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Abstract 

Despite the successful prosecution of large-scale genetic association studies to identify 

thousands of genetic determinants for respiratory diseases, the way to translate these insights 

into clinical fields has remained unrefined. This doctoral thesis presented potential avenues to 

translate such genetic findings into the clinical management of respiratory diseases, 

encompassing alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF) 

and coronavirus disease 2019 (COVID-19).  

 

First, AATD is a rare monogenic disorder caused by mutations in the SERPINA1 gene. We 

demonstrated that in the UK Biobank, among 140 European-ancestry participants with the 

PI*ZZ genotype of SERPINA1, the most common AATD-associated genotype, only nine 

were diagnosed with AATD. Nonetheless, those with PI*ZZ had a substantially increased 

burden of multiple symptoms and diseases, including COPD and cirrhosis. It indicates that 

genetic testing would help identify those at risk and contribute to early intervention, such as 

smoking cessation counselling. 

 

Second, IPF is a progressive, fatal fibrotic form of interstitial lung disease leading to 

decreased lung compliance and resulting in respiratory failure. We used a Mendelian 

Randomization (MR) approach, a causal inference technique, to efficiently scan hundreds of 

plasma proteins to identify proteins which may play causal roles in IPF susceptibility. We 

identified that circulating FUT3 was associated with a reduced risk of IPF (odds ratio [OR]: 

0.81 per 1 SD increase in FUT3). FUT3 could be further investigated as drug targets for 

treatment, as well as noninvasive biomarkers of disease risk. 
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Lastly, we applied the same approach to study the novel COVID-19 pandemic. We evaluated 

the major common genetic risk for severe COVID-19 on chromosome 3, which was tagged by 

the rs10490770 C allele. Risk allele carriers age ≤60 years had higher odds of death or severe 

respiratory failure (OR: 2.7) compared with those >60 years (OR: 1.5). This risk variant 

improved the prediction of severe disease similarly to most clinical risk factors. Thus, it 

implicates the use of this genetic risk to realize genetics-guided clinical management. 

Similarly, we also used MR to identify proteins which could influence COVID-19 severity 

and susceptibility. It identified that an SD increase in OAS1 levels was associated with 

reduced COVID-19 death or ventilation needs (OR: 0.54), hospitalization (OR: 0.61), and 

susceptibility (OR: 0.78). Known pharmacological agents that increase OAS1 levels could be 

explored for their effect on COVID-19 outcomes. 

 

In summary, this doctoral thesis provided a novel contribution to the field of genetics in 

respiratory medicine, by demonstrating potential opportunity to realize clinical benefits of 

emerging worldwide genomic efforts and by identifying potentially druggable disease-

influencing plasma proteins.   
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Résumé 

Les études d'association génétique à grande échelle ont permis d’identifier avec succès des 

milliers de déterminants génétiques des maladies respiratoires, cependant la manière de 

traduire ces connaissances dans les domaines cliniques n'a pas encore été clairement définie. 

Cette thèse de doctorat présente des pistes potentielles pour traduire ces découvertes 

génétiques dans la gestion clinique des maladies respiratoires, englobant le déficit en alpha-1-

antitrypsine (AATD), la fibrose pulmonaire idiopathique (FPI) et la maladie à coronavirus 

2019 (COVID-19). 

 

Premièrement, l'AATD est un trouble monogénique rare causé par des mutations du gène 

SERPINA1. Nous avons démontré que parmi 140 participants d'ascendance européenne de la 

« UK Biobank » (UKB) présentant le génotype PI*ZZ de SERPINA1, le génotype le plus 

communément associé à l'AATD, seuls neuf avaient reçu un diagnostic d'AATD. Cependant, 

ceux ayant ce génotype présentaient de nombreux symptômes et maladies, dont la BPCO et la 

cirrhose. Ces résultats demontrent que des tests génétiques permettraient d'identifier les 

personnes à risque et de contribuer à une intervention précoce, telle que des conseils pour 

l'arrêt du tabac. 

 

Deuxièmement, la FPI est une forme fibrotique progressive et mortelle de maladie pulmonaire 

interstitielle qui entraîne une diminution de la compliance pulmonaire et une insuffisance 

respiratoire. Nous avons utilisé une approche de randomisation mendélienne (RM), une 

technique d'inférence causale, pour analyser efficacement des centaines de protéines 

plasmatiques afin d'identifier les protéines susceptibles d'influencer cette pathologie. Nous 

avons identifié que la protéine FUT3 en circulation était associée à un risque réduit de FPI 

(odds ratio [OR] : 0,81 pour une augmentation de 1 ecart-type de FUT3). Ainsi, la protéine 
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FUT3 pourrait faire l'objet de recherches plus approfondies en tant que cible thérapeutique et 

en tant que biomarqueur non invasif du risque de FPI. 

 

Enfin, nous avons appliqué la même approche pour étudier la nouvelle pandémie de la 

COVID-19. Nous avons évalué le principal risque génétique commun sur le chromosome 3 de 

la COVID-19 sévère, marqué par l'allèle C rs10490770. Les porteurs de cet allèle âgés de ≤60 

ans avaient un risque plus élevé de décès ou d'insuffisance respiratoire sévère (odds ratio 

[OR]: 2,7) par rapport à ceux âgés de >60 ans (OR: 1,5). Ce facteur de risque a amélioré la 

prédiction de la forme sévère de la maladie de la même manière que la plupart des facteurs de 

risque cliniques, démontrant l’utilité de réaliser une gestion clinique guidée par la génétique. 

Nous avons également utilisé la RM pour identifier les potentielles protéines influençant la 

sévérité et la susceptibilité à la COVID-19. Nous avons mis en évidence qu'une augmentation 

de l’ecart-type des taux d'OAS1 était associée à une réduction de la mortalité ou des besoins 

de ventilation dus à la COVID-19 (OR : 0,54), de l'hospitalisation (OR : 0,61) et de la 

susceptibilité (OR : 0,78). Les agents pharmacologiques connus qui augmentent les taux 

d'OAS1 pourraient ainsi être explorés pour leurs effets sur la COVID-19. 

 

En résumé, cette thèse de doctorat a apporté une nouvelle contribution au domaine de la 

génétique en médecine respiratoire, en démontrant l'opportunité potentielle de tirer des 

bénéfices cliniques des efforts émergents en génomique à l'échelle mondiale et en identifiant 

de potentielles protéines plasmatiques, influençant les maladies, comme cibles thérapeutiques.  
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common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with 

COVID-19 severity outcomes and COVID-19-related complications. Risk allele carriers had 

increased odds of several COVID-19 complications: not only severe respiratory failure (OR, 

2.1; 95% CI, 1.6–2.6), but also venous thromboembolism (OR, 1.7; 95% CI, 1.2–2.4), and 

hepatic injury (OR, 1.5; 95% CI, 1.2–2.0). Risk allele carriers aged 60 years and younger had 

higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8–3.9) compared with 

those more than 60 years old (OR, 1.5; 95% CI, 1.2–1.8; interaction, P = 0.038). This risk 

variant improved the prediction of death or severe respiratory failure similarly to, or better 
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than, most established clinical risk factors. In both manuscripts, we provided a potential 

avenue to use genetic testing to identify those at risk for early intervention. 

 

In Chapters 4 and 5, we applied the Mendelian randomization (MR) approach to the recent 

genome-wide association studies (GWASs) to identify potential disease-influencing plasma 

proteins for respiratory diseases. Chapter 4 is entitled “Genetically increased circulating 

FUT3 level leads to reduced risk of Idiopathic Pulmonary Fibrosis: a Mendelian 

Randomisation Study”. We identified that circulating FUT3 was associated with a reduced 

risk of idiopathic pulmonary fibrosis (IPF) (OR: 0.81 per 1 SD increase in FUT3). Chapter 5 

is entitled “A Neanderthal OAS1 isoform protects individuals of European ancestry against 

COVID-19 susceptibility and severity”. We identified that SD increase in OAS1 levels was 

associated with reduced COVID-19 death or ventilation (OR: 0.54), hospitalization (OR: 

0.61), and susceptibility (OR: 0.78). Both plasma proteins could be further investigated as 

drug targets for treatment, as well as noninvasive biomarkers of disease risk. 

 

In summary, this doctoral thesis provides novel clinical implications of genetic determinants 

of a variety of respiratory diseases, by showcasing the potential avenue for genomics-guided 

clinical management and by identifying potential disease-influencing plasma proteins that 

could be further investigated as therapeutic targets and biomarkers.  
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Format of the Thesis 

This is a manuscript-based thesis format as described in the Thesis Preparation Guidelines by 

the Department of Graduate and Postdoctoral Studies. This thesis contains seven chapters. 

Chapter 1 is an introduction to this thesis. Chapters 2 to 5 have been published in the 

European Respiratory Journal, the Journal of Clinical Investigation, the European 

Respiratory Journal, and Nature Medicine, respectively. Chapter 6 is a discussion of Chapters 

2 to 5. Chapter 7 is a conclusion with future aims for Chapters 2 to 5. A summary of other 

publications can be found in the Appendix. 

  



 27 

Contribution of Authors 

Chapter 2 is a manuscript authored by Tomoko Nakanishi, Vincenzo Forgetta, Tomohiro 

Handa, Toyohiro Hirai, Vincent Mooser, G. MarkLathrop, William O.C.M. Cookson and J. 

Brent Richards. It was published in the European Respiratory Journal on December 10th, 

2020. Conception and design: T. Nakanishi and J.B. Richards. Data analyses: T. Nakanishi. 

Data acquisition: T. Nakanishi, V. Forgetta and J.B. Richards. Interpretation of data: T. 

Nakanishi, V. Forgetta, T. Handa, T. Hirai, V. Mooser, G.M. Lathrop, W.O.C.M. Cookson 

and J.B. Richards. Intellectual contribution to the manuscript: T. Nakanishi, V. Forgetta, T. 

Handa, T. Hirai, V. Mooser, G.M. Lathrop, W.O.C.M. Cookson and J.B. Richards. All 

authors were involved in preparation of the further draft of the manuscript and revising it 

critically for content. All authors gave final approval of the version to be published. T. 

Nakanishi and J.B. Richards are the guarantors. The corresponding author attests that all 

listed authors meet authorship criteria and that no others meeting the criteria have been 

omitted. Specifically, as the first author of this paper, I curated data from UK Biobank and 

performed all the analyses. I wrote the abstract, introduction, methods, results and discussion, 

and all relevant tables and figures, both main and supplementary. 

 

Chapter 3 is a manuscript authored by Tomoko Nakanishi, Sara Pigazzini, Frauke 

Degenhardt, Mattia Cordioli, Guillaume Butler-Laporte, Douglas Maya-Miles, Luis Bujanda, 

Youssef Bouysran, Mari E.K. Niemi, Adriana Palom, David Ellinghaus, Atlas Khan, Manuel 

Martínez-Bueno, Selina Rolker, Sara Amitrano, Luisa Roade Tato, Francesca Fava, FinnGen, 

The COVID-19 Host Genetics Initiative (HGI), Christoph D. Spinner, Daniele Prati, David 

Bernardo, Federico Garcia, Gilles Darcis, Israel Fernández-Cadenas, Jan Cato Holter, Jesus 

M. Banales, Robert Frithiof, Krzysztof Kiryluk, Stefano Duga, Rosanna Asselta, Alexandre 

C. Pereira, Manuel Romero-Gómez, Beatriz Nafría-Jiménez, Johannes R. Hov, Isabelle 



 28 

Migeotte, Alessandra Renieri, Anna M. Planas, Kerstin U. Ludwig, Maria Buti, Souad 

Rahmouni, Marta E. Alarcón-Riquelme, Eva C. Schulte, Andre Franke, Tom H. Karlsen, 

Luca Valenti, Hugo Zeberg, J. Brent Richards, and Andrea Ganna. It was published in the 

Journal of Clinical Investigation on October 1, 2021. TN, GBL, BNJ, FG, RF, MRG, KUL, 

MB, S Rahmouni, MEAR, ECS, THK, LV, HZ, JBR, and AG conceived and designed the 

study. TN, SP, FD, MC, GBL, DMM, BNJ, YB, MEKN, DE, MMB, KUL, MEAR, LV, HZ, 

BR, and AG applied statistical, mathematical, computational, or other formal techniques to 

analyze or synthesize data. TN, FD, MC, GBL, DMM, BNJ, YB, MEKN, DE, MMB, S 

Rolker, SA, LRT, FF, CDS, FG, IFC, JCH, RF, RA, ACP, LB, JRH, IM, AR, KUL, MB, 

ECS, JBR, and AG curated data. TN, GBL, BNJ, S Rolker, RF, MRG, IM, KUL, MEAR, LV, 

HZ, BR, and AG interpreted data. DMM, SA, FF, CDS, DP, DB, FG, GD, JCH, RF, SD, 

MRG, JRH, IM, AR, KUL, MB, S Rahmouni, MEAR, ECS, THK, JBR, and AG acquired 

funding. TN, GBL, DMM, BNJ, YB, RF, IM, KUL, MEAR, JBR, and AG performed 

experiments. TN, GBL, MMB, MEAR, HZ, JBR, and AG developed or designed the 

methodology. TN, FD, DMM, S Rolker, CDS, DP, DB, FG, GD, JCH, JMB, JRH, IM, KUL, 

S Rahmouni, ECS, AF, THK, LV, JBR, and AG provided project administration. FG, GD, 

MRG, IM, S Rahmouni, MEAR, JBR, and AG provided resources. DMM, BNJ, FG, MRG, 

IM, KUL, S Rahmouni, MEAR, JBR, and AG supervised the experiments. TN, SP, FD, DE, 

AK, KK, and AG verified the overall replication/reproducibility of results as a separate 

activity. TN and AG prepared, created, and visualized the published work. TN, JBR, and AG 

wrote the original draft of the manuscript. TN, GBL, DMM, BNJ, AP, S Rolker, IFC, JCH, 

RF, KK, SD, RA, LB, JRH, IM, AR, AMP, KUL, MEAR, THK, LV, HZ, JBR, and AG 

reviewed and edited the manuscript. All authors were involved in further drafts of the 

manuscript and revised it critically for content. All authors gave final approval of the version 

to be published. The corresponding authors attest that all listed authors meet authorship 

criteria and that no others meeting the criteria have been omitted. Specifically, as the first 



 29 

author of this paper, I curated and harmonized all individual-level data from all cohorts and 

performed all the analyses. I wrote the abstract, introduction, methods, results and discussion, 

and all relevant tables and figures, both main and supplementary. 

 

Chapter 4 is a manuscript authored by Tomoko Nakanishi, Agustin Cerani, Vincenzo 

Forgetta, Sirui Zhou, Richard J. Allen, Olivia C. Leavy, Masaru Koido, Deborah Assayag, R. 

Gisli Jenkins, Louise V. Wain, Ivana V. Yang, G. Mark Lathrop, Paul J. Wolters, David A. 

Schwartz, J. Brent Richards. It was published online ahead of print in the European 

Respiratory Journal on Feburary, 2022. Conception and design: T. Nakanishi and J.B. 

Richards. Data analyses: T. Nakanishi and O.C. Leavy. Manuscript writing: T. Nakanishi and 

J.B. Richards. Data acquisition: R.J. Allen, R.G. Jenkins, L.V. Wain, P.J. Wolters and D.A. 

Schwartz. Interpretation of data: all authors. Intellectual contribution to the manuscript: all 

authors. All authors were involved in the preparation of the further draft of the manuscript and 

revising it critically for content. All authors gave final approval of the version to be published. 

T. Nakanishi and J.B. Richards are the guarantors. Specifically, as the first author of this 

paper, I performed all the analyses. I wrote the abstract, introduction, methods, results and 

discussion, and all relevant tables and figures, both main and supplementary. 

 

Chapter 5 is a manuscript authored by Sirui Zhou, Guillaume Butler-Laporte , Tomoko 

Nakanishi, David R. Morrison, Jonathan Afilalo, Marc Afilalo, Laetitia Laurent, Maik 

Pietzner, Nicola Kerrison, Kaiqiong Zhao, Elsa Brunet-Ratnasingham, Danielle Henry, Nofar 

Kimchi, Zaman Afrasiabi, Nardin Rezk, Meriem Bouab, Louis Petitjean, Charlotte Guzman, 

Xiaoqing Xue, Chris Tselios, Branka Vulesevic, Olumide Adeleye, Tala Abdullah, Noor 

Almamlouk, Yiheng Chen, Michaël Chassé, Madeleine Durand, Clare Paterson, Johan 

Normark, Robert Frithiof, Miklós Lipcsey, Michael Hultström, Celia M. T. Greenwood, Hugo 

Zeberg, Claudia Langenberg, Elin Thysell , Michael Pollak, Vincent Mooser, Vincenzo 



 30 

Forgetta, Daniel E. Kaufmann and J. Brent Richards. It was published in Nature Medicine on 

February 25, 2021. Conception and design: S.Z., G.B.L. and J.B.R. Data analyses: S.Z. and 

T.N. Data acquisition: T.N., G.B.L., D.M., D.E.K., J.A., M.A., L.L., E.B.R., D.H., N.K., Z.A., 

N.R., M.B., L.P., C.G., X.X., C.T., B.V., O.A., T.A., N.A., M.C., M.D., V.F., D.E.K. and 

J.B.R. Interpretation of data: S.Z., G.B.L., T.N., M.P., Y.C., D.E.K., V.F. and J.B.R. Funding 

acquisition: D.M., V.M., V.F. and J.B.R. Methodology: S.Z., K.Z., C.M.T.G. and J.B.R. 

Project administration: D.M., V.F. and J.B.R. Validation: S.Z., T.N., M.P., N.K., M.P., J.N., 

E.T., C.L., D.E.K. and J.B.R. Visualization: S.Z., T.N. and V.F. Writing—original draft: S.Z., 

G.B.L., T.N. and J.B.R. Writing—review and editing: S.Z., G.B.L., T.N., M.P., H.Z., V.M., 

M.P., R.F., M.L., M.H., C.P., D.E.K. and J.B.R. All authors were involved in further drafts of 

the manuscript and revised it critically for content. All authors gave final approval of the 

version to be published. The corresponding author attests that all listed authors meet 

authorship criteria and that no others meeting the criteria have been omitted. Specifically, as 

the first author of this paper, I contributed to the data generation and curation of COVID-19 

HGI (5.6.2) and BQC19 data (5.6.7), co-localization studies (5.4.2, 5.6.5), and sQTL and 

eQTL studies for OAS genes (5.4.4, 5.6.6). I wrote the above listed results (5.4.2, 5.4.4), the 

above listed methods (5.6.2, 5.6.5, 5.6.6, 5.6.7), discussion (5.5), and relevant tables (table 2) 

and supplementary figures. 

 

  



 31 

Chapter 1 : General introduction 

1.1 Global impact of respiratory diseases 

Humans cannot live without lungs, which are responsible for bringing oxygen into the body 

and helping get rid of waste gases with every exhale. The lung is one of the most important 

vital organs, which is vulnerable to infection and injury from the external environment 

because of its constant exposure to particles, chemicals, and infectious organisms in ambient 

air.  

 

Respiratory diseases impose an immense worldwide health burden. Chronic obstructive 

pulmonary disease (COPD) is one of the most common respiratory diseases in the general 

population and can lead to decreased health status, exercise capacity, morbidity, and 

mortality. Approximately 10 percent of individuals aged 40 years or older have COPD, 

although the prevalence varies between countries and increases with age(1). COPD is defined 

by airflow limitation that is incompletely reversible compared to asthma(2), and is the third 

leading cause of death, contributing to 5% of global mortalities(3). WHO estimates 65 million 

people have moderate to severe COPD, out of more than 3 million people die of the 

disease(3). Idiopathic pulmonary fibrosis (IPF) is another progressive, fatal fibrotic interstitial 

lung disease (ILD) that typically affects adults aged more than 65, leading to decreased lung 

compliance, disrupted gas exchange, and the resultant respiratory failure(4). The incidence 

rate of IPF is lower compared to COPD, i.e. about 3-9 cases per 100000 people per year(5). 

Nevertheless, IPF has a striking impact on global health as the median survival time from the 

diagnosis is 3 years, which is equivalent or worse compared to several forms of cancers(6). 

 

Emerged in 2019, the coronavirus disease of 2019 (COVID-19) pandemic caused by infection 

with SARS-CoV-2. COVID-19 has resulted in an enormous health and economic burden 
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worldwide. COVID-19 has rapidly become one of the most impactful respiratory diseases, as 

more than 20 million individuals have been infected as of end of January 2022(7). COVID-19 

has also changed our personal lives, where new social attitudes, such as community mask-

wearing, social distancing, enhanced personal hygiene and reduced travel, have been widely 

accepted. One of the most remarkable features of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) infection is the variation in consequences, which range from 

asymptomatic to life-threatening, viral pneumonia, and acute respiratory distress 

syndrome(8).  

 

 

1.2 Genetic evidence for respiratory diseases 

Like all other human disorders, respiratory diseases occur as a result of interactions between 

genetic and environmental factors. For example, smoking is the leading risk factors for many 

respiratory diseases, such as COPD and IPF. The chronologically taken 

environmental/occupational history may disclose other important risk factors for COPD, such 

as exposure to fumes or organic/inorganic dusts. These exposures help to explain the 20 

percent of patients with COPD (defined by lung function alone), while the 20 percent of 

patients who die from COPD had never smoked(9). Genetics could partially explain the 

residual variablity of the disease onset.  

 

Alpha-1 antitrypsin deficiency (AATD) is a monogenic cause of COPD by mutations in the 

SERPINA1 gene inherited with incomplete penetrance(10) and has a prevalence of 1 case per 

3000 to 5000 people(11). Alpha-1 antitrypsin (AAT) is an endogenous inhibitor of the 

proteolytic enzyme elastase and a severe deficiency of AAT enhances the burden of 

neutrophil elastase in the lungs, leading to emphysema(12). Intrahepatic accumulation of non-

secreted AAT also predisposes to liver diseases including cirrhosis and hepatic 
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carcinoma(12). The most common disease-associated mutation is denoted PI*Z 

(p.Glu342Lys), and PI*ZZ homozygotes account for the most common severe phenotype of 

AATD(12). The compound heterozygous genotype PI*SZ, where PI*S is another missense 

mutation (p.Val264Glu), is associated with a more mildly increased risk of emphysema in 

smokers(13). PI*MM refers to homozygosity for wild-type alleles.  

 

On the other hand, more complex respiratory diseases, such as IPF, have more polygenetic 

architecture. Owing to the prior family-based genetic studies for familial pulmonary fibrosis 

(FPF)(14–16) and large-scale genome-wide association studies (GWASs) for IPF(17, 18), 

both rare (with a minor allele frequency of less than 0.1%) variants (i.e. in telomere-related 

genes and surfactant-associated protein genes) and common variants (i.e. in MUC5B, DSP, 

and telomere-related genes) have been discovered to predispose to IPF.  

 

 

1.3 Host genetics contributing to the COVID-19 outcomes. 

COVID-19 is a respiratory illness appearently caused by the SARS-CoV-2 infection. 

Although established host factors, such as increasing age, male sex, and higher BMI(19), 

correlate with disease severity, these risk factors alone do not explain all of the variability in 

disease severity observed across individuals. Indeed, severe cases were observed among 

young individuals without apparent previous pre-existing risk factors, and sometimes they 

clustered in families(20), suggesting that human genetics play an role for disease risk. In the 

recent study(20), rapid clinical whole-exome sequencing of the COVID-19 patients 

demonstrated the segregation in available family members with loss-of-function variants of 

the X-chromosomal TLR7. Recent large-scale meta genome-wide association studies 

(GWAS) for COVID-19 outcomes, which is a study design to identify common genetic 

determinants fo complex diseases, identified several loci associated with COVID-19 severity 



 34 

and susceptiility(21–23). These included members of the Toll-like receptor group such as 

TLR3 and TLR7, type I interferon receptors (Interferon Alpha And Beta Receptor Subunit 2, 

IFNAR2), Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2), interferon‐stimulated genes 

such as oligoadenylate synthetase 1 (OAS1) (21–24). One of the major genetic risks for 

COVID-19 severity resides in chromosome 3, which confers about doubled-risk of ICU 

addmission(22). This locus on chromosome 3p21 includes the putative SARS-CoV-2 

coreceptors LZTFL1. Using chromosome conformation capture and gene-expression analysis, 

a recent study identified the gain-of-function SNP for LZTFL1, rs17713054G>A, as a 

probable causative variant conferring increased risk of respiratory failure with COVID-

19(25). 

