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Abstract 

Recent advances in smart wearables have brought clinical standard health monitoring 

services at our home and now smart wearables are used in our day-to-day life. One such application 

of wearables is smart headband/eye-masks based biopotential monitoring system capable of 

measuring electroencephalogram (or EEG) and electrooculogram (or EOG) signals. These are 

useful in sleep study and treating sleep disorders like obstructive sleep apnea. However, most of 

the state-of-the-art biopotential wearables are heavy and uncomfortable to wear, use rigid 

electrodes and rigid printed-circuit boards (or PCBs), suffer from motion artifacts due to 

movements of the wearers, and are not suitable for long term study. 

In this research, we propose a wearable for EOG measurement which is implemented on 

flexible Polyimide PCB with integrated printed gold contact electrodes and the biopotential 

acquisition system. The wearable can be easily integrated with headbands/eye-masks. The system 

metrics such as gain (> 68.5 dB), bandwidth (1.6 Hz–40 Hz), and common-mode rejection ratio 

(or CMRR, > 70 dB) are also evaluated, which meets biopotential measurement standards set by 

the “International Federation of Clinical Neurophysiology (or IFCN)”. The system performance 

has also been validated using a MATLAB based algorithm for the detection of different eye 

activities such as eye blinks, eye winks, and horizontal eye movements with an accuracy of 77.08 

%. But this prototype requires electrode gel for better EOG detection and is sensitive to random 

motion artifacts. Therefore, the EOG wearable design is redesigned with parallel non-contact (or 

capacitive) electrode pairs, which have better sensitivity and do not require gel for EOG detection. 

The parallel electrode pairs are configured differentially for motion artifacts sensing and reduction 

during EOG measurement. The system metrics such as gain (> 37 dB), bandwidth (1 Hz–40 Hz), 

and CMRR (> 74 dB) are also evaluated for the new EOG prototype, which meets the IFCN 

standards. The proposed wearable is then validated for acquiring EOG signals in the 

presence/absence of motion artifacts. However, forehead/eye-masks based wearables are still 

uncomfortable to wear and prone to displacements due to movements during sleep. 
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In recent studies, EEG signals are successfully acquired intra-orally from the palate region, 

which can be easily accessed using comfortable oral appliances such as mandibular advancement 

devices or MADs. Here, we propose a smart MAD which integrates flexible printed electrodes and 

measurement system for intra-oral EEG acquisition. The measurement system also utilizes an 

accelerometer to track intra-oral motions such as tongue movements, teeth grinding, and gulping. 

A MATLAB based algorithm is implemented to decompose the intra-oral EEG signals using 

empirical mode decomposition (EMD) followed by independent component analysis (ICA). Then 

the accelerometer signals are used to identify and remove motion corrupted segments from the 

decomposed independent components containing the motion activities. A clean intra-oral EEG is 

reconstructed from the modified independent components. The effectiveness of the proposed 

algorithm is validated both qualitatively and quantitatively. The EEG system metrics such as gain 

(> 57 dB), bandwidth (0.16 Hz–40 Hz), and CMRR (>74 dB) are also evaluated, which again 

meets the IFCN standards. This smart MAD has been successfully validated for acquiring intra-

oral EEG signals and extracting features for ‘eye open’ and ‘eye close’ activities from the intra-

oral EEG spectrums, both in the presence and absence of intra-oral motions. This smart MAD 

system for intra-oral EEG can be a potential alternative solution to headband/eye-masks based 

wearables. 

The biopotential measuring wearable devices proposed here are flexible, lightweight, 

comfortable to the wearer, and have potential to be used in sleep related studies and treatments. 
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Résumé 

Les récents progrès dans les technologies prêt-à-porter ont permis d'offrir des services de 

surveillance de la santé à domicile standardisés, qui sont maintenant utilisés dans nos vies 

quotidiennes. Une telle application des technologies prêt-à-porter est un masque/bandeau 

intelligent de surveillance des biopotentiels, capable de mesurer les signaux 

électroencéphalographiques (ou EEG) et électrooculographiques (ou EOG). Un tel dispositif serait 

utile dans l'étude (du sommeil) et le traitement des troubles du sommeil tels que le syndrome 

d’apnées obstructives du sommeil. Cependant, ce type de dispositif est lourd et inconfortable, 

utilise des électrodes et des circuits imprimés (PCB) rigides et souffre d’artéfacts de mouvement, 

le rendant inapproprié pour l’étude à long terme. 

Dans cette recherche, nous proposons un dispositif prêt-à-porter d’électrooculographie 

implémenté sur un circuit imprimé flexible en polyimide, incluant des électrodes imprimées en or 

et un système d’acquisition des signaux biopotentiels.  Le dispositif peut être facilement intégré à 

un bandeau/masque pour les yeux. Les paramètres du système tels que le gain (> 68.5 dB), la bande 

passante (1.6 Hz–40 Hz) et le taux de rejet en mode commun (ou CMRR, >70 dB) sont également 

évalué(e)s, ce qui répond aux normes de mesure des signaux biopotentiels établies par la 

“International Federation of Clinical Neurophysiology (ou IFCN)”. La performance du système a 

également été validée à l'aide d'un algorithme MATLAB de détection des différentes activités 

oculaires telles que les clignements et les mouvements latéraux avec une précision de 77.08 %. 

Mais ce prototype nécessite un gel électrode pour une meilleure détection de l'EOG et est sensible 

aux artefacts de mouvement aléatoires. Par conséquent, la conception du dispositif portable EOG 

est redéfinie avec des paires d'électrodes parallèles sans contact (ou capacitifs), qui ont une 

meilleure sensibilité et ne nécessitent pas de gel pour la détection de l'EOG. Les paires d'électrodes 

parallèles sont configurées de manière différentielle pour la détection et la réduction des artefacts 

de mouvement pendant la mesure de l'EOG. Les métriques du système telles que le gain (> 37 dB), 

la bande passante (1 Hz–40 Hz) et le CMRR (> 74 dB) sont également évaluées pour le nouveau 

prototype EOG, qui répond aux normes de l'IFCN. Le dispositif portable proposé est ensuite validé 
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pour l'acquisition de signaux EOG en présence/absence d'artefacts de mouvement. Cependant, les 

dispositifs portables basés sur les bandeaux/masques pour les yeux sont encore inconfortables à 

porter et sujets aux déplacements dus aux mouvements pendant le sommeil. 

Dans des études récentes, des signaux EEG sont acquis avec succès intra-oralement à partir 

de la région du palais, qui peut être facilement accédée en utilisant des appareils oraux confortables 

tels que des dispositifs d'avancement mandibulaire ou MAD. Nous proposons ici un MAD 

intelligent qui intègre des électrodes imprimées flexibles et un système de mesure pour 

l'acquisition EEG intra-orale. Le système de mesure utilise également un accéléromètre pour suivre 

les mouvements intra-oraux tels que les mouvements de la langue, le grincement des dents et la 

déglutition. Un algorithme basé sur MATLAB est mis en œuvre pour décomposer les signaux EEG 

intra-oraux en utilisant la décomposition en mode empirique (EMD), suivie de l'analyse en 

composantes indépendantes (ICA). Ensuite, les signaux de l'accéléromètre sont utilisés pour 

identifier et supprimer les segments corrompus par le mouvement des composantes indépendantes 

décomposées contenant les activités de mouvement. Un EEG intra-oral propre est reconstruit à 

partir des composantes indépendantes modifiées. L'efficacité de l'algorithme proposé est validée à 

la fois qualitativement et quantitativement. Les métriques du système EEG telles que le gain (> 57 

dB), la bande passante (0.16 Hz–40 Hz) et le CMRR (> 74 dB) sont également évaluées, répondant 

encore une fois aux normes de l'IFCN. Ce MAD intelligent a été validé avec succès pour 

l'acquisition de signaux EEG intra-oraux et l'extraction de caractéristiques pour les activités "yeux 

ouverts" et "yeux fermés" à partir des spectres EEG intra-oraux, à la fois en présence et en absence 

de mouvements intra-oraux. Ce système MAD intelligent pour l'EEG intra-oral peut être une 

solution alternative potentielle aux dispositifs portables basés sur des bandeaux de tête/masques 

pour les yeux. 

Les dispositifs portables de mesure de biopotentiels proposés ici sont flexibles, légers, 

confortables pour le porteur et ont le potentiel d'être utilisés dans des études et des traitements liés 

au sommeil. 
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Chapter 1 

 

Introduction and Literature Review 

Wearable devices and technologies have made profound advancements in many healthcare related 

applications. Thanks to the innovations in science and engineering which made it possible to have 

smart, miniaturized, wearable devices capable of providing standard healthcare facilities in 

hospitals, clinical setups, and even at home monitoring environments. Several physiological 

parameters and mental states, such as heart rate, blood pressure, blood oxygen saturation (or SpO2), 

breath, calories, sleep, stress, hypertension, and many more now have the possibility of being 

monitored using modern gadgets we may use in our day-to-day activities such as smart phones, 

smart wristwatches, smart headbands, smart eye-masks, smart therapeutic devices, smart 

mandibular advancement devices (or MADs) etc [1]−[8]. 

Wearables generally use smart sensors for non-invasive monitoring of physiological 

indices and can be easily integrated with accessories, clothing, and therapeutic gadgets. However, 

designing a wearable device has several inherent challenges such as sensor fabrication, battery-

life, miniaturized form factor, meeting medical standard specifications, comfortability, and most 

importantly the scope of its use and application before making it commercially available. One such 

potential application of smart wearables is studying sleep, which can be useful for treating sleep 

disorders such as obstructive sleep apnea (or OSA) [9], [10]. Sleep study (also known as 

polysomnography or PSG) is a clinically standard procedure performed in sleep labs which 

involves overnight monitoring of physiological parameters such as heart rate, SpO2, breath, and 
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assessing various sleep stages by studying biopotentials like Electrooculography (or EOG) and/or 

Electroencephalography (or EEG) [9], [11], [12]. Sleep study in sleep labs is generally performed 

under the supervision lab technicians. The patient under test is mounted with several medical grade 

sensors interfaced with bulky medical grade instruments using long wires during sleep monitoring 

[9], [11], [12]. Such arrangements are uncomfortable for the patient, limit patient’s movements, 

and definitely impact patient’s sleep quality which is being studied.  The number of sleep labs 

across North America is also limited and patients need to wait a long time (around a year or more) 

for their sleep test after specialist’s consultation [12]. A smart, wearable system capable of 

recording all these physiological parameters and sending the data wirelessly to a nearby 

computer/smart phone can be a potential solution which may help patients monitor their sleep at 

home and reduce dependency on sleep labs with long wait times. 

1.1  Obstructive Sleep Apnea (or OSA) and Sleep Study Parameters 

Obstructive sleep apnea (or OSA) is a health condition where a person suffers from breathing 

difficulties, loud snoring, and sometimes cessation leading to awakening during sleep [9]–[13]. 

The usual symptoms of OSA are fatigue, daytime sleepiness, insomnia, morning headaches etc., 

thus impacting our day-to-day life. If left undiagnosed or untreated, OSA can become an 

underlying cause of several health issues such as high blood pressure, cardiovascular diseases, 

obesity, and even degenerative disease like Alzheimer’s [13]. The standard method of treating 

OSA is continuous positive airway pressure (CPAP) devices which are mounted around the nostrils 

and oral cavity of a patients to help them breath properly during sleep [9], [10]. However, CPAP 

devices are big, bulky, and uncomfortable to wear for a long time. Moreover, CPAP devices just 

help in breathing as the patients sleep and do not monitor any physiological parameters during 

sleep. Another alternative of CPAP devices is the use of oral appliances such as mandibular 

advancement devices (or MADs) [10]. MADs are special type of rigid oral appliances used for 

treating OSA patients. MADs are smaller in size and easier to wear in comparison to the 

conventional CPAP devices. MAD-based treatments are an aid to help in breathing for people 

suffering from OSA [10]. However, to understand the effectiveness of MAD based treatment for 
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OSA patients, sleep study during the MAD treatment is recommended by physicians. Therefore, a 

smart MAD can be a potential solution which not only helps in treating OSA patients but also 

monitors physiological parameters (intra-orally or some other way) using smart sensors for sleep 

study. However, the challenges still remain to combine the smart sensors, their read-out circuitry 

with the MAD and/or any other wearable platform for such sleep study based applications. 

1.1.1  Cardiorespiratory Parameters Monitoring during Sleep Study 

The cardiorespiratory parameters such as heart-rate, blood oxygen saturation (or SpO2), breathing 

can be acquired easily using a photoplethysmography (or PPG) sensor [14], [15]. Several 

commercial smart watches (e.g. Fitbit, Samsung Smart Watch, Apple Smart Watch etc.) are 

already using PPG sensors and smart algorithms to measure cardiorespiratory parameters during 

sleep. In hospitals and clinical setups, these parameters are acquired using both PPG sensors and 

Electrocardiogram (or ECG) sensors interfaced with sophisticated medical grade measurement 

systems. Carescape One Monitor by GE Healthcare [16], Intellivue X2 by Phillips [17], Cardiocap 

5 by Daytex Ohmeda [18], BeneVision N1 by Mindray [19], SOMNOmedics [20] etc. are some 

examples of many commercially available cardiorespiratory parameter monitoring devices. 

1.1.2  Biopotential Measurements during Sleep Study 

Among different biopotentials, Electroencephalogram (or EEG) signals and Electrooculogram (or 

EOG) signals are standard methods used extensively in many clinical neurocognitive related 

research such as sleep study, psychiatry, depression, cognitive behaviors, gaze estimations, and in 

human-computer interface (HCI) based commercial applications [21]–[32]. A brief background of 

both EEG and EOG methods are presented in the following subsections. 

1.1.2.1 Electroencephalography (EEG) Basics: Conventional EEG monitoring involves study 

of small electrical impulses, ranging from 0.5 µVolts to 100 µVolts of amplitudes, elicited during 

various brain activities [33], [34]. EEG signals can be measured non-invasively by placing two or 

more electrodes around the scalp/forehead and interfacing them with the EEG measurement 

system using long wires. Depending on their frequency responses, EEG signals are classified into 

3 



 

five categories: delta band ranging from 0.1 Hz to 4 Hz, theta band ranging from 4 Hz to 8 Hz, 

alpha band ranging from 8 Hz to 13 Hz, beta band ranging from 13 Hz to 30 Hz, and gamma band 

ranging from 30 Hz and above [33], [34]. The spectrum energies of these EEG bands show 

different behaviours during various brain activities and can be analyzed for sleep stage 

classifications, e.g. awake stage, light sleep (or N1) stage, deep sleep (or N2) stage, deepest sleep 

(or N3 stage), and repetitive eye movement (or REM) stage indicating a person in dream [35]. The 

N1, N2, and N3 stages are also called non-REM stage collectively. 

 

Fig. 1.1. EEG measurement setup: (a) scalp EEG electrodes, (b) intra-oral EEG electrodes, and (c) EEG bands 

classification. 

 Scholarly research also reported acquiring EEG signals intra-orally from the palate region 

[36], [37]. The palate region inside the oral cavity is the closest accessible surface (which does not 

require incision) to the hypothalamus section of the brain which is responsible for controlling our 

sleep [38]. One  possible way to access the palate for EEG measurements is using some customized 

oral appliances like MADs with measurement electrodes mounted on them. However, very limited 

research has been done so far on the possibility of intra-oral EEG measurements and its challenges. 

Cohen reported an oral appliance prototype with EEG electrodes mounted on it and acquired basic 
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EEG signals involving ‘eye open’ and ‘eye close’ activities [36]. His preliminary intra-oral EEG 

study showed distinguishable change in intra-oral EEG spectrums during ‘eye open’ and ‘eye 

close’ activities. In another work by Radmand, an oral appliance was reported with different EEG 

electrode configurations for intra-oral EEG monitoring [37]. However, his work did not report any 

convincing EEG data acquired intra-orally. Since both the studies involve basic study of intra-oral 

EEG measurements, their prototypes use long wires coming out of the patient’s mouth to interface 

the intra-oral EEG electrodes with the EEG measurement systems. Such measurement setups are 

uncomfortable to wear for long term monitoring and not at all recommended for overnight sleep 

study. A basic EEG measurement setup showing a simplified schematic of scalp and intra-oral 

EEG measurements is presented in Fig. 1.1. 

1.1.2.2 Electrooculography (EOG) Basics: EOG is another non-invasive technique of acquiring 

biopotentials developed around the eye during different eye activities such as eye blink, eye wink, 

and eyeball movements [39], [40]. The eyeball acts like a dipole and generates a potential between 

the cornea and the retina of an eye [40]. The EOG potential ranges from 0.05 mV to 3.5 mV and 

has a useful bandwidth of 1 Hz to 40 Hz [29], [40]. The EOG potential changes during 

horizontal/vertical eye movements and eye blinking and is directly proportional to the 

displacement of the eyeball from its initial position. The EOG potential can be measured by placing 

two or more electrodes around the eye. EOG signals are relatively larger in amplitude in 

comparison to EEG signals and have distinguishable features in the time domain for different eye 

activities. Therefore, unlike EEG, EOG signals are analyzed in time domain. EOG signals have 

also been reported to be used in sleep study. The eyeballs move differently during various non-

REM (N1, N2, and N3) and REM sleep stages which can be recorded using EOG measurements 

to detect various sleep stages [26]. A conventional EOG system in clinical setups also uses long 

wires to interface the EOG electrodes with the measurement system which is uncomfortable to use 

for long term monitoring such as sleep study. A basic EOG measurement system schematic is 

presented in Fig. 1.2. 
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Fig. 1.2. EOG measurement setup with three electrode configuration: electrode 1 as active electrode 1, electrode 2 as 

reference electrode, and electrode 3 as active electrode 3. 

1.1.3 Biopotential Measurement Methodology and Challenges 

1.1.3.1 Measurement Electrode Configurations: Any kind of biopotential measurements (e.g. 

electroencephalogram, electrooculogram, electrocardiogram or ECG, electromyogram or EMG 

etc.) requires two or more electrodes to sense the biopotentials from the skin surface. The 

measurement electrodes can be configured in two ways during biopotential measurements: 

unipolar electrode configuration and bipolar electrode configuration. In unipolar electrode 

configuration, each measurement channel uses two electrodes, one as active electrode responsible 

for biopotential sensing with respect to the other electrode known as the ground (or reference) 

electrode [41]. Unipolar electrode configurations are generally implemented in multi-channel 

electrode setups with one ground (or reference) electrode for all the channels, which can be 

configured with either the analog ground of the circuit or the average common-mode signal of all 

active channels through a driven right leg (or DRL) circuit [42]. In case of bipolar electrode 

configuration, each measurement channel uses three electrodes with two of them as active 

electrodes connected in differential configuration at the input stages of the measuring instrument 

and the third one is known as the ground (or reference) electrode [41], [42]. For bipolar 

configuration, the ground (or reference) electrode is interfaced with either the analog ground of 

the measuring instrument or the common-mode node of the two active electrodes through a driven 
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right leg (or DRL) circuit. Since the active electrodes in bipolar electrode configuration are 

configured differentially, this configuration is capable of effectively minimizing the common-

mode signals such as polarization voltages and DC drifts generated at the skin-electrode contact 

interface. 

 The driven right leg (or DRL) circuit is an OpAmp based unity gain buffer implemented to 

feed the common-mode signals of the active electrodes back to the subject’s body through the 

ground (or reference) electrode. This configuration helps in improving the common-mode 

rejection response of the entire biopotnetial measurement system [42], [43]. The output of the DRL 

circuit can be interfaced with a current limiting resistor as a preventive measure before feeding it 

back to the subject’s body, as suggested in biopotential measurements standards involving human 

subjects set by IFCN [43]. It should be noted that interfacing the ground electrode directly with 

the circuit ground for biopotential measurements always involves a risk of potential shock due to 

system failure. Figure 1.3 presents a basic concept of unipolar and bipolar electrode configurations 

with/without DRL circuit and instrumentation amplifiers. 

1.1.3.2 Measurement Electrode Types: The biopotential measurement electrodes can be 

broadly classified into two types: contact electrodes and non-contact electrodes (or capacitive 

electrodes) [44]–[46]. Both types have their advantages and disadvantages. Contact electrodes are 

directly placed on the skin for biopotential measurements. These type electrodes may require the 

use of electrode gel and skin preparation to minimize the impedance at the skin electrode contact 

impedances prior to biopotential measurements [44]. Contact electrodes also suffer from 

polarization voltages at the skin-electrode contact interfaces and are generally coupled with 

capacitor-resistor based high pass network to lower the impact of polarization voltages during 

biopotential measurements [44], [46]. Contact electrodes are generally manufactured with 

biocompatible metals, however they can still cause irritations if the subject under test is allergic to 

metals [45]. Non-contact electrodes, on the other hand, use a dielectric layer in between the skin 

and the metal part of the electrode, thus forming a capacitor at the skin-electrode interface. Non-

contact electrodes do not suffer from polarization voltages and also do not cause any allergic 
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reactions to the subject under test [46]. Interfacing non-contact electrodes with the measurement 

system is easy and requires just a resistor to form the resistor-capacitor based high-pass network 

at the input stages of the amplifier, which also determines the initial cut-off frequency of the entire 

system. But the effective capacitances of non-contact electrodes at the skin-electrode interfaces 

are very small and require very high load resistors (usually > 1 GΩ) at the input stage for the low-

frequency biopotential measurement applications [46]. Moreover, given their capacitive nature, 

non-contact electrodes are extremely sensitive to motions and nearby environmental vibrations 

[46]. 

 

Fig. 1.3. Unipolar and bipolar electrode configurations using Instrumentation Amplifiers: (a) unipolar electrode 

configuration without DRL circuit, (b) unipolar electrode configuration with DRL circuit, (c) bipolar electrode 

configuration without DRL circuit, and (d) bipolar electrode configuration with DRL circuit. 
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 It should be noted that IFCN standards recommend the implementation of DRL circuits 

for safety in the measurement systems involving contact electrodes as they make direct contact 

with the patient’s skin. Biopotential systems with non-contact (or capacitive) electrodes do not 

require DRL circuit for signal measurements as they do not make direct contact with the patient’s 

skin and do not suffer from polarization voltages. 

1.1.3.3 Biopotential System Design Metrics Requirements: The EEG and EOG signals (or any 

other biopotential signals) have very small amplitudes in the range of 0.5 µVs to a few millivolts 

[29], [33], [34], [40]. Therefore, biopotential measurement amplifiers (or systems) should be 

designed to qualify certain circuit parameter standards (such as amplifier input impedance, input-

referred noise, CMRR etc.) for a good quality biopotential signal sensing and amplification. Such 

system metrics are set by global scientific organizations such as International Federation of 

Clinical Neurophysiology (or IFCN, as mentioned before) [43]. The recommended values of the 

system metrics recommended by IFCN for EEG and EOG measurements are as follows: first stage 

amplifier input impedance should be100 MΩ or greater, input-referred noise should be 1.5 µV 

peak-to-peak over the signal bandwidth 0.5 Hz to100 Hz, and CMRR should be at least 70 dB or 

above [43]. 

1.1.3.4 Motion Artifacts in Biopotential Measurements: Biopotential measurements can get 

severely disrupted by random motions picked up from the patient’s voluntary/involuntary 

movements and nearby vibrations [46]–[50]. The electrode placements and the long interfacing 

wires (if used) may get affected in the presence of motion, thereby abruptly changing the 

impedance properties along the measurement path during biopotential sensing. This sometimes 

results in output saturation of the biopotential measurement system. Motion artifacts are very 

random in nature and have large dynamic amplitude and frequency responses in comparison to the 

measured biopotentials (here EEG and EOG signals). Motion artifacts are most likely to appear 

within the useful bandwidth of the measured biopotential signals, thus making it difficult to remove 

them using conventional filtering technique [46]–[50]. Therefore, in clinical study, motion 

corrupted biopotentials are generally inspected visually and discarded from analysis, which is a 
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tiresome manual job while handling a large amount of data (for example sleep monitoring). Several 

researchers have already reported different strategies to reduce/eliminate the impact of motion 

artifacts. In one reported work, use of interdigitated electrodes are proposed for ambulatory EEG 

measurements to effectively reduce motion artifacts during the measurement [46]. In other 

reported technique, a combination of both hardware and signal processing, such as using sensor-

fusion of biopotential electrodes and accelerometer is reported [51]. The accelerometer is used to 

capture a reference motion signal which is later used in adaptive filtering for removing motion 

artifacts from the measured biopotentials. In another report, electrode tissue impedance (or ETI) 

signals are measured along with the biopotential signal using the same measurement electrodes 

[49]. In this case, the ETI signal is used as the reference motion signal for adaptive filtering. Each 

of these methods of reducing the impact of motion artifacts have their own limitations and are 

exercised depending on the scope of the intended applications. 

 In conventional multichannel EEG measurements, sophisticated statistical approaches like 

Independent Component Analysis [51]–[53], Canonical Correlation Analysis (CCA) [52], [54], 

principal component analysis (PCA) [55] have already been employed successfully to reduce 

motion artifacts from EEG channels. For single channel EEG systems, decomposition methods 

like Discrete Wavelet Transform [56], Singular Spectrum Analysis (SSA) [57], Empirical Mode 

Decomposition (EMD) [58], and Ensemble EMD (EEMD) [59] have been used which generally 

convert a single channel EEG data into a data matrix. Then the data matrix is further processed 

through thresholding or multichannel methods like ICA/CCA to separate the motion artifacts from 

the underlying EEG signatures and remove them effectively [56], [59]. Such statistical methods 

are powerful enough to effectively remove motion artifacts while preserving the most EEG signal 

features, but they are computationally expensive [51]–[59]. In some studies, even machine learning 

algorithms have been implemented for reducing artifacts in EEG measurements, but the models 

did not perform optimally for effective removal of motion artifacts from motion contaminated 

EEG signals and require more training datasets for achieving better accuracy [60]–[62]. In this 
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thesis, we shall also investigate the challenges and possible solutions related to biopotential 

wearable design and motion artifacts. 

1.1.3.5 Other Interferences in Biopotential Measurements: Apart from motion artifacts, any 

specific biopotential (say EEG) can suffer interferences from other biopotentials (e.g. EOG, EMG 

etc.) during measurement [51], [52], [59], [60]. These unwanted biopotential interferences can 

have similar bandwidth like the signal of interest [51], [52], [59], [60]. These interferences can be 

minimized by placing measurement electrodes to the right locations where the interested 

biopotential is stronger than the other biopotentials. For example, in EOG measurement, it is 

recommended to place the EOG electrodes as much close to the eyes as possible for better EOG 

signal detection with respect of the other nearby interferences such as EEG, EMG potentials. If 

required, statistical methods like ICA, wavelet decompositions can also be employed to further 

reduce the other unwanted biopotential interferences [51], [56], [59]. 

 Biopotential measurements also suffer from power-line interferences because the long wires 

used to interface the measurement electrodes are capable of picking up electro-magnetic noises 

from any nearby power sources [51]. One way to minimize the power-line noise is to use shorter 

wires for electrode interfacing. Another way to minimize the power-line noise is implementing 

and using notch filters (with notch cut-off frequency centered around the power-line noise 

frequency) in the biopotential measurement systems [51]. 

1.1.3.6 Conventional Biopotential Measurement Setups and Their Issues: In hospital and 

clinical setups, biopotentials are generally monitored using bulky and sophisticated measurement 

systems under the supervision of a technician. NeuroCapTM by Brain Scientific [63], EEGOTM 

Mylab by ANT Neuro [64], Bittium NeurOne [65], EOG Pod by ADInstruments [66], EOG 

Amplifier by Biopac Systems [67], SOMNOmedics [20] etc. are some examples among several 

EEG/EOG based commercial systems used in hospitals, clinical setups, and in HCI applications. 

All these systems use long wires to interface the measurement electrodes during biopotential 

measurements, thus compromising with the comfort and limiting the mobility of the patient. As 

mentioned before, biopotential measurements are sensitive to motion and may result in output 
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saturation during measurements due to the patient’s voluntary/involuntary movements. On the 

other hand, the commercially available electrodes (e.g. Silver, Silver-Silver Chloride, Gold 

electrodes etc. [44]) are rigid and may cause discomfort to the wearer during long term monitoring. 

Therefore, the clinical setups are not suitable enough for long term biopotential monitoring such 

as sleep study. 

 One potential replacement of rigid electrodes is the use of flexible electrodes and there are 

several flexible electrodes already reported in many research works [68]–[74]. However, designing 

flexible electrodes may incur extra cost in the system design. Flexible PCB based wearable devices 

with flexible electrodes as a part of the PCB, for biopotential measurements, can be a potential 

solution to the system design challenges mentioned above. 

1.2  EEG/EOG Application based Wearable Devices 

Several wearable devices involving EEG and EOG based applications have been prototyped and 

commercialized in the market [75]–[81]. Some of those devices, along with their usefulness and 

limitations, are reviewed here. 

1.2.1  EEG/EOG Application based Commercial Devices 

1.2.1.1 The MUSE Headset [75]: The MUSE headset is a popular commercial wearable device 

known for meditation guidance and sleep study. The headset houses EEG electrodes, PPG sensor, 

accelerometer, and gyroscope to monitor the important vitals (sleep stages, cardiovascular indices, 

head movements, and breathing patterns) during sleep. The device also comes with a smart app to 

provide audio guidance during meditation therapy. The system is compact, implemented on rigid 

PCBs, and housed inside a rigid platform before integrating the setup with the fabric of the 

headband. This may cause discomfort to the wearer during overnight monitoring. 

1.2.1.2 Dreem EEG Headband [76]: The Dreem EEG headband is another commercial device 

used for sleep monitoring. This device includes EEG electrodes and PPG sensor for the detection 

of sleep stages and cardiovascular indices. Just like the MUSE headband, the sensors and the 
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measurement system are housed inside a rigid platform before integrating them with their special 

flexible headset to monitor sleep, which may cause discomfort to the wearer. This device also 

comes with a smart app based audio guidance for the sleep therapy. 

1.2.1.3 Sleep Shepherd [77]: Sleep Shepherd is another EEG monitoring based commercial 

device for sleep monitoring. The device also includes EEG instruments for sleep study and 

earplugs to provide audio therapy during sleep. The measurement system is implemented on rigid 

PCBs and requires a rigid housing before integrating them with the fabric headband. Again, this 

may cause some discomfort to the wearer during overnight monitoring. 

1.2.1.4 SmartSleep Headband by Phillips [78]: Deep Sleep is another wearable smart headband 

designed by Phillips. This smart headband utilises PPG sensor for monitoring cardiorespiratory 

indices just like other reported devices, and biopotential electrodes positioned behind the ear for 

EEG/EOG study and sleep stage classification. This device also comes with a smart app to monitor 

all these sleep indices and also provide special sound therapy to help induce sleep. The headband 

prototype uses soft fabric to cover up the rigid hardware of the measurement system to provide 

extra comfort to the wearer.  

1.2.1.5 EMOTIV Headsets [79]: The EMOTIV headset is a EEG based headset used for brain-

computer interface (or BCI) applications and monitor different mental states such as stress, 

engagement, interest, relaxation, focus and excitements. This headset is strictly designed for BCI 

applications and is not intended to be used for any diagnosis or treatment of diseases. 

