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Abstract 

The emergence of the psychosis spectrum (PS; subclinical psychosis-related symptoms) 

during late childhood and adolescence (i.e., youth) coincides with a period of dynamic cortical 

remodeling and is linked to greater risk for the later emergence of neuropsychiatric disorders such 

as psychosis. Prior neuroimaging studies of the PS have reported abnormalities in individual 

cortical morphometric features, but have largely neglected changes expressed in covariance 

patterns of multiple interrelated metrics. How these patterns may link to dimensions of latent 

psychosis-related symptomatology, brain function, and molecular architecture are open areas for 

investigation. 

This thesis contributes a data-driven characterization of multivariate cortical morphometry 

in the PS by integrating symptom, magnetic resonance imaging (MRI), and transcriptomic data. 

Using the Philadelphia Neurodevelopmental Cohort, a community-based and non-help-seeking 

sample, we analyzed data from 266 youth (aged 8–23) who endorsed PS features. Non-negative 

matrix factorization was used to identify 8 morphometric covariance patterns (MCPs) integrating 

MRI-based metrics (cortical thickness, surface area, mean curvature, local gyrification index). In 

a single multivariate model, subject-specific MCP loadings were related to sociodemographic 

features and three dimensions of PS symptoms derived using factor analysis. We explored the 

functional and molecular relevance of MCPs associated with symptom dimensions by mapping 

them to meta-analytic functional activation patterns, maturational cortical functional gradients, and 

spatial variation in gene expression. 

Two latent patterns of brain-behaviour associations were revealed, including a clinically 

relevant pattern relating metric-specific variation in five MCPs to symptom severity along a PS 

dimension of ‘disturbed self-experience.’ MCPs contributing to this symptom-morphometry 

relationship mapped to meta-analytic activation patterns of relevant cognitive functions, as well as 

to cortical areas reconfiguring along a unimodal-to-transmodal functional hierarchy across 

maturation. A transcriptomic gradient also differentiated anterior PS-related MCPs from other 

MCPs by genes enriched for specific cell types, synaptic signalling processes, and affective and 

psychotic disorder-related genes. 

We show that by leveraging shared covariance of multiple MRI metrics along with a 

dimensional approach to symptoms, we can gain a more nuanced understanding of potential 

cortical vulnerability during the earliest manifestations of risk for psychosis. 
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Résumé 

L'émergence du spectre de la psychose (SP ; symptômes subcliniques liés à la psychose) à 

la fin de l'enfance et à l'adolescence (c.-à-d. la jeunesse) coïncide avec une période de remodelage 

cortical dynamique et est liée à un risque accru d'apparition ultérieure de troubles 

neuropsychiatriques tels que la psychose. Des études antérieures de neuroimagerie du SP ont 

signalé des anomalies dans les caractéristiques morphométriques corticales individuelles, mais ont 

largement négligé les changements exprimés dans les modèles de covariance de plusieurs mesures 

interdépendantes. La manière dont ces modèles peuvent être liés aux dimensions de la 

symptomatologie latente liée à la psychose, à la fonction cérébrale et à l'architecture moléculaire 

sont des domaines ouverts à l'investigation.  

Cette thèse contribue à une caractérisation basée sur les données de la morphométrie 

corticale multivariée dans le SP en intégrant les données sur les symptômes, l'imagerie par 

résonance magnétique (IRM) et la transcriptomique. À l'aide de la Cohorte 

neurodéveloppementale de Philadelphie, un échantillon communautaire d’individus qui ne 

recherchent pas d'aide, nous avons analysé les données de 266 jeunes (âgés de 8 à 23 ans) qui ont 

présenté les caractéristiques SP. La factorisation matricielle non-négative a été utilisée pour 

identifier 8 modèles de covariance morphométrique (MCM) intégrant des métriques basées sur 

l'IRM (épaisseur corticale, surface, courbure moyenne, indice de gyrification local). Dans un 

modèle multivarié unique, les charges MCM spécifiques au sujet étaient liées à des caractéristiques 

sociodémographiques et à trois dimensions des symptômes de SP dérivées à l'aide d'une analyse 

factorielle. Nous avons exploré la pertinence fonctionnelle et moléculaire des MCM associées aux 

dimensions des symptômes en les cartographiant aux modèles d'activation fonctionnelle méta-

analytique, aux gradients fonctionnels corticaux de maturation et à la variation spatiale de 

l'expression des gènes.  

Deux schémas latents d'associations cerveau-comportement ont été révélés, y compris un 

schéma cliniquement pertinent concernant la variation spécifique à la métrique dans cinq MCM à 

la gravité des symptômes le long d'une dimension SP de « l'expérience de soi perturbée ». Les 

MCM contribuant à cette relation symptôme-morphométrie sont cartographiés aux modèles 

d'activation méta-analytiques des fonctions cognitives pertinentes, ainsi qu'aux zones corticales 

reconfigurant le long d'une hiérarchie fonctionnelle unimodale à transmodale à travers la 

maturation. Un gradient transcriptomique a également différencié les MCM antérieurs liés à la SP 
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des autres MCM par des gènes enrichis pour des types de cellules spécifiques, des processus de 

signalisation synaptiques et des gènes liés aux troubles affectifs et psychotiques.  

Nous montrons qu'en tirant parti de la covariance partagée de plusieurs mesures IRM avec 

une démarche dimensionnelle aux symptômes, nous pouvons acquérir une compréhension plus 

nuancée de la vulnérabilité corticale potentielle lors des premières manifestations de risque de 

psychose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

Acknowledgments 

The work presented in this thesis represents the culmination of the support, teaching, and 

dedication of many individuals I have had the privilege of working alongside over the past two 

years. Principal among these is my supervisor, Dr. Mallar Chakravarty. Enrolling in your graduate 

seminar was one of the luckiest decisions I made in my senior year, and I would not be where I 

am today without the genuine enthusiasm and mentorship you showed me over the course of my 

first months as a neuroimaging student—and every month since! Thank you for always believing 

in me, for helping me achieve things I never realized I could, and for always making time for one 

more read-through of my draft, one more presentation rehearsal, one more commendation. I am so 

appreciative of all that you have done and continue to do for your students. 

To my advisory committee members, Dr. Bratislav Misic, Dr. Martin Lepage, and Dr. 

Xiaoqian Chai: thank you for your thoughtful and encouraging feedback on my research, and for 

guiding me towards producing the best work possible. It has been an honour to build upon your 

contributions and share in your scientific perspectives. 

Thank you also to the Healthy Brains for Healthy Lives Initiative, as well as the Canadian 

Institutes of Health Research, for the funding support that was essential to my master’s research. 

To my colleagues in the CoBrA Lab: thank you for your companionship, positivity, and 

willingness to help, and for being my frequent reminders of all that is possible with a curious and 

open mind. My heartfelt thanks especially to Dr. Raihaan Patel, for your encouragement and 

guidance since day one, and without whose tools much of the work in this thesis would not be 

possible. Likewise, a tremendous thank you to Dr. Gabriel Devenyi: you taught me how to be a 

better problem-solver and more confident programmer, and it was a true privilege to have your 

expertise and advice always just a message away. To my fellow master’s survivors: thank you for 

sharing in this rollercoaster of conducting research during a pandemic with me, and for being a 

sounding board all the times I have needed it most. Thank you especially to my friends Justine 

Ziolkowski and Hannah Owens: it has been wonderful to be a graduate student alongside you. 

To my partner, Zach: thank you for your unwavering understanding and support throughout 

this journey, and for being my cheerleader on all the good days and bad days. Finally, my endless 

love and gratitude to my parents, Sherry and David, for always keeping me reminded of what’s 

important, and who probably would be just as proud even if this thesis never saw the light of day. 



 

9 
 

Contributions of Authors 

This manuscript contains original unpublished work by the author, Alyssa Dai. All data 

processing and analyses of the primary dataset of interest, as well as writing and generation of 

figures were led by the author. Dr. M. Mallar Chakravarty supervised this work, providing 

guidance on initial project conceptualization, analysis, interpretation, and thesis writing. 

The primary data used in this thesis (structural neuroimaging scans and 

neuropsychiatric/behavioural variables) were obtained from the publicly available Philadelphia 

Neurodevelopmental Cohort (PNC) (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2). Quality control for motion in raw PNC brain scans was 

performed by Dr. Swapna Premasiri and Aurelie Bussy. Dr. Gabriel A. Devenyi provided technical 

support (troubleshooting, optimizing) on image processing and analysis pipelines, including 

developing the iterativeN4_multispectral pipeline used here to preprocess brain images. 

Supplementary and secondary data used in this thesis were generously shared by Justine 

Ziolkowski (cortical morphometric covariance patterns from autism spectrum disorder and 

matched neurotypical individuals, used in Section 4.3.3) and Drs. Hao-Ming Dong and Avram 

Holmes (maturational functional connectivity gradients, used in Section 4.7). 

Dr. Raihaan Patel developed the code used for one of the data analyses (non-negative 

matrix factorization, Section 4.3), and additionally provided guidance related to implementation 

and results interpretation for this method. Several data analyses also employed open-source 

software toolboxes or code authored by Dr. Ross D. Markello and Justine Y. Hansen, who provided 

technical support related to their use. Support on methodological choices and/or interpretation of 

findings was also provided by Dr. Tyler M. Moore (factor analysis, Section 4.4), and Drs. Ross D. 

Markello and Bratislav Misic (imaging transcriptomic analyses, Section 4.8). Dr. Jakob Seidlitz 

and Dr. Theodore D. Satterthwaite provided feedback on experimental design. 

  

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2


 

10 
 

List of Figures 

Figure 1. Illustration of four surface-based morphological measurements of the cortical sheet at 

the vertex level. 20 

Figure 2. Workflow. 36 
Figure 3. Morphometric covariance patterns delineated by OPNMF. 54 

Figure 4. Latent factors of psychosis spectrum symptoms. 57 

Figure 5. Latent morphometry-behaviour relationships detected by bPLS analysis. 58 

Figure 6. Results of Neurosynth image decoding of morphometric covariance patterns. 60 

Figure 7. Distributions of the maturational unimodal-transmodal gradients across MCPs. 62 

Figure 8. Functional gradient value distributions of PS-related morphometric covariance patterns 

across maturational gradients. 63 

Figure 9. Gene expression patterns maximally differentiating MCPs. 66 

Figure 10. Positive and negative genes contributing to between-MCP differences are differentially 

enriched for psychiatric disorders. 68 

Appendix Figure 1. Quality control (QC) counts by T1w MRI processing stage. 88 

Appendix Figure 2. Generalizability of PS-derived MCPs. 89 

Appendix Figure 3. Split-half resampling results for behavioural PLS on subject-specific MCP 

loadings and clinical-behavioural features of PS youth. 90 

 
 

 

 

 

 

 

 

 



 

11 
 

List of Tables 

Table 1. Sociodemographic characteristics of physically healthy psychosis spectrum youth from 

the PNC. 39 

Appendix Table 1. Characteristics of the non-PS PNC and autism spectrum samples used to 

explore the generalizability of OPNMF-derived cortical MCPs in the primary PS dataset. 90 

Appendix Table 2. Biological process GO terms omitted from visualization. 91 

Appendix Table 3. PS symptom factor intercorrelations for the 2-factor, 3-factor, and 4-factor 

solutions. 91 

Appendix Table 4. Details of PS symptom items from the GOASSESS interview that were 

included in the factor analysis, and their loadings in the final 3-factor solution. 91 

Appendix Table 5. Race differences in symptom factor scores. 93 

Appendix Table 6. Top 15 Disease Ontology terms and enrichment ratios for the PLS+ gene set 

from the mcPLS analysis. 94 

Appendix Table 7. Top 15 Disease Ontology terms and enrichment ratios of the PLS- gene set 

from the mcPLS analysis. 95 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

List of Abbreviations 

AHBA Allen Human Brain Atlas 

bPLS Behavioural partial least squares 

BSR Bootstrap ratio 

CCA Canonical correlation analysis 

CT Cortical thickness 

GI [Local] gyrification index 

GO Gene Ontology 

ICA Independent component analysis 

K-SADS Kiddie Schedule for Affective Disorders and Schizophrenia 

MC Mean curvature 

MCP Morphometric covariance pattern 

mcPLS Mean-centered partial least squares 

MPRAGE Magnetization-prepared rapid acquisition gradient echo 

MNI Montreal Neurological Institute 

MRI Magnetic resonance imaging 

NMF Non-negative matrix factorization 

(OP)NMF (Orthonormal projective) non-negative matrix factorization 

PCA Principal component analysis 

PLS Partial least squares 

PNC Philadelphia Neurodevelopmental Cohort 

PRIME Prevention through Risk Identification, Management, and Education 

PS Psychosis spectrum 

PS-R PRIME Screen-Revised 

SA Surface area 

SIPS Structured Interview for Psychosis-risk Syndromes 

WRAT-4 Wide Range Achievement Test, version 4 

 

 



 

13 
 

1. Introduction 

1.1. The psychosis spectrum and brain development 

1.1.1. The prevalence of psychosis in the population 

Schizophrenia and related psychotic disorders (e.g., schizoaffective disorder, psychotic 

depression) affect roughly 3% of society (W. C. Chang et al., 2017; Perälä et al., 2007), and are 

increasingly conceptualized as clinical manifestations of phenotypes that are continuously 

distributed in the general population (McGrath et al., 2015; Nelson et al., 2013; M. J. Taylor et al., 

2016; van Os et al., 2000; van Os & Linscott, 2012; van Os et al., 2009; Verdoux & van Os, 2002). 

Positive (e.g., hallucinations, delusions), negative (e.g., blunted affect, avolition), and disorganized 

symptoms (e.g., conceptual disorganization, disorganized speech) are hallmark debilitating 

features of such disorders (Potuzak et al., 2012; van Os & Kapur, 2009), but have also been 

consistently observed at subclinical levels in otherwise healthy individuals. Approximately 5–8% 

of the general population report subthreshold positive symptoms such as abnormal auditory 

perceptions or attenuated paranoid delusional thinking, which are also commonly referred to as 

“psychotic-like experiences” (Linscott & van Os, 2013; McGrath et al., 2015; van Os et al., 2009; 

van Os & Reininghaus, 2016). The prevalence of subclinical psychosis symptoms is even higher 

in children and adolescents, with estimates of around 20% (Calkins et al., 2014; Kelleher, Connor, 

et al., 2012; Kelleher, Keeley, et al., 2012). These findings provide evidence for the existence of a 

continuum from mental health to diagnosable psychotic illness, with possible neurodevelopmental 

underpinnings. 

1.1.2. The psychosis spectrum (PS) 

Within the psychosis continuum, the range of subclinical positive symptoms, threshold-

level positive psychotic symptoms such as hallucinations, and attenuated negative and 

disorganized symptoms observed in the general population has been collectively described as 

psychosis spectrum (PS) symptoms (Calkins et al., 2014; J. H. Taylor et al., 2020). Studies of 

individuals with PS symptoms represent a rising alternative to the clinical high-risk approach for 

investigating early development of psychosis symptoms. Namely, “clinical high-risk” has been 

used to describe individuals seeking clinical help for symptoms and who fulfill specific diagnostic 

criteria for a prodromal stage of psychosis (McGlashan et al., 2010; Schultze-Lutter et al., 2015), 

or signs and symptoms preceding the acute clinical phase of illness (Fava & Kellner, 1991). 

Around 30% of clinical high-risk individuals will experience a first episode of psychosis, the onset 
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of full-blown psychotic symptoms, within 2 years (Fusar-Poli, Bonoldi, et al., 2012; Fusar-Poli et 

al., 2013). The PS characterization is distinct from clinical high-risk in that individuals are not 

help-seeking, have a wider range of symptom severity, and show significantly lower rates of both 

short- and long-term progression to a first episode of psychosis (Dominguez et al., 2011; Kaymaz 

et al., 2012; J. H. Taylor et al., 2020; van Os & Reininghaus, 2016). PS symptoms thus uniquely 

provide a window into both normative variation of mental health and potential deviating risk 

pathways. 

Despite their often-transitory nature, substantial evidence suggests that PS symptoms 

capture a critical phenotype of emerging psychosis vulnerability even before the prodrome, which 

still poses serious implications for overall health. Like overt psychotic disorders, PS symptoms 

can cause significant distress (Calkins et al., 2014) and have been associated with a host of negative 

mental and physical outcomes. These include impairments in neurocognitive (Calkins et al., 2014; 

Gur et al., 2014; Kelleher et al., 2013; Mollon et al., 2016) and psychosocial functioning 

(Schimmelmann et al., 2015), alterations in brain structure (see Section 1.5 for a review of 

neuroimaging findings), increased suicidal ideation (Calkins et al., 2014; Cederlöf et al., 2017), as 

well as reduced overall quality of life (Alonso et al., 2018). A recent longitudinal study further 

revealed that school-age youth with distressing PS symptoms show developmental milestone 

delays (e.g., delayed early motor milestones) and brain structural abnormalities irrespective of the 

persistence of symptoms (Karcher, Loewy, et al., 2022), corroborating the clinical relevance of 

even transient expressions of this phenotype. Crucially, PS symptoms early in life not only increase 

the risk of a later psychotic disorder as much as four-fold (Healy et al., 2019; Kaymaz et al., 2012), 

but are also linked to higher risk for other psychiatric disorders (Kelleher, Keeley, et al., 2012; 

McGrath, Saha, Al-Hamzawi, Andrade, et al., 2016; Werbeloff et al., 2012), amplifying their 

importance as a marker of general psychopathology. Taken together, the increased risk for 

neuropsychiatric disorders alongside the clear neurodevelopmental and functional impairment 

associated with PS symptoms suggests that their existence should be considered a public health 

concern. 

1.1.3. Neurodevelopmental and sociodemographic factors of PS symptoms 

PS symptoms often first emerge and are most prevalent during late childhood and 

adolescence (Calkins et al., 2014; Kelleher, Connor, et al., 2012; McGrath, Saha, Al-Hamzawi, 

Alonso, et al., 2016), an age group we will refer to in this thesis broadly as “youth.” This coincides 
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with a period during which the brain is in the crux of extensive neurobiological and functional 

maturation and therefore vulnerable to an array of neuropsychiatric issues (Keshavan et al., 2014; 

Paus et al., 2008). During this period, processes including increasing myelination as well as active 

synaptic pruning and refinement contribute to gray matter reorganization, resulting in stereotyped 

trajectories of both microscale and macroscale cortical features of the brain that collectively 

support typical neurodevelopment (Keshavan et al., 2014; Paus et al., 2008; Raznahan et al., 2011). 

The manifestation of PS symptoms during youth may represent a first expression of atypical 

development processes that in concert with other environmental and biological risk factors may 

lead to psychotic illness,  congruent with the model of schizophrenia itself as a progressive disorder 

of disrupted neurodevelopment (Keshavan et al., 2014; Murray et al., 2017; Rapoport et al., 2012). 

Studying the PS in neurodevelopmental samples is thus critical, as it enables the identification of 

emerging neurobiological abnormalities during a stage when therapeutic intervention may still be 

able to capitalize on the maturing brain’s capacity for plastic change. 

As is the case for psychotic disorders, demographic characteristics such as sex, racial 

identity, and socioeconomic privilege also represent important risk factors for PS symptoms. 

Findings supporting sex differences in the prevalence of psychotic-like experiences have been 

mixed (Dolphin et al., 2015; Laurens et al., 2007; Ronald et al., 2014; Stainton et al., 2021), 

potentially due to the to the predominant focus on only positive subclinical symptoms. Notably, a 

study of a comprehensive range of PS symptoms in a large (n > 4000) US community sample of 

youth identified male sex as a significant predictor of PS symptoms (Calkins et al., 2014), a result 

that is potentially concordant with the earlier onset of clinical psychosis in males (Ochoa et al., 

2012; van der Werf et al., 2014). Findings related to racial differences, meanwhile, have been more 

consistent. Youth from racial minority backgrounds, particularly Black individuals, report 

disproportionately higher levels of PS symptoms when compared with European or White 

American youths in US-based community samples (Calkins et al., 2014; Karcher, Klaunig, et al., 

2022; Paksarian et al., 2016) or with White British youths in UK-based samples (Laurens et al., 

2008). Higher prevalence of PS symptoms has also been associated with indicators of 

socioeconomic disadvantage, including lower education and income levels (Johns et al., 2004; 

Pignon et al., 2018) as well as fewer years of parental education for youth (Calkins et al., 2014; 

Zammit et al., 2013). These findings mirror racial-ethnic (C. Morgan et al., 2019; Schwartz & 
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Blankenship, 2014) and socioeconomic (Kirkbride et al., 2008; Pignon et al., 2018) disparities in 

clinical psychoses. 

Understanding how sociodemographic differences may be reflected in abnormal 

neurobiology in youth with PS symptoms may therefore be crucial for elucidating the 

pathophysiology of psychosis development. However, studies of brain correlates of PS symptoms, 

as well as of clinical psychotic symptoms more broadly, have often treated these characteristics as 

nuisance variables rather than as potential sources of relevant heterogeneity. Moreover, psychosis 

studies have overwhelmingly included mainly White participants recruited from narrow 

geographic catchment areas, thereby limiting sample representativeness of the racial and 

socioeconomic diversity relevant for symptoms (Burkhard et al., 2021; Harnett, 2020). These 

factors highlight a need for study designs that explicitly assess the influence of sociodemographic 

variables on neurobiological phenotypes, particularly in diverse samples of younger individuals 

experiencing PS symptoms. Recent large-scale, population studies of youth such as the 

Philadelphia Neurodevelopmental Cohort (PNC) (Calkins et al., 2015) and the Adolescent Brain 

Cognitive Development study (Garavan et al., 2018) provide this opportunity, and may be 

instrumental to a more complete understanding of potential neurodevelopmental pathways for 

psychosis. 

1.1.4. Transdiagnostic implications of understanding the PS 

In addition to possibly reflecting vulnerability for psychotic disorders, the presence of PS 

symptoms has been widely shown to index elevated risk for myriad psychiatric disorders in which 

psychosis is not a core feature, particularly affective disorders and anxiety disorders (Calkins et 

al., 2017; Giocondo et al., 2021; Kırlı et al., 2019; McGrath, Saha, Al-Hamzawi, Andrade, et al., 

2016; van Os & Reininghaus, 2016). An investigation of youth with PS symptoms revealed that 

both persistent and transient symptoms were associated with increased rates of major depressive 

disorder after two years (Calkins et al., 2017). Further, a recent meta-analysis of population-based 

studies of youth found a three-fold increased risk of any mental disorder, psychotic or non-

psychotic, for youth with PS symptoms, as well as a 2.8-fold increase in non-psychotic disorders 

alone compared to peers without PS symptoms (Healy et al., 2019), suggesting that PS symptoms 

in early life may be a dynamic marker of risk for subsequent psychopathology (Giocondo et al., 

2021; van Os & Reininghaus, 2016). 
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While PS symptoms do show a degree of specificity for psychotic outcomes (Kaymaz et 

al., 2012; Werbeloff et al., 2012), the transition to differing diagnosable phenotypes is likely 

modulated by multiscale genetic, environmental, and neurobehavioral susceptibilities (Calkins et 

al., 2017; Siever & Davis, 2004). Thus, understanding mechanistic underpinnings of the PS may 

facilitate identification of biologically-grounded markers of risk that have extended relevance 

beyond the prevention of psychotic illness (van Os & Reininghaus, 2016; Voineskos et al., 2020). 

