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Abstract

Line intensity mapping (LIM) is a novel observational technique that allows us to probe

cosmological and astrophysical information over the majority of cosmic history. Despite its

promise, these observations are challenged by a variety of bright foreground contaminants as well

as by instrument systematics. Luckily, cross-correlations are a powerful tool for mitigating these

effects and extracting cosmological information. In this thesis, we demonstrate how combining

LIM observations with cross-correlation analyses can maximize the yield of these surveys,

showcasing three salient examples. First, we show how combining multiple LIM observations,

particularly that of neutral hydrogen and ionized carbon, allows us to extract important

information about the early epoch of reionization. Next, to resolve the problem of bright

foreground contaminants, we show how intra-dataset cross-correlations can be used to perform

foreground removal with percent-level residuals in a model-independent way. Finally, LIM

observations can be combined with cosmic microwave background (CMB) lensing observations to

make direct measurements of the high-redshift matter density field. These new LIM-CMB

observables enable model-independent test of cosmology beyond ΛCDM and can help constrain

various properties of the high-redshift matter power spectrum, most notably, making unbiased

measurements of the baryon acoustic oscillation (BAO) scale across a large portion of cosmic

history.
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Abrégé

La cartographie de l’intensité des raies (LIM) est une nouvelle technique d’observation qui nous

permet de sonder des informations cosmologiques et astrophysiques sur la majeure partie de

l’histoire cosmique. Malgré ses promesses, ces observations sont entravées par une variété de

contaminants d’avant-plan brillants ainsi que par la systématique des instruments. Heureusement,

les corrélations croisées sont un outil puissant pour atténuer ces effets et extraire des informations

cosmologiques. Dans cette thèse, nous démontrons comment la combinaison d’observations LIM

avec des analyses de corrélations croisées peut maximiser le rendement de ces enquêtes, en

présentant trois exemples marquants. Tout d’abord, nous montrons comment la combinaison de

plusieurs observations LIM, en particulier celle de l’hydrogène neutre et du carbone ionisé, nous

permet d’extraire des informations importantes sur l’époque de la réionisation. Ensuite, pour

résoudre le problème des contaminants d’avant-plan lumineux, nous montrons comment les

corrélations croisées d’un ensemble de données avec lui-même peuvent être utilisées pour

éliminer l’avant-plan avec des résidus au niveau du pourcentage d’une manière indépendante du

modèle. Enfin, les observations LIM peuvent être combinées avec les observations du fond diffus

cosmologique (CMB) pour effectuer des mesures directes du champ de densité de matière à un

décalage horaire élevé. Ces nouvelles observations LIM-CMB permettent de tester la cosmologie

indépendamment du modèle au-delà du modèle ΛCDM et peuvent aider à contraindre diverses

propriétés du spectre de puissance de la matière à un décalage élevé, notamment en effectuant des

mesures non biaisées de l’échelle de l’oscillation acoustique du baryon sur une grande partie de

l’histoire cosmique.
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Chapter 1

Introduction

1.1 Cosmology’s Precision Era

In recent decades, cosmology has entered the era of precision measurement. Observations of the

cosmic microwave background (CMB), large-scale galaxy surveys, measurements of primordial

chemical abundances, gravitational lensing, and most recently, gravitational wave interferometry,

have given us a clearer picture of the Universe in which we live (Planck Collaboration, 2016;

Peebles, 2014; Abbott et al., 2016; Cyburt et al., 2016; Bundy et al., 2015). From this abundance of

data, we have learned that we live in a spatially flat universe dominated by a cosmological constant

leading to today’s accelerated expansion (Perlmutter and Project, 1999). Our matter content is

dominated by dark matter, and we have constrained the age of the observable universe to 13.772

± 0.040 Gyr (Planck Collaboration, 2016). These simple properties that describe our complex

Universe constitute the Λ Cold Dark Matter (ΛCDM) model, our current concordance model of

cosmology. This simple six parameter model has been able to provide an account for the existence

of the CMB and its statistics, for the large-scale structure of the distribution of galaxies, for the

primordial chemical abundances, and for our current accelerated expansion. Despite cosmology’s

observational and theoretical successes, the vast majority of the volume of our Universe remains
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unexplored, which has left us with unanswered questions about the origins of all the structures we

see today. How did a universe, which at early times was filled only with individual atoms, come

to form enormous galaxies, clusters, and filaments? What were the initial conditions which seeded

this structure in the first place? What is our Universe’s expansion history and what is the dark

energy that drives it?

Despite much uncertainty about the details of the very early universe, the CMB has provided us

with strong evidence that quantum fluctuations seeded matter perturbations (see Section 1.3 for an

overview of the CMB). Under gravity, these matter overdensities grew to form the large astrophysical

objects we see today. Through the process of gravitational structure growth, the Universe’s first

stars ignited from the collapse of hydrogen around 100 million years after the Big Bang. In term of

cosmological redshift (𝑧), which is defined as the amount by which the wavelength of light has been

stretched due to cosmic expansion, the first stars are expected to have been born at 𝑧 ∼ 20. The

end of this cosmic dawn would mark the beginning of reionization, when ultraviolet (UV) photons

emanating from the first galaxies ionized the surrounding neutral hydrogen (HI) in the intergalactic

medium (IGM) left over from the time when the first atoms formed called recombination. These

early epochs: the cosmic Dark Ages (a period after recombination but before galaxy formation),

Cosmic Dawn (when the first luminous objects ignited), and the Epoch of Reionization (EoR, when

the first galaxies ionized the IGM) remain poorly constrained and understood. Without them, we

fail to piece together a complete and uninterrupted history of our Universe.

Over the last two decades, there has been sustained effort to make observations of these

early post-recombination epochs. Most notably, the James Webb Space Telescope (JWST), since

its launch in 2021, has provided us with some of the most detailed observations of high-redshift

galaxies. Additionally, observations of the Gunn-Peterson trough, an extended hydrogen absorption

feature in the spectra of high redshift quasars, have revealed that reionization likely persisted until

𝑧 ∼ 5.5 (Becker et al., 2015). Even with these strides forward, the sources observed with JWST

only comprise the brightest population of galaxies in rest-frame UV, and the small population of

observed quasars raises questions about the homogeneity of the ending of reionization. In order to



1. Introduction 3

progress towards an understanding of the early period of our cosmic timeline, it is imperative that

we develop novel observables specifically designed to probe the statistical properties of the early

Universe.

Line intensity mapping (LIM) offers a path forward, allowing us to explore vast volumes of

the uncharted Universe thus bridging the gaps in our knowledge. This nascent technique relies on

observing the integrated intensity of a single atomic or molecular transition line emanating from

galaxies and the IGM. When it comes to mapping large-scale structure, LIM is a transformative

tool which, unlike galaxy surveys, does not necessitate resolving individual sources. This means

that high-sensitivity, high-redshift LIM measurements can be achieved with relatively modest

instruments, which are nonetheless still capable of capturing the spatially fluctuating line emission

from the underlying structure, including contributions from unresolved galaxies. What is more,

by observing a single spectral line with known rest frequency, LIM yields precise line-of-sight

information since the observed frequency is directly related to the redshift at which the line was

emitted.

LIM is still in its early days and most efforts are focused on producing statistical measurements

while striving to reach the goal of producing the first-ever maps. These early measurements have

not only highlighted LIM’s scientific potential but also revealed the real-world challenges it faces.

In particular, virtually all lines being targeted suffer from bright foreground contamination that

drowns out the LIM signal. Due to both the nature of the signal itself as well as instrument’s

response and systematics, existing foreground removal methods, for instance those developed for

the CMB, have not seen much success in teasing out high-redshift line emission. We expand on

LIM and its challenges in Sections 1.2 and 1.5 respectively.

Another avenue to the Dark Ages, Cosmic Dawn, and the EoR is through the CMB. The CMB

photons which were emitted roughly 400,000 years after the Big Bang (𝑧 ∼ 1100), travel through

the vast majority of the Universe’s history on their journey to us. Along the way, these photons

experience a host of scattering and gravitational interactions with intervening matter, picking up

late-time or secondary signals in addition to their primary signal from the surface of last scattering.
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A particularly powerful CMB secondary is that of gravitational lensing whereby CMB photons are

lensed by the gravitational potentials they encounter. Since lensing is sensitive to both baryonic

and dark matter, encoded in the CMB photons is information about the total underlying mass

distribution. This makes lensing an exquisite probe of the matter density field as it provides a

representative census of all matter in the Universe without using a biased tracer. Unfortunately,

the observed lensing signal is a integrated projection of the entire line-of-sight (LOS) onto a single

plane, making it impossible to disentangle contributions from different epochs and study their

evolution.

These probes, LIM and CMB lensing, hold immense potential, which can be fully realized by

leveraging synergies. Figure 1.1 showcases just how much of the cosmic timeline is probed by

the various techniques. Zooming in, Figure 1.2 provides an illustration of the EoR, showing how

line emission can trace both the neutral IGM (with the 21cm line of netural hydrogen) and galactic

populations (with, for example, the Lyman-𝛼 (Ly𝛼) line of hydrogen, various carbon monoxide

(CO) lines, or with ionized carbon (CII) lines), while CMB lensing probes the foundation of it all,

the matter density field. Taken together, these approaches allow us to construct a comprehensive

view of much of the Universe’s history.

This thesis aims to demonstrate how we can enhance the scientific return of LIM by leveraging

synergies, that is, by combining LIM datasets with one another or with well-established CMB

observations. These approaches not only maximize the information we extract from LIM but also

help mitigate key observational challenges. In the following sections, we take a deep dive into the

theoretical and observational background, laying the foundation for the methods developed in this

work.

1.2 Line Intensity Mapping

In this section we provide a theoretical overview of LIM and as well as an update on the current

status of LIM measurements. Generally, the field can be subdivided into two main branches: 21 cm
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Figure 1.1: The cosmic timeline with key epochs listed below. Superimposed coloured lines
denote what portions of our history can be probed by different observables.

Figure 1.2: Illustration of signals from lensing (blue) and tracers of the neutral IGM (red), and of
galaxies and the circumgalactic medium (CGM) (green and purple).
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intensity mapping (referring to the mapping of the hyperfine transition line of neutral hydrogen)

and the intensity mapping of all the other lines that trace galactic populations. These other lines

include the Ly𝛼 line, the H𝛼 line, a host of rotational transition lines of carbon monoxide (CO),

and the ionized carbon line ([CII]) just to name a few. Each line has its strengths and weaknesses

in terms of detectability and astrophysical and cosmological utility.

1.2.1 21 cm Intensity Mapping

As shown in Figure 1.1, 21 cm intensity mapping is a powerful probe of the Universe across an

immense cosmic timeline, from deep into the Dark Ages (𝑧 ∼ 200) all the way to the present day.

This technique relies on the hyperfine transition line of neutral hydrogen to trace the large-scale

distribution of hydrogen throughout cosmic history. One of its most remarkable advantages is the

ability to probe the neutral IGM, providing a rare window into both the Dark Ages, an era before the

formation of galaxies, and Cosmic Dawn and the EoR, allowing us to study early galaxy formation

and reionization as it unfolds in real time.

Hydrogen emission does not occur in isolation but rather on the cosmological stage. Hydrogen

atoms are backlit by the CMB leading to the observed 21 cm signal appearing in either emission

or absorption. Whether the signal is detected as an emission or absorption feature (or remains

altogether undetectable) depends on the temperature contrast between the CMB temperature, 𝑇𝛾,

and the hydrogen spin temperature, 𝑇𝑠, which is defined as

𝑛1
𝑛0

=
𝑔1
𝑔0

exp
(
ℎ𝜈21
𝑘𝑇𝑠

)
(1.1)

where 𝑛1 is the number density of hydrogen atoms in the excited hyperfine state, 𝑛0 is the number

density of hydrogen atoms in the ground hyperfine state, 𝑔1 = 1 and 𝑔0 = 3 are the statistical

weights, ℎ is Planck’s constant, 𝑘 is Boltzmann’s constant, and 𝜈21 = 1420.406 MHz is the rest

frequency of the 21 cm line. The spin temperature quantifies the relative number of hydrogen

atoms in the excited and ground hyperfine states. The key observable is the differential brightness
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temperature, which measures the temperature contrast between the spin temperature and the CMB

temperature, and is given by

𝑇𝑏 (r, 𝑧) = 27mK
(
1 + 𝑧

10

)1/2
𝐻 (𝑧)/(1 + 𝑧)
𝑑𝑣 | |/𝑑𝑟 | |

(
1 −

𝑇𝛾 (𝑧)
𝑇𝑠 (r, 𝑧)

)
𝑥HI(r, 𝑧) (1 + 𝛿𝑚 (r, 𝑧)). (1.2)

where r is the position vector perpendicular to the line of sight, 𝐻 (𝑧) is the Hubble parameter,

𝑣∥ is the LOS velocity, 𝑥HI is the neutral hydrogen fraction, and 𝛿𝑚 is the matter overdensity field
1(Furlanetto et al., 2006).

The spatially fluctuating 21 cm signal, a simulation of which is shown in the top panel of Figure

1.3, exhibits complex morphology, shaped by both cosmological and astrophysical processes. These

fluctuations can be statistically characterized by the power spectrum, 𝑃(𝑘), defined as

⟨𝑇 (k)𝑇∗(k′)⟩ = (2𝜋)3𝛿
(3)
𝐷

(k − k′)𝑃(𝑘) (1.3)

where 𝑇 is the three-dimensional Fourier transform of 𝑇 , k is the comoving wavenumber dual to

r, and 𝛿
(3)
𝐷

is the three-dimensional Dirac delta function. It is often convenient to also define the

dimensionless2 power spectrum

Δ2(𝑘) = 𝑘3

2𝜋2𝑃(𝑘). (1.4)

The spectrum quantifies the variance of the field 𝑇 as a function of comoving length scale.

Measuring the power spectrum has been the primary focus of current-generation 21 cm

experiments across a wide range of redshifts, from low (0 < 𝑧 < 5) to high (5 < 𝑧 < 20) to

ultra-high (20 < 𝑧 < 200). We now provide a brief overview of the key cosmic events that drive
1This is in fact the baryon density field although due to the large scales involved, many codes model the baryon

density field as tracing the matter density field
2The dimensionless power spectrum is only truly dimensionless if the original field is dimensionless which is not

the case for intensity mapping. In this context, the dimensionless power spectrum often has temperature squared (or
temperature squared equivalent) units.
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the variations in brightness temperature seen in Figure 1.3 while also commenting on the current

observational landscape.

By the time of recombination, the Universe expanded and cooled sufficiently for the first atoms

to form, the overwhelming majority of which were hydrogen atoms. Still, there remained a small

fraction of free electrons which Compton scatter off of CMB photons. These electrons would

then collide with hydrogen atoms resulting in the tight coupling between the spin temperature and

the CMB temperature. Due to this coupling, which persisted until 𝑧 ∼ 200, no hydrogen signal

is observed (Pritchard and Loeb, 2012). As the Universe continues to expand and the density of

matter decreases, CMB photons cannot find electrons sufficiently frequently, and thus the CMB

decouples from the spin temperature at 𝑧 ∼ 200. Now, the baryon temperature is able to cool much

faster than the photons. Due to collisional coupling between the kinetic gas temperature and the

spin temperature, a hydrogen absorption signal is visible from 30 < 𝑧 < 80. This can be seen

on the right side of Figure 1.3 in both the lightcone (where the negative brightness temperature is

shown in deep red) as well as in the middle panel plotting the sky-averaged brightness temperature,

𝑇𝑏, also known as the global signal. During these cosmic Dark Ages, no astrophysical structures

have yet formed and the hydrogen traces the dark matter distribution, meaning a measurement of

the 21 cm power spectrum is a good proxy for the matter power spectrum, 𝑃𝑚 (𝑘) ∝ ⟨𝛿𝑚 (k)𝛿∗𝑚 (k)⟩,

where 𝛿𝑚 denotes the Fourier transform of the matter density field.

From a theoretical standpoint, measurements of this epoch are highly desirable since more

Fourier modes are expected to be in the linear regime meaning each Fourier mode evolves

independently, greatly simplifying the modeling (Tegmark and Zaldarriaga, 2009; Scott and Rees,

1990). This clean probe of the matter field would allow for the study of primordial

non-Gaussianity, of the small scale properties of dark matter, and would improve constraints on

the neutrino mass and the amplitude of primordial fluctuations (Muñoz et al., 2015; Mao et al.,

2008; Loeb and Zaldarriaga, 2004).

Despite being a period full of promise, at the ultra-low radio frequencies needed to access these

redshifts, measurements quickly become arduous. The ionosphere becomes increasingly opaque



1. Introduction 9

Figure 1.3: A simulated 21 cm signal spanning 7 < 𝑧 < 90. The top panel presents a 2D slice of
the 3D lightcone of the 21 cm brightness temperature field, where the x-axis tracks cosmic evolution
across different redshifts, and the corresponding age of the Universe is shown on the top horizontal
axis. The middle panel displays the global 21 cm signal as a function of redshift, computed by
averaging the brightness temperature over each slice of the lightcone at a given redshift. The bottom
panel shows the dimensionless power spectrum as a function of redshift, with the modes 𝑘 = 0.5
Mpc−1(dotted) and 𝑘 = 0.1 Mpc−1 (solid) highlighted. This figure is reproduced from Liu and
Shaw (2020).
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to frequencies below ∼ 30 MHz and can cause distortions at frequencies above but still close to

this limit. While there are efforts to make measurements down to ∼ 1 MHz from the ground

with instruments like Array of Long Baseline Antennas for Taking Radio Observations from the

Sub-antarctic/Seventy-ninth parallel (ALBATROS, Chiang et al. 2020), many are looking to the

sky for new opportunities. Space-based experiments, either in Earth orbit, in lunar orbit, on the far

side of the moon aim to overcome these limitations (Burns et al., 2019).

By 𝑧 ∼ 20 it is expected that the first luminous objects would have formed, ushering in Cosmic

Dawn. By the latter part of the Dark Ages, the Universe had expanded and diluted to the point where

collisional coupling between electrons and hydrogen was ineffective, causing the spin temperature

to decouple from the gas temperature. At this stage, the only remaining mechanism is the direct

absorption or emission of 21 cm by CMB photons, causing the 21 cm signal to go away and therefore

the brightness temperature to go to zero, as seen in Figure 1.3. Subsequently, the first stars produced

Ly𝛼 photons traveled through the IGM and interacted with hydrogen atoms, once again coupling the

gas temperature to the spin temperature. Since the gas has continued to cool, the spin temperature

also experiences rapid cooling leading to the characteristic Cosmic Dawn absorption trough seen at

𝑧 ∼ 12 in the middle panel of Figure 1.3. As star formation becomes more efficient, higher energy

photons, namely X-rays, propagate into the IGM, heating the neutral hydrogen. This phase of X-ray

heating increases the gas temperature and consequently brings the brightness temperature back

into the emission regime. While the precise order and timing of heating events is still unknown,

upper limits on the spatially fluctuating 21 cm signal from the Hydrogen Epoch of Reionization

Array (HERA, DeBoer et al. 2017) have placed the first constraint on the X-ray luminosity per star

formation rate and have found that early galaxies are much more efficient at producing X-rays than

their late-universe counterparts (Abdurashidova et al., 2022).

Following X-ray heating, the Universe undergoes reionization and transitions from mostly

neutral to mostly ionized. Ultraviolet photons emanating from the first generation of galaxies

ionize the surrounding neutral hydrogen producing rich bubble structure with complex

morphology. Studying the 21 cm power spectrum during this epoch provides constraints on the



1. Introduction 11

timing of reionization and the properties of the ionizing sources (Furlanetto et al., 2006; Loeb and

Zaldarriaga, 2004; Madau et al., 1998; Furlanetto et al., 2004; Barkana and Loeb, 2005;

Furlanetto et al., 2008). While this epoch has yet to be detected with 21 cm, a host of experiments

have placed ever tighter upper limits on the power spectrum, as summarized in Figure 1.4.

In the post-reionization Universe, although the IGM no longer contains a significant density of

neutral hydrogen, hydrogen that remained self-shielded in galaxies can still be targeted and used

as a tracer of large-scale structure. On this front, the field of hydrogen intensity mapping has seen

tremendous experimental progress, yielding multiple detection of the 21 cm line cross-correlation

with large-scale structure surveys (Masui et al., 2013; Teng et al., 2013; Rhee et al., 2016; Anderson

et al., 2018; Chowdhury et al., 2021; Wolz et al., 2022; CHIME Collaboration et al., 2022; Amiri

et al., 2024) as well as a tentative auto-spectrum measurement (Paul et al., 2023). These low-redshift

LIM measurements play a vital role, as they can be compared with well-established methods, such

as galaxy surveys, to validate LIM as a viable and reliable technique.

1.2.2 Intensity Mapping of Other Lines

In many ways, the intensity mapping of other lines (and of low-𝑧 21 cm emission) can be grouped

into a single category. While the physical mechanisms driving their emission vary, these lines are

generally used as tracers of galactic populations, providing valuable insights into the distribution

and evolution of cosmic structures and are also touted as sensitive astrophysical probes.

Once again, the power spectrum serves as the primary statistical tool for LIM, though alternative

approaches exist (see Breysse et al. (2017) on one-point statistics). In the regime where line emission

originates from galaxies smaller than the angular resolution of one’s instrument and the line width

is narrower than a single frequency channel, a simple halo model (Cooray and Sheth, 2002) can be

applied, allowing the line power to be expressed as

𝑃(𝑘, 𝑧) = 𝑇2(𝑧)𝑏̄2(𝑧)𝑃𝑚 (𝑘, 𝑧) + 𝑃shot(𝑘, 𝑧) (1.5)
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Figure 1.4: Upper limits and theoretical predictions for the 21 cm power spectrum during the EoR.
Plot generated from eor limits.

https://github.com/EoRImaging/eor_limits
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where 𝑇 is the mean brightness temperature of the line, 𝑏̄ is the luminosity weighted galaxy bias,

𝑃𝑚 (𝑘, 𝑧) is the linear matter power spectrum of the underlying (and mostly dark) matter distribution,

and 𝑃shot(𝑘, 𝑧) is the galaxy shot noise power.

In order to build Eq. 1.5 we need only a few simple ingredients. First is the matter power

spectrum, 𝑃𝑚 (𝑘, 𝑧), which, as briefly mentioned in the previous section, describes the variance in

density fluctuations as a function of comoving length scale. Assuming some fiducial cosmology,

the matter power spectrum can be easily obtained from a Boltzmann code such as CAMB (Lewis

and Challinor, 2011). Next, assuming some luminosity function for the source galaxies, Φ(𝐿, 𝑧),

we can write down the mean intensity of the line

𝐼 (𝑧) = 𝑐

4𝜋𝜈emit𝐻 (𝑧)

∫
𝐿Φ(𝐿, 𝑧)𝑑𝐿 (1.6)

where 𝜈emit is the rest frequency of the line and 𝐿 is the line luminosity. The intensity can be easily

converted to the mean brightness temperature which, in the Rayleigh-Jeans limit, yields

𝑇𝑏 (𝑧) =
𝑐3(1 + 𝑧)2

8𝜋𝜈3
emit𝑘𝐵𝐻 (𝑧)

∫
𝐿 (𝑀) 𝑑𝑛

𝑑𝑀
𝑑𝑀. (1.7)

Here we have taken the extra leap in assuming that the luminosity of a galaxy is a function of its

mass, replacing Φ(𝐿, 𝑧) with the mass function 𝑑𝑛/𝑑𝑀 .

The shot noise power represents the contribution to the power spectrum in the absence of

clustering and is proportional to the mean square of galaxy luminosities. In brightness temperature

units it is given by

𝑃shot(𝑘, 𝑧) =
(

𝑐3(1 + 𝑧)2

8𝜋𝜈3
emit𝑘𝐵𝐻 (𝑧)

)2 ∫
𝐿2Φ(𝐿, 𝑧)𝑑𝐿. (1.8)

The final piece is the luminosity averaged galaxy bias which represents the observed clustering of
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galaxies relative to the clustering of the underlying dark matter

𝑏̄ =

∫
𝐿𝑏(𝐿)Φ(𝐿)𝑑𝐿∫

𝐿Φ(𝐿)𝑑𝐿
. (1.9)

Combining the matter power spectrum with Eqs. 1.7-1.9, we obtain the total line power.

Measurement of this line power has been the goal of many LIM experiments across the

electromagnetic spectrum. Experimental progress in intensity mapping has largely been driven by

efforts to detect CO emission, which scales directly with the star formation rate. Since CO is one

of the primary coolants that enables star formation, CO is an excellent tracer of the molecular gas

from which stars form. From an astrophysical perspective, detecting the CO intensity mapping

signal would provide crucial insights into the star formation process across cosmic time. Given

that star formation peaks around 𝑧 ∼ 2 − 3 (an epoch known as cosmic noon) many CO mapping

experiments specifically target this redshift range. At these redshifts, CO emission redshifts into

millimeter wavelengths, allowing technology originally developed for CMB observations to be

adapted for intensity mapping, accelerating progress in the field. Some studies have even

leveraged CMB datasets themselves to search for CO, which is typically treated as a contaminant

in CMB analyses (Pullen et al., 2013, 2018; Switzer, 2016; Roy et al., 2024). Currently, the CO

shot noise power has been detected by the CO Power Spectrum Survey (COPSS, Keating et al.

2015, 2016) at 𝑧 = 2.3 − 3.3, while the CO Mapping Array Pathfinder (COMAP) has placed

stringent upper limits on the CO clustering power spectrum, further constraining models of

molecular gas evolution around cosmic noon (Stutzer et al., 2024; Chung et al., 2024; Ihle et al.,

2022).

In addition to CO, another line of interest that is observed at millimeter-wavelengths is the 158

𝜇m [CII] line. As the dominant cooling mechanism of interstellar gas, [CII] serves as a powerful

probe of both ionized and neutral media in star-forming galaxies. At high redshifts, [CII] is the

brightest of the carbon lines, roughly six times brighter than the next strongest CO line at 𝑧 = 7

(Bernal and Kovetz, 2022). Several upcoming instruments including the Experiment for Cryogenic
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Large-Aperture Intensity Mapping (EXCLAIM, Oxholm et al. (2020), the Tomographic Intensity

Mapping Experiment (TIME, Crites et al. 2014), the Terahertz Intensity Mapper (TIM, Marrone

et al. 2022), CONCERTO (Concerto Collaboration et al., 2020), and Prime-Cam on the Fred Young

Sub-millimeter Telescope (Aravena et al., 2019), are set to map [CII] in the coming years. Another

major target for intensity mapping is the Ly𝛼 line, which is being studied from cosmic noon out to

reionization. At these redshifts, the rest-frame UV Ly𝛼 line redshifts into the near-infrared, making

it the primary intensity mapping target for the deep-field survey by the Spectro-Photometer for the

History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx, Crill et al. 2020).

Scheduled for launch in early 2025, SPHEREx will also have sensitivity to the H𝛼 and ionized

oxygen (OII) lines, providing valuable insights into galaxy emission spectra (Fonseca et al., 2017).

1.3 The Cosmic Microwave Background

While the true beginning of our Universe remains unknown, reasonable speculations such as the

inflationary paradigm exist and what is on extremely firm observational footing is knowledge of our

cosmic history back to 𝑡 ∼ 10−2 seconds. By this time, the Universe began to cool adiabatically.

Within fractions of a second, the Universe had cooled sufficiently for protons and neutrons to

form, soon followed by Big Bang nucleosynthesis (BBN), which produced light atomic nuclei:
1H, 3He, 4He, 7Li. From these first few minutes until roughly 400,000 years later, the Universe

remained hot and ionized, consisting of a photon-baryon fluid and an underlying distribution of

dark matter seeded by the initial quantum fluctuations present at the time of the Big Bang. In this

primordial plasma, photons underwent Thomson and Compton scattering off charged particles, and

the resulting radiation pressure prevented the ionized plasma from clustering under gravity. This

pressure led to the formation of relativistic sound waves known as baryon acoustic oscillations

(BAO). As the Universe expanded, it cooled, eventually reaching a temperature where protons and

electrons could combine to form neutral hydrogen in a process known as recombination. With the

formation of neutral atoms, free electrons became scarce, dramatically increasing the mean free
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path of photons. This allowed photons to escape, effectively decoupling from the baryonic matter.

As a result, radiation pressure ceased to support the photon-baryon fluid, causing the acoustic

oscillations within it to freeze into the baryon distribution. Additionally, since the photons last

scattered off the baryons at this moment, these patterns imprinted in the surface of last scattering

became observable. These photons have since traveled largely unimpeded, apart from secondary

effects that will be discussed later, and today these same photons are observed as the cosmic

microwave background.

The energy distribution of CMB photons follows a blackbody spectrum3. At the time of

recombination, the peak of this spectrum was in the infrared, corresponding to an effective

temperature of approximately 3000 K. Due to cosmic expansion, this spectrum has been

redshifted, and today, CMB photons are observed to peak at microwave wavelengths with a

blackbody temperature of 2.726 K +/- 0.010 K with these error bars at 95% confidence level (as

shown in Figure 1.5, Mather et al. 1994; Fixsen et al. 1996; Fixsen 2009).

At early times, the Universe was remarkably homogeneous and isotropic, a fact corroborated

by a crude measurement of the CMB. However, a more careful examination reveals slight

temperature fluctuations at the level of 1 part in 105. These anisotropies arise from primordial

quantum fluctuations which ultimately shape large-scale structure formation. Observational

efforts have focused on making precise measurements of the statistical properties of the CMB.

Figure 1.6 illustrates the steady progress in mapping these anisotropies, from their initial detection

by the Cosmic Background Explorer (COBE, Janssen and Gulkis 1992) to the higher-resolution

observations of the Wilkinson Microwave Anisotropy Probe (WMAP, Bennett et al. 2003) and the

Planck satellite (Planck Collaboration et al., 2014).

The temperature fluctuations in the CMB are expected to follow a Gaussian distribution, meaning

they can be statistically characterized by just two quantities: the mean and the variance.4 The mean
3A vast body of literature explores spectral distortions in the CMB arising from both early-time (pre-recombination)

and late-time (post-recombination) processes. For a review, see Chluba and Sunyaev (2011) and references therein.
4However, certain early Universe models predict primordial non-Gaussianity and searching for its signatures remains

a key objective of current-generation CMB experiments Bartolo et al. (2010).
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Figure 1.5: The CMB spectrum measured by the Far InfraRed Absolute Spectrophotometer
(FIRAS) on the Cosmic Background Explorer (COBE) satellite. Data points with 400𝜎 error bars
are shown with black markers. The theory curve for a 2.725 Planck distribution is shown in black.
Figure from NASA/FIRAS Science Team.
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Figure 1.6: CMB temperature map as measured by COBE, WMAP, and Planck. As instrumentation
improved, smaller angular scales were resolved. Figure adapted from Vazquez Gonzalez et al.
(2020).

temperature of the CMB, as we have seen, is deduced from its blackbody spectrum while the

variance is encapsulated in the angular power spectrum. The all-sky temperature map, 𝑇 (n̂), can

be decomposed into spherical harmonic modes, given by

𝑇 (n̂) =
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑎ℓ𝑚𝑌ℓ𝑚 (n̂) (1.10)

where 𝑌ℓ𝑚 (n̂) is the spherical harmonic function of degree ℓ and order 𝑚 and the expansion

coefficients, 𝑎ℓ𝑚, are given by

𝑎ℓ𝑚 =

∫
4𝜋
𝑇 (n̂)𝑌 ∗

ℓ𝑚 (n̂)𝑑Ω. (1.11)

The angular power spectrum, 𝐶ℓ, is then defined as

⟨𝑎ℓ𝑚𝑎∗ℓ′𝑚′⟩ = 𝛿ℓℓ′𝛿𝑚𝑚′𝐶ℓ (1.12)
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where 𝛿 is the Dirac delta function. In practice, the estimated power spectrum as a function of

multipole, ℓ ∼ 180◦/𝜃, typically denoted with a hat, is given by the square of the spherical harmonic

amplitudes

𝐶̂ℓ =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 |2. (1.13)

Power at low ℓ corresponds to large-scale fluctuations, while power at high ℓ traces smaller-

scale variations. The resulting CMB temperature power spectrum, shown in Figure 1.7, exhibits

distinct oscillatory features: baryon acoustic oscillations (BAO). These wiggles in harmonic space

correspond to a characteristic scale in configuration space, the BAO scale, which, as the reader

may recall, arose from the frozen sound waves sharply imprinted on the CMB at recombination.

The angular BAO scale, 𝜃∗, can be compared to the comoving BAO scale, 𝑟𝑑 , calculated from

linear theory 5 thus acting as a standard ruler. The measurement of BAOs as standard rulers have

become a cornerstone of cosmology, performed across multiple redshifts to probe the geometry

and expansion history of the Universe (Eisenstein et al., 2005). We will return to a more pointed

discussion of BAO measurements in Chapter 5.

Perhaps most remarkable of all is the striking agreement between the red data points and the

green theory curve, a testament to the predictive power of our cosmological models and the precision

of CMB measurements. Strikingly, the primary signal (again, that is the signal from the surface

of last scattering) of the CMB temperature power spectrum can be accurately parameterized using

just six independent parameters. These include, 𝐴𝑠, the amplitude of primordial fluctuations; 𝑛𝑠
the slope of the primordial power spectrum; Ω𝑏 the relative abundance of baryons; Ω𝑐 the relative

abundance of dark matter; 𝜏, the optical depth to reionization; and 𝜃∗ the acoustic scale angle.

Changing the value of any one of these parameters will affect the amplitude, location, and relative

heights of the acoustic peaks.

While alternative parameterizations exist and are used in different contexts—for example, re-
5In reality, there are non-linear contributions. See Padmanabhan et al. (2009) for an example of how these are

treated.
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Figure 1.7: The CMB temperature angular power spectrum with Planck data shown in red. Fiducial
ΛCDM theory curve is plotted in green showing clear agreement with the data. Figure from ESA
and the Planck Collaboration.

expressing the parameters in terms of derived quantities such as 𝜎8 or the Hubble constant, the

fundamental point remains that only six independent parameters are needed to describe the primary

CMB anisotropies. However, as CMB measurements continue to improve in precision, additional

effects that were once negligible are becoming increasingly important. In particular, constraints on

the sum of neutrino masses are reaching the point where it is becoming essential to include this

quantity in cosmological fits, marking a shift in the standard cosmological parameterization.

While the discussion thus far has focused on temperature anisotropies, it is important to briefly

mention that CMB photons are also polarized. This polarization is categorized into E-modes

(the curl-free component), and B-modes (the divergence-free component). Considerable effort has
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Figure 1.8: Theoretical predictions for the E-mode spectrum (red), the primordial B-mode
spectrum (blue), and the lensing B-mode spectrum (green). Figure adapted from Lewis and
Challinor (2006).

been dedicated to measuring B-modes in particular, as a primordial gravitational wave background

can source B-mode polarization, with the precise tilt of its spectrum being indicative of the early

universe paradigm, whether inflationary or otherwise (Kamionkowski and Kovetz, 2016). This

measurement is challenging, as gravitational lensing by the late-time Universe also produces B-

modes, especially on small angular scales, as illustrated in Figure 1.8. In the following section, we

expand on the lensing signals imparted on the CMB and how they can be exploited for cosmology.
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1.4 Weak Lensing by Large Scale Structure

While on large scales the Universe is statistically homogeneous, on small scales the Universe

consists of dense objects, galaxies and clusters, separated by vast cosmic voids. The bending of

light by a locally inhomogeneous gravitation field is known as gravitational lensing. First predicted

by Henry Cavendish in 1784 but subsequently given a sound mathematical foundation by Einstein in

1919, lensing occurs when light from a distant source object is bent by the gravitation potentials of

intervening massive objects. This effect was first detected in 1919 by Arthur Eddington and Frank

Watson Dyson when the Sun was obstructed during a solar eclipse and the light of distant stars could

be observed to be distorted by the Sun’s gravity. Decades later in 1979, the first gravitationally

lensed quasar, known as the Twin Quasar, was observed. This quasar was lensed by a massive

elliptical galaxy, producing a double image. This observation was the first to identify both a source

and a lens of cosmological origin, exemplifying how lensing can help to reveal both the properties

distant objects and help us study the intervening matter distribution of our Universe.

Broadly speaking, lensing comes in two flavours: strong and weak lensing. Strong lensing,

as the name would suggest, occurs when the gravitational potential is strong enough to produce

visible distortions to a single source object. For point-like sources, multiple images are produced

while extended sources may appear as arcs or rings (see Figure 1.9). Weak lensing, on the other

hand, can only be detected statistically, that is, it is impossible to observe the distortion of a

single weakly lensed background source. Weak lensing is a powerful cosmological probe as it

probes the statistical properties of the intervening mass density without the need to characterize the

composition or dynamics of each object in the population of lenses. Of all the weak lensing source

planes, the CMB is perhaps the most powerful. CMB photons, having been emitted at just 400,000

years after the Big Bang, travel through the vast majority of our cosmic volume, picking up lensing

signals from every epoch of our Universe’s evolution. Therefore, encoded in each CMB photon is

information about the entire Universe’s history.
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Figure 1.9: In the left panel is an artist’s conception of the gravitational lensing of a distant quasar
by an intervening galaxy. The quasar is observed as multiple images (Image credit NASA, ESA,
and D. Player (STScI)). In the right panel is an image taken by Hubble’s Wide Field Camera 3 of
the blue horseshoe galaxy at 𝑧 = 2.4 lensed by a Luminous Red Galaxy in the foreground. The
blue horseshoe galaxy is distorted by the lens into a ring (Image credit NASA, ESA).

Weak gravitational lensing of the CMB arises when photons from the surface of last scattering

get deflected by the gravitational potentials they encounter on their journey to us. The deflection

angle, 𝛼, is proportional to the gradient of the lensing potential, 𝜙, the total potential of the

projected mass distribution along the line of sight. Using CMB temperature and polarization maps

to reconstruct 𝜙 gives us direct observation of the total matter distribution of the universe, both

baryonic and dark, without the use of a biased tracer (Seljak and Zaldarriaga, 1999). Measuring

the power spectrum of the lensing potential, either in auto- or in cross-correlation with large scale

structure surveys, enables us to probe the growth of matter fluctuations, place limits on primordial

non-Gaussianity, constrain the sum of the neutrino masses, and even test theories of modified

gravity (Lewis and Challinor, 2007; Schmittfull and Seljak, 2018; Allison et al., 2015).

As a result of the interaction between the CMB photons and later time cosmic structure, several

unique effects are induced on the CMB anisotropies. Unlike rings and multiple images, which are
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characteristic features of strong lensing, perhaps the most notable feature of weak lensing is that

is it can only be detected statistically through the measurement of either the lensing shear or the

lensing convergence (Dodelson, 2017). Shear, denoted by 𝛾 occurs when the background image

is stretched from its original shape as a result of interacting with the intervening gravitational

potential, as illustrated in Figure 1.10. The amount of shear is related to the potential by

𝛾+ =
1

2𝑐2

(
𝜕2𝜙

𝜕𝜃2
𝑥

− 𝜕2𝜙

𝜕𝜃2
𝑦

)
(1.14)

𝛾× =
1
𝑐2

𝜕2𝜙

𝜕𝜃𝑥𝜕𝜃𝑦
(1.15)

where + and × denote the two shear polarizations and 𝜃𝑥 and 𝜃𝑦 denote angular coordinates on the

sky. Precision cosmic shear measurements have been made not with the CMB, but instead with

galaxy lensing. By measuring the ellipticity of a large population of galaxies, it is possible to make

inferences about the intervening mass distribution. This of course comes with challenges. The

source galaxies are not intrinsically round but rather elliptical disks, and even if they were round

face-on, they may still appear elliptical unlensed depending on their projection on the sky. The

uncertainty related to not knowing how much of the observed ellipticity is intrinsic and how much

is a result of lensing is referred to as shape noise. To eliminate this source of uncertainty, it may be

noted that the ellipticities of galaxies are random (that is with respect to one another) and therefore

it is possible to beat down the shape noise by averaging together the random intrinsic ellipticities,

thus teasing out their common ellipticity due to shear. However, galaxy shapes and galaxy spins

are correlated with the underlying dark matter distribution giving rise to intrinsic alignment where

the ellipticities of the whole populations are aligned.

Convergence, also depicted in Figure 1.10, is a measure of magnification. Denoted by 𝜅, the

convergence is simply the integrated matter density along the line of sight weighted by the lensing

kernel, 𝑊 (𝜒, 𝜒𝑠), and is given by
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Figure 1.10: Here the source undergoes weak gravitational lensing which both magnifies the source
(convergence) and extends the source tangentially to the line of sight (shear). Figure from Umetsu
(2010).

𝜅(n̂) =
∫ 𝜒𝑠

0
𝑊 (𝜒, 𝜒𝑠)𝛿𝑚 (𝜒(𝑧)n̂, 𝑧)𝑑𝜒 (1.16)

where 𝜒 is the comoving distance, 𝜒𝑠 is the comoving distance to the source, and 𝛿𝑚 is the

matter overdensity field. The lensing kernel characterizes which portion of the line of sight matter

density contributes most to the magnification effect. Like shear, the convergence is also related

to the projected gravitational potential, 𝜅 ∝ ∇2𝜙, although the beauty in convergence is that it

is related precisely to the LOS projection of underlying matter density by the Poisson equation,

∇2𝜙 = 4𝜋𝐺
∫
𝜌(r, 𝑧)𝑑𝑧.

By studying the statistical artifacts on T, E, and B maps of the CMB due to weak lensing, it is

possible to infer 𝜅 and in turn, the total intervening matter distribution of our Universe (Lewis and

Challinor, 2007). Devoid of lensing, if one were to take different patches of the CMB and compute

their power spectra, all the spectra should agree within cosmic variance. Lensing, however, distorts

these spectra such that they are slightly different on different patches of the sky. Again, it is not
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individual weak lensing features that can be detected in the CMB, but rather it is the the statistics of

the CMB that are distorted by weak lensing. The deflections induced on CMB photons as they travel

to us are small, on the order of arcminutes (ℓ ∼ 1000) . However, the structures responsible for the

deflection are large, on the order of degrees (ℓ ∼ 50). Therefore, somewhat counter intuitively, to

study the large scale structure of the Universe one actually has to study the small scale anisotropies

of the CMB.

There are two lensing effects that are expected to occur: peak smearing and the induction of

non-Gaussianities. To first illustrate the effect of peak smearing, we can consider an individual

distortion due to some potential 𝜙 on a small patch of the CMB. This distortion will shift the power

spectrum to lower ℓ if 𝜅 is positive (magnifies), or shifts the peaks to higher ℓ if 𝜅 is negative

(contracts). This should be intuitive since magnifying, for example, makes features appear larger

and therefore peak at lower ℓ. This fractional change in the angular power spectrum due to 𝜅 is

given by

Δ𝐶ℓ

𝐶ℓ

= 𝜅
𝑑 ln(ℓ2𝐶ℓ)

𝑑 ln ℓ
. (1.17)

Averaged over the sky, however, this shifting effect cancels out since there are just as many

positive convergence regions as there are negative. Computing first and second order corrections

to the CMB temperature power spectrum due to lensing shows that the resulting observed effect is

a smoothing of the peaks and troughs. The amplitude of the smoothing is given by

Δ𝐶smooth
ℓ = (𝐶̄ℓ − 𝐶ℓ)

∫
𝑑2ℓ′

(2𝜋)2 ( ®ℓ · ®ℓ
′)2𝐶

𝜙𝜙

ℓ′

𝑐4 (1.18)

and depends on the intervening gravitational potential, statistically characterized by its spectrum,

𝐶
𝜙𝜙

ℓ′ . Here, 𝐶̄ℓ is the spectrum smoothed over a region ℓ − Δℓ → ℓ + Δℓ where Δℓ ≃ 50 since that

is the scale at which the lensing spectrum peaks, and 𝐶ℓ is the unsmoothed spectrum.

Importantly, both the temperature and polarization anisotropies experience this effect. In fact,
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the smoothing of E-modes is more distinguishable than that of temperature since the E-mode

spectrum exhibits more prominent peaks (Lewis and Challinor, 2007)6. In addition to smoothing,

lensing produces unique polarization effects on CMB photons. E-modes, the curl-less component to

polarization, give rise to divergence-less B-modes after lensing. In fact, most of the B-mode power

is generated by lensing and therefore lives at high ℓ (∼ 1000). The presence of lensing induced

B-modes in the B-modes power spectrum is therefore the primary threat to the measurement of

low-amplitude primordial B-modes. While primordial B-modes exhibit large scale correlations at

low ℓ, even a small lensing contribution can wash out their signal. This is only made worse by other

contaminants like polarization from dust and other systematics. Understanding the lensing B-mode

signal therefore remains an important part of constraining early universe scenarios (BICEP/Keck

Collaboration et al., 2022).

