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Abstract

This research is concerned with measuring the effect of various non-pharmaceutical in-

terventions (NPI), including the policies of the Government of Québec (Canada), in the

fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which

causes the disease known as COVID-19. The effect of such interventions can be mea-

sured through the effective reproduction rate Rt, a fundamental epidemiological factor

representing the average number of infections generated at time t by any infected and

contagious individual. A prominent method for computing Rt, the Estimate R algo-

rithm developed by Cori et al. (2013), is investigated. As the algorithm is deterministic,

the confidence interval it produces does not have a probabilistic interpretation. A Monte

Carlo approach is used to circumvent this problem. Two strategies are developed, based

either on Poisson regression or on a state-space model. Evidence was found to the ef-

fect that (i) there is an association between two NPIs (school closure and curfew) and

reduced Rt; and (ii) a curfew tends to slow down the change in transmission rate when

the controlled variable (school closure) is held constant.
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Résumé

Ce travail porte sur la quantification de l’effet de diverses interventions non pharma-

ceutiques (INP), dont les politiques mises en place par le Gouvernement du Québec

(Canada), dans la lutte au coronavirus (SARS-CoV-2) responsable de la maladie appelée

COVID-19. L’effet de telles interventions peut être mesuré à travers le taux de repro-

duction effectif Rt, facteur épidémiologique déterminant qui renseigne quant au nom-

bre moyen d’infections générées au temps t par un individu infecté et contagieux. La

méthode Estimate R proposée par Cori et coll. (2013) pour le calcul du coefficient Rt

est étudiée. Sachant qu’elle s’appuie sur un algorithme déterministe, l’intervalle de con-

fiance auquel elle conduit n’a pas d’interprétation probabiliste. On propose une approche

de type Monte-Carlo pour remédier à ce problème. Deux stratégies sont élaborées, l’une

fondée sur une régression de Poisson et l’autre sur un modèle espace-état. Il appert que

(i) deux INP (fermetures d’écoles et couvre-feu) sont liées à une réduction du coefficient

Rt ; (ii) un couvre-feu contribue au ralentissement de la variation du taux de transmission

une fois pris en compte l’effet des fermetures d’établissements scolaires.
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in Québec over the period from 1 April 2020 to 1 December 2021 . . . . . . . 13

2.6 The positivity rate for each province in Canada over the period from 1 April

2020 to 1 December 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Adjusted (red) vs. reported cases (blue) for each province in Canada over

the period from 1 April 2020 to 1 December 2021 . . . . . . . . . . . . . . . . 15

2.8 Comparison between different smoothing methods for λ for Québec data
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been reinforced on 11 April 2021 in Québec . . . . . . . . . . . . . . . . . . . 56

ix



List of Tables

2.1 List of parameters used in the SEIR model . . . . . . . . . . . . . . . . . . . . 5

2.2 List of parameters used in the Richardson–Lucy Deconvolution Algorithm . 16

4.1 Summary of NPIs for Québec and Ontario over the period from 15 October

2021 to 5 January 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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Chapter 1

Introduction

1.1 Background

Towards the end of 2019, a novel virus emerged in the city of Wuhan (Hebei province,

China) causing severe pneumonia. On 11 February 2020, the causative agent was named

“severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2) by the World Health

Organization (WHO), and the disease it causes was called COVID-19. On 20 March 2020,

WHO declared it a worldwide pandemic, as it very quickly spread to other countries

around the world. From January 2020 to January 2022, more than 3.25 million cases were

confirmed in Canada, with deaths exceeding 36,000 persons.

In 2020, non-pharmaceutical interventions (NPIs) were the only option to moderate

the spread of the virus. No vaccines were yet available. Confronted with the world-

wide COVID-19 pandemic under rapidly changing epidemiological situations, most gov-

ernments implemented highly restrictive and intrusive interventions, including stay-at-

home orders and the closure of all non-essential businesses.

In Canada, the year 2021 was characterized by severe financial stress for businesses

due to lockdowns and public resistance to pandemic guidelines. Federal and provincial

governments instigated policies to mitigate the propagation of the disease. However,

were they effective? Acquiring knowledge on the effectiveness of NPIs to mitigate the



spread of the virus is critical for stakeholders to implement interventions and combat a

resurgence of COVID-19 or any other future disease outbreak.

1.2 Rationale

A key building block to analyzing the effectiveness of NPIs is to quantify their impact.

A good measure of the impact of NPIs is the effective reproduction number, Rt. It is a

key epidemic parameter that estimates the average number of secondary cases of disease

caused by a single infected individual at time t over their infectious period.

This thesis is aimed at developing a statistically rigorous approach to estimating Rt

and constructing an associated confidence interval, as well as investigating the impact of

NPIs, in particular, the effect of the curfew that was imposed in Québec, Canada over the

period from 9 January to 28 May 2021.

A critical look is first cast on the most popular way of estimating Rt, the estimate R

algorithm developed by Cori et al. [7]. It is observed that confidence intervals cannot be

derived from this algorithm, considering that the model is deterministic. The most serious

ramification of the lack of a confidence interval is that it is then impossible to assess the

nature of changes in Rt, leading to biased conclusions drawn from such analyses.

This thesis employs a synthetic Rt example to emphasize the need for an accurate con-

fidence interval in reaching credible results. It further proposes a Monte Carlo simulation

strategy to construct a confidence interval for Rt and presents two methods for generat-

ing samples, performing forward-simulation with a Poisson distribution and emulating

samples using a state-space model.
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Chapter 2

Literature and Data

2.1 Related Works

The existing literature on the impact of NPIs on the spread of COVID-19 is rich. The

study published by the Imperial College COVID-19 Response Team [8] focused on NPI’s

impact on reducing mortality. The study of Flaxman et al. [9] used the effective reproduc-

tion number, Rt, to quantify the impact of NPIs in Sweden. The study of Haug et al. [13]

quantified the impact on Rt of 6,068 hierarchically coded NPIs implemented in 79 terri-

tories. The study of Brauner et al. [3] estimated the effectiveness of NPIs with a Bayesian

hierarchical model, and revealed that, by implementing effective interventions, certain

countries could control the in-country epidemic while avoiding stay-at-home orders.

This thesis will focus on two comparable studies. The Institut national de santé publi-

que du Québec (INSPQ) [16] used a method developed by Cori et al. [7] to quantify Rt.

The study of Liu et al. [15] employed panel (longitudinal) regression to quantify the effec-

tiveness of 13 categories of NPIs in reducing SARS-CoV-2 transmission, and uncovered

evidence for an association between two NPIs (school closure and internal movement

restrictions) and reduced Rt.



2.2 Reproduction Number

The effective reproduction number, Rt, is a useful indicator of the impact of NPIs. To

understand Rt, we need to formulate an epidemic model. The model we use is a type of

compartmental model called the SEIR model. Compartmental models can describe the

spread of a disease within a population.

The SEIR model describes the flow of individuals through four mutually exclusive

stages of infection: susceptible, exposed, infected, and recovered. This model can be used

to compute the infected population and the number of deaths of this epidemic. Four

compartments, viz. Susceptible S(t), Exposure E(t), Infectious I(t), and Recovered R(t),

were used to denote the number of individuals in the four groups as functions of time t.

The COVID-19 dynamics are modelled by a system of four differential equations, viz.

dS

dt
= N − βIS

1

N︸ ︷︷ ︸
infection

+ ωR︸︷︷︸
lost immunity

,

dE

dt
= βIS

1

N︸ ︷︷ ︸
infection

− σE︸︷︷︸
latency

,

dI

dt
= σE︸︷︷︸

latency

− γI︸︷︷︸
recovery

− (µ+ α) I︸ ︷︷ ︸
death

,

dR

dt
= γI︸︷︷︸

recovery

− ωR︸︷︷︸
lost immunity

− µR︸︷︷︸
death

.

Table 2.1 summarizes the parameters used in the model. Bjørnstad [2] showed that

the transmission rate can be calculated using the product {σ/(σ + µ)} × {β/(γ + µ+ α)}.

The basic reproductive number measures transmission by a specific group of individuals

with the same date of infection or symptom onset; such a group is often referred to as a

cohort of individuals. The instantaneous reproductive number Rt measures transmission

at a specific point in time; it is more appropriate for analyses estimating the reproductive

number of the infected population on specific dates [11].

4



Table 2.1: List of parameters used in the SEIR model

Name Description

β Infectivity
ω Lost immunity rate
σ Latency
α Death due to infection rate
γ Recovery rate
µ Death rate
N Total population

As this thesis is aimed at investigating how NPIs have affected transmission at a given

point in time, it is of interest to estimate Rt.

Figure 2.1 presents a visualization of the SEIR model generated by Anylogic at a

random time t. Here, the number under each compartment means the current number of

people in that compartment. One advantage of this model is that it is dynamic, meaning

that it captures the changes on each day.

Figure 2.1: Visualization of SEIR model

5



Researchers proposed various ways of estimating Rt for COVID-19. The most promi-

nent is the study of Cao et al. [5], which is one of the earliest studies. These authors

derived an equation to compute Rt for COVID-19 following a similar methodology to

that used by Lipsitch et al. [14] to estimate Rt for the 2003–04 SARS disease outbreak.