As will be explored further in the next sections, an integrated approach that considers the 

neurodevelopmental, neurobiological, behavioural, and molecular dimensions that shape the PS 

will move us closer to this goal. 

 

1.2. Magnetic resonance imaging 

An important step towards improving our understanding of psychosis pathogenesis or 

antecedents involves reliably mapping subjective symptom presentations onto underlying neural 

targets. This can be accomplished using magnetic resonance imaging (MRI), a popular medical 

imaging technique that allows non-invasive in vivo investigation of the human brain in 3D at high 

spatial resolution. The MRI modality of most relevance to the current study is structural MRI, 

which involves sequences that can produce detailed images of neuroanatomical structure (Lerch 

et al., 2017). The specific type of structural MRI sequence of interest to this work, T1-weighted 

imaging, will also be discussed in more detail below. 

Broadly, structural MRI harnesses the abundance of hydrogen atoms in the body and works 

by applying a powerful uniform magnetic field (B0, measured in Tesla (T)) to align hydrogen 

protons in tissues and cause them to precess (or circle) around the axis of B0 (Currie et al., 2013). 

This alignment to B0 is then perturbed by introducing an external energy, a radiofrequency pulse 

referred to as B1. The excited protons will subsequently return to their equilibrium state through 

two processes of relaxation: the realignment of proton spins with B0, termed T1 or longitudinal 

relaxation; and the loss of phase coherence of spinning protons, termed T2 or transverse relaxation 

(Currie et al., 2013; Elmaoğlu & Çelik, 2011). As relaxation occurs, protons emit a magnetic 

resonance signal that can be localized in space via the application of additional magnetic gradient 

fields. Using Fourier transformation, the frequency information contained in the localized signals 

in the imaged plane can then be converted to intensity levels, which are then displayed as shades 

of gray in the final MR image or volume. The contrast of individual voxels in a slice depends on 
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the density of protons, the surrounding tissue environment, and the timing (sequence) of pulses 

and applied magnetic gradients. By manipulating the latter, different MR image types, in which 

the signal measures different properties of the brain, can be obtained. 

The present study primarily relies on T1-weighted (T1w) structural MRI, which produces 

images in which differences in voxel signal intensity reflect differences in T1 relaxation time of 

the underlying imaged tissue. By leveraging short times between the delivery of the radiofrequency 

pulse and the readout of signal (i.e., echo time) as well as between successive pulses (i.e., repetition 

time), T1w images provide maximal contrast between different tissue types (Elmaoğlu & Çelik, 

2011). In the context of the brain, clear distinction between white matter, gray matter, and 

cerebrospinal fluid can be achieved, making this imaging technique ideal for examining features 

of cortical anatomy across health and illness. 

Of secondary relevance to this study are functional MRI methods, which enable inference 

of brain activity through the blood oxygenation level-dependent (BOLD) contrast (Glover, 2011). 

This form of imaging is designed to detect changes in the relative levels of oxygenated and 

deoxygenated hemoglobin in blood due to their different magnetic properties. Such changes are 

known to occur in the brain following neuronal activation (Buxton & Frank, 1997; Buxton et al., 

1998) and translate to measurable alterations in BOLD signal, a phenomenon known as the 

hemodynamic response (Glover, 2011). Functional MRI can be employed to study both 

spontaneous neural activity in a ‘resting-state’ setting, as well as patterns of brain activity 

occurring as a participant engages in a task in the scanner in ‘task-based’ settings. 

 

1.3. Surface-based analysis of structural brain MRI 

In the current thesis we use cortical surface-based measures as a basis for characterizing 

neuroanatomical profiles of individuals experiencing PS symptoms (Lerch et al., 2017). By 

applying image processing algorithms to T1w images, it is possible to derive morphometric 

variables that quantify a variety of surface-based macrostructural features of the cerebral cortex. 

While volume-based methods of modelling the cortex also exist, they may have limited capacity 

to capture detailed topological characteristics of the cortical sheet—and, by extension, subtle 

changes in these characteristics associated with early stages of illness—due to the complex and 

variable folding pattern of this structure (Van Essen et al., 1998). Surface-based methods help to 

overcome such limitations by constructing triangular meshes that aim to represent the geometry of 
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the white matter and pial cortical surfaces, allowing multiple morphological measurements, such 

as cortical thickness, to be computed at each vertex (i.e., point) along the cortex. 

1.3.1. CIVET 

One of the most widely used pipelines for performing surface-based analysis is CIVET, 

which performs automated structural MR image processing including image registration, intensity 

normalization, and classification of voxels into white matter, gray matter, and cerebrospinal fluid, 

along with cortical surface extraction (more details on CIVET processing are presented in Section 

4.2.1) (Ad-Dab’bagh et al., 2006). A key feature of CIVET is its that it uses the Constrained 

Laplacian Anatomical Segmentation using Proximities (CLASP) algorithm to construct cortical 

surface meshes (Ad-Dab’bagh et al., 2006; J. S. Kim et al., 2005). In this approach, the white 

matter surface is first estimated, and then the pial surface is created via expansion of the white 

matter surface to the gray matter-cerebrospinal fluid boundary along a Laplacian field (J. S. Kim 

et al., 2005). In previous comparisons with FreeSurfer, another popular pipeline for cortical surface 

analysis, CIVET was shown to demonstrate higher reliability and scan-rescan reproducibility of 

cortical thickness measurements (S. Jeon et al., 2017; Lewis et al., 2017), as well as higher 

robustness of cortical surface reconstruction (Lewis et al., 2017). There is also evidence that 

CIVET-derived measurements may be more sensitive to certain early pathological patterns of brain 

atrophy, such as those associated with the Mild Cognitive Impairment stage of Alzheimer’s disease 

(Redolfi et al., 2015). These findings highlight CIVET as a suitable tool for characterizing cortical 

surface morphometry in the context of abnormal health. 

 

1.4. MRI-based measures of cortical morphology: cortical thickness, surface area, 

local gyrification index, mean curvature 

Four surface-based metrics that are among the most easily accessible in common structural 

analysis pipelines including CIVET, and which together can provide a refined description of 

cortical anatomy at the vertex level, are cortical thickness, surface area, local gyrification index, 

and mean curvature. Schematic representations of each of these metrics are shown in Figure 1, and 

methodological details of how each metric was calculated in the current work are presented in 

Section 4.2.3. We provide brief computational descriptions of each metric below: 

• Cortical thickness refers to the distance between the white matter surface and pial surface (J. 

S. Kim et al., 2005). 
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• Surface area is a function of the area occupied by the triangular faces surrounding a given 

vertex (Lyall et al., 2015). 

• Local gyrification index describes the amount of surface area packed in a limited spherical 

volume around a vertex relative to an approximated lissencephalic area of the same region 

(Toro et al., 2008). 

• Mean curvature refers to the average of the two principal curvatures at a vertex, which are the 

maximum and minimum values of curvature at that point (Ronan et al., 2011). 

These morphometric features of the cortex are driven by different properties of the 

underlying cellular-level morphology, although precise mappings from MRI-derived metrics to 

biological underpinnings are currently lacking. Rather, they can be interpreted as indirect, putative 

indices of microscale biological processes that are interrelated but dissociable, which we expand 

on in the following section for our metrics of interest. 

 

 

Figure 1. Illustration of four surface-based morphological measurements of the cortical sheet 
at the vertex level. (a) Cortical thickness refers to the distance (mm) between the white matter 
surface (denoted by the yellow boundary) and pial surface (blue boundary). (b) Surface area is a 
function of the area (mm2) occupied by the triangular faces surrounding a given vertex. (c) Local 
gyrification index describes the amount of surface area contained within a limited spherical volume 
of radius r around a vertex x. The surface ratio method of computing this index is shown here 
(Toro et al., 2008). (d) Mean curvature denotes the average of the two principal curvatures at a 
vertex (red dot), each of which are measured as the inverse of the corresponding radius of 
curvature, i.e., R1 and R2. Image adapted from (Ronan et al., 2011). 

 

1.4.1. Interpreting cortical MRI metrics 

Cortical thickness has often been related to the number of neurons within radial cortical 

columns and radial neuronal migration, and is influenced by dendritic arborization, synaptic 

pruning, and myelination (Huttenlocher, 1990; T. Jeon et al., 2015; Rakic, 1995; Vandekar et al., 
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2015). Surface area reflects processes including synaptogenesis and the number of radial columnar 

units in the cortex (Budday et al., 2015b; Rakic, 1988, 1995, 2009), and is also intrinsically linked 

to cortical folding (Garcia et al., 2018; Ronan & Fletcher, 2015). Although the biological 

phenomena underlying folding characteristics of the cortex have been more elusive, local 

gyrification index has been theorized to estimate folding complexity resulting from differential 

tangential expansion of cortical layers, which in turn may reflect local patterns in cytoarchitecture 

(Budday et al., 2015b; Ronan & Fletcher, 2015; Ronan et al., 2013). Finally, the specific biological 

interpretation of mean cortical curvature remains relatively underexplored, but studies of brain 

microstructure have highlighted a reliable relationship between this measure and white matter 

integrity (Deppe et al., 2014; King et al., 2016). The above metrics are not independent, but can 

contribute complementary information to a neurostructural signature of symptoms. For example, 

since local gyrification index and mean curvature are both measures related to cortical folding, 

they likely share a dependency on forces of folding hypothesized to arise from axonal fibres and 

neuronal dispersion at the biomechanical level (Im et al., 2008; Kroenke & Bayly, 2018; Llinares-

Benadero & Borrell, 2019; Nie et al., 2012), and on the spatial patterning of neurogenesis at the 

cellular level (Borrell, 2018; Llinares-Benadero & Borrell, 2019). However, these two metrics 

offer distinct resolutions of insights into the local surface topology. Whereas local gyrification 

index has a more direct association with surface area and measures the complexity of surface 

convolution on the centimeter scale (Schaer et al., 2008; Toro et al., 2008), mean curvature is a 

mathematically well-defined measure that quantifies the sharpness and concavity or convexity of 

the folding of a surface, thus providing sensitivity to millimeter-scale changes in gyral and sulcal 

shape (Pienaar et al., 2008; Ronan et al., 2011). 

We note here that another MRI-based metric which has been extensively studied in healthy 

and psychosis populations is gray matter volume (Fusar-Poli et al., 2011; Fusar-Poli, Radua, et al., 

2012; Nenadic, Dietzek, et al., 2015; Witthaus et al., 2009), which can be estimated through 

various combined analyses of cortical thickness and surface area variation (Winkler et al., 2018). 

However, given evidence that cortical thickness and surface area have distinct cellular and genetic 

substrates (Chenn & Walsh, 2002; Panizzon et al., 2009; Winkler et al., 2010) as well as 

dissociable developmental trajectories (Raznahan et al., 2011; Wierenga et al., 2014), considering 

these two metrics separately may help parse differential psychopathological contributions of their 
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underlying processes (Rimol et al., 2012). The current manuscript thus evaluates cortical thickness 

and surface area as individual variables. 

1.4.2. Cortical MRI metrics in normative development 

Consistent with the notion that different macrostructural cortical features reflect different 

underlying biological processes, different metrics are also associated with divergent 

spatiotemporal patterns of maturation. Globally, cortical thickness peaks in early childhood and 

then undergoes a protracted decline throughout late childhood and adolescence (Amlien et al., 

2016; Lyall et al., 2015; Raznahan et al., 2011; Wierenga et al., 2014). By contrast, surface area 

begins to increase rapidly as early as the third trimester of pregnancy, and pronounced expansion 

continues after birth until late childhood (Clouchoux et al., 2012; Raznahan et al., 2011; Wierenga 

et al., 2014). For both cortical thickness and surface area, transmodal association areas of the brain 

display more sustained refinement throughout later developmental epochs compared to earlier-

maturing primary and unimodal cortical areas (Sydnor et al., 2021). By comparison, cortical 

gyrification is established primarily in utero, occurring from the late second trimester to about 2 

years of age, by which point folding has largely attained an adult-like morphology (Budday et al., 

2014, 2015b; G. Li et al., 2014). Folding complexity may continue to increase subtly throughout 

childhood and early adolescence (Budday et al., 2015a; Remer et al., 2017) and potentially 

undergoes modest decline starting in late adolescence (D. Klein et al., 2014; Raznahan et al., 2011), 

but is generally thought to be relatively stable during postnatal development compared to metrics 

such as cortical thickness, particularly in sensory regions of the cortex (Damme et al., 2019; Hill, 

Dierker, et al., 2010; Hill, Inder, et al., 2010; Mutlu et al., 2013). Therefore, in the context of 

investigating neural markers of vulnerability to psychosis, incorporating metrics such as local 

gyrification index and mean curvature may provide unique insights into the contribution of 

pathological early development that compliment structural metrics more sensitive to aberrant 

neuromaturational processes during adolescence (e.g., cortical thickness). 

 

1.5. Cortical morphometric features in the PS and early psychosis 

Compared to studies on psychotic disorder or clinical high-risk patients, neuroimaging 

investigations of the PS are still in their infancy. Nonetheless, select existing MRI studies have 

found diverse cortical structural abnormalities in individuals with PS symptoms, which 

importantly appear to mirror abnormalities in patient cohorts. Such studies have predominantly 
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evaluated changes in gray matter volume and have reported both distributed reductions and 

increases in regional volume associated with PS symptoms, which commonly converge on 

prefrontal cortical regions, the precuneus and lateral posterior parietal cortex, and the temporal 

lobe (Drakesmith et al., 2016; Jacobson et al., 2010; Karcher, Paul, et al., 2022; Meller et al., 2020; 

Nenadic, Lorenz, et al., 2015; Roalf et al., 2017; Satterthwaite et al., 2016; Schoorl et al., 2021). 

More recently, studies examining cortical thickness have indicated an association between 

psychotic-like experiences and reduced cortical thickness, including in frontal and paracentral 

regions, the inferior parietal lobule, the insula, and temporal regions (Karcher, Paul, et al., 2022; 

van Lutterveld et al., 2014; Vargas & Mittal, 2022), although increased cortical thickness has also 

been observed in the medial orbitofrontal/ventromedial prefrontal cortex (Kirschner et al., 2021). 

van Lutterveld et al. additionally found that adults with non-clinical auditory visual hallucinations 

demonstrated a similar, but milder pattern of cortical thinning compared to psychotic disorder 

patients (van Lutterveld et al., 2014), providing support for a continuum of neural risk for 

psychosis within which PS may represent an intermediate phenotype. In youth, PS symptoms have 

further been associated with reduced surface area in prefrontal, primary sensorimotor, and 

cingulate cortical regions (Jalbrzikowski et al., 2019; Vargas & Mittal, 2022).  

While measures of cortical folding remain under-studied in subclinical subjects, recent 

work has linked lower local gyrification index in the midcingulate cortex and superior parietal 

lobule (Hua et al., 2021) as well as in vertex clusters in the middle frontal, occipital, and temporal 

gyri (Fonville et al., 2019) to positive psychotic-like experiences. Notably, these circumscribed 

reductions overlap spatially with patterns of gyrification abnormalities observed in individuals at 

clinical and familial high risk for psychosis (Damme et al., 2019; I. Park et al., 2021; Sasabayashi 

et al., 2017). This further suggests possible continuity in neural vulnerability to psychosis that may 

manifest through changes in multiple cortical macrostructural features. To our knowledge, the 

metric of cortical mean curvature has only been examined in PS individuals in one study to date, 

in which positive psychotic-like experiences were associated with greater mean curvature within 

a left precuneus cluster (Evermann et al., 2020). Nonetheless, findings of both mean curvature 

increases (Damme et al., 2019; Jessen et al., 2019; Schultz et al., 2010) and decreases (Damme et 

al., 2019; Liu et al., 2020) across multiple lobes in clinical high-risk or first-episode psychosis 

patients relative to healthy controls underscore its potential as an imaging marker of early 

pathophysiology. Furthermore, Damme et al. showed that local gyrification index and mean 
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curvature demonstrate distinct aberrations in clinical high-risk youth, corroborating the idea that 

considering both metrics offers a more comprehensive view of altered properties of cortical folding 

(Damme et al., 2019). 

While the relationship of age with morphometric alterations in the PS remains poorly 

understood, select studies along with evidence from high-risk cohorts have highlighted the 

existence of abnormal trajectories of cortical metrics predating psychotic illness onset. For 

example, greater cortical thinning with age has been observed in both clinical and familial high-

risk youth compared to healthy controls (Cannon et al., 2015; Sugranyes et al., 2021), while less 

age-related reduction in surface area has been found in familial high-risk youth (Sugranyes et al., 

2021). Taking this a step further, a prior study revealed that the developmental course of cortical 

thickness among schizotypal youth is linked to scores on different symptom-like dimensions 

(Derome et al., 2020). Meanwhile, local gyrification index has been recently shown to undergo 

greater age-related decline in frontal and temporal areas in schizotypal individuals compared to 

controls (Pham et al., 2021). These findings offer evidence that aberrant cortical morphometry in 

the PS may be part of atypical patterns of neuromaturation, and that considering the effect of age 

can yield more nuanced insights into brain-behaviour relationships in the PS. 

1.5.1. Limitations of existing PS neuroimaging research 

Existing PS neuroimaging efforts have several limitations which may have contributed, in 

part, to the heterogeneity in neuroanatomical findings. Pronounced among these is the reliance on 

univariate statistical methods that treat the cortex as a collection of independent regions or vertices. 

In these methods, a single feature is modelled separately at individual locations across the cortex, 

which are typically defined by an a priori anatomical parcellation or, more commonly, at the level 

of single cortical vertices in “mass univariate” analyses. This approach has drawbacks for both 

statistical and biological interpretations. First, the potentially large number of statistical tests 

performed requires stringent corrections for multiple comparisons, which in turn lowers power to 

detect more subtle effects that may be characteristic of emerging psychopathology (Genon et al., 

2022; Marek et al., 2022; McIntosh & Mišić, 2013). Second, univariate analyses fail to consider 

the highly networked nature of the brain, in which the morphological properties of different regions 

are interdependent and covary with each other (Alexander-Bloch et al., 2013). As a result, prior 

PS studies employing such analyses have lacked sensitivity to detect shared patterns of 
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abnormalities across vertices that may be eclipsing pronounced effects at any single location in the 

brain. 

Previous attempts to characterize PS neuroanatomy have been further limited by a focus 

on adult samples (e.g., (Drakesmith et al., 2016; Evermann et al., 2020; Fonville et al., 2019; 

Kirschner et al., 2021; Meller et al., 2020; Nenadic, Lorenz, et al., 2015; Schoorl et al., 2021; van 

Lutterveld et al., 2014)) rather than on age ranges when PS symptoms first emerge, as well as by 

examining individual MRI-derived cortical metrics in isolation from one another. The historical 

lack of large, comprehensive symptom and imaging datasets of PS youth has further contributed 

to this issue. While some recent PS studies have applied univariate linear regression to query 

multiple structural metrics at each cortical vertex or region of interest (Fonville et al., 2019; Hua 

et al., 2021; Jalbrzikowski et al., 2019), such designs still model each metric separately and thus 

undermine the complementary biological information carried by different morphometric indices. 

As a result, univariate approaches to neuroanatomy may have precluded the discovery of more 

complex patterns of covariance that could reconcile heterogeneous changes across different 

cortical features. How different morphometric abnormalities currently associated with PS 

symptoms might relate to one another therefore remains an open question. 

 

1.6. Covariance-based methods for deriving imaging signatures of abnormal cortical 

morphology 

Converging evidence suggests that modelling the coordinated variation of multiple 

morphometric features enables more nuanced estimation of cortical organization (Glasser et al., 

2016; R. Patel et al., 2020; Seidlitz et al., 2018; Vandekar et al., 2016). For example, Seidlitz et al. 

showed that morphometric similarity mapping, which quantifies interregional similarity based on 

the correlation of multiple MRI-based structural metrics (i.e., “morphometric similarity”), 

generates individualized networks of cortical regions that have greater cytoarchitectonic similarity 

than in single metric covariance networks, in addition to having high transcriptional similarity 

(Seidlitz et al., 2018). This approach has uncovered morphometric similarity differences between 

psychotic disorder patients and healthy controls that also align with spatial patterning of 

transcriptional vulnerability to schizophrenia (S. E. Morgan et al., 2019), exemplifying the clinical 

utility of considering covariation of multiple features. However, a key limitation of morphometric 

similarity mapping is that it cannot parse the influences of individual features on interregional 
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morphometric similarity, thereby restricting insights into putative neurobiological substrates of 

abnormal cortical macrostructural patterning. 

More classical multivariate analysis techniques, which assess relationships between 

multiple input variables simultaneously, can also be used to integrate information from multiple 

morphometric features in a single statistical framework (R. Patel et al., 2020; Smith & Nichols, 

2018). In a neuroimaging context, these analyses can harness the mutual dependencies between 

vertices to identify informative patterns, termed components, within brain data. In particular, 

recent work has highlighted non-negative matrix factorization (NMF) as a promising alternative 

for investigating neurobiologically meaningful covariance structure of multiple MRI-derived 

metrics (R. Patel et al., 2020; Robert et al., 2021). Conceptually similar to popular multivariate 

methods such as principal component analysis (PCA) and independent component analysis (ICA), 

NMF is an unsupervised technique that decomposes a dataset into its dominant patterns of 

covariance, thus providing a data-driven way to significantly reduce the dimensionality of typically 

vertex-wise subject brain data. In addition to bolstering interpretation beyond segregated local 

cortical properties, this dimensionality reduction helps to guard against concerns regarding the low 

stability of downstream multivariate brain-behaviour associations where the number of features 

vastly outnumbers the number of observations (Helmer et al., 2020). 

1.6.1. Non-negative matrix factorization: advantages and applications  

NMF offers several interpretational advantages over the more commonly applied PCA and 

ICA. First, NMF uniquely enforces a non-negativity constraint on its outputs (Sotiras et al., 2015). 

Covariance components extracted using this method are associated with purely positive weights 

of input features and loadings of individual observations (i.e., subjects), enabling more 

straightforward interpretation of neuroanatomical variation than when effects of opposing 

direction are present. 

Furthermore, the orthonormal projective variant of NMF (OPNMF) has the ability to 

aggregate variance in imaging data in a parcellation-like fashion, contrasting with challenges of 

PCA and ICA in defining clear boundaries between variance components (Sotiras et al., 2015). 

This property of OPNMF leads to parsimonious representations of coordinated cortical structural 

variation that serve as alternatives to a priori defined anatomical atlases. For example, applications 

of OPNMF to single-metric cortical data have delineated reproducible and biologically plausible 

whole-brain covariance ‘networks’ of gray matter volume (Shan et al., 2022; Sotiras et al., 2015; 
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Varikuti et al., 2018; Wen et al., 2022), cortical thickness (Kaczkurkin et al., 2019; Neufeld et al., 

2020; Sotiras et al., 2017), and local gyrification (Sanfelici et al., 2021). The resulting networks 

have in turn demonstrated sensitivity to a range of clinical phenotypes, including capturing 

psychiatric disorder-related morphometric abnormalities (Neufeld et al., 2020; Sanfelici et al., 

2021), revealing neuroanatomically homogeneous subtypes of autism spectrum disorder (Shan et 

al., 2022), as well as predicting broad dimensions of psychopathology (Kaczkurkin et al., 2019). 