While peak smearing is an important lensing effect that is routinely taken into account when

fitting for CMB power spectra, due to its degeneracy with the primary CMB signal, it is difficult

to isolate this signature for lensing studies. Luckily, lensing also affects the higher order statistics

of the CMB by producing correlations between Fourier modes. It is possible to perform lensing

reconstruction from CMB maps with the use of quadratic estimators. It is assumed that the

unlensed CMB is statistically isotropic and therefore the Fourier modes of this field are uncorrelated.

Inhomogeneity is then induced by convergence which subsequently leads to correlations between

Fourier modes and one can use this fact to learn about the inhomogeneity, that is, the lensing field 7.

Most famously, the Hu and Okamoto quadratic estimator and the Okamoto and Hu estimator have

been used to preform lensing reconstruction (Hu and Okamoto, 2002; Okamoto and Hu, 2003).

While these estimators have been the main workhorse for field reconstruction, it has been shown

that they will be sub-optimal for upcoming CMB experiments (Hirata and Seljak, 2003a). Other

techniques like gradient-inversion methods and likelihood based methods have been explored in

addition to other quadratic estimators which yield a lower reconstruction noise (Hirata and Seljak,
6The same argument holds for the TE spectrum.
7The lensing field can be referred to by the convergence field, 𝜅, the deflection field 𝛼, or the potential field 𝜙.
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2003a; Carron and Lewis, 2017; Hirata and Seljak, 2003b; Hadzhiyska et al., 2019; Millea et al.,

2020; Maniyar et al., 2021).

To date, a number of lensing detections have been made, the first of which was by the Atacama

Cosmology Telescope (ACT) in 2011 using the Hu and Okamoto estimator on the temperature maps

(Das et al., 2011). Subsequent measurements have been made of the lensing signal in temperature

as well as polarization maps by ACT, the South Pole Telescope (SPT), Planck, Background Imaging

of Cosmic Extragalactic Polarization (BICEP), and the POLARization of the Background Radiation

experiment (POLARBEAR) (van Engelen et al., 2012; Hanson et al., 2013; Sherwin et al., 2017;

Planck Collaboration et al., 2016, 2020; Omori et al., 2017; Story et al., 2015; BICEP2 Collaboration

et al., 2016; Wu et al., 2019; Ade et al., 2014; Adachi et al., 2020). Excitingly, current and next

generation wide-field CMB experiments like SPT-3G, SPT-3G+, AdvACT, the Simons Observatory

(SO) and CMB-Stage 4, will provide high signal-to-noise lensing measurement with unprecedented

angular resolution (Ward and Advanced ACT Collaboration, 2017; Benson et al., 2014; Anderson

et al., 2022; Ade et al., 2019; Abazajian et al., 2022).

While CMB lensing measurements have seen significant progress and are poised to become

even more sensitive, they remain fundamentally limited. A key challenge is that the observed

lensing signal represents an integrated projection along the entire line of sight, preventing one to

separate contributions from different epochs thus hindering the study of their evolution. To mitigate

this, many efforts have combined CMB lensing with external tracers such as galaxy positions or

galaxy lensing (Hand et al., 2015; Liu and Hill, 2015; Singh et al., 2016; Chang et al., 2023; Kalaja

et al., 2024; Shaikh et al., 2024). However, these approaches primarily isolate low-redshift lensing

signals, and in the case of galaxy positions, they compromise the inherently unbiased nature of

the lensing convergence. In Chapters 4 and 5 of this thesis, we introduce a novel method that

leverages LIM lensing to construct a high-redshift CMB lensing observable that is tomographic.

This observable is an unbiased probe of the matter density field and we show how it can be used

to constrain the geometry of our universe through the measurement of lensing BAOs, and also to

constrain cosmology beyond ΛCDM.
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1.5 Observational Challenges and the Analyst’s Solution

Thus far, we outlined the compelling potential of LIM in offering new observational windows into

previously unexplored epochs across cosmic time with sensitivity to both cosmology and

astrophysics. However, the relative scarcity of detections is no accident; LIM is inherently

challenging. The distant line emission being targeted is often faint, while bright foreground

contaminants dominate the observed signal. Moreover, each spectral line, depending on the

observed wavelength, suffers from its own unique sources of foreground contamination which is

only further exacerbated by the interaction between the instrument response, additional

systematics, and on-sky contaminants.

In the case of 21 cm intensity mapping, the 21 cm line is heavily contaminated by bright

foregrounds, including Galactic synchrotron emission, free-free emission, and both resolved and

unresolved radio point sources. Together, these contaminants can dominate over the signal by 4–5

orders of magnitude. This is particularly severe for high-redshift 21 cm observations since the

foregrounds, which can be approximated by a spatially-dependent power law distribution, increase

in intensity at lower frequencies (i.e. higher redshifts). This foreground model is given by

𝑇 (r, 𝜈) = 𝑇0

(
𝜈

𝜈0

)−𝛼(r)
. (1.19)

Here, 𝜈0 is the reference frequency, 𝑇0 is the mean sky temperature at 𝜈0, and 𝛼 is the spectral

index8(Liu and Tegmark, 2012; Wang et al., 2006). This broadband frequency structure,

characteristic of the foregrounds, results in a large correlation length along the frequency axis.

This, in turn, leads to severe contamination of large-scale LOS modes, which are rich with

cosmological information. To analyze these effects, the power spectrum is often decomposed into

Fourier wavenumbers perpendicular (𝑘⊥) and parallel (𝑘 ∥) to the LOS, forming what is known as

the cylindrically averaged power spectrum. As shown in Figure 1.11, this power spectrum reveals
8It should be noted that approximating the foregrounds by such a simple model generally breaks down for

observations with deep integrations that are probing a very high (105) dynamic range
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a prominent stripe of excess power at low 𝑘 ∥ , a direct result of bright foreground contamination.

Additionally, the frequency-dependent response of the synthesized beam (also known as the point

spread function) of radio interferometers introduces a feature known as the foreground wedge

(also seen in Figure 1.11), which leaks power from large LOS modes into otherwise

uncontaminated small-scale modes. This is a direct result of the fact that, at different frequencies,

a given baseline (i.e. the correlation of a pair of antennas separated by some distance) measures

different Fourier modes. This frequency evolution of the measured mode is baseline dependent,

leading to the wedge-like structure (see Liu et al. (2014a) and Liu et al. (2014b) for more detail).

While numerous efforts have been made to filter out foreground contamination, the complex

interplay between the instrument response, foregrounds, and additional systematics has led many

to adopt the more severe, yet conservative, approach of foreground excision. Unfortunately, this

also removes the brightest signal modes which carry significant constraining power and leaves

only a small window in the 𝑘⊥-𝑘 ∥ plane to look for the EoR signal (while it may look like a large

area of parameter space due to being plotted on a logarithmic scale, this is in fact a very small

window). In Chapter 3, we will return to the problem of foreground removal and propose a new

path forward.

Higher frequency LIM observations also suffer from broadband contaminants but are more

severely impacted by line interloper contamination. Line interlopers are lower-redshift, lower-

energy transition lines that redshift into the same observed band as the high-redshift line of interest,

resulting in line confusion. For example, [CII] emission from the EoR is highly contaminated by

a ladder of CO rotational transitions from 0 < 𝑧 ≲ 3. While broadband contaminants remain a

challenge, single-aperture instruments, commonly used at these shorter wavelengths, exhibit more

slowly evolving spectral behavior compared to radio interferometers, reducing distortions in smooth

spectral features and making broadband foreground removal more feasible. To provide concrete

examples, the cosmic infrared background (CIB) is a broadband contaminant to [CII] intensity

mapping and in the infrared, zodiacal light, that is, diffuse sunlight scattered by interplanetary

dust, is a primary contaminant to Ly𝛼 intensity mapping. Fortunately, the CIB is expected to be
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Figure 1.11: A schematic of the cylindrical power spectrum. The foreground contaminated region,
including “the wedge”, can be seen in red and the “EoR window” in light blue. Figure from Liu
et al. (2014c).

removable through traditional decomposition-based methods (Yue et al., 2015) and extensive efforts

have been made to mitigate zodiacal light contamination in upcoming SPHEREx observations.

These methods leverage multiple exposures to isolate the common cosmological signal while

filtering out the zodiacal component which exhibits day-to-day variability (Williams et al., 2024).

Despite these advancements, foreground removal remains a primary concern across all wavelengths.

Achieving precision science with LIM requires equally precise foreground removal, and it is not yet

immediately clear whether existing techniques can reach the necessary level of accuracy. Moreover,

real data often present unexpected challenges, making it essential to develop a diverse portfolio of
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approaches to ensure robustness across different observational conditions.

So how do we resolve this problem? How do we peel back the foregrounds to reveal the cosmic

signal beneath? How do we detect something faint amidst bright, unwanted contaminants? One

of the most robust solutions is cross-correlation, a well-established and widely used technique

in cosmology. Cross-correlations work by comparing independent datasets that trace the same

underlying structure, allowing one to extract the common signal while mitigating uncorrelated

sources of contamination. Analogous to the power spectrum defined in Eq. 1.3, the cross-spectrum

quantifies the statistical relationship between two fields 𝑇𝑖 and 𝑇𝑗 as a function of comoving length

scale and is given by

⟨𝑇𝑖 (k)𝑇𝑗 (k′)⟩ = (2𝜋)3𝛿
(3)
𝐷

(k − k′)𝑃𝑖 𝑗 (𝑘). (1.20)

Importantly, since any non-signal contributions (i.e. noise and foregrounds) to 𝑇𝑖 and 𝑇𝑗 are

uncorrelated with one another, the cross-spectrum is unbiased in the infinite ensemble average

limit (a detailed discussion of this can be found in Chapter 2). The variance of the cross-spectrum,

as described in Furlanetto and Lidz (2007), is given by

𝛿𝑃2
𝑖 𝑗 (𝑘) =

1
2
√
𝑁k

[
𝑃2
𝑖 𝑗 (𝑘) + 𝛿𝑃𝑖 (𝑘)𝛿𝑃 𝑗 (𝑘)

]
(1.21)

where 𝛿𝑃𝑖 (𝑘) and 𝛿𝑃 𝑗 (𝑘) is the error on the individual auto-spectra. The factor of 1/
√
𝑁k is the

reduction of sample variance from binning vectors k into a 𝑘-bin. The factor of 1/2 comes from

only sampling the upper half-plane since the power spectrum is the square of the Fourier transform

of a real-valued field. This discussion has hopefully demonstrated that cross-correlations are a

powerful, unbiased probe and showcased how bringing in a secondary probe, especially one that is

detected at high signal-to-noise (i.e. has small 𝛿𝑃) can yield a detection of a faint probe.

Historically, cross-correlations have been instrumental in securing the first detections of faint

cosmological signals that were otherwise buried within complex datasets. For example, CMB

lensing (Smith et al., 2007), the kinematic Sunyaev-Zel’dovich effect9 (Hand et al., 2012), the
9The kinematic Sunyaev-Zel’dovich effect is a CMB secondary and arises from the scattering of CMB photons off
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integrated Sachs-Wolfe effect10 (Boughn and Crittenden, 2004), and, as we have seen, the low-

redshift 21 cm signal (Pen et al., 2009), were all first detected in cross-correlation with large-scale

structure (LSS) surveys. With high-redshift LIM emerging as a new frontier, cross-correlation

analyses are poised to play a similarly crucial role in securing the first detections at high redshift.

However, at high-𝑧, traditional cross-correlation techniques face new challenges: high-redshift

galaxy surveys are sparse and cover relatively small fields of view, making it difficult to robustly

correlate LIM maps with LSS datasets. As a result, relying solely on these conventional approaches

will likely not be sufficient to secure a detection (La Plante et al., 2023). This necessitates the

development of innovative cross-correlation strategies tailored to the high-redshift regime.

1.6 Roadmap

This thesis explores new methods for maximizing the scientific return of LIM measurements and

their cross-correlations, with emphasis on their role in constraining cosmology. The work

presented here is divided into two major objectives. The first objective, covered in Chapters 2 and

3, is to establish robust frameworks for analyzing LIM cross-correlations and demonstrate their

effectiveness in both mitigating systematics and probing fundamental cosmological and

astrophysical processes. The second objective, addressed in Chapters 4 and 5, is to introduce

novel applications of LIM lensing that enable access to high-redshift CMB lensing information,

providing new avenues for constraining cosmology. Each chapter is summarized as follows:

• Chapter 2, “Forecasts and Statistical Insights for Line Intensity Mapping

Cross-Correlations: A Case Study with 21cm × [CII]” focuses on the theoretical and

practical aspects of cross-correlating LIM surveys. With multiple spectral lines probing

overlapping cosmic volumes, cross-correlations offer a promising avenue for studying

of high-energy electrons with bulk velocities.
10This is a gravitational CMB secondary which causes the redshifting and blueshifting of CMB photons by the

gravitational potential wells they encounter in an expanding universe.
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astrophysical processes while mitigating observational systematics. However, many of the

desirable statistical properties of these correlations hold only under idealized conditions. In

this chapter, we develop an end-to-end pipeline for analyzing LIM cross-correlations,

enabling instrumental effects, residual foregrounds, and analysis choices to be propagated

through Monte Carlo simulations. This framework rigorously quantifies error properties,

including covariances, window functions, and full probability distributions for power

spectrum estimates, analysis steps that, for simplicity, are typically not carried out in

existing literature. This then allows one to test, rather than assume, various simplifying

assumptions that have yet to be critically examined. As case studies, we apply this

methodology to forecast the sensitivity of upcoming 21 cm-[CII] cross-correlation

measurements and provide recommendations for survey design.

• Chapter 3, “A Data-Driven Technique To Mitigate The Foregrounds Of Line Intensity Maps”,

addresses one of the most significant challenges in LIM: foreground contamination. Despite

extensive efforts, many existing mitigation techniques have struggled to effectively remove the

dominant broadband contaminants, particularly those with strong frequency coherence. In

this chapter, we introduce a novel, fully data-driven foreground removal method that leverages

intra-dataset frequency-frequency cross-correlations to empirically estimate the foreground

power spectrum. We test this approach using simulations of 21 cm observations under

various experimental configurations, including single-dish and interferometric setups, while

incorporating realistic systematic contaminants. Under idealized conditions, we demonstrate

that this method can suppress foregrounds by 4–5 orders of magnitude, achieving percent-

level signal residuals in a single analysis step. Additionally, we explore the limitations of

this estimator, identifying conditions under which it remains robust and scenarios where it is

expected to break down. This work establishes a new framework for foreground mitigation

that is widely applicable across LIM surveys, ensuring that future analyses can achieve the

precision necessary for high-redshift detections.
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• Chapter 4, “Constraining Cosmology With the CMB × LIM-Nulling Convergence” explores

the scientific potential of nulling estimators that combine CMB lensing and LIM lensing

to selectively remove low-redshift contributions from CMB lensing maps. Standard CMB

lensing maps provide a direct probe of the matter distribution without relying on biased

tracers, but they are dominated by low-redshift contributions, making it difficult to isolate

high-redshift structure. This chapter builds on the formalism of Maniyar et al. (2022),

demonstrating that LIM-nulling estimators can provide competitive constraints on ΛCDM

parameters and neutrino mass. Furthermore, we highlight LIM-nulling as a powerful tool for

model-independent tests of physics beyond ΛCDM and for studying the high-redshift matter

power spectrum.

• Chapter 5, “A New Probe of the High-z BAO scale: BAO tomography With CMB ×

LIM-Nulling Convergence” extends the application of LIM-nulling techniques to precision

cosmology. Standard rulers like the BAO scale are critical for constraining the geometry

and expansion history of the Universe, yet most existing BAO measurements operate at low

redshifts and rely on biased tracers of the matter field. In this chapter, we propose a novel

approach to measuring BAO features at high redshifts (𝑧 ∼ 5) by applying nulling estimators

to LIM-CMB lensing cross-correlations. We forecast the sensitivity of next-generation

instruments to such a measurement, finding that upcoming surveys could constrain the BAO

scale to 7.2% precision, while a more futuristic scenario could reach 4% precision. This

constitutes a fundamentally new BAO measurement during an epoch largely unexplored by

traditional methods.

Together, these studies advance the use of LIM for precision cosmology, demonstrating how

cross-correlations and nulling techniques can unlock new high-redshift observables and overcome

key observational challenges. Finally, we summarize our conclusions and and provide additional

outlook in Chapter 6.
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T. Ménard, T. Moso, et al., Journal of Astronomical Instrumentation 9, 2050019-564 (2020),

2008.12208.

J. O. Burns, G. Hallinan, J. Lux, L. Teitelbaum, J. Kocz, R. MacDowall, R. Bradley, D. Rapetti,

W. Wu, S. Furlanetto, et al., arXiv e-prints arXiv:1911.08649 (2019), 1911.08649.

D. R. DeBoer et al., 129, 045001 (2017), 1606.07473.

Z. Abdurashidova, J. E. Aguirre, P. Alexander, Z. S. Ali, Y. Balfour, R. Barkana, A. P. Beardsley,

G. Bernardi, T. S. Billings, J. D. Bowman, et al., 924, 51 (2022), 2108.07282.

P. Madau, L. Pozzetti, and M. Dickinson, 498, 106 (1998), astro-ph/9708220.

S. R. Furlanetto, M. Zaldarriaga, and L. Hernquist, 613, 16 (2004), astro-ph/0404112.

R. Barkana and A. Loeb, 624, L65 (2005), astro-ph/0409572.

S. R. Furlanetto, Z. Haiman, and S. P. Oh, 686, 25 (2008), 0803.3454.

K. W. Masui, E. R. Switzer, N. Banavar, K. Bandura, C. Blake, L. M. Calin, T. C. Chang, X. Chen,

Y. C. Li, Y. W. Liao, et al., 763, L20 (2013), 1208.0331.

S. H. Teng, S. Veilleux, and A. J. Baker, 765, 95 (2013), 1301.5642.

https://link.aps.org/doi/10.1103/PhysRevD.92.083508
https://link.aps.org/doi/10.1103/PhysRevD.78.023529
https://link.aps.org/doi/10.1103/PhysRevLett.92.211301
https://link.aps.org/doi/10.1103/PhysRevLett.92.211301
2008.12208
1911.08649
1606.07473
2108.07282
astro-ph/9708220
astro-ph/0404112
astro-ph/0409572
0803.3454
1208.0331
1301.5642


Bibliography 38

J. Rhee, P. Lah, J. N. Chengalur, F. H. Briggs, and M. Colless, 460, 2675 (2016), 1605.02006.

C. J. Anderson, N. J. Luciw, Y. C. Li, C. Y. Kuo, J. Yadav, K. W. Masui, T. C. Chang, X. Chen,

N. Oppermann, Y. W. Liao, et al., 476, 3382 (2018), 1710.00424.

A. Chowdhury, N. Kanekar, B. Das, K. S. Dwarakanath, and S. Sethi, 913, L24 (2021), 2105.

06773.

L. Wolz, A. Pourtsidou, K. W. Masui, T.-C. Chang, J. E. Bautista, E.-M. Müller, S. Avila, D. Bacon,

W. J. Percival, S. Cunnington, et al., 510, 3495 (2022), 2102.04946.

CHIME Collaboration, M. Amiri, K. Bandura, T. Chen, M. Deng, M. Dobbs, M. Fandino,

S. Foreman, M. Halpern, A. S. Hill, et al., arXiv e-prints arXiv:2202.01242 (2022), 2202.01242.

M. Amiri, K. Bandura, A. Chakraborty, M. Dobbs, M. Fandino, S. Foreman, H. Gan, M. Halpern,

A. S. Hill, G. Hinshaw, et al., 963, 23 (2024), 2309.04404.

S. Paul, M. G. Santos, Z. Chen, and L. Wolz, A first detection of neutral hydrogen intensity mapping

on mpc scales at 𝑧 ≈ 0.32 and 𝑧 ≈ 0.44 (2023), 2301.11943.

P. C. Breysse, E. D. Kovetz, P. S. Behroozi, L. Dai, and M. Kamionkowski, Monthly Notices of the

Royal Astronomical Society p. stx203 (2017), ISSN 1365-2966, URL http://dx.doi.org/

10.1093/mnras/stx203.

A. Cooray and R. Sheth, 372, 1 (2002), astro-ph/0206508.

A. Lewis and A. Challinor, CAMB: Code for Anisotropies in the Microwave Background,

Astrophysics Source Code Library, record ascl:1102.026 (2011).
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Intermezzo 1

At the end of Chapter 1, we explored how cross-correlations help extract faint signals from otherwise

contaminated datasets and how LIM will likely require us to rethink both our analysis methods and

the probes we use. In this next chapter, we investigate the potential of LIM-LIM cross-correlations,

where two line intensity mapping observations are cross-correlated instead of LIM with another

LSS probe. This approach has significant advantages, as LIM, in principle, provides a more

representative view of LSS than traditional galaxy surveys. However, implementing LIM-LIM

cross-correlations in reality presents several challenges.

First, unlike cross-correlations with external tracers, LIM-LIM analyses involve two probes

that are both subdominant to the foreground contamination. While the resulting power spectrum

remains unbiased, the variance on these measurements can be significantly high—an issue that,

until now, has yet to be fully quantified. Second, differences in instrumental specifications, such

as frequency and angular resolution, complicate the analysis by requiring the careful selection of

commonly measured Fourier modes. Third, although LIM in principle can probe vast cosmological

volumes, many initial surveys, particularly those at millimeter and sub-millimeter wavelengths, are

conducted over relatively small fields of view to enable deep integrations. Finally, since most

current-generation LIM instruments were primarily designed for auto-spectrum measurements,

many surveys lack large overlapping sky areas, further exacerbating the challenge of performing

high-sensitivity cross-correlations.

These difficulties raise crucial questions: If we attempt LIM-LIM cross-correlations with
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existing instrumentation, what can we realistically achieve? And what would an ideal experimental

setup look like to fully realize the precision science that cross-correlations promise?

In Chapter 2, we address these questions and systematically explore the four key challenges

outlined above. To do so, we perform the first end-to-end simulation and analysis of LIM-LIM

cross-correlations, constructing a robust framework to assess the impact of foregrounds, instrument

response, instrumental noise, and other observational effects on the measured cross-spectrum.

This pipeline allows us to propagate these effects through Monte Carlo simulations, providing

a rigorous characterization of error properties, including covariances, window functions, and

statistical uncertainties. With this comprehensive approach, we forecast the sensitivity of both

near-term and futuristic 21 cm × [CII] EoR surveys, offering insight into the feasibility of early

high-redshift detections. Additionally, our framework enables a critical evaluation of commonly

held forecasting assumptions and analysis choices, ensuring that future cross-correlation studies

are built on a solid methodological foundation. Through this work, we establish a path forward for

LIM-LIM analyses, demonstrating their viability as a powerful tool for high-redshift cosmology.

This chapter is based on:

• Fronenberg, H., Liu, A. (2024) Forecasts and Statistical Insights for Line Intensity Mapping

Cross-Correlations: A Case Study with 21cm × [CII], ApJ 975 222

https://doi.org/10.3847/1538-4357/ad77cc
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Forecasts and Statistical Insights for Line

Intensity Mapping Cross-Correlations: A

Case Study with 21cm × [CII]

Hannah Fronenberg1,2, Adrian Liu1,2

1Department of Physics, McGill University, Montréal, QC, Canada
2Trottier Space Institute, Montréal, QC, Canada

Abstract

Intensity mapping—the large-scale mapping of selected spectral lines without resolving individual

sources—is quickly emerging as an efficient way to conduct large cosmological surveys. Multiple

surveys covering a variety of lines (such as the hydrogen 21 cm hyperfine line, CO rotational lines,

and [CII] fine structure lines, among others) are either observing or will soon be online, promising

a panchromatic view of our Universe over a broad redshift range. With multiple lines potentially
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covering the same volume, cross-correlations have become an attractive prospect, both for probing

the underlying astrophysics and for mitigating observational systematics. For example, cross

correlating 21 cm and [CII] intensity maps during reionization could reveal the characteristic scale

of ionized bubbles around the first galaxies, while simultaneously providing a convenient way to

reduce independent foreground contaminants between the two surveys. However, many of the

desirable properties of cross-correlations in principle emerge only under ideal conditions, such as

infinite ensemble averages. In this paper, we construct an end-to-end pipeline for analyzing

intensity mapping cross-correlations, enabling instrumental effects, foreground residuals, and

analysis choices to be propagated through Monte Carlo simulations to a set of rigorous error

properties, including error covariances, window functions, and full probability distributions for

power spectrum estimates. We use this framework to critically examine the applicability of

simplifying assumptions such as the independence and Gaussianity of power spectrum errors. As

worked examples, we forecast the sensitivity of near-term and futuristic 21 cm-[CII]

cross-correlation measurements, providing recommendations for survey design.

2.1 Introduction

During the period of cosmic dawn and and the epoch of reionization (EoR), our Universe’s first

stars ignited and the first galaxies formed. Emanating from this first generation of galaxies were

UV photons that ionized the surrounding neutral hydrogen (HI) over some several hundred million

years. The precise timing, duration, morphology, and sources of reionization remains unknown,

representing a crucial missing piece in our understanding of our cosmic history.

Line intensity mapping (LIM) has the potential to revolutionize our status quo of considerably

incomplete information. LIM traces the brightness of specific spectral lines over large three-

dimensional volumes, mapping out radial fluctuations using the redshift of a line and transverse

fluctuations via angular sky plane information. A judicious choice of spectral lines (balancing

practical feasibility with sensitivity to physical processes of interest) opens up heretofore unexplored
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epochs and scales to direct observation. Particularly promising for the study of the EoR is the 21 cm

hyperfine transition line of neutral hydrogen, since it is precisely neutral hydrogen that is being

ionized and the relevant redshift range is in principle observable (Furlanetto et al., 2006; Morales

and Wyithe, 2010; Pritchard and Loeb, 2012; Loeb and Furlanetto, 2013; Mesinger, 2019; Liu and

Shaw, 2020).

A number of 21 cm observations have been made in the range 0 ≲ 𝑧 ≲ 20 (Liu and Shaw, 2020;

Trott and Pober, 2019). Global signal experiments have targeted the sky-averaged 21 cm monopole

as a function of redshift. At the high redshifts of cosmic dawn (i.e., during the formation of first

stars and galaxies but prior to the systematic reionization of the intergalactic medium), a global

signal detection has been claimed by the Experiment to Detect the Global EoR Signature (EDGES)

collaboration (Bowman et al., 2018), although a search for this claimed signal with the Shaped

Antenna measurement of the background RAdio Spectrum 3 (SARAS-3) experiment has not yielded

a detection (Singh et al., 2022). At reionization redshifts, global signal experiments have attempted

to detect the disappearance of neutral hydrogen as reionization proceeds, and have successfully

placed lower limits on the duration of reionzation (Bowman and Rogers, 2010; Monsalve et al.,

2017; Singh et al., 2017). Even without a positive detection, such measurements have the potential

to set powerful constraints by combining with observations of the kinetic Sunyaev-Zel’dovich in

the Cosmic Microwave Background, which tend to place upper limits on the duration (Bégin et al.,

2022).

Complementing global signal measurements are experiments targeting spatial fluctuations in

the 21 cm brightness temperature. Current-generation instruments typically aim to make a

measurement of the power spectrum of these fluctuations, and stringent upper limits have been

placed by the Hydrogen Epoch of Reionization Array (HERA; Abdurashidova et al. 2022a; HERA

Collaboration et al. 2023), the Giant Meter Wave Radio Telescope (GMRT; Paciga et al. 2013),

the Low Frequency Array (LOFAR; van Haarlem et al. 2013; Patil et al. 2017; Gehlot et al. 2019;

Mertens et al. 2020), the Donald C. Backer Precision Array for Probing the Epoch of Reionization

(PAPER; Parsons et al. 2010; Cheng et al. 2018; Kolopanis et al. 2019), the Owens Valley Long
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Wavelength Array (LWA; Eastwood et al. 2019; Garsden et al. 2021), the Murchison Widefield

Array (MWA; Tingay et al. 2013; Ewall-Wice et al. 2016; Beardsley et al. 2016; Barry et al. 2019;

Trott et al. 2020; Li et al. 2019; Yoshiura et al. 2021; Trott et al. 2022; Rahimi et al. 2021;

Wilensky et al. 2023a), and the New Extension in Nançay Upgrading LOFAR (NenuFAR; Munshi

et al. 2024). These upper limits have begun to constrain theoretical models (HERA Collaboration

et al., 2023; Ghara et al., 2020; Greig et al., 2021; Abdurashidova et al., 2022b), but despite this

progress, there remains no positive detection of any spatially fluctuating signal during the EoR.

The lack of an EoR detection despite such concerted effort is no coincidence; it is a challenging

feat. The highly redshifted 21 cm line falls in low-frequency radio bands, where there are severe

foreground contaminants from more local sources of emission (Santos et al., 2005; Wang et al.,

2006; Jelić et al., 2008; Chapman and Jelić, 2019). Examples of such foregrounds include Galactic

synchrotron emission, bright radio point sources, Bremsstahlung emission, ionospheric effects,

and radio frequency interference (RFI), which dominate over the cosmological signal by up to five

orders of magnitude (Liu and Tegmark, 2012). The effects of these foregrounds must therefore

be mitigated, and a vast majority of proposed methods rely on the relative spectral smoothness

of foregrounds compared to the more spectrally jagged cosmological signal (see Liu and Shaw

2020 for an overview of methods). While this is a sound idea in theory, in practice instrument

systematics can imprint extra spectral structure on the intrinsically spectrally smooth foregrounds,

rendering them more signal-like (Lanman et al., 2020). Therefore, a successful detection of the

21 cm signal will necessitate well-calibrated instruments and careful foreground mitigation. These

requirements are difficult to execute both to high precision and without being subject to modeling

biases. As such, some have looked to use complementary probes to bolster a 21 cm detection, while

others have called for far more realistic foreground and instrument simulations in order to better

understand and analyse real cosmological data.

One alternative that has seen considerable success in the low-redshift (𝑧 < 6) 21 cm cosmology

community is to detect the 21 cm signal via cross-correlations. On the journey to detecting the

low-redshift 21cm power spectrum, a number of 21 cm cross-correlations (Masui et al., 2013; Wolz
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et al., 2022; Anderson et al., 2018; Chowdhury et al., 2021; Cunnington et al., 2023; Amiri et al.,

2023; Amiri et al., 2024) validated the existence of post-reionization 21 cm emission in galaxies

while providing an easier path towards mitigating systematics such as foregrounds. After about

a decade of detecting the low-𝑧 21 cm signal cross-correlation with various other probes, the

MeerKAT telescope has recently claimed the first detection of the 21 cm auto-spectrum (Paul et al.,

2023).

In the context of high-𝑧 EoR 21 cm cosmology, cross-correlations have similarly been touted as

promising avenue for systematics mitigation, while also being scientifically interesting in furthering

our understanding of the interplay between ionizing sources and the intergalactic medium (IGM;

Bernal and Kovetz 2022). Possible partners for such cross-correlations are the large suite of

emission lines that are being targeted for LIM over a wide variety of redshifts (Gong et al., 2017;

Yang et al., 2021; Karkare et al., 2022a). These include CO rotational lines (Lidz et al., 2011;

Carilli, 2011; Keating et al., 2015, 2016, 2020; Karkare et al., 2022b; Cleary et al., 2022; Ihle et al.,

2022; Lunde et al., 2024; Stutzer et al., 2024; Chung et al., 2024; Roy et al., 2024), the Ly𝛼 line

(Silva et al., 2013; Pullen et al., 2014; Croft et al., 2018; Mas-Ribas and Chang, 2020; Kakuma

et al., 2021; Renard et al., 2021; Lin et al., 2022; Kikuchihara et al., 2022), the 158 𝜇m fine structure

line of ionized carbon [CII] (Gong et al., 2012; Crites et al., 2014; Uzgil et al., 2014; Yue et al.,

2015; Karoumpis et al., 2022; Padmanabhan, 2019; Chung et al., 2020; Pullen et al., 2018; Yang

et al., 2019; Concerto Collaboration et al., 2020; Ade et al., 2020; Vieira et al., 2020; Cataldo et al.,

2020; Essinger-Hileman et al., 2022; Béthermin et al., 2022; CCAT-Prime Collaboration et al.,

2023; Van Cuyck et al., 2023), and [OIII] (Padmanabhan et al., 2022), among other proposals such

as [OII], HD, H𝛼, and H𝛽 (Gong et al., 2017; Doré et al., 2014; Breysse et al., 2022). Each of

these prospects will not only be a powerful probe of astrophysics (e.g., Sun et al. 2021; Mirocha

et al. 2022; Parsons et al. 2022; Bernal and Kovetz 2022; Sun et al. 2023; Horlaville et al. 2024)

and cosmology (e.g., Karkare et al. 2022a; Fonseca et al. 2017; Bernal et al. 2019a,b; Schaan

and White 2021a; Moradinezhad Dizgah et al. 2019, 2022a,b) on their own via single-line auto

power spectrum measurements, but with the large number of lines available for cross-correlation,
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multi-tracer techniques will be powerfully constraining (Pullen et al., 2013; Chang et al., 2015; Sun

et al., 2019; Schaan and White, 2021b; Anderson et al., 2022; Maniyar et al., 2022; Sato-Polito

et al., 2023; Mas-Ribas et al., 2023; Roy et al., 2023; Lujan Niemeyer et al., 2023; Fronenberg

et al., 2024a,b).

A particularly interesting prospect is the cross-correlation (and other creative combinations,

e.g., Beane and Lidz 2018; Beane et al. 2019; McBride and Liu 2023) of the 21 cm line and the

[CII] 158 𝜇m fine structure line (Padmanabhan, 2023). The 21 cm-[CII] cross-spectrum

𝑃21cm×[CII] (𝑘) encodes crucial information as a function of comoving wavenumber 𝑘 , being

negative (anti-correlated) on large scales and positive (correlated) on small scales. A

measurement of the cross-correlation would yield constraints on the size of ionized regions, the

ionization history, and also help constrain astrophysical parameters such as the minimum mass of

ionizing haloes, 𝑀turn and the number of ionizing photons produced by those haloes (Gong et al.,

2012; Dumitru et al., 2019). Most recently, Moriwaki et al. (2024) have explored the prospects of

studying the redshift evolution of these negatively and positively correlated regions, showing that

they provide insight on the heating and ionization histories of the IGM.

While the science case for 21 cm–[CII] cross-correlations is strong, it is essential to carefully

quantify the statistical properties of what we measure. Consider for example the question of

whether foregrounds can be suppressed to a reasonable level simply through cross-correlations. If

we consider two lines 𝐴 ≡ 𝑠𝑎 + 𝑛𝑎 + 𝑓𝑎 and 𝐵 ≡ 𝑠𝑏 + 𝑛𝑏 + 𝑓𝑏 each comprised of their respective

cosmological signal, 𝑠, foregrounds, 𝑓 , and noise, 𝑛, then their cross-spectrum can be expressed as

⟨𝐴̃𝐵̃⟩ = ⟨(𝑠𝑎 + 𝑛̃𝑎 + 𝑓𝑎) (𝑠𝑏 + 𝑛̃𝑏 + 𝑓𝑏)∗⟩

= ⟨𝑠𝑎𝑠∗𝑏⟩ + ⟨𝑠𝑎𝑛̃∗𝑏⟩ + ⟨𝑠𝑎 𝑓 ∗𝑏 ⟩ + ⟨𝑠𝑏𝑛̃∗𝑎⟩ + ⟨𝑠𝑏 𝑓 ∗𝑎 ⟩

+⟨𝑛̃𝑎 𝑓 ∗𝑏 ⟩ + ⟨𝑛̃𝑏 𝑓 ∗𝑎 ⟩ + ⟨𝑛̃𝑎𝑛̃∗𝑏⟩ + ⟨ 𝑓𝑎 𝑓 ∗𝑏 ⟩ (2.1)

where the tildes denote Fourier transforms. Since lines 𝐴 and 𝐵 suffer from different sources of

foreground contamination and instrument noise, these contributions will be, on average,
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uncorrelated with one another and with the cosmological signal. Therefore, Equation (2.1)

becomes

⟨𝐴̃𝐵̃∗⟩ = ⟨𝑠𝑎𝑠∗𝑏⟩. (2.2)

However, Equation (2.2) only follows in the case of infinite ensemble averaging. In reality, one

can never measure infinitely many samples of each Fourier mode on the sky and it is therefore

expected that any cross-spectrum estimation will suffer from residual systematic effects.

Equivalently, while the power spectrum is statistically unbiased in the ensemble averaged limit,

the variance Var(P21×[CII]) of 21 cm-[CII] cross spectrum will contain terms proportional to each

probe’s systematics and foregrounds:

Var
(
P21×[CII]

)
= 2

(
𝑃𝑆

21×[CII]

)2
+ 𝑃𝑆

21𝑃
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where each term is a product of power spectra, with subscripts indicating the relevant lines and

superscripts indicating the power spectrum of cosmological signal (𝑆), foregrounds (𝐹), and noise

(𝑁). For example, the cross-spectrum signal 𝑃𝑆
21×[CII] is equal to ⟨𝑠𝑎𝑠∗𝑏⟩. The residual systematics

can be thought of as either an extra bias that is randomly drawn from these variance terms, or

as increased uncertainties on one’s final constraints that can (and should) be included in an error

budget. Importantly, the form seen here involves products of power spectra, which means that

non-trivial interactions exist between the different ingredients of one’s measurements, making it

crucial to include all of them in our explorations.

In this paper we present an end-to-end pipeline for studying LIM cross-correlations. This

pipeline takes as input the power spectra of the lines of interest as well as their correlation coefficient

(as a function of scale) in order to produce mock cosmological fields. For concreteness, we focus
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on 21 cm × [CII] cross-correlations. We add a host of simulated foreground contaminants for each

line, include the effect of instrumental responses (e.g., their point spread functions; PSFs), model

their thermal noise, and finally estimate auto- and cross-spectra. Drawing an ensemble of Monte

Carlo realizations (over thermal noise, cosmological fields, and foregrounds) then allows a rigorous

quantification of error statistics. In other words, although Equation (2.3) motivates and guides our

thinking, it is not used to generate our results, which contain higher-order statistical information

beyond the variance of our observables. We use this technology to investigate the effects of various

systematic contaminants and the interplay between them. Along the way, we critically examine

various commonly used simplifications in forecasting methodologies, such as (but not limited to)

the assumption of Gaussian errors, or the independence of foregrounds in different parts of the

sky. As such, our paper is highly complementary to (and builds on) Roy and Battaglia (2024),

which conducted a series of detailed forecasts for LIM cross-correlations. Roy and Battaglia

(2024) focused on signal-to-noise and bias statistics, while we also consider non-Gaussian error

distributions and ancillary error properties such as power spectrum error covariances and window

functions (defined in Section 2.6.2). Additionally, whereas we consider the 21 cm line and therefore

must quantify the attendant complications of interferometry, Roy and Battaglia (2024) consider a

broader array of millimeter/sub-millimeter lines. Together, our frameworks can aid in the design

of future experiments for cross-correlation, optimizing their sensitivity in the face of systematics.

Indeed, as a worked example in this paper we perform a forecast for hypothetical current- and

next-generation 21 cm-[CII] cross-correlations.

The rest of this paper is organized as follows. In Section 2.2 we provide an overview of

our pipeline and in Sections 2.3 to 2.6 we describe in detail each component of this pipeline

and the models involved. Readers that are interested in the final forecasts rather than detailed

methodology may wish to skip to Sections 2.7 and 2.8. There, we show the results of mock

measurements of 21 cm-[CII] cross-spectra (and their accompanying statistical properties) under

realistic observing conditions for current-generation and futuristic scenarios. We comment on the

challenges and opportunities for pursuing such measurements. Along the way, we investigate the
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extent to which commonly employed approximations are appropriate, and we summarize the results

of these investigations for practitioners of forecasting in Section 2.9. Our conclusions are presented

in Section 2.10.

2.2 Motivation and Pipeline Overview

In this work we explore the potential of using LIM-LIM cross-correlations to probe the epoch

of reionization. As a case study, we explore cross-correlations between 21 cm and [CII] LIM

observations, although our simulation framework is general and can be easily adapted to explore

most LIM-LIM pairs.

The ionized carbon fine structure line, [CII], is of notable interest because it is spatially

anti-correlated with the 21 cm line. Carbon is first produced in our universe by Population III

(Pop III) stars, the first generation stars. Carbon has an ionization energy of 11.26 eV which is

below that of hydrogen, meaning that neutral carbon can be more easily ionized. Once ionized,

either in the interstellar medium (ISM) or in the IGM, [CII] can undergo the spin-orbit coupling

transition 2𝑃3/2 → 2𝑃1/2, emitting a photon of wavelength 157.7 𝜇m. This transition can occur by

three different mechanisms: collisional emission, spontaneous emission, and stimulated emission

(Suginohara et al., 1999; Basu et al., 2004). Within galaxies, the main mechanism for emission is

collision with ionized gas in the ISM. In the more diffuse IGM, radiative processes are primarily

responsible for [CII] line emission. The excitations here are due to spontaneous emission and

stimulated emission from collisions with CMB photons. While emission of the CII line occurs both

in the ISM and the IGM, the spin temperature of CII line in the IGM is indistinguishable from the

CMB photon temperature during the EoR. In the ISM, the spin temperature of [CII] is much greater

than the CMB photon temperature during the EoR and the [CII] brightness temperature signal can

be observed (Gong et al., 2012). Since the 21 cm brightness temperature emanates from the IGM

and the [CII] brightness temperature from the ISM, these two signals are spatially anti-correlated

on large scales during the EoR.
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Just as with the 21 cm line, [CII] also suffers from foreground contaminants. Luckily, its

spectrally smooth far infrared (FIR) continuum foregrounds are not as detrimental to an observation

as diffuse synchrotron emission is to 21 cm. FIR continuum foregrounds are believed to be

removable with negligible residuals via spectral decomposition (Yue et al., 2015). Still, the [CII]

line suffers from bright low-𝑧 line interlopers. For example, carbon monoxide (CO) molecules

residing at low redshifts can undergo spontaneous rotational transitions, emitting photons that

redshift into the same observed frequency band as the photon emitted from the [CII] transition at

high redshift. Blind and guided masking techniques have been explored to remove voxels of data

thought to be dominated by interlopers (Yue et al., 2015; Visbal et al., 2011; Gong et al., 2014; Silva

et al., 2015; Breysse et al., 2015; Sun et al., 2018; Silva et al., 2021). Masking, however, brings

about its own host of challenges since it complicates the survey geometry and alters the bias and

amplitude of shot noise due to the down-sampling of the intrinsic line-luminosity function (Bernal

and Kovetz, 2022). Other interloper mitigation strategies include line identification (Moriwaki

et al., 2024; Kogut et al., 2015), cleaning using external tracers of large-scale structure (Bernal

and Baleato Lizancos, 2024), analysis of redshift space distortions (Lidz and Taylor, 2016; Liu

et al., 2016; Cheng et al., 2020), spectral deconfusion, and of course the subject of this paper,

cross-correlations (Gong et al., 2012; Roy and Battaglia, 2024; Gong et al., 2014; Visbal and Loeb,

2010).

While the prospects of measuring a cross-correlation signal are exciting, current-generation

experiments are not optimized for joint analyses. In Figure 2.1, the 21cm-[CII] cross spectrum

is plotted as a function of 𝑘⊥ (spatial wavenumber perpendicular to the line of sight) and 𝑘 ∥

(wavenumber parallel to the line of sight) for the fiducial reionization scenario described in Gong

et al. (2012). As is evident, on large scales the fields are anti-correlated, resulting in negative

power shown in blue. On small scales the fields become positively correlated, resulting in positive

power shown in red. To help guide the eye, a yellow line has been plotted at the cross-over scale

where the power spectrum transitions from negative to positive at 𝑘 ∼ 1.5 ℎMpc−1. Of course,

there remains considerable uncertainty as to how reionization occurred, and as a contrasting case,
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we also show the cross-over scale of 𝑘 ∼ 0.03 ℎMpc−1 for the high-mass reionization scenario

described in Dumitru et al. (2019).

In addition to these theory markers, we plot the Fourier modes accessible by current generation

21 cm and [CII] instruments, HERA (DeBoer et al., 2017; Berkhout et al., 2024) and CCAT-prime

(CCAT-Prime Collaboration et al., 2023) respectively. These instruments will serve as our fiducial

instruments for the forecasts done in this paper. The modes that are jointly accessible by the two

instruments, assuming a 2×2 square-degree overlap in sky coverage, are shown in the cross-hatched

region. These are the only modes for which a cross-spectrum can be estimated with upcoming data

and, as is evident, the cross-over scale of the Gong et al. (2012) fiducial model is far outside the

detectable zone. Therefore, it is entirely possible that a near-future measurement may not detect

the cross-over scale, although even a null result may rule out certain scenarios (e.g., the Dumitru

et al. 2019 high-mass scenario).

