distribution) (Ovadnevaite et al., 2017).

It is also important to note that the new framework introduced in this

study to date only considers impacts of organic components on CCN activa-

tion, yet does not consider the role that bulk–surface partitioning may play

(if any) for ice nucleating particles in cirrus clouds or mixed-phase clouds.

Likewise, the interplay of bulk–surface partitioning and co-condensation with

liquid–liquid equilibria is not yet considered in a fully coupled manner. For

example, in the case of phase separation, such interactions may influence

particle morphology and the RH range within which LLPS occurs. Con-

sequently, coupled size and LLPS effects may also change the interactions

between aerosol particles and light.
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2.7 Conclusion

The surface area to volume ratio of atmospheric aerosol particles increases

substantially as particle diameter decreases in the fine and ultrafine size

ranges. Any unique properties of the exterior surface of an aerosol par-

ticle must be accounted for in order to accurately model the behavior of

the smallest (sub-100 nm-sized) particles. This study builds on the finite-

depth Guggenheim surface phase treatment in combination with variants of

the Butler equation and AIOMFAC-based vapor–liquid equilibrium compu-

tations to create a thermodynamically rigorous treatment of bulk–surface

partitioning in spherical aerosol particles with diameters as low as 10 nm.

This model relies on one adjustable, loosely constrained parameter, the sur-

face phase thickness δ, and applies consistently to any number of species in

multicomponent organic–inorganic aerosol systems. The approach is capable

of representing experimentally measured surface tension data for atmospher-

ically relevant systems across a range of relative humidities. The inclusion of

a thermodynamically sound treatment of interfacial regions leads to modified

Köhler curve predictions that are in agreement with measured data, including

for cases for which simpler approaches with fixed surface tension fail. For par-

ticles with diameters larger than ∼ 100 nm, the simpler AIOMFAC-CLLPS

model variant with an organic film assumption agrees reasonably well with

the more thermodynamically sound model in terms of predicted SScrit values

and may serve as a good approximation when computational efficiency is a

key concern. For smaller particles, where bulk phase depletion may play a

larger role, larger disagreement arises between the AIOMFAC-CLLPS model

with organic film and the approaches laid out in this work.

While measurements of physicochemical properties of particles, such as

surface tension and chemical composition, in the size range below 1 µm and

especially below 100 nm are rare or nonexistent, there have been numerous

measurements made on larger particles. Models trained on data from bulk

measurements and large microscopic droplets have been used to study sub-
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100 nm particles. Frequently, those measurements were done on droplets

exhibiting a single liquid (bulk) phase and spherical shape when freely sus-

pended, but phase separation and associated phase boundaries can affect

the particle shape. Indeed, many systems have been modeled or observed

to adopt more complex, non-spherical morphologies, in some cases involving

multiple liquid phases (Huang et al., 2021; Kwamena et al., 2010; Reid et al.,

2011). The basic thermodynamic theory introduced in Sect. 2.4 is generally

applicable; however, we show that when applied to finite-volume droplets, ge-

ometric considerations introduce shape and mass-balance constraints which

impact the bulk–surface partitioning, particularly in submicron-sized parti-

cles. In this study, we have outlined the detailed expressions for spherical

single-bulk-phase particles, which were implemented in our AIOMFAC-based

bulk–surface partitioning model. To date, this model does not account for

non-spherical shape or feedback effects from energy stored in liquid–liquid

interfaces. However, our model provides a basis for future extensions to

account for size-dependent feedback between droplet size, liquid–liquid in-

terfaces, non-sphericity, and size effects on LLPS onset. Furthermore, the

use of Eq. (2.24) or Eq. (2.40) for gas–liquid interfaces requires accurate

measurements or predictions of a reference state values of σ, usually pure-

component surface tension, for many atmospherically relevant species. These

data do not exist or, in the case of inorganic electrolytes, are disputed as to

what the correct value should be. This may limit the systems for which our

approach can be used – or requires assumptions to be made. Therefore, this

study highlights the need for, and benefit of, reliable data for pure-component

surface tension. A key goal for applications of thermodynamic multiphase

aerosol models in atmospheric chemistry is achieving predictive capability,

unrestricted by system- and size-dependent fit parameters. The model in-

troduced here marks a major step toward this goal. It enables us to better

quantify the role of interfacial properties in environmental systems on the

nanometer and micrometer size scales. Models like those introduced in this
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study can serve as a bridge between the measurable particle size range and

the presently experimentally inaccessible ultrafine size range of interest for

cloud formation.
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3.1 Preface

In chapter 2, it was found that partitioning between a 3-D surface phase and

the underlying bulk phase led to substantial reductions in the surface tension

and enrichment of tensoionic species under high relative humidity conditions.

Under such conditions, many aerosol particles have a homogeneously mixed

bulk phase. The following chapter discusses the role of liquid-liquid phase

separation in aerosol particles under lower relative humidities and compares

different models for the treatment of interfacial tension between two liquid

phases. The aim of this chapter is to explore the size at which the energetic

contributions from surface and interfacial tensions become so large that a

liquid-liquid phase-separated particle with a surface phase is no longer favor-

able in comparison to a particle with a single well-mixed bulk phase and a

surface phase. It was reproduced with modifications from Schmedding and

Zuend (2024).
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3.2 Abstract

Atmospheric aerosol particles span orders of magnitude in size. In ultrafine

particles, the energetic contributions of surfaces and interfaces to the Gibbs

energy become significant and increase in importance as particle diameter

decreases. For these particles, the thermodynamic equilibrium state depends

on size, composition, and temperature. Various aerosol systems have been

observed to undergo liquid–liquid phase separation (LLPS), impacting equi-

librium gas–particle partitioning, modifying physicochemical properties of

the particle phases, and influencing cloud droplet activation. Numerous lab-

oratory experiments have characterized the onset relative humidity of LLPS

in larger aerosol particles and macroscopic bulk systems. However, in suf-

ficiently small particles, the interfacial tension between two liquid phases

constitutes an energetic barrier that may prevent the formation of an addi-

tional liquid phase. Determining said small-size limit is a key question.

We introduce a predictive droplet model based on the Aerosol Inorganic–

Organic Mixtures Functional groups Activity Coefficients model. This model

enables size-dependent computations of surface and interfacial tension effects

on bulk–surface partitioning within phase-separated and single-phase parti-

cles. We evaluate four approaches for computing interfacial tension in mul-

ticomponent droplets, including a new method introduced in this work. Of

the approaches tested, Antonov’s rule best matches observed liquid–liquid

interfacial tensions in highly immiscible mixtures, while a modified Butler

equation fits well in more miscible systems. We find that two approaches

substantially lower the onset relative humidity of LLPS for the studied sys-

tems.
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3.3 Introduction

Atmospheric aerosols and their interactions with clouds and radiation are

a major source of uncertainty in global climate models (Intergovernmental

Panel on Climate, 2014). The condensed particle phase component of an

aerosol, henceforth referred to as aerosol particles or “aerosols” varies in

composition regionally and over time (Jimenez et al., 2009). Organic com-

pounds contribute a substantial mass fraction to the total condensed material

within ambient aerosols. Organic-rich particles can be emitted directly (pri-

mary organic aerosols) or formed from gas-phase reactions involving volatile

organic compounds (VOCs). Aerosols which contain substantial amounts

of secondary organic compounds are often referred to as secondary organic

aerosols (SOA). For complete lists of abbreviations, symbols, and their mean-

ings, please refer to tables B.1 and B.2 in the supplementary information.

SOA mixed with inorganic species such as dissolved aqueous electrolytes

form the majority of fine-mode aerosols in many regions of the world (Zhang

et al., 2007). Therefore, understanding the properties of aerosol particles is

important for better constraints on global air quality and climate models and

related future climate projections.

The effects of a population of aerosol particles on weather and climate

depend on the collective properties of the particles. Two properties which

have been the focus of numerous studies are the number of condensed phases

present in an aerosol particle and the morphology of the particle, whether

said particle is of spherical or non-spherical shape, or consists of a combi-

nation of smaller three-dimensional structures (Kucinski et al., 2019; Ohno

et al., 2023). Liquid–liquid phase separation (LLPS) has been observed in nu-

merous laboratory-generated and atmospheric aerosols, with many particles

of varying compositions splitting into two distinct phases in contact with one

another (Marcolli and Krieger, 2006; You et al., 2012; Ciobanu et al., 2009;

Bertram et al., 2011; Freedman, 2017). More recently, the presence of three

liquid phases within single aerosol particles has been observed in laboratory
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mimics of urban aerosols (Huang et al., 2021; Kucinski et al., 2019). The

unique composition of each liquid phase present in a particle determines a

range of the physicochemical properties of those phases and/or a particle

overall. These properties include the hygroscopicity and related equilibrium

water content, the surface tension, viscosity, acidity, and ionic strength, all of

which may vary as a function of environmental (thermodynamic) conditions

and phase-specific composition Lilek and Zuend (2022); Gervasi et al. (2020);

Schmedding and Zuend (2023); Kleinheins et al. (2023). Organic-rich phases

may exhibit atmospherically relevant physical properties similar to that of an

aqueous electrolyte-containing phase or properties which are quite different

than those of the aqueous ion-rich phase (Li et al., 2021; Chan et al., 2006).

These properties may affect the growth and aging of aerosol particles by lim-

iting the reactive uptake of species such as isoprene-derived epoxydiols, or

N2O5 (Gaston et al., 2014; Schmedding et al., 2020). Aerosol–cloud interac-

tions can also be affected by the presence of liquid–liquid phase separation

in aerosol particles, especially so if LLPS persists to high relative humidi-

ties (RH) (Ovadnevaite et al., 2017; Malek et al., 2023). The reduction in

droplet surface tension typically caused by an enrichment of organics at the

gas–particle surface and the coupled simultaneous modification to the bulk

phase composition due to bulk–surface partitioning, have competing effects

on the water vapor saturation ratio and minimum dry particle size necessary

for cloud droplet activation. This can ultimately lead to a substantial shift

in the critical saturation ratio and diameter necessary for the activation of

aerosol particles into cloud droplets (Ruehl et al., 2016; Ovadnevaite et al.,

2017; Davies et al., 2019; Schmedding and Zuend, 2023).

Beyond changes to the physicochemical properties of aerosol particles

stemming from the formation of distinct condensed phases within a parti-

cle, the three-dimensional (3-D) morphology of a particle may be modified.

Homogeneously mixed particles assume a spherical shape under equilibrium

conditions due to the impact of surface tension. In the case of a phase-
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separated particle, deviations from sphericity are possible (Kwamena et al.,

2010; Gorkowski et al., 2020). Some LLPS particles still form an overall

spherical structure with an organic-rich shell (phase β) covering an inorganic-

rich core (phase α). Other, more complex structures are possible, such as

a partially engulfed morphology, wherein the particle is no longer radially

symmetric nor perfectly spherical. In a partially engulfed particle, phase

β does not spread completely over phase α and leaves a portion of phase

α exposed (Kwamena et al., 2010; Reid et al., 2011; Ciobanu et al., 2009;

Song et al., 2012, 2013; Shiraiwa et al., 2013). Such particle geometries inter-

act with radiation differently than their core–shell counterparts (Lang-Yona

et al., 2010).

It has also been observed that LLPS particles composed of 3-methylglutaric

acid and ammonium sulfate, which have a core–shell morphology at higher

RH, form partially engulfed particles at lower RH (Lam et al., 2021). Should

additional condensed phases be present beyond the simplest two-phase case,

various combinations of spherical shells and partially engulfing phases are

possible (Huang et al., 2021), leading to geometric structures which may be

highly complex. Under equilibrium conditions, the sequence of these phases

in terms of the innermost to outermost phase of the particle is determined

by the configuration which minimizes the overall Gibbs energy of the par-

ticle. Usually, this results in arrangements that favor placing the phases

with higher hypothetical gas–liquid surface tensions closer to the center of

the particle, while those with lower surface tensions are closer to or at the

gas–particle boundary.

Analogous to the surface between a gas phase and a condensed phase,

the interface between two condensed phases, particularly two liquid phases,

might experience a similar phenomenon with respect to the enrichment and

depletion of different compounds (Hua et al., 2016). Note that hereafter in

this article, “surface” refers to a gas–liquid phase boundary and “interface”

refers to the boundary between two condensed (liquid) phases. There have
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been several attempts to quantify the relative contribution of the liquid–

liquid (LL) interface between two condensed phases to the overall energy of

a particle and whether bulk phase depletion plays a role at the LL interface.

Until recently, it has been assumed that the energetic contributions from LL

interfacial tension in typical aerosol particles are negligible for particles with

diameters larger than approximately 100 nm, for which the Kelvin effect is

also relatively minor (Russell and Ming, 2002; Zuend et al., 2010). Despite

this, recent studies have found that the contribution of a LL interface to the

Gibbs energy of a particle may have a small but not insignificant effect on

the RH at which the particle will undergo LLPS upon dehydration (Ohno

et al., 2023).

In order to better understand the role of interfacial tension and its inter-

action with phase separation and particle morphologies, predictive models of

interfacial tension and associated phase composition changes are necessary.

Different approaches have been considered for the prediction of liquid–liquid

interfacial tension; a brief overview is presented in the following, with addi-

tional theory and methods discussed in Sect. 3.4.

The simplest approximation for the interfacial tension between two phases

α and β, σαβ, is by taking the absolute difference of the hypothetical gas–

liquid surface tensions of the two phases (σα and σβ) when each is considered

in isolation,

σαβ =
∣∣σα − σβ

∣∣ . (3.1)

Equation (3.1) is known as Antonov’s rule (Antonov, 1907). While Eq. (3.1)

may be a good first-order approximation of the interfacial tension for some

systems, it is an empirical estimation method and not thermodynamically

rigorous (Makkonen and Kurkela, 2018; Winter, 1995). A distinct approach

for determining the interfacial tension between two liquid phases was pro-

posed by Girifalco and Good (1957):

σαβ = σα + σβ − 2ϕ
√
σασβ, (3.2)
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where ϕ is a system-dependent interaction/correction parameter. It has been

shown that ϕ may be constrained by the following inequality:

ϕ ≥
(
1− σαβ

σα

) 1
2

. (3.3)

The value of ϕ can be defined in the case of binary systems with molecules

1 and 2 of approximately equal size and spherical shape in a hexagonal ar-

rangement as

ϕ =
d1,1d2,2
d21,2

, (3.4)

where d is the equilibrium distance between the two molecules denoted in

the subscript (Girifalco and Good, 1957). In the case of binary systems with

molecules of unequal sizes or shapes, the value of ϕ could be approximated

by the following equation:

ϕ =
4V 1/3

1 V 1/3
2(

V 1/3
1 + V 1/3

2

)2 . (3.5)

where V is the molar volume of 1 or 2 respectively (Girifalco and Good,

1957). Qualitatively, ϕ is described as being lower in systems where the the

primary molecular interactions are different, for example dispersion forces in

phase β and hydrogen bonding in phase α (Girifalco and Good, 1957).

Note that in the case of a single well-mixed phase, where σαβ = 0, ϕ = 1

. In the limiting case where ϕ =
(
1− σαβ

σα

) 1
2
, Eq. (3.2) reduces to Eq. (3.1).

However, the utility of this equation for systems with more than two compo-

nents, or with compounds that are soluble in both phases, remains an open

question (Makkonen and Kurkela, 2018). Equation. (3.2) was further refined

to

σαβ = σα + σβ − 2
(
σα,disp · σβ,disp

) 1
2 , (3.6)

where σα,disp and σβ,disp are the contributions from dispersion forces to the
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surface tensions of phases α and β, respectively (Fowkes, 1962, 1963). Of

course, such a model relies on accurate constraints on the dispersive and

non-dispersive contributions to the surface energies per unit area of both

phases, thus limiting the utility of this approach.

As mentioned above, some atmospheric aerosol systems have been ob-

served to undergo LLPS for particles with large diameters, yet particles of

the same or similar composition may not undergo LLPS should their diame-

ters be substantially smaller (Kucinski et al., 2019; Freedman, 2020; Ott and

Freedman, 2020; Ohno et al., 2023). Indeed, it is thought that at sufficiently

small diameters, the high surface area to volume ratios of atmospheric aerosol

particles lead to a sufficient energetic barrier from the combined effects of

surface and interfacial tensions that the formation of an additional phase is

inhibited (Ohno et al., 2023; Freedman, 2020). It should be noted that the

effect of aerosol composition, particularly the presence of different inorganic

electrolytes, complicates size-dependent LLPS; for example, Ott et al. (2021)

report that particles containing sodium cations are phase-separated down to

smaller sizes than similar particles which contain ammonium cations.

In summary, at the boundary between two distinct phases there exists an

energetic penalty. In the case of a gas–liquid boundary, this penalty is often

referred to as the surface tension. A similar tension exists at the boundary

between two liquid phases. If the gas–liquid interface can be thought of as

a finite-depth region, with a distinct composition from the adjacent liquid

phase beneath it, then there must exist an interfacial tension at this bound-

ary as well. The sum of this interfacial tension and the surface tension at

the gas–liquid boundary form the measurable surface tension that can be ob-

served directly. Numerous methods have been proposed to determine the in-

terfacial tension between two liquid phases using thermodynamic theory and

semi-empirical approaches and system-specific fits. The sum of the three en-

ergetic interfacial contributions lead to differences in the total Gibbs energy

for a well-mixed or phase-separated particle. Greater differences in Gibbs
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energy occur in particles with higher surface/interfacial-area-to-volume ra-

tios. Such differences in Gibbs energy may be sufficiently large that they

lead to reductions in the onset RH of LLPS or even the complete suppres-

sion of LLPS. To our knowledge, no predictive model exists that accounts

for the coupled feedbacks of aerosol particle size and three-dimensional mor-

phology on the conditions under which a particle will separate into two (or

more) liquid phases or remain homogeneously mixed. As such, we present a

thermodynamic framework for exploring and quantifying the size-dependent

LLPS in aerosol particles.

3.4 Methods

3.4.1 Modeling interfacial tension between two liquid

phases

In the case of a closed thermodynamic system with two or more liquid phases,

the Gibbs energy at constant temperature and pressure can be expressed as

follows:

G =
∑
ϕ

∑
j

µϕ
j n

ϕ
j +

∑
ι

σιAι + τ l. (3.7)

Here, µϕ
j and nϕ

j are the chemical potential and molar amount of species j in

phase ϕ. σι is the surface or interfacial tension at phase boundary ι and Aι

is the area of phase boundary ι. τ represents the energetic contribution of

a 3-phase boundary line, sometimes referred to as the line tension, and l is

the length of the 3-phase boundary line. Note that a 3-phase boundary line

will only exist in a particle with a partially engulfed morphology or when

particles are deposited on a substrate for analysis in laboratory experiments.