1.2.1.6 JINS MEME [80]: JINS MEME is an EOG based smart eyeglass which includes EOG 

electrodes and highly sensitive accelerometer/gyroscope sensors. The EOG measurement are used 

to determine a subject’s mental state and concentration. Whereas, the accelerometer/ gyroscope 

sensor evaluates the body posture suitable for desk jobs. This smart eyeglass also comes with a 

smart app to monitor these said health metrics. 

1.2.1.7 NapWell [81]: NapWell is an EOG based wearable eye mask which monitors sleep and 

detect sleep onset. The device monitor sleep duration and prepares the wearer to wake up by 
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lighting up LEDs gradually mimicking the sunrise event. This device prototype is already 

demonstrated in various science and technology events and is set to be commercialized in near 

future. The present prototype uses commercial ICs, LEDs, and microcontrollers with rigid PCBs 

integrated in a soft eye-mask. 

1.2.2  EEG/EOG Application based Wearable Prototypes reported in Scholarly Articles: 

There are many EEG/EOG based wearable prototype reported in several scholarly articles. The 

EEG/EOG measurements are employed in sleep related study, mental state analysis, and in assisted 

technologies [29], [50], [68]–[71], [82]–[85]. Many of these prototypes focused on designing 

flexible electrodes comfortable to wear [46], [68]–[71], [83], [85]. One prototype also reports EEG 

system implemented on flexible Polyimide substrate [46]. These wearable sensors are integrated 

with wearable headbands or eye masks to acquire EEG/EOG data from forehead, scalp, and ear. 

Some of these wearables are reviewed below. 

1.2.2.1 J. Arnin et al., “Wireless-based portable EEG-EOG monitoring for real time 

drowsiness detection.” 35th IEEE EMBC Conference (2013): 4977 – 4980. [68] 

In this study, a wearable headband prototype is developed which monitors EEG/EOG signals for 

drowsiness study. The device uses conductive fabric (92% silver-plated and 8% nylon) based dry 

electrodes for the measurement and a wireless EEG/EOG measurement device implemented on 

rigid PCB. The flexible fabric EEG electrodes and the EEG/EOG instrument are then integrated 

with the wearable headband. This wearable requires skin preparation for a good quality EEG/EOG 

measurement due to the usage of dry electrodes. 

1.2.2.2 J. Xu et al., “A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System 

for Body Area Networks.” IEEE JSSC 10.9 (2014): 2005 – 2016. [50] 

This study proposes a dry active electrode based, 8 channel EEG headset worn around the scalp. 

This headset is implemented on rigid platform which covers almost the entire scalp. Hence, this 

device is not suitable for sleep monitoring for sure. This system is more suitable for EEG study in 

research, clinical, and BCI applications. 
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1.2.2.3 S. –F. Liang et al., “Development of an EOG-Based Automatic Sleep-Monitoring 

Eye Mask.” IEEE TIM 64.11 (2015): 2977 – 2985. [71] 

This study proposes an EOG measurement based eye mask for sleep monitoring. The wearable eye 

mask houses dry fabric sensor (20% high performance silver and 80 % Polyamide) as EOG 

electrodes. The wireless EOG acquisition is implemented on rigid board and integrated with the 

eye mask. Their report also proposes an automated sleep stage classification algorithm. The 

wearable device is relatively lightweight and comfortable to wear. 

1.2.2.4 C. –T. Lin et al., “Forehead EEG in Support of Future Feasible Personal Healthcare 

Solutions: Sleep Management, Headache Prevention, and Depression Treatment.” IEEE 

Access 5 (2017): 10612 – 10621. [82] 

This study proposes a forehead EEG measurement wearable for sleep, stress, depression study. 

The system uses dry flexible silicon based electrodes (silicon, AgSiO2, gel, and thick-film pastes) 

for the EEG measurement, whereas the measurement systems are implemented on rigid PCB and 

housed in a plastic-made EEG headband. The EEG measurement system is relatively big and a bit 

heavy, which makes the housing of the instrument and the headband bigger in size and heavier. 

Moreover, the plastic-made headband is also not comfortable to wear for long term monitoring. 

1.2.2.5 A. J. Golparvar and M. K. Yacipi, “Electrooculography by Wearable Graphene 

Textiles.” IEEE Sensor Journal 18.21 (2018): 8971 – 8978. [70] 

This study reports another EOG based headband integrated with graphene textile based flexible 

EOG electrodes and a rigid PCB based EOG acquisition system. Although the flexible EOG 

electrode is comfortable to wear, its conductivity is not good. Therefore, we need very big 

electrodes (~ 3 cm × 3 cm) for the EOG measurement which is not acceptable. Having big 

electrodes or acquisition system will force us to have a bigger wearable platform which is 

undesirable. 
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1.2.2.6 A. Dabbaghian et al., “A 9.2-g Fully-Flexible Wireless Ambulatory EEG Monitoring 

and Diagnostics Headband With Analog Motion Artifact Detection and Compensation.” 

IEEE TBCAS 13.6 (2019): 1141 – 1151. [46] 

This study presents an 8 channel ambulatory EEG monitoring wearable implemented on a flexible 

Polyimide board. This is reportedly the first EEG wearable prototype implemented on flexible 

substrate. The measurement electrodes are printed as pad with the flexible PCB. The wearable 

system offers the feature for motion artifacts compensation during EEG measurement. It uses 

interdigitated electrode pairs to sense EEG as well as motion artifacts (if present) from the same 

location. One of the electrodes in an interdigitated electrode pair is considered to be the EEG 

sensing path, whereas the other electrode in the same interdigitated electrode pair is considered to 

be the motion sensing path. The motion signal sensed by the motion electrode is then used to 

control the variable gain of the EEG sensing path, thereby reducing the impact of motion artifacts. 

However, their study did not report any real-time measurement of EEG signals using the proposed 

system. 

1.2.2.7 N. Kosmyna et al., “AttentivU: A Wearable Pair of EEG and EOG Glasses for Real-

Time Physiological Processing.” 16th IEEE BSN Conference (2019): 1 – 4. [29] 

This study presents a smart EOG based eyeglass for augment learning activities. The eyeglass 

frame is designed in a stylish way for social acceptance. The smart system uses commercial 

silver/silver chloride electrodes for the EOG measurement. The compact EOG instrument, 

electrodes, wiring, and the battery are integrated very within the eyeglass frame without 

compromising its stylish appearance. The smart wearable can be useful in studying drowsiness, 

stress, assisted technologies etc., except for sleep study. 

1.2.2.8 C. Beach et al., “A Graphene-Based Sleep Mask for Comfortable Wearable Eye 

Tracking.” 41st IEEE EMBC Conference (2019): 6693 – 6696. [83] 

This study proposes another EOG measurement based eye mask. The flexible EOG electrodes are 

made of graphene oxide based nylon textile. Here also, the wireless EOG acquisition is 
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implemented on rigid board and integrated with the eye mask. Just like other textile based 

electrodes, this flexible electrodes also have relatively low conductivity, which is undesirable for 

a good quality EOG detection. 

1.2.2.9 S. –W. Kim et al., “Wearable Multi-Biosignal Analysis Integrated Interface With 

Direct Sleep-Stage Classification.” IEEE Access 8 (2020): 46131 – 46140. [84] 

This study proposes a multichannel biopotential measurement system for measuring EEG, EOG, 

and EMG signals from forehead. All these measured biopotentials are later processed for sleep 

stage classification. They have also developed their own biopotential sensing IC to extract all these 

biopotential features from the measured signal. The wearable uses commercial rigid electrodes for 

the measurement and the complete wireless acquisition system is implemented on rigid PCB. The 

rigid electrodes and the rigid PCB board are later integrated with the wearable headband. The 

wearable headband is made of rubber and mesh materials. This study basically focuses on the 

performance validation of their own IC designed for biopotential measurement. 

1.2.2.10 S. Rostaminia et al., “PhyMask: Robust Sensing of Brain Activity and Physiological 

Signals During Sleep with an All-textile Eye Mask.” ACM Transaction on Computing for 

Healthcare 3.3 (2022): 1 – 35. [85] 

This study proposes a textile fabric based eye mask integrated with flexible EOG/EEG electrodes, 

flexible pressure sensors, and the wireless data acquisition implemented on rigid PCB. The flexible 

EOG/EEG electrodes are reusable, conductive thread-based, hydrogel electrodes. The flexible 

electrodes are reported to have similar sensitivity like commercial rigid electrodes. The system 

also uses fabric-based piezoionic pressure sensors for detecting ballistic signal from heartbeats, 

thus acquiring data for cardiovascular parameter monitoring. It should be noted that the flexible 

electrodes require gel for proper EOG/EEG detection using the wearable system. 
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Fig. 1.4. Some of the reviewed non-commercial EEG/EOG wearables are reconstructed and presented here: (a) 

reprinted with permission from [68] © 2013 IEEE, (b) reprinted with permission from [50] © 2014 IEEE, (c) reprinted 

with permission from [83] © 2017 IEEE, (d) reprinted with permission from [46] © 2019 IEEE, (e) reprinted with 

permission from [71] © 2015 IEEE, (f) reprinted with permission from [29] © 2019 IEEE, (g) reprinted with 

permission from [84] © 2020 IEEE, and (h) reprinted with permission from [85] © 2022 ACM, respectively.  
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TABLE 1.1 

COMPARISON OF THE STATE-OF-THE-ART COMMERCIAL/NON-COMMERCIAL WEARABLES FOR EEG/EOG BASED APPLICATIONS AND SLEEP MONITORING REPORTED 

IN THIS THESIS 

The Work 
EOG 

EEG 

Heart-Rate (1), 

SpO2 (2), Breath (3) 

Any Other 

Indices 
Electrodes 

System 

PCB 

Motion 

Artifacts 

Removal 

Design 
Wearable 

Type 
Application 

COMMERCIAL EEG/EOG AND NON-EEG/EOG WEARABLES  

MUSE [75] Both All 
Head/Body 

Movements 
Rigid Rigid NM 

Wearable,  

Rigid Structure 
Headband 

Sleep Monitoring, 

Meditation 

DREEM [76] Both 3 
Head/Body 

Movements 
Rigid Rigid NM 

Wearable,  

Rigid Structure 
Headband Sleep Monitoring 

Sleep Shepherd 

[77] 
Both None None Rigid Rigid NM 

Wearable, Semi  

Rigid Structure 
Headband Sleep Monitoring 

Phillips Smart 

Sleep [78] 
Both All None Rigid Rigid NM 

Wearable,  

Rigid Structure 
Headband Sleep Monitoring 

EMOTIV [79] EEG None None Rigid Rigid NM 
Wearable,  

Rigid Structure 
Headset 

Brain-Computer 

Interface 

JINS MEME 

[80] 
EOG None None Rigid Rigid NM 

Wearable,  

Rigid Structure 
Eyeglasses 

Brain-Computer 

Interface 

NapWell [81] EOG None None **Flexible Rigid NM 
Wearable, Semi  

Rigid Structure 
Eye-mask Sleep Monitoring 

NON-COMMERCIAL EEG/EOG WEARABLES REPORTED IN SCHOLARLY ARTICLES 

J. Arnin et. al. 

[68] 
Both None None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Headband Sleep Monitoring 

J. Xu et. al. [50] EEG None ETI Rigid Rigid No 
Wearable, 

Rigid Structure 
Headset 

Brain-Computer 

Interface 
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** refers to the advantageous features of the wearables. 

NM : Not Mentioned. 

S. –F. Liang et. 

al. [71] 
EOG None None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Eye-mask Sleep Monitoring 

C. –T. Liu et. 

al. [82] 
EEG None None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Headband 

Sleep Monitoring, 

Depression 

A. J. Golparvar 

et. al. [70] 
EOG None None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Headband 

Brain-Computer 

Interface, Sleep 

A. Dabbaghian 

et. al. [46] 
EEG None None **Flexible **Flexible **YES 

**Wearable, 

Flexible 
Headband 

Brain Signals, 

Epilepsy  

N. Kosmyna et. 

al. [29] 
EOG None None Rigid Rigid No 

Wearable, 

Rigid Structure 
Eyeglasses Stress, Drowsiness 

C. Beach et. al. 

[83] 
EOG None None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Eye-mask Sleep Monitoring 

S. –W. Kim et. 

al. [84] 
Both None EMG Rigid Rigid No 

Wearable, Semi  

Rigid Structure 
Headband Sleep Monitoring 

S. Rostaminia 

et. al. [85] 
Both 1 None **Flexible Rigid No 

Wearable, Semi  

Rigid Structure 
Eye-mask Sleep Monitoring 
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1.2.3  A Comparative Study of all the EEG/EOG Wearables reported above: 

In most of the reported wearables, the biopotential instrument is implemented on rigid PCB, except 

one in [46]. In some work, the focus was to design a comfortable flexible electrode for biopotential 

measurements, which added additional cost for a wearable design [68], [70], [71], [83], [85]. In 

other works, the wearable platform is designed carefully with flexible, stretchable materials to 

provide comfort to the wearer [46], [68], [70], [71], [82]–[85]. However, none of the wearables 

reported in the scholarly articles addressed the impact of motion artifacts during biopotential 

recording. Only one work is reported to have smart hardware arrangements for motion artifacts 

compensation [46]. But their study did not report any real-time biopotential measurements. In most 

of the commercial EEG/EOG headsets, the electrode and measurement system housing part of the 

wearable platform are relatively rigid thus limiting the skin conformability of the wearable device. 

Therefore, skin conformability, flexibility of the measurement electrodes and the measurement 

systems are important for smart wearables. Fig. 1.4 presents some of the non-commercial 

EEG/EOG wearable prototypes discussed here. Table 1.1 summarises the usefulness and of all the 

commercial and non-commercial biopotential wearables discussed here. 

1.3  Intra-Oral based Wearable Devices 

In recent healthcare technologies, intra-oral wearables (such as dental retainers, mouthguards, 

MADs etc.) are getting popular among researchers with potential of measuring physiological 

parameters and in assisted technologies [86]−[93]. In some studies, dental retainers are employed 

for integrating tongue movement-based sensor interface to use in BCI applications [90], [91]. In 

other studies, intra-oral locations are studied for potential location of acquiring physiological 

parameters such as cardiovascular parameters, breath, and even EEG signals [92], [93]. Oral cavity 

is less likely to experience disturbances due to users’ body movements and can be an ideal location 

for smart sensor placements. Such intra-oral wearables are comfortable to wear, and several 

commercial oral appliances are already available for dental therapy and sleep disorder treatment 

applications such as teeth alignment, temporomandibular joint pain, teeth grinding (or bruxism), 
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snoring, OSA, and concussion detections [86]−[89]. Some of these intra-oral wearable devices, 

along with their usefulness and limitations, are reviewed here. 

1.3.1  Commercial Oral Appliances and their Applications 

1.3.1.1 Whole You [86]: Whole You is a popular organization known for providing custom-

fitted mouthguard based oral treatments related to teeth alignment, temporomandibular joint pain, 

teeth grinding (or bruxism), and studying sleep. However, their oral appliances are not directly 

available to buy from the market and are provided only to their patients. Their MADs are just the 

usual oral appliances for treatment, and do not have any smart sensors integrated with the device.  

1.3.1.2 SomnoMed [87]: SomnoMed is another organization known for providing custom-fitted 

mouthguard based oral treatments related to teeth grinding (or bruxism), snoring, and sleep apnea. 

The organization provides oral treatments and build customized MADs for their patients. Their 

oral appliances are available to buy from local distributers after consultations with sleep 

specialists. Just like Whole You, SomnoMed also provides the usual oral appliances for treatment, 

and do not have any smart sensors integrated with the device. 

1.3.1.3 Sisu Sense [88]: Sisu Sense is a company which provides an accelerometer sensor and 

high-performance wireless processor based smart, flexible oral appliance. This device is designed 

specifically for athletes to monitor the event and impact of any head/neck injuries that may happen 

during sports. The product also comes with a smartphone app which records the details and impact 

of an injury, with a feature to notify the families of the user in case of serious head/neck trauma. 

1.3.1.4 Prevent Biometrics [89]: Prevent Biometrics is another company which provides 

accelerometer sensor, wireless charging unit, and high-performance wireless processor based 

smart oral appliance. This device is also designed for athletes to prevent and monitor head impact 

data in real time and uses an app-based algorithm to calculate the force, location, direction and 

number of impacts during sports. 
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1.3.2  Intra-oral Wearable Prototypes reported in Scholarly Articles 

The above study shows a fairly small fraction of the tremendous possibilities on intra-oral based 

wearable applications. There are other intra-oral wearable prototypes used in intra-oral assisted 

technologies, cardiorespiratory measurements, and sleep postures reported in scholarly articles and 

some of them are reviewed below. 

1.3.2.1 H. Park et. al, “A Wireless Magnetoresistive Sensing System for an Intra-Oral 

Tongue-Computer Interface.” IEEE ISSCC (2012): 124 – 126. [90] 

In this study, a wireless, dental retainer (oral appliance) based wearable prototype is developed for 

intra-oral tongue computer interface (or ITCI). In this prototype, magnetoresistive sensors are used 

to track the tongue movements in different directions and send the sensor data wirelessly to the 

computer. The sensor data can be interpreted as commands and employed in ITCI based assisted 

applications for specially abled persons. 

1.3.2.2 E. R. Lontis et. al, “Wheelchair Control With Inductive Intra-Oral Tongue Interface 

for Individuals With Tetraplegia.” IEEE Sensors Journal 21.20 (2021): 22878 – 22890. [91] 

This study presents another wireless intra-oral tongue computer (or ITCI) interface with inductive 

sensors used in assisted wheelchair. The inductive sensors, the read-out circuitry, and battery are 

encapsulated in a dental retainer. The sensor senses the tongue movements in different directions 

and sends command wirelessly to the control unit of the assisted wheelchair. This smart ITCI 

interface for assisted wheelchair control is developed for patients suffering from tetraplegia, a 

paralytic condition where patients are unable to voluntary move their upper and lower body parts. 

1.3.2.3 S. Nabavi and S. Bhadra, “Oral Cavity Pressure Measurement-based Respiratory 

Monitoring System with Reduced Susceptibility to Motion Artifacts.” 42nd IEEE EMBC 

Conference (2021): 5900 – 5904. [92] 

In this study, a MAD based wearable integrated with pressure sensor for studying respiration. 

Pressure sensors are immune to motion artifacts or any other environmental parameters. The 

pressure sensor output in this study only depends upon the pressure created by airflow during 
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inhaling and exhaling. The wearable prototype is demonstrated for effective measurement of 

breathing activity and cessation, and may have potential application to monitor breathing patterns 

in OSA patients.  However, the  design  requires  the  sensor  to be placed in the middle of the oral 

cavity, which may create discomfort to the wearer. The prototype was developed by Dr. 

Seyedfakhreddin Nabavi in our lab.  

1.3.2.4 S. Nabavi and S. Bhadra, “Smart Mandibular Advancement Device for Intraoral 

Monitoring of Cardiorespiratory Parameters and Sleeping Postures.” IEEE TBCAS 15.2 

(2021): 248 – 258. [93] 

In this study, a smart MAD based wearable is prototyped for measuring cardiorespiratory 

parameters (e.g. heart-rate, SpO2, and breathing) using PPG sensor and sleep postures using 

accelerometer sensor. The prototype was developed in our lab by my colleague Dr. 

Seyedfakhreddin Nabavi. And the initial study for acquiring cardiorespiratory signals using PPG 

sensors was done by me [85]. Later, Dr. Seyedfakhreddin Nabavi conducted the further research 

on acquiring better quality intra-oral PPG signals intra-orally, extracting the cardiorespiratory 

parameters from the acquired signal, and developed this prototype, which may have potential 

applications for treating OSA patients. 

1.3.3  A Comparative Study of all the intra-oral Wearables reported above: 

In most of the reported intra-oral wearables, only a handful uses smart sensors for physiological 

parameter measurements. Most of the commercially available intra-oral wearables reported above 

are used for usual oral treatments as reported above [86]−[89]. However, the reported non-

commercial smart MAD prototypes already indicate immense potential in future healthcare 

applications. Table 1.2 summarises the usefulness of all the commercial and non-commercial intra-

oral wearables discussed here. 
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TABLE 1.2 

COMPARISON OF THE STATE-OF-THE-ART COMMERCIAL/NON-COMMERCIAL ORAL APPLIANCES (OR MOUTHGUARDS) REPORTED IN THIS THESIS 

The Work Smart Sensors 
Cardiorespiratory 

Indices 

Any Other 

Indices 

Oral Appliance 

Type 
Application 

COMMERCIAL ORAL APPLIANCES  

Whole You [86] — — — 
Mouthguard, 

MAD 

Teeth Grinding, Snoring, 

Temporomandibular Pain, Sleep Study 

SomnoMed [87] — — — 
Mouthguard, 

MAD 

Teeth Grinding, Snoring, 

Temporomandibular Pain, Sleep Study 

Sisu Sense [88] Accelerometer — Concussions Mouthguard Head Impact Monitoring in Sports 

Prevent Biometrics 

[89] 
Accelerometer — Concussions Mouthguard Head Impact Monitoring in Sports 

NON-COMMERCIAL ORAL APPLIANCES REPORTED IN SCHOLARLY ARTICLES  

H. Park et. al. [90] 
Magnetiresistive 

Sensor 
— — Dental Retainer 

Intra-oral Tongue Computer Interface for 

Assisted Technology 

E. R. Lontis et. al. 

[91] 
Inductive Sensor — — Dental Retainer 

Intra-oral Tongue Computer Interface for 

Assisted Technology 

S. Nabavi et. al. [92] 
Accelerometer, PPG 

Sensor, Temperature 

Heart-rate, SpO2, 

Breath 

Temperature, 

Sleep Postures 
MAD OSA Treatment and Sleep Study 

S. Nabavi et. al. [93] Pressure Sensor Only Breath — MAD 
Breath Monitoring in Sleep and OSA 

Treatment 
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1.4  Motivation 

In the context of the literature review done here, wearable biopotential measurement systems 

impose several issues in terms of design, usage, and performance. Most of the commercial 

EOG/EEG measurement devices use rigid electrodes and rigid PCB based measurement systems, 

which definitely makes the sensor and system integration challenging in wearable platforms (e.g. 

headset, headband, and eye-masks) [75]−[81]. Rigid electrodes and system PCBs require rigid 

housing in the wearable platform, causing discomfort to the wearers [75], [76], [78]−[80]. 

Sometimes soft materials are also padded around the sensor and system housing to provide extra 

comfort to the wearer, thus making the wearable platform bigger and heavier [77], [81]. Use of 

rigid electrodes and wearable platforms also raises the concern of skin conformability during 

usage. Some research works have recommended textile/fabric based flexible electrodes for 

EOG/EEG measurements. However, these flexible electrodes are reported to have relatively less 

sensitivity in comparison to the commercial rigid electrodes, designed in bigger size, and require 

electrode gel to sense a good quality biopotential [68]−[73]. They further increases the size, 

weight, and cost of the wearable platforms, thus making such designs less desirable for 

commercialization. Most of the EOG/EEG wearables reported here also suffer from motion 

artifacts, which is another limitation of biopotential systems [50], [68]−[71], [82]−[85]. 

 In the first part of our research, we are motivated to resolve some of the limitations of the 

wearable biopotential systems mentioned above. Our primary focus is to propose a flexible and 

lightweight biopotential measurement system which is skin-conformable along the curvature  of 

forehead, so that it can be worn by different people comfortably. The system can be integrated 

easily in fabric-based wearable such as headbands or eye-masks. Therefore, we shall also be 

looking into the possibility of designing flexible electrodes with improved biopotential sensing 

capability. Flexible PCB based electronics systems are lightweight, skin conformable, and can be 

a potential solution to our wearable design. We shall investigate the possibility of printing the 

measurement electrodes and implementing the measurement system on the same flexible substrate. 
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The system performance and limitations will be thoroughly tested for acquiring real-time 

biopotential signals, such as EOG. 

 In the next part of our research, we shall try to address the issues related to motion artifacts 

during EOG measurements, which were not investigated in our previous research. We shall try to 

propose smart circuit arrangements capable of mitigating motion artifacts during real-time EOG 

measurements. We shall also exercise the possibility of using non-contact (or capacitive) 

electrodes in our flexible system as they are superior in sensing biopotentials and do not require 

any electrode gel or skin preparations. This may help us further improving the overall performance 

of the forehead based, wearable EOG measurement system. 

 Even after niche design and engineering solutions to smart headband/eye-mask based 

wearables, users still find them somewhat uncomfortable to wear which compromises their sleep 

quality. Moreover, wearables like headbands or eye-masks are prone to displacements due to 

body/head movements during sleep which can change the smart system’s placement integrated 

within the wearable and corrupt its recorded data. Another alternative approach to design sleep 

monitoring devices can be oral appliances (e.g. mouthguards, MADs etc.). Oral appliances are 

comfortable to wear and used in several dental and sleep therapy [10], [86]−[89]. On the other 

hand, EEG signals are also reported to have been acquired intra-orally from the palate region [36], 

[37]. This has motivated us to further research and investigate the possibility of designing a smart 

oral appliance (MAD in our application) integrated with EEG electrodes and the measurement 

system for acquiring intra-oral EEG signals. However, intra-oral motions (such as tongue 

movements, teeth grinding, and gulping) can still impose some limitations for intra-oral EEG 

measurements. Therefore, we shall study the possibility of implementing smart sensor-fusion 

based technique to address the issues related to intra-oral motions. If the proposed smart MAD is 

implemented successfully, it may have applications in intra-oral EEG based sleep studies and in 

treatment of OSA patients. 
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1.5  Contribution and Structure 

1.5.1 Contribution 

Major contributions of the research described in this thesis are listed below. 

• Design of flexible electrodes: One of the key challenges in biopotential wearable 

systems is to design flexible, skin conformable electrodes which are comfortable to wear 

and has similar sensitivity to the commercial electrodes. For our EOG/EEG wearable 

prototypes, we have designed flexible gold electrodes printed on Polyimide substrate. 

The electrodes are designed both in contact and non-contact configurations. The contact 

gold electrodes showed similar sensitivity like commercial gold electrodes. Whereas, 

the non-contact (or capacitive) gold electrodes are found out to be at least 50 times (or 

more) sensitive in comparison to commercial contact gold electrodes. In our EOG based 

wearable prototypes, the flexible electrodes are printed as pads on the bottom layer of 

the wearable PCB board, thus easily integrating them with the measurement system 

directly. For our smart MAD based prototype, the flexible gold electrodes are mounted 

on the MAD itself with biocompatible adhesive. Given their flexibility and skin-

conformability, the intra-oral EEG electrodes do not cause any discomfort to the wearer. 

• Flexible PCB based EOG wearables: Our all EOG/EEG based prototypes are 

implemented on flexible Polyimide substrate. For the EOG prototypes, four-layer 

flexible PCBs are designed with the bottom layer containing printed contact/non-contact 

measurement electrodes and the top layer with the implemented biopotential acquisition 

unit. The second layer as the circuit ground plane and the third layer with active 

shielding between the discrete circuit components on the top layer and the measurement 

electrodes on the bottom layer. The EOG wearables are battery operated, suitable for 

long-term monitoring, and send data wirelessly using a Bluetooth 5.0 transceiver. The 

first EOG prototype uses contact electrodes and requires electrode gel for a good quality 

EOG detection. Whereas, the second EOG prototype uses non-contact electrodes which 

overcomes the sensitivity issue of the first prototype. In this prototype, the printed 
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flexible electrode pairs on the bottom layer are covered with a biocompatible kapton 

film, thus making them non-contact (or capacitive) electrodes Both the flexible substrate 

based EOG wearable prototypes are first of their kind ever reported in scholarly articles. 

Given their flexible substrates, both the prototypes are skin conformable and can be 

easily integrated with headbands/eye-masks. 

• Impact of motion artifacts on EOG measurements: Motion artifacts are considered 

to be a major issue during biopotential measurements. Our first EOG prototype do not 

have any special circuit arrangements to be able to measure EOG in the presence of 

motion artifacts. However, in our second EOG prototype, this issue has been addressed. 

The second EOG prototype uses two parallel electrode pairs in differential configuration 

to reduce the impact of motions at the first input amplifier stage while picking up EOG 

potentials. This prototype is capable of capturing EOG potentials in the presence of slow 

to moderate level motion artifacts.  

• Study of intra-oral EEG signals: This thesis also reports a detailed study of intra-oral 

EEG signals for the first time. Intra-oral EEG signals have been reported in a few 

scholarly articles in the past, but their detailed study and measurement challenges are 

never reported. In this study, various intra-oral locations are explored to acquire good 

quality intra-oral EEG signals. The intra-oral EEG signals are acquired using the flexible 

gold contact electrodes designed for our research. The study also reports the possible 

sources of intra-oral motion artifacts that can disrupt intra-oral EEG signals during 

measurements. Later, a smart mandibular advancement device (MAD) based wearable 

prototype is also developed to measure intra-oral EEG signals in the presence/absence 

of intra-oral motion artifacts using a single channel EEG acquisition. The smart MAD 

prototype uses EEG electrodes, accelerometer sensor, and the sensor read-out circuitry 

implemented on a flexible Polyimide substrate. The sensor read-out circuitry is battery 

operated and uses Bluetooth 5.0 transceiver for sending intra-oral EEG and motion 

signals wirelessly. The flexible substrate can be easily integrated along the curvature of 

the wearable MAD. The smart MAD based intra-oral EEG wearable prototype is also 
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first of its kind ever reported in scholarly articles which is capable of measuring intra-

oral EEG and motion signals simultaneously. The smart wearable MAD is comfortable 

to wear and have potential in intra-oral EEG based applications, such as sleep study. 

• MATLAB based algorithm to reduce motion artifacts in intra-oral EEG signals: 

Given the limited space inside oral cavity, the smart MAD prototype uses only a single 

channel EEG acquisition for intra-oral EEG measurements. Single channel EEG data 

generally requires sophisticated signal processing methods to reduce motion artifacts. 

In this work, we proposed a sensor-fusion based algorithm implemented in MATLAB 

for reducing motion artifacts in intra-oral EEG signals. The algorithm first uses the 

accelerometer data to detect the presence of any intra-oral motion activities and identify 

their time locations. If any motion events are detected, the then algorithm then 

decomposes the intra-oral EEG signal into independent components using empirical 

decomposition method (EMD) followed by independent component analysis (ICA). 

Then the decomposed independent components containing the motion signatures are 

mapped with the accelerometer data to locate motion corrupted data segments. Next the 

ICA components are denoised by nullifying the motion corrupted data segments. A 

motion artifacts reduced intra-oral EEG signal is then reconstructed using inverse ICA-

EMD method. The effectiveness of the proposed algorithm is also validated in this study 

using qualitative and quantitative approaches. The smart MAD prototype, along with 

the proposed algorithm, is capable of measuring intra-oral EEG signals in the 

presence/absence of motion artifacts. 

1.5.2 Structure 

This thesis is primarily supported by the three journal articles published or submitted by the author. 