Of course, an overlap in Fourier scales is merely a necessary, not a sufficient condition for a

successful cross-correlation measurement. Our simulation pipeline is designed to be an end-to-end

effort for a full evaluation of the 21 cm-[CII] cross-correlation science yield in the presence of

systematics and highly limited Fourier coverage. This pipeline was assembled using our custom

software package which we call LIMstat1. LIMstat is a statistical framework for the simulation

and analysis of line intensity maps. A flowchart of this pipeline can be found in Figure 2.2. We start

by generating statistically correlated 3D cubes of the 21 cm and [CII] brightness temperature fields

using our built-in quick correlation model. This produces Gaussian random fields that contain

the right fluctuation properties without modeling the physics. These input maps can of course

be replaced with boxes from any suite of cosmological simulations. On the 21 cm side, Galactic

synchrotron emission, bremsstrahlung emission, an unresolved point source background, and bright

radio point sources are added to the cosmological signal map. We then simulate an interferometric

observation of the final map, given that the vast majority of 21 cm cosmology instruments, like

HERA, are interferometers. On the [CII] side, CO line interlopers are simulated and it is assumed
1https://github.com/McGill-Cosmic-Dawn-Group/LIMstat

https://github.com/McGill-Cosmic-Dawn-Group/LIMstat
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Figure 2.1: Cylindrical 21cm-[CII] cross-spectrum with theory and instrument regions over-
plotted. The yellow lines correspond to the theoretically predicted cross-over scale for a fiducial
reionization scenario (solid yellow line at 𝑘 ∼ 1.5 ℎMpc−1) and for high-mass reionization (dashed
yellow line at 𝑘 ∼ 0.03 ℎMpc−1). The modes accessible by HERA and CCAT-prime are boxed off
with the jointly accessible modes visible in the cross-hatched region. With only limited Fourier
space overlap, cross-correlation measurements may suffer from sensitivity limitations in addition
to systematics.

that continuum emission has been removed. Observation of this interloper-contaminated map by

a single dish instrument is then simulated. Finally, these observations are combined to produce

cross-spectra.

With the exception of the modelling of Galactic synchrotron emission, which is done using the

pygsm package (de Oliveira-Costa et al., 2008; Zheng et al., 2016), each module of our pipeline

was custom built from the ground up for the express purpose of producing realistic simulations of

cross-correlations. That being said, the LIMstat software package is modular and the user has the

complete freedom to use any component individually depending on the task at hand. In addition,

while the surveys used here are HERA and CCAT-prime, our framework is a general one that can
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Figure 2.2: Flowchart depicting our end-to-end cross-correlation pipeline. Processes run from top
to bottom and left to right. This pipeline produces correlated cosmological fields, simulates 21
cm foreground contaminants, simulates CO line interlopers (i.e. [CII] foregrounds), models both
single dish instruments and interferometers, and finally estimates auto- and cross-spectra.

be used to model any single dish or interferometric instrument; all of the input parameters can

be changed to the design specifications of the instrument one is interested in modelling. In the

following three sections, each component of the pipeline is discussed in detail.

2.3 Generating Cosmological Fields

In this section, we present how the cosmological signals are modeled in our pipeline. We implement

a quick signal simulator that produces maps of two cosmological signals that exhibit accurate

cross-correlations. In addition, the individual output maps, on their own, exhibit their respective
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Figure 2.3: Simulated [CII] field (left) and 21 cm field (right) over 6×6 degrees with 1’ resolution.
In the middle panel, we plot the input theory auto-spectra for 21 cm (solid pink) and [CII] (solid
turquoise) and also the input theory cross-spectrum (solid alternating pink and turquoise). The
spectra estimated from the simulation cubes are plotted with hollow circle markers for 21 cm (pink),
[CII] (turquoise), and their cross (purple). The correspondence between the spectra from simulated
cubes and the input theory spectra validates our approach for generating cosmological realizations
with the correct statistical properties.

auto-spectrum statistics. This is purely a statistical model; there is no underlying physics in

these simulations beyond what is encoded in the theoretical auto- and cross-spectra of these lines

being simulated. This implies, for instance, our simulated fields will not contain any of the non-

Gaussianities that are expected in reality. However, we again emphasize that this step of the

pipeline can be replaced by more realistic cosmological simulations should parameter estimation

be of interest.

Here we generalize the decorrelation parameter formalism from Pagano and Liu (2020) in order

to simulate fields that exhibit the correct scale-dependent correlations. The methodology is as

follows. First, we produce the 21 cm field as a Gaussian random field with mean zero and power

spectrum 𝑃21(𝑘). The Fourier space 21 cm field 𝑇21(k) is then used to generate the Fourier space
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[CII] field via the relation2

𝑇[CII] (k) = 𝑓 (𝑘)𝑇21(k)𝑒−𝑖𝜙(k) , (2.4)

where

𝑓 (𝑘) ≡

√︄
𝑃[CII] (𝑘)
𝑃21(𝑘)

, (2.5)

and 𝜙(k) is a phase that is drawn randomly from a Gaussian distribution with zero mean and

standard deviation 𝜎(𝑘) (to be specified later). The 𝑓 (𝑘) factor ensures that the [CII] field will

have the [CII] auto-spectrum, 𝑃[CII] (𝑘). However, the randomly drawn phase means that when

𝑇[CII] (𝑘) is transformed back to configuration space, its bright and dim regions will have been

shifted from their original positions, effecting a (partial) decorrelation of the [CII] field away from

the 21 cm field.

Positive and negative correlations are assigned by applying an overall sign flip to Equation (2.4),

but the degree of correlation or anticorrelation is governed by the parameter 𝜎(𝑘). If 𝜎(𝑘) = 0,

every draw of a random 𝜙 in that 𝑘 bin is 0. The [CII] field then remains perfectly correlated with

the 21 cm field in that 𝑘 bin. On the other hand, if 𝜎(𝑘) is large, for each Fourier pixel in that 𝑘

bin, 𝜙 values are essentially uniformly distributed between 0 and 2𝜋. This completely randomizes

the [CII] field with respect to the 21cm field in that 𝑘 bin, resulting in uncorrelated fields. In

Appendix 2.10 we show that in order for two fields labelled by 𝑎 and 𝑏 to have a correlation

coefficient

𝑟𝑎𝑏 (𝑘) ≡
𝑃𝑎𝑏 (𝑘)√︁

𝑃𝑎 (𝑘)𝑃𝑏 (𝑘)
, (2.6)

one should pick

𝜎(𝑘) =
√︁

ln( |𝑟 (𝑘) |−2). (2.7)

In Figure 2.3, we show an example set of simulated 21 cm and [CII] fields with 𝑟 (𝑘) tuned to

match that of Gong et al. (2012). This will be the fiducial model that we use throughout the paper.

The theory auto-spectra and theory cross-spectrum from Gong et al. (2012) are plotted with solid
2We follow the standard Fourier convention used in cosmology, as explicitly written out in Appendix 2.10.
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curves while the power spectra estimated from the simulation cubes are shown with hollow round

markers. As one can see, all of the simulated cubes possess the expected statistical properties.

In summary, our simulation procedure enables the fast generation of paired Gaussian fields that

are guaranteed to reproduce chosen auto- and cross-power spectra. The advantage of a fast simulator

is that it allows the quick generation of an ensemble of simulations, allowing for a quantification of

sample/cosmic variance errors.

2.4 Generating Foreground Contaminants

In this section, we provide an overview of the foreground models used in this pipeline. These are

added to the cosmological signals generated in the previous section.

2.4.1 21 cm Foreground Model

Here we lay out how each of the 21 cm foreground contaminants are modeled in the simulation

pipeline. In Figure 2.4, we show the simulated field as well as each of the 21 cm foreground

components. Even though HERA and CCATp are expected to overlap over only a small ∼ 4 deg2

patch of sky (the Chandra Deep Field South), we simulate a larger ∼36 deg2 patch. The motivation

for doing so is that many radio interferometers designed for 21 cm have large fields of view (see

Section 2.5.1) and point spread functions (PSFs3) that have side lobe structures far away from the

central peak. Although these side lobes are generally orders of magnitude lower in amplitude than

the central peak, a sufficiently bright point source caught in a side lobe can still leak in from the

edges of a field to the center (Pober et al., 2016; Xu et al., 2022; Burba et al., 2023). In order to

take this effect into account, we simulate a larger field but perform our cross-correlation analysis

on a small analysis field.
3Also known as synthesized beams in the radio interferometry parlance.



2. Forecasts and Statistical Insights for Line Intensity Mapping Cross-Correlations: A Case
Study with 21cm × [CII] 65

Figure 2.4: Top: Example 21 cm foregrounds from our simulation pipeline at 200 MHz. The
full-sky map shows the Galactic synchrotron contribution with the HERA observing stripe
superimposed. Each observation is simulated over a 6 × 6 deg2 simulation patch to capture bright
foreground sources caught in low-level sidelobes of an instrument’s PSF, in contrast to the smaller
2 × 2 deg2 analysis patch. Bottom: Example realizations from different constituent components of
21 cm foregrounds described in Section 2.4.1.

Galactic Synchrotron Emission

Galactic synchrotron radiation is the brightest of the diffuse 21 cm foreground contaminants. In this

work, galactic synchrotron radiation is simulated using the pygsm package (de Oliveira-Costa et al.,

2008; Zheng et al., 2016). Since there do not exist all-sky maps of our galaxy at all frequencies from
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observation, this package interpolates over gaps in coverage using a set of principal components

that are trained on 29 sky maps between 10 MHz and 5 THz. For the forecasts done here we use

the pygsm2008, but pygsm2016 is also compatible with this pipeline.

Beyond an example map of the synchrotron sky, it is necessary to have a prescription for the

statistical distribution from which the map is drawn. This is because one of the goals of this

paper is to quantify the increased uncertainty on a power spectrum measurement that is due to

foregrounds that survive cross-correlation. Unfortunately, there does not exist a first-principles

method to capture the strongly correlated non-Gaussian nature of synchrotron foregrounds. Our

approach is therefore to construct an empirical distribution by randomly selecting from different

patches of the sky, each of which is the same size as our original simulated field, as illustrated

in Figure 2.5. In fact, this is arguably the more realistic approach, since the strategy of using

cross-correlations to mitigate foregrounds is one that implicitly relies on different parts of the sky

being different random draws that have different phases in Fourier space. In other words, the

relevant probability distribution is the probability distribution of foregrounds in our Galaxy, not

the probability distribution of a generic synchrotron process in our Universe (Tan et al., 2021).

Figure 2.5: Patches of the sky (yellow) from which Galactic synchrotron foregrounds are randomly
drawn to form an ensemble of foreground realizations.
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Free-Free Emission

The next contaminant to be modeled is Bremsstrahlung or free-free emission from ionized gas

mostly originating from the local ISM. Here we present a simplified model of free-free emission

and while this does not capture the morphology, it encapsulates the statistical and spectral properties

of this bright diffuse radio foreground. For the free-free emission model, each pixel is assigned a

brightness temperature 𝑇 according to the power law spectrum

𝑇 (𝜈) = 𝐴ff

(
𝜈

𝜈∗

)−𝛼ff

, (2.8)

where here, 𝐴ff = 33.5 K and 𝜈∗ = 150 MHz. A spectral index 𝛼ff is independently drawn for

each pixel from a Gaussian distribution, with mean 𝛼ff = 2.15 and standard deviation Δ𝛼ff = 0.01

(Wang et al., 2006).

Radio Point Sources

Next we consider extragalactic point sources, of which there are two main populations: bright radio

point sources and unresolved point sources. It should be noted that a third sub-category also exists,

bright extended sources, that is, bright and nearby extragalactic sources that have a spatial extent

greater than a single pixel. For 21 cm observations in the southern hemisphere, an example of such

a source is Fornax A. This sub-category of bright sources is not included in our 21 cm foreground

models but a treatment of extended sources can be found in Line et al. (2020).

For both populations of point sources, we model a synthetic point source catalog with the same

statistics as the Galactic and Extragalactic All-sky MWA (GLEAM; Hurley-Walker et al. 2017)

survey based on Franzen et al. (2016, 2019). We draw the number of sources per pixel 𝑛 from a

source count distribution given by

log10

(
𝑆2.5

) 𝑑𝑛

𝑑𝑆
=

5∑︁
𝑖=0

𝑎𝑖
(
log10 𝑆

) 𝑖
, (2.9)
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where the parameters 𝑎𝑖={3.52, 0.307, -0.388, -0.0404, 0.0351, 0.006} are the best-fit parameters

for the GLEAM source count distribution and 𝑆 is the source flux. This source count distribution

is valid for frequencies between 72 MHz and 231 MHz (Franzen et al., 2019). The source spectra

were obtained using a similar expression to Equation 2.8,

𝑆(𝜈) ∝
(
𝜈

𝜈∗

)−𝛼ps

(2.10)

where the spectral index 𝛼ps = 0.8 and the reference frequency 𝜈∗ = 150 MHz.

In order to simulate both unresolved and bright extragalactic sources, we simulate two separate

point sources maps with different flux limits. For the unresolved point source map, we draw sources

with fluxes less than 100 mJy since most peeling techniques can only remove sources whose flux

is greater than ∼ 10 to 100 mJy. Of course, the exact flux cutoff depends on the resolution and

sensitivity of the instrument since, for example, an instrument with lower resolution will smear more

sources into the unresolved background. As in Liu and Tegmark (2012), the more conservative

bound of 100 mJy is used here. For the bright point source map, we draw sources with fluxes in the

range 100 mJy < 𝑆 ≲ 300 Jy.

2.4.2 [CII] Foreground Model

Line interlopers are the most problematic foreground contaminant for [CII] observations and this is

therefore where we focus our simulation efforts. Carbon monoxide (CO) at low redshifts undergoes

spontaneous rotational transitions, emitting a photon that redshifts into the same frequency band as

the high-redshift [CII] line. In particular, CO (6-5), CO (5-4), CO (4-3), CO (3-2), CO (2-1), are

line interlopers for [CII] observations during the EoR, where the pairs of numbers denote quantum

numbers, 𝐽, indicating the change in the total angular momentum state of the molecule. To simulate

all of these CO lines, we follow a similar prescription to Cheng et al. (2020). The main difference

with the method employed here is that we approach the modelling from an observational point of

view, which has the added benefit of decreasing the computational cost. Instead of building a large
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and dense lightcone, we instead populate the spectral channels of the instrument with the lines

that will have redshifted into that frequency channel. Currently, each channel’s interloper map is

computed independently; therefore, any line-of-sight interloper correlations are not simulated. In

addition, our interlopers do not exhibit any clustering.

In this foreground model, we populate each pixel with individual CO sources and then draw a

luminosity for each source from the Schechter luminosity function of each CO line. The Schechter

luminosity function Φ for CO luminosities 𝐿CO is given by

Φ(𝐿CO)𝑑𝐿CO = 𝜙∗

(
𝐿CO
𝐿∗

)𝛼
𝑒−(𝐿CO/𝐿∗)𝑑 (𝐿CO/𝐿∗), (2.11)

and is characterised by the Schechter parameters 𝜙∗, 𝐿∗, and 𝛼. The quantity 𝜙∗ is the normalization

density, 𝐿∗ is a characteristic luminosity, and 𝛼 is the power-law slope at low luminosity. The

Schechter parameters for the various CO lines as well as the [CII] line used here can be found in

Popping et al. (2016).

We begin by determining which lines redshift into the observed frequency channel and then

proceed to interpolate the Schechter parameters for those lines in order to find all of the parameters

at 𝑧emit, the redshift at which the line was emitted. Next we proceed to use the Schechter luminosity

function to populate the luminosity bins of each line with sources. Having obtained the quantity

of interest, Φ(𝐿CO)𝑑𝐿CO given by Equation 2.11, which is the number of galaxies with luminosity

𝐿CO + 𝑑𝐿CO per unit volume, we must adjust the number density for the physical size of the voxel

that has been simulated. We do this by simply multiplying by the voxel volume

𝑛(𝐿CO)𝑑𝐿CO ≡ Φ(𝐿CO)𝑑𝐿CO𝑉vox (2.12)

where 𝑉vox is

𝑉vox = 𝑑𝑉voxΩpix, (2.13)

with Ωpix being the solid angle subtended by a single voxel in our survey and 𝑑𝑉vox being the
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comoving volume per unit solid angle. The quantity 𝑛(𝐿CO)𝑑𝐿CO is the average number of sources

per voxel in each luminosity bin. To ensure there is source count variation from voxel to voxel, we

draw the number of sources per luminosity from a Poisson distribution with mean 𝑛(𝐿CO)𝑑𝐿CO. The

final luminosity is assigned by multiplying the number of sources in each voxel by the luminosity

of that bin and then summing over all luminosity bins. Lastly, once the luminosity maps for each

line are obtained, they are combined into a single foreground map that has contributions from all

line interlopers in a particular channel. In Figure 2.6, the characteristic intensity,4 𝐼∗, of the various

CO lines as well as the [CII] line is shown as a function of redshift and observed frequency. This

serves to highlight just how foreground dominated high-𝑧 [CII] measurements are.
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Figure 2.6: Brightness of [CII] and relevant CO emission lines, as functions of emission redshift
𝑧emit and observed frequency. At all observed frequencies considered in this paper, CO interlopers
will be a strong contaminant to [CII] observations and at the highest redshifts (𝑧 > 6) the CO(2-1)
transition is a particularly strong nuisance.

One potential concern for cross-correlation-based foreground mitigation strategies is the

possibility of correlated foregrounds. For example, it is possible that some of the [CII] line

interlopers may in fact be emanating from the same galaxies at 0 ≲ 𝑧 ≲ 3 that are responsible for
4This is obtained through a simple conversion of the characteristic luminosity, 𝐿∗.
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21 cm point source foregrounds. While this is certainly not impossible, it is not likely. There do

exist a handful of hydrogen and deuterium fine structure lines whose rest frequencies are such that

if they came from the same 0 ≲ 𝑧 ≲ 3 galaxies as the line interlopers, they would redshift into the

observed 21 cm frequency range (Fabjan et al., 1971; Kramida, 2010). That being said, the

transition rate of these lines is unknown and the transitions have only been observed under strict

laboratory conditions. Still, one may consider broadband emission that could produce these

correlation, though we leave such a scenario for future work. For the simulations done here, we

generate realizations of radio point source foreground contaminants and CO line interlopers

independently.

2.5 Simulating Instrument Response

With foregrounds added to our simulated cosmological fields, we proceed to simulating the

instruments that observe these foreground-contaminated skies. For concreteness, the conclusions

of this paper will be demonstrated using simulations of HERA and CCAT-prime, but we stress

that our pipeline is generally applicable to any combination of interferometers and/or single dish

experiments.

2.5.1 Radio Interferometers

In order to simulate both the response and the noise of the HERA array, we compute a set of

noisy visibilities. Interferometers measure a primary beam- and fringe-weighted integral of the sky

intensity known as the visibility, 𝑉𝑖 𝑗 , defined as

𝑉𝑖 𝑗 (𝜈) =
∫

𝐴𝑖 𝑗 (ŝ, 𝜈)𝐼 (ŝ, 𝜈) exp
(
−2𝜋𝑖

b𝑖 𝑗 · ŝ
𝜆obs

)
𝑑Ω (2.14)

where 𝑑Ω is the differential solid angle, and b𝑖 𝑗 is the baseline vector that characterizes the

separation and orientation of the 𝑖th and 𝑗 th receiving elements (such as dishes). The unit vector ŝ
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points to the direction of the incoming radiation on the sky. The observing wavelength is denoted

by 𝜆obs, 𝐼 (ŝ, 𝜈) is the specific intensity, and 𝐴𝑖 𝑗 (ŝ, 𝜈) is the geometric mean between the primary

beams of the 𝑖th and 𝑗 th elements. Equation (3.15) can be compared to a two-dimensional Fourier

transform 𝐼 of the specific intensity, namely

𝐼 (u, 𝜈) =
∫

𝐼 (𝜽 , 𝜈) exp (−𝑖2𝜋u · 𝜽) 𝑑2𝜃, (2.15)

where we have invoked the flat-sky approximation to describe positions on the sky in terms of

Cartesian angular coordinates 𝜽 ≡ (𝜃𝑥 , 𝜃𝑦) and have defined a Fourier dual u ≡ (𝑢, 𝑣) to this. One

sees that in the limit that the sky is flat and the primary beam is reasonably uniform, each baseline

of an interferometer measures a single Fourier mode in the plane of the sky with wavenumbers

𝑢 = 𝑏𝑥/𝜆obs and 𝑣 = 𝑏𝑦/𝜆obs on the 𝑢𝑣 plane, where 𝑏𝑥 and 𝑏𝑦 are the 𝑥 and 𝑦 components of b𝑖 𝑗 ,

respectively. These modes can then be easily mapped to the comoving wavevector perpendicular

to the line of sight, k⊥, by

k⊥ =
2𝜋b𝑖 𝑗

𝜆obs𝐷𝑐 (𝑧emit)
(2.16)

where 𝐷𝑐 (𝑧emit) is the comoving distance to the source emission. Since our analysis field is

much smaller than the area covered by HERA’s primary beam (see Table 2.1), we omit it in our

simulations. In other words, we assume uniform sensitivity over our 4 deg2 analysis field.

To simulate the action of an interferometer, we start by denoting the sky at a particular frequency

as m which stores all of the true pixel intensities on the sky. The measured visibilities then form a

map v in the 𝑢𝑣 plane given by

v = DFm + n (2.17)

where F denotes the 2D Fourier transform in the angular directions, D is a binary mask of the

𝑢𝑣 coverage (recording which 𝑢𝑣 modes are measured or missed based on the baselines present

in an interferometer), and n is a noise realization in 𝑢𝑣 space. To generate a noise realization,

we populate each pixel in 𝑢𝑣 space with a complex Gaussian random number with zero mean and
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standard deviation given by

𝜎rms(𝑢, 𝑣) =
𝑇sys√

𝑁red𝑡obsΔ𝜈
Ωsurv, (2.18)

where it is understood that the real and imaginary components are drawn independently and half of

the variance is in each component. Here, 𝑇sys is the system temperature, 𝑡obs is the total integration

time, Δ𝜈 is the bandwidth, and Ωsurv is the survey area. The quantity 𝑁red is the number of baselines

that fall into a particular 𝑢𝑣 cell, and accounts for the fact that HERA is a highly redundant array

(see the top panel of Figure 2.7 and Dillon and Parsons 2016) with multiple identical copies of the

same baseline. Therefore the noise of any given measurement in the 𝑢𝑣-plane is reduced by a factor

of 1/
√
𝑁red. The result of this is that the visibilities of short baselines, which are measured many

times over, will generally be less noisy than the visibilities of long baselines that are less redundant.

The instrument specifications used to generate HERA-like noise are listed in Table 2.1. It should

be noted that in order to match existing HERA noise estimates in the literature, the observing time

was reduced by a factor of six. This is to account for the fact that Equation (2.18) assumes that all

data collected over the duration 𝑡obs is coherently averaged. In reality, HERA is a non-pointing drift-

scan telescope where target fields can only be observed for short durations per sidereal day, and thus

the coherent averaging down of noise can only happen in short bursts. Observing different fields

will also reduce noise, but only via an incoherent average (at the power spectrum stage). Accounting

for this is complicated, given that it crucially depends on simulating rotation synthesis effects and

partial redundancy between baselines (Zhang et al., 2018), accounting for subtleties associated with

having a drift-scan telescope (Liu and Shaw, 2020). While this can be done, it would lead to a slight

inconsistency with our approach of using different portions of the Galaxy to represent the ensemble

properties of possible foregrounds: as Figure 2.5 illustrates, these patches are distributed across the

entire sky (excepting the Galactic plane), and in principle would require multiple arrays deployed

at different latitudes for all of them to be observable. For simplicity, we thus forgo a detailed

rotation synthesis by scaling the integration time to account for the mix of coherent and incoherent
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integration. We calibrate this scaling so that our code reproduces the 21 cm power spectrum

sensitivities published in Pober et al. (2014) when matching their instrumental configurations.

As another approximation, we use a simple fit for 𝑇sys that is given in Table 2.1. Since 𝑇sys

is partly determined by the receiver temperature (∼ 100 K) and partly by the sky temperature, it

in principle changes when observing the different parts of the sky illustrated in Figure 2.5. We

neglect this variation when computing the noise contribution to our observations, finding that the

power-law fit 60𝜆2.55
obs to be an excellent fit to the mean temperature of our foreground maps. To be

clear, this approximation is used only in the determination of noise amplitude in Equation (2.18);

the foreground signals that are present in simulated observations are of course specific to each patch

of the sky.

Finally, with our simulated visibilities v, we perform an inverse Fourier transform to obtain

our observed HERA map. In radio astronomy parlance, this would constitute a dirty map of the

observations, i.e., one where the point spread function (PSF) is not deconvolved from the map.

In the bottom panel of Figure 2.7, we show HERA’s PSF (obtained by Fourier transforming the

𝑢𝑣 plane’s binary mask D). One clearly sees hexagonal features due to the geometry of the array

layout. We choose not to remove the effects of the PSF since the blurring effect of the PSF is not

a formally invertible operation. Instead, we account for the PSF downstream in our data analysis

(Section 2.6) via the normalization of our power spectra.
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Figure 2.7: Top: HERA array layout assumed for the forecasts in this paper. Bottom: the resulting
point spread function.
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Paramters HERA

System Temperature, 𝑇sys 100 + 60𝜆2.55
obs K

Beam FWHM at 150 MHz, 𝜃FWHM 8.7 deg
Element Diameter 14 m
Shortest Baseline 14.6 m
Longest Baseline (core) 292 m
Longest Baseline (outrigger) 876 m
EoR Frequency Range, 𝜈obs 100-200 MHz
Channel Width, 𝛿𝜈 97.8 kHz
Integration time on field, 𝑡obs 170** hours

Table 2.1: Parameters for the HERA array assumed in this paper. These parameters are based on
DeBoer et al. (2017) and Pober et al. (2014). **This observing time was further reduced by a factor
of six to match existing HERA sensitivity estimates (see Section 2.5.1)

2.5.2 Single Dish Instruments

The other instrument that we simulate in this paper is CCATp, which is a single dish telescope.

This instrument is modeled by convolving the sky with a 2D Gaussian beam with standard deviation

equal to the diffraction limited angular resolution, that is, 𝜃CCAT ∼ 𝜆obs/𝐷 where 𝐷 is the diameter

of the dish. After the field has been convolved, a noise realization is added. This noise map consists

simply of white noise drawn from a Gaussian with mean zero and standard deviation 𝜎rms, which

is given by

𝜎rms =
𝜎

√
𝑡pix

(2.19)

where 𝑡pix is the total integration time per pixel, and

𝜎 =
𝜎pix√︁

Ωsim/Ωpix,CCAT
(2.20)

where 𝜎pix is the quoted per pixel sensitivity of CCATp, Ωsim is the size of a pixel in the simulated

cube, and Ωpix,CCAT = 𝜋𝜃2
FWHM/4 ln 2 is the nominal pixel size of CCATp observations. Note that
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Parameters CCATp

System temperature, 𝜎pix MJy sr−1 s1/2 0.86*
Beam FWHM, 𝜃FWHM (arcmin) 0.75*
Dish Diameter (m) 6
Frequency Range, 𝜈obs (GHz) 210-300
Channel Width, 𝛿𝜈 (GHz) 2.5
Number of Detectors, 𝑁det 20
EoR Survey Area, Ωsurv (deg2) 4

Table 2.2: Parameters for [CII] survey CCATp assumed in this paper. These parameters are based
on Breysse and Alexandroff (2019), Chung et al. (2020). It should be noted that the parameters with
the superscript (∗) are frequency-dependent quantities and the values in the table were computed at
237 GHz.

despite the confusing notation, 𝜎 is not a standard deviation. This can be seen by examining

its dimensions in Table 2.2. There, we summarize the instrument specifications for CCATp that

are used in this paper, which are based on parameters given in Chung et al. (2020); Breysse and

Alexandroff (2019).

2.6 Simulating a Data Analysis Pipeline

After simulating our cosmological signals (Section 2.3), adding foregrounds (Section 2.4), and

putting the resulting sky through simulated instruments (Section 2.5), a crucial last component of

an end-to-end analysis is to include a mock data analysis. Nuanced data analysis choices affect

one’s final uncertainties on a cross-power spectrum and in this section we make our choices explicit.

2.6.1 Power Spectrum Estimation

After Section 2.5, we have our instrument-processed three-dimensional surveys. These are the

inputs to our cross power spectrum estimator 𝑃̂𝑎𝑏. As a first step in our power spectrum estimation,
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we multiply both surveys by a Blackman-Harris taper function 𝐵 (Harris, 1978) in the radial

direction, as is often done in 21 cm analyses (Abdurashidova et al., 2022a; HERA Collaboration

et al., 2023; Abdurashidova et al., 2022b; Thyagarajan et al., 2013, 2016). This is done to prevent

harsh non-periodic discontinuities at the edges of one’s data cubes, which occur because the 21 cm

foregrounds are considerably brighter on the low-frequency end of one’s survey than the high-

frequency end. Leaving such discontinuities in the data causes ringing upon a Fourier transform,

which undesirably scatters foreground contaminants from the spectrally smooth modes at low 𝑘 ∥

to spectrally unsmooth modes at high 𝑘 ∥ that should otherwise be reasonably contaminant-free.

Denoting our post-tapering survey data to be 𝑇 tap(r), we then employ an estimator that is very

similar to one that would be used for perfect theoretical data, namely one where the surveys are

Fourier transformed, cross-multiplied, and normalized to form

𝑃̂𝑎𝑏 (k) ≡
𝑇

tap
𝑎 (k)𝑇 tap

𝑏
(k)∗

𝑉𝑁 (k) , (2.21)

where 𝑉 is the survey volume and 𝑁 (k) is a normalization factor derived in Appendix 2.10. This

is then cylindrically binned by folding ±𝑘𝑧 into a single 𝑘 ∥ coordinate and averaging over rings of

constant 𝑘⊥ ≡ (𝑘2
𝑥 + 𝑘2

𝑦)1/2 to form 𝑃̂𝑎𝑏 (𝑘⊥, 𝑘 ∥). In some (but not all) of the scenarios that we

examine in Sections 2.7 and 2.8, this is the stage at which an extra foreground mitigation step is

included. This step is the excision of the 21 cm foreground wedge (Liu et al., 2016; Parsons et al.,

2012; Morales et al., 2012; Trott et al., 2012; Pober et al., 2013; Dillon et al., 2014; Liu et al.,

2014a; Chapman et al., 2016), which consists of all Fourier modes satisfying

𝑘 ∥ ≲ 𝑘⊥
𝐻0𝐷𝑐𝐸 (𝑧)
𝑐(1 + 𝑧) (2.22)

where 𝐸 (𝑧) ≡
√︁
ΩΛ + (1 + 𝑧)3Ω𝑚, 𝐷𝑐 is comoving line-of-sight distance to the midpoint of the

survey volume, 𝐻0 is the Hubble parameter, Ω𝑚 is the normalized matter density, and ΩΛ is the

normalized dark energy density. Following (possible) foreground wedge excision, we spherically
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bin our power spectrum in rings of constant 𝑘 ≡ (𝑘2
⊥ + 𝑘2

∥)
1/2 to obtain our final estimator of the

isotropic power spectrum 𝑃̂𝑎𝑏 (𝑘).

Our power spectrum estimation methodology was chosen for its simplicity, in order to best

showcase trends that are intrinsic to the nature of 21 cm-LIM cross-correlations. Our forecasts

will therefore be on the conservative side in terms of sensitivity, given that we have neither used

optimal frequentist techniques such as an optimal quadratic estimator (Dillon et al., 2014; Tegmark,

1997a; Bond et al., 1998; Liu and Tegmark, 2011; Shaw et al., 2015; Liu et al., 2014b), nor have we

implemented a state-of-the-art Bayesian analysis pipeline (Burba et al., 2023; Zhang et al., 2016;

Sims et al., 2016; Sims and Pober, 2019; Sims et al., 2019; Burba et al., 2024; Cheng et al., 2024).

2.6.2 Window Functions

Having gone through the imperfections of our simulated instruments and the various choices of

our power spectrum analysis pipeline, our estimated power spectrum 𝑃̂𝑎𝑏 (𝑘) will almost certainly

differ in a systematic way (beyond noise fluctuations) from the true power spectrum 𝑃𝑎𝑏 (𝑘). Our

pipeline therefore includes a theory module that computes the joint window function 𝑊𝑎𝑏 (𝑘, 𝑘′)

characterizing the joint cross power response of the two instruments. Specifically, the window

function5 relates the ensemble average of the estimated power spectrum 𝑃̂𝑎𝑏 (𝑘) to the true power

spectrum 𝑃𝑎𝑏 via

⟨𝑃̂𝑎𝑏 (𝑘)⟩ =
∫

𝑑𝑘′𝑊𝑎𝑏 (𝑘, 𝑘′)𝑃𝑎𝑏 (𝑘′). (2.23)

5It is unfortunate that the term window function is an overloaded one in the literature, with multiple meanings and
definitions. In digital signal processing and radio astronomy papers (e.g., Lanman et al. 2020) it is often used to denote
what we define in this paper to be our tapering function 𝐵. In certain portions of the intensity mapping literature (e.g.,
Padmanabhan et al. 2022; Bernal et al. 2019a; Li et al. 2016) it quantifies the instrument’s multiplicative response to
the true power spectrum, accounting for depressions in power due to a telescope’s finite resolution (whether spectral or
angular). In our nomenclature, this would correspond to our normalization factor 𝑁 (k). The normalization factor will
only coincide with our more general definition of a window function, defined in Equation (2.23), when 𝑊𝑎𝑏 (𝑘, 𝑘 ′) can
be approximated as diagonal operator [i.e., proportional to 𝛿𝐷 (𝑘 − 𝑘 ′)] and the window functions are assumed to be
unnormalized (see Appendix 2.10 for details).
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Thus, this window function serves as a transfer function that acts on a theoretical input power

spectrum to give an output that can be directly compared to the output of our simulation and

analysis pipelines. Note that because of the normalization factor included when we estimated our

power spectra using Equation (2.21), integrating the window functions over 𝑘′ from −∞ to +∞

at fixed 𝑘 will yield unity by construction. As such, our power spectrum estimates are weighted

averages (rather than just unnormalized weighted sums) over the true power. In Appendix 2.10 we

derive the window functions that are computed by our pipeline and used in the interpretation of our

results in Sections 2.7 and 2.8.

2.7 Forecasting HERA × CCAT-prime

Using the simulation pipeline presented in the last few sections, we forecast the yield of upcoming

cross-correlation measurements from HERA and CCATp. We simulate three redshift bins centered

on 𝑧 = {6, 7, 8} with a width of Δ𝑧 ∼ 0.5 corresponding to a bandwidth of ∼ 10 MHz for 21 cm

observations and a bandwidth of 13.6 GHz for [CII] observations. In order to capture the non-

Gaussian covariance of these upcoming measurements, we perform a set of Monte Carlo simulations

over 140 patches of sky as shown in Figure 2.5 to build up a distribution for each measurement.

We have three goals here: the first is of course the forecast itself; the second is to use the forecast

as a worked example of our pipeline; the final goal is to use our full set of non-Gaussian end-to-end

Monte Carlo simulations to extract useful lessons for LIM cross-correlation forecasting, although

we defer a description of those results to Section 2.9.
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2.7.1 Avoiding the Foreground Wedge
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Figure 2.8: Forecasted power spectrum measurement at 𝑧 = 6 (left), 𝑧 = 7 (middle), and 𝑧 = 8
(right) for the HERA × CCAT-prime scenario described in Section 2.7.1, where foreground-
contaminated wedge modes are cut. Top: distributions of power spectrum estimates from our
Monte Carlo ensemble, with violins showing the shapes of the distributions, the boxes giving 25th
and 75th percentiles, the white bar giving the 50th percentile, and the whiskers showing the full
extent of the distributions. Black lines indicate the true inputted power spectra. Note that the
vertical axis is a hybrid scale that is linear for |𝑃(𝑘) | ≤ 106 𝜇K Mpc3 and logarithmic otherwise.
The cumulative signal-to-noise ratio, computed using Equation (2.24), is also indicated. The 𝑧 = 6
sensitivity is limited by thermal noise, whereas the 𝑧 = 7 and 𝑧 = 8 measurements are more severely
limited by a CO (2-1) interloper. Bottom: 𝑊 (𝑘, 𝑘′) as a function of 𝑘′ for each power spectrum
estimate in matching colors. Stars indicate the 𝑘 bin center used in power spectrum estimation. The
non-trivial shapes of the 𝑃(𝑘) distributions and the window functions showcase the importance of
forecasting via end-to-end simulations. The limited Fourier overlap between HERA and CCAT-
prime results in a limited cumulative SNR for these measurements.

Given that we are forecasting measurements from HERA, we first examine a scenario that uses

HERA’s current foreground avoidance strategy in which modes that lie within the foreground wedge
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given by Equation (2.22) are discarded when forming a power spectrum (HERA Collaboration

et al., 2023; Abdurashidova et al., 2022b). With our particular instrumental, observational, and

data analysis assumptions here, this amounts to computing the cross-power spectrum for 𝑘 ∥ >

0.29ℎMpc−1 and 𝑘⊥ < 0.29ℎMpc−1 in 5 𝑘-bins. Apart from the wedge cut, we did not perform

any other foreground mitigation on either the 21 cm or [CII] observations. This scenario is a rather

aggressive one that succeeds in avoiding a complete domination of the cross-power spectra by

foregrounds, and will serve as a contrasting case when we adjudicate whether a cross-correlation

on its own is capable of correlating away foregrounds, as argued in previous work.

In Figure 2.8 we show the cross-power measurements in each of the redshift bins. Our Monte

Carlo ensemble enables us to understand the full distribution of each power measurement, which

we portray using violin plots. The box and whiskers of each point represent the 25th and 75th

percentiles and the extrema of the distributions respectively, and the short white bar within each

box is the median value. The solid black line shows the expected truth obtained by evaluating

Equation (2.23). Also shown are the corresponding window functions for each measured power

spectrum point. Since these quantify the wavenumber range that is actually probed by each point,

we center each violin at the 50th percentile of 𝑊 (𝑘, 𝑘′). Each window function curve corresponds

to 𝑊 (𝑘, 𝑘′) for a fixed value of 𝑘 (given by the star symbol) plotted as a function of 𝑘′.

Several generic features are immediately apparent from Figure 2.8. Broadly speaking, we see

from the window functions that when evaluating our power spectrum estimator 𝑃̂𝑎𝑏 at some target 𝑘

value (star points), one is indeed roughly probing true power at the correct wavenumber. However,

the window functions are rather broad, which is unsurprising for experiments with non-trivial

spectral responses (Liu et al., 2014a). Thus, it would be incorrect to assume that the power is being

entirely sourced from the target 𝑘 . In addition, it is not uncommon for there to be some skew to

𝑊 (𝑘, 𝑘′) as function of 𝑘′, where the stars coincide with neither the peak nor the median. This

highlights the importance of computing window functions. Another crucial feature is the presence

of visibly non-Gaussian distributions in the violins (although we caution the reader that part of the

visual distortion is due to the hybrid vertical scale that transitions from linear to logarithmic at



2. Forecasts and Statistical Insights for Line Intensity Mapping Cross-Correlations: A Case
Study with 21cm × [CII] 83

𝑃(𝑘) = ±106 𝜇K2 Mpc3).

The most salient feature of the actual forecasting in Figure 2.8 is the high variance of the

simulated measurements, especially for 𝑧 = 7 and 𝑧 = 8. This can be (crudely) captured by

computing a total signal-to-noise ratio (SNR) that is cumulative accross the entire spectrum and is

given by

SNRcum =

√︃
⟨P̂⟩𝑡𝚺−1⟨P̂⟩, (2.24)

where P̂ is a vector (in this case with five elements) storing the power spectrum measurements for

a particular Monte Carlo realization and 𝚺 ≡ ⟨P̂P̂𝑡⟩ − ⟨P̂⟩⟨P̂⟩𝑡 is the covariance between power

spectrum bins, computed by ensemble averaging over our realizations. The SNRcum values are

3.01, 2.38, and 0.75 for the 𝑧 = 6, 7, and 8 bins, respectively. In our present scenario, therefore, we

have (at best) a marginal detection in the 𝑧 = 6 and 𝑧 = 7 bins.

To understand our lack of a highly significant detection, we can use the flexibility of our

simulations to decompose our error bars into their constituent sources of uncertainty. Although the

error distributions in Figure 2.8 naturally represent the total uncertainty arising from foreground

residuals, cosmic variance, and instrumental noise, we can hold each contribution fixed in order to

discern which source of variance poses the biggest threat to our measurements. This allows one

to prioritize their mitigation strategies. We find that across all redshift bins, cosmic variance is

negligible and that (as expected) the foregrounds and thermal noise are the biggest problem. At

𝑧 = 6, the cross-correlation measurement is noise-limited. While HERA and CCATp are each

sensitive instruments on their own, the lack of Fourier overlap (plus the wedge cut) leaves very few

(𝑘⊥, 𝑘 ∥) bins over which to average down the noise (recall Figure 2.1). For this reason, the noise

variance is comparably high across the 𝑧 = 7 and 𝑧 = 8 bins; however, in those two higher redshift

bins, foregrounds also become a significant source of uncertainty. Although the wedge cut does an

excellent job at removing 21 cm Galactic synchrotron foregrounds across all redshift bins, a bright

CO (2-1) interloper line that is absent at 𝑧 ∼ 6 appears for the [CII] surveys in our 𝑧 ∼ 7 and 𝑧 ∼ 8

bins (see Figure 2.6), causing the detection significance to deteriorate.
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2.7.2 Working in the Wedge
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Figure 2.9: Top and bottom: same as Figure 2.8, but for the scenario described in Section 2.7.2
where 21 cm foreground wedge modes are included. Middle: same as the top, but assuming that
21 cm foregrounds have been cleaned to 1% of their original amplitude in the original maps. One
sees that cross-correlations alone cannot suppress foregrounds to an acceptable level, but can be
powerfully combined with other mitigation techniques to yield statistically significant detections.
However, many bins that are important for a detailed characterization of the cross power spectrum
remain noise limited.

Within the confines of the scenario in Section 2.7.1 (limited Fourier overlap plus a wedge cut),

one ultimately needs to increase the number of independent measurements in order to increase

the signal-to-noise ratio. One method for doing so is to forgo the wedge cut and to push to lower

𝑘 (Chapman et al., 2016; Pober, 2015). This is an approach with trade-offs. Including lower 𝑘
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modes has the effect of reducing noise variance, but the residual foreground variance increases,

and one is relying more heavily on cross-correlations to reduce what starts out as higher foreground

contamination in the data.

In Figure 2.9 we show the results of including modes in the wedge. In the top panel, where

no foreground mitigation has been performed, the large scale modes are foreground variance

dominated at all redshifts. At 𝑧 = 6 and 𝑧 = 7, there is only a slight increase in the cumulative

SNR compared to the wedge cut case of the previous section, which highlights the fact that the

increased foreground variance outweighs most of the decreased noise variance. In the 𝑧 = 8 bin, the

foreground contamination is so extreme that the significance of the detection deteriorates despite

the increased number of modes. Relying purely on cross-correlations is simply not enough to

suppress foregrounds to a viable level.

In the middle panel of Figure 2.9 we present the results of simulating some 21 cm foreground

cleaning. To do so we run the same set of Monte Carlo simulations but reduce the 21 cm foreground

maps to 1% of their original brightness. This increases the cumulative SNR significantly at 𝑧 = 6

and 𝑧 = 7 to 6.79 and 6.84 respectively due to the decreased foreground variance at low 𝑘 values.

At 𝑧 = 8 the cumulative SNR barely breaches unity, which is still not a significant detection.

That a high-significance detection can be made at 𝑧 = 6 and 𝑧 = 7 having only performed 21 cm

foreground mitigation is encouraging. In the 21 cm auto-correlation literature, much more extreme

foreground mitigation is necessary for an auto-spectrum measurement. As a general rule of thumb,

the foregrounds are 104 to 105 times brighter than the cosmological signal, necessitating the same

∼ 104 to 105-level foreground suppression for an auto-spectrum measurement (Liu and Shaw, 2020).

Here, we have shown that with 1% foreground residuals in our 21 cm maps, one is able to achieve

detections with the assistance of a cross-correlation. In addition, we have performed tests where

the CO interlopers were also reduced to the 1% level and found that it had a negligible effect on the

cumulative SNR. This reinforces our intuition that, among the various terms in Equation (2.3), the

most problematic are the ones that involve 21 cm foregrounds.
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2.8 A designer’s guide for the future
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Figure 2.10: Top and bottom: same as Figure 2.8, but for the futuristic scenario described in
Section 2.8 with a wedge cut and where the survey area is 40 deg2 and the spectral resolution of
the [CII] is increased. Middle: same as the top, but survey area is increased to 400 deg2. With the
increased overlap both in Fourier space (due to increased spectral resolution) and in configuration
space (due to increased survey area), the detection significance rises markedly compared to current-
generation surveys.
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Figure 2.11: Top and bottom: same as Figure 2.9, but for the futuristic scenario described in
Section 2.8 with increased survey area to 40 deg2 and a [CII] instrument with greater spectral
resolution, but no 21 cm foreground mitigation nor avoidance of the wedge. Middle: same as the
top, but survey area is increased to 400 deg2.
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Figure 2.12: Same as Figure 2.11, but assuming that foregrounds in the 21 cm maps have been
reduced to 1% of their original level. Compared to Figures 2.10 and 2.11, the extra foreground
cleaning allows individual bins of the cross power spectrum to be detected to high significance,
permitting a detailed characterization of the spectrum and inference of parameters such as the
crossover scale from negative to positive correlation.

