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Abstract 
 
Information constraints rank high among barriers to agricultural technology adoption among 

small-scale farmers, particularly for complex bundles of complementary practices such as 

regenerative agriculture (RA). These techniques involve many components and various strategies 

for successful implementation, and farmers may face internal constraints to adoption even when 

external constraints are removed. Information communication technologies (ICTs) are emerging 

to extend the reach of agricultural training, with potential to deliver information through mobile 

and smartphones at little or no cost to farmers. The problem remains that beneficial practices like 

RA are varied and context-specific, requiring a high level of engagement with new information 

that is difficult to facilitate through ICTs. We develop a low-cost digital extension platform, 

ShambaChat, to facilitate peer learning through SMS communication on basic feature phones, and 

use a randomized control trial to evaluate the ability of this ICT to generate self-efficacy gains and 

promote adoption of beneficial RA practices among smallholders in Morogoro, Tanzania. We 

measure a positive impact of treatment on adoption and self-efficacy beliefs when farmers engage 

with each other through the tool, but find that participants lose interest and do not maintain activity 

after the first round of treatment, leading to null effects for the remainder of adoption and learning 

outcomes.  
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Résumé 

Les contraintes d'information figurent parmi les obstacles à l'adoption des technologies agricoles 

pour les petits agriculteurs, en particulier pour les pratiques complexes complémentaires comme 

l’agriculture régénérative (RA). Ces techniques impliquent de nombreux composants et diverses 

stratégies de réussite, et les agriculteurs peuvent être confrontés à des contraintes internes à 

l'adoption même lorsque les contraintes externes sont supprimées. Les technologies de 

l'information et de la communication (TIC) offrent un potentiel de fournir des informations via les 

téléphones portables et les smartphones à peu ou pas de frais pour les agriculteurs. Le problème 

demeure que les pratiques bénéfiques telles que la RA sont variées et spécifiques au contexte, 

nécessitant un niveau élevé d'engagement avec de nouvelles informations qu'il est difficile de 

faciliter grâce aux TIC. Nous développons une plate-forme d'extension digitale, ShambaChat à 

faible coût pour faciliter l'apprentissage par les pairs via la communication SMS sur les téléphones 

de base, et utilisons un essai de contrôle randomisé pour évaluer la capacité de cette TIC à générer 

des gains d'auto-efficacité et à promouvoir l'adoption de pratiques de RA bénéfiques parmi les 

petits exploitants dans Morogoro, Tanzanie. Nous mesurons un impact positif du traitement sur 

l'adoption et les croyances d'auto-efficacité lorsque les agriculteurs s'engagent les uns avec les 

autres via l'outil, mais constatons que les participants perdent leur intérêt et ne maintiennent pas 

d'activité après le premier cycle de traitement, conduisant à des effets nuls pour le reste de 

l'adoption et les résultats d'apprentissage. 
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Chapter 1: Introduction 

 

1.1 Problem Statement 

Despite major gains in agricultural productivity and welfare across much of the developing world, 

many economies of sub-Saharan Africa (SSA) continue to lag behind in terms of output and food 

security (Sanchez, 2002). With 70 – 80% of the population employed in agriculture, this sector 

holds the key to broad-based, pro-poor economic and human development through accessible 

productivity gains that increase agricultural yields and incomes for smallholder farmers 

(Conceição et al., 2016). The success of Green Revolution advances in spurring poverty reductions 

through increased agricultural productivity across Asia and South America highlights the 

importance of making effective technologies accessible and coherent to small-scale farmers.  

However, use of modern inputs remains strikingly low among smallholders in SSA, with numerous 

demand and supply-side factors affecting adoption. Political instability, lack of infrastructure and 

mechanization, and a heterogenous set of cropping systems and practices to cater to have restricted 

supply, resulting in high prices that render these technologies inaccessible or unprofitable for 

smallholders. At the same time, poorly functioning credit, goods, and insurance markets, and a 

lack of accessible information about these technologies have discouraged demand (Conceição et 

al., 2016; Francis et al., 1986; Myaka et al., 2006; Mutuku et al., 2020; Jama, 2008; Toenniessen 

et al,. 2008). Even where subsidies or loans are accessible and expected profits are high, 

smallholders may be hesitant to adopt new technologies if they doubt their ability to realize 

successful outcomes on their own farms (Barnett et al., 2008; Carter, 2016; Jama et al., 2017).   

Additionally, Marenya and Barrett (2009) find that inorganic fertilizer application may not 

be profitable when soil organic matter (SOM) is low, as is common in much of SSA. Indeed, 
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returns to fertilizer are heterogeneous and poorly documented across the diverse agro-ecological 

zones of SSA, and may be particularly low on rainfed plots with degraded soil resources commonly 

cultivated by smallholders (Conceição et al., 2016; Duflo et al., 2008; Marenya and Barrett, 2009). 

Since poorer farmers tend to cultivate the most degraded soils, a poverty-trap arises where low 

SOM makes cropland less responsive to nutrient inputs, driving farmers to continue mining 

nutrients from their cropland and contribute further to soil degradation – as well as inequality if 

better-off farmers escape this cycle more easily (Marenya and Barrett, 2009). Moreover, fertilizer 

use in isolation does not build long-term soil fertility or replenish the hundreds of micro- and 

macronutrients required for production of nutritious food crops, and improper handling of agro-

chemicals can pollute water resources and cause environmental damage (Lal, 2020; Lunn-

Rockliffe et al., 2020; Montgomery, 2017). Pro-poor development should recognize the limitations 

of Green Revolution technologies for smallholder agriculture, and seek to promote integrated soil 

management practices that foster and sustain healthy agro-ecosystems and bolster rural economies.  

Complex bundles of complementary practices can be challenging to introduce, and 

adoption depends on farmers engaging deeply with information presented in a way that feels 

relevant and actionable. Moreover, heterogeneity of agro-ecosystems and available on-farm 

resources means that best-management practices are varied and context-dependent, and do not lend 

themselves to uniform extension across regions or even homesteads. A farmer may understand 

information presented to her about a new technology with theoretically high returns, but this can 

fail to spur adoption if she does not believe herself capable of bringing about the same outcome 

on her own land, either due to internal constraints such as low self-efficacy beliefs, or because the 

advice is not tailored to her specific agro-ecological context. Extension campaigns that initiate 

dialogue between farmers in existing or newly established social networks make new information 
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more accessible by situating it in the experience of a relatable peer and providing concrete evidence 

of yield and profit outcomes. Farmer-to-farmer extension (F2FE) exploits this networking effect, 

and there is substantial evidence that learning from peers can promote technology adoption under 

the right conditions (BenYishay and Mobarak, 2018; Conley and Udry, 2010; Davis et al., 2012; 

Fisher et al., 2018; Foster and Rosenzweig, 1995; Hellin and Dixon, 2018; Nakano, 2018).  

F2FE methods like farmer-field days and demonstration plots have proved effective tools 

for generating and sharing agricultural information, but can be logistically challenging, requiring 

coordination of large numbers of people and resources which may result in barriers to access, 

particularly in more remote regions. Additionally, the conditions under which F2FE leads to 

adoption, and the extent to which peer learning happens through social networks are not fully 

understood. Some studies suggest, for example, that farmers lack proper incentives to share 

information with peers (BenYishay and Mobarak, 2018; Kondylis et al., 2017), do not convey 

precise or detailed information that is actionable by others (Maertens and Barrett, 2012), or fall 

into a free-rider problem allowing others in their network to bear the cost of experimentation 

(Bandiera and Rasul, 2006). In recent years, information communication technologies (ICTs) have 

greatly expanded the accessibility and cost-effectiveness of agricultural extension, and the social-

networking capacity associated with ICTs makes digital F2FE an alluring prospect. While ICTs 

overcome many logistical and cost barriers associated with in-person extension, the conditions 

under which users of a digital extension network might engage with information in a way that 

leads to adoption become even more challenging to meet. Particularly when considering deep 

cognitive engagement with complex and context-specific bundles of complementary practices and 

agro-ecological principles, the limitations of ICT extension loom large.  
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1.2 Study Objectives  

This study asks whether the dynamics of farmer-to-farmer extension (F2FE) can be meaningfully 

preserved in a digital space, using a low-cost and accessible ICT for non-smart phones (hereafter 

feature phones). To study digital F2FE, we develop and test a simple tool, ShambaChat, for 

facilitating farmer engagement with complex agricultural information delivered by SMS. Through 

ShambaChat, smallholders are connected in chat groups with others in their region who are 

growing the same crop and share similar soil nutrient deficiencies. Participants receive 

scientifically validated information from agronomists, which they are able to discuss by text with 

the other farmers in their chat groups. Two members of each group are selected based on prior 

experience with the targeted practices at baseline. The goal of ShambaChat is to improve the 

efficacy of ICT extension in promoting the adoption of beneficial agricultural practices among 

smallholders by providing access to a digital network of peer farmers and role models. To this end, 

we conduct a randomized control trial (RCT) in 47 villages in Morogoro, Tanzania to evaluate the 

group chat feature of ShambaChat. All households in the study receive the same extension 

information by SMS, while treated participants are additionally placed in a 5-person chat group 

and encouraged to chat with each other by text about the extension information and related topics. 

This allows us to specifically evaluate the ability of a group chat feature to augment traditional 

SMS extension delivery.  

The primary objective of the study is to shed light on the belief-updating process that occurs 

when farmers gain virtual exposure to role models with more  – or simply different – experience 

with a given technology, and are given the opportunity to grapple with and troubleshoot new 

information together with a network of peers. Our first question is whether participation in the 

group chats increases adoption and/or knowledge of the targeted practices relative to farmers who 
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receive the same information through one-way SMS delivery only. We then attempt to explain 

why the treatment could have this effect by looking at several behavioral outcomes that might be 

influenced by participation in the group chats. We focus on perceived-self-efficacy (PSE), or the 

belief in one’s capacity to perform tasks successfully in a specific domain, as a potential 

mechanism through which peer learning might lead to adoption of new practices. If the group chats 

give farmers a sense that their peers are able to successfully implement certain practices, this may 

translate into an increase in PSE, which could in turn contribute to the decision to adopt. Even if 

no direct evidence of adoption outcomes is available through the group chats, general interest or 

enthusiasm around adopting new practices might lead to increased PSE if members feel 

empowered about their own capabilities by the confidence of their peers. We also use a probability 

assignment game to elicit a measure of farmers’ subjective probability distributions (SPD) over 

adoption outcomes, designed to capture the effect of treatment on farmers’ beliefs about the 

likelihood of being successful with a new practice, with success defined variously in terms of soil 

fertility, profit, and food security outcomes.  

 

1.3 Summary of Results 

Participation in the group chats was low overall, dropping off sharply after the first month of 

treatment. This suggests that farmers did not form the type of connections anticipated, which is 

itself a relevant finding of the study. ShambaChat users may have struggled with the technology, 

perhaps frustrated by the difficulty of typing messages on feature phones, or facing confusion 

when scrolling through messages sent between different members of their group. If users were 

comfortable navigating the group chats, they may still have felt awkward or uncomfortable 

discussing their agricultural practices with strangers, even after participating in an icebreaker. In 
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light of this user-behavior, which is discussed at length in Section 6.2, it is unsurprising that we 

did not measure a significant effect of the treatment on most of the behavioral outcomes discussed 

above. We do not find that treated farmers update their subjective probability distributions over 

adoption outcomes, nor do we observe an increase in PSE as measured by the New General Self-

Efficacy Scale1.  

There was, however, substantial activity in the group chats over the first month of the 

intervention, during which a total of 997 messages were exchanged by farmers. The content 

covered by the ShambaChat extension course during this month focused on legume-maize 

intercropping and the concept of biological nitrogen fixation – a function of legumes. It appears 

that while the group chats were active, participation did have a significant effect on adoption, as 

treated farmers are found to be 13% more likely to intercrop with a legume on their main maize 

plot. Moreover, in addition to general PSE, we constructed task- and outcome-specific PSE 

measures for several of the topics discussed in the extension course. These are mostly insignificant, 

but we do find a significant positive effect of treatment on PSE for the intercropping task. This 

measure is balanced for treatment and control groups at baseline, with an average score of 1.3 out 

of 4, and increases for treatment households to 1.7 at endline, remaining at 1.3 for control. This 

difference is significant at the 10% level according to a difference-in-differences estimation, and 

robust to estimation by an ordered logistic model with random effects.  

Perhaps the most interesting finding of this study is that despite the initial enthusiasm and 

evident transfer of knowledge present during the first month of the intervention, farmers lost 

interest and stopped using the platform almost entirely for the second and third rounds of extension. 

There is no treatment effect observed for any of the adoption outcomes associated with material 

 
1 https://sparqtools.org/mobility-measure/new-general-self-efficacy-scale/ 
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presented in later months, nor with the associated task-specific PSE metrics. This indicates that 

active use of the group chat feature may, as speculated, lead to increased adoption and PSE, but 

that farmers did not deem participation worthwhile after an initial trial period. If farmers do not 

find a technology useful, the question of whether it can facilitate meaningful connections or 

nuanced learning behavior becomes moot.  

 

1.4 Contribution to the Literature 

SMS delivery of extension information is an established practice, but evidence of its effectiveness 

is limited and results are mixed (see Section 3.4 for a complete discussion). Existing evaluations 

look primarily at one-way SMS extension programs that deliver agricultural advice such as 

reminders about timing of field tasks (e.g., Larochelle et al., 2015), or market information services 

(MIS) that provide price information (e.g., Fafchamps and Minton, 2012). The subset of the 

literature on ICTs to which we hope to contribute evaluates projects that engage participants in 

cognitive processes which promote learning and memory of new information (eg Tjernström et al., 

2021; Guilivi et al., working paper). ICTs that incorporate farmer-to-farmer communication 

functionality exist, but are predominantly internet-based and require a smartphone or computer to 

access. A notable exception is WeFarm, an SMS-based platform that allows farmers to connect 

with each other, as well as with agronomic specialists, and access and share knowledge from a 

basic feature phone. However, as of yet there are no rigorous evaluations of the impacts of WeFarm 

on knowledge or adoption of beneficial agriculture practices (Omolo and Kumeh, 2020). Our study 

is the first we know of to use an experimental design to evaluate the impact of a digital farmer-to-

farmer extension platform.  
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Additionally, we contribute to the well-developed literature on social learning processes 

among farmers by proposing a possible link between peer learning and perceived self-efficacy 

(PSE) beliefs. We develop a theory of social learning by which exposure to peer role models 

increases farmers’ belief in their capacity to successfully adopt complex practices on their farms, 

and investigate this empirically by measuring the change in PSE associated with participation in a 

farmer-to-farmer group chat. We also propose two novel methods for eliciting domain-specific 

PSE for agriculture.   

Finally, although we do not explicitly analyze the conditions under which farmers are able 

and willing to use an ICT, our assessment of the ShambaChat user experience sheds light on some 

of the potential limitations of ICTs for facilitating engagement with extension information. We set 

the stage for further research to iterate on the concept of a digital F2FE platform and ask what 

kinds of changes to the structure, technology, or presentation of information can be made so that 

farmers can benefit from innovative social learning tools.   
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Chapter 2: Background 
 

 
2.1 Morogoro Context 
 
We survey farming households across Morogoro Rural, one of six wilayas, or districts, in the 

Morogoro region of Tanzania. Morogoro is the third largest region in Tanzania, occupying 8.2% 

(72,939 sq. km) of the country’s mainland area, and is home to 5.1% of the population (URT, 

2012; NBST, 2014). Morogoro shares key demographic features with the rest of the country, 

making it an appropriate case study from which we are able to draw some implications for a wider 

population of rural households. 67% (69.8%) of households in Tanzania (Morogoro) are located 

in rural areas, and 76.9% (73.3%) of rural workers in Tanzania (Morogoro) are principally 

employed in own-agriculture (NBST, 2014). Rural poverty is high, with 53% (41%) or rural 

households living below the basic needs poverty line of $1.90 per day in 2011 in Tanzania 

(Morogoro) (IFPRI and Datawheel, 2017).  

Over 95% of agricultural land in Tanzania and within Morogoro is rainfed, which makes 

the agricultural sector and therefore food security sensitive to climate change and deviations from 

normal rainfall patterns (Ojoyi et al., 2015; IFPRI and HarvestChoice, 2017). Maize is the most 

common crop grown in Morogoro as well as in Tanzania as a whole, accounting for 27% (35%) 

of total harvested area in Tanzania (Morogoro), and 60% of dietary calories (IFPRI and 

HarvestChoice, 2017; Mtaki, 2017). Maize yields are low throughout Morogoro, largely due to 

soil nutrient deficiencies and minimal fertilizer application. Credit constraints limit use of 

agricultural inputs, with less than one percent of respondent households reporting fertilizer use in 

2014 (Harou et al., 2021). For this reason, we focus on maize cultivation and methods for 

promoting adoption of regionally appropriate practices for improving maize yields in the presence 

of credit and information constraints.  
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2.2 Agricultural Learning and Extension in Morogoro 
 
The Sokoine University of Agriculture (SUA) is a leading provider of agricultural extension in 

Morogoro, and our collaborator in the present study. Agricultural extension in the region is 

typically provided by government and university-affiliated extension agents who visit rural 

villages to offer in-person trainings. At baseline in 2020, 18% of respondents in this study reported 

receiving such a visit at some point during the past year, and topics most commonly addressed 

include organic fertilizer and composting, building soil fertility, and cultivation of improved maize 

varieties. Around 20% of respondents are part of a farmer-based organization, although this 

number decreases to 10% at endline in 2021, perhaps a result of the COVID-19 pandemic. Prior 

to this study, fewer than 1% of respondents reported having ever received extension information 

by phone.  

 

2.3 Optimal Regenerative Agriculture Practices for SSA 
 
2.3.1 Defining Regenerative Agriculture 
 
First popularized in the early 1980s by the Rodale Institute, a US non-profit (Massy, 2020; Rodale, 

1983), Regenerative Agriculture (RA) has gained attention in recent years across academic, public, 

and private spheres, with an increasing number of commitments and references made to RA since 

2015 (Giller et al., 2021; Newton et al., 2020; Shreefel et al., 2020). RA is defined variously in 

terms of agricultural practices, desired outcomes, or both. Practices associated with RA center 

around the use of on-farm resources such as crop residue and manure, legume intercropping, and 

reduced reliance on external inputs such as inorganic fertilizers and pesticides (Lal, 2020; 

UNCTAD 2013). RA outcomes involve environmental and socio-economic goals such as carbon 

sequestration, increasing biodiversity above and below ground, high-volume low-input production 
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of nutritious food, and promotion of healthy and self-sustaining agro-ecosystems and agrarian 

economies (Giller et al., 2021; Newton et al., 2020; Massy, 2020; Shreefel et al., 2020).  

While many of the practices and guiding principles of RA can be found within similar 

schools of agricultural thought such as conservation agriculture (CA) and agroecology, RA is 

uniquely focused on improving and maintaining soil health as the key driver of economically and 

environmentally sustainable food systems (Newton et al., 2020). Moreover, RA is predicated on 

the objective of improving soils and ecosystem functioning through cultivation, as opposed to 

conceptions of sustainable agriculture which seek merely to do no harm (Lunn-Rockliff et al., 

2020). This condition makes RA a powerful vision for restoring degraded agro-ecosystems and 

bolstering agricultural economies in the short run through increased crop yields and nutritional 

diversity, reduced input costs, and improved soil resources, as well as in the long run through the 

generation of resilient and fertile cropland (Lunn-Rockcliffe et al., 2020; Massy, 2020; 

Montgomery, 2017). The approach is particularly appropriate in regions like Morogoro where 

degraded soils lack key nutrients and smallholders face severe credit constraints which limit uptake 

of inorganic fertilizer recommendations (Harou et al., 2021; Jama, 2008; Tamim et al., 2021).  

