
PROGRAMMER-FRIENDLY DECOMPILED JAVA

by
Nomair A. Naeem

School of Computer Science

Mc Gill University, Montréal

August 2006

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2006 by Nomair A. Naeem

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-32760-9
Our file Notre référence
ISBN: 978-0-494-32760-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Java decompilers convert Java class files to Java source. Common Java decompilers are

javac-specific decompilers since they target bytecode produced from a particular j avac

compiler. We present work carried out on Dava, a tool-independent decompiler that de­

compiles bytecode produced from any compiler. A known deficiency of tool-independent

decompilers is the generation of complicated decompiled Java source which does not re­

semble the original source as closely as output produced by javac-specific decompilers.

This thesis tackles this short-coming, for Dava, by introducing a new back-end consisting

of simplifying transformations.

The work presented can be broken into three major categories: transformations using

tree traversaIs and pattern matching to simplify the control f1ow, the creation of a f10w

analysis framework for an Abstract Syntax Tree (AST) representation of Java source code

and the implementation of f10w analyses with their use in complicated transformations.

The pattern matching transformations rewrite the ASTs to semantically-equivalent ASTs

that correspond to code that is easier for programmers to understand. The targeted Java con­

structs include If and If-Else aggregation, for-Ioop creation and the removal of abrupt

control f1ow. Pattern matching using tree traversaIs has its limitations. Thus, we introduce

a new structure-based data f10w analysis framework that can be used to gather informa­

tion required by more complex transformations. Popular compiler analyses e.g., reaching

definitions, constant propagation etc. were implemented using the framework. Information

from these analyses is then leveraged to perform more advanced AST transformations.

We performed experiments comparing different decompiler outputs for different sources

of bytecode. The results from these experiments indicate that the new Dava back-end con­

siderably improves code comprehensibility and readability.

ii

Résumé

Les dcompilateurs Java convertissent le code binaire compil Java en code source Java.

Les dcompilateurs Java les plus communs sont spcifiques au compilateur javac parce qu'ils

ciblent le code binaire produit par un compilateur j avac particulier. Nous prsentons notre

travail sur Dava, un dcompilateur indpendant qui dcompile du code binaire Java compil

partir de n'importe quelle source. Une faille connue des dcompilateurs indpendants est la

gnration de code source Java complexe qui ne ressemble pas autant au code source original

que celui produit par les dcompilateurs spcifiques javac. Cette thse s'attaque cette faille,

pour Dava, en introduisant un nouveau systme de transformations de simplification.

Le travail prsent peut tre divis en trois catgories majeures : les transformations utili­

sant la traverse d'arbres et la reconnaissance de squences pour la simplification du flot de

contrIe, la cration d'un systme d'analyse du flot de contrIe pour une reprsentation en tant

qu'Arbre de Syntaxe Abstrait (AST) du code source Java et l'implmentation d'analyses du

flot pour usage dans les transformations complexes.

Les transformations utilisant la reconnaissance de squences rcrivent les AST pour pro­

duire de nouveaux AST smantique quivalente, correspondant du code qui sera plus facile

comprendre pour les programmeurs. Les constructions Java cibles incluent les aggrgations

If et If-Else, la crations de boucles for et l'limination de flot de contrIe abrupte. La recon­

naissance de squences utilisant la traverse d'arbres a ses limitations. Nous avons donc dcid

d'introduire un nouveau systme d'analyse du flot de donnes bas sur la structure qui peut

tre utilis pour obtenir de l'information requise par des transformations plus complexes. Des

analyses de compilateurs communes (par exampIe : l'obtention de dfinitions, la propaga­

tion des constantes, etc.) ont t implmentes en utilisant notre systme. L'information produite

par ses analyses est utilise pour produire des transformations plus avances.

iii

Des expriences qui comparent la sortie produite par diffrents compilateurs reprsentant

plusieurs sources de code binaire ont ts ralises, dmontrant que le nouveau systme d'analyse

et de transformations de Dava amliore considrablement la cIart et la lisibilit du code source

produit.

IV

Acknowledgements

First and foremost 1 would like to thank my supervisor Professor Laurie Hendren for

introducing me to the wonderfully exciting field of programming languages and compilers,

for her guidance in my research work and for her high expectations from her students.

Her cheerful nature and her humor always kept me going in those dark hours and her

quick insight and knowledge made my stay at the Sable Research Group a true learning

experience.

A special thanks to Professor Clark Verbrugge for taking the time out to teach me

"faux-621 ", for spending countless hours discussing potential research topics and for being

a mentor in Laurie's absence. 1 would also like to thank the Professors from the School

of Computer Science for the wonderful courses taught by them that kept me here for six

years. Thanks also to the admin and system staff for their help on countless occasions.

Additional thanks to my friends and members of the Sable Group - in no particular or­

der - Grzegorz Prokopski, Dayong Gu, Chris Goard, Chris Pickett, Sokham Pheng, Ondfej

and Jennifer Lhotak, Jerome Miecznikowski and Navindra Umanee. A special thanks to

Maxime Chevalier-Boisvert for helping me translate my abstract into French. Mike Batch­

helder's work on Java obfuscation and his repeated "successful" attempts to crash Dava

were a true inspiration for numerous transformations and bug fixes which became part of

this thesis.

Thank you to Ahmer Ahmedani for being my buddy at McGill, for our discussions on

religion and world affairs and our coffee breaks. Also my pool partners Waqqas, Farhan,

Moiz and Moeed for the much needed time-outs. Last, but not least, 1 thank my parents,

sisters and my wife for their love, devotion and support.

v

vi

Dedicated ta

My Parents,

Dr. Pervaiz Naeem Tariq and Dr. Shahida Naeem

and

My Wife,

Mariam Rasaal

viii

Table of Contents

Abstract

Résumé

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Aigorithms

1 Introduction and Motivation

1.1 Javac-specifie Decompîlers

1.2 Tool-independent Decompilers

1.3 java Obfuscators

1.4 Thesis Contributions and Organization

2 Background: Dava Architecture

2.[Existing Front-End

., . ., New Back-Encl . .

3 A Tree TraversaI Aigorithm

3.1 Finding AS]' Parent Nodes

ix

iii

v

ix

xv

xix

xxi

1

3

5

5

7

9

12

14

17

19

3.2 Finding the Closest Abrupt Target

3.3 Finding ail variable Uses

3.4 Finding ail Definitions .

3.5 Constant Primitive Field Value Finder

19

20

21

21

4 Basic AST Transformations 25

25

26

26

27

28

29

30

33

33

35

37

5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Condition Simplifîcation

Shortclit increments and decrements

De-Inlining Static Final Fields ...

Variable Declarations and Initialization .

String concatenation

Shortcut Array Declarations

Removing default constructors

The super invocation

4.8.1 Invalid code using complicated expressions

4.8.2 Invalid code using Preinitialization in Aspect]

4.8.3 Tnmsforming invalid code lIsing indirectioll

Simple Pattern Based Structuring

5.1 Conditional Aggregation ...

43

43

45

46

48

5.1.1

5.1.2

5.1.3

Grammar for aggregated boolean expressions

And Aggregation

Or Aggregation

5.2 Loop strengthening . . 56

5.2.l Using a nested If-Else Statement to Strengthen Loop Nodes 56

5.2.2 Using a nested If Statement lo Strengthen lonp Nodes . 57

5.3 Handling Abrupt Control Flow 62

5.3.1 If-Else Splitting 62

5.3.2 Useless break stalcment Rcmovcr .

5.3.3 Useless Label Remover

5.3.4 Reducing the scopc of labcled hlocks

x

63

65

67

6 A Structurc-Uased Flow Analysis Framework

6.l JVIèrge Operations

6.2 Dealing with Abrupt-Control Flow Constructs

6.3 Const111ct specifie processing

7 AST rewriting using Strudure-based Flow Analys('s

7.1 Rcaching Definitions

7.1.1 For Loop Construction

7.2 Rcaching Copies

7.2.1 Copy Elimination.

7.3 Constant Propagation

7.3.1

7.3.2

The analysis

Extensions .

Constant Substitution .

Expression Simplification

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

Removing Rcdundant Conditional Statcments .

Unreachable code Elimination

Program Deobfuscation

7.4 Must and May Assign

7.4.1 Final Field Initialization

8 Naming Mechanism

8.1 Heuristic-based naming .

8.2 Dîsplaying qualified types

9 Testing and Empirkal Results

9.1 Unit Testing

9.2 Complexity Merrics

9.2.1 Program Size

9.2.2 Number of Java Constructs .

9.2.3 Conditional Complexity

9.2.4 Identifier Complexity ..

xi

69

71

71

72

87

88

93

97

98

99

101

103

106

107

109

112

113

117

118

127

127

130

135

135

136

136
137

138

138

9.3 Benchmarks

9.4 Evaluation of Decompiled Code

9.4.] Program Size

9.4.2 Conditional Statements .

9.4.3 Condition Complexity

9.4.4 Abrupt Control Flow

9.4.5 Labeled Blocks

9.4.6

9.4.7

9.4.8

Local Variables

Loop Count ..

Overall Complexity

9.5 Evaluation of Obfuscated Code.

9.5. [Benchmark Size

9.5.2 COllditional Statements .

9.5.3 Condition al Complexity

9.5.4 Abrupt Control Flow

9.5.5 Labe1ed Blocks ...

9.5.6 ldentine!' Complexity .

9.5.7 Overall Complexity .

10 Rclated Work

10.] Decompilcrs.

10.2 Obfuscators .

10.3 VisÏlor Design Pattern .

10.4 Structure-Bascd Flow Analysis

10.5 Complexity Metrics

11 Future Work and Conclusions

1 1 . 1 future Work

11.1.1 Ab:,;tract Syntax 'J'rcc Expansion

1 1 .1.2 Transformations

1 1.1.3 Adding comments to decompiler output

xii

139

141

141

142

143

145

148

148

150

152

153

154

156

156

157

159

159

160

163

163

164

165

165

166

169

169

169

170

171

1 1. !.4 Stronger refactoring analyses.

Il.1.5 Identifier Renaming

11.2 Conclusions

Bibliograpby

xiii

171

172

172

175

XIV

List of Figures

LI Sources of Java bytccodc

1.2 Comparing dccompiler outputs

1.3 Decompiling Obfuscated Code

2.1 Bal' and Jimplc rcprescntations
)j C'Jrimp J'cprescntation

2.3 Dava Architecture

2.4 The Dava Front-End

Abstraet Syntax Tree Class Hierarchy

2.6 The Dava Back-End

3.1 Pscudo-code for sample trec-traversai

4.1 Converting Binary Conditions 10 Unary Conditions

4.2 Dèlnlining Starie Final Variables

4.3 Variable Declarations and Initializatlon .

4.4 String Concatenation

4.5 Verbose declaration of thc primes array

4.6 Complex Expressions

2

4

6

10

1 1

12

14

15

16

18

26

27

28

29

30

34

4.7 Uncompilable code due to incorn::ct placement of super 35

4.8 F~ffeet of a preinitializatioll pointent targeting a COl1structor with hefore adviee 36

4.9 Avoiding compilation errors due 10 super invocation

4.10 Introducing the private statle Prelnit Method

4.11 StorÎng and Retrieving args2

xv

38

39

41

5.1 Simple Pattern Based Structuring .

5.2 Dava's AST Condition Grammar

5.3 Reducing using the && operator.

5.4 Application of And Aggregatiol1

5.5 H,educing using the Il operator

5.6 Application of Or Aggregation

5.7 Removing Nested If statements using the Il operalor

5.8 Removing similar If statements llsing the Il operator.

5.9 Strengthening Loops

5.10 Strengthening Uncondîtional Loops

5.11 Application of While Strengthening

5.12 Strengthening a While Loop Using an If statement

5.13 Strengthening an Unconditional Loop Using an If statemellt

5.14 Slrengthening an Unconditional Loop Using an If statement

5.15 If-Else Splitting .

5.! 6 If-Else Splitting .

5.17 Removing use!ess break statements

5.18 Comparing Dava output

S. J 9 Reducing the scope of Labeled Bloch

5.20 Wrong Reduction of Scope

6.1 Structural FIow-Analysis Algorithm for Simple Java Constructs

6.1 The Structural Flow-Analysis Algorithm of If Construct. ..

6.3 The Structural Flow-Analysis Algorithm of IŒlse Construct.

6.4 The Structural Flow-Analysis Algorithm of While Construct.

6.5 The Structural Flow-Analysis Algorithm of DoWhile Construct.

44

46

47

47

49

50

53

54

57

58

58

59

61

62

63

64

65

66

67

68

73

75

76

77

79

6.6

6.7

6.8

6.9

The Structural Flow-Analysis Algorithm of Unconditional-While Construct. 80

7.1

The Structural Flow-Analysis Aigorithm of For Construct.

The Structural Flow-Analysis Algorithm of Switch Construct.

The Structural Flow-Analysis Algorithm of Try··Catch Construct.

81

83

85

AST rewriting using Stmcture-Based Flow Analyses 88

xvi

7.2 Implemented Flow Analyses and transformations . 89

7.3 fnitializing the Reaching Definitions Flow Analysis 90

7.4 Generating new Reaching Definitions and killing previous ones . 91

7.5 Input to catch Bodies for Reaching Definitions Flow Analysis. . 92

7.6 Conservative reaching definitions assumption for input 10 catch bodies 93

7.7 The While to For conversion 94

7.8 Copy Elimination 99

7.9 Advantages of constant propagation 100

7. 10 II sing constant field information dming Constant Propagat ion

7.1 1 Preference to existing constant values

7.12 Advantages of constant propagation .

7.13 Simplifying conditions llsing DeMorgans Law

7.14 Removing always twe If statement

7.15 Reachability analysis for the If -Else statement .

7.16 Advantages of constant propagation

7.17 Dead code Elimination and AST Transformations

7.18 Example of final field not initialized 011 ail paths .

7.19 Delaying assignment of a tînal fîeld

8.1 For loop driving variables

8.2 Conditional F!ags

8.3 Heuristics for sizellength and final variables

8.4 Using get and set methods to get variable names .

8.5 Qualified Variable types

8.6 lmporting classes with the same name

9.1 Program size for decompiled code ..

9.2 Conditional statements for decompiled code

102

105

108

110

111

114

115

116

119

122

128

128

129

129

131

131

141

142

9.3 Detecting simple non-aggregated conditional statements in original Source. 144

9.4 Average Condition Complexity for decompiled code 145

9.5 Abrupt statements for decompiled code: 146

9.6 Unnecessary continue statements produced by Jad 147

XVll

9.7 Labeled Blocks for decompiled code ..

9.8 Nllmber of Locals for decompiled code

9.9 Reason for an increase in local variable count in Dava .

9.10 ('onverting a While loop to a For loop .

9.11 Overall complexity for decompiled code

9.12 Program size for obfuscated code. . . .

9.13 Simple conditional statement count for obfuscated code

9.14/\verage conditional complexity for obfuscated code.

9.15 Abrupt control fiow count for obfuscated code

9.16 LabeJed block count for obfuscated code .

9.17 Identifier complexity for obfllscated code

9.18 Overall complexity for obfuscated code .

xviii

148

149

150

152

153

155

156

157

158

159

160

161

List of Tables

7.1 Intersection for Constant Propagation. indicates unknown valuc and T

rcpresents a non-constant value) lOI

7' Strengthcning Constant Propagation using Conditional comparisol1 opera-

tions 105

7.3 Simplifying the && condition 109

7.4 Simplifying the li condition. . 110

9.1 Breakdown of Loops for decompiled code 151

XIX

xx

List of Aigorithms

Finding constant valued fields 23

2 Shortcut Array declaration and initialization . 31

3 Rcmoving the Default Class COl1structor 32

4 And Aggregation 48

5 Or Aggregatiol1 51

6 Or Aggregation for similar bodies 55

7 Strengthening While Loops Using If statcments . 60

8 Rcmoving Spurious Labeled Blocks 66

9 The While to For conversion 95

10 proccssField 120

11 handlcAssignOnSomePaths 121

12 creatclndi rection 125

XXI

Chapter 1

Introduction and Motivation

Since its creation, the Java [faS!)7] programming language has become increasingly

popular. The highly object-oriented design, exception handling, runtime checking and

garbage collection are sorne of the features making Java an attractive language for devel­

opers. The biggest reason for Java's popularity, however, is the portability of the binaries

for Java. Java compilers, such as the standard javac compiler created by Sun Microsys­

tems [Sun, .Lw], produce Java c1ass files and the se are the binary form of the program which

can be distributed or made available via the Internet for execution by Java Virtual Machines

(JVMs) [LYi)I)]. Although the j avac compiler is the most usual way of producing class

files, there are an increasing number of other tools that also produce Java c1ass files. Fig­

ure !. 1 shows sorne other sources of bytecode. There exist compilers for other languages

inc1uding AspectJ[KHII' 01, ACH+OS, abc], SML and C[A?\!P] that can produce

c1ass files. Also, bytecode produced by compilers can be processed by bytecode optimizers

which produce faster and/or smaller c1ass files, instrumentors and obfuscators which seek

to produce c1ass files that are hard to decompile and understand.

Since Java c1ass files contain Java bytecode, which is a fairly high-Ieve\ intermediate

representation, there has been considerable interest and success in developing decompilers

which convert c1ass files back to Java source. Such decompilers are useful in software en­

gineering, for programmers to understand code for which the y don't have Java source code,

and in the research community to help understand the effect of tools such as optimizers,

aspect weavers and obfuscators.

Introduction and Motivation

Java Source

(J ava Compiler)

(bytecode)