Notably, Wen et al. found that gray matter volume signatures consistently achieved better 

patient/control classification across multiple diseases (including schizophrenia) when formed from 

OPNMF-derived networks as opposed to a conventional brain atlas or voxel-wise maps (Wen et 

al., 2022). A study by (Neufeld et al., 2020) also observed a specific pattern of hypogyrification in 

OPNMF-derived gyrification networks that was shared across three different early psychiatric 

illness groups as well as related to poorer cognition and functioning. These findings illustrate that 

data-driven covariance patterns identified by NMF can provide novel imaging signatures of 

neuropathological processes, and may have the potential to capture transdiagnostic effects linked 

to developmental vulnerability. 

In recent years, our group has adapted NMF to investigate shared patterns of covariance 

across multiple MRI-based metrics simultaneously, thus harnessing their complementary 

information (R. Patel et al., 2020). This work demonstrated the greater stability of spatial 

components derived using multiple metrics compared to single-metric NMF decompositions, 

corroborating conclusions from morphometric similarity network studies. In healthy individuals, 

this novel ‘multi-metric’ analysis has revealed multimodal microstructural components of the 

human hippocampus (R. Patel et al., 2020) and striatum (Robert et al., 2021) subcortically, as well 

as whole-brain components of covariance across several vertex-wise measures of both cortical 

macrostructure and microstructure (R. Patel et al., 2022). Importantly, these studies showcased the 

ability of NMF to recover subject ‘loadings’ onto covariance components that are metric-specific, 

such that downstream brain-cognition associations identified using these components could still 

be resolved at the level of the contributing structural features (R. Patel et al., 2022, 2020). This 

approach has recently also been shown to be sensitive in a psychosis context: using covariance 

components derived from anterior cingulate cortex structural indices in schizophrenia patients, 

Ochi et al. discovered component-level patterns of abnormality in specific metrics that were 

differentially related to antipsychotic treatment response or resistance (Ochi et al., 2022). Thus, 
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the multi-metric implementation of NMF holds promise for establishing more refined profiles of 

neurostructural vulnerability while circumventing limitations of morphometric similarity 

approaches. 

 

1.7. A dimensional approach to symptom heterogeneity within the PS 

Progress towards precise neuroanatomical mappings of PS symptoms has likely been 

limited by overly simplistic behavioural perspectives. PS neuroimaging studies have often sought 

brain morphometric correlates of an aggregate score of symptoms based on a priori clinical scales, 

with a majority considering only the positive subclinical symptom domain or subtypes (e.g., 

auditory verbal hallucinations) (Fonville et al., 2019; Kirschner et al., 2021; van Lutterveld et al., 

2014; Vargas & Mittal, 2022). Another common strategy has been to investigate group-average 

differences in cortical features between individuals with and without PS symptoms (Drakesmith 

et al., 2016; Jacobson et al., 2010; van Lutterveld et al., 2014). However, a priori composite 

symptom scores may not optimally capture neural variation due to eschewing the possibility that 

neural alterations reflect a more complex weighted combination of symptoms. Similarly, single-

domain and case-control approaches assume a monolith of PS expression and do not account for 

the heterogeneity in symptom presentation and neural alterations observed before the onset of 

frank illness (Kaczkurkin et al., 2020; Unterrassner, 2018; Voineskos et al., 2020; Yung et al., 

2009). For example, population-based studies have indicated that subclinical negative symptoms 

can be as prevalent as subclinical positive symptoms in adolescents and young adults, and that the 

co-occurrence of these experiences amplifies the risk of poor functioning, help-seeking behaviour, 

and later onset of clinical psychosis (Calkins et al., 2017; Dominguez et al., 2010; Werbeloff et 

al., 2015). 

In line with these findings, accumulating evidence suggests that PS phenotypes may be 

better understood in terms of the simultaneous variation of multiple salient symptom dimensions 

gleaned through data-driven modelling (Armando et al., 2010; Calkins et al., 2015; Fonseca-

Pedrero et al., 2018; Shevlin et al., 2017; Stefanis et al., 2002; Wigman et al., 2011; Yung et al., 

2006). In such a model, each dimension describes a phenotypic axis underlying a weighted 

combination of measurable symptoms that co-occur, along which individuals can vary 

continuously (Kaczkurkin et al., 2020). These dimensional models are thus compatible with the 

view of PS features as lying on a continuum from possibly benign to maladaptive processes, while 
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also enabling insights into the potentially varied clinical significance of dissociable groupings of 

behavioural phenomena. This approach is aligned with two increasingly pursued, large-scale 

frameworks for a dimensional re-envisioning of psychopathology more broadly: the Research 

Domain Criteria, which seeks to characterize psychopathology dimensions using multiple 

biobehavioural levels or “units” of analysis (Cuthbert & Insel, 2013; Insel et al., 2010); and the 

Hierarchical Taxonomy Of Psychopathology, which seeks to organize diverse psychopathological 

phenomena according to their shared and unique covariance to yield more informative research 

targets (Kotov et al., 2018, 2017). 

Factor analytic approaches have long been applied to investigate the latent dimensional 

structure of clinical psychotic symptoms (Potuzak et al., 2012), and can derive interpretable 

dimensions with improved robustness and prognostic value over categorical classifications of 

illness (data-driven or diagnostic) (Martin et al., 2021; Ravichandran et al., 2021). However, there 

has been a paucity of factor analytic studies of symptoms in non-help-seeking individuals (i.e., 

PS), especially youth, and existing investigations have found inconsistent factors due to generally 

limited types of items being included in analyses. Select population-based studies of a broader 

range of PS symptoms have suggested the existence of three symptom dimensions, including 

‘unusual thoughts/perceptions’, ‘ideas about special abilities/persecution’, and 

‘negative/disorganized symptoms’ (Calkins et al., 2015); or, alternatively, ‘cognitive-perceptual’, 

‘interpersonal/negative’, and ‘disorganized’ features (Fonseca-Pedrero et al., 2018). Critically, 

these dimensions show overlap with the dimensional structure seen in clinical psychosis (Kotov et 

al., 2016; Liddle, 1987; Maj et al., 2021; Potuzak et al., 2012), and may be differentially related to 

functional and health outcomes (Martin et al., 2021; Reininghaus et al., 2013). 

As data-driven symptom dimensions are likely to have more coherent etiology than 

measures of total symptom burden or than is captured by a general PS group, a dimensional 

characterization of PS features may also provide improved linkage with neurobiology. Limited but 

promising findings in this direction have indicated that certain dimensional PS factors in youth, 

namely ideas about special abilities/persecution and negative/disorganized symptoms, are related 

to volume reductions of distinct regions in the medial temporal lobe (Roalf et al., 2017). However, 

contrary to the one-to-one relationships targeted by existing brain-behaviour studies of the PS, it 

is conceivable that broad dimensions of PS symptoms are multi-determined with regards to brain 

circuits as opposed to mapping to isolated regions. Multivariate analytical approaches which can 
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resolve complex associations between symptom and neurobiological domains thus could offer 

unprecedented insight into the biobehavioural underpinnings of the PS. 

 

1.8. Multivariate brain-behaviour associations 

To achieve refined mappings between dimensional PS symptoms and neurobiological 

variation, it is necessary to consider the mutual dependencies existing not only between brain 

variables as previously discussed, but also among different clinical-behavioural measurements 

(Voineskos et al., 2020). For example, PS symptom domains often co-occur and are highly 

correlated (Dominguez et al., 2010; Stefanis et al., 2002), and their expression is also linked to 

sociodemographic characteristics (Dominguez et al., 2010; Werbeloff et al., 2015). Rather than 

individual clinical features mapping to cortical alterations, then, it is conceivable that their shared 

variation within a complex behavioural profile of risk may have a neuroanatomical signature in 

distributed or overlapping brain circuits, as has been observed for clinical psychosis samples 

(Kirschner, Shafiei, Markello, Makowski, et al., 2020).  

“Doubly multivariate” analyses refer to approaches that can leverage this multiplicity to 

map a set of behavioural variables jointly to patterns among a set of brain structural variables 

(Genon et al., 2022). These analyses thus avoid a priori assumptions regarding one-on-one 

symptom-neuroanatomy relationships as well as the limited view gained by focusing on only a 

single behavioural aspect (Genon et al., 2022; C. Song et al., 2022). More broadly, these 

approaches can summarize a complex constellation of associations among two sets of variables by 

a smaller number of parsimonious latent patterns or “variables.” When the two datasets correspond 

to clinical and brain structural data, the latent variables define dissociable aspects of brain-

behaviour covariance or correlation, and importantly, capture inter-individual differences via 

subject-specific scores which quantify expression of the identified patterns (McIntosh & Mišić, 

2013). Doubly multivariate approaches may offer a means of parsing heterogeneous 

biobehavioural mechanisms of the PS in line with a dimensional understanding of 

psychopathology (Cuthbert & Morris, 2021; Xia et al., 2018). 

One popular data-driven doubly multivariate approach, which is also the most relevant to 

the current work, is partial least squares correlation (PLS). Compared to its sister techniques 

including canonical correlation analysis (CCA) (Wang et al., 2020), PLS has commonly-used 

reliability or bootstrapping assessments that provide insight into the stability of the derived brain-
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behaviour relationships (McIntosh & Lobaugh, 2004). Both PLS and CCA have demonstrated 

utility for uncovering multimodal phenotypic axes of psychotic disorders, including a clinical-

anatomical pattern linking cognitive impairments and negative symptom factors to distributed gray 

matter volume loss in schizophrenia (Kirschner, Shafiei, Markello, Makowski, et al., 2020); as 

well as cognitive-anatomical patterns (Jessen et al., 2019; Rodrigue et al., 2018) that show promise 

for differentiating patients of different psychotic diagnoses along an affective-nonaffective 

psychosis dimension (Rodrigue et al., 2018). Together, these studies illustrate that relating low-

dimensional symptom axes to whole-brain neural alterations can uncover novel pleiotropic-like 

links between brain and behaviour that nonetheless remain highly interpretable. 

 

1.9. Morphometric abnormalities in the context of a macroscale functional hierarchy 

Contextualizing patterns of anatomical abnormalities in terms of the functional 

specialization of the cortex offers a bridge between brain structure, function, and symptomatology. 

There has been extensive evidence for a macroscale hierarchy of cortical organization that can be 

quantified as a “gradient” extending from primary sensory and motor (i.e., unimodal) areas to 

distributed association (i.e., transmodal) areas (Huntenburg et al., 2018; Margulies et al., 2016; 

Sydnor et al., 2021). This gradient corresponds to the primary axis of variation in a low-

dimensional representation of cortical vertices’ similarity in functional connectivity patterns, and 

is thus known as the principal functional gradient in the context of functional MRI data (Margulies 

et al., 2016). Notably, this gradient captures the spatial ordering of and gradual transitions between 

cortical resting-state functional networks (Yeo et al., 2011), but how large-scale patterns in 

morphological features might map to this functional gradient is less well known. 

Across structural neuroimaging studies of psychotic disorder and clinical high-risk 

patients, the topography of morphological disturbances has consistently converged on the extreme 

ends of the unimodal-to-transmodal functional gradient. In particular, changes in individual 

cortical morphometric features have frequently been localized to association regions anchoring the 

transmodal end of this hierarchy, such as regions involved in the frontoparietal or default mode 

resting-state networks (Andreou & Borgwardt, 2020; Fusar-Poli et al., 2011; Fusar-Poli, Radua, et 

al., 2012; Matsuda & Ohi, 2018; Palaniyappan et al., 2011; van Erp et al., 2018). The same 

networks have also demonstrated significantly reduced morphometric similarity, as assessed by 

morphometric similarity networks, in psychosis patients relative to healthy controls (S. E. Morgan 
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et al., 2019). These results are consistent with transmodal cortical areas showing increased and 

protracted vulnerability of structural properties to the aberrant neurodevelopment that may 

underlie variation related to the PS (Mueller et al., 2013; Reardon et al., 2018).  Further still, these 

regions also support higher-order psychological functions commonly affected in psychopathology  

(Sydnor et al., 2021), such as the belief evaluation and reality monitoring processes typically 

impaired in psychosis (Corlett et al., 2010; Lee et al., 2015). Therefore, the unimodal-transmodal 

hierarchy naturally offers a potential organizing principle for morphometric abnormalities linked 

to PS symptoms. Importantly, it was also recently shown that the organization of macroscale 

functional gradients reconfigures during development, such that a unimodal-transmodal structure 

takes a backseat to a somatomotor- and visual-anchored gradient in childhood, but is gradually 

converged upon as sensorimotor and association areas are increasingly differentiated in 

adolescence, reaching a mature cortical architecture (H.-M. Dong et al., 2021). Situating patterns 

of morphology within maturational functional gradients thus could in turn situate PS symptom-

brain structure relationships within the context of dynamic functional neurodevelopment. 

 

1.10. Meta-analytic functional contextualization of morphometric abnormalities 

Beyond large-scale cortical gradients, the availability of comprehensive meta-analytical 

databases derived from functional neuroimaging also offers a window into structure-function 

coupling in the PS. One such resource that has attained widespread use is Neurosynth, a framework 

for the automated generation of meta-analytical brain activation maps related to common 

psychological terms in functional MRI studies (Yarkoni et al., 2011). The Neurosynth database 

can be used to query direct spatial correspondences between psychological function-based brain 

patterns and novel brain maps derived from structural MRI features, a process known as functional 

“decoding” (L. J. Chang et al., 2013). Notably, this technique has recently been leveraged to 

explore the potential functional relevance of components of structural covariance defined using 

NMF (Robert et al., 2021; Shan et al., 2022). These studies illustrated the capacity of NMF-derived 

neuroanatomical patterns to capture distinct yet coherent cognitive functional profiles within the 

context of both healthy (Robert et al., 2021) and psychopathological brain structural landscapes 

(Shan et al., 2022). Since past analyses of this nature have focused on subcortical data or a single 

cortical metric, meta-analytic functional associations of more complex cortical covariance patterns 

remain to be elaborated. In particular, decoding functions of patterns that integrate multiple cortical 
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structural features may offer new perspectives into how brain structure and function interact to 

shape symptom expression. 

 

1.11. Transcriptomic fingerprints of brain structural vulnerability to psychosis 

The MRI-derived phenotypes discussed thus far allow for incisive dimensional 

characterization of neuroanatomical variations underlying PS symptoms, but can only provide 

indirect measures of putative pathophysiological mechanisms. Meanwhile, recent advancements 

in imaging transcriptomics, particularly the development of brain-wide gene expression atlases, 

have opened new opportunities to investigate the molecular basis of macroscopic changes related 

to psychopathology (Arnatkeviciute et al., 2021). The Allen Human Brain Atlas (AHBA), which 

was constructed via microarray profiling of post-mortem brain tissue, represents the most 

neuroanatomically comprehensive transcriptomic atlas to date (Hawrylycz et al., 2012). 

Significantly, this resource has enabled unparalleled inference regarding transcriptional 

enrichment of molecular and biological functions that is consistent with the patterning of 

neuroimaging markers (Arnatkeviciute et al., 2021; Martins et al., 2021). 

Neuroimaging studies incorporating the AHBA have increasingly highlighted how 

macrostructural alterations can provide a mechanistic link between variation in gene expression 

and psychotic experience. Using multivariate analysis, a prior study co-located psychosis case-

control differences in morphometric similarity with expression of genes found to be dysregulated 

in post-mortem studies of schizophrenia, as well as genes involved in neurotransmission-related 

processes (S. E. Morgan et al., 2019). Specific gene expression patterns have further been linked 

directly to individual imaging-based cortical morphometric indices, in the context of both mental 

health and illness. For example, normative spatiotemporal variation in cortical thickness, including 

during adolescence, has been correlated with expression of transcriptional markers of astrocytes, 

microglia, and excitatory neurons (Ball et al., 2020; Y. Patel et al., 2020; Shin et al., 2018; Vidal-

Pineiro et al., 2020). Interestingly, regional deviations from normative thickness in schizophrenia 

patients were found to demonstrate alignment with markers of overlapping cell types, including 

astrocytes, endothelial cells, oligodendrocyte precursors, and neurons (Di Biase et al., 2022). This 

link has also been extended to nonclinical psychosis populations: schizotypy-related variations in 

magnetization transfer, an index of intracortical myelin content, was related through multivariate 

analysis to genes with neuronal, astrocyte, and microglial affiliations, and which are dysregulated 
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in schizophrenia (Romero-Garcia et al., 2020). These findings suggest a reasonably tight coupling 

between changes in brain macrostructure and expression levels of both specific cell types and 

relevant disorder-related genes. 

Strikingly, in recent work which integrated NMF on brain volumetric data with a genome-

wide association study, associations were found between the resulting whole-brain patterns of 

structural covariance and sets of genes enriched in both common and dissociable biological 

pathways (Wen et al., 2022). The NMF-derived covariance patterns were also correlated with a 

number of novel genomic loci, implying that this data-driven representation of neuroanatomical 

data may be able to capture more subtle molecular organization than other T1w MRI-based 

phenotypes (Wen et al., 2022). The above findings suggest that in the context of the PS, 

establishing transcriptomic signatures of symptom-related morphometric covariance patterns may 

clarify critical feature- or pathway-specific molecular mechanisms driving the observed 

neurostructural vulnerability. 

 

2. Rationale 

Despite significant conceptual and empirical progress, an integrated understanding of 

neuroanatomical signatures of dimensional PS symptoms and their potential biological 

underpinnings is lacking. Attempts thus far to characterize cortical abnormalities in the PS have 

been hampered by a focus on adult age ranges, examining individual morphometric features in 

isolation using univariate analyses, and case-control comparisons or one-dimensional measures of 

symptoms. By contrast, growing research supports data-driven multivariate analyses as a means 

of resolving more nuanced patterns of cortical morphometric variation expressed during critical 

maturational epochs, which may in turn better capture dimensional symptom variation as well as 

multimodal cortical properties.  

Building on these perspectives, the current study leveraged an analytic framework linking 

morphometric, behavioural, functional, and transcriptomic information to characterize neural PS 

phenotypes in the context of neurodevelopment. Using a community-based sample of PS youth, 

we derived multivariate mappings between symptom dimensions and morphometric covariance 

patterns integrating multiple cortical features, and then contextualized these relationships by 

drawing on insights from functional (Neurosynth, functional connectivity gradients) and molecular 

(AHBA gene expression) architectures of the brain. 
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3. Objectives 

The objectives of this work were threefold. (1) We aimed to use NMF to identify 

covariance patterns among interrelated cortical morphometric features in PS youth, and to 

investigate how they mapped to latent factors of PS symptoms. (2) We aimed to contextualize PS-

related morphometric covariance patterns functionally by evaluating their spatial similarity to 

meta-analytical activation patterns of psychological processes, and their spatial organization with 

respect to the unimodal-to-transmodal cortical functional hierarchy. (3) We aimed to explore 

molecular underpinnings of PS vulnerability in morphometric covariance patterns by aligning 

them with spatial expression of specific biological functions, canonical brain cell types, and genes 

associated with psychiatric disorders. 

 

4. Methods 

An overview of the analytic workflow can be found in Figure 2. Briefly, morphometric 

covariance patterns (MCPs) based derived from four structural metrics across the cortex were used 

to derive a multivariate representation of cortical morphology (cortical thickness, surface area, 

mean curvature, local gyrification index) from 266 youth who met psychosis spectrum (PS) 

criteria. We mapped PS-related MCPs to known large-scale cognitive and cortical functional 

architectures via functional MRI results, as well as to cortical gene expression patterns to better 

understand their putative functional and neurobiological relevance. 
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Figure 2. Workflow. (Continued on next page) (a) Four cortical metrics derived from T1-
weighted MRI data of 266 psychosis spectrum youth were subjected to orthonormal projective 
non-negative matrix factorization (OPNMF) to identify components representing morphometric 
covariance patterns (MCPs). OPNMF decomposed the matrix of concatenated subject metrics into 
a component matrix (W), describing spatial properties of MCPs in the data, and a loading matrix 
(H), describing subject-specific loadings of metrics for each MCP. (b) Minimum residual factor 
analysis was applied on the correlation matrix of PS symptom measures to identify major latent 
symptom dimensions. (c) Behavioural PLS analysis was used to relate subject-specific MCP-
metric loadings to scores on each symptom dimension as well as sociodemographic features. This 
resulted in latent variables representing maximally covarying patterns of the brain and behavioural 
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data. (d) Two methods were used to contextualize MCPs functionally. Each MCP was correlated 
with (i) meta-analytic activation maps of psychological functions (Neurosynth), as well as aligned 
with (ii) previously reported functional gradients across maturation, to compare within-MCP 
gradient value distributions. (e) Using the Allen Human Brain Atlas (AHBA), we obtained tissue 
sample-level gene expression data corresponding spatially to each MCP. Mean-centered PLS 
analysis was used to extract patterns of gene expression that maximally differentiated the MCPs. 
The resulting latent variables comprised a weighted combination of genes, describing an 
expression profile, and a set of contrast values describing the MCPs covarying with the expression 
profile in a separable way. The strongest weighted genes, segregated by sign, provided gene sets 
characterizing specific MCPs and were further analyzed for enrichment for certain biological 
functions, disease-related genes, and cell types. SVD = singular value decomposition; PLS = 
partial least squares 

 

4.1. Data 

4.1.1. Overview of PNC dataset 

We used cross-sectional T1w structural MRI and psychiatric data from the publicly 

available PNC (study version 3) (Satterthwaite et al., 2014). The PNC is a large, racially and 

socioeconomically diverse community-based sample of youth reflecting the demographics of the 

greater Philadelphia area (Calkins et al., 2015; Moore et al., 2016). Importantly, PNC subjects 

were not recruited from psychiatric services (i.e., not seeking help for psychiatric symptoms), but 

screened into specific psychiatric diagnoses at rates aligning with epidemiologically ascertained 

samples (Calkins et al., 2015). Thus, this sample offers a glimpse into the continuum of ‘normal’ 

to ‘abnormal’ mental health in the developing population, as championed by recent symptom 

dimension mapping doctrines such as the Research Domain Criteria (Cuthbert & Insel, 2013; Insel 

et al., 2010), and brain abnormalities associated with subthreshold psychosis symptoms at a young 

age. 

4.1.2. MRI acquisition and psychiatric assessment 

Within the PNC, T1w images were collected for a subsample of 1598 physically healthy 

participants (8-23 years old) on a single 3T Siemens TIM Trio scanner (Satterthwaite et al., 2014). 

A magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence was used with the 

following imaging parameters: repetition time, 1810 ms; echo time, 3.5 ms; inversion time, 1000 

ms; flip angle, 9°; voxel size, 0.9375 mm×0.9375 mm×1.0 mm; and right-to-left/anterior-to-

posterior field of view, 180/240. All participants additionally underwent psychopathology 

assessment with the GOASSESS interview, the purpose of which was to capture subject 
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experiences of symptoms across multiple disorder domains including mood, anxiety, behavioural, 

eating, and psychosis spectrum disorders (Calkins et al., 2015). Specifically, GOASSESS 

comprises a mixture of dichotomous (yes/no) and Likert scale (e.g., 0–“Definitely disagree” to 6–

“Definitely agree”) questions that are adapted from three widely-used diagnostic instruments: the 

Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS) (Kaufman et al., 1997); the 

Prevention through Risk Identification, Management, and Education (PRIME) Screen-Revised 

(PS-R) (Kobayashi et al., 2008); and the Structured Interview for Psychosis-risk Syndromes (SIPS) 

(Miller et al., 2003). All study procedures were approved by the institutional review boards of the 

University of Pennsylvania and The Children’s Hospital of Philadelphia. Informed written consent 

was obtained from participants over 18 and parents/guardians of participating children, and 

informed written assent was obtained from children. 

4.1.3. Definition of psychosis spectrum (PS) sample 

We identified PNC youth as PS if they met any of the following criteria: (1) endorsed any 

hallucination or delusion on the K-SADS with a duration of at least one day, outside the context 

of substance use or physical illness, and accompanied by significant impairment or distress; (2) 

had a total PS-R score at least two standard deviations (SDs) higher than age-matched peers, at 

least 1 PS-R item rated 6 (“Definitely agree”), or at least 3 PS-R items rated 5 (“Somewhat agree”); 

(3) scored a total of at least 2 SDs above age-matched peers on SIPS negative and disorganized 

symptom items (Calkins et al., 2015, 2014). Excluding individuals with significant non-psychiatric 

medical conditions that could affect central nervous system function (determined by an impact 

severity rating of 3 [“Significant”] or higher), PS symptoms were identified in 427 participants. 

After additional exclusion of participants whose MRI scans did not pass rigorous quality assurance 

procedures (see Section 4.2.1 for details), we arrived at a final study sample of 266 youth with PS 

features (Table 1). 
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Table 1. Sociodemographic characteristics of physically healthy psychosis spectrum youth from 
the PNC. 
 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Data processing 

4.2.1. MRI processing and quality control 

A summary flowchart of PS subject exclusion due to the below MRI quality control steps 

can be found in Appendix Figure 1. All raw T1w scans were previously inspected for motion and 

scan quality by two independent raters, following our laboratory’s quality control protocol 

(Bedford et al., 2020) (https://github.com/CoBrALab/documentation/wiki/Motion-Quality-

Control-(QC)-Manual). Consensus of these quality ratings was determined for exclusion of scans 

with movement artefacts, such as image blur or ringing. Since certain neuroimaging pipelines 

perform better if provided with T1w images with brain masks, we preprocessed scans using the 

automated iterativeN4_multispectral pipeline (https://github.com/CoBrALab/iterativeN4_ 

multispectral) to obtain brain masks in native space, generated using Brain Extraction based on 

nonlocal Segmentation Technique (BEaST) (Eskildsen et al., 2012). Outputs were quality 

controlled for accurate coverage of brain tissue by each subject’s derived brain mask. 

The raw T1w images and their corresponding brain masks were then submitted to the 

CIVET processing pipeline (http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET, version 

(v)2.1.1) to estimate four gray matter morphometric features: cortical thickness (CT), surface area 

(SA), mean curvature (MC), and local gyrification index (GI). Briefly, CIVET first performs image 

 
Variable 

Psychosis spectrum  
(n = 266) 

 Age in years, mean ± SD (range) 15.8 ± 3.1 (8.8–23.2) 

 Sex, n (%) 
    Female 
    Male 

 
149 (56.0) 
117 (44.0) 

 Race, n (%) 
    African American or Black 
    European American 
    Mixeda or other race 

 
154 (57.9) 
78 (29.3) 
34 (12.8) 

 WRAT-4 Reading standard score, mean ± SD 98.5 ± 16.7 

 Parent education in years, mean ± SD 13.5 ± 2.0 
 a Includes combinations of African American or Black, European American, Hispanic/Latino, and other 

race, as well as unknown race 

SD = standard deviation; WRAT-4 = Wide Range Achievement Test, version 4 

https://github.com/CoBrALab/%20documentation/wiki/Motion-Quality-Control-(QC)-Manual
https://github.com/CoBrALab/%20documentation/wiki/Motion-Quality-Control-(QC)-Manual
https://github.com/CoBrALab/iterativeN4_%20multispectral
https://github.com/CoBrALab/iterativeN4_%20multispectral
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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registration to Montreal Neurological Institute (MNI) space using the MNI ICBM152 average 

(Collins et al., 1994; Fonov et al., 2009), followed by intensity inhomogeneity correction using the 

N3 algorithm (Sled et al., 1998). Voxels are then classified into white matter, gray matter, and 

cerebrospinal fluid (Tohka et al., 2004; Zijdenbos et al., 2002), and cortical surfaces (81924 

vertices per surface mesh) are extracted using the Constrained Laplacian Anatomic Segmentation 

using Proximities method (J. S. Kim et al., 2005). We employed the N3 correction in CIVET rather 

than supplying bias field-corrected images from iterativeN4_multispectral as inputs as we 

observed that the former approach produced fewer image processing failures for CIVET. All 

CIVET outputs were quality controlled according to an in-house manual (Bedford et al., 2020) 

(https://github.com/CoBrALab/documentation/wiki/CIVET-Quality-Control-Guidelines); only 

scans in which the extracted cortical surfaces generally followed the apparent anatomy were 

included in our analyses. 

4.2.2. Behavioural measures and missing data imputation 

In addition to subject responses on the 30 PS-related symptom items from GOASSESS, we 

included age, sex, and race for analysis to capitalize on the diverse demographic composition of 

the PNC and of the PS subgroup. As well, following previous studies on the PNC, we estimated 

full-scale intelligence quotient (IQ) for subjects using their age-adjusted standard scores on the 

Reading subtest of the Wide Range Achievement Test, version 4 (WRAT-4) (Calkins et al., 2014; 

Wilkinson & Robertson, 2006). WRAT-4 Reading standard scores range from a minimum score 

of 55 to a maximum score of 145, with a mean of 100 and a SD of 15. Finally, parent education 

(mean years of mother and father, unless only one was available) provided a proxy for 

socioeconomic status (Moore et al., 2016). 

Since 28 subjects (11%) had missing values for one or more of the 35 behavioural variables 

of interest, we performed data imputation using random forests, implemented in R v3.5.1 (package 

missForest, v1.4) (Stekhoven & Bühlmann, 2012). This algorithm fits a random forest on the 

observed part of a data matrix to predict the missing observations for a specific variable, and can 

robustly handle relationships in mixed-type data involving both continuous and categorical 

variables (Cui & Wang, 2020; Stekhoven & Bühlmann, 2012), such as those present in the PS 

behavioural dataset. To impute missing values more accurately, we sought to leverage all available 

observed values of the variables of interest as well as auxiliary information about subjects’ 

comorbid psychopathology. Random forests were trained using behavioural data from all PS youth 

https://github.com/CoBrALab/documentation/wiki/CIVET-Quality-Control-Guidelines
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regardless of MRI data quality (n = 427), and attributes in the input data matrix included a total of 

122 symptom items from GOASSESS covering 16 psychological clinical domains (including PS), 

in addition to our sociodemographic variables of interest. The number of decision trees per random 

forest was set to 1000. 

4.2.3. Morphometric feature estimation 

Vertex-wise CT, SA, and MC values for each subject were estimated automatically as part 

of the CIVET pipeline, while vertex-wise GI was computed separately from cortical mid-surface 

reconstructions from CIVET using code adapted from (Toro et al., 2008) 

(https://github.com/r03ert0/surfaceratio, v5). Specifically, CT at each vertex was estimated as the 

curved distance along streamlines computed between the white matter surface and the gray matter 

(pial) surface at that point, following the Laplace method (J. S. Kim et al., 2005). CT was smoothed 

across the surface using the default 30-mm full-width half-maximum (FWHM) blurring kernel for 

this measure to diminish the impact of noise (Boucher et al., 2009; Lerch & Evans, 2005); default 

smoothing kernel sizes were used for the other measures estimated by CIVET as well. SA was 

estimated as the area of the polygon formed by one-third of the triangles surrounding each vertex 

on the mid-surface (FWHM = 40 mm) (Lyttelton et al., 2009). MC was calculated as the average 

of the principal curvatures at each vertex, which were derived from the inverse of the radii of 

orthogonal osculating circles at each vertex on the mid-surface (FWHM = 30 mm) (Ronan et al., 

2011). Thus, larger values of MC indicate ‘sharper’ curvature. Finally, GI was estimated through 

the “surface ratio”: the ratio between the mid-surface area contained in a small sphere centered at 

each vertex and the area of a circle of equivalent radius (Toro et al., 2008). We used the 

recommended sphere radius of 20 mm for surface ratio calculation. Morphometric data of medial 

wall vertices were excluded in all analyses. 

 

4.3. Multivariate analysis of morphometric covariance: Non-negative matrix 

factorization 

To identify spatial patterns of neuroanatomical covariance, we applied the orthonormal 

projective extension of non-negative matrix factorization (OPNMF) to our cortical metrics (Figure 

2a). OPNMF is an unsupervised multivariate statistical technique that decomposes an input matrix 

(in our case, cortical morphometric features, Xm×n) into a component matrix (Wm×k) and a loading 

coefficient matrix (Hk×n) such that the reconstruction error between the original (X) and 

https://github.com/r03ert0/surfaceratio


 

42 
 

reconstructed (W×H) inputs is minimized (R. Patel et al., 2020; Sotiras et al., 2015; Yang & Oja, 

2010). OPNMF thus solves the following minimization problem: 

‖𝑋𝑋 −𝑊𝑊𝑊𝑊‖ subject to 𝑊𝑊 ≥ 0; 𝑊𝑊𝑇𝑇𝑊𝑊 = 𝐼𝐼;  𝑊𝑊 = 𝑊𝑊𝑇𝑇𝑋𝑋 

where ‖ ‖ represents the squared Frobenius norm and I represents the identity matrix (Boutsidis 

& Gallopoulos, 2008; Yang & Oja, 2010). Importantly, W is initialized using non-negative double 

singular value decomposition, which promotes sparsity of the output component matrix (Boutsidis 

& Gallopoulos, 2008). The OPNMF decomposition results in k output components (where k is 

defined a priori by the user) each describing an underlying pattern of covariance in the input data 

(Sotiras et al., 2015). Given that the input in this case comprised multiple morphometric indices, 

we refer to the resulting components as morphometric covariance patterns (MCPs) in the current 

manuscript. Specifically, in the OPNMF output, W contains weights representing the contribution 

of each of m imaging variables (vertices) to each identified covariance pattern or component, while 

H contains the weights of the contributions of each covariance pattern to the reconstruction of each 

of n data points (subject-level metrics) in the original input. In other words, W conveys 

information regarding the spatial properties of each MCP, while the entries of H are loadings that 

specify the strength of expression of the MCP in each subject-metric. 

When applied to neuroimaging data, OPNMF offers several advantages over other 

common dimensionality reduction techniques such as PCA or ICA, which tend to produce 

components that can be challenging to interpret by virtue of being either too widespread or too 

spatially dispersed and comprising overlapping brain areas with opposite-sign weights (Sotiras et 

al., 2015). By contrast, the non-negativity and orthogonality constraints of OPNMF lead to sparse 

and parsimonious output components that have minimal spatial overlap. This is ideal for obtaining 

a purely additive, parts-based representation of the cortex that is readily interpretable, in which 

each vertex can be associated with a distinct MCP. 

4.3.1. Implementation 

We implemented OPNMF and the accompanying stability analysis in Python (v3.6.8) 

using a set of in-house scripts (https://github.com/CoBrALab/cobra-nmf) (R. Patel et al., 2020) 

that builds on publicly available code from (Sotiras et al., 2015). In the current study, the rows of 

the OPNMF input matrix X corresponded to the 77122 (m) non-medial wall cortical vertices 

considered for analysis across the whole brain, while the columns comprised the CT, SA, MC, and 

GI values for all 266 subjects, stacked horizontally by metric to form 1064 subject-metric 

https://github.com/CoBrALab/cobra-nmf
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combinations (n) (Figure 2a). Importantly, the vertex-wise values for each metric were 

residualized for subjects’ mean CT and total SA prior to input matrix construction. We 

implemented this residualization step based on the observation that MCPs derived using the raw 

metrics, as well as brain-behaviour relationships subsequently identified based on those MCPs (see 

Section 4.5), tended to be dominated by global differences in CT and SA, features which undergo 

drastic global reorganization during maturation (Raznahan et al., 2011). Through correcting 

OPNMF input for mean CT and total SA, we sought to encourage output MCPs which capture 

more nuanced patterns of covariance, and thereby refine mappings from anatomy onto variation 

in symptoms. Additionally, to adjust the data for each of the four cortical metrics to all be on the 

same scale, we first performed within-metric z-scoring for each row (vertex) in the input data 

matrix, and then shifted all the z-scored data by the minimum z-score (R. Patel et al., 2020). 

4.3.2. Stability analysis 

To select the number of MCPs (k) to retain, we assessed both the gradient of the 

reconstruction error, which quantifies the gain in accuracy achieved by increasing the number of 

MCPs from one granularity to the next (Durran, 2013; Fornberg, 1988; Quarteroni et al., 2007), 

and the similarity of output MCPs across varying half-splits of the input data, which provides a 

measure of the stability of the decomposition for a given k (R. Patel et al., 2020). Specifically, the 

sample was randomly split into two halves (na = 133, nb = 133), and OPNMF was performed on 

each half separately to produce two different component matrices (Wa, Wb). The spatial similarity 

of the two sets of MCPs was then assessed by first computing the cosine similarity matrix CW of 

rows of W for each decomposition, where the ith row of CW represents the similarity of component 

weights between vertex i and all other vertices. The mean Pearson correlation between 

corresponding rows (vertices) of CW for each split-half was taken to represent the stability of the 

employed granularity. 

We repeated the above procedure for each of k = 2 to k = 30 for 10 random half-splits, 

evaluating k in steps of two for computational efficiency. To estimate accuracy for a given k, we 

computed the change in reconstruction error between k-2 and k and averaged the differences from 

all 20 random halves of the data to report the gradient of the reconstruction error at that granularity. 

4.3.3. Exploring the generalizability of morphometric covariance patterns 

Previous studies have suggested that structural covariance networks derived by applying 

OPNMF on a single morphometric feature have the capacity to capture abnormalities across 
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different dimensions (Kaczkurkin et al., 2019) as well as severity (Neufeld et al., 2020) of 

psychopathology. To explore whether our multivariate implementation of OPNMF identified 

morphometric patterns that may generalize to the neuroanatomy of non-PS groups, we 

qualitatively compared our identified MCPs to MCPs defined using the same four T1w cortical 

features in two other non-overlapping samples. OPNMF was first independently repeated, using 

the resolution selected for the primary PS sample after the stability analysis above, in 681 youth 

from the PNC who did not meet PS criteria and were free of nervous system-affecting medical 

conditions (“non-PS PNC” sample; see Appendix Table 1 for demographic summary). 

Additionally, to probe the transdiagnostic relevance of the MCPs identified in our PS sample, we 

compared them to a 6-MCP cortical decomposition recently observed by our group to be stable in 

a harmonized multi-site dataset of 486 autism spectrum disorder patients and matched neurotypical 

individuals (“autism spectrum” sample; see Appendix Table 1 for demographic summary per site) 

(Ziolkowski et al, in prep). Both ‘replication’ samples were processed using the same pipelines 

and had passed all stages of MRI quality control. 

 

4.4. Exploratory factor analysis of PS symptoms 

Exploratory factor analysis was used to identify major latent dimensions from the 30 PS 

measures from GOASSESS using the R package psych (v2.0.12; William Revelle) (Figure 2b). 

This technique seeks to identify a smaller set of meaningful, unmeasured constructs (factors) 

underlying a set of measured variables, which exert a causal influence on the relationships 

observed between those variables (Russell, 2002). We first used the ‘mixedCor’ function to find 

appropriate pairwise correlation metrics between the various combinations of dichotomous and 

polytomous (Likert) PS symptom items (Holgado–Tello et al., 2008). The resulting mixed 

correlation matrix was then factored (using the ‘fa’ function) using the default minimum residuals 

method, which aims to minimize the off-diagonal residuals between the empirical correlations and 

those reproduced by the extracted factors using a least squares procedure (Harman & Jones, 1966). 

Oblique factor rotation (oblimin) was applied to increase factor interpretability (Russell, 2002). 

The output of a given factor model included factor loadings of each original symptom item, which 

described the unique contribution of each factor to that item’s variance, and regression-based 

factor scores for each subject reflecting the extent to which an individual expresses each extracted 
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underlying symptom dimension (DiStefano et al., 2009). Factor scores were used to represent the 

latent dimensions of PS at the subject level in downstream analyses. 

To determine the number of factors to extract, we first inspected the scree plot to obtain 

initial estimates of the factor structure (Cattell, 1966). Factor models with the numbers of factors 

around the inflection point were then individually estimated, and the optimal solution was 

identified using the criteria of (1) minimal cross-loadings, or items that load strongly (≥ 0.35) onto 

more than one of the extracted factors (Costello & Osborne, 2005; Rosenblad, 2009), and (2) factor 

interpretability (Henson & Roberts, 2006). 

 

4.5. Identifying MCP-behaviour correlations: Behavioural partial least squares 

analysis 

Behavioural partial least squares correlation (bPLS) analysis was used to relate subject-

specific MCP loadings to scores on the identified PS symptom dimensions (Figure 2c). bPLS is an 

unsupervised multivariate statistical technique that decomposes relationships between two datasets 

(X and Y) into orthogonal latent variables, which are linear combinations of the original data with 

maximum covariance (Krishnan et al., 2011; McIntosh & Lobaugh, 2004; McIntosh & Mišić, 

2013). 

In our case, X contained MCP loadings for each cortical metric (k×4 loadings in total) per 

subject (brain data); and Y contained age, sex, race (binarized for African American, European 

American, and Mixed/other race), parent education, WRAT-4 Reading standard score, and PS 

symptom factor scores for each subject (behavioural data) (Figure 2c). To perform bPLS, the data 

matrices were z-scored column-wise and correlated, and singular value decomposition was applied 

on the resulting correlation matrix R = X’Y such that X’Y = USV’ (Eckart & Young, 1936). 

Each output latent variable (LV) comprises a pair of left and right singular vectors (from 

matrices U and V) which weight the original brain and behaviour variables, respectively, in the 

extracted multivariate pattern, as well as a singular value (from matrix S) proportional to the 

covariance between morphometry and behaviour captured by the LV (McIntosh & Lobaugh, 

2004). Thus, each output LV describes an association between a spatial pattern of cortical 

morphometry and behavioural characteristics. Following previous studies (R. Patel et al., 2020; 

Zeighami et al., 2019), we also computed behavioural variable loadings for each LV as the 

correlation between each feature in the Y matrix and brain scores representing how well each 
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subject exhibits the bPLS-derived morphometry pattern. These loadings can be interpreted as 

directly indexing the degree of contribution of each behavioural variable to an LV. 

4.5.1. Assessing model significance, stability, and feature importance 

Statistical significance of each LV was assessed using permutation tests. The rows 

(observations) of the brain data matrix were randomly shuffled 10000 times, and bPLS was 

performed using the permuted brain matrices and non-permuted behaviour matrix (Krishnan et al., 

2011). This generated a distribution of singular values under the null hypothesis that no 

relationship exists between morphometric covariance patterns and PS behavioural measures. We 

used this null distribution to estimate a non-parametric p-value for each LV observed in the original 

data, setting the alpha at 0.05. 

We also assessed the reliability of each LV via split-half resampling. The original data 

were randomly split into two halves, and correlation matrices were computed for each half 

separately (i.e., R1 and R2). The left and right singular vectors derived from the full-sample PLS 

were then separately projected onto each half-correlation matrix to obtain the corresponding 

pairings of half-sample singular vectors (i.e., U1 and V1; U2 and V2) (Kovacevic et al., 2013). We 

repeated this procedure for 200 half-splits of the data and computed the mean correlations between 

U1 and U2 (Ucorr) and V1 and V2 (Vcorr) across splits. To generate a null distribution for these 

split-half correlations, the split-half resampling process above was repeated for each permutation 

of the original data (n = 10000) in the permutation testing procedure. We used this distribution to 

estimate the probability of surpassing the correlations from the non-permuted data (pUcorr, pVcorr), 

interpreting LVs with both pUcorr, Vcorr < 0.05 as representing stable pairings between morphometry 

and behavioural patterns across subjects (Kovacevic et al., 2013). 

Finally, the contribution of individual variables (MCP-metrics or behavioural measures) to 

an LV was estimated by bootstrap resampling. Subjects (rows of data matrices X and Y) were 

randomly sampled with replacement 10000 times and subjected to bPLS to generate a sampling 

distribution of singular vector weights per variable for each LV. A bootstrap ratio (BSR) was 

calculated for each MCP-metric pairing as the ratio of its true singular vector weight over its 

bootstrap-estimated standard error, with large BSRs isolating variables that contribute strongly to 

the morphometric pattern of an LV and are stable across subjects (McIntosh & Lobaugh, 2004). 

BSR values were thresholded at ±2.58, corresponding to a p-value of 0.01 (Kirschner, Shafiei, 
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Markello, Markowski, et al., 2020). All PLS-related analyses were implemented using the pyls 

package (https://github.com/rmarkello/pyls). 

 

4.6. Meta-analytic functional decoding of morphometric covariance patterns using 

Neurosynth 

To contextualize OPNMF-derived MCPs in terms of functional MRI findings, we used 

Neurosynth, a meta-analytic database of high-frequency keywords and study-level activation 

coordinates from 14371 functional MRI studies (Figure 2d, top) (Yarkoni et al., 2011). Cortical 

surface maps of weights for each MCP were first projected to volumetric MNI 152 standard space 

and dilated once using a median dilation approach (as implemented in 

mincmorph: https://github.com/andrewjanke/mincmorph) to increase the cortical anatomical 

coverage of the maps, similar to the approaches taken in previous studies (Margulies et al., 2016; 

M. T. M. Park et al., 2018). The resulting volumetric maps served as inputs to the open-ended 

image “decoding” function of Neurosynth, which aims to quantitatively infer psychological states 

associated with a provided brain pattern (Yarkoni et al., 2011). Specifically, each input image was 

correlated with the association test meta-analysis maps of all psychological terms in the 

Neurosynth database, which contain z-scores of posterior probabilities describing voxels whose 

activation are preferentially related to the use of a given term (L. J. Chang et al., 2013). 

A total of 1342 terms (encompassing all terms available through the Neurosynth web 

interface, https://neurosynth.org/) were used to decode the broad functional role of each MCP. The 

50 most positively correlated terms per MCP were retained, and any redundant, anatomical, or 

non-specific terms were removed to capture only unique psychological or cognitive processes 

associated with the spatial pattern of an MCP. All Neurosynth analyses were performed using the 

Neuroimaging Meta-Analysis Research Environment (NiMARE) package (v0.0.1rc2) (Salo et al., 

2022). 