 
 
2.3.2 Benefits and Challenges to Regenerative Agriculture in SSA 
 
95% of agricultural land in sub-Saharan Africa (SSA) is managed by smallholders in low-input, 

rainfed cropping systems (Mutuku et al., 2020). Soil nutrient deficiencies are a key constraint on 

agricultural productivity in SSA (Jama, 2008; Mutuku et al., 2020; Sanchez, 2002; Snapp et al., 

1998), particularly in these smallholder systems which are often located on marginalized or 

degraded lands (Jayne et al., 2014). Inherently low nutrient availability and high moisture-stress 

limit soil fertility across much of SSA, while climate change, intensifying industrial agriculture 
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practices, and a rapidly growing population place compounding burdens on the region’s soil 

resources (Jama, 2008; Jayne et al., 2014; Lunn-Rockcliffe et al., 2020; Place et al., 2003). The 

inorganic fertilizers that spurred the Green Revolution and rapidly increased agricultural 

production in Asia and South America since the 1960s have largely failed to take hold across 

Africa. On average, N fertilizer application in SSA hovers around 9kg N ha-1 yr-1, while most 

staple crops draw at least 60kg N ha-1 yr-1 from the soil (Jama, 2008, Myaka et al., 2006; Place et 

al., 2003). The process of intensifying agricultural production to feed a growing population without 

replenishing nutrients has resulted in 8 million tons of soil nutrient loss annually since 1970, valued 

at $4 billion USD in losses per year, and left 75% of agricultural soils in SSA significantly depleted 

(Jama, 2008; Sanchez, 2002; Toennissen et al., 2008). Productivity losses from declining soil 

fertility have pushed farmers to expand into marginal land and wilderness areas, where cultivation 

has low returns and costly environmental externalities (Jayne et al., 2014; Toenniessen et al., 

2008).   

Regenerative agriculture is based on intentional management of on-farm resources, 

providing an avenue to combat soil nutrient deficiencies at little or no financial cost to farmers 

(Massy, 2018; Montgomery, 2017). Incorporating legumes into cropping systems can replace 

much or all of the nitrogen consumed by maize and other staple crops through biological nitrogen 

fixation (BNF), reducing or eliminating the need for inorganic N fertilizer inputs (Adu-Gyamfi et 

al., 2007; Myaka et al., 2006; Rusinamhodzi et al., 2012). The benefits of legume intercropping 

extend beyond BNF, providing, for example, a nutritious and marketable food and cash crop that 

matures during the ‘hunger season’ when many households have depleted their maize stocks (Adu-

Gyamfi et al., 2007; Thurow, 2013). Deep-rooted pigeon peas also pull water and nutrients from 

below ground, making them accessible to maize and bolstering the cropping system against 
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drought and erosion (Adu-Gyamfi et al., 2007). Intercropping requires additional labor, but costs 

are minimal, especially as farmers can save seeds from one year to the next, and returns are high 

– indeed, Rusinamhodzi et al. find that intercropped systems generated a rate of return over 300% 

higher than monocropped maize.   

The full benefits of legume integration are seen when nitrogen-rich crop residues are 

returned to the soil, where they decompose and release their nutrients which can be taken up again 

in the next cropping cycle. Increasing the quantity of on-farm biomass is a key principle of RA, as 

organic matter decomposition restores nutrients and enhances biological, physical, and chemical 

properties of soil, particularly if sustained over time (Berazneva and Güereña., 2019; Palm et al., 

2001). Several studies confirm that crop residue retention from legumes is critical for capturing 

the full nitrogen-fixing potential from intercropping systems, as well as providing other benefits 

including increased nutrient availability, nitrogen use efficiency, soil organic matter (SOM), 

carbon content (C), and soil moisture (Adu-Gyamfi et al., Kihara et al., 2011; Kwena et al., 2017; 

Murphy et al., 2016). Crop residues can be combined with other sources of organic matter such as 

animal manures and bedding, household food scraps, ash, charcoal, forest topsoil, leaf litter, and 

even human waste to make compost, a valuable organic fertilizer with established benefits for 

smallholder systems including improved soil structure and moisture holding capacity, increased 

SOM and C content, and improved nutrient retention (Demelash et al., 2014; Ndambi et al., 2019; 

Reetsch et al., 2020). Manure can be used alone or as an input in compost, and has the potential to 

replace inorganic N fertilizers in sustaining crop production under the right conditions and best 

management practices. Moreover, manure provides a full range of micro- and macronutrients, as 

well as organic matter, which provides benefits to the soil beyond N replacement (Ndambi et al., 

2019; Probert et al., 1995).  
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The potential of manure application is well documented (e.g., Enujeke et al., 2013; Ikeh et 

al., 2012), but actual impacts and returns depend greatly on the quality, quantity, and management 

of manure resources (Kwena et al., 2017; Ndambi et al., 2019; Place et al., 2003; Probert et al., 

1995; Roy and Kashem, 2014).  Improper manure management can lead to contamination and 

health problems, and global regulatory standards currently prohibit the use of manure on crops 

later than 60 days before harvest (Ndambi et al., 2019; GlobalGAP 2015). Similar challenges exist 

around the use of other on-farm organic resources in smallholder systems. Organic matter is often 

of low quality, requiring large quantities to make an impact on soil health (Giller et al., 2009; 

Vanlauwe and Giller, 2006). While crop residue is often abundant, there are many competing uses 

which limit the quantity actually allocated to soil fertility management, namely fuel and animal 

fodder (Berazneva et al., 2015; Kwenya et al., 2017). Furthermore, most benefits of organic matter 

application become obvious only in the medium or long run, and risk-averse smallholders 

operating on short time-horizons may choose to allocate scarce resources to uses with more 

immediate payoffs (Berazneva and Güereña, 2019).  

Many of the challenges associated with on-farm resource management boil down to 

information constraints. Smallholders in Malawi, for example, report that lack of information was 

the key constraint to adopting best-management practices for manure (Ndambi et al., 2019). 

Ndambi et al. propose robust extension services that facilitate knowledge sharing among farmers 

as the best route to overcoming this challenge. Indeed, most RA practices are knowledge-intensive, 

requiring deep understanding of ecosystem flows and nutrient cycling, and awareness of specific 

practices that harness these dynamics for crop production (Jama, 2008; Lunn-Rockliffe et al., 2020, 

Massy, 2020). Knowledge in an RA system can be thought of as a substitute for Green Revolution 

technologies, overcoming some of the constraints associated with these inputs while presenting a 



 15 
 

 

new set of challenges (Barrett et al., 2002; Rusinamhodzi et al., 2012). Appropriate RA practices 

are derived from the specific agro-ecosystems they seek to improve, looking to locally available 

resources, climate conditions, native species, and indigenous cropping systems to iterate on RA 

objectives and identify the best methods for bringing them about in each case or locale (Barrett et 

al., 2002, Holt-Giménez, 2006; Massy, 2020; Montgomery, 2017). There has been considerable 

uptake across Africa, with over 900 organizations dedicated to experimentation and dissemination 

of RA agroecology practices (Lunn-Rockliffe et al., 2020). Successful projects embrace fluidity in 

the set of appropriate RA practices, equipping farmers with the scientific principles of RA while 

facilitating farmer-led innovation and design of RA systems that fit farmers’ specific goals and 

constraints (Lunn-Rockliffe et al., 2020). 
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Chapter 3: Literature Review 

 

3.1 Farmer-to-Farmer Extension and Technology Adoption in SSA 

Information constraints rank high among barriers to agricultural technology adoption, and farmer-

to-farmer extension (F2FE) has gained prevalence as a method of engaging large and diffused 

networks of smallholders in agricultural learning (Fisher et al., 2018; Hellin and Dixon, 2008; 

Nakano et al., 2018). Successful F2FE centers farmers as agronomic innovators, as well as the 

nodes of communication through which critical information flows to community networks (Barrett 

et al., 2002; Wellard et al., 2013). This structure makes F2FE well suited to facilitating dialogue 

and experimentation around regenerative agriculture (RA) and adapting broad RA principles to 

local contexts through farmer-centered, discovery-based learning. By creating opportunities for 

contact between farmers engaged in similar practices, F2FE provides space for social learning and 

exposure to real-world evidence of adoption outcomes. 

Impact evaluations of F2FE on agricultural productivity and technology diffusion are 

limited, and those that exist present mixed results. Established extension programs are difficult to 

evaluate without bias because participating farmers may differ from the general population along 

unobservable characteristics such as motivation or ability, in which case the demonstrated impact 

of the program on participants may not translate to other members of the community. Waddington 

et al. (2014) review 15 high-quality quantitative studies of farmer field schools (FFS) from which 

they ascertain largely positive impacts of FFS on participants’ yields, income, and knowledge 

retention about targeted practices, but cannot rule out potential bias in any of the studies. They do 

not find evidence of diffusion of knowledge or technology adoption from participating farmers to 

others in their village or social networks, and long term benefits are not assessed. While not 
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synonymous with F2FE, FFS provide participatory workshops in which farmers are led to engage 

with real-world agricultural challenges and work together to develop solutions that build on their 

own experience (Feder et al., 2004). FFS workshops are often led by farmers, and participants are 

encouraged or expected to bring what they learn back to their communities (Davis et al., 2012). 

Davis et al. (2012) conduct a rigorous longitudinal evaluation of FFS in Kenya, Tanzania, and 

Uganda, using quasi-experimental propensity score matching methods to identify the ex-post 

impact of the program on crop productivity, adoption of targeted practices, and agricultural income 

of participating farmers, finding significant increases in each domain. Godtland et al. (2004) also 

use propensity score matching to identify the impact of an FFS in Peru on knowledge of integrated 

pest management strategies among participating potato farmers, and find increased knowledge 

relative to a comparison group of non-participants matched on observable characteristics. Feder et 

al. (2004) use difference-in-differences estimation, another quasi-experimental identification 

method, to compare the change in knowledge outcomes between FFS participants and non-

participants over an 8-year period, as well as the outcomes for non-participants in villages where 

the FFS took place. They find increased knowledge among participants, but do not see evidence 

of knowledge diffusion to community members (Feder et al., 2004). FFS are expensive and 

logistically challenging, and may not be financially viable in the absence of widespread social 

learning effects (Feder et al., 2004).  

Several studies have looked at the mechanisms through which F2FE promotes learning and 

adoption of agricultural practices, hoping to identify factors that influence the success of a given 

F2FE initiative (Fisher et al., 2018; Kondylis et al., 2017; Maertens et al., 2020; Nakano et al., 

2018; Wellard et al., 2013). Maertens et al. (2020), and Nourani (2019) model technology adoption 

as a two-stage social learning process in which farmers first formulate their yield expectations for 
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a given technology based on observed yields among early-adopting peers, and then make a 

decision about how much effort they will expend to learn and adopt the technique on their own 

farms. In this way, new agricultural practices spread from farmer to farmer as evidence of their 

benefits and profitability works its way through social networks and members update their 

subjective expectations associated with adoption. The authors identify factors that make certain 

F2FE approaches more likely to raise farmers’ expectations about a new practice enough to 

allocate attention to learning and adopting it. Proximity is important, for example, because the 

returns to a given practice depend on soil and other environmental conditions, and farmers place 

more weight on benefits observed within their own agroecosystem or community. Foster and 

Rosenzweig (1995) observe this effect in rural India, where farmers with more experienced 

neighbors are found to have higher adoption rates of Green Revolution technologies and higher 

profits. Similarly, Conley and Udry (2010) observe that pineapple farmers in Ghana modify their 

input use as they observe their neighbors’ success with new technologies.  

Kondylis et al. (2017) look for evidence of technology diffusion through social networks 

in a large-scale field experiment in Mozambique in which ‘contact farmers’ (CFs) are trained by 

extension agents and adopt new practices, while other farmers in their networks observe the 

benefits and choose whether to adopt as well. Diffusion is low overall, and the authors conclude 

that incentives are likely needed to motivate CFs to more actively promote the targeted practices 

to members of their social networks. However, some evidence of adoption is observed among 

farmers who grow the same types of crop as their CF, implying that social learning is most effective 

when similarities are present between network members. This is articulated by Wellard et al. 

(2013), who note in their review of community extension approaches that F2FE operates through 

role models, emphasizing “the positive influence of an ‘ordinary’ community member who has 
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managed to achieve food security, income, and status through farming.” The authors go on to 

suggest that F2FE works best when CFs are relatable, in terms of socioeconomic status as well as 

agronomic know-how, and may be less effective if they are perceived as being too far ahead of 

their peers in terms of technology adoption. BenYishay and Mobarak (2018) further corroborate 

this theory with evidence from an RCT in Malawi which compares the ability to communicate 

agricultural information effectively through (1) government extension workers, (2) trained ‘lead 

farmers’, or (3) untrained ‘peer farmers’ who are representative of the general population in terms 

of their characteristics and level of experience with the targeted practices. Peer farmers are found 

to be the most effective communicators, likely because they are perceived as relatable in terms of 

socio-economic status as well as agricultural conditions such as farm size and access to inputs. 

However, technology diffusion does not happen unless peer farmers are incentivized to share 

information with their social networks, implying that this process may not occur naturally or to the 

same extent outside the context of an organized field experiment.  

Bernard et al. (2015) investigate the role model theory of learning explicitly with an RCT 

in rural Ethiopia exposing farmers to video testimonials produced by NGO Digital Green, which 

highlight local farmers and entrepreneurs who have successfully improved their socioeconomic 

status without assistance. The study is motivated by an idea from social cognitive theory wherein 

an individual’s belief about her capabilities is strongly influenced by the experience of her peers, 

which provides a ‘vicarious experience’ of what is possible (Bandura, 1977; 1986). While F2FE – 

and vicarious experience in general – typically operates directly through real exposure to peers, 

the Digital Green approach proxies this through a video featuring a relatable narrator whose 

experience resonates with viewers. The authors investigate whether the peer learning effect can be 

captured through this proxy for direct contact, and find that viewers do update their beliefs about 
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their own capacity for success after watching the video, as measured by several outcomes including 

investments in their children’s education. Notably, the videos do not include any specific advice 

or information on what steps were taken by the speaker to achieve success or provide any new 

information on the actual returns to education, but merely drive home the point that these returns 

are attainable: “Individuals were well aware of educational returns… but they did not think their 

children would be able to achieve them. The documentaries may have shown the possibility of a 

brighter future for individuals of similar background.” Endeavoring to understand the mechanisms 

through which the role model effect operates, the study looks at indicators of psychological impact. 

These metrics, which include locus of control, perception of poverty, and measures of aspiration, 

all pertain to an individual’s sense of control over life outcomes. All metrics increased after 

viewing, with diminishing effects detected after six months. 

 

3.2 Peer Learning Processes and Technology Adoption 

A number of other studies have explored the psychological impact channels that underlie 

agricultural technology adoption and social learning processes (e.g. Abay et al., 2017; Malacarne 

2018; 2019; McGinty et al., 2008; Taffesse and Tadesse, 2017; Ung et al., 2016). Locus of control 

(LoC), for example, is shown to significantly predict adoption of modern agriculture inputs among 

smallholders (Abay et al., 2017; Malacarne, 2018; Tafesse and Tadesse, 2017). LoC is a measure 

of the extent to which an individual believes that outcomes are determined by her behavior (an 

internal LoC) or by fate and external circumstances outside her control (an external LoC). 

Intuitively, the studies cited show that individuals with more internal LoC are more likely to adopt 

a new technology, with the goal of improving their livelihoods by taking action. Moreover, Abay 

et al. (2017) discuss the malleability of LoC, suggesting that if LoC can be influenced, for example 
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by interventions like the one described above (Bernard et al., 2015), there may be potential to 

target this internal constraint to adoption by empowering farmers to believe in the ability of their 

actions to effect change. The authors also suggest that LoC may influence adoption via the farmer’s 

expectations about the profitability of adoption, in a manner compatible with the two-stage 

learning model proposed by Maertens et al. (2020) and Nourani (2019).  

Ung et al. (2017) explore the role of a similar psychometric variable, perceived self-

efficacy (PSE), in predicting climate change adaptation behavior among households in coastal 

Cambodia. PSE is a concept from psychologist Albert Bandura’s social cognitive theory (Bandura, 

1977; 1990) which measures “the extent to which people believe that they are capable of doing 

specific tasks in order to achieve certain goals” (Ung et al., 2017). Ung et al. model climate change 

adaptation behavior with PSE as the main predictive variable, and find that households with higher 

PSE are significantly more likely to take steps to adapt. McGinty et al. (2008) look at self-efficacy 

beliefs in the context of agroforestry adoption, using a quasi-experimental design to assess the 

impacts of an agroforestry development initiative on PSE. The study did not find any significant 

effects of the program on PSE (or intention to adopt agroforestry practices), despite evidence and 

theoretical work suggesting that PSE, like LoC, can be altered through experience and exposure 

to successful outcomes in a given domain (Bandura, 1977; Wuepper and Lybbert, 2017). The 

authors do find, however, that self-efficacy beliefs as measured at baseline significantly predict 

farmers’ propensity to adopt agroforestry practices. 

Studies like these point to the value of understanding the psychosocial dimensions of 

adoption, which likely play a role in explaining the farmer decision-making process over and above 

socio-economic and external factors. A growing body of literature from behavioral economics 

provides a theoretical framework to account for the role of internal constraints like self-efficacy 



 22 
 

 

beliefs in adoption decisions (Carter, 2016; Wuepper and Lybbert, 2017). These models question 

the standard economic assumption that agents are purely rational actors using a stable set of 

preferences determined by prices and incomes to maximize expected utility and select the optimal 

investment strategy. Instead, a decision-theoretical framework emerges in which behavioral 

factors or “deep preferences” shape how individuals engage with economic signals and form 

subjective expectations about their likely outcomes which may diverge from the expected utility 

of a purely rational actor (Carter, 2016). Including these preference parameters allows researchers 

to explore potential effects of removing or reducing internal constraints on farmer adoption 

decisions, paving the way for empirical studies and policy interventions that explicitly target these 

constraints to empower marginalized communities and promote uptake of beneficial practices in 

agriculture and beyond.  

 

3.3 Perceived Self-Efficacy  

Bandura (1990) describes PSE as a central mechanism of agency that mediates the decision-

making process, as individuals rely on beliefs about their capabilities to set goals, assess strategies, 

and take action in a given domain. PSE is distinct from beliefs about outcomes, in that an individual 

can recognize that a certain action should lead to the desired outcome, but lack the conviction that 

she is able to perform the action herself (Bandura, 1977). If this is the case, information about 

probable outcomes might not influence the behavior of a farmer who lacks the belief in her own 

ability to adopt the practices successfully: “The strength of people’s convictions in their own 

effectiveness is likely to affect whether they will even try to cope with given situations” (Bandura, 

1977). Bandura (1990) reviews several studies that point to the causal role of self-efficacy beliefs 

in decision-making and human functioning over and above ability or attitudes. Collins (1982) finds 
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that children with higher PSE outperform low PSE children of the same ability level on problem-

solving tasks, as they are more willing to grapple with the problems, and reject faulty strategies 

with confidence (Bandura, 1990). Similarly, Weinberg et al. (1979; 1981) find that study 

participants were able to run faster in an athletic competition when they were told they were 

competing against individuals with a recent injury, and consistently outperform a control group 

who were informed (accurately) that they were competing against professional athletes (Bandura, 

1990; Wuepper and Lybbert, 2017). These studies illustrate the ability of self-efficacy beliefs to 

directly influence actions and performance attainments.  

 If stronger PSE is associated with higher performance attainments and motivation to pursue 

more challenging goals, the question becomes whether and how this attribute can be influenced 

and strengthened. PSE has been shown to arise from genetic and socio-cultural factors, and is 

shaped by shared histories as well as personal experience throughout an individual’s lifetime 

(Espinozo Revollo and Portela, 2019; Pajares, 2006; Wuepper and Lybbert, 2017; Wuepper and 

Sauer, 2016).  Bandura (1977) describes four information channels through which self-efficacy 

beliefs are formed and altered for individuals: performance accomplishments, vicarious 

experience, verbal persuasion, and physiological states. The gold-standard for influencing PSE is 

through “experiences of mastery” wherein an individual learns to overcome her initial bias about 

her abilities by successfully working through and completing challenging tasks. In lieu of personal 

experience, vicarious experience is the most effective channel for belief-updating, wherein “seeing 

others perform threatening activities without adverse consequences can generate expectations in 

observers that they too will improve if they intensify and persist in their efforts” (Bandura, 1977). 