------y­
~~~~~_I~~~~~-

, t 
instrumentor 

(bytecode ) 
1 

obfuscator 

Decompiled 
Java Source 

Figure 1.1: Sources of Java byte code 

2 

AspectJ / SML / C , 
( Compiler ) 

bytecode , 



1.1. Javac-specific Decompilers 

1.1 Javac-specific Decompilers 

The original decompilers, such as Mocha[l\Ioc], Jad[Jad], Jasmin[h.;], Wingdis[\Vin] and 

SourceAgain[Snu], are javac-specific decompilers in that they work by reversing the spe­

cifie compilation patterns used by the standard j avac compiler. When given c1ass files 

produced by a javac compiler, they can produce very readable source files that correspond 

c10sely to the original program. For example, consider the original Java program in Figure 

1.2(a). When this program is compiled using j avac from jdk lA to produce a c1ass file and 

then decompiled with SourceAgain and Jad, one gets the very respectable results in Figure 

1.2 (b) and (c). 

By assuming that the bytecode to be decompiled was produced with a specifie Java 

compiler, javac-specific decompilers are able to simplify the decompilation task by revers­

ing the code generation strategy employed by the targeted compiler. By applying pattern 

matching, inferred from the known code generation patterns of the compiler, the task of 

creating a javac-specific decompiler becomes relatively easy and fast. Sometimes the pat­

terns applied to get the decompiler output are very specifie. For example, compare the 

results for Jad between the case when the original program was compiled with jdk lA (Fig­

ure 1.2(c)) and with jdk1.3 (Figure 1.2(d)). Clearly the Jad decompiler was implemented 

to understand the code generation patterns from javac fromjdkl.3 and it does not produce 

as nice an output when used on c1ass files produced using j avac from jdk lA. Hence as 

the code generation strategy of the targeted compiler changes there is a need to update the 

decompilation patterns in javac-specific decompilers to maintain their performance. 

Althoughjavac-specific decompilers perform well for specifie compiler-generated code, 

they are not able to decompile any arbitrary bytecode. This stems from the fact that often 

the bytecode does not follow the same patterns implemented in the decompiler. This is 

even more true for bytecode passed through optimizers and obfuscators. In this situation 

javac-specific decompilers are often not able to produce valid Java code. 

3 



(a) Original Code 

1 while(done && alsoDone){ 

if«a<3 && b==l) Il b+a<l 

System.out.println(b-a); 

4 } 

(b) SourceAgain (jdk 1.4) 

1 while( bool && bool1 ){ 

if( (i>=3 Il j!=l) && j+i>=l 

continue; 

4 System.out.println(j-i); 

5 } 

(c) Jad (jdkI.4) 

1 do{ 

if ( ! flag Il! flag1) 

break; 

4 if (i < 3 && j == 1 Il j + i < 1) 

System.out.println(j-i); 

6 } while(true); 

Introduction and Motivation 

(d) lad (jdk 1.3) 

1 while(flag && flag1){ 

4 } 

if ( i < 3 && j == 1 1 1 j + i < 1) 

System.out.println(j - i); 

(e) Dava (jdk 1.4) 

1 label_2:{ 

label_1: 

10 

Il 

12 

13 

14 

15 

16 

while(zO != false){ 

if (z1 == false){ 

break label_2; 

} 

else{ 

label_O:{ 

if (iO < 3){ 

} 

if(i1 == 1){ 

break label_O; 

} 

if(i1 + iO >= 1){ 

continue label_l; 

} 

17 } //end labeLO: 

18 System.out.println(rl); 

19 } 

20 } 

21 } //end labeL2: 

Figure 1.2: Comparing decompiler outputs 

4 



1.2. Tool-independent Decompilers 

1.2 Tool-independent Decompilers 

Dava [MHO l, MHO'::] is a tool-independent decompiler built using the Soot [Sou, VRC3H i 00] 

Java optimizing framework. Dava makes no assumptions regarding the source of the Java 

bytecode and is therefore able to de compile arbitrary verifiable bytecode. However, this 

generality cornes with a priee. Since the Dava decompiler relies on complex analyses to find 

control-f1ow structure in arbitrary bytecode, the decompiled code is often not programmer­

friendly. For example, in Figure 1.2(e), the output from Dava is correct, but not very 

intuitive for a programmer. The goal of this research has been to provide tools that can 

convert the correct, but unintuitive, output of Dava to a more programmer-friendly output. 

1.3 Java Obfuscators 

Java obfuscators aim to prevent code comprehension by mostly changing the names of iden­

tifiers in the Java bytecode. The first-generation obfuscators replace class, field, method and 

local variable names with confusing and often misleading names. This kind of obfuscation 

does not restrict reverse engineering attempts through decompilers. 

A new class of Java obfuscators has also emerged that perform control flow obfusca­

tions. These second-generation obfuscators introduce complex, yet verifiable, bytecode 

which causes most decompilers to fail. Since Dava is a tool-independent decompiler and 

since obfuscated bytecode is verifiable bytecode, Dava is usually able to produce valid Java 

source for obfuscated code. 

The challenge of providing programmer-friendly output for obfuscated bytecode is 

complex. For example, consider the example in Figure 1.3. In this example we compiled 

the Java pro gram given in Figure 1.3(a) with javac and then applied the Zelix KlassMas­

ter obfuscator[Klau] to the generated class file. Figures 1.3(b) and (c) show the results of 

decompiling the obfuscated class file with Jad and SourceAgain (only key snippets of the 

code are shown). In both cases the decompilers failed to produce valid Java code. How­

ever, as shown in Figure 1.3(d), Dava does create a valid Java program, which exposes the 

extra code introduced by the obfuscator. Even though correct, clearly this code is not very 

programmer-friendly. This thesis lays down the foundations to address the big challenge of 

5 



(a) Original Code 

1 class test { 

Vector buffer = new Vector()j 

3 int getStringPos(String string) { 

for(int i=Oji<buffer.size()ji++){ 

String curString = 

(String)buffer.elementAt(i); 

if (curString.equals(string» { 

buffer.remove(i)j 

return ij 

10 } } 

Il return -1; } } 

(b) lad 

if (flag)/* Loop isn't completed *1 

continuej 

sl.equals(s)j 

if(flag) goto _L4; else goto L3 

5 _L3: JVM INSTR ifeq 59; 

goto _L5 _L6 

L5: break MISSING_BLOCK_LABEL_48; 

L6: break MISSING_BLOCK_LABEL_59j 

(c) SourceAgain 

do{ String str = nullj 

if( i >= a.size() ){ 

ligota couldn't be resolved 

goto 81 } 

}while( !bool )j 

6 

Introduction and Motivation 

(d) Dava 

1 class a{ 

10 

Il 

12 

14 

15 

16 

17 

IR 

19 

20 

21 

22 

24 

private java.util.Vector aj 

public static boolean b; 

public static boolean Cj 

int a(java.lang.String rl){ 

boolean zO, $z2, z3j 

int iO, $i2, i3; 

java.lang.String r2j 

zO = Cj iO = Oj 

label_l:{ 

label_O: 

while (iO < a.size(»{ 

r2 (String) a.elementAt(iO)j 

if (zO»{ 

} 

z3 = r2.equals(rl); 

i3 (int) z3j 

$i2 = i3j 

if (zO) break label_lj 

if (i3 == 0) iO++j 

else{ 

} 

a.remove(iO); 

return iD; 

~ if (zO){ 

26 

27 

28 

29 

30 

32 

33 

} 

} 

if( (b» $z2 = true; 

else $z2 = false; 

b = $z2; 

break label_O; 

$i2 = -1; 

} Iiend labeU: 

M return $i2; } } 

Figure 1.3: Decompiling Obfuscated Code 



1.4. Thesis Contributions and Organization 

how we can convert the obfuscated code into something that is more readable. 

1.4 Thesis Contributions and Organization 

Dava's initial implementation focused on correct detection of Java constructs and did not 

address the complexity of the output. To be useful as a program understanding tool it is 

important that Dava competes with other decompilers not only in the range of applicability, 

but also the quality of output. By relying solely on the structure of the f10w of control Dava 

is able to produce Java source code which is semantically equivalent to the original source 

code for most verifiable bytecode. However, as mentioned earlier (Figures 1,2 and 1.3), 

the output does not resemble the original source as closely as one would like. 

The purpose of this research was to use the existing Dava decompiler as a front-end 

which delivers correct, but overly complex abstract syntax trees (ASTs), and to develop 

a completely new back-end which converts those ASTs into semantically equivalent, but 

more programmer-friendly ASTs. The new ASTs are then used to generate readable Java 

source code. In order to build this new back-end we have developed several new compo­

nents: 

• Since the new back-end for Dava works by rewriting the AST we developed a visitor­

based AST traversai framework, as outlined in Chapter 3. 

• The visitor-based framework can be employed to do simple transformations to con­

form the output to generally accepted programming idioms as demonstrated in Chap­

ter 4, 

• Using the traversai mechanism we developed a large number of simple structural 

patterns that could be used to perform structural rewrites of the AST. These trans­

formations mainly target the control f10w of the decompiled output. Details of these 

transformations can be found in Chapter 5. 

• Simple structural patterns can be used for many basic tasks, but in order to do many 

more complicated rewrites we needed to have data f10w information. Thus, we have 

developed a structural data f10w analysis framework, as outlined in Chapter 6. 

7 



Introduction and Motivation 

• Given the flow analysis information computed using the framework we have devel­

oped several more advanced patterns. In Chapter 7 we discuss our advanced patterns 

for improving the code quality including the use of reaching definitions, reaching 

copies, constant propagation etc. information in transformations. 

Chapter 8 discusses new heuristic-based identifier renaming algorithms introduced in 

Dava to help program comprehension. In Chapter 9 we discuss sorne metrics to measure 

the effect of the transformations on the complexity of decompiled output. Empirical results, 

using the metrics established, are also discussed. Chapter 10 discusses sorne related work. 

In Chapter Il we mention sorne future work planned for Dava and our conclusions. 

8 



Chapter 2 

Background: Dava Architecture 

Dava is built using the Soot Java bytecode transformation and annotation framework. 

Soot provides three internaI representations (baf, j impIe and grimp) to develop and test 

new compiler optimizations. Java bytecode is first converted to baf which is a stack-based 

representation of disassembled Java class files. Figure 2.1 (a) shows a small Java method. 

In Figure 2.1 (b) we show the baf representation of this method. As can be seen from 

the figure the baf representation resembles closely to the Java bytecode produced by the 

compiler. Control f10ws through the code using labels and goto statements and a stack is 

used to perform operations on data. 

Baf is then converted to j impIe which is a 3-address representation of Java bytecode. 

The most important difference between baf and j impIe is the absence of the Java stack in 

j impIe. Jimple also uses a static type inference engine to infer primitive and reference 

types from the Java bytecode [GIL'-'100]. Figure 2. J (c) shows the j impIe representation 

of the code in Figure 2.1 (a). This representation is the most powerful intermediate repre­

sentation for performing compiler optimizations like copy propagation and array bounds 

checks. 

The third intermediate representation in soot is grimp which stands for aggregated 

j impIe. This is the highest level intermediate representation in Soot and is therefore used 

as input to Dava. Figure 2.2 shows the grimp representation of the code in Figure 2. ! (a). 

Control f10w in grimp is still implemented using explicit labels and gotos. Java's try-catch 

blocks are represented as areas of protection in the form of exception handlers within the 

9 



(a) Original Code 

1 public int foo(int a,int b){ 

try{ a= a*4+bj } 

catch(RuntimeException re){} 

return aj 

5 } 

(b) Baf 

1 public int foo(int, int) { 

10 

II 

12 

13 

14 

15 

16 

17 

IX 

19 

20 

21 

22 } 

word rO, iO, ilj 

rO := @this: irj 

iO := @parameterO: 

il := @parameterl: 

labelO: 

load.i iOj 

push 4j 

mu1.i; 

load.i ilj 

add.i; 

store.i iO; 

label! : 

goto labe13; 

labe12: 

store.r il; 

labe13: 

load.i iO; 

return.i; 

intj 

intj 

catch java.lang.RuntimeException 

from labelO to labell with labe12; 

Background: Dava Architecture 

(c) Jimple 

1 public int foo(int, int){ 

ir rO; 

10 

Il 

12 

13 

14 

15 

lfi 

17 

IX 

19 

20 

21 

22 

23 

24 

25 

2fi } 

int iO, il, $i2j 

java.lang.RuntimeException ri, $r2; 

rO := @this: ir; 

iO := @parameterO: intj 

il := @parameterl: inti 

labelO: 

$i2 = iO * 4; 

iO = $i2 + il; 

labell: 

goto labe13; 

labe12: 

$r2 := @caughtexception; 

ri = $r2; 

labe13: 

return iO; 

catch java.lang.RuntimeException 

from labelO to labell with labe12; 

Figure 2.1: Ba! and Jimple representations 

10 



code. The code itself is represented using a reduced set of statements, as compared to Java, 

which contains aggregated expressions. The reason why grimp is chosen as the starting 

point of the decompilation process is that certain decompilation issues have been already 

dealt with in the creation of this interrnediate representation. As already mentioned, grimp 

is stack-less so the Java expression stack has been eliminated. Also from the type inference 

engine appropriate types have been applied to aIl variable dec1arations. 

1 public int foo(int, int){ 

ir rOi 

10 

Il 

12 

13 

14 

15 

ln 

17 

IR 

IY 

int iO, il; 

java.lang.RuntimeException ri, $r2; 

rO .= Cilthis; 

iO := CilparameterO; 

il := Cilparameterl; 

labelO: 

iO = iO * 4 + H; 

labell: 

goto labe13; 

labe12: 

$r2 := Cilcaughtexception; 

rl = $r2; 

labe13: 

return iO; 

20 catch java.lang.RuntimeException from labelO to labell with labe12; 

21 } 

Figure 2.2: Grimp representation 

In Section 2.1 we discuss the old Dava decompiler to which we have added a new 

back-end. The front-end takes the grimp representation of the Java bytecode as input and 

l 1 



Background: Dava Architecture 

grimp.. Java Construct Detection using 

Control Flow Graph 

Existing Dava Front-End 

AST 

Cc 

ASXcaewrltitl~ 

Trati~funuat~ôns 

New Dava 8ack-End 

Figure 2.3: Dava Architecture 

( 

AST 
1 

1 Pretty 

1 Printer 

Simplified 

Java Source 

produces an Abstract Syntax Tree representation ofthe decompiled Java source. Previously 

this AST used to be pretty printed as the decompiler output. However, this thesis introduces 

a new back-end to Dava which takes the complicated, through semantically correct AST, 

and transforms it via AST rewriting to a simplified AST. This modified AST is then pretty 

printed to produce more programmer-friendly Java source. 

2.1 Existing Front-End 

The internaI workings of the Dava front-end are shown in Figure 2.4. The grimp repre­

sentation of the bytecode is used to create a control ftow graph (CFG). Each control ftow 

graph node contains a grimp statement with predecessor, successor, dominator and reach­

ability information. The control ftow graph is also augmented with exception handling 

information retrieved from the traps information in the Java bytecode. 

The next step is the detection of different Java constructs using the CFG as input. It 

is not feasible to use a reduction-based approach to construct detection because of the 

large set of isomorphic transformations possible for different Java constructs. Instead Dava 

employs a unique approach, called staged encapsulation, to retrieve the Java constructs out 

of the CFG. The strategy involves a series of complicated structuring algorithms which find 

Java control ftow statements based on their semantics rather than their locations relative to 

other control ftow statements. Since these analyses are general and do not resort to pattern 

matching and/or simulating control ftow using state machines, Dava is able to handle highly 

unstructured grimp. This property proves to be crucial during decompiling convoluted 

code e.g., obfuscated bytecode (Section 7.3.7). 

As shown in Figure 2.4, the Structure Encapsulation Tree creation phase can be broken 

12 



2.1. Existing Front-End 

into three categories: 

• Regular Control flow. This include analyses for the detection ofWhile and Do-While 

loops and If and If-El se conditional statements. This is followed by analyses to 

determine Swi tch constructs and Labeled-Block accompanied by the identification 

of break and continue statements. 

• Exceptional Control Flow. This involves the detection of the Try-Catch blocks. 

As mentioned earlier the CFG has already been augmented with exception handling 

information available through traps in the Java bytecode. Since Java bytecode does 

not restrict overlapping exception handlers, ensuring that the Try-Catch blocks ne st 

properly within each other is a non-trivial task and requires several analyses. 

• Idiomatic Control Flow. Synchronized blocks are detected in this stage. Although 

Java bytecode is a high level representation yet there is still a large gap between 

the bytecode and the Java source that it represents. The Synchronized detection 

attests to this fact. In Java, synchronized blocks are an easy way of providing mutual 

exclusion. Because of the syntax of the synchronized construct, proper nesting of· 

synchronized blocks is always guaranteed. No such guarantees exist at the bytecode 

level. Also, since the bytecode represents synchronization using the entermonitor 

and exitmonitor bytecodes it has to go through great lengths to ensure that a monitor 

lock acquired is always released e.g., when an exception is thrown while holding 

a monitor lock. In short, the bytecode representation of the Java Synchronized 

construct is complicated and a sophisticated graph analysis is required to be able to 

retrieved the Synchronized blocks from the CFG. 

As each construct is detected a data structure called the Structured Encapsulation Tree 

(SET) is constructed. The last stage of the front-end is the creation of the Abstract Syn­

tax Tree. Previously it was this AST which used to be emitted to a file to produce the 

decompiled Java source. Now the AST is fed into the newly created Dava back-end. 

The AST exposes a different form of the constructed Java and allows for further anal­

yses. Since most of the analyses presented in this thesis work on this AST it is useful to 

familiarize oneself with the constructs making up this tree. The type hierarchy of nodes 

13 



Background: Dava Architecture 

+ grimp 

Control Flow 
Graph Creation 

" 
t AST 

Augmented Control Abstract Syntax 

Flow Graph Creation Tree Creation 

r t 
Regular Control .. Exceptional Control 

~ 
Idiomatic Control 

Flow Detection 
.. 

Flow Detection Flow Detection 

Figure 2.4: The Dava Front-End 

which can occur inside a AST is shown in Figure 2.5. There is a node for each Java con­

struct. There is also one special node called the StatementSequence node which contains 

the statements present in a particular Java construct. These statements are grimp state­

ments which are printed out as Java statements. These include statements like assignment, 

breaks or continues etc. The reason for keeping such a structure for the AST nodes is 

that the nodes are more for the convenience of manipulating different Java constructs and 

less for carrying actual code. 

2.2 New Back-End 

As mentioned before, the purpose of this research was to simplify the output produced by 

Dava. We found that the AST representation of the Java bytecode is the ideal data structure 

to perform these transformations. Figure :2.6 shows the architecture of the back-end cre­

ated. The first step is to perform basic transformations on the AST to make it conform more 

closely to programming idioms. Then simple pattern-based structuring transformations are 

14 



2.2. New Back-End 

AbstractUnit 

1 JNode 
STStatementSe uenceNode ASTMethodNode 

ASTLabeledNode 

STLabeledBlockNode 

STSwitchNode f--------' 

STItElseNode 

STWhileNode 

Figure 2.5: Abstract Syntax Tree Class Hierarchy 

applied. The transformations detect the occurrence of certain sequences of AST nodes and 

replace them with modified nodes representing simplified Java constructs and/or control 

flow. However, it was noted that simple pattern-based transformations are not powerful 

enough in many instances. The third stage in the back-end employs a series of transforma­

tions enabled using flow-analysis information. 

The application of patterns in the second or third stage of the restructuring can enable 

new transformations. The simple pattern-based structuring along with the flow-analyses­

based transformations are therefore applied iteratively until no pattern matches. By care­

fully ordering the transformations and ensuring that transformations always move towards a 

fixed point we are guaranteed that the iterative application of transformation will terminate. 

15 



Background: Dava Architecture 

lAST 

r 
~.,~~, . ~<v:'~ <',-h;<=,\", > 

r$iml'le Pafti5fu BasédStriic~~ring Transformati9ns 

A$T Rewriting;.,using.St:fucturei~~s~tff'~~~:Analyses 
;~i·',,~ m, 

Simplified 
Java Source 

Figure 2.6: The Dava Back-End 

16 



Chapter 3 

A Tree Traversai Aigorithm 

A first step to implementing analyses/transformations on a tree structure is to have a 

good traversai mechanism. Analyses to be performed on Dava's AST require a traversai 

routine that provides hooks into the traversai allowing modification to the AST structure or 

the traversaI routine. 

Inspired by the traversaI mechanism provided by SableCC[GINX], tree walker classes 

were created using an extended version of the Visitor design pattern. The Visitor-based 

traversaI allows for the implementation of actions at any node of the AST, separately from 

AST creation. This allows for modular implementation of distinct concerns and a mec ha­

nism which is easily adaptable to the needs of different analyses. 

The traversaI mechanism also provides IN and OUT methods which are invoked by the 

Visitor design pattern when entering and exiting each subtree node, respectively. Using 

these methods makes the task of subtree rewriting, needed aIl the time for transformations, a 

simple matter of overriding the appropriate method. Usually the transformations use the IN 

methods to gather information regarding the node being traversed. Future transformation 

decisions might use the information stored at this point. If a decision to modify the AST is 

made then often the OUT method is used to perform the transformation. 

An example of the usefulness of the extended Visitor design pattern is the detection, 

and subsequent removal, of spurious Labeled-Blockss. A Labeled-Block is spurious 

if it encapsulates code that never targets the Labeled-Block. The Visitor design pattern 

provides an elegant way of implementing this transformation. Very briefty, such a transfor-

17 



A Tree TraversaI Aigorithm 

mation can be implemented as fo11ows. 

The IN method for entering a Labeled-Block is overridden and the label is stored in a 

data structure used to store a11 "active" labels. The traversai then continues with visiting the 

children of the Labeled-Block. The IN method of break statements is overridden (Note: 

only break statements can target a Labeled-Block). If the break statement explicitly 

targets a label then that label, from the list of active labels, is marked as needed. The OUT 

method of a Labeled-Block block is also overridden. This method checks whether ifs 

label has been marked as needed. If unmarked, this indicates that there was no break 

statement targeting the Labeled-Block and hence the block is spurious and can be re­

moved. 

List activeLabels = new ArrayList(); 

List neededLabels = new ArrayList(); 

public void inASTLabeledBlockNode(ASTLabeledBlockNode node){ 

activeLabels.add(node.getLabel()); 

} 

public void inBreakStatement(BreakStatement stmt){ 

NodeLabel label = stmt.getLabel(); 

if(activeLabels.containsClabel){ 

neededLabels.addClabel); 

} 

} 

public void outASTLabeledBlockNodeCASTLabeledBlockNode node){ 

ifCneededLabels.containsCnode.getLabel)== false){ 

Iispurious labeled block detected 

Iluse AST rewriting to remove the labeled block 

} 

} 

Figure 3.1: Pseudo-code for sample tree-traversal 

18 



3.1. Finding AST Parent Nodes 

Apart from allowing transformations on the AST, the Visitor mechanism can also be 

used to gather information for other transformations/analyses to use. In the remaining 

sections of this chapter we discuss sorne of the tree traversaIs that have been implemented 

which play a supporting role for other transformations. 

3.1 Finding AST Parent Nodes 

The Parent-Node Finder traversaI is responsible for gathering information regarding the 

different constructs in the AST. The class produces a HashMap, keyed by a node in the 

AST and the parent of this construct as the value. In terms of this traversaI a construct is 

either a Java construct e.g., If, Do-While etc. or any grimp statement present within the 

Statement-Sequence node of the AST. 

This analysis is required since transformations often traverse the AST and, at sorne 

stage during the traversai, decide that a particular node has to be moved/replaced. Since 

such a modification requires ancestor information it might have been a good idea to store 

a parent pointer within each of the AST constructs. As the original implementors of Dava 

had not intended to perform AST analyses this information is currently not present in the 

AST class definitions. One option would have been to go through the code that creates and 

manipulates AST nodes and add parent information. Instead we chose to write this helper 

analysis which can be used to get appropriate parent information whenever needed. 

The traversaI algorithm works as a wrapper around the AST. It can be queried at any 

time during a transformation to provide ancestor information. An example of the use of 

this helper traversaI is in the case of copy elimination (Section 7.2.1) where to remove a 

particular copy statement the Statement-Sequence node containing this statement has to 

be found. 

3.2 Finding the Closest Abrupt Target 

Java programs contain two types of abrupt control f10w statements: continue and break. 

The continue statement is used to terminate the current iteration of the closest loop. On 

encountering a continue statement the program execution continues with the re-evaluation 

19 



A Tree TraversaI Algorithm 

of the condition of the loop. For the case of For loop the update statements are executed 

before the evaluation of the condition. 

The break statement can be used to terminate the execution of not only the closest loop 

but also the execution of the closest Swi tch statement. In each case the program execution 

continues from just after the end of the statement broken. 

The semantics discussed above are for Implicit break and continue statements. Java 

also has Explicit break and continue statements. These are statements of the form: break 

labelN j and explicitly target a labeled construct within the code. With explicit breaks the 

program execution breaks the labeled construct explicitly stated in the statement. Explicit 

breaks are more powerful in the sense that they can be used to break from any Java con­

struct which has a label. In our implementation this would mean ail ASTNodes inheriting 

from the ASTLabeledNode (Figure 2.5). Explicit continues on the other hand do not 

introduce new statements that can be targeted by continues. The advantage of explicit 

continues is that these can be used to break out of an outer loop from within an inner 

nested loop. 

Finding the targets of explici t abrupt statements is easy since the label targeted is 

explicitly mentioned in the abrupt statement. However, in the case of an Implicit break 

or continue statement the construct targeted has to be tracked by moving up the AST. A 

traversaI was implemented which keeps track of the CUITent construct that might be targeted 

by an Implicit abrupt statement (a stack where targetable nodes are pu shed when entering 

the node and popped when exiting them). A mapping is created where the key is the abrupt 

statement and the value the current targetable construct (top ofthe stack). This information 

can be used by other analyses and is also used internally within the structure based flow 

analysis framework (Chapter 6). 

3.3 Finding ail variable Uses 

A depth first traversaI of the tree is utilized to find ail the uses of a local variable within 

a method. Similarly, ail the uses of a field within a particular method can also be found. 

The results of the traversaI can then be queried. Given a local or field as the key, the results 

provide a list of ail places where this variable might be used. A number of transformations 

20 



3.4. Finding ail Definitions 

e.g., ensuring that final fields get defined on ail paths and only once (Section 7.4.1), use 

these results. 

3.4 Finding ail Definitions 

Another trivial analysis, this gathers a list of ail definitions (assignments to locals or fields) 

within a method. This information is used by a number of analyses including the 

newlni tialFlow implementation of the reaching defs flow analysis (Section 7.1). The 

following tree traversaI analysis is another analysis which uses the definitions found by this 

analysis to gather further information. 

3.5 Constant Primitive Field Value Finder 

This analysis finds ail primitive fields that have a constant value throughout the execution of 

a program. This information helps to give the extra information needed for more accurate 

constant propagation as discussed in Section 7.3.2. 

The algorithm is a two-step process. In the first step ail definitions for ail fields with 

primitive type in the application are collected. The ail definitions finder analysis, discussed 

in the previous subsection, is used to return a li st of ail definitions in each method. Defini­

tions to non-primitive fields are removed. At the end ofthis stage a Iist is created containing 

ail places in the code where the field might be assigned. 

The second step processes each field one at a time. Aigorithm l shows this stage. 

As mentioned earlier, the analysis only tracks values of fields with primitive types. Java 

compilers store constant values for static final fields inside the constant pool. The SOOT 

framework converts the se constant values to tags to which Dava has access. Hence the 

first step for a primitive type field (as shown in Algorithm 1) is to look up whether there 

is a constant value tag for this field. If one is found, the constant value tag provides the 

value for this field. If not, then the list of definitions found in stage one of the analysis is 

checked. If there is no definition for this field that means the field is never assigned a value. 

We can therefore assume that the field gets the default value for this primitive type field i.e., 

21 



A Tree TraversaI Algorithm 

booleans get false and others get zero. We can henee return the default constant value for 

this field. 

If there were sorne assignments to this field then the algorithm checks that all the as­

signments are default value assignments. This check must be made because a context­

insensitive inter-procedural analysis do es not keep track of the order of execution of state­

ments. Renee a daim for the value of a field, after the execution of an unordered set of 

assignments to the field, can only be made if all assignments assign the same value to the 

field. Further, sinee a field might not be initialized, at dedaration time, in which case it 

is assigned the defauIt value, a c1aim can in fact only be made if aB the assignments to a 

particular field are default values. 

The end result of this analysis is a list of fields which always have the constant values. 

This can include fields which are final and hence are by definition constant or fields which 

are either never assigned or are always assigned the default value. 

22 



3.5. Constant Primitive Field Value Finder 

Aigorithm 1: Finding constant valued fields 
Input: SootFieldfield, List defList 

Output: Constant value if found else null 

IIOnly deal with primitive fields 

if !(field.getType () instanceof PrimType ) then 
return null 

lista tic final fields have constant value tags 

if hasConstantValueTag(field) then 
return getConstantValueTag (field) 

Iliffield is never assigned 

if deflist.size 0 == a then 
1 return createDefaultValue (field.getType 0); 

else 
lifield is assigned some value within the code 

forall definitions d, in detList do 
IIAssignment should only be default assignment 

if !d.isDefaultAssigrunent 0 then 
return null; 

end 

IIAll assignments were default 

return createDefaultValue (field.getType 0); 

23 



A Tree Traversai Aigorithm 

24 



Chapter 4 

Basic AST Transformations 

The ability to traverse the AS T, using a Visitor-based design pattern, allows for mod­

ular implementation of transformations. New traversaIs of the AST checking for simple 

patterns can be implemented and plugged into the Dava back-end by inserting a calI to the 

new transformation in the already executing list of transformations. Given the traversaI 

mechanism, at a bare minimum, the mechanism can be used to transform Dava's output to 

produce code conforming more closely to programming idioms. 

Programming idioms are common programming practices among the programmer com­

munity. These are highly subjective since they deal with a programmer's personal prefer­

ence and style of coding. Nevertheless, in this section, we discuss sorne programming 

idioms which, in our view, make pro gram comprehension easier. 

4.1 Condition Simplification 

Expressions evaluating to boolean types are often used as unary conditions. An artifact of 

the restrictive condition grammar in Dava (Figure 5.2) resulted in representation of such 

boolean expressions as binary operations, comparing the expressions to the boolean con­

stants false or true. 

Figure 4.1 shows the different conversions that can be carried out. Since most program­

mers are used to reading boolean expressions in the form of unary conditions the effect of 

these transformation is that code becomes less verbose and easier to read. 

25 



A != false ---> A 

A != true ---> !A 

A == false ---> !A 

A == true ---> A 

Basic AST Transformations 

Figure 4.1: Converting Binary Conditions ta Unary Conditions 

Applying this pattern on our working example of Figure 1.2(e) results in the simplifi­

cation of the two boolean conditions in Statement 3 and 4. 

4.2 Shorteut inerements and deerements 

Another simple transformation for ease of reading code is the use of shortcut increment 

and decrement statements. It is common practice to represent the increment statement 

i = i + 1 using the increment operator ++ and using a similar decrement operator for the 

i = i - 1 statement. This transformation replaces occurrences of i = i + 1 with i++ and i=i-I 

with i- -. A more general case for this is when a variable is updated using the previous value 

of the variable along with a constant. For example, the expression x = x + 2 is converted to 

x += 2. 

4.3 De-Inlining Statie Final Fields 

Standard Java compilers inline the use of static final fields. The reasoning is that since the 

field is final the value is not going to change and hence the constant value can be used in 

the bytecode instead of having to look up the value from a c1ass attribute. The decompiled 

output therefore contains the constant values wherever there was a static final field in the 

original code. We think it is a good idea to recover the use of the field that was used 

in the original code since the name of the field might be able to deliver sorne contextual 

information to the programmer. A transformation was written which keeps a pool of ail 

26 



r - , 

4.4. Variable Declarations and Initialization 

static final fields and their corresponding values found in a particular class. A depth first 

traversai is then carried out that checks for the occurrence of constant values in the code. 

When a constant value is encountered it is checked with the list of known values for the 

different static final fields. If there is a match then the use of the constant value is replaced 

by the use of the static final field. For example in Figure 4.2(a) the createMinArray method 

returns a new array with size 5. However, a static final MINSIZE is also declared with the 

value 5. The De-Inlining transformation will detect this occurrence and generate code as 

shown in Figure 4.2(b). This kind of transformation allows for more use of identifiers in 

the code and the contextual information provides the programmer insight into the code. 

(a) Inlined field 

1 static final int MINSIZE = 5j 

3 public int[] createMinArray(){ 

return new int[5]j 

5 } 

(b) De-Inlining 

1 static final int MINSIZE = 5j 

3 public int[] createMinArray(){ 

return new int[MINSIZE]j 

5 } 

Figure 4.2: Delnlining Statie Final Variables 

4.4 Variable Declarations and Initialization 

Dava was previously unable to convert multiple variable declarations into a single dec­

laration. AIso, previously a dec1aration and the subsequent initialization of the variable 

was always broken into two consecutive statements (Figure 4.3(a)). A transformation now 

aggregates variables with the same type into one dec1aration. Also a variable which is 

initialized as soon as it is declared can now be initialized as part of the declaration (Fig­

ure 4.3(b)). This is a corn mon programming idiom and makes the code more naturaI. 

27 



1 int a; 

2 int b; 

3 b=3; 

4 int C; 

(a) Unreduced 

Basic AST Transformations 

(b) Reduced 

1 int a, b=3,c; 

Figure 4.3: Variable Declarations and lnitialization 

4.5 String concatenation 

String concatenation in Java can be carried out using the overloaded + operator. The se­

manties of the operation allows for the addition of a String to a primitive type or any object 

(whose toString method is automatically invoked to get its String representation). For 

instance the argument "hello" + 5 represents the concatenation of the String "hello" with 

the String representation of the integer 5. In bytecode this conversion is achieved by us­

ing the StringBuffer class. A new StringBuffer is created whenever String coercion 

is required and the operands to the addition operator are appended to the StringBuffer. 

The final output is the toString of the StringBuffer. For instance the argument "hello" 

+ 5 would be represented as 

((new StringBuffer()).append("Hello").append(5).toString()). 

We have implemented a transformation that looks for this pattern and retrieves the argu­

ments to the chained append methods. From there the argument is reconstructed using the 

+ operator. 

A common occurrence of this is the System. out. println method invocation, used to 

output information. Programmers normally pass, as argument to this method, the expres­

sion which might contain implicit String coercion using the overloaded + operator. With 

this transformation we are able to retrieve the original expression written by the program­