 

 

1.4 Limited evidence in translating the genetic findings into clinical management of 

respiratory diseases 

The capacity to undertake genome-wide association studies (GWAS) has resulted in 

spectacular advances in the understanding of the genetic basis of common diseases(26). 

Although compelling signals have been found, often highlighting previously unsuspected 

biology, few studies have carefully investigated the way to translate these insights into 

clinical fields.  

 

There are two principal routes through which such translation might be realized(26). The first 

translational route lies through using genetic profiling of individual patterns of disease 

predisposition to develop more personalized approaches to disease management. The major 

limitation for most complex traits is that the variants identified so far explain only a small 

proportion of individual variation in disease risk. Therefore, except for those with highly 

penetrant rare genetic variants, genetic profiling provides limited information on disease risk 
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beyond that available from conventional risk factors. Consequently, the practical example of 

genetic testing is limited in specific fields, such as prenatal screening(27), increased 

monitoring or prophylactic surgery for variants associated with hereditary cancer syndromes 

(i.e. BRCA1/2)(28), or additional testing or interventions for variants associated with 

hypertrophic cardiomyopathy(29). 

 

The second translational route is identification of therapeutic targets within causal pathways, 

leading to novel therapeutic agents for treatment and/or prevention. Identification of causal 

pathways could bolster efforts to identify biomarkers, allowing improved disease prediction 

and monitoring of disease progression and treatment response, as the previous study estimated 

that selecting genetically supported targets could double the success rate in clinical 

development(30). 

 

In the field of respiratory disease, the ultimate objectives of genetic studies to translate 

genetic findings into clinical practice remained far away from the accomplishment. 

There were very few occations where genetic testing is recommended, i.e. when people 

present with respiratory symptoms and are suspected of some diseases, such as cystic fibrosis, 

COPD, and tuberous sclerosis, genetic testing may be recommended. Although there were 

many canonical examples in other fields, such as statins (treatment of dyslipidemia) for 

HMGCR, toclizumab (treatment of rheumatoid arthritis) for IL6R(30, 31), there has been little 

evidence of genomics-guided drug development in respiratory diseases.  

 

 

1.5 Objectives and hypothesis 

The two major objectives of the presented doctoral thesis were to: 

1. Seek the implications of genomics-guided clinical management (Chapters 2 and 3). 



 36 

2. Identify novel potentially causal proteins to disease susceptibility and severity, which 

could serve as drug targets and potential biomarkers (Chapters 4 and 5). 

 

Recent successes in the identification of genetic determinants of respiratory diseases(17, 23, 

32) have increased confidence that this information can be translated into clinically beneficial 

improvements in management. To do so, in this doctoral thesis, I sought the two potential 

routes listed above, through which such translation might be effective.  

 

In the first objective, I hypothesized that the understanding of individual patterns of disease 

predisposition through genetic profiling may aid in developing more personalized approaches 

to clinical management. To answer this question, in Chapter 2, I first examined the frequency 

of the PI*ZZ genotype in individuals with and without diagnosed AATD from UK Biobank 

and assessed the associations of the genotypes with clinical outcomes and mortality. In 

Chapter 3, I combined and harmonized individual-level data from 13,888 COVID-19 patients 

from 17 cohorts in 9 countries to assess the association of the major common COVID-19 

genetic risk factor (chromosome 3 locus tagged by rs10490770) with COVID-19 severity 

outcomes and COVID-19-related complications. Through this investigation, I provided the 

potential route to improve the prediction of severe COVID-19 using genetic information. 

 

In the second objective, I hypothesized that Mendelian randomization (MR) with circulating 

proteins may identify specific proteins that play causal roles in lung diseases, which could be 

attractive targets for drug discovery and biomarkers. This is because circulating proteins are 

easy to measure from blood, are more stable than mRNA, but are still able to target specific 

genes. In Chapters 4 and 5, we used Mendelian randomization analyses as a hypothesis-

generating tool, which efficiently scanned hundreds of circulating proteins, to identify 
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potential causal proteins as possible therapeutic targets for IPF and COVID-19 severity and 

susceptibility, respectively. 

 

In summary, the scientific hypothesis of this Thesis was twofold: First, through the largescale 

epidemiological study, we could obtain the understanding of individual patterns of disease 

predisposition through genetic profiling, which may aid in developing more personalized 

approaches to clinical management. Second, by using the MR approach, we could identify 

novel potentially disease-influencing proteins which could serve as drug targets and potential 

biomarkers. 
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Connecting Text: Bridge Between Chapter 1 and Chapter 2 

Chapter 2 describes a project, which sought the potential implications of genomics-guided 

clinical management in a monogenic disorder, alpha-1 antitrypsin deficiency (AATD). AATD 

remains an underdiagnosed condition despite initiatives developed to increase awareness(33). 

The World Health Organization recommends testing all COPD patients, and the European 

Respiratory Society and American Thoracic Society guidelines recommend testing all 

symptomatic adults with persistent airway obstruction, individuals with unexplained liver 

disease, and adults with necrotizing panniculitis or multisystemic vasculitis(34). Despite the 

well-established causal evidence of the SERPINA1 gene on AATD, current guidelines for α1-

antitrypsin deficiency (AATD) state that adult population screening should only be done in 

high-risk populations(35). Underdiagnosis of AATD is problematic, especially for primary 

care physicians who attend to most COPD patients, and they are usually the first point of 

contact of patients with health care providers. Electrical medical records are increasingly used 

in clinical research to enhance the knowledge about the management and progression of the 

disease based on real-life data. Database studies may help to understand the real clinical 

practice and to design public health strategies to improve the quality of care. The objective of 

this study was to describe the patterns of diagnosis of AATD and to understand the potential 

implications of genetic screening for the disease in the population-based database; UK 

Biobank. 
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Chapter 2: The undiagnosed disease burden associated with alpha-1 antitrypsin 

deficiency genotypes 

2.1 Title page 

The undiagnosed disease burden associated with alpha-1 antitrypsin deficiency 

genotypes 

Tomoko Nakanishi1,2,3,4,5, Vincenzo Forgetta2, Tomohiro Handa6, Toyohiro Hirai4, Vincent 

Mooser1,7, G. MarkLathrop8, William O.C.M. Cookson9,10 and J. Brent Richards1,2,11 

Affiliations: 1Dept of Human Genetics, McGill University, Montréal, QC, Canada. 2Centre 

for Clinical Epidemiology, Dept of Medicine, Lady Davis Institute for Medical Research, 

Jewish General Hospital, McGill University, Montréal, QC, Canada. 3Kyoto–McGill 

International Collaborative School in Genomic Medicine, Graduate School of Medicine, 

Kyoto University, Kyoto, Japan. 4Dept of Respiratory Medicine, Graduate School of 

Medicine, Kyoto University, Kyoto, Japan. 5Research Fellow of Japan Society for the 
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Genetics, Epidemiology and Biostatistics, Jewish General Hospital, McGill University, 

Montréal, QC, Canada. 
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2.2 Abstract 

Alpha-1 antitrypsin deficiency (AATD), mainly due to the PI*ZZ genotype in SERPINA1, is 

one of the most common inherited diseases. Since it is associated with a high disease burden 

and partially prevented by smoking cessation, identification of PI*ZZ individuals through 

genotyping could improve health outcomes. We examined the frequency of the PI*ZZ 

genotype in individuals with and without diagnosed AATD from UK Biobank, and assessed 

the associations of the genotypes with clinical outcomes and mortality. A phenome-wide 

association study (PheWAS) was conducted to reveal disease associations with genotypes. A 

polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/forced vital capacity 

(FVC) ratio was used to evaluate variable penetrance of PI*ZZ. Among 458164 European-

ancestry participants in UK Biobank, 140 had the PI*ZZ genotype and only nine (6.4%, 95% 

CI 3.4–11.7%) of them were diagnosed with AATD. Those with PI*ZZ had a substantially 

higher odds of COPD (OR 8.8, 95% CI 5.8–13.3), asthma (OR 2.0, 95% CI 1.4–3.0), 

bronchiectasis (OR 7.3, 95%CI 3.2–16.8), pneumonia (OR 2.7, 95% CI 1.5–4.9) and cirrhosis 

(OR 7.8, 95% CI 2.5–24.6) diagnoses and a higher hazard of mortality (2.4, 95% CI 1.2–4.6), 

compared to PI*MM (wildtype) (n=398 424). These associations were stronger among 

smokers. PheWAS demonstrated associations with increased odds of empyema, 

pneumothorax, cachexia, polycythaemia, aneurysm and pancreatitis. Polygenic risk score and 

PI*ZZ were independently associated with FEV1/FVC <0.7 (OR 1.4 per 1-SD change, 95% 

CI 1.4–1.5 and OR 4.5, 95% CI 3.0–6.9, respectively). The important underdiagnosis of 

AATD, whose outcomes are partially preventable through smoking cession, could be 

improved through genotype-guided diagnosis.  
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2.3 Introduction 

Alpha-1 antitrypsin deficiency (AATD) is one of the most common inherited respiratory 

diseases in people of European descent [1]. Alpha-1 antitrypsin (AAT) is an inhibitor of the 

proteolytic enzyme elastase and a severe deficiency of AAT enhances the burden of 

neutrophil elastase in the lungs, leading to emphysema [2]. In addition, intrahepatic 

accumulation of nonsecreted AAT predisposes to liver diseases [2].  

 

AATD is caused by mutations in the SERPINA1 gene that result in changes in the 

electrophoretic mobility of the protein predispose to AATD with incomplete penetrance [3, 

4]. The most common disease-associated mutation is denoted PI*Z (p.Glu342Lys) and PI*ZZ 

homozygotes account for the most common phenotype of AATD [2]. The compound 

heterozygous genotype PI*SZ, where PI*S is another missense mutation (p.Val264Glu), is 

associated with a more mildly increased risk of emphysema in smokers [5]. PI*MM refers to 

homozygosity for wild-type alleles.  

 

AATD is often clinically diagnosed after the identification of COPD or liver disease in 

individuals with a family history, and the average age at diagnosis is ∼45 years [6]. A 

previous report, using estimates of allele frequencies from the literature [7], but without direct 

genotyping, estimated that only 1068 of expected 305009 PI*ZZ and PI*SZ individuals had 

been included in an international AATD registry [8].  

 

Given the partial efficacy of AATD-specific therapies [9] and the availability of smoking 

cessation counselling, early diagnosis of AATD could promote earlier intervention with 

smoking cessation therapies and allow for the identification of family members at high risk. 

Given recent announcements of UK ambitions to sequence 5 million individuals [10], there 
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may exist an opportunity to identify individuals with high-risk genotypes and put in place 

appropriate diagnostic programmes to reduce the burden of this disease. 

 

Here we sought to understand the prevalence of SERPINA1 genotype status in UK Biobank 

and assess the diagnosis rate of AATD. We next explored the magnitude of association 

between SERPINA1 genotypes and respiratory conditions, changes in spirometry results, 

other extrapulmonary conditions and all-cause mortality. Taking advantage of the large 

sample size of UK Biobank, we conducted a phenome-wide association study (PheWAS) to 

investigate potential associations of SERPINA1 genotypes with other outcomes. Lastly, we 

calculated a polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/ forced 

vital capacity (FVC) ratio to assess the interactions of SERPINA1 genotypes and common 

variants affecting lung function. 

 

 

2.4 Material and methods 

2.4.1 UK Biobank study subjects  

UK Biobank is a population-based cohort which recruited people aged 40–69 years from 

across the UK. We selected 458164 participants of European descent (defined in the 

supplementary material, figures S1 and S2, table S1) with nonmissing SERPINA1 Z and S 

genotype information (rs28929474 and rs17580). Both of these variants were genotyped in 

UK Biobank, and therefore our study is not reliant upon imputation. The minor allele 

frequencies of rs28929474 and rs17580 were 0.020 and 0.048, respectively. The genotype 

definition and the quality control metrics of the genotypes are listed in supplementary table 

S2. The Z and S allele status of individuals of non-European descent is listed in 

supplementary table S3. 
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2.4.2 Ethical compliance 

The UK Biobank was approved by the North West Multi-centre Research Ethics Committee 

and informed consent was obtained from all participants prior to participation. 

 

2.4.3 Clinical data ascertainment 

Prevalent disease was ascertained by self-reported physician-made diagnoses, self-reported 

recent medication information for the disease, International Classification of Diseases (ICD)-

9 and -10 codes linked to Hospital Episode Statistics (refer to supplementary table S4 for the 

specific codes used) available at their initial visit, as in the previous studies of UK Biobank 

[11, 12]. We acknowledge that common diseases such as COPD and asthma were generally 

managed in primary care settings, and thus we included self-reported physician-made 

diagnoses in the disease ascertainment criteria in addition to Hospital Episode Statistics. The 

UK Biobank study protocol is available online [13]. The curated diagnoses were all known 

complications of AATD (supplementary table S4) [14–17]. ICD-10 codes in UK Biobank do 

not have subclassification of AATD by ICD-10 coding (E88.01), but do provide diagnosis of 

E88.0, which represents the combined diagnoses of plasma-protein metabolism disorders and 

may include diagnoses, in addition to AATD, such as plasminogen deficiency and 

bisalbuminaemia. To estimate the prevalence of AATD diagnosis, we identified individuals 

reporting a physician-made diagnosis of AATD and/or the use of medication for AATD; or 

having an ICD-9 diagnostic code for AATD. The supplementary material provides the 

detailed definition of symptoms and the spirometry quality control (supplementary table S5). 

 

2.4.4 Statistical analysis 

Regression models were fitted to assess the associations of SERPINA1 genotypes and clinical 

outcomes compared to PI*MM genotype. All the models were adjusted for age, sex, 

genotyping array, assessment centre and the first five principal components in order to 
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account for population structure. We subsequently stratified the participants by smoking 

status. Within each genotype group, the decrease of FEV1 by age was estimated by linear 

regression of FEV1 by age, adjusted for the same covariates as above and thus these were not 

derived by the longitudinal data. Survival analysis was performed using univariate Cox 

proportional hazard model to estimate the hazard of death. Detailed methods of smoking 

status definition and survival analysis are presented in the supplementary material 

(supplementary table S6). 

 

We estimated the national prevalence of PI*ZZ genotype status in the UK, assuming that the 

allele frequency rates were not different between individuals of European ancestry in UK 

Biobank and the UK citizens of European ancestry. This could be an underestimate of the 

PI*ZZ genotype frequency, given that UK Biobank is not a population-representative cohort, 

as it recruited only those aged >40 years and has some healthy volunteer bias. Next, we used 

data from the Office of National Statistics [18] to estimate the proportion of British citizens of 

European ancestry and estimated the number of British individuals carrying the PI*ZZ 

genotype. 

 

2.4.5 Sensitivity analyses 

We included those with E88.0 in ICD-10 codings for the diagnoses of AATD and recalculated 

the prevalence of the diagnosed AATD. As UK Biobank included pairs of relatives, we 

removed one randomly selected participant from each pair related to the third degree (kinship 

coefficient ⩾0.0442), leaving 449991 unrelated participants, to assess the inflation of 

association affected by familial effects. Multivariate Cox proportional hazard model adjusted 

for age was also applied for survival analysis. 
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2.4.6 Phenome-wide association study 

Next, we explored associations of SERPINA1 genotypes with other diseases using a PheWAS 

design. The detailed methods are described in the supplementary material (supplementary 

tables S7 and S8). 

 

2.4.7 Polygenic risk score for FEV1/FVC  

The recent large scale genome-wide association study of spirometry data derived from 

external cohorts of European descent [19] enabled us to establish a PRS, the weighted sum of 

effect alleles of common variants that is associated with spirometry results. We calculated the 

FEV1/FVC PRS of each individual and assessed the interactions between SERPINA1 

genotypes and this PRS. The detailed methodology is found in the supplementary material. 

 

 

2.5. Results 

2.5.1 Participant characteristics 

We identified 458164 participants in UK Biobank of European descent who had a median age 

of 58 years (interquartile range (IQR) 50–63 years), and there were 61 (0.013%) people who 

were diagnosed as having AATD (table 1, supplementary figure S2). Among 140 participants 

with the PI*ZZ genotype, only nine (6.4%, 95% CI 3.4–11.7%) were diagnosed as AATD 

(table 2). Given that there are 65.6 million citizens of the UK [20], of whom 87% are 

estimated to be of European ancestry [18], we estimate that 17439 (95% CI 14671–20579) 

European individuals in the UK carry the PI*ZZ genotype.  

 

Compared to those with PI*MM, participants with PI*ZZ had more respiratory symptoms 

(45% versus 25%), lower FEV1/FVC (median 0.74 versus 0.77) and lower FEV1 % predicted 

(median 86% versus 94%) (table 2). A total of 37 (37%) participants with PI*ZZ had 
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FEV1/FVC <0.7 (table 2). Among 17790 individuals with a diagnosis of COPD, 31 (0.17%) 

individuals had the PI*ZZ genotype, and they had more severe airway obstruction than 

PI*MM individuals. Lastly, only seven (23%, 95% CI 11–40%) PI*ZZ individuals with 

clinically detected COPD were diagnosed as having AATD (table 3), and among 1407 

participants with a diagnosis of cirrhosis, three (0.21%) had the PI*ZZ genotype and none of 

them were diagnosed as AATD. 

 

2.5.2 Association of PI*ZZ genotype with clinical outcomes  

Those with PI*ZZ had a higher risk of COPD (OR 8.8, 95% CI 5.8–13.3; p=1.1×10−24), 

asthma (OR 2.0, 95% CI 1.4–3.0; p=5.3×10−4), bronchiectasis (OR 7.3, 95% CI 3.2–16.8; 

p=2.4×10−6) and pneumonia (OR 2.7, 95% CI 1.5–4.9; p=1.2×10−3) compared to PI*MM. 

Those with the PI*ZZ genotype had higher risk of COPD regardless of smoking status, but 

effect sizes were larger for smokers (OR 13.3, 95% CI 7.5–23.8versus OR 7.9, 95% CI 3.9–

16.1). In never-smokers, the PI*ZZ genotype was not significantly associated with asthma or 

bronchiectasis (figure 1 and supplementary table S9). PI*ZZ was not independently 

associated with pneumonia when conditioned on the diagnosis of COPD (OR 1.5, 95% CI 

0.8–2.8; p=0.21). 

 

Among the extrapulmonary diseases we curated, PI*ZZ genotype was associated with 

diagnoses of cirrhosis (OR 7.8, 95% CI 2.5–24.6; p=0.004), hepatic carcinoma (OR 13.7, 

95% CI 3.4–56.0; p=2.7×10−4) and panniculitis (OR 71.8, 95% CI 9.6–534.9; p=3.1×10−5) 

(supplementary table S9). 

 

Individuals with PI*ZZ had more respiratory symptoms (OR 2.5, 95% CI 1.8–3.5; 

p=6.5×10−8) than PI*MM, such as wheeze (OR 2.1, 95% CI 1.5–3.0; p=4.0×10−5), shortness 

of breath (OR 3.3, 95% CI 1.9– 5.8; p=3.0×10−5), persistent cough (OR 4.2, 95% CI 2.2–7.8; 
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p=9.7×10−6) and persistent sputum (OR 4.1, 95% CI 2.0–8.2; p=9.1×10−5). For never-

smokers, persistent cough was the only symptom associated with PI*ZZ (OR 3.3, 95% CI 

1.3–8.9; p=0.016) (supplementary table S10). People with PI*ZZ genotype were more likely 

to have FEV1/FVC <0.7 (OR 4.3, 95% CI 2.8–6.6; p=1.1×10−11) and have FEV1 <50% pred 

(OR 13.2, 95% CI 6.9–25.5; p=1.2×10−14) (figure 1, supplementary table S10). Linear 

regression of FEV1 by age estimated that the decrease of FEV1 by age is 68.3 mL·year−1 

(95% CI 47.1–89.7) in PI*ZZ participants compared to 35.6 mL·year−1 (95% CI 35.4–35.8) 

in PI*MM individuals (table 2, supplementary table S10). The difference of the decrease of 

FEV1 by age between ever-smokers and never-smokers in PI*ZZ individuals was 

inconclusive because of the lack of statistical power (supplementary table S11). PI*ZZ 

genotype was associated with all-cause mortality compared to PI*MM genotype (hazard ratio 

2.4, 95% CI 1.2–4.6; p=9.9×10−3) during a median follow-up duration of 7.0 years (IQR 6.4–

7.7 years) (figure 2, supplementary table S12). All results from sensitivity analyses are 

presented in the supplement (supplementary tables S12 and S13). 

 

2.5.3 Phenome-wide association study  

PI*ZZ genotype was associated with increased risk of other disorders of metabolism 

(including AATD), emphysema, obstructive chronic bronchitis and chronic airway 

obstruction (supplementary figure S3). In addition, PI*ZZ was associated with increased risks 

of dependency on a respirator or supplemental oxygen, empyema and pneumothorax, 

cachexia, polycythaemia, aneurysm and pancreatitis, all of which were statistically significant 

(p<6.1×10−4) after Benjamini–Hochberg correction in the main analysis, conservatively 

assuming that all the phecodes tested were independent (supplementary figure S3 and table 

S14). The more detailed results of sensitivity analyses are in the supplementary material. 
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2.6.3 AATD-associated genotypes, other than PI*ZZ  

Additionally, we analysed participants with PI*SZ, PI*MZ and PI*SS compared to PI*MM.  

 

In brief, PI*SZ and PI*MZ genotypes were associated with a slight increase of FEV1/FVC 

<0.7 (OR 1.3, 95% CI 1.0–1.6; p=0.022 and OR 1.1, 95% CI 1.0–1.1; p=0.032), but not 

associated with increased risk of clinically diagnosed COPD (figure 3, supplementary tables 

S9 and S10). Among heavy smokers (>20 pack-years), PI*SZ was associated with two-fold 

increased risk of FEV1/FVC <0.7 (OR 2.0, 95% CI 1.3–3.1; p=2.6×10−3), whereas PI*MZ 

was associated with mildly increased risk of FEV1/FVC <0.7 (OR 1.2, 95% CI 1.1–1.4; 

p=4.5×10−4) (supplementary table S10). PI*MZ was also associated with increased risk of 

cirrhosis (OR 1.5, 95% CI 1.2–1.8; p=0.002) (figure 3), hepatitis (OR 1.4, 95% CI 1.1–1.8; 

p=4.6×10−3) and granulomatosis with polyangiitis (OR 2.2, 95% CI 1.2–3.9; p=9.9×10−3) 

(supplementary table S9). All the other results are provided in the supplementary material 

(supplementary figures S4 and S5 and tables S9–S12, S15–S17). 

 

2.6.4 Polygenic risk score for FEV1/FVC  

The square of the correlation coefficient (r2) between observed FEV1/FVC and FEV1/FVC 

predicted by the PRS was 3.5% (95% CI 3.4%–3.6%) in the total population (n=328638), 

which was higher than the correlation between FEV1/FVC and smoking status (2.4%, 95% CI 

2.3%–2.5%). The PRS was not associated with other nongenetic risk factors (supplementary 

table S18). We divided participants into quartiles according to their PRS (figure 4). Among 

PI*ZZ individuals, those with the lowest quartile of PRS, i.e. those at lowest polygenic risk 

(n=29), had higher FEV1/FVC results compared to other PI*ZZ individuals (n=72) (median 

(IQR) 0.79 (0.67–0.85) versus 0.72 (0.66–0.77), p=0.019). Multivariate logistic regression 

indicated that 1-SD change of PRS and PI*ZZ are independently associated with FEV1/FVC 
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<0.7 (OR 1.4, 95% CI 1.4–1.5; p<2×10−16 and OR 4.5, 95% CI 3.0–6.9; p=2.3×10−12, 

respectively) (supplementary table S19). 

 

 

2.7 Discussion 

Undertaking a large-scale assessment of the prevalence of SERPINA1 genotypes, their 

associated odds of morbidity and mortality and the diagnostic rates of AATD in UK Biobank, 

we found that the vast majority of individuals with PI*ZZ were not diagnosed as having 

AATD. Yet, these individuals had substantially increased odds of respiratory symptoms, 

diseases and all-cause mortality. We estimated that ∼17000 individuals in the UK carry the 

PI*ZZ genotype, which was similar to the estimates from the prior population-based neonatal 

screening studies [21, 22]. Nevertheless, this could be an underestimate given that UK 

Biobank recruited only those aged >40 years, and very ill individuals are unlikely to be able 

to take part. Thus, while the proportion of all British individuals who could be detected 

through genotyping efforts is small, the absolute number is not.  