Figure 2.9 suggests that pushing to lower 𝑘 has some utility when combined with some 21 cm

foreground cleaning. A future-looking complement that we now examine is to go to wider survey

areas and to increase the number of independent Fourier modes by going to higher 𝑘 . The latter has

several advantages. First, from the perspective of increasing cumulative SNR, going to higher 𝑘

simply adds more modes that can be used to beat down the variance. Second, accessing higher 𝑘 ∥
provides access to new independent modes that are less foreground-contaminated. Finally, going

to a broader range of 𝑘 increases the possibility of catching the (as-yet unknown) crossover scale

when the cross-correlation power spectrum transitions from being negative to positive. Probing
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these scales would give us access to information about the morphology of ionization field and allow

us to constrain a wider range of reionization scenarios.

In this section we forecast a futuristic 21 cm-[CII] cross-correlation measurement where HERA

and CCATp have increased Fourier overlap in the 𝑘 ∥ direction up to 𝑘 ∥ ≈ 3 ℎMpc−1. This requires

increasing the CCATp spectral resolution to Δ𝜈 = 0.5 GHz (𝑅 ≈ 500). Apart of this modification,

the specifications for each instrument remain the ones listed in Tables 2.1 and 2.2. For our more

futuristic scenarios, we simulate measurements over 40 deg2 and 400 deg2. Rather than simulating

a contiguous survey area, we continue to simulate the patches shown in Figure 2.5 but average

together the power spectrum results from multiple patches to accumulate the larger survey areas.

Although this represents an incoherent average of power spectra (rather than a coherent increase

in contiguous survey area prior to forming power spectra), our calculations should serve as a

reasonable proxy for the expected sensitivity since we are not seeking to access lower 𝑘⊥ modes

that are angularly coherent over large parts of the sky. To gather statistics for increased survey

areas, we perform bootstrap sampling over the different foreground patches. As in the previous

section, we simulate two analyses: one with a wedge cut and one without.

In Figure 2.10 the cross spectra with the wedge cut are shown. To avoid visual clutter, we forgo

the violin plots and instead show conventional error bars, with the expectation that the increased

averaging implicit in our new scenarios will serve to somewhat Gaussianize the distributions (see

Section 2.9.2 for a critical examination of this). One sees that over 40 deg2, precise measurements

can be made of the large scale modes at 𝑧 = 6 and 𝑧 = 7. While in principle the increased frequency

resolution of the [CII] survey ought to allow one to measure the crossover scale, in practice the

high-𝑘 bins remain noise limited. A brief examination of Figure 2.1 reveals the reason for this.

Since our futuristic scenario does not entail adding coverage at higher 𝑘⊥ (which would be extremely

difficult for 21 cm experiments), the new high 𝑘 bins are formed from relatively small sections of

contours of constant 𝑘 ≡
√︃
𝑘2
⊥ + 𝑘2

∥ that are almost horizontal on the 𝑘⊥-𝑘 ∥ plane. Thus, relatively

few independent modes are added, limiting one’s ability to average down the noise. For surveys

conducted over 400 deg2 many of the trends remain, although measurements across the crossover
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scale are now possible in the 𝑧 = 7 bin.

In Figure 2.11 the spectra without the wedge cut and without any foreground mitigation are

shown. Due to the highly contaminated foreground wedge modes, there is a decrease in the SNR

in comparison to when the wedge cut was performed.6 That being said, many modes can still be

measured to high significance especially over the larger 400 deg2 survey area. If one, once again,

performs 21 cm foreground mitigation with 1% residuals, the situation drastically improves. In

Figure 2.12 we present the spectra when foreground mitigation is performed. In this case, precision

measurements of large scale modes can be made across all redshifts for a 40 deg2 survey. Over

400 deg2, precision measurements of both large-scale modes and small-scale modes can be made at

all redshifts. By designing a CCAT-like instrument with increased spectral resolution, optimizing

survey strategies to ensure extensive sky coverage overlap, and coupling these improvements with

a modest foreground mitigation strategy, a high-significance detection of the 21 cm–[CII] cross

spectrum is likely achievable.

2.9 Lessons Learned

In conducting the forecasts of Sections 2.7 and 2.8, our Monte Carlo simulations allow

considerable flexibility for exploring forecasting methodology. In this section, we summarize

some of the “lessons learned” along the way, with an eye towards understanding which commonly
6At first glance, this may seem to be a counterintuitive result: one might expect that including extra Fourier modes

would only increase the cumulative SNR, even if those modes have an extremely large variance to them. In some ways,
this is an artifact of our simple power spectrum estimator and the way we compute SNRcum. Our cumulative SNR is
computed in a spherically averaged space, that is, for the power spectrum estimator 𝑃̂𝑎𝑏 as a function of 𝑘 rather than 𝑘⊥
and 𝑘 ∥ . Many of our 𝑘 bins straddle the foreground wedge, with some modes coming from within the wedge and some
modes coming from outside the wedge. Now, recall that our simple estimator 𝑃̂𝑎𝑏 (𝑘) simply averages 𝑃̂𝑎𝑏 (𝑘⊥, 𝑘 ∥ ) in
rings of constant 𝑘 with uniform weights all modes. This means that without the excision of the wedge, modes with
extremely high foreground variance can otherwise contaminate what would be a 𝑘 bin with reasonable SNR. A more
advanced treatment would be to perform power spectrum estimation using an optimal quadratic estimator. Such an
estimator would downweight the data by its total inverse covariance matrix (including the foreground covariance) before
binning (Liu et al., 2014a), thereby organically preventing a contaminated 𝑘⊥-𝑘 ∥ foreground mode from polluting a 𝑘

bin (Liu and Tegmark, 2011). In fact, the Monte Carlo approach that we espouse in this paper can provide precisely
the needed covariance information to do this, but for simplicity we leave this investigation to future work.
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used forecasting approximations are justifiable and which are not.

2.9.1 A 1/
√
𝑁 Scaling Works for Foregrounds

Implicit in the use of cross-correlations for foreground mitigation is the assumption that different

patches of the sky have independent foregrounds. In effect, one is using angular averages as an

approximation for the ensemble averaging in Equation (2.1), and the hope is that by increasing

sky coverage, Equation (2.2) becomes a better and better approximation. Crucially, this relies on

different parts of the sky having independent foregrounds.

In principle, foregrounds are most certainly not independent from one part of the sky to another

on large scales. This is clear from a visual inspection of Figure 2.4, or from the existence of large-

scale power in previous foreground observations (Gold et al., 2009, 2011; Planck Collaboration

et al., 2016). However, in practice it may be a sufficiently good approximation for foreground

fluctuations—as quantified by the foreground contribution in a particular k mode—to be treated as

independent when sourced from different parts of a survey.
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Figure 2.13: Relative foreground standard deviation as a function of number of simulation patches
averaged together (equivalently survey area). In yellow the foreground standard deviation for the
𝑘 = 0.16 ℎMpc−1 is plotted, and in pink the same quantity for 𝑘 = 0.36 ℎMpc−1 is plotted. As
a reference, the expected 1/

√︁
𝑁patches relation for 𝑁patches independent sample is shown in dashed

black. One sees that the foreground residual power averages down with increasing sky area.

With our Monte Carlo samples including different draws from different parts of the sky (recall

Figure 2.5), our pipeline is equipped to test (rather than assume) the independence of different

foreground patches. We examine the averaging down of foregrounds in two different power spectrum

bins: one centered on 𝑘 = 0.16 ℎMpc−1 (intended to be at low enough 𝑘 to be representative of a

mode where strong foreground contamination resides) and one centered on 𝑘 = 0.36 ℎMpc−1 (at

higher 𝑘 where there is weaker but still non-negligible foregrounds from leakage effects). For each

mode, we vary the number of 6 × 6 deg2 patches that are used to estimate the power spectrum.

The patches are combined in an incoherent manner, such that power spectra are computed for each

individual patch and then averaged together.7 This yields a single power spectrum estimate with
7In principle, this will result in a lower sensitivity than a setup where a contiguous volume is analyzed coherently.
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suppressed (but still existent) foreground residuals that have not entirely cross-correlated away. To

compute the increase in foreground variance that this implies, we perform a bootstrap sampling

over our random selection of patches in Figure 2.5.

In Figure 2.13 we show the results of such an experiment, with the variance of our bootstrapped

samples normalized to the variance for a single 6 × 6 deg2 patch. The dark purple line (showing

the behaviour of the 𝑘 = 0.36 ℎMpc−1 bin) clearly follows a 1/
√
𝑁 form, implying that it is

reasonable to assume that the foregrounds average down independently. The lighter yellow line

(for 𝑘 = 0.16 ℎMpc−1) deviates slightly from 1/
√
𝑁 but still averages down quite well as more

patches are included. One may thus conclude that although the gold standard for forecasting would

be to simulate precisely the planned sky coverage for one’s survey, for rough back-of-the-envelope

estimates it is likely acceptable to treat different foreground patches as independent in a cross-

correlation experiment. This validates, for example, the approach used in Roy and Battaglia (2024)

of simulating smaller volumes and then appropriately scaling the resulting SNRs to match proposed

surveys, even if foregrounds are involved.

2.9.2 Some Gaussianization Of Errors Distribution Occurs But With

Residual Non-Trivial Behaviour In The Tails

A common assumption in many forecasting efforts is that error bars can be treated as Gaussian

(although see Wilensky et al. 2023b for a critical examination in the context of 21 cm auto power

spectrum measurements). Again, our pipeline is equipped to test this assumption, since we include

the non-Gaussian effects of foregrounds and furthermore propagate its interactions with other

sources of uncertainty in our measurements. One should expect that with sufficient binning of power

spectra that the error distributions would eventually Gaussianize via the Central Limit Theorem

(CLT). However, it is crucial to understand whether the probability distributions of foregrounds

As an extreme example of this, one’s sensitivity to angular modes larger than the extent of an individual patch is
formally zero when the patches are analyzed separately but non-zero when analyzed together. In practice, our forecasts
do not deal with sufficiently small 𝑘⊥ values for this to be a concern.
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(in various Fourier modes) are sufficiently well-behaved to satisfy the assumptions of the CLT.

This is not a priori true for three reasons. First, the probability distributions of foregrounds may

have heavy tails to be well-behaved enough for the CLT. Second, the precise mix of foreground,

noise, and cosmological power within a spherical Fourier 𝑘 shell will depend on the direction of k

(indeed, this is the central fact leveraged by wedge-excision foreground mitigation schemes). Third,

as we will see in Section 2.3, power spectrum estimates in different parts of Fourier space tend to

be correlated with each other. These last two caveats mean that the act of binning from 𝑃(k) to

𝑃(𝑘) is tantamount to the summation of non-independent and non-identically distributed random

variables—a stark contrast to the independent and identically distributed draws assumed by the

CLT.

Although there exist some generalizations of the CLT that can be used for an analytic treatment

(Wilensky et al., 2023b; Billingsley, 2012), here it is simpler to test for Gaussianization (or lack

thereof) empirically using our simulations. To do so, we use the data from our futuristic case with

no wedge cut (Figure 2.11), but with the original survey area8 of 2 × 2 deg2. We use our suite

of realizations to study the distribution of the cross spectrum power in individual voxels in three-

dimensional Fourier space (i.e., the power spectrum estimates prior to any binning). These Fourier

voxels are selected such that they would be binned into the same bin in a spherical binning. The

distributions of individual voxel values are then compared to the distribution of the final spherically

averaged power spectrum. The hope is that while the data in individual Fourier voxels may not be

Gaussian distributed, the distribution of the binned value Gaussianizes.

In Figure 2.14 we plot the various distributions.9 Shown in different shades of grey are the

distributions of cross power at Fourier voxels with different k but roughly identical 𝑘 that will

eventually be averaged into the same 𝑘 ≈ 0.74ℎ Mpc−1 bin. We choose to plot the distributions of
8Our motivation for using a smaller survey area was to allow for a larger number of samples without the added

layer of complication that comes with bootstrapping, which recall from Section 2.8 is how we perform our forecasts
for large survey areas.

9For visualization purposes, in both Figure 2.14 and 2.15 we use a kernel density estimator (with bandwidth
parameter set by Scott’s rule; Scott 2015) rather than directly plotting histograms.
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three voxels that are representative of the type of modes in the bin: a mode with a low 𝑘 ∥ component

that is consistently foreground dominated across all realizations, a mode with a high 𝑘 ∥ component

that is consistently much cleaner across all realizations, and finally an intermediate mode. These

distributions have extremely different widths to them, since the foregrounds are so much brighter

than instrumental noise. Thus, to highlight the shapes of the distributions (rather than their widths),

we scale each distribution by its maximum power value 𝑃max. Plotted in red is the distribution of

the final binned power. The distributions of the individual Fourier voxels are clearly non-Gaussian,

exhibiting a multitude of peaks and valleys. The distribution of the resultant bin shown in red

is better behaved and is well fit by a Gaussian distribution (dashed black curve) near the peak;

however, it fails to Gaussianize in the tails. We thus conclude that a Gaussian approximation is a

reasonable treatment out to several standard deviations, but the behaviour beyond that should be

treated with care.
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Figure 2.14: The normalized probability density of a selection of power spectrum voxels (various
shades of grey) and the resultant power spectrum bin (red). As a reference, the Gaussian fit to the
red curve is plotted in dashed black. Binning is seen to Gaussianize power spectrum distributions
to some extent, but there are residual discrepancies in the tails.
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2.9.3 Cross-Terms are Important, but Separate Simulations are Acceptable
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Figure 2.15: From left to right, the probability distribution of the measured cross-power for
increasing wavenumber 𝑘 . In blue are the distributions obtained from full MC simulations, in pink
are Gaussianized approximations in which each model component is included but not co-varied,
and in orange each source of variance is simply computed independently. As more approximations
are made, the distributions deviate further from the blue distributions.

In this paper, we have stressed the importance of simultaneously varying multiple components

of a measurement (i.e., the cosmological signal, foregrounds, and noise) in order to capture the

full probability distributions of final power spectrum band powers. The non-Gaussianity of the

foregrounds (or in principle the cosmological signal) means that the analogous expression to

Equation (2.3) for higher-order moments includes terms with non-trivial products between sky

components. That the components are statistically independent allows, say, a six-point function

with four copies of the foregrounds and two copies of the signal to be reduced a four-point function

of foregrounds multiplied by the cosmological power spectrum. That said, taking advantage of such

simplifications still require evaluating higher order moments of each component, which means that

in practice it may be easier to simply simulate all components together.

For an approximate treatment, however, one can use the fact (established above) that the non-

Gaussianities in the final errors are small in many cases of interest. This suggests that simulating

the components separately and then applying Equation (2.3) may be sufficient. Figure 2.15 shows

that this is indeed the case for non-wedge modes. In blue we plot the full probability distribution of
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each mode for the measured HERA and CCATp cross-spectrum from the Monte Carlo simulations

used to make Figure 2.8. These distributions are non-Gaussian, especially at low 𝑘 values where

foregrounds are important. In pink, we plot the error distributions obtained by individually varying

the foreground, noise, and cosmic variance components in our simulation. While varying a given

component, the others are still modeled and fixed to a single realization. We then compute the

standard deviation of each such distribution (effectively making a Gaussian approximation) and

add these individual error components in quadrature to obtain the total standard deviation. This

standard deviation is inserted into a Gaussian form for the probability distribution. While these

Gaussianized distributions obviously do not capture the full shape of the distributions, they are a

relatively faithful description of its width and therefore the variance. Finally, we again vary each

component separately but in doing so, do not include a realization of any other components. In other

words the cosmic variance, noise variance, and foreground variance are computed separately and

then added in quadrature. This is equivalent to computing only the first four terms of Equation 2.3.

The resultant Gaussian distribution is plotted in orange. In this case, since no cross terms have been

modeled, the variance is heavily underestimated. Neither the width nor the shape of the distribution

captures the variance of the data.

In the first few columns of Table 2.3, we summarize the results of this exploration for current-

generation surveys. Approximate methods tend to have the effect of overestimating SNR. Across

all redshifts, not modeling the full variance (“No Modeling” column) leads to a overestimation of

the cumulative SNR. When no joint modelling is performed, the cumulative SNR is overestimated

by over 5.41𝜎 at 𝑧 = 6, by 0.40𝜎 at 𝑧 = 7, and by 0.8𝜎 at 𝑧 = 8. When some modeling of the other

simulation components is included (“Modeling” column), the cumulative SNR is a much more

faithful representation of the true variance, although one loses the full shape of the distribution.

The results from simultaneously varying all components and computing the variance directly form

the full non-Gaussian distributions in Figure 2.15 are shown in the column labeled “Var”. One

sees that the SNR decreases further. In the following section, we will see yet another effect when

we explore the importance of not only considering the non-Gaussianities but also error covariances
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between bins.

𝑧 No Modeling Modeling Var. Cov.

6 8.85 4.36 3.44 3.01
7 2.09 1.78 1.69 2.38
8 0.75 1.70 1.43 0.81

Table 2.3: Cumulative SNR for each redshift bin computed using various approximations. The
column labelled “Cov.” makes use of the full covariance matrix and Equation 2.24 to compute
the SNR. The neighbouring column labelled “Var.” only takes into account the diagonal elements
of the covariance matrix (i.e. the variance). The remaining two columns implement further
approximations as described in Section 2.9.3.
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2.9.4 Error Correlations Between Bins are Non-Trivial
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Figure 2.16: Dimensionless correlation matrices R, defined in Equation (2.25), for the futuristic
HERA × CCAT-prime forecasts shown in Figure 2.10. Substantial error correlations exist between
all 𝑘 bins, necessitating the incorporation of full covariance information in evaluating signal-to-
noise or in propagating power spectrum estimates to downstream parameter inferences.

A frequently used rule-of-thumb in performing power spectrum sensitivity forecasts is to assume

that the errors in different Fourier bins are independent as long as their wavenumber spacing Δ𝑘 is

greater than Δ𝑘 ∼ 2𝜋/𝐿, where 𝐿 is a characteristic size of a survey (Tegmark et al., 1998). With

our suite of simulations, we can put this assumption to the test.

In order to highlight the interdependence (or lack thereof) of different Fourier bins, we compute

the dimensionless correlation matrix R, given by

R𝑖 𝑗 ≡
𝚺𝑖 𝑗√︁
𝚺𝑖𝑖𝚺 𝑗 𝑗

, (2.25)

rather than the covariance matrix 𝚺. The results are shown in Figure 2.16, using the forecasts of
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Section 2.8 with a wedge cut as an example. One sees that substantial, non-negligible correlations

exist between different bins. This is not particularly surprising, since the assumption of independent

bins can be violated by complicated instrumental responses (Liu et al., 2016), or analysis steps such

as apodization and the downweighting or projecting out of systematics (such as foregrounds;

Liu et al. 2014a). Bernal and Baleato Lizancos (2024) have also shown that residual interloper

contaminants will naturally result in error correlations. Continuum foregrounds are also likely to

induce correlation between bins (particularly in the regime where 𝑘 ≈ 𝑘 ∥), since a key source of

variance comes from the leakage of residual foreground power from low 𝑘 (where the foregrounds

intrinsically reside) to high 𝑘 . With all these complicated and interconnected effects, it is no surprise

that the covariance structure seen in Figure 2.16 is non-trivial, which speaks to the necessity of

multi-component end-to-end simulations. For example, these error correlations are important to

incorporate especially in low-SNR regimes. In the column labeled “Cov.” of Table 2.3, we provide

the SNRs computed using the full error covariances for the scenario described in Section 2.7.1

(i.e. HERA × CCATp with a wedge cut). At all redshifts, these values differ from the previously

discussed ones that assumed no error covariance (column labeled “Var.”).

What we have seen here is that modeling assumptions do matter in determining the cumulative

SNR. Although we expect this to be true even for advanced futuristic experiments, our illustrative

example here was computed for current-generation experiments because the metric of cumulative

SNR is most appropriate when one is chasing an initial detection. Once one is characterizing a

high-significance measurement, the details of precisely which parts of a spectrum are measured

begin to matter, and a cumulative SNR becomes too blunt a metric. For example, while it is

clear that a high-precision 21 cm × [CII] measurement at precisely the crossover scale between the

negative and positive correlation regimes would be extremely useful, Equation (2.24) would ascribe

precisely zero value to such a measurement! Said differently, SNR studies are necessary—but not

sufficient—for understanding instrument performance, and in the following section we explore the

effects of error covariances on a simple toy example of parameter estimation.
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2.9.5 Window Functions Should Be Computed and Propagated Downstream

for Parameter Estimation

Given the extra effort required to compute window functions as well as full error covariances, one

may wonder how crucial this is when it comes to parameter estimation. In order to demonstrate

the importance of modelling these quantities, we present a toy model whose parameters we seek to

constrain and showcase how those constraints change in the presence of various error correlations

and window functions.

Suppose one seeks to constrain the crossover scale 𝑘0 at which the cross spectrum between

[CII] and 21 cm transitions from negative to positive, as discussed in Section 2.2 and illustrated in

Figure 2.3. As a simplified model, we imagine taking the two power spectrum points P± ≡ (𝑃−, 𝑃+)

on either side and fitting a straight line model 𝑃mod(𝑘) between them to find the crossover, such

that

𝑃mod(𝑘) ≈ 𝑚(𝑘 − 𝑘0), (2.26)

where 𝑚 is the slope of the line. Finding the crossover scale is then tantamount to computing

the posterior distribution for 𝑘0 given the measured power spectrum values, the error covariance

between them, and their associated window functions. This posterior distribution 𝑝(𝑘0 |P±,𝚺,𝑊)

is given by

𝑝(𝑘0 |P±,𝚺,𝑊) =
∫

𝑑𝑚 𝑝(𝑘0, 𝑚 |P±,𝚺,𝑊), (2.27)

where𝑊 contains the window functions for the two bandpowers, and 𝑝(𝑘0, 𝑚 |P±,𝚺,𝑊) is the joint

posterior for the slope and the crossover scale. Bayes’ theorem (Bayes, 1763) enables this to be

written as

𝑝(𝑘0, 𝑚 |P±,𝚺,𝑊) ∝ 𝑝(P± |𝑘0, 𝑚,𝚺,𝑊)𝑝(𝑘0, 𝑚 |𝚺,𝑊), (2.28)

where 𝑝(𝑘0, 𝑚 |𝚺,𝑊) is the prior and 𝑝(P± |𝑘0, 𝑚,𝚺,𝑊) is the likelihood. Given our previous

demonstrations that the binned power spectra have Gaussianized to some degree (at least away
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from the low-level tails of the distribution), the logarithm of the likelihood can be written as10

ln 𝑝(P± |𝑘0, 𝑚,𝚺,𝑊) ∝ −1
2
(P± − Pmod

± )𝑡𝚺−1(P± − Pmod
± ), (2.29)

where Pmod
± ≡ (𝑃mod

− , 𝑃mod
+ ) is Equation (2.26), i.e., our model, evaluated at the 𝑘− and 𝑘+, the

wavenumbers of the bandpowers just shy of and just beyond the crossover scale, respectively. These

are given by

𝑃mod
± =

∫
𝑑𝑘 𝑊 (𝑘±, 𝑘)𝑃mod(𝑘)

= 𝑚

[∫
𝑑𝑘 𝑘 𝑊 (𝑘±, 𝑘) − 𝑘0

∫
𝑑𝑘 𝑊 (𝑘±, 𝑘)

]
≡ 𝑚(𝑘eff

± − 𝑘0), (2.30)

where in the penultimate line the second integral is by construction unity for properly normalized

window functions, and we have defined the first integral (the centre of mass of the window function)

to be 𝑘eff
± . Inserting this into Equation (2.29) and subsequently into Equation (2.28) then provides

the full posterior for 𝑘0 and 𝑚.

Alternatively, since Equation (2.29) is a quadratic in both 𝑚 and 𝑘0, the marginalization over 𝑚

can be performed analytically to give

𝑝(𝑘0 |P±,𝚺,𝑊) ∝
√︂

2𝜋
𝑎

exp
(
𝑏2

8𝑎

)
, (2.31)

where

𝑎 ≡ (𝚫𝒌eff)𝑡𝚺−1𝚫𝒌eff , 𝑏 ≡ −2P𝑡
±𝚺

−1𝚫𝒌eff , (2.32)

with 𝚫𝒌eff ≡ (𝑘eff
− − 𝑘0, 𝑘

eff
+ − 𝑘0).

10In Equation (2.28), we have omitted the normalization term of the Gaussian likelihood. In principle, cosmological
information is present in this term, since 𝚺 is the total covariance—including contributions from the cosmological
signal (i.e., cosmic variance). In practice, for most experiments the constraining power from this piece of the likelihood
is negligible (Tegmark, 1997b), so we neglect it.
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Using Equation 2.29, we compute the marginalized posterior distributions for parameters 𝑚

and 𝑘0 and explore various assumptions for window functions and error covariances. With the

window functions we explore two different computations. In the first one, we take the correct

𝑧 = 6 window functions from Figure 2.12 that correspond to the two data points straddling the

𝑘0 ≈ 2 ℎMpc−1 crossover scale. In the second computation, we erroneously assume that the

window functions are Dirac delta functions centered on the starred points in Figure 2.12. This is

in effect what is assumed if one does not bother to compute window functions for one’s power

spectrum estimator. For the error covariance, we examine three possibilities. We consider a case

where 𝑃− and 𝑃+ are positively correlated by using the true covariance between the points (which

happens to have positive off-diagonal terms in this case). Our second possibility is an uncorrelated

case where the off-diagonal terms are artificially set to zero. The final possibility is the negatively

correlated version where the off-diagonal terms are given the opposite sign compared to the true

covariance. The final posteriors, marginalized separately for 𝑚 and 𝑘0, are shown in Figure 2.17

for all the aforementioned scenarios. Also shown (in vertical dashed lines) are the true values of

the parameters inferred by acting on the true theory cross power spectra with the window functions.

Several trends are clear. Immediately, one sees the importance of including window functions

in one’s analyses. Without taking them into account, significant biases are present in the inference

of both 𝑚 and 𝑘0. The error covariances strongly affect the widths of the posteriors. Positive

covariances give rise to narrow posteriors on the slope 𝑚 because coherent (positively correlated)

perturbations move 𝑃− and 𝑃+ up and down in concert, leaving the slope relatively unaffected. The

reverse is true for inferences of 𝑘0, where the two points straddling either side of the horizontal

axis must be perturbed in opposite directions to keep the intercept relatively constant. Putting this

together, one sees that if non-negligible covariances exist between 𝑃− and 𝑃+, their mismodeling

can lead to parameter inferences that can be either overconfident or underconfident. For example,

in our current scenario the covariance is positive, and thus the omission of off-diagonal terms in 𝚺

would result in an overconfident error bar on 𝑘0.

In this section we have computed a few quantitative examples to demonstrate a qualitative
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point—that it is crucial to quantify one’s window functions and error covariances. However,

it is important not to overgeneralize our conclusions, since they can easily change depending

on the subtle details of one’s scenario. For example, suppose the crossover scale occurred at

𝑘 ∼ 1.5 ℎMpc−1 at 𝑧 = 7, and one was modeling the experiment corresponding to Figure 2.16. In

that case, 𝑃− and 𝑃+ would be negatively correlated, leading to the opposite conclusions regarding

the question of overconfidence versus underconfidence in one’s inferences.
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Figure 2.17: Mock constraints on the slope 𝑚 and crossover scale 𝑘0, expressed as marginalized
posteriors where all variables except for the parameter in question have been marginalized over.
Top: Constraints using the true window functions of the power spectrum estimate, as computed
in Figure 2.12. Bottom: Biased inferences made assuming that the window functions are Dirac
delta functions. Different solid lines show the effect of different error covariances while the true
parameters values are shown with vertical dotted lines. One sees that neglecting window functions
in analyses can lead to biased inferences, whereas the mismodeling of error covariances can lead
to parameter constraints that are overly pessimistic or overly optimistic.
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2.10 Conclusion

Line-intensity mapping is rapidly becoming a promising technique for conducting efficient yet

sensitive surveys of large-scale structure, with the scientific reach of potential surveys spanning

both cosmological and astrophysical applications. A variety of different emission lines are being

targeted by present and upcoming instruments, opening the door to a large number of possible cross-

correlations. Such cross-correlations would likely represent not only a valuable scientific product,

but also a means to suppress systematics such as foregrounds. However, forecasting the value of

LIM cross-correlations requires the detailed characterization of hypothetical measurements and

their statistical properties, quantitatively taking into account instrumental effects and the nuances

of one’s data analysis prescriptions.

In this paper, we present an end-to-end pipeline for simulating LIM cross-correlations. In

using this pipeline to carry out a detailed forecast for upcoming 21 cm-[CII] cross-correlation

measurements, we explored the impact of various analysis choices and forecasting methodologies.

This resulted in the following lessons learned:

1. When incoherently averaging together power spectrum estimates from 𝑁patches different parts

of the sky, the foreground residual errors average down with a 1/
√︁
𝑁patches scaling (even

though one might assume a priori that foregrounds are not entirely independent in different

parts of the sky).

2. Although foreground residual errors in the power spectrum are not expected to be Gaussian

distributed, some level of Gaussianization occurs in the binning step of one’s power spectrum

estimation. However, there typically remains some residual non-trivial behaviour in the tails

of the distributions.

3. In general, cross-terms in power spectrum variances mean that it is advisable to

simultaneously vary noise, the cosmological signal, and foregrounds in one’s simulations.

However, in certain regimes (detailed in Section 2.9.3) this is reasonably similar to error
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estimates obtained by performing a simulation where each component is varied while others

are held fixed, and then combining the resulting variations in quadrature.

4. Error covariances between different 𝑘 bins of one’s power spectrum estimate exist, and have

a non-negligible impact when computing SNR.

5. Window functions and error covariances should be computed and must be propagated

downstream to parameter estimation. Doing so avoids parameter inference biases and the

possibility of final constraints that are either underconfident or overconfident.

We believe these lessons to be broadly applicable to a variety of forecasts using LIMs or other

cosmological probes. To that end, the publicly available pipeline, limstat, outlined in this work

can easily be adapted to not only explore cross-correlations between interferometric and single

dish observations, but any combination of such measurements. For instance, one might instead

be interested in understanding the cross-correlation between Ly𝛼 emitting galaxies detected by

the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer

(SPHEREx, Doré et al. 2014) and [CII] emission from CCATp.

Cognizant of the aforementioned subtleties, we forecast the possibility of an upcoming cross-

correlation measurement with HERA and CCATp, which are set to observe a small overlapping

region of sky subtending 4 deg2. Given this small survey area and the limited Fourier coverage of

these two instruments, the commonly employed 21 cm foreground mitigation strategy of excising

the footprint of the so-called “foreground wedge” is undesirable. While it is possible with such

a strategy to make a marginal detection at 𝑧 = 6 and 𝑧 = 7, these measurements remain noise-

limited. Opting to include the wedge modes in the hopes of decreasing the variance without any

foreground mitigation strategy does not provide much relief. However, suppose one is able to

address the 21 cm foreground contaminants using other means and reduce them by a factor of 100

at the map level. Although ambitious, this requirement is still considerably easier than what is

required for a 21 cm auto-spectrum measurement. If such a level of mitigation can be achieved,

we find that the cross-correlations can be a huge benefit in teasing out a 6.79𝜎 detection at 𝑧 = 6
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and a 6.84𝜎 detection at 𝑧 = 7. Going to higher redshifts remains a challenge since both the noise

and the foreground spectra brighten significantly with decreasing frequency. Nonetheless, these

forecasts indicate that this first generation of 21 cm-[CII] cross-correlations may help us rule our

certain reionization scenarios which produce ionization bubbles on very large scales. That being

said, much of the parameter space of possible cross-over scales is not probed by the poor Fourier

coverage of these instruments.

Given these limitations, we look to the future and provide a forecast for a set of hypothetical new

instruments. We go to larger survey areas and also achieve better Fourier coverage by improving

the spectral resolution of CCATp. This allows one to make measurements of higher statistical

significance, as well as to cover a greater variety of possible theoretical models (which for example

often make different predictions for the crossover scale at which 21 cm× [CII] correlations transition

from negative to positive). Over increased survey areas of 40 deg2 and 400 deg2, we once again

find that the most successful strategy is to include wedge modes and mitigate the 21 cm foregrounds

to roughly the percent level. Over the larger survey area of 400 deg2 precision measurements can

be made across the cross-over scale, thus potentially providing constraints on both the timing and

morphology of reionization.

While this pipeline has allowed us to perform a relatively realistic forecast, there remain a myriad

of additional systematics that were not considered. Currently, 21 cm observations are challenged

by a variety of systematics including, but not limited to, radio frequency interference (Wilensky

et al., 2019), ionospheric effects (Jelić et al., 2010; Moore et al., 2013; Martinot et al., 2018),

calibration errors (Orosz et al., 2019; Byrne et al., 2019; Barry et al., 2016), and mutual coupling

(Rath et al., 2024). While only a small number of sub-mm CO and [CII] mapping instruments have

come online, we have already been able to learn a great deal about the systematic contaminants

that may be detrimental to these types of surveys. Side lobe pickup from the ground (Foss et al.,

2022), atmospheric variability associated with Lissajous scanning strategies (Ihle et al., 2022), and

mechanical degradation (Lunde et al., 2024) have all shown to decrease data quality. It is still

unclear how these systematics will affect a cross-correlation measurement.
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To conclude, this work underscores the significant potential of LIM-LIM cross-correlations in

constraining the EoR in the near future. Using our simulation and analysis pipeline, we have

elucidated the importance of end-to-end modeling and the need for the rigorous quantification of

statistical properties. Our forecasts for upcoming HERA and CCATp cross-correlation

measurements demonstrate both the challenges and opportunities ahead. Moving forward, it is

crucial to pursue unified efforts among various experiments and coordinate common survey areas.

By fostering collaborative initiatives, we maximize scientific returns and inch closer to achieving

our shared vision of understanding the enigmatic early stages of structure formation.
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Appendix A: The Statistical Modeling Of Correlated Fields

In Pagano and Liu (2020), a simple statistical model for decorrelating fields was presented in

the context of varying the degree of correlation between the ionization and density fields during

reionization. This model generated fields that produce the same degree of correlation on all length

scales. Here we extend this model to generate fields with scale-dependent correlations.

Suppose we are interested in generating two fields 𝑇𝑎 (r) and 𝑇𝑏 (r) such that they are consistent

with having power spectra 𝑃𝑎 (𝑘) and 𝑃𝑏 (𝑘), respectively, i.e.,

⟨𝑇𝑎 (k)𝑇𝑎 (k′)∗⟩ = (2𝜋)3𝛿𝐷 (k−k′)𝑃𝑎 (𝑘) and ⟨𝑇𝑏 (k)𝑇𝑏 (k′)∗⟩ = (2𝜋)3𝛿𝐷 (k−k′)𝑃𝑏 (𝑘), (2.33)

where 𝛿𝐷 denotes a Dirac delta function and we adopt the standard cosmological Fourier convention,

such that

𝑇 (k) ≡
∫

𝑑3𝑟 𝑒−𝑖k·r𝑇 (r) and 𝑇 (r) =
∫

𝑑3𝑘

(2𝜋)3 𝑒𝑖k·r𝑇 (k). (2.34)

To ensure that the our two fields obey not only the right autocorrelation statistics but also have

the right cross power spectrum, we generate the fields one at a time. For 𝑇𝑎 (r) we simply follow

the usual procedure and draw random realizations in Fourier space with variance consistent with

Equation (2.33). The second field is then created by computing

𝑇𝑏 (k) = 𝑇𝑎 (k) 𝑓 (𝑘)𝑒−𝑖𝜙. (2.35)

The factor 𝑓 (𝑘) adjusts the power of field 𝑏 such that it has the auto-spectrum 𝑃𝑏 (𝑘). Computing

the two-point function of both sides of Equation (2.35) reveals that

𝑃𝑏 (𝑘) = 𝑃𝑎 (𝑘) 𝑓 2(𝑘) ⇒ 𝑓 (𝑘) =

√︄
𝑃𝑏 (𝑘)
𝑃𝑎 (𝑘)

, (2.36)

giving us the 𝑓 (𝑘) required to satisfy our constraints on the auto spectra.
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The factor 𝑒−𝑖𝜙 adjusts the relative phases of the fields and ensures that the cross spectrum of

fields 𝑎 and 𝑏 can be tuned to a desired 𝑃𝑎𝑏 (𝑘). In Pagano and Liu (2020), the values of 𝜙 were

drawn from a Gaussian distribution with mean zero and standard deviation 𝜎 for all comoving

wavenumber, 𝑘 .

Here we seek to solve for 𝜎 as a function of 𝑘 by relating it to known 𝑘-dependent quantities,

the auto- and cross-spectrum. Forming the cross power spectrum between our two fields gives

𝑃𝑎𝑏 (𝑘) ∝ ⟨𝑇𝑎 (𝑘)𝑇∗
𝑏 (𝑘)⟩ = 𝑓 (𝑘)⟨𝑒−𝑖𝜙⟩⟨𝑇𝑎 (𝑘)𝑇∗

𝑎 (𝑘)⟩ ∝ 𝑓 (𝑘)⟨𝑒−𝑖𝜙⟩𝑃𝑎 (𝑘) = ⟨𝑒−𝑖𝜙⟩
√︁
𝑃𝑎 (𝑘)𝑃𝑏 (𝑘)

(2.37)

If 𝜙 is drawn from a Gaussian distribution, its expectation value can be readily evaluated to give

⟨𝑒−𝑖𝜙⟩ =
∫

𝑃(𝜙)𝑒−𝑖𝜙 =
1

√
2𝜋𝜎2

∫
𝑑𝜙 𝑒−𝜙

2/2𝜎2
𝑒−𝑖𝜙 = exp

[
𝜎2(𝑘)

2

]
, (2.38)

where in the last expression we have explicitly included the potential 𝑘 dependence of 𝜎. It is

precisely this 𝑘 dependence that enables one to engineer a scale-dependence on the degree of

correlation between our two fields. Comparing Equations (2.37) and (2.38), one sees that getting

the right cross-correlation power spectrum 𝑃𝑎𝑏 (𝑘) can be achieved by setting

𝜎2

2
≡ ln |𝑟 (𝑘) | + 𝜋

2
(1 − sgn[r(k)]) , (2.39)

where sgn is the sign function. This is equivalent to Equation (2.7) given in Section 2.3, where

one simply sets 𝜎(𝑘) =
√︁

ln( |𝑟 (𝑘) |−2) and multiplies the right hand side of Equation (2.35) by

sgn[𝑟 (𝑘)].

In summary, drawing random phases for each location in k according to Equation (2.39) and

then evaluating Equation (2.39) gives two fields with the desired auto- and cross-correlation spectra.
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Appendix B: Power Spectrum Window Functions

In this appendix we derive expressions that relate the true cross-correlation power spectrum 𝑃𝑎𝑏 (𝑘)

to the measured power spectrum 𝑃̂𝑎𝑏 (𝑘) that is distorted by one’s instrument response. Our goal is

to find a window function 𝑊𝑎𝑏 (𝑘, 𝑘′) such that

⟨𝑃̂𝑎𝑏 (𝑘)⟩ =
∫

𝑑𝑘′𝑊𝑎𝑏 (𝑘, 𝑘′)𝑃𝑎𝑏 (𝑘′). (2.40)

To do so, we first write the observed sky map of an instrument 𝑇obs(r) as

𝑇obs(r) =
∫

𝑑2𝑢 exp
(
𝑖2𝜋

u · r⊥
𝑟𝑧

)
𝐺̃ (u, 𝜈𝑧)

∫
𝑑2𝜙 exp(−𝑖2𝜋u · 𝝓)𝐴(𝝓, 𝜈𝑧)𝑇 (𝝓, 𝜈𝑧), (2.41)

where we are working in the flat sky limit given the (relatively) narrow fields considered in this

paper. This allows us to identify a near-unambiguous line of sight direction that we can align with

the 𝑧 direction of our coordinate system, leaving the 𝑥 and 𝑦 directions to span the transverse space

perpendicular to the line of sight, such that r⊥ ≡ (𝑟𝑥 , 𝑟𝑦) . Again utilizing the flat-sky limit, we

can write r ≡ (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) = (r⊥, 𝑟𝑧) = (𝑟𝑧𝝓, 𝑟𝑧). Here, 𝑟𝑧 is the radial comoving distance and 𝝓 ≡

(𝜙𝑥 , 𝜙𝑦) refers to small angles corresponding to 𝑟𝑥 and 𝑟𝑦. We denote the frequency of observation as

𝜈𝑧, with the subscript “𝑧” to remind ourselves of the one-to-one correspondence between frequency

and radial distance in intensity mapping. In words, Equation (2.41) says that the sky is multiplied by

some instrumental configuration space response 𝐴(𝝓, 𝜈𝑧), then Fourier transformed in the transverse

direction before being sampled by an instrumental Fourier space response 𝐺̃ (which will often be

frequency dependent) and Fourier transformed back to configuration space.

Although we deal with two reasonably different types of instruments in this paper

(interferometers and single dish telescopes), Equation (2.41) is general enough to accommodate

both. For example, for a radio interferometer 𝐴(𝝓, 𝜈𝑧) would represent the primary beam and

𝐺̃ (u, 𝜈𝑧) would encode the sampling of the 𝑢𝑣-plane by the baselines of the interferometer (hence

the suggestive use of u as the Fourier dual to sky angle 𝝓). For a single dish telescope, one might
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set 𝐴(𝝓, 𝜈𝑧) to unity, whereas 𝐺̃ (u, 𝜈𝑧) would be the Fourier transform of the telescope’s point

spread function.

To estimate the power spectrum, the data analyst can (optionally) multiply by some

tapering/apodization function 𝐵(r), defining 𝑇 tap(r) ≡ 𝐵(r)𝑇obs(r). This is then Fourier

transformed to obtain

𝑇 tap(k) ≡
∫

𝑑3𝑟 𝑒−𝑖k·r𝑇 tap(r) =
∫

𝑑3𝑘′

(2𝜋)3𝑇 (k
′)𝐹 (k, k′), (2.42)

where

𝐹 (k, k′) ≡
∫

𝑑3𝑟 𝑒−𝑖k·r𝑒𝑖𝑘
′
𝑧𝑟𝑧𝐵(r)

∫
𝑑2𝑢 𝑒𝑖2𝜋u·r⊥/𝑟𝑧𝐺̃ (u, 𝜈𝑧)

∫
𝑑2𝜃𝐴(𝜽 , 𝜈𝑧)𝑒−𝑖(2𝜋u−k′

⊥𝑟𝑧)·𝜽

=

∫
𝑑𝑟𝑧

∫
𝑑2u 𝑒−𝑖(𝑘𝑧−𝑘

′
𝑧)𝑟𝑧 𝐵̃

(
k⊥ − 2𝜋u

𝑟𝑧
, 𝑟𝑧

)
𝐺̃ (u, 𝜈𝑧) 𝐴̃

(
u −

k′
⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
, (2.43)

with k⊥ ≡ (𝑘𝑥 , 𝑘𝑦) as the Fourier dual to r⊥. We note that we are mixing two different Fourier

conventions here: for quantities that mostly pertain to an instrumental response, we use the Fourier

convention where a factor of 2𝜋 appears in the exponent and the forward and backward transforms

differ only by a sign in the exponent; for cosmological fields and 𝐵(r) we adopt the standard

cosmological convention stated in Appendix 2.10.

Forming an estimator 𝑃̂𝑎𝑏 (k) for the cross power spectrum of two surveys involves cross-

correlating two copies of 𝑇obs(k), one from each instrument, to give

𝑃̂𝑎𝑏 (k) ≡
⟨𝑇 tap

𝑎 (k)𝑇 tap
𝑏

(k)∗⟩
𝑉𝑁 (k)

=
1

𝑉𝑁 (k)

∫
𝑑3𝑘′

(2𝜋)3 𝑃𝑎𝑏 (𝑘′)𝐹𝑎 (k, k′)𝐹𝑏 (k, k′)∗

=

∫
𝑑3𝑘′ 𝑃𝑎𝑏 (𝑘′)𝑊3D

𝑎𝑏 (k, k
′) (2.44)
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where 𝑁 (k) is a normalization factor (to be derived later), and 𝑉 is the overlap volume of our two

surveys, which are labelled using subscripts 𝑎 and 𝑏 for each of the two surveys. In the second

equality we used the definition of the power spectrum, namely ⟨𝑇𝑎 (k)𝑇𝑏 (k)∗⟩ = (2𝜋)3𝛿𝐷 (k −

k′)𝑃(𝑘), where 𝛿𝐷 signifies a Dirac delta function. In the final equality, we defined a window

function 𝑊3D
𝑎𝑏

that is analogous to the one defined in Equation (2.40), except in three-dimensional

Fourier space. This version of the window function captures the way in which the estimated power

spectrum 𝑃̂𝑎𝑏 (k) can be anisotropic in k thanks to our survey instruments, even though we have

assumed that the true power spectrum 𝑃𝑎𝑏 (𝑘) is statistical isotropic and depends only on 𝑘 .