mer. Figure 4.4 shows such an example where the verbose code previously generated by 

the decompiler has now been simplified using the + operator. In our view this makes the 

28 



4.6. Shortcut Array Declarations 

code much easier to read and adhere more closely to general programming practices. 

(a) Unreduced 

1 System.out.println( 

(new StringBuffer()).append("Hello").append(5).toString()) 

(b) Reduced 

1 System.out.println("hello"+5) 

Figure 4.4: String Concatenation 

4.6 Shortcut Array Declarations 

Arrays can be initialized using the shortcut declaration and initialization statement. For 

example an array of the first five primes can be declared using: int[ ] primes = {I ,2,3,5,7}; 

When compiled the Java bytecode represents this as the initialization of an array of size 

5 followed by the assignment of each of the five elements of the array. The decompiled 

output for the primes array, as represented in the bytecode, is shown in Figure 4.5(a). 

A pattern has been devised which converts the verbose array initialization code of Fig­

ure 4.5(a) to the shortcut array declaration shown in Figure 4.5(b). Algorithm:2 shows 

the transformation which looks for this pattern. The algorithm is self-explanatory. Briefly, 

we start by looking for a statement which creates a new array. If one is found then we find 

whether the length of the array is a known constant. This is important since we can only use 

the shortcut array initialization statement if ail elements of the array are being initialized. 

If the size of the array is known then we check the subsequent statements. If all of them 

initialize the appropriate element location i.e., the elements are initialized in order, the 

29 



Basic AST Transformations 

(a) Unreduced (b) Reduced 

int [ ] primes = new int [5] j int[ ] primes {1,2,3,5,7}j 

primes [0] = 1· , 
primes [1] = 2; 

primes [2] = 3; 

primes [3] = 5; 

primes [4] = 7; 

Figure 4.5: Verbose declaration of the primes array 

pattern is matched. The verbose array creation and initialization statements are removed 

and replaced with the shortcut declaration and initialization statement. 

4.7 Removing default constructors 

A Java class does not need to have a declared constructor if certain conditions exist. These 

are: the presence of only one constructor and the constructor being the default constructor 

i.e., the constructor takes no arguments and executes no code except for the invocation of 

the default super constructor. When a class containing no constructor is compiled, Java 

compilers produce the default constructor as the <ini t> method which is then invoked in 

the bytecode whenever an object of this class is created. 

When decompiling a class with a default constructor the reverse approach can be taken. 

If the bytecode contains only the default constructor then this constructor can be removed. 

Algorithm 3 shows in pseudo-code the process of checking whether a constructor can be 

removed from the class definition. 

The algorithm starts off by finding aIl constructors defined by the class. If there is more 

than one constructor the algorithm quits since in the presence of an overloaded constructor 

along with the default constructor we cannot predict that aIl objects will invoke the over­

loaded constructor. If there is only one constructor then it is checked whether this is the 

30 



4.7. Removing defauIt constructors 

Aigorithm 2: Shortcut Array declaration and initialization 

Input: ASTStatementSequenceNode node 

List stmts = node.get8tatements 0 

Iterator it = stmts.i terator 0 

white it.hasNext 0 do 
Stmt s = it.Next 0 

if ! (s. containsNewArrayExpr 0) then 
IIFirst stmt ofpattern should contain a new array creation 

continue 
if ! (s. getArrayExpr 0 .get8ize 0 instanceof IntConstant ) then 

IICan only apply pattern for arrays declared with known size 

continue 
int length = s. getArrayExpr O. get8ize 0 

for int i=O;i<length;i++ do 

if ! (it.hasNext 0 ) then 
IINot ail array elements initialized 

transform = false 

break 
Stmt temp = stmts.get (stmts.indexOf (s) + i) 

if stmt t emp does not initialize index i of array then 
IICan 't continue since we require inorder initialization of elements 

transform=fa1se 

break 
end 

if transform then 

end 

IIRemove statement s and the foilowing length number of stmts 

IICreate the new shortcut declaration and initialization stmt 

IIAdd statement to position currentlndex in the statements List 

31 



Algorithm 3: Removing the Default Class Constructor 

Input: SootClass sootClass 

constructorList +-- sootClass.RetrieveConstructors 0 

if constructorList.sizeO != 1 then 

1 

//class contains more than one constructor 

return; 

end 

SootMethod constructor = constructorList.getO 

if constructor.getParameterCount 0 != 0 then 

1 

//constructor not the default constructor 

return; 

end 

Body methodBody = constructor.getAct i veBody () 

if! methodBody.isEmptyO then 

1 

//constructor doesnt have an empty body 

return; 

end 

Basic AST Transformations 

InvokeExpr superInvocation = methodBody.getConstructorExpr () 

if superlnvocation.getArgsCount 0 != 0 then 

1 

//super invocation not the default invocation 

return; 

end 

//all conditions fullfilled. Remove the constructor 

sootClass.removeMethod (constructor) 

default constructor i.e., it has no arguments in its method signature. If we do find that 

the only constructor has no arguments in its signature then the method body's contents are 

checked. If there is no code, except for the default super invocation, we can continue with 

the removal algorithm. 

A related improvement in the output produced is the removal of default super invoca­

tions from a constructor's body. Whenever a Java constructor is invoked, if a super cali 

is not explicitly present as the first statement in the method body, the default super con-

32 



4.8. The super invocation 

structor is automaticalIy invoked. Hence, if a constructor has an explicit super cali to the 

default parent constructor then this statement is redundant. Such an invocation is therefore 

removed from the constructor body. Obviously this only works when the explicit super 

invocation is the default invocation i.e., a super invocation without any arguments. 

4.8 The super invocation 

The Java specification requires any calI to a constructor (super 0 or this 0) to be the first 

statement in a constructor's body. Since such a restriction does not exist at the bytecode 

level, the bytecode representation of a constructor can have code preceding the invocation 

of the < ini t> method. 

Even though one cannot write statements before the invocation of this 0 or super 0 

in Java, the compilation of a method might result in bytecode being placed before the 

invocation of another constructor from within the constructor's body. For instance if the 

code in Figure 4.6(a) is compiled, the produced bytecode (Figure 4.6(b)) has the invocation 

of the iterator method before the calI to <init> (Statements 5 to 10 in Figure 4.6(b)). 

Sections 4.8.1 discusses this in more detail and Section 4.8.2 discusses similar issues for 

bytecode produced by an AspectJ compiler. 

Naively decompiling such code would result in uncompilable code unless the state­

ments added before the invocation of the parent constructor are handled appropriately. 

Section 4.8.3 discusses the solution implemented in Dava. 

4.8.1 Invalid code using complicated expressions 

Figure 4.6(a) shows two classes A and B where B extends A. The constructor of B invokes 

the parent constructor using the Java super statement. However, within the arguments 

of the super calI the Iterator "it" is being assigned the same value as the argument 

being sent to the parent constructor. This is valid Java code since the super class A expects 

an Iterator as the argument to its constructor. Aiso since the calI to super is the first 

statement in the constructor of B, the code will compile since aIl Java requirements are 

satisfied. 

33 



(a) Original Code 

1 elass A{ 

4 } 

public A(Iterator it){ 

} 

5 elass B extends A{ 

10 } 

public B(List list, 

Iterator it){ 

super(it=list.iterator()); 

} 

Basic AST Transformations 

(b) Jasmin Code 

1 .method public <init> 

(Ljava/util/List;Ljava/util/lterator;)V 

3 .limi t staek 3 

4 .Iimit Ioeals 3 

5 aIoad_O 

fi aload_l 

7 invokeinterfaee java/utiI/List/iterator() 

Ljava/util/lterator; 1 

9 dup 

10 astore 2 

II invokespeeial 

12 AI <ini t> (Lj ava/util/Iterator;) V 

13 return 

14 • end method 

Figure 4.6: Complex Expressions 

At the bytecode level, the cali to super is converted to a series of bytecodes which 

tirst evaluate the argument of the cali to super and then invoke the super method. The 

evaluation of the argument results in the invocation of the i terator method of the List 

class and the assignment of the result to the constructor parameter "it". This evaluation 

is shown in Figure 4.6(b) by statements 5 to 10. Statement Il is the invocation of the 

constructor of the parent class. 

As expected given the bytecode in Figure 4,6(b) Dava produces the output shown in 

Figure 4.7. Statements 2 and 3 are the evaluation of the argument and statement 4 is the 

invocation of the parent constructor using the evaluated argument. The decompiled output 

is correct decompilation of the bytecode but is incorrect Java code since the cali to the 

parent constructor (Statement 3) is not the tirst statement of the method. The decompiled 

code obviously does not recompile. 

It can be argued that since the original code was able to represent the evaluation of the 

34 



4.8. The super invocation 

1 public B(List rl, Iterator r2){ 

Iterator r3; 

5 } 

r3 = rl.iterator(); 

super(r3); 

Figure 4.7: Uncompilable code due ta incorrect placement of su.per 

argument within the invocation of the parent constructor, the decompiler should be able to 

reconstruct the expression as an argument to the parent constructor. This is indeed correct. 

However, there can be other occurrences where code might get added before the invocation 

of the parent constructor which we discuss in the next section. 

4.8.2 Invalid code using Preini tialization in AspectJ 

AspectJ[KHH t, abc] is an aspect-oriented extension to Java. It en­

ables clean, modular implementation of cross-cutting concerns such as logging and error 

handling. The AspectJ language introduces a set of constructs, called pointcuts, which can 

be used to pinpoint locations in the execution of code where the behavior of the program 

can be altered if the need be. One such construct is the preini tialization construct. 

Using this construct the programmer is able to target the point just before the execution of 

the superO call within the execution of a constructor. The programmer can weave advice 

at this point which is executed whenever this execution point is reached. One possible 

kind of advice is before advice which lets the programmer add code to run before the 

matched point in the program. The result of weaving before advice on a pointcut using 

the preini tialization construct maps to adding code at the start of the constructor. If 

however, in the original constructor the first statement was an invocation of another con­

structor (parent or own class) the advice is added before this invocation. This is exactly 

what Java disallows. An example is shown in Figure 4.8(a). There are two classes A and B 

where B extends A. B's constructor invokes super and then executes a print statement. An 

35 



Basic AST Transformations 

aspect is then introduced which prints out the string "before preinit" before the invocation 

of the parent constructor. Using an AspectJ compiler such as abc [abç] the two classes and 

the aspect are compiled. 

(a) Original Code 

1 class A { 

public AO{ 

} 

4 } 

5 class B extends A { 

public BO{ 

} 

super 0 j 

S.O.println("hello")j 

10 public static void main C 

II String [] args){ 

12 B b = new B 0 ; 
13 } 

14 } 

15 aspect Aspect { 

Iii beforeO: 

(b) Runtime Behaviour 

1 before preinit 

2 hello 

(c) Dava's Output 

1 public class B extends A{ 

public BO{ 

} 

Aspect.aspectOf(); 

S.O.printlnC"before preinit"); 

super 0 j 

S.O.printlnC"hello") ; 

public static void main 

(String[] rO){ 

17 preinitialization(B.newO) { 10 B ri; 

I~ 

19 

20 } 

S.O.printlnC"before preinit") j Il ri = new BO; 

} 12 } 

13 } 

Figure 4.8: Effeet of a preinitialization pointeut targeting a eonstruetor with before adviee 

The execution of class B's main method results in the creation of an object of type 

B. The output from this is shown in Figure 4.8(b). Notice the string "before preinit" gets 

printed before the string "hello". The reason being that the advice is executed before the call 

to the parent constructor. The decompiler output produced for the constructor of class B is 

shown in Figure 4.8(c). Statements 1 and 2 are the before advice, followed by invocation 

36 



4.8. The super invocation 

of the parent constructor in statement 3 and then statement 4 is B's constructor's remaining 

body. Clearly this decompiled code produces the same output as in Figure 4.8(b), however, 

it is not compilable code. The reason being that the invocation of the parent constructor is 

not the first statement in B's constructor. 

Before talking about correcting Dava's output it is worth mentioning that both Jad and 

SourceAgain also fail to produce correct code. Although Jad fails to decompile AspectJ 

produced Java bytecode most of the time, it is able to decompile the bytecode produced 

by the simple example in Figure 4.8(a). The output in this case is exactly that of Dava's 

(Figure 4.8(c)). SourceAgain does pro duce compilable Java code but with one major flaw. 

Its output contains only Statements 1, 2 and 4 of Figure 4.8(c). So in this case although 

the output produced by SourceAgain is compilable it is semantically not equivalent to the 

bytecode being decompiled. In our view this output is even more incorrect than the uncom­

pilable code produced by Dava and Jad. 

4.8.3 Transforming invalid code using indirection 

To avoid compilation errors produced by Java compilers the super 0 or this 0 invocation 

needs to always be the first statement in a constructor's body The most elegant solution for 

this is to execute the extra code as an argument to the constructor invocation. This is 

illustrated in Figure 4.9 which shows a c1ass A and its constructor. The code in (a) shows 

invalid pseudo-code because of the presence of the offending statement chunk marked X 

before the invocation of super. This error has been fixed in (b) by moving the offending 

code, X, as an argument to super. In the remaining section we de al with the algorithm 

implemented in Dava dealing with moving the chunk X as an argument to super. 

Code X in Figure 4.9(a), which we want to execute as an argument to super, can be 

any arbitrary code. It could be the complex evaluation of an argument (as discussed in 

Section 4.8.1) or it could be sorne code added by the application of sorne advice (Sec­

tion 4.8.2). Hence, it is not possible to handle all cases as an evaluation of an expression in 

an argument ta super. Instead a method invocation, executing X as an argument ta super, 

is required. Let' s name this method Pre lni t. AIso, if we want this method to be part of the 

same c1ass which contains the constructor with the compiler error (c1ass A in Figure 4.9(a)) 

37 



(a) Invalid pseudo code 

1 class A{ 

public A«argsl»{ 

III } 

Il } 

x --------- Ilcode causing 

--------- Ilcompilation error 

super «args2» 

y ---------

Basic AST Transformations 

(b) Valid pseudo code 

1 public A«argsl»{ 

super«args2>, X) 

4 Y ---------

6 } 

Figure 4.9: Avoiding compilation errors due to super invocation 

this method needs to be statie. This is so because a non-statie method of a cIass cannot be 

invoked until the constructor of the cIass has finished executing. Figure 4.1 O(a) shows the 

creation and invocation of the Prelni t method. Code X is executed as the body of method 

Prelnit. 

However, it might not be possible to introduce a new constructor in the parent class. An 

example of this is when the parent class is a library cIass which one does not have access to 

or one does not want to change. This issue is handled by introducing a new constructor in A 

whieh takes one extra argument (marked SOMETYPE in Figure 4, 1 O(b )). The old constructor 

invokes this new constructor with the Prelni t method as the last argument. The Prelni t 

method executes code X and returns SOMETYPE. The remaining code (super and code Y) 

from the old constructor is moved into the newly created constructor. 

Another issue is that copying code X into the newly created method may result in 

undefined variables. The code in X could be using any of the arguments of the constructor 

(args 1 in Figure 4. JO(a)). This is handled by passing args 1 i.e., ail arguments to the old 

constructor as arguments to the newly created Prelni t method. 

38 



4.8. The super invocation 

(a) Using a static method to execute code X 

1 class A { 

10 

Il 

public A«argsl»{ 

super«args2>,A.Prelnit()) 

y ---------

} 

private static void Prelnit(){ 

x ---------

12 } 

13 } 

(b) Creating a new constructor 

1 public A«argsl»{ 

this«argsl>,A.prelnit«argsl»); 

3 } 

4 public A«argsl>,<SOMETYPE»{ 

super«args2»; 

7 Y ---------

9 } 

10 private static SOMETYPE 

Il Prelnit«argsl»{ 

12 

13 X ---------

14 

15 return SOMETYPE; 

16 } 

Figure 4.10: /ntrodueing the private statie Pre/nit Method 

Now let us discuss what the return type (SOMETYPE in Figure 4.1 O(b)) should be. One 

thing to note is that it is quite possible that code X, which is executed before the invocation 

of super, could define sorne variables that are part of the arguments to super i.e., part of 

args2. Hence SOMETYPE needs to be a data structure which can be used to return ail possible 

arguments in args2. 

Also since args2 can be zero or more arguments we want SOMETYPE to be a data struc­

ture which can return a list of arguments. Different arguments of args2 could then be re­

trieved from within this data structure using a get method. However, there is also another 

consideration: the newly constructed constructor, the one which has parameters args 1 and 

SOMETYPE needs to be unique. It is therefore not possible to use any existing Java Iibrary 

collection class as SOMETYPE since then we stand a chance of creating a constructor with 

39 



Basic AST Transformations 

a signature which might already exist. For example, if the original args 1 had an integer 

type as the only argument and we chose an ArrayList as SOMETYPE then the new constructor 

would have two arguments, an integer followed by an ArrayList. There is a possibility, 

however remote, that such a constructor already exists in the c1ass. 

In order to avoid such an occurrence we decided to create a new data structure with a 

unique type for the application. The data structure is a wrapper c1ass for the Java Vector 

c1ass. This new c1ass, named DavaSuperHandler, allows the method Prelnit to store all 

the args2 and return them as an argument to the new constructor. We are also guaranteed 

that the signature of the new constructor will not match any existing constructor as we just 

created DavaSuperHandler which is the last argument of the constructor. 

Figure 4.]] shows the Prelnit method with DavaSuperHandler as its return type. 

Also the new constructor has DavaSuperHandler as its last argument. In Prelnit the 

method stores args2 into handler before returning this object. This is possible since all 

of these arguments are either any of args 1 or any variable dec1ared or detined in the code 

X. The new constructor retrieves these arguments using the get method detined in the 

DavaSuperHandler c1ass. 

With these changes to the code the old constructor now executes X followed by a cali to 

super and then body Y. To see this lets follow the chain of events. When the old constructor 

is invoked this results in the invocation of the new constructor. However before the new 

constructor is executed all arguments to the constructor have to be evaluated. We have 

added to the arguments our own Prelni t method which causes code X to get executed. 

Once this code is executed all values of args2 are packaged in a DavaSuperHandler object 

and made available to the new constructor. The new constructor then invokes super. In 

its arguments it retrieves the args2 stored within the DavaSuperHandler object returned by 

Prelni t. Once super has executed, then code Y is executed. This chain of execution 

satisties the language rules since the tirst statement in the old and the new constructor are 

al ways either an invocation of another constructor of the same c1ass or an invocation of the 

parent constructor. We also make sure that the new constructor's signature does not conflict 

with any existing constructor and also that the Prelni t method is uniquely detined in the 

class. 

40 



4.8. The super invocation 

1 public A«args1»{ 

this«args1>,A.prelnit«args1»); 

3 } 

4 public A«args1>,DavaSuperHandler handler){ 

super(handler.get(O), .... handler.get(n)); 

/* 

III 

* where n are the number of arguments in 

* the super invocation 

*/ 

II y ---------

12 

13 } 

14 pri vate static DavaSuperHandler Prelni t «args1» { 

15 

16 X 

17 

IX 

19 

20 

21 } 

DavaSuperHandler handler = new DavaSuperHandler(); 

/lcode ta store args2 into handler cornes here 

return handler; 

Figure 4.11: Storing and Retrieving args2 

41 



Basic AST Transformations 

42 



Chapter 5 

Simple Pattern Based Structuring 

Most of the transformations implemented to simplify the output are targeted towards 

control f10w simplifications. These are handled as the second stage of Dava's back-end after 

the application of basic programming idioms to the AST. Figure 5.1 shows the sequence 

of application of the transformations in this stage. As seen from the figure, control f10w 

simplifications can be broadly divided into three main categories: conditional aggregation, 

loop strengthening and handling abrupt control f1ow. The order of application of these 

transformations has been carefully chosen in order to maximize the number of patterns 

matched using the minimum number of traversaIs through the tree. However, even with 

this ordering, traversaIs sometimes have to be reapplied since the matching of a later pattern 

might enable a preceding transformation. In the next three sections we discuss, in detail, 

the patterns and related transformations. 

5.1 Conditional Aggregation 

The cryptic control f10w in the decompiled output is complex largely due to the fact that 

Java bytecode only allows binary comparison operations for deciding control f1ow. How­

ever, this restriction does not exist in Java where boolean expressions can be aggregated 

using the && and Il operators. Previously, Dava did not make use of this ability and hence 

converted each comparison operation into a separate conditional construct. This results in 

the creation of unnecessary Java constructs and their complicated nesting further increases 

43 



Simple Pattern Based Structuring 

AST 

Figure 5.1: Simple Pattern Based Structuring 

code complexity. For instance, an If statement evaluating two conditions using the && 

operator in the source code gets decompiled into two If statements, one completely nested 

within the other. Similarly, if a loop checks for multiple conditions in the source this gets 

transformed into a loop with one condition. The remaining conditions are checked within 

the loop body. By statically checking for such patterns, and merging the different condi­

tions, the number of Java constructs can be reduced, thereby reducing the complexity of 

the output. 

The reason that Dava, until now, did not use the ability to represent aggregated condi­

tions in Java is that the grimp intermediate representation, which is the input to the decom­

piler, only contains binary comparison operators. The remaining parts of this section are 

divided as follows: we first enrich the grimp grammar by giving it the ability to represent 

both unary conditions and aggregated conditions along with the existing binary conditions 

(Section 5 .l. 1). Then in Section 5.1.2 we discuss the pattern which is used to aggregate 

two If statements by combining their conditions using &&. In Section 5.1.3 we discuss a 

number of patterns which combine If and If-El se statements using the Il operator. 

44 



5.1. Conditional Aggregation 

5.1.1 Grammar for aggregated boolean expressions 

AIl types of AST nodes extending ASTControlFlowNode in Figure 2.5 contain a condition 

which decides the flow of control through the program. The old grammar (grimp) and the 

new enriched grammar, used by Dava, for the condition that can occur in the control flow 

nodes are presented in Figure 5.2. The old grammar is very restrictive in the sense that 

it only allows binary comparison operations. Unary conditions, that evaluate to true or 

false in Java, are not allowed by the grammar. To be able to represent such conditions 

using the old grammar a unary expression has to be compared with the BooleanConstants 

true or false (Section 4. !). This results in decompiled code that looks machine generated 

and is generally less readable. 

Another issue with the old grammar was that expressions could not be aggregated with 

logical symbols && and Il. In the old grammar, an arbitrary boolean expression can be 

represented only by breaking the expression into multiple binary comparison control flow 

checks. This results in complicated control flow and causes the output of the decompiler 

to have many levels of nestings because of the use of many simple checks. To reduce the 

complexity of the control flow and at the same time improve the readability of the code, it is 

preferable to have relatively complicated checks, as is possible with the new grammar, but 

use only a few of them. Chapter 9 defines Conditional Complexity based on this enriched 

grammar. It is expected that as the conditional complexity increases, due to increased 

aggregation, the number of conditional constructs will decrease. 

The important additions made to the grammar, as can be seen in the right side of Fig­

ure 5.2, are the addition of unary expressions (e.g. a boolean variable, a method returning 

a boolean etc), the introduction of && and Il symbols and the composition of unary and 

binary conditions using these symbols. Note that the grammar presented in Figure 5.2 is 

an ambiguous grammar. The purpose of the grammar is to illustrate the different types of 

conditions that can occur, within the Dava AST. The SootExpr in the grammar is treated as 

a token in the grammar. Additionally, for the case of the BoolSimpleExpr aIl alternatives 

for this production are restricted to have boolean types. 

The addition of the new grammar has been carried out in such a way that the previous 

analyses built in Dava still function as intended although without using the expressiveness 

45 



ConditionExpr ::= SootExpr condop SootExpr 
Condop ::= > 1 < 1 == 1 != 1 <= 1 >= 

Simple Pattern Based Structuring 

Condition :: = Simple Condition 1 
Condition && Condition 
Condition Il Condition 

SimpleCondition ::= ConditionExpr 1 

UnaryExpr 
UnaryExpr ::= ! UnaryExpr 1 BoolSimplcExpr 

BoolSimpleExpr ::= id 1 true 1 false 1 SootExpr 

ConditionExpr ::= SootExpr condop SootExpr 
Condop ::= > 1 < 1 == 1 != 1 <= 1 >= 

Figure 5.2: Dava's AST Condition Grammar 

of the added grammar. New analyses introduced into Dava are implemented using the new 

grammar. 

5.1.2 And Aggregation 

And aggregation is used to aggregate two If statements into one using the && symbol. 

Figure 5.3(a) shows the control flow of two If conditions, one fully nested in the other. 

From the control flow graph it can be seen that A is executed only ifboth condi and cond2 

evaluate to true. B is executed no matter what. In Figure 5.3(b) we see the reduced form 

of this graph where the two If statements have been merged into one by coalescing the 

conditions using the && operator. Statements 9 to 13 in Figure L2(e) match this pattern. 

The matched pattern and the transformed code are shown in Figure 5.4. 

The pattern not only decreases the nesting level of constructs, by removing the inner 

nested If statement, but also shrinks the overall size of the code. By shrinking the size 

of the code using such an aggregation strategy the code becomes more readable and the 

control flow is easier to follow. 

ln order to apply this transformation it is important to ensure that the nested If state­

ment should be the only construct within the parent If statement. More specifically, during 

a depth first traversaI of the AST this pattern is matched if: 

46 



5.1. Conditional Aggregation 

if(condl){ 
if( cond2) { 

A 
) 

) 

B 

(a) Unreduced 

if (condl && cond2) { 
A 

B 

(b) Reduced 

Figure 5.3: Reducing using the && operator. 

(a) Original Code 

1 if(iO < 3){ 

5 } 

if(il == l){ 

break label_O; 

} 

(b) Transformed Code 

1 if(iO <3 && il == l){ 

break label_O; 

3 } 

Figure 5.4: Application of AnàAggregation 

47 



Simple Pattern Based Structuring 

• An If statement SI has a child S2 

• S2 is an If statement 

• S2 is the only child of SI 

Aigorithm 4 shows the algorithm used to detect the And Pattern and to transform the AST 

accordingly. 

Algorithm 4: And Aggregation 

Input: ASTNode node 

if node is an If Construct then 

B +- GetBody(node) 

if B has one ASTNode then 

v+- GetNode (B) 

if v is an If Construct then 

candi +- GetCondition(node) 

cond2 +- GetCondition(v) 

end 

end 

end 

newCondition +-- ASTAndCondition(condi,cond2) 

newBody +- GetBody(v) 

newNode +-- new ASTIfNode(newCondition,newBody) 

replace (node,newNode) 

5.1.3 Or Aggregation 

Figure 5.5 shows the control flow of the Or Operator. The unreduced version of the control 

flow shows that A is executed if cond1 evaluates to true. If, however, the false branch is 

taken then cond2 is evaluated and A is executed if this condition is false. B is executed 

no matter what. In short, A is executed if the first condition is true or the negated second 

condition is true, followed by the execution of B in all cases. This graph can therefore be 

48 



5.1. Conditional Aggregation 

reduced to that in Figure 5.5(b) where the If statement aggregates the two conditions using 

the Il operator. 

One of the patterns to which the control flow graph in Figure 5.5(a) can map is shown 

in Figure 5.5. The pattern looks for a sequence ofn If statements (n is 2 in Figure 5.5) with 

the first n-l statements breaking to a particular label (labeLO in Figure 5.5) and the nth 

statement targeting an outer label (labeL1 in Figure 5.5). During execution this results 

in the evaluation of a sequence of If conditions and as soon as any of the n-1 conditions 

evaluates to true or the nth condition evaluates to faise a certain chunk of code (A in the 

figure) is targeted. If the program gets to the nth condition and this evaluates to true then 

in this case A is not executed. This code therefore corresponds to an If statement with A 

as its body and the condition the n-l conditions and the negated nth condition combined 

using the Il operator. 

labeU: { 
label_O: { 

if (candi) 
break label_O 

if (cand2) 
break labeU 

} Il end labeLO 
A 

} Il end labeU 
B 

(a) Unreduced 

T 

F labeLI: ( 
if( candi Il 

!cand2 ) 
A 

B 

(b) Reduced 

Figure 5.5: Reducing using the Il operator 

The decompiled code in Figure 1.2(e) (reproduced here in Figure 5.6(a) with the And 

aggregation applied ) has one occurrence of this pattern. Statement 2 in Figure 5.6(a) is the 

49 



Simple Pattern Based Structuring 

outer label and Statement 8 the inner one. There are two If statements in the sequence: 

statement 10 breaking the inner label and statement 13 targeting the outer one. The trans­

formation removes the second If statement by moving its negated condition into the first 

statement. The new body of this statement consists of statement 16. The resuIt of this 

transformation is shown in Figure 5.6(b). 

(a) Original Code 

1 labeL2:{ 

label_l : 

while(zO){ 

if (!zl){ 

10 

II 

12 

13 

14 

break label_2j 

} 

else{ 

labeLO:{ 

if(iO < 3 && il == l){ 

break label_Oj 

} 

if(il + iO >= l){ 

continue label_lj 

} 

15 } //end labeLO: 

16 System. out .println(rl) j 

17 } 

IR } 

19 } //end label~: 

(b) Transformed Code 

1 labeL2:{ 

label_l: 

while(zO){ 

if (!zl){ 

break label_2j 

} 

else{ 

if( (iO < 3 && il == 1) 

Il il + iO < 1 ){ 

10 System.out.println(rl)j 

II } 

12 } 

13 } 

14 } //end labeL2: 

Figure 5.6: Application of Or Aggregation 

This transformation can greatly reduce the size of the code and improve the readability 

as weIl. An interesting side-effect of the transformation is the removal of a Labeled-Block 

and break statements. The first n-1 statements aIl break labeLO whereas the nth statement 

targets labeL1. After the transformation aIl n-1 break statements have been removed 

50 



5.1. Conditional Aggregation 

Aigorithm 5: Or Aggregation 

Input: ASTNode node 

if node is a Labeled Block then 

foreach child nodeChild in node.GetBodyO do 

if nodeChild is a Labeled Block then 
outerLabel +- GetLabel (node) 

innerLabel +- GetLabel (nodeChild) 

innerBody +- GetBody (nodeChild) 

if FindIfSequence CinnerBody,outerLabel,innerLabel) then 
/ /Pattern Matched 

Create newCondition by aggregating the sequence of conditions 

using OR (last condition of the sequence is negated) 

foreach successor child sChild of node.GetBody 0 after nodeChild 

do 

1 

node.remove (sChild) 

newBody.add (sChild) 

end 

newlfNode +- new ASTIfNode (newCondition,newBody) 

node.replace (nodeChild,newlfNode) 

break 
end 

end 

end 

end 

which also allows the removal of labeLO. AIso, although we cannot directly remove 

labeL1, without checking that the If body does not target it, we have reduced the number 

of abrupt edges targeting it by one. In Section 5.3.3 we discuss an algorithm that checks 

for spurious labels and subsequently removes them. 

The algorithm for the transformation is shown in Algorithm S. If at any stage of the 

traversaI of the tree we find a labeled block (node in Aigorithm 5) then the body of this 

51 



Simple Pattern Based Structuring 

block is searched for an inner labeled block. If one is found then the FindIfSequence 

function is invoked which checks that there is a sequence of If statements adhering to the 

pattern we are looking for. If the pattern is matched then first the newCondi tion is created. 

The body of the new If statement (newBody in Algorithm 5) is the sequence of aIl nodes 

within the outer labeled block which foIlow after the inner labeled block. Hence these 

nodes are removed from the outer block's body and used to create the body of the new If 

statement. Once done the new If statement replaces the inner labeled block. 

Function: FindIfSequence 

Input: List body, String outerLabel, String innerLabel 

Output: boolean FoundOrNot 

foreach ASTNode node in body do 

if node is not an if construct then 
return false 

ifBody +- GetBody (node) 

if ifBody is not an abrupt statement then 
return false; 

abruptStmt +- GetStmt (ifBody) 

if node is the last node && abruptStmt targets outerLabel th en 
return true; 

else if node is not the last node && abruptStmt targets innerLabel then 
continue 

else 
returnfalse 

end 

end 

Other Or Aggregation Patterns 

We discuss sorne other patterns in this section which can map to an aggregation of condi­

tions using the Or operator. In Figure 5.7, code A is executed if condi evaluates to true. 

52 



5.1. Conditional Aggregation 

if (condl){ if (condl Il cond2){ if (cond 1 Il cond2){ 
A A A 

} 

else{ else{ B 
if (cond2){ //empty else body 

A 
B 

} 
B 

(a) Unreduced (b) Intermediate Reduction (c) Reduced 

Figure 5.7: Removing Nested If statements using the Il operator 

If condi is false then the second condition, cond2 is evaluated with the true branch re­

sulting in the execution of A. B is executed no matter what. The code therefore executes A 

if either condi OR cond2 evaluates to true. We can hence reduce the pattern by creating 

a new If statement which has the condition the result of aggregating condi and cond2 

using Il. The transformation is implemented in two stages. The tirst stage involves remov­

ing the If statement in the else body of the If-Else construct and adding cond2 into 

the condition of the If-El se statement. The removal of the If statement leaves the else 

body empty. The second stage of this transformation then takes the If-El se statement and 

converts it into an If statement. 

Figure 5.8 shows another Or aggregation pattern. Figure 5.8(a) shows two If state­

ments with the same body (in the general case the pattern works for a sequence of If state­

ments with the same body). The pattern can be reduced to the one shown in Figure 5.8(b) 

where the two conditions of the If statements have been merged using Il. However, this 

transformation is only possible if the body common to the If statements (A in Figure 5.8) 

ends with an abrupt statement. The reason for this can be seen by inspecting the execution 

sequence of the code in Figure 5.8(a) in both cases, when the common body has an abrupt 

edge and when it does not. 

53 



Simple Pattern Based Structuring 

• Body A has an abrupt edge: 

Abrupt edges incIude breaks, continues and return statements. The code starts exe­

cuting by checking condi. If cond! evaluates to true then BodyA is executed. Since 

Body A contains an abrupt edge the execution moves ta another place in the code and 

the second If statement is not executed. If, however, cond! evaluates to false the 

second If statement is checked and BodyA is executed if cond2 evaluates to true. 

The important thing to note is that BodyA gets executed if cond! evaluates to true or 

if that doesn 't then cond2 does. Aiso bec au se of the abrupt edges in Body A, Body A 

only gets executed once. In this case we can combine the cond! and cond2 using the 

Or operator into one If statement with the body as BodyA. 

• Body A has no abrupt edge: 

In this case the code starts out by checking the condition of the first If statement. 

If this evaluates to true then Body A is executed. Since BodyA does not have an 

abrupt edge then the second If statement is executed. If this condition, cond2 also 

evaluates to true BodyA is executed again. So in the case where BodyA does not 

have an abrupt edge, BodyA has a chance of running twice (in our ex ample) and 

multiple times in the case of the more general pattern. Looking at this sequence 

of execution it should be cIear that in this case one cannot aggregate the two If 

statements since that would change the semantics of the program. 

if (cond I){ 
A 

} 
if (cond2){ 

A 
} 

(a) Unreduced 

if(condlllcond2){ 
A 

(b) Reduced 

The pattern is only applicable if Body Ais an abrupt edge (return/break/continue). 

Figure 5.8: Removing similar If statements using the Il operator. 