There are certain conditions under which vicarious experience is more likely to impact self-

efficacy beliefs. As we saw in the case of farmer-to-farmer learning, the experience of someone 
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relatable – with shared circumstances and characteristics – provides a more impactful vicarious 

experience. Of course, if external constraints are binding and an individual has developed firm 

beliefs about her capabilities grounded in experience of repeated failures, she is likely to discount 

the relevance of the new experience – whether vicarious or personal.  

 In the case of technology adoption, while internal factors like PSE can play a role in 

encouraging farmers to adopt new practices, if external constraints on credit, labor, and resources 

persist, adoption behavior is unlikely to change. However, when external constraints are not 

limiting, lingering resistance to new technologies might be attributed to these behavioral factors, 

which policies and extension initiatives can be designed to target. Wuepper and Lybbert (2017), 

drawing from Just (2002), model the development of PSE as a Bayesian updating process wherein 

posterior PSE beliefs are a function of initial prior PSE, learning signals about capabilities, new 

experiences – vicarious and personal, emotions, and social persuasion. PSE can be influenced by 

policy interventions that provide opportunities for new experiences and positive feedback about 

capabilities.  

  

3.4 ICTs for F2FE  

With the expansion of cellular networks and mobile phone ownership in developing countries in 

recent years, information communication technologies (ICTs) have come to play a major role in 

disseminating extension content, overcoming some of the logistical barriers associated with in-

person advisory. Providing extension information by SMS or call services is cost-effective, and 

the rapid proliferation of wireless infrastructure offers accessibility in remote regions. Moreover, 

the ability to send messages instantly and at any time enables extension providers to reach farmers 

with information that is critical and time-sensitive, as well as context-specific and highly pertinent 
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to the end-user (Aker et al., 2016). The ease of social networking on digital platforms suggests that 

ICTs may be useful for F2FE, which is predicated on the ability to connect and communicate with 

others. If technology adoption is promoted through observation of peers, there is clear potential 

for ICTs to foster communication linkages that spur adoption among members of a digital 

extension network (Nakasone et al., 2014).  

Perhaps because ICTs for agriculture are a relatively new phenomenon, the body of 

evaluative literature is limited, and results are mixed (Aker et al., 2016; Baumüller, 2018, Fabregas 

et al., 2021; Nakasone et al., 2014). Nakasone et al. (2013) find positive impacts of delivering price 

information, or market information services (MIS) to farmers by SMS, which resulted in higher 

farmgate prices and improved bargaining power for small scale producers. Similarly, Nyarko et 

al. (2013; 2021) found that MIS were associated with an 11% increase in price received for yams 

by farmers in Ghana.  Other studies, however, find little or no impact of MIS, for example 

Fafchamps and Minten (2012) find no evidence that providing price information to farmers in 

India increased the price they received for their crops. There have been fewer assessments of ICTs 

that provide extension information on improved cultivation practices by SMS, and here too the 

results do not always find evidence of a direct impact of the ICT on technology adoption. In a 

randomized control trial (RCT) with farmers in India, Fafchamps and Minten (2012) find no 

significant effect of an SMS campaign on adoption of targeted cultivation practices. Casaburi et 

al. (2014), on the other hand, conduct a randomized control trial (RCT) in which sugarcane farmers 

in Kenya receive SMS reminders about the timing of agricultural tasks personally tailored to their 

planting date and local harvest cycle, and find a significant 11.5% increase in crop yields on treated 

plots attributed to the SMS campaign.  Larochelle et al. (2017) find similar benefits from an RCT 

evaluating an in-person farmer-field day (FFD) accompanied by SMS follow-ups to remind 
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participants about the timing of practices covered at the training. Farmers who received the follow-

up messages retained more knowledge of the course material and were more likely to adopt the 

targeted practices relative to participants in the FFD who did not receive the SMS reminders. 

Interestingly, the knowledge gain for SMS recipients was highest for more complex practices, 

suggesting that the messages helped farmers engage with the more difficult course material and 

deepen their understanding of complicated information, which led to adoption of practices that 

may have felt too challenging to implement based on the FFD alone.  

Aker et al. (2016) discuss several pitfalls of ICT extension which may explain the lackluster 

performance of many promising initiatives. A basic but often overlooked reality is the usability of 

technology accessible to low-income and low-digital-literacy populations. Many SMS extension 

campaigns attempt to reach rural households by SMS on basic feature phones, but these devices 

are not optimized for receiving long messages or typing detailed responses on an alpha-numeric 

keypad. Typical users may be more accustomed to using feature phones only for voice messaging 

and calls, and less likely to benefit from information provided by text (Aker et al,. 2016; Steinfield 

et al., 2015). Low-income households may also struggle to maintain sufficient airtime funds or 

battery charge, and may not be able to fix or replace broken phones, leading to discontinuous use 

patterns. Also, phones and SIM cards are often shared among household members or switched out 

when they run out of airtime or for other reasons, so an individuals’ phone number tends to change 

frequently as we find in the present study (Aker et al., 2016; Lasdun et al., working paper; 

Steinfield et al., 2015). Aker et al. (2016) suggest that these technology barriers which make it 

difficult for users to engage with information presented by SMS limit the potential of ICTs to 

overcome information constraints for rural households. Wyche and Steinfield (2016) make a 
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qualitative investigation of Kenyan farmers’ use of the acclaimed2 MIS platform M-Farm to 

understand why the service is used by less than 5% of Kenyan smallholders. They note that studies 

of ICTs often overlook basic realities of mobile usage patterns, which leads to “the continued 

development of mobile interventions which fail to gain traction with farmers because their existing 

practices are poorly understood” (Wyche and Steinfield, 2016). For instance, the farmers they 

survey used their cellphones mainly to call family and friends and strengthen existing social 

networks, but did not view the device as a source of agricultural information.  

Additionally, while it is tempting to capitalize on the social networking potential of ICTs 

to promote diffusion of agriculture technologies, it is not clear that the type of interactions that 

typically occur in these digital spaces can lead to the psychological gains observed for in-person 

F2FE or community networking initiatives. For example, it can be difficult to establish trust 

through ICT communication alone, particularly if members of a network have never met in person 

(Aker et al., 2016; Moloney, 2006). Drawing on several case studies on the role of ICT in business 

relationships among small-scale entrepreneurs in Tanzania, Moloney (2006) posits that “mobile 

phones can be seen as a facilitating technology for existing, trust-based relationships,” but have 

little value in forming new connections with strangers. Indeed, Aker et al. (2016) review the 

sociology literature on ICTs and trust and conclude that “the value of the mobile phone is primarily 

in making social networks more concrete, thereby building trust within a farmer’s or trader’s 

existing social network”. For this reason, information delivered by a stranger over text may fail to 

resonate as reliable or relevant, further curtailing the ability of ICTs to facilitate technology 

diffusion across peer networks.   

 
2 https://www.wired.co.uk/article/mfarm 
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More complex ICTs involving images, voice recordings, or simulations have proven more 

successful in promoting technology adoption and belief updating. Guilivi et al. (2019), for 

example, find a significant impact of a dynamic image-based fertilizer recommendation app for 

smartphones, M Krishni, on adoption of urea fertilizer practices among maize farmers in Nepal, 

and users of the app score higher on a knowledge retention quiz compared to farmers who received 

the same information by SMS, voice messages, or radio. Tjernström et al. (2021) find that farmers 

update their allocation of farm inputs after playing MahindiMaster, an interactive game through 

which users learn about input returns on a virtual farm resembling their own. While these examples 

do not involve a peer learning component, they illustrate the potential for innovative ICTs to foster 

high-level cognitive engagement with information presented through ICTs, and provide us with 

motivation to explore an unconventional digital learning platform as a space for farmer-to-farmer 

knowledge sharing. There is little existing research on this subject (e.g., Kendall and Dearden, 

2017; Leveau et al., 2019) and the present study aims to address this gap by looking explicitly at 

the connections formed among users of a digital platform designed for farmers and agronomic 

experts to collaboratively generate and share knowledge of regenerative agriculture practices. 

Kendall and Dearden (2017) identify a distinction between ICTs that offer access to information 

and those that provide an opportunity for communication. The latter emphasize active participation 

in a community of practice, facilitating knowledge-sharing among users and situating new 

information within social relationships and personal experience. If the technology barriers 

discussed above can be overcome, this approach to ICT extension may be the key to mobilizing 

farmers in the design and adoption of sustainable and agroecologically appropriate practices.  
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Chapter 4: Experimental Design 

 

4.1 Household Selection and Data Collection  

523 participating farmers were surveyed at baseline in August and September 2020 from a 

randomized network of 1050 households across 47 villages in Morogoro Rural. The initial 

randomization process occurred in 2014, when farming households were selected to participate in 

an experimental fertilizer recommendation initiative (Harou et al., 2021). The original 

randomization took place at the village and individual levels, with 47 villages selected out of all 

villages in Morogoro Rural that were accessible by vehicle and known to grow maize. In each 

village, participant households were drawn randomly from a list of all households who grew maize 

that year, and assigned to treatment or control groups. Data on assets, demographics, food security, 

and agricultural production were collected from all participating households in 2014, 2016, and 

2019. The fertilizer initiative succeeded in increasing input use and maize yields among treatment 

households in 2016, but with little to no significant remaining effect detected in 2019 (Tamim et 

al., 2021).  

 In collaboration with the Sokoine University of Agriculture (SUA) in Morogoro, we used 

cellphone numbers listed in the 2019 SoilDoc survey to contact households at baseline, and were 

able to reach 484, or 66%, of the 733 households who listed a cellphone number in 2019. In an 

effort to reach more households, we reached out through community networks in each SoilDoc 

village and reached an additional 61 households who had not listed a number in 2019, bringing the 

initial number of households at baseline to 545. However, some of these households did not own 

their own phone – a criteria for eligibility in the ShambaChat study –  or did not wish to participate, 

bringing the final number of households to 523, with one participating farmer per household.  
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The baseline survey was conducted over two 30-minute phone interviews with each 

household, in an effort to be less demanding on respondents in terms of time and attention. The 

first survey round included questions on asset ownership, housing and dwelling characteristics, 

patterns of food consumption, off-farm income sources, and market access and prices, as well as 

respondents’ perceptions and attitudes towards the ongoing COVID-19 pandemic for use in a 

different study (Lasdun et al., working paper). The second survey round focused on agricultural 

production and climatic factors affecting production in 2020, and collected baseline levels of most 

variables of interest for the ShambaChat study including perceived self-efficacy, subjective 

probability distributions, knowledge and adoption of regenerative agriculture practices, and yields. 

Unfortunately, we were only able to reach 468 households for Part Two, likely because some 

farmers had left their villages in early September to prepare fields and lost cellphone coverage. In 

the interest of maintaining a large sample size, we chose to keep all 523 households in the study, 

despite lacking baseline values for many relevant outcome variables for the 55 participants missing 

Part Two.   

 

4.2 The ShambaChat Extension Platform 
 
To build the ShambaChat extension platform we partnered with Telerivet, a mobile 

communications platform that manages interactive SMS campaigns for businesses and NGOs 

internationally. The platform allowed us to broadcast extension messages and discussion prompts 

from a computer anywhere in the world directly to the cellphones of participating farmers in 

Morogoro. Additionally, it enabled us to group participants into 5-person chat groups – a novel 

functionality for feature phones – where they could respond to our extension messages and discuss 

the content freely over SMS. If a (treated) farmer responded to any message received through 
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ShambaChat, whether from us or another farmer in her group, the message was automatically 

forwarded to the other members of her chat group, who were able to respond in turn. On feature 

phones, each message arrived as a separate SMS tagged with the first three letters of the sender’s 

name, or “SUA” for the extension messages broadcast by our team. While a bit clunky, this 

interface enabled users to follow a conversation, as messages were received in the order they were 

sent and clearly linked to the sender. To ensure privacy, all phone numbers were concealed and 

replaced with the three-letter nametag. Since participants were randomly allocated to chat groups 

and did not know each other prior to the study, we made an effort to instigate conversation by 

broadcasting several icebreakers to the groups encouraging members to introduce themselves with 

their name and village (see Appendix A for a full transcript of these messages). In theory, this 

technology allows for relatively easy communication between chat group members and facilitates 

discussion and engagement with the extension content.   

The ShambaChat platform also gave us access to all the messages sent by participants in 

real-time, which enabled us to monitor the group chat conversations for any inappropriate content 

(which did not arise at any time), as well as to observe which topics were of most interest to users. 

We were able to send polls and survey questions to ShambaChat users and analyze the results 

directly through the platform. This allowed us to elicit feedback about the content and timing of 

messages, and to ask farmers to share how they were changing their agricultural practices to cope 

with the severe drought experienced during the 2021 growing season. This function of 

ShambaChat is discussed further in Section 6.4.  

 

4.3 Treatment Arms  
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The goal of this study is to assess the specific impact of augmenting SMS extension delivery with 

a group chat feature, and for this reason we chose to broadcast extension messages by SMS to all 

study participants. Limiting our scope to only two treatment arms had the advantage of preserving 

a larger sample size when comparing outcomes between treatment and control groups, but we 

forego the ability to assess the impact of the extension platform more holistically relative to no 

intervention.  

The 523 participating households were sorted into treated and control groups, with a subset 

of the control group consisting of 87 households in 10 randomly selected pure control villages to 

allow us to understand potential spillover effects – see Section 5.3. In treatment villages, we sorted 

all households into five-member chat groups, and then randomly assigned each chat group to either 

treatment or control. To ensure heterogeneity of experience within the chat groups, we included 

two farmers in each group who had some experience with the agricultural practices we intended 

to promote. To do this, we used farmer responses at baseline to identify all farmers who planted 

legumes in 2020 (hereafter, criteria F1) and used a soil conservation practice in 2020 (grass strips, 

ridges, bench terraces, drainage channels, water catchment, or other) (hereafter, criteria F2). 88 

chat groups were formed from the 436 farmers in the remaining 37 treatment villages, with one 

member each of F1 and F2, along with three randomly selected members. We then allocated the 

chat groups randomly to treatment or control, with 34 control groups and 54 treatment groups. 

Chat groups assigned to control were dissolved, as only treated farmers would be participating in 

these groups during the study, leaving a total of 257 control households (across treatment and 

control villages) and 266 treated households at baseline.  

 

4.4 SMS Extension Course  
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Given the prevalence of nitrogen deficient soils in our sample3 and in SSA more generally, we 

selected a bundle of regenerative agriculture (RA) practices that seek to restore soil fertility 

through enhanced biological processes and ecosystem dynamics. RA practices are based on 

intentional management of on-farm resources, providing an avenue to combat soil nutrient 

deficiencies at little or no financial cost to farmers (Al-Kaisi and Lal, 2020). These practices 

substitute knowledge for input intensity, overcoming some of the constraints associated with 

promoting uptake of agricultural inputs like inorganic fertilizers, while presenting new challenges. 

High-quality, adaptive extension programs are key to promoting adoption of complex and context-

specific technology bundles like RA, making this an appropriate topic to address through the 

ShambaChat platform (Lunn-Rockliffe et al., 2020).  

Our team of agronomists and agricultural economists at McGill, SUA, and CIAT 

developed a 3-part course on RA soil building, focusing on legume-maize intercropping (Part 1), 

green manure and composting (Part 2), and integration of crop residues (Part 3). Each part of the 

course lasted one month, during which participants received 3-5 messages per day excluding 

weekends (see Appendix A). The messages contained information about techniques for 

implementing the targeted practices, the agronomic benefits of doing so, and scientific principles 

behind their effectiveness, as well as discussion prompts that led farmers to think more deeply 

about the information and encouraged them to relate it to their own experience or knowledge of 

similar practices. The course, including discussion prompts, was delivered by SMS to both 

treatment and control participants. Treated participants additionally had the ability to discuss this 

information with other farmers in 5-person chat-groups. To ensure farmers did not bear a cost of 

 
3 Soil testing was performed at each household in 2014 for a previous study, Harou et al. 2021. 
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participating, we paid for unlimited airtime for the duration of the study period for all households, 

both treatment and control.   

 
 
4.5 Outcome Variables  
 
We are interested in whether the ShambaChat group chat treatment promotes adoption of 

beneficial practices, and in understanding the psychological mechanisms through which peer 

learning can influence behavior. To this end, we measure three types of outcome variable: 

indicators of adoption, behavioral outcomes, and welfare outcomes.  

 

4.5.1 Adoption Outcomes 

We look at seven indicators of adoption to capture any relevant changes in production decisions 

in response to the treatment. The extension course focused primarily on legume nitrogen fixation 

and cycling organic nutrients through decomposition of on-farm organic materials, with specific 

practices falling into these two categories. Although we asked in great detail about adoption of 

each practice, the number of positive responses to specific items in most cases was too low to 

analyze efficiently, so we chose to aggregate into broader practices resulting in four indicators 

tracking adoption of legume practices, and three tracking adoption of organic materials practices.  

 

Legumes: 

i. Intercropping with legumes on main maize plot (MMP) (1): mmp_intercr_1 takes a value 

of one for respondents who select one or more legume from a list of crops in response to 

the question “Which of the following crops did you plant alongside maize on your MMP?” 

and zero otherwise. Respondents who did not cultivate maize are omitted.  
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ii. Intercropping with legumes on MMP (2): mmp_intercr_2 takes a value of one for 

respondents who select “Intercropped maize with legumes” in response to the question 

“Which of the following practices did you use on you MMP?”, and zero otherwise. 

Respondents who did not cultivate maize are omitted. This metric is distinct from (i) 

because some farmers may plant a legume alongside maize without recognizing this 

practice as intercropping.  

iii. Other legume practices: legume_other takes a value of one for farmers who use cover 

cropping, crop rotation, or relay planting methods with legumes, and select one of these 

practices in response to the questions “Which of the following practices did you use on you 

MMP?”, and zero otherwise. Respondents who did not cultivate maize are omitted.  

iv. Legumes on farm: legume_onfarm is equal to one for any farmer who selects a legume 

from a list of crops grown anywhere on their farm, not limited to the MMP. This variable 

was not collected at baseline, but we asked for recall data at endline to estimate the level 

in 2020. This measure includes farmers who did not cultivate maize.  

 

Organic Materials:  

i. Organic materials found or produced on farm: organic_materials is equal to one for 

farmers who find or produce an organic material, including crop residue, manure, leaf litter, 

or transfer of forest soil anywhere on their farm, and zero otherwise. Due to a lack of 

foresight when developing the survey, farmers who do not cultivate maize are omitted from 

this measure. 

ii. Making fertilizer from on-farm organic materials: made_org_fert is equal to one for 

farmers who find or produce organic materials on their farm (organic_materials == 1) and 
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state that they used this material as a fertilizer, either by incorporating it into compost or 

leaving it to decompose directly on the field, and zero otherwise.  

iii. Applying organic fertilizer on the MMP: org_fert_mmp is equal to one for farmers who 

applied organic fertilizer on their MMP, and zero otherwise. Respondents who did not 

cultivate maize are omitted. 

 
 
4.5.2 Behavioral Outcomes  
 
We measure five psychometric variables in an effort to explain the process by which farmers 

engage with the group chat functionality of ShambaChat and change their behavior in response to 

the information received. These outcomes are difficult to measure and in some cases there is no 

standard method for doing so. For this reason we describe our methods in detail, and the survey 

modules presented to respondents are included in Appendix B. The distribution of responses to 

some of these measures can be seen in Figure 1. We construct a knowledge score based on five 

questions about soil fertility management practices to compare participants’ knowledge of the 

targeted practices before and after the intervention. We also construct three measures of perceived 

self-efficacy, or an individual’s belief about her capabilities in reference to a specific domain of 

functioning. Finally, we use a game to elicit a subjective probability distribution over adoption 

outcomes.  

 

i. Knowledge Score (knowledge_score): We ask five questions about best-practices 

surrounding soil fertility management. Four questions specifically address the targeted 

practices, with a focus on identifying legume crops and applying organic fertilizers. A fifth 
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question about seed spacing, which was not a topic covered in the extension course, is 

included as a control. The final score is calculated out of 16 possible points.  