Chapter 1 presents a detailed introduction and literature review on wearable devices with the 

potential applications of sleep monitoring, commercially available wearable devices for sleep 

monitoring, wearable prototypes for sleep monitoring reported in recent scholarly articles, their 

design limitations with detailed reasoning, and the motivation behind the development of 
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biopotential measurement based wearable applications for sleep monitoring. Chapter 2 presents 

our first wearable, flexible prototype integrated with the EOG electrodes and the EOG 

measurement system. The system design approaches are described in detail and important system 

metrics such as gain, noise, common-mode rejection ratio (or CMRR) are quantified. The system 

performance is validated for the detection of various EOG eye activities. The system is also 

demonstrated for a potential sleep study application based on EOG measurements. Chapter 3 

presents our second wearable, flexible prototype for EOG measurement capable of effectively 

suppressing motion artifacts while recording EOG signals. The system design approaches are 

described in detail and important system metrics such as gain, noise, CMRR are quantified. The 

system is also validated by recording EOG signals in the presence of motion artifacts and capable 

of capturing eye activities in the presence of motion artifacts. Chapter 4 presents smart MAD based 

prototype with sensor-fusion of EEG electrodes and accelerometer sensor. The smart MAD 

prototype is capable of measuring intra-oral EEG signals in the presence of intra-oral motions (e.g. 

tongue movements, teeth grinding, and gulping). The system design approaches are described in 

detail and important system metrics such as gain, CMRR are quantified. A MATLAB based 

algorithm is also developed to reduce intra-oral motion artifacts during intra-oral EEG 

measurements effectively. The smart MAD along with a MATLAB based algorithm, are validated 

both qualitatively and quantitatively by recording intra-oral EEG signals in the presence of intra-

oral motions for ‘eye open’ and ‘eye close’ activities. Chapter 5 presents comprehensive scholarly 

discussion about the proposed biopotential measurement system prototypes, their design 

approaches, usefulness, and limitations. Finally, the thesis work is concluded in Chapter 6, with 

directions to future work. 

1.6  List of Publications 

The contents of this thesis are presented in three publications that include three journal articles, 

first two of them are published and the third one is submitted recently. Additionally, the author 

authored six additional conference publications related to the thesis and co-authored in three 
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additional conference publications, not related to this thesis. The following is a list of publications 

and contributions of the author. 

1.6.1 Peer-reviewed Journal Articles: 

• Debbarma, Shibam, and Sharmistha Bhadra. “A Lightweight Flexible Wireless 

Electrooculogram Monitoring System With Printed Gold Electrodes.” IEEE Sensors 

Journal 21.18 (2021):20931–20942. 

• Debbarma, Shibam, and Sharmistha Bhadra. “A Flexible Wearable Electrooculogram 

System with Motion Artifacts Sensing and Reduction.” IEEE Transactions on Biomedical 

Circuits and Systems (TBCAS) 16.2 (2022): 324–335. 

• Debbarma, Shibam, and Sharmistha Bhadra. “A Sensor-Fusion Method for Measuring 

Motion Artifact Free Intra-oral EEG Signal.” Submitted in IEEE Sensors Journal (2023). 

1.6.2 Peer-reviewed Conference Articles as a First Author: 

• Debbarma, Shibam, and Sharmistha Bhadra. “Intraoral Monitoring of 

Photoplethysmogram Signal to Estimate Cardiorespiratory Parameters.” 2020 2nd 

International EAI Healthwear Conference. Springer (2021). 

• Debbarma, Shibam, Seyedfakhreddin Nabavi, and Sharmistha Bhadra. “Multi-level 

Motion Artifacts Reduction in Photoplethysmography Signal using Singular Value 

Decomposition.” 2020 2nd International EAI Healthwear Conference. Springer (2021). 

• Debbarma, Shibam, Seyedfakhreddin Nabavi, and Sharmistha Bhadra. “A Wireless 

Flexible Electrooculogram Monitoring System With Printed Electrodes.” 2021 IEEE 

International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 

2021. 

• Debbarma, Shibam, and Sharmistha Bhadra. “A Smart Mandibular Device for Intra-oral 

Electroencephalogram Monitoring.” 2021 IEEE Sensors Conference. IEEE, 2021. 
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• Debbarma, Shibam, and Sharmistha Bhadra. “A Wearable Electrooculogram System with 

Parallel Motion Artifact Sensing and Reduction.” 2022 International Symposium on 

Circuits and Systems (ISCAS) Conference. IEEE, 2022. 

• Debbarma, Shibam, and Sharmistha Bhadra. “An Intra-oral EEG System with 

Accelerometer For Motion Artifact Free EEG Recording.” 2023 IEEE International 

Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2023. 

[Presented]. 

1.6.3 Peer-reviewed Conference Articles as a Co-Author: 

• Seyedfakhreddin Nabavi, Debbarma, Shibam, and Sharmistha Bhadra. “Measurement of 

Cardiac Parameters by Motion Artifacts Free Photoplethysmography Signals.” 2020 IEEE 

International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 

2020. 

• Seyedfakhreddin Nabavi, Debbarma, Shibam, and Sharmistha Bhadra. “A Smart 

Mandibular Advancement Device for Intraoral Cardiorespiratory Monitoring.” 2020 42nd 

Annual International Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC). IEEE, 2020. 

• Han Cat Nguyen, Debbarma, Shibam, and Sharmistha Bhadra, “Flexible Fabric 

Electrodes Integrated with Mouthguard for Electroocoulogram Measurement.” 2023 IEEE 

International Conference on Flexible, Printable Sensors and Systems (FLEPS 203). IEEE, 

2023. [accepted] 
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Chapter 2 

 

A Lightweight Flexible Wireless Electrooculogram 

Monitoring System With Printed Gold Electrodes 

2.1 Abstract 

Electroocugraphy (EOG) is a simple and noninvasive method in which biopotentials developed 

across the eyes are measured during various eye activities such as eye blinking, winking, and 

horizontal/vertical eyeball movements. The measured biopotential is called the electroculogram 

(EOG) signal. This paper presents a single channel EOG measurement system which is 

implemented on a four layer flexible polymide substrate. The EOG measurement system with its 

signal conditioning stages is implemented on the top layer of the flexible board whereas, the EOG 

measurement electrodes are printed on the bottom layer of the flexible board using gold. This 

eliminates the requirement of external long wires during EOG monitoring. The middle two layers 

of the flexible substrate are used for implementing the circuit ground plane and active shielding. 

The entire circuit is powered by a rechargeable Li-ion coin battery. It also uses a Bluetooth 5.0 

transceiver module to send the EOG data wirelessly. The system is designed for an effective EOG 

signal bandwidth of 1.6 Hz to 47 Hz with an effective signal gain above 68.5 dB over the signal 

bandwidth. The system also has an excellent common-mode rejection ratio (CMRR) response 

above 70 dB. The system is validated with eight healthy subjects for the detection of different eye 

activities with an accuracy of 77.08 %. The mass of the entire flexible board along with its battery 
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is only 7.7 g. Such light mass, flexible substrate, and integrated printed electrodes make this EOG 

monitoring prototype an ideal unit for long term monitoring of biopotentials, without causing any 

discomfort to the wearer. 

 Index Terms— Electrooculography, eye activities, biopotentials, printed electrodes, analog 

front-end, flexible, wearable, wireless. 

 

Fig. 2.1 The basic EOG measurement setup with three electrode configuration. 

2.2 Introduction 

In recent decades, Electrooculography (EOG) has been proven to be a very popular and well-

established method used in studies related to neuroscience, cognition analysis, psychological 

behavior, assistive technology, and also in sleep studies. The EOG is a very simple, non-invasive 

technique where biopotentials are measured from around the eye of a human subject [1]. A 

potential field exists between the cornea and the retina of an eye, which changes during 

horizontal/vertical eyeball movements, eye reflex, and eye blinking activities. This change in 

potential is called Electrooculogram or EOG signal and can easily be picked up by placing two or 

more electrodes arrangement around the eyes, as shown in Fig. 2.1. The amount of change in the 
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EOG potential can be directly associated with the displacements of the eyeball from an initial 

position during eyeball movement activities and/or the amount of force that may have been used 

by the eye-muscles during eye reflex and eye blinking activities [2]. This simple concept of 

acquiring potential changes around the eyes has garnered the attention of researchers and opened 

up immense opportunities in research areas mentioned above [3]–[8]. This technique also played 

a key role in achieving tremendous advancements in several smart human-computer interface 

(HCI) applications and in assistive technologies for elderly people [6], [8]–[13]. 

 The amplitude of EOG signals is small and normally ranges from 0.05 to 3.5 mV [10]. 

Although, the frequency of EOG signals can range from DC to 100 Hz [13], the useful EOG signal 

bandwidth can be limited from 0.1 Hz to 40 Hz [10]. The EOG signals get easily contaminated by 

other biopotentials like electroencephalogram (EEG) and electromyogram (EMG) signals which 

also lie within the same signal bandwidth [1], [13]. The amplitude of the measured EOG signals 

also depends on several factors like the size of the measurement electrodes, the placement of the 

electrodes, the distance of the electrodes from the eye as well as from each other. Moreover, the 

skin-electrode contact impedance imposes another challenge, introducing DC drifts and 

deteriorating the EOG signal quality during measurement. In most experimental setups, electrodes 

are connected to the EOG hardware via long wires, which may also introduce power-line 

interferences. Motion during EOG measurement may also further contribute artifacts to the 

measured signal and deteriorates its quality. All these factors mentioned above cause inevitable 

challenges in selecting a good quality EOG electrode as well as in designing a good EOG 

measurement system [14]. 

 An ideal biopotential measurement electrode (be it for EOG, EEG, or ECG applications) 

should be comfortable to wear for long term measurement (e.g. sleep study) and should have very 

low skin-electrode impedance to acquire a good quality biopotential signal which is generally in a 

few microvolts to millivolts range. The conventional commercially available electrodes for 

biopotential measurements are silver, silver-chloride, and gold electrodes, known for their 

relatively low skin-electrode contact impedances and DC drifts [14]. The electrodes can be set up 
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in either dry or wet configuration. In dry electrode setup, there is no need for skin preparation or 

use of electrode gels and the electrodes can be directly placed on the patient for measurement. 

However, most of the reported dry electrodes are large in size, since larger area compensates for 

the impedance developed at the skin-electrode contact interface. For wet electrode configuration, 

saline solution based electrode gels are generally used with the electrode setup to lower the skin-

electrode contact impedance and improve signal measurement [15]. However, due to their rigid 

structure, the commercial electrodes are not generally preferred for long-term measurements as 

they cause discomfort to the wearer. 

 To overcome this obstacle, several flexible electrodes have been developed and reported by 

researchers. In recent technology, fabric based wearable electrodes have been developed for many 

biopotential measurement applications. Arnin et. al. [16] combined dry silver electrodes with 

conductive silver/nylon fabric and then attached to a headband for EOG application. Vehkaoja et. 

al. [17] developed an embroidered, conductive silver-coated fiber based wearable wet electrode 

for EOG and facial EMG measurements. A graphene textile based dry flexible electrode for EOG 

measurement have also been designed by Golparvar and Yapici [18]. Another silver/polyamide 

compound based flexible fabric sensor, by Liang et. al., is also reported in [19] for EOG based 

sleep study. Polymer composite based flexible electrodes are also designed and reported for similar 

applications. Guo et. al. [20] also designed ultra-thin gold wire mesh printed on a patchable elastic 

tape and used it as EOG electrodes. Chlaihawi et. al. [21] also reported multi-walled carbon 

nanotube (MWCNT)/PDMS composite based flexible conductive polymer based dry electrodes 

for ECG application. In another manuscript, a silver nano-wire (Ag NW)/PDMS composite based 

flexible dry EEG electrodes have been designed by Chen et. al. [22]. Each of these flexible 

electrode involves specific fabrication and design processes, which will add extra cost to the 

manufacturer along with the cost for the EOG measurement system design. 

 Interfacing the measurement electrodes with the hardware may introduce another limitation 

when it comes to patient’s comfort during long term monitoring. The flexible electrodes maybe 

comfortable to wear, but most of the commercial EOG hardware are generally rigid, bulky and 
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kept at a distance from the patient. Long wires are used to connect the electrodes with the EOG 

system. The use of long wires is also undesirable, because it forces the patient to stay still for the 

entire duration of monitoring as wire movements may introduce motion artifacts in the 

measurement which may saturate the input amplifier stage of the measurement unit [23]. In some 

dry electrodes, some part of the instrumentation is implemented on the opposite side of the skin-

electrode contact plate [23]–[25]. But again, those active electrodes are generally made of rigid 

boards to accommodate the recording hardware and cause discomfort when placed on a subject’s 

body. In some applications, the rigid hardware unit is housed in a plastic case and then attached 

with the wearable device itself (e.g. goggles and headbands), which can be uncomfortable to wear 

[10], [16], [26]. Flexible printed circuit boards (PCB boards) have garnered sufficient attention in 

recent trends and have potential for designing the recording hardware which could be wearable. 

Printing measurement electrodes on one side of the flexible PCB while implementing the hardware 

on the other side of the flexible PCB will eliminate the requirement of long wires. The flexible 

PCB boards are generally very light in mass and can be worn very comfortably due to their 

flexibility. In a recent work, by Dabbaghian et. al., a wireless, eight channel EEG system 

implemented on flexible PCB with printed capacitive dry electrodes was reported [27]. Although 

the circuit characterization was thoroughly performed and reported, the work did not report any 

real time measurement of EEG signals using their hardware. 

 In this manuscript, we present a flexible wireless biopotential measurement system for EOG 

application. The EOG hardware is implemented on a flexible polymide substrate with printed gold 

electrodes. A low power Bluetooth module is used for wireless data transmission. The entire unit 

is powered with a Li-ion coin battery. The measured mass of the flexible board, along with the 

implemented EOG unit (except the battery) and the battery with its holder are around 3.35 g and 

4.35 g, respectively, making the total mass of the entire unit 7.7 g. Thus, the light mass along with 

the flexibility of the EOG system makes it easy to use on any human subject, without causing any 

discomfort. If needed, the system can also be integrated in any type of head cap or head band for 

long term monitoring. The system performance is validated on eight healthy human subjects by 
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acquiring their EOG data wirelessly. The EOG data are later processed on a computer for feature 

extraction. The system is able to detect different types of eye activities efficiently, for all the eight 

healthy subjects, and has potential for long term comfortable EOG monitoring. 

 

Fig. 2.2. The complete block diagram of the implemented EOG measurement unit. 

2.3 System Design and Implementation 

The complete EOG system block diagram is presented in Fig. 2.2. The system has a single EOG 

channel in this prototype with a three electrode (two active electrodes and one reference electrode, 

as shown in Fig. 2.1) configuration for the measurement. The system has the following blocks: a 

power supply module, an analog front-end with the two active electrodes as inputs, a driven right 

leg (DRL) circuit interfaced with the reference electrode, and a microcontroller interfaced with a 

Bluetooth module for wireless data transmission. The dimension of the flexible polymide PCB 

board is approximately 12.5 cm × 1.8 cm. The flexible board has four layers. The top layer is used 

to implement all the off the shelf components for the EOG instrumentation blocks. The second 

layer is used as the ground plane and routing plane for overlapping PCB tracks. The third layer is 

used for implementing active shielding. The fourth (or the bottom) layer is used to print the gold 
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measurement electrode. The entire module is powered with a Li-ion coin battery. The EOG system 

design is explained with in-depth detail in the following subsections. 

 

Fig. 2.3. The EOG measurement unit – (a) three printed gold electrodes at the bottom layer of the flexible PCB, (b) 

the EOG measurement circuit on the top layer of the flexible PCB, and (c) the placement of the flexible system for 

EOG measurement. 

2.3.1 The Power Supply Block 

The power supply block in this unit uses a rechargeable Li-ion coin battery (manufactured by 

VARTA), a low-dropout voltage regulator IC TPS7333 (by Texas Instruments), and a general 

purpose op-amp LMC6484 (CMOS Quad Op-Amp IC, by Texas Instruments). The battery has a 

capacity of 120 mAh and its nominal voltage varies between 4.2 V to 3.7 V. This battery power 

ups the voltage regulator IC which generates a constant supply 3.3 V used for powering up the 

subsequent analog and digital circuit blocks. A general purpose op-amp circuit is also used to 

generate a constant voltage of 1.65 V to act as a reference voltage (or analog ground VREF, as shown 

in Fig. 2.2) for the analog front-end block and the DRL circuit. When powered up, the entire EOG 

system consumes 47.85 mW of power while transmitting data wirelessly using the Bluetooth. A 

battery life test is performed for the system by connecting it to the Li-ion coin battery when fully 
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charged. The overall battery life of the EOG unit is found out to be around 7 hours 40 minutes. 

The implemented power supply module on the flexible board is also shown in Fig. 2.3b. 

2.3.2 The Electrode Configuration 

The EOG system has one EOG channel which uses three electrode configuration: two active 

electrodes and one reference electrode. The electrodes are directly printed with gold on the fourth 

layer (or bottom layer) of the flexible board as soldering pads. The printed electrodes have a 

diameter of 1 cm and is printed 5 cm center-to-center apart from each other, as shown in Fig. 2.3a. 

The left and right electrodes of the board act as the active electrodes (Electrode 1 and Electrode 2, 

with reference to Fig. 2.2) and used as differential inputs to the analog front-end block. The middle 

electrode (as shown in Fig. 2.3a) acts as the reference electrode of the system, which is connected 

with the DRL block. It should be noted that the EOG signal amplitude can be increased by 

increasing the size of the electrodes and the distance between them [2]. 

2.3.3 The Analog Front-End 

The analog front-end is the most important part of the EOG system since this block helps in sensing 

and picking up the EOG potential and sending it to the analog-to-digital converter (ADC) of the 

microcontroller through various signal conditioning stages. This unit is also responsible for 

amplification of the measured EOG signal in an acceptable range and sufficient suppression of 

noise and common-mode signals. The signal conditioning stages of the analog front-end are an 

instrumentation amplifier (IA) as a first stage amplifier, followed by a 2nd order Butterworth low-

pass filter (LPF), a first order passive high-pass filter (HPF), and a second stage amplifier, as 

shown in Fig. 2.2. Since the entire analog front-end block is powered with a single 3.3 V supply 

voltage, its output voltage swing is also limited from 0 V to 3.3 V with analog ground set at 1.65 

V by the power supply block. The analog front-end block of the EOG system is implemented on 

the top layer of the flexible board and is shown in Fig. 2.3b. Each of these analog signal 

conditioning stage is discussed in detail in the next subsections. 
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2.3.3.1 The Instrumentation Amplifier (IA, as 1st Stage): The first instrumentation amplifier 

stage of the analog front-end block is a very crucial component as this block is directly connected 

to the EOG measurement electrodes. When the measurement electrodes are placed on the skin, 

high skin-electrode impedances are introduced. The skin-electrode contact interface also develops 

pretty large DC offsets and DC drifts, known as the common-mode signals [14]. Such DC signals 

are undesirable and if not removed, they may saturate the output of the first stage IA. Therefore, 

the IA component should also have very high common-mode rejection ratio (CMRR) in order to 

reject common-mode signals (like DC offset and DC drifts) coming from the skin-electrode 

interfaces. The EOG signal, like other biopotentials, also operates near DC as its useful bandwidth 

ranges from 0.1 to 40 Hz [10]. To further minimize the impact of common-mode signals, both the 

input active measurement electrodes are coupled with a 1 μF input capacitor and a 100 kΩ input 

resistor (as shown in Fig. 2.2) before feeding them to the input stages of the instrumentation 

amplifier. The capacitor-resistor network forms a high-pass filter (HPF) with a cut-off frequency 

(fc,HPF) of 1.6 Hz and helps in reducing the skin-electrode DC offset. It should be noted that 

considering the bandwidth of EOG signals, the loss of information between 0.1 Hz to 1.6 Hz is 

negligible. This HPF at the input terminals along with differential configuration at the IA inputs 

reduce a significant portion of the skin-electrode DC offset and prevents the first amplification 

stage from saturation. Some residual components of the EOG signal below 1.6 Hz may still remain 

at the output of the IA because of the first order input high-pass network. The requirement of using 

large resistor at the input high-pass network makes it imperative to have a very high input 

impedance (above 10 GΩ or more) at the input of the first stage amplifier to avoid loading effect. 

An IA generally has a very large input impedance and is an optimal choice for the first stage 

amplification in such applications. For this prototype, we have used low-power instrumentation 

amplifier INA818 (by Texas Instruments) as the first stage amplifier. It has an input impedance 

around 100 GΩ, low offset voltage around 35 μV, and its gain formula is given by, 

 𝐺𝑎𝑖𝑛𝐼𝐴 = 1 +  
50000

𝑅𝐺
 (2.1) 
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where RG is an external resistor used with the IA to set a specific gain for amplification. Although 

the electrodes at the differential inputs of the IA are coupled with capacitor and resistor for DC 

offset minimization, the gain of the first stage amplifier is still kept small to make sure the amplifier 

output does not saturate. For this prototype the gain at the first stage amplifier is kept at 51 by 

selecting RG as 1 kΩ. 

2.3.3.2 The 2nd Order Butterworth Low-Pass Filter: The second order low-pass active 

Butterworth filter is implemented using the LMC6484 Quad Op-Amp IC after the first stage 

amplifier, shown in Fig. 2.2. The gain of the low-pass filter (LPF) is kept around 1.5, whereas, the 

low-pass cut-off frequency (fc,LPF) for this stage is kept around 47 Hz. This makes the effective 

bandwidth for this EOG measurement system from 1.6 Hz to 47 Hz, bounded by the input high-

pass network and this low-pass stage, thus covering the useful EOG bandwidth as given in [10]. 

2.3.3.3 The Passive High-Pass Filter: After the LPF, a first-order passive high-pass filter (HPF), 

with fc,HPF around 1.6 Hz, is implemented just by using another 1 μF capacitor and a 100 kΩ 

resistor, shown in Fig. 2.2. This is done as a precautionary step to minimize the impact of the DC 

offsets coming from the previous stages, as the gain of the next stage, which is the second stage 

amplifier, is very high and having a large amplified version of DC offset at the output is not 

desirable. Although, some DC offset may still remain at the output because of the order chosen for 

this passive HPF. 

2.3.3.4 The 2nd Stage Amplifier: 

The second stage amplifier is implemented in a non-inverting configuration, as shown in Fig. 2.2, 

using the same general purpose LMC6484 Quad Op-Amp IC and its gain is set at 211 for this 

system. The second stage gain is kept relatively high to achieve a faithful amplification of the 

detected EOG signals coming from the previous stages and this gain value is selected empirically. 

2.3.4 The Driven Right Leg (DRL) Circuit 

A driven right leg or DRL circuit is a circuit arrangement which is normally used in many 

biopotential measurement hardware with differential input configuration. In this arrangement, the 
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common mode signal of the differential input stage is sensed from a subject using the active 

electrodes and then the common-mode signal is fed back to the subject’s body using the reference 

electrode. This arrangement further helps in minimizing the DC error that may have been 

introduced at the first stage IA inputs by the DC offset and the DC drifts generated at the skin-

electrode contact interface [28]. In this system, the DRL circuit is implemented using the same 

general purpose LMC6484 Op-Amp IC. A current limiting resistor of 100 kΩ is also at the output 

of the DRL circuit before interfacing it with the reference electrode, as shown in Fig. 2.2. This is 

done to meet the safety standards set by IFCN for biopotential measurements involving human 

subjects [29]. 

2.3.5 Active Shielding 

Since the flexible polymide substrate is very thin, there is always a chance that the EOG system 

components implemented on the top layer of the flexible board may introduce capacitive coupling 

around the electrodes printed on the bottom layer of the flexible board [27]. To avoid this issue, 

the flexible board is made of four layers and on the third layer, the layer just above the bottom 

layer, the active shielding scheme is implemented. This is done by printing three more metal plates 

of similar dimension of the electrodes on the third layer and aligned them exactly on top of the 

measurement electrodes at the bottom layer, so that it can couple an exact replica of the EOG 

potentials picked up at the skin-electrode interface. The second layer of the flexible board is used 

for implementing ground planes and routing overlapping PCB tracks. 

2.3.6 The Microcontroller and the Bluetooth Module 

The microcontroller and the Bluetooth module are the digital part of the EOG system. This signal 

acquisition block uses an analog-to-digital converter (ADC) to convert the output of the analog 

front-end block to digital data and transmit them wirelessly. The microcontroller Atmega328P IC 

(by Microchip Technology) is used for this implementation. The Atmega328P IC has eight ADC 

channels with resolution of 10 bits. The output of the analog front-end is fed to one of ADC 

channels of the microcontroller. The input signal at ADC is sampled at 200 Hz considering the 

signal bandwidth, thus meeting the Nyquist criteria. The microcontroller is then interfaced with a 
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low-energy Bluetooth module RN4871 (by Microchip Technology, BLE 5.0 transceiver, with 

built-in antenna), to transmit the EOG data wirelessly. 

2.3.7 Computer With the Bluetooth Transceiver 

Another RN4871 Bluetooth module is interfaced with a computer as the receiver module to acquire 

the ADC data sent by the EOG system wirelessly. The data is collected in real-time and then 

analyzed in MATLAB. The transmitted ADC data always have a DC offset, which is removed in 

MATLAB during signal processing and then a smoothening filter is also employed to remove the 

high frequency glitches generated from the ADC. The filtered signal is then processed for feature 

extraction indicating various eye activities performed during the measurement. 

2.4 System Characterization 

After the complete implementation of the EOG measurement system, the system is tested to 

evaluate its effective gain, and common-mode rejection responses. The EOG measurement unit 

has filters (a 2nd order Butterworth LPF and a passive HPF) which generally attenuate the incoming 

signals during filtering. Therefore, the effective gain of the system cannot be calculated directly 

by using the gain of the first and second stage amplifiers. To measure the gain of the EOG unit, 

the three printed electrodes of the system are interfaced to three external individual electrodes (of 

same size) printed on another board in such a way that the electrodes on the EOG system faces 

and touches their corresponding external electrodes. The external electrodes are fabricated such 

that they can be excited with external source from the back side. Next, an AC (alternating current) 

signal source is setup with a simple voltage division network to feed input signals to the external 

electrodes. The resistances of the voltage division network are selected such that the input 

electrodes experience only (1/1000) fraction of the actual signal set at the source. Then, the 

differential input terminals of the IA in the EOG system are fed with two sinusoid inputs using the 

external electrodes. The reference electrode is connected to the signal ground of the AC source. 

The amplitude of the input sinusoidal signals is varied until a clear sinusoidal waveform is 

observed at the output of the analog  front-end  block of the  EOG  system. Once a clear sinusoidal 
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Fig. 2.4. The EOG system characterization – (a) gain-vs-frequency response and (b) CMRR-vs-frequency response, 

(c) noise-vs-frequency response of the EOG systems (4 layer PCB with active shielding in Blue and 2 layer PCB 

without active shielding presented in [30]). 
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TABLE 2.1 

A DETAILED COMPARISON BETWEEN THIS PROPOSED FLEXIBLE SYSTEM AND SOME OTHER SYSTEMS FOR BIOPOTENTIAL MEASUREMENT APPLICATION  

 
BSN’19 

[10] 

TITS’20 

[12] 

EMBC’05 

[17] 

TIM’15 

[19] 

SENS. J.’19 

[22] 

TBCAS’19 

[27] 
THIS WORK 

Electrode Design and Specifications:- 

Electrode Type Rigid Flexible Flexible Flexible Flexible Flexible Flexible 

Contact/non-contact Contact Contact Contact Contact Contact 
Non-contact 

(Capacitive) 
Contact 

Electrode Material Metal (Silver) 
Silver Coated 

Nylon 

Silver Coated 

Fibers 

Dry Fabric  

(Silver/ polymide) 

Silver NWs/ 

PDMS 
Metal Metal (Gold) 

Electrode Size — 1.7 cm × 1 cm 2 cm × 2 cm — — 2 cm diameter 1 cm diameter 

Interface with the 

System 
Wired Wired Wired Wired Wired 

Integrated with 

the system 

Integrated with 

the system 

System Design and Specifications:- 

PCB Board Type Rigid Rigid Rigid Rigid Rigid Flexible Flexible 

System Weight — — — 84.2g — 9.2g 7.7g 

Number of Channels 2 4 6 1 8 8 1 

Power Supply (Volts) 3.3 3.3 3.3 3.3 3.3 3.3 3.3  

Power Consumption 

(Watts) 

~ 30 mA 

(Current) 
— 

~ 25.6 mA 

(Current) 
— — ~ 26 mW ~ 48.75 mW 

Data Trasmission Bluetooth Bluetooth Zigbee Bluetooth Bluetooth Bluetooth Bluetooth 

System Gain 
1100 (EOG) 

40000 (EEG) 
12 

40 (EOG) 

1000 (fEMG) 
— — > 53 dB > 68.5 dB 

System Bandwidth 

0.5 – 40 Hz 

(EOG) 

0.5 – 50 Hz 

(EEG) 

4 – 30 Hz 

0 – 400 Hz  

(EOG) 

10 – 400 Hz 

(fEMG) 

0.3 – 35 Hz — 1 – 300 Hz 1.6 – 47 Hz 

Application EOG/EEG EOG EOG/fEMG EOG 
EEG/ECG/ 

Respiration 
EEG EOG 
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output is observed, the frequency of the input signals is swept from 0.1 Hz to 100 Hz and the 

amplitude of the analog front-end output is observed. The gain-vs-frequency response curve for 

the EOG system is presented in Fig. 2.4a. The overall effective gain of the system is found out to 

be greater than 68.5 dB for the input bandwidth (from 1.6 Hz to 47 Hz) bounded by the HPF and 

LPF networks. 

 The common-mode rejection (CMR) response of a system is another crucial metric. The 

CMR response quantify the ability of rejecting common-mode signals and interferences by the 

system [30]. Here, the EOG system is also tested for CMR response. A common-mode signal (with 

same amplitude, phase, and frequency) is applied to both the inputs of the IA in the EOG system 

to quantify the common-mode rejection ratio (CMRR) of the system. The CMRR is found out to 

be greater than 70 dB. Hence, it is confirmed that the EOG system has an excellent rejection 

response to common-mode input signals. The CMRR-vs-frequency of the system is presented in 

Fig. 2.4b. The noise-vs-frequency response of the EOG circuit is evaluated and presented in Fig. 

4c (in Blue). The noise response of this circuit is then compared with the noise response of our 

previous prototype (in Red) [31]. In this work, a four layer PCB is implemented with active 

shielding for reducing noise in the system. As we can see in Fig. 2.4c, the noise of the new 

prototype is indeed less than the prototype presented in [31]. The proposed flexible system is 

compared in details with some other biopotential measurement systems from the literature in Table 

2.1. After the evaluation of the EOG system characteristics is completed, it is used to measure 

EOG signals for different eye activities. 

2.5 Measurement Results and Analysis 

The experimental procedure in this study is in accordance with the Deceleration of Helsinki and 

was approved by Institutional Review Board of McGill University (study number: A04-M21-19B, 

approval date: 04/17/2019). As shown in Fig. 2.3c, the flexible EOG board, along with its battery 

unit, is placed on the forehead of a human subject just above the eyebrows to monitor EOG signals. 

The EOG system is attached to the forehead of the human subject using transparent adhesive tapes. 
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It should be noted that the entire EOG unit with its battery can be easily integrated in a head cap 

or head band, if needed. 

