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ABSTRACT 

The seismic design of concrete dam.-foundation-reservoir systems, must be able 

to ensure the survivability of thes~ structures to extreme maghitude earthquakes. The 

need to represent non homogeneous geometrical and material foundation properties, 

and to predict damages which are generally due to non-linear effects i~plie{that the 

, solution must be deterItiined in the time domain. 

This study is concerned with' the evaluation of fQ,ur different earthquake input 

mechanisms that 'are suitable for time domain analysis of dam-foundation systems. 

- These are: 

. A) the standard rigid bas~ input model, 

B) the massless foundation input mode!, 

o C) the deconvolved base rock input model, 

D) the free-field dam-foundation interfacé input model, 

• 

:rhe relative performances of varions coordinates reduction t~chniques to ~olve the re­

sulting time domain dynamic equilibrium equations havé" aiso been investigat,ed. Para­

metric studies have been conducted from numericai experiments by applying the pro­

posed earthquake input mechanisms to simplified 2-D finite element models of gravit y 
1;:::7 ,r. 

~ dam-foundation systems. The principal parameters retained in the analyses were the . .. 
t" 

ratio of the modulus of elasticity between the founda~ion rock and the concrete dam' . ' 

and the damping ratio of ~h~ 1oundation. 

It has been fo~nd that the use of model A is not acceptable, producing sigrfificant 

\. artificial ampl~cations. Model C, which is theoretically the most accurate model", and 

model D produced results which were almost identicai for the complete range of selected 
. . 

parameters. Model B although not as acëurate as models C and D can b~, used for 

practical analyses if a proper modelling of the energy dissipation characteristics 'bf the 
- , 

foundati0Il: is provided in tpe mathematical model. Coordinate reduction techniqu~s /' 
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based on the Q~iVed lo8.d depend~t Ritz 'transformation vecto~e- been 'shown to "J 

reduce very significantly the coat 'Of the analysis without major los8 in the a.ccuraty of 
, ." ~j; -" 

tlie response: 
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RESUME \1 
1 

1 

J 

La' conception parasismique de systèmes barrage-fondation-réservoir, doit ~surer 
- .. ~ ;1' l. 

une performance adéquate de ces structures lorsque sQlpmises à des séismes de mag-
. \ 

, nitude extrême." La nécessité de rep~ésenter tine géorétrie et des propriétés non-

uniformes de la fondation et de 'prédire d' éventuels domm~ges, dus généralement à 

d~ effets ~~n-linéaires, implique que la solutiOn soit dét~rminée dans le domaine du 
/< 

temps. . , 

Cette étude se consacre à l~évaluation de quatre méthodes différentes d'application 
.. ..... Q . , 

du chargement sismique, qui peuvent être utilisées pour l'étude dans le domaine du 

temps d'un 'ba.r!!1ge poids et de l'interaction avec sa fondation~ Ces méthodes sont: 

A) le modèle standard d'application à la base rigide du ~ocher, 

B) le modèle de fondation' sans masse, ( 
, 

C) le modèle d'application' de l'accélérogramme déconvolué à la base du rocher, 
." J . 

D) le modèle d'application de l'accélérogramme énregistré au niveau de la surface' à 

l'interface"] du barrage et de la fondation . 

. Une' étude comparative de l'efficacité de différentes techniques de réduction du nombre' 
, 

de coordonnées pour la réso~ution des équations d'équilibr,7dy namique du systè~è" 

barrage-fondation a également été complétée. Des études paramétriques ont été nienées 
1 

à partir de simulations'numériques qui ont consisté à appliquer les quatre méthodes 

'proposées au. moQ.èle1:>idimensionnel d'éléments finis, utilisé pour la représent'ation du 

système 1>arrage-fondation.· Les paramètres retenus étaient le rapport des modules 
"-

d'élasticité du barrage et de la fondation,rocheuse êt l'amortissement de la fondation. 

li a été montré que J'utilisation du modèle A est i:pacceptable, puisqu'il produit 

des amplifications artificielles très significatives. J,.e modèle C, qui f!st théoriquement le 

plus précis: et le m~{ièle D ont produit des résultats presque identiques pour toutes les 

combinaisons de paramètres considér~es. Le modèle B bi~n que moins précis que les 

ili '~( 
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_ modèles Cet :p peut être utilisé en pratique si une idéalisationréquate d~ lJléeanismes , - -- ' -
. de diSsipation d'énergie de la fondation est incluse dans le modèle m~thématique. na 

. ( " 

,été à1issi montré que l'application des techniques de réduction de coordonnées basées 

sur les vecteurs de Ritz, dépendants du chara.ment, l?eIL?-ettait de réduire d'une f~on 
• t. .. 

notable le coût de l~alyse sans pour autant 'Sacrifier la précision des résultats. 
-' ' , 
, ' 

" 

, . 

" 

, \ 

., 

, , 

... 
• 

r 

\ 
• 1 

iJ 

iv 

" 

, . , 

. ' 

• . 

. ' 



~~:" .. 

, 

Cl 

-~, . 
, 

, , 
,', 

• 

'" ,. 

ACKNOWLEDGMENTS " 

1.( • ~~ 

The author wishes to eXpress his deep~t gratitude to his supervisor, Prof essor 

P. Léger, for his guidance, valuable suggestions and consta.I\,t encouragm~nt during the 

course of this study and the writÏJ1.g of the thesis. 

The support of the Ministry of Higher Education and Scientific Research of Algeria 

in ~~ting the author a scholarship for his graduate studies is gratefully acknowledged. 

The author is also grateful to the National Science and Engineering Research 
j 

·Couricil of Canada for their ijnancial assistance. 
. \ ~ 

~ ., , Thanks are also due to ail the members of my familly for their encouragment and 

moral~ support. ' 

Finally the author wishes to express his gratitude to the staff members, -and his 

fellow graduate students in the Civil Engineering Department at McGill University'\for 
. 

providing helpful and constructive criticism. 

, " 

,~ 

• > 

, , 
.. 

v· 

-, 

" 

. , 

, , 



'\ ::' 11 
,'- " !J 

J "~J 
'.' , ... ", 

j' 
'-.-

· " 

0 'TABLE 'OF CONTENTS 
'-

ABSTRAGT · · · · · · · · · · i 

RÉSUMÉ . . . . · · · · · · · ~. · · · · · iii .. 
LIST OF FIGURES · · · · · 1 · vii . 
LIST OF TABLE~ · · · , · · · .A · · · x 

-1 INTRODUCTION · · · · • è' 
~, · " · , · 1 

1.1 Overview arid Objectives · · · · · · · , , · 1 
-

1.2 Review of past work · . · , · · · · · , , · . ., -4 
'" 7 1.3 Scope of th~ present study · · · • <;:' .1 · · "-':.. ... ~ '. · · · · ~f . 

b 

2" MODELS FOR ~HE :tARTHQUAKE INPUT'MECHANISMS __ 1 
) 

~ 9 . 
" 

2.1 Introduction 
, 

9 . . · . · · · · · · · · · · · . . . , .. , 
2.2 Model A: Rigid Base Input . 10 · · · · · · · · · · · · · .. o' 1 

2.3 Model B: Massless Foundation Rock 
r 

12 
2.4 Model C: Deconvolved Base Rock Input · · · " 13 
2.5 Model D: Free-Field Input 

, 
16 · · · · · · · · · , · · 

0 r. 2.6 Exploitation of the Respo~e Quantities in the Analysis--- .. ' . 21 
<" po 

3 MATHEMATICAL MODELLING OF THE • 
DAM-FOUNDATION-RESERVOm SYSTEM · - · . . . 25 

3.1 Introduction . .' . · · · · · · · · · · · · · · 25 
Jo 

3.:;! Finite Element Model of the Dam-Foundation-Reservoir System · 26 
() 

3.2.1- Computational Procedure . · · · · · · · · ,. · · · 26 . 
3.2.2 System Properties and Ground Motions , . -. .~-
3~2·.3 Stiffness Matrix · · · · · · · · · 29 -
3.2.4 Mass Matrix · 33 · · · · · · · · · .1 

3.2.5 Damping Matrix · · · · · 34 
" .. 

3.2.6 Influence of Boundaries Location · · · 38 

, 1 3.2.1 DYl}amic Analysis Procedure · · · ..... · · 41 
"\ 

3.3 Structural Behaviour of the Mathematical Model in Free-Vibration 42 
3.3.1 Effective Modal Mass · · · · · · · · · · · · 42 
3.3.2 Ratio of Foundation Rock Elastic Modulus to Concrete -

Elastic Modhlus · · · · · · · · · 43 
3.3.3 Hydrodynamic Interaction Effect 46 

~ 

'" 3.4 Preliminary Earthquake Analysis · - . · · · · 49 

0 

vi 

\ 



c 
\ 
~ > 

j 
1 
',< 

• 

4 CO:MPUTER IMPLEMENTATION AND NUMERICAL RESULTS 51 

, 4.1'" Introduction . . -. . .' . . ; . . . . . . . . . 

4.2 Computer Implementation 'Of the Deconvolution 'Process 

~.3 Cases Analyzed and Selected Parameters. . . 

4.4. ~umerical Resulta f~ the Four Input Modela 

4.4.1 Displaëements . . . . . . . . . . . . 

4.4.1.1 Time H'lStories . . . . . . . 

. '.' . 

4.4.2 

'4.4.1.2 Influente of Controlling Parameters, El / ECh el 

Accelerations .; . " . . - . \. . . . . .'. 

4.4.2.1 Time Histories . . . . .". . ...•. . . 

4.4.2.2 Influence of Controlling Parameters, 121/ Ea, el 

4.4.3 Stress~ 

4.4.3.1 Time Histories . . . . . .. . . . . . ~ 

, 4.4.3.2 Influence of Controlling Parameters, El / E,j, el ". 
~, 

4.5 Effect of the Damping Ratio o~ the Massless foundation Model -
~ 4.6 Effect of Using Different Ground Accelerations ..... 

. . 
4.7 ConçJ.usions from Numerical Analyses . . . . . . . . . 

5 COORDINATES REDUCTION TECHNIQUES FOR" 
DAM-FOUNDATION INTERACTION . . i . . . 

5.1 Introduction . . . . . . . . . . . . . . . . . 

5.2 Selection of Generalized Coordinates for Dynamic Analysis . 
t • • 5.2.1 Finite Element Modal Coordinates . . . . . . . 

5.2.2 The Derived Ritz Coordinates . . . . . . .. . '. 

· 51 . 
· 52 

· 53 

· 58 

59 

· "59 

64 

· 72 

72 

72 

80' 

· 80 

· 81 

· 88 

· 93 

.~ 
99 

99 

101 

102 

103 

, 

5.3 Représentation of Seismic Load from Truncated Vector Bases . 104 

5.3.1 Comparison Between Derived Ritz Vectors and,Exact Eigenvectors 106 
. -

5.3.1.1 Mass Foundation Model (Earthquake Input Models A, C, D) 106 

5.3.1.2 ·~assless Foundation Model (Earthquake Input Model B) 107 

5.3.1.3 ' Relative Computational E,fficiency 110 

5.4 Dynamic Response An!lysis Procedur~ . 113 

5.5 Analysis of Structural Response . . . . . . . 116 

5.6 Conclusions 
(j) 

6 SUMMARY AND CONCLUSIONS 

6.1 Summary . 

'6.2 Conclusions 

vü 

. . . . 120 

122' 

122 

• 123 

." 

, ~ 

0 



...... i\ 

0, 
o 

" 

" 

'_ ...... 

o 

. , 

o 
Cl 

\ , 
r-~1-'";-.ê.-l 

6.3 Recommendations and Suggestions for Future Research 
l ' 

ÎtÊFERENCES . '. ~ . 
APPENDIX ", 

o 

, 

-
o 

~ 

~ 

" 

.. 
'0 

. , " 

viü 

/ 

r' 

'T 

.. '.:" 

, , 

.. 

;l' ',,~ l' .. 

.. 
,. 

. 
....-

" 

,* 

< , 

'/ 

". 
.. 

133 

') , 

, 1 

, 
.. 

J 

, 
, .. 

'< , . " . 
• " f" <1 

\ 

\. ,.. 

(J 

, 

j. 
Q t 



( 

If 
~ ,> 

LIST OF FIGURES 

2.1 ~ R.epresentation of the Four Prop08ed Earthquake Input Mec~anism! 
• 2.2 Representation of the Deconvolved Base' Rock Input Process 

2.3 Formulation of the Free-Field Input Mechanism (Model D) . . 
• 

10 

15 

17 

-

2.4 

3.1. 

3.2 

3.3 

3.4 

Displacement quanbities Resulting from the Application 
of the Four Input Mechanisms ' . . . . . . . . 

Finite Element Meshes Analyzed . . . . . . 

Example of a Dam .... Foundation Syé\tem froperties 

El Centro Earthquake; May18, 1940 (NS component) 

\ 

22 

27 

· 29 
. . 30 

San-Fernando Earthquake Recorded at Pacoima, 
February 9, 1971, (SW component) Scaled to 0.35g . · , . · 31 

3.5 ' Parkfield:California Earthquake, June 27, 1966, 
(NW component) Scaled to 0.35g . . . . 

3.6 

" 
3.7 

3.8 

Representation of the Hydrodynamic Effect by 
Westergaard's Approach. . ... . . . . 

Variation of the Damping Ratio in the Different Modes 
of Vibra,tion as Given by the Rayleigh Method 

Effect of Dam-Foundation Inter~tion on the First Two Modes 

32 

35 

Q 

. . . . 39 

of Vibration of the Modela with Mass.Foundation (A, C, D) · . . 45 
3.9 

3.10 

4.1 

4.2 

4.~a 

4.3b 

Effect of Foundation FleXibility on the First Three 
Periods of the Combined System. . . . . ,". . . . . 

Effect ~f Foundation Flexibility on the Effective Mbdal Mass . . l' 

Comparison of the Computed PSa and the Target PSa 
, D 

Nodes and Elements Selected for Examination of Results . l . . 
Horizontal Displacements Histories at Node 1 DepÎved from ~he ~ur 

Inpu~ Models (El / Ed = 1/8, el = 5%), El Centro Earthquakè 

Horizontal Displacements Histories' at Node 1 Derived from the Four 
ç , 

. Input Models (El / Ed = 1/8, el = 15%), El Cent~ Earthquake . 

4.4a Horizontal Displacements Histories at Node 1 Derived from the Four 
Input Modela (El / Ed = 4, el = 5%), El Centro Earthquake. . . 

4.4b Horizontal DisplaceIllents Histories at Node l·Derived from the Four ' 
- Input Modela (EI/Ed = 4, el = 15%), El Centro Earthquake 

4.5 Horizontal Displacements ~t Node 1 Derived from the Four Input 
Mode~ as a Function of El / Ed (el = 5%), Er Centro EarthquaJee 

4.6 Horizontal Displacements at Node 1 Derived from the Four Input 
Modela as a Function of EdEd (el = 10%), El Centro Earthquake 

o 

ix 

47 

· 48 

· 54 

57 

60 

61 

~'" 62 

. 63 

65 

66 

.. 

d 



o 

o 

'~ • J , '" .... , r' '" 

4.7 Horizontal Displacements at Node 1 Derived from the Four Input 
Modela as a Funetion of Er/Ed (e, = 15%), El Centro Earthquake . . 67 

4.8 Effect of the Da.rilping Ratio of the Foundation on the Horizontal 
Displacements at Node 1, El Centro Earthquake . . . . . . . . . 69 

Comparison of the PSa Generated from Model A with the ~Sa 
, of the Recorded Free-Field Accelerogram. . : . . . . . 

4.9 
~ 70 

. 4.10 Horizontal Accelerations Histories at Node 1 Derived from 
the Four Input Modela (El / Ed = 1/8, e, = 5%), El Centro Earthqu~e "73 

4.11 Horizontal Accelerations Histories at Node 1 Derived from the Four 
Input Models (El / Ed = 4, el = 5%), El Centro Earthquake. .r • .\ • 74 v 

~.12 Horizontal Accelerations at Node 1 Derived' from the Four Input 
.' Modela as a Funetion of EI/Ed (eL = 5%), El Centro Earthquake ,. 

4.13 Horizontal Accelerations at Node 1 Derived from the Four' Input 
Modela as a Funetion of EI/Ed (el = 10%), El Centro Earthquake , 

4.14 Ho;izontal Accelerations at Node 1 Derived from the Fout Input 
" Modela as a Function of EI/Ed (el = 15%), El Centro Earthquake ( , -.,. 

4;15 Effect of the Damping Ratio of the Foundatio~ on the\{Iorizontal ~ 
. Accelerations at Node l, El Centro Earthquake . :. . . . . . 

4.16 Vertical Normal Stresses Histories at Element 5 Derived from 

'. 76 

77 

78 

79 

the Four Input Models (E,IEd = 1/8, el = 5%), El Centro Earthquake 82 

4.17 Vertical Normal Stresses Histories at Element 5 Derived from 
the Four Input Modela (El / Ed = 4, el = 5%), El Centro Earthquake . 83 

4.18 Vertical Normal Stresses at Element 5 Derived from the FouI' Input 
Modela as a Function of EI/Ed (el = 5%), El Centro Earthquake 84 

4.19 Vertical Normal Stresses at Element 5 Derived from the Four Input 
Modela. as a Function of El / Ed (el = 10%), El Centro Earthquake 

4.20 Vertical Normal Stresses at Element 5 Deriv-ed from the Four Input 
Mode'ls as aiFunction of EI/Ed (el = 15%), 'El Centro Earthquake 

l ' 

85 

.86 

4.21 Effect of the Damping Ratio of the Foundation on the Vertical Nor\l 
Stresses at Element 5, El Centro Earthquake . . . . . . . . . . 87 

4.22 Effeet of the Damping Ratio of the Massless Foundation Model (model B) 
"-., on the Horizontal Displacements at Node 1, El Centro E;.q. . . . . . 90 

4.23 Comparison of the Dispalcements at Node 1 Derived from Model B 
with el = 0% and Models C, D with e, == 5, 10 and 15%, El Centro Eq. 91 

. 4.24 Displacements at Node 1 Derived from the Four Input Models 
, Using the Pacoima Accelerogram as the Input Motion . . . . . . . 94 

5.1 Percelltage Effective Modal Mass in the Y-Dir. as a Function of 
the liumber of Vectors Retained in the Analysis (Mass ~oiindation Mo~el) 108 

5.2 Percent age Effective Modal Mass in the Z-Dir. as a Function of 
the Number of Vecto.rs Retained in the Analysis (Mass Foundation Model) 109 

, ~ 

<J 

." 

\ 



o 

j , 

, ' 

~:1t:).:.; ..... '4..;~.~~~4~.""'~:" ... ,: ; .. "" 

. , 
Il 

1 

S.3 Percentage Effective Modal Mass in the Y·Dir. as a Functlon o( the Number 
of Vectors Retained in the Analysis (Massless Foundation Model) . . . 111 

5.4 Percentage Effective Modal Mass in the z..Dir. as a Function of the Number 
of Vectors Retained in the AnalysiS (Massless Foundation Model) ~ . . 112 

.' 

J 

1 

xi 
1 

1 
, 1 

1 1 

\­
\ 



o 
. , 

o 

. . 

, . 

o 

• < 

3.1 

,3.2 

4.1 
4.2 

5.1 

5.2 

LIST OF TABLES 
. ' 

Periods (in see),of Dam-Found~n Sys'tem, 
Foundation with Mas~ (Models A, C, D) . . . . • . . • . . 

Periods (in see) of Dam-Foundation System, 
Massless Foundation (Model B) • . . . • . . • . . • . . 

Cases Analyzed Using the El Centro Earthquake as the Input Motion 

Weighted Modal Damping Ratios Derived 'from Equation (4.2),' 
(EI/Ed = l, el = 15%, ed = 5%) . . . . . . . . 

Aigorithm for the Generation of the Ritz Vectors 

Horizontal Displacementa at Node 1 Derived from , "-

the Different Solution Strategies . . . . . . 
1 

5.3 Computer Times Used in Computing the Displacements Histories 

A.l Displacements at Selected Nodal Points, Derived from the . 

· 

· 

· 

· 

Four Input Models, El Centro Earthquake (ed = '5%, e/ = 5%) . ... . . 
.1'A.2 -Accelerations at Selected Nodi;l.l Points, Derived 'from the 

Four Input Modela, El Centro E~thquak:e (ed = 5%, el = 5%) . 
A.a Stresses at Element 5 (Node b), Derived from the Four 

· 44 , 

· ·44 

56 

93 

· 105 

· 119 

· 119 

· 13:i 

· 135 . 

Input Modela, El Centro Earthquake (ed = 5%, el = 5%).. • " . \. . 136 
~ 

A.4 Displacements at Selected Nodal Points, Derived {rom the 
Four Input Models, El Centro Earthquake (ed = 5%, el = 10%) 137 

A.5 Accelerations at Selected Nodal Points, Derived from the 
Four Input Models, El Centro Earthquake (ed = 5%, el = 10%) . 138 

A.6 Stresses at Element 5 (Node h), Derived from the F~ur 
Input Modela, El Centro Earthquake (ed = 5%, el = 10%) . ~. · 139 

-Ji.7 Displacements at Seleded Nodal 'Points, Derived from the 
Four Input-Modela, El Centro Earthquake (ed = 5%, el'= 15%) 140 

A.a Accelerations at Selected Nodal Points, Derived from the 
Four Input Models, El Centro Earthquake (ed = 5%, el = 15%) 141 ., "-

A.9 Stresses at Element 5 (Node h), Derive"d from the Four 
Input Models, El Centro Earth~uake (ed = 5%" el = 15%) . . . . . i42' 

• 9 

xü 

, 



If. 
V' 

( 

, 

-- 1 

CHAPTER 1 \ , 

.. 
, INTRODUCTION 

/ .. 

'1.1 Overview and Objectives , . 

Il 
Dynamic analysis of concrete dams, subjected to earthquake ground motions, has 

be~ the subject of much research sinçe the mid ~ixties. Although there are no doc-

umented failures of concrete dams su bjected to earthquakes, there are however, some 

cases where this, type of dams have suffered major structural damages.' Some of the 
\ 

concrete dams which experienced such severe damages due to earthquakes, include the 

Ponteba dam in Aigeria, in 1954, the Hsinfengldang dam in China, in 1962, and the 

KQyna dam in IndÎé~~, in 19671 • '. . 
o _ '" 

The cons~nsus was that thè method used to analyze these dams had some major 

ilaws in predicting their structural response when subjected to se'ismic,loading. T~e 

method used in the earthquakè response was the pseudo-static method. This method 

consista of determining the structural behavior of the dam aubjected to a set of statie 
.C _ 

, 1 

loads obtained from average horizontal and ,vertical ground accelerations of ad spec1-

... fied seismic zohal map. The hydrodynamic forces are determined using Westergaard's . , 

approximation2 for an equivalent mass of water to move with the dam. The pseudo­

static method does not consider the dynaÎnic response characteristics of the dam­

foundation-reservoir system, nor the chara.cteristics of the e,a.rthquake ground motions. 