Instead of deriving the equation and constructing the algorithm, one can use existing

algorithms to estimate Rt. A prominent algorithm to compute Rt is the estimate R

function in the EpiEstim package developed by Cori et al. [7]. In Canada, for example,

the Institut national de santé publique du Québec (INSPQ) [16] used the estimate R

function to compute Rt. Nouvellet et al. [18] also used the EpiEstim function to calculate

the effective reproduction number at the time of infection to parameterize the relationship

between transmission and mobility.

2.3 Monte Carlo Method

Dennis et al. [20] gave the following definition of the notion of a confidence interval:

“An interval estimator is a rule specifying the method for using the sample

measurements to calculate two numbers that form the endpoints of the inter-

val. Interval estimators are commonly called confidence intervals. The upper

and lower endpoints of a confidence interval are called the upper and lower

confidence limits, respectively. The probability that a (random) confidence in-

terval will enclose θ (a fixed quantity) is called the confidence coefficient. From

a practical point of view, the confidence coefficient identifies the fraction of the

time, in repeated sampling, that the intervals constructed will contain the tar-

get parameter θ. If we know that the confidence coefficient associated with

our estimator is high, we can be highly confident that any confidence interval,

constructed by using the results from a single sample, will enclose θ.”

6



In short, a confidence interval measures the degree of uncertainty associated to a sam-

pling method, and its width is a measure of the accuracy of an estimate. Obtaining ap-

propriate confidence intervals is critical to analyzing data and drawing conclusions.

The popular estimate R algorithm has a critical limitation: because the model is

deterministic, no confidence interval is associated with it. This thesis proposes a solution

based on Monte Carlo simulations to construct confidence intervals.

2.4 State-Space Model

State-space models are a type of auto-regressive time series model that enables us to ac-

count for uncertainty in the observation model. They are widely used and go by a variety

of names, including structural models (econometrics), dynamic linear models (statistics),

Bayesian forecasting models (statistics), linear system models (engineering), and Kalman

filtering models (control engineering).

A state-space model is consistent with an observation component and a state com-

ponent. Here, the stochastic state components are associated with estimation errors.

These stochastic errors have unique variances, allowing the confidence intervals to be

constructed around each of the state components.

The state-space model’s primary advantage lies in its ability to create and estimate

custom models. This thesis employs state-space models to emulate samples and uses the

Monte Carlo method to obtain confidence intervals.

2.5 Data Collection

The three main sources of data used for this analysis are the COVID-19 Canada Open

Data Working Group [1], the Institut national de santé publique du Québec (INSPQ) [16],

and the Canadian Institute of Health Informatics (CIHI) [4]. R Studio software Version

1.2.5001 was used to process the data and generate figures. The majority of the figures in

7



this thesis cover data from 1 April 2020 to 1 December 2021, except for a few figures in

Chapter 3 that focus on specific times of NPI deployments.

For the period of interest, the total population of Québec is estimated at 8,604,500 peo-

ple, whereas Ontario has a population of 14,789,778 people. The figure for Québec is

drawn from the 2020 edition of the Bilan démographique du Québec [16] published by

INSPQ. The figure for Ontario is drawn from [19], which used the 2020 population esti-

mates from Statistics Canada (released in February 2021 and based on the 2016 Census).

The COVID-19 Canada Open Data Working Group collects publicly available infor-

mation on confirmed and presumptive positive cases during the ongoing COVID-19 out-

break in Canada. All data were collected from publicly available sources, including gov-

ernment reports and news media.

INSPQ is an expertise and reference centre that contributes to the understanding and

decision-making on issues of public health. In this thesis, the cases and Rt data provided

by INSPQ are used for comparison purposes.

The Canadian Institute of Health Informatics (CIHI) maintains a comprehensive scan

of federal and provincial government interventions related to COVID-19, sourced from

government releases and websites, national indigenous organizations, as well as regula-

tory bodies for health professionals. CIHI provides data on a wide range of interventions,

including vaccines, health workforce capacity, travel restrictions, and public information.

This thesis is focused on non-pharmaceutical interventions (NPIs) relating to openings

and closures, and physical distancing, viz.

(i) closures of elementary and secondary schools;

(ii) closures of public spaces (e.g., places of worship, parks, museums);

(iii) closures of non-essential businesses (e.g., restaurants, bars, karaoke lounges);

(iv) restrictions on indoor and outdoor gatherings;

(v) implementation of curfews.

8



2.5.1 Reported Cases

The data used in this thesis consist of daily case counts, daily tests, and cumulative tests of

COVID-19 for Canada and its 10 provinces, retrieved from the Canada Open Data group.

Figure 2.2: Daily reported incidence in the 10 provinces of Canada over the period from

1 April 2020 to 1 December 2022

9



Figure 2.3: Adjusted daily reported incidence in the 10 provinces of Canada over the

period from 1 April 2020 to 1 December 2022

In Figure 2.2, some outliers occur not because there is an unusually large number of

cases on any given day. These outliers occur because the authorities periodically realized

that they had missed some cases and added them all in one day. To achieve more accurate

results, the actual count of data must be used instead of the reported count, i.e., the data

after fixing the initial data entry errors.

10



Figure 2.3 shows the daily reported incidence in the 10 provinces of Canada with slight

adjustments over the period from 1 April 2020 to 1 December 2022. Some administrative

errors were corrected. The reported incidences for Québec on the 24th, 25th, 26th, and

27th of December 2020 were 2349, 0, 0, 6793, respectively. The values for the 27th were

redistributed in part to the 25th and 26th.

2.5.2 Intervention Data

Data related to government interventions were acquired from Health Canada, CIHI [4].

The government developed a regional level colour coding to indicate relative level of rate

of transmission. The highest risk level was designated red. In Figure 2.4, the colored dots

signify the imposing or easing of interventions. Section A.1 in the Appendix contains an

identical plot with shaped dots instead.

Figure 2.4: NPIs for Québec over the period from 1 April 2020 to 1 December 2021

11



2.6 Actual Cases

Knowing the actual number of people who are infected with COVID-19 in Canada is an

essential step towards understanding the spread of the disease. In this thesis, we refer

to this true number of infections as actual cases; it is also referred to as True New Daily

Infections by many researchers [12].

The number of actual cases in Canada is likely greater than the number of reported

cases. This is because individuals infected with the virus may not be detected for several

possible reasons:

(i) they choose not to get tested because they are asymptomatic or only mildly symp-

tomatic;

(ii) they are tested but the tests do not detect the virus (false-negative);

(iii) they do not have easy access to testing;

(iv) they simply do not want to get tested.

Contrary to the second point, there are also false-positive cases. Such cases occur

when healthy individuals are tested as positive for the disease. While this leads to an

overestimation of the number of cases, this impact is considered negligible. In this section,

we compare two methods to estimate the actual cases from reported cases. The first is

the prevalence ratio method developed in 2020 by Gu [12]. The second method is the

Richardson–Lucy deconvolution algorithm [10].

2.6.1 Prevalence Ratio

Gu developed a method to estimate actual cases in the United States using the prevalence

ratio, i.e., the ratio of actual cases to reported cases. Denote the prevalence ratio by ρ; it

can be approximated by

ρ(t) = apt
b + c,
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where t denotes the number of days since 1 March 2020, also referred to as day i in Gu’s

paper. Here, pt is the positivity rate for day t, and a, b, c are constants selected by Gu

in a trial-and-error manner so that the estimated case curve is as close as possible to the

reported case curve.

Because the epidemic situation and demographic structure are comparable for Canada

and the United States, those constants may be applied to our scenario. Plugging in the

values that Gu derived, viz., a = 1500/(t+ 50), b = 0.5, c = 2, we have

ρ(t) =
1500

t+ 50
pt

0.5 + 2,

where t is the number of days since 1 March 2020, and pt is the positivity rate, the prob-

ability that an individual being tested was infected. For each province, it was calculated

using the number of confirmed cases divided by the number of individuals tested. The

Figure 2.5: A. Actual cases vs. total tests in Québec; B. Actual cases vs. reported cases in

Québec over the period from 1 April 2020 to 1 December 2021
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Figure 2.6: The positivity rate for each province in Canada over the period from 1 April

2020 to 1 December 2021

higher the positivity rate, the more likely it leads to the scenario of not conducting enough

tests to find all the available cases, i.e., the more actual cases there should be. As the pos-

itivity rate increases, the true prevalence increases in a region relative to the reported

cases. Therefore, the actual number of cases can be estimated by

At = Itρ(t),

where t is the number of days since 1 March 2020.

There is a general trend in Figure 2.6. The Atlantic provinces had a higher positivity

rate at the beginning of the pandemic, whereas provinces west of Québec had a higher

positivity rate around January 2021. Québec looks like the mix of those two trends. It

14



Figure 2.7: Adjusted (red) vs. reported cases (blue) for each province in Canada over the

period from 1 April 2020 to 1 December 2021

reflects what happened in reality. In particular, as reported in the news, the positivity rate

in the Atlantic provinces remained low for a long period.

The red and blue lines in Figure 2.7 reflect adjusted and reported cases, respectively.

As shown in Figure 2.7, the actual number of cases is higher than the number of reported

cases for all the provinces.
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2.6.2 Richardson–Lucy Deconvolution Algorithm

The goal of the Richardson–Lucy deconvolution algorithm [10] is to reconstruct the daily

actual cases At given the daily deaths D1, . . . , DN and the time-from-infection-to-death

probability distribution (d1, . . . , dℓ), where dk is the probability that an infected individual

who will eventually die on day k after the infection.