Furthermore, given that measured and predicted line energy contributions

in complex systems are thought to be orders of magnitude lower than those

from LL interface contributions, energetic contributions from the τ l term is

usually assumed to be negligible (Amirfazli and Neumann, 2004).
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Schmedding and Zuend (2023) developed an approach for predicting the

equilibrium surface tension of a single-liquid-phase droplet with a finite-depth

Guggenheim interface of radial thickness δs. Guggenheim interfaces are an

alternative approach to the classical Gibbsian treatment of interfaces, the lat-

ter treating them as infinitely thin two-dimensional surfaces located at the

point where the excess concentration of some species in the system, typically

the solvent, is zero (Gibbs, 1906). Guggenheim interfaces instead treat the

surface of a solution as a thermodynamically distinct region from the bulk

liquid phase beneath it and the gas phase above it (Guggenheim, 1940). Such

a definition allows for more flexibility in defining the location of the interface,

its extent and composition, as well as accounting for the feedback of bulk–

surface partitioning on the bulk composition in small droplets. Their ap-

proach employed the Aerosol Inorganic–Organic Mixtures Functional groups

Activity Coefficients (AIOMFAC) model (Zuend et al., 2008, 2011; Yin et al.,

2022) to calculate activity coefficients in the surface and bulk phases of an

aerosol particle for application in the Butler equation:

σi = σ◦
i +

RT

Ai

ln

(
asi
abi

)
. (3.8)

Here, σi is the surface tension of the droplet as predicted by the right-hand-

side expression based on component i, σ◦
i is the surface tension of i in the

pure-component case at the same pressure and temperature, R is the uni-

versal gas constant, T is the temperature, Ai is the partial molar area of i,

which depends on the surface phase geometry.

asi is the mole-fraction-based activity of i in the surface phase and abi is the

mole fraction-based (or molality-based, in the case of inorganic electrolytes)

activity of i in the liquid bulk phase. abi can be calculated as the product of

the concentration of species i, either in mole fraction or molality as previously

mentioned, and the activity coefficient, γi, at a given temperature on the

associated composition scale. For a surface phase represented by a concentric
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shell on a spherical droplet core, Ai is defined as:

Ai =

(
∂A

∂ns
i

)
T,P,ns

j ,σ

= V s
i

2rp

2δsrp − δs2
,

where A is the outer surface phase area, ns
i and denote the molar amount

and molar volume of i, respectively, in the finite-depth surface phase. rp is

the particle radius, i.e. the outer radius of the surface phase and δs is the

radial thickness of the surface. For a derivation of Eq. (9), see Schmedding

and Zuend (2023).

Under equilibrium conditions the surface tensions computed via Eq. (3.8)

for all k components in solution must be equal, such that

σ1 = σ2 = ... = σk. (3.9)

While the structure of a gas–liquid interface may be best represented by a

thin, yet finite-depth surface phase to account for bulk–surface partitioning,

the structure of a LL interface may be more easily represented by a two-

dimensional (2-D) dividing surface. The latter is the case since the absolute

material and density gradients across LL interfaces are much smaller than

across a gas–liquid surface. Therefore, unlike the approach to bulk–surface

partitioning described in Schmedding and Zuend (2023), there is no depletion

from phase α nor phase β to the LL interface between them as the tightly

coupled partitioning between phases α and β accounts for the depletion of

either phase with respect to the LL interface. Note, however, that modifica-

tions to the equilibrium partitioning of components between the two liquid

phases due to the presence of the interface can be accounted for. This 2-D LL

interface treatment has the added benefit of simplifying the approach used

to determine the interfacial tension as the interplay between partitioning and

non-ideal mixing may be greatly simplified in the liquid–liquid interface.

Returning to the approach of Schmedding and Zuend (2023), which uti-

lized Eq. (3.8) to predict surface tension, we now extend the same approach
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to account for the boundary between two liquid phases. For a LL interface

Eq. (3.8) must be modified, since the reference state surface tension values

(σ◦
i ) are inherently different from those found at the gas–liquid surface. At

a gas–liquid boundary, σ◦
i is assumed to be surface tension of a droplet of

pure component i. Analogously, for LL interfaces, σ◦
i is assumed to be the

interfacial tension that exists between two molecular layers of pure compo-

nent i. Because the compositions of the two layers of i are identical in the LL

reference state case – a hypothetical interface – any molecule present at this

reference LL interface would not experience an additional energetic penalty.

Therefore, in the case of a LL interface,

σαβ,◦
1 = σαβ,◦

2 = ... = σαβ,◦
k = 0. (3.10)

Consequently, in the case of a LL interface, Eq. (3.8) simplifies to (Bahramian

and Danesh, 2005, 2004):

σαβ
i =

RT

A αβ
i

ln

(
aαβi
abi

)
. (3.11)

Note that for a 2-D LL interface A αβ
i = 2V α

i /rα. Analogous to Eq. (3.9), the

interfacial tension values determined via Eq. (3.11) for individual components

must match at equilibrium, i.e.,

σαβ
1 = σαβ

2 = ... = σαβ
3 . (3.12)

An approach developed by Bahramian and Danesh (2004) utilized lattice

theory and suggested that the activity coefficients present in a LL interface

(γαβ) can be approximated by the geometric mean of the activity coefficients

in the liquid phases α and β on either side of the interface:

γαβ
i =

√
γα
i γ

β
i . (3.13)
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However, they note that the choice of 1
2
for the exponent in this case is de-

termined by the configuration of molecules present in the interfacial region.

This approach was also later expanded by Wang and Anderko (2013) to ac-

count for the effect of electrolyte species in mixed organic–inorganic systems

with good agreement to experimental data. Therefore, in this study, the

geometric mean approach for activity coefficients was chosen as one option

for multicomponent aerosol systems containing mixtures of water, organic

species, and electrolytes.

If the assumption of Eq. (3.13) is used, and recalling that under equilib-

rium conditions xα
i γ

α
i = xβ

i γ
β
i and

∑
xαβ
i = 1, Eq. (3.11) can be rearranged

to the following form (Bahramian and Danesh, 2004, 2005):

∑
i

√
xβ
i x

α
i exp

(
A αβ

i σαβ

RT

)
= 1. (3.14)

This leads to a single unknown variable, σαβ, which must be the same for

all species such that the criteria given by Eq. (3.12) are satisfied. Thus, the

interfacial tension value can be solved for numerically in a direct manner,

rather than relying on a more complex bulk–interface partitioning algorithm

(unlike the case for bulk–surface partitioning). It should be noted that the

behavior of electrolyte species in solution may require more complex treat-

ments of their impacts on interfacial tension (Wang and Anderko, 2013).

However, many of these treatments rely on semi-empirical relationships fit-

ted to experimental data, thus reducing their predictive power and flexibility.

As such, in this approach we assume that electrolyte components (here as

neutral cation–anion combinations) can be treated in the same manner as

water and the organic components.

3.4.2 Alternative models of interfacial tension

In order to determine the importance of a rigorous treatment of interfacial

energetic contributions in aerosol particles and the resulting geometric mor-
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phologies, we introduce the following approaches, allowing for a quantitative

comparison (see Sect. 3.5). A first option is a model which allows for LLPS

and bulk–surface partitioning, but assumes that the LL interface is a 2-D

dividing surface with an energetic contribution of 0 (labeled as “no IFE”

approach).

A more thorough treatment includes assuming a 2-D LL interface with

the interfacial tension value estimated by the difference in (hypothetical) gas–

liquid surface tensions of the organic phase and the aqueous phase (Eq. 3.1)

(Antonov’s rule). One caveat of this treatment is that it renders determining

whether a particle is of core–shell or partially engulfed morphology impos-

sible. This is because of a known inconsistency of Antonov’s rule with the

constraints imposed by the triangle inequality necessary for calculating the

contact angles among the phases (Binyaminov et al., 2021). As a similar

option, Eq. (3.2) can be employed as a semi-empirical representation of the

LL interfacial tension. This Girifalco–Good equation can be tuned with a

single, system-specific parameter ϕ to improve agreement with pertinent ex-

perimental data.

A final semi-empirical approach for the LL interfacial tension is based on

a modified version of the approach of Bahramian (2024), who stated that

xαβ
i ≥

√
xα
i x

β
i . In this case, we treat the composition of the interfacial layer

as the weighted average of the compositions of a monolayer of phase α and

β on either side of the 2-D dividing plane such that

vαβi =
(
vαi v

β
i

)η
. (3.15)

Here, vi is the effective volume fraction of i in phase α, phase β, or the

two (mono)layers of α and β immediately adjacent to the interfacial dividing

plane (the hypothetical interfacial bilayer). η is defined as the value that

satisfies the criteria that
∑(

vαi v
β
i

)η
= 1 and η > 0 in order to satisfy the

criteria of (Bahramian, 2024). A reference energetic contribution value for
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this bilayer system can be estimated by

σαβ,◦ =
∑(

vαi v
β
i

)η
σ◦
i . (3.16)

Given σαβ,◦, the energetic contributions from either phase at the liquid–

liquid interface may be estimated by applying Antonov’s rule separately to

each monolayer adjacent to the interface, such that

σα,⋆ =
∣∣σα,vf − σαβ,◦∣∣ and σβ,⋆ =

∣∣σβ,vf − σαβ,◦∣∣ . (3.17)

Note that the superscript vf refers to the volume-fraction-weighted mean of

pure component values. The sum of these two energetic contributions (σα,⋆+

σβ,⋆) yields the effective interfacial tension at the liquid–liquid interface:

σαβ =
∣∣σα,vf + σβ,vf − 2 σαβ,◦∣∣ . (3.18)

It is important to note that an interface also exists between the exterior

surface phase (which we treat as a 3-D Guggenheim interfacial phase) and

the interior bulk of a particle (see Fig. 3.1 for details). This interface, hence-

forth referred to as the bulk–surface interface, can be treated in much the

same way as the liquid–liquid interface between phases α and β using any

of the approaches outlined in Table 3.1. This “ls” interface contributes an

additional energetic term, which scales with σls, to the overall Gibbs energy

of the particle in addition to the interfacial tension contribution that scales

with σαβ . While the energetic contribution from this boundary is likely

small, it cannot be neglected categorically, since differences in composition

between the surface phase and the adjacent bulk phase may become signifi-

cant, especially at higher RH, at which the particle is well-mixed or phases α

and β similar in composition. At intermediate and lower relative humidities

in the presence of LLPS, the compositions of phases α and β tend to be more

distinct from each other. Under those conditions it is likely that the α–β LL
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Figure 3.1: Schematic of phase and interface configurations considered in this
study. In a liquid–liquid phase-separated aerosol particle with two liquid
phases α and β, there exist two energetic penalties (σαβ and σls) due to
interfaces between the condensed phases. There is also an energetic penalty
at the gas–particle surface (σs). The interplay between these three energetic
contributions has a feedback on the composition of particle phases and via
gas–particle partitioning, the aerosol system overall.
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interface plays a larger role than the bulk–surface interface (see Fig. 3.2).

The area of the bulk–surface interface can be calculated as follows:

Als = 4π (rp − δs)2 . (3.19)

The value of σls can be calculated using the same approaches as for σαβ. For

consistency, we always apply the same method to both interfaces for a given

case. Refer to Table 3.1 for a summary of the various interfacial tension

approaches applied in this work.
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Figure 3.2: Predicted values of σs⋆, which represent the measurable effect of
expanding a finite depth surface phase as defined in Eq. (23); σs; σαβ; and σls

(see legend) for a particle of 1000 nm dry diameter composed of water–PEG-
400–ammonium-sulfate at T = 298 K. σαβ and σls were calculated using (A)
Antonov’s rule (Eq. 3.1), (B) the Girifalco–Good equation (Eq. 3.2), (C) the
Butler equation with geometric mean activity coefficients (Eq. 3.14), and (D)
the weighted mean interfacial composition approach (Eq. 3.18).
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Table 3.1: Summary of interfacial tension treatments used for the interfaces
between phases α and β as well as between the surface phase and the liquid
bulk phase just beneath it.

Name Equation Reference
No IFE σαβ = 0 –

Antonov’s rule σαβ =
∣∣σα,vf − σβ,vf

∣∣ Antonov (1907)

Girifalco–Good
equation

σαβ = σα,vf + σβ,vf − 2ϕ
√
σα,vfσβ,vf Girifalco and Good (1957)

Weighted mean ap-
proach

σαβ =
∣∣∣σα,vf + σβ,vf − 2

∑
i

(
vfαi vf

β
i

)η
σ◦
i

∣∣∣ This work

Geometric mean ac-
tivity coefficients

∑
i

[√
xβ
i x

α
i exp

(
A αβ

i σαβ

RT

)]
= 1 Bahramian and Danesh (2005)

An important feature of σls is that it cannot be fully disentangled from σs

as expanding the surface of a solution droplet will expand both the boundary

at the gas–liquid interface as well as the boundary between the bulk phase

and the surface phase. Therefore, the expression for the chemical potential

of the surface phase as described in Schmedding and Zuend (2023) must be

modified slightly when accounting for this additional interface. An exception

is the case of a pure-component droplet, in which case σls = 0.

The following equations define the component-specific and interface-aware

chemical potentials in the surface phase and an adjacent liquid bulk phase

(Aston and Herrington, 1991):

µs
i = µ◦,s

i +RT ln (asi) + σ◦
i A

s
i − σsA s

i ; (3.20)

µb
i = µ◦,b

i +RT ln (abi )− σlsA ls
i . (3.21)

Equation (3.21) describes the chemical potential of components (i) in a liquid

bulk phase when additionally accounting for the contributions of i to the 2-

D LL interfacial energy per unit amount of substance of the ls interface.

Equations (3.20) and (3.21) may be combined under equilibrium conditions

(µb
i = µs

i) while assuming (defining) that µ◦,s
i = µ◦,b

i . This leads to a coupled

125



Chapter 3 : Size-dependent Phase Separation

expression for the surface tension at the gas–liquid interface:

σs⋆
i =

RT

A s
i

ln

(
asi
abi

)
+ σ◦

i + σlsA
ls
i

A s
i

. (3.22)

Note that σs is now defined as σs = σs⋆ − σls; when σls is negligible, σs⋆
i =

σs
i . An alternative, mathematically equivalent option is to fold the effect

of an LL interface into adjusted bulk phase activities (a′,bi ), as described in

Section 3.4.3.

3.4.3 Coupled Vapor–liquid–liquid and bulk–surface equi-

librium calculation

Using the coupled vapor–liquid–liquid equilibrium modeling approach of Zuend

et al. (2010); Zuend and Seinfeld (2012), for a given overall condensed-

phase composition, a bulk liquid–liquid equilibrium (LLE) calculation is first

performed while ignoring any adjustments due to bulk–surface equilibrium

(BSE). This provides an initial guess in form of a condensed-phase equilib-

rium state for a given particle composition. Given the overall composition

and particle size, an initial guess for the surface composition of the entire

particle and the associated BSE problem can be generated using the initial

guess algorithm of Schmedding and Zuend (2023). Rather than fully deplet-

ing species out of phase β or α, it is assumed that both phases contribute

material proportionally to the total amount of surface molecules, ns, such

that

ns
j = qαj εjn

tot
j + (1− qαj )εjn

tot
j , (3.23)

where qαj is the fraction of neutral component j in phase α, (1 − qαj ) is the

fraction of j in phase β, εj is the ratio of j in the surface phase to the total

amount of j in the particle phase or ns
j/n

tot
j , and ntot

j is the total amount

of species j in the liquid phases plus the surface phase while excluding any

amount of species j in the gas phase. Similarly, for electrolyte component el,
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the contributions from phases α and β can be written as follows:

ns
el = qαelεeln

tot
el + (qαlim,el − qαel)εeln

tot
el , (3.24)

where qαlim,el is the maximum fraction of species el, which may partition into

phase α. Returning to the uncoupled or “BSE-free” calculation, these initial

guess values are used for a second liquid–liquid equilibrium calculation for

the interior bulk of the particle. Once a value of σαβ is obtained, the ener-

getic impact of the interface can be represented as an additional contribution

to each component’s chemical potential. In practice, this is equivalent to ex-

pressing the interfacial tension effect as an adjustment factor to the activities

of components of phase α in the following form:

a′,αi = aαi exp

(
σαβ A α

i

RT

)
. (3.25)

Likewise, in order to accurately capture the equilibrium partial pressures,

pi, of gas-phase species over the curved droplet surface and thus the equilib-

rium number concentration of gas phase molecules, nG
i , the activities of each

component in the particle must be scaled by the Kelvin effect as follows:

Si = a′,αi exp

(
2σsVi

RT rp

)
. (3.26)

Here, Si = pi/p
◦,sat
i is the equilibrium saturation ratio and rp is the overall

particle or droplet radius. The droplet’s equilibrium RH (= Sw) is calculated

using a′w. In the case where gas–particle partitioning of organic species is

allowed, the gas-phase quantity of species i per m3 of air, nG
i is given by:

nG
i =

a′i exp
(

2σsVi

RT rp

)
p◦,sati V GRT

, (3.27)

where V G denotes the unit gas-phase volume (1 m3).
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At this point, for a given overall droplet composition and temperature

and with initial guesses established for both the liquid–liquid equilibrium

phase compositions (if predicted to be present) as well as the bulk–surface

equilibrium and associated surface tension and interfacial tensions, we can

proceed to solve the fully coupled interior phase partitioning problem of a

single droplet of given size. In our present proof-of-concept implementation,

which is not optimized for best computational performance, we approach this

as a nested interior problem to the overall gas–particle partitioning solution

as qualitatively described in the following. We run a modified version of the

BSE algorithm of Schmedding and Zuend (2023) to solve the Butler equation

iteratively while updating the interfacial tensions and LLE state and phase

compositions.

In practice, the modification is to embed the LLE refinement method by

Zuend and Seinfeld (2013) to solve the LLE problem within each iteration of

the parent BSE algorithm, while accounting for adjusted amounts available

for phases α and β (due to changes in bulk–surface partitioning) and using

interfacial-tension-adjusted activities for the components in phases α and β.

This means that during each iteration within the LLE solver (and hence

also within the BSE solver), the interfacial tensions are updated with the

selected method (e.g. Antonov’s rule or Girifalco–Good) and the normalized

Gibbs energy of mixing of the droplet is updated as well. This procedure

allows for a numerical solution of these coupled systems of equations within

a single particle, and in conjunction with the vapor–liquid equilibrium solver

(the outermost nesting level), the full equilibration of the gas phase with a

population of (monodisperse) particles within a unit volume of air. It also

allows for an initially assumed LLPS state (for the corresponding bulk sys-

tem) to disappear if it becomes unfavorable due to bulk–surface partitioning

and interfacial tension impacts on adjusted component activities.

In summary, a coupled system of nonlinear algebraic equations needs to

be solved, the solution of which must fulfill the necessary condition that the
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interface-corrected activities (a′i) are equivalent across all phases at equilib-

rium. These corrected activities can be employed along with the relative

molar amounts in each phase to determine the change in Gibbs energy due

to mixing and interfaces per mole of particulate matter (GPM) for a given

particle radius, rp. The following expanded equation is employed:

GPM =
1

nPM

(∑
j

(
nα
j RT ln a′,αj

)
+
∑
j

(
nβ
jRT ln a′,βj

)
+
∑
j

(
ns
jRT ln a′,sj

)
+
∑
j

(
nPM
j

2σsVj

rp

)) (3.28)

where nPM
j represents the moles of j in the particulate matter (any con-

densed phase) and nPM =
∑

j n
PM
j . Note that this equation only applies to

a monodisperse aerosol population.

3.5 Results

3.5.1 Interfacial and surface tensions

Throughout this study we presume that both σαβ and σls can be determined

using one of the introduced methods. Several of those methods rely on the

assumption that hypothetical gas–liquid surface tensions of the phases in-

volved can be estimated based on a weighted average of the pure-component

surface tensions, σ◦
i . A complete list of all σ◦

i for the components of the

systems examined in this work can be found in Table B.3. Also reported in

Table B.3 are the organic-to-inorganic dry mass ratio (OIR) for each system.