 

4.7. Situating morphometric covariance patterns along cortical functional gradients 

To situate OPNMF-derived MCPs along the primary sensorimotor-transmodal hierarchy 

within the context of development, we leveraged previously reported functional connectivity 

gradients in healthy children (aged 6-12), adolescents (aged 12-18), and adults (aged 22-35) (H.-

M. Dong et al., 2021; Margulies et al., 2016) (Figure 2d, bottom). These gradients represent 

https://github.com/rmarkello/pyls
https://github.com/andrewjanke/mincmorph
https://neurosynth.org/
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ordered components of variance derived from diffusion map embedding of resting-state functional 

connectivity data, and each describes the positions of vertices along a lower-dimensional 

embedding axis that encodes dominant differences in vertex-level connectivity patterns (Coifman 

et al., 2005; Margulies et al., 2016). Vertices with similar values in a gradient thus have similar 

connectivity patterns. We first assigned each cortical vertex to a single MCP based on the highest 

component weight of the vertex in the W matrix of the OPNMF output (Figure 2a) (R. Patel et al., 

2020). Using the resulting morphometric ‘parcellation,’ we then extracted the distribution of 

gradient values in each MCP from the map of the first gradient of functional connectivity in adults, 

which has been characterized by its clear unimodal and transmodal poles (Margulies et al., 2016). 

We repeated this for the first gradient in adolescents and the second gradient in children, as these 

maturational gradients have been observed to capture a similar axis of organization as the canonical 

principal gradient in adults (H.-M. Dong et al., 2021). To enable comparisons with the OPNMF 

parcellation and with each other, all gradient maps were transformed into MNI 152 space using 

the neuromaps toolbox (Markello et al., 2022) and z-scored prior to gradient value extraction. For 

all three gradients, more positive values indicate proximity to transmodal regions, while more 

negative values denote vertices closer to primary sensory and motor regions. 

Due to the vast number of gradient observations (i.e., 1000s of vertices) per MCP, 

traditional hypothesis testing using summary statistics (e.g., analyses of variance) was not 

appropriate for interrogating differences in patterns of gradient values. Instead, to explore the 

maturational ‘trajectories’ of MCP gradient profiles along the unimodal-transmodal axis, we first 

qualitatively compared both the shape of the gradient value distribution of MCPs between the three 

age group maps, as well as the within-map relative positions of MCPs with respect to either end 

of this hierarchy. 

As a secondary analysis, we formally tested for within-MCP maturational shifts in gradient 

position using the shift function, a graphical method that quantifies how pairs of distributions differ 

based on their deciles (rogme R package, v0.2.0) (Rousselet et al., 2017). Three pairwise 

comparisons (adolescent-child, adult-adolescent, adult-child) were made between the age group-

specific distributions of gradient values associated with each MCP. A percentile bootstrap 

technique (2000 samples) was used to estimate 95% confidence intervals for the differences 

between corresponding deciles of the distributions (Wilcox et al., 2014). A significant decile 

difference suggests a change in the relative position of a MCP along the unimodal-transmodal axis 
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between age groups, at specific vertices that are either more ‘unimodal’ (the lower deciles) or 

‘transmodal’ (the higher deciles) within the MCP. By examining the overall trends in the directions 

of significant decile differences for a MCP, we can obtain a refined description of how its gradient 

profile shifts between age groups. This, in turn, allowed us to determine MCPs that may exhibit 

dynamic functional architectures during maturation. 

 

4.8. Characterizing morphometric covariance patterns and their associated PS 

significance in terms of transcriptomic architectures 

4.8.1. Obtaining gene expression information 

Microarray expression data were obtained from six post-mortem adult brains provided by 

the AHBA (http://human.brain-map.org/) (Hawrylycz et al., 2012). The data were preprocessed 

using the abagen toolbox (v0.1.3) (Markello et al., 2021) following previously developed best 

practice recommendations for microarray probe-to-gene annotation, probe filtering and selection, 

and normalization of both tissue sample and gene expression values (Arnatkeviciute et al., 2019; 

Markello et al., 2021). In addition, since only two brains had tissue samples from the right 

hemisphere, we mirrored all available samples across the left-right hemisphere axis to increase the 

spatial coverage of the expression data (Romero-Garcia et al., 2019). This was important as two 

of the identified OPNMF-derived MCPs did not appear bilaterally symmetric (see OPNMF results 

in Section 5.1). The above preprocessing steps yielded a 6932 (samples)×15633 (genes) expression 

matrix. Finally, using binary masks of each identified MCP and the MNI coordinates of tissue 

samples generated via nonlinear registration (https://github.com/chrisgorgo/alleninf), we obtained 

MCP-specific expression matrices (of size samples×genes) containing the gene expression values 

of all samples located within the boundaries of each MCP. Fetching and subsequent analysis of 

AHBA data were implemented in Python v3.8.5. 

4.8.2. Identifying major axes of gene expression differences between MCPs: Mean-centered 

partial least squares analysis 

We used mean-centered PLS (mcPLS) to identify patterns of gene expression that 

maximally differentiate the MCPs (Figure 2e). Like behavioural PLS, mcPLS is a PLS correlation 

technique that searches for orthogonal latent variables expressing maximally covarying patterns 

of two data matrices X and Y. However, in mcPLS, the observations (rows) of X belong to and 

are arranged by experimental ‘groups,’ while Y is a dummy coded matrix representing the actual 

http://human.brain-map.org/
https://github.com/chrisgorgo/alleninf
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groups themselves (Krishnan et al., 2011). This variant can thus be interpreted as suitable for 

finding relationships between predefined groupings in a single set of variables. 

In this study, X (the whole-brain expression matrix) contained the sample-level gene 

expression matrices obtained for each MCP concatenated vertically, such that each MCP was 

treated as a group, and each tissue sample an observation (Figure 2e). Y was a binary matrix coding 

the MCP membership of each sample. To perform mcPLS, we computed a matrix M containing 

the MCP-wise averages within each column (gene) in X, which was then mean-centered column-

wise (Krishnan et al., 2011; McIntosh et al., 2004). Singular value decomposition was performed 

on the resulting Mmean-centered, producing LVs that identify gene expression patterns optimally 

separating the MCPs. Each LV comprises a singular value, which describes the proportion of 

covariance accounted for between MCPs (i.e., tissue sample groupings) and the expression data; 

gene weights, which identify the expression profile most related to the effect captured by the LV; 

and contrast values, which illustrate the extent to which each MCP is associated with that 

expression profile. Each LV has dissociable positive and negative dimensions, expressed through 

the sign of the contrast values; these dimensions reflect two distributions of gene expression levels 

that covary with the spatial MCPs in a separable way. 

The significance of LVs was assessed against a null model constructed by repeatedly 

permuting MCP assignments of tissue samples (i.e., the X matrix) while preserving spatial 

autocorrelation. This was done using a spin test, in which a spherical projection of the CIVET 

surface was randomly rotated and original vertices were reassigned the MCP value of the closest 

rotated vertex (Alexander-Bloch et al., 2018), effectively rotating the spatial map of all the MCPs. 

We then reextracted and concatenated the sample-level expression data for each MCP of the ‘spun’ 

MCP parcellation following Section 4.8.1, to compare against the observed expression profiles of 

the original, data-driven MCPs. This procedure was repeated 1000 times, and each resulting null 

expression matrix was subjected to mcPLS analysis, generating a distribution of null singular 

values. The p-value of each LV in the original mcPLS result thus indicates the proportion of null 

singular values greater in magnitude than the empirical singular value. 

To assess the stability of the gene weights onto each LV, we performed bootstrap 

resampling as described in Section 4.5.1 for the behavioural PLS analysis. Due to the high 

computational cost of additionally implementing bootstrapping per spatial permutation performed 

for the mcPLS analysis, 1000 bootstrap resamples were used here instead of 10000. 
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Per significant LV, we derived a positive gene set (PLS+) and a negative gene set (PLS-) 

which comprised the reliably contributing positively weighted (BSR ≥ 2.58) and negatively 

weighted (BSR ≤ -2.58) genes, respectively. PLS+ genes show higher expression in the MCPs 

with positive contrast values and lower expression in MCPs with negative contrast values, while 

PLS- genes show the inverse pattern for the same LV. The PLS+ and PLS- gene sets for each LV 

were thus interpreted as characterizing distinct MCPs and were further analyzed using gene 

enrichment analyses. 

4.8.3. Biological process gene enrichment 

To determine the biological processes in which the gene sets identified by mcPLS are most 

involved, we followed the analysis approach used in (Hansen et al., 2021), adapting code from the 

Gene Category Enrichment Analysis toolbox (https://github.com/benfulcher/ 

GeneCategoryEnrichmentAnalysis) (Fulcher et al., 2021). Using Gene Ontology (GO) data (2022-

01-13 release) (Ashburner et al., 2000; Gene Ontology Consortium, 2021), we first generated GO 

term hierarchy-propagated annotations of individual genes to biological process categories. An 

enrichment analysis was then performed separately on the PLS+ genes and PLS- genes for each 

significant LV, since each gene set covaries with different MCPs. For each biological process 

category, we calculated a ‘category score’ representing the mean BSR, or normalized weight, of 

genes annotated to that category within each gene set. Category scores were compared against a 

null distribution of scores constructed by applying mcPLS to spatial permutations of the MCP-

grouped sample expression matrix (see Section 4.8.2 for a detailed description of the spin test 

implementation). Specifically, null BSRs for the empirical PLS+ and PLS- gene sets were obtained 

from each permutation, and null category scores were then computed for each GO biological 

process following the procedure above. The p-value per category in each gene set thus indicates 

the proportion of null category scores that are greater in magnitude than the empirical category 

scores (alpha = 0.05). P-values were false discovery rate (FDR)-corrected (q < 0.05) across 

categories for each gene set. 

Since we were interested in the unique biological involvement of the PLS+ and PLS- gene 

sets, we limited interpretation to significantly enriched categories surviving FDR correction that 

did not overlap between the two gene sets. Given the vast number of biological process categories 

available (> 10000), we also focus in the results on significant categories with a clear relation to 

brain development or neurobiological function, to avoid over-interpreting generic cell maintenance 

https://github.com/benfulcher/%20GeneCategoryEnrichmentAnalysis
https://github.com/benfulcher/%20GeneCategoryEnrichmentAnalysis
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processes (e.g., “protein-DNA complex assembly”, “phosphorylation”) that may lack meaningful 

spatial specificity at the resolution of our MCPs. A list of terms used to systematically exclude 

certain non-brain-specific categories prior to our data visualization step can be found in Appendix 

Table 2. 

4.8.4. Cell type-specific gene enrichment 

To determine whether the mcPLS-identified gene sets were preferentially expressed in 

specific cell types, we leveraged cell-specific aggregate gene sets across five different single-cell 

studies using post-mortem cortical samples in human postnatal subjects (Darmanis et al., 2015; 

Habib et al., 2017; Lake et al., 2018; M. Li et al., 2018; Y. Zhang et al., 2016), as presented 

previously (Seidlitz et al., 2020). Briefly, hierarchical clustering of regional topographies across 

the 58 study-specific cell types in the AHBA resulted in seven canonical cortical cell classes: 

astrocytes, endothelial cells, microglia, excitatory neurons, inhibitory neurons, oligodendrocytes, 

and oligodendrocyte precursors (Seidlitz et al., 2020). Using the omnibus gene list for each cell 

class, we calculated the ratio of genes in each PLS+ and PLS- gene set that are preferentially 

expressed in one of the seven cell types, following (Hansen et al., 2021). Significance of each 

enrichment ratio was assessed against a null distribution of ratios constructed by repeating the 

process 10000 times on random gene sets drawn from the AHBA. Resulting two-tailed p-values 

were FDR-corrected (q < 0.05). 

4.8.5. Disease gene enrichment 

To explore whether genes associated with psychotic or other psychiatric disorders may be 

enriched among the mcPLS-identified gene sets, we performed over-representation analysis of 

diseases from the DisGeNET database (v5.0), a comprehensive catalogue of human-disease 

associated genes (Piñero et al., 2017). Briefly, fold enrichment ratios were calculated for each 

disease in the database as the proportion of disease-associated genes in the PLS+ or PLS- gene set 

of interest, compared to the proportion in a reference gene set. The hypergeometric distribution 

was used to calculate the p-value for over-representation of a disease or disorder (B. Zhang et al., 

2005): 
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where p is the probability of finding x or more genes from the K-length list of associated genes for 

the disease in a set of N randomly selected genes, drawn from a reference set of M genes. 

Specifically, N corresponded to the size of each PLS+ or PLS- gene set, and the reference set was 

selected as the full preprocessed list of 15633 brain-expressed genes from the AHBA. The over-

representation analysis results thus allow us to obtain a data-driven disease association profile for 

each PLS+ or PLS- gene set, and by extension the MCPs covarying with expression of that gene 

set. Given our focus on the psychosis spectrum, we also compared the calculated fold enrichment 

ratios for schizophrenia and bipolar disorder among the different evaluated gene sets, to 

characterize MCPs capturing relatively higher expression of psychotic disorder genes. Over-

representation analysis was performed using WebGestalt (http://www.webgestalt.org/) (Liao et al., 

2019), and statistics were FDR-corrected across diseases (q < 0.05). 

 

5. Results 

5.1. Multivariate patterns of cortical morphometric covariance in PS youth 

Results of the OPNMF stability analysis are shown in Figure 3a. Since stability coefficients 

remained roughly consistent at around 0.6 with k ≥ 4, we focused on the gradient of the 

reconstruction error to select the optimal number of MCPs. We observed that when moving to 

increasingly higher resolutions, the last sizeable drop in the magnitude of the reconstruction error 

gradient occurs between k = 8 to k = 10, after which the gradient gradually levels off. Recalling 

that in this curve, the value plotted per k represents the decrease in reconstruction error when 

moving from the previous resolution to the specified resolution, this result indicates that increasing 

the number of MCPs yields only relatively small gains in accuracy for k > 8 (Sotiras et al., 2015). 

These observations suggest that with k = 8, the most prominent patterns in the input data have been 

captured and any added complexity has diminishing returns on reconstruction accuracy. The 8-

MCP solution was thus interpreted as a suitable representation of the intrinsic data dimension and 

was retained for further analysis. 

The 8 MCPs estimated by OPNMF represent groups of vertices that share a pattern of 

covariation of four morphometric features (CT, SA, MC, GI) across the sample. Spatially, the 

MCPs were non-overlapping and highly localized, and exhibited bilateral symmetry in all but two 

MCPs (3 and 8) (Figure 3b), lending to their interpretability. 

 

http://www.webgestalt.org/
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Figure 3. Morphometric covariance patterns delineated by OPNMF. (a) Stability coefficient 
(red curve) and gradient of the reconstruction error (blue curve) for solutions of 2 to 30 components 
or MCPs, in steps of two. The yellow box indicates the 8-MCP granularity selected for further 
analysis. (b) Spatial patterns of the 8 MCPs identified by OPNMF, visualized on the group-average 
brain. Darker colours indicate greater contribution of a vertex to the MCP. (c) The loading matrix 
for the 8-MCP solution, showing the subject-level relative contribution of each metric to each 
MCP (subject-metric loadings). The loadings for each MCP have been divided by the mean for 
visualization purposes. Subjects are arranged in ascending age order per metric along the x-axis. 
 

We provide the anatomical description of each MCP below, along with shortened naming 

conventions: 

i. MCP 1 (anterior frontal) encompasses mainly dorsolateral and medial prefrontal cortex. 

ii. MCP 2 (visual) approximates the visual cortex. 

iii. MCP 3 (left-lateralized sensorimotor/language) captures primary sensorimotor cortex, the left 

inferior parietal lobule, and posterior portions of the left superior and middle temporal gyri, 

including Wernicke’s area. 
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iv. MCP 4 (ventral prefrontal/insular) comprises ventrolateral and ventromedial prefrontal cortex, 

and parts of the insular cortex and temporal operculum.  

v. MCP 5 (precuneus) primarily comprises the precuneus. 

vi. MCP 6 (anterior/ventral temporal) captures the anterior middle and inferior temporal gyri, 

including the temporal pole as well as ventromedial temporal areas. 

vii. MCP 7 (paracentral) comprises the paracentral lobule, including parts of the supplementary 

motor area. 

viii. MCP 8 (right-lateralized temporoparietal) mainly captures the inferior parietal lobule and 

posterior portions of the superior and middle temporal gyri in the right hemisphere. 

We observed that despite the pronounced anatomical localization of each MCP, the overall 

decomposition defined cortical boundaries that diverged (e.g., the anterior-posterior division of 

temporal cortex in MCPs 3 and 6) from those in traditional structural parcellations based on a 

single morphometric feature, such as the Automated Anatomical Labeling atlas (Tzourio-Mazoyer 

et al., 2002) or the Desikan-Killiany-Tourville atlas (A. Klein & Tourville, 2012). Further, visual 

examination of the subject-specific metric loadings for each MCP indicated that individual MCPs 

were not characterized by a single anatomical metric (Figure 3c); however, MC appeared to have 

the lowest relative contribution across MCPs, while the highest metric loadings for MCPs 2 to 8 

were generally seen in SA. By comparison, MCP 1 appeared to have comparable neuroanatomical 

representation from all four metrics. 

The 8 stable patterns of cortical morphometric covariance we identified in PS youth 

showed marked overlap with an 8-MCP cortical morphometric decomposition derived using the 

same methodology from medically healthy youth without PS features (n = 681), as well as with a 

6-MCP decomposition observed to be stable among a combined neurotypical and autism spectrum 

disorder sample enriched for adolescents and young adults (n = 486) (Appendix Figure 2). Similar 

representation of the visual cortex (e.g., PS MCP 2), anterior temporal cortex (e.g., PS MCP 6), 

and frontoparietal and temporal opercula (e.g., PS MCP 8) within distinct MCPs was especially 

pronounced across the three samples, although the symmetry of MCPs varied slightly. This 

suggests that while macroscale patterns of neurostructural covariance across the cortex are not 

completely invariant to different neurodevelopmental conditions, the covariance of certain areas 

may represent a stable phenotype of neurodevelopment that potentially has transdiagnostic 

relevance.  
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5.2. Latent dimensions of PS symptoms 

Visual examination of the scree plot suggested the existence of 2 to 4 factors in the PS 

symptom data (Figure 4a). Further evaluation of these solutions revealed that 2 factors broadly 

distinguished positive symptoms from negative or disorganized symptoms. In the 3-factor 

solution, the positive symptoms split into two separate factors that remained well-defined, with 

one factor capturing hallucinations and abnormal perceptions (e.g., verbal hallucination, tactile 

hallucination, auditory perception) and the other capturing symptoms related to disturbances of 

self-experience (e.g., external control over thoughts, loss of sense of self, paranoia). Finally, the 

4-factor solution produced a factor whose loadings were dominated by a single item (disorganized 

communication), indicating factor overextraction. Correlations among factors themselves were 

relatively low in all tested resolutions (e.g., average r = 0.22 for 3-factor model) (Appendix Table 

3), indicating that the addition of an overarching general factor, such as in a bifactor model, was 

not warranted in our data (Bornovalova et al., 2020; Reise et al., 2010). Therefore, we determined 

that 3 factors were optimal for explaining the data, as this solution captured conceptually distinct 

symptom dimensions while also having few cross-loadings of symptoms (Figure 4b; see Appendix 

Table 4 for full descriptions of items loading onto each factor). Based on the item loadings per 

factor, we summarize the identified symptom dimensions as negative/disorganized symptoms, 

hallucinations/abnormal perceptions, and disturbed self-experience. 
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Figure 4. Latent factors of psychosis spectrum symptoms. (a) Scree plot showing the first 30 
eigenvalues of the mixed correlation matrix of the 30 PS symptom items. Circled is the 3-factor 
solution selected for further analysis. (b) Loadings of each PS symptom item onto the 3 extracted 
factors. Positive loadings are shown in red and negative loadings in blue, with larger loadings 
indicating higher relevance of a variable to the specified factor. Variables with loadings > 0.35 
were considered ‘important’ to a factor and were used in factor interpretation. A descriptive 
name for the factor is shown at the top of each panel. 
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5.3. Morphometry-behaviour relationships 

The bPLS analysis revealed two statistically significant latent variables relating 

sociodemographic features and factor analysis-derived symptom dimensions to corresponding 

cortical morphometric covariance patterns in PS youth. These LVs survived split-half resampling 

(Appendix Figure 3) and respectively accounted for 52.8% and 24.1% (total of 76.9%) of the 

covariance between the behavioural and cortical data (Figure 5a). 

 

 
Figure 5. Latent morphometry-behaviour relationships detected by bPLS analysis. 
(Continued on next page) (a) Covariance explained (red) and permutation p-values (blue) for all 
latent variables (LVs) in the bPLS analysis. Black circles indicate significant LVs, which were 
retained for further analysis. (b) Behavioural patterns of LV1 (left) and LV2 (right). Contributions 
of individual sociodemographic and clinical features are shown as correlations between subject-

https://www.sciencedirect.com/topics/medicine-and-dentistry/partial-least-squares-regression
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specific feature scores and scores on the multivariate pattern (loadings). Yellow bars indicate 
significantly contributing features; error bars denote 95% bootstrap confidence intervals. (c) 
Morphometric patterns of LV1 (left) and LV2 (right). The 2x2 grids summarize the profile of 
cortical metrics contributing to the LV within each MCP, as indexed by bootstrap ratios (BSRs). 
Cortical maps show the MCPs corresponding to each effect. Warmer and cooler colours indicate 
that higher and lower values of a metric, respectively, contribute to the LV. 

 

The demographic features contributing to LV1 (permuted p = 1.0×10-4; split-half pUcorr < 

0.0001, pVcorr = 0.034) included older age (r = 0.47, 95% confidence interval (CI) [0.37 0.56]), 

non-African American race (r = -0.18, CI [-0.29 -0.060]), and European American race (r = 0.17, 

CI [0.053 0.29]) (Figure 5b, left). The covarying morphometry pattern involved globally decreased 

GI, decreased CT in MCP 1 (anterior frontal), and increased CT in MCPs 2 (visual) and 3 (left-

lateralized sensorimotor/language) (Figure 5c, left). 

The demographic features contributing to LV2 (permuted p = 4.0×10-4; split-half pUcorr = 

3.6 ×10-3, pVcorr = 4.0×10-4) included older age (r = 0.17, CI [0.053 0.28]), male sex (rfemale = -0.20, 

CI [-0.31 -0.080]), African American race (r = 0.33, CI [0.22 0.44]), and non-European American 

race (r = -0.27, CI [-0.38 -0.15]) (Figure 5b, right). Notably, higher scores on the disturbed self-

experience symptom factor (r = 0.12, CI [0.0092 0.22]) also contributed to the behavioural pattern. 

Although race was the strongest contributor to LV2, the lack of significant race differences in 

symptom factor scores (as assessed by linear regression; Appendix Table 5) suggested that this 

brain-behaviour pattern was not purely driven by race but captured, in part, a clinical dimension 

of the PS. The covarying morphometry pattern was more heterogeneous than in LV1, involving 

increased CT in MCP 1 (anterior frontal), decreased GI in MCPs 1 (anterior frontal) and 4 (ventral 

prefrontal/insular), decreased MC in MCP 2 (visual), decreased CT in MCP 3 (left-lateralized 

sensorimotor/language), and decreased SA in MCP 6 (anterior/ventral temporal) (Figure 5c, right). 