 

ii. Generalized PSE (PSE_general): PSE is a concept from cognitive social science, 

popularized by Albert Bandura (1977) as a component of his social learning theory. An 

individual’s PSE is a measure of her beliefs about her own ability to perform tasks or 

behaviors which are necessary for success in a particular domain. Following Chen et al. 

(2001), we administer the New General Self-Efficacy (NGSE) scale, loosely adapted to the 

domain of agriculture. The NGSE scale consists of eight items that measure an individual’s 

confidence in her ability to meet task demands and achieve goals. Each item is rated on a 

1-5 point Likert scale, and a score, PSE_general, is calculated by taking the average over 

all items.  

 

iii. Domain-specific PSE (PSE_outcome_soilfertility; PSE_outcome_profits; 

PSE_outcome_foodsecurity; PSE_task_furrows; PSE_task_seedspacing; 

PSE_task_intercropping;  PSE_task_manure): We constructed a module to measure PSE 

for specific tasks and outcomes within the domain of RA, following the methodology of 

Schwarzer and Renner (2009) and Bandura (2006). Bandura argues that scales like the 

NGSE are too general, and fail to capture the domain-specific nature of PSE, even when 

loosely adapted to a domain as we do in (ii), above. Indeed, while many psychological 

constructs cut across all domains of functioning, PSE is linked to specific contexts and 

spheres of action. Despite high correlation across different domains of functioning, an 

individual’s PSE in reference to a certain task may change as she becomes more confident 
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in her capabilities to perform in this domain, for example through learning-by-doing, or 

exposure to a role model. A domain-specific PSE scale must meet certain criteria for 

validity (Bandura, 2006), namely: 

 

• Should be phrased in terms of capabilities, not intentions (eg., “I am able to” instead of “I 

will do it”), and should measure “perceived capability to produce given attainments” 

(Bandura, 2006).  

• Should focus on ability to perform specific tasks. 

• The tasks specified in the scale should in fact be the determinants of success in the relevant 

domain (e.g., proper input use in fact leads to improved yields). 

• The scale should reflect gradations of challenge, so that respondents can indicate their 

perceived level of difficulty associated with performing each task, and/or their confidence 

in their ability to perform them. 

• The scale should elicit respondents’ beliefs about their capabilities as of now, not their 

expectations about potential capabilities in the future.  

 

We include one module for domain-specific PSE, but elicit two metrics – one that covers PSE 

over specific outcomes, and one that looks at PSE over specific tasks. Each metric consists of 

3 and 4 outcome variables, respectively, listed above.  

 
iv. Subjective probability distribution (SPD) (SPD_soilfertility; SPD_profits; 

SPD_foodsecurity): Following Delavande et al., (2011) and Delavande (2014), we 

developed a thought experiment to elicit subjective probability distributions over expected 

intercropping outcomes. Delavande and others (e.g., Delavande and Kohler, 2009; Lybbert 
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et al., 2007; Maffiolo and Monihan, 2018) provide a visual aid like beans or marbles to 

help respondents express probabilities, e.g., by putting 10 out of 20 beans on the outcome 

they believe has a 50% chance of occurring. Since our survey was conducted over the 

phone, we adapted this technique to a thought experiment in which respondents consider 

the probability of success among 20 identical farmers “just like you” who adopt 

intercropping. If exposure to relatable peer farmers increases ShambaChat users’ perceived 

self-efficacy, they may be more confident in their ability to successfully implement the 

targeted practices on their own farm, leading to a higher distribution of expected outcomes.  

 
 

4.5.3 Welfare outcomes  
 
Finally, we look at three welfare outcomes to measure whether the treatment had any impact in 

the short run on household living standards.  

i. Household assets: asset_index is an index of household items including productive assets 

such as farm tools and equipment, household assets including cellphones and electronic, 

vehicles, and furniture items, and livestock assets. The index is constructed using principle 

component analysis (PCA), see A for details.  

ii. Maize yields: maize_yields measures self-reported yields for maize grown on households’ 

main maize plot. The measure is adjusted for intercropping practices, and reported in 

kilograms per acre.  

iii. Food insecurity: food_insecurity is a weighted average of the number of meals skipped by 

households members each month.  

 
 
4.6 Attrition  
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Out of 523 households surveyed at baseline in August 2020 and included in the study, we were 

able to reach only 397, or 75.9%, at endline in August 2021. This represents an attrition rate of 

24.1%, and could result in biased estimates if participants do not drop out of the study at random. 

We posit that the high rate of attrition between 2020 and 2021 is largely due to recent changes in 

Tanzanian laws regarding SIM card registration. A new law went into effect in February 2020, 

requiring Tanzanians to biometrically register their SIM card. In the months following, many 

individuals adjusted to the new law, resulting in high turnover of cellphone numbers. Moreover, 

even without the upheaval of a new law, it is well-documented that in developing countries 

cellphones and SIM cards are often shared among household members or switched out, so an 

individuals’ phone number tends to change frequently (Aker et al., 2016; Steinfield et al., 2015).  

We conduct two tests to determine if attrition is random. First, following Haushofer and 

Shapiro (2016) we verify that attrition is not correlated with treatment assignment by estimating 

the following equation using OLS, with standard errors clustered at the village level:  

 
𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛! =	𝛼! +	∑ 𝜃"𝑇𝑅𝐸𝐴𝑇!" +	𝜀!#

"$%     (1) 
 
 
where 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛! takes a value of one for farmers we did not reach at endline in 2021, and zero 

otherwise, and 	𝑇𝑅𝐸𝐴𝑇!" 	takes a value of one for farmers assigned to treatment arm 𝑘, where 𝑘 =

0 are control households in pure control villages (the omitted category), 𝑘 = 1 are control 

households in treatment villages, and 𝑘 = 2 are treated households. The results presented in Table 

1 indicate that attrition is randomly distributed among the three treatment groups.  

Next, we check whether any relevant household demographics or outcome variables are 

correlated with attrition by regressing each variable on the binary variable attrition defined in 
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equation (1) above. We estimate the following equation using OLS, with standard errors clustered 

at the village level:  

 
𝑦! =	𝛼% + 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛! +	𝜀!     (2) 

 
 
The results of these regressions, presented in Table 2 confirm that attrition is not correlated with 

any relevant variables.  

 
 
4.7 Baseline Balance 
 
Despite randomization of households, we verify that all outcome variables and relevant household 

demographics are balanced at baseline between treatment and control groups, as well as between 

control households in treatment villages and control households in pure control villages. To 

conduct these balance tests, we regress baseline levels of outcome and demographic variables on 

a treatment indicator using OLS with the following specification, with standard errors clustered at 

the village level:  

 
𝑦! =	𝛼% +	𝜃&𝑇𝑅𝐸𝐴𝑇! 	+ 	𝜀! 	     (3) 

 
 
 
4.7.1  Balance of Treatment and Control Households 
 
We first set the treatment indicator 𝑇𝑅𝐸𝐴𝑇! 	equal to one for treated households and zero for all 

control households, and run the model specified in equation 3. The results of these regressions are 

reported in Table 3, where we see the mean and standard deviation in the level of each variable for 

treatment and control groups, respectively, and the difference in these levels. Any statistically 

significant difference is indicated with an asterix in Column 5. As we see, there is a significant 

difference in the baseline levels for knowledge score and other legume practices. The difference 
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in outcome variables is controlled for by the first-differences estimation technique we follow in 

our main results section, 5.2, and we are careful to consider these baseline imbalances when 

conducting a cross-sectional analysis of endline data in section 5.5. Note that this imbalance does 

not imply selection bias, which is removed by the random allocation of households to treatment or 

control.  

 
 

4.7.2 Balance of Control Households in Treatment and Control Villages  
 
We also test the balance of outcome and demographic variables between control households in 

treatment villages, and control households in pure control villages, which will help us account for 

any potential spillover effects of the treatment in Section 5.3. For this test we set 𝑇𝑅𝐸𝐴𝑇! 	equal to 

one for control households in treatment villages, and zero for households in control villages. 

Results, presented in Table 4, show that several variables are indeed unbalanced between the two 

control groups. These groups were initially balanced at baseline before attrition occurred. We 

address this imbalance in Section 5.3.  

 

4.8 Intent to Treat Effects (ITT) and Compliance 
 
Our lack of control over the way in which study participants engaged with the ShambaChat app, 

coupled with the reality of limited and patchy network coverage in the Morogoro region, resulted 

in partial or non-compliance with treatment for some households. 40 out of the 397 households 

interviewed at endline in 2021 reported that they did not receive any extension messages from 

SUA, likely due to poor cellphone coverage or switching their phone number at some point in the 

6 months between the baseline data collection and the start of the messaging campaign. Of these, 

17 were treated households and 23 were control. Moreover, many participants in the treatment 



 43 
 

 

group did not actively participate in the group chats, so it is difficult to say whether and to what 

extent they benefited from the treatment. In some cases they may have benefited from reading 

what others in their chat groups were discussing, but some chat groups had no discussion at all, in 

which case the experience of these treated participants would have been identical to members of 

the control group (who were not placed in a chat group but still received extension messages 

through ShambaChat). To account for this partial and non-compliance, we follow an intent-to-treat 

(ITT) analysis throughout this study to estimate the coefficients for all participants who were 

randomly assigned to the treatment group, regardless of whether or to what extent they actually 

received or engaged with the treatment. This approach is necessary, but likely results in an 

underestimation of the full treatment effect.  
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Chapter 5: Empirical Strategies and Results 

 

5.1 Summary Statistics 

5.1.1 Description of Household Characteristics at Baseline 

The 397 households participating in our study (after attrition) are located in Morogoro Rural, a 

district in the Morogoro region of Tanzania, across 47 in villages which predominantly grow 

maize. 84% of households in our sample cultivated maize in 2020, mostly for household 

consumption. The average household-head is male and 45 years old. 93% of household heads have 

completed some education, but only 7% have completed any years beyond primary school (7 years 

in Tanzania).  15% of households are female-headed. 90% of households own at least one acre of 

land, with mean land holdings in 2020 around 6 acres, although this is skewed by a few large 

landholders. 92% of households own their home, which are typically constructed of stone or mud 

bricks with corrugated metal roofs, and 90% of maize cultivators own their own maize plot. 9% 

of households have electricity, and 3% have an indoor water supply. Average maize yields in 2020 

were 286 kg/acre, which is low compared to 514.2kg/acre average yields recorded for Morogoro 

between 1994 and 2001 (Harou et al., 2021; Paavola, 2008), although this number likely suffers 

from reporting error.  

We looked at production practices at baseline to inform the content of the extension course, 

aiming to target practices which were already used by a significant portion of participating 

households. This served as a guide for identifying regionally-appropriate practices, and provides 

heterogeneity in the level of experience among members of the chat groups. All baseline measures 

pertain to practices employed on the respondent’s main maize plot (MMP). 26% of households 

applied some organic fertilizer on their MMP in 2020, including manure, compost, crop residue, 



 45 
 

 

and transfer of forest soil. 16% intercropped maize with a legume on their MMP, and 17% planted 

a legume in rotation or as a cover crop. According to recall data collected in 2021, 32% of 

households planted a legume somewhere on their farm in 2020. For reference, fewer than 5% of 

households used inorganic fertilizers in 2020, which is typical for Tanzania and many regions of 

SSA. 

 

5.1.2 Summary of Outcome Variables 

In Table 5, we present summary statistics for each outcome variable at baseline in 2020 and endline 

in 2021. As a result of our decision to send extension messages through ShambaChat to all study 

participants, both treatment and control, we are likely to see an impact on certain outcome 

variables, particularly adoption of the targeted practices, across all households from 2020 to 2021. 

These year effects are suggested by the difference estimates in Column 5 of Table 5, for which we 

test the significance with t-tests of the sample means in 2020 and 2021. However, since we do not 

control for individual fixed-effects here, or macro-level shocks occurring during the study period 

(for example, the COVID-19 pandemic), we cannot and do not attempt to attribute this effect to 

the extension campaign. Still, it is worth noting that 27% of maize-growing households 

intercropped maize with a legume on their main maize plot (MMP) in 2021, compared to only 

16% in 2020, representing a nearly 75% increase in intercropping over the study period. 

Additionally, although the number of households who found or produced organic materials on 

their farm decreased substantially in 2021, those who did were more than twice as likely to allocate 

these resources to the production of organic fertilizer in 2021. Interestingly, application of organic 

fertilizer decreased 77%, with 26% of maize-growing households applying organic fertilizer on 

their MMP in 2020 compared to only 6% in 2021.   
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Many of the behavioral outcomes we measured also increase in 2021 relative to their 

baseline values. The average knowledge score increased by 1.9 points on a 16 point scale, 

generalized PSE scores increased 0.39 points on average on a 5 point scale, and PSE over soil 

fertility, profit, and food security outcomes each increased modestly as well (note that the 

negative change in the food insecurity variable implies an improvement in food security). To the 

extent that this effect is attributable to the ShambaChat extension content, we may be seeing that 

as farmers engage with the messages and discussion prompts, even if they are not chatting with 

each other, they develop a sense of self-efficacy surrounding the targeted practices and retain 

knowledge from the course. In the following section we are able to disentangle the year effect 

from the treatment effect using a model of first-differences with panel data and year fixed-

effects. 

 

5.2 Regression Estimation 

We are interested in understanding the effect of incorporating a group chat feature in an SMS 

messaging campaign on participants’ engagement with extension information. To reiterate, all 

households in our study received extension information and discussion prompts over SMS, and 

treated households were also assigned to a 5 person chat group where they could discuss the 

new information by text with other farmers in real time as they received it. In this section, we 

estimate the effect of this treatment on adoption outcomes, behavioral outcomes, and welfare 

outcomes. We follow an intent-to-treat (ITT) analysis across all models employed.  

 

5.2.1 Technology Adoption 
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The regenerative agriculture methods introduced through the extension campaign can be grouped 

into (1) legume practices and (2) organic materials practices, and contain the 7 outcome variables 

described in Section 4.5. We measure the effect of treatment on each of these variables using the 

following first differences equation estimated by ordinary least squares (OLS), a linear 

probability model4, with robust standard errors clustered at the village level:  

 

∆𝑦!' =	𝛼% +	𝛽'𝑇𝑅𝐸𝐴𝑇! + ∆𝜀!      (4) 

 

where ∆𝑦! 	are the difference in each of j outcome variables measured at endline (2021) and 

baseline (2020), 𝑇𝑅𝐸𝐴𝑇! is an indicator of treatment (one for treated households; zero otherwise), 

𝜀!(  is an error term, and 𝛼% is a constant. We are interested in the coefficients 𝛽', which measure 

the average effect of the treatment on the outcome variable specified. A significant 𝛽' would imply 

that the treatment had an effect on outcome j. Standard errors are clustered at the village level to 

account for potential correlation of outcomes within villages. Since all household characteristics 

are balanced across treatment and control groups, we do not include a vector of controls in this 

model.  

For some additional intuition into the effect captured by our model, we note that with only 

two time periods (baseline 2020 and endline 2021), this first-differences specification is identical 

to a difference-in-differences (DID) model, which compares the change in the level of 𝑦! from 

 
4 The adoption variables are binary, meaning they do not fit all the assumptions of an LPM which assumes a 
continuous distribution over a normally distributed outcome. The major problems associated with using an LPM for 
binary outcomes include the presence of heteroskedasticity, which can be resolved by using robust standard errors, 
and the fact that an LPM is capable of producing estimates outside the 0 – 1 range, in which case the estimates lack 
clear interpretation and are likely to be biased. However, it is common practice to use LPMs to model binary 
variables given a large enough sample size and use of robust standard errors, as it results in estimates that are easier 
to interpret (Angrist and Pischke, 2008; Woolridge, 2002). In our case, the model does not produce any values 
outside the 0 – 1 range, so should be unbiased and consistent.  
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baseline to endline between treated and control groups. The DID model is specified with the 

following equation: 

 

𝑦! =	𝛼% +	𝜃'𝑇𝑅𝐸𝐴𝑇! +	𝛾'𝑌𝐸𝐴𝑅! +	𝛿'(𝑇𝑅𝐸𝐴𝑇! 	× 	𝑌𝐸𝐴𝑅!) +	𝜀!  (5) 

 

Where 𝜃' gives the average difference in outcome between treatment and control groups across all 

time periods, 𝛾' gives the average difference in outcome over time across all treatment groups, and 

𝛿' is the DID estimator that gives the relevant effect of the treatment over time, equivalent (when 

there are only two time periods) to 𝛽' in the first-differences specification above. The DID 

estimator for two time periods is constructed by taking the difference in the expected value of the 

outcome for treated observations in each time period, minus the difference in the expected value 

of the outcome for control observations in each time period, as follows:  

 

𝛿)) = (E[𝑦	|	𝑇𝑅𝐸𝐴𝑇 = 1	, 𝑌𝐸𝐴𝑅 = 1] − E[𝑦	|	𝑇𝑅𝐸𝐴𝑇 = 1, 𝑌𝐸𝐴𝑅 = 0]) 

−	(E[𝑦	|	𝑇𝑅𝐸𝐴𝑇 = 0	, 𝑌𝐸𝐴𝑅 = 1] − E[𝑦	|	𝑇𝑅𝐸𝐴𝑇 = 0, 𝑌𝐸𝐴𝑅 = 0])       (6) 

 

Our results, presented in Table 6 and Table 7 indicate that treatment had a positive impact on 

legume intercropping, statistically significant at the 5.4% level, as measured by both of our 

indicator variables. The first variable, found in Column 1 of Table 6 takes a value of one for all 

respondents who listed a legume crop as something they planted along with maize on their main 

maize plot (MMP). The estimate implies that treated households were 13% more likely plant a 

legume on their MMP in 2021 relative to control households in 2021. The second intercropping 

indicator, found in Column 2 of Table 6, is based on respondents’ answer to the question “Did you 
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intercrop maize with a legume on your MMP this year?”. The two measures differ slightly as some 

farmers may have planted a legume alongside maize without recognizing this practice to be 

intercropping – see  Section 4.5 for details. By this measure, treated farmers were 8% more likely 

to intercrop, significant at the 6.2% level. A possible explanation for the lower treatment effect on 

the second indicator is that farmers in the chat groups typically did not use the word 

“intercropping”, but rather listed various leguminous crops that they had tried or heard about 

planting alongside maize. Both treated and control farmers learned explicitly about intercropping 

through the SMS messages. While not statistically significant at traditional levels, we note that the 

coefficients on other legume practices and legumes on farm are both negative, perhaps suggesting 

that the treatment encouraged farmers to plant legumes alongside maize instead of elsewhere on 

their farms. 

There are no significant results for any of the organic materials practices, and overall we 

find that significantly fewer farmers across treatment and control groups produced or applied 

organic fertilizers in 2021 compared to 2020. However, the large positive coefficient on “made 

organic fertilizer” presented in Column 2 of Table 7 suggests that perhaps farmers in the treatment 

groups were more likely to allocate their on-farm organic materials as fertilizers, another topic 

discussed frequently in the chat groups. This coefficient is significant at the 11% level.  

  

5.2.2 Belief Updating 

We measure a series of behavioral outcomes in an effort to understand the belief updating process 

farmers undergo when they receive new information, chat about it with others, and decide whether 

or not to adopt new practices. These include a knowledge score about regenerative agriculture 

principles and practices, various measures of perceived self-efficacy (PSE), and measures of 



 50 
 

 

subjective probability distribution (SPD) over soil fertility, profit, and food security outcomes 

associated with adoption of the key RA practices discussed – see Section 4.5 for details. 

Knowledge score, general PSE, and SPD are all measured with a continuous outcome variable (or 

in the case of knowledge score, a well-ordered categorical variable with many categories and a 

normal distribution – see Figure 1) well suited to first-differences estimation with OLS, and we 

model these using the specification described above in Section 5.2.1, equation (4). The results of 

these regressions are presented in Tables 8 – 10.  As we see, the effect of treatment on these 

outcomes is not statistically significant at traditional levels. We discuss the implications and 

possible explanations of these results in Chapter 6.  