Table 2.2 summarizes the notations used in this section. Given Ij , the reported in-

fections on day j, let D•,j be the total deaths resulting from infections on day j, i.e., the

number of people who were infected on day j and later died. Assuming a universal in-

fection fatality ratio ϕ, and that the number of deaths does not depend on the number of

deaths on previous days, it follows that

D•,j ∼ Bin(It, ϕ).

Let Xij be the deaths on day i due to infections on day j. The Poisson Limit Theorem

[4] states that the Poisson distribution may be used as an approximation to the binomial

distribution, under the conditions that the sample size, n, is large and the probability of

success, p, is small.

Table 2.2: List of parameters used in the Richardson–Lucy Deconvolution Algorithm

Notation Description Domain

At Actual total number of cases on day t t ∈ {1, . . . , N}
It Observed total number of cases on day t t ∈ {1, . . . , N}
Xij Number of deaths on day i < j resulting

from infections on day j j ∈ {2, . . . , N}
D•,j Observed total deaths resulting from infections on day j j ∈ {i, . . . , N}
Dt Observed total number of deaths on day t t ∈ {1, . . . , N}

si
Time between the onset of symptoms in a primary case
and the onset of symptoms in secondary cases

wi
Distribution of the daily probability of an individual
becoming infectious after being infected

dt Delay distribution from infection to death
ϕ Universal infection fatality rate (IFR)
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According to the Poisson Limit Theorem, the distribution of Xij can be approximated

by the Poisson distribution, viz.

Xij ∼ P(λjpij),

where

pij = di−j1j<i<j+ℓ(i).

In the situation where It is large and ϕ is small, by the Poisson limit theorem, Xij

can be approximated by a Poisson variable P(λt) with λt = ϕIt. The unknown parame-

ters (λ1−ℓ, . . . , λN−1) can thus be estimated by iterating in the space of parameters using

the expectation maximization (EM) algorithm. As the realization of the random vector

(D1, . . . , DN) is observed while the latent random variables Xi,j are unobserved, this pro-

cess essentially amounts to using an EM algorithm with missing data. We can thus get

λr+1
j from the following EM algorithm steps:

(i) Log-likelihood:

ℓ(λ;D,X) =
∑
j

∑
i

{−λjpij + xij(lnλj + ln pij)− ln(xij!)}

∝
∑
j

∑
i

{−λjpij + xij ln(λj)}.

(ii) Expectation:

EX{ℓ(λ)|λ(r), D} ∝ −
∑
j

∑
i

λjpij +
∑
j

∑
i

E{Xij|λ(r), D} ln(λj)

= −
∑
j

∑
i

λjpij +
∑
j

ln(λj)
∑
i

di∑
xij=0

xij

 di

xij


= −

∑
j

∑
i

λjpij +
∑
j

ln(λj)
∑
i

di
λ
(r)
j pij∑
j λ

(r)
j pij

= −
∑
j

∑
i

λjpij +
∑
j

λ
(r)
j ln(λj)

∑
i dipij∑

j λ
(r)
j pij
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(iii) Maximization:

Let

∂ℓ

∂λj

= −
∑
i

pij +

∑
j λ

(r)
j

∑
i dipij∑

j λ
(r)
j pij∑

i pij
= 0.

Then

λ
(r+1)
j =

∑
j λ

(r)
j

∑
i dipij∑

j λ
(r)
j pij∑

i pij
.

If we denote

qj =
∑
i

pij, d
(r)
i =

∑
j

λ
(r)
j pij,

then

λ
(r+1)
j =

λ
(r)
j

qj

∑
i

dipij

d
(r)
i

.

Given a cutoff of 10 days for the infectivity process [10], the infectiousness profile

distribution is (w1, . . . , w10), where each wi represents the proportion of the cumulative

infectiousness which falls between days i− 0.5 and i+ 0.5 for an average person.

Therefore, the infectivity ratio IRt on day t measures the number of people infected

by an “average” infector on day t, viz.

IRt =
It∑

i<t Iiwt−i

.

The actual cases can be estimated by

At = IRt

10∑
i=1

At−iwi.

Suggestion for INSPQ

The Institut national de santé publique du Québec (INSPQ) [16] used the algorithm due

to Cori et al. [7] to calculate the instantaneous Rt, which incorporates the Richardson–

Lucy deconvolution in R Studio Software. INSPQ first smoothed the cases curve using

18



Figure 2.8: Comparison between different smoothing methods for λ for Québec data over

the period from 1 April 2020 to 1 December 2021

the loess method. This thesis proposes to smooth the local rate parameter λ in the

Richardson–Lucy algorithm rather than smoothing the data.

A comparison of λ smoothed by different methods was carried out with the algorithms

set to their default configuration. The following functions were used:

(i) approx: linear approximation;

(ii) smooth: Tukey’s running median;

(iii) loess: local weighted regression;

(iv) rollmean: moving average.

As can be seen in Figure 2.8, the smoothed λ from the loess method is less wiggly

and more stable.

2.6.3 Comparison

Gu’s method and the Richardson–Lucy deconvolution are two different methods of esti-

mating the actual cases. Figure 2.9 shows the comparison between the number of actual

cases estimated from Gu’s prevalence ratio method and the Richardson–Lucy deconvolu-

tion method, respectively.
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Figure 2.9: Comparison of actual cases by prevalence ratio and Richardson–Lucy decon-

volution over the period from 1 April 2020 to 1 December 2021

The cases derived from Gu’s method have a higher peak compared to the reported

cases and have an overall trend of higher case counts, likely because they are adjusted

by the positivity rate, which is larger when there are more infections. Cases from the

Richardson–Lucy method have a steeper rise and a later start compared to those based

on Gu’s method.

Around December 2021, there was an outbreak caused by the Omicron variant, and

there were not enough tests to give an accurate positivity rate. Therefore, Gu’s method

could be misleading because it relies heavily on the positivity rate. As a result, this thesis

adopts the estimation of actual cases based on the Richardson–Lucy method.
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Chapter 3

Effective Reproduction Number

Assessing the efficacy of NPIs in mitigating the spread of COVID-19 is crucial for in-

forming future preparedness response plans. Quantifying the impact of NPIs is a crucial

first step for analyzing their efficacy. As discussed in the previous chapter, the effective

reproduction number, Rt, is a preeminent indicator of NPI impact.

The effective reproduction number, Rt, tracks the number of other people a single

infected person is likely to infect. Changes in Rt can detect changes in the level of trans-

mission of an infectious agent over time. An Rt greater than 1 indicates an exponential

acceleration in transmission, while an Rt less than 1 indicates that the epidemic is reced-

ing. When Rt is near 1, the transmission and the number of cases remain stable. If the

infection is well controlled (i.e., few cases) and an outbreak is observed, Rt will increase.

The monitoring of Rt over time provides feedback on the effectiveness of NPIs and

on the need to intensify control efforts, given that the goal of such efforts is to reduce Rt

below the threshold value of 1 and as close to 0 as possible, thus bringing an epidemic

under control. By tailoring and optimizing interventions to keep Rt below 1, the spread

of COVID-19 can be reduced.

The most prominent approach for estimating Rt is the EpiEstim method of Cori et

al. [7]. There are alternative methods for calculating the reproduction rate, but the instan-

taneous Rt method is the most robust for obtaining near-real-time estimates [11].



3.1 The EpiEstim Method by Cori et al.

The EpiEstim technique of Cori et al. [7] is extensively used and provided as a library

in R Studio Software [10, 16]. This methodology requires two types of data: (i) the epi-

demiological curve of new infections and (ii) the generational interval (the average time

between infection of a primary case and that of a secondary case).

3.1.1 EpiEstim Algorithm

Following the setup of the Richardson–Lucy deconvolution method in Section 2.6.2, Rt

is estimated using the infectivity ratio IRt. Given a cutoff of 10 days for the infectivity

process, the infectiousness profile distribution is (w1, . . . , w10), where each wi represents

the proportion of the cumulative infectiousness which falls between days (i− 0.5, i+ 0.5)

for an average person.

Therefore, the infectivity ratio IRt on day t measures the number of people infected by

an average infector on day t, viz.

IRt =
It∑

i<t Ii wt−i

.

Because the number of infected individuals is large, one can compute Rt on day t in a

“forward-looking” way by summing up the numbers of infections caused in subsequent

days by an average person who got infected on day t, viz.

Rt =
∑
i>0

IRt wi =
∑
i>0

wi It+i∑i−1

ℓ=i−10
wi−ℓ Iiwt+ℓ

.

3.1.2 Effective Reproduction Number From INSPQ

The Institut national de santé publique du Québec (INSPQ) [16] used the algorithm de-

veloped by Cori et al. [7] to compute the instantaneous Rt from the number of reported

cases of COVID-19 in Québec. The INSPQ is a reference centre that assists in NPI imple-
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mentation decision-making in Québec. Because this thesis is focused on Québec data, it

is beneficial to investigate its Rt estimation process.

The INSPQ used the EpiEstim package in R Studio Software to estimate Rt from

epidemic curves over a five-day rolling window. Because it is uncertain on which day a

person is infected, INSPQ calculated the infection curve retroactively from the time series

of confirmed cases in the laboratory (date of sampling) or by epidemiological link (date

of declaration).

This time series is first smoothed to reduce the impact of the effects of weekends dur-

ing which a lower number of cases is generally reported. The smoothed series is then

used to calculate the infection curve from a Richardson–Lucy type deconvolution algo-

rithm which enables infection times to be estimated.