Studies on the earthquake performané:e of Koyna dam3 have shown that stresses in 

1 

, ;'{::J . ~ ~, 

é 
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, \ 

gravity dams found by applying the pseudc>-s.tatic method, hav~ little resemblance to 
, 

the dynamic response of sucb dams when subjected to earthquake groJlnd motions. 
, 

The development of the finite element method and recent advances in dynarillc 

analyses, as well as the progress in the field of computer science, make the use of realistic 

analysÎs of the seismic response of dams possible. This has led to the development of 

new regulations concerning the analysis and design of concrete dams. In the United 

States sever~l agencies such as the "U.S. Bureau of Reclamation", the "U.S Corps of 

" 1 

~ . 
Engineers" and the "U .S. Commission on Large Dams" , have had an ongoing int~rest 0 

in the safety of dams since the early seventies",5,6. Th~e agendes have been involved 

. in an extensive program aimed at determining the safety of existing dams and also 

in formulating new design criteria for dams. In contrast to th~ pseudc>-static method 

of analysis previously used, the new regulations consider in more realistic terms the 

dyn.amic properties of the dam, the local seismicity of the site and the interaction'" 

among the dam, reservoir and foundation rock. 

The three basic steps~in a realistic analytical evaluation of the seismic safety of a 

dam are as follows 7 
: 

1- . Estimation of the ~aximum expected earthquake excitation. 
~ 

'2- Analysis of the response to this dynamic input. 

~- Comparison of predicted response ~with the strength and deformation capacity of 

the structure. 
- . 

The selection of the design earthquake may weIl be the most important part of . 
this total procedure. The first step 'in this process is to investigate the geologic ~nd 

seismic condition~ in the region of the intended site, the consequences of failure and 

hazarda associated with the facility. The second f)tep is to select the 0perating basis 

."farthquakt (OBE) and the maximum design earthquake (MDE), on the basis of an 

integrated evaluation of the previously defined ear~~quake factors. The 0 BE represents . 

the maximum levei of ground shaking that can be expected to occur at the site during 
,} 

2 

" 
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,-

" 

c 
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the econoD1ic life of the dam. The MDE is the most severe eartJt.quake associated with 

the region, it is generally equated to the maximum credible earthquake (MeE). The 
1 

dam should b~) able to resist the OBE without any significant damages. In the case 
o p 

of the MDE however, the main criterion is to avoid any release of the water contained - . 
in the reservoir. To remain economical the design of the dam subjected to the MDE 

. , 
should not prevent all damages possibilities, but control what can ,be considered as an 

f ' 
y 

acceptable level of damage. 

This design philosophy admits that stresses exceeding the linear elastic range can 

be acceptable and will thus indicate a non-linep behîvior of the structu,re. These 
- • 1 

non-linearities may take the form of concre'te crackingl) opening of joints between 
~ -

adjacent monoliths or uplift at the dam foundation-interfade and cavitatiOIi at the 
, , 

dam-reservoir interface. Numerical techniques to treat the dam-fou~dation-reservoir 
" 

dynamic interaction ~roblem have been mainly concerned with frequency domain meth.:- .1 
',-

ods. However, frequency domain techniques can not solve non-linear pro,blemS and are 

relatively inefficient for three dimensional- problems. The other alternative to solve 

the dam- foundation-reservoir interaction problem, is the solution in the time domain. 

This will require a pr-oper mathematical modeling of the reservoir, the dam and the 

foundation. 

• Specinc"earthquake input mechanisms can be, associated with particular foundation 

models a.1ld it will be obviously questionable to put a great deal of effort in defining 

\ the charaéteristics of ~round motions if the way i~<'which' they are applied can influence 

the structural response significantly. 

The work presented in this report is the first part of a research program aimed'at 

developing efficient nUII}.erical techniques in the time domain that can solve the soiI-
• 1 r 

fluid-structure interaction problem in two and three dimensions and at the same time 
, . 

leave the door open for the practical solution of locaHy non-linear problems sucb as 

the uplift and relative slip at the interface of the structure foundation system. 

3 
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The principal objectives of this study are: 

a- To assess the influence of various ,earthquake
o 
input models, sucb as; 

- the standard rigid base rock input model, 

- the massless base rock input model, 

- the deconvolved base rock input model, 
. - ' 

- the'freè-field concrete rock interface model, , 

'on the time domain structural r~ponse of a dam-foundation-reservoir system, 

in order to get an ai>pr~ciation of the significance of the effort to b~ put in 'the ' 
1 _.. .. Il 

- . 
definition of the intensity and frequency properties of a design eatthquakè. 

b- To determine a specifie range of parameters such as the ratIo 'of modulus of elastic~ 

ity between the fOllndation and the structure and the damping ratio in the foun~ 

dation rock, for which particular input mechanisms are more suitable to be used 
, - , 

in order to get an accura~e time domain seismic response of the dam- foundation-

" reservoir system. . -

c- +0 develop efficient time-domain coordinate reduction procedure, to compute t4e 
. . 

earthquake response of a aam-foundation~reserVoir systefu . 

102 Review of Past Work 
~ 

, 

, 
( 

'" 1 

1 

The earthquake analysis o( concrete dams lias come a long way, progressing from 

) simple pseud~static methods for computing design forces, to sophisticated dynam~c 

ana.lysis. The system represen~ed by the dam-foundation-reservoir subjected to an 

earthquake, can be solved by either a frequency domain solution in the linear range 
, 

or by ~ time "domain solution in the linear or the non-linear range. The frequency 

domain approach has the1advantage to include the frequency-dependent properties of 

the ~nteracting s'oil and fluid systems. 

The dam-foundation-reservoir system can obviously be partitioned into three sub­

structures: th.e dam, the reservoir and the foundation rock, to evaluate the seismic 
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response. The problem is compounded 'by the fact that these three substructtttes do 
... 

-not behave independently. Early worka, invéStigateP the effed of the dam-reservoÏr 
Q 1 

" , 

. 
interactionS,o and the dam-foundation rock interactionl~ separately . . 

Chopra and ChakrabartP 1 developed over a period of several years, a te~hnique 

whereby a two dimensional reservoir-dam system is divided into two substructures. 

The flexible dam ~bstructur~ is represented as ~ assemblage of fiI}ite elements and --. 
~he rçservoir substructure is represented as a semi-infinite continuum governed by the 

wave equation.· The response of the total system is computed by combining the c~m-

plex fr.equency, response function of the hydrodynamic forces with modal frequency 
, r~ • . 

response- functions of the dam and calculating the ~ponse ta arbitrary excitation 

through Fourier integration. The water ÏIIlpounded in the reservoir could also be ideal­

izeCl as a finite regioh of irregul;p- geometry adjaeent to the dam, connected to a channel 
\ 

of uniform cross section extending to infinity in the upstream direction12 • 

The other important effect influencing the earthquake response of dam-foundation­

reservoir systems, is- the interaction between the dam and the foundation rock; A lot of 

work related to that problem has been,done under the heading ~oil-structure interaction, 
• 

ana a lot has been gained from seismic studies of nudear power plants in the Drecent 

years13 • 

The methods of trehting th~ soil-structu,re interaction problem in the frequency 

domain can be divided into three categories : 

(i) Complete methods1
' 

(ii) Hybrid methods15 

.. 

(Hi) Substructure methods16 
• \> <:~ 1 

\ For massive structures such as concrete dams, the Iiubstructure m~t'hod was mostly 

used !o treat the dam-foundation interactiol:l problem. Chopra and Perumalswamflo , 

used the idea of separately analyzing the.Joundation rock system, idealizing it as an 

elastic half-space, and then using its frequency dependent compliance characteristics in 

5 
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, . 
the determination of the structural behavior. Throughout the last two decades -the sub-

. ~. 

structure method to treat the dam-foundation-reservoir system subj~ted to an earth-

quake loading, has been refined. This has 'led recently to the development of realistic 
J ' -

frequency domam procedures and related computer programs, for the linear earthquake 

x:esponse analysis of concrete gr~vity dams idealized as two-dimensional sy~temsl 7, 1 ~ 

and aIso for concr~te dams in general treated as three dimensional systems19 . . " 

The major drawback of the frequeney domain approach, is that it can not solve 

non-linear problems; these can only 'be treated effectively in the time domain. ~uID:er­

ical techniques to solve the earthquake response of a dam-foqndation-~eservoir system 

in the tim~ domain rec~ived'very little attention. Wi~on?O solved the problem of a dam 

on a layered foundation by constructing a large planar finite elem~nt mesh through the 
, . 

entire system and solving for a base rock seismic excitation using the step-by-step 

Integration procedure. However thià approach was relatively expensive due to the large 

numbér of degrees-of-fr~edom (d.o.f) of the discretizèd model. ,Methods to treat the 

Boil-structure interaction proble:p1 in the time domain can be divided into three main 
, ' 

groups: 

(i) Complete methods~1,~2 

(ii) Boundary methods~ l ,~S 

(m) Volume methods2'-

.1' 

The problem inhe,rent for aIl these three methods is the cost of the analysis. Recently 

Léger and Wi1son~4, Bayo and Wilson~5, and Clough and Wilson26 preserited some . , 

coprdinate reduction Plocetlures suitable for time domain analysis of soil-structure 

problems. 

In eurrent practice in engineering offices, the complete method is the one that 

is ~ed m'Jst conveniently for Canalysis of the earthquake response of conerete gravit y 

dams. A fillite element diseretization is used for both the dam and the foundation rock. 

The hydrodynam~e forces are computed by the added mass approach originated by 
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Westœgaard2. The input earthquake motions, generall~ a free-field reeorded accelero--
, 

gram, can then be introduced according to one of the following input mechanisms: -
'\ >, ,,, 

A- The standard rigid base input modeI2o,~T, where the free field motions recorded at 

the ground surface are applied directly at the b~e of the deformable foundation _ 

rock. 

B-, Massless foundation rock modeI28 ,2o,3o, which is the same as the previous model 

but with the def9rmable foundation rock assumed to be massless to reduce the 

number of dynamic d.o.f. 

C- Deconvolved base rock input modeI2o,31, where the base rock motions at t~e ~e­

forma~le foundation rock are derived from the free-field mQ~ions by the deconvo­

lution process. 

D- The free field concrete rock interface modeI21.22.T, where the equations of motion 
1 

of the complete Jam-foundatio~ rock system are, rewritten 50 that the effective 

seismic inPut'is expreEsed directly in terms of the free field motions. .. 
Clough and Cha.Ïlg32 discussed the possibility of combining some of these input 

mechanisms to develop appropriate' cro~s-canyon seismic excitation of arch dams. AI-
" ~ , 1 

thoug4 no quantitative conclusions could be reached, it was pointed out that the use 'lf 
, 

different input assumptions can lead to significant variations in the structural response. 

1.3 vScope of the Present Study 1 

In this report, tlie four proposed earthquake input mechanisms are applied to a sim­

plified two-dimensi~nal finite element model representing a gravit y dam-foun~ation-
• 

reservoir system and the response is computed in the time domaine Comparative studies 
t "-

of the resulting response quantities are carried oût for the various controlling parame-

'te~s SUch as, the ratio of moduli of elasticity of the foundation rock and the concrete 
.­

~ , 

dam and the level of damping provided by-the foundation rock. The earthquake struc-

tural response is measured in terms of the acéelerati~n levels, structural displacements 
('L 
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, 
and related stresses at representative locations. 

-In a second phase coordinate reduction techniqt$ to sotve the time domain dy-
. . 

namic equilibrium. equations of the dam-foundation-reservoir system are investigated. 

~he damping levels provided by the dam and the founda:tion rock are usually differ­

ent, as a consequence the modal equations of motion are coupled, which corresponds 

to a condition of non-proportion al damping. Varions solution strategies including the 

non..:.proportional damping effect are presented. 

In Chapter 2, the form111ations of the four proposed earthquake input m.echanisms 

modela are presented;· The advantages and drawbacks of each model are aIso discussed. 

The mathematical mo&trepresenting the dam-foundation-rese~oir system for the ac-, 

tuaI numerical applications is presented in Chapter 3. The ~tructural behavior of this 

model for free vibration response is investigated and a preliminary earthquake analysis 

is carried out. In Chapter 4, the relative performance of the four propo~ea models of 
q 

earthquake input mechanisms are investigated in terInS o~ typical resp,nse quantities 

of interest which are derived for various range of controlling paramete).s. In Chap­

ter 5, coordinate reduction techniques suitable for the time domain solution of the 

dam-foundation-reservoir system subjected to earthquake grbund motions, are pre­

sented. The response is expressed in terms of the sup~rpositiori of a truncated vector . ' 

,. basis, using either the eigenvectors of the free vibration eigenproblem or the derived 

load dependent Ritz transformation vectors. The perlormance of different solutio~s 

strategies to compute the earthquake response of the non-proportionally damped dam-

foundation system, is also investigated. Finally the conclusions, recommendations and 
, ~ 

some remarks concerning the needs for future research on the time domain solution of 
, 

dam-foundation-re..servoir systems are presented in Chapter 6. 
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oCHAPTER 2 
) . , 

MOD~LS FOR THE EARTHQUAKE 

1 
J 

INPUT MECHANISMS 

Il 

( , 

. 2.1 Introduction 
( 

In this chapter, the equations of dyna.mic equilibrium for the four models of earth-
J 

quake input mechanisms descrihed in Chapter 1 (Section 1.2) are examined. A typical 

concrete gravit y dam is chosen to formulate these different models. Although the dam 

is considered to he constructed from a homogeneous, elastic and isotropie material, 
\ 

its foundation is generally heterogeneous and anisotropie. The system considered is 

idealized by a two-dimensionallinear elastic, finite element model which i~cludes the 

entire concrete dam, plus a portion of the rock on which the dam is founded. The 

h!drodyna.mic effect is ynplicitly. included by the added mass approach: The seismic 

loadiIrg is :represented hy a Îree-field recorded accelerogram time history ~ (t), acting 

in the horizontal direction, perpendicular to the longitudinal axis of the dam. The 

problem is simplified by assuming that the motions in the free-field could he d~cribed 0 

by vertically propagating waves. 

The earthquake input mechanisms considered, and the related dam-foundation 

rock models, are shown in Figure 2.1. The ideaIization of the dam-foundation rock 

system is essentially the same for t~e four models, except for model B w4ere the foun-

9 \ 
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dation rock i8 considered to be massless. N9te that appropriate supports are èmploy:ea 

at aU vertical boundaries at the dam-foundation rock system shown in Figure 2.1, to 

model its response to the horizonta.l ea.rthql,1ake motions. ro . 0 
, J 

2.2 Model A: Rigid Base Input 

In this model the specifted free-field accelerogram time history, is applied at the 
• 

rigid base rock of the futite element idei (Fig. 2.1a)). These base motions propagate 

vertically th~ough the def~rmable fo~ndéltion rock, by elastic wave meehaniJms. The 

earthquake that reaches the interface between the concrete dam and the foundation 

rock, will thus be di~erent, in frequency content and in intensity, as compared with the 

. motions produced by the real rigid base input which has its focus beneath the local 

The equatioris of. motion for the finite element model of Figure 2.1a) subjected to . 
'. ~ 

a single horizontal earthquake component may be written as: 

o 

[M]j! + [C]il + {K]ll = -[M]rs,i1,(t) (2.1) 

o 

in which [M), [C] and .[K] are the finite element mass, damping and stiffness matrices 
, 

for the complete dam-foundation-reservoir system, !l., il and .il. are respectively the 
" \ -- ~ 1 

displacement, veIocîty and acceleration vectors of the nodal points, 14 (t) is the specified 
1 •. 
/ base earthquake acceler~tion time history and ru is the influence coefficient vector, 

expressing the nodal displacements resulting from a uniform horizonta:l unit. value of 
\ .. 

, < the base roclk/ displacement, 14 = 1 .. 
, . , 

The application of this rigid b~e input model is relatively simple, because no 

modifications 'have to be made to the r'ecorded accelerogram and also beca!lBe the . 
'". matrices representing the physical properties of the complete dam-foundation-reservoir 

system, and the'specified seismic loading can be used directly. This makes possible the 

\ 
\e> 
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application of staildard finite elem.ent program. for the earthquake response analysis, in 

which the system properties are expressed in terms of global matrices. ' . ' 

The rigid base input model is not expeéted to giv~ very accurate results, sinee the 

earthquake applied â.t the baSe 1 rock has heen, actually recorded at the ground surface. 

This is a crude 8!lsumption knowing that when these free-field motions are applied at -o 

the base rock level they are modified firstly by propagation through the deformahle 
\ 

foundation rock and secondly by the interaction between the dam. and the foundation 

rock. 

, .' 

'2.3 Model B: Massless Foun'dation Rock 

. 
This modef has been proposed in the.late seventies33 and has been used exten-

c J ' 

sively for seismic analysis of eoncrete dams sinee then30 •34 ,36. The only differenee with , 

model A, is that the idealized fdund~tiœl rock model is assumed to be massless. This , 

, reaults firstly, in a red~ction in' the numb~ dynamic d.o.f of the system:,"Secondly, 

the absence of mass makes the foundation rock function as a spring, in other words 
o 

only the flexibility of the foundation rQck is taken into account. Thus, the rigid basE! , , 
., ,~ ') 

rock input motions are transmitted instantaneously through the foundati_on rock to the 

base of the dam, without any wave propagation effects. This will eliminate the proh­

lem of artificial amplification of the free-field accelerogram, as discussed for model A. If 
. 

there were no dam-foundation interaction effects, the §ame free-field motions, applied 
~ ~ 

at ~he base ro~k, would he obse~ed a.t the surface of the foundation rock. It is thus 

appropriate to appl~e free-field surface motions as the earthquake input at the base 

rock in this model. 

The damping of the foundation rock i~bsence of masa is usually taken as z~ro, 

but this neJlects the radiation damping of the foundation. Thus to assess the ~xtent 

of this effect, two cases can be considered in the analysis: massless foundation rock 

inc1uding da~.JJing and massless foundation neglecting damping. 

12 
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Basicall1 the advantages of model A can be restated for 'model B', which are the 
, , J 

sÏUlplië:ity of its application and the possibility of using standard finite element pro-
~ -

Il grams, for the earthquake respons'e analysis: FuÏ-thermore, the dam vibrations wil~ not 
-

be affected by the mass of the foundation. If a large volume of foundation ro~ with , 
mass is included in the model, it is possible that the vibration modes of the founda-

tion may tend to domihate the dynamic response of the dam such that the numerical . ., 

solution can become more costly and diHicult to implement. 

Model B is expected to give better results than model A, however, the i~ealized . , 

foundation rock without mass does not totally model the dam-foundàtion interaction 

,-­" , 

)' 

mechanism and it is not certain that the system frequencies given by this model will .' 
~ r 

be valide 

2.4 Model C: Deconvolved Base Rock Input 

A more realistic approach to the problem of the earthquake input mechanism, is to 

define more apRr9priate rigid base rock motions in equation (2.1). This can be achieved 

by performfng a deconvolution analysis31 to the recorded free-field accelerogram. This 

is equivalent to compute the base rock accelerogram which might have produced the 

free-field accelerogr am , aft'er propagation through the deformable foundation. This 

analysis reql!!r~ the application of specialized computer progt;'a.mB to the free-field 

system. A program called "SHAKE" designed for the earthquake response analysis 

of horizontally layered sites31l
, can be' used to pdfo,fu the deconvolution analysis. In 

\ 

this program? the foundation rock is assumed to be uniformly layered and extending 

to infinity in the horizontal direction. Then a shear beam mode} is used t'a idealize the 
1 -

deformable foundation, reducing the problem to a onê-dimensional syst~~. The decon­

volved accelerogram is determined by the inverse application of the one-dimensional 
. ' 

wave propagation equation. In order to verify the accuracy of the computed base rock 

accelerogra.Jl, a separate analysis has to be carried out. It consists in applyihg the 
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computed deconvolved accelerogram at, the base of the two-dimensional finite element 

model, representing the foundation rock, and deriving the corresponding free-field ac­

celerogram. The computed and the original free-field accelerograms are then compared . 
by means of the corresponding pseudo-acceleration spectra (PSa). The two PSa should 

exhibit a Olose match especially at tl}.e periods of modes contributing significantly to the . . , 
dynamic response of the dam-f6undation-reservoir system. The comp,letè procedure of 

the deconvolved base rock input mechanism is summarized in Figure 2.2. . , 

The deconvQlution analysis is a complex task to be ciChieved and the assumptions 

made in the ~ogram "SHAKE" illustrate some limitatiOIls to ,its general app!icability. 

Indeed, the assumption of uniformly layered system can not be applied to any site. 

Furthermore, some a.djustments may have to be made to the foundation rock properties, 

or to the parameters ~ontrolling the numerical stability of the procedure such ~hat the 

. deconvol~ed accelerogram obtained from the one-dimensional analysis will produce, 

after prqpagption through the two-dimensional finite element model representing the 

foundation, a free-field accelerogram for which the PSa coïncides with the PSa of the 
, , 

original free-field accelerogram. It should be noted that this requirement might be 

theoretically avoided by assumi~ that the deconvofved a.ccelerogram applied ~ the , . 
rigid bas~, beneath the deformable foundation rock was obtained by ~ onë-dimensional 

v- -
" 0 

deconvolution analysis of a specified free-field earthquake motions. 6 This deconvolved 

accelerogram can then be arbitrarily applied to a two-dimensional model which includes 
Il .. 0 

different geological features than those retained in the deconvol':ltion analysis. The 

actual computer- implementation of the deconvolution analysis retained for this study 
-

will be discussed in more details in Chapter 4.-

The ~esults obtained from model C, will be obv~usly deJ:lendent ~pon the ,quaIity 

of the deco~volution process. Typical structur~ response quantities of interest found by 
, 

apply,ing the deconvolved accelerogram at -the rigid base rock, should theoretically be 
, 

more accurate than those obtained by applying models A and B. The main disadva.,ntage , . 
14 



.. 

~ 

-en 
;' 

" ( 

" 

;' 

c 
'2 
Ô .. 

I---~ 

: :l 
• u 
• <CIl • 

L 

5houId Ile 0"'" \ 
r--------~·----~-----~-----l • 

Acen 5pec1,um 

CGnI,oI Mohon fi 
1: 
o .. • • li 

<CIl 

,.. 
r 

<'" 

Accn Spec;tr"", 
Fr •• Filld c 

! 
~ 
~ 
u 

<CIl 

# 

... 

: rrequenc, • rrequ.nc,. • 
" 1 .! • 

f,equ.nc, 
'. _ • __ • __ •• ConI.oI t.\Jhon • Fr •• faeld arbhon f : F,e. Field Mollon 

~.. .... -- - -- .-. I---_.:-._--...;::~~--

c 
2 
~ • 
~ 

N 

lA : 
1 1 1. 
1 1 .. __ al 1 • 
1 1 _ 1 1 
! 1 Structur. ________ J : 

1 -- • 
1 i 

• t t 
l " · . ~ • • 

• 1. • • • '1 : , 1 1 l 

., ... , .H"'.:.-.-... ;eu.;;, • ., MUi,!4!=; ""nlil""""""",."""....!.-. n"JIJ)il"j""''''''''h",,,n~ il!"'''' 
80. M:ll1OftI - • BoN MotMIn Bœe f"'*n Bos. fAotlClft r------------- -.------- -----1-----------------1------ -------------i 

: e : : 1 
, • 1 : 

: 1 Accn Spec"u"'l 1 l __ ._~_1 1\ MBoHtldlCln 

___ ,, _____ .1 
i 

Sa",. 
--------------------------1~_~----------~ 

f,equ.nc, frequene, 

Cat Soli OepoIl1 Mode! lb' f ",it. Element Mode! 'Of Soli -SI,üclUf. S,a lem 

,,' " 

Figure 2.2 Representation of the Deconvolved Base Rock Input Process Adapted 
from Reference 13. 