In order to explore the validity of this assumption, volume-fraction-based and

mole-fraction-based approaches for estimating the surface tension are com-

pared to experimental surface tension data. Figure 3.3 shows the predicted

surface tensions using the aforementioned weighted average approaches based

on the composition of the surface and bulk phases as determined by the bulk–

surface partitioning treatment of Schmedding and Zuend (2023) along with
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the more thermodynamically rigorous treatment of surface tension from that

same work. It is shown that all three approaches can reasonably approxi-

mate the measured surface tensions of the finite volume droplets, with the

volume-fraction-based approach performing better than the mole-fraction-

based approach for the water and glutaric acid system. Both weighted aver-

age approaches give similar results for the aqueous NaCl system.

To compare the relative magnitudes of the different approaches laid out in

this work, a 1000 nm dry diameter water–PEG-400–ammonium-sulfate sys-

tem was modeled with each of the four approaches described in Sections 3.4.1

and 3.4.2. The potential crystallization (efflorescence) of ammonium sulfate

at lower RH was ignored in our model calculations, hence rendering predic-

tions for RH <∼ 35% rather hypothetical, but allowing us to perform and

interpret calculations over a wide range in electrolyte concentrations. Shown

in Fig. 3.2 are the values of σαβ, σls, σs, and σs⋆ for each of the aforemen-

tioned approaches. Antonov’s rule (Eq. 3.1, panel A) leads to the largest

predicted values of σαβ and σls along with the smallest σs. The other three

approaches have minimal effects on σs, except near the onset of phase sep-

aration. In these panels of Fig. 3.2, when viewed from high to low RH, the

onset of LLPS is the reason for the visible and related kinks in the σls and σs

curves, as well as the more obvious onset of nonzero σαβ values. The weighted

mean interfacial composition approach (Eq. 3.18) (panel D) exhibits unique

behavior with a local maximum of σαβ at ∼ 50% RH and a local minimum

at ∼ 10% RH. Such behavior may be caused by the compositions of phases

α and β becoming more similar as water is removed from the system and

other organic species become dominant as solvents.

Given the lack of interfacial tension data for atmospherically relevant

aerosol systems, it is difficult to compare any of the approaches laid out

in this work to direct measurements for validation. However, Song et al.

(2013) reported interfacial tension values near the onset of liquid–liquid phase

separation for a bulk water–PEG-400–ammonium sulfate system. Shown in
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Figure 3.3: Predicted σs values using the Butler equation based approach
of (Schmedding and Zuend, 2023), a surface phase volume-fraction-weighted
mean of pure component surface tensions, and a surface phase mole-fraction-
weighted mean of pure component surface tensions as a function of solute
concentration for binary systems of (A) water and glutaric acid and (B)
water and NaCl. The cross symbols show measurements based on the optical
tweezer method by (Bzdek et al., 2016) at 298 K. Surface phase compositions
were calculated using the Butler equation with the assumption that σls =
0 mJm−2. Bulk–surface partitioning calculations were performed assuming
a water-free particle diameter of 5000 nm.
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Fig. 3.4A are these measurements in comparison to Antonov’s rule (Eq. 3.1),

the Girifalco–Good equation (Eq. 3.2), the Butler equation with geometric

mean activity coefficients (Eqs. 3.11 and Eq. 3.13), and the weighted mean

approach developed in this work (Eq. 3.18).

For this system, which only included measurements near the onset of

phase separation, the Butler equation with geometric mean activity coeffi-

cients (Eq. 3.11) best matches the measured interfacial tension followed by

the Girifalco–Good equation (Eq. 3.2), while Antonov’s rule (Eq. 3.1) per-

forms most poorly. It should be noted that adjusting the value of ϕ in the

Girifalco–Good equation (Eq. 3.2) may lead to a better match with measured

data; however, use of such adjusted parameters requires refitting of ϕ for each

specific system and thus reduces the predictive power and application of the

model. Figure 3.4B shows the predicted interfacial tensions from a water–

benzene–sodium-chloride system along with bulk solution measurements as a

function of sodium chloride concentration in the salt-rich aqueous phase. In

this case, none of the models described in this work are capable of reasonably

matching the measurements, with Antonov’s rule (Eq. 3.1) performing the

best and the other approaches yielding substantially lower interfacial ten-

sions, including at zero NaCl content. Similarly, Fig. 3.4C, shows measured

and predicted interfacial tensions for a water–dodecane–potassium-chloride

system as a function of the aqueous phase electrolyte molality. In this case,

Antonov’s rule (Eq. 3.1) performs the best of the various approaches and

is capable of closely matching the measured interfacial tension at high elec-

trolyte concentrations, while all of the other approaches fail to capture the

measured behaviour. Finally, measurements of an electrolyte free system of

water–benzene–methanol is shown in Fig. 3.4D. At high methanol mole frac-

tions, the measured interfacial tensions are most similar to those predicted

by the weighted mean interfacial composition approach (Eq. 3.18), while the

Butler equation with geometric mean activity coefficients (Eq. 3.11) approach

underpredicts the interfacial tension, but performs the second best. At low
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Figure 3.4: Predicted σαβ values (curves) compared to measurements (solid
circles). The x-axis scales correspond to those used in the experimental data
references. Data and predictions for all systems are for T = 298 K. (A) A
water–PEG-400–ammonium-sulfate system with experimental data by Song
et al. (2013), (B) a water–benzene–sodium-chloride system (Harkins and
Humphery, 1915), (C) a water–dodecane–potassium-chloride system (Ave-
yard and Saleem, 1976), and (D) a water–benzene–methanol system (Pliskin
and Treybal, 1966; Paul and De Chazal, 1967). The four distinct parameter-
izations for interfacial tension from Table 3.1 are shown (except for the No
IFE case). The pure-component surface tensions of organic components can
be found in Table B.3

.
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methanol content, Antonov’s rule (Eq. 3.1) is again the best method for this

nearly completely phase-separated system (as in Fig. 3.4B). In order to bet-

ter understand the importance of σ◦
i in determining the value of σαβ and σls,

predictions corresponding to those shown in Fig. 3.4 were performed with

adjustments to σ◦
org and σ◦

el = σ◦
w; those are shown in Fig. B.1.

Briefly, minor adjustments to σ◦
i lead to better agreement between the

Girifalco–Good equation (Eq. 3.2) and measured data fro the water–PEG-

400–ammonium-sulfate system in panel A. In panels B and C, there is better

agreement between Antonov’s rule (Eq. 3.1) and the water–benzene–sodium-

chloride system and the water–dodecane–potassium-chloride system with the

adjustments to σ◦
i . However, in panel D, Antonov’s rule (Eq. 3.1) performs

more poorly for the interfacial tension in comparison to measurements for the

water–benzene–methanol, assuming the same values of benzene and methanol

as those in panels B and C of Fig. S1.

The Girifalco–Good equation (Eq. 3.2) contains a single semi-empirical

fit parameter, ϕ, which grants it some degree of flexibility at the expense of

predictive power. Harris and Byers (1989) reported that fitted values of ϕ

lie between approximately 0.55 and 1.15 for many systems. Note that, as

previously in section 3.3, it is assumed that ϕ = 1 when an interface-free

LLE calculation predicts a homogeneously mixed particle. If this were not

the case then non-zero interfacial tension values between two identical phases

would be possible. Thus ϕ is allowed to deviate from its default value of 1.0

when the interface-free LLE calculation predicts phase separation. Shown

in Fig. 3.5 are the values of the predicted LL interfacial tensions when ϕ is

varied over the range of 0.55 to 1.15 for a water–suberic acid–ammonium-

sulfate system. Values of ϕ greater than 1 can produce unrealistically small

σαβ values (including negative interfacial tensions), while ϕ < 1 increases

σαβ values. Overall, the tested range in values of ϕ from 0.55 to 1 results in

a relatively wide range of physically feasible outcomes for the shown system,

e.g. spanning about 70 mJm−2 in σαβ at 80% RH. Hence, optimizing this
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parameter for a specific system could be a successful approach for achieving a

close match to measurements, especially if a composition dependence is also

considered. However, such a tuning approach is inconsistent with a typical

goal in atmospheric aerosols modeling, namely that of developing generally

predictive methods (here of interfacial tension) applicable to a wide range of

multicomponent aerosol systems and independent of any experimental data

required for specific tuning purposes.

3.5.2 Size-dependent phase separation in core–shell aerosols

Figure 3.6 shows the predicted and normalized mole fraction of water in the

ammonium-sulfate-rich phase α (xα
w/x

α,no IFE
w ) for water–PEG-400–ammonium

sulfate particles using the four treatments for interfacial tension laid out in

this work. (see figures B.2 and B.3 in Appendix B for the plots correspond-

ing to the normalized mole fractions of PEG-400 and ammonium sulfate in

phase α). In order to better understand the role of interfacial energy in

terms of its feedback on particle phase compositions, the shown mole frac-

tions are normalized by those predicted by the no IFE treatment for the

same conditions. Even at RH values above the onset of LLPS, where only

σls affects the composition of the single liquid phase (α) present, there is a

reduction in the concentration of water relative to the no IFE case. That

is, the values of xα
w/x

α,no IFE
w are consistently ≤ 1.0, indicating a reduction

in the relative water content of phase α when σαβ and σls are accounted for.

This indicates that interfacial tension effects in aerosols are not only of im-

portance for shifting the onset in LLPS or for cloud droplet activation, but

that they also impact the equilibrium compositions of the various particle

phases, unlike in macroscopic bulk systems (for which the no IFE case is a

better proxy). At lower RH values, the difference in composition is more pro-

nounced, as all four approaches lead to differences of an order of magnitude

from the interfacial energy-free treatment. With each approach there was

also a noticeable dependence on particle dry diameter. For the 10 nm parti-

cles, these differences in composition are most substantial, while the 1000 nm
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particle and the 100 nm particle behaved more similarly to one another. In

Fig. 3.6A, the 10 nm particle exhibits complete suppression of LLPS, across

the entire RH range. However, all other interfacial tension treatments lead

to LLPS in a certain RH range, as marked by the sudden change (kinks) in

xα
w/x

α,no IFE
w with decreasing RH.

Figure 3.7 shows the equilibrium water vapor saturation ratio (i.e. RH)

corresponding to the onset of liquid–liquid phase separation (also denoted as

SRH) for: (A) a water–PEG-300–ammonium-sulfate system and (B) a water–

1,2,6-hexanetriol–ammonium-sulfate system, both corresponding to systems

examined by Ohno et al. (2023); (C) a 12-component complex SOA surro-

gate mixture (CSOA) with succinic acid mixed with water and ammonium

sulfate and (D) a water–α-pinene-SOA–ammonium sulfate system. (C) and

(D) correspond to systems studied experimentally by Kucinski et al. (2019).

The α-pinene SOA surrogate system used here for the model predictions

is based on the components and relative compositions tabulated by Rastak

et al. (2017). Shown for each system are the impacts of the four interfa-

cial tension estimation approaches on the separation RH of LLPS: σαβ = 0,

Eq. (3.1),the Girifalco–Good equation (Eq. 3.2), and Butler equation with

geometric mean activity coefficients (Eq. 3.11). For all systems, applying

Eq. (3.1) led to the most substantial reductions in the onset RH of LLPS,

with noticeable decreases in the separation RH occurring in particles with

wet diameters between approximately 100 nm and 250 nm. In the case where

σαβ = 0, our model predicts an increase in the separation RH for small par-

ticle sizes, caused mostly by an increase in effective equilibrium RH at small

particle diameters due to the Kelvin effect. It should also be noted that the

consideration of nonzero σls encourages the occurrence of LLPS and shifts

the onset of LLPS in smaller particles to higher RH values as compared to

particles with the same initial composition but a larger dry diameter. Indeed,

relative to said larger particles, there is a slight increase in the separation RH

values in the sub-100 nm (wet diameter) size range for the water–PEG-300–
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Figure 3.6: Normalized mole fraction of water in the aqueous phase α
for water–PEG-400–ammonium sulfate particles with dry diameters rang-
ing from 10 nm to 1000 nm at T = 298 K. (A) Antonov’s rule (Eq. 3.1),
(B) the Girifalco–Good equation (Eq. 3.2), (C) the Butler equation with geo-
metric mean activity coefficients treatment (Eq. 3.11), and (D) the weighted
mean interfacial composition approach (Eq. 3.18). Kinks in the curves are
indicative of the onset of LLPS.
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ammonium sulfate system, while a more noticeable decrease in separation

RH is predicted for particles with diameters < 20 nm. In comparison to

observations of size-dependent LLPS behavior, Antonov’s rule (Eq. 3.1) is

the only approach that is consistently capable of suppressing phase separa-

tion to below 20% RH for small wet diameters (likely reported as complete

suppression in measurements) for all of the systems shown. The application

of Antonov’s rule (Eq. 3.1) also leads to measurable decreases in the onset

RH of LLPS even for relatively large particle wet diameters (> 200 nm),

in agreement with the experimental data reported by Ohno et al. (2023)

and Kucinski et al. (2019). Indeed, for the α-pinene SOA system shown in

Fig. 3.7D, only Antonov’s rule (Eq. 3.1) leads to a notable size dependence

in the LLPS onset RH. The corresponding values of σαβ at the onset of LLPS

are shown in Fig. B.4 and the water-free OIRs are listed in Table B.3. For

treatments which predict stronger size-dependencies on the separation RH,

there is less agreement between σαβ at the onset of LLPS for the weighted

mean interfacial composition approach (Eq. 3.18). This is due to the fact that

the predicted σαβ exhibits a local minimum at low RH values (see fig. 3.2D).

The location of such a local minimum is a function of particle size and thus

smaller particles may undergo LLPS at RHs below the RH which minimizes

σαβ.

Figure B.4 shows the value of σαβ at the SRH for the systems shown in

Fig. 3.7. For all systems, σαβ at the SRH is lower for larger particles and

begins to increase with decreasing particle size. This is due to the fact that

these particles experience a decrease in the SRH and therefore the composi-

tions of phases α and β become more distinct at the SRH. However, it should

be noted that for very small particles the value of σαβ at the SRH begins to

decrease. Said trend is most clear when Antonov’s rule (Eq. 3.1) is applied.

This decreasing trend suggests that the compositional differences between

liquid phases at very small sizes and low RH become less distinct as the

overall water content of the particle is low. Such a trend may be responsible
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facial tension treatment; see legend. Systems shown are: (A) water–PEG-
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phases-separated particles, respectively, as determined by Kucinski et al.
(2019). All calculations were performed at 298 K.
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for the behavior shown in Fig. 3.7B and C, wherein the smallest particles

do not neatly decrease in SRH with respect to particle size; indeed, the

competing effects among σαβ, σls, and σs,⋆ lead to weaker decreases in SRH

and in the case of panel C and either the Girifalco–Good equation (Eq. 3.2)

or the Butler equation with geometric mean activity coefficients treatment

(Eq. 3.11), a plateauing effect with a local maximum and then a continued

decrease in SRH. However, this effect is small relative to the overall decrease

in SRH with decreasing particle size.

Figure B.5 shows the same systems as in Fig. 3.7, but with the assump-

tion that σls = 0. For the more extreme treatments of σαβ, such as with

Antonov’s rule (Eq. 3.1) or the weighted mean interfacial composition ap-

proach (Eq. 3.18), the exclusion of σls has a negligible impact on the size-

dependent SRH. However, if σls = 0 and a less extreme treatment of σαβ,

such as the Girifalco–Good equation (Eq. 3.2) or the Butler equation with

geometric mean activity coefficients treatment (Eq. 3.11) is used, then there

is a positive increase in the SRH that is very similar to the No IFE case. It is

also important to note that the local maximum behavior discussed in Figure

7 is still present and thus cannot be attributed to the presence or absence of

σls. Employing either the Girifalco–Good equation (Eq. 3.2) or the Butler

equation with geometric mean activity coefficients treatment (Eq. 3.11) yield

quantitatively similar LLPS behavior. This suggests that the Girifalco–Good

equation (Eq. 3.2) may serve as a good approximation of a more thermody-

namically rigorous treatment for the LL interface – at least for qualitatively

similar systems to the ones studied in this work.

For particles of less than 100 nm in (wet) diameter, the hypothetical

minimum LL interfacial tension necessary to fully suppress LLPS, σαβ
suppr,

was calculated based on the difference between the predicted molar Gibbs

energy of the phase-separated solution and that of the homogeneous solu-

tion in the No IFE case. These values are shown in Fig. 3.8 for the systems

from Fig. 3.7. Both the water–PEG-300–ammonium-sulfate and the water–
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1,2,6-hexanetriol–ammonium-sulfate systems exhibited weaker size depen-

dence for σαβ
suppr than the water–CSOA-with-succinic-acid–ammonium-sulfate

system, and the water–α-pinene-SOA–ammonium-sulfate system. At low RH

(< 30%), both of these SOA-proxy systems required large (> 100 mJm−2)

σαβ
suppr values to inhibit LLPS, even in the ultrafine size regime. As expected,

at RH levels near the onset of phase separation, very small values of σαβ

already exceed σαβ
suppr in case of all systems. However, the systems shown in

Fig. 3.8 do not include any feedback from the inclusion of σls treatments.

The different treatments for σls lead to differences in the composition of

the particle before the onset of phase separation and as such, may lead to

modifications to the value of σαβ
suppr for the systems shown. The comparison

and size effects shown in Fig. 3.8 mainly serve the purpose of demonstrating

that a size dependence exists, yet that complete suppression of LLPS in the

RH range from 40% to 80% is energetically rather difficult (at least when

assuming that AIOMFAC reasonably represents the molecular interactions).

3.6 Discussion and atmospheric implications

The approaches for predicting LL interfacial tension described and tested

in this work can produce a broad range of values for the a system under

otherwise the same conditions. For mixtures in which there is a higher de-

gree of mutual solubility among components preferring either phase α or β,

e.g., the water–PEG-300–ammonium-sulfate, water–PEG-400–ammonium-

sulfate, water–1,2,6-hexanetriol–ammonium-sulfate, and the water–benzene–

methanol systems, the Girifalco–Good equation and the Butler equation with

geometric mean activity coefficients (Eq. 3.14) agree well with previously

reported experimental data. In the case of systems with more complete

phase separation, such as the water–benzene–NaCl system and the water–

dodecane–KCl system, Antonov’s rule (Eq. 3.1) appears to be an appropriate

method. It is important to note that such systems exhibiting nearly com-

plete phase separation are not necessarily representative of atmospherically
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Figure 3.8: Predicted hypothetical σαβ values necessary to completely sup-
press phase separation in the No IFE case (σαβ

suppr) as a function of RH for par-
ticles with dry diameters of 10, 25, 50, and 100 nm (see legend) at T = 298 K.
Systems as in Fig. 3.7: (A) water–PEG-300–ammonium-sulfate, (B) water–
1,2,6-hexanetriol–ammonium-sulfate, (C) water–CSOA-with-succinic-acid–
ammonium-sulfate, and (D) water–α-pinene-SOA–ammonium sulfate.
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relevant systems that may be found in ambient mixtures of water, SOA and

inorganic ions (Zuend et al., 2011).

The inclusion of interfacial energy corrections mapped onto the chemical

activities of components in affected particles can be important for the re-

sulting equilibrium particle phase compositions, even of larger particles, as

shown in Fig. 3.6. The effects are more pronounced for smaller particles;

however, the magnitude of the change in composition in comparison to the

No IFE case is approximately the same for the four approaches of interfacial

energy prediction discussed in this work.

