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ABSTRACT

The study of groups arose from the theory equations; more specifically form the
attempt to find roots of a polynomial in terms of its coefficients, early in the 19™
century. The theory of groups itself, which had already been applied in almost all

branches of Mathematics, has developed in many different directions. It becomes
of prime importance in many Mathematical disciplines. Here, I have studied an
essential part of groups called Commutators related to solvable groups. In this
study, [ have discussed Commutator properties and intend to present some relative
noteworthy theorems of commutators in connection with solvable groups. I have
assumed the group G to be finite group throughout the whole work.
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Definition of a commutator

(a) Let G be a group. If a and b are elements of a group G, then ab=bac for
some ¢ € G. If a and b commute, then, of course, c=e. In general ¢ #e and ¢
=a7'b'ab. An element of this form is called a commutator and is usually

denoted by (a,b).

(b) We also define commutators of higher order by the recursive rule:

X, %, X, ,x ) =(x,%,x_),x )=(X,x )=X"x Xx [1]
( 1272 ) (( 12742 n 1) n) ( n) : nl n

n—=1°>""n
Where & =[x, %5, x )

These are called simple commutators.

(c) The set of all elements which can be obtained by successive commutation
are called complex commutators.

(d) Let G be a group. Let A and B be subgroups by the notation (A,B), we
mean the group generated by all commutators. (a,b) with a € A, b € B.

ALA, A A)=(AA,. A )A) 2]

(f) We shall represent conjugation by an exponent a*=x"'ax where x is fixed

in G and for all x€G. [1]
Definition of commutator subgroup

Let G be a group. Let us denote by the subgroup generated by the set of all
commutators (a,b )= a'b’! of G, for all a,b €G, then is called the commutator
subgroup of G' [1, 7-11].

. .
Note: G’ is normal in G.

Some properties of commutators

Note: Let x,y € G then (x,y)=e the identity of G if and only if xy = yx, the
proof follows directly from the definition of a commutation [1-11].

Property-1:Let xy € G be elements of a group G, the (y,x) = (x,y)" (3]
Proof:
L.H.S: (3,x) = yixlyx = (x'y'xy)! = ylxlyx
Hence, (y,0) = (x,y)"
Property-2:

Let x,3,2 € G be elements of a group G then

(xy,2) = (x,2)(y,2) = (x,2)(x,2,9)(y,2) (4]
Proof:

Consider, (xy,2) = (oy)'z'(xy)z = y'x"zxyz

(20,2 =y (6 2h(,2)

= ylxlx ey 'z lyz

Consider,

= y—lx—lz»lx,yz
Again, (x,2)(x,z,)(3,2)
= x'z!xx(x, 2y (5, 2hyy = lyz
= xgxe x ey e ey ' yz
- y1x«zz«1x>,Z
Hence, (xy,2) = (62'(,2) = (62)(6,2,5)(,2)

Property-3:Let x,y,z be elements of a group G. Then

(x,52)=(x,2)(x,3)=(x,2)(x,3)(x,%,2) (5]
Proof:
Consider,  (xy2) = x'(y0)'xyz = x'z'y'xyz
Consider,  (x2)(xy)] = (x2)7'(xy)z
= x'z!xex xyayz
=x'zlyloz
Again  (x,2)(y)(x,y,2) = x'zxzxy ey (y,2) x(3,2)

=x'zxzxly by Iy xy Ty
= xlzlyleyz
Hence, (x2) = (x 25y = (x2)xy)(xy,2)
Property-4:
Let x5,z be elements of a group G, Then
(x5, 2P (3,2 xf(z,x",3) = e, the identity of G. (6]
Proof:

Consider  (x,yhLzP = y'(x,yL2)y
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=y 0y 2 (x,y )2y Property-7:
= yhyxlyxzxclyxy 'y Let x,y be elements of a group G and suppose that z = (x,y) commutes with
L both x and y
= xlyxx!xly xy'zy (@
Then (,‘)(Xi,y’) =7l for all j [9]

Similarly, (y,x',x) = 2'(y,2',x)z
1
i Lim )

= 2',2)x (3,2 xz (it) (x) ==z2""yix' forall 1 (10]

SRS U U0 S A S |

STy YIXX

Proof:
=ylzlyxlyleyzixz (b) Again,

(xlyF =5 (xx' y)x Since x'y!xy = z, then we have y'xy = xz where y'x'y = (ylxy) = (x2)' = x'¢' asx

and z commute. Conjugating by y which gives that
= x5 x )y (zx yx

= xlxlx ey ly ixcyx

yilyxy)y =y (¥2)y = (K2)2 = x'2*

as y and x commute.
=2'x'zy 'z xaxtyx (© . , _
Repeating this argument j times. We conclude that
Now, Combining (a),(b),(c), we get ) )
yxiy = x'70 and (xy) = ¢/
aly Iy tyxytzy vl lyxy tryr iz 2lx ey i ixex lyx =e(identity)
Again, (ii) holds, for j=1, assuming the result for (i-1), we have
Hence, (x,y!,2)(y,2",x)(z,x",3) = e, the identity of G. Lioiyi-2)
U2 oy i i