 

The impact of PI*ZZ genotype on health status is striking. PI*ZZ was associated with 

increased risk of COPD and pneumonia regardless of smoking status, yet the effect sizes for 

COPD were substantially larger among smokers. Furthermore, PI*ZZ genotype was 

associated with increased risk of asthma and bronchiectasis only among smokers. This 

suggests that smoking cessation has the potential to prevent those with PI*ZZ genotype from 

developing multiple respiratory diseases.  

 

Almost half of those with the PI*ZZ genotype were symptomatic with severe airflow 

obstruction and increased risk of all-cause mortality. Linear regression of FEV1 by age in 

PI*ZZ individuals estimated a larger age-dependent decrease of FEV1 compared to PI*MM 
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individuals. In PheWAS, PI*ZZ was significantly associated with dependence on a respirator 

or supplemental oxygen, empyema and pneumothorax, cachexia and secondary 

polycythaemia, all of which could be sequelae of AATD. Extrapulmonary diseases that have 

previously been described as associated with PI*ZZ were also replicated in our study, such as 

cirrhosis, hepatic carcinoma, panniculitis, pancreatitis and aneurysm, pathogenesis of which is 

thought to be triggered by protease–antiprotease imbalance [23].  

 

Even among subjects with COPD diagnosis, 77% of PI*ZZ individuals were not diagnosed as 

having AATD in this study. Previous surveys indicated that the mean delay between symptom 

onset and diagnosis among those actually diagnosed ranges from 5 to 8 years [6, 24], and the 

delay was associated with worse respiratory symptoms and accelerated emphysema 

progression [25]. Potential reasons for underdiagnosis include poor awareness of the disease, 

the unavailability of appropriate tests and/or treatments in specific regions, i.e. no availability 

of AAT replacement therapy in the UK [26, 27]. The current laboratory testing practice for 

AATD involves first quantifying plasma AAT levels together with measuring C-reactive 

protein, followed by protein phenotyping and/or Z and S genotyping [28, 29]. Since the 

genotype data is less affected by batch effects compared to measuring AAT, a protein known 

to increase in the context of inflammatory conditions [30], our results suggest that genotyping 

could be a step toward efficient identification of PI*ZZ carriers. In the current study, 80% of 

diagnosed AATD occurred in PI*MZ individuals. This could reflect either misdiagnoses or 

the impact of other disease predisposing mutations in the SERPINA1 gene that were not 

detected with the genotyping array.  

 

PI*ZZ individuals with the lowest quartile of the PRS had relatively higher FEV1/FVC, 

possibly suggesting that polygenic factors affecting lung function partially explain variable 

penetrance of PI*ZZ genotype [3]. Genome-wide genotyping, which enables the calculation 
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of the PRS and the SERPINA1 genotyping, could be alternative approach to the SERPINA1-

targeted genotyping as a screening strategy for AATD, given its relatively low cost (USD 40 

in a research context).  

 

In addition, our study provides several insights of the effects of PI*SZ and PI*MZ genotype. 

Overall, while PI*SZ was associated with a two-fold increased risk of an FEV1/FVC <0.7 in 

heavy smokers, we demonstrated that PI*SZ and PI*MZ genotypes had modest effects on the 

risks of spirometry-defined obstructive lung impairment (FEV1/FVC <0.7) and severe airways 

obstruction (FEV1 <50% pred) compared to the previous findings that PI*SZ had three-fold 

increased risk of COPD (95% CI 1.24–8.57) [5] and PI*MZ had five-fold increased risk of 

COPD (95% CI 1.27–21.15) [31]. However, these case– control studies described very large 

confidence intervals and the PI*MZ participants were recruited from index PI*MZ COPD 

patients [31], potentially biased by the other shared genetic factors associated with COPD. 

PI*MZ genotype, but not PI*SZ, was significantly associated with increased risk of cirrhosis 

and marginally increased risk of all-cause mortality in this study. The discordance between 

PI*SZ and PI*MZ genotype could be driven by the lack of statistical power in PI*SZ 

individuals, 20 times less than PI*MZ. PheWAS found that PI*MZ was associated with 

multiple diseases, namely increased risk of cholelithiasis and decreased risk of cardiovascular 

disease. There are several studies [32–35] which might support these hypotheses, although 

validation studies and functional investigations are necessary.  

 

Most of the previous epidemiological studies of PI*ZZ individuals were case–control studies 

[36, 37] and the current study is the one of the largest studies to assess the effects of the 

SERPINA1 genotype status to multiple health conditions in a single large population cohort. 

A prior family-based study included nonindex family members with undiagnosed PI*ZZ 

individuals who had more severe spirometry results (mean FEV1/FVC 0.61 and mean FEV1 
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72.3% pred) [38] than those in UK Biobank (table 2), which could reflect the effects of other 

shared genetic factors. The main limitation of this study is that UK Biobank is not 

representative of general population as there is well-documented evidence of a “healthy 

volunteer’ bias [39]. Therefore, we did not try to derive generalisable disease prevalence, but 

aimed to report the associations with PI*ZZ genotype and multiple health conditions. Another 

shortcoming is that the diagnosis of AATD was based on questionnaires and/or Hospital 

Episode Statistics, which rely on the diagnosis of each clinician and potentially harbour 

“clinical order” bias [40]. Nevertheless, the estimated prevalence of asthma (14%), COPD 

(3.9%) and bronchiectasis (0.69%) in PI*MM individuals were similar to the previous reports 

[41–43], which might support the validity of our approach of how to ascertain the disease 

status. PheWAS demonstrated that PI*ZZ was associated with increased risk of cystic 

fibrosis, which could represent misdiagnoses of bronchiectasis. PheWAS, which is based on 

ICD codings, can be underpowered, so that while no significant associations between PI*ZZ 

and liver diseases or asthma were observed, this does not preclude smaller effects. Last, there 

are no AAT measurements available in UK Biobank, so we could not test whether people 

with high-risk genotypes had low levels of plasma AAT. Although we did not test cost-

effectiveness of the population-level screening of AATD, genome-wide genotyping may help 

the screening of individuals at risk, such as heavy smokers or with a family history of 

pulmonary disease, to identify those with undiagnosed AATD. As this is a genetic study with 

potential clinical implications, future effort is needed to address the issue of incidental 

findings, such as applying the American College of Medical Genetics and Genomics [44] 

recommendations as to how to report secondary findings.  

 

In summary, we provide evidence that the vast majority of individuals with PI*ZZ are not 

diagnosed as having AATD, according to definitions available in UK Biobank. Yet these 

individuals have a profoundly increased burden of multiple symptoms and diseases and an 
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increased risk of all-cause mortality. Identification of these individuals could help to target 

smoking cessation programmes [45] and the ascertainment of family members, as well as 

disease-specific therapies [9]. Our data provide potential avenues to realise clinical benefits of 

emerging nationwide genomic efforts in the UK. 

  



 54 

2.8 Figures 

 

Figure 1. Forest plot of associations between the PI*ZZ genotype and prevalent 

conditions stratified by smoking status.  

Odds ratios were calculated by logistic regression models compared to the PI*MM (wild-

type) genotype adjusted for age, sex, genotyping array, assessment centre and the first five 

genetic principal components. FEV1: forced expiratory volume in 1 s; FVC: forced vital 

capacity; NA: not applicable. #: no never- smokers have been diagnosed with bronchiectasis. 
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Figure 2. Survival curves of all-cause mortality stratified by SERPINA1 genotypes.  

a) PI*ZZ versus PI*MM genotypes; b) PI*SZ versus PI*MM genotypes; c) PI*MZ versus 

PI*MM genotypes; d) PI*SS versus PI*MM genotypes. All p-values were calculated by log-

rank test. 
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Figure 3. Forest plot of associations between SERPINA1 genotypes and common 

conditions. 

Odds ratios were calculated by logistic regression models compared to PI*MM (wild-type) 

genotype adjusted for age, sex, genotyping array, assessment centre and the first five genetic 

principal components. FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity. 
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Figure 4. Mean of observed forced expiratory volume in 1 s (FEV1)/forced vital capacity 

(FVC) stratified by polygenic risk score quartile.  

Polygenic risk scores were calculated by LDpred using genome-wide association study 

summary statistics for FEV1/FVC derived from the SpiroMeta consortium, which consists of 

individuals of European descent. Detailed methods are described in the supplementary 

material.  
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2.9 Tables 

Table 1. Participant characteristics stratified by SERPINA1 genotypes. 

 

Data are presented as n (%), n, median (interquartile range) or mean±SD. BMI: body mass 

index; AATD: alpha-1 antitrypsin deficiency. #: numbers of individuals were calculated by 

removing related individuals with kinship coefficients ⩾0.044, which were used in sensitivity 

analyses; ¶: percentage was calculated among people with information available. 
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Table 2. Clinical diagnoses and spirometry results of participants stratified by 

SERPINA1 genotype. 

 

Data are presented as n (%) or median (interquartile range), unless otherwise stated. AATD: 

alpha-1 antitrypsin deficiency; PFT: pulmonary function testing; FEV1: forced expiratory 

volume in 1 s; FVC: forced vital capacity. #: calculated by comparing to PI*MM genotype; ¶: 

estimated with linear regression by age (95% CI) and not derived from the longitudinal data; 

+: percentage calculated among subjects with spirometry information available.  
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Table 3. Comparison of characteristics for PI*ZZ and PI*MM genotypes among 

individuals with COPD. 

 

Data are presented as n (%), median (interquartile range) or mean±SD, unless otherwise 

stated. n=17790. BMI: body mass index; AATD: alpha-1 antitrypsin deficiency; PFT: 

pulmonary function testing; FEV1: forced expiratory volume in 1 s; FVC: forced vital 

capacity. #: percentage was calculated among subjects with information on smoking status.  
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2.11 Supplemental data 

Supplementary Methods, Tables and Figures can be downloaded from the open access 

publication Nakanishi et al. in Eur Respir J available here: 

https://erj.ersjournals.com/content/56/6/2001441#sec-16 
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Connecting Text: Bridge Between Chapter 2 and Chapter 3 

In the previous Chapter, we undertook a large-scale assessment of the prevalence of 

SERPINA1 genotypes in UK Biobank and provided evidence that the vast majority of 

individuals with PI*ZZ are not diagnosed as having AATD. Yet these individuals have a 

profoundly increased burden of multiple symptoms and diseases and an increased risk of all-

cause mortality. Identification of these individuals through genetic testing could help to target 

smoking cessation programs and the ascertainment of family members, as well as disease-

specific therapies.  

 

In the next Chapter, we hypothesized that genetic testing may be also helpful in the clinical 

management of COVID-19, the emerging respiratory illness caused by SARS-CoV-2 

infection. The variability in clinical outcomes of COVID-19 causes difficulties in clinical 

management when estimating who is at risk of severe disease and may develop a need for 

intensive care. Furthermore, recent guidelines suggest risk stratification should be considered 

when deciding upon prophylactic treatment. In Chapter 3, we combined individual-level data 

from 13,888 COVID-19 patients from 17 cohorts in 9 countries to assess the association of 

the major common COVID-19 genetic risk factor with mortality, COVID-19-related 

complications, and laboratory values. By leveraging the large-scale aggregation of studies of 

heterogeneous design, we assessed to what extent this genetic information could predict 

COVID-19 severity, compared to the other non-genetic risk factors, such as BMI or age.   
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Chapter 3: Age-dependent impact of the major common genetic risk factor for COVID-

19 on severity and mortality 
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3.2 Abstract 

BACKGROUND. There is considerable variability in COVID-19 outcomes among younger 

adults, and some of this variation may be due to genetic predisposition.  

METHODS. We combined individual level data from 13,888 COVID-19 patients (n = 7185 

hospitalized) from 17 cohorts in 9 countries to assess the association of the major common 

COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, 

COVID-19-related complications, and laboratory values. We next performed metaanalyses 

using FinnGen and the Columbia University COVID-19 Biobank.  

RESULTS. We found that rs10490770 risk allele carriers experienced an increased risk of 

all-cause mortality (HR, 1.4; 95% CI, 1.2–1.7). Risk allele carriers had increased odds of 

several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6–2.6), 

venous thromboembolism (OR, 1.7; 95% CI, 1.2–2.4), and hepatic injury (OR, 1.5; 95% CI, 

1.2–2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe 

respiratory failure (OR, 2.7; 95% CI, 1.8–3.9) compared with those of more than 60 years 

(OR, 1.5; 95% CI, 1.2–1.8; interaction, P = 0.038). Among individuals 60 years and younger 

who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared 

with 13.9% of those not experiencing these outcomes. This risk variant improved the 

prediction of death or severe respiratory failure similarly to, or better than, most established 

clinical risk factors. 

CONCLUSIONS. The major common COVID-19 genetic risk factor is associated with 

increased risks of morbidity and mortality, which are more pronounced among individuals 60 

years or younger. The effect was similar in magnitude and more common than most 

established clinical risk factors, suggesting potential implications for future clinical risk 

management.  
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3.3 Introduction 

The COVID-19 pandemic has led to the deaths of millions of individuals and the largest 

economic contraction since the Great Depression (1). The clinical outcomes of COVID-19 are 

remarkably variable, such that some individuals remain asymptomatic (2), while others 

develop severe COVID-19 with systemic inflammation, respiratory failure, or death. This 

variability in outcome creates difficulties in clinical management when estimating who is at 

risk of severe disease and may develop a need for intensive care. Furthermore, recent 

guidelines suggest risk stratification should be considered when deciding upon prophylactic 

treatment (3–5).  

 

Some of this variation in COVID-19 behavior has been attributed to risk factors such as age, 

sex (6), comorbidities (7), socioeconomic factors (8), and genetic variants in the SARS-CoV-

2 genome (9). While the main risk factor for severe outcomes is age, the impact of which 

increases exponentially after age 60 (7), some younger individuals experience severe COVID-

19 outcomes and death. The early onset of several common diseases, such as breast cancers, 

myocardial infarction, and Alzheimer’s disease, is disproportionally influenced by human 

genetic factors (10–13), and this may also be the case for COVID-19. Several GWAS have 

identified multiple loci in the human genome associated with severity of COVID-19 (14–17). 

Among GWAS findings, a genetic risk locus on chromosome 3 is the strongest and most 

consistent signal (16). This genetic risk locus harbors a cluster of genes on chromosome 3; 

however, the true causal variant is still unknown. The fact that the risk allele sits on a long 

haplotype inherited from Neanderthals (18) makes the identification of the causal allele and 

the gene or genes involved challenging. The SNP rs10490770 serves as a marker for this 

genetic risk factor (as well as other SNPs on the same haplotype; ref. 19), and approximately 

15% of individuals of European ancestry carry the C risk allele (19). However, the clinical 

relevance of this locus and its potential age-dependent impact are unknown. 
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We therefore assembled individual-level COVID-19 clinical and human genomic data in a 

large international consortium of 17 cohorts in 9 countries (Belgium, Brazil, Canada, 

Germany, Italy, Norway, Spain, Sweden, and the United Kingdom) to assess the relationship 

between the chromosome 3 SNP rs10490770 and COVID-19 severity, complications, and 

mortality, focusing on age-dependent effects. Finally, in order to assess the relative 

importance of this locus, we compared its ability to predict COVID-19 outcomes to that of a 

polygenic risk score (PRS), which aggregates information from common genetic variants 

across the genome, and other established clinical risk factors. 

 

 

3.4 Results 

3.4.1 Study participants 

We collected and harmonized individual-level clinical and genomic data from 13,888 

COVID-19 patients diagnosed with COVID-19 from February 5, 2020, to February 7, 2021. 

Table 1 illustrates the participants’ demographic and clinical characteristics. By genetically 

inferring the ancestry using 1000G genetic superpopulations (20) as a reference, the majority 

of participants were of European descent (12,091; 87.1%). However, considerable numbers of 

individuals who were not of European were also included in metaanalyses: 389 (2.8%) were 

of South Asian ancestry, and 602 (4.3%) were of admixed American ancestry. Of these 

patients, 7185 were hospitalized, among whom 1695 (24.3%) were admitted to the intensive 

care unit (ICU); 1264 (10.0%) died following COVID-19 diagnosis, and 1704 (14.6%) met 

the criteria for severe respiratory failure (noninvasive ventilation, high-flow oxygen therapy, 

or intubation); their mean age was 62.9 years, and 31.2% were females. Clinical information 

was obtained with different degrees of completeness across studies. A detailed description of 

study-specific demographics, clinical characteristics, and their missingness rates is provided 
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in Supplemental Figure 1 and Supplemental Table 1 (supplemental material available online 

with this article; https://doi.org/10.1172/JCI152386DS1).  

 

3.4.2 Chromosome 3 genetic risk and a PRS. 

In order to tag the chromosome 3 locus, we selected the SNP rs10490770, which was most 

significantly associated with hospitalization in the COVID-19 GWAS from the COVID-19 

HGI, since this is the largest GWAS metaanalysis of COVID-19 severity (16) (cases/controls 

= 12,888/1,295,966). We then compared the predictive performance of rs10490770 and a 

PRS. Using the COVID-19 HGI GWAS release 6 (https://www.covid19hg.org/results/r6/), we 

first metaanalyzed GWAS results from cohorts that were not included in our study 

(Supplemental Table 2) and calculated PRSs using a pruning and thresholding method. A 

PRS of P = 5 × 10–4 and r = 0.7 had the maximum accuracy in prediction for death or severe 

respiratory failure and was more significantly associated with death or severe respiratory 

failure than the chromosome 3 SNP only (OR, 1.7 vs. 1.2 per 1 SD increase in PRS and 

rs10490770, respectively; Supplemental Tables 3 and 4). Nevertheless, we focused on 

exploring the clinical implications of rs10490770, given that a single variant can be more 

easily tested in a clinical context, requires fewer computational resources than a PRS, and is 

less influenced by limitations, such as the poor transferability of PRSs across different 

ancestry groups.  

 

3.4.3 Risk allele frequency. 

We applied a dominant model by grouping participants into 2 groups according to their 

genotype at rs10490770; C is the allele associated with COVID-19 severity. Those with TC 

genotype or CC genotype were labeled as carriers, and those with TT genotype were labeled 

as noncarriers. According to the population frequencies in gnomAD (19), we estimate that 

14.4% of individuals of European descent carry at least 1 rs10490770 C allele, as well as 
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9.5% of admixed Americans, 2.4% of Africans, 47.1% of South Asians, and 0.4% of East 

Asians. The carrier frequency was 16.2% among individuals of European descent in our 

cohort. 

 

3.4.4 Association with mortality.  

We first estimated the HR for all-cause mortality and COVID-19–related death. All analyses 

were performed separately for each ancestry group. Because the sample size in non-

Europeans was limited, we reported the results from individuals of European descent as the 

main analyses, but the results from non-European ancestry individuals are presented in 

Supplemental Figures 4–7. All analyses were based on mixed-effects model adjusted for age, 

sex, and the first 5 genetic principal components (PCs) as fixed effects. Study groups were 

also included as random effects to account for the study variability. 

 

Risk allele carriers at rs10490770 had a higher HR for all-cause mortality compared with 

noncarriers (HR, 1.4; 95% CI, 1.2– 1.7, P = 4.5 × 10–5, dead/alive = 870/8829) over a median 

follow-up duration of 43 days (IQR, 17.5–69 days; Figure 1A). A competing risk model to 

estimate the HR for COVID-19–related death while accounting for non-COVID-19–related 

deaths estimated a similar HR for COVID-19–related mortality (HR, 1.6; 95% CI, 1.3–1.8, P 

= 4.5 × 10–7, dead/alive = 750/8829; Figure 1B). The association with mortality was reduced, 

but still significant, when the analysis was restricted to hospitalized individuals (HR for all-

cause mortality, 1.2; 95% CI, 1.0–1.4, P = 0.03, dead/alive = 870/3206, and HR for COVID-

19 related mortality, 1.3; 95% CI, 1.1–1.6, P = 1.1 × 10–3, dead/alive = 750/3206), indicating 

that the effect of rs10490770 on mortality was not simply explained by the higher 

hospitalization rate among the carriers. 
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3.4.5 Associations with COVID-19 severity.  

We next examined the effect of risk allele carrier status at rs10490770 for COVID-19 

severity. We confirmed that risk allele carrier status at rs10490770 was significantly 

associated with hospitalization (OR, 1.5; 95% CI, 1.3–1.7, P = 1.2 × 10–9, cases/controls = 

6054/6004). A stronger effect was observed for ICU admission (OR, 2.5; 95% CI, 1.9–3.2, P 

= 1.6 × 10–12, cases/controls = 1234/6004) and death or severe respiratory failure (OR, 1.7; 

95% CI, 1.5–2.1, P = 9.0 × 10–10, cases/controls = 2005/7047; Figure 2 and Supplemental 

Table 5). Restricting analyses to hospitalized individuals, we observed consistent results, 

some of which were with diminished effect sizes (Figure 2 and Supplemental Table 5). For 

instance, a significant reduction in effect size was observed in OR for ICU admission (OR, 

1.6; 95% CI, 1.3–1.8, P = 3.5 × 10–8, cases/controls = 1234/4820). 

 

We next explored the association of the rs10490770 risk allele with laboratory values that are 

known to be associated with the severity of COVID-19 (21–25). rs10490770 risk allele carrier 

status was associated with the worst value for each of these laboratory values at hospital (e.g., 

lactate dehydrogenase: 0.23 SD increase, P = 3.5 × 10–7, D-dimer: 0.14 SD increase, P = 2.1 × 

10–3; IL-6: 0.16 SD increase, P = 8.7 × 10–3; Supplemental Table 6 and Supplemental Figures 

2 and 3). 

 

3.4.6 Associations with COVID-19 complications.  

Risk allele carrier status at rs10490770 was associated with multiple COVID-19– related 

severe complications (Figure 2). These included severe respiratory failure (OR, 2.1; 95% CI, 

1.6–2.6, P = 2.3 × 10–10, cases/controls = 1284/7047), venous thromboembolism (VTE) (OR, 

1.7; 95% CI, 1.2–2.4, P = 1.1 × 10–3, cases/controls = 208/8,936), and hepatic injury (OR, 1.5; 

95% CI, 1.2-2.0, P = 1.4 × 10–3, cases/controls = 352/9541). No significant effect was 

observed for cardiovascular complications (OR, 1.2; 95% CI, 1.0–1.5, P = 0.10, 
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cases/controls = 854/8890), although this might be due to lack of statistical power to detect 

such effects. Similar results were observed when restricting the analyses to hospitalized 

patients (Figure 2 and Supplemental Table 5). 

 

3.4.7 Age-dependent associations with COVID-19 severity.  

We explored how the effects of rs10490770 risk allele carrier status on severe COVID-19 

outcomes in individuals of European descent varied by age. Among severe patients who died 

or had severe respiratory failure, rs10490770 risk allele carriers were on average 2.3 (95% CI, 

1.1–3.5) years younger than noncarriers (P = 1.6 × 10–4, n = 2005; Figure 3A and 

Supplemental Table 5). Stratifying by age, we found that among those who were 60 years or 

younger, risk allele carrier status had markedly increased odds of death or severe respiratory 

failure (OR, 2.7 95% CI, 1.8–3.9), whereas risk allele carrier status had more modest effects 

among those older than 60 years with an OR of 1.5 (95% CI, 1.2–1.9, P value interaction = 

0.038; Figure 3B and Supplemental Tables 5 and 7). Among all participants 60 years or 

younger who died or experienced a severe respiratory COVID-19 outcome, we found that 

32.3% (95% CI, 28.3%–36.7%) were rs10490770 risk variant carriers, compared with 13.9% 

(95% CI, 12.6%–15.2%) of those who did not experience severe disease (Table 2). When 

considering other severity phenotypes, such as hospitalization and ICU admission, we 

observed that risk allele carriers tended to be younger than noncarriers. However, we did not 

detect a different effect in the association between rs10490770 risk allele carriers and these 

additional severity phenotypes among those who were 60 or younger versus more than 60 

years old. This could be attributed to the heterogeneity of the criteria of hospitalization or ICU 

admission or case-control imbalance in some participating studies. 
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3.4.8 Associations with COVID-19 severity stratified by established clinical risk 

factors.  

We studied how the effects of rs10490770 risk allele carrier status on COVID-19 severity 

varied by other established clinical risk factors. Among individuals with no risk factors (BMI 

≥ 30, smoking, cancer, chronic kidney disease, chronic obstructive pulmonary disease 

(COPD), heart failure, transplantation, and diabetes mellitus [DM]) prior to COVID-19, risk 

allele carriers had an OR of 1.8 for death or severe respiratory failure (95% CI, 1.0–3.4), 

whereas risk allele carrier status had more modest effects among those with 1 risk factor (OR, 

1.6; 95% CI, 1.1–2.5) and more than 1 risk factor (OR, 1.4; 95% CI, 1.0–1.8) (P value for 

interaction = 0.091; Figure 3B and Supplemental Table 8).  