Figure 3.1 shows the comparison of Rt from INSPQ and from the state-space model

with a seven-day window. INSPQ estimated Rt using a five-day window. Because the

first publicly accessible Rt from INSPQ is on 1 July 2020, the figure contains data from 1

July 2020 to 1 December 2021.

Figure 3.1: Comparison of Rt from INSPQ (yellow) and from the state-space model (blue)

with a five-day window
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3.1.3 Method Verification

An essential step before simulating Rt to analyze the impact of NPIs is to validate the

methodology. Many researchers use the EpiEstim package in R Studio software to sim-

ulate Rt from daily infections data (Goldstein et al. [10], INSPQ [16]). However, it is

unknown whether the wiggly Rt curves are real or just a feature of the estimation.

It is crucial to understand the sensitivity of the EpiEstim when generating Rt from

infections. One way to test it is to create a scenario where EpiEstim’s Rt should be a time

series sequence of the same value, which is constant. Infections data with a known R0

were simulated and inputted to the EpiEstim function. The EpiEstim function should

generate a fixed Rt of the value R0. If the Rt generated is wiggly under these conditions,

we can conclude that it is a feature of estimation due to the EpiEstim algorithm.

We inputted constant case counts into the estimate R function in EpiEstim to es-

timate Rt; the latter was expected to be a constant function at level 1. However, the

estimated Rt is not constant. Rather, it starts at a high value, fluctuates and converges to 1

no matter what case counts are inputted.

As estimate R is a widely used algorithm, further validation was warranted. In

particular, we scrupulously investigated the nature of the requested parameters.

Poisson Regression

After careful investigation of the study of Cori et al. [7], we clarified that the EpiEstim

function requires that the input cases follow a Poisson regression model. We were unable

to reproduce a constant Rt from the simulated cases in Section 3.1.3 because we did not

follow this requirement. Therefore, we constructed a Poisson regression model to simu-

late case counts using R Studio Software. The notations used in this section are described

in Table 2.2. R studio’s rpois function generates random counts from the Poisson dis-

tribution and returns the results. The function takes two arguments: number of random

values to return, and λ, which is the estimated rate of events for the distribution; this is

expressed as average events per period.
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It is of interest to see how well this algorithm responds to transitions in Rt. As a

result, we ran a simulation in which we artificially constructed an Rt series, generated

cases using Poisson regression using this series, and then reestablished an Rt series using

EpiEstim. We expected the algorithm to generate the same Rt series that we provided.

We defined the serial interval to be probabilities w1, . . . , wt (summing to 1) describing

the average infectiousness profile after infection. We set Rt to be 1.5 for the first 150

days and 0.8 for the next 150 days. The total number (N ) of days was chosen to be 300.

We simulated the serial interval w using a Gamma distribution with mean µw = 7 and

standard deviation σw = 1.1. These values were selected for illustration purposes and

could be adjusted in accordance with real-world scenarios.

Therefore, the incidence at time t follows a Poisson distribution with mean λt, where

for all t ∈ {2, . . . , N},

λt =
t∑

s=1

RtIt−sws.

In the defined scenario, this formula can be specified as

λt =


∑t

s=1 1.5 It−s ws for the first 150 days,∑t
s=1 0.8 It−s ws for the next 150 days.

Figure 3.2 suggests that the Rt estimated by EpiEstim approximately agrees with the

simulated Rt we input into the function, which is 1.5 for the first 150 days and 0.8 for the

next 150 days. We also tested when Rt remains constantly 1.5, and obtained a roughly

constant estimate of 1.5 after the regression. Remarkably, there are slight fluctuations at

the beginning of the fit. We may conclude that the Rt’s wiggly curves are a feature of

the estimation. Section 3.2 indicates some implications of this feature. Particularly, Sec-

tion 3.2.2 illustrates how this seemingly innocuous inaccuracy in the estimation process

may lead to false conclusions.
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Figure 3.2: Comparison of the simulated Rt and Rt estimated by EpiEstim over time

3.2 Challenges

A confidence interval measures the degree of uncertainty in a sampling method and pro-

vides a range of values that could contain the true population mean. An appropriate

confidence interval can provide an adequate representation of reality while accounting

for methodological inaccuracies in estimating.

There are three factors that generally influence the size of the confidence interval:

(i) the size of the sample;

(ii) the variability of the sample;

(iii) the confidence level: how much to trust the confidence-interval calculation.

In general, narrower confidence intervals carry more information. Researchers usu-

ally strive for tight confidence intervals while conducting quantitative research. A com-

mon pitfall many researchers overlook in the estimation of Rt is the derivation of a corre-

sponding confidence interval. Without a carefully calculated confidence interval, a hasty

analysis could misinterpret the natural variation of Rt as the impact of NPIs.
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3.2.1 Weakness of the EpiEstim Algorithm

There is no doubt that the algorithm of Cori et al. [7] made substantial contributions to

many fields and made many studies possible. While it is worth acclaiming that the al-

gorithm of Cori et al. [7] incorporates a great effort in attempting to achieve a narrow

confidence interval, there are certain downsides to the algorithm.

The approach of Cori et al. [7] fails to address two major concerns, resulting in an

improper representation of uncertainty. First, the confidence interval lacks statistical sig-

nificance because the method is deterministic. Second, the likelihood calculation for the

aggregated data relies on the premise of independence between time points.

With regard to the confidence interval lacking statistical significance, one factor that

influences the size of the confidence interval is the variability of the sample. However,

we argue that the algorithm of Cori et al. [7] does not address the right kind of variability.

This method ties the confidence interval too closely to the single accessible dataset; it has

induced dependence between successive posteriors, which reduces variability. The con-

fidence interval must account for variations across datasets. A proper Bayesian strategy

necessitates the collection of cross-dataset variability.

As for the second concern, the likelihood calculation for the aggregated data is based

on the assumption of independence between time points. According to Cori et al. [7],

the estimate R function is suitable for handling non-smooth data. The non-smoothness

comes from the weekend effect [6], given that Saturday and Sunday’s cases were reported

on Monday. Cori et al. [7] stated:

“However, the resulting Rt estimates can be highly variable and hence diffi-

cult to interpret when the time step of data is small. We therefore calculate

estimates over longer time windows, under the assumption that the instanta-

neous reproduction number is constant within that time window.” [7], p. 1
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Cori et al. [7] provided an example of smallpox in Kosovo in 1972, in which the daily

estimates of Rt were plotted for one-day, one-week, two-week, and four-week windows,

assuming a known serial interval distribution. It was found that

“The estimates varied substantially according to the window size chosen. The

one-day window estimates were so variable that it was hard to derive any

trend from them. As the window size grew, the median estimates were smoo-

ther, and the credible intervals were narrower, as expected.” [7], p. 4.

Cori et al. [7] model transmission with a Poisson process, so that the rate at which

someone infected in time step t − s generates new infections in time step t, is equal to

Rtws where ws is a probability distribution (hence summing to 1) describing the average

infectiousness profile after infection.

Therefore, the likelihood of incidence It given the reproduction number Rt, condi-

tional on the previous incidences I0, . . . , It−1 is

Pr(It | I0, . . . , It−1, w,Rt) =
(RtΛt)

Ite−RtΛt

It!
,

with Λs = It−1w1 + It−2w2 + · · ·+ I0wt.

The calculation of this likelihood is achieved using rpois(poisson mean,case),

where poisson mean is the result from the simulate forward function and case is

the actual case series. Given that the estimate R algorithm uses a weekly window to

calculate Rt, it is necessary to calculate the aggregated likelihood, i.e., the likelihood of

the incidence during a time period [t− τ +1; t] over which the transmissibility is assumed

constant, measured by the reproduction number Rt,τ .

Cori et al. [7] derived the likelihood of the incidence during this time period, viz.

It−τ+1, . . . , It given the reproduction number Rt,τ , conditional on the previous incidences

I0, . . . , It−τ to be

Pr(It−τ+1, . . . , It | I0, . . . , It−τ , w,Rt,τ ) =
t∏

s=t−τ+1

(Rt,τΛs)
Ise−Rt,τΛs

Is!
. (3.1)
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Cori et al. [7] found that the posterior distribution of Rt,τ is Gamma with parameters

(
a+

t∑
s=t−τ+1

Is,
1

1/b+
∑t

s=t−τ+1 Λs

)

where a and b represent the shape and scale parameters for the Gamma distribution,

respectively. In particular, the posterior mean of Rt,τ is

a+
∑t

s=t−τ+1 Is

1/b+
∑t

s=t−τ+1 Λs

,

and the standard deviation of Rt,τ is

√
a+

∑t
s=t−τ+1 Is

1/b+
∑t

s=t−τ+1 Λs

.

Critical to the expression of (3.1) is the assumption that the conditional incidences

are independent, which is unreasonably restrictive for many real-world data-generating

processes. The likelihood obtained from Cori et al.’s method is suboptimal because it

assumes independence of time points; it reconstructs Λs every time, which is suitable

for a point estimate but it is likely to be a misrepresentation for a whole time span. The

so-called likelihood after aggregating a seven-day window is no longer a likelihood and

would cause an improper representation of uncertainty.

Cori et al. [7] observed that as the window size grew, the median estimates were

smoother, and the credible intervals were narrower.