Despite better agreement with interfacial tension measurements, the ap-

plication of the Girifalco–Good (Eq. 3.2) equation and the Butler equation

with geometric mean activity coefficients treatment (Eq. 3.11) do not agree

well with observed separation relative humidities as a function of particle size.

Indeed, Antonov’s rule (Eq. 3.1) is the only approach which consistently pre-

dicts size-limited phase separation for the systems examined in this work.

Importantly, the application of Antonov’s rule (Eq. 3.1) to the systems ex-

amined in Ohno et al. (2023) leads to relatively good agreement with the ob-

served size-dependent reduction in separation RH for both the water–PEG-

300–ammonium-sulfate and the water–1,2,6-hexanetriol–ammonium-sulfate

systems. We note that the No IFE simulations lead to higher separation

relative humidities for larger particles in both cases. However, in the case of

the water–PEG-300–ammonium-sulfate system, Ohno et al. (2023) discuss

limiting the upper bound of the explored RH range in their experiments to

83% to avoid issues with condensation in their setup.

For the complex SOA system with ammonium sulfate analyzed by Kucin-

ski et al. (2019), the application of Antonov’s rule (Eq. 3.1) leads to a pre-

dicted reduction in SRH; however, only particles with diameters below 20 nm

exhibited complete suppression of phase separation. Likewise, the α-pinene

SOA surrogate system only exhibited complete suppression of LLPS for par-

ticles with diameters below 15 nm. For this system, the components were
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based on those generated by the Master Chemical Mechanism for a specific

ozonolysis case study (Rastak et al., 2017); therefore, most of the used σ◦
org

values were not available from measurements and we assumed a value of

35 mJm−2 for those organic products. It is possible that better constraints

on these values may lead to larger σαβ values, which are capable of further

suppressing LLPS at higher relative humidities. However, for this system

the interfacial tension required to suppress LLPS becomes quite high as the

RH decreases. It is therefore unlikely that realistic interfacial tensions of

typically less than 100 mJm−2 will completely inhibit LLPS across the full

RH range for all but the smallest ultrafine particles.

The energetic contributions of the LL interface and the bulk–surface in-

terface have competing effects on a particle’s internal mixing state. If an

energetic contribution from the LL interface is included and the bulk–surface

interface is neglected then particles may exhibit decreases in SRH. However,

if both contributions are included and assuming that the same treatment is

used for both interfaces (e.g., the Girifalco–Good equation (Eq. 3.2)) then

particles with smaller diameters phase-separate at the same or higher rel-

ative humidities than larger particles in all but the most extreme cases of

interfacial tension. This is likely due to the fact that in a particle in which

phase separation is suppressed (compared to the macroscopic bulk case), the

composition of the surface will be more distinct from that of the interior

bulk, leading to a larger energetic contribution at the bulk–surface interface.

Given that the area of the bulk–surface interface must inherently always

be larger than the αβ LL interface, a comparable bulk–surface LL interface

value would lead to a larger total energetic contribution per particle. Thus,

in many cases it becomes favorable even for an ultrafine particle to form a

LLPS and thereby substantially lower σls while introducing a nonzero σαβ.

The inclusion of surface energy, liquid–liquid interface, and bulk–surface

interface may also lead to a more complete picture regarding the structure

of the surface phase. Thicker 3-D surface phases of larger corresponding δs
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values typically imply higher surface energy contributions. However, surfaces

with thicker δs values tend to be of compositions that are more similar to

the interior bulk of the particle. This would reduce the energetic penalties

from the bulk–surface interface and inhibit phase separation by increasing

depletion of species out of the interior bulk of the particle to the surface

phase. Likewise, the opposite effects likely would occur in a particle with a

surface that has a small δs value. The particle would have a lower surface

energy coupled with a higher bulk–surface LL interfacial tension and reduced

inhibition of LLPS. To explore this trade-off quantitatively, we have run a

range of predictions during which δs was allowed to vary from 0.1 to 17.5

nm in surface thickness and evaluated the resulting normalized Gibbs energy

of the system. Simulations were not conducted above δs > 17.5 nm as this

would represent an extreme case wherein the volume of the surface could be-

come substantially greater than the volume of phase β. Figure 3.9 shows the

determined optimum values of δs for a water–1,2,6-Hexanetriol–ammonium

sulfate particle with a water-free diameter of 250 nm as function of RH. For

this system, the optimum δs value (δsbest) is calculated for the various interfa-

cial tension options for σαβ and σls compared throughout this work: the No

IFE case, Antonov’s rule (Eq. 3.1), the Girifalco–Good equation (Eq. 3.2),

the Butler equation with geometric mean activity coefficients (Eq. 3.14) and

the weighted mean interfacial composition approach (Eq. 3.18). As the rel-

ative humidity is decreased, the thickness of δsbest increases near the onset

of LLPS. Values of δsbest remain high and then decrease in all cases. In the

case of the weighted mean interfacial composition approach (Eq. 3.18), the

decrease in δsbest is more gradual at lower RH. The application of Antonov’s

rule (Eq. 3.1) leads to unique behavior among the different methods tested,

due to it’s suppression of LLPS when δs is large. This causes δsbest to return

to large values at lower RHs which forces the particle to form a single bulk

phase with a very thick surface phase. Such behaviour is due to the parti-

cle trying to minimize compositional differences across phases α, β, and the
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surface by increasing the material present in the surface phase. The relative

changes δsbest with decreasing RH near the onset of phase separation are simi-

lar in magnitude for the no IFE case, the Girifalco–Good equation, the Butler

equation with geometric mean activity coefficients treatment (Eq. 3.11), and

the weighted mean interfacial composition approach. Such behavior suggests

that the inclusion of bulk–surface partitioning is more important for deter-

mining the structure of the surface phase than the inclusion of σls. At RH

values further below the onset of LLPS δsbest becomes much smaller again

for the no IFE case, the Girifalco–Good equation, the the Butler equation

with geometric mean activity coefficients treatment (Eq. 3.11), approaching

the physical limit of a three-dimensional surface phase (δsbest = 0.1 nm) in

agreement with Schmedding and Zuend (2023). This is likely due to the

fact that the energetic contributions of σαβ are much larger than those of

σls and that lower values of δs correspond to lower values of σs⋆. The results

reported by Schmedding and Zuend (2023), which did not account for the en-

ergetic penalty of the bulk–surface interface, found that thinner surfaces are

more energetically favorable for well-mixed particles. The inclusion of this

interfacial contribution suggests that the most favorable surface thickness is

dynamic; typically favoring a thin surface phase in dilute aqueous droplets.

Moreover, in some cases a thicker surface is preferred to a thinner one, espe-

cially close to the onset of LLPS. This could suggest a potential mechanism

wherein LLPS may occur initially as a form of bulk–surface partitioning with

a gradual thickening of the surface phase before an additional distinct bulk

phase forms. It is possible that such behavior may be responsible for some

of the observed size-limited phase separation behavior reported in previous

studies since, with limited depth resolution in an experiment, it is difficult to

distinguish between a thick surface phase that is enriched in organic species

and a thin, organic-rich phase β in particles in which such a configuration

for the surface may be favorable.
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Figure 3.9: The δs value corresponding to the overall minimum in Gibbs
energy of a 250 nm dry diameter particle for each interfacial tension treat-
ment. The particle was composed of water, 1,2,6-hexanetriol, and ammonium
sulfate with a 2:1 organic-to-inorganic dry mass ratio. δs values between 0.1–
17.5 nm were tested.
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3.7 Conclusions

Atmospheric aerosol particles may exhibit liquid-liquid phase separation (e.g.,

You et al., 2014; Huang et al., 2021). Recent observations have noted that

some aerosol systems may exhibit size-dependent LLPS wherein smaller par-

ticles undergo LLPS under more extreme conditions (e.g. substantially lower

RH), than large particles. This study aims to explore the interactions be-

tween phase separation, bulk–surface partitioning, and LL interfaces in aerosol

particles through the extension of a previously developed bulk–surface par-

titioning model which now includes the coupling with a liquid–liquid phase

separation model. Various treatments for the energetic contribution of LL

interfaces are explored. For systems with greater miscibility among the solu-

tion components, the Girifalco–Good equation and the Butler equation more

accurately reproduce measured interfacial tensions. For systems exhibiting

increased immiscibility among components, Antonov’s rule performs better

than the other approaches. The inclusion of LL interfacial tension terms and

bulk–surface partitioning leads to a predicted lowering of the separation RH

of LLPS in many systems. This reduction in the separation RH was most

pronounced for particles with wet diameters below 50–70 nm. The weighted

mean composition approach and Antonov’s rule led to the largest decreases

in the predicted separation RH for all of the systems examined in this work.

For the smallest particle sizes studied (10 − 50 nm in wet diameter), these

two approaches lead to substantial suppression of LLPS to below 40% RH (∼
efflorescence RH of ammonium sulfate) or complete inhibition of LLPS. An

energetic contribution from the LL boundary between the surface phase and

its adjacent bulk phase was considered in this work. This interfacial tension

contribution is shown to be at its maximum near the, where the difference

in composition between the surface and bulk phases is greatest.

While numerous studies have examined LLPS in larger particles and

macroscopic bulk solutions, studies on LLPS in submicron-sized particles

are scarce (Kucinski et al., 2019; Ohno et al., 2023; Ott and Freedman, 2020;
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Ott et al., 2021). For small particles, it can be difficult to experimentally

distinguish between a surface phase of more than monolayer thickness phase

and a thin bulk phase in a core–shell configuration, since the minimum re-

quired thickness to call a surface layer a “regular” liquid phase rather than a

multilayer surface is a matter of perspective. The interplay of bulk–surface

partitioning, interfacial tensions, and LLPS hint at the difficulties in con-

ducting measurements on nanoparticles. Measurements of size-dependent

particle properties in the submicron range should be contactless. Contact

with the particle (surface) will change the surface area to volume ratio, may

generate additional interfaces, induce bulk–surface partitioning feedbacks,

and indirectly influence the targeted particle properties. The applicability

of measurements performed on macroscopic systems for microscopic droplets

needs to be considered carefully. Most LL interfacial tension measurements

are made using bulk solution techniques; therefore, caution is warranted

when extrapolating these data to sub-100 nm particles, for which deviations

from bulk solution are pronounced. This study highlights the interest in

additional measurements covering sub-100 nm particles to provide guidance

for constraining model parameters. This work represents a step towards

more physically realistic representations of aerosol particles accounting for

LL interfaces and size-dependent LLPS behavior. While offering options for

interfacial tension treatment, this model remains predictive and broadly ap-

plicable in its design. It will allow for a predictive treatment of particles in

the ultrafine aerosol regime and aids in connecting measurements taken on

larger particles to their smaller counterparts.

The interfacial tension at the αβ interface, and the surface energies of

phases α and β may be used to predict if a particle’s equilibrium morphol-

ogy is core–shell or partially engulfed. Because partially engulfed morpholo-

gies require additional considerations, these morphological questions are a

direction for future studies.
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4.1 Preface

In Chapter 3, it was found that the inclusion of interfacial tension between

two liquid phases, α and β, acts in competition with the interfacial tension

between the underlying bulk phase, l, and the surface phase above it, s.

The interfacial tension between α and β reduces the relative humidity at

which a particle will phase separate as a function of spherical equivalent

diameter. The interfacial tension between l, which may be β or α, and

s raises the relative humidity at which a particle will phase separate as a

function of spherical equivalent diameter. All of the treatments except for

one in chapter 3 rely on estimates of the pure component surface tension

of each species in an aerosol particle. Chapter 4 introduces three different

machine learning models to estimate the pure component surface tensions of

atmospherically relevant organic compounds. This chapter aims to develop

a model that can take molecular structure and temperature as inputs and

return the surface tension of a pure compound at said temperature.
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4.2 Abstract

Atmospheric aerosols are complex mixtures of highly functionalized organic

compounds, water, inorganic electrolytes, metals and carbonaceous species.

The surface properties of atmospheric aerosol particles can influence many

of their properties including aerosol–cloud interactions and heterogeneous

chemical reactions. The effects of the various compounds within a particle

on its surface tension depend in part on the pure–component surface ten-

sions. Many of the myriad of organic compounds of interest do not have

easily accessible pure–component surface tension values. In this work, a

compiled database of experimental pure–component surface tension data,

covering a wide range of organic compound classes and temperatures, are

used to train four different types of machine learning models to predict the

temperature-dependent pure–component surface tensions of atmospherically

relevant organic compounds. The trained models process input information

about the molecular structure of an organic compound, initially in form of a

Simplified Molecular Input Line Entry System string, alongside temperature

to enable predictions. It was found that extreme gradient-boosted descent

along with Molecular ACCess System key descriptors of molecular structure

provided the best balance of derived input complexity and model perfor-

mance. Additionally, a simplified model based only on molar mass, elemen-

tal ratios, and temperature as inputs, was developed for use in applications

where molecular structure information is incomplete. We demonstrate that

including predicted pure–component surface tension values in thermodynam-

ically rigorous bulk–surface partitioning calculations may modify the critical

supersaturations necessary for cloud droplet activation.

Introduction

Atmospheric aerosols are suspensions of particles and the gas phase that sur-

rounds them. Atmospheric aerosol particles can modify the global climate

both directly by scattering and reflecting incoming and outgoing solar radi-
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ation and indirectly through their impacts on clouds by acting as cloud con-

densation nuclei (CCN) for liquid droplets or ice nucleating particles (INP)

in ice and mixed-phase clouds (Aitken, 1881; Twomey, 1974). The activation

of aerosol particles into cloud droplets is governed by several factors. The

critical supersaturation necessary for cloud droplet activation is given by the

global maximum of the following equation (Köhler, 1936):

S = aw exp

(
4σMw

RTρwDp

)
. (4.1)

Here, S represents the equilibrium saturation ratio, aw is the activity

of water in the particle and Mw and ρw are the molar mass and density of

water, respectively. R is the gas constant, T is the temperature, Dp is the

aerosol particle diameter and σ is the equilibrium droplet surface tension.

This equation can be broken up into the Raoult (or solute) effect which is

described by aw and the Kelvin (or surface effect) which is represented by

the exponential factor in Eq. (2.1).

Recently, the role of surface properties and corresponding feedbacks on

the Raoult effect in the activation of aerosol particles into cloud droplets has

come under scrutiny (Sorjamaa et al., 2004; Nozière et al., 2014; Gérard et al.,

2016; Petters and Petters, 2016; Ruehl et al., 2016; Ovadnevaite et al., 2017;

Kroflič et al., 2018; Malila and Prisle, 2018; Davies et al., 2019; Gérard et al.,

2019; Schmedding and Zuend, 2023). Beyond cloud droplet activation, sur-

face tension is crucial in determining the size-dependent surface composition

of aqueous aerosol particles (Schmedding and Zuend, 2023). The compo-

sition of the surface of aerosol particles may influence multiphase chemical

reactions at/near the surface (Sebastiani et al., 2018; Pfrang et al., 2014), ice

nucleation capability (Knopf and Forrester, 2011), optical properties (Don-

aldson and Vaida, 2006), the presence or suppression of liquid–liquid phase

separation (Schmedding and Zuend, 2024), the transport of contaminants

such as per- and poly-fluoroalkyl substances (PFAS) (Johansson et al., 2019),
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and several other surface-influenced processes. For a thorough review of the

importance of aerosol surface properties, we refer to Wokosin et al. (2022).

Because of the aforementioned importance of aerosol surface properties,

various models have been developed that account for surface tension (σ) mod-

ifications as function of aerosol composition and coupled changes in bulk–

surface partitioning in aerosol particles (Topping et al., 2007; Vepsäläinen

et al., 2023; Kleinheins et al., 2023). Surface tension can be thought of phys-

ically as the work per unit surface area required to expand a 2-dimensional

phase boundary. On a molecular, chemical level, surface tension can be in-

terpreted as the additional energetic penalty that a molecule at a gas–liquid

interface experiences when it is unable to interact with other closely spaced

liquid-phase molecules around it in all directions (Berry, 1971).

Many of the models for predicting the effective surface tension of aerosol

particles and cloud droplets rely on accurate representations of pure–component

surface tension values (σ◦
i ) at temperatures of interest; hereafter, we use

superscript ◦ to denote a pure–component rather than mixture property.

Models for the surface tension of multicomponent solutions, which rely on

accurate values of pure–component surface tension (σ◦
i ), range in complex-

ity. The semi-empirical Eberhard model for binary solutions relates the

bulk mole fractions of species j and k (xj and xk) and their corresponding

pure–component surface tensions (σ◦
j and σ◦

k) to the solution surface tension

through a fitted parameter (sjk) as follows (Eberhart, 1966):

σ =
xjσ

◦
j + sjkxkσ

◦
k

xj + sjkxk

. (4.2)

A more complex model for binary solutions was derived by Connors and

Wright (1989) and later by Shardt and Elliott (2017):

σ = σ◦
k −

(
1− b(1− xj)

1− a(1− xj)

)
xj(σ

◦
j − σ◦

k), (4.3)
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where a and b are semi-empirical parameters. This approach was later shown

to be applicable to multicomponent solutions by Shardt et al. (2021) and an

extension of Eq. (4.2) by Kleinheins et al. (2024). The Sprow–Prausnitz–

Butler equation is a thermodynamically rigorous treatment of solution sur-

face tension that also relies on accurate σ◦
i values (Sprow and Prausnitz,

1966):

σ = σ◦
i +RT ln

(
asi
abi

)
. (4.4)

In Eq. (4.4), R is the ideal gas constant, T the absolute temperature, asi the

(chemical) activity of i in the surface phase, and abi the activity of i in the bulk

phase. Beyond predicting the value of σ for solutions, accurate values for σ◦
i

may also be necessary for predicting interfacial tensions between two liquids,

α and β, should liquid–liquid phase separation (LLPS) occur in an aerosol

particle. Approaches for interfacial tension estimation include Antonov’s rule

(Antonov, 1907):

σαβ =
∣∣σα − σβ

∣∣ (4.5)

and the Girifalco–Good equation (Girifalco and Good, 1957):

σαβ = σα + σβ − 2ϕ
√
σασβ, (4.6)

where σαβ is the interfacial tension between phases α and β, and ϕ is a fitted

parameter that is often assumed to be 1.0. The values of σα and σβ may

be calculated using one of the above models for solution surface tension or

other simplified mixing-rule-based models which depend on σ◦
i (Schmedding

and Zuend, 2024).

The importance of accurately describing σ◦
i is evident. However, because

of the high complexity and degree of functionality of many of the myriad of

organic aerosol compounds, a rather limited set of measurements for σ◦
i of

organic species exists (Hyvärinen et al., 2006; Riipinen et al., 2007; Lee et al.,

2017; Bzdek et al., 2016; Topping et al., 2007). As such, predictive models
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or simplified assumptions about the surface tensions of organic compounds

must be employed in many applications.