 

3.4.9 Risk prediction compared with established clinical risk factors.  

We compared the risk discrimination conferred by the rs10490770 risk allele on COVID-19 

severity with that observed for other established COVID-19 risk factors. To do so, we used 

multivariable regression in 7983 individuals of European ancestry, with complete 

ascertainment of clinical risk factors. rs10490770 risk allele carrier status was independent of 

other risk factors (Figure 4A and Supplemental Table 9) when examining the association with 

death or severe respiratory failure (OR, 2.0; 95% CI, 1.7–2.4, P = 1.7 × 10–13; frequency of 

risk allele carriers, 14.7%, cases/controls = 898/6454). The effect sizes were comparable, or 

larger, than those of other known risk factors such as DM (OR, 2.0; 95% CI, 1.7–2.4, P = 1.0 

× 10–12, frequency of DM, 12.5%). Stronger effects were observed among individuals 60 

years or younger (risk allele carrier status: OR, 3.5; 95% CI, 2.3–5.3, P = 1.4 × 10–9 ; 

frequency of risk allele carriers, 14.5%; cases/controls = 151/2348) relative to DM (OR, 2.7; 

95% CI, 1.6–4.5, P = 4.4 × 10–4; frequency of DM, 5.7%; Figure 4A and Supplemental Table 

9).  
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Consistent with the results from multivariable regression, adding the rs10490770 genotype to 

nongenetic risk factors modestly improved discrimination for death or severe respiratory 

failure among patients 60 years or younger (AUC: 0.82 vs. 0.84, P = 0.021, and net 

reclassification improvement [NRI], 0.41, P = 7.7 × 10–8; Table 3), and the performance of 

risk discrimination was similar to, or better than, that of most of established risk factors 

included in the study (Figure 4B and Supplemental Table 10).  

 

3.4.10 Metaanalyses.  

We next metaanalyzed the European ancestry results presented above with those of non-

European ancestry participants and 2 external cohorts. We confirmed similar effects in the 

associations with mortality (Supplemental Figure 4), COVID-19 severity (Supplemental 

Figure 5), COVID-19 complications (Supplemental Figure 6), and age-dependent effects 

(Supplemental Figure 7). Given the small sample size of non-European participants, we 

lacked sufficient statistical power to investigate whether the association between rs10490770 

risk allele carriers and COVID-19 outcomes was different when comparing individuals of 

non-European and European ancestry. Sensitivity analysis. Finally, we performed several 

sensitivity analyses to evaluate the robustness of our results. First, we removed the study 

variables from the covariates (Supplemental Tables 11 and 12). Second, we included 

participating studies themselves either as fixed or random effects (Supplemental Tables 11 

and 12). Third, we restricted the analyses to individuals of European descent from UK 

Biobank (UKB), a cohort that was not developed to study COVID-19 and thus is less prone to 

selection bias. These UKB analyses generated similar results (Supplemental Table 13). 

Fourth, we explored different cutoffs for age-stratified analyses (Supplemental Table 14). 

Finally, we excluded related individuals (Supplemental Table 15). All sensitivity analyses 

were consistent with the results from the main analyses. 
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3.5. Discussion 

Combining individual-level clinical and genomic data from 13,888 individuals ascertained for 

COVID-19 outcomes from 17 cohorts in 9 countries, we found that the major genetic risk 

factor for severe COVID-19 on chromosome 3 was strongly associated with COVID-19–

related mortality and clinical complications, such as respiratory failure and VTE.  

 

The risk allele is common. We estimated that 14.4% of individuals of European ancestry are 

risk allele carriers at rs10490770. Further, 9.5% of admixed Americans, 2.4% of Africans, 

47.1% of South Asians, and 0.4% of East Asians are risk allele carriers (20). Consequently, a 

large proportion of humans carry this risk factor.  

 

The effect of carrying the risk allele on COVID-19 severity was stronger in younger 

individuals. First, among those 60 years or younger, the odds of death or severe respiratory 

failure increased 2.7-fold for risk allele carriers. We found that 32% of individuals 60 years or 

younger who died or experienced severe respiratory failure were risk allele carriers compared 

with 14% of individuals not requiring supplemental oxygen. Second, among individuals who 

died or experienced severe respiratory failure, risk allele carriers were on average 2.3 years 

younger than noncarriers. Finally, the risk discrimination for death and severe respiratory 

COVID-19 provided by the risk allele was similar to, or larger than, established clinical risk 

factors in individuals 60 years or younger. Other common diseases have also demonstrated 

larger effects of genetic risk factors at a younger age (10, 11, 13). Genetic risk factors are 

often clinically valuable for risk stratification in younger age groups because the frequency of 

other established risk factors for COVID-19, such as DM, is often reduced, while the 

frequency of the genetic variant remains high. Moreover, this specific variant is not associated 

with any known COVID-19 risk factor (16) and therefore provides orthogonal information 
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compared with existing risk assessment tools. Although vaccination development for SARS-

CoV-2 has successfully reduced COVID-19 disease burden in many countries (26, 27), 

SARS-CoV-2 will likely become endemic in the human population, and it is still not known 

how long vaccine protection will last. Therefore, this genetic variant may aid in future public 

health strategies, including selecting individuals for early therapy and potentially for 

subsequent vaccination prioritization programs. 

 

A PRS for COVID-19 severity derived from release 6 of the COVID-19 HGI had a stronger 

association with COVID-19 outcomes compared with the rs10490770 risk allele alone. 

Neverthess, the aim of this study is to explore the clinical implications of the major genetic 

risk factors of COVID-19, and future studies should investigate the role of PRSs in COVID-

19 severity prediction. 

 

The biology of how the chromosome 3 genetic risk has an effect on COVID-19 severity is 

still unknown. This locus on chromosome 3p21 includes the putative SARS-CoV-2 

coreceptors SCL6A20 (28, 29), LZTFL1, and FYCO1 (30) and the chemokine receptors CCR9 

(29), CXCR6 (31), and XCR1. There are other chemokine receptors among flanking genes, 

CCR1, CCR2, and CCR3 (32–34), whose involvement in SARS-CoV-2 infection has been 

suggested and could explain the biology of the striking effect of this genetic risk. Many 

studies (15, 29) have been trying to pinpoint a single gene or a set of causal genes, but a 

robust biological consensus has not been built to date. 

 

This study has important limitations. Each cohort has its own selection bias and ascertainment 

bias. Several studies were enriched for severe patients, whereas UKB is a non–COVID-19 

cohort, with evidence of healthy volunteer bias (35). Nevertheless, it may be less prone to 
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selection bias than the COVID-19 cohorts. Selection bias is inherent to most COVID-19 

observational studies (36), and this influences the generalizability of the results outside 

the study populations. Indeed, the estimated protective effects of smoking for COVID-19 

severity likely reflect the collider bias due to selection of study participants. Further, other 

COVID-19 epidemiological studies demonstrated similar effects (36, 37). To mitigate 

against these issues, we combined data from observational studies with different 

ascertainment strategies, including national healthcare systems, studies that were established 

prior to the COVID-19 pandemic so that recruitment was not dependent upon COVID-19 

status, and hospital-based studies. This allowed for an increased representation of individuals 

with severe COVID-19 outcomes. We also provide analyses restricted to hospitalized 

patients, which is an ascertained, but clinically relevant, population. Although we were 

motivated to estimate whether homozygous individuals were at greater risk than heterozygous 

carriers, we could not draw any meaningful conclusions due to the low sample size (n = 135 

homozygous carriers, of whom 92 were of European ancestry). While we included 

information from participants who were of non-European ancestry, ongoing efforts should 

enable larger sample sizes to better define the importance of the chromosome 3 risk locus in 

these ancestries. This further emphasizes the importance of developing genomics-enabled 

studies in individuals of non-European ancestry.  

 

Since the beginning of the pandemic, we aimed to aggregate and harmonize individual-level 

clinical and genotype data from multiple cohorts from diverse countries. Due to the nature of 

the heterogeneity of health care systems, our data from multiple countries substantially 

increases the generalizability of our research findings (38). Moreover, we deposited a subset 

of this harmonized data to the European Genome-Phenome Archive (EGAS00001005304) for 

future use by all bona fide researchers to further improve our ability to understand the 

COVID-19 pandemic. 
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In summary, the major genetic COVID-19 risk locus is common and has moderate to large 

effects on COVID-19 outcomes, including mortality. These effects are age dependent, such 

that the magnitude of risk increases in younger individuals. These findings suggest potential 

implications of genetic information in clinical risk management. 

 

 

3.6 Methods 

3.6.1 Study participants.  

We gathered clinical and genomic data from 13,888 COVID-19 cases (7,185 of whom were 

hospitalized) with genetic information available, harmonizing individual-level data from 17 

studies. COVID-19 cases were defined as individuals having at least 1 confirmed SARS-

CoV-2 viral nucleic acid amplification test from relevant biologic fluids or whose SARS-

CoV-2 status was confirmed by ICD-10 codes, using codes U071 and/or U072. We combined 

data from hospital-based studies that recruited participants after COVID-19 outbreak and a 

population-based biobank in which recruitment was not dependent upon COVID-19 status. 

Data were centrally collected at the Institute for Molecular Medicine Finland and harmonized 

through a standardized data dictionary 

(https://docs.google.com/spreadsheets/d/1hwBeqckB3_qC8nnavT0kLLntOh3GrmWRJQHeO

9zwG8w/edit#gid=665246845). Detailed information for data collection in each individual 

study is described in Supplemental Methods. 

 

3.6.2 Genotyping and ancestry assignment 

In order to tag the chromosome 3 locus, we selected the SNP rs10490770, which was most 

significantly associated with hospitalization in the COVID-19 GWAS from the COVID-19 

HGI, since this is the largest GWAS metaanalysis of COVID-19 severity (ref. 16; 
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cases/controls = 12,888/1,295,966). Each participating study used genotyping and imputation 

separately following a recommended quality control pipeline 

(https://docs.google.com/document/d/16ethjgi4MzlQeO0KAW_yDYyUHdB9k-

KbtfuGW4XYVKQg/edit). Detailed methods describing genotyping and imputation are 

available in Supplemental Methods. Ancestry was inferred by performing projection onto the 

PC analysis (PCA) space from the 1000G (20) phase 3 population using HapMap3 SNPs (39) 

with minor allele frequency greater than 1% (detailed methods are in Supplemental Methods; 

Supplemental Table 16 and Supplemental Figure 1). 

 

3.6.3 Statistical analyses 

To test the association between rs10490770 and all phenotypes, we applied a dominant model 

by grouping participants into 2 groups according to their genotype at rs10490770. C is the 

allele associated with COVID-19 severity; those with TC genotype or CC genotype were 

labeled as carriers, and those with TT genotype were labeled as noncarriers. We chose this 

model because it had the lowest Akaike information criterion (AIC) compared with additive 

and recessive models (see the Supplemental Methods and Supplemental Table 17 for details) 

for a logistic regression for death or severe respiratory failure outcome (defined below). All 

analyses were performed separately for each ancestry group. Because the sample size in non-

Europeans was limited, we reported the results from individuals of European descent as the 

main analyses, but the results from non-European ancestry individuals are in Supplemental 

Figures 4–7. All analyses were based on mixed-effects models adjusted for age and sex, and 

the first 5 genetic PCs as fixed effects and study groups were also included as random effects 

to account for study variability. Five study groups, mostly reflecting the country of origin of 

the study, were created by combining small participating studies with few cases and controls 

to reduce the risk of collinearity (details are described in Supplemental Methods. We further 

estimated the frequency of rs10490770 risk allele carrier status from population frequencies 



 86 

reported in an external database (the Genome Aggregation Database, version 3.1 [gnomAD]; 

ref. 19), assuming this variant follows Hardy-Weinberg equilibrium. 

 

3.6.4 Association with mortality  

The HR for all-cause mortality was estimated by Cox’s proportional hazard models using the 

coxme version 2.2-16 R package (https://cran.r-project.org/web/packages/coxme/). 

Individuals entered follow-up when diagnosed with COVID-19 or, if a diagnosis date was 

missing, when hospitalization occurred or when symptoms started. Date of death was 

considered an event, and data were censored at the last date of follow-up (details are 

described in Supplemental Methods). We additionally performed competing risk analyses to 

estimate the subdistribution HR for COVID-19–related mortality using the cmprsk version 

2.2-10 R package, which accounts for the competing risk of non-COVID-19–related death: 

i.e., individuals who did not die of COVID-19 but died due to other causes (e.g., cancer). In 

the competing risk model, study groups were considered as fixed effects. Survival analyses 

were restricted to study participants with available follow-up and cause of death information 

(n = 9699). Cause of death was defined by doctor diagnoses, medical chart reviews, or ICD-

10 codes (details are described in Supplemental Methods). 

 

3.6.5 Association with COVID-19 severity and complications. 

To understand the clinical implications of the chromosome 3 locus, we fit mixed-effects 

regression models to assess the association of rs10490770 risk allele (C) carrier status with 3 

types of COVID-19–related measurements: COVID-19 severity, COVID-19 complications, 

and laboratory values. To do so, we defined 3 COVID-19 severity outcomes, with appropriate 

control definitions among SARS-CoV-2–positive individuals: (a) hospitalization; (b) ICU 

admission, and (c) death or severe respiratory failure. Hospitalization cases were COVID-19 

cases admitted to the hospital (corresponding to WHO clinical progression scale [ref. 40] ≥ 4; 
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Supplemental Table 18), whereas controls were individuals who did not experience 

hospitalization (corresponding to WHO clinical progression scale [ref. 40] 1 to 3; 

Supplemental Table 18). ICU cases were those COVID-19 cases admitted to the ICU, and 

controls were individuals who did not experience hospitalization. To assess potential selection 

bias, we also repeated the analyses using only individuals who were hospitalized. In these 

analyses, controls were defined as those who were hospitalized, but not admitted to the ICU. 

Death or severe respiratory failure cases were defined as individuals who died or required 

respiratory support (intubation, continuous positive airway pressure, bilevel positive airway 

pressure, or continuous external negative pressure, high-flow positive end expiratory pressure 

oxygen), had ICD-10 codes for acute respiratory distress syndrome (ARDS) or 

acute respiratory failure (J80, J9600, J9609, Z991), or OPCS codes for the use of a ventilator 

(E851, E852), corresponding to WHO clinical progression scale (40) ≥6 (Supplemental Table 

18).  

 

We next defined 5 COVID-19–related complications, which were diagnosed in the hospital. 

These included the following: (a) severe respiratory failure, which was defined as individuals 

who used respiratory support or had administrative codes for ARDS, respiratory failure, or 

ventilatory support, as described above, corresponding to WHO clinical progression scale 

(40) 6 to 9 (Supplemental Table 18); (b) hepatic injury, which was defined as individuals with 

at least 1 of the following: doctor-diagnosed hepatic complications, highest alanine 

aminotransferase over 3 times the upper limit of normal (ULN), or ICD-10 codes for acute 

hepatic failure (K720); (c) cardiovascular complications, which were defined by at least 1 of 

the following: doctor-diagnosed acute myocardial infarction (AMI) or stroke, highest troponin 

T or troponin I greater than ULN, or ICD-10 codes for AMI or stroke (I21*, I61, I62, I63, 

I64, I65, I66*); (d) kidney injury, defined by at least 1 of the following: doctor-diagnosed 

acute kidney injury (AKI), highest creatinine greater than 1.5 times ULN, or ICD-10 codes 
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for AKI (N17*); and (e) VTE, defined by at least 1 of the following: doctor-diagnosed 

pulmonary embolism (PE) or deep venous thrombosis (DVT) or ICD-10 codes for PE or DVT 

(I26*, I81, I82*). Controls for severe respiratory failure were defined as those requiring no 

oxygen therapy and who were alive, corresponding to WHO clinical progression scale (40) 1 

to 4 (Supplemental Table 18), whereas controls for other complications were defined as those 

who did not meet the corresponding case criteria and were alive. 

 

Finally, we considered the laboratory values of complete blood count and biochemistry tests 

available at hospitals (Supplemental Table 6). To test the association with the chromosome 3 

locus, we used the lowest value for lymphocyte counts and otherwise the highest value 

recorded per individual (21–25). This is because we were interested in using these laboratory 

values as a proxy for COVID-19 severity. Definitions and quality control of laboratory values 

and specific codes are described in Supplemental Methods and Supplemental Figure 2. 

 

3.6.6 Age-dependent associations with COVID-19 severity. 

We evaluated the age-dependent effects of the risk allele carrier status on the 3 COVID-19 

severity phenotypes we defined above by performing 2 sets of analyses: (a) linear regressions 

between age at diagnosis and risk allele carrier status among severe cases, adjusting for the 

same covariates as the main analyses, and (b) adding a carrier status by age interaction term in 

the main regression models. Age was not dichotomized in these analyses. We also stratified 

participants by age 60 years or less or more than 60 years and repeated the same logistic 

regressions, and we estimated the frequency of the risk allele carriers in the 2 age groups. We 

used 60 years as a cut-point for age-stratified analyses because COVID-19 case fatality rates 

increase markedly after this age (https://www.inspq.qc.ca/covid-19/donnees/age-sexe) (41). 
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3.6.7 Associations with COVID-19 severity stratified by established clinical risk 

factors. 

In order to compare the association of rs10490770 risk allele carrier status with other risk 

factors, we similarly stratified participants by BMI of 30 kg/m2 or more (a definition of 

obesity; ref.42), smoking (ever smoker vs. never smoker), cancer, chronic kidney disease, 

COPD, chronic heart failure, transplantation, and DM, all of which were curated as 

established clinical risk factors for severe illness of COVID-19 according to the CDC website 

(42). All of the 8 risk factors were defined by doctor diagnoses, medical chart reviews, or 

ICD-10 codes (details are described in Supplemental Methods and Supplemental Table 19). 

We then tested the difference of the magnitude of the associations of the risk allele carrier 

status compared with the 8 clinical risk factors. Clinical risk factor–stratified analysis and 

prediction assessment (described below) were restricted to individuals with complete 

information for demographics, clinical risk factors, and rs10490770 genotype information (n 

= 7983). The majority of this subset were from UKB (n = 7461), and only 145 individuals 

were included from the first discovery GWAS (14). 

 

3.6.8 Risk prediction compared with established clinical risk factors.  

To better understand the prediction improvement by addition of the chromosome 3 genetic 

risk in addition to the 8 clinical risk factors, we performed multivariable regressions in 

individuals with complete information as described above (n = 7983). We evaluated whether 

the rs10490770 risk allele improved the risk prediction discrimination for severe COVID-19 

outcomes by calculating the AUC and the continuous net reclassification improvement (NRI) 

using pROC, version 1.16.2 (https://cran.r-project.org/web/packages/pROC/index.html), and 

PredictABEL, version 1.2-4 R packages (https://cran.r-project.org/ 

web/packages/PredictABEL/index.html). 
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3.6.9 Metaanalyses.  

As secondary analyses, we metaanalyzed the results for non-European ancestries and 2 

external cohorts for which we did not have access to individual-level data: FinnGen and 

Columbia University COVID-19 Biobank (CUB). This resulted in a total study population of 

15,064 individuals with COVID-19. Inverse-variance weighted metaanalyses were performed 

under a fixed effect and random effects model using the meta version 4.16-1 R package when 

the appropriate phenotypes were available and case counts, control counts, and the 

rs10490770 risk allele carrier counts were larger than 10 in each cohort. 

 

3.6.10 Sensitivity analysis.  

Adjusting for participating studies may lead to reduced statistical power, given that some 

studies had only severe cases or had disproportional case-control ratios. To alleviate the 

collinearity issue, we grouped some small studies to account for study variability. This may 

not fully account for between-study variability. Thus, we performed 2 sets of sensitivity 

analyses where we included (a) only 5 genetic PCs without including the study of origin as 

random or fixed effects and (b) all participating studies either as fixed or random effects. 

Next, we performed the same analyses using UKB to provide estimates that are more 

representative of the general population, since this is not a COVID-19–specific cohort. We 

also tried binning by different cutoffs for age-stratified analyses. In order to understand 

whether results could have been influenced by related individuals within the samples, we 

selected 1 individual from a pair of relatives with PI-HAT (proportion of identity by descent 

calculated by PLINK; ref. 43) greater than 0.1875 (meaning between second and third-degree 

relatives) and repeated the main analyses. 
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3.6.11 Statistics.  

To test the association between rs10490770 and all phenotypes, we applied a dominant model 

by grouping participants into 2 groups according to their genotypes at rs10490770. C is the 

allele associated with COVID-19 severity; those with TC genotype or CC genotype were 

labeled as carriers, and those with TT genotype were labeled as noncarriers. All analyses were 

based on mixed-effects models adjusted for age, sex, and the first 5 genetic PCs as fixed 

effects. Study groups were also included as random effects to account for study variability. 

Five study groups, mostly reflecting the country of origin of the study, were created by 

combining small participating studies with few cases and controls to reduce the risk of 

collinearity. We did not apply a multiple-testing correction, and a P value of less than 0.05 

was considered significant, since all the outcomes tested were related to COVID-19 severity 

and not independent of each other. 

 

3.6.12 Data and materials availability. 

All code for data management and analysis is archived online at 

https://github.com/tomoconaka/ COVID19-chr3 (commit 183ddb7) for review and reuse. The 

harmonized individual-level data of some participating cohorts from Belgium (BeLCovid_2), 

Brazil (BRACOVID), Italy (COVID19-Host(a) ge_4, GEN-COVID), Spain (COVID19-

Host(a)ge_1,2,3, INMUNGEN- CoV2, Determining the Molecular Pathways and Genetic 

Predisposition of the Acute Inflammatory Process Caused by SARS-CoV-2 [SPGRX]), and 

Sweden (SweCovid) were deposited at the European Genome-Phenome Archive (EGA 

EGAS00001005304). Regarding the SweCovid study, an institutional data transfer agreement 

can be established and data may be shared if the aims of data use are covered by ethical 

approval and patient consent. Regarding the data from genetic modifiers for COVID-19–

related illness (BelCovid_1), individual-level data were acquired and shared with FIMM 

during the early stages of the pandemic Upon contact with Isabelle Migeotte (Isabelle. 
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Migeotte@erasme.ulb.ac.be), an institutional data transfer agreement can be established and 

data can be shared if the aims of data use are covered by ethical approval and patient consent. 

The procedure will involve an update to the ethical approval as well as review by legal 

departments at both institutions, and the process will typically take 2 to 4 months from initial 

contact. 

 

Regarding the BoSCO study, individual-level genotype and clinical data for the purpose of 

this study were shared with FIMM under a legal, bilateral agreement and were specific to this 

particular project. Current participant consents and privacy regulations prohibit deposition of 

individual level data to public repositories. Upon contact with Kerstin Ludwig 

(kerstin.ludwig@uni-bonn.de), an institutional data transfer agreement can be established and 

data shared if the aims of data use are covered by ethical approval and patient consent. The 

procedure will involve review by legal departments at both institutions, and the process will 

typically take about 2 months from initial contact. 

 

The BQC19 is an open science biobank. Instructions on how to access data for individuals 

from the BQC19 at the Jewish General Hospital site are available here: 

https://www.mcgill.ca/genepi/ mcg-covid-19-biobank. Instructions on how to access data 

from other sites of the BQC19 are available here: https://www.bqc19.ca/en/ access-data-

samples. 

 

For the COVID-19 Kohortenstudie am Klinikum München Rechts der Isar (COMRI) cohort, 

data protection legislation does not allow for deposition of individual level data in public 

repositories. Upon direct contact with Christoph Spinner (christoph.spinner@tum.de), an 

institutional data transfer agreement can be established and data will be shared if the aims of 

data use are covered by ethical approval and patient consent. The procedure will involve an 
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update to the ethical approval as well as review by legal departments at both institutions, and 

the process will typically take 2 to 3 months from initial contact. 

 

Regarding the Fondazione IRCCS Milan data (FOGS study), institutional data privacy 

regulations prohibit deposition of individual level data to public repositories without specific 

consent. Participant written consent also does not cover public sharing of data for use for 

unknown purposes. Upon contact with Luca Valenti (luca.valenti@ unimi.it), an institutional 

data transfer agreement can be established and data shared if the aims of data use are covered 

by ethical approval and patient consent. The procedure will involve the request for an 

amendment to the ethical approval as well as review by legal departments at both institutions, 

and the process will typically take 1 to 2 months from initial contact. 