Another very important thing to keep in mind is that the order of the conditions in 

54 



5.1. Conditional Aggregation 

the aggregated Or Condition is important. The reason being that the evaluation of these 

conditions can have side effects. In the unredueed pattern, if condi evaluates to true then 

the program will never evaluate cond2. Renee we need the same semantics for our redueed 

pattern. This is achieved by having cond2 to the right of condi in the aggregated condition. 

This ensusures that if condi evaluates to true cond2 will not be evaluated and we adhere to 

the semantics of the original program. The pattern 3 transformation is implemented using 

algorithm 6. 

Aigorithm 6: Or Aggregation for similar bodies 

Input: ASTNode node 

body +- GetBody(node) 

Iterator if +- body.i terator 0 
while it.hasNext () do 

node] +- it.Next 0 

if! it.hasNext () then 
1 return; 

node2 +- it.Next 0 
if node] and node2 are textttIf statements th en 

body] +- GetBody(nodeJ) 

body2 +- GetBody (node2) 

if body] and body2 are the same then 

if body 1 has an abrupt Edge then 
leftCond +- GetCondi tion (node 1) 

rightCond +- GetCondi tion (node2) 

newCondition +- ASTOrCondi tion (leftCond,rightCond) 

newIfNode +- ASTIfNode (body] ,newCondition) 

body.remove (node 1) 

body.replace (node2,newlfNode) 

end 

end 

end 

end 

55 



Simple Pattern Based Structuring 

5.2 Loop strengthening 

Previously, in the case where loops have multiple conditions, Dava used one of these condi­

tions as the loop condition and the remaining ones were added as If or If-Else statements 

inside the loop body. Renee, similar to If and If-Else statements, loops can now hold 

aggregated conditions to be evaluated before execution of the loop body. Therefore pattern 

matching can be used to strengthen the conditions within a loop. In the next two sections 

we discuss how If and If-Else statements nested within loops can be used to strengthen 

the conditions of loops and at the same time rem ove abrupt statements and shrink the code 

base. 

5.2.1 Using a nested If-Else Statement to Strengthen Loop Nodes 

The decompiler uses If-Else statements if the loop body is non-empty. The If body is 

the non empty body of the original loop and the el se body contains abrupt control f10w 

out of the loop. Two different types of patterns can arise as discussed below. 

Figure 5.9(a) shows a while loop with an If-El se statement as its only child. Reason­

ing about the control f10w shows that Body A is executed if both condi and cond2 evaluate 

to true. If either of the conditions are false, the loop exits. This fits in with the notion 

of a conditionalloop with two conditions as seen in the reduced form of the code in Fig­

ure 5.9(b). Notice that the label on the While loop is still present in the reduced code. This 

is because there can be an abrupt edge in Body A targeting this label. After the reduction 

the algorithm in Section 5.3.3 is invoked to rem ove the label from the loop, if possible. 

Notice that if the bodies in the If-Else statement are reversed: the If branch contains 

the break out of the loop and the else branch contains a body similar to the Body A men­

tioned above. In this case by adding the negated condition of the If-Else statement the 

same transformation can be applied. 

Figure 5.10 shows a similar strengthening pattern for unconditional loops. The only 

difference is that in this case the If-Else statement is free to have any construct in both 

branches as long as one of the branches has an abrupt edge targeting the labeled loop. The 

reduction works by converting the Uncondi tional-While loop to a conditionalloop with 

56 



5.2. Loop strengthening 

(a) Unreduced conditionalloops (b) Reduced conditionalloops 

1 label_O: 

2 whileCcond1){ 

if (cond2){ 

Body A 

} 

else{ 

break label_O 

} 

9 }llend white 

1 labeLO: 

2 while(cond1 && cond2){ 

Body A 

4 } 

Figure 5.9: Strengthening Loops 

Body A as the body of the 100p. Body B is then moved outside the 100p. The specialized 

pattern where Body B is empty makes this pattern the same as the pattern for While 100ps. 

Looking at our working example (Figure 5.6(b)) where And and Or aggregation have 

already been applied, reproduced as Figure S.ll (a), we can see that statements 3 to 13 

make a While 100p which has one If-Else statement. Notice that in this case the If-Else 

statement is reversed: the If branch contains the break out of the loop and the else branch 

contains Body A (statements 8-10). In this case we can apply the While strengthening 

pattern by adding the negated condition of the If-Else statement into the While condition. 

The transformed code is shown in Figure 5.11 (b). 

5.2.2 Using a nested If Statement to Strengthen loop Nodes 

Pattern matching on loops containing If statements results in loops with empty bodies with 

the work being done from within the conditions of the loop. Such kind of loops are often 

encountered in concurrent programs e.g. busy waiting. 

The pattern shown in Figure 5.12 shows the transformation of a conditional while loop 

to a loop in which the strength of the 100p condition has been increased by the addition of 

S7 



(a) Unreduced unconditionalloops 

1 label_O: 

2 while(true){ 

if (condl){ 

Body A 
} 

else{ 

Body B 

break label ° 
} 

10 }llend white 

Simple Pattern Based Structuring 

(b) Reduced unconditionalloops 

1 label_O: 

2 while(condl){ 

Body A 

4 } 

5 Body B 

Figure 5.10: Strengthening Unconditional Loops 

(a) Original Code 

1 label_2:{ 

label_l : 

while(zO){ 

if (! zl){ 

break label_2; 

} 

else{ 

if( (iO < 3 && il == 1) 

1 1 il + iO < 1 ){ 

10 System. out, println(rl) ; 

Il } 

12 } 

13 } 

14 } Iiend labeL2: 

(b) Transforrned Code 

1 label_2:{ 

label_l : 

while(zO && zl){ 

} 

if( (iO < 3 && il == 1) 

} 

1 1 il + iO < 1 ){ 

System,out.println(rl); 

9 } Iiend labeU: 

Figure 5.11: Application of White Strengthening 

58 



5.2. Loop strengthening 

cond2. The reasoning for this is that the execution of the code stays within the while loop 

as long as condi evaluates to true and cond2 evaluates to false. If either condi evaluates 

to false or cond2 evaluates to true the while loop is broken and Body B is executed. There­

fore the pattern in Figure 5.12(a) can be reduced to that in Figure 5.12(b). Note that the 

transformation is possible only if the while loop contains a single If statement in its body. 

Specifically the point marked with an arrow in Figure 5.].2 should not have any AST Node. 

Algorithm 7 shows how the reduction can be implemented. 

label_1 
while (condl ) ( 

if (eond2) { 
break labeLI 

--> 
} 

B 

while ( eond 1 && !eond2) { 

B 

(a) Unreduced (b) Reduced 

Figure 5.12: Strengthening a White Loop Using an If statement 

59 



Simple Pattern Based Structuring 

Algorithm 7: Strengthening While Loops Using If statements 

Input: ASTWhileNode node 

label +- GetLabel (node) 

body +- GetBody (node) 

if the only child, onlyChild in body is an If statement th en 
B +- GetBody (onlyChild) 

if B has one statement only then 
stmt +- GetStatement (B) 

if stmt is a break stmt then 

if label is the same as GetLabel (stmt) th en 
condi +- GetCondition(node) 

cond2 +- GetCondi tion (onlyChild) 

cond2 +- FlipCondition(cond2) 

newCondition +- ASTAndCondition(condi,cond2) 

newBody +- EmptyBody 0 
newNode +- new ASTWhileNode (newCondition,newBody) 

replace (node,newNode) 

end 

end 

end 

end 

Figure 5.13 shows the counterpart ofthe previous pattern for unconditionalloops. From 

Figure 5. t 3(a) it can be seen that the only way the loop terminates is if condi evaluates 

to true. This can therefore be represented as a conditional loop with the negated condi 

as the condition. Again it is important to notice that the transformation is possible only 

if the unconditional loop has the If statement as the only child. After the transformation 

the loop, which is now a conditionalloop, will terminate only if the condition evaluates to 

false. Since the condition is the negated condi the semantics of the code are maintained. 

The algorithm for this transformation is similar to Algorithm 7. The only differences being 

that the new while node contains the If statement's condition and that the new while node 

60 



5.2. Loop strengthening 

replaces the old unconditionalloop node. 

labeU 
while ( (rue) { 

if ( candI) { 
break label_ 

--> 
} 

R 

F 

(a) Unreduced 

while ( !cand 1 ) { 

B 

(b) Reduced 

Figure 5.13: Strengthening an Unconditional Loop Using an If statement 

The pattern above can be generalized to include the case when the If statement does 

not only contain the abrupt statement. The reason this restriction was imposed for condi­

tionalloops can be seen from Figure 5.14(a). The If statement contains a body (BodyA) 

fol\owed by the break statement. If we were to apply the reduction we would get code 

shown on the right side of Figure 5.14(a). However, this code has different semantics from 

the original code. This can be seen by checking when BodyA gets executed. In the un­

dreduced version BodyA gets executed only if condi and cond2 are both true. However in 

the reduced version BodyA can get executed if condi is false. 

In the case of unconditionalloops it is noted that such a restriction is not needed. This 

can be seen in Figure 5.14(b). The reason for this being that no condition is checked in the 

unconditionalloop and hence the control f10w decision is made solely from within the loop 

body. As can be seen from the unreduced and reduced versions of this pattern BodyA gets 

executed only if condi evaluates to true and at the same time results in the control exiting 

the loop. 

61 



Simple Pattern Based Structuring 

label_1 labeL! 
while (candI) { while ( true ) { 

if ( cond2 ) { while (candI && !cond2) { if ( candI) ( while ( !cond 1 ) { 

Body A Body A 
break label_1 break label 1 Body A 

} BodyA } 
B 

B 

B 
B 

Unreduced Reduced Unreduced Reduced 

Ca) An Incorrect Transformation (b) A Correct Transformation 

Figure 5.14: Strengthening an Unconditional Loop Using an If statement 

5.3 Handling Abrupt Control Flow 

Abrupt control flow in the form of labeled blocks and break/cont inue statements, created 

by Dava to handle any goto statements not converted to Java constructs, also complicate 

the output. Programmers rarely use such constructs, since it makes understanding code 

harder, and it is therefore desirable to minimize their use. 

5.3.1 If-Else Splitting 

The restructuring ofthe bytecode often results in the creation of If-Else statements where 

If statements would have sufficed, bec au se of the goto statements linking the different 

chunks of bytecode together. An example of this is shown in Figure 5.15(a). The proposed 

transformation is shown in Figure 5.15(b). Notice that BodyB which was in the else branch 

ofthe If-Else statement has been removed out of the conditional statement. This is possi­

ble because of the abrupt edge at the end of the then branch of the If-Else statement. The 

abrupt statement indicates that control is going to flow to sorne other location of code. If 

we can confirm that the abrupt statement does not target a label on this If-Else statement 

62 



5.3. Handling Abrupt Control Flow 

then we know that BodyB will not be executed even if it is outside the If statement. One 

additional requirement is that ifthe If-Else statement has a label on it then BodyB should 

never target this label since once removed from the el se branch it is no longer under the 

scope of the label (which will now be on the If statement). 

(a) Unreduced 

if (condl){ 

BodyA; 

<abrupt edge> 

} 

else{ 

BodyB; 

} 

if (condl){ 

BodyA 

(b) Reduced 

<abrupt edge> 

} 

BodyB 

Figure 5.15: If-ELse Splitting 

If this pattern does not get matched we also try the reverse of the pattern i.e., where the 

el se branch has a body followed by an abrupt statement and the then branch is sorne body 

which does not target any label on the If-El se statement. In this case, the new If state­

ment contains the else branch as its body and the condition of the statement is the negated 

condition of the original If-Else statement. Figure 5.! 6 shows code from a real decompi­

lation scenario where the reversed If-Else pattern gets matched. The If-Else statement 

in Figure 5.16(a) contains a return statement in the el se branch. In Figure 5.! 6(b), the 

transformation is able to create a If statement with the abrupt edge as part of the body, by 

negating the original If-Else condition. 

5.3.2 Useless break statement Remover 

Another artifact of Java bytecode is the occurrence of unneeded break statements. Java 

constructs have predefined fall through semantics i.e., after execution of a certain construct 

control moves to the next statement in the code. Using this knowJedge it is sometimes 

63 



(a) Unreduced 

if(i3 == 0) 

{ 

iO++j 

} 

else 

{ 

a.remove(iO)j 

returnj 

} 

Simple Pattern Based Structuring 

(b) Reduced 

if(i3 != O){ 

a.remove(iO)j 

returnj 

} 

iO++j 

Figure 5.16: If-ELse Splitting 

possible to remove break statements which target the same code location that is the natural 

fall through of the labeled construct. Two examples of this are shown in Figure 5.17. 

The algorithm works by looking for break statements in the code. Whenever a break 

statement is found, the transformation finds the target node of the break statement. Then 

each of the ancestors of the break statement up to the target node are analyzed. The break 

statement is unneeded if it is the last statement in its parent node, the parent node is the 

last node of its parent and so on until we reach the target node. For instance, in the left 

side of Figure 5.17 the break statement is unneeded since it is the last statement in the 

If statement which is itself the last node within the then branch of the If-Else branch. 

Hence the natural fall through, BodyD, is the same as that targeted by the break statement. 

The break statement can be safely removed. On the right side of Figure 5.17 again we see 

an unneeded break. The break label8 statement targets BodyC which is the natural ftow 

through after execution of BodyB. Hence this break statement can also be removed. 

One important thing to remember is that break statements are also used to break out of 

a loop. Hence the transformation can only be applied if none of the ancestors of the break 

statement up to the targeted node is a loop construct. 

If a break statement is found to be unneeded then an added advantage of this can be 

64 



5.3. Handling Abrupt Control Flow 

labell : 

if (condl){ 

BodyA 

} 

if (cond2){ 

BodyB 

break labell 

} 

else{ 

BodyC 
} 

BodyD 

labelS: 

try { 

BodyA 

} 

catch (Exception e){ 

BodyB 

break labelS; 

} 

BodyC 

Figure 5.17: Removing use/ess break statements 

that the label might also become removable, as discussed in the next section. 

5.3.3 Useless label Remover 

The Or and And aggregation patterns provide new avenues for the reduction of labeled 

blocks and abrupt edges. With the help of pattern detection, the number of abrupt edges 

and labels can be reduced considerably. 

Labels can occur in Java code in two forms: as labels on Java constructs e.g. While 

loop or as labeled blocks. If a label is shown to be spurious, by showing that there is no 

abrupt edge targeting it, then in the case of a labeled construct the label is simply omitted. 

However, in the case of a labeled block, a transformation is required which removes the 

labeled block from the AST. Aigorithm 8 shows how a spurious labeled block is removed 

by replacing it with its body in the parent node. 

When applied to the code in Figure S. 1 1 (h) labeL2 and labeL1 which were at state­

ments 1 and 2 are both removed. Looking back at the original source code from which 

this decompiled output was generated (reproduced as Figure :1.18(a) ) we see that, after 

65 



Simple Pattern Based Structuring 

Algorithm 8: Removing Spurious Labeled Blocks 

Input: ASTNode node 

body +-- GetBodyCnode) 

Iterator if +-- body.i terator () 

while it.hasNext () do 
node} +-- it.Next 0 

if node} is a Labeled Block Node then 

if IsUselessLabelBlock (node}) then 

1 

body} +-- GetBody(nodeJ) 

Replace node} in body by body} 

end 

end 

end 

applying the AST rewriting, Dava's output, Figure 5.18(b), matches the original source 

code. 

(a) Original Code 

while(done && alsoDone){ 

} 

if «a<3 && b==1) Il b+a<1 ) 

System.out.println(b-a); 

(b) Final Dava Output 

while(zO && zl){ 

} 

if( (iO<3 && i1==1) Il i1+iO<1){ 

System.out.println(il-iO); 

} 

Figure 5.18: Comparing Dava output 

66 



5.3. Handling Abrupt Control Flow 

5.3.4 Reducing the scope of labeled blocks 

While pattern matching labeled blocks to rewrite the AS T, sorne pattern might not get 

matched because the labeled block contains too many children in its body. It is sometimes 

possible to reduce the scope of the labeled block. One such possibility can be seen in 

Figure 5. 19(a). The unreduced code shows that labeL1, which is a labeled block, consists 

of sorne code that does not use the label followed by code which targets this label (the 

While loop in Figure 5.19(a». Since the initial code does not involve the use of labeL1 

there is no reason why this code cannot occur outside the sc ope of the labeled block. As 

seen in the reduced form of the code (Figure 5.l9(b» the labeled block has been removed 

by placing the label directly on the While loop construct. Such a transformation is possible 

labeU { 
1 

, no break label 
, 

: while (cond){ 
, //use of label 1 :} -

, 
, Nothing here , 

} //end labeU 

(a) Unreduced 

l , 
, no break label_I, 
1 

'label 1: 
: while(cond){ , 
, //use of label_1 : 
, } 
, 

(b) Reduced 

labeU { 
, 

label 2: " label_2: 
, while(cond){ 1 

//useoflabeU: : while(cond){ 
, } //replace use of 

//Iabel 1 with label_2 

, Nothing here } 

} //end labeU 

(c) Unreduced (d) Reduced 

Figure 5.19: Reducing the scope of Labeled Blacks 

if the following conditions hold: 

• The construct that holds the abrupt statement targeting the labeled block should itself 

be able to hold a label. These include ail the AST nodes derived from the AST 

Labeled Node from the type hierarchy in Figure 2.5 . 

• The construct that targets the label should be the last child of the labeled block node. 

The reason for this restriction is illustrated in Figure 5.20. In Figure 5.20(a) body 

A is a child of the labeled block occurring after the While loop which targets the 

labeled block. If, according to the transformation, we were to remove the labeled 

67 



Simple Pattern Based Structuring 

block by placing the label onto the While loop (as shown in Figure 5.20(b)) then 

BodyA is no longer un der the scope of the label. Rence the execution of the break 

statement breaks out of the loop but ends up executing Body A which should not have 

been executed. 

labeU { 

: no break label_l 1 

: while (cond){ 1 

1 //use of label l' 
: } -

: BodyA 

} //end labeL! 

(a) Unredllced 

no break label_1 1 

label 1: 
while(cond){ 1 

lIuse of label ], -, 
1 

BodyA 

(b) Redllced 

Figure 5.20: Wrong Reduction ofScope 

• The construct that targets the labeled block should not already have a label on it. 

If such a situation arises, as shown in Figure 5.19(c), then the transformation can 

still be successful. Rowever, in this case the construct's label is kept and any abrupt 

edge targeting the labeled block is made to target the label on the construct. In Fig­

ure 5.19(d) this means keeping the label label2 on the While loop and removing 

the labeled block. Any abrupt statement targeting labeL1 is transformed to target 

label2. Obviously this is only possible ifthe labeled block had only one child other­

wise the transformation changes the semantics for reasons similar to those discussed 

above. 

The reasoning behind trying to reduce the scopes of labels is that if there are fewer 

children in a labeled block, then there are better chances that sorne other pattern will match. 

If no pattern matches, reducing the labeled block size still has the advantage of improving 

code complexity since the programmer now has to concentrate on a smaller chunk of code 

to understand the abrupt control flow targeting the labeled block. 

68 



Chapter 6 

A Structure-Based Flow Analysis Framework 

Although AST rewriting based on pattern matching greatly reduces the complexity of 

the decompiled output, this alone allows only for a Iimited sc ope of transformations. So­

phistieated transformations need additional information which is available only through the 

use of static data flow analyses. 

An ex ample ofthis can be seen in Dava's output, Figure 1.3(d), for the obfuscated byte­

code produced for the original Java source shown in Figure 1.3(a). Although semantieally 

equivalent to the original code the output is hard to understand. However, since obfuscators 

have to ensure that their modifications do not change program semantics, a transformation 

of the output, making it similar to the original code, may be possible. This requires an an­

swer to the questions: "What is the value of a partieular variable at a program point?", "!s 

a partieular piece of code ever executed?" and so on. To answer such questions one needs 

added information about the data and control flow which cannot be obtained from pattern 

matching and requires data flow analysis. We discuss more about decompiling obfuscated 

code in Section 7.3.7. 

Although SOOT provides a flow analysis framework for each of the intermediate rep­

resentations i.e., bai, jimple and grimp, this support did not extend to the higher level 

intermediate representation of the decompiled code. Previously it was not possible to ap­

ply any flow analyses on Dava's AST. To perform more sophisticated transformations we 

implemented an analysis framework that can be used to implement statie data flow analyses 

on Dava's AST. The analyses' results can then be leveraged to perform further transforma-

69 



A Structure-Based Flow Analysis Framework 

tion on the AST. The framework removes the burden of correctly traversing the AST from 

the analysis writer and allows him/her to concentrate on the analysis. With a framework in 

hand, the process of writing analyses for Dava has been streamlined making it easier for 

new developers to extend the system. 

As the analyses for the decompiler are performed on the AST it is best to use a syntax­

directed method of data flow analysis such as structural analysis[HD[' ShaSO]. The 

advantage of using this technique is that it gives, for each type of high-Ievel control-flow 

construct in the language, a set of formulas that perform data flow analysis. For instance 

it allows the analysis of a While loop by analyzing only its components: the conditional 

expression and the body. For this reason we find that structural flow analysis provides 

a more efficient and intuitive implementation of analysis on the tree representation than 

graph-based approaches. Apart from supporting ordinary compositional constructs such 

as conditionals and loops, the structural flow analysis also supports break and continue 

statements (Section 6.2). 

The Structural Flow analysis framework for Dava's AST has been written by provid­

ing an abstract StructuredAnalysis Java cIass. Programmers wanting to implement an 

analysis need only implement the abstract methods in this cIass which deal with the ini­

tialization of the analysis and then subsequently dealing with the type of information to be 

stored by different constructs. 

The analysis begins by traversing the AST. As each Java construct is encountered a 

specialized method responsible for processing this construct is invoked. An input set 

containing information gathered so far is sent as an argument. Each construct is handled 

differently depending on the components it contains and its semantics. The processing of 

the construct might add, remove or modify elements ofthe input set. The result is returned 

in the form of an output set which then becomes the input set for the next construct. 

This kind of structure-based flow analysis is not new. Similar work has been do ne by 

Emami et. al. [IiDF ' 93, Ema93] for gathering alias and points-to-analysis information for 

the McCAT C compiler. Dava's flow analysis framework is an implementation of the same 

approach utilized in McCAT, but implemented for Java. 

70 



6.1. Merge Operations 

6.1 Merge Operations 

An important construct in f10w analyses is the merge operation. Merge defines the seman­

tics of combining the information present in two flow-sets. Such a situation arises for 

instance when dealing with the flow-sets obtained by processing the If and else branch 

of an If-Else construct. Since the framework gathers sets of information the program­

mer has the choice of choosing between union and intersection as the merge operation. 

Customized merge operations might sometimes be needed for analyses. The framework 

allows the extension of the already implemented merge operations or the implementation 

of new merge operations. Section 7.3.1 shows such an extension of the intersection merge 

operation for the constant propagation analysis. 

6.2 Dealing with Abrupt-Control Flow Constructs 

In grimp, control f10w is represented using explicit goto statements. The Structured En­

capsulation Algorithms implemented in Dava are able to transform most of these goto 

statements, along with appropriate code bodies, into Java constructs like If, While etc. 

However, after aH construct detection algorithms have been applied sorne goto statements 

might still be present in the AST. These remaining gotos are converted into break and 

continue statements and embedded into the AST. 

We handle these statements as foHows: whenever an abrupt control f10w statement is 

encountered, the f10w set containing information gathered by the analysis is stored. Pro­

cessing then continues with a special flow-set named BOTTOM sent onwards indicating that 

this path is never realized (as the abrupt statement leads execution to sorne other are a of the 

code). We use a hash table, keyed by labels, to store the flow-sets for unrealized paths. 

When a labeled construct is being processed aIl break-sets, or continue-sets, stored 

when encountering a break, or continue, targeting this label are retrieved. These are then 

merged with each other to get one out-set which is the conservative approximation sum­

marizing the data f10w sets from all abrupt statements targeting this particular construct. 

This flow-set is then merged with the flow-set obtained through analysis of the con­

struct if no abrupt statement was encountered. The merging of the abrupt flow-sets is done 

71 

• 



A Structure-Based Flow Analysis Framework 

by the methods handleBreak and handleContinue for break and continue statements 

respectively. 

In order to be complete in handling aIl abrupt statements one also needs to han dIe 

return and throw statements. The framework, on encountering one of these statements, 

outputs BOTTOM. Any other analysis-specific information to be gathered from the encoun­

tered abrupt statement can be obtained by over-riding appropriate methods provided by the 

framework. 

6.3 Construct specifie processing 

Structure-based ftow analysis derives its power from the fact that each high-Ievel control­

ftow construct can be processed separately according to the semantics defined by the lan­

guage. In this section, we discuss the handling of Java constructs present in the AST. 

Processing of each construct is presented with a control ftow diagram showing the required 

semantics of the construct along with pseudo-code illustrating how the flow-sets are car­

ried through the construct. Handling of break and continue statements is carried out as 

part of the processing and considerably complicates matters. The key to aIl these al go­

rithms is the right order of merging the sets ftowing through the constructs. 

Java Method Node 

A method construct is the simplest construct to deal with. The in-set is passed to the algo­

rithm processing the body of the method. The output of processing this body becomes the 

out-set of the method construct (Figure 6.1 (a)). This corresponds to the use of the ftow­

analysis framework for intra-procedural analyses. In the future if inter-procedural analyses 

are to be accommodated then the output set of processing the body would contain the out­

put of regular execution of the method code merged with aIl possible exits of the method: 

return statements within the method's body and any throw statements that might escape 

the method. 

Java Labeled-Block Nodes 

Labeled blocks are often used in Java to separate different parts of an algorithm. Normal 

72 



6.3. Construct specifie processing 

J process_Method( 

ASTMethodNode node, 

Object input){ 

6 } 

outl processBody(node,input) 

return out 

(a) Java Methods 

1 process_StatementsNode( 

ASTStatementSequenceNode node, 

Object input){ 

9 } 

List stmts = node.getStatements() 

out = clone(input) 

for each stmt, s in stmts 

out = process(s,out) 

return out 

(c) Java Statement Blocks 

1 process_LabeledBlock( 

ASTLabeledBlockNode node, 

Object input){ 

7 } 

outl = processBody(node,input) 

result = handleBreaks(outl,node) 

return result 

(b) Java Labeled Blocks 

1 process_SynchBlock( 

ASTSynchronizedNode node, 

Object input){ 

9 } 

outl = processSynchedLocal( 

local,input) 

out2 = processBody (node, out 1) 

result = handleBreaks(out2,node) 

return result 

(d) Java Synchronized Block 

Figure 6.1: Structural Flow-Analysis Algorithmfor Simple Java Constructs 

code execution f10ws by entering the start of a labeled block and exiting at the end. How­

ever, break statements can be used to target the end of the labeled block from anywhere 

within the body of the block code. Taking that into account the processing of the labeled 

block is shown in Figure 6.1 (b). If no break statement targets this block then the out-set 

of the block is the output of the processing the body of the block. However, to handle any 

break statements the output of normal execution of the block's code needs to be merged 

with aIl possible flow-sets stored when encountering a break statement targeting this 

73 



A Structure-Based Flow Analysis Framework 

labeled block. This is done by statement 5 in Figure 6.1 (b). 

Statement-Sequence Construct 

Figure 6.1 (c) shows how the framework handles a sequence of statements. The processing 

method iterates through the statements in the sequence with the output set of one statement 

becoming the input of the next statement. The output set of the last statement is the 

output set of the sequence of statements. 

One interesting thing to note is that it is while processing a Statement-Sequence that 

one may encounter abrupt statements. As mentioned in Section 6.2 when such an abrupt 

statement is encountered then the CUITent flow-set is stored in the appropriate breakList 

or continueList. The out-set sent forward is BaTTaM indicating that this path is never 

taken. Hence the output set of a Statement-Sequence containing an abrupt statement is 

al ways BaTTaM. 

Synchronized Construct 

A synchronized block contains two components to be analyzed. First is the object on which 

the synchronization is caITied out. The output of processing the synchronized object be­

cornes the input of processing the synchronized body. Since synchronized blocks can have 

labels on them the tinal output is the result of merging the output of the synchronized body 

with any flow-sets stored in the breakList. 

If Construct 

Figure 6.2 shows the processing of If statements. Figure 6.2(b) shows possible control 

flow through an If statement. When an If statement is encountered the condition is eval­

uated. If the condition evaluates to true the If body is executed, otherwise control moves 

forward, skipping the If body. Keeping the se semantics in mind the flow analysis pro­

cesses an If statement (Figure 6.2(a» by tirst processing the condition. This output (outl 

in Figure 6.2(a) ) becomes the input to process the If body. Since the If body might or 

might not be executed the output of the If statement is the merge of the out-set of just 

evaluating the condition (out1) with the out-set of processing the If body (out2). Once 

this merge is available any break sets that might have been targeting this If statement are 

74 



6.3. Construct specifie processing 

handled. That produces the final result of processing the If statement. 

1 process_if(ASTlfNode node,Object input){ 

out1 = processCondition(condition,input) 

out2 = processBody(node,out1) 

10 } 

Iimerge cond evaluating to false 

out = merge(out1,out2) 

result = handleBreaks(out,node) 

return result 

/ 
1 
1 

l input 

cond 

outl 

body 

break; 

\,,<:<2] 
result 

outl 

(a) Pseudo-code (b) Graphical Representation 

Figure 6.2: The Structural Flow-Analysis Algorithm of If Construet. 

If-Else Construct 

The semantics of an If-Else statement are almost the same as that of an If statement. 

Execution begins with the evaluation of the condition. If the condition evaluates to true 

then the If branch (also called the then branch) is taken. In case the condition evaluated 

to false then the else branch is taken. The processing of this construct begins with the 

processing of the condition. The out-set from the processed condition is cloned because 

depending on the evaluation of the condition the same flow-set will be carried into the 

then or el se branch. The outputs of processing the two branch bodies (out2 and out3 in 

Figure 6.3(b) are then merged since statically we can not predict which branch is being 

taken. The only remaining thing to do is to handle any breaks that might have targeted 

the If-Else construct if it has a label on it. This is done by the handlebreaks method 

in Statement Il. The output ofthis becomes the result of processing the If-Else construct. 

75 



A Structure-Based Flow Analysis Framework 

1 process_ifElse(ASTlfElseNode node, 

Object input){ 

outl = processCondition(condition,input) 

clonedlnput = clone(outl) 

out2 = processBodyCthenBody,clonedlnput) 

clonedlnput = clone(outl) 

out3 = processBody(elseBody,clonedlnput) 

10 out4 = merge(out2,out3) 

II result = handleBreaksCout4,node) 

12 return result 

13 } 

(a) Pseudo-code 

1 input 

cond 

out! outl 

break; 

Then Body Else Body 

break; 

out 2 

, 
, , , , , , 
~ if 

result 

(b) Graphical Representation 

Figure 6.3: The Structural Flow-Analysis Algorithm of IfElse Construct. 

While Construct 

Processing loops complicates matters because of a fixed point iteration required to compute 

the out-set. Aiso with loops not only do we have to de al with break statements but also 

continue statements that could be targeting the loop. The semantics of the While loop 

dictate that processing starts with the evaluation of the condition. If the condition is true 

the body executes and then the condition is re-evaluated. Hence regular output i.e., output 

without any break statements, from the While loop always ends with the evaluation of the 

condition. The continue statements stop the execution of the body at whatever place the 

continue statement is encountered and control goes back to the evaluation of the While 

condition. 

Figure 6.4 shows the control flow and pseudo-code for handling a While loop. The solid 

back-edge indicates loop iteration and dotted lines indicate abrupt control flow. Firstly the 

76 



6.3. Construct specifie processing 

1 process_While(ASTWhileNode node, 

Object inputH 

initiallnput = clone(input) 

III 

input processCondition(condition, 

initialInput) 

do{ 

lastin = clone(input) 

out processBody(node,input) 

out handleContinue(out,node) 

II Iimerge cond evaluating to false 

12 input = merge(initiallnput,out) 

13 input = processCondition( 

14 condition,input) 

15 } while (lastin ! = input) 

16 result = handleBreaks (input ,node) 

17 return result 

IX } 

(a) Pseudo-code 

initialInput 

input 

break 

continue 

1 ,- - - - break 1 1 

1 1 

1 1 continue 1 1 
1 1 

~' V 
result out 

(b) Graphical Representation 

Figure 6.4: The Structural Flow-Analysis Algorithm of While Construct. 

r r 

r r 
1 r 

r 
1 

analysis processes the condition of the While construct. The output set of this becomes 

the input set for the fixed point computation. Within the fixed point computation the body 

of the While loop is processed followed by the generation of the input set for the next 

iteration. 

The input set for the next iteration is generated by merging the output set of the 

current iteration with the flow-sets stored in the continue hash table, since continue 

statemcnts could be targcting the loop. 

Taking care of ail possible entry points is essential for the correct working of the ftow 

analysis. Since it is quite possible that the condition of the While loop evaluates to false 

77 



A Structure-Based Flow Analysis Framework 

without any iteration of the loop it is important that the initialInput to the While loop be 

part of the input set to any re-evaluation of the condition. Rence the result of merging the 

output of any possible iterations (solid back edge labeled out in Figure 6.4(b)) with any 

flow-sets from the continueList (dotted back edges in Figure 6.4(b) ) has to be further 

merged with the initialInput to the While loop. The result of this is the correct input to any 

further evaluations of the condition. Once the fixed point is achieved then any flow-sets 

stored in the break hash table are also merged using the handle8reaks method. The out­

put of this method is the final output of processing the While construct. 

Do-While Construct 

The only difference between a While loop and a Do-While loop is that in a Do-While loop 

the loop body has to be executed at least once. The analysis starts off with first processing 

the body of the Do-While loop. Then any flow-sets stored in the continueList are 

merged to produce the in-set for the condition. Once the condition is processed the input 

set for further iterations is generated by merging the output of processing the condition with 

the initialInput ta the Do-While loop. This takes care of whether this is the first execution 

of the body or an iteration. Once the fixed point has been achieved any break sets for this 

loop are handled. 

One important thing to note is that the handJing of breaks takes as input the output set 

of processing the condition and not the newJy generated input for the fixed point iteration. 

This is so because the loop has to execute at least once and hence the initialInput can ne ver 

be part of the final result. Rence at Statement t 3 in the pseudo-code shown in Figure 6.5(a) 

the input ta handle8reak is the result of Statement 9 which contains the out-set of pro­

cessing the Do-While condition. Once any break sets have been merged the result is the 

output of processing the Do-While loop. 

Uncondi tional-While Construct 