• 

" 

e 
~'t ...... 

" 

/---- --
'1 )-j~~ 



. . 

o 

. .. ~ , ",. ,.,.\~~)~.; (:l~ 

of model C is that the cômplete response analysis is rather tédious, since it involveB' 
- . 

two separate analyses. The first one, the deconvolution analysis, requires -a specific ... .. 
computer program and some form of sensitivity analyais in order to he implemented 

reliably. The main advantages are that ~he dam-foundation interaction mechanisms 

will be well represe~~ed and the earthquake input motions will be treated in a more 
,-

realistic mà.hner. - --. 

-, .. 
2.5 Model 0: Free-Field Input 

An altern~tive approach to the problem of defining an appropriate earthquake 

input mechanism, is to express the effective seisÏnic input in the equation of motion of 

the dam-f9un<:lati?n rock system directIy in terms of the fr~field motions recorded at 

the ground surface7 ,21,22. -
The formulation of this free-field input -is pr~ented in this section, Figure 2.3 . -

~ 

illustrates the system consrdered and the corresponding properties. 

The free-field response to the base rock excitation is expressed as follows22
: 

• :1 

(2.2) 

in whichJm,], [é,] and [k,J represent the properties"of the existing' foundation rock 

before the dam
l 

is const~ucted a.iid Q, represents the =corresponding free-fiêld motion~. 
~ of the system. The vector L repreàents the force exerted by the basement rock on the 

jinite element model, [mbJ, [Cb] and [kb] are the coupling terms expressing forces in the 
, 

foundat!.on material, due to motions of the hasement rock (!4)" 
"" 

The corresponding ~quation after confJtruction of the dam may be wl'it~en as: 1 

\ 
.. -

., 
[ml + md]{~1 :;.. i t

} + (CI + Cd]{il + i'} + [k, + kd]{i, + !le} = ~ 
, ." (2.3) 
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~ which_ [md), [Cd] and [kd ] are the dam properties and Jl represents the added response 

resulting from superimposing the dam on the free-field system. Substituting equation 
; 

(2.2) into equation (2.3) one can reduce eqtiation (2.3) to: 

Equation (2.4) -could be further simplined, by p~titioning the added and the free-neld 

displacements as follows: 

Q 

(2.5) 

in which the three partitions refer respectively to.the d.oJ, in the dam, d.o.f at the dam-
\ 

, foundation httefface, and the non-contact d.o.f in the ,foundation-rock . (Fig. 2.3b». 

AIl physical property matrices are then partitioned accordingly, such that the dam 

--and foundation mass matrices can be written as: .. 
.. ;.] 

maa 

(2.6) 

. Similar ~ressions can be w.ritten for the damping and stiffness matrices. Using the 

partitions of equations (2.5) and !2.6), one can rewrite èquation (2.4) as follows: 

, . 

(2.7) 

. 
These 'equations of motion can be cast in a simpler form by expressing the added 

response III as the sum of a dynamic cOIllponent il and a pseud~tatic component jl'. 
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The pseudo-static component may he derived from equation- (2.7) by eliminating the 

dynamic terms. Bence, 

'. 
'.il . [ktld ]' 

(k, + kd!!!' = -: kotl ~ 
" , " (2.8) 

or 

!i' = [il ~ 

in which .. , 

- (2.9) 

Thus 

vt = ii + [i]ii - - .-, (2.10) 

. . 
In princip le, B:DY desired spatial'variation of the free-field components could be con-
-
sidered, however there seldom is sufficient information to specify such variation. If we 

" . 

assume the same free-field input motion a~ each contact point, equation (2.10) will 

reduce to: 
" 

, , 

tit =.fl. + (i]~ 

fit = ii + ru 
- - "-"'-fI 

EqlJ,ation (2.7) can thus be simplified to: 

" 

. [ml + mdJ~ + [é/ + ~dJi + [k/ + kdJi! = - {[m/ + m.Ji + [:~: ] } ~ 

l' 

(2.11) , 

(2.12) 



o 

i 4/' 

1 

, 1 

It can be noticed that the effective force vector on the right hand side of equation 
. 

(2.12) is in terms of the free-field a.ccelerations only. The stiffness dependent term has 
- . -

dropped 'out because the pseudo-static displacements were defined so that 

(2.13) 

The damping dependent" term due to support motions has aIso been omitted in equa-, . 
tion (2.12), these forces being usually negligible either because the damping matrix is 

/ 
propprtional to the stifFness matrix which would impose a condition similar to the one 

given byequation (2.13) or because these damping coefficients are themselves negligible. 

The free-field input model (~odel D) can be seen as an improved versi~n <>(the . ) 

massless foundation model (model B). In both models B and D the ,original free-field 

accelerogram ~ould be observed in the absence of the dam. In model B this is achieved 

by neglecting the fnertial effect of the foundation rock whereas in model D this is done 

simply by rewriting the equations of motion in terms q{tthe free-field motions. Thus 

the improvement in model D is that the mass of the foundation rock is taken into 

account in the, analysis so that it will represent the dam-foundation interaction in a 
(. ) , 

felatively more realistic: manner. The fo~mulation of model D is based on some basic 

assumptions. The nrst one was that the input motion at the level of the base rock is not 

modified when t4e dam is superimposed on the free-field system (èquation 2.3). This . . , 

" , is due to the fact that far frdIn the structure the input is not considered to be afFected 

by the presence of the dam 1 • The other basic assumption is to neglect the damping 
" 

'dependent terin in equation (2.12) which suppose that, either the damping matrix is 

proportiohal to the stiffness matrix or that the damping 'coefficients are themselves . -, 

negligibl-e for a practical implementation of this formulation. The last assumption is 

that aU interface ~odes are subjected to the same free-field accelerogrâm. It is beIieved 

that this aseumption will be reasonable for the contact surface at the base of a gravit y ~ 
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dam. However for an arch dam. wher~ the free-field motions are not uniform along the 
, 

canyon wall contact surface, sucb an assumption can be seriously questioned7 • 

The- free-field input mechanism if compared with the deconvolved input model, 

is adVantagedns in the sense that the analysis can be carried in one step since no 

preliminary fLIlalysis is required to define the base rock input beca~e the equation of 
. 

motion (equation 2.12) is expressed directly in terms of the free-field accelerogram. 

. The comparative stuiy between the free-field input model and the deconvolved input 

model wilf allow us to assess ta what extent the assumptions made in the formulation 

of the free-field input model will affect the response quântities of interest. Comparisons 
-

between the free-field input model and the massless foundation model will illustrate 
~ 

the importance of the mass of the foundation rock on the dynamic behaviour of the 

dam-foundation-reservoir system. 

2.6 Exploitation of the Response Quantities in the Analysis 

o 1 

In the seismic analysis of a dam-reservoir-foundation system" typical response 

quantities of engineering interest can be defined in terms of the displacements, the 

accelerations and the related stresses. -

To illustrate the different displacement components r~ulting from applying a rigid 

base rock input (models A, B and C) using equation (2.1) and a free-field input (model 
, '! 

D) using equation (2.12), let us c~>nsider the simple cantilever beam of Figure 2.4. This 

caJttilever beam has three nodes, each oné with a single d.oJ (lateral displacement). 

Node 3 represents the displacements of the dam, no de 2 represents the displacements 

, of the dam-foundation interface and no de 1 represents the foundation displacements. 

As can be seen in Figure 2.4 the dynamic displacements y derived from equa-
o 

--tion (2.1) and y obtained from equation (2.12), are not computed with respect to the 

\ same location. To be able to make a comparative study between the four proposed . , 

earthquake input mechanisms, these response quantities should be expressed according 
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o ta a co~ reference. One way to do this will be to express the displacements in 
~ 

ter:ms of total motions with resp~t to the initial position before, the occurrence of th~ " 

earthquake. For modeIs A, B and C, the total dam displa.cements can be expressed as: 
~ 

(2.14)_ 

1 

in which!l.t is the dynamic displa.cement vector found by solving equation (2.1) and ~ 
f • • 

fi 
is the influence coefficient vector expressing nodal displacements due to a uniform unit 

horizontal displa.cement of t~e b~ rock. For model.D the total displacements of the 
"'\ 

dam are given as: 

> (2.15) 

, \ 
where.!le. is the dyn'amic dis placement vector co~puted from equation (2.12) and the 

product fiL, is the pseudo-static displacement vector. Note that the pseudo-static 
~ ~- j 1 

displacements in model D are different from those of models A, B and 0. Indeed f. in 
, 

equation (2.15) is the influence coefficient vector expressing the nodal displacements of 

the dam due to a uniform unit displacement applied at the base of the dam (not the 
T -

base rock) ~ = 1. 

Expressing the displacements in tota.l quantities has the inconvenient of requiring 

the 'application of t~e disptacements correspondin~ ~o the input acce rogram, which 

are often not directly available. This procedure can be avoided computing relative 

displacements quantities in the dam with respect to the dis lacements of the dam­

foundation rock interface. Thus' for m.odels A, B and C these displacements can be 

L) written as: 

~d =!ld - [rJllg (2.16) 
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in which!!, is the dynamic displacement vector of the interface nodes (Fig. 2.1), !let is 
b 

the vector of nodal dam displacements computed from equation (2.1) and [i] is deftned 

in equation (2.9). , 

For 'model D, displacements relative to the dam-foundation interface can he ~.: 
""t . 

,pressed as: 

(2.17) 

where.flg is the'dynamic component of the'added displ~ement vector conesponding to 

_ the interface nodes found by solving equati~n (2 .. 12)-and ~ is the dynamic displacement 

vector of the structural system, round from the same equation. 

'In this study, the dam displacements are com.puted relative to the dispIa.cements 

of the dam-foundation rock interface for a11 of the considered earthquake input mech­

anisms in order tô make comparative analyses on a consistent basis. 

" 

, .. 
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CHAPl'ER -3 '( "t yV~ 
1 

l '~~ 

MATHEMATICAL MODELLING OF THE , _.t . ' .. 
~" 

DAM-FOUNDATION-RESERVOIR SY~T~M 
f 

3.1 "Introduction 

. ' 
1 , 

The structural system considered in this report represents a section of the Koyna 
• 

Dam in India, a typical concrete gravit y dam' which w!lB subjected to an earthqûake 
, \l 

in 19673
• The system is ideali~~d by a two-dimensional finite element model which 

includes the entire concrete dam, along with a portion of the rock on w hich the dam is 

. founded. 

The behavior of the dam structure during large amplitude motions depends on the 
-

extent to whicli the inertia forces can be transmitted across the joints. For concrete . -
gravity 'dams with straight contraction joints, thé inertia forces that develop during 

.' . 
large amplitude motions àre much greater than the shear forces that the joint can 

, , 

transmit. Therefore the joints., would slip and" the individual monoliths would vibrate 

. inde,pendentIy. Thi~ was one of the observatio~rom the ~tudy of the, damages of 

the Kbyna dams. For such gravit y dams, a two-d\mensional plane stress model of 

the individu al monoliths is an acceptable' rsumption for pre~icti,ng the earthquake 

response. However, fol' dams with keyed dontraction joints the "ab ove assumption is . " 
inappropriate and a tW07-dimensional plane strain system is more suitable. 

/ 
/7 

25 --.-- ~" .• ~;> 

, 



o 
, 
1,' 

For the concrete gravit y dam selècted for this study a plane stress model has 
<' 

been used, &;. unit sUce taken "normal to the, longitudinal axis of the, dam is considered 
........ .,~', ,~ I~ !"'~'PJ 
._' '< l, lM L 

\rep;t;'esentative of the hehavior of the entire structure. The foundation rock is also 
'\ l , ~ 
assumed to he in a state of generalized plane stress. This assumption, is also diftated 

by the relatively small longitudinal volume of foundation rock expected to participate 

in the earthquake response of a single dam mon~lith37. The' hydrodynamic eff~t is 

included by the added mass approach origina.ted by Westergaa.rd2
• 

Several finite element models using coarser to finer Iieshes were considered in a 
û 

series of preliminary static and dynamic analyses in order to select a system with a 
~ , 

reasonaMe, number of d.o.f for ease of manipulation, but still providing a represen-
. ' 

tative structural behavior in terms of the respon,se quantities of interest. Two finite 

element meshes representative of the different meshes analyzed are shown in' Figure 3.1. 

The mesh tha.t was finally selected for further numerical applications is the finer mesh 

(Fig. 3.lb)), in which the dam is idealized as an assemblage of 8-nodes linear isopara-
o 

metric elements with a total of 178 d.o.f. The foundation block is represented by an 

assemblage of 4-nodes iinear isoparametric elements with a total of 80 d.o.f. 
, 

3.2 Finite Element Model of the Dam-Foundation-Reservoir Sys.tem 

3.2.1 Computational Procedure 

The methodology used to evaluate the influence of the four proposed earthquake 

ihput modela on the time domain structural response of the dam-foundation-reservoir 

system is' somewhat similar to the technique used to construct response spectra. The. 

dynamic p:operties of the dam (mass, damping,lstiffness) were assumed cons~ant for 

aU analyses. The critical parameters were selected as: 

1- the modulus of elasticity of the foundation rock, 
j 0 
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2- the inertial properties of the foundation roc~, 

3- the energy dissipation charaèteristics of the foundation rock, 
• 1) 

4- td:te frequency content of the specified free-field input accelerogram .. 

" 
It should be noted that variations in the stiffness and material properties of the foun­

dation will in fact r&ult in changes in the natural periods of vibration oÏ the eombined , 
system. 

t 
( 

... \ 
Time domain analyses were earried out for selected range of the above critieal 

, \ 

. parameters and theintensity of the response of typical quantities of engineering interest 
o 

were computed from the equations of dynamJc equiJibrium derived in Chapter 2, to 

compare t~e relative performance of the four earthquake input modela. 

, 
• 

3.2.2 System Properties and Ground Motions 

The mass conerete in the dam is assumed to be a homogeneous, isotropie, linear ~ 

elastie solid with th.e following properties: modulus of elasticity, Ed. :± 2.4 x 10· M J!a 
o . 

mass density, Pd = 2640 kg/ms and Poisson 's ratio, lId = 0.20'0 Energy dissipation in 

the dam is rep~esented bi a constant viscous dampiDg ratio (ed., = 5%) for ,aJl vibration 

modes. The foundation rock region supporting ,the dam monolith is idealized' as a 

homogeneous, isotropie, linear elastic system. For the foundation rock, the modulus of . .. .. -

elasticity, El' is varied sucb that El / Ed =4, 2, 1, 1/2, 1/4, 1/8. The mass density is 
\ 

taken as PI = 2643 kg/mS and the Poisson's ratio, li, = 0.33. The damping ratio for 

the foundation rock, el.' is specified as 5, 10 and 15 percent of crjtical. Àn examplé 

of a possible range of the elastic properties of soft foundation rock o~ a typieaI finite 
. 

element model developed for the static analysis of a dam f?\lndation system ,is shown 
f 

in Frgure 3.2. 
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Figure 3.2 Example of a Da.m-Foundation System Properties Adapted from 
Reference 38. 

r 

"' The ground motions selected for this study are the horizontal components of: 
f) . 

- the 1940 El Centro earthquake (NS component), 

- the 1971 San-Fernando earthquake recorded at Pacoima (SW component), 

- the 1966 Parkfield, California earthquake (NW. componen~). ' 

Figures -3..3 to 3.5 show the considered tiIIie history accelero~a.ms and the correspond­

ing spectral accelerations. It should be .noted that the Pacoima and the Parkfield 

accelerograms were scaled to O.35g, which represents the maximum acceleration of the 

EL Centro earthquake. 

3.2.3 Stiffness Matrix 

The stiffness matriX of the- combined system is found by direct assembly of the 

stiffness matrices of the concrete dam. and the foundation rock evaluated using the 

specified values of the moduli of elasticity. These matrices can be written respectively 
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The global stiffness matrix of the dam-foundation system will be of dimension 248x 248. 

In order to reduce the size of the global stiffness matrix of the system, a static conden­

sation of th'e mid-side elemen~ Aodes in the dam substructure has been performed; the 4 
... 

size of the global stiffness matrix was thus reduced to 140 x 140. 

3.2.4 Mass Matrix 

The global mass matrix is contributed by the dam, the foundation and the reser- ,,-, , 

voir. For the dam and the foundation bloc~[ a lumped mass formulation was used, 
~ ,/ 

leading to a d~agonal mass matrix having the same dimension as the stiffness mairix. 
. , 

The mass that is contributed by the reservoir is supposed to represen~/ the hy-, 

drodynamic effect, this' is called the "added mass" approa.ch and was originated qy 

Wetergaard2
• The basic assumptions of this method are: 

1- the dam is rigid, -

2- the upstream face,is a vertical plane, 

'3- the liquid is incompressible, 

4- the dam is·located in a broad on so that a 2-D mode! is vaIid, 

5- the reservoir extends to i e upstream direction. 

" 

1 

Westergaard stated that for a gravit y dam ubjected to a horizontal acceleration, the 

only signific~t reservoir pressures are ac . g at the d~ face (Fig. 3.6a)) and could . 
be evaluated by the followin 

.. 

P(y = 0) = ~ Pw H (1- ;)t v,,(t) 
\ 

(3.2) . 

which represents a parabolic pressure distributio~. 
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~ The same effect can be obtained if a block of water is attached to the upstrearil 
li 

face of the dam. According to Westergaard, this block should have a parabolic shape 
~ 

with the base width eq1!al to 7/8 H'as shown in Figure 3.6b). The mass~ (ml"'" mo) 

attached to the nodes of the ~p~tream face (Fig 3.3b») are computed proportionally' 

to their r@!'pective ,tributary ~ea of ~ater and are 0' act!vated by horizontal. g]'oùnd 4 

motion. 1:' • r 

3.2.5 Damping Matrix 

The global damping matrix is founl by assembling the damping matrices of the 

dam and the foundation. The. damping ratio specified for the concrete dam waa 5 
, ' ., 

percent of critical and the damping ratios specified for the foundation rock were set 

at 5, 10 and 15 percent of critical for a parametric evaluation of the corresponding 

earthquake response. 

In the case where, the damping ratios of the concrete dam and the foundation 

rock are not equal, the modal coordinates equations of motion are coupled, this is 

calle~ 'non-proporïl~nal damping30
• Non-proportional damping may ge expected in 

any structure-foundation system in which signmca.IJ.t interac~ion is developed and'where 
,~------J .." 

the damping properties of the structure and the foundation medium are quite different. 

Non-proportional damping can be ~ressed only in ter.ms of an explicit matrix [CI. 
~. t ~ ~".~ -r Il 

t 1 ~ The methors to construct sucb a matrix ~e numerous, but the most efficient approach 

1 from a computer implementation standpoint is the concept of Rayleigh damping which 

is widely used in practice. ~he popularity of this method ~ due to the fact that ,the 

damping matrix of each substructure is given by a linear ~ombination of th~ maas 

and the stiffness matrices of the subsystem considèred, and therefore, ~o a~ditional 

storage in the computer memorY is needed f6r the damping matrix. If more than two 
, -' ... 

proportionality~constants are ùsed, the matrix [CI will in generafbe full. Since the/cost 

of the analysis is increased by a, verj\ignificant amount i~ a full [CI matrix has t~ be 
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used, in most .oractical analyses using direct integration, Rayleigh damping is 8SswD.ed. 

The damping niatrix of each subatructure can thus. he expressed as:. ( 

(3.3) 

in which fla. and al. are proportiona.lity cqnstants specified for the ith substructure . 
. 

In order to select the coefficients ao., and al, the following formula can he used,if the 
, ' 

samè damping ratio, e, is specified for mode 1 ~d mode r: 

, {3.4) 

, ~ 

The frequencies Wl and Wr are generally chosen as the undampec1 frequencies of the 

lowest and the highest modes of the entire structure which "are expeded to contrihutet 

significa.ntfy to the response; damping ratios of other important modes will theri receive 
, 

a reasonable-value. 

- In the case where the founda~ion is as~umed to be massless '(Model B), the qamping 

matrbt o(the foundation is proportional to the corresponding stiffness matrix only, that' 
1 . 18: 

(3;5) 

• ! 

in which 41, is the proportio~ality constant and is given by: 

<) 

~ 
(8.6) , 

in which CJ.Ji is generally chosen.as the undamped frequency of the mode of vibration 

of the entire structure (with massless foundation), that is expected to contribute most 
• 0 , 

significantly to the response. 
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For the dam-foundatioI1 system consfdered in this study, the damping matrix of 
\ 

~ 1 

the dam substructure wi1l1ge computed from equation (3.3). For the foundation, the 

~amping matrix is compu~ed from equation (3.3) in the case where the mass of the 

foundation rock is taken into account (Models A, C and D) and from equation (3.5) 
, 

in the case o~ a massless foundation (Model B). Tlle global d~ing matrix for the 

complete structure will be obtained by assembling the damping matrices of the dam 
<'l 

and the deformable foundation using standard structural property assembly procedures . 
• 

,- .,. 

The major disadvantages of the Rayleigh damping method ar;: 

- the higher modes à.re considerably more damped than the lower modes, 

- the damping is controlled at only tWQ modes of vibration (in the case where the 

damping matrix is proportion al to both the mass and stiffness matrices) in between 

thesè two modes the values of the d~ping ratio are less thaIi the assigned value, ) 
, 

, <r;r 

- in the case of a damping matrix proportional only to the stiffness matrÏx, the .. ..,. " 

damping ratic{ is controlled at only one mode, generally the fundamental m<?de, 1 

therefore the higher modes will be :qlUch more dampe~ than the first one . 