The simplest treatment of atmospherically relevant organic species is to

assume that all have the same value (Davies et al., 2019; Ovadnevaite et al.,

2017; Schmedding and Zuend, 2023). The unknown pure–component surface

tension of species has also been estimated based on measured values of chem-

ically similar species, or by extrapolating the measured behavior of highly

concentrated binary aqueous solutions of organic species toward the pure–

component limit (Schmedding and Zuend, 2023, 2024). Shardt and Elliott

(2017) estimated σ◦
i by fitting a simple linear equation with two parameters

(θ0,i and θ1,i) to include a temperature dependence:

σ◦
i = θ0,i + θ1,iT. (4.7)

This approach requires detailed temperature-dependent data for σ◦
i and was

only used for 15 organic compounds in Shardt and Elliott (2017).

Another semi-empirical approach to predicting the surface tension of pure

compounds is through the use of the Macleod–Sudgeon parachor, which is

defined as follows (Macleod, 1923; Sugden, 1924):

σ◦
i =

[
Pi(T ) · (ρli − ρvi )

]4
. (4.8)

The parachor, Pi, is a semi-empirical term relating the difference between

the liquid-state density (ρli) and the vapor-state density(ρvi ) to the pure–

component surface tension at a given temperature (T ). Owing to the sim-

plicity of the parachor approach, it has been used extensively in fields outside

of atmospheric science to predict the surface tension of organic compounds

(Log et al., 2023; Firoozabadi et al., 1988; Escobedo and Mansoori, 1998).

The parachor method can also be modified to predict the surface tension of

solutions (Weinaug and Katz, 1943; Hugill and Van Welsenes, 1986); how-

ever, it has been noted that such modifications perform poorly for solutions
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of water and organic compounds (Log et al., 2023). Indeed, the functional

form of Pi is poorly constrained and various methods have been proposed to

describe it as a weak function of temperature (Macleod, 1923; Sugden, 1924;

Quayle, 1953). Escobedo and Mansoori (1996) related the value of Pi to

a function of the reduced temperature (Tr), Tr = T
Tc
, through the following

equation:

P = P◦(1− Tr)
0.37 · Tr · exp

(
0.30066/Tr + 0.86442T 9

r

)
. (4.9)

P◦ was defined in the same work as follows:

P◦ = 39.643

(
0.22217− 2.91042× 10−3 R⋆

T 2
b,r

)
T 13/12
c P 5/6

c . (4.10)

R⋆ is the ratio of the molar refractivity of compound i to the molar refrac-

tivity of i in methane. Tb,r is the reduced boiling point of i, Tc is the critical

temperature, and Pc is the critical pressure of i. Escobedo and Mansoori

(1996) found that such equations were able to predict the pure–component

surface tension of 94 different compounds to within 2.5% absolute average

percent deviation. However, it should be noted that such an approach re-

quires knowledge of numerous physicochemical properties of individual com-

ponents in order to compute Pi and by extension σ◦
i .

Other approaches to calculate σ◦
i include Density Functional Theory (DFT)

(Lu et al., 2002; Fu et al., 2001). DFT relates the surface tension of i to the

difference of the Grand Potential (Ω) in the surface and in the bulk phase as

follows:

σ◦
i =

1

A

(
Ωs − Ωb

)
. (4.11)

A is the area of the surface in this case. In order to calculate Ωs and Ωb,

the Helmholtz energy and the chemical potential of species i must be known

(Tang and Gross, 2010). Using density functional theory to predict σ◦
i has
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several limitations. DFT calculations are computationally expensive and re-

quire numerous assumptions about the structure of the surface region. DFT

calculations may provide information about the orientation and density of

molecules in the surface region, however they are not typically used in appli-

cations in the field of aerosol science due to the aforementioned computational

limitations.

Another method of predicting σ◦
i at a given temperature is the Theory

of Corresponding States (Guggenheim, 1945), which relates the reduced sur-

face tension of a compound to the critical pressure and temperature of the

compound:

σ◦
i (T ) = σref

i

(
1− T

Tc

)ni

. (4.12)

Here, σref
i is a constant reference surface tension, n is an empirical (fit)

coefficient, equal to 11
9
in the ideal case but it may range between 1.16 and

1.5 in real systems (Guggenheim, 1945; Lielmezs and Herrick, 1986). T is the

absolute temperature of the system in K and Tc is the critical temperature

of i in K.

Numerous empirical parameterizations besides the aforementioned method

of Escobedo and Mansoori (1996) have been developed based on the critical

properties of compounds such as the approach of Brock and Bird (1955):

σ◦
i = P

2
3
c T

1
3
c Q(1− Tr)

11
9 . (4.13)

Here, The factor Q can be defined as follows:

Q = 0.1196

[
1 +

Tb,r ln(Pc/101325)

1− Tb,r

]
− 0.279. (4.14)

In Eq. (4.13) and Eq. (4.14), Pc has units of Pa, Tc, and Tb have units of

K, such that σ◦
i has units of Jm−2. Other empirical approaches include

additional input parameters, which must be known for predicting σ◦
i (Aleem
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et al., 2015):

σ◦
i = φ

M
1/3
i

6N
1/3
A

ρ
2/3
l [Hvap,Tb

+ Cp,l · (Tb − T )] . (4.15)

In Eq. (4.15), Mi is the molar mass (kgmol−1), NA denotes Avogadro’s num-

ber, ρl is the liquid-state density (kgm−3) at T and P . Hvap,Tb
is the enthalpy

of vaporization at Tb in units of J kg−1, Cp,l is the liquid-state heat capacity

at constant pressure at T in units of J kg−1K−1 and φ can be defined as

follows:

φ = 1− 0.0047Mi + 6.8× 10−6M2
i (4.16)

such that σ◦
i , as calculated by Eq. (4.15), has units of Jm−2. Gharagheizi

et al. (2013) proposed another empirical equation which relies on fewer input

parameters:

σ◦
i = 8.948226× 10−4

[
A2

Mi

√
Aω

Mi

] 1
2

, (4.17)

with A defined as

A = Tc − T − ω, (4.18)

where ω denotes the acentric factor of component i. σ◦
i carries units of Jm

−2.

We note that many of these empirical equations were not trained or evalu-

ated on diverse classes of input data. For example, Eq. (4.15) was only fitted

using alkanes of chain lengths from C1 to C10 and C12 and, thus, its utility for

functionalized organic compounds may be limited (Aleem et al., 2015). More

recent attempts to model the surface tension of functionalized organic species

have relied on statistical regression methods (Sanjuán et al., 2020; Randová

and Bartovská, 2016) or artificial neural networks (ANN) (Soori et al., 2021;

Rafie et al., 2023; Ojaki et al., 2023; Mousavi et al., 2021; Lazzús et al., 2017;

Lashkarbolooki and Bayat, 2018; Pierantozzi et al., 2021; G. R. Pazuki and

Sahranavard, 2011; Tiejun Xu and Khanghah, 2019).

Artificial neural networks loosely mimic the activity of a brain by con-
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taining mathematical representations of neurons grouped into layers. Each

artificial neuron contains an activation function that takes inputs and returns

the value of said function similar to a biological neuron’s action potential in

the brain of an animal. Artificial neurons are then grouped into sequences of

layers. The artificial neurons in each layer are connected to both the previ-

ous and subsequent layers of artificial neurons such that the outputs of the

previous layer become the inputs of the current layer, with the final layer

producing the output of interest. As the activation functions for each neuron

in each layer may return different values, the input values are transformed

by passing them through the multiple layers of neurons until an acceptable

result is produced. In a regression problem where a single value is desired,

in this case, surface tension, a final single neuron is used to generate the

output. The number of inner layers and the number of neurons per layer in

this type of artificial neural network must be found through a trial and error

procedure to avoid underfitting or overfitting of the model. A brief summary

of different statistical and machine learning (ML) modeling approaches for

estimating the surface tension of organic compounds follows.

Sanjuán et al. (2020) used surface tension values for 87 different alco-

hols and compared models based on various combinations of temperature,

triple point, normal boiling point, and critical temperatures; triple point and

critical pressures, critical compressibility factor, critical volume, molar vol-

ume, molar mass, radius of gyration, and acentric factor. They found that

models that depended on temperature, critical temperature, critical pressure,

critical volume, molar volume, and acentric factor had the best correlations

with the measurements in question (Sanjuán et al., 2020). Roosta et al.

(2012) used an ANN with a single hidden layer and 20 nodes and was able

to accurately predict the surface tensions of organic compounds across a

broader temperature range than Escobedo and Mansoori (1996), with inputs

based on a component’s critical pressure, acentric factor, reduced normal and

boiling temperature, and specific gravity at the compounds normal boiling
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point temperature. Randová and Bartovská (2016) used a group contribu-

tion method and Eq. (4.12) to predict the surface tension of straight-chain

and branched alkanes.

Lazzús et al. (2017) used 46 different functional groups, the molar mass of

the compound, and the absolute temperature to predict the surface tension

of different ionic liquid compounds using 1 hidden layer with 30 neurons fol-

lowed by a gravitational search algorithm to predict σ◦
i . Lashkarbolooki and

Bayat (2018) specifically examined the surface tension of alkanes and alkenes

using an ANN with 1 hidden layer with 27 neurons that took absolute temper-

ature, critical temperature, and number of carbons as inputs. Mousavi et al.

(2021) also examined a functional-group-based approach for determining the

surface tension of ionic liquids using a combination of a firefly algorithm and

the differential evolution method to optimize a radial-basis function model

which takes chemical structure and temperature as inputs. Pierantozzi et al.

(2021) used a single hidden layer with 41 neurons which took reduced tem-

perature, boiling temperature, and acentric factor for organic acid species

to predict their surface tension. Another common application of ANNs is

in image recognition and related evaluation of graphical measurement data.

For example, Soori et al. (2021) was able to use an ANN to predict the sur-

face tension of binary solutions based on images taken during pendant drop

experiments.

Other types of ML-based approaches have been used to predict molecular

properties Yee and Wei (2012). A commonly used alternative to ANNs are

tree-based models. These models have recently been confirmed to perform

better for prediction problems when inputs are tabular as well as having

fewer model hyperparameters to tune Uddin and Lu (2024). The simplest

tree-based models are decision trees, which utilize a sequence of branching

nodes to classify the inputs and predict a value. While individual decision

trees are easy to interpret, they are prone to overfitting and may perform

poorly for compounds outside of the training data base Chen et al. (2020).
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Tree-based ensemble methods have also been developed as a way to create

more powerful models. Two such ensemble models are random forests and

gradient-boosted trees. Both techniques utilize multiple decision trees in

their model architecture to generate more robust predictions. Random forests

generate many decision trees, each of which is trained from a small subset of

the overall dataset, and takes the average of the predictions as a final result.

In comparison, gradient-boosted trees create many decision trees in sequence,

where each sequential tree is trained on the residuals of the previous tree’s

predictions. One of the more popular variants of gradient boosted trees is

extreme gradient boosted descent (XGB). XGB has been widely used and

generally has been found to perform well for predicting molecular properties

Boldini et al. (2023). An additional feature that is unique to an XGB model is

that it allows for explicit monotonic constraints on the relationship between

input values and model predictions. Such a parameterization allows for XGB

models to more easily represent physical behavior in a realistic manner, such

as the inverse relationship between T and σ◦
i wherein an increase in T leads

to a decrease in σ◦
i .

While a combination of various ML techniques and functional group-

based approaches may have a high degree of flexibility for many quantitative

structure–property relationship (QSPR) approaches, such approaches may

not be able to adequately represent numerous compounds to a high degree

of accuracy. For example, cis–trans isomerism may lead to substantial dif-

ferences in pure–component surface tension (Cicciarelli et al., 2007). Thus,

more thorough methods are desirable to characterize individual molecules

from their Simplified Molecular Input Line Entry System (SMILES) nota-

tion, which is a method of representing molecules as a single string of char-

acters. One such technique is known as molecular fingerprinting; it involves

translating a molecular structure into a series of integer codes that represent

the molecule’s structure. Two of the more common methods of molecular

fingerprinting are Molecular ACCess System (MACCS) keys and so-called
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Morgan fingerprints, both of which are widely used in the field of cheminfor-

matics to predict QSPR for different molecular properties (Consonni et al.,

2023).

MACCS keys are a set of 166 pre-defined patterns that can be present in

a molecule (Durant et al., 2002). Each of these patterns is associated with

a corresponding SMARTS (SMiles ARbitrary Target Specification) code.

SMARTS allow for the parsing of a given SMILES string to count the match-

ing patterns. Such a defined list of MACCS keys allows for shorter descrip-

tions of molecular features and thus lower computational cost when used as

inputs in QSPR models. Because SMARTS are designed to operate on the

SMILES, MACCS keys are interpretable by human readers since all that is

necessary is a reference table with MACCS key number and the correspond-

ing SMARTS code and molecular pattern. There are some disadvantages to

utilizing MACCS keys. For example, due to the limited number of patterns

which MACCS keys describe, they may not be able to accurately represent

more complex and nuanced patterns in a large, multifunctional molecule.

One example of this limitation is MACCS key 44, which is simply labelled

as ‘other’ and describes any feature not captured by the remaining 165 keys.

In comparison, Morgan fingerprints can encode much more information

about an individual molecule’s structure, albeit in a more abstract way. Mor-

gan fingerprints are in the family of extended-connectivity fingerprints, which

numerically encode each atom in a molecule and the local structure around

said atom within a given radius of adjacent atoms, typically two (Morgan,

1965). Recently, Orsi and Reymond (2024) developed a novel fingerprinting

technique that modifies hashed Morgan fingerprints to include data on the

chirality of each atom in a molecule, thus increasing the level of structural

detail.
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Molecular Descriptors

Temperature

Figure 4.1: A conceptual representation of the model inputs and outputs.

4.3 Methods

4.3.1 Data Collection and Processing

Surface tension data were collected for 1805 unique organic species reported

by Jasper (1972). In the aforementioned work, two T -dependent parameters

were fit to measured σ◦
i values to predict σ◦

i within 0.2–0.3 mJm−2 and used

to generate additional σ◦
i values as a function of T . With the addition of T

as a parameter, there were 12446 σ◦
i and T data pairs reported by Jasper

(1972), which were suitable for use in this work. Stereo-isomers were also

counted as two distinct compounds, where measurements were available and

sufficiently specific. Compounds with only one σ◦
i and T data pair were also

included to increase the size of the training data. However, the number of

compounds with a surface tension measurements at a single T was low; of the

12446 σ◦
i values, only 164 were limited to surface tension data at a single T .

Compounds included in the dataset contained the following elements: car-

bon (1805 distinct compounds), hydrogen (1763 distinct compounds), oxygen

(1143 distinct compounds), nitrogen (341 distinct compounds), sulfur (130

distinct compounds), phosphorus (73 distinct compounds), fluorine (78 dis-

tinct compounds), chlorine (148 distinct compounds), bromine (58 distinct

compounds), and iodine (30 distinct compounds).
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Figure 4.2 shows a two-dimensional kernel density estimate of both σ◦
i

and temperature for all compounds in the training and test databases. Fig-

ure C.1 shows the kernel density estimate for groups of compounds with more

than three unique SMILES that contain only one type of non-hydrocarbon

functional group; for example, compounds only containing carboxyl or amide

groups. Figure ?? corresponds to Fig. C.1 but for compounds with multi-

ple non-hydrocarbon functional groups. For example, all compounds that

contain a hydroxyl group and any other non-hydrocarbon functional group.

Reported T values in the complete set of data ranged from 113 to 523 K

and σ◦
i ranged from 8.4 to 68.8 mJm−2. For temperatures between 218 K

and 318 K, which corresponds to a typical range in the troposphere, there

are 5557 σ◦
i values, which corresponds to 44.7% of the total dataset. The

majority of the remaining data correspond to temperatures above 318 K.

From the dataset described in the preceding paragraphs, isomeric SMILES

were generated using OEChem v2.3.0 through PubChem release v2021.05.07

(OpenEye Scientific Software, 2024).A link to the complete database of com-

pounds and their SMILES, and σ◦
i –T pairs can be found in the Code and

Data Availability section at the end of this chapter.

4.3.2 Model Architecture

It is important to note that the overall architecture of a machine-learning

model, rather than the individual weights of a model, is itself tunable and im-

pacts model performance. Tunable model features that may constrain model

weights and overall performance are known as hyperparameters and also in-

clude algorithmic features such as learning rate and batch size. In order to

predict temperature-dependent σ◦
i values, various models and their hyperpa-

rameters were optimized and tested. It is likewise useful to determine which

categories of models produce the same or similar results if their hyperparam-

eters and weights are optimized. Thus, an extreme gradient boosted descent

(XGB), a decision tree (DT), random forest (RF), and K-nearest neighbors

(KNN) regression models were also tested. Prior to training the models, 10%
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Figure 4.2: A two-dimensional kernel density estimate of σ◦
i of all 1805 unique

compounds and the corresponding temperatures for which σ◦
i values were

reported. The median and mean σ◦
i values are 26.2 mJm−2 and 27.3 mJm−2,

respectively. The median and mean temperatures are 323 K and 329 K,
respectively.
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of the σ◦
i and T data pairs were randomly selected and set aside for testing

following model selection, hyperparameter tuning, and model training. For

consistency, the selected test data were kept the same for all of the model

types and architectures tested in this work.

A major concern that is often encountered when training ML models is

that of an overfitted model, i.e., one that it is only capable of reproducing the

training data reliably. In the event that a model is overfit, it may perform

poorly when novel inputs (here molecular structures of unseen compounds)

are introduced. One method to reduce the likelihood of overfitting a model

is through the use of k-fold cross-validation in the training stage. k-fold

cross-validation is the process of splitting up a training dataset into k slices,

typically five or ten slices (Nti et al., 2021), and then training the model on

k − 1 slices and validating the model performance on the remaining slice. A

model performance value is calculated for each slice used as validation data,

i.e. all permutations for a slice being the “remaining slice” are run; the mean

performance value is used to assess the overall model performance. Typical

performance metrics include the root mean square error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (4.19)

the mean square error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (4.20)

the mean absolute error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|, (4.21)
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the mean absolute percentage error (MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (4.22)

In Eqs. (4.19), (4.20), (4.21), and (4.22), n is the number of points in the

sample, yi is the original (known) value, and ŷi is the predicted value from the

model. Another model performance metric is the coefficient of determination,

R2:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (4.23)

In this work, MSE was selected as the primary model performance metric as

it is more sensitive to predictions with large errors and thus may lead to a

model that performs well for many different inputs.

An additional challenge in ML-based approaches for predicting molecular

properties is determining the optimal model parameters for a given model

type in order to maximize the model’s performance. Past methods for se-

lecting the best combination of model parameters involved grid searches or

random searches of parameter combinations. While robust, such approaches

can prove computationally expensive to thoroughly explore all possible pa-

rameter combinations. Bayesian optimization algorithms have been found to

perform quite well in a fraction of the time that traditional grid or random

searches require (Victoria and Maragatham, 2021). The hyperparameters

for all models in this work were optimized using the Optuna v3.6.1 (Akiba

et al., 2019) Bayesian optimization algorithm. All hyperparameter tuning,

model training, cross-validation, testing, and plotting were performed using

the CryoCloud JupyterBook (Snow et al., 2023).

Because both MACCS keys and Morgan fingerprints can provide useful

information about a molecule, a set of the above models was trained using ei-

ther MACCS keys or Morgan fingerprints along with temperature as inputs.

MACCS Keys and Morgan fingerprints were both generated from a com-
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ponent’s SMILES using RDKit v2024.3.5 (Landrum et al., 2024) in Python

v3.11.9. XGB models were developed using the XGBoost v2.1.0 (Chen and

Guestrin, 2016) and the RF, DT, and KNN models were generated using

SciKit-learn v1.5.1 (Pedregosa et al., 2011).