In an Uncondi tional-While Joop the body of the Joop keeps executing until there is a 

break out of the loop. Rence the only way out of the loop is through one or more break 

statements in the Uncondi tional-While body as shown in Figure 6.6(b). The processing 

of the loop is shawn in Figure 6.6(a). The fixed point iteration starts off by processing 

78 



6.3. Construet specifie proeessing 

1 process_DoWhile(ASTDoWhileNode node, 

Object input){ 

initiallnput = clone(input) 

do{ 

lastin = clone(input) 

out = processBody(node,input) 

out handleContinue(out,node) 

out processCondition(condition,out) 

10 

II input = merge(initiallnput,out) 

12 } while (lastin ! = input) 

13 result = handleBreaks(out,node) 

14 return result 

15 } 

(a) Pseudo-code 

initialInput 

, 
1 

, , 
1 

f - --

1 

1 f - - - -, , 
1 1 

, , 
1 1 

1 1 , , 
1 1 

1 1 , , 
1 1 

, , 
1 1 

1 1 , , 
1 1 

break 

continue 

break 

continue 

/i/ out 

" " out 1 1 

r ~ 

result 

, 
\ 

, 

, , 
\ 
\ 

, ' 
l ' , , , , 

l ' 
l ' 

, 1 , , , 
" , , 

(b) Graphical Representation 

Figure 6.5: The Structural Flow-Analysis Aigorithm of DoWhile Cons!ruc!. 

the body of the loop. Then any continue flow-sets are handled. Then the initial input is 

merged ta create the input set for the next iteration of the Ioop. Once the fixed point has 

been achieved the break flow-sets are merged together to create the result of processing 

the Uncondi tional-While loop. 

Notice that the result of proeessing the Uncondi tional-While body is sent as input 

ta the MergeBreaks method. This is only used to retrieve the list of break flow-sets 

stored in the in-set and does not get included in the result since the only way out of the 

Uncondi t ional-While is through a break statement. 

79 



1 process_UnconditionalLoop( 

ASTUnconditionalWhileNode node, 

Object input){ 

initiallnput = clone(input) 

10 

do{ 

lastin = clone(input) 

out processBody(node,input) 

out handleContinue(out,node) 

Iimerge cond evaluating to false 

Il input = merge(initiallnput,out) 

12 } while (lastin ! = input) 

13 result = MergeBreaks(out,node) 

14 return resul t 

15 } 

(a) Pseudo-code 

A Structure-Based Flow Analysis Framework 

( 

( 

initialInput 
1 

1 1 

1 
1 

1 
1 

1 
1 

,- --

, 1 - - --
1 1 

1 1 
1 1 

1 1 
1 1 

~ 0 
result 

1 1 

V~ 
break 

continue 

break 

continue 

out 

\ 

\ 
\ 

(b) Graphical Representation 

Figure 6.6: The Structural Flow-Analysis Algorithm of Unconditional- While Construct. 

For Loops 

The semantics of the For loop are discussed in Section 7.1.1. Briefty, when a For loop is 

encountered first the initializations are carried out followed by the evaluation of the con­

dition. If the condition evaluates to true the body of the loop is executed followed by 

any updates to be performed. Break statements result in the termination of the loop and 

Continue statements target the update component of the loop (Figure 6.7(b)). The pro­

cessing of the For loop is shown in Figure 6.7(a). First the ini t component is processed. 

Since this contains a sequence of statements it should be processed in the same way as any 

other Statement-Sequence block would be. Hence the Statement-Sequence ftow anal­

ysis algorithm is invoked from within the algorithm of the For loop. Once this has been 

completed the condition of the loop is processed. The output of processing the condition 

becomes the input to the algorithm which computes the fixed point for the body of the loop. 

80 



6.3. Construct specifie processing 

[ process_for(ASTForNode node, 

10 

Il 

12 

13 

14 

Object inputH 

input = processlnit(node,input) 

initiallnput = clone(input) 

input = processCondition(condition,input) 

do{ 

lastin = clone(input) 

outl = processBody(node,input) 

outl handleContinue(outl,node) 

out2 = clone(outl) 

out2 = processUpdate(node,out2) 

Iimerge cond evaluating to false 

input = merge(initiallnput,out2) 

15 input = processCondition(condition,input) 

16 } while (lastin ! = out2) 

17 result = handleBreaks (input ,node) 

IH return resul t 

19 } 

(a) Pseudo-code 

resuIt 

1 

1 

input t 
[2!J 

initialInpui 

continue 

break 

continue 

break 

(b) Graphical Representation 

Figure 6.7: The Structural Flow-Analysis Algorithm of For Construct. 

This is done by first processing the body. This is then followed by handling any continue 

statements that might be targeting the update component of the loop. Once the continue 

flow-sets have been handled it is time to handle any update statements. The update part of 

the For loop can be empty hence the output produced by handling the continue statements 

is first copied into a new flow-set which is then used to process the update statements. The 

update statements are a sequence of statements and are processed by internally invoking 

the Statement-Sequence flow analysis algorithm. Once done, the input set for the next 

iteration is created by merging the initial input set to the output of processing the update 

81 

, 
\ 



A Structure-Based Flow Analysis Framework 

statements (Statement 14 in Figure 6.7(a». As the regular execution i.e., when no break is 

encountered always terminates at the evaluation of the condition the condition is processed 

again. Once the tixed point is reached any break statements targeting this loop are handled 

by merging their break sets together. The output from this becomes the output of handling 

the For loop. 

Swi t ch Construct 

The processing of the Swi tch statement is shown in Figure 6.8. The algorithm starts off 

by processing the switch key. Since this component is always executed, the output from 

the processing of the key becomes the initial input to aIl the possible cases of the Swi tch 

statement. 

The algorithm continues forward by tirst retrieving the different cases of the Swi t ch 

statement. Then for each case the case Body is processed. The input set for these bodies 

is the merge of the initial input, if the case is the tirst case to be executed, and the previous 

case's output, since Java cases can have faB throughs (as shown in Figure 6.8(b». 

After the processing of a case the output set of each set is stored in the caseBreakSet 

list. This information is needed since it is the out-set of each case that stores aB the break 

and continue sets which will be handled later in the algorithm. 

While processing the Swi tch statement cases, another possibility that is checked is 

whether the Switch statement has a default case. If one is found the out-set of the default 

case is also stored (Statements 12 and 13 in Figure 6.8(b». 

A number of different execution paths can be taken for a Swi tch statement. Firstly it is 

possible that a Swi tch statement has no cases. Then the initial input flow-set should be 

the out-set of processing the Swi tch statement (Statements 16 and 17 in Figure 6.8(a». If 

the Swi tch statement does contain one or more cases then there are two possibilities. First, 

a default case is present meaning that if no case matches the default case will be executed. 

Hence in this case the output becomes the merge of the default case with the conservative 

out-set of having processed aIl the cases of the statement. The latter out-set is available as 

the output of the processing of the last case of the Swi tch statement. 

The second possibility is that if there is no default case present then it is possible that 

none of the cases in the Swi tch statement match the key. In this case the output is the 

82 



6.3. Construet specifie processing 

1 process_switch(ASTSwitchNode node, 

Object inputH 

input = processSwitchKey(key,input) 

initiallnput = clone(input) 

Object default = null 

List caseBreakSet 

List cases = node.getSwitchCases() 

for each case, c in cases{ 

10 out = processBody(c, input) 

II caseBreakSet.add(clone(out)) 

12 if (case is default case) 

13 default = out 

14 input = merge(out,initiallnput) 

15 } 

16 if ( cases. size 0 ==0 ) 

17 

IX 

19 

output = initiallnput 

else{ 

if(default != null) 

20 output = merge(default,out) 

21 else 

22 output merge (initiallnput ,out) 

23 } 

24 

25 Object finalOut = output 

26 for each break set s in caseBreakSet{ 

27 set = handleBreaks(s,node) 

28 finalOut = merge(output,set) 

29 } 

30 return finalOut 

31 } 

(a) Pseudo-code 

• 

input t 

break 

1 1 

'out 1 , 
1 

\ 
\ 

, , 

1 switchKey 1 

l initialInput 

/ -'V tinitialInput/ - 'V 
1 1 
1 1 
1 1 

1 1 

1 1 
1 1 
1 1 

----------
1 

1 

1 

1 

1 break 1 1 
1 1 

1 

1 , 
1 

\ 
\ 

" \ , \ 

1 

',out 

\ \ 
\ \ 

~ ~ 
result 

1 

1 

1 

1 

1 
1 
1 

1 

out: , 
1 

\ 1 

1 

1 
1 
1 

1 
1 
1 

1 

1 

1 

1 

1 

1 

(b) Graphical Representation 

Figure 6.8: The Structural Flow-Analysis Algorithm of Switch Construct. 

83 

/ - \ 
1 

V f 

tinitialInput 

br eak 

out / 
/ 



A Structure-Based Flow Analysis Framework 

initial Input (since no additional code is executed). To handle the instance when a case 

does match, the output is the merge of the initial Input with the last out-set of the different 

cases. 

Once we have the output from normal processing of the Swi tch statement the last 

thing to do is handle any break statements. This is done in Figure 6.8(a) Statements 25 

to 29. The break sets stored for each case of the Swi tch statement (Statement 11) are 

retrieved. The handleBreak method is invoked on each individual break set to handle 

aIl possible break statements that might be present in that particular case. After merging 

the possibly different sets the resuIt (set in Figure 6.8(a) Statement 27) is merged with the 

output of the regular processing. This is repeated for all the cases in the Swi tch statement 

(Statements 26 to 29 ). The output of this merging becomes the final output of processing 

a Swi tch statement. 

Try-Catch Construct 

In the case of a Try-Catch block the algorithm needs to conservatively assume that either 

the try body will run to completion or one of the caught exceptions and the corresponding 

code will be executed. Also, since the code enscapsulated in the try component of the 

Try-Catch b10ck (from here on called the try body) or any ofthe exception han dl ers (from 

here on called the catch bodies) can contain break statements these need to be handled 

correctly. 

The algorithm starts out with processing the try body of the Try-Catch block. Then 

it processes each of the catch bodies. Notice that the input to each catch body is taken 

by invoking the newCatchBodylni tialFlow method (Statement 6 in Figure 6.9(a)). This 

method is one of the abstract methods dec1ared by the flow-analysis framework and the 

analysis writer is required to provide an implementation for it. The purpose of the method 

is to take as input a conservative approximation for the input set of the catch bodies. Since 

it is not possible to predict which statement in the try block might cause an exception, it is 

prohibitively expensive to store each possible flow-set which could be the input to a catch 

body. Hence a conservative approximation is the best that can be handled in any reasonable 

amount of time and memory. Implemented analyses in Chapter 7 discuss possible conser­

vative sets for sorne analyses. (Note: newCatchBodylni tialFlow is different from the 

84 



6.3. Construct specific processing 

initial flow-set used to initialize an analysis. The initial flow-set, used as input to process a 

method, is a safe set for the analysis of a method whereas the newCatchBodylni t ialFlow 

is a conservative approximation to the input of catchBodies occurring within a Try-Catch 

construct). 

1 process_Try(ASTTryNode node,Object input){ 

tryBody = node.getTryBodY()j 

3 tryBodyOutput = processBody(tryBody,input) 

5 List catchBodyOutput 

fi inputCatch = newCatchBodylnitialFlow() 

7 for each catchBody , c in node{ 

10 

II } 

in = clone(inputCatch) 

out = processBody(c,in) 

catchBodyOutput.add(out) 

12 mergedOut = tryBodyOutput 

13 for each out-set, catchOut in catchBodyOutput 

14 mergedOut = merge(catchOut,mergedOut) 

15 

t input 

TryBody 

initialFlow 

t 
initialFlow 

t 16 mergedOut = handleBreaks(tryBodyOutput,node) 

17 for each catchOutput in catchBodyOutput{ 

IX breakout = handleBreaks (catchOutput ,node) 

19 mergedOut = merge (mergedOut ,breakOut) 

CatchBody. 

1 

atchBody 

N 

20 } 

21 return mergedOut 

22 } 

(a) Pseudo-code 

out 

(b) Graphical Representation 

Figure 6.9: The Structural Flow-Allalysis Aigorithm of Try-Catch COllstruct. 

Also note that the same catchBodylni tialFlow set is c10ned and passed as input to 

each of the catch bodies processed (Statements 8 and 9 in Figure 6.9(a)). The reason being 

85 



A Structure-Based Flow Analysis Framework 

that only one of these catch bodies will ever be matched and hence the input should always 

be the same flow-set for ail catch bodies. The result of processing the catch bodies are 

stored within the catchBodyOutput list (Statement 10 in Figure 6.9(a)). Once ail the catch 

bodies have been processed the out-sets of these and the out-set if no exception is thrown 

(tryBodyOutput from Statement 3 in Figure 6.9(a)) are merged in Statements 12 to 14. 

The last step then is the merge of ail the possible break statements. Again it is im­

portant to remember that if the Try-Catch node has a label on it then either the try body 

or any of the catch bodies can target this label. Rence statements 16 to 20 ensure that ail 

stored breaksets for the tryBodyOutput as weil as the catchOutput's are correctly handled 

for break-sets. The result of merging the break-sets with the execution of the tryBody 

and/or one catch bodies becomes the final output of processing the Try-Catch block. 

86 



Chapter 7 

AST rewriting using Structure-based Flow 

Analyses 

In this section we discuss sorne structural analyses, and transformations that use infor­

mation from structure-based analyses, to further improve code readability and comprehen­

sion. With the structure-based ftow analysis framework, as described in the previous chap­

ter, we now have the resources to gather any additional information required for more com­

plex transformations. More precisely, we are now able to follow the ftow of data through 

the AST and make conservative assumptions regarding the reachability, execution etc. of 

certain areas of the code. Figure 7.1 shows the internaIs of the back-end stage where ftow 

analyses are performed, the results of which are then used to enable further transformations 

on Dava's AST. This stage is an iterative process since the application of a transformation 

may enable further transformations. 

Figure 7.2 shows the implemented analyses (rectangles) and the transformations (dia­

monds) using information gathered by these analyses. 

The analyses implemented (reaching definitions, reaching copies, must/may assign and 

constant propagation) are all well-known compiler ftow analyses. An interesting obser­

vation is that usually these analyses are used by optimizing compilers for performance 

improvements. However, in the context of Dava we have used these analyses for code 

simplification. 

In the remaining sections of this chapter we discuss the different analyses implemented 

87 



AST rewriting using Structure-based Flow Analyses 

l Java Source 

Figure 7.1: AST rewriting using Structure-Based Flow Analyses 

along with transformations enabled because of these analyses. 

7.1 Reaching Definitions 

The reaching definition analysis is the basis of other structure-based f10w analyses and is 

also used in transformations. A definition d: x = <expr> reaches a point p in the program 

if there exists a path from p such that there is no other definition of x between d and p. The 

analysis is a forward f10w analysis and gathers sets of definitions that reach each program 

point. 

The analysis is started by invoking the process method of the StructuredAnalysis 

c1ass. The pro cess method takes as input the body to be processed, in this case the method 

being analyzed, followed by the initial input set. The initial input set for reaching defini­

tions is the empty set since no definitions reach the start of a method. The invocation of the 

process method is shown in Figure 7.3. 

As seen from Figure 7.3 the merge operation is set union since the definitions reaching 

a particular point p is the combination of definitions reaching from all paths leading to p. 

88 



7.1. Reaching Definitions 

Reaching 

Definitions 

Constant 

Propagation 

Uses And 

Definitions 

Reaching 
Copies 

MustlMay 
Assign 

Figure 7.2: Implemented Flow Analyses and transformations 

89 



AST rewriting using Structure-based Flow Analyses 

public class ReachingDefs extends StructuredAnalysis{ 

ASTMethodNode toAnalyze; 

h 

* Invoke the main process method to start processing the' 'toAnalyze" method node, 

* Notice the process method is sent an emptyFlowSet as initial input since the safe assumption 

* for reaching definitions is that no definition reaches the start of a metlwd body. 

*1 

public ReachingDefs(Object toAnalyze){ 

super 0 ; 
this.toAnalyze = (ASTMethodNode)toAnalyze; 

DavaFlowSet temp = (DavaFlowSet)process(toAnalyze, emptyFlowSet()); 

} 

Illmplementation ofinherited abstract method 

public DavaFlowSet emptyFlowSet(){ 

return new DavaFlowSet(); 

} 

Il Implementation ofinherited abstract method. Setting merge operator to UNION 

public void setMergeType(){ 

MERGETYPE=UNION; 

} 

Figure 7.3: Initializing the Reaching Definitions Flow Analysis 

New reaching definitions are generated whenever a local variable is assigned a value. 

Rence, whenever such an assignment statement is encountered the CUITent flow-seCs in­

formation needs to be augmented with this new reaching definition. Rowever, before this 

addition, any previous definitions of the same variable that are currently present in the 

flow-set need to be removed. Figure 7.4 shows how this is carried out by over-ridding 

the processStatement method of the StructuredAnalysis class. Briefly, the CUITent 

reaching definitions in the flow-set are searched to find any that match the local variable be-

90 



7.1. Reaching Definitions 

ing redefined. Any such definitions are removed from the flow-set. Then the new definition 

statement is added to the flow-set. 

public Object processStatement(Stmt s, DavaFlowSet inSet){ 

if(! (s instanceof DefinitionStmt» 

} 

return inSet; 

DavaFlowSet toReturn = (DavaFlowSet)cloneFlowSet(inSet); 

Value definedVar = «DefinitionStmt)s).getLeftOp(); 

if(definedVar instanceof Local){ 

} 

Il KILL any previous reaching defs of definedVar 

} 

List currentReachingDefs = toReturn.toList(); 

Iterator listlt = currentReachingDefs.iterator(); 

while(listlt.hasNext(»{ 

Ileach entry is a reaching definitian 

DefinitionStmt reachingDef = (DefinitionStmt)listlt.next(); 

Ilwe knaw this is a definitian af a local 

if(definedVar.getName().compareTo( 

} 

reachingDef.getLeftOp().getName(»==O){ 

Ilneed to kil! this from the list 

toReturn.remove(reachingDef); 

IICEN: add stmt s ta the taReturnfiow set 

toReturn.add«DefinitionStmt)s); 

return toReturn; 

Figure 7.4: Generating new Reaching Definitions and killing previous ones 

The extension of the StructuredAnalysis class also requires the programmer to pro­

vide an imp1ementation of the abstract newCatchBodylnitialFlow method. As dis­

cussed in the previous chapter, this is the conservative assumption used in processing the 

91 



AST rewriting using Structure-based Flow Analyses 

catch Bodies of any Try-Catch block found in the code. The newCatchBodylni tialFlow 

for the reaching definitions analysis is the universal set of ail definitions in the method body. 

This is obtained using the AllDefini tionsFinder traversaI discussed in Section 3.4 as 

shown in Figure 7.5. Once ail the definitions are obtained, the initial input flow-set is 

populated with these definitions and becomes the input to the catch Bodies. 

h 

* Implementation of inherited abstract method. The Initial fiow into catch bodies is 

* the universal set of aU definitions in the method being analyzed. 

*1 

public Object newCatchBodylnitiaIFlow(){ 

DavaFlowSet initial = emptyFlowSet(); 

} 

Il Use an already implemented traversai routine to find ail definitions in the method 

AIIDefinitionsFinder defFinder = new AIIDefinitionsFinder(); 

toAnalyze.apply(defFinder); 

List allDefs = defFinder.getAIIDefs(); 

IlallDefs is the list of ail definition statements in the method 

Iterator deflt = aIIDefs.iterator(); 

while(deflt.hasNext(» 

initial.addCdeflt.next()); 

Ilinitiai is now the universal set of ail definitions 

return initial; 

Figure 7.5: Input to catch Bodiesfor Reaching Definitions Flow Analysis 

The universal set of ail definitions is used as input for catch bodies since during analysis 

we are not sure which statement of the try body will result in the exception being thrown. 

Figure 7.6 shows pseudo-code explaining this. Any statement in the try body can poten­

tially throw an exception which can result in the execution of the catch body. Hence at the 

start of the catch body we don't know the exact flow set. One way of creating the correct 

92 



7.1. Reaching Definitions 

flow-set would be to merge data sets for aIl the statements of the try body and use that 

conservative assumption as the input set for the catch body. However, this requires a lot of 

memory. Therefore, it is better to be even more conservative and assume that aIl definitions 

reach the catch body. 

d: x 

try{ 

the definitien d reaches this area 

} 

catch( .... ){ 

.... the definition d might net reach this area 

} 

Figure 7.6: Conservative reaching definitions assumptionfor input to catch bodies 

The results of the reaching definition analysis are used to compute uD-dU chains. The 

uD chain is a mapping of aIl definitions for a use of a variable. The dU chain gives ail 

uses of a variable where a particular definition might reach. The uD-dU chains are useful 

while looking for complicated patterns. For example, modifications to the code that moves 

variable uses around needs this information since we need to make sure that the correct 

definitions of variables reach each use at ail times. 

A direct advantage of having this information is that looking at the dU chain we can 

find definitions which will never get used. These definitions can simply be removed as 

long as the definition does not have any other side effects e.g., invocation of a method to 

assign to a field. In the next section we discuss the creation of For loops which wouldn 't 

be possible without uD-dU information. 

7.1.1 For Loop Construction 

Certain conditional While 100ps can be represented more compact1y as For 100ps. Pro­

grammers generaIly prefer to use For 100ps instead of While loops particularly when the 

93 



AST rewriting using Structure-based Flow Analyses 

loop has a consistent increment on a particular variable. A For loop has four important 

components: 

• Init: This is the part of the For loop where variables to be used in the loop body can 

be dec1ared and initialized. The init is invoked once before the first iteration of the 

loop. 

• Condition: The loop continues to execute as long as the condition of the loop eval­

uates to true. The condition is evaluated each time before the iteration of the loop. 

• Update: This part of the For loop is executed at the end of each iteration. It is here 

th an any updates of the variables can be done. 

• Body: The body of the For loop consists of the code which is to be executed as long 

as the condition evaluates to true. 

We define natural For loops as those loops where ail four components of the For loop 

contain at least one expression/statement. The While to For transformation looks for pat­

terns which can be converted into natural For loops. The pattern is shown in Figure 7.7(a). 

(a) Unreduced 

Body A; 

Init Stmts 

while (cond) { 

Body B 

Update C 

} Iiend white 

(b) Reduced 

Body A 

for (Init Stmts;cond;Update C){ 

Body B 

} Il endfor 

Figure 7.7: The Whi Le to For conversion 

94 



7.1. Reaching Definitions 

The general form of the reduction is shown in Figure 7.7(b). However, there are a 

number of restrictions on the different components and the transformation succeeds only 

if aH restrictions are fulfiHed. The procedure and the restrictions can be best explained 

by going through the algorithm for the transformation. Algorithm 9 outlines the steps 

taken to transform a While loop into a For loop. The body of an ASTNode is searched 

for a sequence of statements foHowed by a While loop. The statement sequence is the 

combination of Body A and Init Stmts in Figure 7.7(a). These statements are then analyzed 

to retrieve the init using the GetIni t function. 

Aigorithm 9: The While to For conversion 

Input: ASTNode node 

body f-- GetBody(node) 

Iterator it f-- body.i terator 0 

while it.hasNext () do 

nodel f-- it.Next 0 

node2 f-- GetNextNode (nodeJ) 

if node 1 is a series of statements and node2 is a conditional white loop th en 

init f-- GetIni t (node 1) 

update f-- GetUpdate (init,node2) 

newStmtsf--remove Ini tStmt s (node 1, init) 

stmtsNode f-- ASTStatementSequenceNode (newStmts) 

condition f-- GetCondi tion (node2) 

whileBody f-- GetBody (node2) 

forNode f-- ASTForLoop (init, condition, update, whiteBody) 

Replace nodel and node2 by stmtsNode andforNode in body 

end 

end 

The Getlni t function goes through the sequence of statements and galhers ail slate­

ments that are initializing any variables. Once aH such statements have been gathered they 

are analyzed to check whether the initialized variables are only used within the While loop 

95 



AST rewriting using Structure-based Flow Analyses 

body. This information is readily available through the uD-dU chains created using the 

reaching defs flow analysis discussed in the previous section. If all uses of variables initial­

ized in the ini t are present only in the While body then we know that the variable is live 

only within this body and hence the initialization is converted into a loop-local dec1aration 

and initialization statement. 

The next step in the algorithm is to retrieve the update statements for the For loop to be 

created. This is achieved using the GetUpdate function. We know that the last statements 

to be executed before starting a new iteration are the update statements. Hence we look for 

these statements in the last node of the body of the While loop. The GetUpdate function 

retrieves the last node and checks that it is a sequence of statements. If so, the sequence 

of statements is checked to see if they update a variable which is either initialized in the 

ini t or is part of the condition of the While loop. If we can not find such a statement the 

transformation fails since we only want to create natural For loops. However, if we are 

able to identify update statements, these are stripped away from the sequence of statements. 

This again requires the use of the uD-dU chains to check that any update being made is 

not utilized in the statements following the update statement. If there is a use of the update 

statement before the loop body ends, then this statement cannot be removed from its CUITent 

location in the sequence. 

If an ini t and update list are successfully retrieved then we can create the For loop. 

The first step is to create the sequence of statements that will replace the existing sequence 

(the combined Body A and Init stmts node of Figure 7.7(a». This is achieved by the 

Removelni tStmts function which goes through the statements and keeps only those which 

do not belong ta the ini t. Basically we are left with Body A which is then used ta create 

a new statement sequence node. 

The For loop is then created with the condition of the While loop as its condition and 

the body of the While loop as its body minus the update statements which becomes the 

update part of the For loop. The new statement sequence node and the For loop then 

96 



7.2. Reaching Copies 

replace the old statement sequence node and While loop in the AST. 

Function: GetUpdate 

Input: List init, ASTWhileNode node 

Output: List update 

body +- GetBody(node) 

ZastNode +- GetLastNode (body) 

if ZastNode is a statement sequence then 
stmt +- GetLastStmt (lastNode) 

if stmt is a definitionStmt then 
definedLocal +- GetDefinedLocal (stmt) 

if definedLocal occurs in init then 
1 update.add (stmt) 

el se 
condition +- GetCondition(node) 

if definedLocal occurs in condition then 
1 update.add (stmt) 

end 

end 

end 

end 

return update 

7.2 Reaching Copies 

Copy statements are defined as statements of the form a = b where both a and b are vari­

ables. The reaching copies analysis, as implemented in Dava, tracks copy statements where 

both a and b are local variables. Fields were exc\uded from this analysis since tracking field 

values requires an inter-procedural context-sensitive analysis to be able to gather informa­

tion useful enough to justify the cost of the analysis. 

The analysis gathers sets of reaching copies where a copy statement reaches a program 

97 



AST rewriting using Structure-based Flow Analyses 

point p if ail paths leading to p pass through the copy statement a = b and the values of 

a and b are not changed between the copy statement and the statement p. For each copy 

statement, a = b, the analysis stores a local variable pair (a,b). It is a forward analysis which 

uses intersection as the merge operation since we are only interested in copy statements 

which definitely reach the program point p. When sorne local variable is assigned a value 

then any previous entries in the ftow set are removed since the value of the variable is 

now changed. If the assignment to the local variable is from anther local i.e., it is a copy 

statement then a new entry of the form (a,b), is added to the ftow set. 

The initial input to the method body is the empty set since no copies reach the start 

of the method. The input to the catch bodies is also the empty set since we cannot safely 

assume that a certain copy statement reaches a pro gram point p within the catch body. 

7.2.1 Copy Elimination 

The copy elimination algorithm aims to rem ove useless copy statements from the code. In 

doing so it also minimizes the number of variables used in the program. A copy statement 

a = b is useless if at aIl places where variable a is used we could have used the variable b 

instead. We can use variable b instead of variable a if the value of a and b has not changed 

between the copy statement and its use. This information is available from the reaching 

copies analysis discussed in the previous section. 

The transformation starts by looking for copy statements. When a copy statement is 

found it uses the dU chain, created using the reaching definitions analysis in Section 7.1, 

to find ail the potential places that this definition might get used. Then the reaching copies 

analysis is used to find out whether at each potential use of this definition the ftow set 

contains this definition as a reaching copy. If it does that means that the values of a and b 

have not been changed between the copy statement and its use. We can therefore remove 

the copy statement and use the variable b wherever there is a use of variable a. 

Two real-world ex amples of copy elimination, from our benchmark suite, are shown 

in Figure 7.8. The unreduced form of the code in Figure 7.8(a) shows a copy statemcnt 

x=a; which gets eliminated in the reduced version due to copy elimination. The use of 

variable x (line 3 in Figure 7.8(a)) has been replaced by the use of variable a in line 2 of 

98 



7.3. Constant Propagation 

Figure 7 .8( c). Similarly the copy statement of line 5 in Figure 7 .8(b) is useless since the 

next line is the only use of this copied variable and there is no reason why we can 't use the 

original variable in this use. Hence the use ofr1 in line 6 of Figure 7.8(b) can be replaced 

by the use of variable e. The copy statement (line 5) is then useless and is removed from 

the code. 

(a) Unreduced 

x = a j //copy stmt 

if(b == 3) 

foo(x)j 

try{ 

BodyA 

} 

(b) Unreduced 

catch(Exception e){ 

} 

r1 = ej 

r1.printStackTrace()j 

1 if (b == 3) 

foo(a)j 

1 try{ 

BodyA 

3 } 

(c) Reduced 

(d) Reduced 

4 catch(Exception e){ 

e.printStackTrace()j 

6 } 

Figure 7.8: Copy Elimination 

7.3 Constant Propagation 

A constant propagation analysis aims to rem ove unnecessary use of variables in expres­

sions. If the value of a field or local can be statically determined there is no reason why 

the code should not use that value instead of the variable. A more important advantage 

of constant propagation is that sometimes valuable information can be obtained regard-

99 



AST rewriting using Structure-based Flow Analyses 

ing conditional expressions in the code. For instance, in figure 7.9, the condition checks 

whether a variable x is less th an the constant 5. The constant propagation data f10w anal­

ysis can determine that at statement 2, before evaluating the condition, the value of x is 3. 

Hence statically it can be confirmed that the condition will evaluate to true. Therefore the 

condition need not be evaluated and code can f10w straight to the target of the condition, 

side stepping the actual evaluation of the condition (in Figure 7.9 this means removing the 

If statement 2) and immediately executing code A after statement 1). Similarly, if code 

A does not change the value of x, then condition at statement 5 evaluates to false since 

constant propagation will know that x is still 5. Therefore, statements 5 to 7 can also be 

removed from the code. 

(a) Original Code (b) Transformed Code 

x = 3; 

if (x<5){ 

<code A> 

} 

if (x ==1){ 

<code B> 

} 

x =3 

<code A> 

Figure 7.9: Advantages of constant propagation 

Second-generation obfuscators, those which go further th an just renaming class mem­

bers and local variables, rely heavily on confusing decompilers by producing complicated 

code guarded by opaque predicates. One form of opaque predicates is the use of conditions 

which never evaluate to true. Constant propagation can sometimes help the decompiler 

confirm that the condition is always false and the conditional statement along with its body 

can be discarded as de ad code. Section 7.3.5 discusses this in more detail. 

100 



7.3. Constant Propagation 

7.3.1 The analysis 

Constant propagation is a forward data f10w analysis. The analysis collects sets of local 

value pairs. A local has a constant value at a program point p if on ail program paths from 

the start of the method to point p the local has been assigned this constant value and this 

definition has not been modifiedfrom its definition point to the use at program point p. 

The merge operation is defined as the pair wise intersection using the following rules: 

1 Value l 1 Value 2 Il Result 

l.. l.. -

C l.. C 

Cl C2 Cl if Cl ==C2 

el se T 

T l../C/T T 

Table 7.1: Intersectionfor Constant Propagation. (.1 indicates unknown value and T represents a 

non-constant value) 

The f10w equations for the f10w analysis deal with assignment statements of the form 

x = expr where x is a local. The statement kills any known belief about the values of x in 

the current flow-set. The information obtained from the statement (hereafter called the gen 

set) contains an entry if one of two conditions is satisfied: 

• expr is a constant value, C. In this case the gen set is the pair (x,C) . 

• expr is a local variable which has a constant value pair present in the current f10w set. 

Supposing x = y is the statement and (y,C) belongs to the current f10w set. Then the 

gen set contains the pair (x,C). 

These f10w equations, however, are not general enough and miss many opportunities to 

gather useful information. An example of this can be seen in Figure 7.10. In the figure the 

merge of the out-sets of B2 and B3 (the in-set of B4) will require the intersection of the 

pairs (j,2) from B2 and (j,T) from B3. This means that the in-set for B4 will contain (j,T) 

lOI 



AST rewriting using Structure-based Flow Analyses 

according to our merge rules (Table 7.1). This is because the analysis does not interpret the 

relatively simple aggregated expression i + 1 and gives the value of T to j in B3. 

82 83 

Figure 7.10: Using constant field information during Constant Propagation 

The flow equations are strengthened by adding equations for assignment statements 

with expressions of the form exprl op expr2 on the RHS. Briefly: the new equations check 

whether expr! and expr2 are constant values or have constant entries in the current flow set. 

If yes and if the operation is one of addition, subtraction or multiplication the operation is 

performed and this value is used to generate a pair for the local being assigned. Hence in 

Figure 7.10 the assignment statementj = i+l will result in the pair U,2) since exprl is i 

which has an entry, (i,l), in the in-set and expr2 is the constant value 1. Now the merge 

of U,2) from B2 and U,2) from B3 results in U,2) to be present in the in-set of B4 which 

cornes useful during the array access in B4. 

A special case of this are the increment and decrement statements (i++ and i- -). In this 

case if the in-set before processing the statement contains a constant value for i the out-set 

contains the incremented/decremented value. 

The initial flow set, when entering the method body, is the set of local value pairs 

with values for ail locals set to -.l since locals have no initial value and must be defined 

before use. However, values for formais of the method, which are also local variables, are 

102 



7.3. Constant Propagation 

assigned the value T since they receive their values from calling sites for which we have 

no information. The input to the catch bodies is the set where formaIs and locals are aIl set 

to T. This is so since we need to be conservative in our analysis and assume that none of 

the variables are assigned constant values. 

7.3.2 Extensions 

Using only local variables and only checking for simple expressions on the RHS of the 

assignment statement, as opposed to also looking for simple aggregated expressions, does 

not fully utilize the potential of constant propagation and gives weak resuIts. Extensions 

to the analysis were implemented trying to gather a larger data set with information about 

more local variables. 

Using constant value fields 

The constant values field finder analysis of Section 3.5 can be used to increase the amount 

of information available to the analysis. To recap, this analysis gathers a list of aIl fields 

in the application which are either final fields, hence their value is constant throughout 

the program, or are fields which always get the default value. It is therefore logical to 

add this set of, known, constant fields to the initial in-set. Notice that this does not mean 

that the analysis is now an analysis on both fields and locals. AlI this extension allows 

is the presence of sorne additional information when deciding to create the gen set for an 