(yx)‘ = (yx)"l(yx) =z Y xTx
Property-5: Since, by then follows at once, that is,
Let x5,z be elements of a group G, then

(63,2035 20(2,%,3)=(3,) () () ()%, 2P (3,26 zx) (7]

i D
Hence (yx) =z2 y'x foralli

Proof:
LH.S. (x3,2)0,2%)(zx) Property-8:
= ()12 (6,723,201 (3, 2)x(z, 1) 1y (= Xy Let x,y,z be element of a group G then
= ylelyxz b ly Iyzz ly Ty by T lyzooc 2 ey T I ey (i) If is commutes with z and if (x,G) is abelian then
=yl lyxy Iy Ty ly i lyxzy I I oy (63,9)=(x,2,y) (11]
R.H.S. (3,)(z,%)(z,3)(x,y)(x,20(3,2)(x,2)(z,x) (ii) If (x,y) commutes with both x and y then
= (3,50)(2,20x (2, 3)x(,y)y (%, Dy (3, 2)x(x, )y (2, %)y (ey ) =(x"y)=(x,y") [12]
=y Ix—l},xz—lx—lw—lz—ly 1Zyxx—lylxyy—lx—lz—lxzyx»ly—lZ—Iyzxx—lz—lxzy IZ 1’(»12,’(y Proof:
=yl lyxg Iy Iy y T by T o ey First (oy,2) = oy 2 (o))
Therefore, L.H.S. = R.H.S = ylxlyxgxly oz
Property-6: = x!(ey Ixy) (xx 'x ") (x 'y xyz)
Let x,y,z be elements of a group G, then Furthermore, xy!xy = (x',y) = (x"y) for some positive integer m, we conclude
(9 = (el g (o) 8] easily by p-2 that (x"y) € (x,G) .
Thus, xy'x'y, and likewise xz'x'z lies in (x,G).
Proof:
Hence, by hypothesis these two elements commute. It follows, therefore,
LHS (3,2 = ()2 (xy)z that
= ¥y’ xlyTyg (x3,2) = oy 'xy)xz 'x )2y xyz)
RHS. (xly )" = [eoy) ' (zxhy xy) Since, y and z commute by assumption, this reduces to
= Iy ) ) (o x y ! (3,2) = ¥lxlzxy ¥z xgy
= (v e oy ey ) = (029
= vty lzy Tty which proves ©
=y 'y xy 2 xy (@) We have, e = (xc'y )= (xy)(xy,x)(x',y)
Again, But, (xy,x") = ((xy),x") and (x,y) commute with x by hypothesis, whence

(L)) = [y (2 )yl (xyx!) =e
= ey 2 ) 2 ey Hence, e = (x,y)(x',y) and consequently, (x,y)! = (xy)
= [yle'yzly ' yzy ey Similarly, by p-3, we obtain(x,y)! = (x,y!) by () holds.

= [Z»Iy»lx»l yzy’lz’lxzy]” Some theorems on commutators

= ylellayrlylxyy (b) Theorem-1: Let G be a group and G’ be the commutator subgroup of G,
then G’ is both characteristic and fully invariant subgroups of G.
Combining (a) and (b) we get

y’IX'IyXZ'IX'lzy'lz'lxzy}"lz'lxlzyz'ly 1’(yz = y”x'lyxz’lx'ly'lxyz Proof:

Hence, L.H.S=R.H.S and the proof follows: Let & be arbitrary automorphism of G.

Let (x,y) = xlylxy forallxy € G
19 J Pur Appl Math Vol 2 No 2 August 2018
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Then
akyny)=axay)axabe G,
since o is the homomorphism of G

Hence, G’ is characteristic subgroup of G. Again, be an arbitrary
endomorphism of G. Then G’ will be invariant by as before. Hence, G’ is
also fully invariant subgroup G.

Theorem-2: Let G’ be a commutator subgroup of a group G, the G/G’
is abelian.

Proof:

Let G'x G’y be two elements in G/G’

Then G'xG'y = G'xy

Now (x')'(y")'x'y'= xyx'y' G' G

so G' yx contains the elements xyx'ylyx = xy

But G’ xy contain xy: hence G,xy = G'yx

Theorem-3:

If N is a normal subgroup of G such that G/N is abelian then N = G’
Proof:

Let N contain the normal subgroup generated by the commutators, if
G/N is abelian, and x,y€G, then

(xy)N = xNyN = (yx)N

Hence, xy = yx where neN

This implies that y'(xy) = y'(yxn), that is y'xy = xn,
Andso x'y'xy=n & (xy) =neN

=>N2G'

That is, N contains every commutator.
Theorem-4:

If G is solvable and G& E then G' C G

Proof:

Let G be an abelian group and x,ye G as x and y commute, then (x,y) = e and
G’ the commutator subgroup of G generated by {e} then G' C G

Theorem-5:
It G is simple, then either G'=-Gor G'-E
Proof:

Since G is a simple group, then it has only trivial normal subgroups, that
is, if G’ is a commutator subgroup of G.