2.5.1 Detection of Different EOG Signals 

The EOG system is validated for feature extraction during various eye activities like eye-blink, 

eye wink, and horizontal eye movements. The system is placed in such a way so that the reference 

electrode in the middle is positioned horizontally almost in the middle but a bit shifted towards the 

left side and vertically just above the eyebrows. A saline-solution based electrolytic gel is also 

used to reduce the skin-electrode contact impedance during EOG monitoring. Then the three eye 

activities: eye-blink, eye wink, and horizontal eyeball movements are performed and the respective 

EOG signals are captured, as shown in Fig. 2.5. The printed electrodes are configured with the 

analog front-end of the EOG system in such a way that the right electrode is connected to the 

positive input terminal and the left electrode is connected to the negative input terminal of the first 

stage IA of the analog front-end block. Therefore, any eye- activity to the right side will result in 

a positive or upward) deflection in the measured EOG potential and any eye-activity to the left 

side will result in a negative (or downward) deflection in the measured EOG potential, w.r.t. the 

baseline of the EOG signal. The baseline of the EOG signal is nothing but the common-mode 

signal of the two active electrodes observed by the DRL circuit block, which is fed back to the 

human body using the reference electrode. The first three eye activities, presented in Fig. 2.5a, are 

eye-blink activities. As mentioned earlier, because of the experimental electrode setup, we see a 

downward change followed by an upward change for every eye blinking. The downward change 

marks the eye-close event, followed by the upward change which marks the eye-open event in the 

signal. In Fig. 2.5b, two eye wink activities are presented. In eye wink activity, since there is only 

one eye is involved, the captured signal is generally large in amplitude. The EOG signal 

morphology for eye wink activities remains similar just as eye blink activities, but the peak-to-

peak response for eye winks are generally higher than the eye blink activities. By inspecting the 

polarity of the captured EOG signal we can also tell which eye is involved during the eye-wink 

activity.  For example,  in this  setup we  know that  the reference  electrode is  positioned slightly  
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Fig. 2.5. Measurement of the amplified EOG signals – (a) eye blinking activity, (b) eye winking activity, and (c) 

horizontal eyeball movement.  
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Fig. 2.6. The EOG data measured for a duration of 30 minutes. 

towards the left of the middle of the eye brows, the left active electrode is connected to the negative 

input terminal and the right active electrode is connected to the positive input terminal of the first 

stage IA in the analog front-end block. Therefore, an EOG signal with a negative (or downward) 

deflection followed by a positive(or upward) deflection represents a left eye wink activity. 

Whereas, an EOG signal with a positive (or upward) deflection followed by a negative (or 

downward) deflection represents a right eye wink activity (again, as presented in Fig. 2.5b). In Fig. 

2.5c, the horizontal eyeball movements are presented. Given the EOG system placement 

configuration, a negative (or downward) deflection represents an eyeball movement towards the 

left and a positive (or upward) deflection represents an eyeball movement towards the right w.r.t. 

an initial position. As mentioned earlier, given its light weight and flexibility, this EOG system is 

suitable for longterm monitoring. One such EOG data is presented in Fig. 2.6, recorded for a 

duration of 30 minutes (long term monitoring) using this flexible EOG unit. As we can see, the 

EOG signal has relatively stable baseline ranging around ± 0.15 volts (approximately). Therefore, 

it can be said that the EOG system is less sensitive to DC drift. This could be due to the cut-off 

frequency (1.6 Hz) of the high pass network which limits the DC baseline variation upto some 

extent. 
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Fig. 2.7. The EOG system position tests – (a) reference electrode’s center aligned a bit left from the middle of the 

eyebrows and vertically the center of the electrodes was in the middle of the forehead just above the eyebrows (the 

lower part of the forehead), (b) reference electrode’s center aligned a bit right from the middle of the eyebrows and 

vertically the center of the electrodes was in the middle of the forehead just above the eyebrows (the lower part of the 

forehead) (c) reference electrode’s position shifted to the right w.r.t. to the position in (b), (d) reference electrode’s 

position shifted to the left w.r.t. to the position in (a), and (e) the EOG system placed to the upper side of the forehead 

w.r.t. the position in (a). 

2.5.2 EOG System Placement Position Testing 

In the EOG system, the left and right printed electrodes are the active electrodes for EOG 

measurement, as shown in Fig. 2.3a. The middle electrode, as shown in Fig. 2.3a, acts as the 
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reference electrode and is  connected  to the DRL block of the system. All the three electrodes are 

of same size. The left and right electrodes are printed at same distance w.r.t. the middle electrode 

and their center-to-center distance is only 5 cm. Since the size of the measurement electrodes are 

same and the active electrodes (left and right) are printed in equidistance w.r.t. the reference 

electrode (in the middle), there may be a position where both the left and right measurement 

electrodes develop equal potential w.r.t. the reference electrode and in such case the measured 

EOG potential will be zero. Therefore, this flexible EOG circuit have to be placed on the forehead 

in such a way that the two left and right measurement electrodes never experience same potential 

w.r.t. the reference electrode. In the experimental setup (as shown in Fig. 2.3c), the flexible EOG 

system is positioned in such a way that horizontally the center of reference electrode (the middle 

electrode) is aligned a bit left/right from the middle of the eyebrows and vertically just above the 

eyebrows (closer to the eyes, as much as possible). In this configuration, the left and right 

measurement electrodes can never develop equal potential w.r.t. the reference electrode. Next we 

performed a position testing of the flexible EOG system and the test results are presented in Fig. 

2.7. 

 In this test, the system is initially placed such that horizontally the center of reference 

electrode (the middle electrode) is aligned a bit left from the middle of the eyebrows and vertically 

just above the eyebrows (closer to the eyes, as much as possible). Three eye blinking activities, 

where both the eyes are closed and then opened immediately, are performed and captured clearly, 

as shown in Fig. 2.7a. The eye-blinking activity results in a negative (or downward) deflection 

followed by a positive (or upward) deflection w.r.t. the EOG baseline. The negative (or downward) 

deflection at the beginning proves that the reference electrode is positioned slightly left w.r.t. the 

middle of the eyebrows. Next, the circuit is placed with the reference electrode positioned 

horizontally almost in the middle but a bit shifted towards the right side of the middle of the 

eyebrows. Again, the three eye-blinking activities are repeated and as we can see in Fig. 2.7b, the 

polarity of the eye-blinking activity is reversed. This time we see a positive (or upward) deflection 

first and then a negative (or downward) deflection in the EOG measurement. Next, the system is 
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shifted to the right so that the left active electrode is positioned at the middle of the eyebrows. 

Again the three eye-blinking activity is repeated. We can see in Fig. 2.7c that the EOG response 

from the right eye is larger than the response captured in the previous configuration in Fig. 2.7b. 

It can be also seen that the left EOG electrode can barely pick up the left eye-blink activity because 

of its distance. 

 Next, the EOG system is shifted to the left so that the right active electrode is positioned at 

the middle of the eyebrows. The captured EOG data is presented in Fig. 2.7d. In this case, the 

polarity response of the EOG signal during eye-blink activities are similar to the ones we have 

seen in Fig. 2.7a, but with higher amplitude for the left eye blink. Also the right EOG electrode 

can barely pick up the right eye-blink activity because of its distance. Next, the EOG system is 

placed similar to the position described for Fig. 2.7a, but this time the circuit is placed vertically 

further up w.r.t. the eyebrows. In this configuration, the captured EOG signals for eye-blink 

activities have similar pattern like in Fig. 2.7a. But this time, the EOG amplitude is reduced as the 

EOG measurement unit is placed far from the eyes, as shown in Fig. 2.7e. After this study, it can 

be concluded that the best position for placing this EOG system is either (a) or (b) configuration, 

as presented in Fig. 2.7. For measurements of section 2.5.1, configuration (a) is used. 

2.5.3 The EOG Feature Extraction 

To further validate the efficacy of the EOG system performance, the EOG system unit is tested on 

eight healthy individuals. For all of them, the EOG system unit is positioned in such a way so that 

the reference electrode in the middle is positioned horizontally almost in the middle but a bit shifted 

towards the left side and vertically just above the eyebrows (in short, the placement position (a) in 

Fig. 2.7). All the subjects are asked to perform the following eye activities: ten eye-blinks, ten eye 

winks (five left eye wink and five right eye wink), and ten horizontal eyeball movement activities 

(five times towards the left side and five times towards the right side). The collected data are then 

processed to remove DC offset generated from the analog-to-digital converter of the 

microcontroller and then passed through a smoothening filter of order 10 to minimize noise. The 

EOG  signal pattern  for different  eye activities  may remain  similar for  all the subjects, but their  
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Fig. 2.8. The EOG feature extraction algorithm flowchart. 

amplitude range vary significantly from person-to-person due to several reasons. For example, the 

head size and the forehead surface area varies from person-to-person. The EOG signals amplitude 

levels for subjects with smaller forehead surface area are found out to be higher as the flexible 

EOG substrate are able to cover a larger area above the eyes, where the system is placed. Even the 

shape of the eyebrows determines the distance between the eye and position above the eyebrows 

where the EOG system is to be placed. And we know, the peak-to-peak EOG amplitudes reduces 

with distance from the eyes. The EOG baseline signals also change across the subjects depending 

on their skin composition, sweat etc. which modulates the skin-electrode contact impedances. 

Therefore, it is challenging to classify different eye activity features using algorithm based on 

simple amplitude versus time data. Several assumptions have to be made for automated EOG 

feature extraction to achieve an acceptable range of accuracy. After analyzing the EOG data taken 

from the eight volunteers, feature extraction parameter values are chosen empirically (they are also 

shown in Fig. 2.5) and an EOG feature extraction algorithm, as shown in flowchart of Fig. 2.8, is 

proposed for automatic eye activity detection based on those basic signal parameters (like the EOG 

baseline range, the minimum peak-to-peak distance for a peak-pair, and minimum peak-to-peak 

amplitude for eye wink activities). Then the filtered EOG data of from another 8 subjects are 
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analysed using the EOG feature extraction algorithm (flowchart presented in Fig. 2.8) for 

automatic eye activity detection. The algorithm is written in MATLAB. 

 One of the important step of this algorithm is to determine if the peaks in “peak-pairs”, 

identified by the algorithm, are “sharp peaks” or not. Since the amplitude for eye blinks, eye winks, 

and horizontal eye movements may appear in similar range, it is impossible to classify them based 

on only amplitude values. Therefore, the widths of each peak in a peak-pair are also quantified to 

check their sharpness. As we can see in Fig. 2.5a and 2.5b, for the eye blink and the eye wink 

activities, the positive and the negative peaks have fast rise and fall time. Therefore, their widths 

are smaller. Whereas for horizontal eye movements (see Fig. 2.5c), one peak (either positive or 

negative) has fast rise and fall time, but the corresponding peak in the opposite direction has 

relatively slow rise or fall time. This happens because the EOG signal tends to go back to baseline 

range after a horizontal eye movement event in one direction (left or right). Therefore, one of the 

peaks has smaller width, and the corresponding peak has relatively larger width. For calculating 

the width of the peak, the absolute value of the peaks are analyzed. If the peak amplitude is greater 

than 0.6 volts, both its rising and falling edges (in either direction of a peak) are checked for a 

point where the amplitude value drops by 0.3 volts from its peak value in the either direction and 

the corresponding time locations of those points are selected. Then the time difference of those 

two points is calculated to quantify the width of the peak. For EOG peaks with absolute amplitude 

greater than 0.3 volts and less than 0.6 volts, the two points are selected on the either side of the 

peak when the amplitude value drops by 0.15 volts from the peak value. Next, the width of the 

peaks are assessed. If any peak has a width of 15 milliseconds or less, it is considered to be a 

“sharp” peak. If there is only one “sharp” peak is present in a peak-pair, it is classified as a 

horizontal eye movement. If the “sharp” peak for horizontal eye movement is a positive peak, it is 

classified as a right horizontal eye movement (w.r.t. placement configuration Fig. 2.7a). If the 

“sharp” peak for horizontal eye movement is a negative peak, it is classified as left horizontal eye 

movement (w.r.t. placement configuration Fig. 2.7a). If both the peaks are identified as “sharp”, 

their  peak-to-peak amplitude  is calculated. If  the peak-to-peak  amplitude lies between 0.3 – 1.8 
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TABLE 2.2 

THE EOG FEATURE EXTRACTION ALGORITHM PERFORMANCE VALIDATION OF DIFFERENT EYE ACTIVITY DETECTION FOR EIGHT SUBJECTS 

Subject ID 

Eye Blink 
Eye Wink Horozontal Eyeball Movement 

Left Right Left Right 

Counted  

by  

hand 

Detected 

by 

Algorithm 

Counted  

by  

hand 

Detected 

by 

Algorithm 

Counted  

by  

hand 

Detected 

by 

Algorithm 

Counted  

by  

hand 

Detected 

by 

Algorithm 

Counted  

by  

hand 

Detected 

by 

Algorithm 

1 10 9 5 4 5 4 5 4 5 5 

2 10 8 5 3 5 5 5 3 5 4 

3 10 7 5 4 5 4 5 3 5 2 

4 10 10 5 4 5 3 5 4 5 3 

5 10 7 5 4 5 4 5 3 5 3 

6 10 8 5 3 5 4 5 5 5 3 

7 10 7 5 3 5 2 5 4 5 3 

8 10 10 5 4 5 5 5 5 5 5 

Total 80 66 40 29 40 31 40 31 40 28 

Accuracy 82.5 %  72.5 %  77.5 %  77.5 %  70 %  
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volts, it is classified as the eye blink activity. If the peak-to-peak amplitude is above 1.8 volts, it is 

classified as eye wink activity. For eye wink activity, if the positive peak appears first in the time 

domain for a peak-pair, it is classified as a right eye wink, otherwise it is a left eye wink. The EOG 

data of all eight subjects are analyzed using this algorithm and the results are presented in Table 

2.2. The EOG feature extraction algorithm was able to detect 185 out of 240 different eye-activities 

correctly, making the overall accuracy of the algorithm around 77.08 %. 

 

Fig. 2.9. Repetitive eye movement (REM) test, depicting the REM sleep stage, using the flexible EOG circuit. 

 In future, this flexible EOG system is expected to be used in in sleep stage classification 

during sleep study. Therefore, a very simple experiment is performed where one volunteer is asked 

to lie down in supine position and keep the eyelids closed. Then the person is asked to rapidly 

move his eyeballs while keeping his eyelids closed, to simulate the REM (repetitive eye 

movement) sleep stage condition. REM sleep stage condition is a condition of deep sleep where 

the subject under study is said to be dreaming, which leads to REM activity [7]. The flexible EOG 

circuit is able to detect the REM activity, as shown in Fig. 2.9, thus validating the applicability of 

the system. 

2.6 Conclusion and Future Scope 

A flexible, wireless, wearable biopotential measurement system for EOG monitoring is presented 

in this manuscript. The single channel flexible EOG system has printed gold electrodes on the 
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bottom side of the flexible board, whereas the biopotential measurement instrumentation is 

implemented on the top side of the flexible board. The flexible board is made of four layers with 

the inner two layers used for ground plane and active shielding. The system is characterized for its 

gain and CMRR characteristics. The effective gain of the EOG system is over 68.5 dB for its 

effective bandwidth limited from 1.6 Hz to 47 Hz. The system also has an excellent CMRR 

response, greater than 70 dB. The system performance is then evaluated for capturing different eye 

activities (e.g. eye blink, eye wink, and horizontal eyeball movement) from eight healthy subjects. 

It shows an accuracy of 95.83% for detecting different eye activities. The EOG prototype is very 

light (mass only 7.7 g) and very comfortable to wear because of its flexible polymide substrate and 

printed electrodes. Moreover, the printed electrodes in the system eliminates the use of long wire 

during EOG measurement, which makes this system ideal for long term monitoring. The system 

can also be easily integrated in head caps, head bands, and eye masks. 

Currently the electrodes need some electrolytic gel to be placed in between the electrodes 

and the skin to pick up good EOG signal. Otherwise the collected EOG is not clear enough to 

detect many eye activities. The size of the printed electrodes is small with only a diameter of 1 cm. 

In most of the cases, active dry electrodes are larger in size, with diameter (or dimension) of at 

least 2 cm or more, as reported in many research works [19] – [25], [27]. Sweat also has an impact 

on skin-electrode contact impedance during biopotential measurement. The chemical composition 

of sweat helps in conductivity and the presence of sweat during biopotential measurement further 

helps in reducing the skin-electrode contact impedance and capturing a better quality signal with 

higher amplitude [32]. However, given the small size of printed electrodes and application of 

electrode gel during EOG measurement using this system, the effect of the sweat test was not 

tested separately. In future the size of the printed electrodes will be increased to remove the 

necessity of the electrolytic gel. Moreover, with larger size printed dry electrodes we will test the 

effects of sweat. The EOG feature extraction algorithm will also be further refined in future, to 

improve its accuracy in classifying the different EOG signals. Then, the EOG system will also be 

used in sleep studies. 
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2.7 Bridging Text 

This work presents a lightweight, battery-operated, wireless, wearable, flexible EOG measurement 

system. This is also the first reported flexible EOG prototype with integrated flexible gold 

electrodes printed on the bottom layer of the board. The sensitivity of the flexible gold electrodes 

has been tested and found out to be similar like the commercial rigid gold electrodes. However, 

the system still requires electrode gel to lower the impedance at the skin-electrode contact interface 

for a good quality EOG measurement which is a known fact for any kind of contact electrode based 

systems. However, the gel dries up with time making the system not suitable for long-term 

monitoring. The skin-electrode contact impedance can be relaxed by increasing the present size of 

the printed gold electrodes. But this increases the dimensions of the entire flexible board. 

Moreover, one of the participants was found out to be allergic to gold during EOG data acquiring. 

This has led us to think the possibility of using non-contact (or capacitive) electrodes for our next 

prototype design. The device presented in this chapter was also found out to be sensitive to motion 

artifacts, which imposed another limitation on the system performance. Therefore, we investigated 

the possibilities of a smart way to mitigate this motion artifact issue in our next prototype. It is 

worth to mention that this device has been validated for EOG measurement based sleep stage 

classifications using machine learning algorithm, implemented by one of the graduate students in 

our lab [33]. Therefore, it can be concluded that this EOG wearable along with a MAD has a 

potential to monitor sleep stages and treat OSA patients effectively. 
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Chapter 3 

 

A Flexible Wearable Electrooculogram System With 

Motion Artifacts Sensing and Reduction 

3.1 Abstract 

Electrooculogram (EOG) is a well-known physiological metric picked up by placing two or more 

electrodes around the eyeball. EOG signals are known to be extremely susceptible to motion 

artifacts. This paper presents a single channel, wireless, wearable flexible EOG monitoring system 

with motion artifacts sensing and reduction feature. The system uses two non-contact electrode 

pairs for EOG/motion artifacts detection and motion artifacts reduction. It is implemented on a 

four-layer flexible polyimide substrate. It is light-weight (only 8.75 gram), battery operated, and 

uses a microcontroller and a BLE 5.0 transceiver for wireless EOG data transmission, while 

consuming only 56 mW of power. The system metrics such as gain around 37 dB, bandwidth from 

1 Hz to 40 Hz, and noise are evaluated. The system is tested for different electrode configurations 

and it is demonstrated that horizontally parallel electrode pairs achieve an acceptable motion 

artifact reduction at the output, while preserving perfect EOG features (such as eye-blinking). The 

average sensitivity for horizontally parallel non-contact electrodes is found out to be more than 50 

times with respect to commercial gold electrodes, whereas the average response time of the sensor 

is around 380 mS. The flexible EOG system is comfortable to wear and the use of non-contact 
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electrode eliminates the need of skin preparation. Therefore, the system can be easily integrated 

with eye-masks and headbands, thus making it an excellent prototype for many smart applications. 

Index Terms— Analog front-end, electrooculography, eye activity, flexible, motion artifacts 

reduction, noncontact electrodes, skin conformable, wearable. 

3.2 Introduction 

Electrooculography (or EOG) is one of the well- renowned and standard technique used in 

biomedical research and in various applications such as psychiatry, sleep study, gaze estimation, 

human-computer interface (HCI) [1]–[7]. EOG sense the biopotential developed during eye 

blinking and eye movement activities [5], [8]. The amplitude of EOG signal can have a spread 

from a few microvolts (∼ 50 µVolts) up to a few millivolts, depending upon the placement of the 

measurement electrodes around the eyes and the distance between them [9]. The useful bandwidth 

of EOG signal can be limited from 0.1 Hz to 40 Hz [10]. The features of EOG signal strongly 

depend on the physical attributes (e.g., type, size etc.) of the measurement electrodes and their 

placement around the eyes. 

 The EOG (or any biopotential) measurement electrodes are generally classified into two 

categories: contact electrodes and non-contact electrodes (also known as capacitive electrodes) 

[10]. The contact electrodes make contact with the skin during biopotential measurement [9]–[11] 

and are the most common type. Non-contact electrodes, on the other hand, use an insulating layer 

as a dielectric between the skin and the metal electrode plate, creating a capacitor between the 

skin-electrode interfaces [10], [12]. Contact electrodes generally require skin preparation and 

electrode gel during the measurement [10], [11]. Non-contact electrodes do not require any skin 

preparation/electrode gel during measurement which is advantageous [10], [12]. Since EOG 

potentials can get contaminated easily by other biopotential signals, such as electroencephalogram 

(EEG) and electromyogram (EMG), it is recommended to place EOG electrodes as close to the 

eyes as possible to achieve a faithful detection of EOG signal during eye activities. 
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 Flexible electrodes are generally preferred over rigid electrodes. Flexible contact printed 

electrodes have already been reported to have similar sensitivity like the standard rigid electrodes 

[13]. In some latest applications, the EOG/EEG system is developed on flexible printed circuit 

boards (PCBs) with the instrumentation implemented on one side and the electrodes printed on the 

other side of the flexible board [11], [12]. Such acquisition systems are suitable for long-term 

monitoring due to their flexibility, light weight, skin conformability, and capability of providing 

comfort to the wearer. 

 Biopotential measurements are susceptible to random motion artifacts [12], [14]–[17]. Such 

artifacts get introduced due to nearby environmental vibrations and movement of the subject under 

test. The non-contact (or capacitive) electrodes are extremely sensitive to motion artifacts. The gap 

between the skin and the metal plate changes due to motion which in turn impacts the overall 

capacitance offered by the non-contact electrode at the skin-electrode interface [12]. Motion 

artifacts may have a large dynamic range in comparison to the measured biopotential. The 

bandwidth of the motion signals may fall well within the biopotential signal bandwidth itself, 

which makes it more difficult to remove motion artifacts using conventional signal processing. 

Given its large dynamic range, the motion artifacts also demand to have an acquisition system with 

large supply voltage in order to capture the motion signals and avoid output saturation. In one 

report, by Ottenbacher et al. [15], a sensor-fusion is performed using an accelerometer and 

electrocardiogram (ECG) electrodes. The accelerometer picks up the motion artifacts and the ECG 

electrodes measures the motion contaminated ECG signal. The accelerometer signal is used as the 

reference signal in a complex adaptive filter to estimate and remove the motion artifacts from the 

ECG output. Another research group has designed an ECG/ETI (or electrode-tissue impedance) 

system, where the same electrode is employed to sense both ECG and ETI signals [16]. This time, 

ETI signal is used as the reference motion signal. In another work, the same concept has been 

adapted for an EEG/ETI system to estimate and remove motion artifacts from the EEG signal [17]. 

The works in [16] and [17] use DSP for motion suppression algorithm which consumes large 

power to operate. This results in smaller battery life which is undesirable. Moreover, the systems 
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reported in [15]–[17] use contact electrodes which need skin preparation and gel. One recent work, 

by Dabbaghian et al. [12], also reports an EEG measurement circuit which is capable of sensing 

both EEG and motion artifacts using a pair inter-digitated non-contact electrodes. One of the inter-

digitated electrodes is treated as the signal path and the other as the motion path. The signal sensed 

at the motion path is used to control a variable gain module present at the signal path, thereby 

estimating and effectively reducing motion artifacts from the measured EEG signal. While they 

report a detailed validation of their circuits, no basic EEG recording using their system was 

reported. Moreover, their circuitry is complex to implement. The motivation of our work is to 

overcome some of the limitations of these existing works. 

 In this manuscript, we report a wireless wearable EOG acquisition system consisting of two 

pairs of flexible printed non-contact electrodes for EOG sensing, and motion artifacts sensing and 

reduction. The complete system is implemented on a four-layer flexible polyimide substrate. The 

EOG acquisition unit is implemented on the top layer whereas the flexible non-contact 

measurement electrodes are printed on the bottom layer. The second layer is used as the ground 

plane, and the third layer is used as the active shielding layer of the system. The flexible EOG 

system is battery operated and transmits the recorded data wirelessly using BLE 5.0 transceiver. 

The novelty of the system is that it does not require any skin preparation/gel and uses a simple 

approach of two electrode pairs and differential amplifier to sense and minimise the impact of 

motion. The system requires less number of components when compared to the state of the art and 

does not use any DSP chip or algorithm for motion artifacts reduction. Moreover, the system is 

flexible, light weight (i.e., 8.75 gram) and comfortable to wear. It is extensively tested with 

different shapes of non-contact electrodes under different placement configurations for robust 

motion artifacts estimation and reduction. The impact of sweat and motion on the printed non-

contact electrodes are also investigated. It is shown that the system is capable to reduce the motion 

artifacts effectively while the EOG features can be preserved by using the optimal electrode 

configuration. 

75 



 

3.3 Non-contact Electrode Design Considerations and Motion Artifacts 

Unlike contact electrodes, non-contact electrodes (or capacitive electrodes) generally do not make 

any direct contact with skin where the electrode is placed. Apart from the advantage of no 

requirement of skin preparation, another advantage of noncontact electrodes is that they do not 

suffer from polarization effect like the contact ones [10], [12]. Fig. 3.1 presents generic skin-

electrode contact impedance models for contact electrodes with electrode gel, dry contact 

electrodes, and non-contact electrodes [12], [18]. 

 

Fig 3.1. Generic skin-electrode contact impedance models with the impact of sweat: (a) contact electrode with 

electrode gel (VE, E-gel, VSkin, E-gel, and VSweat, E-gel are polarization voltages at respective interfaces [18]; (b) dry contact 

electrode (VSkin, E and VSweat, E are polarization voltages at respective interfaces, based on [12], [18]); and (c) non-

contact electrode (no polarization effect, based on  [12] and the sweat model of contact electrode). 

3.3.1 Skin-Electrode Contact Capacitance Measurement 

The capacitance of the non-contact electrodes generally depends upon the size of the metal 

electrode, the skin property, and the thickness and dielectric property of the insulating layer [10], 

[12],  [13].  In  our work,  three  different  non-contact  gold  electrodes:  circular, rectangular, and 
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Fig. 3.2. Skin-electrode contact capacitance measurement for the three types of non-contact electrodes: circular, 

rectangular, and interdigitated. The solid lines show the average of 10 measurements. 

interdigitated as shown in Fig. 3.2, are printed as contact pads by the PCB manufacturer on the 

flexible polyimide PCB (printed circuit board) substrate. A kapton film (with a thickness of 

approximately 127 µm) is used as the dielectric material between the skin and the metal plate for 

all the electrodes. The effective skin-electrode contact capacitance for all three electrodes are 

measured using a Keysight E4980A LCR meter. For the skin-electrode contact capacitance 

measurement, a contact gold electrode with electrode gel and one of the non-contact electrodes are 

placed closely on the forehead of one subject [19]. The effective skin-electrode contact capacitance 
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is measured by measuring the capacitance between the two metal terminals of the contact and 

noncontact electrodes connected with the LCR meter. For a better accuracy, the experiment is 

repeated ten times for each type of electrodes and the average skin-electrode contact capacitance 

(CSkin-Electrode) along with the measured values are reported in Fig. 3.2. The experimental data are 

summarized in third column of Table 3.1. As we can see from the presented data, the circular and 

the rectangular electrodes have almost same area and their measured capacitances are also very 

close. Whereas, the interdigitated one has smaller capacitance because of its smaller area. The 

maximum difference found in the skin-electrode contact capacitances from their average values is 

defined as the uncertainty band in all three measurements. It should be noted that the measured 

skin-electrode contact capacitances for all three types non-contact electrodes are considerably 

small. Therefore, they are highly sensitive to even the slightest movements and vibrations around 

them or small displacement. This is one major drawback of non-contact electrodes [10], [12]. 

3.3.2 Impact of Sweat on Skin-Electrode Contact Capacitance 

The skin-electrode contact impedance also gets modulated in the presence of sweat. Sweat is 

considered to be a good medium for biopotential measurement, which helps in decreasing the 

overall skin-electrode contact impedance for contact electrodes and enhancing the biopotential 

recording capability [18]. Therefore, the impact of sweat is modelled as an additional capacitance-

resistance pair along with its respective polarization voltage (see, Fig. 3.1a and 3.1b) in contact 

electrodes [12], [18]. Non-contact electrodes have very small capacitance and the change in 

capacitance due to sweat may impact the sensed biopotential. Therefore, following the sweat 

models of contact electrodes, the impact of sweat on non-contact electrodes can be modelled as an 

additional capacitance-resistance pair in the model of non-contact electrode reported in [12]. Since 

non-contact electrodes do not suffer from polarization effect, no polarization voltage is present in 

the non-contact electrode model. The model for non-contact electrode with the impact of sweat is 

shown in Fig. 3.1c. The overall dielectric property at the skin-insulating layer interface will change 

due to the presence of sweat, which in-turn will increase (as assumed in the model) the overall 

78 



 

skin-electrode contact capacitance. However, the impact of the added capacitance will be small 

due to the presence of the series capacitance at electrode-dielectric interface. 

 

Fig. 3.3. The impact of sweat on the skin-electrode contact capacitance measured for the three types of non-contact 

electrodes: (a) circular, (b) rectangular, and (c) interdigitated electrode. The solid lines show the average of 5 

measurements. 

 To do a qualitative study of the impact of sweat on non-contact electrodes, a sweat test is 

performed. In the test, a saline solution (with 0.9% Na+Cl– concentration) is used as a substitute of 

sweat on the non-contact electrodes. A sprayer is used to spray the solution on the test electrodes 

before placing it on the skin for measurement. The average solution volume is 125 µL per spray. 
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Three sweat volume tests are performed (with one spray i.e., 125 µL, two sprays i.e., 250 µL, and 

three sprays i.e., 375 µL of sweat) on each type of electrodes. The measurements are repeated five 

times for each test cases. The average skin electrode contact capacitances along with the measured 

values are presented in Fig. 3.3. The experimental data are summarized in fourth, fifth and sixth 

column of Table 3.1. If we compare the data in Table 3.1, we can see that the effective skin-

electrode contact capacitances indeed increase by small amount as the volume of sweat increases. 

These results align with predictions from the model in Fig. 3.1c. Overserving the amount of change 

in capacitance for different types of electrodes, it can be said that the capacitance increase due to 

sweat is proportional to the sweat volume as well as the area of the electrodes. 