• 
,In or@r to illustrate the above remarks, the variation of the damping ratio of the 

foundatiq,n rock in the different modes of vibration for the case where a value of el = 

15% has been assigned to the foundation medium, is shown in :Figure 3.7. Two cases 

, - have been considered: a foundation model with mass (Fig. 3.4a)) and a massless 
. ' 

foundation mpdel t for two values of the moduli ratio EJ/ Ed, 1/8 and 4, which represent-

respectively a flexible and a rigid foùndation rock. Figure 3.7a) shows that !Vhen the .. 
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4 
damping is controlled at two modes (mode 1 and 6 in this case), the variation of 

the damping ratio versus the circular frequencies of vibration is of a parabolic shape. 
If: 

Therefore, the values of thé damping ratio in the other modes expected to contribut~ 
o _. 

significantly to the total response (modes 2 to 5 in this case) are less than the assigned 
, 

/ . value of damping ratio (el = 15%). For the flexible foundation case (El / E,j" = 1/8), 

, . 

the decreàse in the damping raFt. r modes 2 to 5 is not as important as in the case 

of a rigid foundation (E! / Ed = 4). For the massless foundation case, the damping is 

controlled at only the first mode ,of vibratiofi. The variation of the damping ratios of 
, ' ~ 

..J ' 
the foundation with the circular frequencies of the system (with massless foundation) 

, . 

is lin~ar, this leads to ~ very significant aùgFentation of the damping ratios in the 

higher modes âs shown iD; Figure 3.7b). ~deed for both cases, F»/E~ = 118 and 4, 
, t 

th~ sec~nd mode of vib")Ofl receives a ~ping ratio Va.l~e of 36%p. This shows that 

the actual value of damping corresp"onding to the massless foundation system that is 

effectively used in the analysis, ~epends to aJ .. ~ extent on the contribution of the 

higher modes to the ,total response. ~'t v 

The most obvious method to ari.alyze a structure with non-proportional d~ping 

is.to integtate directly the coupled equ~tions of motion expressed in original geometric 

coordinates as performed in this st}1iiy. The important disadvantage of this procedure . 
t , 

is that aIl ~f the equations °of motion must be inchld,ed in the an~lys~s requiring a 
Q 

larger computational effort. Alternate strategies for a more effective solution of non-

proportional damped systems will be presented in C~~pter S. 

3.2.6 In~uence of Boundaries Location 

One of the critical issues in the process of mesh selection is the location of the 

boundaries of the foundation block which should be included in the finite e}eqlent 

model, to reflect the flexibility of the foundation. The process of locating the founci~tion 

, block boundaries in the finite element model is in fact divided in two parts. First is the 
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• 1 

det~ation of the, location of the rigid boundary at ,the bottom of the foundation 

and second is the determ.ination of the location 'of the lateral boundarièS. Since this 
<f' 

study was res,tricteà to the application of horizontal ground motions, ahtisymmetric 

. -lateral boundary conditions were used to mini'mize the horizontal dimensions of the 

foundation black mode!. 

The rigia lower boundary has the effect of trapping energy radiating, away from 

the foundation, thus potentiaU/ïntroducing artificial r~onance conditions. Therefore 

to ;ninimize this effect, this low'~r boundary should be located a~ a reasonable depth.; 

The lateral boundaries if placed too close to the structure will refiect the incident waves 

which "'m also interfere with the response of the structure. '" 

In the current practiée, there are no preCise rules for the location of the foundation ' 

boundaries, the only method available is the trial and error procedure. This means that, 

the boundaries of the foundation block are moved ~way from the dam in both the lateral 

and vertical directions and the dynamic response chara.cteristics of the, corresponding 

system are evaluated. If a certain stabilization in the response is reached, the model 

CM then be accepted as representative of the behavior of the physical system. It should 

be noted that a smaller foundation block coy.dd be used in the finite element mode} if 

transmitting boundaries are used. The most frequently used transmitting boundaries 

are of the simpl~ viscous type" ° , and they are usually more appropriate for a frequency 

domain analysis. 
1 

For the finite element mesh selected for this study, the lateral boundaries were 

displaced by 22 meters on either side of the base of the datn and the depth of the rigid 

boundary was displaced downward by 25 meters. The characteristics of the dynamic 

response were/ evaluated in terms of the free-vibration properties and dis placements 

of preliminarj transient analysis with specified El / Ed value of 1 and el = 5%. The 0 , 

fundamental period of th~ enlarged system increased by 1.2% and the maximum dis-
" 

placeme~t in the Y-dir increased by 8% as compared with the original mode!. These 
; 
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difrerences were judged to be sufficiently smaIl to justify the use of the selected model. 
<> 

3.2.7 Dynamic Analysis Procedure 

The development of appropriate mathematical models, for complete earthquake 

response-analysis of a typical structural system requires the application of the following 

procedures: 

- static malysis, 
o 

- study of t:Qe free vibration response, 

- spectral analysiS: 

- linear time history ana.lysis, 

- non-linear time history analysis. 

In the free-vibration study, the natural periods and the associated mode shapes of .. 
the m(thematical model are cOI.Çlputed. The periods indicate possible resonant condi­

t 
tions with maximum dynamic amplification. The mode shapes are useful to visualize 

o 

the deformed shape of 'the structure in the different modes of vibration, indicating 

which regions of the structure are most flexible. The mode shapes are also needed to 
~ 4 

compute the effective modal mass in order to identify modes which are contributing 0 

significà.ntly to the dynamic response of the system (see Section 3.3). Natural periods 

of vibrations of the system will also provide indications to select an appropriate time 

step for the transient response analys·is. 

The spectral analysis is performed in order to get an apprec!ati'on of the magnitude 
,/ 

of the probable maximum displà.cements and stresses in the structure. If these values 
o 

are acceptable, no further analyses are generally required. On the other hand, if they 

are excessive, a linear or non-linear time history analysis of the critically stressed 

elements can "he performed to determine the length of time over which unacceptahle 

stresses occur. This type of m!lyais will also allow to determine the magnitude of 

stresses whiçh occur .at ~hese locations immediately before and alter the occurrence of 

41 



o 

, , 

o 

o 

the critical values, and the number of repetitions during the earthquake of values close 

to critical ones. Such an indepth analysis can be a basis for a judgment decision of the 
, ~ 

actual structural significance of unacceptable stresses since such factors as time, span 

~d stress recurrence can De considered. The volume of computati<,>ns involved in the 

transient analy:sis is much more significant )ïn the spectra analysis. 

, , 

3.3 Structural Behavior of the Mathematical Model in Freé-Vibration 

3.3.1 Effective Modal Mass 

The effective modal mus can be used to identify the modes that conbibute .sig­

nificantly to the total structural behavior. The effective modal mass for mode i in the 

Y-direction can be expressed as22 ,2": 

:2 

EMM" :! Pi,,, 
Mt 

, 

(3.7) 

in which Pi,,, is the earthquake participation factor in the Y-direction for mode i given 
"n 

by: 

Pi,,, = xJ [MIr; (3.8) 

and Mi is the genera1i~eà mass for modé i \ 

Xi is a transformation vector (eigenvector or derived Ritz vector) cor'resp-onding to . . ... 
mode i, r,., is defuled in equation (2.1). The generalized mass Mi is often ~~~malized 

to unity to simplify the computations. The total mass of the system, in the horizontal 

direction can be expressed as: 
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• (3.10) 

'The percentage of effective modal mass in the Y-direction (PEMMy) which repres~nts 
. ' 

the fraction of the total mass participating in the response in this direction by the 

direct superposition of a truncated vector basis can then. be expressed as:. 

". 

" 
.!' p2 

PEMMJI = L ~JI X 100 (3.U) ! 
i=l T 

for r ~odes r~tained in the sl1mma).,n. 'In this analysis, the procedure used to identify 

the modes ~hich are contributing slnificantly to the total structural response was to 

fix a required percentage of effective modal mass in the Y-direction where the structure 

is excited, to a value of 95 percent and to compute the number of modes necessary to 

reach this value. ~ 

3.3.2 . Ratio of Foundation Rock Elastic Modulus to Concrete Elastic Modulus 

The dam-foundation interaction effect, is basically controlled by the ratio of foun­

dation rock modulus to concrete modulus (El / Ed ) and thereforè the behavior of the 

" dam.-foundation -reservoir system in free-vihration, will also be dependent on the ratio 

El / Ed. The pez:iods of the combined system as a function of the foundation Hexibili,ty 

are presented in Table 5.1 for a mass foundation system and Table 5.2 for a massless 

foundation system. . 
It can be noticed from these tables that the periods of vibration lengthen with 

the increase of the foundation Hexibility. Furthermore, neglecting the mass of the • • 

foundation reduces the periods of the system. Figure 3.8 shows the displacements of the 

dam-founclation system in the first two modes of vibratiori as a function of the flexibility , 

of the ,foundation rock for the modes with mass foundation. It should he observed that -,' J . 
for the case El / Ed . 4 which represents a relativlêly rlgid foundation, the foundatidn 
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Table 3.1 ~eriods (in sec) of Dam-Foundation System, Foundation 1 

with M~ (Modela A, C, D). 
, -

E,/Ed 1/8 1/4 1/2 1 2 4 

Tl_ 0.948 0.718 0.579 0.504 '0.467 0.448 

T2 0.582 0.440 0.338 0.262 0.212 0.189 

T3 0.451 0.325 0.237 0.184 0.153 0.126 

T" 0.309 0.242 0.205 0.168 0.133 0.111 

T6 0.290 0.221 0.159 0.115 0.098 0.089 

Te 0.247 0.177 0:131 0.109 0.082 0.067 

Tablci 8.2 'Periods (in sec) of Dam-Foundation SysiiGm, Massless 
Foundation (Model B). . 

E,/Ed l/S 1/4 1/2 1 2 4 

Tl 0.867 0.680 0.565 q.500 0.465 0.447 

T2 0.362 0.292 0.250 0.220 0.199 '0.186 

Ts 0.316 0.245 0.190 0.153 0.131 0.118 

T" '0.165 - 0.146 0.129 0.115 0.105 0.099 
T6 0.086 0.082 0.077 0.073 0.070 0.068 

Te 0.071 0.070 0.067 0.064 0.059 0.056-

~ 

'> 

block remains almost .. undeform~d during the dam vibrations .. Figure 3.9 shows the 

effect of the foundation fiexibility on the periods of the first three modes of vibration of . 
the dam-foundation- reservoir system. Two cases are consid~red: foundation block with 

mass and massless foundation block. Results indicate that for the flexible foundation 

rock'with mass, thebperiods of .vibration increase considerably as compared to those of 

infinitely rigid foundation. For the massless foundation caSe, the increase is relatively 
f , 

less than in the mass foundation case. Thua, the massless foundation model is less 

affected by the flexibility of the foundation rock. 
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Figure 3.8 Effect of Dam-Foundation Interaction on the First Two Modes of 
Vibration of the Models with Mass Foundation (A, C, D). 
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The effective modal mass is aIso aft"ected by the ratio of moduli E, / Ed. Figure -3.10 < 

"0 

sJtows the variation of the number of modes required to reach 95 percent of the effective 

fnodal mass in the Y-direction (E M Mil)' as a function of the ratio E, / Ed. The results 
1 

indicate that the number of modes required to reach the imposed value for the EM Mil' 

increase with the augmentati6>n of the stiffness of the system as given by the ratio 

EI/Ed. For a gravit y dam with a flexible foundation, a relatively small number of 

low fréquency modes is thus able to represent adequately the dynamic response of the 

system. 

It should also be observed that for any specified value of El / Ed the number of 

modes requireti to reach a horizontal effective modal mass of 95% is significantly less 

for the massless foundation eàrthqùake input model than for the input models with "'­

non zero mass foundation (models A, C, D). This i~ due to the fact that in model B 

there is no need to represent the inertial vibration characteristics of the foundation by 

~he truncated eigenbasis . 
. 

This will aIso represent a significant computational advantage for model B as 

compared to models A, C, D, if the time history response analysis is to be carried 

out, from a reduced system of dynamic equilibrium equatid'ns expressed in generalized 

coordinates. 

3.3.3 Hydrodynamic Interaction Effecl 

The hydrodynamic effect which was included by th~ added mass approach, as 

mentioned previously will produce an increase in the periods of vibration of the system. 

The periods of vibration for the selected finite element model neglecting the added 

mass or'water have also been computed. Comparison with the model in whiëh the added 

mass of \Vater was included shows that for the case E, / Ed = 1/8 which represents a 

relatively flexible foundation rock, the increase in the periods of vibration due to the 

added mass of water was of i5% for the first mode and 5% for the second mode. For 
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Figure 3.9 Effect of Foundation Flexibility on the First Three Periods of 
Vibration of the Combined System. 
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the ratio ~I /Ed = 4, the increase was of 16% and 19% for the fii-st and second mode, 

respectively. This sh<;>ws that the hydrodynamic effect when represented by the added 

mass approach, will cause a greater perturbation of the vibration modes for a rigid 

foundation than for a flexible foundation. 

3.4 Preliminary Earthqu 

Preliminary earthquake an ses were performed in o~er to get a general idea of 

the behavior of the selected dam-foun tion-reservoir syste~. . 
The first step consisted (lf performing a spectral analysis, using the PSa shown in 

Figure 3.3b). The finite element program SAP 8041 was used to perform the spectral 

analyses. A number of modes varying from 7 to 15, depending on the flexibility of the 

foundation, was inc1uded in the response. Results showed that there is a concentration 

of high stresses in the vicinity of the reentrant corner in the upper part of the dam 

section, and at the base of the dam. The maximum displacements in the Y~dir occurred 

at the top of the dam. 

The second step in the preliminary earthquake analyses w~ to ,perform a transient 

analySiS to obtain a time bistory of the structural response for the El Centro earthquake. 

The transient analysis consists of a step-by-step integration of the e<tuation of motion 

expressed in geometrical coordinates. Thus, a proper numerical integration scheme as 

weIl as a time step had to be selected. The first consideration in selecting a numerical 

integraiion method, is its ~tabi1ity. Usually, it is desirable to use 'a method th~t is 

" 1 unconditionally stable. For linear systems, the errors associated with the numerical 

integration result in elongation of the free-vibration periods and in decrease of the 

-vibration amplitudes. In this study, the Newmark average acceleration method h~ 

been selected, it is uncondi~ionally stable and it produces no amplitude decay. The 

c<?St of a transient analysis as weIl as its accuracy relate directly to the size of the 

time step (At) chosen. A value of At=0.01 second w~ selected for the analysis;it 

49 

, , 



:., .. ,.. 

) 

o 

can be observed that the earthquake loadings that are represented by the recorded 
<li • / 't 

accelerograms have heen diScretized at t=O.02 second interval and therefore they will 

he well represented by the chœen At. To ensure that the selected time step willlead to 
1 

accurate results, a smaller time step equal to 0.001 ~econd has been used in the transient 

analysis of ther retained finite element ~model. The foundation rock was chosen to he 

rigid, El / Ed = 4, so that the periods of vibration will be the smallest in the orange of 

the considered parameters. The chosen At=O.OOl second represents 1/66 of the period 

of the highest mode expeded to contt:ibute significantly to thë total response. The 

results of the analysis using tl. t=O.OOl second werè" very close to those using a larger 

time step A t=O.Ol second. As an example the maximum displacement in the horizontal 

direction at the dam crest varied by only 2.8 percent. Therefore, the chosen At=O.Ol 

second is sufficiently small to lead. to accurate r~ults. 

The prelimina.ry-tr~ient analyses indicated also that, the maximum structural 

response occurs around t=2 and t=5 seconds for that particular ~arthquake. In or­

der to reduce the numerical effort involved in this study, it was decided to conduct 
~ 

'the parametric response analyses of the four proposed earthquake input models using 
• 

the first six seconds of the El Centro earthquake to obtain a complete set 'of results. 

The Pacoima and ra.rkfie~d accelerog~ams (scaled to O.35g) were then used to validate 

the observations and conclusions obtained from the El Centro .earthquake by perform­

ing some complementary analyses. A d~tailed desc.ription and interpretation of the 

quantitative res~lts obtained is presented -in the n~xt chapter. 

" 
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CHAPTER 4 

COMPUTER IMPLEMENTATION AND 

NUMERICAL ANALYSES 

• 

. 4.1 Introduction 

In this chapter, numerical solutions of dynaII~.ic behavior obtained from" apply-­

ing the four proposed earthquake mechanisms to the dam-fqandation-reservoir system 
-

considered in Chapter 3, are presented. In Sect~on 4.~ the computer implementati~n 

of t~e deconvolution pr~cess is discussed. The different cases analyzed and param­

eters selected for the analyses are presented in Section 4.3. In Section 4.4, typic~l 

response quantities of engineering in~erests resulting from applying the NS component 

of the El Centro earthquake accelerogram, according to each specifie input model, are 

discussed and compared. The effect of the damping ratio of the foundation on the mass­

less foundation model is examined in Section 4.5. The effect of using different ground 

motions, is investigated in Section 4.6. For that purpose the time domain earthquake 
, ' 

responses of the dam-foundation-reservoir system are computed by applying the four 
, , 

proposed input models, considering two additional earthquake loadings represented by 

the Pacoima and the Parkfield ~ccelerograIDS. 

The computations in the different analyses have aIl been carried out on micro­

computers. The computer programs that have been used are: 
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a:: CALDAM which is a modified version of thë computer p~ogram CAL-8642 spe­

cially developed for this study in order to evaluate the static and dynamic behavior 

of small structural systems ~hat can be modçled usin?twcrdimensional finite ele­

ments. CALDAM uses a macro language operating on a data base which allow the 

user a complete control on the sequence of operations required for the solutions. 

b- SHAKE36, a computer program designed for the earthquake response analysis of 

horiz~ntally layered ~ites, used to perform.é"t11~ d~convolu.tion· analysis. 

c- SPECTR 43, a program to evaluate d]nalIlic response spectra. 

A specialjltrt;erface program has à,lso been developed to produce graphie display of thl!' 
• ,,;', - , ' 1 

numerical results produced by these programs using the plotting package Grapheru . 

~ 

4.2 Computer Implementation of the Oeconvolution Process\>-
- \ l 

, . ' 
The deconvolution process is performe.d in,order to compute tHe base rock ac-

, ., 
celerogram which might. have prodUced the free-field accelerogram. This process is in 

fact divided into two parts. First, the foundation block is idealized as a simple ishear 
, 0 -

beam, then the program SHA~E can be used to compute the accelerogram at any 
-

level of the tayered foundation bloc~. The parameters tliat. control the anjlolysis in the 
~ '~? 

I,?rogram SHAKE are: the shear modulus and the equivalent viscous damping ratio 0 

of the foundation rock and to a Iesser degree ~he ]Ilaximum. freq1J,'eftcy that should be 
, 0 

, tran~mitted through the foundation rock. The secon~ consists in analyzing the 
~,. ~ ., 

two-dimeJl!3ional finite element model representing the foundation block subjected to 

the deconvolveù accelerogram applied at the base of the model. From this analysis, the 

new free-field accelerogram. will be" ~,erived and comPâfed\~o the originàl on~ by me~s 

(Jl the corresponding PSa, computJ? by the program SPECTR. This process has been 
<1 

sUIllIIlarized in Figure 2.2. H the match between the two PSa's'is satisfactory then the 
, " , . 

computed deconvolved accelerogram will be retained for the transient analysis of the 
1. 

dam-foundation system. H the match between the two PSa is not satisfactory, then 
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the deconvolution process shou1d restart at the first step and some adjustments have 

to be made to the controlling parameters' in the program SHAKE in order to reduce 

the differences between the two PSa's, the target and ..... the computed. 
Q 

Figure 4.1 shows the comparison of the PSa for the cases of a flexible and a rigid 
• 

foundation. It tan be observed that for thè rigid foundation case (Fig. 4.1b)), the 

difference between the two PSa's is 'Very small. This was achieved easily by inputting 
, 

• 
the actua.l values of the shear modulus, G l' and damping' ratio, e" corresponding to 

1 
the foundation rock in the program SHAKE. In other- wo'rds for a rigidJoundation rock 

the one-dimensional representation used in the program SHAKE is not \00 sensitive 
. ~ , ' 

to the controlling parameters and is very close to the twO-:dimensional finite element 
• 0 

representation used in CALDAM. For the flexible foundation case, as can be seen in 
. k 

_ Figure 4.1a), the two PSa's do not ~ibit a close ma.tch throughout the,wholef?e~od 
, 1 

range. It is very difficult to improve the situatiQn, because the re~ponses are now very 

sensitive to the values of Gland el retained fpr the computations. It should however 

be recog~ized that to obtain a satisfactory resPQnse by this method it is only required 

to achieve a close match at the periods of modes of vibration 'which are contributing 

~ significantly to the dynamic response of the- dam-foundation-rèServoir system. As the '" ' 

flexipility of the tfoundati~n is increased, the periods of the important modes lengthen. 

For example considering the case El / Ed = 1/8, it was still possible_to ob tain an average a 

relative error of the order of 3% between the computed and the target PSa for the first ~ 

three modes repres:nting 90% of horizontal effective modal mass. 

, ) 
4.3 Cases Analyzed and Selected Parameters 

~ 

~he earthquake response of a gravit y dam-founda.tion-reservoir system'Ts affe«::ted 

by the foll&wing factors: 

r frequencI content and intensity of th~ecified acce~erogram, 

b- dam-foundation interaction,; 
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c- dam-water interaction, 

d- reservoir bot tom absorption, 

e- water compressibility. 

In this study, only the first three factors have been taken into account, in order to 

simplify the analysis. It should be noted that a rigorous treatment of water compress­

ibility ~ only possible in the frequency domain. TJle dam-water interaction has been 
- - , 

included by the added mass approach. For thè dam-foundation interaction, two pa-
- Q 

rameters have been selected to èover a wide range of foundation materials and different 
\ . 

~' site conditions. These two parameters are the ratio of moduli of elasticity between the 

dam and the foundation and the equivalent viscous damping ratio of the foundation 

rock. The values aSsigned to these two parameters have been presented in Section 3.2. 

It should be noted that when the damping ratio of the foundation, el' is assigned a 

value of 5 percent of critical, the damping levels provided by the concrete dam and 

the foundation rock are the same. This corresponds t'o a condition of proportional 

damping. In the cases where el is not equal to 5 parcent, the damping matrix of the 

combined dam.-foundation system will be non-proportional. 

For the massless foundati?n input model (Model B), in the case of a propQf­

tional damping, the damping matrix of the dam-foundation system can be established 
• 

- . 
in two different ways that yield, different results. The first procedure, which is the 

most comm0l1:.ly used in practice consists of applying directly the Rayleigh method to-
, 

tnè- combined dam-foundation system. The second procedure consists of establishing 

separately the damping matriceS of the dam and the massless foundation and then 

assembling them to get the global damping matrix. IIi this last procedure the fact that 

the damping matrix corresponding to the massless foundation rock is proportional only 

to the stiffness matrix of the foundation is taken into account. A value of zero damping 

for the massless foundation rock 'has alsO been considered in the analyses, in order 
, 

to assess the effect of the damping when the inertial effect of the foundation rock is 
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neglected. Table 4.1 81Jmmarizes the cases analyzed using the El Centro earthquake as 

t~e input motion. 

Table 4.1 Cases Analyzed Using the El Centro Earthquake as the Input Motion.-

Input Mechanism -- Moduli Ratio El / Ed Damping Ratio 

Model of the Foundation 

le) 

Model A 5% 
Model C 4,2, l, 1/2,1/4, 1/8 10% ~ 

ModelD 15% 

0% 
Model B 4, 2, l, 1/2, 1/4, 1/8 5% 

10% 
15% 

The time domain earthquake response of the system has been measured in terms 

of the displacements, the acceleration levels and the stresses develol?ed in the structure. 

A preliminary transient analysis was performed in order to study the intensity of the 

response in the ~omplete model and to select representative nodes and elements in the 

, mathematical model, for which the results~ the various analyses will he examined. 