A key variable of interest to our study is perceived self-efficacy (PSE) in the domain of 

regenerative agriculture. There is no standardized measurement for domain-specific PSE, only 

general guidelines from the psychology literature (Bandura, 2006; Schwarzer and Renner, 2009) 

for creating appropriate scales. We constructed two domain-specific PSE modules to investigate 

this trait among study participants – see Section 4.5 for a full discussion of our metrics. Both 

modules asked respondents to select a value from a Likert scale, resulting in categorical, non-

continuous outcome variables. There is debate over whether Likert scale dependent variables can 

be treated as continuous and estimated with a linear probability model, as we have done for the 

other variables in our analysis (Sullivan and Artino, 2013). The problem arises because response 

items in a Likert scale, while ordinal, are not necessarily spaced at even intervals. In our case for 

example, we ask respondents to rank how difficult it would be to accomplish a certain task, and it 

is not clear that, e.g., the jump from “difficult” to “extremely difficult”  is equivalent to the jump 

from “not at all difficult” to “somewhat difficult”. Parametric tests like OLS regression assume 

that the underlying population would be normally distributed, with most individuals falling near 
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the mean level in terms of outcome. First of all, it is unclear what the mean would even be for a 

scale like ours, and second, there is no a priori reason to assume that most responses would be 

clustered around, for instance, the “moderately difficult” option. Figure 1 shows the density of 

responses for each PSE outcome in our data, and we clearly see that responses are not normally 

distributed for any of the domain-specific measures. Some econometric research maintains that 

parametric testing is robust to violations in the normality assumptions, and valid for use with Likert 

scale dependent variables even under non-optimal conditions (e.g., Norman, 2010; Sullivan and 

Artino, 2013). We therefore report the first-differences estimation specified in equation (4) using 

OLS regression with robust standard errors clustered at the village level. We find a positive 

coefficient of 0.323 on intercropping PSE, significant at the 10% level, indicating that treatment 

increased this score by .32 on a four-point scale. No other measures are significant.  

However, these results, reported in Tables 11 – 12,  should be interpreted with caution, 

particularly in the case of the task-specific PSE measures for which the Likert scale has only four 

items – an oversight in the design of our survey instrument (Rickards et al., 2012). For this reason, 

we also evaluate these outcome variables using an ordered logistic regression model with random 

effects given by:  

 

𝑃(𝑌!* > 	𝑘	|	𝑋!*	, 𝜈!) = 𝐻(𝛽𝑋!* +	𝜈! − 𝑘")	      (7) 

 

where 𝜈! is an iid error term, 𝑘&, … , 𝑘+,& are the possible levels taken by the outcome variable 𝑌!* 

(as above), and 𝐻(∙) is a logistic cumulative distribution function. Fixed-effects models are often 

preferred to random-effects models, as the latter requires a stricter condition on the individual-

specific error term. Namely, the individual-specific effects must be uncorrelated with the 



 52 
 

 

independent variable. In our case, the randomization of households into treatment and control 

group should ensure that this assumption is valid, as there is no reason for any characteristics of 

the individual to be correlated with their treatment status – the independent variable in our case. If 

this assumption holds, the random-effects model is more efficient than fixed-effects (Woolridge, 

2015). The results of this model, presented in Tables 13 – 14, corroborate the first-difference 

estimations. We find a positive treatment effect on task-specific PSE for intercropping, significant 

at the 1% level. The coefficient is not straightforward to interpret, but the positive sign tells us that 

treated households rate their PSE in the domain of intercropping higher relative to the control.  No 

other results are significant, but the signs on all coefficients match those from the linear model.  

 

5.2.3 Welfare Outcomes  

Finally, we estimate the effect of treatment on three welfare outcomes: maize yields, food 

insecurity, and assets – see Section 4.5 for details. These outcomes are all modeled using the first-

differences specification outlined in Section 5.2.1, equation 4, and the results are presented in 

Table 15. It is unsurprising that we do not see any statistically significant effect on welfare 

outcomes, as most of the RA methods discussed in the extension campaign take more than one 

season to produce a measurable effect on yields, much less assets. We might expect to see a 

downward trend in food insecurity if households grow a legume crop that provides food, but the 

positive and non-significant coefficient in Column 2 of Table 15 indicates that this is not observed.  

 

5.3 Spillover Effects  

There is potential for spillover of treatment effects to untreated households if chat group 

participants discuss their experience with neighbors, or if adoption of the targeted practices by 
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treated households encourages others in the community to adopt as well – clearly a desired 

outcome of any agricultural education initiative (Feder et al., 2004). If these effects are present in 

treatment villages, our results represent a lower-bound estimate of the impact of treatment. For 

this reason, we included a subset of control households in randomly selected control villages, in 

which no households were selected for treatment (i.e. given access to the group chat feature of 

ShambaChat). Comparing treated households directly to control households in control villages 

would give us a pure treatment effect, but doing so decreases our sample size significantly. To test 

for spillover effects, we estimate the following first-differences equation using OLS with robust 

standard errors clustered at the village level:  

 

∆𝑦!' =	𝛼%	 +∑ 𝜃"'𝑇𝑅𝐸𝐴𝑇!"#
"$% +	∆𝑿! + ∆𝜀! 	    (8) 

 

where 𝑦!' takes the endline value of each outcome variable, 𝑗, regressed on a series of three dummy 

variables, 𝑇𝑅𝐸𝐴𝑇!" , corresponding to treated households (𝑘 = 2), control households in treatment 

villages (𝑘 = 1), and control households in pure control villages (𝑘 = 0), respectively. A 

significant 𝜃&' coefficient would indicate the presence of spillover effects, implying that control 

households in treatment villages absorbed some of the treatment effect on outcome 𝑗	from 

neighboring households. However, referring to the balance table (Table 4) from section 4.7.2, we 

see that after attrition the control households in treatment vs control villages are not well-balanced 

at baseline across several outcome variables, namely legumes on farm, making organic fertilizer, 

PSE over soil fertility outcomes, and PSE over a seed spacing task. We must therefore take care 

in attributing any effect on these outcomes to spillovers from treatment. Additionally, control 

households are unbalanced in land-owned and ownership of MMP. We therefore include these 
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variables in a vector of controls 𝑿!. We find evidence of spillover effects, indicated by significant 

𝜃&	coefficient in several adoption outcomes, presented in Tables 16 – 17, namely the first legume 

intercropping measure (Table 16, Column 1) and the indicator for making organic fertilizer (Table 

17, Column 2). Making organic fertilizer was not balanced at baseline, with control households in 

treatment villages significantly less likely to produce or find organic materials on their farms 

relative to control households in control villages, so this spillover effect may actually be stronger 

than the coefficient implies. These results suggest that control households in treatment villages 

may have absorbed some impact of the treatment through watching their neighbors adopt 

intercropping practices or discussing their experience of the ShambaChat group chats. In this case, 

our estimate of the treatment effect on these outcome reflects a lower-bound.  

We also note the significant 𝜃#	coefficients for both legume intercropping measures, as 

well as for making organic fertilizer, which indicate positive treatment effects on these outcomes 

for treated households relative to control households in control villages. This suggests that the 

treatment effects we report in Section 5.2.1 may underestimate the true impact of treatment due to 

the presence of spillovers in treatment villages. A full analysis of treatment effects relative to pure 

control villages is outside the scope of this paper. We do not find any spillover effects across 

behavioral or welfare outcomes.5 

 

5.4 Heterogeneous Results 

We investigate whether participation in the ShambaChat group chats had the same effects for 

female- and male-headed households, and for the poorest and richest households.  

 

 
5 In the interest of space, these are not reported, but all results are available upon request from the author. 
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5.4.1 Gender  

To understand the differential impact of the treatment by gender, we define a dummy variable 

𝑓𝑒𝑚𝑎𝑙𝑒 equal to one for female-headed households and zero otherwise. We interact this term with 

the treatment variable and estimate the following first-differences equation with year fixed- effects 

We run the following equation for the seven adoption outcomes.  

 

∆𝑦!' =	𝛼% +	𝛽'𝑇𝑅𝐸𝐴𝑇! +	𝜃'(𝑇𝑅𝐸𝐴𝑇! 	× 	𝑓𝑒𝑚𝑎𝑙𝑒!) + ∆𝜀!    (9) 

 

where 𝜃' gives the differential effect of the treatment on outcome 𝑗 for female-headed households. 

The results of this estimation on adoption outcomes are presented in Tables 18 – 19. We see a 

significant differential effect for planting legumes on farm, with female-headed households in the 

treatment group 19% more likely to plant a legume on their farm than female-headed households 

in the control group. As only 22% of household heads are female, some of these estimations may 

lack power required to see significance, but the negative coefficients for all 𝜃' (except for making 

organic fertilizer) suggest the treatment may have been less effective for female-headed 

households. The treatment effect reported in Section 5.2.1 for the first intercropping measure 

holds, but we lose significance for the second measure when considering gender effects. There are 

no differential effects observed for behavioral or welfare outcomes.6 

 

5.4.2 Assets  

 
6 In the interest of space, these are not reported, but all results are available upon request from the author. 
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Similarly, we estimate the differential effect of the treatment on the poorest and richest households 

in our sample by defining two dummy variables: 𝑝𝑜𝑜𝑟𝑒𝑠𝑡 equal to one for the bottom asset quintile 

and zero otherwise, and 𝑟𝑖𝑐ℎ𝑒𝑠𝑡 equal to one for the top asset quintile and zero otherwise. Both 

indicators are based on 2020 asset levels, see Appendix C for construction of the asset index. We 

interact these indicators with the treatment term as in equation (9) above, but do not see a 

significant treatment differential for any outcome variable7.  

 

5.5  Robustness of Results: Cross-Sectional Analysis of Endline Data 

As a  robustness check, we run an intent-to-treat (ITT) analysis on a cross-section of data collected 

at endline in 2021. For all binary and continuous outcome variables we use a linear probability 

model (OLS) to estimate the following equation:  

 

𝑦!' =	𝛼% +	𝛽'𝑇𝑅𝐸𝐴𝑇! +	𝜀!       (10) 

 

Results are presented in Tables 20 – 23. The significant coefficients on our two intercropping 

measures are not robust to this analysis, although it is worth noting that the first measure becomes 

significant when we account for spillovers by distinguishing between control households in 

treatment villages and pure control villages (see Section 5.3)8. The indicator for households who 

found or produced organic materials on their farm, presented in Column 1 of Table 21, becomes 

significant at the 10% level in this analysis, but as this is not supported by the first-differences 

analysis we do not take it as evidence of a treatment effect. As with the first-differences panel 

analysis, we do not see any significant results for these behavioral or welfare outcomes.  

 
7 In the interest of space, these are not reported, but all results are available upon request from the author. 
8 In the interest of space, these are not reported, but all results are available upon request from the author. 
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For the domain-specific PSE variables with categorical response structures, we conduct a 

cross-sectional analysis using an ordered logistic regression with proportional odds. The 

significant coefficient on PSE for the intercropping task is robust to this cross sectional analysis, 

as indicated in Column 3 of Table 24. 
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Chapter 6: Discussion 

 

6.1 Summary 

To summarize, we find significant and positive treatment effects on adoption of intercropping 

practices, as measured by two indicators, and on domain-specific PSE over an intercropping task. 

We find no effect on other outcome variables, including adoption of organic materials practices, 

knowledge retention, other metrics of PSE, subjective probability distribution over soil fertility, 

profit, and food security outcomes, and welfare outcomes including maize yields, assets, and food 

security. Our first measure of intercropping and measure of PSE over the intercropping task are 

robust to multiple panel data analysis techniques, but the effects on intercropping adoption do not 

hold in a cross sectional analysis, perhaps due to the presence of spillovers to control households 

in treatment villages. The presence of spillovers, detected for multiple adoption outcomes, suggests 

that our treatment benefited untreated households through community networks. In this section we 

discuss possible explanations for our findings in the context of how farmers actually engaged with 

the treatment. We address methodological limitations that may have impacted our results, as well 

as broader limitations to the use of ICTs for farmer-to-farmer extension and peer learning. Finally, 

we discuss further applications of the ShambaChat platform that fall outside the scope of this study.  

 

6.2 Use of the ShambaChat Platform  

The ShambaChat extension campaign was divided into three rounds, each lasting for one month 

and covering different (but overlapping) regenerative agriculture practices and agro-ecological 

principles. We found that participation in the first round, which focused on legume-maize 

intercropping, was highest, with 996 messages sent by farmers in the group chats. We analyzed 
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the content of the messages using simple natural language processing techniques in Python to gain 

an understanding of the ShambaChat user experience. To reiterate, treated farmers received 

extension broadcasts and discussion prompts from our team of researchers, tagged with “SUA” for 

the agricultural university in Morogoro which farmers are familiar with, as well as messages from 

other farmers in their chat group, tagged with the first three letters of the sender’s name. A reply 

to either message type would be forwarded to all five chat group members. 655 of the texts sent 

by farmers during the first round were direct responses to extension broadcasts, while the 

remaining 324 texts were direct replies to another member of the chat group, indicating that – at 

least in some groups – there was active dialogue between members. Figure 2 shows the breakdown 

of the types of messages sent by farmers. Most texts contained questions or advice (including 

answers to questions posed by other farmers or in our discussion prompts), or articulated 

challenges regarding the proposed practices or other factors affecting production such as pest or 

weather problems. Other messages contained logistical questions about how to navigate the 

ShambaChat platform, and introductions. Some farmers repeatedly introduced themselves, 

suggesting they did not understand that their chat group consisted of the same five members for 

the duration of the course.   

A potential issue arises if farmers share misinformation in the group chats or contradict the 

content of the extension broadcasts, but we do not see much evidence of this occurring. In fact, 

213 of the messages sent by farmers directly reinforced the extension content, while only 14 

contradicted it. Only 7 messages contained objectively inaccurate information. 53 messages 

explicitly expressed intent to try one of the targeted practices for the first time. As we see in Figures 

3 and 4, farmers sent over 200 messages about legumes – the focus of the first round of extension 

– and listed 14 varieties by name. This is an indication that farmers were interested in the extension 
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content and used the group chats to deepen their engagement with the material by discussing it 

with their peers.  

During the second round of the course, which focused on collecting on-farm organic 

materials and making compost, we saw a stark decline in activity in the group chats. There was a 

6 week hiatus between the rounds, so it is likely that many participants lost interest during this 

time, and others may have lost access to their SIM card or phone. The message content from 

farmers was extremely limited, containing mostly introduction messages and thank you notes in 

response to extension broadcasts. The case was similar for the third round, which coincided with 

the maize harvest and focused on practices for leaving crop residues and preparing fields for the 

next season. We do not formally estimate the relationship between the level of group chat activity 

and effect of the treatment on adoption or other outcomes, but it is interesting to note that the high 

volume of messages and discussion surrounding the content of the first round corresponds to the 

treatment effect we find on adoption of intercropping practices and PSE over the intercropping 

task. The complete lack of discussion during the later rounds almost precludes us finding a 

treatment effect on other adoption variables, consistent with our null findings regarding adoption 

of organic materials practices and associated behavioral outcomes.  

 

6.3 Impact of the Treatment and Methodological Limitations 

If we consider the first round of extension in isolation, we see evidence of a role for PSE in the 

belief-updating process through which peer learning leads to adoption. Farmers engaged with 

information about legume intercropping through discussion with peers in a group chat, after which 

their PSE regarding their ability to perform an intercropping task increased, along with their 

likelihood of adopting the practice on their own farm. However, an identification problem 
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emerges, as we measured endline PSE only after the adoption had taken place. It is therefore 

possible that adoption was spurred by some other mechanism present in the treatment, and that 

successful implementation of intercropping in fact contributed to the increase in PSE rather than 

the other way around. According to Bandura (1977, 1986), PSE is influenced most strongly by 

personal mastery experiences, making this interpretation of the direction of causality equally 

plausible. Perhaps there is mutual causality going on, with PSE playing a role on both sides of the 

adoption decision: social learning kickstarts a virtuous cycle wherein increased PSE from exposure 

to peer role models empowers farmers to adopt challenging practices, which, when completed 

successfully, increase PSE further through the experience of mastery. Further research could 

resolve this by measuring PSE after the new information is received and discussed, but before the 

adoption decision is made. 

As previously stated, we speculate that PSE might increase from participation in the group 

chats simply as a result of increased exposure to the experience and attitudes of peers. However, a 

distinct role model effect implies that someone in the group is more experienced in the relevant 

domain. We took this into consideration when designing the intervention, as described in Section 

4.3. Each chat group contained one farmer who had experience with legume intercropping at 

baseline, and one who had experience with a soil conservation practice including grass strips, 

ridges, bench terraces, drainage channels, or water catchment. We chose these selection criteria 

before the extension course was finalized, and in the end we did not end up including the soil 

conservation practices listed here, changing the focus instead to organic material cycling. This 

meant that groups only had a role model for intercropping, which is consistent with the fact that 

our treatment effects are stronger for the intercropping outcomes, including intercropping PSE. 

Further research is needed to distinguish the role model effect from the social learning effect 
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observed from a group of peers with similar experience, perhaps building on this study to include 

a block of group chats with and without designated role models.  

Our failure to measure outcome variables at the end of each round (due to budget and time 

constraints) may also have implications beyond the mutual causality problem described above. 

Since activity in the group chats dropped to almost zero after the first round of extension, the 

experience of treated and control farmers was close to identical for much of the intervention, 

meaning our endline measurements were effectively taken six months after the end of treatment. 

Such a gap between treatment and evaluation could make a big difference in the levels of the 

outcome variables we measure, particularly for behavioral outcomes like knowledge retention and 

PSE. For example, in their study of the role model effect in Digital Green’s video-mediated 

extension program, Bernard et al. (2015; 2019) find an increase in external locus of control when 

they survey participants immediately after the intervention, but a much weaker effect when they 

follow up with the same questions six months later. It is therefore possible that we may have seen 

more of a treatment effect on our behavioral indicators had we been able to evaluate after each 

extension round.  

Evaluating behavioral outcomes objectively is also a challenge, as there are not always 

agreed upon metrics available or replicable in the literature. For instance, domain-specific PSE – 

by definition – does not cut across domains of functioning, so any metric must be constructed in 

reference to the relevant set of tasks or outcomes under review. Since this study is the first to 

measure PSE over intercropping and regenerative agriculture tasks, or even agriculture more 

generally, we had to develop our own module for eliciting this trait. We took care to draw from 

the psychology literature on elicitation of domain-specific PSE, which is fairly well-developed 

particularly in health and education domains (Bandura, 2006; Chen et al., 2001; Schwarzer and 
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Renner, 2009; Wuepper and Lybbert, 2017). However, the metrics we constructed are not validated 

by psychologists or any external study, meaning we cannot rule out the possibility that treatment 

did impact these variables though we failed to detect the effect. For example, Bandura (2006) notes 

that a valid scale should reflect gradations of challenge by measuring efficacy beliefs for a series 

of progressively more challenging sub-tasks, which we were not able to do because we had not 

finalized the extension course at the time of baseline data collection and could not anticipate what 

the content would be to this level of detail. We also face econometric challenges when analyzing 

the data from the four or five item Likert scales we used in these measures, as discussed in Section 

5.2.2.  

 

6.4 Further Applications of the ShambaChat Platform 

A major motivation in developing ShambaChat was to create a platform for innovative farmers to 

share solutions, with each other as well as with us. Specific techniques are often discovered or 

invented by farmers, who are troubleshooting agricultural problems on a daily basis – particularly 

in the case of broad and highly adaptable technologies like regenerative agriculture. Through 

ShambaChat, extension providers can learn from farmers and even incorporate farmer-generated 

solutions into the content of future extension campaigns. While the present study does not 

explicitly evaluate this function, further research could use qualitative text analysis to identify 

farmer-generated extension advice and explore the extent to which farmers use the platform in this 

way. It would also be interesting to see whether farmers act on advice from their peers, and whether 

they trust the information provided – for instance, are farmers more likely to trust information 

from an SMS sent by an extension provider or by a peer?  
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We made use of the information-sourcing capability of ShambaChat to check in with 

farmers about how their cropping practices changed in response to severe drought that affected 

much of Morogoro during the 2021 growing season, and to elicit farmer-generated advice on best 

adaptation practices and coping strategies. We used natural language processing to identify the 

most common suggestions from farmers, and, after verifying with an agronomist, incorporated 

these into the following round of extension messages. In this way, ShambaChat becomes a 

powerful tool for amplifying farmer voices and improving extension with highly relevant and 

context specific content that meets the needs of farmers in the field. 