 

Regarding Norwegian data (the Norwegian SARS-CoV-2 study), institutional data privacy 

regulations prohibit deposition of individual level data to public repositories. Participant 

written consent also does not cover public sharing of data for use for unknown purposes. 

Upon contact with Tom H. Karlsen (t.h.karlsen@medisin.uio.no) or Johannes R. Hov 

(j.e.r.hov@medisin.uio.no), an institutional data transfer agreement can be established and 

data shared if the aims ofdata use are covered by ethical approval and patient consent. The 

procedure will involve an update to the ethical approval as well as review by legal 

departments at both institutions, and the process will typically take 1 to 2 months from initial 

contact. 

 

The genetic and phenotype data sets from UKB are available via the UKB data access process 

(see http://www.ukbiobank.ac.uk/ register-apply/). 
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3.7 Note added in proof.  

Using chromosome conformation capture and gene-expression analysis, a recent study 

identified the gain-of-function SNP for LZTFL1, rs17713054G>A, as a probable causative 

variant conferring increased risk of respiratory failure with COVID-19 (44) 
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3.8 Figures 

 

Figure 1. Associations with mortality.  

The results described here were restricted to 9699 COVID-19 patients of European ancestry 

with available follow-up and cause of death information. (A) Survival analysis using Cox’s 

proportional hazard model. Kaplan-Meier curves stratified by rs10490770 risk allele carrier 

status. (carriers: n = 1469 vs. noncarriers: n = 8,230). HRs were calculated by adjusting for 

age, sex, and genetic PCs 1 to 5 as fixed effects and a dummy variable representing the 

participating studies as random effects. (B) Cumulative incidence curves for COVID-19–

related death and COVID-19–unrelated death among the same individuals as described in A. 
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Figure 2. Associations between rs10490770 risk allele carrier status and COVID-19 

severity and complications.  

The results described here were restricted to COVID-19 patients of European ancestry. 

Logistic regressions were fit to assess the associations of rs10490770 risk allele carrier status 

with COVID-19 severity and complications, adjusting for age, sex, and genetic PCs 1 to 5 as 

fixed effects, and a dummy variable representing the participating studies as random effects. 

Red: All participants (n = 12,091); blue: hospitalized participants only (n = 6054). The case 

counts demonstrated as Ncase are the case counts in the analyses of all participants. The full 

list of case and control counts in the analyses of all participants and those hospitalized only 

are described in Supplemental Table 5. 
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Figure 3. Influence of age and clinical risk factors for the effect of rs10490770 risk allele 

carrier status on death or severe respiratory failure.  

(A) Age distribution in COVID-19 patients of European ancestry who died or experienced 

severe respiratory failure (n = 2005). Median (IQR) age was 67.2 (range, 59–76) years in 

carriers (n = 506) and 72 (range, 63–78) years in noncarriers (n = 1499). (B) ORs of 

rs10490770 risk allele carrier status for death or severe respiratory failure. Regressions were 

performed within subgroups stratified by age (age ≤60 years and age >60 years) 

(cases/controls = 2005/7047) or by the number of established risk factors (0, 1, or ≥2); BMI 

≥30, smoking, cancer, chronic kidney disease, COPD, chronic heart failure, transplantation, 

and DM (cases/controls = 898/6454). All analyses were adjusted for age, sex, genetic PCs 1 

to 5 as fixed effects, and a dummy variable representing the participating studies as random 

effects. 
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Figure 4. Multivariable regression models and risk prediction estimates for death or 

severe respiratory failure.  

Multivariable regression analyses for death or severe respiratory failure were restricted to 

European-ancestry individuals with complete information of demographic variables (green), 

comor- bidities (blue), and rs10490770 risk allele status (red). n = 7352 for all and n = 2499 

for age ≤60. CKD, chronic kidney disease; CHF, chronic heart failure. Error bars indicate 

95% CIs. (A) Forest plots comparing ORs from multivariable regression models. The size of 

each dot represents the frequency of the risk factors. (B) Comparison of AUCs of predictions 

for COVID-19 outcomes. rs10490770 risk allele and nongenetic clinical risk factors were 

included separately in addition to age and sex in multivariable regression models.  
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3.9 Tables 

Table 1. Participant characteristics. 

 

AMean (SD); percentage was calculated among those with complete information. The missing 

rates for each study are listed in Supplemental Table 1. Others in ancestry included remaining 

individuals who were not assigned as either of European, South Asian, African, East Asian, or 

admixed American descent. 
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Table 2. Age and risk allele carrier status by COVID-19 severity outcomes. 

 

Frequency of rs10490770 risk variant carriers in individuals of European descent stratified by 

age and COVID-19 severe outcomes. Square brackets indicate 95% CI; parentheses show 

sample size. 
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Table 3. Risk prediction performance for death or severe respiratory failure. 

 

Only individuals with complete information regarding clinical risk factors and genotype were 

included. Baseline model includes age, sex, BMI, smoking status (ever smoker versus never 

smoker), cancer, chronic kidney disease, COPD, chronic heart failure, transplantation, and 

DM. ASquare brackets show 95% CI. BP values were calculated by comparing baseline model 

and baseline and rs10490770 model. 
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3.11 Supplemental data 

Supplementary Methods, Tables and Figures can be downloaded from the open access 

publication Nakanishi et al. in J Clin Invest available here: 

https://www.jci.org/articles/view/152386#sd 
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Connecting Text: Bridge Between Chapter 3 and Chapter 4 

In the previous Chapters (2 and 3), we assessed the magnitude of the effects of genetic risks 

on disease susceptibility and severity, in the context of AATD and COVID-19, respectively.  

For both diseases, we provided evidence that genetic information could reliably predict 

disease onset and/or severity, as a potential translational route to use genetic profiling of 

individual patterns of disease predisposition. We showcased the two examples of the clinical 

implications of genetics to develop more personalized approaches to disease management.  

 

In the next two Chapters (4 and 5), we sought another translational path, which is the 

identification of therapeutic targets within causal pathways through MR. In Chapter 4, we 

performed a MR study to identify novel potentially disease-influencing proteins for IPF. IPF 

is a progressive, fatal fibrotic interstitial lung disease that affects adults, leading to respiratory 

failure with a median survival time from diagnosis of 3–5 years. Despite two antifibrotic 

therapies have been approved for the treatment of IPF: nintedanib and pirfenidone, which 

slow the decline in lung function and reduce the risk of acute respiratory deterioration, many 

individuals with IPF remain untreated. Although several serum biomarkers for IPF have been 

identified, these biomarkers still lack strong evidence of disease causality and are more useful 

at defining prognosis once IPF has occurred. We therefore applied MR, a causal inference 

technique, to identify potentially causal plasma proteins which influence the IPF 

susceptibility and could serve as drug targets in the future. 
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Chapter 4: Genetically increased circulating FUT3 level leads to reduced risk of 

Idiopathic Pulmonary Fibrosis: a Mendelian Randomisation Study.  

4.1 Title page 
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4.2 Abstract 

Background Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial 

lung disease. Few circulating biomarkers have been identified to have causal effects on IPF. 

 

Methods To identify candidate IPF-influencing circulating proteins, we undertook an 

efficient screen of circulating proteins by applying a two-sample Mendelian randomisation 

(MR) approach with existing publicly available data. For instruments, we used genetic 

determinants of circulating proteins which reside cis to the encoded gene (cis-single 

nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies 

(GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to 

test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF 

GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation 

analyses to ensure that both the circulating proteins and IPF shared a common genetic signal. 

 

Results MR analyses of 834 proteins found that a 1 sd increase in circulating galactoside 

3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with 

a reduced risk of IPF (OR 0.81, 95% CI 0.74–0.88; p=6.3×10−7 and OR 0.76, 95% CI 0.68–

0.86; p=1.1×10−5, respectively). Sensitivity analyses including multiple cis-SNPs provided 

similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78–

0.91; p=9.8×10−6 and MR-Egger OR 0.69, 95% CI 0.50–0.97; p=0.03) and FUT5 (IVW OR 

0.84, 95% CI 0.77–0.92; p=1.4×10−4 and MR-Egger OR 0.59, 95% CI 0.38–0.90; p=0.01). 

FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared 

genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations 

supported the protective effects of FUT3 for IPF. 
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Conclusions An efficient MR scan of 834 circulating proteins provided evidence that 

genetically increased circulating FUT3 level is associated with reduced risk of IPF.   
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4.3 Introduction 

Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease that 

affects adults, leading to decreased lung compliance, disrupted gas exchange and resultant 

respiratory failure [1]. The median survival time from diagnosis is 3–5 years, which is worse 

than the prognosis of most types of cancers [2]. Early detection or prevention of IPF is 

important as the currently available therapies are anti-fibrotic agents that have been shown to 

slow disease progression [3, 4]. At present, the only way to detect early disease is through 

high-resolution computed tomography scanning, which reveals interstitial lung abnormalities 

in up to 10% of the population aged >60 years, in whom only a small minority progress to 

develop IPF [5]. Therefore, a serum biomarker that can predict or refine disease risk through a 

causal relationship is urgently required. 

 

Although several serum biomarkers for IPF have been identified [6–9], these biomarkers still 

lack strong evidence of disease causality and are more useful at defining prognosis once IPF 

has occurred. Causal inference in IPF through traditional observational studies is challenging 

due to potential confounding and reverse causation that can bias estimates of the effects of 

biomarkers on IPF. For example, smoking, a known risk factor for IPF, is confounded by its 

association with many other lifestyle choices. Similarly, IPF itself may influence the level of 

the biomarker, a phenomenon known as reverse causation. This last source of bias is 

particularly difficult to rule out since the timing of IPF onset is most often unknown. 

 

Despite these challenges, identifying IPF-influencing circulating proteins is helpful as such 

markers could serve as both drug targets to decrease susceptibility and noninvasive 

biomarkers of disease risk. One way to estimate the causality of circulating biomarkers is 

using Mendelian randomisation (MR), which uses germline genetic variants as instrumental 

variables to assess the role of risk factors in disease susceptibility. Since genetic variants are 
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randomly assigned at conception, this process of randomisation largely breaks the association 

with most confounding factors. Furthermore, since germline genetic variants are always 

assigned prior to disease onset, reverse causation can be avoided. A further advantage of MR 

studies is that they can provide an assessment of a lifetime of risk factor exposure assuming 

the effect of the genetic variant on the risk factor is stable throughout an individual's life [10]. 

 

The goal of this study was therefore to identify circulating proteins which influence the risk 

for IPF by applying a MR design that efficiently screened hundreds of proteins. Bayesian 

colocalisation analyses were undertaken to ensure that candidate circulating proteins and IPF 

shared a common aetiological genetic signal and that the MR results were not biased by 

linkage disequilibrium (LD). Candidate IPF-influencing proteins identified through MR and 

colocalisation analyses were further evaluated via literature and genetic phenotype database 

searches and transcriptomic investigations. The results from these experiments could provide 

a better understanding of the aetiology of IPF and could potentially identify targets for future 

therapies. 

 

 

4.4 Material and methods 

4.4.1 Study design and data sources 

We applied a two-sample MR design to identify circulating proteins associated with risk of 

IPF. For this, summary data were obtained from the largest IPF genome-wide association 

study (GWAS) to date in individuals of European ancestry [11] and from the two protein 

quantitative trait loci (pQTL) GWASs by Sun et al. [12] and Emilsson et al. [13]. Detailed 

methods of protein assays are described in each study [12, 13]. See figure 1 for a schema of 

our study design. 

 



 115 

4.4.2 Ethical approval 

No separate ethical approval was required due to the use of publicly available data. 

 

4.4.3 Mendelian randomization 

MR relies upon three major assumptions [14]. First, the genetic variants must reliably 

associate with the exposure. With the advent of large-scale modern GWASs, genetic variants 

associating with exposure can be identified in large datasets [15]. Second, the genetic variants 

must not be associated with confounders of the exposure–outcome relationship. A potential 

violation of this assumption can occur due to confounding by LD and/or population ancestry 

[16]. Lastly, genetic variants must not affect the outcome, except through the exposure of 

interest (referred to as a lack of horizontal pleiotropy) [17]. 

 

Large-scale GWASs for circulating proteins [12, 13] have often found that the genetic 

determinants of circulating proteins reside cis (in close proximity) to the encoding genes. The 

use of cis-acting single nucleotide polymorphisms (SNPs) for MR reduces potential 

horizontal pleiotropy and increases the validity of MR assumptions, because a cis-SNP 

strongly associated with the protein is likely to directly influence the gene's transcription and 

consequently the circulating protein level. We selected independent (r2≤0.001) cis-pQTL 

SNPs that are significantly associated with circulating proteins (p<5×10−8) from two pQTL 

GWASs [12, 13]. More details are provided in the supplementary material. 

 

4.4.4 Statistical analysis 

We performed MR using the TwoSampleMR R package [18]. For proteins with a single cis-

SNP, the Wald estimator (βIPF/βprotein) was used to estimate the effect of the protein on IPF 

risk. Where multiple SNPs were available, our primary analyses used an inverse variance 

weighted (IVW) estimator [19]. Benjamini–Hochberg correction was applied to adjust for the 
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multiple proteins tested, which is likely to be conservative because some protein levels are 

partially correlated with each other (false discovery rate 0.05 with 507 multiple testing for 

Sun et al. [12] and 733 multiple testing for Emilsson et al. [13]). 

 

4.4.5 Colocalization analysis 

Candidate IPF-influencing proteins supported by MR were evaluated via colocalisation 

analyses using the coloc R package [20] and eCAVIAR [21] for the proteins in Sun et al. 

[12], which provided genome-wide summary statistics for each protein. Colocalisation 

analysis is a way to estimate the posterior probability of whether the same genetic variants are 

responsible for the two GWAS signals (in this case, protein level and IPF) or they are distinct 

causal variants that are just in LD with each other. Detailed methods are described in the 

supplementary material. LocusZoom plots were created to visualise these colocalisations [22]. 

 

4.4.6 Sensitivity analyses 

Sensitivity analyses were performed for proteins with support from MR and colocalisation 

analyses. Multiple cis-SNPs in weak LD (r2<0.6) with the leading cis-SNPs for candidate 

proteins were included in IVW and MR-Egger analyses that considered correlated variants 

using the MendelianRandomisation R package [23, 24], because consistency of estimates 

could strengthen the hypothesised effects. MR-Egger allows for a y-intercept term using a 

random effects model. An intercept different from zero indicates directional horizontal 

pleiotropy, suggestive of a violation of the third MR assumption. Detailed methods are 

described in the supplementary material. Bidirectional MR was also conducted to test whether 

IPF had an effect on candidate protein levels. 
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To further test for the presence of horizontal pleiotropy, potential pleiotropic effects of each 

protein-associated SNP were searched using PhenoScanner [25, 26], a database with over 65 

billion associations and over 150 million unique genetic variants. 

 

4.4.7 Transcriptomic data in lung tissue 

We further investigated FUT3 and FUT5 using microarray-based transcriptomic data in whole 

lungs: GSE32537 [27]. Logistic regression was fitted to assess the associations between IPF 

and standardised log-transformed expressions, adjusted for age, sex and smoking status (ever 

versus never). We additionally explored the expression profiles using two single-cell RNA 

sequencing (scRNA-seq) datasets: GSE135893 [28] and GSE136831 [29]. The unique 

molecular identifier counts of FUT3 were compared between IPF and control subjects, 

stratified by each cell type annotation according to the original publications. Detailed methods 

are described in the supplementary material. 

 

 

4.5 Results 

4.5.1 Cohort characteristics 

The GWAS of circulating protein levels from the INTERVAL study by Sun et al. [12] 

consisted of 3301 participants of European descent in England (mean age 43.7 years) (table 

1). The circulating protein GWAS from the AGES Reykjavik study by Emilsson et al. [13] 

recruited 3200 Icelanders with a mean age of 76.6 years (table 1). 

 

The IPF GWAS was a meta-analysis of three distinct cohorts (UK-, Colorado- and Chicago-

based studies), which in total consisted of 2668 cases and 8591 controls [11]. The mean age 

was 67.3 years for cases and 64.7 years for controls. It is highly unlikely that there was any 

overlap of participants between the proteome and IPF GWASs, since they largely included 
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different geographical locations. Demographic characteristics from each study can be found in 

table 1 and the supplementary material. 

 

4.5.2 Mendelian randomization 

After MR scanning across 507 and 733 proteins from the two separate pQTL GWASs (834 

total proteins, 406 of which were overlapped) for their association with IPF, three candidate 

proteins survived Benjamini–Hochberg correction: galactoside 3(4)-l-fucosyltransferase 

(FUT3), α-(1,3)-fucosyltransferase 5 (FUT5) and tumour necrosis factor receptor superfamily 

member 6B (TNFRSF6B) (table 2). FUT3 and FUT5 were replicated by the GWASs of both 

Sun et al. [12] and Emilsson et al. [13]. A 1 sd genetically determined higher plasma FUT3 

and FUT5 had on average 19% and 24% lower risk of developing IPF (OR 0.81, 95% CI 

0.74–0.88; p=6.3×10−7 and OR 0.76, 95% CI 0.68–0.86; p=1.1×10−5), respectively (table 2). 

Some previously described biomarkers for IPF, namely MMP1, MMP7 [6, 7] and CCL18 [9], 

and other members of the fucosyltransferase family (FUT8, FUT10 and POFUT1) were also 

assessed in this MR study. None showed causal effects on IPF risk (table 3, and 

supplementary tables S1 and S2). Supplementary tables S1 and S2 also show the results of all 

proteins analysed. 

 

4.5.3 Colocalization analysis 

We performed colocalisation analyses between the GWASs for candidate proteins (FUT3, 

FUT5 and TNFRSF6B) in Sun et al. [12] and the IPF GWAS to assess potential confounding 

due to LD. Both FUT3 and FUT5 were well colocalised with IPF by coloc with posterior 

probabilities of 99.9% and 97.7%, respectively, for a shared signal. TNFRSF6B had a lower 

posterior probability of 15.8% (figure 2). eCAVIAR estimated a high colocalisation joint 

posterior probability (CLPP) in FUT3 and FUT5 SNPs (0.28 and 0.016, respectively), but 



 119 

TNFRSF6B had a low CLPP of 4.3×10−6 (figure 2). Given the lack of clear colocalisation for 

TNFRSF6B, remaining analyses were focused on FUT3 and FUT5. 

 

4.5.4 Sensitivity analyses  

In Sun et al. [12], three cis-SNPs (rs104097772, rs12982233 and rs812936) were 

independently associated with FUT3 level when conditioned on the lead SNP (rs708686). 

One trans-SNP (rs679574) was also identified for FUT3 level. Two cis-SNPs (rs3760775 and 

rs4807054) were identified for FUT5, which were independently associated when conditioned 

on the lead SNP (rs778809). FUT3's trans-SNP (rs679574) was removed from analyses 

because it is palindromic and has a minor allele frequency of 0.49, making it impossible to 

harmonise with the IPF GWAS statistics. By using a method that can incorporate SNPs in LD 

[23], we included the other three cis-SNPs (rs104097772, rs12982233 and rs812936) that are 

in partial LD (r2≤0.54) with the sentinel SNP (rs708686). For FUT5, we included additional 

two cis-SNPs (rs3760775 and rs4807054) that are in partial LD (r2≤0.12) with the leading 

SNP (rs778809). The SNPs used were all identified in Sun et al. [12] and are listed in 

supplementary table S3. MR analyses, accounting for LD, using multiple cis-SNPs showed 

similar estimates both for FUT3 (IVW OR 0.84, 95% CI 0.78–0.91; p=9.8×10−6 and MR-

Egger OR 0.69, 95% CI 0.50–0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77–0.92; 

p=1.4×10−4 and MR-Egger OR 0.59, 95% CI 0.38–0.90; p=0.01) (table 4 and supplementary 

figure S1). The MR-Egger intercept estimates were close to the null, suggesting no detected 

evidence of directional pleiotropy (table 4). Bidirectional MR provided no evidence that IPF 

influences FUT3 and FUT5 levels (supplementary tables S4 and S5). 

 

Although the FUT3/5 SNPs are on the same chromosome 19 as the genome-wide significant 

SNP in the IPF GWAS (rs12610495, near DPP9), they were not in LD (supplementary figure 

S2). However, given the LD between the FUT3 and FUT5 cis-SNPs (rs708686 and 
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rs778809/rs10420107; r2=0.49), we performed statistical fine-mapping on the locus using 

FINEMAP [30] to explore the most important causal SNPs in the IPF GWAS [11]. The FUT3 

SNP, rs708686, had the highest log10(Bayes factor (BF)) at 3.4 and the FUT5 SNPs, rs778809 

and rs10420107, had a log10(BF) at 1.8, suggesting the FUT3 SNP had a higher probability of 

being causal for IPF (supplementary figure S3). Detailed methods are described in the 

supplementary material. 

 

Other shared genetic associations 

PhenoScanner searches identified that the FUT3 cis-SNP, rs708686, was also associated with 

an increased level of FUT5 [12] and decreased levels of vitamin B12 [31], lactoperoxidase 

[12], lithostathine-1-α [32] and FAM3B [12]. The FUT5 cis-SNPs, rs778809 and rs10420107, 

were associated with increased levels of FUT3 and decreased levels of FAM3B [12] 

(supplementary table S6). rs778809 was also associated with the plasma levels of CA19-9 and 

carcinoembryonic antigen (CEA) in individuals of Asian ancestry but the directions of the 

effects were not mentioned in the report [33]. Since we used cis-SNPs for FUT3 and FUT5, 

these pleiotropic effects on other molecules were more likely to represent vertical pleiotropy, 

where SNPs influencing levels of FUT3 and FUT5 in turn affect levels of the other 

molecules. Vertical pleiotropy does not violate the assumptions of MR. No other respiratory 

diseases or smoking habits were identified to be genome-wide significantly associated with 

the FUT3/5 cis-SNPs (p<5×10−8). We identified moderate associations between the FUT3 

pQTL SNP and asthma (rs708686 allele T which decreases FUT3 level also decreases the risk 

of asthma; p=1.1×10−3) and between the FUT5 pQTL SNP and asthma (rs778809 allele A 

which decreases FUT5 level also decreases the risk of asthma; p=3.4×10−3) in the UK 

Biobank (ncases=38 791). 
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Next, to reduce the possibility of biasing the MR estimates by horizontal pleiotropy of the 

FUT3/5 cis-SNPs, we performed MR to test if the aforementioned potential confounders, i.e. 

vitamin B12, lactoperoxidase, lithostathine-1-α, FAM3B, CA19-9 and CEA, could have an 

effect on IPF risk [34]. For these traits, only genetic determinants of each molecule identified 

in European ancestries were used. None of these potential confounders had evidence of their 

effects on IPF risk using MR (supplementary table S7). Figure 3 illustrates the overall 

findings. Detailed methods are described in the supplementary material. 

 

Literature search 

Further assessment for external validation of our findings involved a literature review by 

searching PubMed for reports published in English. The largest blood proteomic SOMAscan 

profiling study to date[35], involving 300 IPF patients and 100 matched controls for sex and 

smoking status, indicated that those with IPF had 0.89-fold lower level of FUT3 (log2FC: -

0.18, p=0.019) but no difference in FUT5 level (log2FC: -0.024, p=0.76). 

 

To assess the potential horizontal pleiotropy, we next searched for articles using the search 

terms “idiopathic pulmonary fibrosis” and each potential confounding factor, namely, vitamin 

B12, lactoperoxidase, lithostathine-1-alpha, FAM3B, CA19-9 and CEA. No previously 

published articles were found to describe the molecular mechanism of these factors in IPF 

pathophysiology. 

 

4.5.5 Transcriptomic data of lung tissue 

Using microarray-based transcriptomic data in whole lungs (GSE32537), we confirmed that a 

high FUT3 expression level was associated with reduced risk of IPF (OR 0.50 per 1 sd 

increase, 95% CI 0.31–0.80; p=3.4×10−3), but FUT5 was not clearly associated with IPF (OR 
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0.72 per 1 sd increase, 95% CI 0.46–1.1; p=0.14; ncase/ncontrol=119/50) (figure 4 and 

supplementary table S8). 