For the displacements and the accelerations nodes l, 11 and 31 as shown in Figure-

4.2 have heen selected. The three nodes are located on the upstream face of the dam, 

the maximum displacements ,and accel~rations occur at node l, nodes 11 and 31 were 

chosen in order to cover the height of the dam. The stress results will be retained for 

elements 1 and 5 at points a, b and c which. have the same co~rdinates as the Gauss 

quadrature points. 
, , 

,The results of the computer analyses consist of the ~esponse history of horizontal 

'\ and vertical displacements and accelerations at the nopal points of the finite element 
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mesh and the three components of plane stress (O"SfS" q .. , 0".,.) at the Gauss points of 

the finite elements. Comparing directly these response quantities given as time histories 

is not very practical. Thus, there is a need to define some measure of the intensity of 
• 

these response quantities. The first meas~"'of intenSity to consider in the comparison 

of the results is the maximUII} that occurs düri~ the time of excitation. This maximum 

value is an interesting indicator especially from a design point of view. The maximum 

value can not be used alone as an indication of the intensity of the response quantity 

of interest because it is a local measure and might not be representative of the general 

trend of the specified response quantity. The root mean square (R.M.S) value of a given 

time history can be considered as a global measure of the intensity and as an indicator 

of the general trend. For example the R.M.S.D, root mean square of the dis placements 

will be given as: 

( 

B ) 1/2 

R.M.S.D = {; v2 (t;) (4.1) 

wh~re t; represents the cumulative time achieved after every two tiIne steps and n is 

the total number of time steps for which results were output. Therefore, the response 

quantities computed in the various analyses are compared in terms of their maximum 

(Max) and the corresponding root mean square (R.M.S) values. 
. , 1. 

4.4 Numerical Results from the Four Input Models 

. , 

The response quantities under consideration have been computed for aIl the cases 

.- shown in Table 4.1. It~ould be noted that for the prop~rtionally damped case, 

el = 5%, the global iamping matrix [Cl was established by applying the' Rayleigh 

damping method for the complete system, unless otherwise specified. Due to the large 

amount of data, on1y important numerical results are presented in order to illustrate the 

relative performance of the four proposed earthquake input models. A more complete 

set of results in terms of the Max and the R.M.S values is presented in the Appendix. 
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4.4.1 Displacements 

4.4.1.:1 Time Histories 

The responses time histories of horizontal displacements at node 1, resulting from 

the application of the ,El Centro accelerogram according to the four proposed input , 

mechanisms are presented in Figures 4.3 and 4.4 for El / Ed,==:;1/8, 4 and el = 5 and 

15 percent of critical, representing the lower and the upper limits of the range of 
.J 

the selected parameters. First let us consider the case El / Ed = 1/8 with el = 5% 

which represents a flexible foundation rock with low damping. From Figure 4.3a) it 

can be observed that the results given by model A, the rigid base input model, are 

considerably larger than t~e derived from the other models. The second observation 

that can be made is that tk-e reSponses given by model C, the deconvolved input 

model and model D, the free-field interface input model, are almost identical. The 

displacement time history corresponding to model B, the massless foundation input 

model, is larger than those obtained from modelslc and D, but the frequency content 

is very similar for these three models. The displacements time histories derived from 

models B, C and D can be approximated by harmonie functions with periods close 

to 1 second. Considering Figure 4.3b) in which the damping ratio of the foundation 

has been .increased from 5 to 15 percent, shows t.hat the frequency content of the 

displacements histories is nat aft'ected by the increase of the damping ratio of the 

foundation. However, the amplitudes of the responses diminish when the damping 

ratio, e" is increased. Furthermore, the amplitude of the displacements derivèd from 

modela B, C and D are quite close. 
i -

~ , 

Figure 4.4a) presknts the displacements histories corresponding to El / Ed, = 4, 

which represents a rigid foundation rock, the damping ratio of the foundation is set 

equal to 5 percent. In this case, the displacements derived from model A are still the 
" 

"Iargest but the dift'erence with respect to the displacements derived from the other 
• \l: 
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modela is not very significant as compared to the flexible foundation case. It ahould 

also be observed that for this case the four response histories can be approximated by 

harmonic functions with periods of approximately 0.5 second. The effect of increasing 

the damping ratio of the foundation from 5 to 15 percent is shown in Figure 4.4b. Only 

the amplitudes of the responses are aft"ected by the higher damping values. 

The examination of the displacements time histories has shown qualitatively the 

general behavior of the seismic displacement responses, obtained from the application 
. ' 

of the four proposed earthquake input models. In order to assess the effect of the 

parameters retained in the analysis and to quantify the difFerences resulting from the 

different analyses, the effects of the controlling parameters will be studied in the fol­

lowing sections. The displacements response quantities will be represented by their 
\ 

maximum value (Max.D) and rGot mean square (R.M.S.D) values. 

4.4.1.2 Influence of Controlling Parameters. El / Ed' el 
. . .. 

The displacements time histories represented by their corresponding Max.D and 

R.M.S.D are plotted as a function of the ~oduli ratio EJ / Ed in Figures 4.5,4.6 and 4.7, 
, . 

for the three selected values of the damping ratio, eJ • In or der to emphasize how the 

displacements derived from the four input models are influenced by the variation of the 

damping r~tio of the foundation rock, the R.M.S.D of the displacements are plotted 

as a function of the damping ratios in Figure 4.8, for the three different foundation 

flexibility conditions. From these figures the following observations can b made. 

a) Thè displace~ents derived using model A are the largest in terms of the Max.:d and 

the R.M.S.D and this is for the complete range of parameters. This w expected, 

sinee the accelerogram that was applied at the base rock was actually recorded at 
-

the surface of the foundation rock. The propagation of the ground motions through 

the deformable foundation rock resulted in an artificial amplification. To quantify 

the amount of artificial amplification, the PSa of the recorded free-field accelero­

gram was compared with the pseudo..spectra of the derived free-field accelerogram 
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that resulted from the applice.tion of thé recorded accelerogram at the base rock. 

The case shown in Figure 4.9 corresponds to El / Ed = 1/2 and el = 5%. It is c1ear, 

that t~e amplifications that the different modes of vibration of the structure will . , 

receive are larger than those that they would have received if they were subjected 

to the' accelerogr~ that corresponds at the surface to the PSa shown in dashed 
~ '. 

, ' 

Hne' in Figure 4:9. It should also be noted, that the difÏerence between the two PSa 
~ 

shown in Figure 4.9 will increase for a more fleXible foundation rock than the one 

cons~ered (El / Ed = 1/2) and it will decrease for a mJ're rigid foundation rock 

where the effect of soil·structure interaction become.less important. 

b)' For the case Er/Ed = 1/8 (Fig. 4.8a», which represents a flexible foundation 

rock, there is a. substantial diminution in the displacements,d,erived from model A, 
\' 

when the dampin~ratio is increased from 5 to 15 percent. \ 
l , 

c) The displacements computed from model C, the deconvolved input model and 

model D, the free-field interface input model are almost identical for the complet~ 

range of the controlling parameters. It can also be noticed (Fig. 4.8a)) that the 

displacements derived from models C and D were not affected significantlY, b~ the 
, 

increase of the damping ratio of the· foundation. . , 
1 

d) For model B, the massless foundation input mod.el, with el = 5%, artificial am-

plifications of the displacements, of the order of 40 % in terms of the R.M.S.D, 

with respect ta models C and D are observed in Figure 4.5 for the case of flexible 
~ , 

foundations (E, / Ed :::; 1/4). These amplifications are partly due to the differ-
-

ent free-vibration characteristics of the massless foundation model as compared 

to models with mass foundation. It should also be noted that these results were 

obtained by using a proportional damping matrix computed 'Qy Rayleigh's method 

for the complete system. 
, 

e) Furthet numerical experimentation has s~own that for the case discussed in d), if 

the damping matrix is computed by assembling the mass and stiffness proportional 
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damping matrix of the dam with the stiffness proportional damping matrix of the 

foundation, the higher value of effective damping included in the analysis YI le 

to reduce the maximum difference between the R.M.S.D of mo B and C, D 

tol0%. , / 

f) As the damping level of the ma.E!sl~s foundat~increased (Figures 4.6 and 4.7), 
/' 

which corresponds to a con~ition of non-proportion al damping, it can be _ noticed 
, ~ 

that the displacements derived from model B are very close to those derived from 

models C and D for .very flexib'le foundatio~ases. 

g) The dis placements obtained from model B are however underestimated by an av­

erage of 15% with respect to models C à-nd D (for el = 15%), for values of El / Ed 

equal to 1/2 or higher. This can be explained by the fact that the damping for non-
•• 

proportional massless foundation models was controlled 'only for the first mode of 

vibrftion, higher ,modes receiving significantly higher dampin~ levels as explained 

in Section 3.2. The~lafiive contribution of the first mode of vibration to the total 

response depends on the flexibility of the fOUIldation rock. The more flexible the 

fo~dation rock, the higher is the contribution of the fU!ldamental mode. This is 

significant, and explains the good agreement found for the Values of El / Ed=1/8, 

1/4, for 'which the firs~ mode contributes for 86% and 68%, respectively to the 

. total response. For relatively more rigid foundations, one should expect that the 

effective damping will be higher than the assigned value, ~nce the individual modal 

contributions will be spread over many modes. This explains sorne of the discrep­

ancies shown betVl(een models B and C, D for the stiffer foundation models. 

h) The last observation is that as El / Ed increases, which for a fixed Ed me ans an 

increasingly rigid foundation, the displacement quantities derived from the four 

input models show closer agreement. The increase of the damping ratio of the 

foundation rock in the cases of rigid foundation~ does not affect significantly the 

displaceme~ quant~es. Furthermore, it can be noticed that as El / E. increases, 
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the displacements of the four input modela converge toward a value correspondin~ 

to an infinitely rigid foundation rock. 

4.4.2 Accelerations 

4.4.2.1 Timé Histories 

The horizontal accelerations histQries at node 1, resulting from the application of " , 

the El Centro accelerogram ac.cording to the four proposed input modela are presented 
, Y' 

in Figures 4.10 an~ 4.11, respectively for El / Ed = 1/8 and 4, and for a damping ratio 

of the foundation equal to 5 percent. , As for the displacements, model A yielded to 

the largest response in terms of the acceleration values. The accelerations comp~ted 

from models C and D are almost, identical for the complete range of parameters. The 

frequenc~ content' of the acèelerations derived from mode! B is very similar to the ones 

derived from models C and D. The major differences between the acceleration histories 
~ , 

of model B and those of modela C and D are in their amplitudes. 

For the case El / Ed = 1/8 (el = 5%), the maximum acceleration is 3.1g for-model 

A, eorrespondîng to an amplification factor (AF) of 9.4, 1.38g for model B (AF=4.18) . . 
and .96g (AF=2.9) for modela C and D. Considering the case E, / Ed = 4, which repre­

sents a rigid rock foundation, it can be observed that the intensity of the accelerations 

Cl haEf Îi1Œased cOIIl-paratively with' the previous case, but the difference between the 

accelerations derived from the four input models has dimini~hed. The maximum accel­

eration from model Ajs 3.9g (AF=11.8), from model B it is 2.4g (AF=7.27) and from . 
nrodel C and D it is 2.5g (AF=7.37). Therefore, as was noted for the displacements, as 

/ 

the stiffness of the foundation is increa.sed, the accelerations tend to convrgé toward 

the value obtéJ.jned for the dam fixed at its base. " 
~-

4.4.2.2 Influence of Controlling Parameters, El / Ed' el 

Following the same procedure as for the displacements, the enects of the modular 

ratio El / Ed and the damping ratio, el' on the accelerations are examined in this 
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section. The R.M.S.A of the accelerations, and the corresponding Max.A, are plotted 

as a function of the ratio El / Ed in Figures 4.12 to 4.14, for the three selected values 

of the damping ratio, ~'" of the foundation rock. The variation of the horizontal 

accelerations due to the increase in the damping ratio, el' for three dift'erent levels of 

foundation fiexibility, if shown in Figure 4.15. These figures show that: 

a) The accelerations derived from m.del A are larger than the ones derived from the~ ~ 

other models for the complete range of the controlling parameters. Th~ increase 
( , 

in the damping ratio, el' resulted in a substantial decre~ in the acçelerations 

derived from model A for flexible foundation cases, whereas for rigid foundations 

the ~elerations were aft'ected to a lesser degree. 

b) The accelerations derived from models C and D are very similar, except at some 

points where small deviations between t~e two models are observed. This is mainly 

due to the fact tha( the response is more sensitive in terms of' the acceleration , 
'. quantities than it is in terms of the displacements. This is because the accelerations 

_ H" r .. ".. / 

are the second derivatives of the displacements with respect ~o time. The increase 
1 J_ ~ 

of the damping ratio, el' did not affect significantly the'âccelerations of models C 

andD. 

c) The accelerations derived from model B for the proportionally damped case,eJ = 

5% (Fig. 4.12), are close to those derived from models C and D for relatively rigid 

foundation cases (El / Ed > 1). For verY flexible foundation cases, as was noted 
II 'r 

for the displacements, an artificial amplification is observed between° model B and 
1 t 1 ~ 

modela C, D. Thè m~imum difference in terms of the R.M.S.A which was of the ' 

order of 55% for the casee El / Ed=1/8, was reduced to 20% wh en the damping 

matrix of the complete system was established by assembling the Rayleigh damped 

f matrix of the dam and the'stiffness proportional damping matrix of the foundation. 
1 
1 d) For the non-proportionally damped cases (Çl = 10%, 15%), the accelerations de­
I 
1 

rived from model B were close to those of models C and D. Indeed, for El / Ed=1/8 
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the difference in the accelerations of model B, in terms of the, R.M.S.~ as compared . . 
o " • 

;to models C and D was 12% for el = 10% and 4% for el = 15%. For relatively 

rigid foundations, deviations are observed between models B and C, D, leading to 

an average difference of B% for el = 10% a.r,.d 12% 'for el = 15% .. 

~) It should be noted that thé differences hetween model B and models C, D noted 
p 

previously were' in terms of the R.M.S.A, if the Max.A are considered the differ- '0 

ences in the results of model B as compared to those of models C and D are less 

signifieant. 
1 • 

h) Fo~ the most rigid foundation case considered (Fig. 4.150», the accelerations 

, derived from -the four input models are quite close ~o eacli other." In this stiffer 

range, the increase of the damping ratio, el' ,does not affect 'the accelerations of 

the four motlelB to Pa great extent. ., 

. \ 

The stress results presented .in Appendix A, consist of nO,rmai stressés in the hor­

izontal (0"",,) and vertical (0' .. ) direètions and ,sh!!&r stresses ( 0"".). For the design of 

the dam, the magnitude of the normal stresses in the vertic;al direction will be critical. 
, 

Therefor~, the following discussion will be based on them. However it should he 'hoted 

'that qualitativ,e observations derived for vertical s;ress c0e:-0nents remain vaUd for 

the other stress components. \ Il ~ 
~ 1 ~-,.., 

4.4.3.1 Time Histories 

The norqlal stress histor~he vertical directio~, for ~lemënt 5 (poin~ b), are 

, shown in Figures 4.16 and 4.17 respectively for EJ / Ed = l/B and 4, and a damping ratio 

eJ = 5%. Itlis cle~ from these figures'that as for the dfsplacement and th~ acce'leration 

histories, mode}· A results in the la.rgest stresses. The stresses derived from mode! C 

and D are almost identical in terms of both the frequency content and amplitudes. 

The'stress~ derived from model B for the flexible foundation case, El/Bd = 1/8, are 
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, '. 
larger tban those derived from modela C and D. For the case El/Edo = 4, the frequencies 

content of the stressiesp(mses derived from the four. input -models, are almost identical. 
, " 

'. , '. , , FUrthermore for that case, the amplitudes of the stresses derived from model B are very' 

close}to those from models C and D: 
. ' 

4.4.3.2 Influ~nce of Controlling Parameters, El / Ed' el 
'The effects of both the flexibility and damping level of the foundation on the 

.' , 

/ vertièal'normal stresses'.ar~ investigated in this section. As was done for the previous 

response quantites, the R.M.S.S and tl}.è Max.S of the normal stresses in the vertical 

dir'ection at element 5, are plotted as a funetion of the moduli ratio El/Edo in Figures 

~ 4.18 to 4.20, for ~the three s,elected values of the damping ratio. Figure 4.21 shows the 

variation of the vertical Rormal stresses at element 5 represented by their corresponding 

R.M.S.S, as a function of the damping ratio' of the foundation, el' From these figures 

. th~ following observations can be. made: 
. . 

,-<. a), Model A results in the largest normal stresses and this' i~ for the1complete range . ." 
• r 

~f selected parameters: HowèVer, tar ,tJ1e most rigid foundation case considered ., 
• ,If 

(El / Ed = 4), the difference between stresses derived frô-mmod~l A and the stresses 

derived from the three other models is not rvery signfficant. 

h) In the case ofrthe stresses also, the results derived from models C arid D are simi}ar 
/' . , 

" 
,for the complete range of parameters. 

c) Model B for the case el = 5% and for flexible foundation cas~, yielded vertical 
-

normal stresses which are relatively ~ifferent ln terms orthe R.M.S.S from those" 

of models C and D ,with an average relative error of about 38%. From F'igure 

4.21 it can be noticed that for the cases El / Ed=l and 4, the normal stresses 
, , '" 

increase when the damping ratio is increased from 5 to 10 percent. 'This has been 

" observt'-d only for the stresses and can again he explained by the way the global 

dampiIl,g matrix was established for el =5%, for which a condition of P1'oportional 
. ~ 

damping al~owed the applicatio~ of the Rayleigh damping method to the complete 
) 
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Figure 4.1'1 Vertical Normal Stresses Histories at Element 5 (point b) Derived' 
-from the Four Input Models (El / Ed = 4, el = 5%), El Centro Earthquake. .. 
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s:Ystem. It has been verified. that if the dambing matrix corresponding to el = 5%, 
:> , ' 

is eatablished by ass~ling the damping matrices of the two- substructures, the 

o stresses correspo~ding. t~ = 5%, for the e8s~ El / Ed of 1 ~d 4, wil1 be larger 
, "r [, 

th~ those corresponding to el = 10%. Furthermore, the stresses for the flexible 

foundation cases (E, / Ed. ~ 1/4), derived frorp. model B will th en exhibit a relative 
• 1 

, Il 
error of the order of 15% as compared to' those obtained from models C and D. 
'.. ,\ 

d) For higher damping ratios (e, =10%; 15%), ~he v.ertical normal stresses derived 

'from model B are very close to those .of models C, D; for very flexible foundaÙons 
, ~ j , ., 

- (El / Ed =:; 1/4). For the other values of the rati~, El / Ed' model B underes'timated 

the stresses by an average of 13% as compared to models C and D . 
• 

e) As'wss'hoted previously for the accelerations, the maximum values of the vertîcal 
• 

. normal stresses derived from model B and models C, D, are closer than are the 

corresponding R.M.S~S. 

j 

4.5 Effect of the Damping Ratio on the Massless Foundation Model 

.' 

It has been shown in the previous sections that the performance of model B is 

, closely related to .the value of damping ratio assigned to the foundation rock and the 
• 0 " ' , ~ 

computational"technique used to form the global damping1D.atrix [Cl. The performance 

of model B can be improved by a better numerical control of the values of the âamping 

ratio of the foundation rock: It should be noted however, that the differences ih the 

response 'quantities compute,d 'from model B antl those of models C and D are also due 

to the fact that. the behavior of the massless foundation model.in free-vibration is not 
'- o 

• Y' 

the same as compared to the mass foundation model. . 

In order', to illustrate the effect of the da,mping ratio, el' of the massless foun­

dation môdeI on the displacements ,quantities, the horizontal*displacement at node 1 
,.. 

represented by the corresponding R.M.S.D is plotted in Figure 4.22 as ci. function of 

the mOdular'Catio, El / Ed, for four selected values Of. the damping ratio, el =0, 5, 
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" ?y, 
10 and 15 percent of critic~l.. It should be noted that for the proportionally damped 

case (el = 5%), t'Vo cases are shown. The first case cor.responds to a damping ma,~rix . . 
", ',t-

formed by applying the Rayleigh method to the complete system, while the second case .. 
corresponds to a damping matrix ~tablished by a:ssembling the damping matrices of 

the dam and the foundation recognizing explicitly their different inertial characteristics . 
. 

It can be noticed from Figure 4.22 that the effect of the damping ratio is dependent on 
~ 

the flexibility of the foundation. For very flexible foundation cases, assigning a value 

of zero damping to the m~sless fo~ndation lncreases ,the displacement, quantities sig­

nificantly, whereas for relatively rigid foundation cases the value of the damping ratio 
1 

does not have a signific~nt influence on the magnitude of the displacements quantities: 

The use of a stiffness propor,tionàl only foundation damping matrix is also shown to 

reduce significantly ~he am.plitude of the response for relatively flexibl~ foundations. 
, j 

The displacements derived from model B, with a value of zero damping for the 

massless foundation are compar,ed in ~igure \~,~îth the average displacements derived 
" ..J. 

from models C and D in which the damping ratio of the foundation was assigned the 
. . 

values of el =5, 10, 15%, for the various foundation flexibility levels. It i~ noteworthy 
, 0 

,from Figure 4.23 that model B with el = 0% is in good agreement with models C 

and D for relatively rigid foundations, with El / Ed > 1, especially for the lightly 

damped foundation rock (el ,= 5% in models C, D). For flexible foundation cases, with 
... 

El / Ed < 1, it can be noticed from Figure 04.23 that a. damping value different from 

zero has to be assigned to the mass~ founda,tion in order to improve the performance . 
of this model. 

. " 

Art ~lternative method to control the' numerical damping of the dam-foundation 

system with a massless foundation, would be to define a weighted damping rati6for 

each mode expected to contribute significantly to the total response, then to combine 
. ' . ' 

these m09-al damping ratios to the prorata of the corresponding modal participation 
. , 

'factors to end up with a unique effective gam,ping ratio for the êombined system. 1 An 
/J . , 
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, 
example of a formula that can be uâed to obt~a: weighted dainping \ ratio is given in 

, the S"TARDYNE computer program"6. The weighted modal damping ratio is basèd 

6 on a wejghted I~verage of strain energies in each material" for each mode the weighted 
~ . 

daplping ratio ët for the vector X, is computedoas: _.1 

m 

L:X;-[K.]X, e. 
ë,. = -=lX:[K]X. 

-1 ,,-1 

(4.2) 

" 

, , 
whère ~ is the number of substructures, e~ is the percent criticalsiamping associateg ~ 

with component i, [K,] is' the stiffness'associated with component i, [K] i~ the stiffness 

'" or the complete system. Having deterniined the weighted damping ratios of the first r 

modes exp'ected to contribute significantly to the total response, the eff~ctive ~~ing 
, ratio of the complete system is found b~ the fellowing formula: 

'\ 
r 

~ EpJê; 
ëelJ = 

i=1 
r. 