TABLE 3.1 

NON-CONTACT ELECTRODE DESIGN, MEASUREMENT, AND SWEAT TESTING 

Electrode 

Geometry 

Electrode 

Area 

 No Sweat  Sweat Volume 

125 µL 

 Sweat Volume 

250 µL 

 Sweat Volume 

375 µL 

Avg. CSkin-Electrode  

Spread ± 

Uncertainty 

(20 Hz – 10 kHz) 

Avg. CSkin-Electrode  

Spread ± 

Uncertainty 

(20 Hz – 10 kHz) 

Avg. CSkin-Electrode  

Spread ± 

Uncertainty 

(20 Hz – 10 kHz) 

Avg. CSkin-Electrode  

Spread ± 

Uncertainty 

(20 Hz – 10 kHz) 

Circular 
176.7 

mm2 

47.2 pF ± 0.75 pF 

to 

42.1 pF ± 1.18 pF 

53.2 pF ± 2.25 pF 

to 

50.3 pF± 2.61 pF 

59.0 pF ± 0.33 pF 

to 

53.4 pF ± 1.15 pF 

64.7 pF ± 0.87 pF 

to 

59.7 pF ± 0.5 pF 

Rectangular 
175  

mm2 

47.5 pF ± 1.06 pF 

to 

43.9 pF ± 1.02 pF 

56.3 pF ± 1.60 pF 

to 

51.6 pF ± 1.21 pF 

60.4 pF ± 1.88 pF 

To 

54.7 pF ± 1.50 pF 

65.0 pF ± 1.04 pF 

to 

60.0 pF ± 0.68 pF 

Interdigitated 
100.5 

mm2 

39.8 pF ± 2.02 pF 

to 

36.3 pF ± 1.11 pF 

41.9 pF ± 2.06 pF 

to 

38.4 pF± 0.71 pF 

43.8 pF ± 0.80 pF 

To 

39.6 pF ± 0.45 pF 

46.6 pF ± 0.40 pF 

to 

42.3 pF ± 0.59 pF 

3.3.3 Impact of Motion on Skin-Electrode Contact Capacitance 

In biopotential acquisition systems, motion artifacts can be considered as the most challenging 

interference during signal measurement. Motion artifacts get introduced to the measured signal 

during recording due to several reasons, like improper electrode placements, patient’s 

voluntary/involuntary movements during normal activities (e.g., talking, chewing, breathing etc.), 

and  nearby  environmental  vibrations  [12]. Non-contact  electrodes  are  more  prone  to  motion  
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Fig. 3.4. Impact of motion artifacts on the skin-electrode contact capacitance: (a) circular electrode, (b) rectangular 

electrode, and (c) interdigitated electrode. 

artifacts. Motion artifacts may create an air-gap at the skin-electrode contact interface. Sometimes, 

improper placement of measurement electrodes also creates air-gap at the skin-electrode contact 

interface. As a result of air-gap, the distance between the electrode plate and the skin increases and 

the overall skin-electrode contact capacitance reduces at the contact interface, thus making the 

electrode more sensitive to motion. Such variation in input capacitance also changes the amplitude 

and phase of the recorded biopotential, thereby degrading the overall output of the system. When 

it comes to two or more recording electrodes, all the electrodes do not experience the same amount 

of motion artifacts at the same time, which causes DC drifts at the input of the measurement unit, 

degrading the overall common-mode rejection ratio (or CMRR) of the measurement unit [20]. 

Therefore, it is important to have a proper contact between the skin and the dielectric layer of 

measurement electrodes for a good quality signal detection. The high-pass cut-off frequency, at 

the input stages of the biopotential measurement system, also gets easily affected by skin-electrode 

contact capacitance variation. The high-pass cut-off frequency variation can be stabilized by 
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choosing large load resistance at the input terminal. But such designs will need an ultra-high input 

impedance (> 1 TΩ) amplifier as the first stage amplifier of the measurement unit, to avoid loading 

effect [14], [21] – [23]. These system design considerations will be discussed in detail in the next 

section. 

 To simulate the impact of motion on skin-electrode contact capacitance, a capacitive-

feedback amplifier circuit is implemented [12]. The gain of the amplifier is set at 1 by selecting 

the input and feedback capacitor values, both as 100 pF. The high-pass cutoff of the circuit is set 

around 0.16 Hz by selecting a resistor of 10 GΩ at the feedback path. Two electrode plates of 

similar shape (circular or rectangular or interdigitated) and the kapton film as the insulation layer 

are used to form the test capacitive electrode (measured value ∼ 10 pF). The test electrode is 

configured in parallel with the 100 pF input capacitance. The setup is fed with a sinusoid input of 

10 Hz. The entire test setup is placed on a platform. Then random motions and vibrations of various 

intensities are introduced during the output recording both in horizontal and vertical directions on 

the platform. The overall capacitance variations, due to motion, are computed for the three types 

of electrodes and presented in Fig. 3.4. The variation in the measured capacitance also appeared 

to be random due to both type (horizontal/vertical) of induced random motions. It is also clearly 

seen from the graph that the capacitance at the input terminal of the amplifier varies around the 

fixed input capacitance value of 100 pF. In some cases, the capacitance variation even goes below 

100 pF, stating the possibility that even the small constant capacitors (here 100 pF) may suffer 

from environmental vibrations and motions when they are used in low frequency (near DC) 

applications like biopotential measurements. 

3.4 System Design and Implementation 

3.4.1 System Architecture and Design 

The EOG board is implemented on a four-layer flexible polyimide substrate, as shown in Fig. 3.5a. 

The top layer of the board is used to implement the EOG measurement unit with commercial off-

the-shelf ICs  and  components. The  entire  system is  battery  operated and uses a microcontroller  
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Fig. 3.5. The proposed wearable flexible EOG system: (a) four layers of the flexible board with EOG measurement 

system, (b) the experimental setup for EOG recording, and (c) a detailed block diagram of the EOG measurement 

circuit. 
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and BLE 5.0 transceiver for wireless EOG data transmission. The bottom layer is used for printing 

the measurement electrodes (circular, rectangular, or interdigitated type) and one of them is shown 

in Fig. 3.5a. The printed electrodes are covered with a biocompatible kapton film [24], thus 

forming non-contact measurement electrodes. The second layer is used for routing overlapping 

PCB tracks and ground plane for the entire system. The third layer is used for active shielding in 

order to reduce capacitive coupling effect between the discreet component on the top layer and the 

printed electrodes on the bottom layer [11]–[13]. The experimental setup for EOG measurement 

is presented in Fig. 3.5b. 

 In this EOG system, two pairs of measurement electrodes are used for EOG detection and 

motion artifacts sensing, as shown in Fig. 3.5a. The two electrodes in each pairs are placed 

vertically or horizontally or in interdigitated configurations (discussed in detail in the next section). 

The EOG potential sensed by the two electrodes of each pair are different in terms of their positions 

and distance from the eyes [11]. On the other hand, motion artifacts have stronger intensity than 

the EOG signals. Therefore, it is assumed that the motion signals picked up by the two electrodes 

of an electrode pair will be almost similar as they are printed very close to each other. Therefore, 

subtracting the signals picked up by both the electrodes in an electrode pair will help in reduction 

of the motion artifacts, thereby compensating for the DC drifts and improving the overall CMRR 

of the system. Whereas, after subtraction of motion signals, some portion of the EOG potential 

will still be present. To improve the EOG signal detection, two dedicated ultra-high input 

impedance instrumentation amplifiers (or IAs) are used as the first stage amplifiers for each 

electrode pair. The IAs are positioned on the top layer of the board in such a way that they are very 

close to the printed electrode pairs in the bottom layer. This sort of placement has been generally 

done in several dry electrode designs for better biopotential detection [21]–[23]. Once the EOG 

signal is detected, it needs to be amplified up to a desired level through various analog signal 

conditioning stages and then digitized into data-stream through digital circuitry for wireless data 

transmission, which are discussed in the next subsection. 
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3.4.2 Circuit Level Implementation 

A detailed block diagram of the analog front-end, power supply module, and digital circuitry for 

the implemented EOG system is presented in Fig. 3.5c. The power supply module uses a 125 mAh 

Li-ion battery with 3.7 V of nominal voltage and a voltage regulator IC to generate a 3.3 V supply 

voltage for the rest of the circuit block, while consuming only 56 mW of power. The battery life 

of the system is approximately 7 hours and 15 minutes, which is good enough for long-term 

monitoring. This module also uses an op-amp to generate an analog ground (or VREF) of 1.65 V for 

the analog front-end block, thus limiting the signal swing of the analog front-end to ± 1.65 V.

 The most important circuit block in an analog front-end is the first stage amplifier, as it is 

directly connected to the measurement electrodes as its inputs. The first requirement of the first 

stage amplifier is having a very large input impedance, so that it can handle near DC high-pass 

cut-off frequency (∼0.1 Hz) of biopotential measurements [14], [21]–[23]. When it comes to 

applications involving non-contact electrodes, given their small skin-electrode contact capacitance 

values (in the range of pico-farads), the requirement of input impedance of the amplifier can exceed 

above 1 TΩ (∼ 1012 Ohms). The second requirement of the first stage amplifier is to have a large 

CMRR to reject the common-mode DC drifts generated at the skin-electrode contact interfaces 

[20], [25]. Instrumentation amplifier (IA) ICs can be an ideal solution to meet such specifications 

mentioned above. For this application, the famous Burr-Brown’s IA INA116 (with input 

impedance ∼ 1015 Ohms and CMRR ∼ 90 dB) is selected [26]. Given the measured skin-electrode 

contact capacitances of the printed non-contact electrodes and the impact of sweat and motion 

artifacts on them (assuming the average skin-electrode contact capacitance as 40 pF), a load 

resistance of 4 GΩ is selected to set the input high-pass cut-off close to 1 Hz and limit the overall 

baseline variation for this EOG application, as shown in Fig. 3.5c. It should be noted that the input 

high-pass cut-off frequency of the system will change with motion. The motions will mostly create 

an air gap between the skin and the kapton film interface, thus increasing the effective distance 

between the skin and the metal electrode plate. This will further decrease the overall capacitance 

at the skin-electrode contact interface and shift the high-pass cut-off of the system towards higher 
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frequency. To stabilize the high-pass cut-off frequency against capacitance variations, ultra-high 

value resistors (around 100 GΩ) can be used. But this will increase the cost, thermal noise, and 

sensitivity of the overall system. The two electrodes in an electrode pair are used as the inputs of 

the IA. The electrode pair as inputs will supress the impact of motion artifacts in the first stage IA 

itself. The performance of non-contact electrodes also degrades in the presence of power-line 

interferences due to capacitive coupling [14], [27]. To control the impact of such interferences, 

active shielding is implemented on the third layer of the flexible board and later interfaced with 

guard pins of the IA, as shown in Fig. 3.5c. Two IAs are used for the two electrode pairs. Given 

the high sensitivity of the non-contact electrodes towards the system non-linearity mentioned 

above, the gain of the first stage amplifier is set at 1.5 only, to avoid any output saturation [28]. In 

the next stage, the outputs of the two IAs are fed in a difference amplifier, implemented using one 

of the op-amps. In the next stage, a notch filter is implemented to further supress any power-line 

interferences present in the sensed signal spectrum. The notch frequency (fN) of this block is set at 

60 Hz. After that, a second order low-pass Butterworth filter is designed with a low-pass cut-off 

(fc,LPF) at 40 Hz. Thus, the overall EOG bandwidth of the system is limited from 1 Hz (assumed) 

to 40 Hz. In the next step, a first order passive high-pass filter (with high-pass cut-off, fc,HPF of 

0.16 Hz) is implemented to reduce the impact of DC offsets coming from the previous signal 

conditioning stages. Therefore, the poles of the system can be located at 0.16 Hz (due to the passive 

high-pass network), around 1 Hz (at the inputs of the system), and at 40 Hz (due to the low-pass 

Butterworth filter). Given the first order of the high-pass networks, the zeros of the system simply 

stay at 0 Hz. The next stage of the analog front-end is the second stage amplifier. The second stage 

amplifier is responsible for amplifying the sensed EOG signal up to a desired level. The gain of 

this block is determined empirically and set to 101 for the final analog output amplification. The 

output of the analog-front end is then fed to the digital circuitry part for digitization. 

 The digital circuitry of the system uses a microcontroller and a BLE 5.0 transceiver. One of 

the analog-to-digital converter (ADC) channel of the microcontroller unit is used to digitize the 

EOG signal (sensed by the analog-front end block) at a rate of 200 samples per second. The 
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digitized data are then transmitted using a BLE 5.0 transceiver. The data are acquired in a nearby 

computer using another BLE 5.0 transceiver module and then processed in MATLAB to extract 

EOG information for eye-blinking activities. The flexible EOG system is also compared with some 

state-of-the-art systems discussed in the previous sections and presented in Table 3.2. As we can 

see from Table 3.2, this work can be directly compared with respect to (w.r.t.) the recent state-of-

the-art flexible biopotential measurement systems [11] and [12]. This work uses non-contact 

electrodes for EOG measurement whereas [11] uses contact electrodes and requires skin 

preparation and gel. This work has relatively less gain w.r.t. [11] and [12]. Since, non-contact 

electrodes are generally very sensitive, even small gain is good enough to detect large biopotentials 

like EOG. The system is slightly heavier than the system reported in [11] and lighter than the 

system reported in [12]. Although this work consumes higher power than the systems reported in 

[11] and [12], it is still suitable for long term monitoring, as proven from the battery life mentioned 

before. Like this work, the system in [11] does not have motion artifact reduction feature. Although 

[12] has motion artifact reduction feature, it has not been validated for biopotential measurement 

from human subjects properly. This work is extensively validated for biopotential measurements 

in the presence/absence of motion artifacts (discussed in the next section). Lastly this work uses a 

simpler circuit concept than [12] for motion artifacts sensing and reduction. 

3.5 System Characterization and Measurement Results 

The experimental procedure in this study is in accordance with the Declaration of Helsinki and 

was approved by Institutional Review Board of McGill University (study number: A04-M21-19B, 

approval date: 04/17/2019). In the first step, the analog front-end part of EOG system is 

characterized to evaluate its gain-vs-frequency response, noise, and CMRR. In the next step, the 

EOG system is validated for EOG measurement and its capability of motion artifacts reduction. 

The experiments are done with all three types of electrodes (circular, rectangular, and 

interdigitated) in different placement configurations and the results are discussed in more detail. 
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TABLE 3.2 

SOME OF THE STATE-OF-THE-ART BIOPOTENTIAL MEASUREMENT APPLICATIONS WITH/WITHOUT MOTION ARTIFACTS SENSING AND REDUCTION 

 EMBS’08 [15] BIOCAS’10 [14] TBCAS’12 [16] JSSC’14 [17] TBCAS’19 [12] SENS. J.’21 [11] THIS WORK 

ELECTRODE DESIGN AND SPECIFICATIONS 

Electrode Type Rigid Rigid Rigid Rigid Flexible Flexible Flexible 

Contact/Non-contact Wet Contact Non-contact Wet Contact Dry Contact Non-Contact Wet Contact Non-Contact 

Electrode Design Square Square — — Interdigitated Circular Various* 

Electrode Area 400 mm2 625 mm2 — — ~ 157 mm2 78.54 mm2 Various* 

MOTION ARTIFACTS DETECTION AND REDUCTION METHODS 

Motion Artifacts 

Detection 
Yes No Yes Yes Yes No Yes 

Sensing Method Accelerometer — ETI ETI Parallel — Parallel 

Motion Artifacts 

Reduction 
Digital — Digital Digital Analog — Analog 

SYSTEM DESIGN AND SPECIFICATIONS 

PCB board type Rigid Rigid Rigid Rigid Flexible Flexible Flexible 

System weight — — — — 9.2 gram 7.7 gram 8.75 gram 

Number of channels 5 — 3 4 8 1 1 

Power Supply (Volts) — ±5 V, 3 V 1.2 V 1.8 V 3.3 V 3.3 V 3.3 V 

Power Consumption 

(Watts) 
— 116 mW 200 µW 170 µW 26 mW 48.75 mW 56 mW 

Input impedance of the 

first stage amplifier (Ω) 
— ~ 1015 Ω ~ 109 Ω ~ 1.2×109 Ω — ~ 1011 Ω ~ 1015 Ω 

System Gain 

(maximum) 
— ~ 58 dB ~ 50 dB ~ 70 dB  ~ 48.3 dB ~ 68.5 dB ~ 37 dB 

System Bandwidth — 3 – 42 Hz 0.2 – 250 Hz 0.5 – 200 Hz 1 – 300 Hz 1.6 – 47 Hz 1 – 40 Hz 

Application ECG ECG/EEG ECG/ETI EEG/ETI EEG EOG EOG 

*Three different shape and sizes of electrodes are tested in this work, see Figure 3.2 for details. 
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3.5.1 System Characterization 

Being the crucial signal conditioning block, the analog frontend of the EOG measurement unit 

should have a stable gain over the range of interested signal bandwidth, minimal noise generated 

by the discreet components, and acceptable CMRR to reject the unwanted DC drifts coming from 

the skin-electrode contact interface. All these characteristics for the proposed system are evaluated 

and presented in Fig. 3.6. To evaluate the gain-vs-frequency response of the analog front-end, a 

constant capacitor of 40 pF (assuming the average skin-electrode contact capacitance value) is 

used as the input capacitor. The EOG unit has four inputs (two IAs), see Fig. 3.5c. Three of them 

are connected to the analog ground and a sinusoid is fed to the fourth input with the capacitance 

of 40 pF and a load resistance of 4 GΩ. The effective gain-vs-frequency response of the system is 

recorded and presented in Fig. 3.6a. The gain of the system is found out to be around 37 dB over 

the signal bandwidth of 1 Hz to 10 Hz. Then the gain response drops as the frequency approaches 

to 40 Hz. The variation in the gain response can be attributed to the order of the notch filter present 

in the analog front-end. However, the bandwidth of EOG signals for basic eye activities such as 

eye blinking and eyeball movements can be limited up to 10 Hz. Therefore, the system still 

performs well for basic eye activity detection with this gain variation over the signal bandwidth. 

Moreover, the capacitance at the actual skin-electrode interface can vary, which will result in a 

slightly different gain-vs-frequency response for the system. It should be noted that the gain 

variability of the system can be stabilized by removing the notch filter from analog front-end. 

 The input-referred noise response of the circuit is presented in Fig. 3.6b. In this test, all the 

inputs of the IAs were shorted to the analog ground and the input-referred noise is quantified from 

the recorded noise output and the gain of the system. The input-referred noise remains below 1 

µVrms at any frequency over the system bandwidth of 1 – 40 Hz, thus meeting the noise 

specification (less than 1.5 µVrms over the interested signal bandwidth) for biopotential 

measurement applications as per IFCN standards [25]. To further improve the noise response of 

the system, the large resistances at the input stages can be reduced, which would require larger 

size capacitive electrodes to maintain the high-pass cut-off frequency around 1 Hz. For the CMRR 
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calculation, a common-mode sinusoid was fed to the positive terminals of the IAs of the system 

and the negative terminals were shorted to the analog ground. The overall CMRR of the system is 

found out to be above 74 dB, as presented in Fig. 3.6c. 

 

Fig. 3.6. The analog front-end characterization: (a) gain-vs-frequency response, (b) input-referred noise response, and 

(c) CMRR response. 

3.5.2 Detection of EOG Signals With Different Electrode Configuration for Motion 

Artifacts Reduction (MAR) 

The three types of electrodes (circular, rectangular, and interdigitated) are arranged in five different 

configurations to form an electrode pair for parallel EOG/motion sensing and motion artifacts 

reduction (MAR). The five different electrode arrangements (termed as circular electrode pair in 

horizontally parallel configuration, circular electrode pair in vertically parallel configuration, 

rectangular  electrode  pair  in  horizontally  parallel  configuration,  rectangular  electrode  pair in  
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Fig. 3.7. EOG recording using circular electrodes in horizontally parallel configuration– (a) EOG baseline recording 

in the absence of motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without motion 

artifact reduction (MAR), (c) EOG baseline recording in the presence of motion artifacts and with MAR, (d) eye-

blinks recording in the absence of motion artifacts, (e) eye-blinks recording in the presence of motion artifacts and 

without MAR, and (f) eye-blinks recording in the presence of motion artifacts and with MAR. 

vertically parallel configuration, and interdigitated electrode pair) are shown in Figs. 3.7 –3.11, 

respectively. The distance between the two electrodes in an electrode pair are chosen empirically 

and set at 5 mm edge-to-edge, except for the interdigitated configuration (Fig. 3.11). Five different 

flexible EOG boards are made for the five different electrode arrangements. The flexible boards 

are placed on the forehead, just above the eyebrows and as much closer to the eyes as possible, 

and  attached using  transparent adhesive, as  shown in Fig. 3.5b. After that, the EOG baseline and  
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Fig. 3.8. EOG recording using circular electrodes in vertically parallel configuration– (a) EOG baseline recording in 

the absence of motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without MAR, (c) 

EOG baseline recording in the presence of motion artifacts and with MAR, (d) eye-blinks recording in the absence of 

motion artifacts, (e) eye-blinks recording in the presence of motion artifacts and without MAR, and (f) eye-blinks 

recording in the presence of motion artifacts and with MAR. 

eye-blinking activities are recorded in the presence and absence of motion. The motion artifacts 

are introduced by asking the subject to shake the legs during data recording. The results for all five 

electrode configurations are presented in the Figs. 3.7–3.11. The EOG measurement conditions for 

all five set of data (Figs. 3.7–3.11) are as follows: (a) EOG baseline recording in the absence of 

motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without motion 

artifact reduction (MAR), (c) EOG baseline  recording in the presence of motion artifacts and with  
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Fig. 3.9. EOG recording using rectangular electrodes in horizontally parallel configuration– (a) EOG baseline 

recording in the absence of motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without 

MAR, (c) EOG baseline recording in the presence of motion artifacts and with MAR, (d) eye-blinks recording in the 

absence of motion artifacts, (e) eye-blinks recording in the presence of motion artifacts and without MAR, and (f) 

eye-blinks recording in the presence of motion artifacts and with MAR. 

MAR,(d) eye-blinks recording in the absence of motion artifacts, (e) eye-blinks recording in the 

presence of motion artifacts and without MAR, and (f) eye-blinks recording in the presence of 

motion artifacts and with MAR. For measurement conditions (b) and (e), the load resistance (as 

shown in Fig. 3.5c) of one of the measurement electrodes in an electrode pair (the RED electrodes, 

shown in Figs. 3.7–3.11) are directly shorted to the analog ground (or VREF). 

93 



 

 

Fig. 3.10. EOG recording using rectangular electrodes in vertically parallel configuration– (a) EOG baseline recording 

in the absence of motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without MAR, 

(c) EOG baseline recording in the presence of motion artifacts and with MAR, (d) eye-blinks recording in the absence 

of motion artifacts, (e) eye-blinks recording in the presence of motion artifacts and without MAR, and (f) eye-blinks 

recording in the presence of motion artifacts and with MAR. 

3.5.3 Discussion 

The first step of measurement in EOG is to study the pure baseline signal and its variation, in the 

absence of motion artifacts. The EOG baseline represents the low-frequency components of the 

EOG signal with a range from DC to 1 Hz. The EOG baseline should have a limited range of 

variation in order to avoid saturation at the output during eye-activities, which is controlled by the 

high-pass cut-off frequency at the inputs of the system. For this system, the high-pass cut-off is set 

around 1 Hz and a stable EOG baseline is observed for all five electrode configurations, as shown  
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Fig. 3.11. EOG recording using interdigitated electrode configuration– (a) EOG baseline recording in the absence of 

motion artifacts, (b) EOG baseline recording in the presence of motion artifacts and without MAR, (c) EOG baseline 

recording in the presence of motion artifacts and with MAR, (d) eye-blinks recording in the absence of motion 

artifacts, (e) eye-blinks recording in the presence of motion artifacts and without MAR, and (f) eye-blinks recording 

in the presence of motion artifacts and with MAR. 

in Figs. 3.7a–3.11a. In Figs. 3.7b–3.11b, the EOG baseline is recorded in the presence of motion 

artifacts and without MAR. For all five cases, the EOG baseline gets distorted severely. In Figs. 

3.7c–3.11c, again the EOG baseline signal is recorded in the presence of motion artifacts and with 

MAR implementation. The MAR technique indeed reduced the impact of motion artifacts on the 

EOG baseline signal. However, by looking at the amplitude levels of the EOG baseline after MAR, 

it can be said that the MAR worked better for the horizontally parallel electrode configurations 
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and the interdigitated ones (Figs. 3.7c, 3.9c, and 3.11c). Each electrode in an electrode pair senses 

different levels of EOG signals based on their placement configurations [11]. The EOG signals 

sensed by each electrode in an electrode pair in horizontally parallel configurations (Figs. 3.7 and 

3.9) will be different. The RED electrodes, in Figs 3.7 and 3.9, will sense a weaker EOG signal 

than the BLACK ones, because of their distance from the eye [11]. In case of electrode pairs with 

vertically parallel configurations (Figs. 3.8 and 3.10), the electrodes (both the BLACK and RED 

ones) in an electrode pair will sense EOG signals of almost similar strength because of same 

distance from the eye but with different phases (because of the electrode placement locations). 

These phase differences in the EOG potential maybe contributing a larger amplitude variation in 

the EOG baseline even after MAR for vertically parallel configurations (as presented in Figs. 3.8c 

and 3.10c). In case of the interdigitated electrode pairs, the EOG sensed by the electrodes (both 

the BLACK and RED ones) in an electrode pair will be almost similar, resulting in a stable EOG 

baseline after MAR implementation, as shown in Fig. 3.11c. It should be noted that, the strong 

motion artifacts experienced by the electrodes (both BLACK and RED) in an electrode pair are 

assumed to be almost same in this study. In the next study, eye-blinking activities are recorded in 

the absence of motion artifacts for all five electrode configurations and presented in Figs. 3.7d–

3.11d. The eye-blinking activities are detected clearly for all electrode configurations and some of 

them are circled in RED. The eye-blinking activities are also captured in the presence of motion 

artifacts and without MAR technique, as presented in Figs. 3.7e–3.11e. As expected, none of them 

are visibly recognizable. Next, eye-blinking activities are captured (circled in RED) in the presence 

of motion artifacts and with MAR technique, shown in Figs. 3.7f–3.11f. As we can see, the eye-

blinks are detected very clearly for horizontally parallel electrode configurations and for the 

interdigitated configurations (Figs. 3.7f, 3.9f, and 3.11f). It is expected since these configurations 

also worked better for motion artifacts estimation and reduction during EOG baseline recording. 

For the vertically parallel electrode configurations (Figs. 3.8f and 3.10f), the baseline variation 

range is appeared to be almost as strong as the eye activity signals detected. The explanation for 

such behavior can be attributed to the similar reasoning given for the EOG baseline signal in Figs. 

3.8c and 3.10c. The amplitude level of the eye-blinks detected by the interdigitated electrode pairs 
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TABLE 3.3 

QUALITATIVE RESULT SUMMARY OF THE FIVE TYPES OF ELECTRODE PLACEMENTS FOR EOG DETECTION IN THE PRESENCE/ABSENCE OF MOTION ARTIFACTS 

(MA) AND WITH/WITHOUT MOTION ARTIFACTS REDUCTION (MAR) 

Electrode Pair 

Type 

Placement 

Configuration 

 

Presence of Motion Artifacts (MA) 

 

Detectable Eye Blinks  

EOG Baseline 

without motion 

EOG Baseline with 

Motion and 

without MAR 

EOG Baseline 

with Motion and 

with MAR 

Eye Blinks 

without motion 

Eye Blinks with 

Motion and 

without MAR 

Eye Blinks with 

Motion and with 

MAR 

Circular 

Horizontally 

Parallel 
MA absent Strong MA Weak MA Yes No 

Yes (large 

amplitudes) 

Vertically 

Parallel 
MA absent Strong MA Medium MA Yes No Not Clear 

Rectangular 

Horizontally 

Parallel 
MA absent Strong MA Weak MA Yes No 

Yes (large 

amplitudes) 

Vertically 

Parallel 
MA absent Strong MA Medium MA Yes No Not Clear 

Interdigitated Interdigitated MA absent Strong MA Weak MA Yes No 
Yes (small 

amplitudes) 
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(Fig. 11f) are smaller in comparison to the ones detected in Fig. 3.7f and 3.9f, as because the EOG 

potential sensed by the interdigitated electrodes in an electrode pair are of almost same amplitude 

and phase and they nearly cancel each other at the very first stage of amplification. Therefore, it 

can be concluded that horizontally parallel electrode configurations (be it rectangular or circular) 

are better for this proposed EOG application with MAR. The qualitative performance summary of 

all these electrode configurations is reported in Table 3.3. 

 The sensitivity and response time of the different electrode configurations are calculated 

w.r.t. a reference eye blink. Two commercial contact gold electrode pairs in horizontally parallel 

configurations are used to acquire the reference eye blink. The contact electrode pairs are 

interfaced with four 40 pF capacitors at the input stage to set the input high pass cut-off at 1 Hz. 

Contact electrodes are less sensitive and, therefore, the gain of the circuit is increased 30 times 

than before to amplify the eye blink signal. Therefore, a gain multiplication factor (GMF) of 30 is 

used for sensitivity calculations. The eye blink data for all non-contact electrode configurations 

are presented in Fig. 3.12. The sensitivity is calculated by taking the average ratio of negative and 

positive peaks of the eye blink w.r.t. the amplified reference negative and positive peaks, 

respectively. The average ratio is then multiplied by GMF to compute the sensitivity of the 

electrode pairs. The response time is calculated by taking the average rise and fall times of the eye-

blink signals. The calculated data are presented in Table 3.4. 

 From Table 3.4, it can be seen that the calculated sensitivity for all non-contact electrodes, 

except interdigitated ones, are 50 times higher than the contact ones. This validates the fact that 

non-contact electrodes are indeed more sensitive than the contact ones. The interdigitated pairs 

have the least sensitivity among all configurations, thus proving the fact that interdigitated 

configuration is not optimal for biopotential measurement. The response time for horizontally 

parallel configurations (both circular and rectangular) are found out to be larger than the other non-

contact electrode configurations. 
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TABLE 3.4 

SENSITIVITY & RESPONSE TIME CALCULATIONS OF THE NON-CONTACT ELECTRODES AND THEIR DIFFERENT PLACEMENT CONFIGURATIONS 

 

Gold Contact Electrodes 

H.P.C. 

(Ref. Signal × GMF) 

Non-contact Electrode Pairs Placement Configurations 

Circular (H.P.C.) Circular (V.P.C.) Rectangular (H.P.C.) Rectangular (V.P.C.) Interdigitated 

EYE BLINK PARAMETERS FOR SENSITIVITY CALCULATIONS 

Positive Peak 

(Volts) 
0.529 (GMF = 30) 0.885 1.065 0.910 1.058 0.319 

Negative Peak 

(Volts) 
– 0.506 (GMF = 30) – 0.876 – 0.678 – 0.934 – 0.885 – 0.282 

Sensitivity w.r.t. 

Ref. 
1 51.06 50.30 53.49 56.24 17.41 

EYE BLINK PARAMETERS FOR AVERAGE RESPONSE TIME CALCULATIONS 

Negative Peak Rise 

Time from Baseline 
75 mS 340 mS 170 mS 280 mS 165 mS 80 mS 

Positive Peak Fall 

Time to Baseline 
155 mS 420 mS 110 mS 340 mS 190 mS 125 mS 

Avg. Response 

Time 
115 mS 380 mS 140 mS 310 mS 177.5 mS 102.5 mS 

* H.P.C. means Horizontally Parallel Configuration, V.P.C. means Vertically Parallel Configuration, and GMF is gain multiplication factor 
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Fig. 3.12. Eye blink signals from the different electrode pair configurations for sensitivity measurement: (a) gold 

contact as reference in horizontally parallel configuration (H.P.C.), (b) circular in H.P.C., (c) circular in vertically 

parallel configuration (V.P.C.), (d) rectangular in H.P.C., (c) rectangular in V.P.C., and (f) interdigitated non-contact. 