 

scRNA-seq analyses from two public datasets (GSE135893 and GSE136831) revealed that 

FUT3 was mainly expressed in epithelial cells in lungs (supplementary figure S5). There were 

distinct patterns of epithelial cell types between IPF and normal lung tissue. Alveolar type 2 

cells were decreased and ciliated cells were increased in IPF lungs, which was in line with 

previous studies (supplementary figure S6) [36, 37]. FUT3 expression in alveolar type 2 cells 

tended to be lower in IPF lungs than normal lungs (p=1.9×10−48 in GSE135893 and p=0.16 in 

GSE136831) (supplementary figure S7). Detailed results are described in the supplementary 

material. 

 

 

4.6 Discussion 

We undertook MR analyses of 834 circulating proteins to assess their effect on susceptibility 

to IPF in the largest GWASs of these traits available to date. Our analyses showed that 

subjects with genetically determined higher circulating levels of FUT3 and FUT5 had lower 

susceptibility to IPF. Colocalisation of FUT3/5 and IPF genetic signals and the absence of 

evidence of MR violations after thorough sensitivity analyses provided robust support for an 

aetiological effect of FUT3/5 on IPF susceptibility. 

 

MR evidence for FUT3/5 was independently replicated using the GWASs of Sun et al. [12] 

and Emilsson et al. [13], which provide two distinct age distributions. Sun et al. [12] tested 

associations between protein levels and age, sex, BMI and estimated glomerular filtration rate 

(eGFR). They reported all proteins associated with either age, sex, BMI or eGFR with a 

significance threshold of p<1×10−5, whereby the positive association between age and FUT5 
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level (p=1.6×10−10) was described [12]. FUT3 level was not reported to be associated with 

any of the four demographic variables. In addition, neither FUT3 nor FUT5 was associated 

with age or sex among control samples (n=50) in publicly available bulk transcriptomic data 

in lungs (GSE32537). The genetic signals for IPF at the FUT3/5 locus were also consistent 

among three original IPF cohorts in the IPF GWAS study (supplementary table S9). 

 

Given that the cost of measuring hundreds of proteins in adequately powered IPF studies 

involving samples collected years before disease onset is currently prohibitive, our approach 

provides an opportunity to prioritise candidate causal protein biomarkers by repurposing 

available data from large GWASs. MR studies for circulating biomarkers have often 

replicated or predicted the results of large-scale randomised controlled trials of 

pharmacological interventions to change biomarker levels [38–43]. Similarly, previous 

published biomarker studies have used the MR methodology to strengthen conclusions 

reported in the observational literature due to its robustness to reverse causation and most 

sources of confounding [44, 45]. Observational evidence sometimes provides opposite 

directions of effects to genetic findings, which is also the case for IPF. For example, rs207695 

has been repeatedly shown to be associated with increased risk of IPF and the same variant is 

also known to decrease the expression of desmoplakin (DSP) in lungs and epithelial cells [11, 

46, 47]. Taken together, this suggests that genetically low DSP expression leads to increased 

risk of IPF. On the other hand, some studies had identified that DSP is overexpressed in IPF 

lung tissue compared with normal lungs [46, 48], providing an opposite direction of effect. 

However, these observational results may be influenced by reverse causation, where IPF may 

influence the transcription of DSP. Nevertheless, an independent observational study 

demonstrated lower levels of circulating FUT3 in IPF patients [35] and our transcriptomic 

analyses also supported that increased FUT3 expression was associated with reduced risk of 

IPF. 



 124 

 

It is still unclear how FUT3 may influence IPF risk. The fucosyltransferases encoded by 

FUT3 catalyse the formation of α-(1,4)-fucosylated glycoconjugates and are present only in 

two hominids (humans and chimpanzees). These genes are closely related, belonging to the 

Lewis FUT5–FUT3–FUT6 gene cluster, whose corresponding enzymes share 85% sequence 

similarity due to duplications of ancestral Lewis gene events [49]. Both FUT3 and FUT5 

allow the synthesis of Lewis blood group antigens in exocrine secretions from precursor 

oligosaccharides [49]. Fucosylation is a post-translational modification that attaches fucose 

residues to polysaccharides, which partly determines mucin size and charge heterogeneity 

[50, 51]. PTS domain fucosylation in mucins could influence both the affinity to bind 

microorganisms and mucociliary clearance, consequently affecting the innate immune 

response and susceptibility to infections [52–54]. The gain-of-function mucin 5B (MUC5B) 

promoter SNP, rs35705950, has been repeatedly demonstrated to be associated with IPF risk 

[11, 55]. Overexpression of MUC5B in lungs was also shown to cause mucociliary 

dysfunction that enhances lung fibrosis in a mouse model [56]. These lines of evidence 

suggest a plausible link between MUC5B and fucosylation where host defences influence the 

pathophysiology of pulmonary fibrosis. 

 

Elevated levels of CA19-9 had been shown to be associated with severity of pulmonary 

fibrosis [57]. However, our results found no evidence of this biomarker being causal for IPF. 

We observed that increased levels of FUT3 reduce susceptibility to IPF, which appears to 

contradict the previous studies since the FUT3 (Lewis) enzyme is known to be essential for 

biosynthesis of CA19-9 [58] and low levels of FUT3 lead to decreased levels of CA19-9. 

However, given that the pathology of IPF is characterised by microscopic honeycombing that 

is filled with mucus and inflammatory cells [59], this leads to overproduction of glycans, 

precursors of CA19-9. Concentrations of CA19-9 had been also noted to decline in IPF 
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patients after lung transplantation [60]. Elevated levels of CA19-9 are therefore likely to be a 

consequence of IPF. 

 

Like all methods, our approach has important limitations. MR results may be biased by 

potential violations of its assumptions, which are not always confirmable, except for the 

SNP–exposure associations. However, our study design reduced potential horizontal 

pleiotropy by using cis-SNPs, which are backed by a biologically plausible rationale on 

protein levels and are unlikely to be mediated by other molecules. Furthermore, we undertook 

multiple sensitivity analyses to evaluate potential pleiotropic effects and did not identify 

evidence of horizontal pleiotropy for FUT3/5 and IPF. We also undertook colocalisation 

analyses, which additionally strengthened support for a shared genetic cause of FUT3/5 with 

IPF. Given the limited ethnicity of the current study population, further studies are needed to 

confirm the generalisability of these findings to non-European ancestry. Last, it was not ruled 

out in Sun et al. [12] that the association between cis-SNP rs708686 and FUT3 level 

measured by SOMAscan was influenced by potential epitope-binding artefacts driven by 

protein-altering variants. The negative MR findings of the causal relationships between 

established IPF biomarkers and IPF susceptibility could be attributed to the known evidence 

of modest correlations between some proteins measured by aptamer-based technology and 

those measured by immunoassay [61]. Such lack of correlation can lead to false-negative 

findings. 

 

As the FUT3/5 pQTL SNPs were in LD and pleiotropic to each other, we could not confirm 

whether FUT3 and FUT5 had independent roles on IPF or whether they are influenced by 

each other. However, our sensitivity analyses and transcriptomic investigations suggested that 

FUT3 had a higher probability of being protective for IPF. There are no direct homologues of 

these proteins in mice and therefore in vivo functional follow-ups were not possible. 
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Alternatively, to test our results in a traditional observational study scenario, molar 

measurement of FUT3 in pre-diagnostic blood samples in larger, well-characterised, 

independent populations would be required. Unfortunately, at present, such samples are 

limited, given IPF's low incidence rate, but these should become more widely available with 

the development of large-scale population-based longitudinal biobanks. 

 

In summary, undertaking an efficient MR scan of circulating proteins, our study demonstrated 

that genetically increased circulating FUT3 level is associated with reduced risk of IPF. These 

findings provide insights into the pathophysiology of this life-threatening disease, which may 

have potential translational relevance by identifying new targets for needed interventions. 
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4.7 Figures 

 

Figure 1. Overall study design.  

See the main text and supplementary material for full details. MR: Mendelian randomisation; 

GWAS: genome-wide association study; pQTL: protein quantitative trait loci; SNP: single 

nucleotide polymorphism; IPF: idiopathic pulmonary fibrosis; UIP: usual interstitial 

pneumonia; UMAP: uniform manifold approximation and projection. 
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Figure 2. Regional LocusZoom plots and the colocalization analyses results.  

Regional LocusZoom plots of three candidate idiopathic pulmonary fibrosis-influencing 

proteins: a) FUT3, b) FUT5 and c) TNFRSF6B. Each point represents a variant with 

chromosomal position on the x-axis (within 500-kb regions of each sentinel variant for 

candidate proteins) and the −log10(p-value) on the y-axis. Variants are coloured by linkage 

disequilibrium with the sentinel variant. Blue lines show the recombination rate; gene 

locations are shown at the bottom of the plot. PP4: posterior probability that the two traits 

share causal variants calculated by the coloc R package; CLPP: colocalisation joint posterior 

probability that the variants are causal for two traits calculated by eCAVIAR; pQTL: protein 

quantitative trait loci. 
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Figure 3. Directed acyclic graphs illustrating the MR conclusions in four different 

scenarios. 

In all four scenarios, there was no evidence that the MR estimate of FUT3 and FUT5 on the 

idiopathic pulmonary fibrosis (IPF) risk was biased by violations of MR assumptions. Since 

we focused on cis-acting protein quantitative trait loci (pQTL) single nucleotide 

polymorphisms (SNPs) for FUT3 and FUT5, these pleiotropic effects on the levels of other 

molecules are more likely to be vertical pleiotropy rather than horizontal pleiotropy. Vertical 

pleiotropy occurs when cis-pQTL SNPs influence levels of FUT3 and FUT5 and these two 

proteins affect the levels of other molecules, which does not bias MR estimates. Moreover, in 

MR analysis using possible confounders as the exposure and IPF as the outcome, no causal 

relationships were validated. As FUT3/5 pQTL SNPs were in linkage disequilibrium and 

pleiotropic to each other, we could not confirm whether FUT3 and FUT5 had independent 

roles on IPF susceptibility. a) FUT3-associated cis-pQTL SNP rs708686 has an effect on IPF 

via FUT3 and FUT5. FUT3 has a direct effect on IPF and an indirect effect via vitamin B12, 

lactoperoxidase, lithostathine-1-α and FAM3B, which is an example of vertical pleiotropy 

that would not bias FUT3's MR estimate. However, this indirect effect was not supported by 

either MR evidence (supplementary table S7) or literature/database searches. b) FUT3-

associated cis-pQTL SNP rs708686 has an effect on IPF via FUT3, FUT5 and potential 
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confounding variables: vitamin B12, lactoperoxidase, lithostathine-1-α and FAM3B. These 

confounders represent an example of horizontal pleiotropy that would bias FUT3's MR 

estimates. However, horizontal pleiotropic effects via these confounders were not supported 

by either MR analysis (supplementary table S7) or literature/database searches. c) FUT5-

associated cis-pQTL SNPs rs778809 and rs10420107 have a direct effect on IPF via FUT5 

and FUT3, and an indirect effect via FAM3B, CA19-9 and carcinoembryonic antigen (CEA). 

This indirect effect represents vertical pleiotropy and would not bias FUT5's MR estimate. 

However, this indirect effect was not supported by either MR evidence (supplementary table 

S7) or literature/database searches. d) FUT5-associated cis-pQTL SNPs rs778809 and 

rs10420107 have a direct effect on IPF via FUT5, FUT3 and potential confounding variables: 

FAM3B, CA19-9 and CEA. These confounders represent an example of horizontal pleiotropy 

that would bias FUT5's MR estimates. However, horizontal pleiotropic effects via these 

confounders were not supported by either MR analysis (supplementary table S7) or 

literature/database searches.  
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Figure 4. a) FUT3 and b) FUT5 expression in whole lung compared between idiopathic 

pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP) and controls.  

This figure is based on data from microarray-based lung transcriptomic dataset GSE32537. 

Standardised log-transformed expression levels were compared between IPF/UIP (n=119) and 

controls (n=50). P-values were calculated by logistic regressions adjusted for age, sex and 

smoking status. 
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4.8 Tables 

Table 1. Demographic characteristics of the study cohorts. 

 

GWAS: genome-wide association study; IPF: idiopathic pulmonary fibrosis. #: demographic 

characteristics were calculated with total participants in the AGES Reykjavik study (n=5457) 

(for smoking status, there was insufficient data to differentiate between current or ever-

smokers); ¶: mean age was calculated with samples from the Chicago- and UK-based studies 

(n=3908) since this information was not available for the Colorado-based study 

(supplementary material); +: percentage of current smokers; §: percentage of ever-smokers 

was calculated with samples from the Chicago- and UK-based studies (n=1153 for cases and 

n=3908 for controls) since this information was not available for the Colorado-based study 

(supplementary material).  
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Table 2. Mendelian randomization (MR) analyses of the proteome for idiopathic 

pulmonary fibrosis. 

 

Chr.: chromosome; SNP: single nucleotide polymorphism; GWAS: genome-wide association 

study; AF: allele frequency; PVE: phenotypic variance explained by the cis-protein 

quantitative trait loci SNP. #: in Sun et al. [12], each protein was first natural log-transformed 

and adjusted for age, sex, and duration between blood draw and processing, followed by rank-

inverse normalisation; in Emilsson et al. [13], effect sizes were estimated for Yeo–Johnson-

transformed protein level and thus we could not interpret the magnitude of the effect sizes.  
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Table 3. Mendelian randomisation (MR) analyses of known idiopathic pulmonary 

fibrosis circulating biomarkers. 

 
Chr.: chromosome; SNP: single nucleotide polymorphism; GWAS: genome-wide association 

study; AF: allele frequency; PVE: phenotypic variance explained by the cis-protein 

quantitative trait loci SNP. #: in Emilsson et al. [13], effect sizes were estimated for Yeo–

Johnson-transformed protein level and thus we could not interpret the magnitude of the effect 

sizes.  
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Table 4. Mendelian randomisation (MR) analyses considering linkage disequilibrium 

patterns using multiple cis-single nucleotide polymorphisms (SNPs) for FUT3 and 

FUT5. 

 

MR was performed using mr_inv and mr_egger functions in MendelianRandomisation 

version 0.4.3. Correlation matrices of SNPs were calculated using plink --r square with 503 

individuals in the European subset of the 1000 Genomes Projects. We used a fixed effects 

inverse variance weighted (IVW) method and a random effects MR-Egger method.  
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4.10 Supplemental data 

Supplementary Methods, Tables and Figures can be downloaded from the open access 

publication Nakanishi et al. in Eur Respir J available here: 

https://erj.ersjournals.com/content/59/2/2003979#sec-23 
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Connecting Text: Bridge Between Chapter 4 and Chapter 5 

In the previous Chapter, we performed MR to identify the circulating protein with a 

potentially causal role in IPF susceptibility. We identified that plasma FUT3 is associated 

with a reduced risk of IPF, which could be an attractive therapeutic target for the disease.  

 

Given the success in the previous Chapter, we showed that our MR approach for circulating 

proteins is a strong strategy to identify potentially druggable targets. Therefore, in the next 

Chapter, we applied the same strategy of MR with circulating proteins to the COVID-19 

outcomes (severity, defined by critical illness [respiratory failure and/or death] and 

hospitalization, and susceptibility, defined by reported infection), to identify potentially 

druggable plasma proteins with etiologic role to COVID-19 outcomes. Despite the scale of 

the epidemic, few effective therapeutic options are available for the treatment of COVID-19. 

Thus, validated targets are needed for COVID-19 therapeutic development. Given the fact 

that MR studies in COVID-19 have already predicted the results of randomized controlled 

trials results, such as interleukin-6 inhibition(36), ACE inhibition(37), and vitamin D 

supplementation(38), the application of MR to COVID-19 may be a promising avenue to 

investigate potential opportunities for drug repurposing. 
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Chapter 5: A Neanderthal OAS1 isoform protects individuals of European ancestry 

against COVID-19 susceptibility and severity 
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5.2 Abstract 

To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) 

susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, 

rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation 

and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. 

increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds 

ratio (OR) = 0.54, P = 7 × 10−8), hospitalization (OR = 0.61, P = 8 × 10−8) and susceptibility 

(OR = 0.78, P = 8 × 10−6). Measuring OAS1 levels in 504 individuals, we found that higher 

plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 

susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in 

individuals of European ancestry affords this protection. Thus, evidence from MR and a case–

control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available 

pharmacological agents that increase OAS1 levels could be prioritized for drug development. 
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5.3 Introduction 

To date, the COVID-19 pandemic has caused more than 2 million deaths worldwide and 

infected approximately 100 million individuals1. Despite the scale of the epidemic, there are, 

at present, few disease-specific therapies2 to reduce the morbidity and mortality of severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Apart from 

dexamethasone therapy in oxygen-dependent patients3, most clinical trials have shown, at 

most, mild or inconsistent benefits on disease outcomes4,5,6. Therefore, validated targets are 

needed for COVID-19 therapeutic development. 

 

One source of such targets is circulating proteins. Recent advances in large-scale proteomics 

have enabled the measurement of thousands of circulating proteins—and when combined 

with evidence from human genetics, such targets greatly improve the probability of drug 

development success7,8,9. Although de novo drug development will take time, the repurposing 

of currently available molecules targeting those proteins could provide an accelerated 

opportunity to deliver new therapies to patients. 

 

Nevertheless, because confounding and reverse causation often bias traditional circulating 

protein studies, methods are needed to dissect causal relationships. This is especially the case 

in COVID-19, where exposure to SARS-CoV-2 unleashes profound changes in circulating 

protein levels10. One way to address these limitations is by using MR, a genetic epidemiology 

method that uses genetic variants as instrumental variables to test the effect of an exposure 

(here, protein levels) on an outcome (here, COVID-19 outcomes). The process of random 

assignment of alleles at conception greatly reduces bias from confounding. Because 

genotypes are always assigned before disease onset, MR studies are not influenced by reverse 

causation. However, MR rests on several assumptions11, the most problematic being 

horizontal pleiotropy of the genetic instruments (wherein the genotype influences the 
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outcome, independently of the exposure). One way to help avoid this bias is to use genetic 

variants that influence circulating protein levels that are adjacent to the gene that encodes the 

circulating protein through the use of cis-protein quantitative trait loci (cis-pQTLs)9. cis-

pQTLs are likely to influence the level of the circulating protein by directly influencing its 

transcription or translation and, therefore, less likely to affect the outcome of interest through 

pleiotropic pathways. Nevertheless, a causal genetic association between the exposure and 

outcome might be confounded by linkage disequilibrium (LD)12, which can be detected 

through co-localization testing. 

 

Understanding the etiologic role of circulating proteins in infectious diseases is challenging 

because the infection itself often leads to large changes in circulating protein levels10. Thus, it 

might appear that an increase in a circulating protein, such as a cytokine, is associated with a 

worsened outcome, when, in fact, the cytokine might be the host’s response to this infection 

and help to mitigate this outcome. It is, therefore, important to identify genetic determinants 

of the protein levels in the non-infected state, which would reflect a person’s baseline 

predisposition to the level of a protein. 

 

MR studies can be complemented by traditional case–control studies, where the protein is 

longitudinally measured in patients with COVID-19 and controls, allowing for an estimation 

of the association between the protein level and COVID-19 outcomes. However, MR studies 

tend to predict the effect of the protein in the non-infectious state when the genetic 

determinants of such proteins are measured in the non-infected population. Because MR and 

case–control studies rely on different assumptions and might be influenced by different 

biases, concordant results between the two study designs can strengthen the cumulative 

evidence13. 
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In this study, we, therefore, undertook two-sample MR and co-localization analyses to 

combine results from large-scale genome-wide association studies (GWASs) of circulating 

protein levels and COVID-19 outcomes14. We began by identifying the genetic determinants 

of circulating protein levels in large-scale proteomic GWASs and then used MR to assess 

whether these cis-pQTLs were associated with COVID-19 outcomes in large COVID-19 

GWASs. Next, we investigated expression QTL (eQTL) and splice QTL (sQTL) effects of 

lead proteins. We then measured the most promising protein, OAS1, in individuals 

ascertained for SARS-CoV-2 infection, followed for longitudinal sampling during and after 

their infection. 

 

 

5.4 Results 

5.4.1 MR using cis-pQTLs and pleiotropy assessment. 

The study design is illustrated in Fig. 1. We began by obtaining the genetic determinants of 

circulating protein levels from six large proteomic GWASs of individuals of European 

ancestry (Sun et al.15 n = 3,301; Emilsson et al.16 n = 3,200; Pietzner et al.17 n = 10,708; 

Folkersen et al.18 n = 3,394; Yao et al.19 n = 6,861 and Suhre et al.20 n = 997). A total of 931 

proteins from these six studies had genome-wide significant cis-pQTLs or highly correlated 

LD proxies (r2 > 0.8) in the meta-analyses of data from the COVID-19 Host Genetics 

Initiative21, which included results from the GenOMICC program22. We then undertook MR 

analyses using 1,425 cis-pQTLs and 39 LD proxies as genetic instruments for circulating 

proteins in three COVID-19 outcomes: 1) very severe COVID-19 disease (defined as 

individuals experiencing death, mechanical ventilation, non-invasive ventilation, high-flow 

oxygen or use of extra-corporeal membrane oxygenation; 99.7% of these individuals were of 

European ancestry) using 4,336 cases and 623,902 controls; 2) COVID-19 disease requiring 

hospitalization using 6,406 cases and 902,088 controls of European ancestry; and 3) COVID-
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19 susceptibility using 14,134 cases and 1,284,876 controls of European ancestry. In all 

outcomes, cases required evidence of SARS-CoV-2 infection. For the very severe COVID-19 

and hospitalization outcomes, COVID-19 cases were defined as laboratory-confirmed SARS-

CoV-2 infection based on nucleic acid amplification or serology tests. For the COVID-19 

susceptibility outcome, cases were also identified by review of health records (using 

International Classification of Disease (ICD) codes or physician notes). 

 

MR analyses revealed that the levels of three circulating proteins—2′–5′ oligoadenylate 

synthetase 1 (OAS1), interleukin-10 receptor beta subunit (IL10RB) and ABO—were 

associated with at least two COVID-19 outcomes after Benjamini–Hochberg false discovery 

rate correction (Table 1 and Supplementary Tables 1–6). Notably, increased OAS1 levels 

were strongly associated with protection from all three COVID-19 outcomes. Furthermore, 

these effect sizes were more pronounced with more severe outcomes, such that each s.d. 

increase in OAS1 levels was associated with decreased odds of very severe COVID-19 

(OR = 0.54, 95% confidence interval (CI) 0.44–0.68, P = 7.0 × 10−8), hospitalization 

(OR = 0.61, 95% CI 0.51–0.73, P = 8.3 × 10−8) and susceptibility (OR = 0.78, 95% CI 0.69–

0.87, P = 7.6 × 10−6) (Fig. 2a). We also identified OAS1 cis-pQTLs in Emilsson et al.16 and 

Pietzner et al.17, which were not included in the initial MR due to lack of genome-wide 

significance for their association with OAS1 levels16 or not included in their COVID-19 

discovery panel17. MR analyses of using these additional cis-pQTLs yielded concordant 

results (Supplementary Table 7). 

 

We next assessed whether the cis-pQTL for OAS1 levels (rs4767027) was associated with 

over 5,000 other diseases, traits or protein levels, as catalogued in PhenoScanner23. rs4767027 

was not associated with any other traits or protein levels (P < 5.0 × 10−5). These findings 

reduce the possibility that the MR estimate of the effect of OAS1 on COVID-19 outcomes is 
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due to horizontal pleiotropy. Finally, except for COVID-19 susceptibility, the effect of 

rs4767027 did not demonstrate evidence of heterogeneity across COVID-19 Host Genetics 

Initiative GWAS meta-analyses (Table 1). 

 

Using a cis-pQTL for IL10RB (rs2834167), we found that a 1-s.d. increase in circulating 

IL10RB level was associated with decreased odds of very severe COVID-19 (OR = 0.47, 95% 

CI 0.32–0.68, P = 7.1 × 10−5) and hospitalization (OR = 0.53, 95% CI 0.39–0.73, 

P = 8.8 × 10−5) but not susceptibility (Fig. 2a). Using PhenoScanner, we did not find evidence 

of pleiotropic effects of the cis-pQTL for IL10RB. A 1-s.d. increase in circulating ABO level 

was associated with increased odds of adverse COVID-19 outcomes (Table 1); however, we 

found that the cis-pQTL for ABO (rs505922) was strongly associated with the levels of 

several other proteins, suggesting potential horizontal pleiotropic effects (Supplementary 

Table 8). Given ABO’s known involvement in multiple physiological processes, these results 

were expected but highlight that MR analyses might suffer from significant bias from 

horizontal pleiotropy. 