 

  



 65 
 

 

Chapter 7 – Conclusion 

 

7.1 Limitations of ICTs for Peer Learning 

Promoting adoption of complex agriculture technologies like RA requires an approach to extension 

that centers farmers as innovators and nodes of communication in the design and dissemination of 

relevant practices. Through experimentation and observation of others, farmers update their beliefs 

about likely outcomes associated with adoption, and exposure to success stories and positive 

attitudes increases farmers’ confidence and willingness to try something new. The role of the 

extension service is therefore to facilitate the flow of information between farmers, and provide a 

space for robust dialogue around personal experiences with adoption. If peer learning processes 

operate through the mechanism of vicarious experience, whereby agents update their beliefs about 

their own capabilities after observing the success (or failure) of a relatable peer, extension 

campaigns should be designed to facilitate these experiences. As we saw in Section 3.1, F2FE 

initiatives have had varying degrees of success with this, depending in part on their ability to 

establish meaningful connections among participating farmers.  

If these conditions for impactful F2FE are difficult to meet even for in-person initiatives, 

it is not surprising that we face challenges translating them to a digital learning environment. 

Anyone who has engaged with an online community, especially one composed of strangers, is 

aware of the communication pitfalls that arise when expressing complex ideas to an unknown 

audience. Considering these same dynamics playing out on feature phones, with participants who 

likely have varying degrees of technological literacy, it is easy to see why meaningful connections 

or robust dialogue may have been difficult to maintain. We surveyed 90 farmers from the treatment 

group who did not participate actively in the group chats after the first round of extension, to gain 
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insight into why they didn’t engage. Figure 5 gives a breakdown of the most commonly cited 

reasons. Many farmers told us they were too busy to reply, could not reply because of broken 

technology, or did not understand how to reply to the messages. All of these problems reveal a 

pattern common in ICT extension, where providers fail to consider the interests, needs, and 

technical capacities of the farmers they hope to reach (Wyche and Steinfield, 2016).  

 

7.2 Conclusion and Policy Recommendations 

Even where technology barriers can be overcome, it seems unlikely that ICTs will ever be a perfect 

substitute for in-person F2FE, nor will they replicate the dynamics present in community-based 

social networks. Of course, the present study is limited to a very rudimentary form of technology 

– SMS communication on feature phones – and we do not extrapolate our findings to more 

complex interventions. Still, for many farmers in SSA, feature phones are the predominant form 

of ICT available, and making use of this tool to overcome harmful information constraints should 

be an essential part of any development strategy for the region. The positive performance of the 

ShambaChat platform during the first round of extension leaves us optimistic regarding the 

potential benefits of a similar extension tool. We saw active discussion between farmers 

surrounding the content of the course, and measured a significant impact on adoption of the central 

practice covered during that round - intercropping. Moreover, we detected significant spillover 

effects, suggesting the treatment benefited other farmers through community networks. Providing 

extension through ShambaChat is low-cost and logistically straight-forward relative to in-person 

F2FE, and our results, though modest, support further development of effective uses for ICT to 

facilitate connections between farmers. The failure of ShambaChat to keep users engaged over 

multiple extension rounds points to a need for future interventions to seek guidance from farmers 
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about what topics are of interest to them, and how to tailor the extension tool to their specific goals 

and level of technology and technological literacy.   

 Our investigation of the behavioral mechanisms by which social learning leads to adoption 

is rudimentary, and further collaboration between social psychologists and economists is needed 

to develop and validate methods for eliciting and influencing domain-specific PSE. The significant 

result we find for intercropping PSE contributes to a growing body of literature linking adoption 

behavior to internal constraints like self-efficacy beliefs (Abay et al., 2017; Bernard et al., 2015, 

Carter 2016,  Malacarne 2018; 2019; McGinty et al., 2008; Taffesse and Tadesse, 2017; Ung et 

al., 2016, Wuepper and Lybbert, 2017). If our results are corroborated, they can be used to support 

the design of participatory learning interventions that help farmers build confidence by sharing 

experience and troubleshooting complex information with the help of relatable role models and 

peers.  
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Figures 
 

Figure 1: Distribution of Behavioral Outcome Variables  
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Note: This figure presents a series of histograms showing the distribution of respondent 

outcomes for eight metrics of PSE, and one knowledge score. The seven domain-specific PSE 
measurements are scored on a four or five point Likert scale, see Appendix B for details.  
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Figure 2: Breakdown of Messages Sent by Farmers in First Round of Extension 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3: Topics Most Frequently Discussed by Farmers in First Round of Extension 
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Figure 4: Frequency of Crops Mentioned by Farmers in First Round of Extension (excl maize) 

 
 
 

Figure 5: Reasons Most Frequently Cited for Not Participating in First Round of Extension 
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Tables 
 

 
Table 1: Probability of Attrition by Treatment Group 
 

 (1) 
VARIABLES Attrited 
  
Control in treatment village 0.0128 
 (0.0692) 
Treatment -0.00932 
 (0.0572) 
Constant 0.247*** 
 (0.0450) 
  
Observations 523 
R-squared 0.001 

Robust standard errors in parentheses.  
Standard errors are clustered at the village level. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2: Effect of Attrition on Outcome Variables  
 

VARIABLES: 
(1) 

ATTRITION: 
  
Age of hh head  0.002 

(0.001) 
Gender of hh head  0.022 

(0.057) 
Education completed by hh head  0.005 

(0.009) 
Dependency ratio  0.0 

(0.0) 
Food insecurity index   -0.005 

(0.011) 
Land owned (acres)  0.001 

(0.003) 
Do you own your MMP?  0.027 

(0.065) 
Asset Index  -0.004 

(0.01) 
Remoteness -0.005 

(.011) 
Maize yield (kg/acre)  -0.0 

(0.0) 
Intercrop w legume on MMP (1) -0.076 

(0.052) 
Intercrop w legume on MMP (2) -0.139 

(0.057) 
Other legume practices 0.039 

(0.049) 
Legumes on farm 0.015 

(0.011) 
Produced organic materials 0.025 

(0.045) 
Made organic fertilizer on-farm -0.037 

(0.059) 
Applied organic fertilizer MMP  0.021 

(0.032) 
RA knowledge score  0.001 

(0.001) 
General PSE score (mean)  -0.037 

(0.026) 
PSE Outcomes: Soil Fertility  0.005 

(0.018) 
PSE Outcomes: Profits  0.004 
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(0.216) 
PSE Outcomes: Food Security  -0.004 

(0.017) 
PSE Tasks: Furrowed Ridges  0.029 

(0.016) 
PSE Tasks: Seed Spacing  -0.035 

(0.054) 
PSE Tasks: Intercropping  -0.003 

(0.03) 
PSE Tasks: Poultry Manure  -0.003 

(0.014) 
SPD over soil fertility outcomes  0.0 

(0.0) 
SPD over profit outcomes  0.0 

(0.0) 
SPD over food security outcomes  0.0 

(0.0) 
Robust standard errors in parenthesis. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 3: Balance of Treatment and Control Households at Baseline 
 

 
 
 

Baseline 2020 Variable: 

(1) 
Mean  of 
Control 

(2) 
SD of 

Control 

(3) 
Mean of 
Treated 

(4) 
SD of 

Treated 

(5) 
Difference in 

Means 
Village  23.15 11.59 23.97 11.80 0.812 
Age of hh head  45.55 13.74 44.40 12.89 -1.148 
Gender of hh head  0.17 0.38 0.14 0.35 -0.031 
Education completed by hh head  6.37 1.96 6.35 2.02 -0.023 
Dependency ratio  157.56 106.99 156.93 118.33 -0.624 
Food insecurity index   2.26 1.89 2.08 1.77 -0.186 
Land owned (acres)  6.65 8.25 6.18 7.31 -0.463 
Do you own your MMP?  0.90 0.30 0.90 0.30 0.005 
Asset Index  0.06 2.19 0.01 2.29 -0.051 
Maize yield (kg/acre)  282.69 348.90 288.36 496.12 5.670 
Intercrop w legume on MMP (1) 0.18 0.38 0.15 0.36 -0.027 
Intercrop w legume on MMP (2) 0.12 0.33 0.10 0.30 -0.025 
Other legume practices 0.12 0.33 0.21 0.41 0.085** 
Legumes on farm 0.29 0.46 0.35 0.48 0.054 
Produced organic materials 0.58 0.50 0.67 0.47 0.090 
Made organic fertilizer on-farm 0.28 0.45 0.19 0.40 -0.087 
Applied organic fertilizer MMP  0.26 0.44 0.26 0.44 0.001 
RA knowledge score  2.64 2.41 3.27 2.33 0.632*** 
General PSE score (mean)  3.31 0.84 3.32 0.78 0.008 
PSE Outcomes: Soil Fertility  3.84 1.25 3.90 1.16 0.067 
PSE Outcomes: Profits  3.77 1.25 3.82 1.16 0.048 
PSE Outcomes: Food Security  4.02 1.27 4.14 1.15 0.118 
PSE Tasks: Furrowed Ridges  2.38 1.21 2.24 1.18 -0.140 
PSE Tasks: Seed Spacing  1.19 0.57 1.15 0.42 -0.040 
PSE Tasks: Intercropping  1.30 0.77 1.28 0.68 -0.023 
PSE Tasks: Poultry Manure  2.04 1.23 1.96 1.13 -0.083 
SPD over soil fertility outcomes  305.77 417.20 296.16 444.20 -9.606 
SPD over profit outcomes  326.92 440.75 318.44 441.50 -8.482 
SPD over food security outcomes  390.26 427.31 384.90 463.57 -5.355 

 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Balance of Control Households in Treatment Villages and Pure Control at Baseline 
 
 

 
 
 
Baseline 2020 Variable:  

(1) 
Mean  of 

Pure 
Control 

(2) 
SD of 
Pure 

Control 

(3) 
Mean of 
Control 

in Trt Vil 

(4) 
SD of       

Control 
in Trt Vil 

(5) 
 

Difference in 
Means 

Village  24.03 8.14 21.29 11.72 -2.741 
Age of hh head  46.53 15.60 45.07 12.77 -1.463 
Gender of hh head  0.20 0.41 0.15 0.36 -0.050 
Education completed by hh head  6.48 1.74 6.32 2.06 -0.164 
Dependency ratio  149.96 95.07 161.27 112.52 11.310 
Food insecurity index   2.25 1.86 2.27 1.91 0.020 
Land owned (acres)  4.77 3.75 7.56 9.61 2.788** 
Do you own your MMP?  0.82 0.39 0.94 0.24 0.115* 
Asset Index  -0.06 2.04 0.12 2.26 0.185 
Maize yield (kg/acre)  244.45 341.57 302.79 352.78 58.349 
Intercrop w legume on MMP (1) 0.22 0.42 0.15 0.36 -0.061 
Intercrop w legume on MMP (2) 0.16 0.37 0.10 0.31 -0.054 
Other legume practices 0.10 0.30 0.13 0.34 0.036 
Legumes on farm 0.16 0.37 0.37 0.48 0.203** 
Produced organic materials 0.53 0.50 0.61 0.49 0.079 
Made organic fertilizer on-farm 0.48 0.51 0.19 0.39 -0.295* 
Applied organic fertilizer MMP  0.31 0.47 0.24 0.43 -0.077 
RA knowledge score  2.42 2.28 2.75 2.48 0.335 
General PSE score (mean)  3.39 0.84 3.27 0.84 -0.111 
PSE Outcomes: Soil Fertility  4.13 1.13 3.68 1.28 -0.450** 
PSE Outcomes: Profits  3.95 1.17 3.68 1.29 -0.266 
PSE Outcomes: Food Security  4.25 1.13 3.90 1.33 -0.353 
PSE Tasks: Furrowed Ridges  2.38 1.24 2.38 1.21 -0.005 
PSE Tasks: Seed Spacing  1.03 0.18 1.28 0.68 0.246** 
PSE Tasks: Intercropping  1.25 0.68 1.33 0.82 0.080 
PSE Tasks: Poultry Manure  2.07 1.21 2.03 1.24 -0.041 
SPD over soil fertility outcomes  335.94 412.84 291.03 420.10 -44.907 
SPD over profit outcomes  350.78 415.28 315.27 453.76 -35.514 
SPD over food security outcomes  417.58 378.64 376.91 449.96 -40.670 

 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Summary Statistics for Outcome Variables at Baseline and Endline 

 
 
Adoption Outcomes: 

 
N 

2020 
Mean 

 
SD 

 
N 

2021 
Mean 

 
SD 

 
Difference 

Intercrop w legume on MMP (1)  303 0.16 0.37 321 0.27 0.45 0.113*** 
Intercrop w legume on MMP (2)  303 0.11 0.31 321 0.20 0.40 0.091*** 
Other legume practices  303 0.16 0.37 321 0.11 0.32 -0.053 
Legumes on farm  397 0.33 0.47 397 0.31 0.47 -0.010 
Produced organic materials  303 0.63 0.48 321 0.22 0.42 -0.408*** 
Made organic fertilizer on-farm  190 0.23 0.42 72 0.60 0.49 0.359*** 
Applied organic fertilizer on 
MMP  

303 0.26 0.44 321 0.06 0.24 -0.206*** 

 

 
 
 
Behavioral Outcomes: 

 
 
 

N 

 
 

2020 
Mean 

 
 
 

SD 

 
 
 

N 

 
 

2021 
Mean 

 
 
 

SD 

 
 

 
Difference 

RA Knowledge score  362 2.96 2.39 397 4.86 2.77 1.903*** 
General PSE score  362 3.32 0.81 397 3.70 0.85 0.388*** 
PSE: Soil Fertility  362 3.87 1.20 397 4.14 0.98 0.270** 
PSE: Profits  362 3.80 1.21 397 4.02 1.08 0.218** 
PSE: Food Security  362 4.08 1.21 397 4.23 1.02 0.147 
PSE: Furrowed Ridges  349 2.31 1.20 384 2.43 1.24 0.119 
PSE: Seed Spacing  166 1.17 0.50 185 1.31 0.72 0.145 
PSE: Intercropping  298 1.29 0.72 282 1.52 0.97 0.234* 
PSE: Poultry Manure  360 2.00 1.18 384 2.08 1.17 0.076 
SPD: soil fertility outcomes  397 300.88 430.63 397 372.36 446.49 72.468 
SPD: profit outcomes  397 322.61 440.59 397 347.29 447.15 25.127 
SPD: food security outcomes  397 387.53 445.58 397 382.18 464.15 -9.810 

 
 

 
Welfare Outcomes: 

 
N 

2020 
Mean 

 
SD 

 
N 

2021 
Mean 

 
SD 

 
Difference 

Asset index  397 0.04 2.24 394 0.00 2.06 -0.046 
Food insecurity index  397 2.17 1.83 397 2.04 1.79 -0.115 
Maize yield (kg/acre)  303 285.59 429.85 321 403.40 945.06 117.532 

 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Effect of Treatment on Adoption Outcomes – Legume Practices 
 
 (1) (2) (3) (4) 
VARIABLES Intercropping 1 Intercropping 2 Other Legume 

Practices 
Legumes on 

Farm 
     
Treatment 0.126* 0.0786* -0.0791 -0.0503 
 (0.0636) (0.0411) (0.0528) (0.0418) 
Constant 0.0565 0.0484 -0.0161 0.0155 
 (0.0493) (0.0433) (0.0415) (0.0362) 
     
Observations 252 252 252 397 
R-squared 0.013 0.006 0.007 0.004 

 
Note: The number of observations in Columns 1 – 3 reflects the number of respondents who cultivated 

maize in both time periods. Robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 
Table 7: Effect of Treatment on Adoption Outcomes – Organic Materials Practices  
 

 (1) (2) (3) 
VARIABLES Organic 

Materials 
Made Organic 

Fertilizer 
Organic 

Fertilizer - MMP 
    
Treatment -0.0173 0.302 0.0116 
 (0.0888) (0.188) (0.0655) 
Constant -0.411*** 0.0769 -0.234*** 
 (0.0743) (0.175) (0.0608) 
    
Observations 252 42 252 
R-squared 0.000 0.050 0.000 

 
Note: The number of observations Column 1 reflects the number of respondents who cultivated maize in 

both time periods. The number of observations in Column 2 reflects the number of respondents who 
produced organic materials on their farm in both time periods. Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8:  Effect of Treatment on Behavioral Outcomes – Knowledge  
 

 (1) (2) (3) (4) (5) (6) 

VARIABLES Knowledge Score Q1 Q2 Q4 Q5 Placebo 
       
Treatment -0.667 -0.00815 -0.399 -0.231 -0.0287 0.0198 
 (0.508) (0.0652) (0.255) (0.286) (0.0716) (0.0611) 
Constant 2.227*** 0.0625 0.812*** 1.318*** 0.0341 0.170** 
 (0.456) (0.0603) (0.221) (0.265) (0.0572) (0.0684) 
       
Observations 362 362 362 362 362 362 
R-squared 0.010 0.000 0.012 0.005 0.001 0.000 

Note: the number of observations reflects the number of endline respondents who participated in Part 2 of 
the 2020 baseline survey. Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 
 
 
 
 
 
Table 9: Effect of Treatment on Behavioral Outcomes – Subjective Probability Distribution 
 

 (1) (2) (3) 
VARIABLES SPD: Soil 

Fertility 
Outcomes 

SPD: Profit 
Outcomes 

SPD: Food 
Security 

Outcomes 
    
Treatment -11.31 -4.816 28.58 
 (56.29) (55.90) (54.48) 
Constant 78.22 27.58 -24.36 
 (49.77) (48.57) (51.63) 
    
Observations 397 397 397 
R-squared 0.000 0.000 0.000 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 10: Effect of Treatment on Behavioral Outcomes – Generalized PSE 
 

 (1) 
VARIABLES Generalized PSE 
  
Treatment 0.0213 
 (0.0785) 
Constant 3.693*** 
 (0.0653) 
  
Observations 397 
R-squared 0.000 

Robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 

 
 

 

 
Table 11: Effect of Treatment on Behavioral outcomes - Task-Specific PSE  

 
 (1) (2) (3) (4) 
VARIABLES Furrows Seed Spacing Intercropping Manure 
     
Treatment 0.255 0.271 0.323* 0.142 
 (0.203) (0.170) (0.176) (0.222) 
Constant -0.0625 -0.128 0.111 0.00585 
 (0.176) (0.116) (0.125) (0.194) 
     
Observations 362 277 314 362 
R-squared 0.005 0.034 0.015 0.002 

Note: The number of observations reflects the fact that respondents who are already using a given 
technique were not included in the estimates. Robust standard errors in parentheses. The maximum N is 

362, the number of endline respondents who in Part 2 of the 2020 baseline survey 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 12: Effect of Treatment on Outcomes – Outcome-Specific PSE  
 

 (1) (2) (3) 
VARIABLES Soil Fertility Profits Food Security 
    
Treatment -0.123 -0.115 -0.174 
 (0.165) (0.182) (0.184) 
Constant 0.318* 0.278* 0.250* 
 (0.161) (0.155) (0.146) 
    
Observations 362 362 362 
R-squared 0.002 0.001 0.003 

Robust standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 

 

 
 
 
Table 13: Effect of Treatment on Task-Specific PSE – Ordered Logit with Random-Effects 
 

 (1) (2) (3) (4) 
VARIABLES Furrows Seed Spacing Intercropping Manure 
     
Treatment 0.0719 0.706 0.674*** 0.161 
 (0.219) (0.473) (0.229) (0.252) 
Year 0.114 0.256 0.285 0.0751 
 (0.236) (0.491) (0.331) (0.290) 
     
Constant – cut 1 -0.532*** 2.387*** 1.601*** -0.00810 
 (0.122) (0.462) (0.183) (0.139) 
     
Constant – cut 2 0.300*** 3.688*** 2.381*** 0.792*** 
 (0.108) (0.594) (0.229) (0.153) 
     