3.6 Conclusion 

In this manuscript, a wireless, wearable, EOG measurement system, implemented on a flexible 

polyimide substrate, is presented. The system is capable of sensing and reducing motion artifacts 

using two pairs of parallel non-contact electrodes. The flexible board has four layers with: (a) EOG 

measurement system on the top layer, (b) kapton film covered non-contact measurement electrode 

pairs on the bottom layer for EOG and motion artifacts sensing, (c) the system ground plane on 

the second layer, and (d) active-shielding on the third layer. The system uses a microcontroller and 

BLE 5.0 transceiver for transmitting EOG data wirelessly. The performance and properties of the 

non-contact electrodes are tested thoroughly for their size, shape (circular, rectangular, and 

interdigitated), skin-electrode contact capacitance, impact of sweat, and motion artifacts. The 
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crucial system metrics of the EOG acquisition system such gain and CMRR are found out to be 

around 37 dB and 74 dB, respectively, which meet biopotential measurement standards. The 

system is tested for different electrode configurations for effective reduction of motion artifacts 

during EOG signal measurement. It is found out that with horizontally parallel electrode pairs the 

system is capable of reducing low frequency motion artifacts from EOG signals and detecting eye 

activities. The entire system is lightweight (only 8.75 gram), skin conformable, and can be 

mounted on any head-shape and size because of its flexibility, thus making it ideal for smart 

applications. 

3.7 Bridging Text 

This work presents our second wearable, flexible EOG prototype that employs parallel non-contact 

electrode pairs for motion artifacts sensing and reduction. The electrodes are printed on the bottom 

layer of the board. The use of non-contact electrodes eliminates the risk of allergic reactions during 

EOG measurement. Non-contact electrodes are highly sensitive and do not require gel for a good 

quality EOG detection, thus eliminating another limitation of our previous EOG prototype. The 

use of parallel non-contact electrode pairs does reduce the impact of motion artifacts effectively 

and the system is capable of sensing EOG signals in the presence of motions. However, a slight 

impact of motion artifacts still persists as ripples visible in the EOG baseline. EOG signals have 

specific time-domain features which can be identified easily using sophisticated signal processing 

algorithms and the baseline ripples can be removed. But, wearables like headbands and eye-masks 

may also get displaced easily due to body or head movements during sleep, which may 

compromise the measurement system placements and corrupt the measured EOG data. Despite the 

usage of soft materials and the effort of minimizing the device size, the prototypes presented in 

the form of headband are still uncomfortable for some people to wear during sleep, which 

sarcastically reduces their sleep quality. Intra-oral devices such as mouthguards, MAD are quite 

common these days to be worn during sleep for different health issues. For example, mouthguards 

are commonly used to prevent or reduce bruxism or snoring [29], [30]. MAD is used for sleep 

apnea treatment if the sleep apnea is mild [31]. Therefore, a biopotential-measuring MAD that can 
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be worn during sleep will be beneficial for sleep monitoring of OSA patients without causing 

discomfort to the users. Among various biopotentials EEG signals were successfully acquired 

intraorally from palate region [32], [33]. 

 In the above contexts, we propose a smart MAD device to acquire intra-oral EEG data for 

our next work. This smart MAD design eliminates the requirement of having a separate smart 

headband and a MAD for OSA patients. Only a single, smart MAD should be sufficient for treating 

OSA and monitor intra-oral EEG for sleep study. However, intra-oral EEG measurements can also 

suffer from various intra-oral motions (e.g. tongue movement, teeth grinding, and gulping) which 

is considered in our design. The parallel electrode-pair based approach used in this chapter for 

motion artifact reduction in EOG cannot be employed for motion artifacts reduction involving 

EEG measurements. This parallel electrode-pair based approach has noise ripples along the 

baseline signals during EEG measurements. EEG signals are generally studied in frequency 

domain. Therefore, presence of baseline ripple due to motion artifacts may appear well within the 

EEG signal bandwidth which is undesirable. Moreover, intra-oral palate region is small and cannot 

accommodate enough electrodes for multichannel EEG systems. Therefore, our next work focuses 

on the development of a single channel intra-oral EEG system. and exercises the possibility smart 

sensor-fusion based approach to address the issue of intra-oral motion artifacts during intra-oral 

EEG measurements. 
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Chapter 4 

 

A Sensor-Fusion Method for Motion Artifacts 

Reduction in Intra-oral EEG Signals 

4.1 Abstract 

In recent studies, Electroencephalography or EEG signals are acquired intra-orally from the palate 

region. However, intra-oral EEG study is a less explored research area and its challenges are yet 

to be investigated. In this study, we look into the possibility of studying EEG signals from various 

intra-oral locations and investigate the sources of motion artifacts during intra-oral EEG 

measurements. Later we propose a sensor-fusion of EEG electrodes and accelerometer module to 

monitor intra-oral EEG signal and intra-oral motions simultaneously. The EEG electrodes, 

accelerometer, and the sensor read-out circuitry are integrated with a mandibular advancement 

device (MAD). The system is battery-operated and uses a Bluetooth 5.0 transceiver to send data 

wirelessly. The smart MAD is used to acquire intra-oral EEG and accelerometer data and a 

MATLAB based algorithm is implemented using empirical mode decomposition (EMD) and 

independent component analysis (ICA) to decompose the EEG signal components. The 

decomposed ICA components containing intra-oral motion artifacts are then mapped with the 

motion events extracted from the accelerometer data to identify the motion corrupted data 

segments. The ICA components containing intra-oral motions are then denoised by nullifying the 

motion corrupted data segments. A motion artifacts reduced intra-oral EEG is reconstructed from 
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the denoised ICA components. The efficacy of the sensor-fusion and the proposed algorithm are 

demonstrated by quantifying the signal-to-noise ratio (SNR) difference and percentage artifacts 

reduction based on correlation analysis from the EEG signals before and after motion artifacts 

reduction. Later, the processed intra-oral EEG signals are also analyzed for the detection of ‘eye 

open’ and ‘eye close’ activities in the presence of intra-oral motions. The device along with the 

algorithm will have potential applications for motion artifacts free intra-oral EEG monitoring.

 Index Terms— Intra-oral, wearable, flexible, mandibular advancement device, sensor-

fusion, electroencephalogram, eye open-close activities, accelerometer, motion-artifacts, empirical 

mode decomposition, independent component analysis. 

4.2 Introduction 

Electroencephalography (or EEG) is a well-established, versatile technique known for studying 

neural activities of brain for clinical and commercial applications [1]–[4]. Electroencephalogram 

or EEG signals are small electrical impulses, from 0.5 µVolts to 100 µVolts of amplitudes, elicited 

during various brain activities [5]–[7]. These electrical impulses (also known as biopotentials) can 

be recorded by placing one to many electrodes around the scalp of the subject in study either non-

invasively [5], [7] or intracranially [6], which can be measured using a sophisticated biopotential 

measurement system [7]. EEG signals are generally classified into a few groups of signal bands 

namely: δ band (4 Hz and less), θ band (4 Hz to 8 Hz), α band (8 Hz to 13 Hz), β band (13 Hz to 

30 Hz), and γ band (30 Hz and above). 

 In some recent studies, EEG signals have also been acquired intra-orally from the palate 

region [8]–[10]. The palate region inside the oral cavity is the closest surface to the hypothalamus 

the region of brain which controls sleep/awake states [8], [11]. Therefore, intra-oral EEG signals 

may have useful signatures related to different brain activities [11], [12]. The easiest way to access 

the intra-oral palate region of a subject is by using intraoral wearables such as mouthguard, 

mandibular advancement devices (or MADs). Intra oral devices are already popular for treating 

patients with conditions like teeth grinding (or bruxism) and snoring [13]–[15]. Cohen [8], 
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designed a special MAD with intra-oral EEG electrodes touching the palate inside the oral cavity. 

The device was used for acquiring intra-oral EEG data with eye-open/eye-close activities. A smart 

MAD with embedded EEG electrodes and a flexible EEG measurement board has also been 

reported in our previous work [10]. However, the possible sources of intra-oral motion artifacts 

and their impact on intra-oral EEG measurements were not investigated in this study. Another 

smart mouthguard was reported by Nguyen et al. [16] for acquiring electrooculogram (or EOG) 

signals intra-orally using fabric-based flexible electrodes. But their measurement system was 

implemented on a breadboard and the electrodes were interfaced with long wires, which is 

uncomfortable to use. 

 Motion artifacts are random interferences generally picked up by the measurement 

electrodes during physical movements of the subject under test and from surrounding 

environmental vibrations [17]–[22]. Such artifacts are typically stronger than EEG potentials and 

capable of saturating the measurement system’s outputs. Motion artifacts may have wide 

amplitude/frequency range, and may lie within the EEG signal’s band of interest, thus making it 

difficult to remove in-band noises using conventional band-pass filtering. Therefore, motion 

corrupted EEG data are generally discarded by visual inspections, which is a tiresome job for a 

large amount of EEG data [17]. Different techniques have already been implemented in system 

design as well as in signal processing for effectively tracking and reduction of motion artifacts 

present in biopotential measurements. An interdigitated electrode-pairs based system is developed 

by Dabbaghian et. al. [18], for simultaneous measurements of EEG and motion artifacts. Later, 

sensed motion artifacts is used to control the variable gain of the EEG sensing amplifier, thus 

suppressing the impact of motion artifacts on the measured EEG signal. However, their work does 

not report any real time EEG signal measurement using their system. Sensor-fusion techniques are 

also popular for motion artifacts removal which usually involve acquiring time synchronized 

multichannel sensor data digitally, preprocessing, signal analysis, extracting motion features, and 

then noise reduction algorithm for the signal of interest [19]. Beach et al. [20] used a sensor-fusion 

technique using an inertial measurements unit (or IMU) and EEG/ECG signals. The IMU is placed 
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in close proximity with the measurement electrodes to acquire accelerometric and gyroscopic 

motion signals, which are then cross-correlated with the measured EEG/ECG signals and the best 

match is selected as a reference for adaptive filtering. However, their adaptive filter did not 

perform optimally for EEG denoising and requires more detailed study. In another work for 

ambulatory EEG measurements reported by Islam et al. [21], EEG signals are decomposed using 

Discrete Wavelet Transform (DWT) into basic EEG bands. An accelerometer is used to acquire 

the motion signals which are correlated with the EEG signal to remove motion artifacts. However, 

their study reports that the EEG signals and the accelerometer data are not significantly correlated 

to each other. 

 For conventional multichannel EEG systems, statistical methods like Independent 

Component Analysis (ICA) [22]–[24] and Canonical Correlation Analysis (CCA) [24], [25] have 

already been used for EEG signal decomposition and noise reduction. Machine learning methods 

are also implemented in some works for identifying motion artifacts in multi-channel EEG data 

[17], [26], [27]. However, their learning models did not perform optimally and require more 

training datasets. For single channel EEG systems, other multi-resolution techniques such as DWT 

[21], [28], Singular Spectrum Analysis (SSA) [29], Empirical Mode Decomposition (EMD) [30], 

[31], and Ensemble EMD (EEMD) [32], [33] have been employed for noise reduction. In some 

approaches, single channel EEG data are decomposed to multichannel data matrix using DWT, 

EMD, EEMD and then employed in multichannel algorithms like ICA, CCA, and principle 

component analysis (PCA) for noise removal [28], [32], [33]. 

 In this manuscript, we present a wearable smart MAD device with a sensor-fusion of flexible 

gold electrodes for intra-oral EEG measurements and an accelerometer for sensing intra-oral 

motions simultaneously. Given the limited space in the palate region of the oral cavity, our intra-

oral EEG measurement systems captures a single channel EEG signal. The instrumentation for 

recording the intra-oral EEG signal and accelerometer outputs is implemented on a flexible 

polyimide board and attached with a customized MAD designed for this study. The system is 

battery operated and uses a BLE 5.0 transceiver to send the EEG and accelerometer motion data 
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wirelessly to a nearby computer. A MATLAB based algorithm is developed to identify the time 

locations and durations of the intra-oral motion events from the acquired accelerometer motion 

data. On the other hand, the single channel intra-oral EEG data is converted to a multichannel data 

using EMD technique and then ICA is implemented to separate the independent components 

containing the EEG and the motion artifacts. The motion artifacts related ICA components are then 

mapped with the motion events extracted from the accelerometer data and the motion contaminated 

segments are removed. Then the denoised ICA components are converted back to the motion 

artifacts reduced EEG signal which is then used for further processing. The novelty of the system 

is that it is the first prototype that analyzes the impact of intra-oral motions on intra-oral EEG 

measurement and removes them effectively using the proposed sensor-fusion based EMD-ICA 

algorithm. The smart MAD along with the proposed algorithm will have potential for intra-oral 

EEG monitoring applications. 

4.3 Intra-oral EEG Study and Possible Challenges 

In this study, different intra-oral locations are explored for intra-oral EEG detections. The objective 

of this study is to find an optimal configuration for intra-oral EEG electrodes placement and also 

to identify the possible challenges associated with such measurement setups. The experimental 

procedure in this study is in accordance with the Declaration of Helsinki and was approved by 

Institutional Review Board of McGill University (study number: A04-M21-19B, approval date: 

04/17/2019). Flexible printed round gold electrodes (1 cm diameter) are chosen for the intra-oral 

measurements since they are comfortable to wear [10], [34]. These flexible gold electrodes are 

already reported to have similar sensitivity like commercial rigid gold electrodes [34]. The 

electrodes are printed as pads by PCB manufacturer on a flexible polyimide substrate. Gold is 

chosen as the printing material because of its biocompatible property [35]. 

4.3.1 Intra-oral EEG Measurements in Different Locations 

After evaluating the skin-electrode contact impedance in different intra-oral locations, EEG signals 

are acquired from all these intra-oral locations with different electrode configurations, as presented 
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in Fig. 4.1. Three electrode configuration (also known as bipolar electrode configuration), with 

two active electrodes (EA1 and EA2) and one reference electrode (ER), is used to measure the intra-

oral EEG potentials [7]. Here, the measurement electrodes are attached to the customized MAD 

using biocompatible adhesive and worn by a subject to achieve these intra-oral electrode 

configurations for the measurements. The EEG electrodes are then interfaced with a breadboard-

based single channel EEG measurement system. The same system is later designed on a flexible 

polyimide substrate and integrated with the smart MAD. The system design approach is presented 

with detail in the next section. Forehead EEG data are also acquired as reference data for 

comparison with the intra-oral EEG, using the same breadboard-based single channel EEG system 

and three forehead EEG electrodes, as shown in Fig. 4.1(d). 

 In conventional scalp/forehead EEG study, the EEG signatures can be easily identified by 

a simple experiment involving ‘eye open’ and ‘eye close’ activities [7], [36]. The EEG spectrum, 

along alpha (8 to 13 Hz) and beta bands (13 to 30 Hz) spectrum, shows higher energy for ‘eye 

close’ activity in comparison to ‘eye open’ activity [7]. [36]. However, the EEG spectrum behavior 

along delta and theta bands are not always consistent for scalp/forehead EEG measurements during 

‘eye open’ and ‘eye close’ activities and may vary depending on scalp electrode placements [36]. 

Therefore, in this study, only alpha band responses are investigated during intra-oral EEG 

measurements with different electrode placement configurations. Three subjects are asked to 

volunteer for the EEG data collection from those intra-oral locations and the forehead. The subjects 

are asked to perform ‘eye open’ and ‘eye close’ activities for 30 seconds during the experiment. 

Three sets of EEG data collected from each EEG test locations for all three subjects are reported 

here for repeatability test. The EEG data are acquired with a sampling rate of 200 Hz using a 

microcontroller module in a nearby computer. The spectrum of the EEG data are analyzed in 

MATLAB (version R2019a). Out of total nine datasets, two dataset of EEG spectrums for ‘eye 

open’ and ‘eye close’ activities are presented in Fig. 4.1 for all the test locations mentioned above. 

Here, each dataset contains four data collected from the four different EEG test locations. A 

qualitative   summary   of   all   nine   datasets  (from   three  subjects)  for   each  EEG   electrode  
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Fig. 4.1. Two dataset of EEG spectrums for ‘eye open’ and ‘eye close’ activities recorded in different intra-oral 

locations and forehead: (a) EEG electrode configuration 1 where all the electrodes are placed on the palate, (b) EEG 

electrode configuration 2 where the reference electrode is placed on the palate and the other two active electrodes on 

the outer gum above the teeth-line, (c) EEG electrode configuration 3 where all the electrodes are placed on the outer 

gum above the teeth-line, and (d) conventional forehead EEG electrode configuration. 

configurations is also presented in Table 4.1. For Fig. 4.1(a) electrode configuration, the EEG 

spectrum for ‘eye open’ and ‘eye close’ activities in this electrode configuration are easily 

distinguishable. The alpha band shows higher spectrum energy for ‘eye close’ activities just like 

scalp EEG measurements, as reported in [7], [36]. For Fig. 4.1(b) configuration, no distinguishable 

differences or peaks are observed in alpha band EEG spectrum energy for ‘eye open’ and ‘eye 

close’ activities. Fig. 4.1(c) configuration could not capture any distinguishable differences or 

peaks in the alpha band EEG spectrum for ‘eye open’ and ‘eye close’ activities. The possible 

reason for such observation is that the outer gum area is far away from any of the sections of the  
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TABLE 4.1 

A QUALITATIVE COMPARISON OF EEG SIGNAL SPECTRUMS ACQUIRED FROM DIFFERENT INTRA-ORAL LOCATIONS AND FOREHEAD DURING ‘EYE OPEN’ 

AND ‘EYE CLOSE’ ACTIVITIES 

Subject Meas. 
 Alpha Band (8 to 13 Hz) Spectrum Energy Comparison during ‘Eye open’ and ‘Eye Close’ activities 

Forehead EEG  Intra-oral Config. 1 *  Intra-oral Config. 2 **   Intra-oral Config. 3 ***  

1 

1 Higher for ‘eye close’ Higher for ‘eye close’ Similar for both Similar for both 

2 Higher for ‘eye close’ Higher for ‘eye close’ Similar for both Similar for both 

3 Higher for ‘eye close’ Higher for ‘eye close’ Similar for both Similar for both 

2 

4 Higher for ‘eye close’ Higher for ‘eye close’ Similar for both Similar for both 

5 Higher for ‘eye close’ Higher for ‘eye close’ Similar for both Similar for both 

6  Higher for ‘eye close’  Higher for ‘eye close’  Similar for both  Similar for both 

3 

7  Higher for ‘eye close’  Higher for ‘eye close’  Similar for both  Similar for both 

8  Higher for ‘eye close’  Higher for ‘eye close’  Similar for both  Similar for both 

9  Higher for ‘eye close’  Higher for ‘eye close’  Similar for both  Similar for both 

* Intra-oral Electrode Configuration in Fig. 3(a)       ** Intra-oral Electrode Configuration in Fig. 3(b)     *** Intra-oral Electrode Configuration in Fig. 3(c) 
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brain in comparison to the palate region which is closer to hypothalamus. Therefore, it is unlikely 

to capture any EEG activities on the outer gum area. Fig. 4.1(d) presents the conventional 

scalp/forehead EEG with reference electrode (ER) connected at Fz location and the active 

electrodes (EA1 and EA2) at Fp1 and Fp2 locations [37]. The EEG signals collected from the 

forehead EEG show similar behavior in alpha band responses where higher spectrum energies are 

observed during ‘eye close’ activities. The alpha band activities also go up for ‘eye close’ activities 

during scalp/forehead EEG measurements [2], [36]. The EEG alpha band responses for all intra-

oral and scalp EEG study for ‘eye open’ and ‘eye close’ activities are reported in Table 4.1 with 

the consistent results presented in bold. From this study, it can be concluded that the first EEG 

electrode configuration for intra-oral measurements is the best one as it is capable for capturing 

similar EEG signatures in alpha band like forehead (or scalp) EEG consistently for ‘eye open’ and 

‘eye close’ activities. 

4.3.2 Intra-oral Motion Artifacts & Accelerometer Sensor 

Motion artifacts pose the most challenging issue during any kind of biopotential measurements. 

The common reasons of motion artifacts are patient’s voluntary/involuntary movements during the 

measurement and any vibrations around the measurement devices [18]–[30], [32]. In the presence 

of motion, the measurement electrodes or the system may get displaced and the overall skin-

electrode contact impedance may get altered along the measurement path. This affects the cut-off 

frequencies and the signal bandwidth of the biopotential measurement instrumentation. As a result, 

the motion artifacts appear within the signal bandwidth and are difficult to remove [18]. The 

possible sources of motion artifacts during intra-oral measurements are tongue movements, teeth 

grinding, gulping etc. The intra-oral motions are capable of impacting the entire MAD used for 

the intra-oral measurements. To study the impact of intra-oral motions on the MAD, an analog 

output 3-axial accelerometer MXR9500MZ module with ± 2g range, by Memsic Semiconductors, 

is used. The accelerometer sensor is capable of sensing motions along X, Y, and Z directions and 

produces three analog outputs, respectively. For this study, the accelerometer sensor module is 

first wrapped in a  biocompatible cover to protect its  electronic components from  saliva and then 
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Fig. 4.2. Optimized accelerometer sensor placement for intra-oral motion detection: (i) tongue movements, (ii) teeth 

grinding, and (iii) gulping, respectively). Accelerometer noise floor (NF) are also presented in the figures (NF = ± 15 

mVs for X and Y axes, NF = ± 30 mVs for Z axis, and NF = 40 mVs for the resultant data). 

attached to a MAD using biocompatible adhesive. The subjects are asked to wear the MAD 

interfaced with the accelerometer and perform intra-oral motion activities (tongue movements, 

teeth grinding, and gulping) for measurement. The motion signals are recorded with a sampling 

rate of 200 Hz using a microcontroller module. The accelerometer sensor is tested in different 

locations along the outer curvature of the MAD to determine an optimal accelerometer placement 

for the system design. The optimized placement as shown in Fig. 4.2 of the accelerometer ensures 

a better detection of intra-oral motion sources (tongue movements, teeth grinding, and gulping). 

One accelerometer dataset for intra-oral motions is presented in Fig. 4.2. By looking at the resultant 

intra-oral motion data in Fig. 4.2, it can be said that the tongue movements are relatively weak 
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motion; whereas the teeth grinding and gulping are relatively strong motions. It should be noted 

that, given the size and the wiring complexity of the accelerometer sensor module, it was not 

considered to be placed/tested inside the oral cavity for this design. 

 

Fig. 4.3. A detailed block diagram of the sensor read-out circuitry with the single channel EEG analog-front end, 

accelerometer module with the three external amplifiers (here shown only one of them) for the three axes, the digital 

block with microcontroller and Bluetooth module, the power supply module, and the remote computer to acquire data. 

4.4 The Sensor Read-out Circuitry Design 

Using the optimal positions for intra-oral EEG electrodes and accelerometer placement, an 

intraoral EEG measurement system with accelerometer is implemented on a flexible polyimide 

board. The system is battery operated and capable of sending the EEG and accelerometer data over 
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a BLE 5.0 transceiver module to a nearby computer. A detailed block diagram of the sensor read-

out circuitry is presented in Fig. 4.3. The entire sensor assembly and the circuit is attached to the 

MAD using biocompatible adhesive. The read-out circuitry, along with the battery, is covered with 

a saran wrap to protect the system from saliva before attaching it to the MAD. The sensor assembly 

and the circuit are shown in Fig. 4.4(a) and 4.4(b). Fig. 4.4(c) presents the experimental setup for 

the complete wearable smart MAD prototype. The read-out circuitry design approaches are 

discussed in detail in the following subsections. 

4.4.1 The Power Supply Module 

The entire circuit is powered with a rechargeable Li-ion battery with nominal voltage 3.7 Volts and 

capacity 200 mAh. The circuit then uses a 3.3 volts low dropout voltage regulator for powering up 

the EEG analog front-end, accelerometer with amplifier, and the digital part of the circuit. The 

power supply module also utilizes an op amp to generate an analog ground (or reference voltage 

VREF) of 1.65 volts for the EEG analog front end and the accelerometer output amplifiers of the 

circuit. The sensor read-out circuitry consumes approximately 69.3 mW of power. The overall 

battery life of the current prototype is approximately 8 hours and 20 minutes, thus making the device 

suitable for long-term monitoring. 

4.4.2 The Single Channel EEG Analog Front-end Circuit 

The flexible EEG gold electrodes (diameter 1 cm) are interfaced with the EEG analog front-end 

(AFE) circuit for intra-oral EEG measurements. The active electrodes are connected with the two 

inputs of the first stage amplifier of the AFE through a high-pass network with capacitor 1 µF and 

resistor 1 MΩ, respectively. These high-pass networks at the input stage sets the high-pass cut-off 

frequency (fc,HPF) at 0.16 Hz for the AFE. These high-pass networks also help in reducing the DC 

offsets and DC drifts generated at the skin-electrode contact interface [38]–[40]. The reference EEG 

electrode, on the other hand, is connected to a DRL (driven right leg) circuit. DRL circuits are 

generally used in many differential input (two active electrodes) biopotential measurement systems 

[41]. The DRL circuits are implemented to sense the common-mode signals of the active electrodes 

from the first stage amplifier of the AFE block. This signal is then buffered using an op amp and 
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fed back to the subject’s body using the reference electrode. DRL arrangement helps in further 

minimizing the DC offsets and the DC drifts that may have been generated at the skin-electrode 

contact interface, thereby improving the overall bipotential sensing [39]. In this design, the DRL 

circuit is implemented using an op amp in unity gain configuration, as shown in Fig. 4.3. For safety 

purpose, a current limiting resistor of 100 kΩ is also placed before interfacing the DRL circuit 

output to the reference EEG electrode, as recommended by the IFCN for biopotential measurements 

involving human subjects [42]. 

 The first amplification stage of the AFE is implemented using an instrumentation amplifier 

(IA) with a gain of 26. In the next stage of the AFE, a notch filter is implemented with cut-off 

frequency (fc,Notch) of 60 Hz. This is done to reduce the impact of power-line interferences (if any) 

picked up during EEG measurements [38], [42]. In the next stage of the AFE, a second order 

Butterworth low pass filter, with cut-off frequency (fc,LPF) of 40 Hz, is implemented to limit the 

upper EEG bandwidth to 40 Hz. In the next step, another passive high-pass network with capacitor 

10 µF and resistor 100 kΩ (fc,HPF) at 0.16 Hz (same as before), to minimize any DC offsets coming 

from the previous signal conditioning blocks of the AFE. Thus, the overall EEG bandwidth of the 

system becomes 0.16 Hz to 40 Hz. The last stage of the AFE is the second stage amplifier, 

responsible for the overall EEG amplification before sending it to an analog-to-digital converter 

(ADC) module of a microcontroller unit. The gain of the second stage amplifier is set to 51, thus 

making the overall gain of the AFE block 1326. The amplifier gains for the AFE block are 

determined empirically. The gain-vs-frequency response and common mode rejection ratio 

(CMRR) of the AFE are also evaluated using similar methods reported in [37], [38]. The effective 

gain-vs-frequency response of the AFE is found out to be above 57 dB over the EEG bandwidth of 

0.16 Hz to 30 Hz. The overall common mode rejection ratio (or CMRR) is found out to be above 

74 dB over the EEG bandwidth. 

4.4.3 The 3-Axial Accelerometer with Amplifier 

The 3-axial MXR9500MZ accelerometer module (capable of measuring motions along X, Y, and 

Z axes) is used to sense the presence of intra-oral motions during intra-oral EEG measurements. 
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To increase the sensitivity of the accelerometer outputs, three two stage high-pass networks (with 

capacitor 1 µF, resistor 1 MΩ, and cut-off frequency fc,HPF at 0.16 Hz) are implemented to remove 

the DC offsets generated by the accelerometer module at X, Y, and Z outputs. Then, three op-amp 

based amplifiers with gain 4.7 are used to amplify the accelerometer outputs. The high-pass 

networks are implemented to prevent the external amplifier outputs from saturation. The 

accelerometer outputs are also limited by a low-pass network with cut-off frequency (fc,LPF) of 40 

Hz to limit the accelerometer signal bandwidth, like the EEG bandwidth. The accelerometer outputs 

are recorded simultaneously with the intra-oral EEG signal and sent to three ADC modules of the 

same microcontroller unit. 

 

Fig. 4.4. The complete wearable smart MAD prototype: (a) the MAD integrated with the EEG electrodes, 

accelerometer, and the sensor read-out circuitry, (b) the sensor read-out circuitry with its circuit blocks, and (c) the 

wearable smart MAD placed on an oral cavity cast depicting the experimental setup. 

4.4.4 The Microcontroller & Bluetooth Module 

The digital part of the circuit uses a microcontroller unit Atmega328P interfaced with a low-power 

BLE 5.0 transceiver module RN4871 (by Microchip Technology). Four 10-bit analog-to-digital 
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converter (ADC) channels of Atmega328P (one for the single channel intra-oral EEG recording 

and three more for the accelerometer outputs) are used to digitize the intra-oral EEG signal coming 

from the AFE and the intra-oral motion signals coming from the accelerometer sensor. The 

sampling rate of the ADC channels are fixed at 200 Hz to meet the Nyquist criteria (> 2×EEG 

bandwidth) during analog to digital conversion. The digitized intra-oral EEG and the 

accelerometer data for intra-oral motions are then transmitted wirelessly using the Bluetooth 

module to a nearby computer. 

4.4.5 The Computer Interface at the Receiving End 

Another RN4871 BLE 5.0 transceiver is used to as receiver to acquire the transmitted data in a 

computer. The acquired intra-oral EEG and accelerometer data are then processed in a MATLAB 

(version R2019a) based algorithm to identify the timestamps of the intra-oral motions and then to 

remove the motion corrupted EEG data. 