Deriving explicit expressions for 𝑊3D
𝑎𝑏

is important for two reasons. First, it allows us to verify

that our power spectra are correctly normalized by enforcing that
∫
𝑑3𝑘′𝑊3D

𝑎𝑏
(k, k′) = 1. In practice,

this can be done by reverse engineering, where one imposes the normalization condition in order

to derive the normalization 𝑁 (k), which is given by

𝑁 (k) ≡
∫

𝑑3𝑘′𝑊3D
𝑎𝑏 (k, k

′) = 1
𝑉

∫
𝑑3𝑘′

(2𝜋)3 𝐹𝑎 (k, k′)𝐹𝑏 (k, k′)∗. (2.45)

The second reason for computing 𝑊3D
𝑎𝑏

(k, k′) is to eventually bin it to yield 𝑊𝑎𝑏 (𝑘, 𝑘′), which

determines the width of horizontal error bars in our final power spectrum estimates.

Consider first the issue of normalization. To simplify the expressions, we will assume that 𝐵(r)

is a function of frequency only. This is not an approximation, but simply a reflection of how we use

𝐵(r) in this paper: as a spectral apodization function to avoid edge effects from bright foregrounds

abruptly dropping to zero outside the survey volume. With this assumption, the spatial part of 𝐵̃ is

proportional to a Dirac delta function, and one obtains

𝐹 (k, k′) ≈
∫

𝑑𝑟𝑧 𝑒
−𝑖(𝑘𝑧−𝑘 ′𝑧)𝑟𝑧𝑟2

𝑧𝐵(𝑟𝑧)𝐺̃
(
k⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
𝐴̃

(
k⊥𝑟𝑧
2𝜋

−
k′
⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
, (2.46)
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which eventually yields

𝑁 (k) = 1
𝑉

∫
𝑑𝑟𝑧 𝐺̃𝑎

(
k⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
𝐺̃𝑏

(
k⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)∗
𝐵𝑎 (𝑟𝑧)𝐵𝑏 (𝑟𝑧)𝑟2

𝑧

∫
𝑑2𝜃 𝐴𝑎 (𝜽 , 𝜈𝑧)𝐴𝑏 (𝜽 , 𝜈𝑧).

(2.47)

For transverse modes on larger lengthscales than the resolution of one’s instrument, we have 𝐺̃ → 1,

and this normalization will be close to order unity because the integrals reduces approximately to

the survey volume (cancelling out the 1/𝑉 term), with just a slight modification for the spatial

response 𝐴(𝜽 , 𝜈𝑧) and the frequency taper 𝐵(𝑟𝑧).

With a correctly normalized power spectrum estimator, the only interesting information in a

window function is its shape. This is given by

𝑊3D
𝑎𝑏 (k, k

′) =

∫
𝑑𝑟𝑧𝑑𝑟

′
𝑧

𝑉 (2𝜋)3 𝑒
−𝑖(𝑘𝑧−𝑘 ′𝑧)𝑟𝑧𝑒𝑖(𝑘𝑧−𝑘

′
𝑧)𝑟 ′𝑧𝑟2

𝑧 𝑟
′2
𝑧 𝐵𝑎 (𝑟𝑧)𝐵𝑏 (𝑟′𝑧)𝐺̃𝑎

(
k⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
𝐺̃𝑏

(k⊥𝑟′𝑧
2𝜋

, 𝜈′𝑧

)∗
×𝐴̃𝑎

(
k⊥𝑟𝑧
2𝜋

−
k′
⊥𝑟𝑧
2𝜋

, 𝜈𝑧

)
𝐴̃𝑏

(k⊥𝑟′𝑧
2𝜋

−
k′
⊥𝑟

′
𝑧

2𝜋
, 𝜈′𝑧

)∗
. (2.48)

While it is exact (up to the flat-sky approximation), this expression is unfortunately computational

infeasible to use in practice. Instead, we must compute the binned version of the window function

analytically. This can be done by making a few simplifying assumptions. First, we will take 𝐴(𝝓, 𝜈𝑧)

to be a frequency-independent quantity for our interferometer. In general, this will not be the case

for a real observation. However, recall from Section 2.4.1 that our analysis involves carving out just

a small central portion of our interferometer’s large field-of-view, making a frequency-independent

treatment more justifiable. Second, whenever 𝑟𝑧 appears because it is used as a conversion factor

between angles and transverse distances, we replace it with 𝐷𝑐, which we define as 𝑟𝑧 evaluated

at the midpoint of our survey volume. With both of these approximations we are essentially

treating slowly varying functions of frequency as being perfectly constant. In contrast, we certainly

cannot do the same for 𝑇 (𝝓, 𝜈𝑧) or 𝐺̃ (u, 𝜈𝑧). (The latter’s frequency dependence, for instance, is

responsible for the phenomenology of the foreground wedge in interferometeric measurements;

Liu et al. 2014a). Finally, we will assume that the response of our instruments are azimuthally
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symmetric (precluding the possibility of elliptical point spread functions, for example). This

enables us to take 𝐺̃ (u, 𝜈𝑧) to 𝐺̃ ( |u|, 𝜈𝑧).

To implement our approximation of a narrow field cut out from a wide field, we imagine that

both 𝐴𝑎 (𝜽) and 𝐴𝑏 (𝜽) take Gaussian forms with standard deviations 𝜃𝑎 and 𝜃𝑏, respectively. The

last two terms of Equation (2.48) then become

𝐴̃𝑎 (q) 𝐴̃𝑏 (q)∗ ∝ 2𝜋2(𝜃2
𝑎 + 𝜃2

𝑏) exp
[
2𝜋2(𝜃2

𝑎 + 𝜃2
𝑏) |q|

2] → 𝛿𝐷 (q), (2.49)

where q ≡ (k⊥ − k′
⊥)𝐷𝑐/2𝜋 and in the last step we took the limit 𝜃𝑎, 𝜃𝑏 → ∞ to encode the flat

response in the field of interest. (Essentially, we are taking the very flat top portion of a Gaussian).

Inserting this into Equation (2.48) and imposing our azimuthally symmetric approximation on 𝐺̃

then gives

𝑊3D
𝑎𝑏 (k, k

′) ∝ 𝛿𝐷 (k⊥ − k′
⊥)𝑊

∥
𝑎𝑏
(𝑘⊥, 𝑘𝑧 − 𝑘′𝑧), (2.50)

where

𝑊
∥
𝑎𝑏
(𝑘⊥, 𝑘𝑧) ≡ 𝐹

∥
𝑎 (𝑘⊥, 𝑘𝑧)𝐹 ∥

𝑏
(𝑘⊥, 𝑘𝑧)∗, (2.51)

with 𝑘⊥ ≡ |k⊥ |, and

𝐹 ∥ (𝑘⊥, 𝑘𝑧) ≡
∫

𝑑𝑟𝑧𝑒
−𝑖𝑘𝑧𝑟𝑧𝐵(𝑟𝑧)𝐺̃

(
𝑘⊥𝐷𝑐

2𝜋
, 𝜈𝑧

)
, (2.52)

with 𝑎 and 𝑏 subscripts adorning each term as appropriate. At this point, we have arrived at a

computationally tractable form 𝑊3D
𝑎𝑏

(k, k′), our approximations having resulted in symmetries that

reduce the complexity of the expressions (such as the fact that only the difference between 𝑘𝑧 and

𝑘′𝑧 matters).

To move towards a final expression for the binned window function 𝑊𝑎𝑏 (𝑘, 𝑘′), we first bin

azimuthally in the 𝑘𝑥𝑘𝑦 plane down to 𝑘⊥. Defining 𝜑𝑘 as the azimuthal angle within a cylindrical

coordinate system defined by 𝑘⊥, 𝜑𝑘 , and 𝑘𝑧 (and similarly for primed coordinates), we can define

𝑊2D
𝑎𝑏 (𝑘⊥, 𝑘𝑧; 𝑘

′
⊥, 𝑘

′
𝑧) ∝

∫
𝑑𝜑𝑘𝑑𝜑

′
𝑘𝑊

3D
𝑎𝑏 (k, k

′), (2.53)
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and using the fact that 𝛿𝐷 (k⊥ − k′
⊥) = 𝛿𝐷 (𝑘⊥ − 𝑘′⊥)𝛿𝐷 (𝜑𝑘 − 𝜑′

𝑘
)/𝑘⊥, we have

𝑊2D
𝑎𝑏 (𝑘⊥, 𝑘𝑧; 𝑘

′
⊥, 𝑘

′
𝑧) ∝ 𝛿𝐷 (𝑘⊥ − 𝑘′⊥)𝑊

∥
𝑎𝑏
(𝑘⊥, 𝑘𝑧 − 𝑘′𝑧). (2.54)

From here, there are two further binning operations that one can perform. The first is relatively

straightforward, which is to fold ±𝑘𝑧 and ±𝑘′𝑧 into always-positive 𝑘 ∥ and 𝑘′∥ values. The second

is to bin in circular 𝑘 =
√︃
𝑘2
⊥ + 𝑘2

∥ rings. This step is best done numerically—unlike the azimuthal

binning that considerably simplified our expressions by taking advantage of azimuthal symmetries

(or approximate symmetries) in our survey instruments, spherical binning has no such symmetry

to leverage, since intensity mapping surveys probe line-of-sight fluctuations in a different way than

they do transverse fluctuations.
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Intermezzo 2

In the previous chapter, we explored whether cross-correlations can effectively mitigate the

foreground contamination of LIM measurements. We learned that while cross-correlations help

suppress uncorrelated contaminants and reduce the barrier to a detection, foreground removal,

particularly that of 21 cm, is necessary. Whether performing a cross-correlation or an

auto-correlation measurement, foreground removal is a non-negotiable data processing step. As

briefly mentioned in Chapter 1, existing mitigation methods have yet to yield a high-𝑧 LIM

detection, highlighting the need for creative new approaches. Motivated by the success of

cross-correlation techniques in general, in this chapter, we introduce a novel foreground removal

method designed to eliminate broadband contaminants, such as synchrotron emission and the CIB

from LIM observations. This method leverages a set of intra-dataset frequency-frequency

cross-correlations to empirically estimate the foreground power, offering a fully data-driven

approach. A key advantage of this technique is its robustness to beam and systematic effects

which are common challenges for traditional foreground removal methods. This presents an

exciting avenue toward achieving the necessary foreground suppression to unlock the

cross-correlation measurements described in the previous chapter.
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Chapter 3

A Data-Driven Technique to Mitigate the

Foregrounds of Line Intensity Maps

Hannah Fronenberg1,2, Adrian Liu1,2

1Department of Physics, McGill University, Montréal, QC, Canada
2Trottier Space Institute, Montréal, QC, Canada

Abstract

Line intensity mapping (LIM) is an emerging observational technique for mapping the large-scale

structure of the Universe across a broad redshift range. Multiple surveys targeting various spectral

lines are now underway or soon to come online, aiming to make some of the first early statistical

measurements. Despite this progress, foreground contamination remains a significant challenge for

LIM across virtually all wavelengths, and many existing mitigation techniques have struggled to

yield successful detections. In particular, astrophysical foregrounds with broad frequency structure

pose a major obstacle. In this work, we present a novel foreground mitigation scheme designed to
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remove broadband contaminants in LIM observations while accounting for instrumental response

and systematic effects. Using a fully data-driven approach, we demonstrate that a trio of intra-

dataset frequency-frequency cross-correlations enables an empirical estimate of the foreground

power spectrum, which can then be subtracted from the data. As a case study, we simulate

21 cm observations under various experimental configurations, such as single-dish instruments and

radio interferometers, while incorporating systematic contaminants. Under idealized conditions,

we achieve percent-level signal residuals, demonstrating that nearly 4–5 orders of magnitude

of foreground contamination can be removed in a single analysis step. Finally, we discuss the

limitations of this method and identify scenarios where the estimator is expected to limited.

3.1 Introduction

Line-intensity mapping (LIM) is a promising new technique for studying a variety of science cases

over a large portion of cosmic history. By targeting transition lines with known rest frequencies, one

can map their total integrated emission, tracing cosmological structures such as galactic populations

or the intergalactic medium (IGM). Many LIM surveys targeting redshifts 𝑧 ≃ 0 − 30 focus on key

spectral lines, including the 158 𝜇m line of ionized carbon ([CII]), multiple rotational transitions

of carbon monoxide (CO), and several hydrogen emission lines such as the Lyman-𝛼 (Ly𝛼) and

H𝛼 lines, as well as the 21 cm hyperfine transition of neutral hydrogen (HI). Mapping galactic

tracers allows for the study of the star formation history, of the geometry and expansion history of

the Universe through the measurement of baryon acoustic oscillations (BAOs, Bernal et al. 2019;

Fronenberg et al. 2024), and of the neutral gas fraction. At higher redshifts, the 21 cm line also

offers a unique probe of the IGM during the epoch of reionization (EoR) and cosmic dawn, and can

be used as a biased tracer of the matter density field well into the cosmic dark ages. The many lines

available for study makes LIM a powerful probe of both cosmology and astrophysics throughout

many key epochs that are currently poorly constrained.

In recent years, the field of LIM has experienced tremendous experimental progress, yielding
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both preliminary detections and stringent upper limits. Post EoR, there have been multiple

measurements of the 21 cm line of HI in cross-correlation with large-scale structure surveys

(Masui et al., 2013; Teng et al., 2013; Rhee et al., 2016; Anderson et al., 2018; Chowdhury et al.,

2021; Wolz et al., 2022; Amiri et al., 2023; Amiri et al., 2024) as well as a tentative auto-spectrum

measurement (Paul et al., 2023). At sub-mm wavelengths, CO has also been measured in

cross-correlation (Pullen et al., 2013, 2018; Roy et al., 2024) while a number of experiments have

placed upper limits on the CO luminosity around cosmic noon (𝑧 ∼ 2 − 3) (Stutzer et al., 2024;

Chung et al., 2024; Keating et al., 2016; Ihle et al., 2022). In the optical and infrared (IR) band,

Ly𝛼 intensity mapping has been achieved through cross-correlation with galaxy surveys. Moving

to higher redshifts, a host of upper limits have been placed on the 21 cm power spectrum during

cosmic dawn and the EoR (Paciga et al., 2013; Gehlot et al., 2019; Patil et al., 2017; Mertens

et al., 2020; Kolopanis et al., 2019; Cheng et al., 2018; Garsden et al., 2021; Ewall-Wice et al.,

2016; Beardsley et al., 2016; Barry et al., 2019; Li et al., 2019; Trott et al., 2020; Abdurashidova

et al., 2022; Rahimi et al., 2021). The tightest of these upper limits by the Hydrogen Epoch of

Reionization Array (HERA, DeBoer et al. 2017; Berkhout et al. 2024) has allowed for the first

constraints to be placed on the spin temperature of the IGM at 𝑧 ∼ 8 and subsequently on the

efficiency of X-ray heating by early galaxies (Abdurashidova et al., 2022; HERA Collaboration

et al., 2023; Lazare et al., 2024).

Despite this progress, LIM suffers from host of observational challenges, chief among them,

foreground contamination. While many lines, particularly those observed at wavelengths ranging

from the sub-mm to the optical, suffer from line interloper contamination (i.e. other lines that

redshift into the same observed band as the target line), LIM observations across all frequencies

suffer from continuum foregrounds originating from both the Milky Way and from extragalactic

sources. For instance, 21 cm observations face some of the most severe foreground contamination

by galactic synchrotron emission which is only worsened by the chromatic beam of radio

interferometers and by non-trivial instrument systematics. These galactic radio foregrounds can

dominate over the cosmological signal by as much as 4-5 orders of magnitude. Similarly, sub-mm
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observations suffer from cosmic infrared background (CIB) contamination, and IR observations

of early times suffer from contamination from zodiacal light (i.e. sunlight that has been scattered

by dust grains in the solar system).

In order to combat this, a multitude of foreground mitigation strategies have been proposed.

Many exploit the spectral smoothness of the astrophysical contaminant, filtering out the smooth

component of the data to reveal the fluctuating cosmological signal (Petrovic and Oh, 2011). In

simulation, decomposition based methods such as principal component analysis (PCA) and singular

value decomposition (SVD) have been shown to be successful at separating the signal from the

foregrounds (Yue et al., 2015; Alonso et al., 2014). The main feature of these schemes is to

decompose the data into an eigenbasis whose eigenvalues map to the explained variance of the

field. The largest variance components (assumed to be associated with foregrounds) are removed.

While these methods are widely used, instruments that have complicated beam patterns, for instance

with frequency-dependent sidelobe structure, and systematic contaminants can introduce spectral

structure into the data which has been shown to degrade the effectiveness of these mitigation

strategies (Rath et al., 2024). Additionally, in all of these approaches where portions of the

data are filtered or excised, there is always a risk of accidentally removing signal along with the

contaminants. This has prompted extensive efforts to rigorously quantify signal loss and propagate

its effects throughout the analysis (Pascua et al., 2024). While much progress has been made on

developing novel beam and systematics aware removal strategies (Wang et al., 2024, 2022; Ding

et al., 2024), foreground contamination, and its coupling to other observational effects, remains the

overarching roadblock to precision LIM measurements.

In this paper, we propose a novel data-driven technique for removing the broadband

contaminants of line intensity maps in the presence of complex instrument effects. This method

estimates a foreground power spectrum from the data directly. The estimated foreground power

can then be subtracted off the total estimated power to reveal the signal power. This method relies

on only two key assumptions. First, that the narrow line emission being targeted is uncorrelated
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between widely spaced channels1, while the broadband emitting foregrounds are highly correlated

across the observing band. This ensures that the cross-correlation between two distant channels

will contain no signal power. More explicitly, if we consider two slices of data from two widely

separated frequency channels 𝜈𝑖 and 𝜈 𝑗 , which contain both a signal (𝑠) and a foreground ( 𝑓 )

component, then their cross angular power spectrum will be proportional to

𝐶𝑙 (𝜈𝑖, 𝜈 𝑗 ) ∝ ⟨𝑎 𝑓

𝑙𝑚
(𝜈𝑖)𝑎∗ 𝑓𝑙𝑚 (𝜈 𝑗 )⟩ (3.1)

where 𝑎𝑙𝑚 is the spherical harmonic coefficients of the spherical harmonic decomposition of

the data, and 𝑙 is the angular multipole. Since, in the ensemble average limit, the signal and

foreground components will be uncorrelated, and the signal components will be uncorrelated, the

only correlations that remain are due to broadband foreground emission, as shown on the right hand

side of Eq. 3.1 by the superscript “ 𝑓 ”.

Next, by adapting the auto spectrum estimator proposed by Beane et al. (2019) (hereon B19) it

is possible to isolate the foreground only auto-power using a trio of such cross-correlations between

well-separated frequency channels: 𝑖, 𝑗 , and 𝑘

𝐶
𝑓

𝑙
(𝜈𝑖, 𝜈𝑖) =

𝐶
𝑓

𝑙
(𝜈𝑖, 𝜈 𝑗 )𝐶 𝑓

𝑙
(𝜈𝑖, 𝜈𝑘 )

𝐶
𝑓

𝑙
(𝜈 𝑗 , 𝜈𝑘 )

. (3.2)

This allows for the estimate of the auto spectrum at frequency 𝑖 using three cross-powers. This step

assumes that the foregrounds are well described by this simple model

𝑇 𝑓 (n̂, 𝜈) = 𝛽(𝜈)𝛿𝑚 (n̂) (3.3)

whereby a frequency dependent bias factor, 𝛽(𝜈), modulates the brightness of the emission being

painted over some common underlying structure, 𝛿𝑚 (n̂). For many sources of broadband

contaminants, such as various sources of galactic emission and the CIB, we believe this
1In the following section we make precise exactly how widely these channels must be spaced.
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assumption to be reasonable and even if this assumptions is not strictly obeyed we expect this

mitigation scheme to work decently well in practice. The questions, of course, is how well and

that is precisely the subject of this chapter.

In the what follows, we detail how this adapted B19 estimator (Eq. 3.2) can be used to generate

foreground power spectrum estimates that can then be subtracted from the total measured power

to reveal the underlying signal. In Section 3.2, we establish this formalism and present some of

its key features specifically with regard to how it works in the presence of both a chromatic beam

and systematics. With this formalism in hand, we showcase this estimator in action by producing

mock 21 cm observations and clean them of their foreground contaminant, paying close attention

to how this foreground estimator performs under realistic instrument response and in the presence

of complex systematics. In Section 3.3 we outline the models used to simulate the signal, the

foregrounds, and the instrument response and systematics. In Section 3.4 we present our results

and finally provide concluding remarks in Section 3.5.

3.2 Formalism

3.2.1 Basic Foreground Removal Formalism

The foreground removal scheme we present here relies on only a few key assumptions, one of

which is a linear foreground model. While in using this estimator, foregrounds are never explicitly

modeled, the estimator we employ to achieve foreground removal relies on the ability to describe

the foregrounds by Eq. 3.3. The frequency dependent factor

𝛽(𝜈) = ⟨𝐼𝜈⟩𝑏𝜈 (3.4)

where ⟨𝐼𝜈⟩ is the mean intensity of the field, and 𝑏𝜈 is the “bias”, modulates the brightness

temperature of the foreground field as a function of frequency 𝜈. The spatial variation of the field

is dictated by the underlying mass distribution responsible for the emission, 𝛿𝑚 (n̂). This should
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not be taken to mean the cosmological matter density field but rather the mass distribution of the

contaminant. For instance, 𝛿𝑚 can represent the distribution of matter in Milky Way galaxy if that

is the contaminant in question.

Next, this method seeks to exploit the differences in frequency to frequency spatial correlations

between cosmological narrow line emission and broadband foreground emission. Line emission

emanating from high redshift galaxies and the IGM has short frequency correlation lengths; for

example, during the EoR, 21 cm emission is expected to have a correlation length ofΔ𝜈𝑠corr ∼ 10MHz

(Santos et al., 2005). Conversely, foreground emission with broad spectral structure, for example

galactic synchrotron emission, is highly correlated over much of the electromagnetic spectrum.

To use the concrete example of 21 cm observations of the EoR contaminated with galactic

synchrotron radiation to illustrate this point, consider an observation of the differential brightness

temperature, 𝛿𝑇𝑏, that is decomposed into spherical harmonic modes

𝛿𝑇𝑏 (n̂, 𝜈) =
∑︁
𝑙,𝑚

𝑎𝑙𝑚 (𝜈)𝑌𝑙𝑚 (n̂). (3.5)

The coefficient 𝑎𝑙𝑚 is comprised of both a signal and a foreground component, 𝑎𝑙𝑚 (𝜈) = 𝑎𝑠
𝑙𝑚
(𝜈) +

𝑎
𝑓

𝑙𝑚
(𝜈), denoted by the superscript as in Section 3.1. The multi-frequency angular power spectrum

(MAPS), 𝐶𝑙 (𝜈, 𝜈′), where |𝜈 − 𝜈′| < Δ𝜈𝑠corr, is therefore

𝐶𝑙 (𝜈, 𝜈′) = ⟨𝑎𝑙𝑚 (𝜈)𝑎∗𝑙𝑚 (𝜈
′)⟩ (3.6a)

= ⟨𝑎𝑠𝑙𝑚 (𝜈)𝑎
𝑠∗
𝑙𝑚 (𝜈

′)⟩ + ⟨𝑎𝑠𝑙𝑚 (𝜈)𝑎
𝑓 ∗
𝑙𝑚
(𝜈′)⟩ (3.6b)

+ ⟨𝑎 𝑓

𝑙𝑚
(𝜈)𝑎𝑠∗𝑙𝑚 (𝜈

′)⟩ + ⟨𝑎 𝑓

𝑙𝑚
(𝜈)𝑎 𝑓 ∗

𝑙𝑚
(𝜈′)⟩

= 𝐶𝑠
𝑙 (𝜈, 𝜈

′) + 2𝐶𝑠 𝑓

𝑙
(𝜈, 𝜈′) + 𝐶

𝑓

𝑙
(𝜈, 𝜈′). (3.6c)

In the infinite ensemble average, denoted by “⟨⟩”, the signal and the foregrounds are

uncorrelated, and the total angular power is comprised of the signal power plus the foreground
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power (i.e. the first and last terms of Eq. 3.6c). In practice, however, we never take true ensemble

averages, but instead, average over the finite number of modes that are measured on the sky. This

means that terms that average down to zero in the infinite ensemble average limit, do not average

down in reality and leave behind spurious residual correlations. These residual signal-foreground

cross-terms in Eq. 3.6b can be overwhelmingly bright compared to the signal. For example, if the

21 cm signal is ∼ 10 mK and the foregrounds are ∼ 100 K, then the cross-terms can be as much as

two orders of magnitude brighter than the signal. Therefore, in practice, it is never adequate to

only model and subtract the foreground auto-spectrum alone, all foreground cross-terms must also

be treated. Importantly, these cross-terms arise from the coincidental correlation of the signal and

the foregrounds, unique to the particular realization of the signal and of the foregrounds in our

Universe. These terms, then, can never be accurately simulated even if the statistical model from

which they are being simulated is absolutely correct.

Luckily, since the foreground spectrum obtained using Eq. 3.2 is estimated from the data

directly, it yields both foreground auto- and cross-spectra. Following the derivation in Appendix

A, all foreground components of the observed spectrum can be obtained using the adapted B19

estimator, that is, where a trio of frequency channels pairwise separated by more than Δ𝜈𝑠corr are

correlated. This separation requirement ensures that no signal correlations enter the foreground

estimate. The cleaning channels 𝜈 𝑗 and 𝜈𝑘 are correlated with a set of target frequencies 𝜈, 𝜈′. A

single channel, 𝜈 can be targeted, but ideally 𝜈 indexes a small sub-band whose spectral width is

less than the frequency correlation length of the signal. With all of this in mind, the foreground

estimator becomes

𝐶̂
𝑓

𝑙
(𝜈, 𝜈′) = ⟨𝑎 𝑓

𝑙𝑚
(𝜈)𝑎 𝑓 ∗

𝑙𝑚
(𝜈′)⟩ + ⟨𝑎𝑠𝑙𝑚 (𝜈)𝑎

𝑓 ∗
𝑙𝑚
(𝜈′)⟩ + ⟨𝑎 𝑓

𝑙𝑚
(𝜈)𝑎𝑠∗𝑙𝑚 (𝜈

′)⟩ +
𝛽 𝑓

𝛽
𝑓

𝑗

⟨𝑎𝑠𝑙𝑚 (𝜈 𝑗 )𝑎
𝑓 ∗
𝑙𝑚
(𝜈)⟩ + 𝛽 𝑓

𝛽
𝑓

𝑘

⟨𝑎𝑠𝑙𝑚 (𝜈𝑘 )𝑎
𝑓 ∗
𝑙𝑚
(𝜈)⟩

(3.7)
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which we can rewrite as,

𝐶̂
𝑓

𝑙
(𝜈, 𝜈′) = 𝐶

𝑓

𝑙
(𝜈, 𝜈′) + 2𝐶𝑠 𝑓

𝑙
(𝜈, 𝜈′) + 𝛽 𝑓

𝛽
𝑓

𝑗

𝐶
𝑠 𝑓

𝑙
(𝜈 𝑗 , 𝜈) +

𝛽 𝑓

𝛽
𝑓

𝑘

𝐶𝑠 𝑓 (𝜈𝑘 , 𝜈). (3.8)

The first two terms of the estimated foreground power are precisely the two foreground contaminated

terms in Eq. 3.6c that need to be removed. The last two terms of the estimate are undesired and

bias the estimate but can be suppressed by exploiting the fact that the estimated foreground power

𝐶̂
𝑓

𝑙
(𝜈, 𝜈′) can be computed many times over using different pairs of cleaning channels 𝜈 𝑗 , 𝜈𝑘 . By

averaging over many cleaning channels across the observed band, these two terms can be suppressed

by a factor of 1/
√
𝑁 where 𝑁 is the number of channel pairs used to compute Eq. 3.8. Finally, the

recovered signal power is simply the total power (Eq. 3.6c) minus the estimated foreground power

(Eq. 3.8) which yields

𝐶̂𝑠
𝑙 (𝜈, 𝜈

′) = 𝐶𝑠
𝑙 (𝜈, 𝜈

′) −
∑︁
𝑗 ,𝑘


𝛽 𝑓

𝛽
𝑓

𝑗

𝐶
𝑠 𝑓

𝑙
(𝜈 𝑗 , 𝜈) +

𝛽 𝑓

𝛽
𝑓

𝑘

𝐶𝑠 𝑓 (𝜈𝑘 , 𝜈)
 (3.9)

where here we explicitly write the sum over cleaning channels 𝜈 𝑗 , 𝜈𝑘 .

At this stage, this multi-frequency angular power spectrum (MAPS), 𝐶̂𝑠
𝑙
(𝜈, 𝜈′), can be used to

compute the more standard power spectra. Following Datta et al. (2007), the MAPS is then used to

construct the frequency-difference angular power spectrum 𝐶𝑙 (Δ𝜈) = 𝐶𝑙 (𝜈 − 𝜈′) which is related

to the standard cylindrical power spectrum 𝑃(𝑘⊥, 𝑘 ∥) as a function of comoving wave number

perpendicular, 𝑘⊥, and parallel, 𝑘 ∥ , to the line-of-sight (LOS) by

𝑃(𝑘⊥, 𝑘 ∥) = 𝑟2𝑟′
∫ ∞

−∞
𝑑 (Δ𝜈)𝑒−𝑖𝑘 ∥𝑟 ′Δ𝜈𝐶𝑙 (Δ𝜈) (3.10)

where 𝑟 is the comoving distance to the central frequency, 𝑣𝑐, of the target range, 𝑟′ = 𝑑𝑟/𝑑𝜈

evaluated at 𝜈𝑐 (Mondal et al., 2018). Here we have also employed the flat sky approximation

where the angular multipole, 𝑙, is proportional to the perpendicular wave number 𝑘⊥. Further
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averaging in bins of constant 𝑘 =
√︃
𝑘2
∥ + 𝑘2

⊥ yields the spherically averaged power spectrum, 𝑃(𝑘).

It should be noted that the standard power spectrum statistic is yielded from the MAPS only

when the signal (here signal means whatever has been measured, in this case, the cosmological

signal and the foregrounds) is statistically stationary in the LOS direction. Foregrounds generally

do not satisfy these properties. Nonetheless, even with a frequency evolving sky, Eq. 3.10 can

always be used to compute a power spectrum-like statistic, albeit with clear artifacts that are present

due to the non-stationarity. We will see such features in Section 3.4.

3.2.2 Foreground Removal In The Presence Of A Chromatic Beam and

Systematics

Perhaps the most desirable feature of this estimator is its ability not simply to obtain a foreground

estimate, but to obtain an estimate of the foreground power as seen by the instrument. Consider

now, the sky observed with an instrument that has a frequency-dependent point spread function

(PSF, also known as the synthesized beam). The observed brightness temperature is therefore

𝛿𝑇𝑏 (n̂, 𝜈) =
∑︁
𝑙,𝑚

𝐵𝑙𝑚 (𝜈)𝑎𝑙𝑚 (𝜈)𝑌𝑙𝑚 (n̂) (3.11)

where 𝐵𝑙𝑚 (𝜈) is the beam. Since this beam factor is not a random variable, it sails out of the

ensemble average and Eq. 3.2 becomes

𝐶̂
𝑓 ,obs
𝑙

(𝜈, 𝜈′) =
𝐵𝑙 (𝜈)𝐵𝑙 (𝜈 𝑗 )𝐵𝑙 (𝜈′)𝐵𝑙 (𝜈𝑘 )

𝐵𝑙 (𝜈 𝑗 )𝐵𝑙 (𝜈𝑘 )
𝐶

𝑓

𝑙
(𝜈, 𝜈 𝑗 )𝐶 𝑓

𝑙
(𝜈′, 𝜈𝑘 )

𝐶
𝑓

𝑙
(𝜈 𝑗 , 𝜈𝑘 )

(3.12a)

= 𝐵𝑙 (𝜈)𝐵𝑙 (𝜈′)𝐶̂ 𝑓

𝑙
(𝜈, 𝜈′), (3.12b)

a fully empirical estimate of the foreground power.
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It then directly follows that if there are any systematics, 𝑆, that are linear in frequency, that is,

𝛿𝑇𝑏 (n̂, 𝜈) =
∑︁
𝑙,𝑚

𝑆𝑙𝑚 (𝜈)𝐵𝑙𝑚 (𝜈)𝑎𝑙𝑚 (𝜈)𝑌𝑙𝑚 (n̂) (3.13)

then this estimator also captures the foregrounds coupled to these systematics.

In this section, we outlined how one can easily obtain a fully empirical estimate of the foreground

power by exploiting frequency-frequency cross-correlations. In order to critically evaluate the

performance and subsequent utility of this foreground removal scheme, we will showcase this

estimator in action by simulating mock observations of high-𝑧 LIM observations under various

experimental setups. In the following section we outline the sky and instrument models we

consider.

3.3 Simulation Setup

In this section, we outline the various components of the simulated observations. To demonstrate

foreground removal using the B19 estimator, we consider observations of the 21 cm line during the

Epoch of Reionization (EoR) with a range of instrument types. Although we focus on the 21 cm

signal, our simulations include instruments commonly used in other LIM measurements, such as

single-dish telescopes. As a result, we expect the explorations in the following section to be broadly

applicable to the wider LIM community.

3.3.1 Sky Modeling

To generate the 21 cm brightness temperature signal, we use the publicly available code 21cmFAST

(Mesinger et al., 2011). This is a semi-numerical code that employs both excursion set formalism

and perturbation theory to produce simulations of various cosmological fields, including of course

the 21 cm field, that agree with more physically motivated numerical simulations on large scales.

Using the fiducial input parameters corresponding to a reionization scenario that starts at 𝑧 ∼ 12,
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and ends at 𝑧 ∼ 5.5, we simulate a large 200×200×244 box with a 10 deg field of view, 3 arcminute

pixel size, and 244 frequency channels with channel widths of 0.3 MHz. This box spans a redshift

range of 𝑧 ∼ 6 − 10 corresponding to a total bandwidth of 73.8 MHz.

Next, we simulate galactic synchrotron emission as the broadband contaminant since it is the

brightest of the diffuse contaminants for low-frequency 21 cm observations. We consider two

foreground models: one idealized and one more realistic. For the idealized foreground model, each

pixel is assigned a brightness temperature 𝑇 according to the power law spectrum

𝑇 (𝜈) = 𝐴sync

(
𝜈

𝜈∗

)−𝛼(r)
, (3.14)

where here, 𝐴sync = 335.4 K and 𝜈∗ = 150 MHz, and 𝛼 is the spectral index that varies from pixel

to pixel (Wang et al., 2006; Liu and Tegmark, 2012). The large-scale spatial fluctuations in 𝛼 are

generated by drawing a Gaussian realization from a power spectrum 𝑃𝛼 (𝑘) ∼ N (0, 0.01). The final

field 𝛼(r) is then obtained by adjusting the mean value of 𝛼 field to 2.8 (Wang et al., 2006). While

this model does not strictly satisfy the requirement of separability, since the frequency and spatial

components are coupled by the spectral index, it strikes a good balance between idealization and

realism, making it well-suited for demonstrating how the estimator works in the following section.

For the more realistic model, galactic synchrotron radiation is simulated using the pygsm

package (de Oliveira-Costa et al., 2008; Zheng et al., 2016). Since there do not exist all-sky maps

of our galaxy at all frequencies from observation, this package interpolates over gaps in coverage

using a set of principal components that are trained on 29 sky maps between 10 MHz and 5 THz.

3.3.2 Modeling Point Spread Functions

In order to study the effects of various types of instrumentation that make up the LIM experimental

landscape, here, we simulate both single dish telescopes as well as interferometric arrays using

simulation code developed for Chapter 2 (now the publicly available code LIMstat2). To begin, the
2https://github.com/McGill-Cosmic-Dawn-Group/LIMstat
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single dish instrument is modeled by convolving the simulated sky with a 2D Gaussian beam with

standard deviation equal to the diffraction limited angular resolution, that is, 𝜃 ∼ 𝜆obs/𝐷 where 𝐷

is the diameter of the dish. Since the signal we have simulated is that of 21 cm during the EoR, we

consider our single dish instrument to be similar to the Five-Hundred-Meter Aperture Spherical

Telescope (FAST, Nan et al. 2011) and take 𝐷 = 500 m. In addition to this frequency-dependent

beam, we also simulate a frequency-independent beam to use as a benchmark. This is done by

simply using the 2D Gaussian corresponding to the central frequency channel at all frequencies.

Next, to simulate the response an array of dishes, we compute a set of visibilities. Interferometers

measure a primary beam- and fringe-weighted integral of the sky intensity known as the visibility,

𝑉𝑖 𝑗 , defined as

𝑉𝑖 𝑗 (𝜈) =
∫

𝐴𝑖 𝑗 (ŝ, 𝜈)𝐼 (ŝ, 𝜈) exp
(
−2𝜋𝑖

b𝑖 𝑗 · ŝ
𝜆obs

)
𝑑Ω (3.15)

where 𝑑Ω is the differential solid angle, and b𝑖 𝑗 is the baseline vector that characterizes the

separation and orientation of the 𝑖th and 𝑗 th receiving elements (such as dishes). The unit vector ŝ

points to the direction of the incoming radiation on the sky. The observing wavelength is denoted

by 𝜆obs, 𝐼 (ŝ, 𝜈) is the specific intensity, and 𝐴𝑖 𝑗 (ŝ, 𝜈) is the geometric mean between the primary

beams of the 𝑖th and 𝑗 th elements. Equation (3.15) can be compared to a two-dimensional Fourier

transform 𝐼 of the specific intensity, namely

𝐼 (u, 𝜈) =
∫

𝐼 (𝜽 , 𝜈) exp (−𝑖2𝜋u · 𝜽) 𝑑2𝜃, (3.16)

where we have invoked the flat-sky approximation to describe positions on the sky in terms of

Cartesian angular coordinates 𝜽 ≡ (𝜃𝑥 , 𝜃𝑦) and have defined a Fourier dual u ≡ (𝑢, 𝑣) to this. One

sees that in the limit that the sky is flat and the primary beam is reasonably uniform, each baseline

of an interferometer measures a single Fourier mode in the plane of the sky with wavenumbers

𝑢 = 𝑏𝑥/𝜆obs and 𝑣 = 𝑏𝑦/𝜆obs on the 𝑢𝑣 plane, where 𝑏𝑥 and 𝑏𝑦 are the 𝑥 and 𝑦 components of b𝑖 𝑗 ,

respectively. These modes can then be easily mapped to the comoving wavevector perpendicular
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Parameters HERA-like

Beam FWHM at 150 MHz, 𝜃FWHM 8.7 deg
Element Diameter 14 m
Shortest Baseline 14.6 m
Longest Baseline (core) 292 m
Longest Baseline (outrigger) 876 m
Channel Width, 𝛿𝜈 0.3 MHz

Table 3.1: Parameters for the HERA-like array assumed in this paper. These parameters are based
on DeBoer et al. (2017) and Pober et al. (2014).

to the line of sight, k⊥, by

k⊥ =
2𝜋b𝑖 𝑗

𝜆obs𝐷𝑐 (𝑧emit)
(3.17)

where 𝐷𝑐 (𝑧emit) is the comoving distance to the source emission. We also assume uniform

sensitivity over the field of view.

To simulate the action of an interferometer, we start by denoting the sky at a particular frequency

as m which stores all of the true pixel intensities on the sky. The measured visibilities then form a

map v in the 𝑢𝑣 plane given by

v = DFm (3.18)

where F denotes the 2D Fourier transform in the angular directions and D is a binary mask of the

𝑢𝑣 coverage (recording which 𝑢𝑣 modes are measured or missed based on the baselines present

in an interferometer). Finally, with our simulated visibilities v, we perform an inverse Fourier

transform to obtain our observed map (i.e. the dirty map where the PSF is convolved with the sky).

The instrument specifications are listed in Table 3.1.
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3.3.3 Modeling Systematics

In order to evaluate the robustness of the proposed foreground mitigation scheme to systematics, we

simulate cable reflections, a systematic that has been measured in various radio arrays (e.g. Barry

et al. 2019; Kern et al. 2019; Kern et al. 2020; Aguirre et al. 2022; Murphy et al. 2023) and which

is expected to remain a concern in future instrumentation (O’Hara et al., 2024). Ideally, signal

collected by the antenna should travel through a connecting cable toward the amplifiers, digitizers,

and correlators. However, due to an impedance mismatch between these components, a portion of

the signal at the end of the connecting cable can reflect back toward the antenna, and then once

again travel back down the cable. This reflected signal is then added to the data stream. This results

in copies of the sky signal being present in the data at some time delay, 𝜏. The length of this delay

is simply twice the cable length divided by the speed of light in the cable. Typically the reflected

signal has significantly lower amplitude than the original signal, but due to the overwhelming

brightness of the foregrounds, this reflected sky signal can still swamp the original EoR signal.

Importantly, cable reflections introduce additional chromatic structure across the observed band

meaning this is precisely the type of systematic that the B19 foreground estimator should be able

to handle and that existing methods relying on spectral smoothness are ill-equipped to deal with.

Here, the sky signal with cable reflections is modeled by

𝑇obs(n̂, 𝜈) = 𝑇 (n̂, 𝜈) (1 + 𝜖 cos(2𝜋𝜈𝜏)) (3.19)

where 𝜏 = 1000 ns, consistent with what has been seen in instruments like the Murchison Widefield

Array (MWA, Barry et al. 2019). To truly test whether these reflected signals can be captured in

the foreground estimate, we take 𝜖 = 1 and do not suppress the amplitude of the reflected signal. It

should be noted that this is simultaneously a conservative test and one that needs refinement. It’s

conservative because the amplitude of the cable reflections have been increased significantly from

what is seen in real data. On the other hand, multiple reflections with different delays are typically

present which add complexity to this systematic.
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3.4 Results

Using the simulations presented in the last section, we perform foreground removal using the B19

formalism outlined in Section 3.2, namely, by computing the estimated foreground power using

Eq. 3.8 and subtracting it off the total measured power. All the results in this section have a target

frequency sub-band of width 10 MHz centered at 𝑧 = 7.5. The main metric used here to quantify

the performance is the residual which is defined as the fractional difference between the true signal

power and the recovered signal power and is given by

%Residual = 100 ×
PTrue

signal(k) − Precov.
signal (k)

PTrue
signal(k)

. (3.20)

We present these results in order of increasing realism, moving from idealized cases to more

realistic scenarios.

3.4.1 Idealized Foregrounds

To begin with the simplest sky model, we consider a sky that has the 21cmFAST cosmological

signal contaminated with galactic foregrounds modeled using Eq. 3.14. To place a benchmark on

performance, we first compute the recovered signal power without any instrument response. These

results are shown in Figure 3.1. The black line shows the absolute value of the total measured

power. The reason for plotting the absolute value here is mostly aesthetic since the total power

does have certain modes with negative power. This negative power is a result of the non-stationary

assumption not being satisfied by the foreground contaminants. The red line is the true signal power

and on large scales, the foreground power dominates over the signal by 4 orders of magnitude. The

recovered signal shown in blue is in good agreement with the true signal power and the residuals

shown in the bottom panel confirm that the signal is recovered within a few percent on all scales.

This confirms that the foreground removal scheme we brought forth is, in principle, able to remove

virtually all the foreground power from these mock data.



3. A Data-Driven Technique to Mitigate the Foregrounds of Line Intensity Maps 154

104

106

108

1010

P
(k

)
[m

K
2 M

p
c3 ]

Total

Signal

Recovered Signal

10−1

k [Mpc−1]

−2.5

0.0

2.5

%
R

es
id

u
al

Figure 3.1: Top panel: Absolute value of the power spectrum for the total (signal + foregrounds)
(black), the true underlying cosmological signal (red), and the recovered signal after foreground
removal (blue dashed). Bottom panel: Fractional residual (in percent) between the true signal and
the recovered signal. The grey band indicates the 1% threshold, serving as a benchmark for residual
contamination. The foregrounds were modeled using the power law in Eq. 1.19.
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Figure 3.2: Same as Figure 3.1, but shown for different beam models: frequency-independent
Gaussian beam (left), frequency-dependent beam (middle), and HERA-like array (right). The
foreground model used in these cases follows the power-law prescription given in Eq. 1.19. In all
cases, the foregrounds are almost entirely suppressed.
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Moving now to increased levels of realism, we turn to Figure 3.2 to examine the effects of

various PSFs. As expected the frequency-independent Gaussian beam has virtually no effect on

the performance of the foreground mitigation and the residuals remain in a similar range to what

they were without any beam at all. Similarly, the foreground mitigation is successful even for the

HERA-like synthesized beam with complex 𝑢𝑣 sampling. In the case of the frequency-dependent

Gaussian, however, the recovered spectrum on large scales, is visibly different from and is still

roughly 1-2 orders of magnitude off from the true power. Nonetheless, the vast majority of the

foreground power has been suppressed. It should be noted that the structure seen in the signal power

as compared to Figure 3.1 is a result of the instrument response. While this mitigation scheme

removes the foregrounds in the presence of a beam, it does not undo the effects of the beam itself.