.... 
LPi 
,=1 

where Pi is the participation fact~r of mode'j (Eq. (3.1"2)) 

, 

(4.3) 

, 

The main advantage of this method is that it transforma the non-proportiol'lâl 
ID 

damping characteristics of a system to an equivalent proportional system with aIl en-

suing advantages. In order to investigate the performance of the ab ove procedure, the 
:SiS' 

dam-foundation system considered has been reanalyzed for the case EJ / Ed = 1 and 

a foundation damping ratio, el = 15%. The weighted modal damping ratios derived 

from equation (4.2) are lis1ed in Table 4.2. The effective damping ~atio for he co~plete 
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B1stem waS<''tierive~ from equation (4.3) as, ë"'1 =8.1 % •. The global damping matrÏx 
t r. 

was established by the Rayleigh meth~d assuming a condition of proportional damping 
• 1) , 

between-the dam and the fciundation. The earthquake response of th~ dam-foundation 

system; using thé effective damping ratio found above has im~d slightly the per-

formance bf model B with non-proportional damping as compared to modela C and 
.\ ' , ., 

~ '":J t7- ~ 

. D. Yet, the most importan1flfeature of ~his method is that it .allows assignment of a 
1 . ' 

unique damping ratio\ to th~ çorpplete system whlch implies a condition of proPo{tional 

damping. /-Jf'; 1 i ..... 
c 

J 

.. 
... 0 

\. 
,}~J'" 

• "''''-'IN if..; ..- F , Ta~J;a.2 Weighted Modal Damping Ratios Derived 
A'I'ltEl/Ed = 1, e, =-15%, e~ = 5%). 

om Equation (4.2)' 

, J-

Mode Computed .pamp,ing ratios (in %) 
,~. 

1 7.6 

2 8.3 ., 
S ,10.0 

... .. .(.,'" 7.9 

(. 0 
4.6 Effect of U,sing Different Ground Accelerations '--- . 

The time history analysis is attractive in the sense that it provides completely 
\ ' \ 

deterij1inist~c results for G specified ground motions. However, any\ two motions may 
> 

produce quite different peak responses, even though they have the same intensity and 
0-

statistical properties. Therëfore, to validate ~he conclusions regarding the application 
(J 

of the four proposed input mechanisms, the dam-foundation system consideréd' has 
, <' 1 

• been subj~~ted to the Pacoima and the Parkijeld acc~lerograms, scaled to O.35g which 

represents the maximum accel~rat'lon of-the El' Ce:qtro accelero~ram. The foundation 
~ ~ 
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Figure 4.24 Displacements at Node 1 Derived from the Four Inpyt Models Using 
the Pacoima Acéelerogram as the Input Motion, (e, = 10%). ~ 
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flexibility was varied such that the modular ratio has the Bame values 'as presente'd 

in. Section 4.3, and the damping ratio of the foundation lias been assigned a value 
'" 

of 10~percent of critical. The cases analyzed using the Pacoima accelerogram as the 

input motion, covered the complete range of the El / Ed parameter. Additional cases 
l ' . , 

conâidering different damping ratios, and using the ~arkfield accelerogram as thë input 

motion were also analyzed. 

The displacements of the dam crest (node 1) resulting from app\lYiÎlg the Pacoima, " 

• .. accelerogram according to the four proposed input models, are represented in Figure 

'1) 

. . 
4.23 as a function of the El / Ed ratio. It can be observed th~t as for the El Centro 

accelétogram, model A yields the largest response, models C and D are almost identical 

for the complete range of parameters. Model B "is in gool agreement with models 'C 

and D for very flexible foundation rock (El / Ed = 1/8, 1/4). For o.ther values mod~l B 

underestimatèd the displacements by an average of 7~ as compar,e~ t~ models C and:p. 

The relative performance of model B with respect to ~odels C ~d D, are very similar 

to the results presented in Figure 4.6 obtained from the application of the El çentro 

accelerogram. For the additional cases analyzed using the Parkfield accelerogram as the 

input motion the same trends concerning the perfotmance of the four proposed input 

models have also been observed. The qualitative observations reported in Section 4.4 
~ 1 v .... ,.... -

can thus be considered independent of the frequéncy content of a particulc.\l' earthquake 

recore!. 

4.7 Conclusions from Numerical Analyses 

C1 
This section presents a summary of the conclusions that were obtained from the 

application of the four proposed earthquake input mechanisms to the concrete gravit y 

dam-foundation system considered. The main conclusions Welre: 
- 0 

a) The use of different earthquake input models can leacfto significant differences in 
, 

the structural response of a concrete -gravit y dam-foundation system. 
~ 
'li 
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b) The application of model A, the rigid base rock ~put model, induced very signifi-
, --

cant artificial amplifications in the response quantities of interest. The magnitude 

of theSe artificial amplifications were shown to increase with the level of foundation 
, 

flexibiIity. Model A is therefore recognized inadequate to evalua.te titime domain 
.1 

, seismic responses 'of dam-foundation systems and sliould not be used in pra<;tice. 

c) The reIiabiIity of model C~ the deconvolved accelerogram Cinput model, which is 

theoretically the most accurate model depends on the qua.Iity of ~he deÇonvolution 

_~_alys~s. The verification of the decomlo~ved accelerogra;n by computing the free-. 
field response of the finite element founda.tion model is a mandatory step to ensure 

_ .... 'ltoJo 

acc.urate results for model C. 

d) The use of model D, the free-field input model, led to results which were aImost 

identical to those derived from the theoretically more accurate model C and that 

was shown to be independent of the levels of flexibility and damping of the foun-
• 

dation rock. Model D can thus be considered the most efficient to evaluate the 

time domain responses of gravit y dam.-foundation Iystems since it is much ea.sier 

'to implement than model C. 

e) The good p~rformance of the free-field input model (model D), showed that the , , 

assumption of the same free-field accelerogram a.t étll interface nodes is a.dequate 
t 

for a concrete gravit y dam. 

_ f) The performance of model B, the m~sless foundation input mo~el, waS shown to 

be dependent on the foundation flexibility, on the lev~l of df!.IDping of the massless 
, 0 1 

fo~dation rock and on the computationa.l procedure retained to form the global 

dampi~g matrix . 

. g) For model B, in the case of a. proportional damping (e;'= 5%), it was shown that { 

for relatively flexible founda.tions (El / Ed ~ lï4), the performance of this model 
. . 

was improved when the damping matrix of the complete system was esta.blished 
'. . 

• 
by assembling the damping matrices Qf the dam and the massless foundation ([C,l 
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proportional,to [KI 1 only), which were separately formed by the Rayleigh damping 

method. 

h) For a relatively rigid fou~dation (El / Ed > 1), and still in the case of a lightly 
1 

damped foundation (il ~ 5%), a value of zero damping for the, massless foundation 

modelled ,to results which were in good agreement with those derived from modela 
, . 

C and D. 

i) For higher damping ratios, el = ·10 and 15% it was shown thât in the case of 

model B with a relatively flexible foundation, con,tr,olling ,the dF1ping at only the 

firat mode in the foundation, led to results which, were almost similar to the results , 

derived ,from modela C and D. For relatively rigid found;tion rock (El / Ed > 1), . 

model B underestimated the response and that was partly due to the poor numer-
1 • 

ical control of the damping provi~ed in higher modes of the massless foundation 

model . 

. , 

. 0 j) It wu also shawn th~t in the case of non-proportional damping, the use ofweighted 

o 

damping ratios (Eq. 4.2) for the differént modes of vibration ~xpected to contribute 
'\ 

1 . significantly to the total response, imprôved alightly the response of model B as 
~') l 

~. 

compared to models C and D. Furthermore, this procedure eliminates the needs 

to consider explicitly the combined system as non-proportion al. 

k) ComparÏson of the numerical results between model B and models C , D, showed 

t1i.at the m~imum values of the response quantities derived from these models are 
, \ 

generally in better agreement tnan their corresponding ro?t mean square. " ", 

In summary, model B although not as accurate as models C and D, do present 

sev~ral practical advantages allowing a significant requction of the number of dynamic 

degrees-of-freedom. It can be used in time domain seismÏc analyses' of dam-foundation 

systems if certain precautions are' taken with regard to the mathematical idealization 
a 

of the energy dissipation characteristics of the foundation; 

i) '.Qle damping matrix should be constructed by considering the foundatjon damping 
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characteristics to be only stiffness proportional; even when, sunilar damping ratios 

are assigned to the dapl and foundation. ,\ 

ü) For the flexible foundation cases (El / Ed ~ 1/4), a good correlation of typical 

response quan~ites of interest has been obseived between model B, in which the 

damping was controlled only in the first mode of If'ibration, ~d modela C and D. 
- , 

iii) In order to obtain a good co~relation betweèn model B and models C, D, for ati:ifer 

. ~, 

1 

.\ 

foundation case~ the damping ratio assig~d to the foundation of the massless 

foundation input model should be smaller than the one that would have been 

retained for the application of models C and D. For example,. in the case wher.e 

a value of e, = 15% is assigned to the masa Joundation in' models C., D, a value 
- ' . 

of e, = qS% in model. B lead to an average error of 3.6% in the R.M.S.D, for 
• 0/ 

El / Ed > 1/2. If e, = 10% \s considered in models C and D then a value of .. 
el = 0% in model B lead to an average error of 6% in the R.M.S.D for the same ,. 
foundation flexibility conditions as for the previous case'. " . 

,. 
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CI-IAPTER -5 

Coordinat es Reduction Techniques for 

y 
, , Dam-Foundation Interaction 

, 

5.1 Introduction 
, 

.. 
The importance of dam-foundati8Il interaction has been emphasized .in the pre-

- ~ 

vious chapter, illustrating the phenomenon in detail for the relatively simple two-

dimensional system d~cribed;'in Chapter 3: In this chapter attention will be cjirected - . ~ 

toward numerical methods that have been developed recently to overcome the limi-. ~ 

tatfo.ns inherent to ,the analytical solutions of systems that requîres a large number 

of dynamic d.o.f for their idealization such as a three-dimensional extension of dam­

foundation-fluid interaction problenis. The application of these methods and the de­

velopment in comp,uter -hardware are already making possible the" solution of highly 

complex problems on relatively inexpensive micro-computers. A key-to this capability . ' 
is obviously the minimization.of the number of unknowns in the dam-fou~dà.tion-fluid 

mealization and it is this aspect that will often govern the manner in which the inter-

~tion problem will be ~est formulated. 

The selection of coordinates to carry out a dynamic analysis can be made using 

kinematic constraints enforced by constraint equation and proper boundary con­
'-

ditions, 



c 

( 

,. 

·f 

, " 

, 
- sta.tic constraint or static condensa.tion, 

- finite element modal coordinates, 
, 

;- derived Ritz or Lanczos c~ordinates using load dependent tr~sformation vectors: 
, , 

• Each of these techniques can be understood as Ritz analysis. Variations in the methods ' 

l are related to the choice of the Ritz basis transformation vectors. Practical capabilities 
. 
to apply these cOQrdinates reduction proceBures ta locally non-linear systems have also . 

, 0 

been developed.~6,46 

Usually the geometry of a structure does not permit the discretization in a few 

finite elements but the behaviour may be perfectly characterized by a few generalized 

coordinates. This is generally true for structural dynamics problems such as earthquake 

analysis where typical modal analysis s-tudies based on th~ frequency content ~d: spatial 

distribution of the excitation have shawn that the response is controlled by a ~elatively 

small number of lo'W frequency modes. Therefore, the solution needs ta be calculated 

only in these modes. This is achieved.by vector superposition analysis by considering 

only the important modes of the system. This has the advantage of reducing drastically . . 
the cC?mputer cost of the analysis as compared ta the solution where the dynamic 

. equilibrium equations expressed in geometric coordinates are integrated simultaneously. 

In this chapter coordinates redu~tion techniquès to solve the dynamic equilibrium 
, ~ 

1 

equations of the dam-foundation system are examined. ,In addition to the classical 

analysis technique using eigenvectors as bases for response computations, a solution 

technique using derived Ritz vectors ta reduce the size of the system of dynamic equi .. 
, 

librium equations is also considered. The rate of convergence as well as the total 

computer time for these two solution techniques have bee~ considered to compare their 

relative efficiency . 

• 
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, 5.2 S~lection of Generblized Coordinate. for Dynamic Analy.il 

u \ 

The équations of dynamic equilibrium (expressed in geometric cordinates) of the 
o 

dam-foundation system subjected to an earthquake loading can be expressed as: 

'lM] il. + [CI il + [K] Q = 1(8) g(t) 
ll. 

(5.1) 

The terms of the left hand sidt! are the same as defi~ed ,in Chapter 2, {Cs) representing . , 

. 'the .spatial components or'the eaithquake loading and g(t} the presqibed accelerogram. 
" . , 

,The vector of n~dal d.isplacemè~ts '.]l cam be approximated by a linear combination of r' .. 

linearly inde~endent veétors,~ith r m~ch less than n, as24 : 

r 

.]l = l:K.y, (~) 
.. 

(5.2) 
. , .=1 , . , ' . 

,~ . 
where li. are the linearly inâepéndent basis vectors and y,(t) are unknown parameters, 

, . ' 
, l ' • .--' 

the generalized coordinates, obtained by solvirig a reduced syst~m of t eguations written 

as: 

) . 
[M]- ~.+ [C]- il. -+: lK)- Ji. = t ~8) g(t) 

j" .. 
where 

[ct = [X:]T [Cl [X] 

[K]· = [X]T [K][Xf' . 

1*(8) = [X]T 1(8) 

101 :J: Ji . 
• • .l" 
.,; .. ~ 

. , 
(5.3) 

(5.4) '" 

'(5.5) 

(5.6) 

(5.7) 

• 

, 
1 ! ~~ 
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The objectives 'of the transformation ,are to ohtain new system mus, damping and 
<., 

stiffness matrices which ~e reduced to size (rxr) "lnd have a smatler handwidth than the 

original system matrices while maintaining a good accuracy for the response quantities 

of interest. 

The suceess of vector superposition methods depends o~ proper selection of the 
') 

hasis vectors (X], to he used in the coordinates transformation: ldeally the vectors 

should: 

i) be l~early independent and completely spah. the space of the soh~tion to fully 
~ 

chara.s-:terize the dynaJllic response, , . 
ii) satisfy the geometric boundary conditions, , 

iii) 'form certain geometric patterns producing acceptable deformation shapes to char-

acterize the dynamic response, 
" 

iv) be simple and computationally inexpensive to generate. '. 

5.2.1 Finite Element Modal Coordinates 

. , 

This is the classical method which consist of using as transformation vectors, the ''', . 

'mode shapes [cPI of the system .. These mode shapes 'are found by solvi~g the free-

vibration eigenproblem which can be written as: 

[KI [cP1 = [M] fcP] (w2
] (5.8) 

. 

For large sytems such as dam-foundation, the solution of the eigenproblem is usually .. 
performed by either the sUDspace iteration method or the Lanczos method. For bath 

methods there are usually three phases in the solution procedure: 

1- Solve equation (5.8) for [~J and [wJ. 
{ 

2- Perform a Sturm sequence check, in order to verüy that nel eigenvalues have been:. 
, lJ 

missed in the computations. '" 

3- Evaluate the error of eigenpairs (w. 2 
, <Pi) from 
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(5.9) 

J 

The mode shapes have the property of being orthogonal to both the mB{s and the 

stiffness matrices. Thus the reduced mass matrix [M]· and the reduced stiffnes matrix 
'" 

[K]· will be diagonal matrices. In the case of a proportional damping, the reduce~ 

damping matrix le]· will âlso be diagonal. This will result in a set of uncoupled modal 

equations written as: 

J 
(5.10) 

J - . 
On the other hand in the case of a non-proportional damping, the matrix [Cl· will 

not be diagonalleading to a set of coupled modal equations. The principal problem .. 
\ 

associated with the use of finite element modal coordinates are th'at the truncated eigen 

basis do not span the complete solution space and the high numerical effort required for 

the< generation of eigenvectors for large structural systems. It should also be noted that 

the eigenbasis ignores important information about the' structural dynamic problem 

related to the specified loading characteristics such that computed eigenvectors can be 

nearly orthogonal to t:h.e applied loacjing and therefore will not participate significan'tly 

in the solution. 

5.2.2 The Oerived Ritz <!oordinates 

The Ritz extension of the Rayleigh's method known as Rayleigh-Ritz analysis has 

been widely used to find approximate values of the lowest eigenvalues and corresponding 

eigenvectors of the free-~ibration problem. It should be noted that the use of the 

derived Ritz transformation vectors is .not to obtain an accurate solution of the free-

vibration eigenpl'0blem (Eq. 5.8), but rather to form an accurate load dependent vector 

{ 
-1 
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basis to reduce the size of the original system of equation (Eq. 5.1). RecentIy, Wilson, 

et a.1. 47, have"Presented a simple numerica.1·algorithm b~ed on an invetse iteration 

type of scheme and using the spatial distribution of the dynamic load to generate.,a set 

• of mass orthonormal load dependent transformation vectors to be used in Ritz type of 

an~yses as an economic alternative to the classical modal superposition method. The 

, algorithm used to generate the Ritz vectors in this study is a computational variant 
. , 

of the original a.1gorithm presented by Wilson et alY. It was shown by Léger et 

al. 48 that this new algorithm is numerically more stable for systems caJ;rying massless 

d.o.f.- Furthermore, it pro duces a. 'higher degree of linear independence among the 
( . 

transformation vectors, and allow a better control of the static correction effects that are 
- \ 

, automatically included in the basis to approximate the participation of higher vectors 

not retained in the summation. Table 5.1 presents the algorithm used to generate the 

Ritz vectors. The vectors X. generated by this algorithm are orthogonal, to the me.ss 

matrix. -The orthogonalization with respect to the stiffness matrix is optional. . 

5.3 ~ntation of S~ismic Load ~rom Truncated Vedor Bases 
1 

!> One of the important aspect of direct vector superposition techniques for *e so-

lut ion of dynamic equiIibrium e-quatiqns, pertains to the number of vectors that must 

qe retainèd in the analysis. Hansten and Be1140 demonstrated that the inaccuracies of 

. vector truncation are caused by the omission of load components that are orthogonal 

to the vectors included in the solution. 

For "earthquake analysis, the concept of effective modal mass (definled in Sec­

tion 3.4) corresponding to the part of the total mass responding to the earthquake 

in each eigen or Ritz mode, is commonly used as a good indication of the relative 

contribution of a particular mode to the global structural response.11 A spatial error 

estimate indicating the relative percentage of the total earthquake load represented' by , . 
the trl1ncated vector ba§i~ can thus be written as: 
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Table 5.1 Algorithm for the Generation of the )titz Vecto~ (Reference 24) . 

/ 

I-Given mass, stiffness matrices lM], IK]and load vector [(8). 
2-'l\iangularized stiffness matrix. ' 

[~] = [L]T [D] [L] 
3-Solve for initial static ~flected'shape. 

[K]~ == [(8) solve for Jlo 
4-Solve for first vector. 

[K]X; = [M]llo solve for~ 

(r f/2 bl = X; [M]K; 
Xl = X~ X b

1
l 

[M] norma1ize,~ 
CVI = ~[M]Xl upda.te stjLtic vedor !la 
!lI = ~ - CVI ~r 

5-Solve for addition al vectors i = 2, ..• , r - 1. 
X; = [M]~_r BOive for X; 
Cj'=~[M]X: compute for j=l, i-l 

'.-1 

X~* = X~ - 2:CjX. 
~ --... -1 [M] orthogonalize X; 

j=1 

!f = (X;*r [M]X:~ fil ./ 

X. = x~.* X l. [M] normalize{ x; * } 
h ....... =-4 U 

cv; = llT- 1 [M]~ update static vedor Vi - 1 

V· = V· 1 - CV X. -... ..... - .~ 

\ -

~~ '" 

1 

6-Add static residual !l,.-l as static cotrection vector iL. (optional) , 
i-l 

~-l = !l,.-l - L-(X; [M]Yr-l) XJ 

3=1 

, br = (~-l [M]1lr_lr/
2 

[Mr,Kthonorrnalize 1lr _ l 
iL. = 1lr-/l X b

1
• U 

, 

7-0rthogonalization of transformation vectors with respect to IK]'(optional). 
, [If]. = [X]T [K][X] 

[M]· = [XjT [MJ[X] 
[K]· [Z] = [M]* [ZJ[w 2

] solve reduced eigenvalue problem < 

Ci) = approximate structural frequencies 
[XI;;::: [X][Zj , compute final transformation vectol'8 
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(5.11) 

In thiB section the representation of the seismic load from a truncated vector basis 

UBing either the eigènvectors or the derived load dependent Ritz transformation vectors 

iB investigated. 

To compare the number of vectors for the eigen and the Ritz solutions, required 

to represent adequately the seismic load, a target percent age of effective modal mass 

was fixed at a value of 95% and the required number of vectors to reach this value 

was determined for both solutions. This has been done for the horizontal and vertical 

directions. The effect of the inertia of the foundation block on the representation of the 

seismic load QY a set of transformation vectors was als.o investigated. Two models for the 

foundation block were consideredj the mass and the massless foundation models. The 
.' 

foundation flexibility waâ varied such that the modular ratio ~tween the foundation 

rock and the concrete dam takes the lower and upper limits of the values used in the 

analyses presented in Chapter 4. 

5.3.1 Comparison Between Oerived Ritz Vectors and Exact Eigenveàors 

5.3.1.1 Mass Foundation Model (Earthquake Inpu$ -Models A, C,O) 

The percentage effective modal mass in the Y-dir is represented as a function of 

the number of ~igenvectors and the number of Ritz vectors in Figures 5.la) and 5.lb) 

for a flexible and rigid foundation respectively. It can be noticed from these fi~ures tha~ 

for both the eigen and Ritz solutions, the contribution of the first mod~ of vibration 

1 

...... to the total response increases with the fiexibility of the foundation rock. Indeed for" 

the most flexible case (El 1 Ed = 1/8), the contribution of the first mode to the total' -

response is around 60% for bath the eigen and Ritz solutions. This contribution drops 

to nearly 10% for the most rigid case (El / Ed = 4). The number of vectors needed 'to 
) 
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reach the required 95% of effective modal mass is dependent on the flexibi'ity of the 
, . 

foundation rock. For EJ /Ed. = 1/8, which r~present8 a flexible foundation, 6 vectors 

for the eigensolution and 8 vectors for the Rltz solution were needed' to get 95% of thè 

P EMMJI' For the case EJ / Ed = 4, which represents a rigid foundation rock, 15 vectors 

were needed in the eigensolution to reach the required 95% of the P EM Mu, while the 

Ritz solution converged with 14 vector~. This shows ~hat the eigensolutionDand the' 
-0 

Ritz solution converge with very similar characteristics in the horizontal direction. 
- . 

The same study has been carried out for the Z-dir, the results are presented in 
ï. 

Figure 5.2. The first obsérvation that CM be made is that the required number of 
, ~ 

vectors for both solutions to converge, is more important as compared to tne horizontar . 

direction since axial modes of deformation are stiffer than lateral moqes of deformation. 