The solution to this problem is to get rid of independence by generating new inci-

dences. Section 3.3 proposes to use the state-space model to emulate samples. The advan-

tage of this emulation method is that it generates independent samples, allowing us to es-

timate the confidence interval based on cross-dataset variability. This emulation method

is the proper Bayesian representation of uncertainty.
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3.2.2 Synthetic Effective Reproduction Number

A serious ramification of the absence of a proper confidence interval is that it is unable

to detect the nature of changes in Rt, resulting in biased conclusions drawn from such

analyses. It is of interest to check whether the changes in Rt are in response to the im-

plementation of NPIs. Does Rt change as a response to NPIs, or is it possible that the

fluctuations in Rt are merely the product of its natural variation?

To further analyze the pattern of the changes in Rt, a synthetic cases curve with ran-

domly generated Rt was constructed. Each Rt is defined to be the sum of 0.9Rt−1 and the

randomly generated ϵ, where ϵ ∈ (0, 0.1).

The serial interval was generated using a Gaussian distribution with mean α = 7 and

standard deviation β = 1.1. Using similar bootstrap techniques, the confidence intervals

for the synthetic Rt and a curve of cases were acquired.

Figure 3.3: Synthetic cases and Rt with randomly generated, normally distributed Rt
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Figure 3.4: Rt from simulation-based method with 2000 iterations for a seven-day win-

dow

Figure 3.3 shows that it is possible to construct a cases curve from randomly generated,

normally distributed Rt. That is, there is a natural fluctuation of Rt of around 0.8 to 1.2.

Figure 3.4 shows that the Rt from the algorithm developed by Cori et al. [7] has a

very narrow confidence interval with 2000 iterations for a seven-day window. This exer-

cise illustrates that the cases can be reconstructed from a synthetic Rt, implying that the

changes in Rt are natural fluctuations rather than reflections of the NPIs.

Because the confidence interval estimated using the method of Cori et al. [7] is too

narrow, one can mistakenly interpret changes in Rt as a reflection of the NPIs, leading to

incorrect conclusions.

To reach a reasonable judgment about the effect of NPIs, one must carefully examine

Rt and a corresponding confidence interval. This thesis proposes a statistically rigorous

method to solve this problem.

3.3 Simulation and Emulation-Based Analysis

A weakness of the EpiEstim methodology is that it is deterministic, meaning that the

EpiEstim function produces the same result given the same parameters. This leads to

many problems. Most importantly, the confidence interval acquired by this method has

no statistical meaning as the model is not stochastic.
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Researchers have tried many ways to achieve more realistic confidence intervals. For

example, some researchers acquired the confidence interval by simulating data for 5000

randomly generated sets of parameters, and keeping the 1000 closest simulations to com-

pute what they referred to as the “confidence interval” around the mean. This process

remains deterministic despite an attempt to incorporate randomness.

We developed an alternative approach to obtain a statistically meaningful confidence

interval using parametric bootstrap sampling. In this approach, 2000 samples were gen-

erated and kept. The estimated trajectories of case counts give a genuine estimation of

uncertainty, which is what a confidence interval is aimed at doing. We compared two

methods of generating samples. The first is to perform forward-simulation using rpois.

The second is to use a state-space model to emulate samples.

3.3.1 Forward Simulation

We developed an alternative approach to obtain a statistically meaningful confidence in-

terval. The cases were smoothed using a seven-day moving average to offset the weekend

effect [6], given that Saturday and Sunday’s cases were reported on Monday.

In this approach, 2000 samples were generated and kept. The estimated trajectories of

case counts give a genuine estimation of uncertainty, which is what a confidence interval

is aimed at doing.

The samples were simulated from a parametric bootstrap methodology. Parametric

bootstrapping assumes that the data come from a known distribution with unknown pa-

rameters; in this analysis, the data are assumed to come from a Poisson distribution. The

parameters were estimated using the observed data and the estimated distributions were

then used to simulate the samples.

Parametric Bootstrap Procedure

We constructed a Poisson regression model using the algorithm specified in Section 2.6.2

and denoted it as f(µ, σ,Rt), where µ and σ represent the mean and standard deviation
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for the serial interval, respectively. It is referred to as find_poisson_case in R Studio,

which takes Rt, mean_w (µ) and var_w (σ) as parameters.

The parametric bootstrap procedure is as follows:

1. Obtain the fitted case count and the mean and standard deviation for the serial

interval µ0 and σ0 using the Optim function with objective function

ℓ{(C, S(w)} = ℓ{C, f(7.1, 1.1, Rt)}.

The initial parameters 7.1, 1.1 are the results based on the actual case count of the

grid search. An estimate of Rt was then obtained using estimate R. Estimates of

µ and σ were found using the Optim function. The fitted parameters as µ0 and σ0

are then stored.

2. Repeat the following steps K times, say K = 2000, as was done in this thesis:

(i) Simulate the incidence forward using the distribution of the serial interval

w(µ0, σ0) and using the rpois function in the Poisson mean calculation. Store

the simulated incidence and denote it as Si for the ith step.

(ii) Obtain the optimal (µi, σi) using the Optim function, with cases being the sim-

ulated Si and the initial values being (µ0 + ϵ1, σ0 + ϵ2), where ϵ1 and ϵ2 are the

incorporated perturbations. These perturbations are random numbers gener-

ated from a uniform distribution on the interval (−1, 1) for mean and (−0.05,

0.05) for standard deviation.

(iii) Estimate the Rt curve for step i using the estimate R function with the sim-

ulated incidence Si and the distribution of serial interval; the distribution of

serial interval is modelled by a Gaussian regression with parameters (µi, σi).

The final step extracts the point-wise confidence interval from the simulated samples.

We used the 97.5th and 2.5th values of the ranked differences as the endpoints of the 95%
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confidence interval. To do that, we sorted the list of samples Si by their loss function and

used the quantile function in R Studio software.

Optimization

For each iteration in this simulation-based approach, an optimization is performed to

find the fitted case curves. Let w be the distribution of serial intervals, and µw and σw

be the mean and standard deviation for the Gaussian regression parameters of the serial

interval, respectively. The estimate R function requires the mean and variance for w

to be larger than 1. In this section, w and w(µw, σw) will be used interchangeably. Let

i ∈ {1, . . . , N} be the days, and N be the total number of days.

Define the loss function to be the sum of differences of the simulated cases Si and

reported cases Ii, viz.

ℓ{S(w), I} =
∑

i∈{1,...,N}

ℓ{Si(w), Ii}.

The objective is

min
w(µw,σw)

ℓ{S(w), I} for µw, σw > 1,

because the estimate R function requires the mean and variance for w to be greater

than 1. To ensure that the parameters stay in the allowed region, a penalty M was added

to transform this unconstrained problem into a constrained problem.

Therefore, the objective was taken to be

min
w(µw,σw)

ℓ{S(w), I} =


M if µw, σw ≤ 1,

∑
i∈{1,...,N} ℓ{Si(w), Ii} if µw, σw > 1.

The constant M needs to be sufficiently large so that the algorithm would avoid taking

parameters outside the designated domain; but if M is too large, the algorithm could not
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escape it and would fail to work. After trial and error, this penalty M was chosen to be

∑
i∈{1,...,N}

ℓ{Si(w), Ii}+
∑

i∈{1,...,N}

Ii
2.

Loss Functions

We tried four different types of loss functions: squared loss, and absolute loss, Huber loss,

and likelihood loss. The squared loss, defined by

ℓ{I, S(w)} =
∑

i∈{1,...,N}

{Ii − Si(w)}2,

has the disadvantage that it has the tendency to be dominated by outliers because the

squared function enlarges differences drastically. Given that our data include outliers,

this loss function was deemed inappropriate.

The absolute loss, defined by

ℓ{I, S(w)} = ∥I − S(w)∥1 =
∑

i∈{1,...,N}

|Ii − Si(w)|,

mitigates the issue with outliers. Nevertheless, the fit we obtained was not satisfactory.

The Huber loss is a more robust function that may be regarded as a compromise be-

tween the squared loss and absolute loss. It is defined by

ℓ{I, S(w)} =
∑

i∈{1,...,N}


1

2
{Ii − Si(w)}2 if |Ii − Si(w)| ≤ δ,

δ

[
{Ii − Si(w)} −

1

2
δ

]
otherwise.

The Huber loss parameter δ controls the influence of the outliers. The higher the value

of δ, the more quadratic the fit gets, and the more weight the fit assigns to the outliers.

The Huber loss is a better choice as it takes outliers into account without being dominated

by them. The Huber loss fits similarly as the likelihood loss.
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Because Cori et al. [7] used likelihood to estimate Rt, it is most appropriate to report

the result using likelihood loss. Consequently, the likelihood loss will be used for this

analysis. It is defined by

ℓ{C, S(w)} =
∑

i∈{1,...,N}

λS(w)e−λ/S(w)!,

where the expected number of events λ equals the Poisson mean. It is realized using the

dpois function in R Studio.

Optim

The Optim function in R Studio was used to find the optimal parameters that minimize

the loss function. The parameters of interest are the mean µ and standard deviation σ for

the distribution of the serial interval. We inputted the case counts and initial guesses of

the mean and standard deviation. The algorithm simulated cases using the initial guesses

and updated the parameters in a quasi-Newton manner. The optimization is based on

the Broyden—Fletcher-–Goldfarb—Shanno (BFGS) algorithm [17], which does line search

with the descent direction preconditioned by the gradient with curvature information.

The initial guess was chosen based on a grid search. A grid search algorithm generated

four pairs of parameters from 1 to 10, by steps of 0.1. It was found that good starting

values for the mean and variance for the distribution of serial interval are 7.1 and 1.1,

respectively.