For situations wherein complete molecular structure information may not

be available, a simplified XGB model was also developed which took the

following molecular properties as inputs: temperature (T ), molar mass (Mi),

and the following atomic ratios: O:C, H:C, N:C, S:C, P:C, Cl:C, F:C, I:C,

and Br:C. These inputs were selected based on their likely availability from

field observations, such as from aerosol mass spectrometer measurements, as

well as values that could be easily calculated for surrogate compounds used

to represent the various organic aerosol components in chemical transport

models.

4.3.3 Model Testing

Given the three models introduced in this work, a comparison to past meth-

ods of predicting σ◦
i was carried out by utilizing the critical properties found

in Yaws (2009) along with Eq. (4.13) and Eq. (4.17) to predict σ◦
i for shared

compounds between those reported by Yaws (2009) and those reported by

Jasper (1972). Eq. (4.13) and Eq. (4.17) were specifically selected because

they relied on the fewest inputs among the empirical relationships discussed

in the introduction. Matched compounds were specifically selected out of

the test dataset that had been previously set aside from the training data to

avoid any possible artifacts from model training.

In order to determine if there were additional features that may influence

surface tension that were not accounted for by any of the models, the 100

poorest performing σ◦
i values were extracted from the best performing model

for each of the three types of model inputs. In the case of the simplified in-

puts, a Student’s t-test was performed for each of the model inputs, including

temperature, to determine whether there may have been a significant differ-

ence between these compounds and the remainder of the test dataset. For
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both the MACCS keys and the Morgan fingerprints, a Student’s t-test was

once again performed for temperature in comparison to the remainder of the

test data. However, to better understand any structural artifacts that may

not have been captured by the model, Tanimoto similarity values were cal-

culated for all combinations of compounds. Tanimoto similarity (Sj,k) is a

measure of the structural similarity between two compounds,

Sj,k =
j ∩ k

j ∪ k
, (4.24)

where j and k are the sets of fingerprints or descriptors that represent

molecule j and molecule k, respectively (Michael A Fligner and Blower, 2002).

In the case of two identical molecules, the Tanimoto similarity score is equal

to 1 and in the case of two molecules that do not share any overlapping

features, the Tanimoto score is 0. Following the calculation of Tanimoto

scores for all possible pairs of compounds, a similarity matrix can be con-

structed, which can then be used to construct hierarchical clusters of the

poorest-performing compounds.

4.3.4 Model Applications

As mentioned in the introduction, σ◦
i is an important parameter for deter-

mining the effective solution surface tension for a variety of environmentally

relevant systems. One such application is by utilizing the Butler–Sprow–

Prausnitz equation (Eq. 4.4) to compute the equilibrium surface compositions

and tensions of aerosol particles and cloud droplets, following the approach

of Schmedding and Zuend (2023). Such an approach relies on calculating the

activity coefficients of each species in a droplet using the Aerosol Inorganic–

Organic mixtures Functional groups Activity Coefficients (AIOMFAC) model

(Zuend et al., 2008, 2011). Because many aerosols are chemically complex

mixtures of secondary compounds formed from the emissions of biogenic pre-

cursors, two different systems were tested. The first system is comprised of

21 isoprene-derived organic compounds generated by the Master Chemical
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Mechanism (MCM) (Jenkin et al., 2015; Rastak et al., 2017) along with

ammonium sulfate (to represent inorganic electrolytes). The second system

consisted of 14 α-pinene oxidation products along with ammonium sulfate

(Rastak et al., 2017; Jenkin et al., 2012). For a complete list of the oxi-

dation/fragmentation products predicted by the MCM and their SMILES,

see Tables 4.2 and 4.3. Both systems were run assuming a water-free (dry)

particle diameter of 50 nm. The pure–component surface tension of water at

298 K was set to 71.98 mJm−2 for all systems (Jasper, 1972) and the pure–

component surface tension of ammonium sulfate was set to 184.5 mJm−2

following the approach of Dutcher et al. (2010) for inorganic electrolyte sys-

tems. Once the effective droplet surface tension is calculated as a function

of droplet composition, a Köhler curve can be calculated using Eq. (4.1).

The global maximum of S in Eq. (4.1) represents the critical saturation ratio

that must be reached or exceeded in the air surrounding that specific aerosol

particle for the particle to activate and grow into a much larger cloud droplet.

4.4 Results

Table 4.1 lists the values of the MSE, RMSE, MAE, MAPE, and R2 generated

from the test dataset. This dataset contains 1245 σ◦
i –T pairs or 10% of the

overall number of σ◦
i –T pairs used in this work. Each model (XGB, RF,

DT, and KNN) used the three input categories: Simplified inputs (Simp),

MACCS keys (MACCS), and Morgan fingerprints (MF). The MACCS-XGB

and the MF-XGB models had the largest R2 values of similar magnitude;

hence, they are considered the best predictive models for our application.

Overall, the MF-XGB performed slightly better than the MACCS-XGB for

predicting σ◦
i when considering all compounds. However, we note that the

models with MACCS keys inputs use substantially fewer independent (input)

variables than the models with Morgan fingerprint inputs, yet they perform

slightly better for three model types, and similarly in the case of XGB, as

the Morgan fingerprint approach.
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Table 4.1: Performance metrics generated form the 1245 test dataset pairs for
different input types (SMILES-generated MACCS keys, SMILES-generated
Morgan fingerprints, and simplified elemental ratios) and model types tested
in this work.

Input type Model type MSE RMSE MAE MAPE R2

Simplified

Extreme Gradient Boosting (XGB) 3.883 1.970 1.329 5.1% 0.905

K-Nearest Neighbors (KNN) 21.978 4.68 3.031 10.9% 0.463

Random Forest (RF) 5.537 2.353 1.640 6.2% 0.865

Decision Tree (DT) 7.342 2.709 1.883 7.0% 0.821

MACCS key

Extreme Gradient Boosting (XGB) 1.156 1.076 0.660 2.7% 0.972

K-Nearest Neighbors (KNN) 10.226 3.198 2.028 7.6% 0.750

Random Forest (RF) 1.872 1.368 0.916 3.7% 0.954

Decision Tree (DT) 2.725 1.651 2.203 4.7% 0.933

Morgan fingerprint

Extreme Gradient Boosting (XGB) 1.012 1.006 0.633 2.5% 0.975

K-Nearest Neighbors (KNN) 11.472 3.387 2.195 8.2% 0.720

Random Forest (RF) 3.126 1.768 1.252 5.0% 0.924

Decision Tree (DT) 4.080 2.020 1.460 5.6% 0.900
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Figure 4.3 shows the predicted σ◦
i values from the Simp-XGB, MACCS-

XGB, and MF-XGB modelsdescribed in Table 4.1 compared to reported σ◦
i

values from the test dataset selected from (Jasper, 1972). Also shown in

Fig 4.3 are the predictions from the empirical approaches of Gharagheizi

et al. (2013) (Eq. 4.17 and Eq. 4.18) and Brock and Bird (1955) (Eq. 4.13

and Eq. 4.14) with critical parameters taken from Yaws (2009). We note

that only compounds from the test data with critical parameters included

in Yaws (2009) are plotted, reducing the number of points shown to 429

from the test data. a Figure 4.3A shows the Simp-XGB model, Figure 4.3B

MACCS-XGB model, and Figure 4.3C shows the MF-XGB approach. In the

case of the Simp-XGB, performance was (expectedly) worse than for both the

MACCS-XGB and the MF-XGB models, although the model still performed

reasonably well with R2 = 0.905,MSE = 3.883, and RMSE = 1.970 mJm−2.

Both the MACCS-XGB and MF-XGB models generally perform better for

compounds with higher σ◦
i values than those with lower σ◦

i .

The previously described empirical approaches both performed poorly in

comparison to all three ML-based approaches shown in Fig. 4.3. The ap-

proach of Brock and Bird (1955) (Eq. 4.13 and Eq. 4.14) generally overpre-

dicted σ◦
i at higher reported σ◦

i values and the approach of Gharagheizi et al.

(2013) (Eq. 4.17 and Eq. 4.18) generally underpredicted σ◦
i in comparison to

the reference values from Jasper (1972),

For comparison to the more complex models, the importance of the vari-

ous simplified inputs used with the Simp-XGB model are shown in Fig. 4.4A.

Here, importance is quantified in terms of the explained variance of the sur-

face tension prediction. In the model with simplified inputs, T was responsi-

ble for 15.4% of the explained variance. Of the simplified inputs representing

molecular properties, the molar mass, O:C ratio, H:C ratio, and N:C ratio

were the most important and explained collectively 56.5% of the model’s vari-

ance. Because of the ease of interpreting MACCS keys, the top ten MACCS

keys that explained the most variance in the MACCS-XGB model were ex-
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Figure 4.3: The accuracy of the best-performing model (XGB) in compari-
son to a subset of the test data for each of the input types: (A) simplified
inputs, (B) MACCS keys, and (C) Morgan fingerprints. Also shown are es-
timations by the empirical methods of Brock and Bird (1955) (Eq. 4.13) and
Gharagheizi et al. (2013) (Eq. 4.17) for compounds coverd by both the test
dataset and the critical properties data available from Yaws (2009).
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tracted and are displayed in Fig. 4.4B. The temperature for which the model

is run explains the most substantial portion of the variance at 22.7% and

the ten most important MACCS keys explain 71.4% of the MACCS-XGB

model variance with those inputs. The following ten features were MACCS

keys corresponding to the following patterns. The most important individ-

ual MACCS key is NAO, which represents a substructure where nitrogen is

indirectly connected to an oxygen atom via any intermediate atom. pattern.

ACH2O represents a methylene group connected to any atom on one side

and to an oxygen atom on the other side. These atoms may be connected by

any type of bond. ACH2AACH2A represents a more complex pattern which

can be any two atoms between two methylene groups, which themselves are

between any other two atoms. In the event that the outer two atoms are the

same, this key represents a ring structure containing two methylene groups

and two other atoms between them. This key can also represent the same

sequence, but if one of the methylene groups is outside of the ring, the sub-

structure becomes one where a methylene group is connected to any atom

and then forms a ring structure with another methylene group and two other

ring atoms. CH3AACH2A represents a methyl group connected to any two

atoms, followed by a methylene group connected to another atom of any

type. The bonds between these atoms may be of any type as well. This

key can also represent a ring system where a methyl group is connected to a

sequence of atoms that includes a methylene group that is part of the same

ring. CH3ACH2A represents a methyl group connected by any bond to any

atom that is also connected by any bond to a methylene group. This methy-

lene group is further connected by any bond to another atom. N encodes the

presence of nitrogen atoms. A!N$A is a pattern that represents a nitrogen

atom that is part of a ring but is also connected to another atom outside the

ring. A!A$A!A represents a sequence of any four atoms wherein the first and

fourth atoms are not a part of a ring system and the second and third atoms

are a part of a ring system. N=A is a structure where nitrogen is connected
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to any other atom by a double bond. QQ 1 is a structure where any two

atoms which are neither carbon nor hydrogen are connected by any type of

bond. Cumulatively, these ten MACCS codes along with T explain 94.1% of

the variance in the model.

Figure 4.4C shows the SMILES for top ten Morgan fingerprints, the most

numerous and complex types of inputs used with the MF-XGB model. For

this model, somewhat surprisingly T was responsible for only 0.2% of the

explained variance. Oxygen stands out as the most significant non-carbon

element, with SMILES containing at least one oxygen atom accounting for

29.7% of the explained variance. Halogen groups come next, contributing

16.1% to the variance. Among them, fluorinated substructures are the most

impactful, explaining 9.8% of the variance, followed by iodine (3.1%), chlo-

rine (1.8%), and bromine, which has the smallest impact among the halogens

at 1.6%. Nitrogen and sulfur atoms contribute 8.7% and 5.7% of the vari-

ance, respectively. Phosphorus-containing substructures play a minimal role,

responsible for just 1.2% of the explained variance. For the less abundant

elements like bromine and phosphorus, their impact is likely small due to

being present in only a small subset of compounds considered.

To further understand the role of temperature in each of the models,

σ◦
i predictios were generated for humic acid and fulvic acid as a function

of temperature. Both humic and fulvic acid are commonly found in aerosols

from biogenic sources, including biomass-burning particles, and can therefore

experience a broad range of temperatures from very high values near combus-

tion events to much lower temperatures when they are lofted to higher alti-

tudes in the atmosphere. Therefore, the surface tension of these compounds

was studied from 200 K to 350 K to include atmospherically relevant temper-

atures that any aerosol species may experience as well as temperatures that

biomass-burning species may experience in a smoke plume. Temperature-

dependent surface tensions for humic acid are shown in Fig 4.5A and for

fulvic acid are shown in Fig. 4.5B. It is important to note that the Simp-
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Figure 4.4: Percentage of variance in the XGB models explained by temper-
ature and (A) simplified molecular properties, (B) the ten most important
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ten most important Morgan fingerprint bit vectors. In panel (B), the symbol
‘A’ represents any element, ‘!’ represents a non-ring bond, ‘$’ represents any
bond in a ring system, ‘=’ represents a double bond, and ‘Q’ represents any
element that is neither carbon nor hydrogen.
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XGB, MACCS-XGB, and MF-XGB models were constrained during model

training in such a way that σ◦
i decreased monotonically with respect to T , but

not forcing a particular constant slope. σ◦
i exhibited an approximately linear

dependence on temperature across this range (consistent with typical expec-

tations, e.g., Eq. 4.7). σ◦
i decreased by approximately 18 mJm−2 over the

shown temperature range (200 K tp 350 K) in the case of the MF-XGB model

for both compounds (i.e., a slope of ∼ −0.12 mJm−2K−1). For the MACCS-

XGB model and the Simp-XGB model, σ◦
i decreased by slightly more than

15 mJm−2 for both compounds over the shown temperature range (200 K tp

350 K). In the case of humic acid, all three models predict slightly distinct

σ◦
i values for the same compound with the MF-XGB yielding the highest

value followed by the MACCS-XGB model and then the simplified model.

For fulvic acid, the MACCS-XGBmodel and the Simp-XGB predict similar

values while the MF-XGB has lower predicted values for σ◦
i . Also shown in

Fig. 4.5A are measured surface tensions of aqueous humic acid solutions at

295 K Aumann et al. (2010); Klavins and Purmalis (2010). In Fig. 4.5 A, all

three models have lower predicted surface tensions than the solution, with

MF-XGB most closely replicating the experimental values. Figure 4.5B also

shows measured surface tensions of aqueous fulvic acid at 298 K (Aumann

et al., 2010). For this case, the MACCS-XGB slightly over predicts σfulvicacid◦ ,

with Simp-XGB best replicating the measurements and MF-XGB substan-

tially under predicting σfulvicacid◦ by nearly 10 mJm−2. Note that none of the

plotted measurements represent pure humic or fulvic acid, respectively; the

experimental data were taken from the highest concentrations reported in

their respective works. For the aqueous humic acid solution, this concentra-

tion was 10.7 g l−1 (Aumann et al., 2010) and 1 g l−1 (Klavins and Purmalis,

2010). For the aqueous fulvic acid solution, the concentration was 10.7 g l−1

as well (Klavins and Purmalis, 2010). Therefore, these values ought to be

thought of as upper bounds for σhumicacid◦ and σfulvicacid◦ .

The 100 σ◦–T data point pairs with the highest error for each of the
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Figure 4.5: Temperature dependence of σ◦
i for two biomass burning

tracer species not found in the test data: (A) a representative humic
acid structure (C1C2C=CC1C(C2C(=O)O)(C(=O)O)[N+](=O)[O-
] and (B) a representative fulvic acid structure
(CC1(CC2=C(CO1)C(=O)C3=C(O2)C=C(C(=C3C(=O)O)O)O)O).
The temperature range reflects temperatures that may occur within a smoke
plume and the troposphere. We note that the reported measurement values
were taken from aqueous solutions at the highest concentration of humic or
fulvic acid, respectively (Klavins and Purmalis, 2010; Aumann et al., 2010).
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Simp-XGB, MACCS-XGB, and MF-XGB models were extracted from the

test dataset to determine if there were additional shared features that may

have contributed to their poor performance. Figure S3A shows the residuals

of these compounds compared to reported σ◦
i . We find that all three cate-

gories of inputs tend to overpredict σ◦
i when the reported σ◦

i value is lower

than 20 mJm−2. Likewise the models tend to underpredict σ◦
i when the re-

ported value is between 20 and 50 mJm−2. Figure S3B shows model error

as a function of T , in this case, there does not appear to be a systematic

bias in the error of the poorest performing cases. Of these paired data, the

mean temperatures were 332.9 K for the Simp-XGB model, 338.0 K for the

MACCS-XGB model, and 330.3 K for the MF-XGB model. In the case of

the simplified inputs, there was a statistically significant (p < 0.05) decrease

in the mean molar mass of the poorest performing predictions in comparison

to the remainder of the test data. Likewise, there was also a statistically

significant decrease in the mean Br:C, I:C, and P:C ratios from the rest of

the test data. No other elemental ratio exhibited a significant difference.

The average T was slightly higher in the poorest performing data, however,

it is important to note that the statistical p-value for this was only weakly

significant (0.05958). For a complete list of Student’s t-test results for the

inputs to the simplified model, please see Table S1. There were no signifi-

cant differences between the mean T of the poorest performing data and the

remainder of the test data in the MACCS-XGB and MF-XGB models.

For the more complex model inputs (MACCS keys and Morgan Finger-

prints), similarities between poorly performing compounds were analyzed.

Similarity scores between individual pairs of SMILES within the 100 poorest

performing compounds were calculated using Eq. (4.24). The distance, or

dissimilarity, between two compounds can be computed as 1 − SA,B. Com-

pounds were then grouped hierarchically based on their distances from one

another. Figures S4 and S5 show these hierarchical clusters for the MACCS-

XGB model and MF-XGB model. It can be seen that most compounds are

190



Chapter 4 : Pure–Component Surface Tensions

more dissimilar than similar with only a small fraction of the compounds

plotted clustered with distances below 0.5, marked by colored branches in

those figures. It is also important to note that there are minimal differences

between the clustering outputs.

As an example of the utility of the model developed in this work, the

effect of using ML-generated surface tension values of organics in a mix-

ture, instead of assuming a single, constant value for all organics, is now

explored. A system of 21 surrogates comprised of isoprene-derived multi-

generation oxidation and/or fragmentation products was generated based on

predictions by the Master Chemical Mechanism (Jenkin et al., 2015; Ras-

tak et al., 2017) and used as input with the models described in this work.

The predicted pure–component surface tensions were used as inputs along

with the AIOMFAC-based bulk–surface partitioning model of Schmedding

and Zuend (2023) to predict the critical supersaturation for mixed organic–

inorganic aerosol particles with a water-free (dry) diameter of 50 nm. The

particles also contain ammonium sulfate, with the organic dry mass fraction

of 0.73. The σ◦
i of ammonium sulfate was predicted using the approach of

(Dutcher et al., 2010). Figure 4.6A shows the Köhler curves using model-

predicted σ◦
i values for the isoprene-derived system. Figure 4.6B shows the

Köhler curves using model-predicted σ◦
i values for an analogous system com-

prising α-pinene ozonolysis products and ammonium sulfate with a water-

free (dry) diameter of 50 nm and the organic dry mass fraction set to 0.8.