assignment statement. Figure 7.10 shows an example of this. Suppose fieldl is part of the 

constant value list provided by the constant primitive value finder analysis in Section 3.5. 

If we were not to use this information in our analysis then the gen set for the assignment 

statement Înt x =.fieldl; in BI would contain the pair (x,T) sincefieldl is a field and we 

do not track field values. However, if the in-set contained information about the constant 

value fields then the gen set would for this statement would be (x,O) since (field 1,0) will be 

present in the in-set. 

One thing to remember is that the only time a pair (x,const) where x is a field is added to 

the in-set is the entry to a method. AlI such pairs are created from the list of constant value 

fields provided by the constant primitive value finder analysis. In particular the statement 

103 



AST rewriting using Structure-based Flow Analyses 

jield2 = J; contains an assignment to a field and is NOT added to the in-set. Although field 

information can help, in the same way as local information can, in the general case it is 

harder to track values of fields. 

Conditional Expression results 

Vital information about variables can be obtained from the conditional expressions in con­

ditional statements: If and If-Else and the Swi tch construct. For instance, in Fig­

ure 7, 10, the true branch of the If statement is taken only if the local b has the value 

2. Hence while entering the basic block B2 we know that (b,2) is valid. Although this in­

formation is short lived i.e., valid only within the basic block it can help gather information 

regarding other locals which might be valid even after the basic block ends. Depending on 

the type of conditional expression different beliefs can be generated. These are as follows: 

• In an If statement if the conditional expression is a boolean variable then the variable 

holds the value true within the body of the If statement. 

• If the conditional expression of an If-El se statement contains a boolean variable 

then one of two things can occur: 

1. If the variable is not negated, using the! symbol, then the boolean variable is 

true in the th en branch and false in the else branch. 

2. If the variable is negated then the boolean variable is false in the then branch 

and true in the else branch. 

• If an If-Else statement contains a binary comparison operation using the == or != 

comparison operators sorne information can be inferred about the operands. Assum­

ing the conditional expression is expr J op expr2 then the types of inferences possible 

are shown in Table 7.2. 

Similar inferences can be made for the If statement for the == operator. One impor­

tant point to be careful of is that if there is a previous constant belief about a local 

used in a conditional expr then that belief should get preference over any belief that 

might get added due to the conditional expression. The reason being that a belief 

104 



7.3. Constant Propagation 

exprl op expr2 Result 

constant == /!= constant no information 

constant -- local add (local,constant) to then branch --

constant != local add (local,constant) to else branch 

local -- constant add (local,constant) to then branch --
local != constant add (local,constant) to else branch 

locall -- local2 if (locall ,const) E in-set add (locaI2,const) to then branch --
else if (locaI2,const) E in-set add (local 1 ,const) to then branch 

locall != local2 if (locall ,con st) E in-set add (locaI2,const) to else branch 

else if (locaI2,const) E in-set add (locall ,const) to else branch 

Table 7.2: Strengthening Constant Propagation using Conditional comparison operations 

which is not generated within a condition has the chance to hold true after the con­

dition whereas a belief generated by a condition only holds true within one of the 

branches of the condition. Figure 7.11 shows a code snippet which illustrates this. 

1 a=2; 

if (a==3){ 

<code A> 

4 } 

5 <code B> 

Figure 7.11: Preference to existing constant values 

In Figure 7.1 1 using constant propagation we know that the out-set of statement l 

will contain (a,2). The conditional expression in statement 2 wiIJ generate (a,3) for 

code A. However, if we were to add this pair to the in-set then the merge at the 

end of the If statement will try intersecting (a,2) with (a,3). This will generate the 

pair (a,T) in the out-set which causes loss of information. In fact the condition in 

statement 2 will always evaluate to false and is dead code. Section 7.3.5 discusses 

105 



AST rewriting using Structure-based Flow Analyses 

more on this. In short, a belief is only generated from a conditional expression if 

there is no existing belief regarding the variables involved prior to the evaluation of 

the expression. 

The Swi tch statement can also give sorne information for the value of a local. Suppose 

the key for a Swi tch statement is a local variable. Then within a particular case of the 

Swi tch statement the value of the local is the same as the value checked in the case state­

ment. Again if any previous constant entry exists then the previous entry gets preference 

since we know for sure that the particular case with a different constant value th an the entry 

in the in-set will never get matched and is essentially dead code (Section 7 .. \5). 

7.3.3 Constant Substitution 

The information gathered by the extended constant propagation analysis are used by a 

transformation routine which searches for uses of locals in the code. At each such use 

the constant propagation analysis results are queried to check whether we can statically 

determine the value of this local at this point. If such an entry is found the use of the local 

is replaced by the constant value. Sorne key things to keep in mind are: 

• For querying the results of constant propagation on loops one needs to retrieve and 

query the out-set of the loop. This is because only the entries in the out-set hold true 

at all stages of the loop (first iteration, any middle iteration or when the exit condition 

holds). 

• In a For loop any locals used in the init must be queried in the in-set of the For 

loop whereas the condition and the update should be checked using the out-set. The 

reasoning is the same as the case above. 

• Conditional statements (If and If-El se) and aIl other statements in the code use the 

in-set for the statement to query for constant values for locals. 

Immediately after applying constant substitution new uD-dU chains are created, using the 

reaching definitions analysis introduced in Section 7.1. This allows the application of use­

Jess local variable removal. Since local uses might have been substituted for constant val-

106 



7.1. Reaching Definitions 

flow-set would be to merge data sets for aIl the statements of the try body and use that 

conservative assumption as the input set for the catch body. However, this requires a lot of 

memory. Therefore, it is better to be even more conservative and assume that aIl definitions 

reach the catch body. 

d: x 

try{ 

the definitien d reaches this area 

} 

catch( .... ){ 

.... the definition d might net reach this area 

} 

Figure 7.6: Conservative reaching definitions assumptionfor input to catch bodies 

The results of the reaching definition analysis are used to compute uD-dU chains. The 

uD chain is a mapping of aIl definitions for a use of a variable. The dU chain gives ail 

uses of a variable where a particular definition might reach. The uD-dU chains are useful 

while looking for complicated patterns. For example, modifications to the code that moves 

variable uses around needs this information since we need to make sure that the correct 

definitions of variables reach each use at ail times. 

A direct advantage of having this information is that looking at the dU chain we can 

find definitions which will never get used. These definitions can simply be removed as 

long as the definition does not have any other side effects e.g., invocation of a method to 

assign to a field. In the next section we discuss the creation of For loops which wouldn 't 

be possible without uD-dU information. 

7.1.1 For Loop Construction 

Certain conditional While 100ps can be represented more compact1y as For 100ps. Pro­

grammers generaIly prefer to use For 100ps instead of While loops particularly when the 

93 



AST rewriting using Structure-hased Flow Analyses 

(a) Original Code (b) After Constant Propagation 

1 int a = 2' , 1 int il, i2, i3, i5; 

int b a*3; il 2 * 3' , 
3 int c a-b; 3 i2 2 - 6' , 
4 int d c + a' , 4 i3 -4 + 2' , 
5 int e 5; 5 i5 2 + 6 + -4 + -2 + 5; 

6 int x = a +b +c +d +e; 6 System.out.println(2 + 6 + -4 + 

-2 + 5 + 7); 7 System.out.println(a+b+c+d+e+x); 

(c) After Expression Simplification 

1 System.out.println(14); 

Figure 7.12: Advantages of constant propagation 

expr] op expr2 where the operation can he any ofthe relational operations (==,>=,>,<=,<,!=). 

If exprl and expr2 are constants then the comparison is carried out and the binary expres­

sions is replaced hy its truth value obtained on evaluation. For instance 2==3 is replaced 

by false. 

Simplifying complex aggregated conditions: These involve conditions aggregated 

together using && or Il symbols. Aggregated conditions using the && aggregation symbol 

are first matched against Table 7.3. The first four rows are the truth table for boolean truth 

values for the && operator. The remaining for rows de al with && aggregation when one 

of the two conditions is a constant and the other an expression to be evaluated. 

IfExpr 1 is a constant boolean but Expr 2 is an expression to be evaluated then the result 

of the simplification is Expr 2 if the boolean constant is true (since now the RHS has to be 

evaluated) or is false if the boolean constant is false (since RHS will never be evaluated). 

In the case Expr 2 is a boolean constant Expr 1 is always evaluated. The condition can be 

simplified by removing the LHS constant if it is true but in the case the constant is false 

108 



7.3. Constant Propagation 

1 Expr 1 1 Expr 2 Il Result 

true true true 

true false false 

false true false 

false false false 

true Expr2 Expr2 

false Expr2 false 

Expr 1 true Exprl 

Expr 1 false Exprl && false 

Table 7.3: Simplifying the && condition 

we cannot remove the constant as the condition itself is always false. The reason is that 

even though we know that the condition i,s false we cannot simplify the condition to just 

the boolean constant false is because of any potential side-effects that might be caused by 

the evaluation of Expr 1. If basic tests can show that Expr 1 does not have any side-effects 

then this can also be removed to further simplify the condition. 

Table 7.4 gives a similar simplification for the Il operator. Reasoning about the simpli­

fication when dealing with one boolean constant and one expression is the same as that for 

the && operator. Using tables 7.3 and 7.4 the complex aggregated conditions are simplified 

as much as possible. As a last effort, if the condition still contains aggregation, we apply 

DeMorgans law. The law states that: 

!A && lB == !(A Il B) 

!A Il lB == !(A && B) 

An example of this is shown in Figure 7.] 3. 

7.3.5 Removing Redundant Conditional Statements 

Once the conditional expressions have been simplified, after the application of constant 

propagation, it is sometimes possible to rem ove redundant If and If-Else statements 

109 



AST rewriting using Structure-based Flow Analyses 

Expr 1 Expr 2 Il Result 

true true true 

true false true 

false true true 

false false false 

true Expr2 true 

false Expr2 Expr2 

Expr 1 true Expr 1 Il true 

Expr 1 false Exprl 

Table 7.4: Simplifying the Il condition 

(a) Original Code (b) Decompiled Code 

1 if (a && b Ile && d) 
1 if ( (zO && zl) Il 

( ! ( ! (z2) Il! (z3))) ) 
return true; 

return true; 

(c) After DeMorgans simplification 

1 if ( (zO && zl) Il (z2 && z3) ) 

return true; 

Figure 7.13: Simplifying conditions using DeMorgans Law 

110 



7.3. Constant Propagation 

from the code. If the conditional expression is an If statement, and if we know that the 

condition has been simplified to a boolean constant, one of two things can occur: 

1. The condition is the constant: true. In this case we know that the body of the If 

statement will always be executed. However, removing the If statement and copying 

its body into the parent no de can produce incorrect Java code. In Figure 7. !4(a) one 

would assume that since the code inside the If statement is always executed there is 

no need to check the condition and the code inside can simply be moved out of the If 

statement. However, as seen in Figure 7. l4(b) this can result in potentially uncompi­

lable code since the code labeled codeA is dead code because of the return statement 

copied out of the If statement. Hence removal of such conditional statements is al­

ways followed by the analysis discussed next (Section 7.3.6). This analysis looks for 

unreachable pieces of code and removes it from the AST. 

(a) Original Code 

1 public void foo(){ 

<snip> 

if (true){ 

return; 

} 

<codeA> 

7 } 

(b) Incorrect Transformation 

1 public void foo(){ 

<snip> 

x } 

return; 

//javac compiler will give an errar at this 

//point due ta unreachable code 

<codeA> 

Figure 7.14: Removing always true If statement 

2. The constant condition is false. In this case the If statement along with its body is 

dead code and is removed from the code. 

Similar to the If statement, if on simplification an If-Else statement contains a boolean 

constant one of two things are possible: 

111 



AST rewriting using Structure-based Flow Analyses 

1. The constant condition is true. This implies that the then branch always executes. 

Hence the If-Else statement is removed and is replaced by the code in the then 

branch of the statement. Again simply moving the then body out of the If-Else 

statement can cause potential compilation errors due to reasons similar to those of 

removing the code out of a If statement with a true condition. The unreachable 

code analysis discussed in Section 7.3.6 is applied right after this transformation to 

remove any dead code produced. 

2. The constant condition is false. This means that the el se branch will be executed. 

The same pattern as the above is applied i.e., the If-Else statement is removed 

and replaced by the else branch of the statement. The unreachable code elimination 

transformation discussed is applied immediately afterwords to remove dead code. 

7.3.6 Unreachable code Elimination 

The unreachable code detection is carried out using a structure-based flow analysis. A 

program point p is considered unreachable if there is no path from the start of the method 

which can lead to program point p. SOOT already includes a de ad code eliminator which 

eliminates any dead code present in the bytecode read from the class file. However, certain 

analyses like the redundant condition elimination discussed in the previous section can 

produce unreachable code. The analysis traverses the AST flowing canReach information 

as it processes different Java constructs. The flow set of the analysis always contains one 

entry which is true if this path is reachable and false otherwise. Abrupt statements i.e., 

break, continue and return, change the canReach information to false. The merge 

operation is the OR operation i.e., if both flow sets contain false then the output is false. 

In a11 other cases the flow set contains true. 

One interesting thing about the analysis is that the processing of the loops does not need 

a fixed point computation. The processing rules for sorne of the interesting constructs are 

listed below: 

• If a loop is reachable then the construct fo11owing the loop is al ways reachable. This 

is in accordance with the Java language specifications. In the case of conditional 

112 



7.3. Constant Propagation 

loops since the loop condition might not evaluate to true hence the construct fol­

lowing the loop is always reachable if the loop itse\f is reachable. For unconditional 

loops either the loop is intended to be an infinite loop or the next construct is reach­

able from a break from within the loop. 

• If an If statement is reachable then the construct following this statement is also 

reachable. Again since the condition within the If statement might not evaluate to 

true the next construct is reachable. 

• For an If-Else statement the construct following the If-Else statement is reach­

able as long as one of the branches of the If-Else statement targets the natural fall 

through of the If-Else construct. In Figure 7.15(a) CodeC is reachable as long as 

codeB does not end with an abrupt statement. Figure 7.15(b) shows how codeC can 

be unreachable since both branches of the If-Else statement sidestep the execution 

of codee. 

• Any labeled construct if targeted by a reachable break statement is itself reachable. 

7.3.7 program Deobfuscation 

A practical use of constant propagation along with the expression simplification and dead 

code elimination is seen in the case of decompiling obfuscated code. As mentioned in Sec­

tion 7.3 second-generation obfuscators introduce complicated code into the program being 

obfuscated. This code is never executed since it does not actually do anything meaningful. 

One way of preventing the code from executing is to place the code within an If statement 

whose condition never evaluates to true. An example of this is shown in Figure 7.16(a). 

The code is the Dava output without constant propagation for a program obfuscated using 

the Zelix KlassMaster [Kldd] obfuscator. Statements 23-28 is code guarded by the boolean 

ftag zO. An inspection of the program shows that the only place zO is assigned a value is 

statement 8. Tracking the value of c which is being assigned to zO shows that this is in fact 

a boolean field which is never assigned a value. Since a field which is never assigned a 

value receives the default value this implies that c and hence zO after statement 8 have the 

113 



(a) CodeC is Reachable 

1 if(cond){ 

CodeA 

returnj 

4 } 

5 else{ 

codeB 

7 } 

8 CodeC 

AST rewriting using Structure-based Flow Analyses 

(b) CodeC is Unreachable 

1 label!: { 

if(cond){ 

CodeA 

return; 

} 

else{ 

codeB 

break label!; 

} 

li) CodeC 

Il } 

Figure 7.15: Reachability analysis for the If-ELse statement 

default value false. Rence the condition in statement 23 always evaluates to false and the 

code 24-27 is never executed and is dead code. 

Figure 7, 16(b) shows the effects of applying constant propagation followed by local 

variable cleaning. The boolean variable zO is detected to hold a constant value, false, after 

Statement 8 in Figure 7.16(a). Rence ail uses of zO in the code (Statements 14, 18 and 23) 

are replaced by the constant false. Statement 8 of Figure 7, 16(a) becomes useless and is 

removed from the program. 

Looking at Figure 7, 16(b) we see that condition simplification will simplify the con­

dition in Statement 13 to true. This means that the If Statement 13 is un-needed and in 

Figure 7, 17(a) has been removed from the code by replacing it with its body. Similarly 

Statement 17 of Figure 7. ! 6(b) contains the condition false. The code is de ad code and is 

removed from the program. Looking at the condition in Statement 22 again we see that the 

If Statement 22-27 wiJJ never be executed as the condition is false. Hence this code is also 

removed from the output. Once dead code elimination has been applied to the program 

there is a strong chance that the AST transformations (Chapter 5) might be able to simplify 

114 



7.3. Constant Propagation 

(a) Decompiled obfuscated Code 

1 class a{ 

10 

Il 

12 

13 

14 

15 

lfi 

17 

IH 

19 

:w 

21 

22 

23 

24 

25 

private Vector a; 

public static boolean b, c; 

int a(String rl){ 

boolean zO, $z2, z3; 

int iO, $i2, i3; 

String r2; 

zO c; 

iO 0; 

label_l :{ 

label_O: 

while (iO < a.size(»{ 

r2 (String) a.elementAt(iO); 

if ! (zO»){ 

z3 r2.equals(rl); 

i3 z3? 1 : 0; 

$i2 = i3; 

if (zO) break label_li 

if (i3 -- 0) iO++; 

else{ 

a.remove(iO); 

return iD; } } 

if (zO){ 

if ( (b» $z2 = true; 

else $z2 = false; 

~ b = $z2; 

27 break label_O; 

2X } } 

29 $i2 = -1; 

30 } //end labeL]: 

31 return $i2; } } 

(b) Code After constant propagation 

1 class a{ 

10 

Il 

12 

13 

14 

15 

16 

17 

IX 

19 

20 

21 

22 

23 

24 

25 

26 

27 

29 

30 

JI 

private Vector a; 

public static boolean b,c; 

int a(String rl){ 

boolean $z2, z3; 

int iO, $i2, i3; 

String r2; 

iO = 0; 

label_l:{ 

label_O: 

while (iO < a.size(»{ 

} 

r2 (String) a.elementAt(iO); 

if (false»{ 

z3 = r2.equals(rl); 

i3 z3? 1 : 0; 

$i2 = i3; 

if (false) break label_li 

if (i3 -- O)iO++; 

else{ 

a.remove(iO); 

return iO; } } 

if (false){ 

} 

if ( !(b» $z2 = true; 

else $z2 

b = $z2; 

false; 

break label_O; 

$i2 = -1; 

} //end labeU: 

return $i2; } 

Figure 7.16: Advantages of constant propagation 

115 



AST rewriting using Structure-based Flow Analyses 

(a) Dead Code Elimination 

1 class a{ 

III 

Il 

12 

14 

15 

ln 

17 

private Vector a; 

public static boolean b,c; 

int a(String rl){ 

boolean $z2, z3; 

int iO, $i2, i3; 

String r2; 

iO = 0; 

label_l: { 

label_O: 

while (iO < a.size(»{ 

r2 (String) a.elementAt(iO); 

z3 r2.equals(rl); 

i3 z3 ? 1 : 0; 

$i2 = i3; 

if (i3 0) iO++; 

IX else{ 

19 a.remove(iO); 

20 return iO; 

21 } 

22 } 

2J $i2 = -1; 

24 } //end labeLl: 

25 return $i2; } 

(b) Reapplying AST Transformations 

1 class a{ 

ID 

Il 

12 

13 

14 

15 

ln 

17 

IX 

19 

10 } 

private Vector a; 

public static boolean b,c; 

int a(String r1){ 

} 

boolean z3; 

int $i2, i3; 

String r2; 

for (int iO=O; iO<a.size();iO++){ 

r2 (String) a.elementAt(iO); 

z3 r2.equals(rl); 

i3 z3? 1 : 0; 

if (i3 != OH 
a.remove(iO); 

return iO; 

} 

} 

$i2 = -1; 

return $i2; 

Figure 7.17: Dead code Elimination and AST Tramformations 

116 



7.4. Must and May Assign 

the resulting AST. Hence the set of transformations are reapplied to the AST. The resulting 

output is shown in Figure 7.17(b). Notice that the labeled blocks have been removed since 

dead code elimination removed the abrupt edges targeting these labels. Also notice that 

the If-Else statement (Statements 17 to 21 in Figure 7.17(a» has been converted to an If 

statement using the abrupt If-Else splitter analysis in Section 5.3.1. 

Also the While loop (Statements 12 to 22 in Figure 7.17(a» has been converted to a 

For loop since the transformation discussed in Section 7.1.1 was matched. 

One other interesting thing to note is that Statements 17 and 18 of Figure 7.17(b) sug­

gest that reapplying constant propagation after AST transformations will simplify the code 

further. However, in our opinion the costs of constant propagation are high enough that this 

should not be included within a fixed point computation of the AST. We therefore leave 

these statements unchanged. 

7.4 Must and May Assign 

Must Assign: A local or field is mus t ini t i a l ized at a program point p if on al! paths 

from the start ta p the local or field occurs on the left side of an assignment statement. 

The analysis is a forward analysis with intersection as the merge operation (there needs 

to be an assignment on both paths for the must condition to be satisfied). Information stored 

by the analysis at different points of the program are the set of locals or fields that are must 

initialized so far. A variable is added to this set if there is an assignment to the variable. 

There are no specifie constructs which kiII a particular variable. Variables are therefore re­

moved only by the intersection operation applied at merge points. The out(start) and in(si) 

are empty sets indicating no variable has been must initialized so far. 

May Assign: The may assign analysis works similarly to the must analysis and differs only 

in the use of union as the merge operation. Hence this analysis gathers the local or fields that 

have at least one assignment on at least one path in the code. The analysis adds variables to 

flow sets similar to the must analysis. However, once a variable is added it is never removed 

from the set indicating the fact that a variable may be assigned on at least sorne path of the 

program. An example of the use of must and may analyses is discussed in the next section. 

117 



AST rewriting using Structure-based Flow Analyses 

7.4.1 Final Field Initialization 

The Java Language specifies that ail instance variables of a c1ass that are declared final 

should be initialized at the time of construction of the object. Static final fields have to 

be initialized as part of the declaration or in the statie initializer block. Non-statie final 

fields need to be initialized as part of the declaration or within ail constructors of the c1ass 

defining this instance variable. If the initialization of a final field takes place within a code 

body i.e., not as part ofthe declaration statement then the field needs to be declared on ALL 

paths within the code body. 

When decompiling code produced by a Java compiler ail field initializations are handled 

correctly as the bytecode necessarily contains initializations of the fields either as part of 

the constructors or as c1ass attributes that can be retrieved. 

Things start to get tricky when the bytecode being decompiled originates from a dif­

ferent source th an a standard Java compiler. At the bytecode level there is no restriction 

for final fields to be necessarily initialized. Hence decompiling bytecode produced from 

a bytecode optimizer like Soot or code generated by other compilers, such as AspectJ, 

can easily lead to decompiled output whieh violates the Java specifications. Java obfusca­

tors in fact exploit this by introducing uninitialized fields in the bytecode since they will 

lead to uncompilable code once decompiled. Figure 7.18(a) shows such an example. The 

field myField is declared final, but is never initialized. A Java compiler will not compile 

this code since it violates the language specifications. Figure 7.18(b) shows decompiled 

pseudo-code which can be produced when decompiling bytecode produced using an As­

pectJ compiler. In this case the Java language specifications are violated since the field 

myField is not initialized on ail paths in the method foo. 

In order to generate recompilable code for bytecode produced by compilers other than 

the standard j avac compiler and to thwart obfuscators we have written a transformation 

which relies heavily on mustInitialize and mayInitialize analyses, discussed in the 

previous section. The aim of this transformation is to ensure that if a field is declared 

as final then it is always must initialized in the constructors of the c1ass. We discuss this 

transformation in the following sections. 

118 



7.4. Must and May Assign 

(a) No assignment to final field 

1 class FinalField{ 

6 } 

public final int myFieldj 

public FinalField(){ 

} 

(b) Final field not initialized on all paths 

1 final int myFieldj 

2 public void foo(){ 

BodyA 

10 } 

if (cond){ 

BodyB 

} 

myField = <assignment>j 

BodyC 

BodyD 

Figure 7.18: Example affinai field not initiolized on all paths 

The Indirect Assignment Aigorithm 

To ensure that aIl final fields are always initialized the processField algorithm is 

invoked for each field. The static modifier of the field is checked. If the field is static 

then the algorithm only proceeds forward if the CUITent method is the static initializer. 

Similarly if the field is non-static then the algorithm proceeds only if the current method is 

a constructor of the class. 

A check is then made to see whether the field has a tag associated with il. These tags are 

created by SOOT from class attributes and contain information about the constant values 

in the application. If the field has a tag associated with it then the value for the field is 

retrieved from the tag. If no tag is found then this indicates that the assignment to the field 

is being carried out either in the static-initializer or the constructors of the c1ass. In this 

case there is a need to confirm that the field is initialized on a11 paths. 

The isMustlni tialized method of Algorithm 10 checks to see whether the final field 

is initialized on a11 paths of the method being processed. The method uses information from 

the structure-based must assign ftow analysis, discussed in the previous section. Using the 

119 



AST rewriting using Structure-based Flow Analyses 

must assign analysis the method returns true if the final field is in fact assigned on aH paths 

in the method being analyzed. This guarantees that at compile time the code will not result 

in a "final field not initialized error". If isMustIni tialized returns false then we know 

that compilation of this method would result in a compilation error as the field has not 

being initialized on aH possible paths. 

Aigorithm 10: processField 

Input: SootFieldfield, ASTMethodNode method 

if !isFinal (field) then 
return; 

if !isStaticlnitializerCmethod) Il !isStatic(field) then 
return; 

else if !isConstructorCmethod) Il isStatic(field) then 
return; 

if hasTag (field) then 
return; 

if isMustInitialized(field) then 
return; 

if !isMaylnitialized(field) then 
addDefaultAssignmentStatement (method, field); 

else 
defs f- getDefs (field); 

handIeAssignOnSomePaths (method, field, defs); 

In the case that a field is not must assigned a may assign analysis is applied (Sec­

tion 7.4) using the isMaylni tialized method. Let us first consider the case where the 

isMaylni tialized method returns false. This indicates that there is no assignment of a 

field on any path through the method. In this situation the decompiler adds a statement 

assigning a default value to the field. This is achieved using the 

addDefaultAssignmentStatement function. The function checks the type of the field 

and accordingly adds to the AST a default assignment statement of that type: object fields 

are assigned null, integers the value 0, booleans are set ta false etc. 

Now considering the case when isMaylni tialized returns true: this indicates that 

there is an assignment to the field on at least one path through the program. Given that the 

120 



7.4. Must and May Assign 

field is not must initialized (isMustIni tialized returned false), we need to transform the 

AST such that the must initialize condition is fulfilled. This is handled by 

handleAssignOnSomePaths which we now discuss. 

Algorithm 11: handleAssignOnSomePaths 

if defis.size 0 ! = 1 then 
cancelFinalModifier (field); 

return; 

end 

allUses +- getUses (field); 

if allUses ! = null && allUses.size 0 ! = a th en 
cancelFinalModif ier (field) ; 

return; 
end 

clonedMethod +- clone (method); 

newMethod +- createlndirectionCcloneMethod,field); 

if isMethodCallSafe (newMethod) then 
replaceMethodBodies (method,newMethod); 

return; 

The aim of the handleAssignOnSomePaths function is to rewrite the AST such that the 

field under observation, currently satisfying the may initialize property, be must initialized. 

The only reason why a variable is may initialized is that ail assignments to the variable are 

nested within sorne control f10w path which might or might-not be taken. This is shown 

in Figure 7.19(a) where the field is may assigned since its assignment is within the If 

statement. The approach followed by the algorithm is to delay the assignment within the 

nested control f10w as much as needed such that it lies on the must initialize path. In the case 

of Figure 7. 19(a) this means delaying the assignment ta "field" until after the If statement. 

A few things have to be kept in mind while doing such a delayed assignment. One of 

them being the value of the field if the path that did assign ta the field is not taken. ln 

our example what should be the value ta field if cond evaluates ta false? The suggested 

transformation ta delay the assignment of the field is ta use a dummy variable of the same 

121 



(a) May assigned field 

1 public void foo(){ 

BodyA 

9 } 

if (cond){ 

BodyB 

} 

field = <assignment>; 

BodyC 

BodyD 

AST rewriting using Structure-based Flow Analyses 

(b) Delayed Assignment makes field Must assigned 

1 public void foo(){ 

<Field Type> tempField; 

tempField = <default> 

BodyA 

if (cond){ 

BodyB 

} 

tempField = <assignment> 

BodyC 

10 field = tempField; 

Il BodyD 

1" } 

Figure 7.19: Delaying assignment of a final field 

type as the field being assigned (variable tempField in Figure 7.19(b)). This variable is then 

assigned a default value depending on the type of the field (object types get null, booleans 

get false etc). Then the assignment to the actual field is substituted by an assignment to 

the just created dummy field. A position in the code is then found where the original field 

is assigned the value from the dummy field (in Figure 7. 19(b) this position is right after 

the end of the If statement). By doing this we have moved the assignment of the field to 

a must assign path. In the case that the may assign path is taken, the field is assigned the 

intended value. On the other hand if that path is not taken (cond evaluates to false) then 

because of the default assignment to the temporary variable the field is also assigned the 

default variable. 

Delaying such initialization is tricky and we only deal with the cases where there is 

only one assignment of the field that has to be delayed. Also, if in the original code the 

field is used after it has been defined we are unable to delay the assignment since then it is 

essential that the delayed statement be above aIl uses of the field. In our transformation we 

122 



7.4. Must and May Assign 

delay the assignment to JUST as much as is needed to put the field assignment on the must 

initialize path. 

The May Assign structure-based analysis not only tells us whether a particular variable 

may have been assigned on sorne path in the pro gram but also stores the different definition 

(assignment) statements that might be executed. The handleAssignOnSomePaths checks 

whether there are more than one definition statements of the field within the code. If there 

are more th an one definitions, then the analysis gives up and invokes the 

cancelFinalModifier method which will remove the final keyword from the field's dec­

laration (Remember that only final fields must be assigned values). If there is only one 

definition then the algorithm checks whether there is any use of this field within the body 

of the method. If there are any uses then the algorithm gives up trying to delay the assign­

ment to the field. In this case also the final keyword is removed from the field. 

However, if there is only one definition of the field and the field is not used after its 

definition then the algorithm continues with its "delaying of assignment" approach. This 

is achieved by invoking the createIndirection method. Once the delayed method body 

has been created one last thing that needs to be checked is that there is no method cali 

between the original assignment of the field and the new position of assignment. This is 

necessary since we are delaying the assignment of a field which might be accessed by other 

methods. Conservatively we restrict the transformation to only those instances in which 

there is no method invoked between the old and new position of assignment. 

Let us look in more detail the workings of algorithm to create the indirection. Algo­

rithm 12 shows the pseudo-code for the creation of delayed assignment. Briefly explained 

the algorithm works like this: 

• Create a new local variable with the same type as the final field 

• Add this variable ta the list of locals in the method un der process (Statementt 1 in 

Figure 7.19(b)) 

• Create a defauIt assignment statement for this new local variable 

• Add default assignment statement ta method body (Statement 2 in Figure 7. 19(b)) 

• Modify the current assignment statement of the field by assigning the value to the 

123 



AST rewriting using Structure-based Flow Analyses 

new local (Statement 3 in Figure 7.19(b)) 

• Create new indirect assignment statement of field using new variable 

• Find the correct position in the method body to place this statement (Statement 4 in 

Figure 7.19(b)) 

The last part of this algorithm deserves further discussion. Our aim is to delay the 

assignment to the field till as late as it is necessary. createlndirection does this by 

trying to place the new assignment statement in the parent of the node in which it orig­

inally existed. If this does not result in must initialization the algorithm tries the grand­

parent and rechecks must initialize. If that does not work then the great-grandparent is 

checked and so on. Using this algorithm we are guaranteed that the first ancestor at which 

isMustlni tialized returns true will be used to place the new assignment to the field. 

With the help of this transformation Dava is able to ensure that there are no compilation 

errors resulting from final fields not being initialized. If a final field is not assigned on ail 

paths then either the final keyword is removed or in sorne cases the assignment is delayed 

to the point that the field is in fact assigned on ail paths. 

124 



7.4. Must and May Assign 

Algorithm 12: createIndirection 
Input: SootFieldfield, ASTMethodNode clonedMethod 

Il Create and add local for indirect assignrnent 

localType +-- getType (field) ; 

newLocal +-- new JirnpleLocal (uniqueName,localType); 

addNewLocal (clonedMethod,newLocal); 

Il Initialize newly created local to default value 

initStmt +-- createDefaultStmt (newLocal); 

index +-- 0 

addStatement (clonedMethod,initStmt,index); 

Il Assign required value for field to new local 

defStmt +-- getDef (field); defStmt . setLeftOp (newLocal); 

Il create indirect field assignrnent staternent 

assignStmt +-- new AssignStmt (field, newLocal); 

Il Add indirect assignment at the first possible place 

parent +-- getParentOf (dejStmt); grandParent +-- getParentOf (parent); 

while ! isMustIni tialized (field) do 

if isMethodNode (grandParenO then 
throw new DavaError("Unable to must-initialize"); 

ancestor +-- getParentOf (grandParent); 

ancestorSubBody = ancestor . getSubBodyContaining(grandParent); 

index +-- ancestorSubBody. indexOf(grandParent); 

addStaternent (ancestorSubBody,assignStmt,index); 

if ! isMustInitializedCfield) then 

Il problern not solved remove the strnt just added 

ancestorSubBody. removeStatement (assignStmt); 

Il we should put assign in one level above than current 

grandParent +-- getParentOf (grandParent) ; 

end 

end 

return clonedMethod; 

125 



AST rewriting using Structure-based Flow Analyses 

126 



Chapter 8 

Naming Mechanism 

Local variable names present in Java source code may be lost at compile time. At 

the same time the most corn mon obfuscation technique is to rename all identifiers in an 