The case count was estimated using the Optim function and estimate R function

in R Studio Software. A statistically sound uncertainty estimate was obtained using the

resulting trajectories of case counts. The estimate R function takes the reported cases,

the prior distribution on Rt, and the distribution of serial intervals as inputs to estimate

Rt. The Optim function finds the parameters that minimize total cost. We then input

those parameters into the Poisson regression model to simulate case counts.
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The prior distribution on Rt and the distribution of serial intervals can be taken to be

Gaussian distributions. We conducted a grid search and compared different researchers’

parameters and decided to use 7.1 and 1.1 as the mean and standard deviation for the

Gaussian prior Rt distribution, respectively. Fixing the parameters for the prior on Rt, we

used the Optim function to find optimal parameters for the distribution of serial intervals.

3.3.2 State-Space Model

State-space models are a kind of autoregressive time series model that enables us to incor-

porate uncertainty in the observation model. The essential idea is that behind an observed

time series Xt, there is an underlying process St which itself is evolving through time in

a way that reflects the structure of the system being observed.

We emulated 2000 case curves with the smoothed model M in the state-space model.

To estimate Rt, we used the optim function in R to get the parameters that maximize the

likelihood of the serial interval. A statistically sound uncertainty estimate was obtained

using the resulting trajectories of case counts.

It is more likely for the correlations to be spurious when time series show strong

trends. Differencing a time series is a practical approach to removing trend and/or sea-

sonality from a time series. The lag-1 differencing is useful for removing trends.

Figure 3.5 indicates some time-varying heteroscedasticity and a seven-day periodicity

in the differenced data. The auto-correlation function (ACF) has confidence bands in

dotted lines. Counting the lines from the left, it can be seen that every 7th lag is outside

the confidence band, reflecting the periodicity. The seven-day periodicity in the data

is a concern. To address this, we fitted a state-space model with a seven-day seasonal

component and a random walk on the mean. For the local level model (random walk
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Figure 3.5: The ACF plot of the state-space model

plus noise) with a seven-day stochastic cycle, we have

OBSERVATION EQUATION Yt = Mt + St + Vt,

STATE EQUATIONS Mt+1 = Mt +W1t,

St+1 = −St − · · · − St−5 +W2t,

where Y is the log observed count, M is the signal, S is the periodic cycle, V is the nor-

mally distributed noise for the observation variable, while W1 and W2 are normally dis-

tributed noise for M and S, respectively.

Thus, the state is seven-dimensional, viz.

Xt = (Mt,St,St−1,St−2, . . . ,St−5)
⊤
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with the input matrix F and the state matrix G, where

F =
[
1 1 0 0 0 0 0

]
G =



1 0 0 0 0 0 0

0 −1 −1 −1 −1 −1 −1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0


and variance matrices

V = σ2
1 W =



σ2
2 0 0 0 0 0 0

0 σ2
3 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Then we emulated data from the estimated model and re-estimated the Rt for each.

In Figure 3.6, the blue curve represents the signal, M , where the periodicity has been

removed. Figure 3.6 shows that the estimated data fit the real data well. We used the

dlmSmooth function in R to get smoothed case curves.

To get the confidence interval, the estimated M was simulated to get 2000 datasets. Of

note, those simulated datasets are now models rather than data. Then, the estimate R

was used to estimate Rt from those models, and the confidence interval was computed

using these Rt estimates.
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Figure 3.6: Random walk plus noise (smoothed state) plot

3.3.3 Result

As discussed in Section 3.2, the algorithm of Cori et al. [7] does not address the right kind

of variability. The solution to the likelihood aggregation problem is to get rid of indepen-

dence by simulating new incidences. We decided to use the state-space model to emulate

samples. The advantage of this approach is that it generates independent samples, so that

independence across time is no longer necessary. This method gives a statistically sound

estimation of uncertainty and, as a result, a broader confidence interval.

Panel A of Figure 3.7 shows the estimated confidence interval for reported cases in

Québec over the period from 1 April 2020 to 1 December 2021 on a seven-day window,

based on the Monte Carlo method with samples emulated by the state-space model with

2000 iterations.

Panel B of Figure 3.7 illustrates, for the same period and window, the reproduction

number Rt and a corresponding confidence interval estimated using the Monte Carlo

method with samples emulated by the state-space model with 2000 iterations. It is worth

noting that around September 2020, the confidence interval for Rt is very narrow. This is

possibly because the increase was very rapid.

The comparisons of Rt for the two provinces for window sizes 1, 5, 7, and 14 of the

same scale are available in Section A.4 in the Appendix. The results for the seven-day
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Figure 3.7: A. Reported cases and estimated confidence interval in Québec over the period

from 1 April 2020 to 1 December 2021. B. Rt and the estimated confidence interval over

the period from 1 April 2020 to 1 December 2021

window and five-day window are very similar. We decided to use the seven-day window

as it offsets the weekend effects.

Panel A of Figure 3.8 shows Rt and its estimated confidence interval using EpiEstim

over the period from 1 April 2020 to 1 December 2021. The confidence interval in panel A

is significantly narrower than in panel B. It is not convincing that Rt fluctuates in this

manner, as it is remarkable that the daily variation exceeds the stochastic fluctuation by

such a large margin. This oddly narrow confidence interval is possibly due to the algo-

rithm’s failure to account for the appropriate type of variability. In contrast, the emulation

method is the proper Bayesian representation of uncertainty.

Comparison for Synthetic Rt

Following the setup of the exercise in Section 3.2.2 that generates a synthetic Rt from a

random normal distribution, we estimated the confidence interval from a Monte Carlo

method with samples emulated from a state-space model.
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Figure 3.8: A. Rt and the estimated confidence interval using EpiEstim over the period

from 1 April 2020 to 1 December 2021; B. Rt and its estimated confidence interval using

the state-space model over the period from 1 April 2020 to 1 December 2021

Figure 3.9 compares Rt from the emulation and simulation-based methods with 2000

iterations for a seven-day window. It is obvious that the Rt from the simulation-based

method developed by Cori et al. [7] has a much narrower confidence interval. This exer-

cise illustrates that the cases can be reconstructed from a synthetic Rt, implying that the

changes in Rt are natural fluctuations rather than reflections of the NPIs.

However, given that the confidence interval estimated by Cori et al. [7] is too small,

changes in Rt might be misinterpreted as a reflection of the NPIs. In contrast, the con-

fidence interval derived from the state-space model covers 1 most of the time, implying

that the changes in Rt could be due to natural fluctuations and that the changes in such

Rt do not reflect the impact of NPIs.

To reach a reasonable judgment about the effect of NPIs, one must carefully examine

Rt and a corresponding confidence interval. An appropriate confidence interval can pro-
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Figure 3.9: Comparison of Rt from the emulation and simulation-based methods with

2000 iterations for a seven-day window

vide an adequate representation of reality that accounts for methodological inaccuracies

in the estimation process. The confidence interval produced by the state-space model

reduces the bias due to the weakness of the algorithm and hence yields better results.
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Chapter 4

The effect of NPIs

Evaluating the efficacy of NPIs in mitigating the spread of COVID-19 is critical to inform

future preparedness response plans. A widely used metric that quantifies the impact of

NPIs is the effective reproduction number, Rt. Chapter 3 discussed some weaknesses

previously overlooked in the algorithm developed by Cori et al. [7] for estimating Rt.

In particular, the exercise in Section 3.2.2 demonstrated that it is crucial to examine the

confidence interval when studying the effect of NPIs. Without a carefully calculated con-

fidence interval, a hasty analysis could misinterpret the natural variation of Rt as the im-

pact of NPIs. This thesis adopts the confidence interval from a state-space model, which

was established in Section 3.3.

One NPI that may be regarded as too restrictive is a curfew, such as the one which

was imposed by the Government of Québec from 9 January to 17 May 2021. Before the

curfew, several other NPIs were implemented; thus, it remains uncertain if the change

in Rt was caused by the curfew. This thesis proposes a control of variable strategy, in

which the variable of interest is varied and other potential variables are controlled (held

constant). Other potential variables that may influence the development of the disease

include demographics, weather and variants.

Because Ontario never implemented any curfew and has demographics, weather and

variants comparable to Québec, it is beneficial to draw a comparison for the number of



cases in Québec and Ontario over the same period that covers the implementation of the

curfew, viz. September 2020 to July 2021. Therefore, the majority of the figures in this

section cover data from 1 September 2020 to 1 July 2021, with a few exceptions focusing

on 1 December 2020 to 1 June 2021.

4.1 Comparison With Ontario

Figure 4.1 shows the reported cases with a 95% confidence interval for Québec and On-

tario; the confidence interval was estimated using 2000 samples emulated by the state-

space model. A separate plot of the same scale is available in Section A.2 in the Ap-

pendix. Both curves have two peaks, reflecting the two waves of the disease during the

period from 1 September 2020 to 1 July 2021. The first wave was roughly over the pe-

riod from 15 October 2020 to 5 January 2021 from the start to peak; the second wave was

roughly over the period from 1 March 2021 to 15 April 2021 from the start to peak.

The cases curve of Ontario has a much higher peak for the second wave. An obvious

cause for the higher peak for Ontario is the difference in the total population, namely

14,789,778 for Ontario and 8,604,500 for Québec. The cases per 100,000 people were con-

structed based on the number of cases multiplied by 100,000 and divided by the popula-

tion in each province, respectively.