It can also be noticed in this case that the derived Ritz solution achieved loading 

convergence with fewer vectors than the eigensolut~on and this is for the complete 

range of the selected parameters .. For the case El / Ed = 1/8, 17 eigenvectors were 

needed to achieve 95% of the P EMM", whereas on~y Il vectors were needed for the 

Ritz solution to converge. For the case of.-the relatively rigid foundation (EJ / Ed = 4) 

" the eigensolution converged with ~7 vectors, while only 20 vectors were needed for the 

, Ritz solution to converge. 

5.3.1.2 MassJess Foundation Model (Earthquake I,nput Model B) 

For the massless fo~ndation model as on~ should expect, the convergence for both 
~ . 

vector bases is achieved with fewer vectors than' the models where the mass of the 

foundation block is taken into account. This is because the mass of the foundation 
~ , 

being neglected, the foundation block will not tend to dominate the dynamic response 

of the dam-foundation system. The percentage e:ffectiv~ modal masses in the horizontal 

and vertical directions are represented in Figures 5.3 and 5.4 respectively, as a function 

of the number of vectors retained in the analysis. From Figure 5.3, it can be noticed 

that the contribution of the first mode of vibration to the total response in the Y-dir is 
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. Number of Vectois Retained in -the Analysis (Mass Foundation Model). ' 
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more significant than in the II1ass foundation model. The convergence characteristics 
, 

o~ the solution ~ing the'eigenvectors and the solution ~ing the Ritz vectors are very' 

- similar in the horizontal direction. For the case EJ! Ed = 1/8, the required numher 

of vectors to reacçoh 95% of the PEMM,j is 2 for the eigensolution and 4 for the Ritz . . 
solution. For the rigid foundajion case, El / Ed = 4, the solution using the eigenvectors 

convergemwith 9 vectors while the Ritz solution converged with 7 vectors. 

Considering Figure 5.4 whith represents the variation of the PEMM in the vertical 

direction as a function of the number of vectors retained in the anaiysis, it can he noticed 

that for the case El / Ed = 1/8, the eigènsolution and the Ritz solution converged with 3 

and.4 vectors respectively. For the c~e ~I / Ed = 4, the converg~nce of the eigensolution 

was achi~ved by 11 vectors and for the Ritz solution the required number of vectors 
1 

was of 10. Thus for the massle8S' founda~ÏQn model, the sQlution using the eigenvectors 

and the solution. using the Ritz vectors have very similar convergence characteristics in -

both horizontal and vertical directions. 

5.3.1.3 Relative Computational Efficiency 

The study of the representation of t}(e seismÏc load by a truncated vector basis 

showed, that for m'ass foundation models, if vertical excitation is to he disregarded, the-
~ 

- eigenvectors and the Ritz vectors have 'very similar convergence characterististics. H 
~ . 

verticé),l excitation is to be considered, it has heen shown that the Ritz solution achieved . -

loading convergence with fewer vectors than the eigensolution: For the massless foun­

dati~n model, the required number of vectors $or both the eigen and Ritz solutio~s was 
, , 

very close in the horizontal and v~rtical directions . 

. The required number of vectors to achieve effective moqal mass convergence is not . ~ 

the only important factor if comparison between the performances of the eigensolution 

and the Ritz solution is to he made. Indeed the numerical cos~ in t-erms of computer 

execution time is also an important factor sinee low computer costs of a typical analysis 

cycle will allow inexpensive reanalysis to condùct reliability evaluation of the numerical 
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Number of Vectors Retained in the Analysis (Massless Fo~datio~ Model). 
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(b) Rigid Foundation Case: Ef/Ed-4 

Figure 5.4 Percentage Effective Modal Mass in the Z-Dir as a Function of the 
Number of Vectors Retained in the Analysis (Massless Foundation Model). 
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results. The generation' of the derived Ritz ~ectors 'Yas appr~imately 7 to 9 times more 

.efficient than the eigensolutio~ when a subspace iteration scheme was used and 2 to 9 
. 

times more efficient when the Lanczos method \vas used to generate the eigenvectors. 

On the basis of the previous observations it can be stat'ed that the use of the derived 
, (. 

Ritz vectors for the representation of a seismic load applièd to a concrete gravi~. dam- . 

founda~ion system, is moie appropriate than the use of the eigenvectors. It should aIso 

be noted that a satisfactory,seismic loading representation by truncated load dependent 
" 

Ritz ctransformation vectors has been shown to ensure converg~nce of typical response 

quantities such as stresses aid displacements of typical civil· engineering structures.'7 . .a 

5.4 Oynamic Respon~e Analysis Procedure 
, " 

Having selected the transformation vectors and the number of vectors required to -
represent adequatèly the seismic load, a solutio~ strategy has to be adopted to solve ' 

• 0 

.. " 
the reduced system of dynamic equilibrium equations (Eq. 5.3). Tw~ cases have to 

be considered. One with-'proportional damping and the other with non-proportional 

damping. For the case where the damping is proportionaf, the dynamic equilbrium 

equ~t~ons are uncoup~~d and car; thus b~ solved separately. Th~ total response is then 

obtamed by sllperposi~g the Rltz or elgen modal responses. In t~e case of. a non- 1 

• ~ - 1 
pr~portional damping~ the reduced damping II].atrix [Cl· (Eq. 5.5) is n'ct diagonal and-( . 

. , 

its off-diagonal coefficients produce coupling of the' modal equations of motion! Three 

possible methods to solve the coupled reduced system o(dynamic equilibrium equations 

(Eq 5.3) are: 

1) Mode superposition using complex: mode shapes (Method 1) 

The equations of motion of a structure .~ith' non-propo~tional damping may also b~ . 
uncoupled bv the solution of the compl~x eigenproblem which may' be ~ritten..as: 

" 

-[w2 J[M][4>] + i[w][C][4>] + [K][4>] = 0 
• 
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ln such a case the complex .m04e shapes and frequencies will contain in-phase and 

out-of-phase components ~uch that the eigenproblem is essentially of order 2n. The' 

detaiIS of this method can be round in Reference (39). It should be noted that the 

same approach can be used to diagonalize the reduced system expressed in derived 

Ritz coordinates by the matrices [Ml·, [Cl· and [KJ·. The or der ~f the complex 

eigenproblem will then be 2t where r is the number of vect~rs retaiJled in the analysis. 
" 

The major drawback of the complex eigenmethod' is the Iarger size of the eigenprobleD,l 

that must be considered and the necessity of dealing with complex numbers in the 

dynamic response. 

2) Direct integration of the reduced system (Method 2) 

An interesting approach to sqlve the coupled equatioils of motion expressed in gener-. ' 

alized eigen or Ritz coordinates (Eq. 5.3) is to integrate theSe equations directly. By 

limiting the transformation to the modes that are expected to cOJltribute significantly 

to the dynamic ;esponse, an efficient solution \echniq~e is obtained. This procedurè 

was recommended by Clough and Mojtahedi39
, a numerical example to illustrate the 

eff~tiveness of the method was presented. The major drawback of this method is that 

if damping coupling between one of the lower modes with a higher mode exists, this­

effeet will not be taken into account sinee the solution is found by including only a 

small number of modes expected to contribute significantly to the total response from . , 

the consideration of the effective modal mass. 

3) Vector superposition using weighted damping ratios (Method 3) 

The simplest but only approximate procedure for treating the non-proportional damped 
o , U 

case, is to ignore the off-diagonal terms of the reduced damping matrix [Cl·, and 

to assign a weighted damping ratio to each uncoupled modal equation. In practice 

different approaches to determine the weighted damping ratios to be assigned to each 

modal equation, have been proposed. 

In a first approach the non-diagonal matrix [C]· can be replaced by a diagonal 
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matrix-with the same diagonal terms as in the original matrix. Then the, stan­

dard modal analysis procedure is followed in order to solve the uncoupled dynamic 

equilibrium equations. It is obvious that this procedure introduces errors in the 

solution, however Warburton and Soni50 proposed a criterion that should be sat-
, 

isfied in ord~r that neglecting the off-diagonal terms in matra [C]* leads to a 

maximum error in typical response qu~t1ties, of the order of 10%. ' 

e. ~ 0.05 c;, (w~ -1) , 
2c~ w? . Il,, 1 ml"_ 

ei is calculated from the diagonal element from c;, = -2e,w., w. and w_ which are 

natural frequencies, e;. and c;. are element of the [C]-. matrix and the minimum -of the ~ression , ... 1 with respect to s is taken, s may be any integer between 1 
~ , -
and ,r (s #- i), ~ being the number of vect!>rs retàined in the analysis. 

Anotiler" approach to find the weighted damping "ratios is based on the weighted 
~'-

average of strain eneriÏes in each material, presented in Chapter 4 (Section 4.5). 

m 
/ L:xJIK,]Xiei 

. ë. = .;..i=...;i~=-,", __ _ 

~ 1 XJ [K]X,. 
(5.14) 

It is clear that ignoring the off-diagonal terms of the reduced damping matr~ [e]* 

and assigning weighted damping ratios to each modal equation will introduce errors in 

the solution. However this procedure is frequently used in practice, and it has been 

--àemonst:ated to give acceptable results using only a fe~ modal coordinates in the 

earthquake response analysis of a soil-building system.IH ". 

/ 
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5.5 Analysis of Structural Response 

In this sec~ion the performances of Method 2, the direct lntegration of the reduced 

system and Method 3 using weighted damping ratios, as presented in the previoUB sec­

tion for the analysis of syste~ 'with non-proportional damping were tested by carrying 

out the earthquake respoÎlse analysis oi the considered concrete gravit y dam-foundation 
, t 

system described in Chapter 3. The foundation flexibility was set to a value correspond­

~g ~ El / Ed = 1/2. The damping ratio for the concrete gravit y dam was taken as 5 
') 

',:-percent of critical. For the foundation rock the damping ratios were taken as 5, 10, 15 

and 40 percent of critical. 

The dynamic response of tIré dam-foundation system to the NS component of the 

El Centro earthquake was determined for each of the damping case mentioned above . 
.çj ~ 

The earthquake input mode} used for these analyses was model C, the deconvolved . 
accelerogram input mechanism. For tpe proportionally damped system using el = 5%, 

the uncoupled equations of motion were integrated independently and the total response 

was obtained by vector superposition. These results were then compared to thos~ 

obtained from the step-by-step integration of the equationsof motion expressed in 

geometric coordinates. 

For the cases e, = 10% and 15%, where the equ~tions expressed in generalized 

coordinates were coupled by the reduced damping matrix [C]·, Methods 2 and 3 were 

used to solve the system of cou pIed equations. For each ~éthod two types of solution , 

were obtained. For Method 2, which consists of integrating simultaneously the coupled 

modal equations, two types of transformation vectors were used to obtain the solution; 

the eigenvectors and the derived Ritz vectors. For -Method 3, which consists of inte­

grating independently the uncoupled eCi):uations of motion by ignoring the off-diagonal 
~ 

terms in the reduced darnping matrix [CI·, two types of weighted damping ratios were 
4... 

,used. First, the weighted damping ratios were computed from equation (5.14), second 

the weighted damping tatios were computed directly from the diagonal terms of ma-
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trix [C]·. The damping ratio of foundation was then set at 40 percent of critical to 

investigate a heavily damped foundation system. The same procedure as in cases of 
v 

el = 10% and 15% was followed eXcept that in Method 2 only the Ritz vectors were 

used as transformation vectors' and in ,Method 3 the damping ratios were computed 

froPl the diagonal terms of the reduced damping matrix [C]'". It should be noted that 
""" , 

the results of the ab ove analyses were also cdmpared with the results obtained from 

a step-by·step integration of the coupled equations of motion expressed in geometric 

coordinates. 

Although a complete set of stress and displacement histories was geneiated for 

each analysis, it was verified that the displacements at node 1 (Fig. 4.2) represented by 

their R.M.S.D and the coiresponding Max.D can be consid~red to provide an adequate 

indication of the relative results given in the different analyses for typical quantities of 

engineering interest. 

The number of vectors expected to contribute significantly to the total response, 

was selected by determining the required number of transformation vectors (eigenvec­
\ 

tors or Ritz vectors) to reach a value of percentage effective moaâ.l mass of 95 percent 

in the horizontal direction. This requirement has lead to a number of 7 vectors when . 

, an eigensolution was used and 8 vectors for the Ritz solution. 

The results of the different. analyses for cases el = 5, 10, 15 and 40 percent are 

presented in Table 5.2 .. The results for el = 5% showed that for a proportionally 

damped system, the integration of the uncoupled modal equations lead to almost the 

same displacements in terms of the R.M.B.D and the 11ax.D, as the ones obtained from 

a step-by-step integration carried out in geometric coordinates. In the case of a non-

prQportionally damped system, it is noteworthy that the integration of the reduced 

coupled e1uations of motion lead to results which are in good agreement with those . '\ "', 
\ 

obtained from a direct integration of the equations of motion expressed in geometric 

coor4inates and this is for cases e, - 10, 15 and 40%. Furthemore, the use of the-
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derived Ritz vectors maintajps or improve the accuracy of the response as compared 

to the solution using "the eigenvectors as bases for computations. The performance of 

Method 3 depends ~Jl the values of weighted damp~p.g ratios assigned to the different 

modes contributing significantly to the response. Indeed, it can be noticed from Table 

5.2 that in the case whereJhe weighted damping factors are computed from equation 

(5.14), th'e resulting displacements are underestimated. In other 'words, the use of 

equation (5.14) leads to d~ping ratios that are too high. The other alternative in 

Method 3, which consists ,of computing the damping ratios directly from the diagonal' 

'terms of the reduced damping matrix [e]*, showed to give results which are in good 

agreement with those derived from a step!i'by-step integration in geometric coordinates. 
, ' 

~The largest error introduced in the results due to the neglect of the off-diagona~ terms 

in [C]*, corresponds to the heavily 'damped case of el = 40%. It should he noted also 

that the Warburton criteria (Eq. 5.12) was satisfied for c'ases of e, = 10 and 15%, for 

el = 40% this criterion was not satisfied for aIl the transformation vectors. This shows 

that this criterion can be rest~ictive in some cases ~ince the maximum rel~tive error 

in the displacements was approximately 3%. It should be noted that the use of the 

previously investigated methods can also he applied directly to a massless foundation 

mode!. 

· The total eJÇecution computer times required by the different meth6ds considered 

above, to compute the displacements history are listed in Table 5.3. The computations 

w'ere performed in double arithmetic pr~cision, ~on a micro-computer working with 

the 80286/80281 micro-processors, no advantages were taken of symmetry and of the 

reduced bandwidth of stiffness and damping matrices for the step-hy-step integration 

'of the-coupled system. 

It should be noted that the total computer execution times shown in Table 5.3 for 

any method, represent the time required to derive the displacements history, given the 
, , 

system matrices [M], [Cl and [K] and the load vector l(s), which includes the ~eneration 
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Table 5.2 Horizontal Displacements at Node 1 Derived from the Different Solution 
Strategies. 

Foundation dampÏilg, el 10% 15% 40% 

1& 

Solution method R.M.S.D Max.D R.M.S.D Max.D R.M.S.n Max.D 

(cm) (cm) (cm) 
;' 

Step-by step integration 79.00 12.85 73.44 12.41 63.72 11.82 

<;. 

Reduced coupled equationa ~ . 
a) Derived Rit .. vectors Cc 78.75 12.78 73.21- 12.39 63.37 11.78 
b) Eigenvectors -·78.75 12.75 73.20'. 1~6 

(Non-proportion al damping) \. 
Assumed uncoupled equations 

., 

a.)ë from c;. 78.13 12.75 7~~04 12.21 61.96 11.47 

b)é' from Eq.(5.14) , 67.43 11.74 56.00 10.43 
(Non-proportional damping) 

Damping in concrete gravity dam 5%, El! Ed = 1/~ 

-
: 

. ' 1 
-' \ 

Table 5.3 Computer Times Used in Computing the Displacements History. , , 

Step-by-step integration coupled equftions (140 X 140) 4800 sec 

Direct integration of reduced system (8 X 8) 
(using Ritz vectors as transfonnation vecto.rs) 

Independent integration 'of u~coupled equations (8 x 8) 

.' 
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and application of transformation vectors. _ The advantages of using the cooldinates 

reduction techniques for linear systems are put onto evidence by the examination of" 

the values snOwn in Table S.3. The integration of the reduced coupled system is more 

than ten times faster than integrating the complete system of equations. 

A major advantage of integrating directly the assumed uncoupled reduced equa­
j 

tions of motion, as compared to the reduced coupled system is that an exact closed 

form mathematical solution is possible if the seis~ic load is described by a series of 

straight lines between equal intervals of time. This approximate loading description is 
00 , 

generally used for any digit'ized transient record. On the other hand, the direct inte­

gration of the coupled system of equations will generally exhibit period elongation and 

amplitude decay with time. -

5.6 Conclusions 

In this chapter, it was shown that a significant r~duction in the computational effort 

involved in the tim\ domain e~thquake response analysis Of~C ncrete gravit y dam­

foundation system, can be gained by the application of recen dê"veloped coordinates 
~ 

reduction techniques while maint;Jhing a good accuracy of the cgmputed response 

tf quantities. 'The main conclusions of this chapter can be summarized as follows: 

- The number of transformation vectors required to represent the seismic load was 

more important for a rigid foundation than it was for a flexible foundation. 

-' The solutions using the the eigenvectors and the derived Ritz .,yectors as bases for 

computations had the sam~ convergence characteristics ih the horizontal direction 

for mass found~tion models. 

a) The Ritz solution converged more rapidly than the eigensolution in the stiffer 

vertical direction for mass foundation models. 

b) .Ignoring the inertial effect of the foundation reduced the number of transformation 

vectors required to represent adequately the earthquake load vector. 
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_ -J.,} F~or the massless foundation model, the eigensolution and the Ritz 'solution ~ad 

s' ilar convergence characteristics in both the horizontal and vertical directions. 
... , 

d), The time of ge~eration of the derived Ritz vectors was 7 to 9 times less ~han the 

tiIIÎe required to generate the,eigenvectors when a subspace iteration was used and 

2 to 3 times faster when the Lanczos method was used. 

~ The use of the effective modal mass approach provided a good guidance to monitor 

the number of transformation vectors to be included in the response. 

f) In the case of-proportionai damping, the integration of the uncoupled modal equa:­

tions lead to similar'results as the step-\;>y-step integration of the, coupled equations 

expressed in geometric coordinates. 

g) In the case of non-proportional damping, the direct integration of the coupled re-
, - l '--

duced system expressed in generalized coordinates led to results which were very 

,close to the results derived from the step-by-step integration (geometric coordi­

nates). 

h) The use of the derived Ritz .vectôrs maintained or improved the accuracy of the 

response as compared to the solution 7 the eigenvect~rs as bases for ço~p~ta-

tions~ - , < • 

f 

• 
i) In the case of non-proportional damping, ignoring the off-diagonal terms of the 

teduced damping matrix [CI* and computing the weighted damping ratios 'from 

equation (5'.14) underestimated the response. 

j) The Warburton criterion50 when satisfied ensured ~ acceptable level of errors in', 
, 

the response quantities derived from the solution that used the damping ratios 

computed from the diagonal terms of the reduced damping matrix. , 
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CHAPTER 6' 

S~ARY AND CQNCLUSIONS . -

) 

" , 

6.1 Summary 

The importanc.e of foundation interaction on the behavior of concrete gravity da.p1S 
, 

under earthquake ground motions has long been recognized. Previous studiesll
•
17 have, 
• 

been carried out typically in the frequency domain using foundation modëls based on 
, . 

analytical half-space solution and two-dirp.ensionallinearly elastic dam models in order 
, 

to identify and quantify the effect of critical parameters. However, the need to represent 

non homogeneous~geometrical' and material fo,nndation properties, for which analytical 

models are not availabl~ and the need to consider noh-lin'ear behavior under severe 
'. 

seismic excitation require the extension of the anâlysis of dam .... foundation systems in 

the time domain. 

This sttidy has presented the effect of using four different earthquake input ~echa­

nisms suitable for .time 'doIÏla:in structural analysis of concpete gravit y dam-foundation-' -

reservoir system. These were, 

A) the standard rigid base input model, 

B) the massless foundàtion inP1!t model, 
, 

C) the deconvolved base rockJ!p5 jodel, 

. D) the free-field dam,foundation inteÎface input mode!. 

, ' 
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A two-dimensionallinear elastic finite element model was selected to represent a typical 

dam-foundation system. oThe time Qomain responses were computed for a wide range 

of the moduli ratro,' 'E/o'u"dation.; Ed~m and the damping ratio of the f4ndation, el' 
Coordinates redudion techniques suitable for the time domain solutions of large 

. / 
linear or locally non linear structural modela, generally reqtired t~ represent seismic 

dam-foundation int~raction problems were also examined. . 

T~o types of transformation vectors were presented, the eigenvectors and the de-

rived load dependent Ritz vectors. Their relative performances to represent adequately 
~ 

Û the seismic load were compared in terms of the rate of convergence as welLas the time 
Il 

requged for their respective generation. The efficiency of different solution strategies 

in solving the reduced system of dynamic equilibrium equations in the cases of propor­

tional and non~proportional damping were investigated. 

6.2 Conclusions 

o 

The results derived from the application of the four proposed earthquake input 

mechanisms to the idealized dam-foundation-reservoir system have clearly shown that 
v , 

the use of different input models lead to significant differences in the structural response 

of this type structures. The perform~ce of each of the proposed input models for a 

wide range of system parameters was established. The main conclusions were that; 

1. Model A, the rigid base rock input model, induced very significant artificial am­

plifica.tions in the response quantities of interest. These artificial amplifications 

were shown to increase with the level of foundation fiexibility. Model A is there­

fore recognized to he inadequate to evaluate time domain seismic responses of 

dam-foundatipn systems and should not be used in practice. 

2. The reliability of model C, the deconvolved accelerogram input model, which is 

theoretically the most accurate ~odel, depends on the-quality of the deconvolution \ 

analysis. The verifiéation of the deconvolved accelerogram QY computing the free-
tI:I 

o 
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field response of the finite element foundation model la a mandatory step to ensure 

accurate results for model C~·,' 

3. The use of model D, the free-field input model, led to results which were almost 
, 

identieal to those derived from the theoretically more aceurate model C and that 
o ~ _ 

was shawn to be independent of the levels of flex~bmty and damping of the foun-

dation rock. Madel D ean thus be considered the mqst efficient to evaluate the 

time domain responses' of gravit y dam-foundation systems sinee it .ls m'Qch easier 

'to implement than model C. 

4. The good performance of the free-field input model (model D), showed that the 
" - .. 
assumption of the same free-field accelerogram at aIl interface nodes is adequate 

1) 

for a concrete gravit y dam. 
, 

5. The performance of model B, the massless foundation input model, wa.s shown to 

be dependent. on the foundation flexibility, on the level of damping of the masslesft 

foundation rock and on the computational procedure retained to form the global 

damping matrix __ 

6. For model B, it was shown that in dx:der to obtain a good correlation with models 

C, D, the damping matrix, should be constructed by considering the foundation 

damping eharacteristics to be stiffness proportional only, eyen when similar damp­

ing ratios are assigned to the dam and the foundation. 