 

5.4.2 Co-localization studies 

To test whether confounding due to LD might have influenced the estimated effect of 

circulating OAS1 on COVID-19 outcomes, we tested the probability that the genetic 

determinants of OAS1 circulating protein level were shared with the three COVID-19 

outcomes using co-localization analyses, as implemented in coloc12. The posterior probability 

that OAS1 levels and COVID-19 outcomes shared a single causal signal in the 1-Mb locus 

around the cis-pQTL, rs4767027, was 0.72 for very severe COVID-19, 0.82 for 

hospitalization due to COVID-19 and 0.89 for COVID-19 susceptibility (Fig. 3). This co-

localization result was also replicated using OAS1 cis-pQTL identified by Pietzner et al.17 
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(Supplementary Table 7). This suggests that there is likely a single shared causal signal for 

OAS1 circulating protein levels and COVID-19 outcomes. 

 

Co-localization of ABO levels and different COVID-19 outcomes also showed co-

localization between ABO level and different COVID-19 outcomes (posterior probability of 

single shared signal = 0.90, 0.98 and 1 for ABO level and very severe COVID-19, 

hospitalization due to COVID-19 and susceptibility, respectively) (Extended Data Fig. 1). We 

were unable to perform co-localization analyses for IL10RB due to a lack of genome-wide 

summary-level data from the original proteomic GWAS16. 

 

5.4.3 Aptamer-binding effects 

Protein-altering variants (PAVs)15 might influence binding of affinity agents, such as 

aptamers or antibodies, that are used to quantify protein levels. We, thus, assessed if the cis-

pQTLs for the MR-prioritized proteins were PAVs or in LD (r2 > 0.8) with PAVs. rs2834167 

(IL10RB) is a nonsense variant and could, therefore, be subject to potential binding effects. 

rs505922 (ABO) is not in LD with known missense variants. rs4767027 (OAS1) is an intronic 

variant, which is in LD with a missense variant rs2660 (r2 = 1) in European ancestry. 

However, because expression studies derived from RNA sequencing are not subject to 

potential effects of missense variants that could influence aptamer binding, we next explored 

whether rs4767027 also influences OAS1 expression and/or splicing. 

 

5.4.4 sQTL and eQTL studies for OAS genes  

sQTLs are genetic variants that influence the transcription of different isoforms of a protein. 

The aptamer that targets OAS1 was developed against a synthetic protein comprising the 

amino acid sequence 1–364 of NP002525.2, which is common to the two major OAS1 

isoforms: p46 and p42. Hence, the aptamer might identify both or either isoforms. 
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rs10774671 is a known sQTL for OAS1 that induces alternate splicing and creates p46 and 

p42 isoforms. Most present-day individuals of European ancestry carry the alternative variant 

(rs10774671-A). The ancestral variant (rs10774671-G) is the major allele in African 

populations and became fixed in Neanderthal and Denisovan genomes24,25. However, the 

ancestral variant, with its increased expression of the p46 isoform, was reintroduced into the 

European population via gene flow from Neanderthals26. Previous analyses suggest that 

individuals with either the GG or GA genotype at rs10774671 express higher amounts of p46 

(ref. 26), which is also the predominant isoform found in circulating blood27. Differences in 

antiviral activity have been observed between isoforms, with p46 being more active in certain 

viral infections28. Interestingly, the OAS1 pQTL rs4767027 is in high LD (r2 = 0.97) with 

rs10774671 (ref. 26) in European populations. Functional studies support that the G allele at 

rs10774671 increases expression of the p46 isoform but decreases expression of the p42 

isoform27. This G allele at the sQTL rs10774671 reflects the T allele at pQTL rs4767027, 

which itself is associated with higher measured OAS1 levels and reduced odds of COVID-19 

severity and susceptibility. These separate lines of evidence suggest that OAS1 levels, as 

measured by the SomaScan platform, predominantly identify the p46 isoform, which might 

protect against COVID-19 outcomes. 

 

Undertaking MR studies of OAS1 splicing, we found that increased expression of the p46 

isoform (as defined by normalized read counts of the intron cluster defined by LeafCutter29,30) 

was associated with reduced odds of COVID-19 outcomes (OR = 0.29, 95% CI 0.17–0.49, 

P = 4.1 × 10−6 for susceptibility, OR = 0.09, 95% CI 0.04–0.21, P = 2.0 × 10−8 for 

hospitalization and OR = 0.05, 95% CI 0.02–0.13, P = 3.1 × 10−9 for very severe COVID-19) 

(Fig. 2b). Co-localization analyses also supported a shared causal signal among the sQTL for 

OAS1, the pQTL and COVID-19 outcomes (Extended Data Fig. 2). Interestingly, the co-

localization analyses supported a stronger probability of a shared signal with the sQTL than 
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the pQTL, suggesting that the p46 isoform might be the driver of the association of OAS1 

levels with COVID-19 outcomes. 

 

Next, we tested, using eQTL MR analyses, whether increased expression of OAS1 levels, 

without respect to isoform, was associated with COVID-19 outcomes. We identified an eQTL 

for total OAS1, rs10744785, from GTEx v8 (ref. 31). Total OAS1 expression levels were not 

associated with COVID-19 susceptibility and hospitalization (Fig. 2b). We also found that 

increased OAS3 expression in whole blood was positively associated with COVID-19 

outcomes in MR analyses and support for co-localization of their genetic signal (Extended 

Data Fig. 3 nd Supplementary Table 9). 

 

Taken together, these pQTL, sQTL and eQTL studies suggest that increased levels of the p46 

isoform of OAS1 seem to protect against COVID-19 adverse outcomes. 

 

5.4.5 Association of measured OAS1 protein level with COVID-19 outcomes.  

Because MR studies were derived from protein levels measured in a non-infected state, we 

tested the hypothesis that increased OAS1 protein levels in a non-infected state would be 

associated with reduced odds of COVID-19 outcomes. To do so, we undertook a case–control 

study, measuring OAS1 protein levels using the SomaScan platform in 1,039 longitudinal 

samples from 399 patients who tested positive for SARS-CoV-2 by polymerase chain reaction 

(PCR) that were collected at multiple time points during their COVID-19 infection and 105 

individuals who presented with COVID-19 symptoms but had negative SARS-CoV-2 PCR 

nasal swabs from the Biobanque Quebecoise de la COVID-19 cohort (www.BQC19.ca). 

Individuals who had undergone nasal swabs for SARS-CoV-2 infection were recruited 

prospectively (Table 2). 
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We defined non-infectious samples as those collected from convalescent patients with SARS-

CoV-2 at least 31 d after onset of their symptoms (n = 115) or samples collected from patients 

negative for SARS-CoV-2 by PCR (n = 105). We also measured OAS1 levels in individuals 

with samples from patients positive for SARS-CoV-2 <14 d after symptom onset (n = 313), 

which showed increased OAS1 levels during infection (Extended Data Figs. 4–6). OAS1 

levels are not associated with age and sex in non-infectious samples (Extended Data Fig. 7). 

After sample quality control (Methods), 308 patients with at least one sample collected during 

infection, 113 patients with at least one sample collected during a non-infectious state and 103 

COVID-19-negative controls were included in the analyses (Extended Data Fig. 8). 

 

To test whether OAS1 levels in a non-infectious state were associated with COVID-19 

outcomes, we undertook logistic regression controlling for age, sex, age*age, plate, 

recruitment center and sample processing time. OAS1 levels were log-transformed and 

standardized to match the transformation procedure of the MR study. We found that, in the 

non-infectious samples, each s.d. increase in OAS1 levels on the log-transformed scale was 

associated with reduced odds of COVID-19 outcomes (OR = 0.20, 95% CI 0.08–0.53, 

P = 0.001 for very severe COVID-19; OR = 0.46, 95% CI 0.28–0.76, P = 0.002 for 

hospitalization; and OR = 0.69, 95% CI 0.49–0.98, P = 0.04 for susceptibility) (Fig. 4, 

Extended Data Fig. 9 and Supplementary Table 10). These results are consistent with our 

findings from MR, where increased circulating OAS1 levels in a non-infectious state were 

associated with protection against all of these adverse COVID-19 outcomes. 

 

In samples drawn during active infection, we found that increased OAS1 levels were 

associated with increased odds of adverse COVID-19 outcomes (OR = 1.50, 95% CI 1.19–

1.90, P = 0.0007 for very severe COVID-19; OR = 1.93, 95% CI 1.46–2.56, P = 4.8 × 10−6 for 

hospitalization; and OR = 4.39, 95% CI 2.87–6.73, P = 1.09 × 10−11 for susceptibility) (Fig. 4). 
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Taken together, these findings suggest that increased OAS1 levels in a non-infectious state are 

associated with better COVID-19 outcomes, and that, during infection, SARS-CoV-2 

exposure likely causes OAS1 levels to increase, as interferon pathways are stimulated, which 

are known to increase OAS1 levels32. 

 

 

5.5 Discussion 

Disease-specific therapies are needed to reduce the morbidity and mortality associated with 

COVID-19 outcomes. In this large-scale, two-sample MR study of 931 proteins assessed for 

three COVID-19 outcomes in up to 14,134 cases and 1.2 million controls of European 

ancestry, we provide evidence that increased OAS1 levels in the non-infectious state are 

strongly associated with reduced risks of very severe COVID-19, hospitalization and 

susceptibility. The protective effect size was particularly large, such that a 50% decrease in 

the odds of very severe COVID-19 was observed per s.d. increase in OAS1 circulating levels. 

OAS proteins are part of the innate immune response against RNA viruses. They are induced 

by interferons and activate latent RNase L, resulting in direct viral and endogenous RNA 

destruction, as demonstrated in in vitro studies33. Thus, OAS1 has a plausible biological 

activity against SARS-CoV-2. Because therapies exist that activate OAS1, repositioning them 

as potential COVID-19 treatments should be prioritized. 

 

In populations outside of Sub-Saharan Africa, the protective alleles at both rs4767027-T (the 

OAS1 pQTL) and rs10774671-G (the OAS1 sQTL) are found on a Neanderthal haplotype34, 

which was passed on to modern humans ~50,000–60,000 years ago35. The correspondence 

between the previously described gene flow35 from Neandertals at this locus and the 

haplotype associated with protection against COVID-19 in the GWAS22 was recently 
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demonstrated34. Even though these two single-nucleotide polymorphisms (SNPs) share a 

haplotype, their evolutionary histories differ. The rs4767027-T allele is derived from the 

Neanderthal lineage, whereas, for the rs10774671-G allele, Neanderthals preserved the 

ancestral state. OAS1 alternative splicing regulated by the rs10774671-G allele increases the 

isoform p46, which has a higher enzymatic activity against viruses than the p42 isoform36 and 

is the only OAS1 isoform robustly upregulated during infection26. Although further studies 

are needed to fully elucidate the functional relevance of the pQTL and sQTL for OAS1, the 

antiviral activity of the gene products is higher for the Neandertal haplotype than the common 

haplotype in Europeans28. In Europeans, the Neandertal haplotype has undergone positive 

selection26, and the rs4767027-T allele reaches an allele frequency of 0.32. Using MR and 

measurements of circulating proteins, we demonstrated here that increased OAS1 levels of the 

Neandertal haplotype in modern-day individuals of European ancestry confer this protective 

effect. 

 

Our MR evidence indicated that higher p46 isoform levels of OAS1 and higher OAS1 total 

protein levels, as measured by the SomaScan assay, had protective effects on COVID-19 

outcomes. These results were strongly supported by co-localization analysis. Given the 

consistent co-localization between the sQTL and pQTL for OAS1, the lack of co-localization 

between the eQTL and pQTL for OAS1 and the evidence that the SomaScan assay likely 

measures p46 isoforms, it seems probable that the protective effect of OAS1 is derived from 

the p46 isoform. However, further investigations are required to specifically measure each 

isoform in circulation, and isoform activity assays will be required to better understand if the 

p46 isoform, rather than total OAS1 levels, is most protective against COVID-19 outcomes. 

 

The ancestral OAS1 splice variant encoding the more active p46 isoform was lost in the 

modern human population that left Africa. Several scenarios might explain this loss of 
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function—for example, loss of purifying selection during the out-of-Africa exodus, which 

might be due to changes in environmental pathogens or potential harm induced by OAS1 

antiviral activity37. Unfortunately, we do not have sufficient data to test if the OAS1 p46 

ancestral allele in Sub-Saharan Africans also offers protection against COVID-19. 

Nevertheless, these findings further emphasize the importance of the Neanderthal genome in 

COVID-19 risk modulation, because a risk locus on chromosome 3 has also been reported to 

be inherited from Neanderthals38. 

 

OAS1, OAS2 and OAS3 share considerable homology. As an interferon-stimulated gene39, 

OAS1 polymorphisms have been associated with the host immune response to several classes 

of viral infection40,41,42,43,44. Given that OAS1 is an intracellular enzyme-activating RNase L 

leading to viral RNA degradation, it is probable that the circulating levels of this enzyme 

reflect intracellular levels of this protein. However, there is experimental evidence that 

extracellular OAS1 might also be important in the viral immune response33. 

 

Molecules currently exist that can influence OAS1 expression. Interferon beta-1b, which 

activates a cytokine cascade leading to increased OAS1 expression45, is currently used to treat 

multiple sclerosis and has been shown to induce OAS1 expression in blood cells46. Interferon-

based therapy has also been used in other viral infections47. However, recent randomized 

trials have shown inconsistent results. Although intravenous interferon beta-1b combined with 

lopinavir–ritonavir reduced mortality due to MERS-CoV infections48, in the unblinded 

SOLIDARITY trial49 there was no demonstrated benefit of intravenous interferon-beta-1b. On 

the other hand, a recent phase 2 trial testing the effect of inhaled nebulized interferon beta-1a 

(which is closely related to interferon beta-1b) showed improved COVID-19 symptoms in the 

treatment arm50. Although this study was not powered to show a difference in mortality, all 

deaths occurred in the placebo group. Inhaled nebulized interferon beta results in a much 
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higher tissue availability in the lung and might result in improved antiviral activity. Moreover, 

timing of administration is likely to play a role, as the administration of a pro-inflammatory 

cytokine might not provide benefit during the inflammation-driven phase of the disease. 

However, data on timing of administration are currently unavailable in the SOLIDARITY 

trial, and conclusions cannot yet be drawn. Lastly, the effect of interferon supplement might 

vary across ancestral populations, as different ancestries have different amounts of the more 

active p46 isoform of OAS1. Our study was limited to individuals of European ancestry, a 

population with higher expression of the p46 isoform. Interestingly, the SOLIDARITY trial 

enrolled 78% of its patients in South Asia, the Middle East, North Africa and Latin America, 

populations that might have higher expression of the p42 OAS1 isoform, whereas the study 

on inhaled interferon beta comprised 80% White patients from the United Kingdom. It is 

possible that interferon beta-1b might have different effects in populations of different 

ancestry due to different frequency of genetic variants in different populations. 

 

There is in vitro evidence that pharmacological inhibition of phosphodiesterase-12, which 

degrades 2′–5′ oligoadenylate synthesized by OAS1, potentiates OAS-mediated antiviral 

activity51,52. Interestingly, coronaviruses in the same family as SARS-CoV-2 have been 

shown to produce viral proteins that degrade 2′–5′ oligoadenylate and reduce RNase-L 

activity, leading to evasion of the host immune response53,54. Our findings are also consistent 

with recent experimental work55 showing that there are situations where SARS-CoV-2 is 

sensitive to OAS1-related antiviral defenses. Our findings motivate pharmacologic strategies 

to increase OAS1 levels or activity, as well as further evaluation of the possible antiviral 

activity of extracellular OAS1 (ref. 33). Thus, existing preclinical molecules that lead to 

increased OAS1 levels51 could be optimized and tested for their effect on COVID-19 

outcomes. 
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Our MR analyses found that higher levels of OAS3 expression is associated with worse 

COVID-19 outcomes, which is an opposite direction of effect compared to OAS1. The 

discordant effects of the p46 isoform for OAS1 and OAS3 were also reported by a previous 

study26, which might reflect complex biology of OAS genes for innate immune response. In a 

recent transcription-wide association study from the GenOMICC program22, genetically 

predicted high expression of OAS3 in lungs and whole blood was associated with a higher 

risk of patients with COVID-19 becoming critically ill. Although further studies to assess the 

roles of OAS genes specific to SARS-CoV-2 are needed, it is likely that OAS1 is the main 

driver of the protective effect of the p46 isoform for COVID-19 outcomes given previous 

functional studies demonstrating the antiviral effect of OAS genes26. 

 

This study had limitations. First, we used MR to test the effect of circulating protein levels 

measured in a non-infected state because the effect of the cis-pQTLs on circulating proteins 

was estimated in individuals who had not been exposed to SARS-CoV-2. Once a person 

contracts SARS-CoV-2 infection, levels of circulating proteins could be altered, and this 

might be especially relevant for cytokines such as IL10 (which binds to IL10RB) and OAS1. 

Thus, the MR results presented in this paper should be interpreted as an estimation of the 

effect of circulating protein levels when measured in the non-infected state. Ongoing studies 

will help to clarify if the same cis-pQTLs influence circulating protein levels during infection. 

Second, this type of study suffers a high false-negative rate. Our goal was not to identify 

every circulating protein influencing COVID-19 outcomes but, rather, to provide evidence for 

a few proteins with strong cis-pQTLs, because these proteins are more likely to be robust to 

the assumptions of MR studies. Future large-scale proteomic studies with more circulating 

proteins properly assayed should help to overcome these limitations. Third, most MR studies 

assume a linear relationship between the exposure and the outcome. Thus, our findings would 

not identify proteins whose effect on COVID-19 outcomes has a clear threshold effect. 
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Fourth, the overall OAS1 levels measured by RNA sequencing (not only p46) might be biased 

by the effect of alternative splicing, and the role of overall OAS1 and OAS3 levels indicated 

by the association of the cis-pQTL of OAS1 in protection against COVID-19 are possible and 

not yet explored. We also could not completely exclude the possibility that measurement of 

OAS1 levels might be influenced by aptamer-binding effects. Last, all data presented in this 

paper pertain to individuals of European ancestry only—once again underlining the 

importance of genotyping efforts in other populations. 

 

In conclusion, we used genetic determinants of circulating protein levels and COVID-19 

outcomes obtained from large-scale studies and found compelling evidence that OAS1 has a 

protective effect on COVID-19 susceptibility and severity. Measuring plasma OAS1 levels in 

a case–control study demonstrated that higher circulating levels of this protein in a non-

infectious state are strongly associated with reduced risk of adverse COVID-19 outcomes. 

Interestingly, the available evidence suggests that the protective effect from OAS1 in 

individuals of European ancestry is likely due to the Neanderthal-introgressed p46 OAS1 

isoform. Known pharmacological agents that increase OAS1 levels51 could be explored for 

their effect on COVID-19 outcomes.  

 

 

5.6 Methods 

5.6.1 pQTL GWAS 

We systematically identified pQTL associations from six large proteomic 

GWASs15,16,17,18,19,20. Each of these studies undertook proteomic profiling using either 

SomaLogic SomaScans or O-link proximal extension assays. 
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5.6.2 COVID GWAS and COVID-19 outcomes 

To assess the association of cis-pQTLs with COVID-19 outcomes, we used COVID-19 meta-

analytic GWASs (data freeze 4) from the COVID-19 Host Genetics Initiative21. For our study, 

we used three of these GWAS meta-analyses, which included 25 cohorts of European 

ancestry and one cohort of admixed American ancestry. The outcomes tested were very 

severe COVID-19, hospitalization due to COVID-19 and susceptibility to COVID-19 (named 

A2, B2 and C2, respectively, by the COVID-19 Host Genetics Initiative). 

 

Very severe COVID-19 cases were defined as hospitalized individuals with COVID-19 as the 

primary reason for hospital admission with laboratory-confirmed SARS-CoV-2 infection 

(nucleic acid amplification tests or serology based) and death or respiratory support (invasive 

ventilation, continuous positive airway pressure, bilevel positive airway pressure or 

continuous external negative pressure, high-flow nasal or face mask oxygen). Simple 

supplementary oxygen (for example, 2 L min−1 via nasal cannula) did not qualify for case 

status. Controls were all individuals in the participating cohorts who did not meet this case 

definition. 

 

Hospitalized COVID-19 cases were defined as individuals hospitalized with laboratory-

confirmed SARS-CoV-2 infection (using the same microbiology methods as for the very 

severe phenotype), where hospitalization was due to COVID-19-related symptoms. Controls 

were all individuals in the participating cohorts who did not meet this case definition. 

 

Susceptibility to COVID-19 cases was defined as individuals with laboratory-confirmed 

SARS-CoV-2 infection, health record evidence of COVID-19 (ICD coding or physician 

confirmation) or with self-reported infections (for example, by questionnaire). Controls were 

all individuals who did not meet this case definition. 
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5.6.3 Two-sample MR 

We used two-sample MR analyses to screen and test potential circulating proteins for their 

role in influencing COVID-19 outcomes. In two-sample MR, the effect of SNPs on the 

exposure and outcome are taken from separate GWASs. This method often improves 

statistical power because it allows for larger sample sizes for the exposure and outcome 

GWAS56. 

 

Exposure definitions: We conducted MR using six large proteomic GWAS 

studies15,16,17,18,19,20. Circulating proteins from Sun et al., Emilsson et al. and Pietzner et al. 

were measured on the SomaLogic platform; Suhre et al., Yao et al. and Folkersen et al. used 

protein measurements on the O-link platform. We selected proteins with only cis-pQTLs to 

test their effects on COVID-19 outcomes because they are less likely to be affected by 

potential horizontal pleiotropy. The cis-pQTLs were defined as the genome-wide significant 

SNPs (P < 5 × 10−8) with the lowest P value within 1 Mb of the transcription start site of the 

gene encoding the measured protein9. For proteins from Emilsson et al., Pietzner et al., Suhre 

et al., Yao et al. and Folkersen et al., we used the sentinel cis-pQTL per protein per study as 

these were the data available. For proteins from Sun et al., we used PLINK 1.9 (ref. 57) and 

the 1000 Genome58 European population reference panels to clump and select LD-

independent cis-pQTL (r2 < 0.001, distance 1,000 kb) with the lowest P value from reported 

summary statistics for each SOMAmer-bound protein. We included the same proteins 

represented by different cis-pQTLs from different studies to cross-examine the findings. For 

cis-pQTLs that were not present in the COVID-19 GWAS, SNPs with LD r2 > 0.8 and with 

minor allele frequency (MAF) < 0.42 were selected as proxies; MAF > 0.3 was used for allelic 

alignment for proxy SNPs. cis-pQTLs with palindromic effects and with MAF > 0.42 were 

removed before MR to prevent allele mismatches. Benjamini–Hochberg correction was used 
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to control for the total number of proteins tested using MR. MR analyses were performed 

using the TwoSampleMR package in R59. For proteins with a single (sentinel) cis-pQTL, we 

used the Wald ratio to estimate the effect of each circulating protein on each of the three 

COVID-19 outcomes. For any proteins/SOMAmer reagents with multiple independent cis-

pQTL, an inverse variance-weighted method was used to meta-analyze their combined 

effects. After harmonizing the cis-pQTLs of proteins with COVID-19 GWAS, a total of 566 

SOMAmer reagents (529 proteins, 565 directly matched cis-pQTL and 26 proxies) from Sun 

et al., 760 proteins (747 directly matched cis-pQTL and 11 proxies) from Emilsson et al., 91 

proteins (90 directly matched cis-pQTLs and two proxies) from Pietzner et al., 74 proteins 

(72 directly matched cis-pQTL) from Suhre et al., 24 proteins (24 directly matched cis-

pQTLs) from Yao et al. and 13 proteins (13 directly matched cis-pQTLs) from Folkersen et 

al. were used as instruments for the MR analyses across the three COVID-19 outcomes 

(Supplementary Tables 11 and 12)15,16,17,18,19,20. 

 

5.6.4 Pleiotropy assessments 

A common pitfall of MR is horizontal pleiotropy, which occurs when the genetic variant 

affects the outcome via pathways independent of the exposure. The use of circulating protein 

cis-pQTLs greatly reduces the possibility of pleiotropy, for reasons described above. We also 

searched in the PhenoScanner23 database, a large catalog of observed SNP–outcome 

relationships involving >5,000 GWASs done to date to assess potentially pleiotropic effects 

of the cis-pQTLs of MR-prioritized proteins by testing the association of cis-pQTLs with 

other circulating proteins (that is, if they were trans-pQTLs to other proteins or significantly 

associated with other unrelated diseases or traits). For cis-pQTLs of MR-prioritized proteins 

measured on the SomaLogic platform, we assessed the possibility of potential aptamer-

binding effects (where the presence of PAVs might affect protein measurements). We also 
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checked if cis-pQTLs of MR-prioritized proteins had significantly heterogeneous associations 

across COVID-19 populations in each COVID-19 outcome GWAS. 