To add one last element of realism, consider a HERA-like observation with a cable reflection

with 1000 ns delay. These results are shown in Figure 3.3. When compared to the rightmost plot of

Figure 3.2, there is clearly additional structure in both the total and the signal power spectrum when

cable reflections are added. These systematics, however, are no challenge for the B19 estimator and

for a HERA-like instrument, the residuals always remain within a few percent wether systematics

are present or not. This demonstrates the robustness of this foreground removal method under

realistic observing conditions. Although the foreground model used here is somewhat idealized,

it is still not separable, making the achieved level of foreground removal a non-trivial benchmark

to surpass. Having successfully cleared this initial test, we now proceed to an even more realistic

model.

3.4.2 pygsm Foregrounds

In Figure 3.4, we present the results obtained using a more realistic foreground model simulated

with pygsm. Compared to the previous section, foreground removal is notably less effective

across all beam models. While some suppression is achieved, significant residuals remain. For

the Gaussian beam models, these residuals are most pronounced on large scales, whereas for the
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Figure 3.3: Same as Figure 3.1, but with the introduction of cable reflections as a systematic
contaminant. This demonstrates the impact of instrumental systematics on the recovered signal and
the effectiveness of the foreground removal method in their presence.
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Figure 3.4: Same as Figure 3.2, but using the more realistic pygsm foreground model instead of
the power-law model from Eq. 1.19. The three panels correspond to the frequency-independent
Gaussian beam (left), frequency-dependent beam (middle), and HERA-like array (right), illustrating
the impact of different instrumental responses on foreground removal.

HERA-like PSF, they are higher on small scales. These effects arise from the complex interplay

between the spatial and frequency correlations of the foregrounds and the instrument response.

A further challenge is that, as an empirical model, pygsm inherently includes a broad range of

foreground contaminants. While it is primarily composed of Galactic synchrotron emission, it

also encapsulates other sources, such as free-free emission and extragalactic contributions. This

additional complexity disrupts the linear biasing model required for effective foreground removal.

When compounded with instrumental effects, these factors lead to the large biases observed in the

residuals.
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3.5 Conclusion

In this work, we introduced a novel foreground mitigation scheme designed to handle the

broadband contaminants of line intensity mapping (LIM) observations. Building on the B19

estimator presented in Beane et al. (2019), we demonstrated that a fully data-driven approach

using intra-dataset frequency-frequency cross-correlations enables the estimation of a

foreground-only power spectrum, which can then be subtracted from the total measured power to

reveal the underlying cosmological signal.

This method offers several key advantages. (1) It is based on minimal assumptions, requiring

only that foregrounds be separable in their frequency and spatial components and that their frequency

correlation length be longer than that of the signal. (2) It remains effective in the presence of a

chromatic (or achromatic) beam, making it robust across different experimental configurations. (3)

By operating directly on the measured power spectrum, it removes foregrounds and their coupled

systematics simultaneously, providing a systematics-hardened estimator.

To evaluate the performance of this method in practice, we simulated 21 cm observations across

different experimental setups, including both single-dish instruments and radio interferometers,

while incorporating realistic systematic contaminants, namely cable reflections. Importantly, this

method does not attempt to undo the effects of systematics in the recovered signal spectrum;

rather, it estimates all foreground components in the presence of these effects, allowing for a direct

subtraction from the observed spectrum which inherently contains the same systematic effects.

While the resultant recovered signal does contain these instrumental effects, systematics on the

signal itself have been shown to be non-detrimental to a detection. For instance, in the case

of 21 cm, where the expected signal power is on the order of P(k)∼ 30 mK, a 1% systematic

contamination from cable reflections would only alter the measured power by ∼ 0.1 mK. Thus, this

technique effectively removes foregrounds and their systematics in one step, enabling a clearer path

to detection.

Under idealized but physically motivated conditions, we achieved percent-level signal residuals,
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demonstrating that 4–5 orders of magnitude of foreground contamination can be removed in a

single analysis step. However, when tested with a more realistic foreground model, while the

technique still provided suppression, the interaction between the foregrounds and the instrument

response led to imperfect subtraction. This highlights the need for further investigation into the

types of contaminants and observational conditions under which this approach is most effective.

Nonetheless, this work introduces an entirely new way to study foregrounds. Unlike traditional

approaches that rely on explicit foreground modeling or decomposition based techniques, this is a

fully data-driven method that learns the foreground components directly from the data itself.

LIM remains an observationally challenging endeavor, requiring a diverse set of tools to enable

robust detections across different surveys at different wavelengths. This work contributes yet another

powerful tool to the growing analysis toolbox, ensuring that we continue to refine our strategies for

extracting cosmological signals from complex datasets. As the field advances, leveraging multiple

techniques in tandem will be critical for fully realizing the potential of LIM as a powerful probe of

cosmic structure and evolution.

Appendix A: Foreground Power Spectrum Estimation with the

B19 Estimator

In this appendix, we will derive Eq. 3.8, showing that the foreground power spectrum estimator

does indeed recover foreground cross-terms. To begin we assume a separable foreground model as

described by Eq. 3.3 Section 3.1, that is,

𝑇 𝑓 (n̂, 𝜈) = 𝛽(𝜈)𝛿𝑚 (n̂). (3.21)

If we consider a sky model with both a signal and a foreground component, 𝑇obs = 𝑇 𝑠 +𝑇 𝑓 , we

can attempt to recover the foreground power, including foreground-signal cross-terms, using the

B19 estimator from Beane et al. (2019) adapted for the MAPS
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𝐶𝑙 (𝜈, 𝜈′) =
𝐶𝑙 (𝜈, 𝜈 𝑗 )𝐶𝑙 (𝜈′, 𝜈𝑘 )

𝐶𝑙 (𝜈 𝑗 , 𝜈𝑘 )
. (3.22)

Decomposing 𝑇obs into spherical harmonics, we obtain,

𝐶𝑙 (𝜈, 𝜈′) =
⟨(𝑎𝑠

𝑙𝑚
(𝜈) + 𝑎

𝑓

𝑙𝑚
(𝜈)) (𝑎𝑠∗

𝑙𝑚
(𝜈 𝑗 ) + 𝑎

𝑓 ∗
𝑙𝑚
(𝜈 𝑗 ))⟩⟨(𝑎𝑠𝑙𝑚 (𝜈

′) + 𝑎
𝑓

𝑙𝑚
(𝜈′)) (𝑎𝑠∗

𝑙𝑚
(𝜈𝑘 ) + 𝑎

𝑓 ∗
𝑙𝑚
(𝜈𝑘 ))⟩

⟨(𝑎𝑠
𝑙𝑚
(𝜈 𝑗 ) + 𝑎

𝑓

𝑙𝑚
(𝜈 𝑗 )) (𝑎𝑠∗𝑙𝑚 (𝜈𝑘 ) + 𝑎

𝑓 ∗
𝑙𝑚
(𝜈𝑘 ))⟩

.

(3.23)

Since the denominator is at most quadratic in the foreground spherical harmonic coefficients, then

any terms in the numerator that are quadratic or less will be order unity or less. Therefore, keeping

only higher order foreground terms we obtain the estimated foreground power, 𝐶̂ 𝑓

𝑙
(𝜈, 𝜈′)

𝐶̂
𝑓

𝑙
(𝜈, 𝜈′) = 𝐶

𝑓

𝑙
(𝜈, 𝜈′) + 2𝐶𝑠 𝑓

𝑙
(𝜈, 𝜈′) + 𝛽 𝑓

𝛽
𝑓

𝑗

𝐶
𝑠 𝑓

𝑙
(𝜈 𝑗 , 𝜈) +

𝛽 𝑓

𝛽
𝑓

𝑘

𝐶𝑠 𝑓 (𝜈𝑘 , 𝜈) (3.24)

as required. The first two terms constitute the foreground auto- and cross-terms while the last two

terms are a residual bias which can be mitigated by averaging over many cleaning channels 𝜈 𝑗 , 𝜈𝑘 .
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Intermezzo 3

Up until now, our focus has been on addressing the near-term challenges of LIM in order to enable

the first high-𝑧 detections. In doing so, we have presented real solutions to outstanding problems

in the field in Chapters 2 and 3. But of course, the ultimate goal is not just to measure spectra for

the sake of measuring spectra; we seek to use these measurements to constrain cosmology. With

this in mind, we now turn to a key question: once LIM becomes a mature observational field, akin

to the CMB, what groundbreaking science will it enable?

In Chapters 4 and 5, we look toward the future, considering an era when LIM measurements

have advanced to the point where we can extract LIM secondaries, analogous to the secondary

anisotropies in the CMB. As line emission propagates along the line of sight, it acquires additional

signals which can, in principle, be isolated. In this work, we demonstrate how LIM lensing and

CMB lensing observables can be combined synergistically to remove the low-𝑧 lensing signal from

the CMB. This process yields a high-𝑧-only CMB lensing observable, providing an unbiased probe

of the high-𝑧 matter density field.

We then explore how this new observable can be leveraged to test cosmology beyond ΛCDM.

Notably, for the first time, we demonstrate an observable that exhibits lensing BAOs, that is, BAO

features in a lensing measurement that are typically washed out due to the line-of-sight projection

of lensing observables. We show how this novel standard ruler can be used to constrain cosmology.

The observables presented in this work introduce entirely new tools for high-redshift studies,

opening exciting opportunities for precision cosmology in the LIM era.
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3Department of Physics, Stanford University, Stanford, CA, USA
4 SLAC National Accelerator Laboratory, Menlo Park, CA, USA
5Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA, USA
6Department of Physics, New York University, New York, NY, USA
7Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA

Abstract

Lensing reconstruction maps from the cosmic microwave background (CMB) provide direct

observations of the matter distribution of the universe without the use of a biased tracer. Such

maps, however, constitute projected observables along the line of sight that are dominated by their
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low-redshift contributions. To cleanly access high-redshift information, Maniyar et al. (2022)

showed that a linear combination of lensing maps from both CMB and line intensity mapping

(LIM) observations can exactly null the low-redshift contribution to CMB lensing convergence. In

this paper we explore the scientific returns of this nulling technique. We show that LIM-nulling

estimators can place constraints on standard ΛCDM plus neutrino mass parameters that are

competitive with traditional CMB lensing. Additionally, we demonstrate that as a clean probe of

the high-redshift universe, LIM-nulling can be used for model-independent tests of cosmology

beyond ΛCDM and as a probe of the high-redshift matter power spectrum.

4.1 Introduction

In recent decades, there has been a sustained effort to make precision measurements of the large

scale universe over a vast portion of its history. Line intensity mapping (LIM) is an emergent

technique for studying large scale structure. Here, one observes the integrated intensity of a single

spectral line emanating from galaxies and the intergalactic medium (IGM). By virtue of observing

lines with known rest frequencies, line intensity mapping allows one to obtain precise redshift

information. Mapping line emission over a large bandwidth can therefore yield unprecedentedly

large maps of the universe in three dimensions, allowing us to observe cosmic evolution in action.

A number of lines are being targeted by current and upcoming experiments including Lyman-𝛼,

H-𝛼, the 21 cm line of neutral hydrogen (HI), the 3727 Å, 3729 Å lines of singly ionized oxygen

([OII]), the forbidden 88.4 𝜇m and 51.8 𝜇m transitions of doubly ionized oxygen ([OIII]), a host

of rotational line transitions of carbon monoxide (CO), and the forbidden 158 𝜇m line of ionized

carbon ([CII]). Each line traces a biased matter density field as well as regions of the IGM and of

the galaxy related to their specific emission or absorption mechanisms. This makes line intensity

mapping a powerful probe of both cosmology and astrophysics.

Along with LIMs, gravitational lensing is a promising probe of the matter density field. Weak

gravitational lensing of the cosmic microwave background (CMB) arises when CMB photons from
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the surface of last scattering get deflected by the gravitational potentials that they encounter on their

journey to the observer. Using CMB temperature and polarization maps to reconstruct the lensing

potential, 𝜙, gives us direct observation of the total matter distribution of the universe, both baryonic

and dark, without the use of a biased tracer (Seljak and Zaldarriaga, 1999). Measuring the power

spectrum of the lensing potential, either in auto- or in cross-correlation with large scale structure

surveys, has the ability to probe the growth of matter fluctuations, place limits on primordial non-

Gaussianity, constrain the sum of the neutrino masses, and even test theories of modified gravity

(Lewis and Challinor, 2007; Schmittfull and Seljak, 2018; Allison et al., 2015). This information,

however, is collapsed onto a single observable, the convergence, and the high-redshift contribution

to the convergence is dwarfed by that of the low-redshift universe (𝑧 ≲ 2). Since the CMB lensing

convergence contains information about how matter is distributed along the entire line of sight, it

has the potential to help us trace out the matter distribution of the early universe.

There are several proposed techniques to disentangle the redshift integrated lensing signal and

to extract information from particular redshift intervals. For instance, cross-correlating the CMB

convergence field with another tracer, such as a galaxy survey or line intensity map, allows one to

pick out common matter density correlations at their common redshift. This method, however, has

its drawbacks. The redshifts available for study are limited to those of the non-lensing probe and

by virtue of cross-correlating with a biased tracer, the resulting cross-correlation is likewise biased,

losing out on the unbiased nature of the lensing convergence. One can make progress on the latter

by considering not a correlation with the tracer itself but rather, for example, with the LIM lensing

convergence. Just like the CMB, LIMs also experience weak lensing by large scale structure as

the photons pass through the cosmos on their way to our instruments. These lines, however, are

only lensed by a portion of large scale structure that lenses the CMB, namely the low redshift

universe. Cross-correlating LIM lensing and CMB lensing allows one to study the common low

redshift matter density field that lenses both the LIM and the CMB. While the resulting correlation

is unbiased it again is limited to the redshifts between the observer and the source plane of the LIM.

In order to access the high redshift information, Maniyar et al. (2022) proposes using the lensing
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information of two LIMs, to not just suppress, but exactly null out the low redshift contribution to

the CMB convergence. This “nulling” method has been explored in the context of galaxy lensing

(Huterer and White, 2005; Bernardeau et al., 2014; Barthelemy et al., 2020) as well as CMB lensing

(McCarthy et al., 2021; Qu et al., 2023; Zhang et al., 2023). For instance, McCarthy et al. (2021)

show that one can “null” out the imprint of uncertain baryonic effects from CMB lensing maps

using cosmic shear surveys at 𝑧 < 1. Similarly, Qu et al. (2023) showed that one can also use cosmic

shear surveys to subtract off the imprint of uncertain dark energy physics from CMB lensing maps.

Zhang et al. (2023) explores the potential of subtracting the imprint of gravitational nonlinearity at

low redshift to help measure primordial bispectra. While never implemented with real data, these

nulling techniques could be an important new tool for studying the high redshift universe.

What is more, Maniyar et al. (2022) show that the CMB × LIM-nulling convergence spectrum,

⟨𝜅𝜅null⟩, does not contain so-called line interloper bias when the LIM convergence maps are

estimated with “LIM-pair” estimators of Section 4.2.2. Line interlopers are one of the chief

systematic contaminants in LIMs, and consist of low-redshift spectral lines that redshift into the

same observed frequency channel as the high redshift target line. In addition to estimators such as

the LIM-pair estimators that mitigate interloper bias by construction, other strategies such as line

identification, analysis of redshift space distortions, spectral deconfusion, and cross-correlations

have all been shown to help reduce line interloper contamination (Silva et al., 2021; Sun et al., 2018;

Visbal et al., 2011; Breysse et al., 2015; Gong et al., 2014; Liu et al., 2016). Provided that some

combination of these strategies is able to bring line interlopers (and other potential systematics)

under control, the CMB × LIM-nulling convergence spectrum has the potential to reveal exclusive

information about the early universe. Exactly what information is revealed is the subject of this

paper.

In this work, we explore the parameter space of LIM-nulling measurements. In section 4.2 we

derive, for the first time, the CMB × LIM-nulling variance as well as discuss the potential use for

this probe in constraining cosmology. In a companion paper, Fronenberg et al. (2024), we forecast

using the CMB × LIM-nulling convergence spectrum to detect baryon acoustic oscillations in the
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early universe, which may serve as a standard ruler over vast portion of cosmic history. In Sections

4.3 and 4.4, calculate the signal-to-noise ratio of this cross-spectrum statistic as a function of various

observing parameters. After exploring this vast parameter space, we converge on three possible

observing scenarios some of which would allow one to constrain cosmology at high redshift in

Section 4.4. Using these scenarios, we present several forecasts. Section 4.5 consists of a series

of forecasts on ΛCDM+𝑀𝜈 cosmology. First is a Fisher forecast to test the sensitivity of the CMB

× LIM-nulling to the concordance model of cosmology and to compare it with traditional CMB

lensing forecasts. In this section, we also explore how this LIM-nulling estimator behaves, in

comparison to the regular CMB lensing convergence, in universes with time-evolving cosmologies.

In addition, we forecast the sensitivity of this probe to the matter power spectrum at high-𝑧 in

Section 4.6. Unless otherwise explicitly stated, our fiducial cosmology is that of Planck 2015.

4.2 LIM Lensing and LIM Nulling

In this section, we outline the key lensing estimators and observables used throughout the text which

follow Maniyar et al. (2022). In the first subsection, we provide a brief overview of weak lensing

by large scale structure in the context of the CMB and extend the discussion to include LIMs.

In Section 4.2.2, we quickly review LIM lensing estimator and LIM-pair estimators. Finally, in

section 4.2.3, we build upon the existing LIM-nulling estimator formalism to provide a derivation

of the CMB × LIM-nulling variance.

4.2.1 Weak Lensing By Large-Scale Structure

The CMB acts as a source image which is lensed by the intervening matter density field. The

deflection angle, 𝛼, is proportional to the gradient of the lensing potential, 𝜙, which is the total

gravitational potential of the projected mass distribution along the line of sight. This gradient of

the potential is related to the convergence, 𝜅 = −1/2∇𝜙, which is the line-of-sight-integrated matter
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density field, given by

𝜅(n̂) =
∫ 𝑧s

0
𝑊 (𝑧′, 𝑧s)𝛿𝑚 (𝜒(𝑧′)n̂, 𝑧′)

𝑐 𝑑𝑧′

𝐻 (𝑧′) (4.1)

where 𝑧s is the redshift of the source, 𝑊 (𝑧, 𝑧𝑠) is the lensing kernel, 𝐻 (𝑧) is the Hubble parameter,

c is the speed of light, 𝜒 denotes the comoving distance, and 𝛿𝑚 (r, 𝑧) is the matter density field at

position r and redshift 𝑧. The lensing kernel for a source at a single comoving slice is given by

𝑊 (𝑧, 𝑧𝑠) =
3
2

(
𝐻0
𝑐

)2
Ω𝑚,0

𝑎
𝜒(𝑧)

(
1 − 𝜒(𝑧)

𝜒(𝑧𝑠)

)
(4.2)

where 𝐻0 is the Hubble constant, Ω𝑚,0 is the matter fraction today, 𝑎 is the scale factor, and 𝜒(𝑧𝑠)

is the comoving distance to the source.

The deflections induced on CMB photons are small, on the order of arcminutes. However, the

structures responsible for the deflection are large, on the order of degrees. Therefore, somewhat

counter-intuitively, to study the large scale structure of the universe one actually has to study

the small scale anisotropies of the CMB. Lensing induces correlations between the otherwise

uncorrelated CMB spherical harmonic coefficients, 𝑎𝑙𝑚. With the use of quadratic estimators like

those derived in Refs. Hu and Okamoto (2002) and Maniyar et al. (2021), an estimate of 𝜅 can be

obtained which we denote by 𝜅.

One can then compute the angular power spectrum of the convergence which is given by

𝐶𝜅𝜅
𝐿 =

∫ 𝑧𝑠

0

𝑊 (𝑧′, 𝑧s)2

𝜒(𝑧′)2 𝑃m

(
𝑘 =

𝐿 + 1/2
𝜒(𝑧′) , 𝑧′

)
𝑐 𝑑𝑧′

𝐻 (𝑧′) (4.3)

where 𝑃𝑚 is the matter power spectrum. In this expression, we assume the Limber approximation

(Lemos et al., 2017).

Obtaining lensing measurements are challenging yet have seen tremendous progress in recent

years. To date, a number of lensing detections have been made, the first of which was by the

Wilkinson Microwave Anisotropy Probe (WMAP) in 2007 using the Hu and Okamoto estimator

on temperature maps and cross-correlating the resultant 𝜅 map with radio galaxy counts (Smith
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et al., 2007). Subsequent measurements have been made of the lensing signal in temperature as

well as polarization maps by ACT (Das et al., 2011; Sherwin et al., 2017; Shaikh et al., 2023), the

South Pole Telescope (SPT, van Engelen et al. 2012; Hanson et al. 2013; Omori et al. 2017; Story

et al. 2015; Wu et al. 2019; Pan et al. 2023), Planck (Planck Collaboration et al., 2016, 2020),

Background Imaging of Cosmic Extragalactic Polarization (BICEP, BICEP2 Collaboration et al.

2016), and the POLARization of the Background Radiation experiment (POLARBEAR, Ade et al.

2014; Adachi et al. 2020). Excitingly, current and next generation wide-field CMB experiments

like SPT-3G, SPT-3G+, AdvACT, the Simons Observatory (SO) and CMB-Stage 4 (CMBS4), will

provide high signal-to-noise lensing measurement with unprecedented angular resolution (Ward

and Advanced ACT Collaboration, 2017; Benson et al., 2014; Anderson et al., 2022; Ade et al.,

2019; Abazajian et al., 2022). These upcoming detections will enable further analyses such as the

LIM-nulling measurement we propose in Section 4.2.3 and forecast in Section 4.5.

4.2.2 LIM Lensing Estimators

Just like the CMB, lower redshift LIMs also incur correlations between Fourier coefficients as a

result of lensing. In the same spirit as CMB lensing reconstruction, the LIM lensing convergence

can be estimated with LIM lensing estimators which are extensions of those developed for the

CMB. LIMs however, suffer from significant foreground bias, be it from diffuse extended sources,

or from line interlopers. This has been shown to cause significant foreground bias to the LIM

lenisng convergence Maniyar et al. (2022). Luckily, Maniyar et al. (2022) showed that by using

a LIM-pair estimator, one can perform LIM lensing reconstruction free of interloper bias (to first

order). This LIM-pair estimator makes use of the fact that two LIMs from the same redshift slice

and the same patch of the sky will contain the same correlations due to lensing. However, since

each line is observed at a different frequency, they will suffer from different sources of foreground

contamination which will be uncorrelated. The LIM-pair lensing estimator, using LIMs 𝑋 and 𝑌 ,

is given by
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𝜅𝑋𝑌 (𝑳) =
∫

𝑑2𝑙1

(2𝜋)2
𝑑2𝑙2

(2𝜋)2 𝐹𝑋𝑌 ( 𝒍1, 𝒍2) 𝑋𝒍1𝑌𝒍2 , (4.4)

where 𝒍 are the two dimensional Fourier wavenumbers for the LIM in the flat sky approximation,

and 𝑳 = 𝒍1 + 𝒍2 are the wavenumbers for the lensing potential. The quantities 𝑋 ( 𝒍) and 𝑌 ( 𝒍) are

the observed LIM fields in Fourier space. The function 𝐹𝑋𝑌 is uniquely determined to ensure that

𝜅𝑋𝑌 is unbiased to first order and to ensure that 𝜅𝑋𝑌 is the minimum variance estimate of 𝜅𝑋𝑌 . This

solution to 𝐹𝑋𝑌 is given by

𝐹𝑋𝑌 ( 𝒍1, 𝒍2) = 𝜆𝑋𝑌 (𝐿)
𝐶𝑌𝑌
𝑙1
𝐶𝑋𝑋
𝑙2

𝑓𝑋𝑌 ( 𝒍1, 𝒍2) − 𝐶𝑋𝑌
𝑙1

𝐶𝑋𝑌
𝑙2

𝑓𝑋𝑌 ( 𝒍2, 𝒍1)

𝐶𝑋𝑋
𝑙1

𝐶𝑌𝑌
𝑙2
𝐶𝑌𝑌
𝑙1
𝐶𝑋𝑋
𝑙2

−
(
𝐶𝑋𝑌
𝑙1

𝐶𝑋𝑌
𝑙2

)2 (4.5)

where 𝐶𝑋𝑋
𝑙

and 𝐶𝑌𝑌
𝑙

are the total auto-spectra for LIMs 𝑋 and𝑌 including noise, while 𝐶𝑋𝑌
𝑙

is their

cross-spectrum. The Lagrange multiplier 𝜆𝑋𝑌 (𝐿) is given by

𝜆𝑋𝑌 (𝐿) ≡
[ ∫

𝒍1+𝒍2
=𝑳

𝑓𝑋𝑌 ( 𝒍1, 𝒍2)
𝐶𝑌𝑌
𝑙1
𝐶𝑋𝑋
𝑙2

𝑓𝑋𝑌 ( 𝒍1, 𝒍2) − 𝐶𝑋𝑌
𝑙1

𝐶𝑋𝑌
𝑙2

𝑓𝑋𝑌 ( 𝒍2, 𝒍1)

𝐶𝑋𝑋
𝑙1

𝐶𝑌𝑌
𝑙2
𝐶𝑌𝑌
𝑙1
𝐶𝑋𝑋
𝑙2

−
(
𝐶𝑋𝑌
𝑙1

𝐶𝑋𝑌
𝑙2

)2

]−1

. (4.6)

where for brevity, we introduce the notation∫
𝒍1+𝒍2
=𝑳

... ≡
∬

𝑑2𝑙1𝑑
2𝑙2

(2𝜋)2 𝛿( 𝒍1 + 𝒍2 − 𝑳)... . (4.7)

The factor 𝑓𝑋𝑌 ( 𝒍, 𝒍′) is the coupling coefficient

𝑓𝑋𝑌 ( 𝒍, 𝒍′) = − 2
𝐿2

[
𝐶𝑋𝑌
𝑙1

(𝑳 · 𝒍1) + 𝐶𝑋𝑌
𝑙2

(𝑳 · 𝒍2)
]

(4.8)

where 𝐶𝑋𝑌
𝑙

is the unlensed cross-power spectrum. The reconstruction noise, 𝑁𝑋𝑌 (𝐿), of the

LIM-pair estimator is given by
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𝑁𝑋𝑌 (𝐿) =
∫
𝒍1+𝒍2
=𝑳

𝐹𝑋𝑌 ( 𝒍1, 𝒍2)
(
𝐹𝑋𝑌 ( 𝒍1, 𝒍2)𝐶𝑋𝑋

𝑙1
𝐶𝑌𝑌
𝑙2

+ 𝐹𝑋𝑌 ( 𝒍2, 𝒍1)𝐶𝑋𝑌
𝑙1

𝐶𝑋𝑌
𝑙2

)
. (4.9)

For the interested reader, a detailed derivation of this estimator can be found in Appendix B of

Maniyar et al. (2022).

4.2.3 CMB × LIM-nulling

In the last two subsections, we outlined how one could make use of both the CMB and of LIMs

to extract information about the intervening matter density field. In the case of the CMB the

resulting field is the matter density field over cosmic history since the surface of last scattering,

projected onto a single plane. It is important to note that LIMs are lensed by the same low-𝑧

gravitational potentials that lens the CMB and therefore these probes share common low-redshift

induced correlations. This can be exploited in order to make use of the LIM lensing information to

“clean” the CMB convergence of its low redshift contribution.

From Eq. (4.1), it should be clear that it is possible to construct some kernel that vanishes over

the low redshift interval [0, 𝑧null]. Since 𝑊 is quadratic in 𝜒, a linear combination of three such

kernels suffices to find a non-trivial null solution for the coefficients of this polynomial. As shown

in Maniyar et al. (2022), using two convergence maps each estimated from two LIMs at redshifts

𝑧1 and 𝑧2 (𝑧1 < 𝑧2), and one CMB convergence map sourced at the surface of last scattering, 𝑧CMB,

the LIM-nulling kernel is given by

𝑊null = 𝑊 (𝑧, 𝑧CMB) + 𝛼𝑊 (𝑧, 𝑧2) − (1 + 𝛼)𝑊 (𝑧, 𝑧1) (4.10)

where

𝛼 ≡ 1/𝜒(𝑧CMB) − 1/𝜒(𝑧1)
1/𝜒(𝑧1) − 1/𝜒(𝑧2)

. (4.11)

In Fig. 4.1, the LIM lensing kernels, the CMB lensing kernel, and the LIM-nulling kernel

are plotted. The LIM-nulling kernel is exactly null between 0 < 𝑧 < 4.5, meaning that when
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integrating over the whole redshift range in Eq. (4.1), 𝜅null = 𝜅CMB + 𝛼𝜅𝑧2 − (1 + 𝛼)𝜅𝑧1 provides

a map of the line of sight integrated matter density field between 4.5 < 𝑧 < 1100, providing a

pristine view of early times.

LIM-nulling can be thought of as a type of foreground cleaning where the LIM-lensing

information is used to clean the low redshift contribution to the CMB lensing. The data product

that results from LIM-nulling does not itself contain any LIM information, whether from the

original map or from its lensing reconstruction. Of course, LIMs cannot partake in tracing out the

matter density field at a time before the line emission was emitted. It is composed of CMB lensing

information from 𝑧 > 𝑧null.

This high-redshift information can be captured statistically by computing the CMB × LIM-

nulling convergence spectrum,

𝐶
𝜅𝜅null
𝐿

=

∫ 𝑧𝑠

0

𝑊 (𝑧′, 𝑧s)𝑊null(𝑧′, 𝑧1, 𝑧2, 𝑧CMB)
𝜒(𝑧′)2 𝑃m

(
𝑘 =

𝐿 + 1/2
𝜒(𝑧′) , 𝑧′

)
𝑐 𝑑𝑧′

𝐻 (𝑧′) . (4.12)

The motivation for always computing the cross-correlation of the LIM-nulling convergence with the

CMB convergence and not simply in auto-correlation, is that cross-spectrum is free of all interloper

bias, as shown in Maniyar et al. (2022). In addition, the variance of the cross-spectrum contains

fewer cross terms than the variance of the LIM-nulling auto-spectrum. This cross-spectrum,

however, effectively contains the same cosmological information as the LIM-nulling auto-spectrum

when Δ𝑧 is small. One therefore gains in signal-to-noise.

In Fig. 4.2 both the CMB convergence spectrum and the CMB × LIM-nulling convergence

spectrum are plotted in black and red solid lines respectively. Upon first glance it is immediately

evident that the CMB convergence has an order of magnitude more power than the CMB × LIM-

nulling convergence spectrum. This is expected since a significant portion of the power has been

nulled in the CMB × LIM-nulling spectrum. Perhaps more subtle is the re-emergence of acoustic

peaks in the nulling spectrum. In order to help elucidate this feature, we also show the CMB × LIM-

nulling spectrum using the no-wiggle Eisentein and Hu fitting function in place of the typical matter
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power spectrum. This fitting function is essentially the matter power spectrum without the baryon

acoustic oscillations (BAO). One can see the solid red line oscillating about the no-wiggle spectrum

which is plotted in dashed black. We have refrained from forecasting the potential to constrain the

BAO scale in this work as we believe it merits a dedicated discussion. In our companion paper,

Fronenberg et al. (2024), we perform an Alcock-Paczynski test on mock CMB × LIM-nulling data

sets in order to forecast whether it is possible to measure BAO features with such a probe.
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Figure 4.1: The rescaled nulling kernel, defined as W(𝑧, 𝑧𝑠) = 𝑊 (𝑧, 𝑧𝑠) 𝑐
𝐻 (𝑧) for three sources.

The CMB kernel is shown in black and the two LIM kernels at redshifts 4.5 and 5.5 are shown in
blue and magenta, respectively. Finally, the LIM-nullling kernel is shown here in red and is null
from 0 < 𝑧 < 4.5 which corresponds to a complete insensitivity to the matter density field over that
redshift range.

In the next two sections, we explore how the choice of various observing parameters affects the

signal-to-noise ratio (SNR) of this probe. In order to do so, we require the variance of the CMB ×

LIM-Nulling cross-spectrum. It is given by
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var
(
𝐶

𝜅CMB𝜅null
𝐿

)
=

1
𝑓sky(2𝐿 + 1)

{
2
[
(𝐶𝜅CMB

𝐿
+ 𝑁

𝜅CMB
𝐿

)2 + 2𝛼(𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅2
𝐿

− 2(1 + 𝛼) (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅1
𝐿

]
+ 𝛼2

[
(𝐶𝜅CMB𝜅2

𝐿
)2 + (𝐶𝜅CMB

𝐿
+ 𝑁

𝜅CMB
𝐿

) (𝐶𝜅2
𝐿
+ 𝑁

𝜅2
𝐿
)
]

− 2𝛼(1 + 𝛼)
[
𝐶

𝜅CMB𝜅1
𝐿

𝐶
𝜅CMB𝜅2
𝐿

+ (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅1𝜅2
𝐿

]
+ (1 + 𝛼)2

[
(𝐶𝜅CMB𝜅1

𝐿
)2 + (𝐶𝜅CMB

𝐿
+ 𝑁

𝜅CMB
𝐿

) (𝐶𝜅1
𝐿
+ 𝑁

𝜅1
𝐿
)
]}

. (4.13)

where we use “var” to denote the variance. The quantity 𝑁
𝜅𝑖
𝐿

denote the lensing reconstruction

noise corresponding to the estimated convergence 𝜅𝑖. To be explicit, the CMB reconstruction noise

is denoted by 𝑁
𝜅𝐶𝑀𝐵

𝐿
and 𝑁

𝜅1
𝐿

is shorthand for the LIM-pair lensing reconstruction noise, 𝑁𝑋𝑌 (𝐿),

using lines X and Y at 𝑧1. Finally, 𝑓sky is the fraction of the sky area observed. A complete

derivation can be found in Appendix 4.7.

4.3 Cosmic Variance Limited SNR

Before considering the effects of instrument noise on the CMB × LIM-nulling SNR, we first wish to

illustrate the importance of the choice of line redshifts and of the redshift separation between LIMs

used for nulling. To do this, we work in harmonic space and compute the LIM-pair reconstruction

noise at different redshifts as well as the CMB lensing reconstruction noise, both of which enter

into Eq. (4.13). For various cases, we compute both the SNR per mode, as well as the cumulative

SNR assuming uncorrelated errors which is given by

Cumulative SNR =


∑︁
𝐿

(
𝐶𝐿√︁

var(𝐶𝐿)

)2
1/2

. (4.14)
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Figure 4.2: Top: the CMB convergence spectrum, 𝐶𝜅𝜅
𝐿

in black and the CMB × LIM-nulling
convergence spectrum, 𝐶𝜅𝜅null

𝐿
, in red. The dot-dashed black curve shows the CMB × LIM-nulling

convergence spectrum computed with the no-wiggle Eisenstein & Hu fitting function. Bottom:
the integrand of Eq. (5.3) evaluated at increasing redshifts from top to bottom starting at z =
1. Since the BAO scale is a fixed comoving scale, its angular projection changes as a function
of 𝑧. The BAO features evolve gradually to lower 𝐿 as 𝑧 decreases which, when integrated over
redshift, result in the washing out of BAO wiggles in 𝐶𝜅𝜅

𝐿
. It is for this reason that the CMB

convergence spectrum𝐶𝜅𝜅
𝐿

is smooth with no discernible BAO features in the top panel. In contrast,
the LIM-nulled convergence 𝐶

𝜅𝜅null
𝐿

sees the reemergence of acoustic peaks (especially apparent
when viewed against the reference no-wiggle nulled spectrum). These acoustic features are the
result of the much slower angular evolution of BAO wiggles at early times.
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We compute 𝐶𝐿 using the matter power spectrum from the publicly available code CAMB.1

The line auto-spectra and cross-spectra which enter into the LIM-pair lensing reconstruction noise

through Eqs. (4.5) and (4.6), are obtained from the publicly available code HaloGen.2 As the

name suggests, HaloGen uses a halo model formalism based on conditional luminosity functions

(Schaan and White, 2021a,b). For more information on how we model these lines here, we refer

the interested reader to Appendix A of Maniyar et al. (2022). We take the spherically averaged

power spectra of each line and convert them into the corresponding angular spectra. Working in

the thin shell approximation, this conversion is written as,

𝐶𝑙 = V−1𝑃(𝑘 = 𝑙/𝜒(𝑧), 𝑧) (4.15)

where V = 𝜒2(𝑧)Δ𝜒 is the comoving volume per steradian of a shell centered at 𝑧. We set the

width of the shell to the comoving distance corresponding to a redshift width of 0.05.
1https://github.com/cmbant/CAMB
2https://github.com/EmmanuelSchaan/HaloGen/tree/LIM

https://github.com/cmbant/CAMB
https://github.com/EmmanuelSchaan/HaloGen/tree/LIM
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Figure 4.3: Angular power spectra of CO 4-3 (left, red), [CII] (middle, purple), and Ly-𝛼 (right,
blue) as functions of angular multipole 𝑙. We plot these spectra at redshifts ranging from 𝑧 = 2.5
to 5.5. Darker line colour denotes low-𝑧 while paler line colour denoted high-𝑧. To produce these
spectra, spherically averaged line power spectra are obtained from HaloGen and then converted to
angular power spectra using Eq. (4.15). Although the achromaticity of lensing (to first order) means
that the amplitudes of the line power spectra cancel out in the noiseless cosmic variance-limited
regime considered in Section 4.3, this changes in the realistic noisy scenarios that we examine in
Section 4.4.



4. Constraining Cosmology With the CMB × LIM-Nulling Convergence 185

102 103

L

5

10

15

20
SN

R
L

znull = 5.5
znull = 5.0
znull = 4.5
znull = 4.0
znull = 3.5
znull = 3.0

3 4 5
z

150

200

250

300

350

C
um

ul
at

iv
e 

SN
R

Figure 4.4: Top: signal-to-noise ratio of the nulling estimator per lensing multipole 𝐿. Each line
denotes a different nulling redshift going from high redshift in dark red to low redshift in pale red.
Bottom: The cumulative SNR as a function of nulling redshift. In all cases, the line separation is
fixed at Δ𝑧 = 0.5. Even aside from the science applications at high redshifts, one sees that there is
preference for high-redshift nulling in order to maximize sensitivity.
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Figure 4.5: Same as Fig. 4.4, but optimizing for the redshift separation Δ𝑧 between LIMs rather
than the nulling redshift. In all cases, the higher redshift line is fixed at 𝑧 = 5.5. In the noiseless
cosmic variance-limited case the optimal SNR is achieved at Δ𝑧 = 0.7, but this changes when
instrumental noise is introduced in Section 4.4.
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We consider CO, [CII], and Ly-𝛼 as possible lines with which nulling could be performed.

Their angular power spectra as a function of redshift are plotted in Fig. 4.3. While the amplitude

of the power spectra vary greatly between lines, devoid of noise and systematics, any pair of lines

will yield the same SNR in the cosmic-variance-limited case; in this idealized case, the LIM-pair

lensing reconstruction noise, 𝑁𝑋𝑌 (𝐿), is the same for any line pair, therefore the LIM-lensing SNR

is fixed. Somewhat more intuitively, without the effects of noise and systematics, no line traces the

line-of-sight gravitational potentials it encounters better or worse than any other since gravitational

lensing is achromatic. This propagates through to nulling. Referring the reader back to Eq. (4.12),

nowhere do the individual line spectra enter into 𝐶
𝜅𝜅null
𝐿

.

The quantities of paramount importance, then, which do enter into both the CMB×LIM-nulling

convergence as well as its variance, are the line redshifts. The redshifts, or comoving distance to

the source plane, of the lines enters into the nulling kernel in two ways: through the LIM lensing

kernels themselves and through the parameter 𝛼. Referring back to Fig. 4.1 and 4.2, it might seem,

by construction, that nulling at lower 𝑧 would increase the amplitude 𝐶
𝜅𝜅null
𝐿

, bringing it closer to

𝐶𝜅𝜅
𝐿

, thus resulting in higher SNR. However, the line redshifts also enter into the nulling variance

through the cross spectrum terms 𝐶
𝜅𝑖𝜅 𝑗

𝐿
. This nulling variance decreases as a redshift increases.

We find that these effects combined, the increase in both the nulling spectrum amplitude and the

LIM-nulling variance as 𝑧 decreases, lead to a preference for high-𝑧 nulling. Plotted in Fig. 4.4 is

the CMB × LIM-nulling SNR as a function of 𝑧 and 𝐿, where the redshift separation of the lines is

fixed at Δ𝑧 = 0.5. As redshift increases the cumulative SNRs likewise increase.

The next choice to consider is the redshift separation of the lines. It would seem, looking at

Fig. 4.1, that an ideal nulling scneario would have the two lines be as close as possible in redshift

in order to get a sharp cutoff. In Fig. 4.5, the SNR as a function of redshift separation, Δ𝑧, is

plotted. It is immediately obvious that both very small and very large separations of the lines are

sub-optimal. The cumulative SNR peaks at Δ𝑧 = 0.7 when nulling performed with the higher

redshift LIM at z = 5.5.

It is important to note that Δ𝑧 = 0.7 is not the optimal solution in general, since what must
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be optimized in the nulling equation is the interplay between the comoving distance separation of

the three probes being used. While throughout this work we consider nulling performed on the

CMB lensing convergence by LIMs, any three convergence maps may be used for nulling. For

instance galaxy lensing convergence maps from 𝑧 ∼ 2, can be used to null a LIM convergence

map at 𝑧 = 10. The redshift optimization must be performed on a case-by-case basis since what

is at work here is the interplay between the comoving distances of the three probes used in the

nulling estimator. What is more, the addition of interlopers, diffuse foreground contaminants, and

instrument systematics, which have non-trivial frequency evolution, complicate the problem. Care

must be taken to optimize for the observing scenario at hand.

In this section, we provide the reader with intuition about how the LIM-nulling estimator

depends on LIM parameters. We show that in the idealized case where noise and systematics are

not included, the SNR depends only on the choice of line redshift and the redshift separation of

the lines. Illustrating this with a concrete example, we presented the optimal redshift solutions for

CMB nulling taking place at 𝑧 = 4.8 in the cosmic variance limited case. We found that the LIM

redshift which maximize the cumulative SNR are 𝑧1 = 4.8 and 𝑧2 = 5.5. In the presence of the

frequency dependent noise of LIM experiments, this breaks down. In the following section, we

explore how the CMB × LIM-nulling SNR scales with the sensitivity and the area of mm, sub-mm

and IR surveys. We choose three fiducial observing scenarios to use in the subsequent forecasts.

These include instrument noise and line interlopers, and we therefore re-optimize the LIM redshifts

given these contaminants.

4.4 Survey Area and Sensitivity

In this section we explore the dependence of survey specifications on the CMB × LIM-nulling SNR.

As previously mentioned, when devoid of instrument noise and systematics, all lines yield the same

lensing reconstruction noise and therefore the same nulling SNR. Once such effects are added, this

is no longer the case since the map-level SNR enters into 𝑁 𝜅
𝐿
. In Section 4.4.1, we present the
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models used for computing the noise power of CO, [CII], and Ly-𝛼-type experiments. In Section

4.4.2 we study how our nulling statistic depends on the intensity mapping survey sensitivities,

while in Section 4.4.3, we explore how the SNR depends on their survey areas. Subsequently, we

optimize the survey area for a given survey sensitivity to maximize the nulling SNR.

While the final forecasts in Sections 4.5 and 4.6 make use of the LIM-pair estimator, this

exploratory section assumes each LIM lensing convergence map is estimated using a single line at a

time. This is done to isolate the effects of a particular instrument in order to explore how the CMB

× LIM-nulling SNR varies as a function of survey area and sensitivity for a single instrument. For

example, we use [CII] observations from two channels of a given [CII] survey to perform nulling.