Figures 4.6A and 4.6B also show case where it is assumed that all organic

species have the same surface tension as water and the case where all organic

species have a surface tension of 35 mJm−2 (Davies et al., 2019; Ovadnevaite

et al., 2017). All inorganic electrolytes use the values reported by Dutcher

et al. (2010) in all systems. In the isoprene system, there is more variability

between the predicted solution surface tensions shown in Figure 4.6C and,

thus, more variation in the estimated critical supersaturations. In the case of

the α-pinene system, there is less variability between the predicted solution
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surface tensions shown in Figure 4.6D and all three models lead to similar

predictions of the critical supersaturation for cloud droplet activation. It is

important to note that the equilibrium bulk–surface partitioning framework

laid out in Schmedding and Zuend (2023) allows the predicted σ to vary in a

range exceeding the highest and lowest σ◦
i values, which may occur when the

surface exhibits highly non-ideal mixing, e.g. under dilute conditions. This is

shown in Fig. 4.6D wherein σ > σ◦
w near the point of cloud droplet activation.

Furthermore, interactions between liquid–liquid phase separation, the three

dimensional configuration of a particle, such as whether it is of core–shell

or partially engulfed morphology, and the selected treatment of interfacial

tension may reduce this behavior in the bulk–surface partitioning framework

(Schmedding and Zuend, 2023, 2024)
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Figure 4.6: Predicted Köhler curves for (A) the isoprene oxidation products
system and (B) the α-pinene oxidation products system at 298 K for particles
with a dry diameter of 50 nm. The dry mass fraction of organic species is
(A) 0.73 and (B) 0.8, with ammonium sulfate as the remainder. Also shown
are Köhler curves generated with the assumption that all organic species
have the same pure–component surface tension as water (σ◦

org = σ◦
w) or the

assumption used in other studies that σ◦
org = 35 mJm−2(Davies et al., 2019;

Ovadnevaite et al., 2017). Panels (C) and (D) show the solution surface
tension corresponding to panels (A) and (B) as a function of particle size.
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Table 4.2: Predicted organic surface tensions for the Isoprene SOA surrogate
system as shown in Fig 4.6A at T = 298 K. Isoprene SOA species and
SMILES were taken from the Master Chemical Mechanism (MCM) (Jenkin
et al., 2015; Rastak et al., 2017).

MCM Name SMILES Morgan
fingerprint
σ◦
i [mJm−2]

MACCS
keys
σ◦
i [mJm−2]

Simplified
inputs
σ◦
i [mJm−2]

IEB1OOH OCC(O)C(C)(OO)C=O 22.90 39.92 44.69

IEB2OOH OOC(C=O)C(C)(O)CO 25.24 38.33 44.69

C59OOH OCC(=O)C(C)(CO)OO 45.07 36.68 44.69

IEC1OOH OCC(=O)C(C)(CO)OO 45.07 36.68 44.69

C58OOH O=CC(O)C(C)(CO)OO 36.78 33.90 44.69

IEPOXA CC(O)(CO)C1CO1 28.22 36.40 35.22

C57OOH OCC(O)C(C)(OO)C=O 22.90 39.92 44.69

IEPOXC CC1(CO1)C(O)CO 35.52 36.40 35.22

HIEB1OOH OCC(O)C(CO)(OO)C=O 37.78 45.31 44.71

INDOOH OCC(ON(=O)=O)C(C)(CO)OO 43.45 39.85 44.90

IEACO3H CC(O)(C1CO1)C(=O)OO 35.47 36.34 46.44

C525OOH OCC(=O)C(CO)(CO)OO 54.89 44.48 44.71

HIEB2OOH OOC(C=O)C(O)(CO)CO 34.14 45.79 44.71

IEC2OOH OCC(=O)C(C)(OO)C=O 43.76 38.42 46.44

INAOOH OCC(C)(OO)C(O)CON(=O)=O 40.73 39.93 44.90

C510OOH O=CC(O)C(C)(OO)CON(=O)=O 36.43 38.89 50.10

INB1OOH OCC(OO)C(C)(CO)ON(=O)=O 33.35 39.85 44.90

IECCO3H CC1(CO1)C(O)C(=O)OO 33.82 35.94 46.44

INCOOH OCC(OO)C(C)(O)CON(=O)=O 28.75 39.93 44.90

INB2OOH OOCC(O)C(C)(CO)ON(=O)=O 37.22 39.97 44.90

Tetrol dimer CC(O)(CO)C(O)COC(C)(CO)C(O)CO 23.20 37.48 41.55

(NH4)2SO4 [NH4+].[NH4+].[O-]S(=O)(=O)[O-] 184.5*

* Calculated using the approach of Dutcher et al. (2010).
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4.5 Discussion

Previous attempts to predict σ◦
i have relied on empirical parameterizations,

as mentioned in Section 4.2. These equations all rely on various molecular

properties, including but not limited to Tc, Tb, Pc, Hvap, ρl, ρv, R⋆, which

must be measured or predicted indirectly through application of additional

models. This limits the utility of such surface tension models for real-world

applications in environmental systems, wherein the pure–component proper-

ties of many compounds are poorly constrained due to the complex mech-

anisms by which they form and the wide variety of multifunctional organic

compounds encountered in the atmosphere (Goldstein and Galbally, 2007).

Additionally, many of these empirical models are only trained on specific

compound classes. This likewise leads to limits on the ability of these mod-

els to predict σ◦
i for compounds outside of the classes for which they are

trained. These limitations are evident in Fig. 4.3, wherein the three types of

inputs discussed in this study (simplified inputs, MACCS key, and Morgan

fingerprint) all yield more accurate predictions in comparison to the empirical

parameterizations. It should be noted that, although the models developed

in this study were never trained on the test data, the empirical models that

were used for comparison were never trained on these data either. It is there-

fore possible that these empirical models may show better performance when

they are used with the compound classes and datasets for which they were

trained.

The models discussed in this study rely on structural properties of molecules

along with temperature to predict σ◦
i . The most detailed description of

molecular structure comes in the form of the Morgan fingerprints, however,

such an approach has several drawbacks which limit its utility. The fore-

most among these is that the most accurate model, MF-XGB, performs only

marginally better than the next most detailed series of inputs, MACCS-XGB,

despite having over ten times the number of inputs for molecular descriptors

(2048 vs 166). Of equal importance, MACCS keys are inherently human
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readable whereas Morgan fingerprints rely on complex descriptions of the

relative positions of each atom in a molecule simultaneously. This may make

model analysis in terms of the importance of individual substructures mathe-

matically difficult. Thus, it is recommended to use the MACCS-XGB model

in the case where SMILES are known and the Simp-XGB model in cases

where SMILES are unknown but the elemental ratios and molar weight of

a compound are readily available. It is also possible that other types of

model inputs may perform well in predicting surface tension. Functional

group-based approaches, such as one analogous to that used by AIOMFAC

to describe organic compounds, are an additional option. It should be noted

that such approaches may not capture the three-dimensional structure and

relative orientations of functional groups as well as the MACCS keys or Mor-

gan fingerprints. Likewise, some compounds with more reactive functional

groups, such as peroxyacids, may be difficult to isolate in a laboratory set-

ting. Thus accurate surface tension measurements of these compounds are

difficult to find.

In terms of specific feature importance from the models discussed in this

work for predicting σ◦
i , Figure 4.4 indicates that nitrogen-containing and

oxygen-containing molecular substructures have a large impact on σ◦
i for all

three categories of inputs. Despite a substantial reduction in the number

of input parameters, the Simp-XGB model was able to perform reasonably

well with R2 = 0.905 and RMSE = 1.970 mJm−2 based on the test dataset

described in this work, in comparison the MACCS-XGB model achieved R2 =

0.972 and RMSE = 1.076 mJm−2, and the MF-XGB model R2 = 0.975 and

RMSE = 1.006 mJm−2. Indeed for applications for which detailed structural

information about a species may not be readily available, this model may

perform well enough as a first-order approximation. It is also important

to note that the simplified model may perform more poorly for compounds

containing the elements I, P, or Br, as well as for compounds with lower molar

masses. This may be attributed to the fact that there is a small number of
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compounds with the aforementioned elements in the training data and that

the behavior of smaller, yet still highly functionalized, compounds may not

be well captured by a model that only relies on temperature, molar mass,

and elemental ratios as inputs.

4.6 Conclusions

In this work, three different approaches for characterizing organic molecules

and predicting their temperature-dependent pure–component surface ten-

sions are compared to one another. For each approach to molecular character-

ization, four different ML approaches were used: extreme gradient boosting,

random forests, decision trees, and K-nearest neighbors. We find that the

extreme gradient boosting approach results in the highest R2 in comparison

to observations, regardless of which method of molecular characterization for

input is used. From each of the three approaches, the most important molec-

ular features were extracted. The molecular properties in the dataset used in

this work with the highest importance were functional groups that contained

nitrogen and oxygen along with ring structures. More broadly speaking, a

combination of Mi, T , O:C ratio, N:C ratio was able to explain 80.1% of

the variance in a simplified model which only relied on molecular ratios, Mi,

and T as inputs. Such a model is useful in cases wherein the exact structure

of an individual chemical species is not readily available. In the case where

more detailed structural information is available in the form of SMILES, we

find that using MACCS keys as inputs provides the best balance of model

performance and input simplicity.

To demonstrate the importance of accurately characterizing temperature-

dependent pure–component surface tension values, a Köhler curve was gener-

ated for an isoprene SOA surrogate system. It was found that the inclusion

of the ML-based approaches for surface tension led to substantial changes

of the predicted droplet surface tension evolution during hygroscopic growth

compared to the frequently used implicit assumption of σ◦
org = σ◦

w. The use

198



Chapter 4 : Pure–Component Surface Tensions

of appropriate pure–component values is also shown to impact in the criti-

cal supersaturation necessary for cloud droplet activation. It is noted that

some atmospherically relevant compounds, such as peroxyacids and peroxy-

acyl nitrates are not well represented in the dataset used in this work and

that further measurements of the pure–component surface tensions of such

compounds at atmospherically relevant temperatures may be necessary to

improve model performance for these compound classes.

4.7 Code and Data Availability

The training and test data used in this work, the Simp-XGB, MF-XGB,

and MACCS-XGB models, and the code used to optimize model hyperpa-

rameters and train models can be found at the following Zenodo archive:

10.5281/zenodo.13936980.
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5
Conclusions and Future Work

5.1 Conclusions

In this work, a rigorous modeling framework for surface and interfacial ener-

gies on and inside aerosol particles was developed. In Chapter 2, an initial

framework for partitioning between the interior bulk and a three-dimensional

surface phase was laid out. It was found that the inclusion of bulk–surface

partitioning in a thermodynamically sound manner led to substantial modifi-

cations to the internal and surface compositions of the aerosol particle. Such

compositional differences were most pronounced in particles with sphere-

equivalent diameters below approximately 50 nm. Including bulk–surface

partitioning led to reductions in the critical supersaturation for cloud droplet

activation for numerous systems compared to traditional assumptions that

did not account for bulk–surface partitioning. The bulk–surface partitioning

results were sensitive to the selection of reference state surface tensions as
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well as the thickness of the surface phase. Tuning these two values allowed

for the generation of Köhler curves that agreed well with measured data for

several systems.

Chapter 3 compared four different approaches for modeling the interfacial

tension that exists between two distinct liquid phases. The interfacial tension

between two bulk liquid phases and between a bulk and surface phase was

modeled using these four approaches. More extreme models of interfacial

tension better matched measured interfacial tensions in bulk systems with

very limited miscibility between phases. In systems with higher degrees of

miscibility between components, it was found that less extreme models of

interfacial tension were able to better replicate measurements. All of the

interfacial tension models, except for one, were sensitive to the selection of

pure component surface tension values. The inclusion of interfacial tension

parameterizations had competing effects: the interfacial tension between two

bulk phases led to reductions in the onset relative humidity of liquid–liquid

phase separation, while the inclusion of the interfacial tension between a liq-

uid and surface phase raised the onset relative humidity of liquid–liquid phase

separation. This effect was most pronounced at particle sphere-equivalent di-

ameters below approximately 100 nm. At particle sizes below approximately

30 nm, the energetic penalty from the liquid–liquid interface became stronger

than the liquid–surface interface in the systems studied, suppressing phase

separation.

Chapter 4 sought to further understand the role of an individual com-

pound’s pure-component surface tension by creating three different machine

learning-based models capable of predicting the pure component surface ten-

sion of a compound from its molecular structure or properties. The simplest

of the three models took elemental ratios and molecular weight as inputs.

The second most complex model used MACCS keys derived from SMILES

codes as inputs. The most complicated model inputs were Morgan finger-

prints generated from SMILES codes. All three models performed better
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than past semi-empirical approaches to predicting pure component surface

tension. However, the difference in model performance between the MACCS

key-based model and the Morgan fingerprint-based model was negligible in

comparison to the additional complexity introduced by using more detailed

inputs. The models were capable of replicating the monotonic temperature

dependence of surface tension across atmospherically relevant temperature

ranges. The inclusion of different model inputs led to small differences in

the Köhler curves predicted for isoprene degradation products and α-pinene

degradation products.

In this work, the bulk–surface partitioning behavior of atmospheric aerosols

with a single well-mixed phase was described using a thermodynamically rig-

orous and consistent approach for the first time. The interactions between

liquid–liquid phase separation, bulk–surface partitioning, and gas-particle

partitioning were then explored in a novel approach which accounted for all

of the liquid–liquid interfaces present in a particle. In order to address un-

certainty in these two approaches, a machine learning approach to predicting

pure-component surface tensions of organic compounds in the atmosphere

was developed. This model, while intended to be used to inform the thermo-

dynamic models laid out in this work, may also have applications in other

fields beyond atmospheric science. The inclusion of coupled gas–particle,

liquid–liquid, and bulk–surface partitioning with accurate estimates of pure-

component surface tensions leads to substantial changes in the water uptake

of aerosol particles and the conditions under which they activate into cloud

droplets.

215



Chapter 5 : Conclusions and Future Work

5.2 Future Work

While this work represents a step toward a better understanding of sur-

face and interfacial properties in atmospheric aerosols, many unanswered

questions remain that may be the subject of future work. As discussed in

Chapter 2, there are limited measurements of the surface tension of aerosol

particles in the ultrafine regime. Such measurements are inherently difficult,

as they must be done in a manner that does not involve the introduction of

a new interface or changes to a particle’s morphology. For example, impact-

ing a particle on a glass slide would introduce a glass–liquid interface that

may change the bulk–surface partitioning behavior of different species. In

systems where particle size plays a role in surface tension, additional con-

tactless measurements must be taken to better constrain the bulk–surface

partitioning model’s behavior. Likewise, the structure of the surface remains

an area of ongoing debate as well. Given that the depth of the surface is a

highly sensitive parameter in the framework described in Chapter 2, a better

understanding of the structure of the surface phase may help to constrain

said parameter. Such an understanding would likely result from molecular

dynamics simulations, which are capable of resolving the positions of indi-

vidual molecules in a droplet with a high degree of precision. Unfortunately,

these can only be performed for droplets a few nanometers in diameter or the

timescale of the simulation becomes prohibitively long. Furthermore, such

molecular dynamics simulations depend on the force fields used and correct

simulations of the air–liquid interface. The development of more powerful

molecular dynamics simulations may lead to better constraints on model

parameters relevant to particle structure described in Chapter 2.

Although Chapter 3 attempted to address some questions raised by Chap-

ter 2, namely the interactions between liquid-liquid phase separation and

bulk–surface partitioning, it introduced several other unanswered questions

that may also be the subject of future work. One implication of the treat-

ment of interfacial tension described in Chapter 3 is that the ratios of surface
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tensions for phases α and β, along with the interfacial tension between them,

can be used to predict whether a liquid–liquid phase-separated particle is

in a core–shell configuration or a partially engulfed configuration. However,

such a calculation is complex and will need to be solved iteratively, as chang-

ing between core–shell and partially engulfed configurations will change the

relative volumes of the bulk and surface for each phase. This will modify the

resulting surface tension of each phase and necessitate updating the particle

morphology. Likewise, the area of the liquid–liquid interface will be reduced

in such a configuration, changing the overall Gibbs energy of the particle

at equilibrium. The behaviour of a partially engulfed particle with respect

to the Kelvin effect in a Köhler curve may no longer be straightforward, as

there would be multiple exposed surfaces with different radii and thus dif-

ferent Kelvin effects for each phase. Another unanswered question that may

be of interest is how the inclusion of additional liquid phases will impact the

particle mixing state and morphology. A particle with three liquid phases

and a surface phase will have one additional interface if it is in a core-shell

configuration or possibly multiple additional interfaces if it exists in a more

complex morphology that includes combinations of partially engulfing and

core-shell morphologies. A framework for determining the structure of such a

particle would be useful for modeling more complex systems that have been

observed.

Chapter 4 explored one of the key assumptions of Chapters 2 and 3: the

values of the reference state surface tensions of organic species in aerosol

particles. While the models generated in this chapter were capable of pre-

dicting the surface tension of many species well, the training data that was

used to fit the models did not contain an even distribution of elements and

functional groups. Elements such as P, which have been found in organic

aerosol systems, were underrepresented in the training and validation data.

Likewise, more complex compounds such as peroxy-acids or peroxy-acyl ni-

trates were not well represented in the training and validation data either.
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Such compounds may be difficult to isolate in a laboratory setting; however,

including the effects of these more exotic molecular structures may improve

model performance as they are found in many atmospherically relevant or-

ganic compounds. Additional measurements of pure component surface ten-

sions at lower, yet still atmospherically relevant, temperatures may also help

to better constrain the models developed in Chapter 4.
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Pöhlker, M. L. et al. Global organic and inorganic aerosol hygroscopicity and

its effect on radiative forcing. Nature Communications 2023, 14, 6139.

225



References

Davies, J. F.; Zuend, A.; Wilson, K. R. Technical note: The role of evolving

surface tension in the formation of cloud droplets. Atmos. Chem. Phys.

2019, 19, 2933–2946.

Petters, M. D.; Kreidenweis, S. M. A single parameter representation of hy-

groscopic growth and cloud condensation nucleus activity. Atmospheric

Chemistry and Physics 2007, 7, 1961–1971.

Topping, D.; Barley, M.; Bane, M. K.; Higham, N.; Aumont, B.; Dingle, N.;

McFiggans, G. UManSysProp v1.0: an online and open-source facility

for molecular property prediction and atmospheric aerosol calculations.

Geoscientific Model Development 2016, 9, 899–914.