Given that LV1 captured a mainly demographics-driven pattern, we focus on LV2 to 

contextualize subsequently explored functional and transcriptomic signatures of MCPs in terms of 

cortical vulnerability in the PS. For brevity, the five MCPs contributing to LV2 are referred to 

hereafter as PS-related MCPs. 

 

5.4. Functional associations of morphometric covariance patterns 

The Neurosynth psychological term maps most correlated with each MCP map are shown 

in Figure 6. We observe distinct domains of functional associations for each morphometric 



 

60 
 

covariance pattern, which can be summarized as cognitive control processes (MCP 1); visuo-

spatial functions (MCP 2); verbal and non-verbal communication (MCP 3); affect (MCP 4); 

attentional processes and numerical reasoning (MCP 5); semantic memory faculties and 

impairments (MCP 6); higher-level motor functions (MCP 7); and auditory processing (MCP 8). 

Notably, the associated functional terms align with the anatomical descriptions of each MCP. For 

example, the high relative correlation of the terms “taste,” “pleasant,” and “disgust” with the MCP 

surrounding the anterior insula (MCP 4) is congruous with the role of this cortical region in both 

the evaluative and expressive aspects of taste valence and other emotions (Jabbi et al., 2007; Phan 

et al., 2002). Similarly, the dominant correlation of terms such as “speech production” and “verbs” 

with MCP 3 supports the observed asymmetry of this MCP, given the expected lateralization of 

language-related functions to the left hemisphere and the associated involvement of cortical areas 

in and around the temporoparietal junction (Binder et al., 1997). 

 

 
Figure 6. Results of Neurosynth image decoding of morphometric covariance patterns. 
(Continued on next page) Word clouds depict psychological concept terms whose meta-analytic 
functional maps were most positively correlated with voxel projections of each MCP shown. Font 
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size denotes the Pearson correlation between a Neurosynth term map and an MCP map relative to 
other terms in the same word cloud, while term colour denotes the true correlation value. For 
symmetrical MCPs, only the left hemisphere is shown; for MCPs with contributing vertices in 
lateral cortex only, only the relevant views are shown. 
 

MCPs that were related to the disturbed self-experience symptom dimension (MCPs 1-4, 

6) comprised those functionally associated with cognitive control processes, visuo-spatial 

functions, verbal communication, affect, or semantic memory. 

 

5.5. Maturational shifting of PS-related morphometric covariance patterns along 

functional gradients 

To characterize the maturational positions of MCPs implicated in PS within the unimodal-

transmodal cortical hierarchy, we focus below on the results of mapping PS-related MCPs (MCPs 

1-4, 6) onto macroscale functional gradients. Examining MCP-specific distributions of values in 

the principal gradient in adolescents, we observed that this gradient only loosely captures the 

spatial layout of PS-related MCPs identified in our comparable age cohort (Figure 7a, middle 

violin plot). Specifically, PS-related MCPs included both clusters of vertices preferentially located 

near one extreme of the unimodal-transmodal axis (MCPs 1, 3, 4) and vertex clusters that are 

distributed more broadly (MCP 6) or at more intermediate positions (MCP 2) along this functional 

dimension. Given limited MCP localization within the adolescent principal gradient, we 

additionally asked whether PS-related MCPs undergo dynamic functional reorganization across 

developmental epochs, indexed by the age-related shifting of MCP positions along the unimodal-

transmodal gradient. 

Visually, we observe that the PS-related MCPs occupying positions relatively closer to the 

unimodal end of this gradient in children (MCPs 2-4) shift in position most noticeably along the 

unimodal-transmodal axis across maturation (Figure 7a and c). The more heteromodal PS-related 

MCPs, MCPs 1 and 6, are situated more stably at the transmodal apex of the gradient across the 

three age group gradient maps, but nonetheless show noticeable changes in their gradient value 

distributions (Figure 7a), which possibly indicates a lesser extent of maturational functional 

reconfiguration occurring within these cortical areas as well. 

To further characterize the possible maturational shifting of PS-related MCPs across the 

unimodal-transmodal axis, we quantified changes in their gradient value distributions between age 
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group maps. For each of the five MCPs of interest, shift function analysis indicated significantly 

different gradient values at nearly all deciles between each pair of age groups (Figure 8). These 

results support the idea that MCPs associated with disturbances of self-experience in the PS 

overlap with cortical areas functionally redistributing along the unimodal-transmodal hierarchy 

across child, adolescent, and adult age windows. 

 

 

Figure 7. Distributions of the maturational unimodal-transmodal gradients across MCPs. (a) 
Violin plots depict MCP gradient values per age group map (top), ordered by median. More 
negative values indicate proximity to the unimodal end of the gradient, and more positive values 
indicate proximity to the transmodal end of the gradient. The overlaid box plots represent the first, 
second (median, white) and third quartiles, and the whiskers represent non-outlier end points of 
the distribution. (b) Brain map of each MCP, binarized by labeling each vertex according to its 
highest weighting. (c) The line plot shows the rank of each MCP in each of the ordered violin plots 
on the left, from 1 (closest to the unimodal end of the gradient) to 8 (closest to the transmodal end 
of the gradient). In the violin plots (a) and line plot (c), the PS-related MCPs identified by the 
behavioural PLS analysis are indicated by daggers (†) and dashed lines, respectively. 
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Figure 8. Functional gradient value distributions of PS-related morphometric covariance 
patterns across maturational gradients. Each row corresponds to a PS-related MCP. (a) Column 
1: ‘Parcel’ versions of the PS-related MCPs derived from winner-takes-all assignment of vertices 
to MCPs. Column 2: Z-scored gradient value distributions from the child (CHILD), adolescent 
(ADOLES), and adult (ADULT) gradient maps for each MCP, where more positive values indicate 
proximity to the transmodal end of the gradient. Black lines denote deciles, red lines denote 
medians. (b) Decile differences computed by the shift function for each pair of gradient value 
distributions per MCP, as a function of the deciles of the older age group map in the pair. The sign 
of a decile difference is indicated by its colour; error bars denote 95% confidence intervals. E.g., 
All ADOLES-CHILD decile differences < 0 in row 1 shows that MCP 1 vertices are located 
significantly closer to the unimodal end of the gradient in the adolescent map than in the child 
map. The relatively flat curve for this contrast also suggests a consistent magnitude of difference 
across deciles. 
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5.6. Dominant transcriptional signatures of morphometric covariance patterns 

The first latent variable identified by the mcPLS analysis was significant (pspin = 0.0020), 

and explained 64.8% of the covariance between tissue sample expression levels and MCP 

membership (Figure 9a). In other words, LV1 revealed a data-driven difference between gene 

expression patterns of samples located in certain MCPs. The genes contributing most strongly to 

this difference (i.e., |BSR| ≥ 2.58) included 6,093 positively weighted genes and 6,888 negatively 

weighted genes. The contrast values for LV1, which describe the extent to which individual MCPs 

were associated with the expression of the PLS+ or PLS- gene sets for this LV, are presented in 

Figure 9b. They indicate that the LV differentiated MCPs 1, 4, and 6 from MCPs 2, 3, 5, 7, and 8, 

but predominantly separated MCPs 4 (ventral prefrontal/insular) and 6 (anterior/ventral temporal), 

which most strongly expressed the PLS+ gene pattern, from MCP 2 (visual), which most strongly 

expressed the PLS- gene pattern. Thus, neuroanatomically, LV1 represents a pattern of gene 

expression which has a putative frontotemporal–visual cortical gradient (Figure 9b, inset).  

Interestingly, we observe that all MCPs corresponding to PLS+ genes (MCPs 1, 4, 6) had 

been identified as PS-related in our bPLS analysis linking the same MCPs to sociodemographic 

features and PS symptom dimensions (see Section 5.3). 

5.6.1. Genes differentiating MCPs converge with specific cell classes 

To better understand the biological significance of the gene sets contributing most strongly 

to LV1 of MCP expression pattern differences, we examined their enrichment for specific cell 

classes relative to an ensemble of random gene sets (Figure 9c). PLS+ genes (associated most 

strongly with ventral frontal/insular and anterior/ventral temporal MCPs) are significantly more 

expressed in astrocytes (enrichment ratio (ER) = 0.078, pFDR = 1.4×10-4), microglia (ER = 0.049, 

pFDR = 1.4×10-4), oligodendrocyte precursors (ER = 0.013, pFDR = 1.4×10-4), excitatory neurons 

(ER = 0.084, pFDR = 1.4×10-4), and inhibitory neurons (ER = 0.060, pFDR = 0.0030), and 

significantly less expressed in oligodendrocytes (ER = 0.034, pFDR = 1.4×10-4) and endothelial 

cells (ER = 0.049, pFDR = 0.041). PLS- genes (associated most strongly with the visual cortical 

MCP) are significantly more expressed in oligodendrocytes (ER = 0.061, pFDR = 2.3×10-4) and 

endothelial cells (ER = 0.059, pFDR = 0.021), and significantly less expressed in astrocytes (ER = 

0.030, pFDR = 2.3×10-4), microglia (ER = 0.034, pFDR = 0.0049), and oligodendrocyte precursors 

(ER = 0.0049, pFDR = 2.3×10-4). 
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5.6.2. Differential biological process involvement of genes associated with different MCPs 

We also explored whether the gene sets differentiating the MCPs in PS youth were 

preferentially involved in specific biological processes, using annotations from Gene Ontology. 

Genes from the PLS+ gene set were annotated to a total of 11436 GO biological process categories 

and showed significant enrichment for 7456 categories. Meanwhile, PLS- genes were annotated 

to a total of 11497 categories and showed significant enrichment for 8151 categories. A selection 

of the biological processes that were uniquely enriched in each gene set (PLS+ = 1983 categories; 

PLS- = 2678 categories) and were most related to brain structure and function are visualized as 

word clouds in Figure 9d. In general, genes associated with anterior frontal and anterior and 

ventromedial temporal-localized MCPs (PLS+) appear to be enriched for processes related to 

signalling between and differentiation of specific neural cell types, while genes associated with 

posterior frontal, posterior lateral temporal, parietal, and occipital-localized MCPs (PLS-) appear 

enriched for processes related to the production of supporting cells as well as initial stages of neural 

development. Notably, each of the positive and negative gene sets shows enrichment for processes 

directly relevant to the cell classes observed to be over-represented in that gene set based on the 

cell type enrichment analysis (Figure 9c). 
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Figure 9. Gene expression patterns maximally differentiating MCPs. (a) The covariance 
explained by latent variables derived using mean-centered PLS analysis (yellow dots) against 
distributions of null singular values from a spatial autocorrelation-preserving null model (box 
plots; 1000 repetitions). * p < 0.05. Only the first latent variable was statistically significant and 
was retained for further analysis. (b) MCP contrast values for LV1, as a bar graph and visualized 
on the group-average brain (inset). MCPs separable by the latent variable have opposite sign 
contrast values. MCPs with positive values are positively associated with (i.e., show higher 
expression of) the PLS+ genes, while MCPs with negative values are positively associated with 
the PLS- genes. Red and blue bars indicate significantly contributing MCPs by their sign; error 
bars denote 95% bootstrap confidence intervals. The PS-related MCPs identified by the 
behavioural PLS analysis are indicated by daggers (†). (c) Cell class-specific enrichment in the 
PLS+ (top) and PLS- (bottom) gene sets for LV1. Per gene set, coloured dots represent the true 
ratio of genes that are preferentially expressed in a cell class. Box plots depict distributions of null 
ratios obtained using 10000 random gene lists of the same size. * pFDR < 0.05. Astro = astrocytes; 
Micro = microglia; OPC = oligodendrocyte precursors; Oligo = oligodendrocytes; Endo = 
endothelial cells; Neuro-Ex = excitatory neurons; Neuro-In = inhibitory neurons (d) A selection 
of the neurobiologically-relevant GO biological processes that were significantly enriched in the 
PLS+ (top) and PLS- (bottom) gene sets for LV1. Note that font size is not informative and was 
varied only to maximize use of the word cloud space. The box plots in (a) and (c) represent the 
first, second (median) and third quartiles, the whiskers represent the non-outlier end points of the 
distribution, and the horizontal lines represent outliers. 
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5.6.3. Strongly contributing positive genes are enriched for psychiatric disorders 

To explore differences in putative neuropathological relevance of the positive and negative 

gene sets, we tested the hypothesis that the gene set over-expressed exclusively in PS-related 

MCPs (i.e., PLS+) is enriched for genes related to psychotic disorders. Using the DisGeNET 

database, we performed over-representation analysis of Disease Ontology terms in each PLS gene 

set. Overall, 2421 of the 6093 PLS+ genes (39.7%), and 1394 of the 6888 PLS- genes (20.2%) 

were annotated to diseases or disorders in DisGeNET. All significantly enriched disease terms are 

shown in Figure 10, and their corresponding enrichment ratios and FDR-corrected p-values can be 

found in Appendix Table 6 and Appendix Table 7.  

Our results indicate clear differences in the major domains of diseases over-represented in 

each gene set of interest. Specifically, the PLS+ gene set shows significant overlap with genes 

associated with several psychiatric disorders, including Unipolar Depression (pFDR = 6.1×10-3), 

Major Depressive Disorder (pFDR = 0.016), and Bipolar Disorder (pFDR = 0.019) (Figure 10a). 

Interestingly, schizophrenia was also among the top 15 most over-represented diseases in the PLS+ 

gene set, although did not survive FDR correction (p = 6.8×10-4, pFDR = 0.18). In contrast, the PLS- 

gene set showed significant overlap primarily with genes associated with intellectual and 

developmental disabilities (e.g., Intellectual Disability, Mental Retardation, Cognitive Delay; all 

pFDR = 0.021), but lacked similar enrichment for psychiatric disorder terms (Figure 10b). These 

differences imply that genes over-expressed in MCPs linked to neuropsychological features of the 

PS do not necessarily show specific enrichment for psychotic disorder genes, but may instead be 

uniquely related to the emergence of a variety of psychopathology. 
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Figure 10. Positive and negative genes contributing to between-MCP differences are 
differentially enriched for psychiatric disorders. Volcano plots show diseases with gene sets 
over-represented in the (a) PLS+ gene set and (b) PLS- gene set for the first latent variable from 
the mcPLS analysis. The top 15 terms (by FDR-corrected p-value) are annotated. The shade and 
size of each dot are proportional to the overlap between the disease gene set and the genes in the 
PLS+ or PLS- gene set that are annotated to a disease in the DisGeNET database. The dashed 
yellow line corresponds to pFDR = 0.05. 

 

6. Discussion 

Here, we capitalize on data-driven multivariate methods to decompose cortical 

morphometry of PS youth into 8 stable, modular patterns of covariance, and find evidence that 

these morphometric covariance patterns capture individual variation in specific dimensions of PS 

symptoms. Integrating information from functional connectivity gradients, meta-analytical 

cognitive states, and gene expression, we further show that MCP vulnerability to PS-related 

changes are related to large-scale cortical functional and transcriptomic architectures. 

 

6.1. A cortical phenotype of PS integrating multiple morphometric features 
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There has been ample evidence that the networked nature of brain structure in atypical 

neurodevelopment may be better characterized via the coordinated variation of different imaging-

derived metrics across the cortical sheet (Alexander-Bloch et al., 2013; Kaczkurkin et al., 2019; S. 

E. Morgan et al., 2019; Seidlitz et al., 2018). In line with this notion, the 8 MCPs identified in the 

present study, which summarized the spatial covariance of CT, SA, MC, and GI across PS youth, 

delineated structural units that eschewed classic lobar and gyral boundaries while still remaining 

highly localized and interpretable. For example, the data-driven PS MCPs subdivided temporal 

cortex into anterior-ventral, posterior-dorsal, and anterior-dorsal portions that were grouped with 

other areas in functionally meaningful ways (e.g., left auditory cortical areas belonged to the same 

MCP as primary sensorimotor areas). This extends previous findings that single-metric covariance 

patterns derived using OPNMF diverge from traditional atlases based on coarse anatomical 

characteristics (e.g., Desikan-Killiany-Tourville), and highlight the importance of data-driven 

parcellations of cortex for better capturing inherent neurobiological coordination (Sanfelici et al., 

2021; Sotiras et al., 2017). Notably, although our input to OPNMF contained cortex-wise 

measurements of 4 different features, the resulting components did not individually resemble the 

average spatial variation of any single metric. Qualitative comparisons also indicated differences 

to both thickness-based (Sotiras et al., 2017) and gyrification-based cortical components (Sanfelici 

et al., 2021). These findings support the efficient integration of information from different 

morphometric features in all PS MCPs. 

Interestingly, despite the present sample being enriched for PS symptoms, the 8 extracted 

MCPs bear resemblance to similar resolutions of modular cortical communities previously 

identified using a morphometric similarity network approach (10 morphometric variables) in 

typically developing adolescents and young adults (Seidlitz et al., 2018). Combined with our 

exploratory finding that PS MCPs resemble those derived from PNC youth without PS symptoms, 

these results suggest that the shared patterns of covariance of different macrostructural features 

may represent variation attributable to a consistent neurodevelopmental phenotype of cortical 

organization. Additionally, the boundaries of the PS MCPs showed modest qualitative overlap 

with those of a coarser MCP decomposition in a sample containing autism spectrum individuals. 

This observation, while also exploratory, is potentially congruent with evidence that OPNMF-

derived patterns can capture morphometric signatures across a range of psychopathology 

(Kaczkurkin et al., 2019; Sanfelici et al., 2021). As PS symptoms themselves are thought to 
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represent a transdiagnostic psychiatric phenotype (Giocondo et al., 2021; van Os & Reininghaus, 

2016), future work investigating cortical areas of high variability or ‘instability’ between the MCPs 

found here and those present in different neurodevelopmental psychiatric populations may refine 

our understanding of cortical vulnerability during maturation. 

 

6.2. Dissociable dimensions of PS symptom variation in youth 

The rich assessment of PS features in the PNC presented a unique opportunity to pinpoint 

major axes of phenotypic variation among youth with distressing levels of symptoms in a data-

driven way (Calkins et al., 2015). Specifically, exploratory factor analysis revealed three symptom 

factors reflecting negative/disorganized symptoms, disturbances of self-experience, and 

hallucinations/abnormal perceptions. The parsimonious loadings of PS screening items onto these 

factors suggested that they were well-defined within the sample. Within these factors, the 

differentiation of negative and disorganized symptoms from positive symptoms is consistent with 

previous factor analyses of both subthreshold psychotic features (Calkins et al., 2015; Fonseca-

Pedrero et al., 2018) and clinical psychotic symptoms (Kotov et al., 2016; Stefanis et al., 2002). 

Symptoms of disturbed self-experience, such as detachment and feelings of thought control, and 

perceptual abnormalities, such as verbal hallucinations and auditory perceptions, additionally 

emerged as dissociable dimensions of positive PS symptoms. These factors captured a separation 

of sub-delusional (loading onto ‘disturbed self-experience’) and hallucinatory perceptual 

symptoms, as has been observed in previous studies examining similarly wide ranges of psychotic 

symptoms (Calkins et al., 2015; Cardno et al., 1999, 2001). Notably, the three factors identified 

here also represent a near-replication of a larger-scale factor analysis of the same PS screening 

tools in the broader PNC cohort (Calkins et al., 2015), further supporting the validity of our 

findings. This prior study described three specific PS factors (termed ‘(ideas about) special 

abilities/persecution’, ‘unusual thoughts/perceptions’, and ‘negative/disorganized’ symptoms) that 

largely map onto the symptom dimensions in the current study, along with a general psychosis 

spectrum factor indicated by all variables (Calkins et al., 2015). While our analysis did not show 

support for a strong overarching PS factor, this discrepancy could be due to the current sample 

comprising only PNC participants meeting PS criteria, or the more detailed list of symptom items 

provided as input for factoring in this study. Nonetheless, our results reinforce that distinct, yet 

related dimensions of psychosis-related symptoms are present in youth even before the onset of 
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frank illness. In turn, these findings corroborate the potential of refined symptom clusters over 

summed scores for resolving heterogeneous neurobiological correlates of the PS (Kirschner, 

Shafiei, Markello, Makowski, et al., 2020; Peralta & Cuesta, 1999). 

 

6.3. Cortical morphometric signatures of behavioural features in the PS 

Our bPLS analysis identified two significant patterns of associations linking MCPs and 

behavioural features in PS youth. The first brain-behaviour LV captured both previously reported 

and novel associations between demographic characteristics and cortical morphometry. This LV 

indicated that among PS youth, older age and European American race are correlated with 

widespread reduced GI as well as regionally specific cortical thinning or thickening across anterior 

frontal (MCP 1) or visual and sensorimotor regions (MCPs 2 and 3). These associations align with 

past findings of age-related decreases in GI (Chung et al., 2017; D. Klein et al., 2014; Raznahan 

et al., 2011), as well as with the well-established heterogeneity in timeframe of CT maturation 

between sensorimotor and association cortex, particularly anterior frontal areas (Ball et al., 2020; 

Sotiras et al., 2017; Whitaker et al., 2016). Intriguingly, the positive direction of CT change in 

MCPs 2 and 3 contributing to this LV is inverse to the modest cortical thinning typically observed 

in these primary cortical areas across adolescence (Ball et al., 2020; Raznahan et al., 2011), and 

also contrasts with the relatively spared or steeper rates of thinning seen in overlapping areas in 

early stages of clinical psychosis (Lin et al., 2019; Pina-Camacho et al., 2022; Ziermans et al., 

2012). However, consistent with a link between thicker cortex in motor and occipital regions and 

psychological resilience (de Wit et al., 2016; Kahl et al., 2020), it is possible that our results point 

to early compensatory mechanisms that serve to protect against emerging PS-related neural 

changes. In addition, our inclusion of race variables in the bPLS analysis provided insights into 

how social environment may influence cortical morphology that increases risk for neuropsychiatric 

disorders. To our knowledge, we present the first evidence that a global pattern of primarily 

decreased GI with age may be related to European American race in PS youth. This result 

complements increasing reports that both cross-sectional measurements (Isamah et al., 2010) and 

age-related slopes (Assari & Mincy, 2021; Choi et al., 2020) of cortical morphological features are 

associated with race and ethnicity. 