4.4.1 Instrument Noise Power

CO Experiments

In the case of CO experiments, we typically write the noise power as

𝑃CO
𝑁 = 𝜎2

vox𝑉
CO
vox , (4.16)

where 𝜎vox is the noise in a single voxel and is given by

𝜎vox =
𝑇sys√︃

𝑁det𝑡
CO
pix 𝛿𝜈

. (4.17)

Here, 𝑇sys is the system temperature, 𝑁det is the number of detector feeds, and 𝑡CO
pix is the observing

time of a single pixel (Li et al., 2016). The time per pixel is related to the total observing time 𝑡obs of

the survey via 𝑡CO
pix = 𝑡obs(ΩCO

pix/Ωsurv) where Ωsurv is the total survey area. A “pixel” here is defined

to cover a solid angle ΩCO
pix = 𝜎2

beam, where 𝜎2
beam is the variance of the instrument’s Gaussian

beam. We compute 𝜎beam using the relation 𝜎beam = 𝜃FWHM/
√

8 ln 2 where 𝜃FWHM is the beam full

width half maximum. The comoving volume 𝑉CO
vox of a single voxel is the volume subtended by
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a pixel with angular size ΩCO
pix and frequency resolution 𝛿𝜈. Since the number of detectors, 𝑁det,

constitutes a measure of the instantaneous sensitivity of the instrument, we parameterize the total

survey sensitivity in terms of spectrometer-hours, 𝑁det𝑡obs.

In the following subsection, we demonstrate how the SNR of the CMB × LIM-nulling

convergence spectrum scales with survey area (or equivalently, 𝑓sky, the fractional sky coverage)

and sensitivity, 𝑁det𝑡obs. To that end, we compute the CO noise power using Eq. (4.16) and

include it in our computation of the LIM lensing reconstruction noise, the single line analog to the

LIM-par lensing estimator in Eq. (4.4). When varying the sensitivity and survey area, we anchor

the remaining instrument specifications to the CO Mapping Array Project phase 2 (COMAP2)

(Ihle et al., 2019). The specifications of this instrument as well as its current generation phase 1

counterpart (COMAP1) can be found in Table 4.1. COMAP aims to detect spectral lines from

various rotational line transitions of CO, including the CO(1-0) during the peak of star formation

around 𝑧 ∼ 3 when the CO luminosity function peaks, and will have some sensitivity of other CO

transition lines out to 𝑧 ∼ 8 (Cleary et al., 2022; Breysse et al., 2022; Chung et al., 2022).

Parameter COMAP1 COMAP2

𝑇sys (K) 40 40
𝑁det 19 95
𝜃FWHM (arcsec) 4 4
Δ𝜈 (MHz) 15.6 15.6
𝑡obs (h) 6000 9000
Ωsurv (deg2) 2.5 2.5

Table 4.1: Instrument parameters for COMAP1 and COMAP2 experiments. These values are
taken from Ihle et al. (2019).
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[CII] Experiments

In the case of [CII] surveys, we follow Chung et al. (2020) and write

𝑃CII
𝑁 =

𝜎2
pix

𝑡CII
pix

𝑉CII
vox . (4.18)

Here, 𝑡CII
pix and 𝑉CII

vox are defined (by convention) slightly differently than the corresponding CO

quantities. A “pixel” is defined to cover a solid angle ΩCII
pix = 2𝜋𝜎2

beam. This new definition of the

pixel size is then used, along with the frequency channel width, to compute 𝑉CII
vox . Here,

𝑡CII
pix =

𝑁det𝑡obs

Ωsurv/ΩCII
pix

. (4.19)

Analogously to the previous section on CO, when varying the sensitivity and survey area we

fix the rest of the instrument parameters to those of the the CarbON CII line in post-rEionisation

and ReionisaTiOn epoch (CONCERTO), a current generation high-𝑧 [CII] mapping experiment

(Concerto Collaboration et al., 2020). CONCERTO will detect the [CII] line from 6 ≲ 𝑧 ≲ 11

over 1.4 deg2 on the sky. The instrument specification used for simulating CONCERTO noise

are summarized in Table 4.2. We also compute the SNR for a handful of other [CII] mapping

experiments whose specifications are also summarized in Table 4.2.

Ly-𝛼 Experiments

For the noise power associated with infrared (IR) intensity mapping experiments targeting the

high-𝑧 Ly-𝛼 line, we write the noise power spectrum 𝑃
Ly-𝛼
𝑁

as

𝑃
Ly-𝛼
𝑁

= 𝜎2
vox𝑉

Ly-𝛼
vox (4.20)
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Parameter FYST CONCERTO TIME StageII

𝜎pix (MJy/sr s1/2) 0.86 11.0 11.0 0.21
𝑁det 20 3000 32 16000
𝜃FWHM (arcsec) 46.0 22.5 22.5 30.1
𝛿𝜈 (GHz) 2.5 1.5 1.9 0.4
𝑡obs (hr) 4000 1200 1000 2000
Ωsurv (deg2) 16 1.4 0.6 100

Table 4.2: Instrument parameters for [CII] mapping experiments, including the Fred Young
Submillimeter Telescope (FYST), CONCERTO, Tomographic Ionized Carbon Intensity Mapping
Experiment (TIME), and a next-generation “Stage II” concept. The Stage II parameters are based
on Silva et al. (2015), while the rest are from Chung et al. (2020).

where 𝑉Ly-𝛼
vox is the single-voxel volume (defined in an identical way to analogous quantities as the

[CII] and CO cases) and 𝜎vox is defined as

𝜎vox = 𝑠

√︄
4𝜋 𝑓sky

𝑡obsΩpix
. (4.21)

Here the instantaneous pixel sensitivity is given by 𝑠. Since the IR experiments we consider scan

the sky one pixel at a time, the number of detectors is simply unity and we thus parameterize our

total survey sensitivity by the total observing time, 𝑡obs, instead of spectrometer-hours. We set the

other instrument specifications in Eqs. (4.20) and (4.21) to that of the Cosmic Dawn Intensity

Mapper (CDIM) (Cooray et al., 2019). CDIM is a next generation optical and IR instrument aimed

at detecting high redshift galaxies and quasars as well as spectral lines during cosmic dawn and

reionization. We also compute the SNR for Spectro-Photometer for the History of the Universe,

Epoch of Reionization and Ices Explorer (SPHEREx), an upcoming intensity mapping mission with

Ly-𝛼 mapping capabilities (Doré et al., 2015). The specification for both CDIM and SPHEREx are

summarized in Table 4.3.
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Parameter SPHEREx CDIM

s (Jy/sr s1/2) 231.46 38.58
𝜃FWHM (arcsec) 6 2
𝑡obs (h) 2000 2000
Ωsurv (deg2) 100 100
𝑅 ≡ 𝜆/Δ𝜆 150 300

Table 4.3: Instrument parameters for Ly-𝛼 experiments. Instrument specification for SPHEREx
and CDIM are obtained from Doré et al. (2015) and Cooray et al. (2019) respectively. We compute
the sensitivity, 𝑠, for a nominal 2000 hour survey given the quoted noise powers for both instruments.
For SPHEREx, the spectral resolving power (𝑅 ≡ 𝜆/Δ𝜆, where 𝜆 is the observing wavelength and
Δ𝜆 is the wavelength resolution) is computed at 𝜆 ≃ 4.5 𝜇𝑚. CDIM achieves R ≥ 300 over its
whole bandwidth.

4.4.2 Dependence on Sensitivity

We compute the CMB × LIM-nulling convergence spectrum and its variance when nulling is

performed with LIMs from 𝑧 = 5.5 and 𝑧 = 3.5. The LIM lensing reconstruction noise is computed

using the single line analog of Eq. (4.9). We take 𝑙min,LIM = 30 and 𝑙max,LIM = 5000 where 𝑙min is

driven by the area of the survey and 𝑙max is driven by the angular resolution of the instrument.For the

CMB lensing reconstruction noise, we assume that of SO and use 𝑁 𝜅
𝐿

from the SO noise calculator.3

It may be noted that some of the instruments we consider in this section do not probe modes as large

as 𝑙 = 30. For the purposes of singling out the effect of increasing sensitivity, we fix 𝑙min,LIM = 30

when varying the sensitivity. When computing the LIM-nulling SNR of particular experiments in

following sections, we adjust 𝑙min,LIM accordingly.

In Fig. 4.6, we plot the SNR per 𝐿 mode as a function of 𝐿 and spectrometer-hours 𝑁det𝑡obs.

Summing over all 𝐿, the cumulative SNR as a function of the number of spectrometer hours is

plotted in Fig. 4.7. As expected, cumulative SNR increases as 𝑁det𝑡obs increases until it saturates to

a plateau. For COMAP2-type instruments, this plateaus at 𝑁det𝑡obs ∼ 104 h, while for CONCERTO-
3https://github.com/simonsobs/so_noise_models/tree/master/LAT_lensing_noise

https://github.com/simonsobs/so_noise_models/tree/master/LAT_lensing_noise
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and CDIM-type experiments this occurs at 𝑁det𝑡obs ∼ 106 h and 𝑁det𝑡obs ∼ 102 h respectively .

Using the nominal survey specifications listed in Table 4.1, COMAP1 yields a cumulative

SNR of 1.11 while COMAP2 has a cumulative SNR of 1.30. As for how current and upcoming

[CII] experiments fare, Stage II has a cumulative SNR of 8.33 while all other experiments yield a

cumulative SNR < 1. Nulling with SPHEREx results in a noise dominated measurement; however,

CDIM achieves a cumulative SNR of 7.05. For CDIM, COMAP2, and CONCERTO, the nominal

survey configurations are denoted with the diamond, circle, and square in Fig. 4.7, respectively.

It is clear that perhaps with the exception of CONCERTO, these configurations are in the regime

where the cumulative SNR has plateaued as a function of spectrometer-hours. Therefore, in order

to increase the SNR further, other experimental parameters must be altered.

102 103

L

103

105

107

109

N
de

tt o
bs

 [h
] 

CO (fsky = 6 × 10 5)

COMAP2 (Ndettobs = 8.55×105 h)

102 103

L

[CII] (fsky = 3.4 × 10 5 )

CONCERTO (Ndettobs = 2.6 × 106 h)

102 103

L

Ly-  (fsky = 2.4 × 10 3 )

CDIM (tobs = 2000 h)

10 6

10 4

10 2

SN
R

Figure 4.6: SNR as a function of lensing multipole, 𝐿, and sensitivity in terms of spectrometer-
hours, 𝑁det𝑡obs, for CO-type experiments (left), [CII]-type experiments (middle), and Ly-𝛼-type
experiments (right). For Ly-𝛼, since 𝑁det = 1, the sensitivity is simply parameterized by 𝑡obs. The
black horizontal line in each panel denotes the sensitivity of each line’s nominal survey.

4.4.3 Dependence on Survey Area

Next we consider how the CMB × LIM-nulling SNR varies as a function of the survey area,

parametrized by the fractional sky area 𝑓sky ≡ Ωsurv/4𝜋. For any cosmological measurement
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Figure 4.7: Cumulative SNR as a function of 𝑁det𝑡obs for Ly-𝛼-type experiments (blue dot-dashed),
CO-type experiments (pink dashed), and [CII]-type experiments (solid purple). The dotted black
line denotes SNR = 1. It should be noted that for Ly-𝛼 experiments, 𝑁det = 1 and so the horizontal
axis can simply be interpreted as 𝑡obs. The cumulative SNR for the nominal CDIM (blue diamond),
COMAP2 (pink circle), and CONCERTO (purple square) surveys are also shown here. With the
(mild) exception of CONCERTO, all three experiments roughly sit on the plateau where further
increases in the number of spectrometer-hours do not increase SNR.

there is always a trade-off when increasing 𝑓sky. Keeping the sensitivity and observing time fixed,

increasing the sky coverage of a survey means that less time is spent integrating on each pixel. This

results in a shallower survey. This can be seen by examining Eqs. (4.16) and (4.17), which show

that the noise power is proportional to 𝑓sky. However, increasing the sky coverage also increases

the number of Fourier modes sampled and results in decreased sample variance per mode. This

is reflected in Eq. (4.13) where the nulling variance sees a factor of 1/ 𝑓sky out front. It is the

optimization of these two effects that determines the optimal survey coverage for an instrument of
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a given sensitivity (Tegmark, 1997).

In Fig. 4.8 we plot the SNR as a function of 𝐿 and 𝑓fsky while in Fig. 4.9 , we simply plot

the cumulative SNR as a function of 𝑓sky. We compute 𝐿 up to 2000. This somewhat arbitrary

cutoff was informed by our reconstruction noise curves which increase at high 𝐿. In addition, the

small angular scales at the map level used in the reconstruction contain non-linear baryonic effects

which are difficult to model accurately. For all three types of instruments, the cumulative SNR

curves follow the same shape. The slope increases until it reaches a maximum, and subsequently

decreases. This maximum survey area balances the two competing effects: the survey depth and

the sample variance per mode. If the survey area is too small for a fixed survey duration, not enough

modes are sampled and the SNR decreases. The region of the cumulative SNR curves to the left of

the maximum value constitute this regime. If the survey area is too big for a fixed survey duration,

many modes are sampled, but the survey is shallow, thus decreasing the cumulative SNR. This

constitutes the region to the right of the maximum value.

CONCERTO is an excellent example of a survey whose area yields the maximum CMB × LIM-

nulling SNR given its sensitivity. This is not by chance. The 1.4 deg2 survey area for CONCERTO

optimizes the SNR of its line power spectrum and we find that as an approximate rule of thumb,

optimizing the line power spectrum SNR with respect to 𝑓sky also maximizes the nulling SNR.

In contrast, we see from Fig. 4.9 that for COMAP2 and CDIM, the survey areas are not optimal.

At present, the sky coverage of these surveys place them in the sample variance limited regime

where the instantaneous sensitivity is relatively high, but simply not enough modes are sampled to

truly maximize the capabilities of the instrument.
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Figure 4.8: SNR as a function of lensing multipole, 𝐿, and survey area, 𝑓sky, for CO-type
experiments (left), [CII]-type experiments (middle), and Ly-𝛼-type experiments (right). The black
horizontal line in each panel denotes the survey area of each line’s nominal survey.
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Figure 4.9: Cumulative SNR as a function of 𝑓sky for Ly-𝛼-type experiments (blue dot-dashed),
CO-type experiments (pink dashed), and [CII]-type experiments (solid purple). The dotted black
line denotes SNR = 1. The cumulative SNR for the nominal CDIM (blue diamond), COMAP2
(pink circle), and CONCERTO (purple square) surveys are also shown here. While CONCERTO
is reasonably optimized to balance instrumental noise and cosmic variance, CDIM and COMAP2
would benefit from additional sky coverage as far as a nulling measurement is concerned.

4.4.4 Forecast Scenarios

Given the exploration into the observational parameter space of the last few sections, we now present

the three observing scenarios that are used in our cosmological parameter estimation forecasts. Here

we return to computing the full CMB × LIM-nulling convergence using the LIM-pair estimator,

where the convergence maps at each redshift are constructed with two different lines via Eq. (4.4).

We denote the scenarios as Current Generation, Next Generation, and Futuristic. We choose to

perform LIM-nulling with LIM observations from [CII] and Ly-𝛼 mapping experiments given that
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these lines yielded higher SNRs in the near term. These scenarios are summarized in Table 4.4.

For our Current Generation scenario, we take [CII] to be observed by CONCERTO and Ly-𝛼 to

be observed by SPHEREx at 𝑧 = 3.5 and 𝑧 = 5.5. In Section 4.3, we optimized the line separation

in the noiseless case to be Δ𝑧 = 0.7. In the presence of frequency-dependent noise, that is no

longer the optimal line separation. Given the noise power of CONCERTO and SPHEREx, the line

redshifts which maximize the SNR are 𝑧 = 5.5 and 𝑧 = 3.5. Of course, aside from pure sensitivity

concerns, one must also account for systematics such as interloper lines. At high redshifts, Ly-𝛼

is contaminated by low-redshift H-𝛼 emission while the high-redshift [CII] line is contaminated

by low-redshift CO emission. Using HaloGen, we generate H-𝛼 and CO spectra at the appropriate

redshifts and include these when computing the LIM-pair lensing reconstruction noise. We assume

the observations have undergone foreground removal, leaving behind a 10% interloper residual

power for each line. To simulate this, we simply multiply the generated interloper spectra by an

overall factor of 0.1.

Although SPHEREx has two large 100 deg2 deep fields at the poles, CONCERTO has a much

smaller field of view, at 1.4 deg2. Therefore, 𝜅null can only be computed over the small overlapping

field of 1.4 deg2. As a result, we compute LIM-lensing reconstruction noise with the largest angular

scale 𝑙min,LIM = 153 (∼1 deg). We take the finest angular scale to be 𝑙max,LIM = 5000 (∼0.04 deg),

which is much coarser than the angular resolution of both instruments. For the CMB instrument

we choose SO where lensing reconstruction is performed with minimum and maximum spherical

harmonic 𝑙 of 𝑙min,CMB = 30 and 𝑙max,CMB = 5000, respectively. The total SNR in this scenario is

0.1, suggesting that nulling estimation will likely be a future endeavour.

For the Next Generation scenario, we take [CII] to be observed by a Stage II instrument at

𝑧 = 5.5 and Ly-𝛼 to be observed by CDIM at 𝑧 = 4.5. Again, these redshifts are obtained by

optimizing the nulling SNR for a given noise level. We assume the observations contain 5%

interloper residual power for each line. Here, both instruments are expected to survey a 100 deg2

field and we assume that they overlap entirely. We compute the LIM-lensing reconstruction noise

with 𝑙min,LIM = 30 (∼ 6 deg) and 𝑙max,LIM = 10000 (∼ 0.02 deg), again, using scales coarser than



4. Constraining Cosmology With the CMB × LIM-Nulling Convergence 200

to angular resolution of both instruments. For the CMB instrument we simulate the noise power

of CMBS4 where lensing reconstruction is performed with 𝑙min,CMB = 30 and 𝑙max,CMB = 5000.

The CMBS4 lensing reconstruction noise used here can be found in Sailer et al. (2021). The

total SNR for the Next Generation scenario is 9.5, representing a firm detection that will be an

important proof-of-concept for the nulling technique. However, it will perhaps still not quite be the

high-precision measurement that unlocks high-precision science.

Finally, we construct a Futuristic scenario that guarantees a high SNR measurement. We

consider [CII] observed by a Stage II-like instrument at 𝑧 = 5.5 and Ly-𝛼 to be observed by a

CDIM-like instrument at 𝑧 = 4.5, over a quarter of the sky. By this we mean that the [CII] maps

are the same depth as those expected from Stage II but over a larger area of the sky. Likewise

the CDIM-like instrument is one that produces maps at the same depth as the nominal CDIM

survey but again over a larger portion of the sky. This can be achieved by using an instrument with

the same instantaneous sensitivity and increasing the total observing time of the survey until the

instantaneous integration time reaches that of the nominal surveys. This can also be achieved by

increasing the scanning rate of the instrument such as to observe a larger portion of the sky in the

same total observing time, but correspondingly increasing the instantaneous sensitivity in order

to obtain the same depth. Of course, a combination of these two strategies will also suffice. We

assume the observations contain 1% interloper residual power for each line. Like the last scenario,

we compute the LIM-lensing reconstruction noise with 𝑙min,LIM = 30 and 𝑙max,LIM = 10000. For

the CMB instrument we again choose the CMBS4 where lensing reconstruction is performed with

𝑙min,CMB = 30 and 𝑙max,CMB = 5000. The Futuristic scenario has a total SNR of 110. As we will

demonstrate in Section 4.5, in this regime one is able to obtain competitive parameter constraints.

In Table 4.4, we also quote the total SNR for a cosmic variance limited case to showcase the upper

bound of what is achievable in an idealized case. Here we include no instrument noise nor interloper

contaminants. Like the Futuristic scenario, we assume 𝑙min,LIM = 30 and 𝑙max,LIM = 10000 and

𝑙min,CMB = 30 and 𝑙max,CMB = 5000, but we set 𝑓sky = 1. In this case, the CMB × LIM-nulling

cumulative SNR is 408.
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Scenario Ly-𝛼 [CII] CMB Survey Area 𝑙min,LIM 𝑙max,LIM Interloper Residual
∑

SNR

Current Generation SPHEREx CONCERTO SO 1.4 deg2 153 5,000 10% 0.1
Next Generation CDIM Stage II CMBS4 100 deg2 30 10,000 5% 9.5
Futuristic CDIM Stage II CMBS4 𝑓sky = 0.25 30 20,000 1% 110
CV Limited – – – 𝑓sky = 1 30 20,000 – 408

Table 4.4: Observational scenarios used for our forecasts, in addition to the cosmic variance limited case as a high-SNR
reference. While current instruments will not make nulling detections, their successors will be capable of not just detections
but also high-SNR characterizations that will be scientifically interesting.
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4.5 Fisher Forecast: ΛCDM + 𝑀𝜈 Cosmology

In this section we present a Fisher forecast on potential parameter constraints from CMB × LIM-

nulling when 0 < 𝑧 ≲ 5 has been nulled. We take our parameter set to be the standard ΛCDM

parameters plus the sum of the neutrino masses 𝑀𝜈. We begin by providing a brief overview of

the Fisher formalism to establish notation, and follow by presenting the parameter covariances

for our fiducial cosmology. Despite 𝐶
𝜅𝜅null
𝑙

having worse constraints than regular CMB lensing

measurements by construction, we discuss how 𝐶
𝜅𝜅null
𝑙

uniquely probes high-redshift physics. We

show how such a probe could serve as a model-independent test of non-standard time evolution,

illustrating such a test by constructing an ad hoc cosmology with deviations on the scale of the

current Hubble tension and the 𝜎8 tension (Valentino et al., 2021; Poulin et al., 2023; Douspis et al.,

2019).

4.5.1 General Fisher Formalism

The Fisher information matrix captures how much information an observable, O, measured to some

precision, carries about a set of model parameters that are grouped into a vector 𝜽 . The elements

of the Fisher matrix are given by

𝐹𝑖 𝑗 =
∑︁
𝑙

1
𝜎2
𝑙

𝜕O𝑙

𝜕𝜃𝑖

𝜕O𝑙

𝜕𝜃 𝑗
(4.22)

where 𝑖 and 𝑗 index the parameters in the model, 𝑙 indexes each measured mode of the observable,

and 𝜎𝑙 is the error on the measurement of that mode. The Fisher matrix is the inverse of the

covariance matrix, F−1 = C, for the set of model parameters. In our case, we perform two

independent forecasts, one with O = {𝐶𝜅𝜅null
𝑙

} (the forecast of interest) and one with O = {𝐶𝜅𝜅
𝑙
}

(which serves as a reference). We compute these spectra using Eqs. (4.3) and (4.12) and take

their numerical derivatives using finite differences. The Fisher matrix encodes Gaussian parameter

uncertainties; by the Cramer-Rao bound, this provides an optimistic approximation of the true

posterior distributions (Coe, 2009). In reality, the true uncertainties may be larger than those
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modeled due to other systematics and may be non-Gaussian.

In addition to the parameter covariance matrix, one can compute the bias on each parameter in

the presence of a systematic. Given some observable 𝐶obs
𝑙

that contains the the signal of interest,

𝐶𝑙 , and also some systematic contaminant, 𝐶cont
𝑙

, the total observed quantity is given by

𝐶obs
𝑙 = 𝐶𝑙 + 𝐶cont

𝑙 . (4.23)

Following Huterer and Takada (2005) the 𝑖th component of the parameter bias vector b is given by

𝑏𝑖 = ⟨𝜃𝑖⟩ − ⟨𝜃true
𝑖 ⟩ =

∑︁
𝑗

(F−1)𝑖 𝑗B 𝑗 (4.24)

where 𝜽 contains the best fit parameter values, 𝜽 true is vector containing the true underlying values,

and B 𝑗 is

B 𝑗 =
∑︁
𝑙

𝐶cont
𝑙

𝜎2
𝑙

𝜕𝐶𝑙

𝜕𝜃 𝑗
. (4.25)

In the following section, we present the results of a Fisher forecast for the Next Generation and

Futuristic nulling scenarios and compare it to constraints from regular CMB lensing measurements.

Following this, in Sections 4.5.3 and 4.5.4 we compute the parameter bias vector in a slightly unusual

application of the formalism: we consider the case where an incorrect cosmological model results

in a “theory systematic” that perturbs the inferred parameter values.

4.5.2 Concordance Cosmology

Here we present the results of the Fisher forecast with respect to a concordance model of cosmology

whose parameters and fiducial values are summarized in Table 4.5. In addition to the independent

model parameters used to define the fiducial cosmology, we also compute four derived quantities:

Ωm, 𝜎8, 𝑆8 ≡ 𝜎8(Ωm/0.3)0.5, and 𝑆CMBL
8 ≡ 𝜎8(Ωm/0.3)0.25. The quantity 𝜎8 is the root-mean-
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squared variance of density perturbations on 8 ℎ−1 Mpc scales, and is given by

𝜎2
8 =

∫ ∞

0

𝑘2𝑑𝑘

2𝜋2 𝑃lin
𝑚 (𝑘)

[
3 𝑗1(𝑘𝑅)

𝑘𝑅

]2
(4.26)

where 𝑃lin
𝑚 (𝑘) is the matter power spectrum at 𝑧 = 0 assuming linear theory, 𝑅 ≡ 8 ℎ−1 Mpc, and

𝑗1 is the first-order spherical Bessel function of the first kind.

In Fig. 4.10, the posterior distributions are shown. In orange, the constraints from regular CMB

lensing measurements forecast for SO are plotted. The green contours show the constraints from

the Next Generation nulling scenario and while the Futuristic nulling scenario is in blue. Planck

2015 priors excluding Planck lensing have been applied to all cases (Planck Collaboration, 2016).

The black dashed lines mark the fiducial values of the model.

When comparing the CMB lensing contours to the nulling ones, it is immediately obvious

that the LIM-nulling probes contain less information than that of regular CMB lensing. This is

entirely expected, since nulling by construction removes the low redshift information from the

CMB convergence. This low-redshift information does of course have constraining power. Even

with this being the case, both LIM-nulling measurements do add non-negligible information to the

Planck prior and still provide comparable constraints to CMB lensing. For both CMB and CMB

× LIM-nulling cases, 𝐴𝑠 and 𝜏 are not well constrained; they trace the prior. The parameters to

Parameter Definition Fiducial Value

𝐻0 Hubble constant [km/s/Mpc] 67.5
Ω𝑏ℎ

2 Fractional baryon density 0.022
Ω𝑐ℎ

2 Fractional dark matter density 0.120
𝑀𝜈 Sum of the neutrino masses [eV/c2] 0.06
𝐴𝑠 Primordial fluctuation amplitude 2 × 10−9

𝑛𝑠 Spectral index 0.965
𝜏 CMB Optical depth 0.06

Table 4.5: Model parameters and their fiducial values.
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which they are most sensitive are Ω𝑐ℎ
2, 𝐻0, and 𝑀𝜈, in that order. As for the derived quantities

(Ω𝑚, 𝜎8, 𝑆8, and 𝑆CMBL
8 ), one does see some hints that select combinations of Ω𝑚 and 𝜎8 are

better constrained by our nulling estimator—as is usually the case for lensing. However, we caution

that the Fisher formalism is not equipped to fully capture the shapes of degenerate joint posteriors

between parameters. In order to make more definitive claims about these parameters, a full sampling

of the posterior (e.g., via Markov Chain Monte Carlo techniques) would be more appropriate, and

so we omit these parameters from the analyses in subsequent sections.

It may seem on the face of it that LIM-nulling is not worth the effort, given that it requires

one to make high significance detections of not just one, but three cosmological probes—just to

obtain constraints on ΛCDM parameters that are less competitive (albeit comparable) to those of

CMB lensing! Yet, it is important to appreciate that CMB lensing and LIM-nulling lensing are not

measuring the same thing. The power of LIM-nulling is that it is a clean probe of the high-redshift

universe exclusively. To illustrate this, we forecast how the constraints of these probes differ in a

universe in which we have an unexpected time evolution of parameters.
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Figure 4.10: Forecasted posterior distributions for the concordance cosmology scenario of
Section 4.5.2 from SO lensing (orange), LIM-nulling in the Futuristic scenario (blue), and LIM-
nulling in the Next Generation scenario (green). The dark inner region of the contours indicate the
68% confidence region while the light coloured outer contours denote the 95% confidence region.
The dashes black lines denote the fiducial parameter values. All contours share the same Planck
prior on ΛCDM + 𝑀𝜈.
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4.5.3 Early- and Late-Time Parameter Consistency: The Hubble Parameter

Here we construct mock lensing data in a universe that obeys a cosmology which deviates from

standard ΛCDM. Our toy model is inspired by the Hubble tension. When computing the lensing

convergence spectrum (i.e. Eq. 5.3), for the integration steps where 𝑧 > 𝑧null the value of 𝐻0 that

enters into 𝐻 (𝑧) = 𝐻0
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ and into the initialization of CAMB to obtain the matter

power spectrum is 67.7 km/s/Mpc. This means that for 𝑧 > 𝑧null the matter power spectrum evolves

as usual in a ΛCDM cosmology and if evolved all the way to 𝑧 = 0 would reach the value 67.7

km/s/Mpc. When evaluating integration steps where 𝑧 < 𝑧null the same procedure is followed, but

the value of 𝐻0 that enters into 𝐻 (𝑧) and into the initialization of CAMB to obtain the matter power

spectrum is 72 km/s/Mpc. This model can also be described as a scenario where the growth factor,

𝐷 (𝑧), and therefore the amplitude of 𝑃(𝑘) undergoes a sudden change at 𝑧 = 𝑧null.

The two values of 𝐻0 that were considered, 67.7 km/s/Mpc and 72 km/s/Mpc, constitute the

discrepancy between low- and high-redshift measurements of the Hubble constant (Valentino et al.,

2021). This Hubble tension remains one of the outstanding problems of the last decade. Some

argue that a time evolving cosmology may be to blame (Benetti et al., 2019, 2021). If this were the

case, LIM-nulling may be able to help elucidate this mystery as it contains no information about

the late-time evolution of the matter density field, allowing a clean measurement of what happens

at high redshifts. To be clear, we do not argue that the model proposed here is a genuine solution

to the Hubble tension, nor that the LIM-nulling technique is destined to detect the tension. We are

simply using this commonly known open cosmological problem as inspiration for how one might

look for parameter consistency between early- and late-time measurements.

We fit CMB lensing measurements, which are sensitive to both values of 𝐻0, and CMB ×

LIM-nulling measurements, which are only sensitive to the high redshift value of 𝐻0, to the same

fiducial model in which the Hubble parameter has not undergone an abrupt shift and therefore

has one 𝐻0 parameter. After all, one’s initial null hypothesis in a real data analysis pipeline will

likely not assume any abrupt shifts in cosmological parameters. Performing parameter fits using
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this incorrect cosmological model, we expect the CMB lensing measurements to be biased. We

quantify the parameter biases using Eq. (4.24) and Eq. (4.25), treating the systematic contaminant

to be the difference between the true lensing contribution from 0 < 𝑧 < 𝑧null and the incorrect

contribution assuming a single value of 𝐻0.

In Fig. 4.11, we show the constraints on CMB lensing from CMBS4 and on LIM-nulling

measurements from our Futuristic scenario. By construction, the constraints from the 𝐶
𝜅𝜅null
𝑙

fit

contain no bias with respect to the fiducial model parameters. This is not the case for the constraints

from CMB lensing. It is immediately clear that there is a discrepancy between the constraints from

CMB lensing and those from LIM-nulling. Such measurements would constitute a tension that

provides evidence that the behaviour underlying the CMB lensing data is better described by another

model. And indeed, the CMB lensing data contains information about the universe before and after

the abrupt change to 𝐻 (𝑧), while the model does not.
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Figure 4.11: Forecasted posterior constraints from the abruptly evolving 𝐻 (𝑧) cosmology of
Section 4.5.3. Constraints are from CMBS4 lensing (orange) and LIM-nulling in the Futuristic
scenario (blue). The dark inner region of the contours indicate the 68% confidence region while
the light coloured outer contours denote the 95% confidence region. The dashes black lines
denote the fiducial parameter values. These contours showcase a tension between the CMB lensing
measurements and the CMB × LIM-nulling measurements. Both contours share the same Planck
prior on ΛCDM + 𝑀𝜈. Since LIM nulling is sensitive only to the high-redshift universe, a
comparison between the contours allows for model-independent tests of unexpected differences
between high and low redshifts.
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The parameter for which the tension is the strongest is Ω𝑐ℎ
2 at just over 2𝜎. Recall that this

parameter sees the most improvement when lensing data is added to the Planck prior. It is also

worth commenting on the role the prior plays in this analysis. If one had some credence that the

universe did not follow ΛCDM, one may choose to relax the Planck prior as has been done for a

number of weak lensing analyses. We found that the prior covariance can be inflated by an overall

factor of 10 and still yield a ∼ 2𝜎 tension in the inferred value of Ω𝑐ℎ
2 while inflating the prior by

an overall factor of 20 results in a ∼ 1𝜎 tension of Ω𝑐ℎ
2. When the prior is relaxed any further the

tension is no longer significant. We acknowledge that in practice, more rigorous analysis would

be required to claim a tension between measurements (Handley and Lemos, 2019; Park and Rozo,

2020; Marshall et al., 2006; Lemos et al., 2021).

An advantage of this type of measurement is that making a higher significance detection of the

bias between CMB lensing and LIM-nulling can result from either improving the CMB lensing

measurement or the LIM-nulling measurement or both. Finally, it is important to note that nowhere

in the analysis did we need to make any assumption about exactly what new cosmological model

did in fact fit both data sets to detect a deviation from the standard cosmology. This constitutes a

model independent test of cosmology beyond ΛCDM.

The reader may have noticed that in order to null the low-redshift contribution to CMB lensing,

one needs to compute the nulling coefficients, 𝛼, given by Eq. 4.11, which depend on the

comoving distance, 𝜒(𝑧), and therefore the cosmology. This may seem to negate the claim of

model independence if an assumption about the fiducial cosmology is needed to null in the first

place. In practice, nulling can be performed through minimizing the amplitude of the LIM-nulling

convergence spectrum which preserves the model independence. What nulling does is makes use

of LIM lensing information by removing it from CMB lensing maps. In doing so, the CMB ×

LIM-nulling convergence spectrum will have a smaller amplitude than the total CMB convergence

spectrum as seen in Figure 4.2. However, there is a limit to how low that spectrum can go; one can

only remove as much information as is present in the LIM lensing maps. Therefore, an equivalent

nulling estimator is one that minimizes the amplitude of the CMB × LIM-nulling convergence
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spectrum. We have explicitly verified that this minimization scheme is equivalent to the one

presented in Section 4.2.3. In practice, one can solve for the cosmology which yields the values of

𝛼 that actually minimize the nulling convergence spectrum. Not only does this scheme ensure true

model independence, but solving for the nulling coefficients, 𝛼, is itself a test of cosmology and

can also serve as a test for residual systematics.

4.5.4 Early- and Late-Time Parameter Consistency: Matter Fluctuation

Amplitude

Here we present a similar example to that of the previous section. We construct a scenario in which

there is an abrupt change to the growth factor at 𝑧null as a result of varying the value of 𝐴𝑠 for

integration steps before and after 𝑧 = 𝑧null. If one were to compute 𝜎8 with and without taking

into account the changing value of 𝐴𝑠 one would obtain different values of 𝜎8 which corresponds

roughly to the current 𝜎8 tension. Once again if the value of 𝐴𝑠 used to initialize the matter power

spectrum for integration steps at high-𝑧 is evolved to today (i.e. the standard ΛCDM scenario), one

would infer 𝜎8 = 0.79. If one were to take into account the abrupt evolution of the matter power

spectrum at 𝑧 = 𝑧null (i.e. our exotic cosmology) the inferred value of 𝜎8 = 0.72 (Mohanty et al.,

2018). Similar to the previous section, LIM-nulling would not know about the shift since it is only

sensitive to the high-redshift value of 𝐴𝑠 while CMB lensing is sensitive to both values as it probes

the matter density field before and after this sudden evolution. We therefore use the same parameter

bias formalism to perform our forecasts.

In Fig. 4.12, we show the constraints on CMB lensing from CMBS4 and on LIM-nulling

measurements from our Futuristic scenario. The constraints from 𝐶
𝜅𝜅null
𝑙

are not biased with respect

to the fiducial model parameters and, while not as extreme as the results from the previous section,

there remains a slight bias to the CMB lensing constraints. There is a ∼ 1𝜎 tension between CMB

lensing and LIM-nulling measurements for Ω𝑐ℎ
2, perhaps providing a slight hint that the CMB

lensing data and the LIM-nulling data are not adequately described by the same model. If one were
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to relax the prior by a factor of a few ( ≲ 5) the slight tension is preserved but, since the tension is

not as large as it was in the last section, the tension is no longer significant if relaxed any further.
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Figure 4.12: Same as Fig. 4.11, except for the 𝐴𝑠-evolving cosmology of Section 4.5.4. While
a slight tension is still evident, the results are less statistically significant than for the abruptly
evolving 𝐻 (𝑧) cosmology.
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4.6 Sensitivity To the Matter Power Spectrum

Ultimately, the CMB × LIM-nulling convergence is a kernel weighted map of the high redshift

matter density field. While lensing measurements from galaxy shear and convergence and the

CMB have provided the first unbiased measurements of the matter density field out to 𝑧 ∼ 3,

the majority of our knowledge of the matter density field comes from the use of biased luminous

tracers. LIM-nulling has the potential to reveal the unbiased high-redshift matter density field

over large cosmological volumes. This leads to the additional advantage that the high-redshift

matter perturbations are more linear, making the power spectrum easier to model. We forecast the

sensitivity of 𝐶𝜅𝜅null
𝐿

to the matter power spectrum at various length-scales and redshifts. Using

the same Fisher formalism from the previous section, we define a set of parameters which are

the amplitude of the matter power spectrum in various (𝑘, 𝑧) bins. In other words, we take

𝜽 = [𝑃𝑚 (𝑘1, 𝑧1), 𝑃𝑚 (𝑘2, 𝑧1), ..., 𝑃𝑚 (𝑘max, 𝑧max)], where 𝑘max and 𝑧max are the maximum 𝑘 and

𝑧 values, respectively. We define 2000 (𝑘, 𝑧) bins, ranging from 0 < 𝑧 < 1100 and 10−2 ℎ

Mpc−1 < 𝑘 < 1 ℎ Mpc−1.

Once again, for the sake of comparison we forecast the sensitivity of both 𝐶𝜅𝜅
𝐿

and 𝐶
𝜅𝜅null
𝐿

to the

parameter vector 𝜽 . While CMB lensing probes length-scales across the whole redshift range, the

LIM-nulling spectrum is insensitive to 𝑧 < 𝑧null leaving a large portion of its Fisher information

matrix null. Unable to invert such a matrices, we perform principal component analysis (PCA)

on the Fisher matrices. We diagonalize each of the Fisher matrices and plot the six principal

eigenmodes (i.e. the eigenvectors which have the largest eigenvalues).

In Figs. 4.13 and 4.14, we present the principal components for CMB lensing observed with

CMBS4 and for LIM-Nulling in the Futuristic scenario, respectively. As expected, CMB lensing is

sensitive to low redshift modes as its lensing kernel peaks at 𝑧 ∼ 2. The principal components are all

sensitive to roughly the same range in 𝐿, as one can see from the lines of constant 𝐿 superimposed

on the figures. Roughly speaking, each successive principal component probes finer and finer

oscillatory modes as a function of 𝐿. For this CMB lensing case, the first ∼500 eigenmodes can be
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detected with SNR > 1.

Because the principal components follow contours of constant 𝐿, they contain information

about many modes of wavenumber 𝑘 from various redshifts. This mixing of matter power spectrum

modes into a single 𝐿 is the reason why the CMB convergence spectrum is smooth despite it being

made up of the matter power spectrum which does contain acoustic peaks. This mode-mixing effect

can be seen in the bottom panel of Fig. 4.2.

In the LIM-nulling case, things are appreciably different. As expected, the LIM-nulling

eigenmodes peak at 𝑧 ∼ 𝑧null since this is precisely where the nulling kernel peaks. The principal

components therefore contain information about the high redshift modes of the matter power

spectrum. Like in the CMB lensing case, the LIM-nulling eigenmodes trace lines of constant 𝐿;

however: as redshift increases the relationship between 𝑘 and 𝐿 tends to one-to-one. This is

driven by the fact that the relationship between angular scales and transverse comoving distances

evolves slowly at high-𝑧. Therefore, measuring a single 𝐿 in the LIM-nulling spectrum contains

information about a much narrower range of power spectrum modes, which allow for one to more

cleanly trace matter fluctuations. Again, this is why BAO peaks emerge in the LIM-nulling

convergence spectrum as seen in Fig. 4.2. It should also be noted the LIM-nulling eigenmodes are

not simply the CMB lensing ones but with the low-𝑧 portion removed. Due to the differences in

the shapes of their SNR curves, these spectra probe slightly different 𝐿. However, in a

conceptually similar situation to the CMB lensing case, in LIM-nulling each successive

eigenmode roughly corresponds to probing finer and finer features in the matter power spectrum.

For the nulling case, the first ∼60 eigenmodes can be detected with SNR > 1. As expected this is a

lower cumulative SNR detection than with CMB lensing alone, but again, the value of the nulling

estimator is its clean sensitivity to the high-𝑧 matter power spectrum. It is encouraging that one is

able to attain a high-significance detection of principal modes of the unbiased matter power

spectrum at 𝑧 ≳ 5.

The choice to constrain power spectrum modes in the range 10−2 ℎ Mpc−1 < 𝑘 < 1 ℎ Mpc−1

was no accident. Indeed this is the range of 𝑘 where the BAO live and where the power spectrum
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peaks. While we do not discuss the feasibility of measuring BAO at high redshift with LIM-nulling

here, we direct the reader to Fronenberg et al. 20244. In that work we find that it is indeed possible to

constrain the BAO scale with a level of confidence comparable to other high-𝑧 probes. In addition,

tomographic LIM-nulling can be used as a tool to constrain other features in the matter power

spectrum (not just BAO), to place upper limits on the amplitude of the matter power spectrum as a

function of redshift, and to constrain the matter transfer function.
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Figure 4.13: First six principal eigenmodes of the matter power spectrum 𝑃𝑚 (𝑘, 𝑧) for regular
CMB lensing measurements from CMBS4. Lines of constant 𝐿 are shown in black to guide the
eye, and reveal that one is essentially sensitive to an approximately fixed range of angular scales.
As one goes to higher eigenmodes, one probes finer and finer features as a function of 𝑘 . Since
CMB lensing is sensitive to the integrated matter density from 𝑧 = 0 to the surface of last scattering,
there is broad support as a function of redshift.

4This is Chapter 5.
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Figure 4.14: Same as Fig. 4.13, but for the CMB × LIM-nulling lensing measurements in the
Futuristic scenario. By construction there is no sensitivity to redshifts below 𝑧null. The range of
angular scales is also shifted slightly because of different SNR characteristics of nulling versus
regular lensing measurements. The slower evolution of the mapping between 𝐿 and 𝑘 at high
redshifts hints at a potential BAO measurement with nulling estimators.

4.7 Conclusion

In this paper we have shown how the CMB×LIM-nulling convergence cross-spectrum (proposed in

Ref. Maniyar et al. (2022)) can be used to constrain cosmology. This probe combines convergence

maps of the CMB and of LIMs to exactly null out the low-redshift contribution to the CMB lensing

convergence, leaving behind a direct and unbiased probe of the matter density field at high-redshift.

This probe may serve to complement other high-redshift probes such as LIMs themselves, or

high-redshift galaxy surveys, both of which are biased tracers of the matter density field.

Building upon the work in Ref. Maniyar et al. (2022), we have computed the variance of the

CMB × LIM-nulling convergence cross-spectrum. This enabled the SNR parameter-space studies
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of Sections 4.3 and 4.4, which provided useful intuition for the expected sensitivity of nulling

estimator measurements. Optimizing a set of experiments with some rough rules of thumb, we

found that next-generation experiments may be able to make a detection.

Moving onto a set of futuristic and aspirational—but still potentially realizable—experiments,

we explored the potential of nulling estimators to place constrains on standard ΛCDM parameters

plus 𝑀𝜈. These experiments can place constraints that are comparable to those from regular

CMB lensing. However, parameters derived from nulling estimators will always be slightly worse

by construction, since the low-redshift information captured by regular CMB lensing does has

sensitivity to cosmological parameters.

The true benefit of nulling estimators, then, is not in raw statistical sensitivity. Instead, it is in

one’s ability to probe high redshifts cleanly. We showed that nulling estimators can be compared

to traditional CMB lensing constraints, and that such comparisons can serve as model-independent

tests of cosmology beyond ΛCDM. While we do not claim that these tests can solve outstanding

problems in cosmology such as the Hubble tension and the 𝜎8 tension, we use these examples to

illustrate how nulling estimators can probe cosmology at early times.

Additionally, we explicitly show that the CMB × LIM-nulling convergence probes high-redshift

modes of the matter power spectrum, which can in turn be used to place limits on the matter

power amplitude, the matter transfer function, and measure important features of the matter power

spectrum such as BAOs. In our companion paper, Fronenberg et al. (2024), we forecast a BAO

measurement with the CMB × LIM-nulling convergence and find it to be encouraging. Moreover,

in all of our forecasts, we assume that one uses just one pair of LIM frequency channels to

perform nulling. In future work, one can imagine taking advantage of the large bandwidth of LIM

experiments, leveraging all frequency channels to perform LIM-nulling tomography. This would

enable the direct study of the growth of structure.