4.4.6 Comparative Study of the Proposed System with Other Intra-oral Biopotential 

Measurement Systems 

Table 4.2 presents a comparative study of the proposed smart MAD system and other intra-oral 

biopotential measurement systems reported in scholarly articles. The system reported in [8] is the 

first reported study of intra-oral EEG measurements. This study uses rigid electrodes mounted on 

the dental retainer, which are then interfaced with a commercial EEG device using long wires 

coming out of the mouth. Such experimental setups are uncomfortable to use and suitable only for 

short term studies. Another smart mouthguard presented in [16] is the first reported study of intra-

oral EOG signals. The mouthguard is integrated with flexible electrodes touching the inner walls 

of the upper and lower inner lips for EOG detection. The instrumentation, on the other hand, is 

implemented on a breadboard and the EOG electrodes are interfaced using long wires coming out 

of the mouth, thereby making the prototype suitable only for short term studies. The smart MAD 

reported in [10] is our first prototype made for intra-oral EEG measurements with integrated 

flexible electrodes and the measurement system, making the prototype comfortable to wear and 

suitable  for  relatively  long  term study.  However, the prototype is sensitive to intra-oral motions 
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TABLE 4.2 

A COMPARISION BETWEEN THIS PROPOSED SMART MAD AND OTHER SYSTEMS FOR INTRA-ORAL BIOPOTENTIAL 

MEASUREMENT  

 
PATENT 

[8] 

SENSORS’21 

[10] 

FLEPS’23 

[16] 
THIS WORK 

ELECTRODE DESIGN & SPECIFICATIONS:- 

Electrode Type Rigid  Flexible Flexible Flexible 

Electrode Size — 1 cm diameter 1.5 cm × 1 cm 1 cm diameter 

Interface with the System Using Wire 
Integrated with the 

Wearable 
Using Wire 

Integrated with the 

Wearable 

INTRA-ORAL MOTION ARTIFACTS SENSING & REDUCTIONS:- 

Motion Sensing  No No No Using Accelerometer 

Motion Reduction  — — — 
Sensor-fusion & 

Algorithm 

SYSTEM DESIGN & SPECIFICATIONS:- 

Instrument Placement 
Outside Oral 

Cavity 

Integrated with the 

Wearable 

Outside Oral 

Cavity 

Integrated with the 

Wearable 

PCB Board  Rigid Flexible Breadboard Flexible 

Number of Channels — 1 4 1 

Power Consump.  — ~49.5 mW — ~ 69.3 mW 

Data Trasmission — Bluetooth Bluetooth Bluetooth 

System Gain — > 65 dB — > 57 dB 

System Bandwidth — 0.16 – 40 Hz — 0.16 – 40 Hz 

Wearable Platform Dental Retainer MAD Mouthguard MAD 

Application EEG EEG EOG EEG 

during signal measurements. This work is an improved version of our first smart MAD prototype 

and uses a sensor-fusion of intra-oral EEG electrode and accelerometer and capable of tracking 

intra-oral motions while measuring the EEG signal. The gain of the system is a bit low in 

comparison to our first prototype [10] to make sure that the EEG output does not saturate in the 

presence of motions. The addition of accelerometer also increases the overall power consumption 

of the system. But the prototype, along with the proposed algorithm, is able to reduce motion 

artifacts in intra-oral EEG signals. Therefore, it is safe to say that this proposed smart MAD is the 

most useful prototype reported so far for intra-oral biopotential measurement systems. 
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4.5 The Algorithm for Motion Artifacts Reduction in Intra-Oral EEG Data & 

Results 

Intra-oral EEG measurements may suffer from motion artifacts due to intra-oral motions. Such 

motions can disturb the entire smart MAD device integrated with the intra-oral electrodes and may 

result in heavily distorted EEG measurements leading to output saturation in some cases [18], [39], 

[41]. In our work, we have used EMD-ICA method based algorithm for reducing motion artifacts 

in intra-oral EEG signals. 

4.5.1 EMD-ICA Method 

Empirical mode decomposition (or EMD) is nonlinear signal processing technique that 

decomposes a time series signals into a data matrix with each row containing an “intrinsic mode 

function” (or IMF) [30], [32]. The decomposed IMFs must satisfy the following conditions: (i) the 

total number of maxima and zero crossings over the full length time series data must be the same 

or differ by at most 1 and (ii) the mean value of the envelopes defined by the maxima and minima 

over the full length time series data must be zero [30]. 

 A number of steps are implemented to decompose the IMFs from a time series signal (𝒙). 

In the first step, the maxima points all over the time series data (𝒙) are found and connected 

together using a cubic spline to create the upper envelop. Next, the same process is repeated for 

the minima points to create the lower envelop. Next, the average (𝒎) of upper and lower envelop 

are calculated and subtracted from the time series data to create a new signal 𝒉 =  𝒓𝟎 − 𝒎, where 

𝒓𝟎 = 𝒙. Next, 𝒉 is considered as the new signal and steps 1, 2, and 3 are repeated. This process is 

repeated until a 𝒉 is found which satisfies the two conditions for IMFs mentioned above, which is 

considered as the first IMF (𝒄𝟏). Next, 𝒄𝟏 is subtracted from 𝒓𝟎 to obtain the residual signal (𝒓𝟏 =

 𝒓𝟎 − 𝒄𝟏) and a new IMF (𝒄𝟐) is decomposed by repeating the entire process and so on. The 

decomposition process is stopped when the residual signal (𝒓𝒏) becomes a monotonic function. 

Once, all the IMFs (𝒄𝒋) are decomposed, the original signal (𝒙) can be reconstructed using the 

formula 𝒙 =  ∑ 𝒄𝒋 +  𝒓𝒏
𝒏
𝒋=𝟏 , where 𝒓𝒏 is the residual signal after decomposing 𝒏 IMFs. In our 
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approach, EMD is used to decompose the single channel intra-oral EEG data into an IMF data 

matrix. However, the EEG and motion artifacts spectral components will be distributed over the 

decomposed IMFs which are needed to be separated. Independent component analysis (or ICA) 

can be a suitable choice to separate the EEG and motion artifacts components from the 

decomposed IMFs. 

 ICA, on the other hand, is a blind source separation (BSS) technique that assumes a 

recorded signal matrix (𝑿) constitutes a combination of independent components or sources [24], 

[43]. The criteria of using ICA algorithm is that the signal matrix must contain recorded data which 

is more than or equal to the number of unknown independent components, The ICA algorithm then 

utilizes a number of learning assumption like linear mixing, square mixing, stationary mixing etc. 

to estimate an unmixing matrix (𝑾) using higher order statistics (HOS) to separate the unknown 

independent components (�̂�) [32], [43]. These matrices can be related with each other using the 

formula �̂� = 𝑾𝑿. In our approach, by estimating 𝑾, the independent components containing EEG 

and motion artifacts can be separated. The inverse of unmixing matrix (𝑾) is called the mixing 

matrix 𝑨 = 𝑾−𝟏, which holds the following equation 𝑿 = 𝑨�̂� true. The independent components 

representing motion artifacts can be removed by setting them to zero and �̂� matrix containing the 

independent components is modified. Later, denoised EEG IMFs can be reconstructed using the 

mixing matrix 𝑨 and the modified �̂� matrix. Later, the denoised IMFs can be added together along 

with the residual signal to reconstruct the artifacts free EEG signal. In this work, we have used 

fastICA algorithm simply because of its shorter computational time [43]. 

4.5.2 The Proposed Algorithm 

The proposed algorithm uses the accelerometer X, Y, and Z axes outputs for intra-oral motion 

signals measurements during tongue movements, teeth grinding, and gulping activities. The noise 

floor (or baseline) of the X and Y axes of the accelerometer module is ± 15 mV. Whereas the noise 

floor for the Z axis is slightly higher, approximately ±30 mV. However, the X, Y, and Z axes are 

relative to the subject’s body postures. Therefore, the resultant noise floor (R) is computed for the 
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Fig. 4.5. The proposed algorithm using accelerometer data and EMD-ICA method for reducing motion artifacts from 

intra-oral EEG signals. 

X, Y, and Z axes and found out to be around ± 40 mV. The noise floor ranges for X, Y, Z and the 

resultant (R) are already indicated with dashed lines in Fig. 4.4. Any responses captured by the 

accelerometer above this noise floor are considered motion events. A detailed flowchart of the 

proposed algorithm is presented in Fig. 4.5. The algorithm first acquires the intra-oral EEG and 

accelerometer X, Y, and Z data for a time window of 30 seconds. Then the algorithm calculates 

the resultant accelerometer data (R). Then envelop of the resultant data is acquired with a minimum 

threshold noise floor of 40 mV. Any value less than the noise floor (<= 40 mV) along the envelope 

is modified by making the value 40 mV during the envelope detection process. If the entire 

resultant envelope data remain at the noise floor (i.e. 40 mV), no intra-oral motion events are 

present and the algorithm processes the EEG data as it is for spectrum analyzing. If any events are 

detected on the resultant envelope data above the noise floor (i.e. 40 mV), we assume that a motion 

event has occurred. Then the resultant envelope data are analyzed to extract the start time, end 

time, and total duration of motion events. When the skin-electrode contact impedances change due 

to motion artifacts, the response time of the EEG (or any biopotential) electrodes change as well. 
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Therefore, the EEG baseline signal may take some extra time to settle down even after the end of 

a motion event. To compensate for the EEG baseline settling time, the start time, end time, and 

total motion durations of the detected motion events are recalculated. The algorithm adds an extra 

100% time of the total motion duration at the beginning of the motion event and an extra 200% 

time of the total motion duration at the end of the motion event. 

 Intra-oral EEG data and the accelerometer data are acquired simultaneously. Therefore, the 

intra-oral EEG data should also experience motion artifacts on the exact time locations extracted 

and calculated from the accelerometer resultant envelope data. The intra-oral EEG signal is first 

decomposed using EMD method and then the decomposed IMF matrix (except the last residual 

signal) is used as inputs in fastICA to separate the components related to EEG signal and the noise. 

The first four independent components contained most of the most artifacts signatures in all study. 

Therefore, these components are mapped with the accelerometer resultant data to identify and then 

remove (i.e. set to zero) the motion impacted data segments. The modified independent 

components are then multiplied with their mixing matrix (inverse fastICA method) to reconstruct 

the motion artifacts reduced EMD IMFs. Finally, the regenerated IMFs are added together along 

with the residual signal to reconstruct a motion artifacts reduced intra-oral EEG signal. The 

algorithm is then repeated for the next time window. 

4.5.3 EEG Processing using the Proposed Algorithm 

Fig. 4.6 presents three sets of intra-oral EEG data and accelerometer data recorded with the three 

different kinds of intra-oral motions: (i) intra-oral EEG data with tongue movements, (ii) intra-oral 

EEG data with teeth grinding, and (iii) intra-oral EEG data with gulping, respectively. For all three 

sets of data presented in Fig. 4.6: graphs (a) shows the intra-oral EEG data with intra-oral motion 

artifacts; graphs (b) shows the resultant accelerometer data calculated from the X, Y, and Z axes 

outputs along with the 40 mV noise floor indicated by the dashed black lines; graphs (c) presents 

the corresponding resultant envelope data with minimum noise floor of 40 mV; graphs (d) shows 

the processed intra-oral EEG data after motion artifacts reduction using the proposed EMD-ICA 

based algorithm; and graphs (e) presents the original motion contaminated intra-oral EEG data and  
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Fig. 4.6. Intra-oral EEG data processing using the proposed EMD-ICA based algorithm for motion artifacts reduction 

in motion contaminated EEG segments for three different type of intra-oral motion activities: (i) tongue movements 

with graphs (a – e), (ii) teeth grinding with graphs (a – e), and (iii) gulping with graphs (a – e). Here the term MA 

stands for ‘motion artifacts’ and the term MAR stands for ‘motion artifacts reduction’. 

the processed motion artifacts reduced intra-oral EEG data overlapped over each other. The dotted 

blue boxes presented in graphs (a), (c), and (d) show the total duration of motion events and their 

positions on the motion corrupted intra-oral EEG data, the resultant accelerometer envelope data, 

and the motion artifacts reduced intra-oral EEG data, respectively. It can be clearly seen from 

graphs (e) that the EMD-ICA based algorithm do minimize motion artifacts effectively from the 

motion contaminated EEG data segments while almost preserving the features in the other EEG 
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segments where motion artifacts are not present. One limitation of the algorithm is that sometimes 

it generates some small glitches (nearly insignificant) at the start and end timestamps of motion 

events after denoising, as we can see in graphs (d) for teeth grinding and gulping scenario in Fig. 

4.6. However, these glitches can be attributed to the selected removal of motion contaminated 

segments from the ICA components. 

4.5.4 The Proposed Algorithm Performance Validation 

To quantify the effectiveness of the proposed algorithm, signal-to-noise (SNR) and correlation can 

be calculated from the EEG signals before and after noise (motion artifacts) removal. However, 

calculating SNR and correlation metrics require the knowledge of the “clean EEG signal” [32]. 

Since, it is not possible to extract the actual “clean EEG signal”, we have to compute an EEG 

signal after all artifacts removed and consider that as our “clean EEG signal”. The goal of the 

algorithm is to reconstruct an EEG signal after motion artifacts reduction which resembles the 

“clean EEG signal”. Since, it was already mentioned in section 4.5.2 that the first four components 

of the ICA contain most of the motion artifact features. The “clean EEG signal” is computed by 

removing the first four ICA components completely and then employing inverse ICA-EMD 

method. 

In this study, the first performance metric is measured by calculating the difference SNR (ΔSNR) 

of the EEG signal, with respect to the “clean EEG signal”, before and after motion artifacts 

reduction [32]. The ΔSNR can be calculated using the following formula: 

  𝛥𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝜎𝑥

2

𝜎𝑒𝑎𝑓𝑡𝑒𝑟
2 ) −  10𝑙𝑜𝑔10 (

𝜎𝑥
2

𝜎𝑒𝑏𝑒𝑓𝑜𝑟𝑒
2 )  (1) 

where 𝜎𝑥
2 is the variance of the “clean EEG signal”, 𝜎𝑒𝑎𝑓𝑡𝑒𝑟

2  is the variance of the error signal after 

motion artifacts reduction, and 𝜎𝑒𝑏𝑒𝑓𝑜𝑟𝑒
2  is the variance of the error signal before motion artifacts 

reduction. The error signals can be computed by subtracting the EEG signal from the “clean EEG 

signal” before and after noise reduction. 
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 The second performance metric can be calculated by measuring the difference correlations 

between the EEG signal and the “clean EEG signal” before and after motion artifacts reduction 

[30]. This metric is known as percentage reduction is artifacts (λ) and can be calculated as follows: 

 𝜆 = 100 (
𝑅𝑎𝑓𝑡𝑒𝑟−𝑅𝑏𝑒𝑓𝑜𝑟𝑒

1−𝑅𝑏𝑒𝑓𝑜𝑟𝑒
)  % (2) 

where 𝑅𝑏𝑒𝑓𝑜𝑟𝑒 and 𝑅𝑎𝑓𝑡𝑒𝑟 are the correlation between the “clean EEG signal” and the EEG signal 

before and after motion artifacts reduction, respectively. As it can be seen from equation (2) that 

𝜆 is directly proportional to 𝑅𝑎𝑓𝑡𝑒𝑟, which means that higher 𝜆 value indicates better artifact 

reduction. 

 Intra-oral EEG data are recorded in the presence of intra-oral motions (tongue movements, 

teeth grinding, and gulping) from three subjects and then processed through the proposed 

algorithm for motion artifacts reduction. Three datasets, with a duration of 15 seconds each, from 

each subject containing three different kinds of intra-oral motions (total nine datasets). The 

datasets are deliberately recorded with longer motion activity to quantify the usefulness of the 

proposed algorithm. The values of ΔSNR and λ are calculated from the 9 datasets mentioned above 

and presented in Table 4.3. The ΔSNR values gives us a measure of SNR improvement before and 

after motion artifacts reduction. Whereas, λ provides us a relative measure of motion artifacts 

reduction which also depends upon the amount of motion artifacts present in the signal. As it was 

mentioned in section 4.3.2 and can be seen in Fig. 4.6(i), tongue movements are relatively weak 

motion artifacts. Therefore, their impact on intra-oral EEG signals will be less which will yield 

low λ values after motion artifacts reduction. On the other hand, teeth grinding and gulping 

activities are relatively strong, again as mentioned in section 4.3.2 and can be seen in Fig. 4.6(ii) 

and 4.6(iii), respectively. Therefore, their impact on intra-oral EEG signal will be relatively large 

which will yield higher λ values after motion artifacts reduction. 

 Fig. 4.7 presents the alpha band responses of three datasets of intra-oral EEG data with ‘eye 

open’ and ‘eye close’ activities recorded during the three kind of intra-oral motion artifacts: (a) 

tongue  movements, (b) teeth  grinding,  and (c) gulping,  respectively. The  three sets of intra-oral 

128 



 

TABLE 4.3 

THE PROPOSED ALGORITHM PERFORMANCE QUANTIFICATION: THE ΔSNR AND THE PERCENTAGE REDUCTION 

IN ARTIFACTS (𝝀) CALCULATED FOR INTRA-ORAL EEG DATA RECORDED IN THE PRESENCE OF INTRA-ORAL 

MOTION ARTIFACTS 

Subjects 

Tongue Movements 

(3 Datasets) 

Teeth Grinding 

(3 Datasets) 

Gulping 

(3 Datasets) 

ΔSNR (in dB) λ (in %) ΔSNR (in dB) λ (in %) ΔSNR (in dB) λ (in %) 

1 20.79 7.14 31.02 40.10 7.57 23.01 

2 19.86 5.73 19.22 39.61 27.42 40.05 

3 5.96 4.65 19.16 31.61 11.87 32.36 

 

Fig. 4.7. The alpha (α) band spectrum of three intra-oral EEG datasets with ‘eye open’ and ‘eye close’ activities, 

before and after intra-oral motion artifacts removal using the proposed EMD-ICA based algorithm, recorded in the 

presence of: (a) tongue movements, (b) teeth grinding, and (c) gulping. 

EEG spectrum are presented before and after the motion artifacts reduction using the proposed 

EMD-ICA based algorithm, as shown in Fig. 4.7. For tongue movement scenario in Fig. 4.7(a), 
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the alpha band responses are not clear enough to distinguish between ‘eye open’ and ‘eye close’ 

activities before the motion artifacts removal. But, the alpha band responses improve and become 

distinguishable for ‘eye open’ and ‘eye close’ activities after the motion artifacts reduction from 

the EEG signals. Similar alpha band responses are observed for gulping activity present in Fig. 

4.7(c). Whereas, for teeth grinding scenario in Fig. 4.7(b), the alpha band responses are 

distinguishable for ‘eye open’ and ‘eye close’ activities even before motion artifacts reduction. 

However, after motion artifacts reduction, the alpha band spectrums further improve for ‘eye close’ 

in comparison to ‘eye open’ activity. This distinguishable change in alpha band responses for intra-

oral EEG also matches with the scalp/forehead EEG alpha band responses as presented in Fig. 

4.1(d) earlier and reported in [7], [36]. Thus, it can be concluded that the proposed algorithm 

indeed reduces motion artifacts from the intra-oral EEG signals while preserving and improving 

its important features. 

4.5.5 Comparison of the Proposed Sensor-Fusion Method Performance with Other 

Existing Methods 

To compare the performance of the proposed sensor fusion method with recent methods proposed 

for removing motion artifacts from intraoral EEG signal, the intra-oral EEG signals reported in 

Table 4.3 are also processed with three existing EEG denoising methods. The first method 

considered is DWT-ICA, which decomposes single channel EEG data into a data matrix using 

DWT and then uses ICA to separate the EEG and artifacts components [28]. The ICA components 

containing artifacts are removed and a clean EEG signal is reconstructed from the remaining 

components using inverse ICA and DWT. The second method employs EMD to decompose a 

single channel EEG data and then the decomposed IMFs are cross-correlated with the original 

signal [31]. The IMFs with cross-correlation less than 0.5 are marked as artifacts free and used for 

a clean EEG signal reconstruction. The third method uses EEMD to decompose the EEG signal 

into IMFs and then CCA is used to separate out artifacts components from the EEG signals [32]. 

Then, the CCA components containing artifacts are removed and a clean EEG signal is 

reconstructed from the remaining components. Fig. 4.8 presents one set of intra-oral EEG data 
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processed with the proposed sensor-fusion technique and the EEG denoising algorithms: DWT-

ICA, EMD-CrossCorr and EEMD-CCA. As shown in Fig. 4.8(a), our proposed method uses sensor 

fusion to selectively identify the motion contaminated EEG segments and denoise that portion only 

whereas, the existing methods in presented here are employed on the entire EEG data. This may 

result in some unwanted loss in EEG signal features where motion artifacts are not present, as 

shown in Fig. 4.8(b), (c), and (d), respectively. 

 

Fig. 4.8. One set of Intra-oral EEG data processed using different methods: (a) the proposed sensor-fusion method, 

(b) DWT-ICA method, (c) EMD with Cross-Correlation method, and (d) EEMD-CCA method. Here MA and MAR 

stand for ‘motion artifacts’ and ‘motion artifacts reduction’, respectively. The blue box shows the motion corrupted 

segment. 

 Table 4.4 presents the overall average values of the root mean square error (RMSE) and the 

change in power spectral density (ΔPSD) in all EEG bands calculated from the nine sets of intra-

oral EEG data, after motion artifacts removal. The RMSE of a signal can be calculated using the 

following formula [31]: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ {𝐸𝐸𝐺𝑏𝑒𝑓𝑜𝑟𝑒(𝑛) − 𝐸𝐸𝐺𝑎𝑓𝑡𝑒𝑟(𝑛)}2𝑁

𝑛=1  (3) 

where N is the EEG data length, 𝐸𝐸𝐺𝑏𝑒𝑓𝑜𝑟𝑒 and 𝐸𝐸𝐺𝑎𝑓𝑡𝑒𝑟 are the EEG signal before and after 

denoising, respectively. The RMSE is calculated only for the artifact free EEG segments whereas 
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the ΔPSD is evaluated for the entire signal. These metrics give a quantitative measure of distortion 

introduced in the EEG signals during signal processing and are expected to yield lower values for 

better performance [31]. The proposed sensor-fusion method achieves the lowest average RMSE 

value, which means our method introduces less distortion during EEG signal denoising. The ΔPSD 

value in delta region is also the lowest value, which may be attributed to the fact that our method 

processes only the motion contaminated EEG segments, thereby retaining more EEG information 

on the motion artifacts free EEG segments. Among the four bands the high values of ΔPSD in delta 

and theta region also indicates that motion artifacts mostly impact the EEG baseline during signal 

measurements. 

TABLE 4.4 

COMPARISON OF THE PROPOSED ALGORITHM WITH SOME STATE-OF-THE-ART EXISTING METHODS FOR INTRA-

ORAL EEG DENOISING 

Algorithms 

 

RMSE (µ𝑽) 

(mean ± std) 

 

ΔPSD (µ𝑽𝟐/√𝑯𝒛) 

Delta (δ)  

(mean ± std) 

 

Theta (θ)  

(mean ± std) 

 

Alpha (α) 

(mean ± std) 

 

Beta (β) 

(mean ± std) 

DWT-ICA [28] 
133.61  

± 99.42 

3249.34  

± 2788.76 

15.87  

± 14.83 

2.87  

± 2.60 

1.38  

± 1.27 

EMD-

CrossCorr [31] 

119.35  

± 106.56 

2705.16  

± 2587.22 

2.36  

± 2.19 

0.47  

± 0.43 

0.06  

± 0.04 

EEMD-CCA 

[32] 

158.18  

± 106.73 

3461.91  

± 2900.03 

29.27  

± 27.33 

7.58  

± 6.07 

1.04  

± 0.71 

The Proposed 

Algorithm 

22.43  

± 21.57 

2398.35  

± 2141.10 

25.80  

± 23.51 

1.90  

± 1.32 

0.79  

± 0.66 

4.6 Conclusion & Future Work 

This paper presents a smart, wearable MAD with a sensor-fusion of EEG electrodes and 

accelerometer for the measurements of intra-oral EEG signals and intra-oral motions such as 

tongue movements, teeth grinding, and gulping simultaneously. The smart MAD also houses the 

sensor read-out circuitry implemented on a flexible polyimide substrate. The placement of 

accelerometer is optimized for proper intra-oral motion detection. The system metrics such as gain, 

CMRR, and EEG bandwidth of the single channel EEG AFE are also evaluated and found out to 

be greater than 57 dB, greater than 74 dB, and 0.16–40 Hz, respectively. Intra-oral EEG and 

132 



 

accelerometer data are acquired from three subjects and processed through the proposed EMD-

ICA based algorithm for motion artifacts reduction. The efficacy of the proposed algorithm is 

validated by quantifying the difference between the SNR of the EEG signals before and after 

motion artifacts reduction and by calculating the correlation analysis based percentage artifacts 

reduction. The intra-oral EEG signals are also analyzed in the presence of motion artifacts to detect 

the basic ‘eye open’ and ‘eye close’ activities. The proposed sensor fusion method’s performance 

is then compared with some other state-of-the-art EEG denoising algorithms. The comparison 

demonstrates that our method preserves more EEG features in comparison to the other existing 

methods after motion artifacts removal. 

 In future, the device design will be further improved by printing the measurement 

electrodes and their connecting wires on the smart MAD itself. The measurement system will be 

optimized by using lower power off-the-shelf components, thereby improving the battery life. The 

effectiveness of the proposed sensor fusion method to reduce artifacts from other sources of intra-

oral and non-intra-oral motions such as yawning, head movements, change of body postures will 

also be investigated in future. Other signal decomposition techniques will also be explored for the 

algorithm part to further optimize the performance. The smart prototype will be used to acquire 

intra-oral EEG data from more participants and understand underlying EEG features for various 

brain activities. This smart MAD along with the EEG electrodes, accelerometer, and the algorithm 

have potential for MAD-based intra-oral EEG applications. 

4.7 Bridging Text 

This is the first reported complete smart MAD prototype capable of acquiring intra-oral EEG 

signals in the presence of intra-oral motion artifacts such as tongue movements, teeth grinding, 

and gulping. The sensor-fusion of EEG electrodes and accelerometer along with the proposed 

algorithm do a very efficient job in reducing the motion artifacts in the motion corrupted segments 

of the intra-oral EEG data. In future, the form factor of the smart MAD can be minimized by using 

smaller commercial off-the-shelf components and ICs. The EEG signal conditioning blocks can 
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be entirely replaced by a single biopotential measurement chip, further minimizing the sensor 

board size and power consumption. The smart MAD system will be used for acquiring intra-oral 

EEG signals for different brain activities and sleep for sleep stage classifications. 
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Chapter 5 

 

Discussion 

In the context of the present state-of-the-art commercial and non-commercial biopotential 

wearables reviewed in this thesis, it is evident that they have several design and usage related 

issues which can be broadly classified into the following categories: - 

• Biopotential acquiring electrode design issues 

• Biopotential measurement system design issues 

• Motion artifacts in biopotential measurements 

• Possible limitations of the biopotential wearable usages 

 This chapter presents a detailed discussion on the expectations and accomplishments of this 

research project which aims to address all the above issues and proposes smart wearable 

biopotential measurement systems which have potential applications for sleep study. 

5.1 Biopotential Acquiring Electrode Design Issues 

Most of the commercial biopotential wearables use rigid contact electrodes which are 

uncomfortable to wear for long term study [1]–[7]. Some works have explored flexible fabric-

based electrodes. Although they are comfortable to wear, they also suffer from less sensitivity, 

require larger size for increased sensitivity, and are not suitable for compact biopotential wearable 

design [8]–[13]. 
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Fig. 5.1. Different rigid/flexible electrodes for EEG/EOG measurements: (a) commercial rigid flat and cup gold 

electrodes, (b) fabric-based flexible electrode reconstructed with permission from [12] © 2018 IEEE, (c) fabric-based 

flexible electrode reconstructed with permission from [13] © 2005 IEEE, (d) noncontact electrode reconstructed with 

permission from [14] © 2019 IEEE, (e) semi-rigid silicon based electrodes reconstructed with permission from [15] 

© 2017 IEEE, (f) flexible Polyimide based contact gold electrode printed for our applications reconstructed with 

permission from [16] © 2021 IEEE, (g) – (i) flexible Polyimide based non-contact gold electrodes with different 

shapes printed for our applications reconstructed with permission from [17] © 2022 IEEE. 

 To address this design constraint, we proposed an idea to use printed gold layer as the 

measurement electrodes. The electrodes were designed in Altium (CAD software for PCB design) 

and were printed on flexible Polyimide substrate. The flexible Polyimide substrate provides the 

printed gold electrodes sufficient degree of freedom and skin conformability to have them placed 

comfortably on the skin. The concept of using printed electrodes was reported in [14], but they did 
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not provide any performance characterization of the flexible electrodes. Here, in two of our 

biopotential measurement prototypes presented in chapters 2 and 4, the flexible printed electrodes 

are configured as contact electrodes [18]. Their skin-electrode contact impedance properties have 

been validated on the forehead with/without gel and in moist intra-oral environments. The 

sensitivities of the flexible contact electrodes are found out to be similar like the commercial gold 

flat electrodes with gel, as reported in chapter 2. In another biopotential measurement prototype 

proposed by us in chapter 3, the printed gold electrodes are covered with kapton film and 

configured as non-contact electrodes. The skin-electrode contact capacitances for the non-contact 

electrodes are measured and reported in chapter 3. The sensitivities of the non-contact electrodes 

are also computed and compared with the commercial rigid contact gold electrodes with gel. The 

non-contact electrodes show sensitivities 50 times (or more) higher than the conventional contact 

electrodes, as reported in chapter 3. Some of the rigid/flexible electrodes and our designed flexible 

gold electrodes (both contact and non-contact) are presented in Fig. 5.1. 

5.2 Biopotential Measurement System Design Issues 

As discussed in chapter 1, there are several system design standards and aspects that need to be 

addressed for a wearable system design. In the following subsections, we discussed about 

reasonable solutions to some of these design problems which we have implemented in our 

proposed biopotential measurement prototypes. 

5.2.1 Measurement System PCB 

Most of the commercial and non-commercial wearables use rigid PCBs for measurement system 

implementation which are not at all comfortable to use for wearable applications [1]–[13], [15], 

[18]–[22]. Therefore, we implemented our EOG/EEG measurement systems on flexible Polyimide 

substrates, just like the printed electrodes. Flexible substrates are lightweight, bendable, and skin-

conformable [14]. Therefore, the use of flexible substrates is getting very popular in recent 

technologies, especially for wearable applications [14], [23], [24]. All our three proposed 

prototypes (presented in chapters 2, 3, and 4) for EOG/EEG measurements are implemented on 
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flexible Polyimide substrates. The weight of all three systems, along with their soldered 

components and batteries, were less than 12 grams which is very light to wear. 

5.2.2 Electrode and Measurement System Integration 

In most of the biopotential measurement wearable design, the measurement electrodes are bought 

or manufactured separately and interfaced with the measurement unit using either connecting wires 

or metallic snap buttons [8]–[13]. As mentioned before, only one work shows EEG measurement 

electrodes printed for their flexible instrument [14]. Here also, we followed similar design 

approach and printed the flexible gold electrodes on the bottom layer of our two EOG prototypes, 

as presented in chapters 2 and 3. Our reported works are the only reported flexible prototypes used 

for EOG applications. The top layer of the board is used to implement the circuit for EOG data 

acquisition. In case of our smart MAD for intra-oral EEG measurements, presented in chapter 4, 

the flexible printed electrodes are interfaced with flexible board using small wires. This is done to 

optimize and utilise the space available in the oral cavity. The intra-oral EEG electrodes are 

supposed to touch the palate, so they are placed inside the oral cavity. The measurement instrument 

along with the battery cannot be accommodated inside the oral cavity because of their size, 

dimension, and user comfort. Therefore, the EEG instrument is integrated along the outer curvature 

of the MAD, outside the oral cavity. 

5.2.3 Biopotential Measurement Standards 

All biopotential instruments should meet some standard system metrics to be qualified as good 

quality measurement systems set by international research groups for medical technologies such 

as IFCN [25]. The IFCN encourages the system design engineers to evaluate their system’s gain, 

common mode rejection ratio (or CMRR), and input-referred noise levels to check if they meet the 

standard IFCN metrics or not. This ensures the signal amplifying and processing capability of the 

biopotential measurement system as we are trying to measure signals which are in the range of a 

few µVs to a few mVs. Our three proposed prototypes for EOG/EEG measurements have been 

tested for their gain, CMRR, and noise metrics and reported in chapters 2, 3, and 4, respectively. 
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All our proposed prototypes meet the IFCN standard metrics required for biopotential 

measurement. 