Then G'=G
1f G’ G'G then the only possible is G'-E
Note:

Let G be a finite group. Let G’ be the commutator subgroup of G. We

may form the commutator subgroup of G' which we denote by G and
1 2

so on, obtaining a sting of subgroups satisfying G >> G'>GY e

where G’

=G". This sting will terminate since G is finite.

If G")= E then we have solvable series for such group G. That means that
G is solvable.

Theorem-6:

Let G be a finite group then G is solvable if and only if G = E for some
integer n.

Proof:
If GW=

Now, assume that G is solvable and let N = {N N ,....... N} =E, with N # N,
for i # j, be a normal series of G with abelian factors Then G/N is abelian
and hence N 5 G" by theorems 2 and 3.

E, for some n, then G is solvable by the above note.
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Since GW is a subgroup of a solvable group then G%is solvable and G*
is a proper subgroup of G (unless G = E), GY = £, and so on.

Since G is finite, then the string of subgroups must terminate, that is
G = E for some integer n.

Theorem-7: Let G be a group, Let H, K, L be subgroups of G, then
i) (H,K) is a normal subgroup of (H,K)
i) (H, K) = (K, H)

(
(
(iti) H normalizes K if and only if (H, K) ¢ K
(iv)

If K < H and both are normal in G, then

Hec2( G )ir (1K) <K

(v) If H, K, L are normal in G, then (HK,L)=(H,L)(K,L)

(vi) If @ in an endomorphism of G, then (H, K)*=(H® K°), and in
particular (H, K) is normal in G if both H and K are normal [1-4].

Proof:

We shall show that for each x in (H, K) both xh and xk are in (H, K) for
each h € H and k € K. Since x is a product of commutators, it will suffice to
prove that both (y,2)* and (y,2)*are in (H,K) for eachy, h€ H, ¢, k € K.

But by property-2, (see 1.3) we have (32)" = (yh,2) (h2)'€ (H,K), while by
property-3 (seel.3), we have (y,2)*=(y,k)'(y,zk) € (H,K).

Thus(#.x)<(#.k) that is, (i) holds. Now, by propery-1, (see 1.3),(h,k) = (k,hY
I. Since (K,H) is a subgroup, it follows from this that (h,k) € (K,H) for all
(H,K) € (k,H).Whence (H,K) < (K,H) by summary,(K,H)=(H,K) Hence,
(H,K)=(K,H),that is,(ii) holds. Next H normalizes K if and only if h'k'h € K
for all h € H, k € K. Since, this equality holds if (H,K) € K then (iii) holds.
Again, #/, cz(%) if (Kh,Kx)=K for each h € K, x € G and (iv) holds. Now, case
(v) follows easily from the property-2 (see 1.3) namely,(xy,z) = (¢,2)' (3,2) = y' (x,2)
¥ (y,2). Finally, the first assertion of (vi) is an immediate consequence of the
relation (h,k)? =(h?,k?) which holds for all h € H, k € K. If we take ¢ to be the
inner automorphism induced by the element x of G, then second statement
of (vi) follows also as a corollary.

Theorem-8: Let G be a group. Let H, K, L be subsets of G. If (H,K,L)=e and
(K,L,H)=e then also (L,H,K)=e.

Proof:

Let us suppose that (H,K,L)= (K,L,H)=e. Thus, for all (x,y',2)=(y,z",x)=¢, we
have (x,y.,2) = (y,2',x) =e. Hence, by property-4 (see 1.3), We have, (x,y',2)=(y,x
Lx)=e. But (L,H,K) is generated by the set of all such commutators (L,H,K)=e
hence (L H,K)=e.

Theorem-9: If X,Y,Z are subgroups of a group G, and if K is a normal
subgroup

of G containing (Z,X,Y)and (Z,X,Y) , then K also contains (X,Y,2).
Proof:

This theorem follows from the property-6 (seel.3) where x € X,y € Y, z €

Z. That means (x,y,z):((z,x Ly ‘)Y" )71 ((v 'z ‘,x)z‘“)il gives the proof of the
theorem.

CONCLUSION

Commutator properties and relative theorems are one of the promising
and vital parts of group theory. According to my knowledge, not so much
work has been done on it. Here, I have presented the theoretical aspects
of Commutators. However, Commutators with respect to solvable groups
might be applied to other directional research on both pure and functional
mathematical computation such as in counting symmetries [12], field
extension [13] and even to solve fuzzy problems [14-16]. If we run more
research on it, then it might be able to contribute on the advancement of
modern science and technology.
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