While the prospects of using LIM lensing are promising, they do not come without serious

challenges. Due to the complex astrophysical processes associated with the line emission and

absorption mechanisms, LIMs are highly non-Gaussian and therefore using existing quadratic
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lensing estimators designed for the Gaussian CMB are sub-optimal Vafaei et al. (2010). It has

been shown that attempting to use such estimators results in biases in the LIM lensing convergence

Foreman et al. (2018); Schaan et al. (2018). These biases can be mitigated through various means,

for instance, using filters that Gaussianize the field, or through bias-hardening, a method which

makes use of our knowledge about the non-Gaussianity of LIMs in the estimation Vafaei et al.

(2010); Foreman et al. (2018).

In addition, LIMs suffer from foreground contamination beyond the line interloper

foregrounds included in this paper. For example, continuum foregrounds (such as the cosmic

infrared background or galactic synchrotron emission) are expected to be present (although at a

level that is generally considered to be less of a concern than line interlopers). One possible

strategy for removing continuum foregrounds is to use their spectrally smooth nature to be

removed. For example, Yue et al. (2015) show that the spectrally smooth far infrared (FIR)

continuum foregrounds of [CII] can be removed with a negligible residual via spectral

decomposition Yue et al. (2015). However, a fuller treatment ought to explicitly model these

residuals in the context of nulling estimators.

In summary, the early epochs of the universe remain a treasure trove of cosmological

information. LIM-nulling, in principle, has the potential to provide us with a clean window into

the epoch of reioniziation, cosmic dawn, and even into the cosmic dark ages, allowing for

unbiased measurements of the matter density field before the time of galaxy formation. While this

endeavor presents a serious challenge, we have shown that the result offers a unique way to

constrain cosmology beyond what is offered by existing probes, providing yet another pathway to

the ultimate goal of understanding our Universe on all scales and at all redshifts.
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Appendix A: CMB × LIM-Nulling Variance

In Maniyar et al. (2022), it has been shown that the cross-correlation, 𝐶𝜅CMB𝜅null
𝐿

, is an unbiased

estimator. Here, we compute the variance of this estimator in the presence of uncorrelated Gaussian

noise at the convergence map level. We also assume, as in Maniyar et al. (2022), that the estimated

convergence maps, 𝜅CMB and 𝜅null, are Gaussian.

We begin with the standard formula for the variance, i.e.,

var(C𝜅CMB𝜅null
L ) = ⟨(𝜅CMB𝜅

∗
null)

2⟩ − ⟨𝜅CMB𝜅
∗
null⟩

2. (4.27)
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The first term can be written as

⟨(𝜅CMB𝜅
∗
null)

2⟩ = ⟨𝜅CMB𝜅
∗
null𝜅CMB𝜅

∗
null⟩

= ⟨𝜅CMB(𝜅∗CMB + 𝛼𝜅∗2 − (1 + 𝛼)𝜅∗1)𝜅CMB(𝜅∗CMB + 𝛼𝜅∗2 − (1 + 𝛼)𝜅∗1)⟩

= ⟨𝜅CMB𝜅
∗
CMB𝜅CMB𝜅

∗
CMB⟩ + 2𝛼⟨𝜅CMB𝜅

∗
CMB𝜅CMB𝜅

∗
2⟩ − 2(1 + 𝛼)⟨𝜅CMB𝜅

∗
CMB𝜅CMB𝜅

∗
1⟩

+ 𝛼2⟨𝜅CMB𝜅
∗
2𝜅CMB𝜅

∗
2⟩ − 2𝛼(1 + 𝛼)⟨𝜅CMB𝜅

∗
2𝜅CMB𝜅

∗
1⟩ + (1 + 𝛼)2⟨𝜅CMB𝜅

∗
1𝜅CMB𝜅

∗
1⟩,

(4.28)

where here 𝜅1 and 𝜅2 are the Fourier transform of the estimated convergence maps from LIMs at

comoving distances 𝜒1 and 𝜒2 where 𝜒1 < 𝜒2 and the asterisks denote the complex conjugate.

Each term in this expression can be evaluated using the fourth-order moment relation

⟨𝑥1𝑥2𝑥3𝑥4⟩ = ⟨𝑥1𝑥3⟩⟨𝑥2𝑥4⟩ + ⟨𝑥1𝑥2⟩⟨𝑥3𝑥4⟩ + ⟨𝑥1𝑥4⟩⟨𝑥2𝑥3⟩ (4.29)

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 are Gaussian random variables with mean zero. Keeping in mind that the

𝑖th convergence map contains a cosmological signal, 𝑠𝑖, and is contaminated with uncorrelated

Gaussian random noise with mean zero, 𝑛𝑖, we have 𝜅𝑖 = 𝑠𝑖 + 𝑛𝑖. Eq. (4.28) then simplifies to

⟨(𝜅CMB𝜅
∗
null)

2⟩ = 3[𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

]2 + 3[2𝛼(𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅2
𝐿

]

− 3[2(1 + 𝛼) (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅1
𝐿

] + 𝛼2 [2(𝐶𝜅CMB𝜅2
𝐿

)2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

) (𝐶𝜅2
𝐿
+ 𝑁

𝜅2
𝐿
)]

− 2𝛼(1 + 𝛼) [2𝐶𝜅CMB𝜅1𝐶𝜅CMB𝜅2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅1𝜅2]

+ (1 + 𝛼)2 [2(𝐶𝜅CMB𝜅1
𝐿

)2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

) (𝐶𝜅1
𝐿
+ 𝑁

𝜅1
𝐿
)] (4.30)

where 𝐶
𝜅𝑖
𝐿
≡ ⟨𝑠𝑖𝑠∗𝑖 ⟩, 𝐶

𝜅𝑖𝜅 𝑗

𝐿
≡ ⟨𝑠𝑖𝑠∗𝑗 ⟩, and 𝑁

𝜅𝑖
𝐿
≡ ⟨𝑛𝑖𝑛∗𝑖 ⟩. Similarly, using Eq. (4.29) the second term
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of Eq. (4.27) is

⟨𝜅CMB𝜅
∗
null⟩

2 = (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)2 + 2𝛼(𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅2
𝐿

− 2(1 + 𝛼) (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅1
𝐿

+ 𝛼2(𝐶𝜅CMB𝜅2
𝐿

)2

−2𝛼(1 + 𝛼)𝐶𝜅CMB𝜅1𝐶𝜅CMB𝜅2 + (1 + 𝛼)2(𝐶𝜅CMB𝜅1
𝐿

)2. (4.31)

Plugging Eq. (4.30) and Eq. (4.31) back into (4.27), and accounting for cosmic variance we obtain

var(C𝜅CMB𝜅null
L ) =

(
1

𝑓sky(2𝐿 + 1)

)
2[(𝐶𝜅CMB

𝐿
+ 𝑁

𝜅CMB
𝐿

)2 + 2𝛼(𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅2
𝐿

− 2(1 + 𝛼) (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅CMB𝜅1
𝐿

] + 𝛼2 [(𝐶𝜅CMB𝜅2
𝐿

)2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

) (𝐶𝜅2
𝐿
+ 𝑁

𝜅2
𝐿
)]

− 2𝛼(1 + 𝛼) [𝐶𝜅CMB𝜅1𝐶𝜅CMB𝜅2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

)𝐶𝜅1𝜅2]

+ (1 + 𝛼)2 [(𝐶𝜅CMB𝜅1
𝐿

)2 + (𝐶𝜅CMB
𝐿

+ 𝑁
𝜅CMB
𝐿

) (𝐶𝜅1
𝐿
+ 𝑁

𝜅1
𝐿
)], (4.32)

which is precisely Eq. (4.13).

Bibliography

A. S. Maniyar, E. Schaan, and A. R. Pullen, 105, 083509 (2022), 2106.09005.

U. Seljak and M. Zaldarriaga, 82, 2636 (1999), astro-ph/9810092.

A. Lewis and A. Challinor, Phys. Rev. D 76, 083005 (2007), URL https://link.aps.org/doi/

10.1103/PhysRevD.76.083005.

M. Schmittfull and U. Seljak, 97, 123540 (2018), 1710.09465.

R. Allison, P. Caucal, E. Calabrese, J. Dunkley, and T. Louis, 92, 123535 (2015), 1509.07471.

D. Huterer and M. White, 72, 043002 (2005), astro-ph/0501451.

2106.09005
astro-ph/9810092
https://link.aps.org/doi/10.1103/PhysRevD.76.083005
https://link.aps.org/doi/10.1103/PhysRevD.76.083005
1710.09465
1509.07471
astro-ph/0501451


Bibliography 222

F. Bernardeau, T. Nishimichi, and A. Taruya, 445, 1526 (2014), 1312.0430.

A. Barthelemy, S. Codis, C. Uhlemann, F. Bernardeau, and R. Gavazzi, 492, 3420 (2020),

1909.02615.

F. McCarthy, S. Foreman, and A. van Engelen, 103, 103538 (2021), 2011.06582.

F. J. Qu, B. D. Sherwin, O. Darwish, T. Namikawa, and M. S. Madhavacheril, 107, 123540 (2023),

2208.04253.

Z. J. Zhang, Y. Omori, and C. Chang, 524, 6392 (2023), 2211.09617.

M. B. Silva, B. Baumschlager, K. A. Cleary, P. C. Breysse, D. T. Chung, H. T. Ihle, H. Padmanabhan,

L. C. Keating, J. Kim, and L. Philip, Synergies between the comap co line intensity mapping

mission and a ly-alpha galaxy survey: How to probe the early universe with voxel based analysis

of observational data (2021), URL https://arxiv.org/abs/2111.05354.

G. Sun, L. Moncelsi, M. P. Viero, M. B. Silva, J. Bock, C. M. Bradford, T.-C. Chang, Y.-

T. Cheng, A. R. Cooray, A. Crites, et al., The Astrophysical Journal 856, 107 (2018), URL

https://doi.org/10.3847%2F1538-4357%2Faab3e3.

E. Visbal, H. Trac, and A. Loeb, Journal of Cosmology and Astroparticle Physics 2011, 010 (2011),

URL https://doi.org/10.1088%2F1475-7516%2F2011%2F08%2F010.

P. C. Breysse, E. D. Kovetz, and M. Kamionkowski, Masking line foregrounds in intensity mapping

surveys (2015), URL https://arxiv.org/abs/1503.05202.

Y. Gong, M. Silva, A. Cooray, and M. G. Santos, The Astrophysical Journal 785, 72 (2014), URL

https://doi.org/10.1088%2F0004-637x%2F785%2F1%2F72.

A. Liu, Y. Zhang, and A. R. Parsons, 833, 242 (2016), 1609.04401.

1312.0430
1909.02615
2011.06582
2208.04253
2211.09617
https://arxiv.org/abs/2111.05354
https://doi.org/10.3847%2F1538-4357%2Faab3e3
https://doi.org/10.1088%2F1475-7516%2F2011%2F08%2F010
https://arxiv.org/abs/1503.05202
https://doi.org/10.1088%2F0004-637x%2F785%2F1%2F72
1609.04401


Bibliography 223

H. Fronenberg, A. S. Maniyar, A. Liu, and A. R. Pullen, Physical Review Letters 132 (2024), ISSN

1079-7114, URL http://dx.doi.org/10.1103/PhysRevLett.132.241001.

W. Hu and T. Okamoto, 574, 566 (2002), astro-ph/0111606.

A. S. Maniyar, Y. Ali-Haı̈moud, J. Carron, A. Lewis, and M. S. Madhavacheril, Phys. Rev. D 103,

083524 (2021), URL https://link.aps.org/doi/10.1103/PhysRevD.103.083524.

P. Lemos, A. Challinor, and G. Efstathiou, Journal of Cosmology and Astroparticle Physics 2017,

014–014 (2017), ISSN 1475-7516, URL http://dx.doi.org/10.1088/1475-7516/2017/

05/014.

K. M. Smith, O. Zahn, and O. Doré, 76, 043510 (2007), 0705.3980.
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O. Doré, J. Bock, M. Ashby, P. Capak, A. Cooray, R. de Putter, T. Eifler, N. Flagey, Y. Gong,

S. Habib, et al., Cosmology with the spherex all-sky spectral survey (2015), 1412.4872.

M. Tegmark, Physical Review D 56, 4514–4529 (1997), ISSN 1550-7998.

N. Sailer, E. Castorina, S. Ferraro, and M. White, 2021, 049 (2021), 2106.09713.

E. D. Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess,

and J. Silk, Classical and Quantum Gravity 38, 153001 (2021), URL https://doi.org/10.

1088%2F1361-6382%2Fac086d.

V. Poulin, J. L. Bernal, E. D. Kovetz, and M. Kamionkowski, 107, 123538 (2023), 2209.06217.

M. Douspis, L. Salvati, and N. Aghanim, On the tension between large scale structures and cosmic

microwave background (2019), 1901.05289.

D. Coe, Fisher matrices and confidence ellipses: A quick-start guide and software (2009), 0906.

4123, URL https://arxiv.org/abs/0906.4123.

https://doi.org/10.3847%2F1538-4357%2Fac63c7
1812.08135
1410.4808
1903.03144
1903.03144
1412.4872
2106.09713
https://doi.org/10.1088%2F1361-6382%2Fac086d
https://doi.org/10.1088%2F1361-6382%2Fac086d
2209.06217
1901.05289
0906.4123
0906.4123
https://arxiv.org/abs/0906.4123


Bibliography 227

D. Huterer and M. Takada, Astroparticle Physics 23, 369 (2005), astro-ph/0412142.

Planck Collaboration, 594, A13 (2016).

M. Benetti, W. Miranda, H. Borges, C. Pigozzo, S. Carneiro, and J. Alcaniz, Journal of Cosmology

and Astroparticle Physics 2019, 023 (2019), URL https://doi.org/10.1088%2F1475-7516%

2F2019%2F12%2F023.

M. Benetti, H. Borges, C. Pigozzo, S. Carneiro, and J. Alcaniz, Journal of Cosmology and

Astroparticle Physics 2021, 014 (2021), URL https://doi.org/10.1088%2F1475-7516%

2F2021%2F08%2F014.

W. Handley and P. Lemos, Phys. Rev. D 100, 023512 (2019), URL https://link.aps.org/doi/

10.1103/PhysRevD.100.023512.

Y. Park and E. Rozo, Monthly Notices of the Royal Astronomical Society 499, 4638–4645 (2020),

ISSN 1365-2966, URL http://dx.doi.org/10.1093/mnras/staa2647.

P. Marshall, N. Rajguru, and A. Slosar, Physical Review D 73 (2006), ISSN 1550-2368, URL

http://dx.doi.org/10.1103/PhysRevD.73.067302.

P. Lemos, M. Raveri, A. Campos, Y. Park, C. Chang, N. Weaverdyck, D. Huterer, A. R. Liddle,

J. Blazek, R. Cawthon, et al., Monthly Notices of the Royal Astronomical Society 505, 6179–6194

(2021), ISSN 1365-2966, URL http://dx.doi.org/10.1093/mnras/stab1670.

S. Mohanty, S. Anand, P. Chaubal, A. Mazumdar, and P. Parashari, J. Astrophys. Astron. 39, 46

(2018).

S. Vafaei, T. Lu, L. van Waerbeke, E. Semboloni, C. Heymans, and U.-L. Pen, Astroparticle Physics

32, 340 (2010), URL https://doi.org/10.1016%2Fj.astropartphys.2009.10.003.

S. Foreman, P. D. Meerburg, A. van Engelen, and J. Meyers, 2018, 046 (2018), 1803.04975.

astro-ph/0412142
https://doi.org/10.1088%2F1475-7516%2F2019%2F12%2F023
https://doi.org/10.1088%2F1475-7516%2F2019%2F12%2F023
https://doi.org/10.1088%2F1475-7516%2F2021%2F08%2F014
https://doi.org/10.1088%2F1475-7516%2F2021%2F08%2F014
https://link.aps.org/doi/10.1103/PhysRevD.100.023512
https://link.aps.org/doi/10.1103/PhysRevD.100.023512
http://dx.doi.org/10.1093/mnras/staa2647
http://dx.doi.org/10.1103/PhysRevD.73.067302
http://dx.doi.org/10.1093/mnras/stab1670
https://doi.org/10.1016%2Fj.astropartphys.2009.10.003
1803.04975


Bibliography 228

E. Schaan, S. Ferraro, and D. N. Spergel, Phys. Rev. D 97, 123539 (2018), URL https://link.

aps.org/doi/10.1103/PhysRevD.97.123539.

B. Yue, A. Ferrara, A. Pallottini, S. Gallerani, and L. Vallini, Monthly Notices of the

Royal Astronomical Society 450, 3829 (2015), URL https://doi.org/10.1093%2Fmnras%

2Fstv933.

https://link.aps.org/doi/10.1103/PhysRevD.97.123539
https://link.aps.org/doi/10.1103/PhysRevD.97.123539
https://doi.org/10.1093%2Fmnras%2Fstv933
https://doi.org/10.1093%2Fmnras%2Fstv933


229

Chapter 5

A New Probe of the High-z BAO scale: BAO

tomography With CMB × LIM-Nulling

Convergence

Hannah Fronenberg1,2, Abhishek S. Maniyar3,4,5, Adrian Liu1,2, Anthony R. Pullen6,7

1Department of Physics, McGill University, Montréal, QC, Canada
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Abstract

Standard rulers such as the baryon acoustic oscillation (BAO) scale serve as workhorses for precision

tests of cosmology, enabling distance measurements that probe the geometry and expansion history

of our Universe. Aside from BAO measurements from the cosmic microwave background (CMB),

most standard ruler techniques operate at relatively low redshifts and depend on biased tracers of the

matter density field. In a companion paper, we explored the scientific reach of nulling estimators,

where CMB lensing convergence maps are cross-correlated with linear combinations of similar

maps from line intensity mapping (LIM) to precisely null out the low-redshift contributions to CMB

lensing. We showed that nulling estimators can be used to constrain the high redshift matter power

spectrum and showed that this spectrum exhibits discernible BAO features. Here we propose using

these features as a standard ruler at high redshifts that does not rely on biased tracers. Forecasting

such a measurement at 𝑧 ∼ 5, we find that next-generation instruments will be able to constrain the

BAO scale to 7.2% precision, while our futuristic observing scenario can constrain the BAO scale

to 4% precision. This constitutes a fundamentally new kind of BAO measurement during early

epochs in our cosmic history.

5.1 Introduction

At the time of recombination (𝑧 ∼ 1100), the first atoms formed and photons streamed freely

through the universe. Today, we observe those photons as the cosmic microwave background

(CMB), a map which provides unparalleled insight into the early moments at the surface of last

scattering. These photons, however, have not traveled unimpeded. Weak gravitational lensing of

the CMB arises when photons from the surface of last scattering are deflected by the gravitational

potentials they encounter on their way to us, resulting in distortions to the statistics of the CMB.

With the use of lensing estimators, one can reconstruct the gravitational potential of the projected

mass distribution along the line of sight (LOS) (Hu and Okamoto, 2002; Okamoto and Hu, 2003).
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Reconstructing the lensing potential, or equivalently the convergence, yields direct constraints on

the total matter distribution of the universe, both baryonic and dark, without the use of a biased

tracer. As such, the CMB convergence has the ability to probe the growth of matter fluctuations,

place limits on primordial non-Gaussianity, constrain the sum of the neutrino masses, and even test

theories of modified gravity (Seljak and Zaldarriaga, 1999; Lewis and Challinor, 2007; Schmittfull

and Seljak, 2018; Allison et al., 2015).

This information, however, is projected onto a single observable and the high-redshift

contribution to the convergence is dwarfed by that of the low-redshift universe (𝑧 ≲ 2). This

places limitations on the inferences that can be made about the matter density field. Most notably,

the fact that the convergence is a LOS integrated quantity results in the washing out of baryon

acoustic oscillations (BAOs). During the radiation–dominated era, dark matter began to cluster

while the photon–baryon fluid continued to oscillate, producing BAOs which were then left

imprinted on the CMB at recombination. Through large scale structure formation, the BAO scale

remains embossed in the distribution of galaxies, and provides a standard distance measure across

cosmic time.

Luckily, line intensity maps (LIMs) also experience weak lensing by large scale structure.

These lines, however, are only lensed by a portion of large scale structure that lenses the CMB,

namely the low redshift universe. In Maniyar et al. (2022), it has been shown that by using

the lensing information of two LIMs, one could not just suppress, but exactly null out the low

redshift contribution to the CMB convergence. This nulling method has been explored in the

context of galaxy lensing (Huterer and White, 2005; Bernardeau et al., 2014; Barthelemy et al.,

2020) and has been shown to be able to remove the imprint of various effects from CMB lensing

maps for which the physics is uncertain (McCarthy et al., 2021; Qu et al., 2023; Zhang et al.,

2023). While never implemented with real data, these techniques can be an important new tool

for studying the high redshift universe. What is more, Maniyar et al. (2022) show that the CMB

× LIM-nulling convergence spectrum, ⟨𝜅𝜅null⟩, is free of LIM interloper bias. Most recently, we

showed in Fronenberg et al. (2024) that the CMB × LIM-nulling convergence can be compared to
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traditional CMB lensing constraints, and that such comparisons can serve as model-independent

tests of cosmology beyondΛCDM. Additionally, we explicitly showed that the CMB× LIM-nulling

convergence probes high-redshift modes of the matter power spectrum, which can in turn be used

to place limits on the matter power amplitude, the matter transfer function, and measure important

features of the matter power spectrum. These results suggest that performing LIM-nulling of CMB

lensing observations has the potential to probe a vast amount of high-redshift information.

In this Letter, we propose a new method to detect BAOs using the CMB × LIM-nulling

convergence spectrum which can be used as a standard ruler over a large cosmological window

(𝑧 > 2). This method, in principle, allows one to directly probe the matter density field during

cosmic noon, the epoch of reionization (EoR), cosmic dawn, and even during the cosmic dark ages.

The procedure to measure BAOs in this cross-convergence spectrum is similar to that of using the

matter power spectrum or the galaxy correlation function; however, this probe has unique benefits.

In Fig. 5.1, the window in which CMB × LIM-nulling can be used for studying the high-𝑧 universe

is shaded in grey. LIM surveys typically have fine spectral resolution and are conducted over a

large bandwidth. This therefore allows for direct, large scale studies of the matter density field over

a vast and relatively unexplored cosmic window, filling a void between BAO measurements from

𝑧 < 3 and high-𝑧 CMB measurements (Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017;

Kazin et al., 2014; Abbott et al., 2018a; Bautista et al., 2017; Ata et al., 2017; du Mas des Bourboux

et al., 2017; Abbott et al., 2018b).
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Figure 5.1: Current and projected BAO measurements as a function of redshift. Current
measurements from galaxy, quasar, and Lyman-𝛼 surveys are shown at 𝑧 < 3 using solid markers
(Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017; Kazin et al., 2014; Abbott et al., 2018a;
Bautista et al., 2017; Ata et al., 2017; du Mas des Bourboux et al., 2017; Abbott et al., 2018b).
Forecast constraints are shown with a hollow marker. The dark green diamond shows the projected
measurement from CMB × LIM-nulling while the remaining constraints are from high-z LIM
surveys (Bernal et al., 2019). The grey shaded region denotes the redshifts where LIM-nulling can
be performed for high-𝑧 studies (2 < 𝑧 ≲ 14).

5.2 CMB convergence and LIM-nulling

The CMB acts as a source image which is lensed by the intervening matter density field. The

deflection of CMB photons produces correlations between the otherwise uncorrelated CMB

spherical harmonic coefficients, 𝑎ℓ𝑚. Just like the CMB, lower redshift LIMs also incur such

correlation as a result of lensing and, most importantly, LIMs and the CMB share common low
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redshift induced correlations. With the use of quadratic estimators (or more advanced techniques

Hirata and Seljak (2003a,b)), the lensing convergence can be estimated. This estimated quantity is

related to the total matter density integrated along the line of sight. The convergence 𝜅 is given by

𝜅(𝑛̂) =
∫ 𝑧s

0
𝑊 (𝑧′, 𝑧s)𝛿𝑚 (𝜒(𝑧′)𝑛̂, 𝑧′)

𝑐 𝑑𝑧′

𝐻 (𝑧′) (5.1)

where 𝑧s is the redshift of the source, 𝑊 (𝑧, 𝑧𝑠) is the lensing kernel, 𝐻 (𝑧) is the Hubble parameter,

𝑐 is the speed of light, 𝜒 denotes the comoving distance, and 𝛿𝑚 (r, 𝑧) is the matter overdensity

field. The lensing kernel for a source at a single comoving slice is given by

𝑊 (𝑧, 𝑧𝑠) =
3
2

(
𝐻0
𝑐

)2
Ω𝑚,0

𝑎
𝜒(𝑧)

(
1 − 𝜒(𝑧)

𝜒(𝑧𝑠)

)
, (5.2)

where 𝐻0 is the Hubble constant, Ω𝑚,0 is the matter fraction today, 𝑎 is the scale factor, and 𝑐 is

the speed of light, and 𝜒(𝑧𝑠) is the comoving distance to the source. One can then compute the

angular power spectrum 𝐶
𝜅𝑖𝜅 𝑗

𝐿
of any two convergence maps 𝜅𝑖 and 𝜅 𝑗 , given by

𝐶
𝜅𝑖𝜅 𝑗

𝐿
=

∫ 𝑧𝑠

0

𝑊𝑖 (𝑧′, 𝑧s)𝑊 𝑗 (𝑧′, 𝑧s)
𝜒(𝑧′)2 𝑃m

(
𝑘 =

𝐿 + 1/2
𝜒(𝑧′) , 𝑧′

)
𝑐 𝑑𝑧′

𝐻 (𝑧′) , (5.3)

where 𝑃𝑚 is the matter power spectrum in the Limber approximation, and 𝑖 and 𝑗 index the maps.

These maps might, for example, be constructed from the linear combination of multiple convergence

maps from different probes.

From Eq. (5.1), it should be clear that it is possible to construct some 𝑊 𝑗 (𝑧, 𝑧s) that vanishes

over the low redshift interval [0, 𝑧null]. Since 𝑊 is quadratic in 𝜒, a linear combination of three

such kernels suffices to find a non-trivial null solution for the coefficients of this polynomial. As

shown in Maniyar et al. (2022), using convergence maps estimated from two LIMs and from the

CMB at redshifts 𝑧1 < 𝑧2 < 𝑧CMB respectively, the LIM-nulling kernel is given by

𝑊null = 𝑊 (𝑧, 𝑧CMB) + 𝛼𝑊 (𝑧, 𝑧2) − (1 + 𝛼)𝑊 (𝑧, 𝑧1), (5.4)
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where 𝛼 ≡ [1/𝜒(𝑧CMB) − 1/𝜒(𝑧1)]/[1/𝜒(𝑧1) − 1/𝜒(𝑧2)].

Fig. 5.2 shows the relevant estimated convergence spectra. The CMB convergence spectrum,

𝐶𝜅𝜅
𝐿

, is smooth with no discernible BAO features which is due to the angular evolution of the BAO

wiggles which is depicted in the bottom panel. Examining the integrand of Eq. 5.3 evaluated

at several redshifts, one can see that the BAO wiggles evolve to lower 𝐿 as 𝑧 decreases which,

when integrated over, results in the washing out of BAO wiggles in 𝐶𝜅𝜅
𝐿

. While 𝐶𝜅𝜅
𝐿

can provide

information about the scale of structures which dominate the deflection of CMB photons, it cannot

act as a standard ruler.

In the CMB × LIM-nulled convergence spectrum, 𝐶
𝜅𝜅null
𝐿

, acoustic peaks emerge which is

apparent in the top panel of Fig. 5.2 where the fractional difference between the wiggle and no-

wiggle spectra are plotted. This BAO feature is the result of the much slower angular evolution of

the BAO scale at early times. Again, referring now to the bottom panel of Fig. 5.2, the pale high-𝑧

curves share largely overlapping acoustic peaks compared to the darker low-𝑧 curves whose peaks

and troughs mix.
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Figure 5.2: Top: Fractional difference between convergence spectra computed with the linear
power spectrum and with the no-wiggle Eisenstein & Hu fitting function for regular CMB lensing
(black) and CMB × LIM-nulling (red). Middle: The CMB convergence spectrum 𝐶𝜅𝜅

𝐿
(solid black)

and the CMB × LIM-nulling convergence spectrum 𝐶𝜅𝜅null
𝐿

(solid red). The dot-dashed black
line corresponds to the CMB × LIM-nulling convergence spectrum computed with the no-wiggle
Eisenstein & Hu fitting function. Bottom: The plot shows the integrand of Eq. (5.3) 𝐼𝐿 at increasing
redshifts from top (z = 1) to bottom.

What we argue is that the acoustic peak in the CMB × LIM-nulling spectrum is, to good

approximation, a proxy for measuring the BAO scale at 𝑧 = 𝑧null. Since the nulling kernel is sharply

peaked near 𝑧null and the matter transfer function is monotonically increasing, the matter density
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field is weighted most heavily near this redshift. Therefore, the location of the BAO wiggles in

the CMB × LIM-nulling spectrum can be used to measure the BAO scale at 𝑧 ∼ 𝑧null. To test

this hypothesis, we perform an Alcock-Paczynski (AP) test on a mock data set in order to place

constraints on the BAO scale which we describe in the following section.

5.3 BAO Model and AP Test

To model the CMB × LIM-nulling convergence spectrum, one can write down the spectrum using

Eq. (5.3) with 𝑖 = CMB and 𝑗 =LIM-nulling, and parameterise the matter power spectrum

using 𝑃model(𝑘, 𝑧) = 𝑃nw(𝑘, 𝑧) + 𝐴𝑃BAO(𝑘′ = 𝜔𝑘, 𝑧) where the BAO wiggles are independently

parameterised by 𝐴 and 𝜔. These parameters control the amplitude and location of the wiggles

respectively. The BAO spectrum is given by 𝑃BAO = 𝑃lin−𝑃nw where 𝑃lin and 𝑃nw are the Eisentsein

& Hu linear and no-wiggle fitting functions computed using the publicly available code nbodykit

(Eisenstein and Hu, 1998; Hand et al., 2018). Using this power spectrum model, we fit our two

BAO parameters, 𝐴 and 𝜔. The parameter 𝐴 is the amplitude of the BAO wiggles in the matter

power spectrum and 𝜔 stretches the position of the wiggles as a function of wave-number 𝑘 . The

parameter 𝜔 is of particular interest since a change in the configuration space BAO scale is captured

by our dilatation parameter 𝜔.

We perform an AP test on mock CMB × LIM-nulling convergence spectra in order to make

use of the BAO wiggle as a standard ruler. Such a test constitutes altering the location of features

at some wave number 𝑘 to 𝑘/𝛼. Typically the AP parameter 𝛼 is decomposed into LOS, 𝑘 | |/𝛼| |,

and perpendicular modes, 𝑘⊥/𝛼⊥, and these are related to the following physical parameters via

the relations

𝛼⊥ =
𝐷fid

𝐴
(𝑧)𝑟𝑑

𝐷𝐴 (𝑧)𝑟fid
𝑑

(5.5)
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𝛼| | =
𝐻fid(𝑧)𝑟fid

𝑑

𝐻 (𝑧)𝑟𝑑
(5.6)

where 𝐻 is the Hubble parameter, 𝐷𝐴 is the angular diameter distance, 𝑟𝑑 is the acoustic scale, and

the superscript “fid” denotes the value of the parameter in the fiducial cosmology.

When nulling is performed with a single pair of LIMs, however, we are only sensitive to the

perpendicular AP parameter. This is because 𝐶
𝜅𝜅null
𝐿

is a LOS integrated quantity. Thus, instead

of fitting for both AP parameters, we focus on 𝛼⊥ since this is precisely our parameter 𝜔. While

in this work we focus on a single LIM-nulling pair, it is in principle possible to perform LIM-

nulling tomography at several different redshifts, using pairs of frequency channels from two LIM

experiments, to access the LOS information and 𝛼| |. Given the high spectral resolution of current

and upcoming LIM surveys, which resolve the BAO scale in the LOS direction, one can perform

nulling at several redshifts, subtract the nulled convergence maps, and build a CMB convergence

cube instead of just a single map. We leave the full 3D convergence estimation and analysis for

future work.

5.4 Mock Data and MCMC Set-up

We simulate nulling performed with Lyman-𝛼 (Ly-𝛼) and ionized carbon ([CII]) observations from

𝑧 = 3 and 𝑧 = 5 respectively. Line interlopers (where other spectral lines may redshift into one’s

observational bands) can be a serious concern for LIMs. Here we include H-𝛼 and CO (𝐽 = 4–3)

as line interlopers for Ly-𝛼 and [CII] respectively. We simulate the auto- and cross- spectra of

these lines using the publicly available code Halogen1 which uses a halo model formalism based

on conditional luminosity functions (Schaan and White, 2021a,b).

We define Next Generation and Futuristic observing scenarios. For the former we simulate

noise from Cosmic Dawn Intensity Mapper (CDIM) for Ly-𝛼 observations, the Stage II instrument

for [CII] observations, and the Simons Observatory (SO) for CMB observations, over a 100 deg2

1https://github.com/EmmanuelSchaan/HaloGen/tree/LIM

https://github.com/EmmanuelSchaan/HaloGen/tree/LIM
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field (the nominal survey area for these LIM experiments) (Fronenberg et al., 2024; Cooray et al.,

2019; Silva et al., 2015; Ade et al., 2019). We assume interloper residuals to be at the 5% level

and we perform LIM lensing reconstruction using ℓLIM,max = 10, 000. For the Futurisic scenario,

we model noise from CDIM, Stage II and from CMB Stage-4 (CMBS4), over one quarter of the

sky ( 𝑓sky = 0.25) Abazajian et al. (2022). In this scenario we assume 1% interloper residuals and

perform LIM lensing reconstruction with ℓLIM,max = 20, 000. For the SO noise, we use 𝑁
𝜅CMB
ℓ

from

the SO noise calculator2 and for CMBS4 the lensing noise is obtained from the CMBS4 Wiki (Sailer

et al., 2021). Throughout, our fiducial cosmology is that of Planck 2015 (Planck Collaboration,

2016). Additional details can be found in Section IV of Fronenberg et al. (2024).

Using Eq. (5.3), our power spectrum model, and the line and instrument models discussed

above, we generate mock 𝐶
𝜅𝜅null
𝐿

data and draw Gaussian random noise consistent with the CMB

× LIM-nulling reconstruction variance, var𝜅𝜅null
L , which we derive in Appendix A of Fronenberg

et al. (2024). In both cases, the data samples multipoles 𝐿min = 30 to 𝐿max = 1500. We define a

Gaussian likelihood L

lnL(𝜆𝑖) = −1
2

∑︁
𝐿

(𝐶data
𝐿

− 𝐶model
𝐿

(𝜆𝑖))2

vardata
L

(5.7)

where 𝐶data
𝐿

is the data set used to constrain the model 𝐶model
𝐿

(𝜆𝑖) with parameters 𝜆𝑖 = {𝐴, 𝛼⊥}

in our case. We sample the likelihood using the Python package emcee (Foreman-Mackey et al.,

2013) and impose a prior on 𝐴 that it be non-negative, 𝐴 ≥ 0. Given that the BAO scale has been

measured to the percent level by galaxy and quasar surveys and to the sub-percent level by Planck,

we place a Gaussian prior on 𝛼⊥ with 10% error which is consistent with current observations yet

conservative.
2https://github.com/simonsobs/so_noise_models/tree/master/LAT_lensing_noise

https://github.com/simonsobs/so_noise_models/tree/master/LAT_lensing_noise
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5.5 Results

We present the forecast sensitivities on the model parameters 𝐴 and 𝛼⊥ in Table 5.1 and we show

the one- and two-dimensional posterior distributions for these parameters in Fig. 5.3. In both

the Next Generation and Futuristic observing scenarios a BAO detection is possible albeit with

relatively low signal-to-noise. The parameter 𝐴 which characterises the amplitude and therefore the

existence of BAO features in the spectrum is weakly constrained in both scenarios, but nonetheless

rules out a featureless spectrum at over 3.6𝜎 in the optimistic case 1.7𝜎 in the moderate case. For

the AP parameter 𝛼⊥, the situation is more encouraging. In the Next Generation scenario, the BAO

scale can be measured with to a precision of 7.2%. In the Futuristic scenario, things are even more

promising. It is possible with future generation experiments to measure the BAO scale with 4%

precision solely using CMB lensing information. These constitute BAO scale measurements at

𝑧 ∼ 5. While there is still a small amount of decorrelation of BAO wiggles due to the evolution of

the comoving distance at 𝑧 > 5, our tests (which involved artificially aligning the BAO features in

the bottom panel of Fig. 5.2) indicate that this is a negligible effect. This test also indicates that any

smearing to the effective redshift of this measurement due to the extended kernel is also negligible.

𝐴 𝛼⊥

best fit 𝜎rel% best fit 𝜎rel%

Next Gen. 5.12+3.05
−3.09 59.6 0.97+0.08

−0.07 7.2
Futuristic 1.67+0.48

−0.46 27.5 0.99+0.05
−0.04 4.0

Table 5.1: Posterior on the BAO model parameters for Next Generation and Futuristic cases with
68% credibility error bars and corresponding relative percent errors.



5. A New Probe of the High-z BAO scale: BAO tomography With CMB × LIM-Nulling
Convergence 241

4 8 12 16

A

0.8
8

0.9
6

1.0
4

1.1
2

0.8
8

0.9
6

1.0
4

1.1
2

Futuristic null

Next Gen null

Fiducial

Figure 5.3: Projected 68% (darker colour) and 95% (lighter colour) credibility contours for the
BAO model parameters 𝐴 and 𝛼⊥ for Next Generation (green) and Futuristic (blue) scenarios. The
black line denotes the fiducial values.

To put these results in context, we comment on the current status of BAO measurements from

high-redshift LIM surveys. While there are currently no BAO detections at 3 < 𝑧 < 1100, there

have been a number of forecasts around 𝑧 ∼ 5 to which we can compare our results. Karkare and

Bird (2018) explore the possibility of a BAO detection with CO and [CII] line emission and show

that while current generation experiments will be unable to achieve a detection, next-generation and

more futuristic experiments could achieve 5% and ∼ 1% level detection respectively, contingent on

the intensity of the line emission. Bernal et al. (2019) show that using SPHEREx H-𝛼 measurements

at 𝑧 = 4.52 it is possible to measure 𝛼⊥ to a precision of 7.0%, the same level as our Next Generation

scenario. Using SPHEREx Ly-𝛼 they show it is possible to reach a level of precision of 5.2% at

𝑧 = 5.74. They too include a conception of a futuristic CO mapping instrument which, similar
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to Karkare and Bird (2018), is able to achieve a 1.5% level detection at 𝑧 = 5.3. While we do

not achieve quite this level of precision in our Futuristic scenario, it should be noted that lensing

measurements are not subject to the same astrophysical modelling biases to which LIM BAO

measurements are subjected. Since lensing is an unbiased tracer, there is no disentangling the

matter power spectrum component from the astrophysical components of the measured spectrum

as is the case with LIM surveys.

Considering now BAO forecasts from HI experiments, SKA will not be capable of making

BAO detection from the angular direction at frequencies below 800 MHz (𝑧 > 0.78) (Bacon et al.,

2020). This is due to the angular smoothing of BAO features by the SKA beam. SKA will,

however, be able to make a BAO detection in the radial direction out to 𝑧 ∼ 3. The detection of

velocity-induced acoustic oscillations (VAOs) in the HI power spectrum has also been shown to be

a promising standard ruler at cosmic dawn; however, VAOs are damped and undetectable by 𝑧 ∼ 12

though some work has suggested their signature may persist to lower 𝑧 (Muñoz, 2019a,b; Sarkar

and Kovetz, 2023; Cain et al., 2020). Measuring the BAO scale during and soon after reionization

is indeed a challenging feat.

While the constraints we present here are already competitive with existing forecasts, they

can still be improved upon. Our forecast here uses just a single pair of LIM frequency channels.

By making use of the fine spectral resolution of LIM experiments and combining this spectral

information while nulling, it is possible to yield a higher significance detection. The precise gain in

SNR one would obtain from combining spectral information we leave for future work. In addition,

the tried and true methods for increasing one’s constraints apply here. Increasing the survey areas,

performing lensing reconstruction with higher ℓmax, and improving foreground removal techniques

for line interlopers can all lower the CMB × LIM-nulling variance. Of course, another avenue

would be to place more stringent priors on the fit, although care must be taken to ensure that the

posterior is not prior-dominated.
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5.6 Conclusion

We have shown that it is possible to measure the BAO scale over a wide redshift range from a

CMB lensing observable. The BAO features that emerge in the CMB × LIM-nulling convergence

spectrum serve as a proxy for the BAO features at 𝑧 ∼ 𝑧null. Using next generation instruments,

we have shown, by way of an AP test, that the detection of this feature can act as a standard ruler,

and can constrain the perpendicular AP parameter, 𝛼⊥, to the 4% level in a Futuristic observing

scenario and to 7.2% in the Next Generation scenario. These constrains are competitive with

existing high-𝑧 forecasts of BAO measurements from LIM surveys. This technique may be used

to tease out information about the matter density field over a large period of cosmic history from

difficult to reach redshifts purely using information from lensed CMB photons.
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Chapter 6

Conclusion

In this thesis, we have developed novel techniques for unveiling the early Universe by maximizing

the scientific return of LIM measurements through the powerful use of cross-correlations and

synergies between multiple cosmological probes. As we discussed in Chapter 1, LIM holds

immense potential as an unprecedented probe of large-scale structure across the majority of cosmic

history, and yet, numerous observational and theoretical challenges stand between its promise and

its full realization. These challenges include foreground contamination, instrumental systematics,

and the careful accounting of these effects in statistical analysis and error budgeting, all of which

must be carefully addressed to enable high-precision cosmology.

In Chapter 2, we developed a rigorous end-to-end simulation and analysis framework for LIM

cross-correlations. This enabled, for the first time, the robust statistical treatment of the joint effects

of foregrounds, instrumental response and instrument noise from both LIMs. This framework

allowed us to critically examine key assumptions in LIM power spectrum analyses, quantify error

properties, and forecast the feasibility of upcoming 21 cm-[CII] cross-correlation measurements.

By moving beyond the simplifying assumptions often made in the literature, this work also provides

a more realistic and practical foundation for designing future LIM surveys.

Foreground contamination is one of the most significant barriers to LIM detections, and in
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Chapter 3, we tackled it head-on by introducing a fully data-driven foreground removal method

that leverages intra-dataset frequency-frequency cross-correlations to empirically estimate and

subtract the foreground power spectrum. Using simulations of 21 cm observations across different

experimental setups, we demonstrated that this technique can suppress foregrounds by 4–5 orders

of magnitude, achieving percent-level signal residuals in somewhat idealized conditions. We also

explored its limitations, identifying observational scenarios where the method remains robust and

those where further improvements are necessary. This approach represents an important step toward

precision foreground mitigation in LIM analyses.

While the first half of this thesis focused on near-term challenges in LIM analysis, the second

half looked ahead to the scientific potential of LIM once it becomes a mature observational field.

In Chapter 4, we began our exploration of LIM-nulling estimators which were first developed in

Maniyar et al. (2022). This estimator exploits LIM lensing signals to remove the dominant low-

redshift lensing contributions to CMB lensing, enabling high-redshift studies of the matter density

field. We demonstrated that this CMB × LIM nulling estimator can place competitive constraints

on ΛCDM parameters plus the neutrino mass, while also serving as a model-independent probe of

physics beyond ΛCDM.

Building on this, Chapter 5 revealed how LIM-nulling techniques unearth high-redshift BAO

signals that are otherwise buried in CMB lensing observables, presenting a fundamentally new

standard ruler for cosmology. We showed that by applying the CMB × LIM-nulling estimator, it

is possible to detect lensing BAOs, features that are typically washed out due to the line-of-sight

projection of standard CMB lensing observables. We forecast that next-generation surveys could

measure the BAO scale at 𝑧 ∼ 5 to 7.2% precision, with more futuristic scenarios improving

constraints to 4% precision. This constitutes an altogether new class of BAO measurements that

can be used to probe epochs that are largely unexplored by traditional techniques, paving fresh

pathway to high-redshift cosmology.

By peeling back the foregrounds (with techniques from Chapter 2 and 3), we uncover the line

luminosity, and by peeling back the line luminosity (with techniques from Chapter 4 and 5), we



Bibliography 250

reveal the very foundation of our Universe: the matter density field, imprinted with signatures

of the primordial quantum fluctuations that were seeded at the time of the Big Bang. This work

demonstrated that synergies between probes create observables that are greater than the sum of

their parts, enabling us to study phenomena that may not be accessible through any single probe

alone. Synergies are not merely a means to an end but a powerful tool in their own right, unlocking

new windows into the physics that governs the evolution of our Universe.
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