application to meaningless and often confusing names. Until recently Dava had a very 

naive naming strategy for allocating names for local variables in the decompiled code, the 

result being source code with hard to follow variable names. 

The new Dava back-end now contains a naming stage where all identifiers in an ap­

plication (c1ass names, methods, fields and local variables) can be renamed. The reason 

for inc1uding non-local variables as part of the namer stems from the fact that obfuscators 

most often use name obfuscation to confuse the code. With a naming mechanism for all 

identifiers in the application we hope to be able to build sorne contextual information of the 

program and convey that to the programmer via identifier names. 

8.1 Heuristic-based naming 

There are many attributes that contribute to how a programmer names a variable. Sorne 

basic ones that are easily identifiable are used to provide rudimentary renaming to variables 

in Dava. The future work (Section 1 1.1) discusses ideas on further improving the naming 

mechanism . 

• Variables used in For loops: It is common practice to use variables named i, j or k 

for driving variables in For loops. 

127 



1 for(int i=O;i<var;i++){ 

//for loop code 

3 } 

Figure 8.1: For loop driving variables 

Naming Mechanism 

• Variables used as flags: Variables that have boolean types are usually used as f1ags. 

They can be used to terminate While loops or used in If/If-El se statements. When 

used in a While loop they represent code as shown in Figure 8.2(a). The variable 

notOone is used as a f1ag to terminate the While loop when a certain condition is 

satisfied. Such variables can be called flags. 

1 while(notDone){ 

//while loop code 

3 } 

1 if(isFinished){ 

//then code 

3 } 

Figure 8.2: Conditional Flags 

• Variables used to hold size or length of a data structure: In Java many classes, 

implementing data structures, contain the method size or a field length. Hence a 

variable with the same name can give good contextual information regarding the data 

it is holding. 

• Variables declared final: It is common programming practice to name final 

fields with names with capitalletters (Figure 8.3(b)). 

• Variables whose exact names can be obtained: The use of get and set methods 

in Java gives additional hints regarding the use of a variable. Since method names 

are conserved during compilation, an assignment from a get method can be used to 

128 



8.1. Reuristic-based naming 

1 int length = classObject.length; 

2 int size = classObject.size(); 

1 final int DIRECTION=l; 

2 final int SIZE = 10; 

Figure 8.3: Heuristics for size!length and fina l variables 

name a variable. Similarly an argument to a set method can be given the name of 

the set method. 

1 id = classObject.getId(); 

2 name = classObject.getName(); 

3 index = classObject.getIndex(); 

5 classObject.setSize(size); 

6 classObject.setX(x); 

Figure 8.4: Using get and set methods ta get variable names 

• Exception Names: It is common practice to name exception variables with the first 

letters of each identifier making up the exception converted to lower case. For exam­

ple a variable oftype FileNotFoundException can be named fnfe and an IOException 

variable can be named ioe. 

• Main method argument: A rather trivial heuristic, only applicable to the main 

method of an application, this heuristic looks for the main method and names the 

argument of the method to args. 

• Arrays: If a better name for an array variable is not available then one can append 

the type of the variable to the string "array" to convey to the programmer that this is 

an array. Rence we can have variables with names intArray or nodeArray etc .. 

129 



Naming Mechanism 

• Local assignment using fields: Since compiled code contains field names, a local 

variable assigned a field value can be given a name similar to the field. 

• Object type: If a local is assigned the result of creating a new object or if an object 

is cast to a particular type then the type of the variable can be used to decide on the 

name of the variable. 

• Remove confusing characters: Confusing symbols should in all cases be removed 

from variable names. These include the use of $ symbols, generated by SOOT for 

internaI (stack) variables. At the same time obfuscators tend to add other confusing 

characters such as a sequence of underscores or combinations of the letter S and the 

digit 5. The renamer looks for such sequences and removes them. 

8.2 Displaying qualified types 

Java bytecode represents objects with their fully qualified types. For instance, if a class ex­

tends the Thread class the class definition would contain "extends java .lang. Thread". 

Similarly, a field or local of type String would have the definition java .lang. String. 

This ensures that all types are explicit and no confusion occurs when executing code for 

objects of the same class names, but belonging to different packages. An example of this 

can be the use of Timer objects in Java. The java. ut il package and the javax. swing 

package both contain a Timer class. Hence in this case, or in any application that uses 

different classes with the same name, it is critical that there be no type ambiguities. 

Type ambiguities are handled by restricting the Java compiler to only allow unambigu­

ous types at compilation. Hence in the presence of only one imported Timer class it is legal 

to use "Timer t" to define a Timer object with name t which belongs to whichever type is 

imported in the class definition (In Figure 8.5(a) the timer object t has type java. util. Timer 

since that is the imported class). However, if multiple Timer classes have been imported 

then the user has to explicitly refer to each type. The code in Figure R.S(b) shows a 

Java pro gram which will produce compile time errors since the packages java. ut il and 

j avax. swing both have Timer classes. Statements 4 and 5 define ambiguous Timer objects 

and need to be fully qualified in order for the program to compile. 

130 



8.2. Displaying qualified types 

(a) Legal variable declarations 

1 import java.util.Timer; 

2 public class TimerTest{ 

Timer t; 

4 } 

(b) Illegal variable declarations 

1 import java.util.*; 

2 import javax.swing.*; 

3 public class TimerTest{ 

Timer swingTimer; 

Timer utilTimer; 

<code> 

7 } 

Figure 8.5: Qualified Variable types 

Another related, and important, restriction is that in the case of importing two classes 

with the same name it is illegal to import the fully qualified class names. Figure ri.6(a) 

shows two illegal import statements (Statements 1 and 2). If classes from different packages 

but with the same name have to be imported then instead of importing the classes the 

packages need to be imported. Figure 8.6(b) shows the correct version of the code. Notice 

that the Timer objects (Statements 4 and 5) are created using the fully qualified type name. 

(a) Illegal Class Imports 

1 import java.util.Timer; 

2 import javax.swing.Timer; 

3 public class TimerTest{ 

<code> 

5 } 

(b) Legal Imports 

1 import java.util.*; 

2 import javax.swing.*; 

3 public class TimerTest{ 

javax.swing.Timer swingTimer; 

java.util.Timer utilTimer; 

<code> 

7 } 

Figure 8.6: Importing classes with the same name 

131 



Naming Mechanism 

When decompiling bytecode, the original Dava front-end always produced code with 

fully qualified type names even though most of the time the types are unambiguous. This 

resulted in verbose code. A back-end transformation has now been implemented which 

converts unambiguous types to their truncated form. An important requirement for deciding 

when a type is ambiguous is knowing exactly which classes have been imported. Hence, the 

first step for this transformation is to detect all Java classes that need to be imported. This 

is done by processing the entire Java class being decompiled and storing ail references to 

library and application classes. Note that we do not store the list of packages to be imported 

but the individual classes that are needed by the Java class. This is necessary since we 

intend to look for cases when two classes with the same Java class name but belonging to 

different Java packages are imported. 

The removal of fully qualified class names occurs at the time the decompiled code is be­

ing output. The transformation implemented checks whether a class type is being printed. 

At this time the truncated name of the type being printed is checked with the list of imported 

classes. If the import list contains multiple classes matching the truncated name then the re­

moval of the fully qualified name for this type will result in an ambiguity. If only one match 

is found then the qualified name can be truncated. Hence, looking back at Figure 8.5(a) 

when the decompiler is printing statement 3, the declaration of the java. util. Timer ob­

ject, the type name can be truncated since the import list only contains one Timer class. 

If an ambiguity exists i.e., the import list contains two classes belonging to different 

packages with the same name, then not only can we not truncate the fully qualified name 

of the class but we also need to import the entire package instead of explicitly importing 

the class. This is shown in Figure 8.6(b). Statement 4 and 5 are two declarations of Timer 

objects belonging to different packages. When the decompiler creates the import list both 

java. util. Timer and j avax. swing. Timer will be present in this list. When the types 

of the declaration statements are being printed the list will be searched for the truncated 

name, Timer. Since multiple occurrences of this name will be found the type names in 

statements 4 and 5 will be left un-truncated. At the same time the import statements for the 

two Timer classes are marked such that instead of printing the explicit imports to the two 

132 



8.2. Displaying qualified types 

Timer classes their respective packages are imported, as seen from statements 1 and 2 in 

Figure 8.6(b). Using this transformation most of the types (fields, formaIs, locals etc) get 

truncated names since ambiguities rarely exist. 

133 



Naming Mechanism 

134 



Chapter 9 

Testing and Empirical Results 

The key requirement in our implementation has always been the correctness of the 

transformations. Previously, Dava produced semantically correct but complicated output. 

The newly introduced back-end aims to improve the code quality but should not do so 

at the expense of producing incorrect code. Great care has been taken to ensure that the 

semantics of the program don't change because of the transformations performed. This 

requires not only confidence in the correctness of the transformation but also testing the 

semantic equivalence of the AST before and after transformations and the interaction of 

transformations when applied iteratively to a program. 

We performed two types of experiments. The first kind performs unit testing for each 

implemented transformation and analysis (discussed in the next section). Since the goal of 

the back-end is to simplify the code we needed to evaluate the effects of the transformations. 

We designed a set of metrics that give insight to the complexity and comprehensibility of 

the code. The second set of experiments computes these metrics for a set of benchmarks. 

In Section 9.2 we discuss the metrics and benchmarks used in our experiments. Empirical 

data and its discussion can be found in Sections 9.4 and 9.5. 

9.1 Unit Testing 

As each transformation was implemented, we created test cases that checked that the trans­

formation was sound. These stress cases check for bugs in the implementation and ensure 

135 



Testing and Empirical Results 

that the transformations result in the desired control flow. Since the transformations ap­

ply pattern matching techniques another very important set of tests were the cases where 

a pattern does not get matched. Rence by checking both cases: when the pattern should 

get matched and when it shouldn't we are sure that the transformations will not change 

the program behavior. Another advantage of using test cases is the y can be used to reason 

about the control flow. 

9.2 Complexity Metrics 

We experimented with a wide variety ofmetrics and in this section we present those metrics 

that we found to be most useful for the purposes of evaluating the quality of code produced 

by decompilers. 1 We first present the simplest metrics for size and counting relevant con­

structs. One of the key differences among decompilers is their treatment of conditional 

expressions and hence we define a conditional complexity metric designed to expose those 

differences. Finally, a special problem introduced in decompilation and obfuscation is the 

naming of identifiers. Rence, we introduce an identifier complexity metric to measure the 

complexity of identifier names. 

AlI of the metrics were computed using specialized traversaIs over the abstract syntax 

tree (AST) representation of Java source as produced by the polyglot-based SOOT front­

end. 

9.2.1 program Size 

A simple program size metric is useless in comparing two different programs other than to 

say one is larger than the other. Rowever, this metric can be very useful in comparing two 

representations of the sa me program. Arguably, more verbose code is more complex and 

this metric is a good high-level measurement to see if decompilers produce unnecessarily 

verbose code and if obfuscators inserted useless code. 

For our purposes, we define program size to be the number of nodes in program 's AST 

1 The design and implementation of these metrics has been done jointly with Micheal Batchelder from the 
School of Computer Science. McOill University, who is currently working on the JBCO obfuscator 

136 



9.2. Complexity Metrics 

representation. Measuring size in this way discounts comments, spurious parentheses and 

any program formatting issues. 

9.2.2 Number of Java Constructs 

Another simple metric for the comprehensibility of a Java program is the frequency of 

different Java constructs in the code. Of course it is necessary to identify which constructs 

are strong indicators of complexity. After considering empirical results, we narrowed our 

attention to four categories: 

• If and If-Else statements (Simple Conditionals) 

• Abrupt control ftow (break and continue) 

• Labeled blocks 

• Local variables 

Simple conditionals help to indicate the amount of decision-making in a program. A 

more complex program will have more branching and therefore more If and If-Else 

statements. 

Abrupt control ftow directives are even more indicative of complex programming. It 

is argued that the use of these statements decreases the tractability of control ftow and 

therefore increases code complexity. 

Labeled blocks are compound statements which are explicitly labeled. While program­

mers will often section their code using blocks, the existence of a label suggests the block 

is used for controlling execution ftow (through the use of a explicitly labeled break or 

continue). Other than exception handling, this is one of the most complex control ftow 

mechanisms in Java. 

Local variable counts can also indicate complexity. The more information one must 

consider when reading code the harder it is to understand. Programmers don 't usually 

create unnecessary identifiers, but tools like decompilers and obfuscators often do. 

137 



Testing and Empirical Results 

9.2.3 Conditional Complexity 

Boolean expressions which decide control flow in a program (i.e., those deciding If, For, 

and While branching) play a particularly crucial role in analyzing code. Aside from 

boolean constants (true or faIse), the simplest conditional expressions consist of a unary 

boolean literaI - a boolean variable. This is assigned a complexity weight of 1. However, 

conditional expressions can be aggregations or nestings of simpler expressions. A boolean 

literaI can be reversed with the negation operator, ! or relational operators «, >, <=, >=, 

==) can be used to compare expressions. We argue that these operators, while more com­

plex th an a single boolean, are still fairly easy to understand and therefore we give them a 

weight of 0.5. Expression aggregation using the && or Il operators requires the reader of 

code to evaluate the meaning of two subexpressions and then to combine the two - arguably 

a more complex task - so we define the weight for these operators to be 1. 

The complexity for each boolean expression in a program is simply the sum of aIl the 

weights described above. Taking the subtree that represents the expression, the leaves of 

the tree are boolean literaIs (increasing the complexity by 1 each) and every internaI node 

is either an unary, relational, or binary operation (increasing the complexity by 0.5, 0.5, or 

l, respectively). 

Given this description, the expression a<b && ! done would be assigned a complexity 

of 5. a<b refers to two variables (weight of 1 each) and the relational operator giving it 

a complexity of 2.5. ! done is a boolean with a negation operator and is given 1.5. The 

aggregation (&&) adds another 1 to the overaH complexity for a total of 5. 

Average conditional complexity for a program is simply the average of the conditional 

complexities over aH boolean expressions in the program. 

9.2.4 Identifier Complexity 

The name used for an identifier can provide valuable insight into the context in which the 

variable is used. This in turn can ease a programmer's task of understanding the code. 

Indeed, most obfuscators garble identifiers in a program. We compute the complexity of 

identifiers by ca1culating a sum of complexities for aH identifiers where each is weighted 

by a relative importance. An identifier x has it's importance factor I(x) defined as foIlows: 

138 



9.3. Benchmarks 

I(x) is 4 if x is a method name, 3 if it is a c1ass identifier, 2 if it is a field, 1.5 if it is a formai 

and locals have 1 as the importance factor. 

We argue that method names are particularly important for program understanding so 

we give them the highest importance value. Each identifier's complexity is computed as the 

sum of token and character complexities (described below) multiplied by their importance 

factor. Total identifier complexity is then calculated as a sum over aIl individual identifier 

complexities. 

Token complexity is a measure of recognizable language. Alpha tokens are parsed and 

delimited by non-alphas and uppercase alphas. For example, getASTNode is split into get, 

AST and Node. Notice ASTNode is split into two tokens, the second one starting with a 

capital alpha). Similarly, ___ Junk$$name is broken into Junk and name. Tokens are then 

counted and the token complexity is defined as the ratio of total tokens to those found in 

a dictionary.::' If the dictionary contains the tokens get and Node but not AST then token 

complexity for getASTNode will be 1.5. 

Character complexity is a ratio of total characters to those c\assified as non-complex. 

Non-complex characters are those which are not part of a sequence of non-alphas of length 

greater th an 1. The character complexity for the identifier ___ Junk$$name, for example, 

is 1.625 as there are five complex to 8 non-complex characters ( _ , _ , _ , $ , $ and J, u, n, k, 

n, a, m, e, respective\y). Note that a sequence of non-alphas of length one is not considered 

as complex since it very likely exists as a word separator, as in geLSocket. 

9.3 Benchmarks 

The benchmarks have been cuIled from a graduate-level compiler optimizations course 

where students were required to develop interesting and computation-intensive programs 

for comparing the performance of various Java Virtual Machines. Each one was written in 

the Java source language and compiled with javac. The following is a brief description of 

each. 

2The dictionary used in our experiments was a standard English language dictionary. Howcycr, onc could 
use a special-purpose dietionary that also eontained domain-specifie identifiers. 

139 



Testing and Empirical Results 

Asac: is a multi-threaded sorter which compares the performance of the Bubble Sort, Se­

lection Sort, and Quick Sort algorithms. 

Chromo: implements a genetic algorithm, an optimization technique that uses randomiza­

tion instead of a deterministic search strategy. It generates a random population of 

chromosomes. With mutations and crossovers it tries to achieve the best chromosome 

over successive generations. 

Decode: implements an algorithm for decoding encrypted messages using Shamir's Secret 

Sharing scheme. 

FFT: performs fast fourier transformations on complex double precision data. 

Fractal: generates a tree-like (as in leaves) fractal image. 

LU: implements Lower/Upper Triangular Decomposition for matrix factorization. 

Matrix: performs the inversion function on matrices. 

Probe: uses the Poisson distribution to compute a theoretical approximation to pi for a 

given alpha. 

Sliding: solves the well-known Sliding Block Puzzle Problem. 

Traffic: is an animation of a road intersection controlled by a traffic signal. It uses multi­

threading to simulate cars moving through the intersection. 

Triphase: performs three separate numerically-intensive programs. The first is linpack 

linear system sol ver that performs heavy double precision floating-point arithmetic. 

The second is a heavily multithreaded matrix multiplication algorithm. The third is 

a multithreaded variant of the Sieve prime-finder algorithm. 

The benchmarks we selected are not large (our size metric is shown in Figure 9.1), but 

are quite varied and exhibit many different properties and coding styles. J 

3We would have liked to experiment with sorne larger benchmarks as weIl, but in order to do so in a 
rigorous manner aIl of the decompilers and obfuscators would have to work correctly on those benchmarks. 
This appears not to be the case. As the other tools mature and become more robust on larger applications, it 
will be possible to experiment with larger programs. 

140 



9.4. Evaluation of Decompiled Code 

9.4 Evaluation of Decompiled Code 

We discuss the results obtained from measuring the decompiled output of different decom­

pilers. Each benchmark was decompiled using four different decompilers: the original 

Dava decompiler (henceforth referred to as Dava(Original», the improved version of Dava 

(referred to as Dava(lmproved», Jad[Jdd] and SourceAgain[S"u]. 

9.4.1 Program Size 

Since each decompiler has its own source code formatting style, we normalized ail output 

with a style formatter (JRefactory's JavaStyle pRe]) in order to remove these differences. 

The formatter ensures that the AST contains the same number of AST nodes for the same 

constructs (an If block with one statement in its body is calculated the same whether 

brackets exist, distinguishing the block as a compound statement, or not). Figure 9.1 shows 

the number of nodes in the AST for ail benchmarks. Traffic is largest with triphase, sliding, 

and chromo following it. 

It is interesting to note that the output produced by different decompilers does change 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

o 

DOriginal 

DJad 

Il!] SourceAgain 

o Dava(lmproved) 

II Dava(Original) 

Fractal asac triphase LU decode probe stiding traffic Matrix FFT chromo 

Figure 9.1: Program size for decompiled code 

the size of the code. Dava(Original) i.e., Dava without its back-end enabled produces the 

141 



Testing and Empirical Results 

largest size AST. However, once the back-end is enabled this AST decreases in size (mostly 

bec au se of the removal of abrupt statements and labeled blocks and the aggregation of 

conditional statements using the boolean && and Il operators). Usually the output produced 

by lad and SourceAgain matches very closely to the original source code. This being an 

expected result since the decompilers use pattern matching to reverse the code generated 

by the compiler used. 

9.4.2 Conditional Statements 

Since Dava(Original) did not deal with short-circuit control flow created by && and Il op­

erators, it produces more If and If-Else statements. Dava(Improved) implements numer­

ous aggregation transformations, greatly reducing the number of conditionals, as supported 

by the metrics in Figure 9,2 attests to this fact. 4 

160 

140 

120 

100 

80 

60 

40 

2~ [EF.ul[ 
Fractal 

o Original 

OJad 

III SourceAgain 

o Dava(lmproved) 

III Dava(Original) 

asac triphase probe sliding traffic 

Figure 9.2: Conditional statements for decompiled code 

Matrix chromo 

The largest peaks for the number of conditionals are from Dava(Original). With 

Dava(Improved), however, there is a drastic drop in these constructs which, in most cases, 

matches that of the other decompilers. Interestingly, aIl decompiler output (except 

Dava(Original» for the sliding benchmark contain fewer conditionals th an the original 

4Note that in this and subsequent graphs we do not show results for benchmarks for which the metrics are 
the same, or nearly the same, for ail versions of the benchmark. 

142 



9.4. Evaluation of Decompiled Code 

source. This would indicate that the benchmark's original code used very simple non­

aggregated conditional statements and was perhaps written by a novice programmer. An 

examination of this benchmark proved this. Figure 9.3(a) shows a code snippet from the 

original source code of the sliding benchmark. Statement 3 in the code is an 

Uncondi tional-While Ioop and statement 4 and 5 are the exit condition for the Ioop. 

In the decompiled code produced by Dava we see that the Uncondi tional-While loop 

has been replaced by a conditional loop by pulling in the condition from statement 4 into 

the loop body (use of aggregation pattern discussed in Section 5.2.2). Another bad pro­

gramming instance is detected at statements 9 and 10 of Figure 9.3(a) where the If-Else 

statement contains an empty if body. This has been converted by Dava to an If statement 

with the condition negated (Statements 8 and 9 in Figure 9.3(b)). 

An interesting observation is that the general strategies in Dava(lmproved) sometimes 

find more aggregation opportunities than lad and SourceAgain (asac and chromo), and 

sometimes find fewer (triphase). This demonstrates that different decompilation strategies 

can impact the quality of the output. 

9.4.3 Condition Complexity 

Conditional complexity is a measure of the complexity of the boolean expressions within 

conditional constructs (If, If-Else, and loop constructs). Conditional complexity in­

creases as boolean subexpressions are aggregated using the && or Il operators. At the 

same time the use of negations (1) also increases conditional complexity. Figure 9.4 shows 

conditional complexity for the benchmarks. 

For most benchmarks lad and SourceAgain produce code with almost the same measure 

as the original. Small variations occur when a boolean flag is represented using the negated 

flag and vice versa. 

An exception to this is the sliding benchmark. Here we see that aIl the decompilers 

increase the complexity by almost the same amount. This again strengthens our belief 

that the benchmark was written by a novice programmer who used simple non-aggregated 

boolean expressions. The decompilers merely detect the chance to aggregate the different 

conditions and in doing so increase the conditional complexity and reduce the number of 

143 



Testing and Empirical Results 

(a) Original Source code 

1 public static int search(Problem p) throws Exception { 

nodes.add(new Node(p.getStartState())); 

while (true) { 

if (nodes.size() == 0) 

throw new Exception("No solution found!"); 

<snip> 

for (i = 0; i < succ.size(); i++) { 

Node tolnsert = (Node) succ.elementAt(i); 

if (FindCycle(tolnsert, x, y)) ; 

10 else nodes.add(tolnsert); 

Il } 

12 } 

13 } 

(b) Dava(Improved) output 

1 public static int search(Problem p) throws Exception{ 

nodes.add(new Node(p.getStartState())); 

while (nodes.size() != O){ 

n = Astar.removeBest(); 

<snip> 

for (i = 0; i < succ.size(); i++){ 

tolnsert (Node) succ.elementAt(i); 

if ( ! (Astar.FindCycle(tolnsert, x, y))) 

nodes.add(tolnsert); 

10 } 

Il } 

12 throw new Exception(IINo solution found! "); 

D } 

Figure 9.3: Detecting simple non-aggregated conditional statements in original Source 

144 



9.4. Evaluation of Decompiled Code 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

o 

DOriginal 
DJad 
I!I SourceAgain 
D Dava(lmproved) 
III Da ........ ....rigir"lal) 

Fractal asac triphase probe sliding LU trafflc Matrix chromo 

Figure 9.4: Average Condition Complexity for decompiled code 

If and If-Else statements. 

Comparing Dava(lmproved) and Dava(Original) we see that apart from the probe bench­

mark there is a definite increase in conditional complexity implying the aggregation of con­

ditions. When we investigated the probe code, we noticed that whereas Dava(Original) was 

creating conditions of the form "!f1ag" Dava(Improved) was able to switch the bodies to 

have conditions of the form "f1ag". Further, there was no chance of aggregation in the code. 

Thus, the removal of negation decreases the complexity and we see this in the complexity 

values for probe. 

By examining the values for the original metrics, we see that a conditional complexity 

between 2 and 3 is normal. In the future, a metric-aware Dava could use its aggregation 

transformation sparingly in an attempt to maintain this level. 

9.4.4 Abrupt Control Flow 

Eliminating Break and Continue statements is one of the key transformations imple­

mented in Dava(Improved). We argue that these abrupt control f10w devices, of ail Java 

145 



Testing and Empirical Results 

constructs, add the most complexity to source code because they represent disjoint exe­

cution f1ow. The more abrupt edges there are in a program, the less the code reads se­

quentialIy. This makes it difficult for a programmer because it increases the the number of 

scoping levels that must be kept track of, as well as the cohesion of disparate code chunks. 

Out of all the benchmarks, sliding and traffic were the only ones which had a sizable 

number of break statements. AlI decompilers end up introducing sorne abrupt f10w but this 

number is usually very low for javac-specific decompilers, Jad and SourceAgain, as seen 

in Figure 9.5. Again, this is due to the matching of code patterns to obtain concise output. 

100 

80 

60 

40 

20 

o 
asac 

DOriginal 
DJad 
Il SourceAgain 
EJ Dava(lmproved) 
I11III Dava(Original) 

triphase probe sliding LU 

Figure 9.5: Abrupt statements for decompiled code 

traffic chromo 

Dava(Original), on the other hand, suffers greatly by producing code with many com­

plicated break statements nested within Labeled-Block constructs. This is because the 

low-level bytecode represents all of its control flow through only If and goto instruc­

tions; a naive decompiler will take the simplest route and transform these into abrupt 

breaks. The impact of more complex abrupt flow transformations, as implemented in 

Dava(Improved), can be seen in the reduction of abrupt statements for Dava(lmproved) 

as compared to Dava(Original). In many cases Dava is able to produce fewer, if not the 

same, number of abrupt statements as Jad and SourceAgain. However, sliding and traffic 

146 



9.4. Evaluation of Decompiled Code 

are two benchmarks which still show there is room for improvement. On inspection of the 

code it becomes obvious that these break statements can be removed by applying more 

generalized patterns on the AST. A few of these are discussed as future work. 

An interesting anomaly is noticed in the me tric values for the chromo and probe bench­

marks. The abrupt statement counts for the output produced by Jad is higher than that 

produced by SourceAgain or Dava(Improved). On inspection it was noticed that Jad some­

times produces unnecessary continue statements. Figure 9.6(a) shows code produced by 

Jad. The continue statement can be avoided by negating the condition of the If statement 

(Statement 2 in Figure 9.6(a)) and adding Statement 4 as the new body of the If statement. 

This is exactly what SourceAgain and Dava(Improved) do, as shown in Figure 9.6(b). 

(a) Jad output 

1 for(int j1 = 0; j1 < i; j1++){ 

5 } 

if(d < a1[j1] .cfitnessGetO Il d >= a1[j1 + 1] . cfitnessGet 0) 

continue; 

a1[j1 + 1] .copyChromosome(a2[i1]); 

(b) Dava(lmproved) output 

1 for (i2 = 0; i2 < iOj i2++){ 

5 } 

if (d1 - r1[i2].cfitnessGet() >= 0 && d1 - r1[i2 + 1].cfitnessGet() < O){ 

r1[i2 + 1].copyChromosome(r2[i7]); 

} 

Figure 9.6: Unnecessary continue statements produced by lad 

147 



Testing and Empirical Results 

9.4.5 Labeled Blocks 

Directly related to abrupt statements are the number of labeled blocks present in decom­

piled code. Labeled blocks are especially bad programming practice and, in fact, they 

exacerbate the previous problems with abrupt control f10w by allowing more disjoint exe­

cution jumps th an available with unlabeled break statements. Unsurprisingly, no labeled 

blocks appear in the original source of any of the benchmarks. Jad and SourceAgain are 

able to maintain this minimum. The general restructuring algorithm in Dava(Original), on 

the other hand, pro duces a high number (Figure 9.7). Figure 9.7 also shows that 75% of 

these labeled blocks, introduced by Dava(Original), are removed by the pattern-matching 

based transformations implemented in Dava(Improved). 

25 

20 

15 

10 

5 

o 
asac 

El Dava(lmproved) 

.Dava(Original) 

trip hase decode probe sliding 

Figure 9.7: Labeled Blacks for decompiled code 

9.4.6 Local Variables 

traffic chromo 

Dava(Original) produces many local variables in its output. This is because Dava takes its 

input from grimp which has been computed from the low-Ievel Soot IR which uses many 

local variables in order to get simple and precise compiler analyses. 

148 



9.4. Evaluation of Decompiled Code 

Although local variable webs are collapsed while creating grimp the reduction in the 

number of locals is not as much as one would like. With Dava(Improved), copy elimina­

tion (Section 7,2,1) and constant substitution (Section 7.3) considerably reduce the use of 

intermediate local variables. Figure 9,8 shows the number of local variables for sorne of 

the benchmarks. Jad and SourceAgain output is, again, very close to the original for this 

metric. 

140 ",-, DO' . nglna 
OJad 

120 , "'c.. f.] SourceAgain 
o Dava(lmproved) 

100 ,m". '.mm",,~_ • Dava(Original) 

r; 
80 ,., --- - - .. 

r··, ~"" 

- -60 
1> 

,,_ .. 
,,,,,,,--,, ""." "" -~ 

40 "',' ~~- r f'" r-" 
r 

l';! - l, ~}, lu 
~~ ;8 

l' l" 

= lM 

20 

o 
asac trip hase decode probe sliding traffic Matrix chromo FFT 

Figure 9.8: Number of Locals for decompiled code 

An exception to this is triphase where we see an abnormally high number of local vari­

ables for Jad and Dava, Inspection of the decompiled code produced by Jad for triphase 

shows that it is unable to handle aggregated f10ating point and double precious calculations. 

These are broken down into 3-address statements where each statement introduces a new 

local variable. On inspection of code produced by Dava(Improved) we noticed that the 

increase in number of locals was mainly due to the presence of shortcut If statements in 

the original code. An example of this is shown in Figure 9,9(a). Whereas SourceAgain 

and Jad are both able to produce this shortcut construct Dava fails to de te ct the pattern and 

produces output shown in Figure 9,9(b). In the triphase benchmark the shortcut If state­

ment occurs numerous times and this explains the higher number of local variables in Dava. 

149 



(a) Original source code 

1 final double abs(double d) { 

return (d >= 0) ? d : -di 

J } 

Testing and Empirical Results 

(b) Dava(lmproved) output 

1 final double abs(double dO){ 

double $dl; 

x } 

if (dO - 0.0 < 0) 

$dl = (- (dO)); 

else 

$dl = dO; 

return $dl; 

Figure 9.9: Reasonfor an increase in local variable counl in Dava 

Dava(Improved) shows decent amount of improvement over Dava(Original) (particularly 

for traffic). The difference of local variables for Dava(Improved) with Original source code 

is now with an acceptable range in most case. 

9.4.7 Loop Count 

Table 9.l shows the breakdown of different loops within the decompiled outputs of the 

different decompilers as compared to the original source code. Both Jad and SourceAgain 

aggressively create For loops which we think is a good feature to have since For loops are 

inherently easier to understand than their While counterparts. Previously, Dava was unable 

to generate For loops and represented ail loops using one of the three f1avors of While 

loops (While, Do-While or Uncondi tional-While). With the implementation of the For 

loop construction transformation ( Section 7.1.1) Dava is now able to generate For loops. 

However, in Dava we restrict the conversion of a While loop to a For loop to cases where 

ail the four components of the For loop can be determined (Section 7.1.1). 

The sliding benchmark shows sorne interesting resuIts. The original source code con­

tained an Uncondi tional-While loop which has been converted to a While loop in 

Dava(Improved). This was previously illustrated in Figure 9.3 where we see that the con-

150 



9.4. Evaluation of Decompiled Code 

Do For While UnConditional 

triphase(Original) 0 43 3 0 

triphase(Jad) 1 45 0 0 

triphase(SourceAgain) 0 44 2 0 

tri phase(Dava -Original) 0 0 46 0 

tri phase(Dava -Improved) 0 45 1 0 

decode(Original) 0 29 1 0 

decode(Jad) 0 30 0 0 

decode( SourceAgain) 0 29 1 0 

decode(Dava-Original) 0 0 30 0 

decode(Dava-Improved) 0 29 1 0 

sliding(Original) 0 21 2 1 

sliding(Jad) 1 22 1 0 

sliding(SourceAgain) 0 21 3 0 

sliding(Dava-Original) 0 0 24 0 

sliding(Dava-Improved) 0 22 2 0 

Matrix(Original) 0 21 0 0 

Matrix(Jad) 0 21 0 0 

Matrix(SourceAgain) 0 20 1 0 

Matrix(Dava-Original) 0 0 21 0 

Matrix(Dava-Improved) 0 20 1 0 

Table 9.1: Breakdown of Loops for decompiled code 

dition of a nested If statement is pulled into the While loop as it's condition. 

Another interesting thing to note in the results for sliding are that even after the con­

version of the Uncondi tional-While loop to a While loop both the original code and 

Dava(Improved) have the same number of While loops. The reason being that one of the 

While loops in the original code can be better represented as a For loop. This conversion is 

illustrated in Figure 9.10. Figure 9.1 O(a) shows the original code snippet. Since this While 

loop contains a condition which checks on a pointer's null value, which is consistently 

151 



Testing and Empirical Results 

updated within the loop body, Dava converts the While loop into a For as iIIustrated in 

Figure 9.10(b). 

(a) Original source code 

1 ptr = n; 

2 while «ptr.getParent()) != null) { 

store.addElement(ptr.getblockType()); 

store.addElement(ptr.getopcode(); 

ptr = ptr.getParent(); 

fi } 

(b) Dava(lmproved) output 

1 for (r4 = rO; r4.getParent() != null; r4 = r4.getParent()){ 