Significantly, the second brain-behaviour LV highlighted associations involving the 

disturbed self-experience PS dimension, suggesting the relevance of this pattern to distinct 
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phenomenological aspects of the PS. In this LV, greater disturbances of self-experience, alongside 

characteristics of older age, male sex, and African American race mapped onto diverse 

morphometric alterations across five MCPs. Contributing cortical features were specifically 

distributed across anterior frontal (CT increase, GI decrease), ventral prefrontal/insular (GI 

decrease), anterior/ventral temporal (SA decrease), and visual (MC decrease) as well as primary 

sensory and motor regions (CT decrease). Notably, while the morphometric pattern of this LV 

recapitulated certain abnormalities previously found in high-risk or PS individuals (e.g., reduced 

cortical folding in prefrontal (Damme et al., 2019; Drobinin et al., 2020) and occipital regions 

(Drobinin et al., 2020; I. Park et al., 2021), greater prefrontal CT (Kirschner et al., 2021), reduced 

sensorimotor CT (Dukart et al., 2017; Vargas & Mittal, 2022)), other common structural findings 

were absent, such as thinning of insular (Gisselgård et al., 2018; van Lutterveld et al., 2014) and 

inferior/medial temporal cortex (Gisselgård et al., 2018; Jung et al., 2011; Takayanagi et al., 2020; 

van Lutterveld et al., 2014), decreased SA in anterior frontal and cingulate regions (ENIGMA 

Clinical High Risk for Psychosis Working Group et al., 2021; Jalbrzikowski et al., 2019), and 

precuneus abnormalities (Meller et al., 2020; Satterthwaite et al., 2016). However, this discrepancy 

is consistent with previous findings mainly reflecting either case-control differences or, 

occasionally, correlates of coarse ‘positive’ and ‘negative’ symptom clusters, in contrast to the 

more complex PS dimensions considered here. Instead, our observed correlation of the unique 

morphometric pattern of LV2 with the disturbed self-experience factor, but not other PS factors, 

is suggestive of an effect tapping into a brain signature related to this specific dimension of positive 

symptoms. These results broadly indicate that different symptom dimensions of the PS may reflect 

dissociable, targeted abnormalities across multiple cortical morphometric features, complementing 

dimensional cortical deficits observed in clinical populations (Kirschner, Shafiei, Markello, 

Makowski, et al., 2020). 

Corroborating this idea, the MCPs shaping the second brain-behaviour pattern converge 

markedly with neuroanatomical substrates thought to underlie symptoms loading highly onto the 

disturbed self-experience PS dimension, namely delusional thoughts (e.g., ‘paranoia’, ‘thought 

control’) and depersonalization (e.g., ‘loss of sense of self’, ‘detachment’). In psychosis patients, 

delusions have been associated with macrostructural abnormalities in the prefrontal cortex, insula, 

temporal pole and medial temporal cortex, as well as left parietal areas (Cascella et al., 2011; 

Prasad et al., 2004; J. Song et al., 2015; Whitford et al., 2009; Wolf et al., 2020; Zhu et al., 2016). 
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Depersonalization symptoms, which are also observed in both prodromal and disorder stages of 

psychosis (Büetiger et al., 2020; Madeira et al., 2016; Raballo et al., 2011), have been linked to a 

network of regions thought to be important for somatosensory integration and the generation of 

subjective experiences, which includes orbitofrontal and medial prefrontal cortex, primary sensory 

cortices, insula, and medial temporal cortex (Bonoldi et al., 2019; Büetiger et al., 2020; Daniels et 

al., 2015; Medford et al., 2016; Sierra et al., 2014). Thus, cortical regions historically implicated 

in the symptoms represented here by the ‘disturbed self-experience’ PS dimension were also well 

represented in the brain pattern correlated with this dimension in our analysis. Importantly, since 

relevant past studies primarily focused on volumetric abnormalities, the metric-specific weights of 

LV2 also provide a finer-grained view into the possible cortical morphometric signature of these 

delusion and depersonalization-like symptoms in the PS. The demographic features of LV2, 

meanwhile, provided additional insights into this putative PS dimension-cortical morphometry 

relationship. While the association of male sex and African American race with LV2 echoes 

previously reported demographic correlates of PS status among youth (Calkins et al., 2014), higher 

levels of PS symptoms have typically been linked to younger age (Calkins et al., 2014; Kelleher, 

Connor, et al., 2012), contrary to the inverse age effect captured by LV2. This finding may be 

concordant with evidence that while PS symptoms are more common in early adolescence, they 

become increasingly indicative of pathology with age (Kelleher, Keeley, et al., 2012), suggesting 

that the cortical morphometric pattern of LV2 may represent the neuroanatomical imprint of more 

aberrant psychological phenotypes in older youth. 

Surprisingly, despite representing core clinical features of psychosis, the 

hallucinations/abnormal perceptions PS dimension did not contribute to either of the significant 

detected brain-behaviour relationships. This is possibly attributable to earlier stages of 

pathophysiology being captured by the young, non-help-seeking PS sample in the current study, 

in which anatomical concomitants of threshold-level hallucinations, which may imply progressive 

neural alterations, are likely to be less well-established. Nonetheless, both the sub-delusional and 

depersonalization symptoms represented by the disturbed self-experience dimension have been 

found to predict later transition to psychosis in at-risk cohorts (Cannon et al., 2008; Zammit et al., 

2013), emphasizing the clinical relevance of the identified PS dimension-morphometry pattern for 

understanding emerging psychosis risk. 
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Overall, our bPLS analysis builds on previous work relating case-control differences or 

aggregate symptom measures to single indices of cortical structure in help-seeking patients. Our 

approach takes a step towards a more nuanced understanding of multimodal phenotypic axes of 

the PS at a critical age window, using an integrative framework that considers concise 

representations of complementary cortical features and symptom relationships simultaneously. We 

show that in doing so, parsimonious brain-behaviour patterns can be derived which capture more 

refined, yet still interpretable, mappings between developmentally relevant individual clinical 

variation and morphometric abnormalities. 

 

6.4. The contribution of age to maturational MCP-behavioural LVs 

While age contributed strongly to both the first and second brain-behaviour relationships, 

this effect was expected given the relatively large maturational window under investigation, which 

covers a period of extensive cortical remodeling (Keshavan et al., 2014; Paus et al., 2008). We 

note the alternative strategy of regressing age out of brain variables prior to PLS analysis, which 

has been used in attempts to isolate effects related more “purely” to pathology  (Kirschner, Shafiei, 

Markello, Makowski, et al., 2020; Shan et al., 2022). However, given the normative sample of 

youth analyzed here and the known relationship between PS vulnerability and neurodevelopment 

(Calkins et al., 2014; Mennigen & Bearden, 2020), in the current study we were interested in the 

interaction of maturational processes with PS-related phenotypic variation. Thus, age was not 

treated as a cofounding variable to prevent masking important maturational effects (Mihalik et al., 

2020).  

 

6.5. Convergence of PS-related MCPs with relevant cognitive functions 

Previous studies have shown a correspondence between NMF-delineated neuroanatomical 

covariance components and brain areas that are activated in related psychological processes 

(Robert et al., 2021; Shan et al., 2022), suggesting that shared covariation in macrostructural 

features may index functional coherency (Seidlitz et al., 2018). In the present report, we extend 

these findings to maturational cortical MCPs that integrate four different T1w morphometric 

features. Specifically, meta-analytic decoding using Neurosynth revealed specialized functions 

associated with each MCP, with minimal overlap in the top psychological terms correlated with 

each cortical pattern. We note that the marked specificity of the functional associations per MCP 
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provides an informal proof of concept for the choice of NMF decomposition resolution, as it 

supports that the 8 derived components capture meaningful intra-component similarity while also 

being distinguishable along multiple dimensions of cortical organization. 

Significantly, the meta-analytic functional profiles of the MCPs that define the identified 

symptom-morphometry LV (i.e., MCPs 1, 2, 3, 4, and 6 in LV2) match cognitive processes thought 

to be perturbed in symptoms driving the associated PS dimension of disturbed self-experience. 

MCP 1 (anterior frontal) was related to cognitive control processes including “reasoning” and 

“decision[s]”, which are impaired in the formation and maintenance of tenacious irrational beliefs 

central to delusion-like symptoms (Dudley et al., 2016). MCP 4 (ventral prefrontal/insular) was 

associated with affect terms such as “fear”, “pleasant”, and “unpleasant”, which provides a 

mapping to the sense of emotional disconnect with one’s life reported in psychosis (Büetiger et 

al., 2020; Wylie & Tregellas, 2010) and captured here in PS youth by the disturbed self-experience 

dimension. Furthermore, the term associations of MCP 4 are in line with theories that aberrant fear 

and anxiety processing contribute to the development of paranoid ideation (Perez et al., 2015), 

which also loads onto disturbed self-experience. MCP 6 (anterior/ventral temporal), which 

encompasses anterolateral and parts of inferior medial temporal cortex, was unsurprisingly related 

to semantic memory. The contribution of this MCP to the cortical pattern linked to disturbed self-

experience (i.e., LV2) thus may reflect proposed links between aberrant semantic processing and 

both altered autobiographical memory, which is crucial for an intact sense of self (Berna et al., 

2016; Mediavilla et al., 2021; Prebble et al., 2013), and delusional ideation (Kiang et al., 2013; 

Rossell et al., 1999). Finally, MCPs 2 (left lateralized sensorimotor/language) and 3 (visual) were 

correlated with verbal/non-verbal communication and visuo-spatial process terms, respectively. 

While the relatively lower-order functional specializations of these MCPs have less clear-cut 

relationships to the psychological disturbances shaping LV2, we posit that the implicated aberrant 

morphometry in these regions point more broadly to deficits in multisensory integration or 

perceptual coherence, which have been shown to be crucial for normal self-experience and reality 

representation (Postmes et al., 2014). Overall, this analysis illustrates a clear connection between 

the psychological functions subserved by MCPs contributing to LV2 and disturbances of self-

experience, supporting that the morphometric pattern of this LV captures a clinically relevant 

dimension of the PS.  
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6.6. Cortical PS vulnerability and MCP organization along maturational functional 

gradients 

There is evidence that intrinsic networks of cortical areas are ordered in anatomical space 

along macroscale gradients of functional organization of the cortex (Margulies et al., 2016). 

Significantly, the relative positions of networks along these gradients show non-uniform 

developmental changes as the principal gradient transitions to a mature unimodal-to-transmodal 

processing hierarchy (H.-M. Dong et al., 2021), suggesting that anatomical vulnerability to 

atypical neurodevelopment may also be governed locally by this reorganizing large-scale 

functional architecture. 

Here, we found that MCPs in PS youth, which represent shared cortical “networks” based 

on morphological properties (Sotiras et al., 2017), varied in the specificity of their local functional 

topography within an established principal gradient in adolescents (H.-M. Dong et al., 2021). 

While some MCPs comprised vertices that clustered at similar positions along this gradient, such 

as MCP 2 (visual) or MCP 7 (paracentral), several others captured extensive ranges of gradient 

values that overlapped, such as MCP 3 (left-lateralized sensorimotor/language) and MCP 4 

(ventral prefrontal/insular). Notably, the five MCPs related to disturbed self-experience by bPLS 

analysis were not preferentially localized to a specific position within the adolescent principal 

gradient, instead occupying both unimodal and transmodal functional territories. The results of 

this single-gradient analysis thus may be in line with recent evidence for an overall compressed 

sensorimotor-to-transmodal hierarchical organization in schizophrenia, which leads to diminished 

functional separation between sensory and association regions in gradient space (D. Dong et al., 

2021). Namely, we showed that cortical areas with dissociable gradient positions in a typically 

developing cohort (H.-M. Dong et al., 2021) cluster into the same MCPs in PS youth, which could 

indicate macrostructural evidence of reduced unimodal-transmodal functional differentiation even 

in subclinical phenotypes. Furthermore, there is direct qualitative overlap between the MCPs 

linked to disturbed self-experience and regions of schizophrenia case-control difference in 

principal gradient value (D. Dong et al., 2021). One speculative interpretation is that patterns of 

morphometric alterations linked to psychosis risk, particularly to sub-delusional symptoms or 

incoherent subjective experience, may be coupled to aberrant functional connectivity that 

underpins a pathological global processing hierarchy of cortex.  
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While the wide distribution of PS-related MCPs along the unimodal-transmodal gradient 

was present throughout the child, adolescent, and adult gradient maps, we observed non-uniform 

maturational shifts in positions of MCPs within this emerging hierarchy. Notably, MCPs linked to 

disturbed self-experience comprised both MCPs that showed age-dependent changes in rank 

within the gradient (MCPs 2-4), implying continued refinement of their embedding within 

macroscale processing streams, as well as MCPs that represented more stable anchors of the 

developing transmodal-dominant gradient profile (MCP 1, MCP 6). Regardless of their trajectory 

within the hierarchy, however, all MCPs associated with this symptom dimension captured clear 

qualitative and quantitative changes in the local distributions of gradient values with age. Overall, 

these findings may suggest that regions undergoing protracted refinement within the global 

connectivity structure, namely to support increasing separation between primary sensory/motor 

and association cortex (H.-M. Dong et al., 2021), are also more vulnerable to PS-related changes. 

These findings complement evidence that an imbalance of information integration and segregation 

across sensorimotor and association areas, which is linked to abnormal development of an 

overarching unimodal-transmodal hierarchy, contributes to susceptibility for psychotic symptoms 

(D. Dong et al., 2021; Duan et al., 2019). We emphasize, however, the exploratory nature of these 

interpretations, as the gradients compared here with PS MCPs are representative of typically 

developing youth and healthy adults. Future work aligning MCPs and functional gradients both 

derived from PS data will be important for clarifying the relationship between morphometric 

abnormalities and macroscale functional organization in this early stage of neural risk for 

psychosis. 

 

6.7. Transcriptional profiling of PS MCPs and putative links to structural 

vulnerability 

6.7.1. An anterior frontotemporal-visual axis of MCP expression pattern differences 

In an effort to bridge macroscale cortical patterns with putative molecular mechanisms, we 

explored whether MCP vulnerability to PS-related abnormalities may be underpinned by regional 

variation in gene expression. Since our bPLS analysis (i.e., LV2) linked feature-specific 

morphometric variation to PS symptoms at the level of MCPs, to connect this symptom-

morphometry relationship to the underlying neurobiology, we first used mcPLS to isolate sets of 

genes whose expression patterns differentiated the PS-derived MCPs themselves. A single 
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significant transcriptional latent variable was found which maximally differentiated the ventral 

prefrontal/insular and anterior/medial temporal MCPs (MCPs 4 and 6, respectively) from the 

visual MCP (MCP 2). Notably, this axis of MCP expression pattern differences largely 

recapitulates the first principal component of transcriptional variation in the AHBA (PC1 of gene 

expression), which separates primary visual, sensorimotor, and auditory cortical areas at one end 

from transmodal frontal and temporal areas at the other (Burt et al., 2018; Hawrylycz et al., 2012). 

Both our transcriptional LV and the previously established PC1 of gene expression demonstrate a 

rough rostral-caudal organization. These overarching similarities make sense given that no a priori 

contrasts between MCPs were enforced in our exploratory mcPLS, permitting dominant axes of 

transcriptional structure to be detected. However, the spatial pattern of our transcriptional LV also 

bore distinct features. Specifically, although the sensorimotor MCP (3) shared the same sign of 

contrast value as the visual MCP (2) in this LV, indicating shared directionality with regards to 

the underlying expression pattern, MCP 2 had a clearly dominant contribution (i.e., contrast value 

magnitude) to the overall axis of differentiation. By contrast, in PC1 of gene expression, one end 

is more or less equally anchored in both sensorimotor and visual areas (Burt et al., 2018; 

Hawrylycz et al., 2012). While subtle, this difference may suggest that inter-regional 

morphometric coordination in PS youth, as summarized by MCPs, captures meaningful clusters of 

local transcription patterns that highlight a more strongly visual cortex-anchored axis of variation 

as opposed to a general sensorimotor to association organization (Huntenburg et al., 2018). For 

simplicity, we consider all contributing MCPs when contextualizing each dimension of the 

transcriptional LV below. 

Within the context of the previously described symptom-morphometry relationship 

(Section 5.3), the LV of MCP gene expression differences separated three of the five MCPs linked 

to disturbed self-experience (i.e., MCPs 1 [anterior frontal], 4 [ventral prefrontal/insular], and 6 

[anterior/medial temporal]) from all other MCPs. In other words, while the dominant pattern of 

MCP transcriptional differences was not entirely driven by our identified PS-related MCPs, it did 

capture a set of genes (denoted PLS+) with exclusively higher expression in anterior MCPs 

contributing to the symptom-morphometry pattern in our PS sample. The gene sets characterizing 

the positive versus negative dimension of this LV thus represented a window into possibly 

divergent molecular contributions of anterior frontotemporal MCPs versus visual/posterior MCPs, 

respectively, to PS phenotypes. 
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Here, genes over-expressed in anterior frontotemporal MCPs were associated positively 

with astrocytes, microglia, oligodendrocyte precursors, and neurons. Meanwhile, genes over-

expressed in visual/posterior MCPs were associated with oligodendrocytes and endothelial cells.  

Recalling that anterior frontotemporal MCPs independently showed macrostructural changes 

linked to PS symptoms (brain-behaviour LV2), these results indicate enrichment for genetic signal 

of both neuronal and glial cells in heteromodal regions vulnerable to PS-related structural changes. 

This is consistent with prior reports of cellular correlates of schizophrenia CT signatures (Di Biase 

et al., 2022; Writing Committee for the Attention-Deficit/Hyperactivity Disorder et al., 2021), 

despite corresponding cell type signatures for other T1w imaging metrics being under-

investigated. Nonetheless, given that brain-behaviour LV2 highlighted contributions of several 

feature alterations in anterior frontotemporal MCPs to a clinical-behavioural PS phenotype (i.e., 

higher CT and lower GI in MCP 1, lower GI in MCP 4, and lower SA in MCP 6), our results 

suggest that pathogenic interactions among multiple neural cell types likely lead to macroscale 

abnormalities in multiple inter-related cortical properties simultaneously. 

Interestingly, the expression signature of the PS-related anterior frontotemporal MCPs was 

uniquely enriched for synaptic signalling processes in addition to processes of differentiation of 

cell types over-represented in this gene set. Convergent evidence for the role of synaptic 

dysfunction and pathology in psychosis risk has been found in both post-mortem (Berdenis van 

Berlekom et al., 2020) and neuroimaging analyses. In a morphometric similarity mapping study of 

psychosis patients, abnormal morphometric similarity in frontal and temporal cortical areas was 

related to expression of genes enriched for synaptic signalling (S. E. Morgan et al., 2019), 

consistent with the spatial enrichment pattern observed here. Moreover, in a typically developing 

cohort, the patterning of effects of schizophrenia polygenic risk score on CT in frontotemporal 

areas was associated with expression of dendrites and synapses (Kirschner et al., 2022), suggesting 

that aberrant synapse development may contribute to macrostructural changes even in nonclinical 

expressions of psychosis vulnerability. Extending these findings, our multi-scale analyses allude 

to the possibility that a diverse pattern of associations between CT, GI, and SA changes in 

frontotemporal MCPs and subclinical positive PS symptoms in youth may be linked to molecular 

susceptibility of signalling processes. Critically, emerging evidence that microglia and astrocytes 

can mediate pathological synaptic pruning, synapse formation, or glutamatergic signalling in 



 

80 
 

schizophrenia (R. Kim et al., 2018; Sellgren et al., 2019) further bridges the cellular and biological 

process enrichment patterns of this anterior frontotemporal system. 

By contrast, the expression signature of the four visual/posterior MCPs (i.e., negative 

dimension of the transcriptional LV) was more heavily enriched for processes related to early 

central nervous system development and the production of supporting cells. Combined with the 

enrichment of this gene set for oligodendrocyte and endothelial cell markers but not neuron 

markers, these results possibly suggest that the MCPs contributing to this dimension that also 

weight onto the symptom-morphometry LV (i.e., MCP 2 [visual] and MCP 3 [left-lateralized 

sensorimotor/language]) are part of a differing neurobiological vulnerability pathway potentially 

related more closely to early precursor or glial cell development than protracted refinement of 

neuronal functions. Interestingly, this interpretation may be aligned with the known earlier 

maturation of primary sensorimotor and visual cortical areas compared to frontal and temporal 

association areas (Sydnor et al., 2021). 

6.7.2. Putative neurobiological interpretations of the symptom-morphometry LV 

Each of the four cortical morphometric features considered in the present report are 

influenced by multiple neurobiological processes throughout maturation. While we cannot derive 

feature-specific mechanisms for the latent symptom-morphometry pattern observed in our PS 

sample, we hypothesize based on our transcriptomic analysis results (Section 5.7.1) that cortical 

metric abnormalities implicated in the anterior frontotemporal MCPs may be disproportionately 

driven by factors related to synaptic organization. Specifically, CT has been shown to be sensitive 

to dendritic arborization and synaptic pruning (Huttenlocher, 1990; T. Jeon et al., 2015), with 

evidence supporting both synaptic loss driving the CT reductions observed in adults with 

schizophrenia (Berdenis van Berlekom et al., 2020; Carlo & Stevens, 2013), and a potentially 

delayed or amplified (i.e., higher peak, steeper decline) trajectory of pruning contributing to thicker 

cortex in children or adolescents at genetic risk for psychosis (Kirschner et al., 2022). Molecular 

correlates of psychosis abnormalities in SA and GI remain under-investigated; nonetheless, typical 

patterns of SA maturation have been linked to synaptogenesis as well as myelination in the 

neuropil (Budday et al., 2015b; Cafiero et al., 2019), and follow an earlier time course compared 

with CT (Wierenga et al., 2014). Relatedly, neurogenesis and neuropil growth are thought to 

represent cellular-level determinants of cortical GI (Llinares-Benadero & Borrell, 2019). 
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In contrast with these processes of synaptic growth and remodelling, we posit that the 

visual and sensorimotor MCP-specific feature alterations also contributing to the symptom-

morphometry LV may be linked to early development of neural or glial scaffolding of cortex more 

broadly. For example, the PS-related cortical thinning in MCP 3 may be related to atypical glial 

support in cortical columns or myelination, factors that can also affect this metric (Natu et al., 

2019; Rakic, 1988). The reduction in visual cortical MC, while less well understood, could be 

influenced by changes in mechanical properties or the stress state of cortical layers, characteristics 

typically established by early childhood, due to disruptions in radial migration of neural cells, 

oligodendrocyte development, or myelin production (Annese et al., 2004; Budday et al., 2015b). 

Importantly, it is conceivable that these changes have downstream effects on synaptic organization 

(Takahashi et al., 2011), underscoring that dissociable cellular-level processes likely interact to 

give rise to the spatially varying morphometric signature associated here with the disturbed self-

experience PS dimension. 

Overall, we hypothesize that the identified symptom-morphometry pattern in PS youth 

reflects multiple abnormal neurobiological trajectories, which may include delayed or amplified 

synaptic pruning, neuronal death, and impaired myelination, as well as early developmental 

vulnerability related to the maturation or patterning of neural precursor and support cells in the 

cortical sheet. 

6.7.3. A gene expression signature of anterior frontotemporal MCPs is enriched for 

psychiatric disorders 

By comparing gene sets characterizing the anterior frontotemporal (PLS+) versus 

visual/posterior (PLS-) dimensions of the transcriptomic LV to a large database of gene-disease 

associations (Piñero et al., 2017), we found significant enrichment of unique disorder terms in each 

system of MCPs. Notably, only PLS+ genes, whose over-expression was limited to PS-related 

MCPs, were significantly enriched for psychiatric disorder terms, supporting the 

psychopathological relevance of the anterior frontotemporal abnormalities in the PS symptom-

morphometry LV. By contrast, the PLS- genes associated with visual/posterior MCPs showed 

nearly exclusive significant enrichment for intellectual and developmental disabilities. In the 

context of the bPLS-derived behavioural pattern shaped by disturbed self-experience in the PS, 

these enrichment results lend credence to the idea that differing types of neurobiological events 

may underlie the significant morphometric correlates found in the anterior frontal, ventral 
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prefrontal/insular, and anterior/ventral temporal MCPs versus the left-lateralized 

sensorimotor/language and visual MCPs. 