 The IFCN standard also recommends the use of driven right leg (or DRL) circuits for 

systems involving contact electrodes [25]. The DRL circuit is an arrangement for feeding the 

ground electrode back to the subject’s body to minimize the common-mode signals during 

biopotential measurements. However, feeding an electrical voltage into a subject’s body are 

always subject to potential risks of electrocution due to system failure and current discharge [25]. 

The DRL circuit can limit the amount of current injecting into the subject’s body during such 

accidents and save the person from potential health risks. Two of our proposed system, presented 

in chapters 2 and 4, are also based on contact electrode applications and the DRL circuit is 

implemented in both systems to meet the IFCN standards. 

5.2.4 Power Consumptions and Long-Term Monitoring 

One major system requirement for long term monitoring is having a long battery life. This depends 

on the number of sensors and electronic components used in the circuit and their total power 

consumption. For long term monitoring like sleep study, the system needs to run for at least 7 to 8 

hours. The commercial sleep monitoring devices reviewed here are optimized to run for 10 hours 

or more, which is reasonable [1]–[7]. However, this also requires bigger batteries with better 

energy storage, which explains the size of the rigid cases used for the system and battery 

integration in the commercial wearable reviewed in chapter 1. Therefore, it is important to identify 

the power-hungry components of the system and optimize the overall system design. 

 Our designed EOG prototypes in chapter 2 and 3, are powered with 120 mAh and 125 mAh 

rechargeable Li-ion batteries, respectively. Both of them have a battery life of approximately 7 

hours which is good enough for sleep study. Our smart MAD based intra-oral EEG measurement 

prototype also uses accelerometer for intra-oral motion tracking and requires additional power for 

a longer battery life, as presented in chapter 4. Therefore, our smart MAD was powered with a 200 

mAh rechargeable Li-ion battery and has a battery life of approximately 8 hours. The main power  
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TABLE 5.1 

A DETAILED INFORMATION ON VOLTAGE, CURRENT, AND POWER CONSUMPTION OF OUR PROPOSED 

BIOPOTENTIAL MEASUREMENT PROTOTYPES 

Circuit Components 
EOG Prototype 1 

[Chapter 1] 

EOG Prototype 2  

[Chapter 2] 

Smart MAD Prototype for 

Intra-oral EEG [Chapter 3]  

Battery Capacity 120 mAh 125 mAh 200 mAh 

Voltage Regulator 

(TPS7333 LDR) 
3.3 Volts 3.3 Volts 3.3 Volts 

Battery Life 7 hrs. 40 min. (appox.) 7 hrs. 15 min. (appox.) 8 hrs. 20 min. (approx.) 

CURRENT AND POWER CONSUMPTIONS 

 I in (mA) P in (mW) I in (mA) P in (mW) I in (mA) P in (mW) 

Instrumentation 

Amplifier (INA116/118) 
1 3.3 2 6.6 1 3.3 

Other OpAmps 

(LMC6482/6484) 
3 9.9 3 9.9 4 13.2 

Accelerometer 

(MXR9500MZ) 
— — — — 4 13.2 

Microcontroller 

(Atmega328p) 
2 6.6 2 6.6 2 6.6 

Bluetooth (RN4871) 10 33 10 33 10 33 

Total 16 52.8 17 56.0 21 69.3 

 consuming components in our design is Bluetooth 5.0 transceiver which consumes the maximum 

amount of power. Table 5.1 presents the power consumptions of our circuit prototypes presented 

in chapter 2, 3, and 4, respectively. There are commercial low power Bluetooth modules with 

integrated analog-to-digital converter (or ADC) modules available in the market which can be used 

to replace the entire microcontroller and Bluetooth module in our design. However, most of our 

research work have been done during the COVID-19 pandemic and shortly afterwards and many 

electronic components (including low power Bluetooth modules) were out of stock to buy during 

that time. Therefore, the wearable prototypes were designed with the available low power 

electronic components in the market. The selection of the low power electronic components and 

overall power optimization for our prototypes can be done in future work. 
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5.2.5 Integration of Measurement Setup with Wearable Platform 

As mentioned before, all our EOG/EEG wearable prototypes are implemented on flexible boards. 

Given the flexibility of the proposed systems, two of them (presented in chapter 2 and 3) are skin 

conformable and can be easily integrated with headbands or eye-masks for EOG measurements. 

The two EOG systems don’t need any rigid and bulky wearable platforms for integration, which 

is a major advantage in comparison to all commercial EOG/EEG wearables reviewed in the thesis. 

The smart MAD prototype is designed especially for intra-oral EEG measurements. The flexible 

measurement system is also surface conformable and can be integrated easily along the curvature 

of our custom-made MAD, as presented in chapter 4. 

5.3 Motion Artifacts in Biopotential Wearables 

The most challenging problem in biopotential measurements is the issue of motion artifacts and 

none of the non-commercial wearables (reviewed in this thesis from scholarly article), reported 

any smart hardware or software-based arrangements to tackle this problem. Only one research 

work report hardware arrangement based motion-artifacts removal technique for wearable EEG 

prototype, but they do not report any real-time EEG recording in the presence of motion artifacts 

[14]. One of our EOG prototypes, presented in chapter 3, uses parallel non-contact electrodes for 

motion artifacts sensing and reduction at the very first input stage. The system is validated 

thoroughly for eye blink activities already in the presence/absence of motions. 

 There are several other scholarly articles on sensor-fusion based methods [26]–[29], 

statistical methods [30]–[37], and even machine learning methods [38]–[40] related to motion 

artifacts reductions in EEG signals already reviewed in this thesis. In our MAD based intra-oral 

EEG prototype presented in chapter 4, we also used a sensor-fusion of EEG electrodes and an 

accelerometer to acquire EEG signal and intra-oral motions simultaneously. Then the acquired 

EEG and motion signals are processed in a MATLAB based algorithm through a time window of 

30 seconds. The accelerometer data is used in a MATLAB based algorithm to identify intra-oral 

motion events. If motion events are detected, the MATLAB based algorithm then decomposes the 
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intra-oral EEG signal using empirical decomposition (EMD) and independent component analysis 

(ICA) technique to independent ICA components. In this study, the first four decomposed ICA 

components contained most of the motion artifacts present in the intra-oral EEG data, which are 

then mapped with the accelerometer data. The identified motion corrupted segments in the first 

four ICA components are then nullified. After that, a motion artifacts reduced EEG signal is 

reconstructed from all the ICA components using inverse ICA-EMD method. The efficacy of the 

proposed algorithm is also validated qualitatively and quantitatively. Then, the smart MAD along 

with the algorithm is then used to extract basic ‘eye open’ and ‘eye close’ features from intra-oral 

EEG spectrums in the presence/absence of intra-oral motions. It should be noted that this smart 

sensor-fusion along with the algorithm can remove corrupted EEG data even for body related 

movements during sleep. When a person changes their postures during sleep, it may disturb the 

intra-oral EEG recordings as well, which will still be picked up by the accelerometer sensor and 

the corrupted data will be removed by the algorithm, thus making this device more suitable for 

wearable applications. This sensor-fusion technique along with the algorithm can also be employed 

to our first EOG prototype in future designs and maybe used for scalp EEG recordings as well. 

5.4 Possible Limitations of The Biopotential Wearable Usages 

The limitations of our wearable EOG prototypes (presented in chapters 2 and 3) are that they are 

placed on forehead for measurements. Forehead may not be a good place to wear biopotential 

wearables intended for sleep study. Due to body/head movements during sleep the wearable 

platform (headbands or eye-masks) may get displaced and compromise the positions of the 

measurement electrodes, which will eventually corrupt the entire EOG recordings. Moreover, 

wearing headbands and eye-masks are still not that comfortable to wear during sleep. 

 The smart MAD based intra-oral EEG system, presented in chapter 4, overcomes this issue. 

Oral appliances (here MAD) are comfortable to wear and stays in the same position during 

body/head movements thus holding the measurement electrodes on the same locations, which is 

an advantage. The smart MAD for intra-oral EEG is a more suitable biopotential wearable 
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prototype in comparison to the EOG headband prototypes. But there are always some scopes in 

future to further improve the smart MAD design, use more compact circuit components and ICs, 

optimize algorithm, reduce power consumption, reduce battery size, and reduce the form factor of 

the overall system. 

5.5 Summary 

This research proposes three different wearable prototypes for biopotential (EOG and EEG) 

measurements. The wearable design constraints such as flexible electrode design, flexible 

EOG/EEG instrument design, skin conformability, ease of use, and performance limitations are 

carefully reviewed and implemented accordingly during the three wearable prototypes reported 

here. The biopotential wearable prototypes are also tested extensively for their performance 

evaluation and presented in detail in chapters 2, 3, and 4. All three proposed EOG/EEG prototypes 

are comfortable to use on their respective placement locations (forehead or oral cavity) and have 

potential to be used in sleep study and treat patients suffering from sleep disorders such as OSA. 
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Chapter 6 

 

Conclusion and Future Work 

6.1  Conclusion 

This research work proposes three wearable biopotential (EOG and EEG) measurement prototypes 

with possible application for sleep study. The design plans of these prototypes were laid out after 

detailed review of the state-of-the-art commercial and non-commercial biopotential wearables. 

The key design considerations for biopotential wearable designs are as follows: the sensor 

placement locations for acquiring biopotential signals, use and development of commercially 

viable flexible measurement electrodes, possibility of implementing the measurement system on a 

skin-conformable flexible substrate, integration of the measurement system on a comfortable 

wearable platform which can be worn easily without seeking help from others, and addressing any 

sensor or system related parameters that can limit the wearable performance. 

 In our first prototype a wearable, flexible EOG measurement prototype is developed. In 

this prototype, the contact flexible gold EOG electrodes are printed as pads on the bottom layer 

and the sensor read-out circuitry is implemented on the top layer for a flexible Polyimide board, 

thus integrating them in a smart way and eliminating the challenges of interfacing electrodes with 

the system. The flexible system along with the battery weighs just 7.7 g, making it suitable for 

integrating with any soft fabric-based headband or eye-mask. The system is battery operated and 

has a battery life of approximately 7 hours and 40 minutes, thus making it suitable for long term 
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monitoring during (e.g. sleep study). The EOG device is already validated for sleep monitoring 

and sleep stage classification using a machine-learning based algorithm [1]. The limitations of this 

wearable are as follows: (a) the electrode sizes are small and requires electrode gel for a good 

quality EOG sensing, and (b) the EOG system is sensitive to motion artifacts. To address the issues 

of the first prototype, another flexible EOG wearable is designed with flexible parallel electrode 

pair for motion artifacts sensing and reduction during EOG measurement. The new system 

prototype is lightweight (only 8.75 g), has a long battery life (approximately 7 hours and 15 

minutes), uses non-contact EOG electrodes which do not require electrode gel, and capable of 

measuring EOG signals in the presence of motion artifacts. However, headbands and eye-masks 

can be uncomfortable to wear during sleep for some people. 

 Given successful recording of EEG signals intra-orally and the popularity of using oral 

appliances (e.g. dental retainer, mouthguard, MAD etc.) in various treatments, we proposed a first 

custom-made MAD based prototype for intra-oral EEG monitoring. The smart MAD uses a sensor-

fusion of EEG electrodes and accelerometer to monitor intra-oral EEG signal in the presence of 

intra-oral motions such as tongue movements, teeth grinding, and gulping. We also propose a 

MATLAB based algorithm which identifies the presence of intra-oral motions using the 

accelerometer sensor data. Then it uses empirical method decomposition (EMD) and independent 

component analysis (ICA) method to decompose the intra-oral EEG signal into ICA components. 

The first four ICA components are found to be containing most of the motion artifacts features in 

all of the studies. Therefore, the first four ICA components containing the intra-oral motion 

artifacts are mapped with the accelerometer data to identify the motion corrupted segments in the 

ICA components and nullify them accordingly. An inverse ICA-EMD method is applied on all the 

ICA components after modification to reconstruct a motion artifacts reduced intra-oral EEG signal. 

The smart MAD uses flexible printed Polyimide substrate-based gold electrodes as they are 

comfortable to wear intra-orally in comparison the commercial rigid electrodes. The measurement 

system is implemented on flexible PCB and integrated with the MAD itself. This smart MAD 

prototype has potential for intra-oral EEG based applications. One such possible application is 
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using the smart MAD to monitor EEG vitals intra-orally during sleep for sleep quality assessments. 

The smart MAD is more comfortable to wear in comparison to the headband/eye-mask based 

bipotential measurement wearables. 

6.2 Future Work 

The main motivation of this research work is to develop working biopotential wearable system 

prototypes and take all the necessary design precautions during system development. However, 

some analytical approaches could have been taken to further investigate the performances of the 

proposed systems, which were overlooked in our research. Moreover, the proposed prototypes can 

still be modified further to enhance their usability in terms of wearable platform design, sensor 

design, circuit performance, circuit protection, signal processing etc. A rough roadmap is provided 

below to address all these wearable design related concerns and improvements that can be 

investigated in future studies. 

• Printed Electrode Characterization: In this research, the flexible printed contact and 

non-contact electrodes are characterized for their skin-electrode impedances and signal 

sensitivities. However, the impact of temperature, humidity, and their impact on the 

sensors’ sensitivity/impedance properties have not been studied. A detailed study can be 

done solely focusing on the sensor (i.e. electrodes) design/characterization in simulation 

and under controlled environments. 

• Parametric Analysis of the Proposed Measurement Systems: Another study that was 

overlooked in our research is to include a parametric analysis of the biopotential 

measurement systems done in the simulation environment (using software like Spice 

Simulators, ADS etc.). Such study will provide us to analyse the discreet passive 

components (e.g. resistors, capacitors, inductors etc.) with their specified tolerances and 

quantify their impact on the system metrics like gain, noise, signal bandwidth, CMRR etc. 

This study will help us for overall optimization of the system performance. 
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• Wearable MAD and Intra-Oral Electrode Placement/Interfacing: The present smart 

MAD, on the other hand, uses separate flexible electrodes attached with the smart MAD 

using biocompatible adhesive and uses small wires to interface the electrodes with the EEG 

acquisition. This creates slight discomfort to the wearer while using the current smart MAD 

prototype. In future, a custom-made MAD can be developed with the flexible electrodes 

and their routing wires printed on it, which will be more comfortable to wear, thus making 

the smart MAD further suitable for commercialization. It should be noted that the EOG 

wearable prototypes can be commercialised with proper integration in wearable headbands 

and eye-masks. 

• Further Improvements on the Proposed Prototype Design: For all three prototypes, the 

system can be further improved by using smaller low power commercially available off-

the-shelf components and ICs, thus optimising the form factor and power consumption of 

the system. An application specific low power IC can also be designed for this design. The 

analog front-end of the measurement unit can be powered with a modified power 

management block to provide higher voltage headroom to set higher gains for biopotential 

measurements and avoid system saturation due to motion artifacts. A low-power BLE 

module with integrated microcontroller can also be used to replace the entire digital part of 

the system. Smaller components can be used to further reduce the circuit dimensions. 

A sophisticated battery management unit can also be implemented with wireless 

charging block and a protection circuit. A protection circuit is included in circuit design to 

handle faulty battery and system failure related scenarios and avoid any potential health 

hazard, which is an important requirement for commercial wearable design. 

• Sensor-Fusion and Algorithm for Motion Artifacts Reduction: In this research, we 

have proposed only one sensor-fusion based EMD-ICA algorithm to reduce motion 

artifacts from single channel EEG signals. But, there are several other signal decomposition 

methods like DWT, EEMD, CCA, PCA etc. which can be combined along with the sensor-

fusion for EEG denoising. A comparative study of all these signal decomposition method 

can be done for further optimising the algorithm performance with more data. 

155 



 

• EEG and EOG Feature Extraction: Given the limited number of participants, we could 

acquire a large set of intra-oral EEG data for further. Now that we have a complete intra-

oral EEG prototype, the device can be used to acquire intra-oral EEG from more 

participants and investigate/analyse the underlying complex EEG features related to 

various brain activities such as anxiety, stress, hypertension, sleep etc. This study will give 

us a clearer understanding of intra-oral EEG and its possible applications. 

Both EOG and intra-oral EEG signals can be acquired using our prototypes from a 

large number of volunteers and the data can be processed for feature extractions using 

advanced neural networks and machine learning algorithms. 

• Integration of other Smart Sensors: A smart MAD based prototype was also developed 

in our lab using PPG sensor, accelerometer, and temperature sensor for monitoring intra-

oral cardiorespiratory parameters, sleep postures, and body temperature, respectively [2]. 

All these smart sensors can also be accommodated, in the EOG hardware as well as in the 

smart MAD device. These will further improve the applicability of the proposed 

biopotential measurement wearables and make them capable of monitoring all the 

necessary physiological vitals (heart-rate, SpO2, breath, body, temperature, sleep postures, 

and sleep stages). 
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Appendices 

A MATLAB Code for the EOG Feature Extraction Algorithm presented in 

Chapter 2 

function [Right_HEM, Left_HEM, Eye_Blink, Right_Wink, Left_Wink] = EOG_feature_extraction(EOG_Data) 

{ 

Fs = 200; % Sampling Frequency of the acquired data 

Pos_baseline_floor = 0.15; % Positive EOG baseline range 

Peak_Distance = 100; % Minimum distance between 2 consecutive Positive peaks 

Neg_baseline_floor = 0.15; % Negative EOG baseline range 

Valley_Distance = 100; % Minimum distance between 2 consecutive Negative peaks 

max_corres_peak_dist = 85;  

% Maximum distance between 2 corresponding Positive & Negative peaks 

 

[EOGPks, EOGPksLocation] = 

findpeaks(EOG_Data,'MinPeakHeight',Pos_baseline_floor,'MinPeakDistance',Peak_Distance); 

% Positive Peaks and their Locations detection 

 

EOG_Data_neg = (-1)* EOG_Data; % Flipping EOG signal along vertical axis 

[EOGVlys, EOGVlysLocation] =  

findpeaks(EOG_Data_neg,'MinPeakHeight',Neg_baseline_floor,'MinPeakDistance',Valley_Distance); 

% Negative Peaks and their Locations detection 

EOGVlys_neg = (-1)*EOGVlys; % Flipping back the detected Negative Peaks 

 

% Mapping the peak and valley locations 

count = 1; 
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for i = 1:1:length(EOGPksLocation) 

    for j = 1:1:length(EOGVlysLocation) 

        if ((EOGVlysLocation(j) − EOGPksLocation(i)) < max_corres_peak_dist) 

            Pairlocations(count) = EOGPksLocation(i); 

            Pairlocations(count+1) = EOGVlysLocation(j); 

        end 

    end 

    count = count+2; 

end 

% Sorting the Positive and Negative peak locations in ascending order in one variable 

Pairlocations = Pairlocations(Pairlocations~=0); 

Pairlocations_sorted_new = sort(Pairlocations,'ascend');  

 

% Remove repeated peak locations (if any) 

row_count = 0; 

for i = 1:2:length(Pairlocations_sorted_new) 

        row_count = row_count+1; 

        Pairlocations_sorted(1,row_count) = Pairlocations_sorted_new(i); 

        Pairlocations_sorted(2,row_count) = Pairlocations_sorted_new(i+1); 

end 

for i = 2:1:length(Pairlocations_sorted(1,1:end)) 

    if (Pairlocations_sorted(1,i) == Pairlocations_sorted(2,i-1)) 

        if (abs(DataTest(Pairlocations_sorted(1,i-1))) > abs(DataTest(Pairlocations_sorted(2,i)))) 

        Pairlocations_sorted(1,i) = 0; 

        Pairlocations_sorted(2,i) = 0; 

        else 

        Pairlocations_sorted(1,i−1) = 0; 

        Pairlocations_sorted(2,i−1) = 0; 

        end 

    end 

end 

 

% Storing the Positive and Negatiuve EOG Peak locations in two different variables in ascending order 
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Pair_row_1 = Pairlocations_sorted(1,1:end); 

Pair_row_1 = Pair_row_1(Pair_row_1~=0); 

Pair_row_2 = Pairlocations_sorted(2,1:end); 

Pair_row_2 = Pair_row_2(Pair_row_2~=0); 

Pairlocations_final(1,:) = Pair_row_1; 

Pairlocations_final(2,:) = Pair_row_2; 

       

% EOG Feature extraction logic, detecting sharp peaks 

for i = 1:1:length(Pairlocations_final(1,1:end)) 

[Sharp_chk(1,i),Sharp_chk(2,i),Sharp_chk(3,i),Sharp_chk(4,i)] =  

sharp_peaks(EOG_Data,Pairlocations_final(1,i),Pos_baseline_floor); 

[Sharp_chk(5,i),Sharp_chk(6,i),Sharp_chk(7,i),Sharp_chk(8,i)] =  

sharp_peaks(EOG_Data,Pairlocations_final(2,i),Pos_baseline_floor); 

end 

      % EOG Feature Count Initialization 

Right_HEM = 0; % Right Horizontal Eye Movements 

Left_HEM = 0; % Left Horizontal Eye Movements 

Eye_Blink = 0; % Eye Blinks 

Right_Wink = 0; % Right Eye Winks 

Left_Wink = 0; % Left Eye Winks 

Sharp_final = Sharp_chk; 

for i = 1:1:length(Sharp_chk(1,1:end)) 

    % Logic for  Horizontal Eye Movement Detection 

    if(Sharp_chk(4,i) > 15 && Sharp_chk(8,i) < 15 && Sharp_chk(4,i) >= 2*Sharp_chk(8,i)) 

            if (Sharp_chk(5,i) > 0.6) 

                Right_HEM = Right_HEM + 1; 

                Sharp_final(9,i) = 10; 

            elseif (Sharp_chk(5,i) < -0.6) 

                Left_HEM = Left_HEM + 1; 

                Sharp_final(9,i) = 20; 

            end         

    elseif (Sharp_chk(4,i) < 15 && Sharp_chk(8,i) > 15 && Sharp_chk(8,i) >= 2*Sharp_chk(4,i)) 

            if (Sharp_chk(1,i) > 0.6) 
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                Right_HEM = Right_HEM + 1;  

                Sharp_final(9,i) = 10; 

            elseif (Sharp_chk(1,i) < -0.6) 

                Left_HEM = Left_HEM + 1; 

                Sharp_final(9,i) = 20; 

            end 

    elseif ((Sharp_chk(4,i) <= 15 && Sharp_chk(8,i) <= 15 ) || (Sharp_chk(8,i) <= 2*Sharp_chk(4,i)) ||  

                     (Sharp_chk(4,i) <= 1.5*Sharp_chk(8,i))) 

        Peak_to_peak = abs(Sharp_chk(1,i)) + abs(Sharp_chk(5,i)); 

        % Logic for Eye Blinks Detection 

        if (Peak_to_peak > 0.4 && Peak_to_peak < 1.8) 

            Eye_Blink = Eye_Blink + 1; 

            Sharp_final(9,i) = 30; 

        % Logic for Eye Winks Detection  

        elseif ((Peak_to_peak > 1.8) && (Sharp_chk(1,i) > 0.3) && (Sharp_chk(5,i) < -0.3)) 

            Right_Wink = Right_Wink + 1; 

            Sharp_final(9,i) = 40; 

        elseif ((Peak_to_peak > 1.8) && (Sharp_chk(5,i) > 0.3) && (Sharp_chk(1,i) < -0.3)) 

            Left_Wink = Left_Wink + 1; 

            Sharp_final(9,i) = 50; 

        end 

    end 

end 

 

% Print Total Number of Extracted Eye Activities 

clc;  

fprintf('Right HEM:- %d \n',Right_HEM) 

fprintf('Left HEM:- %d \n',Left_HEM) 

fprintf('Eye Blink:- %d \n',Eye_Blink) 

fprintf('Right Eye Wink:- %d \n',Right_Wink) 

fprintf('Left Eye Wink:- %d \n',Left_Wink) 

} 

end 
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% Sharp Peak Detection Logic 

function [PeakValue, dX1, dX2, XInterceptdiff] = sharp_peaks(DataInput,PeakLocation,find_threshold) 

{ 

if (PeakLocation > 10) 

    PeakValue = DataInput(PeakLocation); 

    if (abs(PeakValue) > 0.6) 

        find_threshold = 0.3; 

    end 

 

    % Check for Edge Points of Flat Peaks at Saturation 

    EdgePoint1 = PeakLocation; 

    EdgePoint2 = 0; 

    if(abs(DataInput(EdgePoint1)) > 1.646 ) 

    for i = PeakLocation−10:1:PeakLocation+70 

        if(DataInput(i+1) > 1.646) 

            EdgePoint2 = i+1; 

        end 

    end 

    end 

 

    % Check the Slope of the Peaks both in Rising and Falling Edges to determine if it is Sharp or not 

    if (EdgePoint2 > 0) 

        count1 = EdgePoint1; 

        count2 = EdgePoint2; 

        err = EdgePoint2−EdgePoint1; 

        if (PeakValue > 0) 

            while (DataInput(count1) > PeakValue-find_threshold && (count1 < length(DataInput))) 

                count1 = count1−1; 

            end 

            dX1 = count1; 

            while (DataInput(count2) > PeakValue-find_threshold  && (count2 < length(DataInput))) 

                count2 = count2+1; 
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            end  

            dX2 = count2−err; 

        else 

            while (DataInput(count1) < PeakValue+find_threshold  && (count1 < length(DataInput))) 

                count1 = count1−1; 

            end 

            dX1 = count1; 

            while (DataInput(count2) < PeakValue+find_threshold  && (count2 < length(DataInput))) 

                count2 = count2+1; 

            end  

            dX2 = count2−err; 

        end 

    else 

        count1 = EdgePoint1; 

        count2 = EdgePoint1; 

        if (PeakValue > 0) 

            while (DataInput(count1) > PeakValue-find_threshold  && (count1 < length(DataInput))) 

                count1 = count1−1; 

            end 

            dX1 = count1; 

            while (DataInput(count2) > PeakValue-find_threshold  && (count2 < length(DataInput))) 

                count2 = count2+1; 

            end  

            dX2 = count2; 

        else 

            while (DataInput(count1) < PeakValue+find_threshold  && (count1 < length(DataInput))) 

                count1 = count1−1; 

            end 

            dX1 = count1; 

            while (DataInput(count2) < PeakValue+find_threshold && (count2 < length(DataInput))) 

                count2 = count2+1; 

            end 

            dX2 = count2; 
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        end  

    end 

    XInterceptdiff = dX2−dX1;   

 }        

end 

B MATLAB Code for the Motion Artifacts Reduction in Intra-oral EEG 

Signal using Accelerometer Data and EMD-ICA Method presented in Chapter 

4 

function [Moition_Artifact_Reduced_IntraOral_EEG] = IntrOral_EEG_Motion_Removal(RawEEG, RawAccX, 

RawAccY, RawAccZ) 

{ 

% Accelerometer data reading 

 

X_data = RawAccX; 

Y_data = RawAccY; 

Z_data = RawAccZ; 

 

% Intra-oral EEG data reading 

EEG_data = RawEEG; 

 

% Accelerometer data preprocessing 

X_data = smooth((X_data - mean(X_data)),10); 

Y_data = smooth((Y_data - mean(Y_data)),10); 

Z_data = smooth((Z_data - mean(Z_data)),50); 

 

X_data = smooth(sqrt((X_data).^2),1); 

Y_data = smooth(sqrt((Y_data).^2),1); 

Z_data = smooth(sqrt((Z_data).^2),1); 
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% Calculating resultant accelerometer data 

Reslt_data = smooth(sqrt((X_data).^2 + (Y_data).^2 + (Z_data).^2),1);  

 

% Extracting resultant accelerometer envelop data after baseline (40 mVs) removal 

Reslt_data_filt = max(Reslt_data,10); 

Reslt_data_filt = Reslt_data_filt - 15; 

[yuprslt0, ylowrslt0] = envelope(Reslt_data_filt,50,'analytic'); 

[yuprslt, ylowrslt] = envelope(yuprslt0,50,'analytic'); 

yuprslt = smooth(yuprslt,150); 

yuprslt_mean = mean(yuprslt); 

 

% Identifying the time segments where the intra-oral motion events occurred 

segments = []; 

count = 0; 

 

for i=1:1:length(yuprslt) 

    if (yuprslt(i)> yuprslt_mean) 

        count = count + 1; 

        segments(count) = i; 

    end 

end 

 

% Identifying the start and end times of the motion events 

endtimes = 0; 

endpoints = []; 

 

for i=2:1:length(segments) 

    if ((segments(i)-1) ~= segments(i-1)) 

        endtimes = endtimes + 1; 

        endpoints(endtimes) = segments(i-1); 

    end 

end 

endpoints(endtimes+1) = segments(end); 
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starttimes = 1; 

startpoints = []; 

startpoints(starttimes) = segments(1); 

 

for i=2:1:length(segments) 

    if ((segments(i)-1) ~= segments(i-1)) 

        starttimes = starttimes + 1; 

        startpoints(starttimes) = segments(i); 

    end 

end 

 

% Extending motion duration for accommodating electrode relaxation time count 

startpoints_updated = []; 

endpoints_updated = []; 

 

if (length(startpoints) == length(endpoints)) 

    for i=1:1:length(startpoints) 

        extra_time1 = round((endpoints(i) - startpoints(i))*1); 

        extra_time2 = round((endpoints(i) - startpoints(i))*2); 

        startpoints_updated(i) = startpoints(i)- extra_time1; 

             

        if (startpoints_updated(i) <= 0) % if the sgement is identified at the beginning of the dataset 

           startpoints_updated(i) = 1; 

        end 

        endpoints_updated(i) = endpoints(i) + extra_time2; 

        if (endpoints_updated(i) > length(yuprslt)) % if the sgement is identified at the end of the dataset 

           endpoints_updated(i) = length(yuprslt); 

        end      

     end 

end 

 

% Decomposing EEG data using EMD 

[imfs, res, info] = emd(EEG_data); 
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[rows,colms] = size(imfs); 

 

% Separating ICA components using fastICA algorithm 

[icas, A, W] = fastica(imfs'); 

icas_after_noise_removal = icas; 

 

% Mapping the motion segments extracted from ‘the resultant accelerometer envelope data’ with the first four 

decomposed ICA components and nullifying them accordingly 

if (length(startpoints_updated) == length(endpoints_updated)) 

    for i=1:1:length(startpoints_updated) 

          for k=1:1:4 

              icas_after_noise_removal(k,(startpoints_updated(i):endpoints_updated(i))) = 0; 

          end 

    end 

end 

 

% Reconstruction of the denoised EEG using inverse ICA – EMD method 

inv_icas = A*icas_after_noise_removal; 

inv_icas = inv_icas'; 

 

total_rescon_imfs = zeros(rows,1); 

for i=1:1:colms 

    total_rescon_imfs = total_rescon_imfs + inv_icas(:,i); 

end 

rescon_EEG = res + total_rescon_imfs; 

} 

Moition_Artifact_Reduced_IntraOral_EEG = rescon_EEG; 

end 
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