Figure 4.1: Reported cases and its estimated confidence interval over the period from

1 September 2020 to 1 July 2021 in Québec and Ontario
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Figure 4.2: Cases per 100,000 people in Québec and Ontario over the period from

1 September 2020 to 1 July 2021

As shown in Figure 4.2, the difference in the peak for the second wave remains. Be-

cause the comparison is on cases per 100,000 people, this difference can no longer be jus-

tified by the difference in population. The cases per 100,000 people for Québec is slightly

higher than that of Ontario before January and is approximately the same for the two

provinces from 10 January to 1 March, demonstrating that the rate of transmission Rt is

slightly higher in Québec from 10 January to 1 March and is approximately the same for

the two provinces over the period from 1 January, 2020 to 1 March, 2021.

Why did the change of the peaks in the second wave differ for the two provinces?

A possible explanation is that the two provinces implemented different policies to cope

with the rise of the disease during the second wave.

Table 4.1 provides a list of NPIs implemented by the two provinces from 15 October

2020 to 5 January 2021.

Table 4.2 provides a list of NPIs implemented by the two provinces from 1 March to 15

April, 2021. Prior to the outbreak of the second wave, both provinces reopened elemen-

tary and secondary schools and non-essential businesses, with restrictions. Québec re-

opened elementary and secondary schools earlier, and reopened non-essential businesses

slightly earlier. In particular, Québec reopened elementary schools on 11 January, and

secondary schools on 18 January; Ontario reopened elementary and secondary schools

on 8 February. Québec reopened non-essential businesses and restaurants on 8 February;
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Table 4.1: Summary of NPIs for Québec and Ontario over the period from 15 October

2021 to 5 January 2021

NPI Date

QC Closures of non-essential businesses in red zones extended Prior
Gatherings outside of household prohibited
(certain regions) Oct 22–Nov12

Indoor/outdoor gatherings prohibited
(certain regions)

Dec 7,
Dec 14

Elementary schools closed Dec 17
Non-essential businesses and restaurants closed Dec 25
Curfew between 8 p.m. and 5 a.m. Jan 9

ON
Fitness closed; dine-in restricted to 10;
Gatherings restricted to 5 indoor/25 outdoor.
(certain regions).

Prior

Dine-in prohibited Oct 19
Gatherings restricted to 5 indoor/25 outdoor.
Indoor gatherings prohibited,
outdoor gatherings limited to 10 people (certain regions).

Nov 7–Dec 14

Non-essential businesses and restaurants closed (3 regions) Dec 14
Indoor gatherings prohibited,
outdoor gatherings limited to 10 people. Dec 26

Non-essential businesses and restaurants closed Dec 26
Elementary and secondary schools moved to remote learning Jan 4

Ontario slowly reopened non-essential businesses on 10 February, and indoor dining on

22 February. Moreover, Ontario relaxed the private gathering limit to 10 indoors/ 25 out-

doors for 4 regions on 22 March. Québec relaxed the curfew to 9:30 p.m. on 17 March for

certain regions.

In addition to the restrictions they already had, both provinces implemented swift and

intense policies at the beginning of the second wave. Both provinces enforced restrictions

on dining, retail, and gatherings. Of note, the curfew in Québec was in effect from January

2021, and further reinforced on 11 April 2021.
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Table 4.2: Summary of NPIs for Québec and Ontario over the period from 1 March 2021

to 15 April 2021

NPIs Date

QC Curfew in place from 8 p.m. to 5 a.m. (5 regions) Prior
Easing restrictions on place of worship (100 allowed);
non-essential businesses reopened (4 regions) March 8–26

Primary and secondary schools closed. (3 regions) April 1
Curfew in effect between 8 p.m. and 5 a.m. (5 regions)
Primary and secondary schools closed. (5 regions) April 5

Gyms and indoor public places for leisure and sports closed;
maximum of 8 permitted for outdoor activities (red zones) April 8

Curfew in place from 8 p.m. to 5 a.m. (Montréal and Laval) April 11

ON Gatherings limited to 5 indoors/ 25 outdoors (certain regions). Prior
Gatherings limited to 5 indoors/ 10 outdoors (certain regions). March 19–30
Essential retail limited to 50% capacity,
Non-essential retail limited to 25% capacity,
Personal care services and in-person dining closed.
Indoor events and social gatherings prohibited;
Outdoor gatherings limited to 5;
Indoor weddings and funerals limited to 15% capacity.

April 3

Non-essential workplaces closed,
Essential retail capacity reduced to 25%. April 17

Elementary and secondary schools moved to remote learning.
Indoor and outdoor weddings and funerals limited to 10. April 19

4.2 Comparison of Effective Reproduction Numbers

Figure 4.3 shows the estimated Rt with a 95% confidence interval over the period from Oc-

tober 2020 to July 2021 in Québec and Ontario with a seven-day window. The confidence

interval was acquired using a state-space model with Kalman filter of 2000 iterations. On

10 April 2021, Québec had an Rt of 1.3802, with a 95% confidence interval (1.2021, 1.5896).

Ontario had an Rt of 1.8423 with a 95% confidence interval (1.2962, 2.5737). Québec had

a much lower Rt for the second peak. The comparisons of Rt for the two provinces for

window sizes 1, 5, 7, and 14 of the same scale are available in Section A.4 in the Appendix.

As discussed in Section 3.2.2, it is essential to compare the Rt of the two provinces

when their confidence intervals are mutually exclusive, as this indicates a significant dif-
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Figure 4.3: The estimated Rt with a 95% confidence interval in Québec and Ontario over

the period from 1 September 2020 to 1 July 2021

ference in their transmission rates. There are three occasions on which the confidence

intervals for the two provinces do not overlap: 8 February, 15 March, and 21 April.

Figure 4.4 shows the comparison of Rt for the two provinces with critical NPIs noted

over the period from 1 December 2020 to 1 June 2021. The confidence interval for Rt

Figure 4.4: Comparison of Rt for the two provinces with critical NPIs noted over the

period from 1 December 2020 to 1 June 2021
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is calculated using 2000 samples emulated by the state-space model with a seven-day

window. Section A.5 in the Appendix contains plots of the same scale over a longer time

period and for the two provinces separately.

It is important to note that the confidence intervals for mid-February and mid-March

are mutually exclusive; for 8 February, the upper bound for Ontario is lower than the

lower bound for Québec. Because there is no overlap between the confidence intervals,

we can draw conclusions without being influenced by the natural fluctuations of Rt. Con-

sidering the mutual exclusivity of confidence intervals for Rt, one can conclude with 95%

certainty that the Rt for Ontario is significantly lower on 8 February and the Rt for Québec

is significantly lower in mid-March.

Figure 4.5 shows the corresponding interventions on the plot for enhanced readability.

Figure 4.5: Comparison of Rt for the two provinces with selected NPIs noted over the

period from 1 December 2020 to 1 June 2021
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In panel A of Figure 4.5, letters are used to show the implementation of NPIs, viz.

a. Elementary schools closed on 17 December.

b. Curfew between 8 p.m. and 5 a.m. on 9 January.

c. Curfew in effect between 8 p.m. and 5 a.m. (5 regions) on 5 April.

d. Curfew in place from 8 p.m. to 5 a.m. (Montréal and Laval) on 11 April.

e. Students in Secondary 3, 4, and 5 will attend school in person every other day in

combination with online learning (red zones).

Numerals are used to show the relaxation of NPIs, viz.

1. Elementary schools opened with masks mandated on 11 January.

2. Secondary schools opened with masks mandated on 18 January.

3. For regions in orange zones, extracurricular activities as well as school outings were

permitted in stable class groups on 15 March.

4. For regions in red zones, the start of curfew moved to 9:30 p.m. on 17 March.

5. High school students resumed in-person learning; secondary 3, 4 and 5 students

continued with a blended approach (Chaudière-Appalaches) on 17 May.

6. Curfew lifted in Côte-Nord on 21 May.

In panel B of Figure 4.5, the labels are used to indicate that:

a. Public and private elementary and secondary school students moved to teacher-led

remote learning (7 public health regions) on 4 January;

b. Elementary and secondary schools moved to remote learning on 19 April;

1. Elementary and secondary schools resumed in-person learning with masks man-

dated for grades 1 to 3 (7 regions) on 25 January.
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2. Elementary and secondary schools resumed in-person learning (4 additional public

health units) on 1 February.

3. Elementary and secondary schools resumed in-person learning (13 additional pub-

lic health units) on 9 February.

In both waves, the restrictions in Québec were less rigorous, except for the curfew.

Québec had a moderately higher number of infections per 100,000 people at the start of

the first wave, and Ontario had a slightly higher number of infections per 100,000 people

at the start of the second wave.

For the first wave, the two provinces slowed Rt in two different ways: Ontario closed

schools and Québec implemented curfews. Because for 20 January 2021, the upper bound

for Rt for Québec is lower than the lower bound for Rt for Ontario, it may be concluded

with 95% confidence that Québec was more effective in reducing Rt in the first wave.

Québec reopened elementary schools on 11 January and secondary schools on 18 Jan-

uary. Because Québec reopened schools earlier, there is a considerable gap in Rt for the

two provinces around mid-February. The amount of increase of Rt for Québec was ap-

proximately 0.2 from mid-January to mid-February. In contrast, when Ontario opened

schools on 8 February, Rt went up rapidly. The amount of increase of Rt for Ontario was

around 0.7 from mid-February to mid-March. The most apparent explanation for the rise

in Rt for Ontario is the opening of in-person school attendance.