 

5.6.5 Co-localization analysis 

Next, we tested co-localization of the genetic signal for the circulating protein and each of the 

three COVID-19 outcomes using co-localization analyses, which assess potential 

confounding by LD. Specifically, for each of these MR-significant proteins with genome-

wide summary data available, for the proteomic GWASs a stringent Bayesian analysis was 

implemented in coloc12 R package to analyze all variants in the 1-Mb genomic locus centered 

on the cis-pQTL. Co-localizations with posterior probability for hypothesis 4 (PP4, that there 

is an association for both protein level and COVID-19 outcomes, and they are driven by the 

same causal variant) > 0.5 were considered likely to co-localize (which means the highest 

posterior probability for all five coloc hypotheses), and PP4 > 0.8 was considered to be highly 

likely to co-localize. 

 

5.6.6 sQTL and eQTL MR and co-localization studies for OAS genes 

We performed MR and co-localization analysis using GTEx project v8 (ref. 31) GWAS 

summary data to understand the effects of expression and alternative splicing of OAS genes 

in whole blood. The genetic instruments were conditionally independent (r2 < 0.001) sQTLs 

and eQTLs for OAS1 and eQTLs for OAS2 and OAS3 identified by using stepwise 

regression in GTEx31. The sQTL SNP for OAS1 (rs10774671) was originally identified for 

the normalized read counts of LeafCutter29 cluster of the last intron of the p46 isoform 

(chr12:112,917,700–112,919,389, GRCh38) in GTEx30 and was used to estimate the effect of 

the p46 isoform. Co-localization analysis was performed using GWAS summary statistics 

from GTEx by restricting to the regions within 1 Mb of each QTL. 
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5.6.7 Measurement of plasma OAS1 protein levels associated with COVID-19 

outcomes in BQC19 

BQC19 is a Québec-wide initiative to enable research into the causes and consequences of 

COVID-19 disease. The patients included in this study were recruited at the Jewish General 

Hospital (JGH) and the Centre Hospitalier de l’Université de Montréal (CHUM) in Montréal, 

Québec, Canada. 

 

COVID-19 case–control status was defined to be consistent with the GWAS study from the 

COVID-19 Host Genetics Initiative, from which the MR results were derived. Namely, we 

tested the association of OAS1 protein levels with the three different COVID-19 outcome 

definitions both in samples procured from non-infected stages and samples procured during 

the acute phase of the infection. The three outcomes were as follows. 1) Very severe COVID-

19—defined as hospitalized individuals with laboratory-confirmed SARS-CoV-2 infection 

(nucleic acid amplification tests or serology based) and death or respiratory support (invasive 

ventilation, continuous positive airway pressure, bilevel positive airway pressure or 

continuous external negative pressure, high-flow nasal or face mask oxygen). Controls were 

all individuals who did not meet this case definition. 2) Hospitalized COVID-19 cases—

defined as individuals hospitalized with laboratory-confirmed SARS-CoV-2 infection. 

Controls were all individuals who did not meet this case definition. 3) Susceptibility to 

COVID-19—cases were defined as individuals with laboratory-confirmed SARS-CoV-2 

infection, and controls were all individuals who underwent PCR testing for SARS-CoV-2 but 

were negative. The date of symptom onset for patients with COVID-19 was collected from 

patient charts or estimated from their first positive COVID-19 tests if missing. Case inclusion 

criteria were not exclusive, which means that some individuals who were cases in the 

susceptibility analyses were also included in the hospitalization and very severe COVID-19 

cohorts if they met case definitions. 
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A total of 125 individuals were recruited from CHUM, and 379 individuals were recruited 

from the JGH. Individuals had blood sampling done at up to five different time points (200 

individuals had one measurement, 113 individuals had two measurements, 152 individuals 

had three measurements, 38 individuals had four measurements and one individual had five 

measurements). Days from symptom onset (T1) were calculated for each sample based on the 

date of symptom onset and blood draw date. For individuals who were negative for COVID-

19, T1 was set to 0. Sample processing time (in hours) for each sample was also calculated to 

measure the duration of time from sample collection to processing to account for the increase 

in the amount of protein released from cell lysis due to extended sample handling time. 

 

Protein levels in citrated (ACD) plasma samples were measured using the SomaScan assay. In 

total, 1,039 samples from 399 patients who were positive for SARS-CoV-2 and 105 patients 

who were negative for SARS-CoV-2 of mainly European descent underwent SomaScan 

assays, which included 5,284 SOMAmer reagents targeting 4,742 proteins. The SomaScan 

assay uses single-stranded DNA aptamers (‘SOMAmers’), which are designed to selectively 

bind to a particular protein target60. SOMAmer reagent binding is quantified by microarray, 

measuring abundance in relative fluorescent units (RFUs). The RFUs for each protein 

underwent four normalization processes, including hybridization control, intraplate median 

signal normalization, plate scaling and calibration and median signal normalization to a 

reference generated from internal data across all samples. All normalizations were conducted 

by SomaLogic and detailed in their Technical Note61. 

 

Of particpants who were positive for SARS-CoV-2, we defined samples procured from 

patients during the infectious state as those sampled within 14 d (including the 14th day) from 

the first date of symptoms62. For patients with more than one sample within 14 d of symptom 
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onset, the earliest sample was used. We defined samples procured from patients who were 

non-infectious as samples from SARS-CoV-2-positive patients taken at least 31 d after 

symptom onset. We selected 31 d, as this is the upper limit of the interquartile range of the 

duration of SARS-CoV-2 positivity in a recent systematic review and coincided with the first 

scheduled outpatient follow-up blood test in the BQC19 (ref. 63). For individuals with more 

than one sample at least 31 d after symptom onset, the latest sample was used. 

 

OAS1 level was measured by one SOMAmer reagent (OAS1.10361.25). Within each group, 

median signal-normalized OAS1 levels were natural log-transformed and adjusted for sample 

processing time, and the residuals were further standardized. For each group, we removed 

samples that were outliers with long sample processing time (sample processing time > 50 h) 

or high OAS1 level (log OAS1 level > 8). Logistic regression was performed to test the 

association-standardized OAS1 level with the three COVID-19 outcomes including age, sex, 

age*age, center of recruitment and plates as covariates. 

 

5.7 Data availability 

Data from proteomics studies and GTEx consortium (GTEx project v8 (ref. 31)) are available 

from the referenced peer-reviewed studies15,16,17,18,19,20 or their corresponding authors, as 

applicable. The PhenoScanner online database is available at 

http://www.phenoscanner.medschl.cam.ac.uk/. Summary statistics for the COVID-19 

outcomes are publicly available for download on the COVID-19 Host Genetics Initiative 

website (www.covid19hg.org). The BQC19 is an Open Science biobank. Instructions on how 

to access data for individuals from the BQC19 at the Jewish General Hospital site are 

available here: https://www.mcgill.ca/genepi/mcg-covid-19-biobank. Instructions on how to 

access data from other sites of the BQC19 are available here: 

https://www.bqc19.ca/en/access-data-samples.  
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5.8 Figures 

 

 

Figure 1. Flow diagram of study design.  

IVW, inverse variance-weighted. 
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Figure 2. Association of circulating protein levels of OAS1, ABO and IL10RB and 

messenger RNA levels of OAS1 with COVID-19 outcomes from MR.  

Forest plot showing OR and 95% CI from two sample MR analyses (two sided). P values are 

unadjusted. a, MR estimates of proteins influencing COVID- 19 outcomes; unit: s.d. of log-

normalized value. b, MR estimates of OAS1 messenger RNA influencing COVID-19 

outcomes; unit: s.d. of normalized read counts. 
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Figure 3. Co-localization of the genetic determinants of OAS1 plasma protein levels and 

COVID-19 outcomes. 

Co-localization of genetic signal for OAS1 levels (top plot) and COVID-19 outcomes (three 

bottom plots) in the 1-Mb region around OAS1 pQTL rs4767027; color shows SNPs in the 

region in LD (r2) with rs4767027 (purple). The posterior probability (PP) of a shared single 

signal between OAS1 levels and the three COVID-19 outcomes was estimated by coloc. 
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Figure 4. Association of OAS1 levels with COVID-19 outcomes from the case–control 

study in BQC19.  

Forest plot showing ORs and 95% CIs from logistic regression analyses (two sided). P values 

are unadjusted. During infection: patient samples that were collected within 14 d from the 

date of symptom onset. For individuals with two or more samples collected within 14 d of 

symptom onset, the earliest time point was used. Non-infectious state: patient samples that 

were collected at least 31 d from the date of symptom onset. For individuals with two or more 

samples collected at different time points at least 31 d from symptom onset, the latest time 

point was used. Additional information is also described in Supplementary Table 10. 
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5.8 Tables 

Table 1. MR-identified circulating protein levels affecting COVID-19 outcomes. 

 

OR represents the estimated effect of an s.d. on the natural log-scale (for Sun et al.) or one-

unit (for Emilsson et al.) increase in protein levels on the odds of the three COVID-19 

outcomes. P het, P value of heterogeneity for each cis-pQTL across the cohorts in the GWAS 

summary-level meta-analysis from the COVID-19 Host Genomic Initiative. 
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Table 2. Participant demographics of the BQC19 cohort included in this study. 

 
aMean (s.d.) bMedian (25% interquartile range and 75% interquartile range), which was 

calculated among individuals who were hospitalized and individuals on a ventilator, 

respectively. 
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5.10 Supplemental data 

Supplementary Tables and Figures can be downloaded from the open access publication 

Zhou, Bulter-Laporte, Nakanishi et al. in Nat Med available here: 

https://www.nature.com/articles/s41591-021-01281-1#Sec20  

 



 182 

Chapter 6: General Discussion 

The main purpose of this thesis was to advance the knowledge of the clinical implications of 

genetic determinants of respiratory diseases. In this doctoral thesis, I used sophisticated 

methods of genetic epidemiology, bioinformatics, and statistical genetics. This thesis 

represents a leap forward in clinical applications of genetic information in the field of 

multiple respiratory diseases, including AATD, IPF, and COVID-19. In Chapters 2 and 3, I 

explored the clinical impact of the genetic determinants for AATD and COVID-19 severity, 

using large-scale cohorts. In Chapters 4 and 5, we used the recent genome-wide association 

studies (GWASs) for proteome as exposure and those for respiratory diseases as outcomes in 

a Mendelian Randomization (MR) design. We identified potential causal circulating proteins 

that influence the IPF susceptibility, and the severity and susceptibility of COVID-19. Below, 

we discuss the strengths or shortcomings of each chapter. 

 

In Chapter 2, I explored the clinical impact of the AATD-genotype (PI*ZZ) in the SERPINA1 

gene. We found that the vast majority of individuals with PI*ZZ were not diagnosed as 

having AATD in UKB. Yet, these individuals had substantially increased odds of respiratory 

symptoms, diseases, and all-cause mortality. We estimated that ∼17000 individuals in the UK 

carry the PI*ZZ genotype. Thus, while the proportion of all British individuals who could be 

detected through genotyping efforts is small, the absolute number is not. Our study highlights 

the potential utility of population screening of this genotype, given its striking effects and the 

absolute number of individuals, who may otherwise suffer from disease burden without 

proper diagnosis and treatments. The major strength of the current study is that it is one of the 

largest studies to assess the effects of the SERPINA1 genotype status on multiple health 

conditions in a single large population cohort. A prior family-based study included non-index 

family members with undiagnosed PI*ZZ individuals(39), which could reflect the effects of 
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other shared genetic factors. Since the participants in UK Biobank were recruited without 

regard to their symptoms or diseases, our study is less prone to such biases. The main 

limitation of this study is that UK Biobank is not representative of the general population as 

there is well-documented evidence of a “healthy volunteer’ bias(40). Another shortcoming is 

that our study is based on the disease ascertainment using electrical health records, which 

could perhaps significantly underestimate the prevalence. There are no AAT measurements 

available in UK Biobank, so we could not test whether people with high-risk genotypes had 

low levels of plasma AAT. 

 

In Chapter 3, we evaluated the major common genetic risk for severe COVID-19 on 

chromosome 3, which was tagged by rs10490770 C allele. Combining individual-level 

clinical and genomic data from 13,888 individuals ascertained for COVID-19 outcomes from 

17 cohorts in 9 countries, we found that the risk allele was strongly associated with COVID-

19–related mortality and clinical complications, such as respiratory failure and VTE. We also 

found that risk allele carriers aged ≤60 years had higher odds of death or severe respiratory 

failure (odds ratio [OR]: 2.7) compared with those >60 years (OR: 1.5). This risk variant 

improved the prediction of severe disease similarly to most clinical risk factors. The risk 

allele is common. We estimated that 14.4% of individuals of European ancestry are risk allele 

carriers at rs10490770. Further, 9.5% of admixed Americans, 2.4% of Africans, 47.1% of 

South Asians, and 0.4% of East Asians are risk allele carriers. Consequently, a large 

proportion of humans carry this risk factor. The major strength of this study is the large-scale 

aggregation of individual-level clinical and genotype data from multiple cohorts from diverse 

countries. Due to the nature of the heterogeneity of health care systems, our data from 

multiple countries substantially increases the generalizability of our research findings. 

Nevertheless, the dynamic variability in COVID-19 death rate, due to the different waves of 

strains and the different vaccination coverage rates(7), has made it particularly challenging to 
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generalize all results in the early pandemic to the current post-pandemic era in the COVID-19 

research. Thus, future studies should re-evaluate the role of this major genetic risk or 

polygenic risk scores in COVID-19 severity prediction in the present situation of infection. 

 

Importantly, the index genotypes both in Chapters 2 and 3 were not very rare (PI*Z allele: 

0.03% and rs10490770: 15%, respectively). This implies that the absolute number of 

individuals who may benefit from the genotype information is substantial. To implement such 

genomics-guided clinical management in real-world settings, we further need to test the cost-

effectiveness of the population-level screening in clinical trials. Moreover, as these are 

genetic studies with potential clinical implications, future efforts are needed to address the 

issue of incidental findings, such as applying the American College of Medical Genetics and 

Genomics(41) recommendations as to how to report secondary findings and setting up a 

proper genetic counseling system.  

 

In Chapters 4 and 5, we applied MR to the large-scale pQTL GWASs, and the largest 

GWASs on IPF and the COVID-19 outcomes, to identify potential causal plasma proteins for 

disease susceptibility and severity, by efficiently scanning hundreds of proteins. MR is a 

well-established study design, which typically overcomes the bias from confounding and 

reverse causation of the observational studies. In Chapter 4, MR analyses of 834 proteins 

found that a 1 SD increase in circulating was associated with a reduced risk of IPF. FUT3 

signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 

99.9%, and further transcriptomic investigations supported the protective effects of FUT3 for 

IPF. In Chapter 5, in up to 14,134 cases and 1.2 million controls, we found that an SD 

increase in OAS1 levels was associated with reduced COVID-19 death or ventilation, 

hospitalization, and susceptibility. Measuring OAS1 levels in 504 individuals, we found that 
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higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 

susceptibility and severity.  

 

Given that the cost of measuring hundreds of proteins in adequately powered cohort studies 

involving samples collected years before disease onset is currently prohibitive, our approach 

provides an opportunity to prioritise candidate causal protein biomarkers by repurposing 

available data from large GWASs, which is the major strength of our analyses. It is important 

to underline that the potential causal proteins we identified (FUT3 and OAS1) were not 

exclusively responsible for the diseases, given the multi-factorial nature of IPF and COVID-

19. For example, there is well-known evidence that telomere-related genes and surfactant 

proteins have important roles in IPF pathogenesis(16, 42). Similarly, members of the Toll-like 

receptor group such as TLR7 and type 1 interferons are known to be the key players in host 

defense from SARS-CoV-2 infection. However, we did not identify such proteins in our 

pipeline, as we focused on circulating proteins; extracellular or secreted forms of proteins in 

the blood. Since respiratory diseases occur particularly in the lungs, it is valuable to 

understand the causal molecules in the lungs. Nevertheless, we focused only on circulating 

proteins, as we thought circulating proteins are an attractive source of biomarkers and 

therapeutic targets since they are easy to measure from blood, are more stable than mRNA, 

but are still able to target specific genes. MR studies for circulating biomarkers have often 

replicated or predicted the results of large-scale randomised controlled trials of 

pharmacological interventions to change biomarker levels(43–45). Thus, our MR analyses 

have direct translational relevance.  

 

Our MR analyses for IPF and COVID-19 also expanded the knowledge of the disease 

pathophysiology. Although it is still unclear how FUT3 may influence IPF risk, the 

fucosyltransferases encoded by FUT3 catalyse the formation of α-(1,4)-fucosylated 
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glycoconjugates and allow post-translational modification that attaches fucose residues to 

polysaccharides, called fucosylation(46). Fucosylation partly determines the heterogeneity of 

mucin size and charge, which are highly expressed in epithelial cells in the lungs. OAS1 is a 

double-stranded RNA (dsRNA) sensor capable of activating ribonuclease L (RNase L)(47). A 

recent functional study also demonstrated that prenylation of OAS1 appears to be necessary 

for dsRNA sensing of SARS-CoV-2(48). Collectively, our MR analyses supported targets 

with direct functional relevance to the diseases. 

 

MR has important methodological limitations. MR rests on several assumptions(49), the most 

problematic being horizontal pleiotropy of the genetic instruments (wherein the genotype 

influences the outcome, independently of the exposure). Although we tried to avoid this bias 

by using genetic variants that influence circulating protein levels that are adjacent to the gene 

that encodes the circulating protein through the use of cis- pQTLs, we could not eradicate the 

possibility of this bias.  

 

Lastly, the major limitation of all of the works described in Chapters 2 to 5 is that the genetic 

analyses were predominantly performed on individuals of European descent. Such an 

imbalanced abundance of European-descent studies may lead to the poor generalizability of 

genetic studies across populations(50). Thus, there is an urgent need to capture ancestral 

diversity in genetic studies to mitigate the potential health disparity in clinical translation of 

genetic findings. To expand our knowledge of the genetic basis of ILDs by capturing the 

diversity in populations, we aimed to perform multi-ethnic GWASs for ILDs. This is an 

ongoing project, as described in Appendix 3. 
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Chapter 7: Conclusions and Future Directions 

This thesis was an exploration of how to translate the genetic determinants of respiratory 

diseases into the clinical context. The obtained findings demonstrate the clinical utility of 

genetic information and the causal circulating proteins for diseases occurring in the lungs. 

Several future aims can be suggested to continue this work. 

 

In Chapters 2 and 3, we addressed the potential clinical implications of genetic information. 

The important step toward genomics-guided clinical management is to test the cost-

effectiveness of the population-level genetic screening. In addition, the incidental findings 

should be properly communicated to people by trained genetic counselors, applying the 

standards of American College of Medical Genetics and Genomics recommendations(51). 

 

In Chapters 4 and 5, we performed MR analyses to identify causal circulating proteins for 

respiratory diseases. Although MR is a powerful tool to efficiently scan hundreds of proteins 

that could identify reliable therapeutic targets with a causal relationship with diseases, MR 

could only serve as a hypothesis-generating tool. Thus, further functional validation to 

understand the pathophysiology of how these proteins cause the diseases, and to test whether 

the inhibition of these proteins is effective as a treatment strategy. 

 

Chapters 2 to 5 can be continued with trans-ancestry analyses. We restricted our analyses to 

the participants of European descent in all the analyses, to reduce the risk of confounding due 

to population stratification(52). In Chapter 2 and Chapter3, we tried to expand the analyses to 

non-European ancestries, however, these efforts have lacked statistical power to draw 

meaningful conclusions. To expand our knowledge of the genetic basis of ILDs by capturing 

the diversity in populations, we aimed to perform multi-ethnic GWASs for ILDs. This is 
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described in the proposal featured in Appendix 3. While we are to perform a trans-ancestry 

meta-analysis of GWAS for ILDs, the data used are still predominated by European ancestry. 

Further effort should be taken to build a well-powered biobank in non-European ancestries, 

such as BBJ(53), the Chinese Kadoorie Biobank(54), and Million Veteran Program(55). 

 

Functional experiments are also the key step toward a deeper understanding of the biology of 

diseases. While such studies are on their way, the following research should be investigated to 

understand gene function in disease models: 1) Generation of more functional genomics data 

in various cell types in lungs (e.g. alveolar epithelial cells, ciliated cells, and basal cells); 2) 

Generation of high-throughput pooled genome-editing. Research on respiratory diseases relies 

on the isolation of primary cells from explanted lungs or the use of immortalized cells, which 

are both limited in their capacity to represent the genomic and phenotypic variability among 

the population. The use of patient-specific induced pluripotent cells (iPSC) is another 

emerging path to generating disease models that could represent the disease variability(56). 

 

Lastly, this doctoral thesis mainly focused on the relationships between DNA (genome) and 

humans (phenome), with a slight exploration of transcriptome and proteome. While strong 

associations have been found between genome and phenome, there is still a large gap in how 

the genome influences the phenome. By incorporating other high dimensional omics data, 

such as single-cell RNA sequencing and spatial transcriptomic profiling(57), we could 

understand how genes influence transcripts, proteins, metabolites, and ultimately, phenotypes 

in a single-cell/cell-specific resolution. 

 

In summary, this doctoral thesis provided a novel contribution to the field of genetics in 

respiratory medicine, by demonstrating potential opportunity to realize clinical benefits of 
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emerging worldwide genomic efforts and by identifying potentially druggable disease-

influencing plasma proteins. 
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Appendix 3: Trans-ancestry genome-wide association study to identify genetic 

determinants for respiratory diseases. 

 

Title: Trans-ancestry genome-wide association study to identify genetic determinants for 

respiratory diseases.  

 

Brief background and research goals  

Interstitial lung disease (ILD) is a heterogeneous assembly of diseases that specifically affect 

lung parenchyma and alveoli, characterized by worsening quality of life and decline in lung 

function(58). Idiopathic pulmonary fibrosis (IPF) is the most common and genetically 

explored type of ILDs with the median survival time from diagnosis being 3 to 5 years with 

few treatment options, which is worse than the prognosis of several types of cancers(6).  

 

Owing to the prior family-based genetic studies for familial pulmonary fibrosis (FPF)(14–16) 

and large-scale genome-wide association studies (GWASs) for IPF(17, 18), both rare variants 

(e.g. in telomere-related genes and surfactant-associated protein genes) and common variants 

(e.g. in MUC5B, DSP, and telomere-related genes) have been discovered to predispose to IPF. 

However, genetic studies have been conducted predominantly in individuals of European 

descent, thus its generalizability to non-European ancestry is not guaranteed. Ultimately, such 

Eurocentric genetic study biases may exacerbate health disparities as clinical uses of genetic 

findings get widely implemented(50). Given that the incidence of IPF is lower in East Asia 

than in European countries(5), there could be some genetic diversity between ancestries.  

 

Moreover, the genetic background of non-IPF ILDs is not well understood because of the 

predominance of IPF-oriented genetic studies. Some evidence points to a shared genetic basis 

of IPF and non-IPF ILDs. For instance, pathological heterogeneity was observed within 



 203 

family members of FPF with numerous families having evidence of usual interstitial 

pneumonia (UIP)/IPF and non-specific interstitial pneumonia (NSIP) histopathology(59). 

Recent studies have demonstrated that those with non-IPF fibrosing ILDs, such as chronic 

hypersensitivity pneumonitis, also carried the IPF-associated MUC5B promoter variant(60) 

and rare variants in telomere-related genes(61).  

 

To expand our knowledge, we try to  

1. Screen putative pathogenic variants in candidate genes in the Japanese cohort (the 

Kyoto-ILD cohort; 52 FPF, 162 sporadic IPF [sIPF] cases with whole-genome 

sequencing [WGS] data).  

2. Combine data of gene-based tests for ILD using individuals of Japanese and European 

descent in the Kyoto-ILD cohort and UKB, to identify rare genetic variants associated 

with disease risk across populations.  

3. Perform genome-wide association meta-analysis of ILD, using the Kyoto-ILD cohort, 

UKB, Biobank Japan (BBJ)(53), FinnGen, and the Chicago/Colorado/UK study(17), 

to identify novel common genetic variants. 

4. Establish polygenic risk scores (PRSs), a weighted sum of the effect sizes of common 

variants, for IPF to evaluate its associations with non-IPF-ILDs in the Kyoto-ILD 

cohort and UKB, where individual-level data were available. 
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