Constant – cut 3 1.046*** 4.796*** 2.985*** 1.566*** 
 (0.142) (0.691) (0.226) (0.204) 
 
Observations 

 
724 

 
554 

 
628 

 
724 

Number of respondent_id 362 277 314 362 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 14: Effect of Treatment on Outcome-Specific PSE  - Ordered Logit with Random-Effects 
 

 (1) (2) (3) 
VARIABLES Soil Fertility 

Outcomes 
Profit Outcomes Food Security 

Outcomes 
Treatment -0.174 -0.221 -0.205 
 (0.282) (0.241) (0.225) 
Year 0.461* 0.443* 0.248 
 (0.265) (0.236) (0.261) 
 
Constant – cut 1 

 
-2.758*** 

 
-2.641*** 

 
-2.813*** 

 (0.297) (0.246) (0.301) 
 
Constant – cut 2 

 
-2.083*** 

 
-1.855*** 

 
-2.202*** 

 (0.266) (0.215) (0.262) 
 
Constant – cut 3 

 
-0.851*** 

 
-0.716*** 

 
-1.298*** 

 (0.159) (0.145) (0.192) 
 
Constant – cut 4 

 
0.531*** 

 
0.653*** 

 
0.0256 

 (0.136) (0.120) (0.120) 
 
Observations 

 
724 

 
724 

 
724 

Number of respondent_id 362 362 362 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 
 

Table 15: Effect of Treatment on Welfare Outcomes  

 (1) (2) (3) 
VARIABLES Asset Index Food Insecurity 

Index 
Maize Yields 

(kg/acre) 
    
Treatment 0.122 0.294 101.7 
 (0.145) (0.264) (198.2) 
Constant -0.110 -0.265 91.96 
 (0.128) (0.240) (54.92) 
    
Observations 397 397 252 
R-squared 0.002 0.005 0.002 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 16: Spillover Effects on Adoption Outcomes – Legumes  
 

 (1) (2) (3) (4) 
VARIABLES Intercropping 1 Intercropping 2 Other Legume 

Practices 
Legumes on 

Farm 
     
TREAT = 1 0.193** 0.120 0.0395 -0.0144 
 (0.0860) (0.0920) (0.0802) (0.0903) 
TREAT = 2 0.258*** 0.158* -0.0605 -0.0448 
 (0.0812) (0.0787) (0.0795) (0.0893) 
Land Owned (acres) 0.00726** 0.00215 -0.00527*** 0.00137 
 (0.00279) (0.00273) (0.00193) (0.00148) 
Owns MMP -0.203 -0.200 0.223* -0.146** 
 (0.123) (0.121) (0.128) (0.0716) 
Constant 0.0767 0.148 -0.218* 0.165* 
 (0.113) (0.114) (0.120) (0.0980) 
     
Observations 252 252 252 397 
R-squared 0.057 0.021 0.033 0.014 

Robust standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
Table 17: Spillover Effects on Adoption Outcomes – Organic Materials  
 

 (1) (2) (3) 
VARIABLES Organic Materials Made Organic 

Fertilizer 
Organic Fertilizer 

MMP 
    
TREAT = 1 0.0399 0.546* 0.108 
 (0.152) (0.269) (0.137) 
TREAT = 2 0.0141 0.716** 0.0866 
 (0.141) (0.272) (0.130) 
Land Owned (acres) 0.00491 -0.00715 0.00516*** 
 (0.00306) (0.0168) (0.00113) 
Owns MMP 0.0541 0.411 0.0686 
 (0.172) (0.790) (0.140) 
Constant -0.522** -0.688 -0.403** 
 (0.223) (0.829) (0.198) 
    
Observations 252 42 252 
R-squared 0.011 0.112 0.024 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 18: Heterogenous Treatment Effects on Adoption by Gender – Legumes  
 

 (1) (2) (3) (4) 
VARIABLES Intercropping 1 Intercropping 2 Other Legume 

Practices 
Legumes on 

Farm 
     
Treatment  0.131* 0.0837 -0.0758 -0.0775* 
 (0.0758) (0.0599) (0.0654) (0.0394) 
Female 0.0135 0.0241 0.0213 -0.0766* 
 (0.106) (0.114) (0.0849) (0.0444) 
Treatment × Female -0.0240 -0.0199 -0.0111 0.120** 
 (0.149) (0.148) (0.117) (0.0544) 
Constant 0.0532 0.0426 -0.0213 0.0340 
 (0.0569) (0.0534) (0.0505) (0.0392) 
     
Observations 252 252 252 397 
R-squared 0.013 0.006 0.007 0.009 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

 
Table 19: Heterogenous Treatment Effects on Adoption by Gender – Organic Materials  
 

 (1) (2) (3) 
VARIABLES Organic 

Materials 
Made Organic 

Fertilizer 
Organic Fertilizer 

MMP 
    
Treatment 0.0206 0.193 0.0329 
 (0.0951) (0.222) (0.0819) 
Female 0.191 -0.111 0.133 
 (0.138) (0.416) (0.128) 
Treatment × Female -0.145 0.473 -0.0735 
 (0.182) (0.476) (0.154) 
Constant -0.457*** 0.111 -0.266*** 
 (0.0830) (0.194) (0.0687) 
    
Observations 252 42 252 
R-squared 0.010 0.089 0.008 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 20: Cross-Sectional Analysis of Adoption Outcomes – Legumes  
 

 (1) (2) (3) (4) 
VARIABLES Intercropping 1 Intercropping 2 Other Legume 

Practices 
Legume on 

Farm 
     
Treatment  0.0632 0.00374 0.0201 -0.00615 
 (0.0591) (0.0468) (0.0306) (0.0566) 
Constant 0.244*** 0.199*** 0.103*** 0.320*** 
 (0.0433) (0.0405) (0.0246) (0.0409) 
Mean of Treated 
 
Mean of Control 

0.3049 
(0.4617) 
0.2420 
(0.430) 

0.2012 
(0.4021) 
0.1975 

(0.3994) 

0.1220 
(0.3282) 
0.1019 

(0.3035) 

0.3119 
(0.4644) 
0.3179 

(0.4669) 
 
Observations 

 
319 

 
319 

 
319 

 
397 

R-squared 0.005 0.000 0.001 0.000 
Note: the number of observations reflects that fact that 319 respondents cultivated maize in 2021. 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
Table 21: Cross-Sectional Analysis of Adoption Outcomes – Organic Materials  
 
 (1) (2) (3) 
VARIABLES Organic Materials Made Organic 

Fertilizer 
Organic Fertilizer 

- MMP 
    
Treatment 0.0907* 0.0581 0.0162 
 (0.0498) (0.112) (0.0281) 
Constant 0.173*** 0.556*** 0.0513** 
 (0.0432) (0.0895) (0.0193) 
Mean of Treated  
 
Mean of Control 

0.2683 
(0.4444) 
0.1720 

(0.3786) 

0.0622 
(0.4903) 
0.5556 

(0.5064) 
 

0.0671 
(0.2509) 
0.0510 

(0.2206) 

Observations 319 71 319 
R-squared 0.012 0.003 0.001 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 22: Cross-Sectional Analysis of Behavioral Outcomes – Knowledge  
 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Knowledge Score Q1 Q2 Q4 Q5 Placebo 
       
Treatment -0.137 -0.00115 -0.0117 -0.121 -0.00274 -0.00523 
 (0.451) (0.0592) (0.187) (0.270) (0.0541) (0.0571) 
Constant 4.923*** 0.747*** 1.907*** 2.046*** 0.222*** 0.722*** 
 (0.418) (0.0451) (0.173) (0.269) (0.0459) (0.0543) 
 
Mean of Treated  
 
Mean of Control 
 

 
4.792 

(2.755) 
4.938 

(2.803) 

  
0.748 

(0.436) 
0.749 

(0.435) 

 
1.9 

(1.499) 
1.918 

(1.452) 

 
1.921 

(1.387) 
2.051 

(1.559) 

 
0.223 

(0.417) 
0.221 

(0.416) 

 
0.713 

(0.453) 
0.723 

(0.449) 
Observations 397 397 397 397 397 397 
R-squared 0.001 0.000 0.000 0.002 0.000 0.000 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 
 
Table 23: Cross-Sectional Analysis of Behavioral Outcomes –Generalized PSE 
 

 (1) 
VARIABLES Generalized PSE 
  
Treatment 0.0213 
 (0.0785) 
Constant 3.693*** 
 (0.0653) 
Mean of Treated 
 
Mean of Control 

3.716 
(0.8577) 
3.6891 

(0.8364) 
 

Observations 397 
R-squared 0.000 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 24: Cross-Sectional Analysis of Behavioral Outcomes – Task-Specific PSE 
 

 (1) (2) (3) (4) 
VARIABLES Furrows Seed Spacing Intercropping Manure 
     
Treatment 0.0763 0.502 0.666*** 0.163 
 (0.212) (0.349) (0.226) (0.255) 
Constant – cut 1 -0.567** 1.682*** 1.322*** -0.123 
 (0.254) (0.349) (0.285) (0.271) 
Constant – cut 2 0.0899 2.625*** 2.098*** 0.773*** 
 (0.199) (0.340) (0.368) (0.297) 
Constant – cut 3 0.931*** 3.671*** 2.567*** 1.514*** 
 
Mean of Treated 
 
Mean of Control 
 

(0.208) 
2.4623 
(1.282) 

2.4 
(1.199) 

(0.450) 
1.413 

(0.853) 
1.215 

(0.549) 

(0.331) 
1.671 

(1.089) 
1.373 

(0.822) 

(0.347) 
2.139 

(1.181) 
2.026 

(1.157) 
     
Observations 382 185 280 383 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 25: Cross-Sectional Analysis of Behavioral Outcomes – Outcome-Specific PSE 
 

 (1) (2) (3) 
VARIABLES Soil Fertility Outcomes Profit Outcomes Food Security Outcomes 
    
Treatment -0.182 -0.236 -0.214 
 (0.296) (0.251) (0.236) 
Constant – cut 1 -3.855*** -3.228*** -3.494*** 
 (0.461) (0.385) (0.485) 
Constant – cut 2 -2.709*** -2.229*** -2.543*** 
 (0.350) (0.304) (0.336) 
Constant – cut 3 -1.390*** -1.318*** -1.685*** 
 (0.271) (0.230) (0.263) 
Constant – cut 4 0.116 0.275 -0.166 
 
Mean of Treated  
 
Mean of Control 

(0.273) 
4.108 

(0.981) 
4.179 

(0.981) 

(0.272) 
3.965 

(1.085) 
4.072 

(1.082) 

(0.244) 
4.188 

(1.034) 
4.272 

(1.007) 
    
Observations 397 397 397 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 26: Cross-Sectional Analysis of Behavioral Outcomes –Subjective Probability Distribution 
 

 (1) (2) (3) 
VARIABLES Soil Fertility Outcomes Profit 

Outcomes 
Food Security 

Outcomes 
    
Treatment -22.81 -9.534 28.15 
 (50.54) (43.26) (43.30) 
Constant 383.6*** 352.3*** 366.6*** 
 
Mean of Treated 
 

(42.80) 
362.129 

(470.988) 

(40.20) 
341.708 

(458.803) 

(40.43) 
395.916 

(480.107) 
Mean of Control 
 

382.948 
(420.551) 

353.077 
(435.864) 

367.949 
(447.817) 

 
Observations 

 
397 

 
397 

 
397 

R-squared 0.001 0.000 0.001 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 
 
 
 
Table 27: Cross-Sectional Analysis of Welfare Outcomes  
 

 (1) (2) (3) 
VARIABLES Asset Index Food Insecurity 

Index 
Maize Yields 

(kg/acre) 
    
Treatment 0.0639 0.125 60.24 
 (0.251) (0.243) (151.6) 
Constant -0.0325 1.985*** 371.6*** 
 
Mean of Treated 
 
Mean of Control 

(0.205) 
0.0315 
(2.262) 
-.0324 
(1.827) 

(0.222) 
2.099 

(1.819) 
1.974 

(1.767) 

(49.77) 
431.746 

(865.667) 
373.797 

(385.489) 
    
Observations 397 397 319 
R-squared 0.000 0.001 0.001 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix A: Content of Extension Course 
 
Round 1 Extension Content: Discussion prompts: Messages in italics 

are sent only to chat-group participants 
Date of 
sending: 

Hello,  you participated in a research study in 
August 2020. As part of this study, you have now 
been selected to participate in a free course to 
help improve your soil, offered by SUA over 
SMS..  You will receive text messages with tips. 
The course is in 3 units: 2/1 – 2/28; 4/1 – 4/31; 
7/1 – 7/31 
 
If you participate, you will receive an unlimited 
texting plan each month until August 2021 as 
compensation for your time. Researchers will ask 
you some questions about the course in August, 
2021. 
 
If you do NOT wish to participate, please reply 
“NO” to this message. 
 
 

You are also invited to a group chat with 5 
maize farmers from Morogoro who have similar 
nitrogen deficiencies in their soil. 
 
 You can discuss the course and any agricultural 
practices.  You now have an unlimited text plan 
on your phone, so messages are free.   
 
Only the principal investigators at SUA and 
McGill University will be able to link your 
responses with your name.  
 
They will participate in the group chat to 
facilitate discussion. Other researchers can 
access the messages without linking your 
response to your name. 
 
If you do NOT wish to participate, please reply 
“NO” to this message 

Jan 28 
 

 Welcome to FarmChat. This is a chat of 5 maize 
farmers in Morogoro. You each learned from 
SoilDoc that you have a nitrogen deficiency in 
your soil.  
 
Introduce yourselves, and use this chat to talk 
about improving the nitrogen content of your 
soil.  
 
You can ask questions, share experience, and 
talk about methods for improving your soil that 
have or haven’t worked for you.  
  

Jan 31 
 

Make your soil healthy! Try intercropping maize 
with legumes, and using organic material from 
your farm to improve your soil. 
 
Plants need nutrients like nitrogen, which they 
get from the soil. When you remove the plant 
from the soil at harvest, you remove the nutrients 
too.  
 
You can replace nutrients by letting plant/animal 
materials decompose in your soil, or planting a 
legume. Then your soil will have nutrients to feed 
your next crop.  
 

Have you noticed that your crop yield decreases 
if you use the same land year after year? 
 
Why do you think this happens? 
 
What do you normally do when you notice your 
land becoming less fertile? 

Feb 1 

Nitrogen is an important nutrient for growing 
maize. Legumes bring nitrogen from the air into 
the soil where it feeds crops.  
 

Think about your experience with legumes. Are 
maize plants healthier when they're grown 
alongside a legume?  
 
 

Feb 4 
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Try intercropping your maize with a legume. You 
will add nitrogen to the soil, reduce pests and 
diseases, and grow nutritious food for people and 
animals.   
 
Some good legume varieties include: 

- Pigeon pea 
- Beans  
- Ground nut 
- Cowpeas 
- Green gram 
- Soy beans 

 
Legumes are plants that absorb nutrients in the 
soil and help keep the soil moist. They absorb 
nutrients like nitrogen from the air and release 
them when cut. 
 
This helps increase the amount of nitrogen in 
your soil. If you plant them with maize, the maize 
can use the nitrogen to grow.  
 

What varieties of legume have you 
experimented with? Do you plan to plant a 
legume this year? Why or why not? Which one? 
 
What kind of legume seeds are available in your 
local market? 
 

Feb 5 

 When is the best time to plant legumes? At the 
same time as maize? Or before or after? 
 
Do you plant your legume in the same row as 
maize, or a different row? How far apart do you 
put each plant?  
 

Feb 8 

Chicken manure is a great fertilizer. It has 
nitrogen and other nutrients. Keep chickens 
contained so you can collect their manure.  
 
Mix fresh and dry plant materials from your farm 
with manure, and let the mixture begin to 
decompose before adding to your field. This is 
called compost 

Have you ever applied chicken manure as a 
fertilizer? Why or why not? Have you noticed an 
effect on your crop yields? 
 
When is the best time to apply chicken manure? 
At the same time as maize? Before maize is 
planted? After maize is planted? 
 
 

Feb 9 

 Do you keep your chickens contained, or let 
them roam free? What kind of structure or fence 
could you build to keep them contained? 
 

Feb 10 

Each year, maize takes nitrogen out of the soil, 
leaving less available for the next crop. 
 
Over time, your soil becomes unhealthy and it is 
hard to grow maize in it.   
 
If you replace the nitrogen by growing a legume 
and adding compost, your soil will stay healthy 
so you can keep growing maize for several years.  
 

Have you noticed that the soil becomes less 
fertile after growing maize in the same place for 
a few years?  
 
Do you move your maize to a new plot when the 
soil becomes unhealthy? How often do you 
move it? Can you adopt practices to keep soil 
healthy longer?  
 
What techniques have you tried to improve your 
soil fertility? What techniques would you like to 
try this year? Next year? 
 

Feb 11 
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Many farmers move their maize plot to new land 
when soil becomes infertile. 
If you do this, try growing legumes on the old 
plot. Then it will be ready to support maize the 
next year.  
 
Using compost and legume intercropping 
replaces the nutrients used up by maize, and 
keeps your soil healthy year after year.  
 

Do you move your maize to a new plot when the 
soil becomes unhealthy?  
 
How often do you move your maize plot?  
 
Can you adopt practices to keep soil healthy 
longer?  
 
 

Feb 12 

 What techniques have you tried to improve your 
soil fertility?  
 
What techniques would you like to try this year? 
Next year? 
 

Feb 15 

 
 
 
 
 
Round 2 Extension Content9:   
 

Discussion Prompts: Messages in italics 
are sent only to chat-group participants 

Date of 
Sending: 

 
 

 
You have completed Part 1 of the SUA course 
about improving your soil. This month there will 
be another course, where you will receive 
information from SUA and be able to discuss it 
with the same group of farmers.  
 
Your group is 5 maize farmers from other 
villages in Morogoro. You have all learned from 
SoilDoc that you have a nitrogen deficiency in 
your soil. The farmers in your group are all the 
same as last time.  
  
To chat with your group, simply reply to any 
SMS from us, and your message will 
automatically be sent to the 5 farmers in your 
group. If you receive a message from another 
farmer in your group, you can reply to it, and 
your message will be sent to the 5 farmers.  
 
Your message will automatically begin with the 
first 3 letters of your name, followed by “:”. 
This is how you can easily tell which farmer in 
your group has sent the message you are 
reading.  
 

5/14 
 

 
9 Some of the content for this round was taken directly from a Swahili pamphlet about green manures and 
compost. Since we sent the Swahili version to farmers, the version here is simply a translation for reference, made 
using Google Translate.  
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When you send a message, the other farmers 
will see the first 3 letters of your name in front. 
For example, if your name is Mohammed, your 
messages will start with “Moh:”. You do not 
have to type this yourself, the phone will add it 
automatically. 
 
Please use this chat to get to know each other, 
and talk about your farming practices and your 
soil. You can ask each other questions, and 
share advice about practices that you have tried 
or heard about.  
 
You can ask questions to the other farmers in 
your group, but please be aware that the agent 
from SUA cannot answer your questions, only 
the other farmers. This is for you to share advice 
with each other about what works for you. You 
will receive expert advice from SUA but cannot 
ask us specific questions through FarmChat.  
 
 
You have unlimited messaging paid for on your 
phone, so please chat as much as you want. This 
way you can meet other maize farmers who also 
have a soil nitrogen deficiency that was detected 
by the SoilDoc test. Together you can talk about 
ways of improving your soil and your yields.  
 
Please begin by introducing yourself to the other 
farmers in your group. Thank you!  
 

Hello, this month you will receive messages from 
SUA about how to plant green manure and make 
compost for your farm. Thank you! 
 
Green manure is a plant that is grown for the 
purpose of increasing the level of organic matter 
and making food for soil microbes. These are 
fertilizers grown in the field. 
 
 
 

 Have you tried growing a green manure crop 
this year or in the past? Which one did you 
grow? 

 
 

Do you know anyone who planted green 
manure? 
 

17 

This year has been very dry in Morogoro. Green 
manure crops help keep moisture in the soil, and 
can survive with little water.  
 
 
This year has been very dry in Morogoro. Green 
manure crops help keep moisture in the soil, and 
can survive with little water.  
 