While the psychiatric disorder enrichment of the anterior frontotemporal MCP gene set 

was driven by genes associated with affective disorders (e.g., bipolar disorder, unipolar 

depression), schizophrenia was also among the top over-represented terms. These results are 

consistent with the overlap in cortical gene expression profiles between psychotic and affective 

disorders, suggesting shared molecular underpinnings of macroscale disorder phenotypes (Gandal 

et al., 2018; Kirschner et al., 2022; Writing Committee for the Attention-Deficit/Hyperactivity 

Disorder et al., 2021). Moreover, the convergence of this enrichment signature with MCPs linked 

here to a PS symptom dimension is in line with evidence for the transdiagnostic psychiatric risk 

imparted by PS symptoms, particularly for the later development of mood disorders (Calkins et 

al., 2017; Giocondo et al., 2021; van Os & Reininghaus, 2016). This interpretation is also 

supported by a recent neuroimaging study, which showed that the transcriptional pattern correlated 

with schizotypy-related magnetization was enriched by genes differentially expressed in disorders 

including both schizophrenia and bipolar disorder (Romero-Garcia et al., 2020). Broadly, our 

findings suggest that the structural vulnerability to PS-related changes captured by MCPs may be 

embedded within a broader axis of molecular cortical organization. Specifically, we find evidence 

that this axis differentiates areas more closely associated with synaptic remodelling and expression 

of psychiatric disorder-related genes, from areas enriched for substrates of early cortical growth 

and genes related to intellectual disabilities. 

 

6.8. Summary of key methodological strengths 

A key strength of the present study was the focus on a community-based, non-help-seeking 

sample of PS youth. This enabled the characterization of cortical morphology in the PS during a 

critical neurobiological vulnerability window (Paus et al., 2008), while also helping to circumvent 

typical confounders in clinical psychosis populations, such as medication use or illness chronicity. 

In addition, the acquisition of all brain structural scans on a single scanner safeguarded against 

morphometric heterogeneity owing to batch or site effects. Another major strength of this work 

was the integration of multiple MRI-derived indices to delineate cortical MCPs. By harnessing 

complementary information from four morphometric features (CT, SA, MC, GI), we obtained 

representations of cortical variability in PS youth that permitted insights into local relationships of 



 

83 
 

different morphological metrics, contrasting with the unidimensional neurobiological perspectives 

offered by past studies of individual features. Furthermore, by demonstrating overall replicability 

of the identified MCPs in two non-overlapping samples, we reveal how integrating multiple 

measures allows us to develop stable cortical covariance phenotypes that may be recognizable in 

other age groups and diseases. Significantly, we also mapped individual morphometric variation 

to clinical-behavioural features of the PS using a single multivariate framework. This data-driven 

approach allowed interdependencies among both brain and behavioural features to be considered 

simultaneously, thus overcoming conceptual and statistical drawbacks of univariate analyses, 

which treat different cortical locations and phenotypic predictors as independent from one another 

(Genon et al., 2022). Meanwhile, by specifically performing the multivariate mapping with MCP-

specific loadings and major dimensions of PS symptoms, we not only established a subject-to-

feature ratio that would be at low risk of yielding unstable effects (Helmer et al., 2020), but ensured 

that resulting associations would still be interpretable despite their pleiotropic-like nature (e.g., in 

comparison to a model comprising many individual symptom items). In doing so, we were able to 

reveal a parsimonious symptom-morphometry pattern that, in concert with the original MCPs, 

provided a PS-linked neuroimaging foothold from which to interrogate underlying functional and 

molecular correlates. 

 

6.9. Limitations and Future Directions 

The present findings should be interpreted in light of several limitations. While our sample 

is larger than or comparable to most previous MRI studies of PS youth (e.g., (Jalbrzikowski et al., 

2019)), its size is still limited relative to PS datasets attainable from newer population-based 

developmental neuroimaging cohorts with many thousands of participants, such as the ABCD 

study (Karcher, Loewy, et al., 2022). We note, however, that the PNC currently covers a much 

larger age range than the ABCD, which enabled characterization of age-related brain-behaviour 

relationships in the current work. More broadly, the spectrum of maturational stages (i.e., late 

childhood, early adolescence, late adolescence/early adulthood) and unique non-help-seeking 

symptom phenotypes captured by our PS sample make it difficult to find a comparable out-of-

sample validation dataset. Nonetheless, future replication of the identified MCPs and symptom 

dimensions in an independent, conceptually related PS sample or more widely available clinical 
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high-risk cohorts could shed crucial insights into the generalizability of the brain-behaviour 

associations observed here. 

Another limitation of the present work relates to the variation in smoothing level of each 

analyzed surface-based MRI metric, due to our choice to use the metric-specific recommended 

defaults for smoothing kernel size in either CIVET v2.1.1 (for CT, SA, and MC) 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) or surfaceratio v5 (for GI) (Toro et al., 

2008). This choice was in line with previous applications of OPNMF on multi-metric imaging data 

(Ochi et al., 2022; R. Patel et al., 2022), as well as with kernel sizes employed in past vertex-wise 

analyses of the individual metrics investigated here (Lerch et al., 2006; Lyttelton et al., 2009; Toro 

et al., 2008). Nonetheless, it is possible that the differentially smoothed input data compromised 

the ability of the OPNMF-derived cortical MCPs to capture individual variability in each metric 

equally. Based on findings that smaller smoothing kernels may preserve more of the variability 

within CT data (Zeighami & Evans, 2021), follow-up work reproducing the MCPs using metrics 

smoothed with a smaller or consistent kernel size may be important for demonstrating the 

robustness of the identified cortical patterns. 

As is often the case with unsupervised methods like NMF, the appropriate choice of 

number of components, or MCPs in this case, also represents a key methodological consideration. 

Here, we followed previous NMF studies in selecting an MCP resolution that achieved a suitable 

balance between pattern stability across subjects and capturing major changes in reconstruction 

accuracy (R. Patel et al., 2020; Sotiras et al., 2017). Importantly, while our choice of 8 MCPs 

satisfies an algorithmic concept of optimal dimensionality, it likely does not represent the “true” 

or definitive number of morphological patterns in the cortex. NMF decompositions demonstrate a 

hierarchical structure, in which higher resolutions of components subdivide the components at 

lower resolutions while largely respecting the boundaries of the coarser partitions (Ball et al., 2019; 

Sotiras et al., 2015, 2017). Thus, rather than being necessarily nearer to or farther from a ground 

truth of biological granularity, different component resolutions may localize cortical variability on 

a different scale, such that the “correct” resolution for a study could depend on the study aims and 

level of detail desired (Groves et al., 2012). In the context of our multi-metric implementation of 

NMF, 8 MCPs ensured a manageable number of subject-specific metric loadings (n = 32) for the 

downstream behavioural PLS analysis results to be easily interpretable at the level of each 

contributing morphometric feature. Similarly, whereas a very fine-grained decomposition 

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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increases the complexity of contextualizing individual MCPs in terms of other modes of cortical 

organization, our chosen resolution could be easily imposed on external datasets such as 

Neurosynth, yielding coherent and dissociable functional specializations of MCPs. We note that 

alternative approaches may exist to analyzing a single resolution of MCPs. A recent application of 

NMF suggests that evaluating structural covariance components across a range of scales 

simultaneously can reveal more nuanced relationships with genetic architecture, and possibly 

provides more discriminative imaging signatures of illness (Wen et al., 2022). Future investigation 

of so-called “multi-scale” MCPs in the PS may thus enable the refinement of the observed clinical-

anatomical associations within a multi-scale topology, and in turn, amplify their potential as a 

marker of individualized vulnerability to psychosis. 

Another caveat of this study is that we did not consider cognitive measures in our PS 

sample aside from WRAT-4 Reading standard scores (as an IQ estimate), which notably did not 

attain significance in either of the identified brain-behaviour latent variables. Importantly, PS 

youth show deficits in multiple neurocognitive domains (Calkins et al., 2014; Gur et al., 2014), 

which have been found to be differentially associated with abnormalities in cortical morphology 

(Jalbrzikowski et al., 2019; Satterthwaite et al., 2016). Thus, additional research will be necessary 

to evaluate whether the observed relationship between MCP-feature alterations and the disturbed 

self-experience PS dimension may be modulated by neurocognitive functioning. In line with a 

multidimensional view of psychopathology, PS symptoms also often co-occur with symptoms of 

other psychopathology domains, including symptoms of depression, mania, and anxiety (Calkins 

et al., 2014; J. H. Taylor et al., 2020). Future examination of the impact of comorbid symptoms 

will be critical for establishing the specificity of the present brain-behavioural findings, as well as 

for a more holistic understanding of the three PS symptom dimensions detected here. 

The external datasets used here also have associated methodological considerations. For 

one, the text-based mapping of psychological terms to functional activation coordinates in 

Neurosynth cannot distinguish activations from deactivations (Yarkoni et al., 2011). Thus, we 

identified cognitive functions associated with the spatial patterning of morphometric covariance 

across cortical regions, but cannot isolate the direction of effect. Additionally, since the AHBA 

was constructed using tissue samples from a small number of adult post-mortem brains (Hawrylycz 

et al., 2012), it is not fully representative of transcriptomic variation related to early life or 

maturational processes, contrary to the epoch of interest in the current work. We note that the 
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AHBA currently provides the best available spatial resolution for transcriptomic analysis of 

cortex-wide macrostructural patterns, as existing developmental gene expression atlases have 

significantly sparser anatomical coverage (Keil et al., 2018). 

Given the cross-sectional nature of the PNC data, our findings also preclude conclusions 

about how atypical morphometry patterns across MCPs may be related to eventual help-seeking 

behaviour or onset of a first episode of psychosis. Importantly, there is evidence that distressing 

PS symptoms which are also persistent over time are associated with the most severe functional 

and mental health impairments in youth (Karcher, Loewy, et al., 2022). The use of longitudinal 

datasets capturing an extended period of development, as they become available, holds potential 

to substantiate the presented brain-behavioural relationships and clarify the extent to which cortical 

MCPs in the PS capture neural risk of transition to more severe psychopathological states. 

 

7. Contributions and Conclusion 

The present work adds to a growing understanding that individual psychosis spectrum 

symptoms do not occur in isolation, and neurobiologically reflect distributed changes across 

networks of areas rather than mapping precisely to individual loci. Leveraging an informative 

timeframe for psychopathology development, we delineate a succinct, data-driven representation 

of cortical morphometric organization in PS youth that integrates complementary information from 

cortical thickness, surface area, mean curvature, and local gyrification index. The identified 8 

morphometric covariance patterns provide an alternative to existing anatomical atlas definitions 

that can be easily applied to new datasets and is readily comparable to other maps of cortical 

organization. We also uncover a novel multivariate mapping between individual morphometric 

variation in MCPs and a latent PS dimension defined by disturbed self-experience, and benchmark 

the contributing “PS-related” MCPs against functional imaging and molecular targets for the first 

time. We observe that MCP vulnerability to PS-related alterations is embedded in large-scale 

cognitive and cortical functional architectures, facilitating insights into PS brain-behaviour 

relationships in the context of structure-function coupling. Further, by incorporating whole-brain 

gene expression data, we reveal an anterior frontotemporal–visual transcriptional axis which 

separates anterior PS-related MCPs from all other MCPs. The corresponding anterior 

frontotemporal gene signature is enriched for neurons and certain glia, synaptic signalling 
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processes, and psychiatric disorder-related genes, thus bridging macroscale PS-related cortical 

patterns with established molecular substrates of psychosis vulnerability. 

In summary, this study sheds novel insights into functionally and biologically grounded 

neuroanatomical concomitants of the developing PS. Our findings show that by harnessing shared 

variation among multiple MRI-derived metrics along with a dimensional approach to symptoms, 

a more nuanced understanding of neural PS signatures is possible. Taking this a step further, we 

illustrate how vulnerability in morphologically coordinated cortical units may be guided by 

multiple modes of cortical organization. Our integrated characterization of PS symptom–

morphometry mappings provide a rich benchmark against which high-risk or psychotic disorder 

patient phenotypes can be evaluated, and holds potential to inform refined biomarkers of the 

transition to clinical psychosis. 
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8. Appendix 

Appendix Figure 1. Quality control (QC) counts by T1w MRI processing stage. 
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Appendix Figure 2. Generalizability of PS-derived MCPs. Comparison of the cortical maps of 
the 8 MCPs identified in the primary PS sample (top) with the 8-MCP solution for PNC youth 
who did not meet PS criteria (middle) and the 6-MCP solution Ziolkowski et al (2022, in prep) 
found to be stable in a sample of autism spectrum disorder (ASD) patients and matched 
neurotypical individuals (bottom). Each set of MCPs is shown on the corresponding group-
average brain. 
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Appendix Figure 3. Split-half resampling results for behavioural PLS on subject-specific 
MCP loadings and clinical-behavioural features of PS youth. P-values of the split-half 
correlations (n = 200) of the left (Ucorr; red) and right (Vcorr; blue) singular vectors for all latent 
variables identified in the behavioural PLS analysis. The dashed line corresponds to p = 0.05. Only 
the first two latent variables attained p < 0.05 for both the left and right singular vector correlations 
(*) and were therefore considered reliable. 

 
 
Appendix Table 1. Characteristics of the non-PS PNC and autism spectrum samples used to 
explore the generalizability of OPNMF-derived cortical MCPs in the primary PS dataset. 

  Non-PS PNC (n = 681) 
 Age, mean ± SD (range) 15.4 ± 3.6 (8.2–22.6) 

 Sex, n (%) 
    Female 
    Male 

 
384 (56.4) 
297 (43.6) 

 Race, n (%) 
    African American or Black 
    European American 
    Mixed or other race 

 
232 (34.1) 
371 (54.5) 
78 (11.5) 

  
Autism spectrum sample 

POND  
(n = 108) 

SickKids 
(n = 196) 

UK AIMS 
(n = 182) 

Total 
(n = 486) 

 Age range (median) 4.5–21.9 4–49 18–52 4–52 (18.4) 

 ASD:NT 64:44 79:117 100:82 243:243 

 
Sex, ASD:NT 
    Female 
    Male 

 
18:13 
46:31 

 
19:36 
60:81 

 
46:34 
54:48 

 
83:83 
160:160 

 POND = Province of Ontario Neurodevelopmental Disorders Network; SickKids = Margot Taylor Lab at the Hospital for 
Sick Children Toronto; UK AIMS = UK Medical Research Council Autism Imaging Multicentre Study Consortium 

ASD = autism spectrum disorder; NT = neurotypical 

https://www.sciencedirect.com/topics/medicine-and-dentistry/partial-least-squares-regression
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Appendix Table 2. Biological process GO terms omitted from visualization. Terms and 
substrings used to systematically identify non-interesting biological process GO categories, which 
were categories that were enriched in the mPLS-derived gene sets but are non-specific or otherwise 
not directly related to neural function. Note that this list does not exhaustively capture all categories 
omitted from visualization, as others were manually excluded. 

“actin” 
“cardiac” 
“cell cycle” 
“complex assembly” 
“DNA” 

“lipid” 
“methyl” 
“microtubule” 
“phagy” 
“phospho” 

“protein” 
“RNA” 
“transcription” 
“translation” 

 
 
 
Appendix Table 3. PS symptom factor intercorrelations for the 2-factor, 3-factor, and 4-
factor solutions. In the solution chosen for the main analyses (*), F1, F2, and F3 correspond to 
negative/disorganized symptoms, disturbed self-experience, and hallucinations/abnormal 
perceptions, respectively. 

 2-Factor  3-Factor*  4-Factor 
 F1 F2  F1 F2 F3  F1 F2 F3 F4 
F1 1   1    1    
F2 0.08 1  0.23 1   0.32 1   
F3 - -  -0.09 0.34 1  0.21 -0.11 1  
F4 - -  - - -  0.19 0.04 0.32 1 

 
 
 
Appendix Table 4. Details of PS symptom items from the GOASSESS interview that were 
included in the factor analysis, and their loadings in the final 3-factor solution. (Continued on 
next page) Loadings < 0.35 were removed. F1, F2, and F3 correspond to negative/disorganized 
symptoms, disturbed self-experience, and hallucinations/abnormal perceptions, respectively. 
*Two items derived from the PS-R screening tool (“Do people ever tell you that they can’t 
understand you?”, “Do people ever seem to have difficulty understanding you?”) were very highly 
correlated across subjects, and thus were summed into a single “Communication difficulties” item 
for factor analysis. Kiddie Schedule for Affective Disorders and Schizophrenia; PS-R = PRIME 
Screen-Revised; SIPS = Structured Interview for Psychosis-risk Syndromes 
 

 



 

 

Brief description Tool Item F1 F2 F3 

Verbal hallucination K-SADS Have you ever heard voices when no one was there?   .80 

Auditory hallucination K-SADS Did you ever hear other sounds or noises that other people couldn't hear?   .51 

Visual hallucination K-SADS Have you ever seen visions or seen things which other people could not see?   .64 

Olfactory hallucination K-SADS Have you ever smelled strange odors other people could not smell?   .41 

Tactile hallucination K-SADS Have you ever had strange feelings in your body like things were crawling on you or someone touching you and 
nothing or no one was there?   .74 

Odd beliefs K-SADS Have you ever believed in things that most other people or your parents don't believe in?   .45 

Persecutory K-SADS Have you ever believed in things and later found out they weren't true, like people being out to get you, or talking 
about you behind your back, or controlling what you do or think?    

Unusual thoughts PS-R I think that I have felt that there are odd or unusual things going on that I can't explain.  .39  

Predict future PS-R I think that I might be able to predict the future.    

Thought control PS-R I may have felt that there could possibly be something interrupting or controlling my thoughts, feelings, or actions.  .64  

Superstitions PS-R I have had the experience of doing something differently because of my superstitions.  .36  

Reality confusion PS-R I think I may get confused at times whether something I experience or perceive may be real or may be just part of my 
imagination or dreams.  .53  

Mind reading PS-R I have thought that it might be possible that other people can read my mind, or that I can read others' minds.  .58  

Paranoia PS-R I wonder if people may be planning to hurt me or even may be about to hurt me.  .53  

Grandiosity PS-R I believe that I have special natural or supernatural gifts beyond my talents and natural strengths.  .36  

Mind tricks PS-R I think I might feel like my mind is "playing tricks" on me.  .47  

Auditory perception PS-R I have had the experience of hearing faint or clear sounds of people or a person mumbling or talking when there is no 
one near me.   .77 

Audible thoughts PS-R I think that I may hear my own thoughts being said out loud.  .49  

Sense of going crazy PS-R I have been concerned that I might be "going crazy."  .48  

Communication 
difficulties* PS-R Do people ever tell you that they can’t understand you? 

Do people ever seem to have difficulty understanding you?    

Loss of sense of self PS-R Do you ever feel a loss of sense of self or feel disconnected from yourself or your life?  .59  

Detachment PS-R Has anyone pointed out to you that you are less emotional or connected to people than you used to be?  .51  

Loss of motivation PS-R Within the past 6 months, are you having a harder time getting your work or schoolwork done? .68   

Loss of daily functioning PS-R Within the past 6 months, are you having a harder time getting normal activities done? .80   

Attention SIPS Trouble With Focus and Attention: Severity Scale .40   

Disorganized 
communication SIPS Changes in Speech, Disorganized communication, Tangential Speech: Severity Scale .54   

Altered perception of 
self/world SIPS Changes in Perception of Self, Others, or the World in General: Severity Scale .57   

Emotion expression SIPS Expression of Emotion: Severity Scale .44   

Occupational functioning SIPS Occupational Functioning: Severity Scale .91   

Avolition SIPS Avolition: Severity Scale .78   



 

 

Appendix Table 5. Race differences in symptom factor scores. Using linear regression, subject 
scores for each factor were modelled as a function of race with age and sex as covariates. Results 
of pairwise comparisons using Tukey’s test, averaged over sex, are shown. Note that no 
comparison attained statistical significance at the p < 0.05 level. 

 African American -
European American 

African American -
Mixed/other race 

European American 
- Mixed/other race 

Factor t p t p t p 

Negative/disorganized -0.102 0.994 0.917 0.630 0.909 0.635 

Disturbed self-
experience 

1.905 0.139 0.844 0.676 -0.515 0.864 

Hallucinations/ 
abnormal perceptions 

2.250 0.065 -0.230 0.971 -1.733 0.195 
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Appendix Table 6. Top 15 Disease Ontology terms and enrichment ratios for the PLS+ gene 
set from the mcPLS analysis. The preprocessed gene list from the Allen Human Brain Atlas (n 
= 15633) was served as the reference set. 

Disease term* Description Enrichment ratio pFDR 

C0024667 Animal Mammary Neoplasms 1.53 6.11×10-3 

C0041696 Unipolar Depression 1.40 6.11×10-3 

C0281966 reproductive system abnormality 2.39 6.11×10-3 

C0744356 genital abnormal 2.39 6.11×10-3 

C0023893 Liver Cirrhosis, Experimental 1.20 7.01×10-3 

C1269683 Major Depressive Disorder 1.36 1.62×10-2 

C0005586 Bipolar Disorder 1.23 1.90×10-2 

C0030567 Parkinson Disease 1.67 4.36×10-2 

C0019693 HIV Infections 1.50 6.13×10-2 

C1260899 Anemia, Diamond-Blackfan 2.21 6.76×10-2 

C0024668 Mammary Neoplasms, Experimental 1.37 1.11×10-1 

C0036341 Schizophrenia 1.13 1.78×10-1 

C0009241 Cognition Disorders 1.84 2.14×10-1 

C4021821 Abnormality of the urinary system 1.99 2.22×10-1 

C0026848 Myopathy 1.47 2.32×10-1 
* top 15 terms shown with DisGeNET identification codes 
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Appendix Table 7. Top 15 Disease Ontology terms and enrichment ratios of the PLS- gene 
set from the mcPLS analysis. The preprocessed gene list from the Allen Human Brain Atlas (n 
= 15633) served as the reference set. 

Disease term* Description Enrichment ratio pFDR 

C0014544 Epilepsy 1.37 1.56×10-2 

C3714756 Intellectual Disability 1.30 2.09×10-2 

C0557874 Global developmental delay 1.30 2.09×10-2 

C1864897 Cognitive delay 1.30 2.09×10-2 

C4020875 Mental and motor retardation 1.30 2.09×10-2 

C0025362 Mental Retardation 1.29 2.09×10-2 

C0423903 Low intelligence 1.29 2.09×10-2 

C0917816 Mental deficiency 1.29 2.09×10-2 

C1843367 Poor school performance 1.29 2.09×10-2 

C4020876 Dull intelligence 1.29 2.09×10-2 

C0678230 Congenital Epicanthus 1.55 5.40×10-2 

C0036572 Seizures 1.28 7.24×10-2 

C4024665 High-grade hypermetropia 2.53 1.50×10-1 

C0678222 Breast Carcinoma 2.40 1.65×10-1 

C0019572 Hirsutism 2.01 1.91×10-1 
* top 15 terms shown with DisGeNET identification codes 
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