Kanji, Z. A.; Ladino, L. A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.;
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Figure A.1: Predicted bulk–surface partitioning coefficient (
xsurf
i

xbulk
i

) of (A) wa-

ter, (B) glutaric acid, and (D) sodium chloride present in a forced single-
bulk-phase particle at T = 298 K as a function of abulkw . Right column
(composition bar graphs): shown are the mole fractions of each species in
the surface and the bulk phase (α) for the particle of 25 nm dry diameter.
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Figure A.2: Predicted bulk–surface partitioning coefficient (
xsurf
i

xbulk
i

) of (A) wa-

ter, (B) glutaric acid, and (D) sodium chloride present in a forced single-
bulk-phase particle at T = 298 K as a function of xtotal

w . Right column
(composition bar graphs): shown are the mole fractions of each species in
the surface and the bulk phase (α) for the particle of 25 nm dry diameter.
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Figure A.3: Predicted saturation ratio for a ternary water–malonic-acid–
ammonium-sulfate system corresponding to a 50 nm diameter ammonium
sulfate core coated to a total diameter of 150 nm with malonic acid, cor-
responding to measurements by Ruehl et al.. In order to better match the
experimental data better, δ was set to 0.07 nm. No combination of t and mod-
ifications to σ◦

malonic were able to capture both the points leading up to the
critical supersaturation and the critical supersaturation itself. Also shown is
a prediction using the more standard assumptions that t = 1, δ = 0.3 nm,
and σ◦

malonic = 45.0 mJm−2 (Hyvärinen et al., 2006) The horizontal bar rep-
resents the critical supersaturation for cloud activation (Ruehl et al., 2016).
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Figure A.4: Predicted saturation ratio for a ternary water–glutaric-acid–
ammonium-sulfate system corresponding to a 50 nm diameter ammonium
sulfate core coated to a total diameter of 150 nm with glutaric acid, cor-
responding to measurements by Ruehl et al.. In order to better match the
experimental data better, δ was set to 0.23 nm. t was set to 2.7 and σ◦

glutaric

was set to 10 mJm−2. Also shown is a prediction using the more standard
assumptions that t = 1, δ = 0.3 nm, and σglutaric = 50 mJm−2 (Ruehl et al.,
2016; Hyvärinen et al., 2006; Booth et al., 2009) The horizontal bar represents
the critical supersaturation for cloud activation Ruehl et al..
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Figure A.5: Predicted saturation ratio for a ternary water–pimelic-acid–
ammonium-sulfate system corresponding to a 50 nm diameter ammonium
sulfate core coated to a total diameter of 150 nm with succinic acid, cor-
responding to measurements by Ruehl et al.. In order to better match the
experimental data better, δ was set to 0.28 nm, t was set to 2.7 and σpimelic

was set to 32 mJm−2 Also shown is a prediction using the more standard
assumptions that t = 1, δ = 0.3 nm, and σpimelic = 46.5 mJm−2 based on
similartiy to other surface tensions of similar dicarboxylic acids reported by
Hyvärinen et al.. The horizontal bar represents the critical supersaturation
for cloud activationRuehl et al..
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Figure A.6: Predicted saturation ratio for a ternary water–succinic-acid–
ammonium-sulfate system corresponding to a 50 nm diameter ammonium
sulfate core coated to a total diameter of 150 nm with succinic acid, cor-
responding to measurements by Ruehl et al.. In order to better match the
experimental data better, σ◦

succinic was set to 10 mJm−2, δ was set to 0.21 nm,
the value of t was set to 1.9. Also shown is a prediction using the more stan-
dard assumptions that t = 1, δ = 0.3 nm, and σ◦

succinic = 45.0 mJm−2

(Hyvärinen et al., 2006) The horizontal bar represents the critical supersat-
uration for cloud activation Ruehl et al..
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Figure A.7: Predicted solution surface tensions assuming a 10% reduction
or increase in σ◦

solute (blue and yellow curves respectively) for the systems
shown in (A) Figure 1A, (B) Figure 1B, and (C) Figure 3. All systems had
a starting particle size of 5 µm and δ = 0.3 nm
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This work, RMSE = 2.93
Ernst, et al. (1935) measurements

Figure A.8: Surface tension of a binary water-ethanol droplet with a dry
diameter of 50 µm as predicted by Eq (24) and the simplified statistical
mechanics model from Wexler and Dutcher. Measurements of the solution
surface tension as a function of the AIOMFAC-predicted bulk ethanol activity
are also shown from Ernst et al. (1935).
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Table A.1: Surrogate component concentrations for isoprene-derived SOA
based on a simulation by the Master Chemical Mechanism (Jenkin et al.,
1997, 2012, 2015). The listed concentrations are total amounts (gas plus
particle phase) per unit volume of air for the co-condensation scenario, as
well as condensed phase concentrations only for the calculations without co-
condensation of organic species. For more details, see the supplementary
material of Rastak et al. and Gervasi et al..

Input Concentration [molm−3]
Name
(MCM)

M
[gmol−1]

Co-
condensation
Enabled

Co-
condensation
Disabled

IEB1OOH 150.11 3.76459× 10−8 2.38011× 10−8

IEB2OOH 150.11 6.75043× 10−9 1.83810× 10−9

C59OOH 150.09 3.92509× 10−8 3.11576× 10−8

IEC1OOH 150.09 1.37006× 10−8 1.08756× 10−8

C58OOH 150.11 3.91125× 10−9 2.47284× 10−9

IEPOXA 118.13 2.56541× 10−15 8.11516× 10−19

C57OOH 150.11 3.17789× 10−9 2.00918× 10−9

IEPOXC 118.13 1.99219× 10−14 2.61410× 10−17

HIEB1OOH 166.11 1.92764× 10−9 1.92561× 10−9

INDOOH 197.14 1.41401× 10−9 1.40886× 10−9

IEACO3H 148.10 1.08728× 10−13 4.00883× 10−16

C525OOH 166.09 1.44713× 10−9 1.44655× 10−9

HIEB2OOH 166.11 9.55507× 10−10 9.48692× 10−10

IEC2OOH 148.06 7.53565× 10−13 1.56989× 10−14

INAOOH 197.14 7.93083× 10−10 7.82336× 10−10

C510OOH 195.10 7.27167× 10−11 2.37637× 10−11

INB1OOH 197.14 4.04138× 10−10 4.02731× 10−10

IECCO3H 148.11 4.87375× 10−13 5.69206× 10−15

INCOOH 197.14 1.82889× 10−10 1.72834× 10−10

INB2OOH 197.14 1.98863× 10−10 1.96461× 10−10

Tetrol
Dimer

254.28 3.15073× 10−8 3.15073× 10−8
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Table A.2: List of abbreviations used in chapter 2 and their meanings.

AbbreviationMeaning
VOC Volatile Organic Com-

pound
SVOC Semi-Volatile Organic

Compound
IVOC Intermediate Volatil-

ity Organic Com-
pound

LVOC Low Volatility Or-
ganic Compound

POA Primary Organic
Aerosol

SOA Secondary Organic
Aerosol

LLPS Liquid–Liquid Phase
Separation

CCN Cloud Condensation
Nucleus

RH Relative Humidity
LLE Liquid–Liquid Equi-

librium
AIOMFAC Aerosol Inorganic–

Organic Mixtures
Functional groups
Activity Coefficients

PM Particulate matter
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Table A.3: .List of mathematical symbols used in chapter 2 and their meanings.

Category SymbolMeaning Units

Mathematical

Variables

A area of the surface m2

Ai partial molar area of i m2mol−1

ai chemical activity (mole-fraction- or molality-

based) of i

−

ASL Szyszkowski–Langmuir fit parameter Jm−2

BSL Szyszkowski–Langmuir fit parameters molm−3

CSL bulk concentration in Szyszkowski–Langmuir

model

concentration

ACF
◦ maximum surface adsorbtion in the compressed

film model

molm−2

ACF current surface adsorption in compressed film

model

molm−2

D diameter m

G Gibbs energy J

fi volume fraction of i −
Mi molar mass of i kgmol−1

ni number of moles mol

P pressure Pa

R universal gas constant Jmol−1K−1

S entropy or saturation ratio (depending on con-

text)

JK−1

or −
SS supersaturation %

T temperature K

t exponential scaling factor for surface activity

coefficients

−

U internal energy J

V system volume m3
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Vi molar volume of i m3mol−1

xi mole fraction of i −

Greek

Letter

Variables

Γ Gibbs surface excess molm−2

γi activity coefficient of i −
δ thickness of Guggenheim surface phase m

ϵ machine precision −
εi fraction of the total particle amount of species

ipartitioned to the surface phase (surface frac-

tion)

−

ζi fraction of i in between the maximum and mini-

mum possible volumes it can occupy in the sur-

face

−

κ hygroscopicity parameter −
µi chemical potential of i Jmol−1

ξi intrinsic chemical potential of the surface phase

of i

Jmol−1

ρi density of i kgm−3

σi surface tension of i Jm−2

Superscripts

and

Subscripts

b bulk phase −
c thermodynamic critical point −
CF compressed film model −
calc calculated value −
crit CCN critical activation property −
dry particle under dry conditions (water-free con-

densed phase, RH ¡ 1%)

−

guess initial guess −
i chemical component or species index −
max maximum −
min minimum −
np non-partitioning case −
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pm particle phase −
SL Szyszkowski–Langmuir −
s surface phase −
rg range −
tot total −
w water −
wet particle under wet conditions (water present in

condensed phase, RH ¿ 1%)

−

α inorganics-rich phase −
β organics-rich phase −
ϕ phase index −
⋆ unnormalized −
◦ standard or reference state −
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Table B.1: List of abbreviations used in chapter 3 and their meanings.

Abbreviation Meaning
AIOMFAC Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients
CCN Cloud Condensation Nucleus
CSOA Complex Secondary Organic Aerosol mixture
IFE Interfacial Energy
LLE Liquid–Liquid Equilibrium
LL Liquid–Liquid
LLPS Liquid–Liquid Phase Separation
OIR Organic-to-Inorganic dry mass Ratio
PM Particulate Matter
RH Relative Humidity
SOA Secondary Organic Aerosol
SRH Separation Relative Humidity
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Table B.2: List of mathematical symbols used in chapter 3 and their mean-
ings.

Category Symbol Meaning Units

Mathematical
Variables

A area of the surface m2

A partial molar area m2mol−1

D diameter m
d distance m
G Gibbs energy J
M molar mass kgmol−1

n number of moles mol
P pressure Pa
R universal gas constant Jmol−1K−1

r radius m
S entropy or saturation ratio (depending on context) JK−1 or −
T temperature K
U internal energy J
V system volume m3

V molar volume m3mol−1

x mole fraction −

Greek
Letter
Variables

η exponential scaling factor for interfacial composition -
γ activity coefficient -
δ thickness of Guggenheim surface phase m
ι length of a three-phase boundary line m
µ chemical potential Jmol−1

ρ density kgm−3

σ surface or interfacial tension Jm−2

τ line energy at a three-phase boundary Jm−1

ε fraction of the total particle amount of species parti-
tioned to the surface phase (surface fraction)

-

Superscripts
and
Subscripts

α inorganics-rich phase −
β organics-rich phase −
b bulk phase −
disp dispersion force based calculation −
el inorganic electrolyte species −
G Gas-phase property −
i chemical component or species index −
◦ standard or reference state −
ϕ phase index or semi-empirical Girifalco–Good equa-

tion parameter (depending on context)
−

ls Liquid–Surface −
p particle −
′ liquid–liquid-interface-corrected property −
s surface phase −
sat saturation −
suppr suppression limit −
tot total −
vf volume-fraction-based −
w water −
⋆ measurable −
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Table B.3: Reference pure-component liquid-state surface tension values at
298 K (σ◦

i ) and dry particle mass fractions for the systems discussed in chap-
ter 3. Organic compounds of unknown σ◦

i due to lack of experimental data
were assigned σ◦

i = 35 mJm−2. σ◦
w = 71.98 mJm−2 at 298 K (Vargaftik

et al., 1983).

Compound Figure Molar Mass
[kg mol−1]

DryMass Frac
[–]

σ◦
i

[mJ m−2]
Reference

Glutaric acid 3.2A 0.132115 1.001 45.0 Booth et al. (2009)
NaCl 2B 0.058443 1.001 174.0 Dutcher et al. (2010)
PEG-400 n7 3.3, 3.4A, 3.6,

3.8A, B.1A,
B.2, B.3

0.3704376 0.155 44.5 Sequeira et al. (2019)
PEG-400 n8 0.4144904 0.345 44.5 Sequeira et al. (2019)
(NH4)2SO4 0.132139 0.500 184.5 Dutcher et al. (2010)
Benzene 3.4B,

B.1B
0.078108 0.57-0.99992 28.75 Součková et al. (2013)

NaCl 0.058443 0.0001-0.432 174.5 Dutcher et al. (2010)
Dodecane 3.4C,

B.1C
0.148152 0.67-0.9999 2 25.0 Koller et al. (2017)

KCl 0.074551 0.0001-0.332 155.4 Dutcher et al. (2010)
Benzene 3.4D,

B.1D
0.078108 0.55-0.99992 28.75 Součková et al. (2013)

Methanol 0.032042 0.0001-0.452 22.5 Jasper (1972)
Suberic acid

3.5
0.174156 0.537 45.0 Hyvärinen et al. (2006)

(NH4)2SO4 0.132139 0.463 184.5 Dutcher et al. (2010)
PEG-300 n5

3.7A, 3.8A,
B.4A, B.5A

0.282332 0.181 43.6 Ai et al. (2022)
PEG-300 n6 0.326384 0.168 43.6 Ai et al. (2022)
(NH4)2SO4 0.132139 0.651 184.5 Dutcher et al. (2010)
1,2,6-Hexanetriol 3.7B, 3.8B, 3.9,

B.4B, B.5B
0.134172 0.504 48.5 Sigma-Aldrich (2006)

(NH4)2SO4 0.132139 0.496 184.5 Dutcher et al. (2010)
1,2,5,8-Octanetetrol

3.7C,
3.8C,
B.4C,
B.5C

0.178224 0.0505 35.0 –
2-Methylglutaric acid 0.146104 0.0504 50.0 Hyvärinen et al. (2006)3

3,5-Dihydroxybenzoic acid 0.142054 0.0464 70.5 Tuckermann and Cammenga (2004)4

3-Hydroxybenzoic acid 0.138082 0.0252 70.5 Tuckermann and Cammenga (2004)
3-Methyladipic acid 0.160130 0.0504 35.0 Riipinen et al. (2007)5

Levoglucosan 0.162122 0.0504 22.7 Topping et al. (2007)
Malic acid 0.134052 0.0504 50.0 Hyvärinen et al. (2006)
Pinolic acid 0.186226 0.0067 35.0 –
Pinonic acid 0.196176 0.0140 66.1 Varga et al. (2007)
Succinic acid 0.118052 0.0504 47.5 Hyvärinen et al. (2006)
(NH4)2SO4 0.132139 0.605 184.5 Dutcher et al. (2010)
C107OOH (MCM name)

3.7D,
3.8D,
B.4D,
B.5D

0.200166 8.92× 10−4 35.0 –
Pinonic acid 0.184166 4.64× 10−4 66.1 Varga et al. (2007)
C97OOH (MCM name) 0.188174 9.65× 10−3 35.0 –
C108OOH (MCM name) 0.21613 0.37 35.0 –
Pinalic acid 0.170166 6.97× 10−5 35.0 –
Pinic acid 0.186166 3.05× 10−2 23.8 Topping et al. (2007)
C921OOH (MCM name) 0.204182 3.83× 10−2 35.0 –
C109OOH (MCM name) 0.200174 6.46× 10−5 35.0 –
C812OOH (MCM name) 0.158174 3.27× 10−2 35.0 –
10-Hydroxypinonic acid 0.206138 9.49× 10−3 66.1 Varga et al. (2007)6

C811OH (MCM name) 0.158174 2.88× 10−4 35.0 –
C813OOH (MCM name) 0.206138 1.39× 10−2 35.0 –
Aldol dimer 0.368298 4.50× 10−3 35.0 –
Ester dimer 0.368306 1.80× 10−2 35.0 –
(NH4)2SO4 0.132139 0.471 184.5 Dutcher et al. (2010)

1 binary systems were run assuming the dry composition case is pure solute.
2 the system was run at variable dry composition at fixed RH to replicate

measurements.
3 estimated from structural similarity to glutaric acid.

4 estimated from structural similarity to hydroxybenzoic acid.
5 estimated from structural similarity to adipic acid.
6 estimated from structural similarity to pinonic acid.
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Figure B.1: Predicted σαβ with adjustments to σ◦
org and σ◦

el = σ◦
w.

σ◦
PEG−400, σ◦

benzene, and σ◦
MetOH = 35 mJ m−2 in subplots A, C, and D. In

subplot D, σ◦
dodecane = 20 mJ m−2. These values were selected to better fit

Antonov’s rule to the measured data for the systems shown in subplots B
and C and to explore the sensitivity of the more miscible systems shown in
subplots A and D to changes in σ◦

org and σ◦
el.
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Figure B.2: Normalized mole fraction of PEG-400 in the aqueous phase for
water, PEG-400, and ammonium sulfate particles with dry diameters ranging
from 10 nm to 1000 nm for (A) Antonov’s rule, (B) the Girifalco–Good
equation, (C) Butler equation with modified activity coefficients, and (D)
the weighted mean interfacial composition approach.
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Figure B.3: Normalized mole fraction of ammonium sulfate in the aque-
ous phase for water, PEG-400, and ammonium sulfate particles with dry
diameters ranging from 10 nm to 1000 nm for (A) Antonov’s rule, (B) the
Girifalco–Good equation, (C) Butler equation with modified activity coeffi-
cients, and (D) the weighted mean interfacial composition approach.
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Figure B.4: Predicted σαβ at the onset of LLPS upon dehumidification,
shown for a range of particle (wet) diameters at T = 298 K. The sys-
tems shown are: (A) Water–PEG-300–ammonium sulfate, (B) water–1,2,6-
hexanetriol–ammonium-sulfate, (C) water, a CSOA mixture with succinic
acid and ammonium sulfate, and (D) water, α-pinene SOA surrogates, and
ammonium sulfate. Distinct symbols refer to different approaches used for
the LL interfacial tension estimations; see legend. For particles with stronger
size-dependent onset of LLPS, there is less agreement among the predicted
σαβ at the onset of phase separation. At these sizes, complete partitioning
of one species into the aqueous, organic, or surface phase leads to greater
differences in the internal composition of the particle.
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Figure B.5: Predicted equilibrium separation RH versus particle wet di-
ameter for particles of the same dry composition but different choices of
interfacial tension treatment; see legend. In this case it is assumed that
σls = 0 and therefore σs⋆ = σs. Systems shown are: (A) water–PEG-
300–ammonium-sulfate; (B) water–1,2,6-hexanetriol–ammonium-sulfate; (C)
water–CSOA-with-succinic-acid–ammonium-sulfate; (D) water–α-pinene-
SOA–ammonium-sulfate. Shown by dashed horizontal lines in (A, B) are
measured equilibrium separation RH values by Ohno et al. (2023). Shown
in (C, D) by vertical lines are the observed largest homogenous and smallest
phases-separated particles as determined by Kucinski et al. (2019). All cal-
culations were performed at 298 K.
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Figure C.1: Two dimensional kernel density estimates for compound classes
with 5 or more unique SMILES codes and a single unique non-hydrocarbon
functional group class.
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Figure C.2: Two dimensional kernel density estimates for compound classes
that contain the same non-hydrocarbon functional group and any other non-
hydrocarbon functional group.
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Figure C.3: Residuals from the XGBoost models for the 100 worst performing
model inputs in the validation dataset.
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Table C.1: t-test results for the 100-worst performing values of the simplified
model inputs.

Input t statistic p value

Molar
Weight

-3.54 0.00060

O:C ratio 1.03 0.30

H:C ratio -0.68 0.50

N:C ratio 0.94 0.35

S:C ratio -0.014 0.99

P:C ratio 3.45 0.00058

F:C ratio 0.84 0.40

Cl:C ratio -0.52 0.60

Br:C ratio -3.15 0.0017

I:C ratio -3.43 0.00064

Temperature 1.90 0.060
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