 5/18 

If green manure is cut before or during flowering, 
it is fermented easily with soil microbes - within 
two weeks of being moist and warm - after being 
buried in the soil.  

 5/19 
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Instead of digging green manure into the soil, it 
can also be distributed and act as mulch, 
especially if planted with perennial crops.  
 
 
Green manure crops produce lots of foliage that 
you can add to your compost or use as a mulch 
directly on top of your soil.  
 

Have you ever considered mixing green leaves 
in topsoil?  
 
How have you seen green manure used by 
farmers you know? 

5/20 

Green manure can be incorporated into an 
existing agricultural system. No additional land is 
required to plant fertilizer 
 
 
Planting green manure as part of the crop cycle is 
very helpful especially if planted before crops 
that need a lot of nutrients.  
 
 
Green manure is planted whenever there is no 
crop in the field, instead leaving the soil empty 
and allowing weeds to thrive and nutrients to be 
lost to the soil. 
 
 
It is also cultivated as a crop to break the cycle 
between species of similar crops for pest and 
disease control. 
 

Have you noticed that soil becomes dry and 
infertile when it is left bare?  
 
Planting green manure can keep your soil 
healthy and moist, and add nutrients which can 
be used by the next crop like maize.  
 

5/21 

Green manure can be grown between crop lines 
such as maize, sorghum and millet.  
 
To reduce competition with the main crop, green 
manure is planted if the main crop is already in 
good condition.  
 
Planting is sometimes mixed and green manure 
continues to thrive during the dry season. 
 

Do you have space between rows of maize on 
your maize plot?  
 

Can you plant a green manure crop in this 
space?  

 

5/27 

Compost is essential for the soil's ability to retain 
nutrients and provide nutrients to plants when 
needed. 
 
 
 Anything of plant or animal origin when put on 
the ground decomposes and turns to some extent 
into clay or compost. 
 
Creating compost is a long process. But investing 
in compost has great benefits for the plant and 
feed production. 

 

Do you know anyone who makes compost? 
Have you ever seen a compost pile on 
someone’s farm?  
 

5/31 
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Compost is more than fertilizer, it creates soil. Its 
greatest value lies in its long term benefits to soil 
fertility.  
 
Compost is a highly valuable soil supplement for 
smallholder farmers who do not have access to 
natural or in-store fertilizers. 
 
Compost has been proven to be the best type of 
organic fertilizer in drought-prone areas.  
 

Can you use compost to keep your soil moist 
during a drought?  

6/3 

Composting depends on the materials in the field 
and does not require special equipment, so it is a 
simple technique. But composting requires a lot 
of work to collect and prepare the material. 
 

 
 

What types of organic material can you find 
around your farm? What can you add to your 
compost pile?  
 

6/4 

 

 

Do you have time to make compost on your 
farm? Is making compost a valuable use of 
labor? 
 

6/7 

Making compost requires adequate equipment 
and materials and the right place.  
 
Compost is made from the same doses of animal 
manure and raw leaves and dried substances. 
Wood ash and old compost can also be included. 
 
 

Can you find animal manure, raw leaves, wood 
ash, or other plant and animal materials to add to 
your compost pile? Which materials can you 
find on your farm or nearby? 
 

6/9 

The composting site should be close to the field, 
easily accessible and flat on the ground near a 
water source and adequate shade.  
 
If there is no natural shade, then a transfer shade 
is required. 
 
Making compost requires a humid environment. 
In dry weather, water is needed regularly to 
ensure proper process. 
 

 6/11 

Making compost: 
1.Chop the leaves of the plant to the size of a 
finger 
2. Mix and add water to dry and green leaves 
separately 3. Mix different items by laying layers 
starting with the dried items 
4. Place a metal rod on the pile and measure the 
temperature daily 5. When the temperature drops 
in the pile, turn the pile up 
 
 
 

 6/15 
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Making compost requires a lot of experience. But 
it also teaches you about many aspects of the 
natural processes of transforming organic matter 
into fertile soil. 

 
 

Will you try making compost this year? Do you 
have any tips for other farmers who would like 
to try this?  
 

6/16 

 
 
 
 
 
Round 3 Extension Content: Discussion Prompts: Messages in italics are 

sent only to chat-group participants 
Date of 
sending: 

Hello, welcome to the final course from SUA 
about improving your soil health with organic 
resources.  
 
You will receive information about managing 
crop residues and preparing your fields for the 
short rains growing season.  
 
 

Remember you are in a chat group with five other 
farmers who are also learning from SUA.  
 
You can chat with each other by replying to any 
message you receive here. 
 
You can tell that a message is from SUA if the 
SMS begins with “SUA:”  
 
A message is from another farmer if the SMS 
begins with the first 3 letters of a name, such as 
“Eli:” for Elizabeth.  
 
Use this chat to talk to each other about what 
practices you have tried, and what works or 
doesn’t work on your farms. You can learn from 
each other and share knowledge this way.   
 
 

Aug 2 

If you intercropped a legume with your maize 
crop, it should be ready to harvest before the 
maize. 
 
For smaller bean species you can easily pull out 
the plant and harvest the beans.  
 
After taking the bean crop, leave the entire 
legume plant on the field, including leaves, stems, 
and roots. This will act as a mulch for the maize 
and decompose easily into your soil.  
 
 

Did you plant a legume on your maize plot this 
year? If so, which variety did you plant? 
 
Can you leave the legume crop residue on your 
field, or do you have other uses for this material?  

Aug 3 

Make sure to save some beans and dry them to 
use as seeds for next year so you don’t have to 
buy them again! 
 
Leaving the residue as a mulch will help preserve 
soil moisture and reduce topsoil erosion 
 

Do you normally save seeds from each harvest to 
plant next season, or do you buy new seeds each 
year? 
 
Do you notice dry soil eroding from water and 
wind when it is exposed with no mulch or crop 
cover? How can you prevent this? 

Aug 4 

Maize is ready to harvest when a black layer is 
visible between the maize grain and the cob 

At what stage do you normally harvest your 
maize? What are the advantages of this?  

Aug 5 
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Try not to harvest maize before this stage, when it 
is still green, as this will make it harder to store 
and dry.  
 
Try not to wait too long after this stage, because 
the maize can begin to rot and is more likely to 
attract pests.  
 

 
Can you see a black layer between the maize 
grain and the cob when it is ready to harvest?   

You should not burn your maize crop residue 
(leaves, stems, roots, stover, and husks), because 
these are a valuable source of organic material 
which should be returned to the soil.  
 
There are two good options for managing your 
crop residue: 1) Composting, and 2) Leaving 
residue on the soil surface. 
 
We will discuss both of these options in detail 
when the course resumes on Monday.  
 

Do you normally burn your crop residue?  
 
What uses do you have for maize crop residue on 
your farm?  

Aug 6 

1)Composting your maize residue: You can clear 
the residue off of the field at harvest, and add it to 
your compost pile.  
 
Cut the residue into smaller pieces to help it 
decompose faster. 
 
You should also add green materials, manure and 
water to your compost pile to help the 
decomposition. The compost will be ready to use 
on your field in a few months for the next year’s 
long rains season.  
 
 
 
 

Do you have a compost pile on your farm? If so, 
what do you add to your compost pile? 
 
Do you think making compost is a good way to 
use your maize crop residue? Why or why not? 

Aug 9 

Benefits of using residue for compost: mature 
compost is a great source of nutrients and 
microorganisms for your soil.  
 
Compost is easy to apply to your field and the 
nutrients are immediately accessible to your 
crops.  
 
Challenges: It will take several months for the 
compost to be mature and ready to use.  
 
It requires labor and knowledge to maintain your 
healthy compost pile.  

Can you think of any other benefits or challenges 
of composting your maize crop residue? 

Aug 10 

2)Leaving maize residue on the soil surface: You 
can leave maize crop residue on the field after 
harvest. This will keep your soil covered and 
protected from sun and wind during the dry 
season.  
 

Have you ever left maize crop residue on your 
field?  
 
Have you seen this practice on another farmer’s 
field?  
 

Aug 11 
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Pull out the plants and cut them up into a coarse 
mulch. The residue will decompose by the next 
long rains season.  
 
You can still plant maize or other crops during 
the short rains by clearing narrow rows or 
planting seeds directly into the soil under the 
residue.   
 

 

Benefits of leaving residue on soil surface: 
Leaving mulch will protect topsoil from eroding, 
and hold moisture in the soil by preventing 
runoff.  
 
Mulch will suppress weeds and prevent erosion, 
which can protect crops you plant during the 
short rains season.  
 
The decomposing residue will add organic matter 
and provide long term benefits to your soil health.  
 
This option is less labor intensive than making 
compost. 
 
Challenges: Leaving residue on the field can 
make it difficult to weed in the short term, and 
could make it more difficult to plant a cover crop 
during the short rains season.  
 

Can you think of any other benefits or challenges 
of leaving your maize crop residue on your field?  
 
What will you do with your maize crop residue 
this year? Why?  

Aug 12  

Part 2: Preparing your field for the short rains 
season.  
 
When the rains are close, you can plant a short 
maturing legume crop on your plot 
 
This will keep the soil moist, add nitrogen to the 
soil, suppress weeds, and prevent erosion.  
 
It will also provide a nutritious food or animal 
fodder for your household, and green material to 
add to your compost or use as mulch next season.  
 

What do you normally do with your maize plot 
during the short rains season?  
 
Do you think it’s important to keep the soil on 
your field covered? What happens if you leave 
the soil exposed?  
 
 

Aug 16 

If you have left maize crop residue on the field, 
you can still plant a legume crop directly into the 
residue. Just clear a very small hole so you can 
see the ground and plant the seed. It will come up 
through the residue mulch.  
 
The residue will act as a mulch and protect the 
new crop. 
 
Alternatively, you can clear narrow rows across 
your field and plant the new crop in these rows.  
 

 Aug 17 
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When choosing a legume variety to plant during 
the short rains, there are a few things to keep in 
mind: 
 
The variety should be well adapted to your 
climate and soil, and tolerant to pests and 
diseases. 
 
The variety should grow fast and vigorously, and 
produce large quantities of leaves.  
 
It is good if the leaves are close to the ground so 
the crop forms a cover which will protect the soil 
from sun and wind, and help keep in moisture. 
 
The variety should be drought-tolerant and fast 
maturing.  
 

What are some legume varieties that might be 
good to plant during the short rains? Why are 
these good options?  
 

Aug 18 

As soon as the rains start, you can plant some 
maize in the field as well.  
 
You can choose a short maturing maize variety, 
or plan to harvest green maize at the end of the 
short rains.  
 
 

Do you normally plant maize during the short 
rains? Why or why not? 
 
Do you harvest green maize, or can you find a 
short maturing variety that is mature by the end 
of the season?  

Aug 19 

If you have successfully planted a legume crop 
already in the field, you can till or clear narrow 
strips where you will plant maize.  
 
Add the cleared legume plants to your compost 
pile, or use them as mulch around the new maize 
seedlings.  
 
The legume cover crop will protect the maize 
seedlings by providing shade and keeping 
moisture in the soil.  
 
It will also bring nitrogen from the air into the 
soil where it can be used by the maize crop.  
 

What are the benefits of intercropping maize and 
legumes?  
 
Will you try this practice during the short rains 
season this year?  Why or why not? 
 
 

Aug 20 

Thank you for participating in this SUA course! 
We hope you have learned some useful 
information about improving your soil health. 
 
There are lots of options for improving your soil. 
We hope you will discuss with other farmers 
about which practices work for you and which do 
not. Together we can innovate and improve our 
farming practices.  

Please continue to discuss with your chat group 
about practices you have tried or would like to 
learn more about!  

Aug 21 
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Appendix B: Survey Modules for Behavioral Outcome Variables 
 
Knowledge: 
 
A knowledge quiz appears in the survey as follows: 
 
 

1. Which type of crop increases the nitrogen content of soil? 
 
[ ] Grains  
[ ] Vegetables  
[ ] Legumes  
[ ] Fruits  

 
2. Which of the following crop varieties would supply nitrogen to maize plants when grown 

together in an intercropped field? Select all that apply 
 

[ ] Soy beans 
[ ] Groundnut  
[ ] Sweet potato 
[ ] Cowpeas 
[ ] Beans 
[ ] Tomato 
[ ] Pigeon pea 
[ ] Millet 

 
3. What is the best way to plant maize seeds? 
 
[ ] Take a handful of seeds and scatter across the surface of the field 
[ ] Make small holes 5 feet apart and plant one seed in each hole 
[ ] Scatter seeds along rows  
[ ] Make small holes 8 inches apart along rows and plant 3 seeds in each hole 

 
4. Which of the following are ways of improving the soil fertility on your maize plot? Select 

all that apply 
 

[ ] Apply inorganic fertilizer  
[ ] Apply compost 
[ ] Intercrop maize with a legume crop 
[ ] Plant a legume crop on the plot during the short rains season 
[ ] Burn the crop residue left on the field after harvest 
[ ] Leave crop residue on the field after harvest 
 
5. What is the best time to apply poultry* manure to your field? *Poultry includes chickens, 
ducks, turkeys, and other domesticated birds 
 
[ ] 3 months before planting 
[ ] 2-3 weeks before planting  
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[ ] At planting 
[ ] When plants are 2 inches high 
[ ] When plants are 6 inches high 
[ ] After harvest 
 

Questions 1 and 5 have one correct answer, and a total of one possible point each allocated to the 

total knowledge score. Questions 2 and 4 have multiple correct answers, and respondents receive 

one point for each correct selection, and lose one point for each incorrect selection, for a total of 5 

possible points each. It is also possible to lose up to 3 points for question 2, and 1 point for question 

4. Therefore, the final knowledge score takes a value between -4 and 12, inclusive. Question 3 is 

omitted from the knowledge score because it does not address a practice covered in the extension 

course. We use question 3 as a placebo to compare learning outcomes for targeted practices to 

general learning patterns.  

 

 
Generalized PSE: 
 
The items appear on the survey as follows:  

• I will be able to achieve most of the agricultural goals that I set for myself  
• When facing difficult tasks on my farm, I am certain that I will accomplish them  
• In general, I think that I can obtain outcomes on my farm that are important to me  
• I believe I can succeed at improving my soil and increasing the yields from my farm if I 

set my mind to it  
• I will be able to successfully overcome many challenges on my farm  
• I am confident that I can perform many different tasks on my farm 
• Compared to other people, I can do most farming tasks very well  
• Even when things are tough, I can make sure that my crops get adequate yields  

 

This is adapted to the domain of agriculture from the validated New Generalized Self-Efficacy 

Scale (Chen et al., 2001):  
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• I will be able to achieve most of the goals that I set for myself 
• When facing difficult tasks, I am certain that I will accomplish them 
• In general, I think that I can obtain outcomes that are important to me 
• I believe I can succeed at most any endeavor to which I set my mind 
• I will be able to successfully overcome many challenges 
• I am confident that I can perform effectively on many different tasks 
• Compared to other people, I can do most tasks very well 
• Even when things are tough, I can perform quite well 

 
 

 
Domain-Specific PSE: 
 
The module for eliciting task- and outcome-specific PSE for the domain of intercropping appears 

on the survey as follows: 

 
Many farmers and researchers around the world are promoting the practice of legume-maize 
intercropping, in which maize is planted in the same field as a legume crop such as pigeon pea. 
Growing pigeon pea provides a source of nutritious and valuable food. Pigeon pea, like all 
legumes, also improves the soil fertility by providing nitrogen, which is an important nutrient 
for maize crops. Pigeon pea plants produce a lot of vegetation, which can be left on the ground 
as mulch to keep the soil moist and replenish nutrients as they decompose. To intercrop 
successfully, the farmer should plant seeds in evenly spaced holes along furrowed rows, with 
maize planted along the ridges and pigeon peas in the furrow. Poultry manure may be added 
to the ridges 2-3 weeks before planting, to provide additional nutrients to maize plants. 
Researchers say that intercropping, along with application of poultry manure, provides higher 
economic returns to farmers, by increasing the value of their product and reducing their costs. 
http://www.fao.org/3/a-i5310e.pdf 
 
Now think about yourself and your own maize plot. Consider your abilities, any past 
experience you have with intercropping on your farm, and times you have observed these 
practices on someone else’s farm.  
 

1. On a scale from 1 – 5, where 1 is strongly disagree, 3 is neither agree nor disagree, and 
5 is strongly agree, how much do you agree with the following statements: 

 
If I decide to try the practices of intercropping and applying poultry manure on my 
farm, I will be able to: 
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a. … improve the soil fertility on my maize plot  _____ 
 

b. … improve the profitability of my maize production ____ 
 

c. … increase my household’s food security ____  
 

2. For each component of the intercropping system (Building furrowed ridges; seed 
spacing; intercropping with pigeon peas; application of poultry manure), rate how 
difficult it would be to adopt this practice on your own main maize plot (1 = n/a I 
already use this practice on my own farm, 2 = Not at all difficult, 3 = Somewhat 
difficult, 4 = Difficult, 5 = Extremely difficult) 

 
a. Building furrowed ridges 
b. Seed spacing 
c. Intercropping with pigeon peas 
d. Application of poultry manure 

 
 
Subjective Probability Distribution: 

 
The subjective probability distribution module appears on the survey as follows:  

Imagine 20 farms that are JUST LIKE YOURS. The farmers have the same age, education, 
experience, skill level, income, and commitment as you. They have the same amount of 
labor and resources available to them as you do. The farms are the same size and located 
in the same area as yours, and their initial soil quality is just like yours. Now imagine these 
farmers decide to try the practice of intercropping with pigeon peas on their main maize 
plots, and applying poultry manure. Think about all the reasons why these practices could 
be beneficial or costly to the farmer. These imaginary farmers face the same weather and 
pest conditions as you do, and must do the best they can given their circumstance.  
 
Taking all these different possibilities into account, after 1 year, think about how many of 
the 20 farmers will be successful with the practices of intercropping and applying poultry 
manure.  
 
1. Of the 20 farmers, after one year how many will have: 
a. … Much lower soil fertility 
b. … Slightly lower soil fertility 
c. … The same soil fertility 
d. … Slightly higher soil fertility  
e. … Much higher soil fertility 
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2. Of the 20 farmers, after one year how many will have: 
a. … Much lower profits from maize production 
b. … Slightly lower profits from maize production 
c. … The same profits from maize production 
d. … Slightly higher profits from maize production 
e. … Much higher profits from maize production  
       
3. Of the 20 farmers, after one year how many will have:  
a. … Much lower household food security 
b. … Slightly lower household food security 
c. … The same household food security 
d. … Slightly higher household food security 
e. … Much higher household food security 

 
The SPD module yields three outcome variables corresponding to soil fertility outcomes, profit 

outcomes, and food security outcomes. Each variable is constructed by assigning a value to each 

Likert scale item, and calculating the mean SPD by taking the sum of the probability mass 

assigned to each item by the respondent, multiplied by the value of the Likert item. 
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Appendix C: Construction of the Asset Index 

 
We construct an asset index for 2020 and 2021 applying Principle Component Analysis (PCA) to 

a set of household, livestock, and productive assets. This process allows us to consolidate the 

information present in a large number of variables into a single index. We consider all asset 

items owned by greater than 2 percent of households and fewer than 98 percent. The index is 

constructed to have a mean of 0, and is normally distributed for both years. 

 
 
Table A.1: Assets Used for Construction of Asset Index 
 
Household Assets: Livestock Assets: Productive Assets: 
Car Goats – adults  Power tiller 
Truck Goats – kids  Hoe 
Bicycle  Sheep – adults  Shovel  
Motorcycle  Lambs Chain saw 
Gas cooker  Pigs – adults Hand saw  
Refrigerator Pigs – piglets  Barrel 
Sofa Chickens - layers  Wheel barrow  
Chairs Chickens - local  Milling machine  
Tables Chickens - broilers  Tractor  
Beds Cow (female) Plough 
Sewing machine  Bull (male) Axe 
TV Calves Knife 
Computer Donkey Wood machine  
Radio Ducks Machete  
Generator  Rabbits Sickle  
Cellphone Horse  Other 
Solar panel Oxen   
Other Other    

 
 
 
 
 
 
 