Around 20 March 2021, there was a notable acceleration in the rate of increase of

Québec’s Rt. On 16 March, the curfew was pushed back to 9:30 p.m. for red zones, result-

ing in an immediate increase in the rate of change for Rt. The curfew had an immediate

effect in this scenario.

A similar observation is reflected in the number of infections per 100,000 people. Even

when the infections per 100,000 people in Québec were higher before mid-February, when

they both had schools opened on 8 February, the number of infections in Québec per

100,000 people did not rise as much as in Ontario during the second wave.
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A plausible criticism is that because Québec had more people infected and acquired

temporary immunity, Rt would not increase as quickly, and therefore it is unclear whether

the deceleration of Rt is due to the temporary immunity or the effect of the curfew.

There is a counter-argument. From 1 October to 31 December 2020, Québec had a

higher per capita rate, so the number of people who could be infected in Québec was

fewer due to waning of immunity, yet the two provinces had comparable values of Rt. It

shows that Québec was at a more serious stage before the implementation of the curfew

on 9 January 2021. It reinforces the idea that a curfew is beneficial for such a situation.

We were able to investigate two waves, with the second wave of in-person school

attendance controlled for. Because both provinces allowed in-person school attendance

throughout the second wave, we can give more weight to the contribution of the cur-

few. We can conclude that while schools are open, a curfew slows down the change in

transmission rate.

To summarize, we found that: (i) there was evidence for an association between two

NPIs (school closure and curfew) and reduced Rt; and (ii) while schools were open, a

curfew slowed down the change in transmission rate.

4.3 Comparison of Death Curves

Figure 4.6 compares the reported and adjusted deaths over the period from 1 October

2020 to 1 July 2021 in Québec and Ontario. Ontario had a significant lower mortality rate

per 100,000 people during the first wave and a slightly higher mortality rate per 100,000

people for the second wave.
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Figure 4.6: The reported and adjusted deaths in Québec and Ontario over the period from

1 October 2020 to 1 July 2021
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Chapter 5

Change-Point Analysis

It is of interest to predict the case count in the absence of NPIs. A naive way to forecast

the case count in the absence of curfews is to assume that the Rt stays the same after the

day the curfew was imposed, then use Poisson regression to reconstruct the case count.

First, we retrieved the data of Rt and the number of cases with a 95% confidence inter-

val from Section 3. Then, the estimate R function was used to obtain the distribution of

the serial interval w. A modified Rt was generated by replacing the Rt after the changing

day with the Rt of the day. The changing day is the day on which the NPI we aim to inves-

tigate was imposed. We then inputted the distribution of serial interval w, the modified

Rt and the cases curve I into the Poisson regression model to simulate case counts.

Similarly, the confidence interval was generated by inputting the distribution of the

serial interval w, the modified lower or upper bound of the confidence interval for Rt and

the cases curve I into the Poisson regression model to simulate case counts.

Figure 5.1 shows the forecasting of cases with constant Rt after 9 January and 11 April

2021 with 95% confidence interval, respectively. The curfew was first implemented in

Québec on 9 January 2021 between 8 p.m. and 5 a.m.; it was later relaxed to 9:30 p.m. on

17 March. On 5 April, the curfew was extended to 8 p.m. in five regions; on 11 April, it

was extended to Montréal and Laval.



Figure 5.1: A. Simulated cases in the event that no curfew had been imposed on 9 January

2021 in Québec; B. Simulated cases in the event that no curfew had been reinforced on 11

April 2021 in Québec

If no curfew had been implemented on 9 January 2021, the number of cases on 31 May

2021 would be 171,693 and the corresponding 95% confidence interval would be (115,580;

211,579). That is, 20% of the population would be infected in around four months in the

absence of curfews or equivalent NPIs.

If the curfew had not been reinforced on 11 April 2021, the number of cases on 31

May 2021 would be 5,603,516 and the corresponding 95% confidence interval would be

(4,041,082; 7,498,861). That is, 70% of the population would be infected in less than two

months in the absence of curfews or equivalent NPIs. The confidence interval in this

scenario is much narrower than in the first, presumably because the confidence interval

previous to the change date is narrower.

Although the model produces an artificial forecast, it is not a genuine projection. Even

if there had been no curfew, the government or the people may have taken alternative

measures if the pandemic was becoming too severe; for example, masses of people might

then voluntarily choose to avoid crowded areas.
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Chapter 6

Conclusion and Discussion

The main contributions of this thesis are to: (i) verify and improve the methodology of

finding Rt; (ii) present a confidence interval for Rt; (iii) discuss the effectiveness of certain

NPIs in Québec and Ontario; and iv) provide simple forecasts for the future incidence of

COVID-19 in the absence of certain NPIs in Québec, Canada.

The impact of NPIs was measured by the effective reproduction number, Rt. We first

introduced a widely used method for estimating Rt, the EpiEstim algorithm developed

by Cori et al. [7]; it requires the number of cases and the distribution of serial intervals.

Section 3.1.3 critically reviewed the EpiEstim method and showed that a feature of the

estimation is that it reconstructs a somewhat wiggly Rt curves from a flat one. This seem-

ingly innocuous inaccuracy in the estimation process may lead to false conclusions.

An appropriate confidence interval can provide an adequate representation of reality

while accounting for methodological inaccuracies in the estimation process. Section 3.2.1

highlighted the issues with the algorithm of Cori et al. [7] in obtaining a meaningful confi-

dence interval. The exercise in Section 3.2.2 demonstrated a serious ramification of failing

to have a valid representation of uncertainty, namely that it can then become impossible

to detect the nature of changes in Rt, possibly resulting in biased conclusions.

Section 3.3 devised a Monte Carlo approach for estimating Rt and a corresponding

confidence interval. We examined two methods for generating samples, namely the



forward-simulation method, and state-space modelling. We discussed the advantages of

obtaining the confidence interval generated using the Monte Carlo method with samples

emulated by the state-space model.

We found that (i) there is evidence for an association between two NPIs (school closure

and curfew) and reduced Rt; and (ii) curfew slows down the change in transmission rate

when the controlled variable (school closure) is held constant. Some studies have reached

conclusions consistent with ours. Liu et al. [15] found strong evidence for an association

between two NPIs (school closure and internal movement restrictions) and reduced Rt.

Yang et al. [21] demonstrated that implementation of control measures (large-scale quar-

antine and strict controls on travel) on 23 January 2020 in China was indispensable in

limiting the eventual extent of the COVID-19 epidemic.

Nevertheless, some limitations should be mentioned. Many factors may result in inac-

curacy in data collection and consequently inaccuracy in estimating Rt. First, COVID-19

testing and screening efforts or eligibility criteria vary by period. Changes in screening

efforts influence the number of reported cases, which can cause an artificial change in Rt

if the model perceives the change in case counts as a change in transmission rate.

A second limitation is the amount of available data. Because it is a relatively recent

disease, data for Canada were only available as of March 2020. In comparison, data for

similar epidemic diseases, such as measles and influenza, have been accessible for more

than 50 years. Furthermore, the transmission rate of each variant of the disease varies.

Because the Omicron variant is much more contagious, the Government of Québec insti-

tuted self-testing, which resulted in a substantially lower reporting rate. As a result, the

data for this study are limited to the period from March 2020 to December 2021.

The third limitation is that we did not account for immunity in our analysis. During

the first wave, there were no vaccines, but vaccination was initiated during the second

wave. We assumed that the vaccination rates for Québec and Ontario were comparable

due to similar demographics and vaccine availability.
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One way to circumvent the inaccuracy of Rt estimation caused by the lack of available

data is through international comparisons because the transmission rate remains constant

for many countries for the same variant of COVID-19.
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Appendix A

Appendix

A.1 NPIs for Québec over the period from 1 April 2020 to

1 December 2021

This plot is discussed in Section 2.5.2
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A.2 Reported cases with confidence interval over the pe-

riod from 1 October 2020 to 1 July 2021 in Québec and

Ontario

Panel A and Panel B of A.2 show the reported cases and the estimated confidence interval

over the period from October 2020 to July 2021 in Québec and Ontario (in separate plots)

with 2000 iterations respectively. This plot is discussed in Section 4.1
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A.3 Effective reproduction number for window sizes 1, 5,

7, and 14 over the period from 1 December 2020 to 1 June

2021 for Québec and Ontario individually

This plot is discussed in Section 4.2.
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A.3.1 Effective reproduction number for window sizes 1, 5, 7, and 14

over the period from 1 December 2020 to 1 June 2021 for Québec

and Ontario individually

This plot is discussed in Section 4.2.
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A.4 Comparison of effective reproduction numbers for win-

dow sizes 1, 5, 7, and 14 for Québec and Ontario over

the period from 1 September 2020 to 1 July 2021

This plot is discussed in Section 4.2.
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A.4.1 Comparison of effective reproduction numbers for window sizes

1, 5, 7, and 14 for Québec and Ontario over the period from 1 De-

cember 2020 to 1 June 2021

This plot is discussed in Section 4.2.
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A.5 Effective reproduction number for Québec and Ontario

over the period from 1 December 2020 to 1 June 2021

This plot is discussed in Section 4.2.
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A.5.1 Effective reproduction number for Québec and Ontario with con-

fidence interval over the period from 1 December 2020 to 1 June

2021

This plot is discussed in Section 4.2.
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