r3.addElement(r4.getblockType()); 

r3.addElement(r4.getopcode()); 

4 } 

Figure 9.10: Canverting a Whi le laap ta a For laap 

9.4.8 Overall Complexity 

In order to provide one summary metric, we experimented with a variety of composite 

metrics. We found a good overall complexity metric that is defined by first expressing 

each component metric as a normalized value with respect to the value for the original Java 

benchmark, and then combining the normalized values, each component multiplied by a 

constant representing that metric's importance. The sum of the constants is 1, so that wh en 

comparing the original javac source to itself will always result in an overall metric of 1. 

For example, for the size component we compute the normalized value by (size of de­

compiled benchmark)/(size of original benchmark) and we multiply this normalized value 

152 



9.5. Evaluation of Obfuscated Code 

by 0.2. Figure 9.1 ] gives the result using 0.2 * size + 0.2 * iLcount + 0.2 * cond_complexity 

+ 0.1 * num_abrupt + 0.1 * numJabeled + 0.2 * numJocals, where each component of this 

metric corresponds to normalized values of the metrics as presented in Section 9.2. 

2.5 

1.5 

1 

1 
0.5 

o 

.. ; 

1--

DOriginal 
El Jad 
fi SourceAgain 
D Dava(lmproved) 
III Dava(Original) 

Fractal asac triphase decode probe sliding LU traffic Matrix chromo FFT 

Figure 9.11: Overall complexityfor decompiled code 

Using this overall metric we can see that Jad and SourceAgain produce decompiled 

code that is close to the original code (remember that these benchmarks have not been 

obfuscated and thus javac-specific decompilers work weIl for them). We can also observe 

that Dava(Original) does in fact produce (ugly) code that is not as similar to the original 

code, but that the additional transformations implemented in Dava(Improved) do improve 

upon this substantiaIly. 

9.5 Evaluation of Obfuscated Code 

The experiments in this section were performed as follows. We created our baseline by 

first compiling the application using an ordinary javac compiler to produce the class files 

and then decompiled those c1ass files with our Dava decompiler, with ail of the advanced 

transformations turned on. This option is labeled Dava(Improved) in subsequent figures. 

Notice that in decompiling obfuscated code we only use Dava and not Jad or SourceAgain. 

153 



Testing and Empirical Results 

Both Jad and SourceAgain are not able to decompile much of the obfuscated code. Dava 

on the other hand is robust enough to be able to decompile code after first- and second­

generation obfuscations. In order to be able to obtain metrics we need compilable Java 

source and hence our choice of decompiler. 

To create the obfuscated versions of the source code we first applied the obfuscators 

(Klassmaster and JBCO) to the class files to produce obfuscated class files. We then de­

compiled the obfuscated class files using Dava. We used Dava in two configurations, the 

Original one, and the Improved one where ail simplifications are applied. In the subsequent 

figures JBCO(Improved) refers to the case where we obfuscated with JBCO and then de­

compiled with Dava(Improved) and JBCO(Original) refers to the case where we obfuscated 

with JBCO and then decompiled with Dava(Original). Similarly, we created two versions 

for the Klassmaster obfuscator. 

By comparing the Dava(Improved) versions with JBCO(Improved) and 

Klassmaster(Improved) one can observe the impact that the two obfuscators had on the 

metrics. By comparing the Klassmaster(Improved) to Klassmaster(Original), and simi­

larly comparing JBCO(Improved) to JBCO(Original), we can observe the impact of the 

advanced Dava simplifications in undoing sorne of the obfuscations introduced by the ob­

fuscators. These include sorne identifier renaming optimizations, control-ftow simplifica­

tions, copy elimination and advanced dead-code elimination. 

Although we computed ail the metrics for both obfuscators, we only show results for 

Klassmaster in many of the figures. This is because JBCO has no effect on sorne of the 

metrics since we enable only two obfuscations: renaming identifiers and moving library 

calls iota new methods with obfuscated names. 

9.5.1 Benchmark Size 

Figure 9. 12 shows the program size metric. It is clear that bath JBCO and Klassmaster 

increase the size in ail cases. Comparing the two obfuscators we see that the size increase 

is greater for Klassmaster. This is expected because Klassmaster adds dead code guarded 

by opaque predicates which can therefore not be removed by the statie analyses performed 

by Dava. JBCO size increases are due ta the addition of methods which are used to in-

154 



9.5. Evaluation of Obfuscated Code 

voke library calls through an extra level of indirection. Therefore, the difference between 

the unobfuscated Dava(Improved) case with the JBCO(Improved) case is directly propor­

tional to the number of unique library methods called in the program. A smart decompiler 

could apply a refactoring algorithm to overcome this obfuscation through re-inlining these 

unneeded indirections . 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

o 

.. 0 Dava(lmproved} 

o JBCO(lmproved} 

o JBCO(Original} 

o klassmaster(lmproved} . 

• klassmaster(Or~fJir:'al} '"-

Fractal asac triphase decode probe 

Figure 9.12: Program size for obfuscated code 

chromo FFT 

Also interesting is the difference between Klassmaster with and without Dava's ad­

vanced simplification analyses, Klassmaster(Original) versus Klassmaster(Improved). This 

difference is most obvious for the decode and chromo benchmarks. In the se cases the Dava 

dead code elimination removes a large amount of code introduced by Klassmaster. Never­

theless, not aIl dead code is removed because much of it is guarded by opaque predicates. 

Dava is unable to statically detect the values ofthese predicates and hence the code remains. 

A much more powerful context-sensitive f10w analysis would be required to remove the re­

maining dead code. 

155 



Testing and Empirical ResuIts 

9.5.2 Conditional Statements 

Figure 9.13 demonstrates a large increase in the number of conditional statements after 

obfuscation by Klassmaster. This is consistent with Klassmaster's technique of introducing 

redundant or de ad code encIosed by simple If statements. Dava attempts to aggregate 

many of the conditionals and can sometimes remove sorne redundancies, as illustrated 

by the difference between Klassmaster(Original) and Klassmaster(Improved). However, a 

large number of these conditions still remain. 

200 

180 

160 

140 

120 

100 

80 

60 

40 

20 

o 
Fractal 

D Dava(lmproved) 

D Klassmaster(lmproved) 

• Klassmaster(Original) 

asac triphase LU probe sliding traffic Matrix chromo 

Figure 9.13: Simple conditional statement count for obfuscated code 

9.5.3 Conditional Complexity 

Conditional complexity is shown in Figure 9.14. Here, the decrease in complexity is mainly 

due to the fact that Klassmaster introduces its own conditional constructs which are simple 

un-aggregated boolean expressions. Hence, although the number of conditional constructs 

increases, the average conditional complexity decreases. An additional possible reason for 

the drop in complexity is that the original bytecode is intermixed with obfuscation code. 

156 



9.5. Evaluation of Obfuscated Code 

This inhibits the pattern-based simplifications and therefore results in fewer conditional 

aggregations. The increase seen in Klassmaster(Improved) versus Klassmaster(Original) is 

due to the aggregation of conditions. Sorne benchmarks show a decrease which most Iikely 

occurs due to removal of dead code which included complex conditionals. 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

o 

o Dava(lmproved) 

o Klassmaster(lmproved) 

• Klassmaster(Original) 

Fractal asac triphase decode probe sliding LU traffic Matrix chromo 

Figure 9.14: Average conditional complexity for obfuscated code 

9.5.4 Abrupt Control Flow 

The count of abrupt statements (break and continue) for the obfuscated code as compared 

to the un-obfuscated code is shown in Figure 9.15. We can see a marked increase in abrupt 

statements (particu1arly in triphase, decode and chromo). 

The abrupt metric is particularly useful in identifying obfuscated code. Abrupt edges 

in the f10w graph of a program are a direct result of control-f1ow obfuscation techniques 

and it clearly worsens the readability. As stated earlier, a programmer has a lot to keep 

track of when trying to follow abrupt control, especially when execution jumps directly out 

of multiple nesting levels. Thus, programmers tend to make sparse use of complex abrupt 

control-f1ow, whereas obfuscators intentionally add them in to complicate the control f1ow. 

157 



140 

120 

100 

80 

60 

40 

20 

o 
asac 

D Dava (Improved) 

D Klassmaster{lmproved) 

• Klassmaster{Original) 

triphase probe sliding 

Testing and Empirical ResuIts 

traffic Matrix chromo FFT 

Figure 9.15: Abrupt control flow count for obfuscated code 

It is interesting to note that javac-specific decompilers such as Jad and SourceAgain 

often fail to decompile such code because the control-ftow in the c1ass files does not cor­

respond to any known structured Java control ftow pattern. Dava succeeds in decompiling 

and reducing the number of abrupt control ftow statements due to its use use of graph-based 

restructurings. 

As demonstrated by comparing Klassmaster(Original) to Klassmaster(Improved), the 

Dava simplifications are able to restructure sorne of the code to reduce abrupt control ftow 

in many of the benchmarks, but not all cases of abrupt control-ftow can be removed. We 

suggest sorne more transformations in our future work to further decrease the number of 

abrupt statements, but it seems unlikely that all abrupt ftow introduced by obfuscation could 

be eliminated. 

158 



9.5. Evaluation of Obfuscated Code 

9.5.5 Labeled Blocks 

Labeled blocks are shown in Figure 9.16, correlating closely with the number of abrupt 

statements. The Klassmaster(Original) case has a large number of labels but Klassmas­

ter(Improved) shows that Dava's simplifications can reduce these to a more acceptable 

level. For sorne benchmarks (FFT and probe) aIl labeled blocks can be removed. Over 

the whole benchmark suite 65% of the labeled blocks are removed. With the addition of 

further transformations discussed in the future work section it seems likely that even more 

labeled blocks can be removed from the code. 

40 

35 

30 

25 

20 lm ·~· .. ccc ••• ,.m. 

1 

:: rd I~ 
o ' 

o Dava(lmproved) 

g Klassmaster(lmproved) 

• Klassmaster(Original) 

10 
asae trip hase deeode probe sliding LU traffle Matrix ehromo FFT 

Figure 9.16: Labeled black count for obfuscated code 

9.5.6 Identifier Complexity 

Identifier obfuscation is a very important metric for evaluating obfuscators. Nearly ail ob­

fuscators perform identifier obfuscation and it is perhaps the only technique that is truly 

irreversible [BeJ!: Ol]. Figure 9.17 shows that JBCO performs good identifier obfusca­

tion based on our metric. Klassmaster also does weIl, though a difference between the 

Klassmaster(Original) and Klassmaster(Improved) values can be seen due to a basic local 

159 



Testing and Empirical Results 

variable renaming algorithm implemented in Dava. Also, removal of dead code reduces 

local variables, sorne of which have complex names, hence decreasing the complexity. 

400 

350 

300 

250 

200 

150 

100 

50 

o 

o Dava(lmproved) 
GI JBCO(lmproved) 
Il JBCO(Original) 
D Klassmaster(lmproved) 
• Klassmaster(Original) 

triphase decode probe sliding LU Matrix traffic chromo FFT 

Figure 9.17: Identifier complexity for obfuscated code 

9.5.7 Overall Complexity 

Figure 9.18 reports the overall complexity metric. Note that this metric does not include 

identifier complexity, so one should really consider both the identifier complexity presented 

in figure 9.17 and the overall metric in figure 9.18 which summarizes control-f1ow like 

obfuscations, when considering the effect of obfuscators. 

Considering these two figures we can see that, as expected, the effect of JBC05 is 

mostly on identifier obfuscation, whereas Klassmaster shows significant impacts on the 

structure of the code. It is also interesting to note that the Klassmaster(Improved) is closer 

SIn these experiments we used a preliminary version of JBCO, the final version of JBCO will support 
many more control flow obfuscations 

160 



9.5. Evaluation of Obfuscated Code 

7.5 
7 

6.5 
6 

5.5 
5 

4.5 
4 

3.5 
3 

2.5 
2 

1.5 
1 

0.5 
o 

ru" ! ..... _-_ .. _ .. _.,-,----'.~-'" 
f " ..... -" .. ~--._,-.----..... 

D Dava(lmproved) 
o JBCO(lmproved) 

~,.' •• ""'-' D JBCO(Original) 

D klassmaster(lmproved) 
• klassmaster(Original) 

Figure 9.18: Overall complexity for obfuscated code 

to the unobfuscated code than Klassmaster(Original), indicating that the advanced trans­

formations in Dava do help to clean up the code. 

161 



Testing and Empirical Results 

162 



Chapter 10 

Related Work 

To the best of our knowledge Dava is the only available tool-independent decompiler for 

Java. It is therefore difficult to compare methodologies used in Dava to other decompilers 

since the issues encountered for Dava are more complex than the simple reversing of code 

generation carried out by other decompilers. 

10.1 Decompilers 

There are numerous decompilers available for Java bytecode. Two notable ones are Jad 

[Jad] and SourceAgain [Süu]. Jad is a javac-specific decompiler which is free for non­

commercial use. Its decompilation module has been integrated into several graphical user 

interfaces including FrontEnd Plus[Fro], Decafe Pro[lkd DJ Java Decompiler[nll J and 

Cavaj[Cav]. It is relatively easy to break the decompiler by introducing non-standard, 

though verifiable, bytecode. 

SourceAgain is a commercial decompiler with an online version available to test its 

capabilities. The decompiler creates a ftow graph representation from which it detects Java 

constructs. Due to the use of a ftow graph representation it does a better job at decom­

pilation than Jad. Although SourceAgain claims to be able to decompile obfuscated code 

our tests have shown that it is only able to handle name obfuscation(by converting these to 

indexed names) and fails when control ftow obfuscation has been carried out. 

163 



Related Work 

10.2 Obfuscators 

To test Dava's capabilities in decompiling and simplifying obfuscated code we used the 

Zelix Klassmaster [Kiaa] obfuscator. Although Java obfuscation has bec orne popular in 

recent years, both in academic and commercial communities, there aren't many obfusca­

tors which do more th an name obfuscation. Zelix Klassmaster stands out since it applies 

complicated control flow obfuscations by adding predicates guarding "presumably" unde­

compilable code. The Klassmaster documentation states: 

"The obfuscator makes slight changes to the bytecode that obscures the control 

flow without changing what the code does at runtime. Typically, selection (e.g. 

if. .. else ... ) and looping constructs (e.g. white and for loops) are changed so 

that they no longer have a direct Java source code equivalent" [Kbb]. 

Our tests with the obfuscator indicate that the changes made are not "slight". Large chunks 

of code, which inc1udes loops, are added to confuse the decompilers (Section 9.2). This 

creates convoluted code but at the expense of a slow down in the application runtime. Since 

one key selling point of Dava has always been its general applicability to verifiable byte­

code, in most of our test cases, and aIl the benchmarks selected, Dava was able to correctly 

decompile the obfuscated code. KlassMaster daims to be the only "Second generation" 

Java obfuscator, a term coined for obfuscators performing strong control flow obfuscation. 

Our experiments with obfuscated code using different obfuscators attest to this claim. Zelix 

Klassmaster does reflect the latest technology, available for non-academic use, in the field 

of Java bytecode obfuscation. 

The second obfuscator used was JBCO (Java Bytecode Obfuscator) which is still under 

deve10pment at the Sable Research Group at McGiIl University. Using the Soot [SC()] Java 

bytecode analysis framework, the same framework used by Dava, this obfuscator promises 

to be a top-notch Java bytecode obfuscator. JBCO's philosophy is to introduce the least, 

if any. amount of dead code and ta incur minimum runtime slowdowns. JBCO's proposed 

transformations take into account the minute details of the Java language specification in 

order to exploit little-known options in bytecode representation. Although bytecode is rel­

atively high level there is still a large gap between Java bytecode and Java source. Utilizing 

164 



10.3. Visitor Design Pattern 

the additional expressiveness of the bytecode, transformations are proposed which will 

have no, or very complicated, Java source code equivalent. 

10.3 Visitor Design Pattern 

The inspiration for the extended version of the visitor design pattern, now implemented for 

Dava's AST, was taken from Sablecc [GH98]. SableCC generates compilers (and inter­

preters) in the Java programming language from a given specifications grammar. The key 

features of SableCC include the use of object-oriented techniques to automatically build a 

strictly-typed abstract syntax tree and the generation of tree-walker classes for the gener­

ated AST. It is this implementation of the traversaI routines, enabling the implementation 

of actions on the nodes of the AST using inheritance, that we have borrowed for use within 

Dava. 

10.4 Structure-Based Flow Analysis 

As the analyses for the decompiler are performed on the AST it is best to use a syntax­

directed method of data flow analysis such as structural analysis. Structural Flow analysis 

initially presented by Sharir[Sha80] is ideal for data-flow analysis using a structured rep­

resentation of the program. The advantage of using this technique is that it gives, for each 

type of high level control-flow construct in the language, a set of formulas that perform data 

flow analysis. This technique has been successfully used in creating an optimizing com­

piler which uses a hierarchy of structured intermediate representations [ln n:+()\]. Work 

done by Emami et. al. [F:rna\H] for gathering alias and points-to-analysis information for 

the McCAT C compiler matches very c10sely to what was required for Dava. Dava's flow 

analysis framework is an implementation of the same approach utilized in McCAT along 

with handling of complexities introduced by Java. 

165 



Related Work 

10.5 Complexity Metrics 

There has been much research into software complexity and many metrics have been pro­

posed and embraced by the software engineering corn munit y throughout the years. Classic 

ex amples are McCabe's cyc10matic number [\flee7ô], and Halstead's programming effort 

measures [lbl!7]. More recent efforts have been geared towards quality analysis for large-

scale software projects and processes C'on04]. 

These complexity measures are interested in measuring effectiveness, code reliability, 

programming effort, and c1arity (or cognitive expressibility / representability) [lit1;>;-:r]. 

What we are interested in within this research is this specific idea of cognitive expressibility. 

When a decompiler sets out to recover the higher-level source code of a binary program it is 

effectively attempting to recover a cognitive representation - a human-readable (or at least 

programmer-readable) version of the program that is semantically equivalent to the binary. 

Likewise, when an obfuscator sets out to garble a program it is attempting to decrease the 

cognitive representability of the program by adding complexity of sorne kind. 

Because the quality of the cognitive representation is our key interest, sorne well­

developed metrics in the literature are somewhat useless here. McCabe's Cyc10matic num­

ber, for example, shows the complexity of the control ftow through a piece of code. It is the 

number of linearly independent paths through a program. However, if a program segment 

S is compiled into a binary Band then decompiled into a source code segment S' then S 

and S' wiIl have the same cyclomatic number regardless of how the decompiler chooses to 

represent the loops and other branching instructions in the program. Therefore the metric 

shows us nothing of the differences between the cognitive representation of Sand S'. 

Similarly, Halstead's metrics are not all suitable for our case. They are often used 

during code development in large projects in order to track complexity trends. A spike in 

Halstead metrics can signify a highly error-prone module, for example. However, this is 

not our concern. We wish to use metrics to compare two high-Ievel representations of a 

program, both with the same semantics. Halstead's metrics do not lend themselves weil to 

this problem. 

Pro gram volume, for example, is a measure of the minimum number of bits required for 

coding a program. In the case of Java, non-local variables (either c1ass fields or statics) and 

166 



10.5. Complexity Metrics 

method names are preserved in the compiled bytecode. A corn mon Java obfuscation tech­

nique is to rename these identifiers, often with shorter and more incomprehensible names. 

This effectively reduces the program volume but also reduces the ability of a decompiler to 

recover the full cognitive representation of the original program. 

Indeed, many metrics are designed to compare large software projects in a very abstract 

way in order to predict maintainability, reliability and/or programming effort. Most of these 

are not useful to the particular problem at hand. 

However, sorne of the criticism that Halstead's measures have seen over the years -

specifically the argument that they are a bad measure because they consider lexical and 

textual complexity rather th an the structural complexity of a program [HIS2] - is a key 

ingredient to our own proposed metrics. The high-level measures of lexical and tex tuai 

structure, and complexity are in fact exactly what we wish to measure, along with control 

flow complexity. 

We are much more interested in the high-Ievel human-readable source code represen­

tation of the program's methods. This makes the approach in [Ret'!)!] a good starting 

point as they measure such intricacies as identifier length, nesting depth, and decision node 

complexity. 

167 



Related Work 

168 



11.1 Future Work 

Chapter 11 

Future Work and Conclusions 

Although we have improved the output produced by Dava there are clear indications of 

areas where work should be carried out. 

11.1.1 Abstract Syntax Tree Expansion 

Currently Dava works on a per-method basis. Each method is separately decompiled and 

an AST, with an ASTMethodeNode as the root of the tree, is created. Although per-method 

decompilation works weil for general decompilation, a c1ass-based decompilation can pro­

vide additional avenues for analyses. It would be useful to modify the abstract syntax tree 

representation within Dava to handle per-c1ass, instead of per-method decompilation. This 

can be achieved by the creation of an ASTClassNode data structure which could then hold 

ail methods and fields of the c1ass. This would help streamline and modularize some of 

the interprocedural analyses implemented as part of this thesis. The biggest advantage, 

however, would be the ability to retrieve and produce inner classes within the decompiler 

output. Also handling of field-aware analyses would become much easier if the fields were 

represented as elements of the abstract syntax tree. 

169 



Future Work and Conclusions 

11.1.2 Transformations 

More aggressive Labeled-Block removal transformations are also needed. CUITently the 

transformations apply to small patterns. Larger, more general patterns can and should be 

implemented to remove the complexity introduced by Labeled-Block constructs. As seen 

in the results section, aIthough the output has been greatly simplified, the numbers for 

abrupt control flow constructs show room for further improvement. 

We have not fully explored ail possible analyses and transformations that could he\p 

remove local variables. The increase in the number of local variables seen in Dava is due 

largely because of the effect of removing local variable webs from the bytecode. Aiso 

stack locations are allocated intermediate local variables which resuIt in an increase in the 

number of locals at the j impIe level. grimp does a decent job of aggregating expressions 

and in doing so removes a large number of stack variables. However, there is still a large 

gap between the actual number of variables used in the original source and that produced 

by Dava. Although it would be an interesting experiment to see by how much the num­

ber of locals can be reduced, the effect of having fewer locals in a program on program 

comprehensibility is a grey area. Where too many locals (indirections) might be confusing 

to the programmer too few locals might also be a complicating factor since then the pro­

grammer has to track the cUITent value stored in a local. We think there is a need to find 

the right balance in dealing with the number of locals such that they don't cause any added 

complications. 

The aggregations caITied out in Chapter 5, the for-Ioop detection patterns (Section 7.1.1) 

and the breaking of the If-Else statement discussed in Section 5.3.1 are sorne of the design 

decisions which are related to a certain style of programming. By allowing a customizable 

Dava back-end, where the user gets to decide which transformations to apply, the output 

could be transformed to best suit the individual rather than the general programming com­

munity. Work on this was already started by setting flags for advanced transformations e.g., 

constant substitution and aggressively producing potentially more complicated but compil­

able code (Sections 7.3 and 4.8). Making Dava's back-end more adaptable would generate 

code which is customized to a programmer's personal likes and dislikes. A related idea 

is to have a formating tool (Jalopy [Jal], JRefactory [JRfD which could take the output 

170 



Il.1. Future Work 

produced by Dava and pretty print it using customized formatting rules. 

11.1.3 Adding comments to decompiler output 

Since the goal of decompilation is program comprehension we think that being able to 

convey any additional information to the user helps in program understanding. A feature 

to add comments within the decompiler output would be really useful. The best way of 

achieving this would be to have a COMMENT tag associated with each AST node. This tag 

could be given a value ifthere is a need to insert sorne comment into the decompiled output. 

Tags could be specialized to hold single line comments using the Il symbol or the long C 

style comments if there is a large comment to be added. 

A lot of times the application bytecode cornes along with the API, in the form of 

javadocs. Another proposed idea is to parse the javadocs information available and place 

them in the decompiled output as javadocs style comments. 

11.1.4 Stronger refactoring analyses 

Now that we have an efficient traversai mechanism and a flow analysis framework the 

decompiler can use these to implement refactoring. One possible refactoring is method 

inlining. Using whatever heuristics that seem fit (number of lines of code to be inlined, 

number ofmethod cali sites etc) it might be useful to inline methods. A known obfuscation 

technique used in IBCO is that library calls are moved to methods with confusing names. 

This is done since renaming library methods/fields is not possible. By putting a level of 

indirection the obfuscator is able to confuse the programmer since the new method invoca­

tion does not give any clues that this is in fact a library cali. In such situations by selectively 

inlining methods the understandability of the code can be increased. 

Another related refactoring is to move methods from one c1ass to another. This again 

counters an obfuscation technique in which a method is moved to an unrelated c1ass. This 

creates difficulties for the programmer to reason about the component structure of the ap­

plication. By using heuristics (method only invoked from methods of a particular c1ass, 

method performs operations on data of a certain c1ass etc.) it might be reasonable to move 

a method to a different class. 

17\ 



Future Work and Conclusions 

Method de-inlining, moving similar code to a separate method and replacing it with 

invocations to the newly created method, can also help in simplifying program output. 

AIthough this type of obfuscation has not been seen in the obfuscators tested so far, the 

implementation of this refactoring transformation might simplify un-obfuscated code also. 

11.1.5 Identifier Renaming 

A naming stage has been included in Dava's back-end. However, so far the naming strategy 

uses very simple heuristics to name local variables. Firstly, the naming mechanism needs to 

be modified to include naming classes and methods for obfuscated bytecode. Since CUITent 

obfuscators mostly concentrate on name obfuscation, having even a basic naming strategy 

for identifiers in the program will help a programmer understand code. 

The Java class libraries provide the best starting point to naming identifiers. Variables 

assigned from library invocations can be allotted names created using the name of the 

method invoked. Similarly classes extending or encapsulating library data types can have 

names which include the library type that they utilize. 

Another interesting idea, worth exploring, is doing a "ftow-analysis" looking for vari­

able names. The analysis would gather potential names for each identifier, as data ftows 

through a program. Once the sets of potential names is obtained the best possible name is 

alloted to the identifier. Obviously the "best" name is very subjective but a heuristic-based 

decision can be made to pick a name from a set of possible names. 

Currently we perform naming intra-proceduraIly. Including interprocedural heuristics, 

results of a method performing sorne computation, retrieval of a field from an object etc. 

can add to the set of potential names. 

11.2 Conclusions 

ln dealing with arbitrary bytecode, Dava uses a control ftow graph representation of the 

bytecode to generate valid Java programs. Previously the output of the decompiler was 

verbose and difficult to understand because of the use of complicated control ftow using 

break statements and labeled blocks. Also the absence of boolean expression aggregation 

172 



Il.2. Conclusions 

resulted in a large number of condition al constructs making the code output harder to track. 

This thesis introduces a new back-end to Dava based on matching patterns to simplify 

the control flow of the decompiled output. Our philosophy for writing transformations has 

been that a smaller number of conditional statements and less verbose code are easier to 

understand. Transformations, implemented using the Visitor design pattern implementation 

for the AST, perform semantically-equivalent rewrites of the AST. 

More complicated transformations have been enabled using a newly implemented structure­

based flow analysis framework. The implementation of the framework was a non-trivial 

task resulting from the complexities introduced by complex Java constructs e.g., Try-Catch, 

Switch and dealing with break and continue statements. The framework is extensible, 

hence making it possible for researchers to test new simplification and refactoring tech­

niques for the decompiler. 

Currently Dava uses the flow analysis framework to implement flow analyses often used 

for compiler optimizations. This is a novel application of compiler analyses that have been 

traditionally used for execution performance improvements. Certain more complicated 

transformations were implemented using these flow-analyses to help Dava simplify code 

generated for obfuscated bytecode. 

We have developed metrics that identify code complexity in terms of code layout and 

number of constructs. We chose several benchmarks and performed compile-decompile ex­

periments on them. We observed the change in values of complexity metrics with the code 

simplification transformations enabled or disabled. It was quite obvious that Dava's new 

back-end reduces the complexity of the output making it more comprehensible. Another 

set of experiments following the compile-obfuscate-decompile pattern was also carried out. 

The results of these experiments showed that along with being able to correctly decompile 

obfuscated code, the complexity of the decompiled code can be greatly reduced with the 

new back-end transformations enabled. 

Dava, with its general applicability for Java bytecode along with its AST rewriting 

transformations, is a robust decompiler compared to its peers. We feel that with more 

work on programming idioms support, and the suggestions mentioned as future work, Dava 

will stand out as the decompiler of choice for reverse-engineering applications from Java 

bytecode. 

173 



Future Work and Conclusions 

174 



[abc] 

Bibliography 

abc. The kL Home page with downloads, FAQ, docu-

mentation, support mailing lists, and bug database. 

org. 

ctbeIlch, 

[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, 

Jennifer Lhotak, Ondrej Lhotak, Damien Sereni, Ganesh Sittampalam, and 

Julian Tibble. abc: An extensible AspectJ compiler. In Aspect-Oriented 

Software Develipment Conference, 2005, pages 87-98. 

[AMP] 

[asp03] 

[BGI+OI] 

[Cav] 

[Con04] 

Mu c su 

,rom> . 

'Th: A;;pecU lW!Tlc page, 2003. 

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sa-

hai, Sali1 Vadhan, and Ke Yang. On 

Lecture Notes in Computer Science, 2139, 2001. 

Java Decompilèr. 

<http://www.hysoft'è>e/sureshol/cavaj/> . 

Richard Conn. A rcusabic, academic-strcngtlt rnctric'è>-bascd \o1'l\varc ell-

proces'è> for cap:-.ton,,; com,;es and In Proceedings of the 

175 



Bibliography 

35th SIGCSE Technical Symposium on Computer Science Education, Nor­

folk, Virginia, USA, 2004, pages 492-496. 

[Oec] Dt~Cdfe Pro. 

<hup://decafc.hypermarLnd/> . 

[OH] 

[Ema93] 

[Fro] 

[GH98] 

Java 

<hu >. 

Maryam Emami. A practical interprocedural alias analysis for an optimiz­

ing/parallelizing C compiler. Master's thesis, School of Computer Science, 

McGiIl University, August 1993. 

0317 !indcx.html> . 

Etienne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented 

compiler framework. In TOOLS '98: Proceedings of the Technolog}' (~f 

Object-Oriented Languages and Systems, 1998, page 140. IEEE Computer 

Society, Washington, OC, USA. 

[GHMOO] Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient 

inference of static types for Java bytecode. In Static Analysis Symposium 

2000, June 2000, Lecture Notes in Computer Science, pages 199-219. 

[GJS97] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison­

Wesley, 1997. 

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and program­

ming systems series). Elsevier Science Inc., New York, NY, USA, 1977. 

[HOE+931 Laurie J. Hendren, Chris Oonawa, Maryam Emami, Guang R Gao, Justiani, 

and Bhama Sridharan. Oesigning the McCAT Compiler Based on a Family 

of Structured Intermediate Representations. In Proceedings of the 5th In­

ternational Workshop on Languages and Compilersfor ParaUe! Computing, 

1993, pages 406-420. Springer-Verlag. 

176 



Bibliography 

[HF82] Peter G. Hamer and Gillian D. Frewin. M.H. halstead's software science -

a critical examination. In ICSE '82: Proceedings of the 6th international 

conference on Software engineering, Tokyo, Japan, 1982, pages 197-206. 

IEEE Computer Society Press, Los Alamitos, CA, USA. 

[Jad] Jad - the fast JAva Decompiler. http://www.geocities.com/SiliconValley/­

Bridge/8617/jad.html. 

[Jal] Jalopy. the source code tooL 

<hhttp://jalopy.soureeforge.net/> . 

[Jas] SourceTec Java Decompiler. http://www.srctec.com/decompiler/. 

[Jav] J;lVd Programming 

<http://java.sun.com> . 

[JRe] A Java TonI. 

<http:/~in:factory.sourcd()rge.net/> . 

[KHH+OIl Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and 

William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, ed­

itor, European Conference on Object-oriented Programming, 2001, volume 

2072 of Lecture Notes in Computer Science, pages 327-353. Springer. 

[Klaa] 

[KI ab] 

[LSP05] 

Zelix KlassMaster - The second generation Java Obfuscator. http://www .-

zelix.com/klassmaster. 

Zelix KlassMaster - The second generation Java Obfuscator. http://www .-

zelix.com/klassmasterfeaturesFlowObfuscation.html. 

Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization­

based analysis of quality for large-scale software systems. In Proceedings 

of the 20th IEEE/ACM international Conference on Automated software en­

gineering, 2005, pages 214-223. 

177 



[LY99] 

[McC76] 

[MHOl] 

[MH02] 

[Moc] 

[RCC91] 

[Sha80] 

[Soo] 

[Sou] 

[Sun] 

[Tai 84] 

Bibliography 

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. 

Addison-Wesley, Reading, MA, USA, second edition, 1999. 

Thomas J. McCabe. A complexity metric. IEEE Transactions on Software 

Engineering, 2(4):308-320, December 1976. 

Jerome Miecznikowski and Laurie Hendren. Decompiling Java using staged 

encapsulation. In Proceedings of the Working Conference on Reverse Engi­

neering, October 2001, pages 368-374. 

J. Miecnikowski and L. J. Hendren. Decompi1ing Java bytecode: prob­

lems, traps and pitfalls. In R. N. Horspool, editor, Compiler Construction, 

2002, volume 2304 of Lecture Notes in Computer Science, pages 111-127. 

Springer Verlag. 

Mocha, the Java Decompiler. http://www.brouhaha.com;-eric/ comput ers/ -

mocha. html. 

Pierre N. Robillard, Daniel CoupaI, and François Coallier. Profiling software 

through the use ofmetrics. Softw. Pract. Exper., 21(5):507-518, 1991. 

Micha Sharir. Structural analysis: A new approch to flow analysis in opti­

mizing compilers. Computer Languages, 5: 141-153, 1980. 

Soot - a Java Optimization Framework. http://www.sable.mcgill.ca/soot/. 

Source Again - A Java Decompiler. http://www.ahpah.com/. 

SUI1 

<htlp:/hvww.sun.com> . 

Kuo-Chung Tai. A program complexity metric based on data flow informa­

tion in control graphs. In ICSE '84: Proceedings of the 7th international 

conference on Software engineering, Orlando, Florida, United States, 1984, 

pages 239-248. IEEE Press, Piscataway, NJ, USA. 

178 



Bibliography 

[VRGH+OO] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice 

Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot 

framework: Is it feasible? In David A. Watt, editor, Compiler Construction, 

9th International Conference, March 2000, volume 1781 of Lecture Notes in 

Computer Science, pages 18-34. Springer, Berlin, Germany. 

[Win] WingDis - A Java Decompiler. http://www.wingsoft.com/wingdis .html. 

179 