7. For flexible foundation cases (El / Ed ~ 1/4), veri similar results in typical re­

sponse quantities of interest have been observed be~ween model B, in which the 

damping was controlled at only the first mode of vibration, and modela C, D. 

8. For stifrer foundation cases', the numerical results showed that the damping ratio , , 

assigned to the foundation in model f3 should be smaller than the one that would 

have been retained for the application of models C, D, in orâer to get an accurate 

response from this .massless foundation, model. 
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The application of coordinates reduction techniques to solve the time domain dy­

namic equilibrium .equations in Chapter 5, lead to the following conclusions: .. 
o 

1. For mass foundation models (models A, C, D~, the convergence characteristics of 

the derived Ritz solution and the eigensolution were very close in thé horizontal 

direction. In the stiffer vertical direction the d~rived Ritz 'solution converged more 
) 

rapidly than the eigensolution. 

2. For massless foundation model (model B}, the derived Ritz solution and t~e eigen .. 
• 

) solution had similar convergence characteristics. 
, " 

~ 

3. Ignoring the inërtial effect of the foundation reduees t~e number of transformation 

vectors required tOo1'epresent Kdequately the seismic load vector. 

4. The use of the derived Ritz veètors is advantageous" in terms of the cost of the 

analysis, since the tlme of generation ôf the Ritz vectors is approximately one 

seventh the time required to generate the exact eigenvectors. 

5. The structural"response obtained from the direct integration of the reduced cou­

pied system of equations (non-proportional damping) expressed in generalized Ritz 

coordinates, is very close to the solution obtain~d from a step-by-step integrat10n 

of the coupled equations expressed in geometric 'coordinates. 
o 

61 Ignoring the off-diagonal terms in the reduced damping matrix and integrating 

simu.1taneously,the assumed uncoupled equations of motion, showed tQ-be efficient , 

when the damping ratios were computed from the diagonal terms of the reduce~ 

damping matrix, especially for cases.where the Warburton criterion50 was satisfied . 

6.3 Recom,nendations and Suggestions for future Research 

ln summary, the main recommendatlons that sho)lld be retained from the present . -

study are that the use of mode} A is inadequate to evaluate the time do main responses 

of dam-foundation systems. Model D can be considered the most efficiênt, since it is 
1 

relatively simple to implement and leads to accurate results. ~odel B although not as 
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accurate as mode} D was shawn to boe able to produce numerical results with an accept-

able level of confidence for typical engineering applications if it is implerltented following 

a the recomme~dations presented in Section 6.2. Madel B present severaI practical ad- ~ , 
vantages, first it is relatively simple to implement num~rically, second the massless 

foundation provides a specified amount of flexibility that cbuld be replaced by· equiva-. -

lent linear or non-linear springs resulting in an important reduction in the number of 

dynamic degrees-of-freedom. In the case where the damping is to be included, dashpots 

... c~ be used to model the energy dissipation chara.cteristics of the foundation. Concern-

~ ~::;O:=:~;:i::d:::i:: ::::::::~: :::a:::~:t::;::: 
Ritz transformation vectors that can be adapted to treat locally non linear systems, in 

J 
order to reduce significantly the computational effort. 

The time domain seismic response of large structural systems, such aS concrete 

dam~foundation-reservoir syste~, is an area where research is still needèd in order to 

'àchieve safe and economical design. More specifically, work is needed to include the 

effect of local and global non-linearities such as uplift and relative slip at the interface of 

the dam and t~e foundation, con1rete cracking and non-line~ foundation behavior. It 

would be also appropriate to exte~d the problem to a three-dimensional representation . -

to obtain a more realistic model of the foundation hehavior. Investigation on the 

- applicability Aof the free-field input model in a 3-l) representation can he carried out. 

More work is aIso needed for a better idealization for time domain solution, of the 

resevoir system including the effect of water compressibility. 
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APPENDIX 

'~i,s a~pendix incl;des the results detived' fro~ the apPlic~;ion of the El Centro \ 

accelerogram. to the dam-foundation system accordin~ to the four proposed earthquake 
, 

input mechanisms. The horizontal and vertical displacements and accelerations are 

presented at nodes 1 and 11 (Fig. 4.2), the normal and shear stresses are presented at 
, 

element 5 (node h). It should he noted that the response q'tantities are represented by 

their maximum values (Max) and the c~rresponding root mean square (R.M.S). 
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Table A.l Displacements at Selected Nodal Points, perived from the Four Input 

" .. Models, El Centro Earthquake,Ced = 5%, e, = 5%). 

, 
\ 

Moduli Ratio E J / E.J l./.~ 1/4 1/2 1 2 -4 
li 

p Input Mode} R.M.S.D Max.D R.M.S.D Max.D R.M.S.D Max.D ~.M.S.D Max.D R.M.S.D Max.D R.M.S.D Max.D 
(cm) (cm) (cm) (cm) '. (cm) , (cm) 

..Ji:ir 

~ A 227.2 32.1 152.7 25.8, 128.2 23.4 9O.~ 19.1 73.5 12.2 66.8 10.3 -- -
' ..... B' 138.5 15.8 94.1 15.1 92.2 13.8 67.1 12.1 63.2 9.7 60.4 9.17 

.... cv C 95.1 12.0 69.2 11.8 93.3 13.1 68.9 12.4 64.2 10.1 62.1 9.4 w "0 .... ' 0 D 96.8 12.7 69.3 11.7 81.3 12.9 66.8 12.1 62.9 9.9 62.0 9.3 Z f' .. 
~ A 83.9 , 11.7 46.5 8.2 34.3 5.3 20.8 3.5 16.2 2.3 14.1 1.8 

IP. ........... 
" " ..... B 51.4 5.9 30.2 4.5 25.2 4.0 16.2 2.7 13.8 2.0 12.6 1.7 ..... 

- cv 
""'0 

C 36.0 4.7 22.9 3.5 23.2 3.7 16.7 2.8 13.9 1.9 12.9 1.7 
0 D 36.7 4.8 22.9 3.4 22.7 3.7 16.1 2.7 13~6 1.9 12.8 1.7 .Z 

N A 75.3 \ 10\ 47.8 7.9 37.8 7.1. 26.1 5.8 21.0 3.6 19.0 2.8 --..... "B 44.2 5.1 28.5 4.7 26.9 4.1 19.2- 3.4 18.0 2.8 17.0 2.6 
cv 

C " .. 30.3 4.2 20.9 3.5 24.3 3.8 19.7 3.5 18.2 2.9 17.5 2.6 "'0 
0 D 30.8 4.2 20.9 3.6 23.7 3~ 19.1 3.4 17.8 2.8 17.4 2.6 Z 

0 
N A, 64.4 9.2 36.3 6.2 26.0 4.5 16.0 3.2 12.4 1.8 11.0 1.7 --c~ B 37.7 4.4 22.0 3.5 18.7 2.8 12.2 2.0 10.7 1.6 9.8 1.5 ..... 
cv C 26.2 3.6 16.4 '2.6 17.2 2.7 12.6 2.1 10.8 1.6 10.1 1.5 "'0 : 
0 

' r-" , 
12~ Z D ( , 26.6 3.7 16.5 2.6 16.7 2.7 10.6 1.6 10.1 1.5 
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Stresses at Element 5 (Node b), Derived from the Four .Input Modela, 
,. 

TableA.3 

El CentrooEarthquake (ed = 5%, el = 5%) . 

Moduli Ratio El / EJ 1/8 

Inp\lt Model R.M.S.S 

A 7.84 

B 4.85 
:,. 

b;' C 3.18 
D 3.22 , 

.A 57.04 
" B 34.63 .. .. 

b C 22.31 
D 22.58 

A 5.00 

.. B 3.20 
;,. 

b C 2.13 

D 2.17 

<;) 

1/4 

Max.B R.M.S.S 

(MPa) " 

1.12 

0.64 
'0.41 

0.4.2" 

8.99 

5.10 

3.03 
3.06 

0.69, 

0.37 

0.28 
'8.29 

~~ 
~ .. ,,;::4 

,~ 

7.79 

4.63 
3.27 

3.28 

60.96 

34.68 

23.68 
23.85 

4.40 

2.91 

2.14 
2.15 

, 1/2 

Max.S R.MS.S 

(MPa) 

1.3~ 7.95 

0.80 5.69 
0.58 5.06 

0.59 4.94 

10.03 62.39 

6.36 43.36 

4.85 ,.-37.21 
5 . .;1 36.50 

0.80 4.62 

0.48 3.46 

0.32 3.07 
0.32 3.07 

1 2 .. 
Max.S R.M.S.S Max.S R.M.S.S Max.S R.M.S.S Max.S 
(MPa) (MPa) (MPa) (MPa) 

1.54 6.32 1.28 5.72 1.1 5.94' 1.22 

0.94 4.73 0.89 4.80 0.74 4.79 0.78 
0.83 4.82 0.94 4.85 0.81 4.88 0.69. 

0.84 4.70 0.88 4.77 0.71 4.88 0.71 

13.11 55.66 13.58 49.06 9.43 t:lI44•36 7.72-

7.72 37.73 1.45 38.50 6.54 38.00 6.11 

5.80 36.53 7.12 38.57 ' 6.40 39.08 6.23 

5.73 37.14 7.42 37.53 6.20 38.93 6.16 

0.69 3.81 ' 0.75 4.28 0.68 4.42 0.79 

0.57 2.94 0.48 3.00 0.48 3.04 J O.~5 ' 

0.54 2.89 0.47 2.80 0.38 3.pS 0.42 
0.54 2.89 0.47 2.80" 0.38 3.05 0.42 
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"- Table A.4 Displacements at Sëlected Nodal Points, Derived from the Four Input 

Models, El Centro Earthquake (ed = 5%, el = 10%). 
\ 

t 

Moduli Ratio EJ / Ed 1/8 1/4 1/2 1 2 • ~ 

\ 

Input Model R.M.S.D Max.D R.M.S.D Max.D R.M.S.D Max.Q R.M.S~ Max.D R.M.S.D Max.D, \,R.M.S.D Max.D 
(cm) (cm) (cm) (cm) (cm) (cm) 

?-' A 194.1 26'.0 126.5 23.1 22.1 86.1 18.0 71.8 12.0 64.8 10.0 

--- <;;) 

ri ·B 85".6 10.9 64.7 12.3 v 11.6 57.3 10.4 56.2 8.9 56.0. 8.4 

.... Q) C 90.5 11.4 66.0 11.4 12.8 67.0 11.9 61.9 9.7 60.1 9.1 () ~ "'0 
-.l 0 D 87.9 11.2 63.0 11.1 77.5 12.J 66.0 11.8 61.9 9.7 6O.i 9.1 z :1 

?: A 72.2 9.3 - 39.4 7.3 32.5 5.1 20.2 3.3 15.7 2.3 13.7 1.8 
1""1 B " 1""1 31.7 3.9 20.7 3.6 18.1 3.3 13.9 2.4 12.3 1.8 11.6 1.6 

CI,) C 34.3 4.2 -21.8 3.3 22.1 3.7 16.2 2.7 13.4 1.~ 12.5 \ 1.7 ru 
0 0 33.3 4.2 20.8, 3.2 21.7 3.6 16.1 2.7 " 13.4 t.9 ~. 1.7 Z 

a 
N A 63.4 8.8 39.3 7.1 35.4 6.6 24.8 5.4 20.5 3.5 18 •• 2.7 ---ri B 27.0 3.5 19.5 3.8 19.2 3.4 16.3 3.0 15.8 2.5 15.8 2.4 

Q,l 
C 28.7 3.7 19.9 3.5 23.1 3.8 19.1 3.4 17.5 --------u 16.9 2.6 ru 

0 ~--
Z' D. 27.9 3.6 19.0 3.4 22.6 3.7 18.8 3.4 17.5 2.8 ---'6JL 2.6 

N 

--- A 54.4 7.4 30.1 5.5 24.5 "4.3 15.5. 3.0 ' 12.1 1.8 10.7 1.7 
ri B 22.9 2.8 • 15.0 2.8 13.4 2.4 10.5 1.7 9.5 1.5 9.1 1.3 ri 

Q,l C 24.8 3.2' 15.7 2.6 16.3 2.7 12.3 2.1 010.5 1.6 9.8 1.4 "'0 
0 D 24.1 1 3.1 15.0 2.5 16.0 2.6 12.1 2.0 10.5 . 1.6 9.8 1.4 Z 
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-,' Table A.5- Accelerations at Selected Nodal Points, Derived from the Four Input 
Models, El C~ntro Earthquake (ed = 5%, El = 10%). 

"'ù 
Q 

~ 

Moduli Ratio EJ J Ed - 1/8 _ 1/4 1/2 1 2 .( 

a 

Input Model R.M.S.A Max. A R.M.S.A Max. A R.M.S.A Max. A R.M.S.A Max. A R.M.s.A Max. A R.M.s.A Max. A 

(m/.s2) (m/s2) (m/s..2) (m/82) (mi82) (m/82
) 

0 
a 
~ A 138.4 26.0 163.8 30.3 189.4 -- 43.2 1~9.8 49.9 '183.0 38.1 170.4 37.4 

.... ....-l- B 61.8 12.5 72.8 17.6 95.6 21.3 100.6 23.6 112.2 23.0 117.0 22.8 
~ 
00 QJ C 

0 

ro 55.8 9.3 64.0 15.3 102.7 17.1 ,109.3 23.8 122.8 22.5 131.8 24.1 
0 0- 549 9.6 62.5 15.6 101.7 17.2 107.1 24.0 122.9 22.1 132.1 23.8 Z 
~ 

A 

"'4

1 -- 48.2 7.5 46.0 9.7 46.4 8.3 42.3 °9.1 66.8 68.7 12.7 .,... 
B 20.1 30.3 7.1 .,... 2.9 20.1 4.6 24.4 5.8 24.8 5.6 28.1 

QJ C 18.3 2.5 19.3 3.8 29.7 5.7 25.5 5.1 26.7 5.5 34.7 7.1 "0 
0 D 18.2 2.7 18.9 3.7 29.7 6.0 26.3 5.6 27.3 5.9 :35.0 6.9 Z 

-;;? 
, , 

t-'I A 27.1 5.7 38.2 7.4 49.8 11.7 56.9 15.2 58.0 12.5 61.2
0 

f 10.8 -- l7 .,... B c 13.4 3.1 18.0 25.2 5.7 28.4 6.2 '32.5 6.1 35.4 6.1 
CI) C 12.0 2.3 16.3 4.2 26.1 4.6 29.2 6.3 0 35.1 6.2 39.4 6.8 "'Cl 
0 D 12.0 2.4 16.4 4.4 26.1 4.7 ,28.8 6.2 35.2 6.2 39.6 7.0 Z ~ 

~A """ 
37.0 5.8 40.2 7.5 37.9 7.7 33.1 7.5 38.0 6.4 ,(8.3 9.7 

....-1 B 14.4 2.2 15.6 3.5 18.3 4.5 17.9 4.1 19.6 3:8 20.3 3.9 .,... 
QJ C 12.5 2.3 13.7 2.7 21.1 4.1 20.1 4.1 19.7 3.3 22.3 3.8 "'Cl 
0 

-~ 

Z D 12.5 2.3 13.3 2.6 20.7 4.2 20.2 L-4.4 - 19.7 3.3 22.3 3.9 

'. 
~ 
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Table A.6 Stresses at Element 5 (Node h), Derived from the Four Input Modela, 
El Centr~ Earthquake (ed = 5%, el = 10%). , , 

/ ... 
.....i 

Maduli Ratio El / E~ 1/8 1/4 1/2 1 2 " " .;~ : 

" 

Input Model R.M.S.S Max.S R.M.S.S Max.S R.M.S.S Max.S R.M.S.S • Max.S R.M.S.S Max.S R.M.S.S Max.S 41' 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

.... - . w A 6.63 0.97 6.35 1.19 7.43 1.43 6.02 5.52 1.00 5.66 1.09 co ... 
B 3.05 0.42 3.21 0.650 4.08 0.76 4.03 4.27 ' 0.68 4.44 0.70 ;a. 

t:J;a. C -3.01 0.39 3.12 0.58 4.80 0.82 4.67 0.91 4.68 0.71 4.72 0.68 
D 2.92 0.39 2.98 0.55 4.70 0.83 4.61 0.87 4.69 '" 0.77 4.73 0.70 

/' 

A 47.48 7.75 4&.62 8.98 57.37 12.07 50.46 12.53 46.40 9.10 42.85 7.58 ., 
.. B 21.62 3.64 23.60 5.21 30.60 5.74 30.89 6.37 33.29 6.04 34.54 5.81 -

b c 20:94 2.88 22.51 4.82 35.24 5.75 35.11 6.92 36.62 6.25 37.69 6.11 
D ,20.38 2.89 21.65 4.77 34.60 5.72 34.53 6.79 36.61 6.22 37.70 6.08 

. 
A 4.29 0.54 3.71 0.71 4.35 0.66 3.61 0.67 3.84 0.65' 4.16 0.74 .. B 2.01 0.25 2.03 0.40 2.49 0.47 2.44 0.40 2.58 0.39 2.70 0.40 'b;" 
C 2.03 0.25 2.04 0.31 2.95 0.52 2.76 0.48 2.71 0.38 2.94 0.41 
D 1.97 0.25 1.95 0.31 2.91 0.52 2.75 0.48 2.72 0.38 2.95 o.n 
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Table A.'1 Displacements at Selected Nodal Points, Derived from 'the Four Input 
Models, El Centro Earthquake (ed = 5%, el = 15%). 

Moduli Ratio El / Ed 1/8 1/4 1/2 - 1 2 

:: 

" 

4 

Input Model R.M.S.D Max.D R.M.S.D Max.D R.M.S.D Max.D. R.M.S.D Max.D R.M.S.D Max.D R.M.S.D Max.D 

~ , 

_' Ai 
1'"'1' B 
~ cl 
~ 11 //' 

168.2 

73.0 

82.8 
79.9 

~·i~..! , 
~tr: 

.----- .~" 62.7 ~ 
.'_ A 
~ B 
~ C 
~ D 

N -.... 
1'"'1 
'CI) 

'"0 
o 
Z 
N 

--­....c 
1'"'1 

CI) 
"'Ij 
o 
Z 

A 
B 
c 
D 

A 

B 

C 
D 

26.9 

31,3 

30.2 

54.5 

22.9 
26.3 

25.3 

46.7 

19.4 

22.7 

21~8 

(~m) (cm) (cm) (cm) (cm) , (cm) 

22.9 118.8 

9.9 ' 57.5 

10.1 62.7 

9.9 " 62.4 
~ .... "" 

r 

8.0 '1 .37.4 

3.4 J' : _ .J8.~ 
3.7 20:7.: " 
3.6 20.6 

7.7 

3.2 

3.2 

.3.2 

6.4 

2.5 

2.8 

2.7 

36.6 

17.2 

18.9 

18.8 

28.2 

13.3 

14.9 
14.8 

22.1 

11.3 

11.3 
11.0 

6.9 

3.3 

3.3 

3.2 

6.8 

3,4 

3.5 " 

3.4 

5.2 
2.5 

2.6 
2.5 

113.0 

58.4 

73.4 
73.6 

30.6 

16.0 

20.5 

20.6 

33.2 

16.9 

~1.4 

21.5 

23.0 

11.8 

15.2 1 

15.2 

~ 

---" 
208 

10.7 

12.4 

12.4 

4.9 
3.1 

3.5 
3.5 

6.2 

3.1· 
3.6 

3.6 

4.0 

2.2 

2.6 

2.6 

~8S.1 

53.6 

65.' 

64.4 

19.6 

12.9 

16.0 

15.7 

23.8 

15.25 
18.7 

18.4 

15.0 

9.7 
12.1 

11.8 

17.2 

9.6 -. 
11.8 

11 . .5 

3.1 

2.3 

2.7 

2.7 

5.1 
2.8 
3.4 

3,4 

2.8 

1.6 

2.0 

2.& 

70.4 

53.3 
61.3 
61.0 

15.3 • 

11.7 

" 13.3 
13.2 

20.0 

15.1 
17.3 

17.2 

11.9 

9.1 
10.4 

10.3 

11.9 

8.5 
9.5 

9.5. 

2.2 ... 

1.7 

1.9 
1.9 

3.5 
2.4 

2.7 

2.7 

1.8 
1.4 
1.6 
1.6 

o 

64.2 

54.0 
59.8 

59.6_ 
.jI. 

13.5 

11.2 
12.4 
12.4 

18.1' 
15."'2 
16.8 

16.8 

10.5 

8.8 
\.7 
9.7 

9.9 

8.1 
9.0 

9.0 

1.8 

1.6 
1.7 

1.7 

2.7 
2.3 

2.5 
2.5 

1.6 

1.3 
,1.4 

1.4 

r~~ 
'. 

)-
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Table A.8 ~ccelerations at Selected Nodal Poin~s, Derived4'rom the Four Input 
Models, El Centro ~arthquake (ed = 5%, el = 15%). 

"' . 
- Moduli Ratio El 1 Ed 1/8 1/4 1/2 1 2 4 

- Inpu~ Model R.M.S.A Max.A R.M.S.A Max.A R.l:f.S.A Max. A R.M.S.A Max.A R.M.8.A Max. A R.M.S.A Max. A 

(mls'J) 
r 

(ml s'J) ~(m/s'J) (m/s2) (m/82) (m/s") 

>'t A 116.9 --.. 22.7 144.7 28.2 173.6 40.3 171.8 46.2 171.3 36.9 161.3 35.3 
.... ...... B 54.2 11.8 65.5 16.5 84.9 18.9 93.2 21.9 105.4 22.16 111.8 22.2 .... 

1 .... 
~ C 52.0 9.3 62.6 15.4 95.5 16.9 106.6 24.4 120.7 .22.9 130.0 24.0 . 
0 D 51.1 9.8 60.4 15.1 95.9 17.2 103.5 23.6 119.5 22.2 128.9 23.5 Z 
~ A 40.8 6.5 41.1 8.8 42.8 7.8 39.2 8.5 50.7 10.6 52.5 10.7 ........... 
...... B 17.5 2.7 18.2 4.3 21.8 5.5 23.1 5.1 26.5 6.4 28.9 7.1 ...... 
Q) C 17.1 2.4 18.4 3.7 27.5 5.6 ~ 25.1 5.2 26.7 5.7 34.0 6.9 

'1:l 
... 0 D 1710 2.6 18.5- 3.7 27.9 5.9 25.3 5.5 26.7 6.0 33.5 6.5 Z 

N A. 22.8 4.9 33.3 6.7 45.2 10.9 50.6 13.8 53.3 11.7 53.9 10.0 ........... 
..... B 11.8 3.0 ~6.3 4.4 22.4 5.0 25.9 5.8 30.3 5.8 32.8 5.8 
Q) C 11.1 .. 2.2 15.8 3.9 24.4 4.7 28.4 6.4 34.3 6.0 38.8 6.9 '1:l 
0 D 11.1 2.4 15.2 4.2 24.5 4.7 27.6 6.1 34.0 5.8 38.4 6.9 Z 

N --.. -A 29.8 4.8 34.5 6.7 34.6 6.9 29.7 6.5 33.2 5.6 38.2 8.0 
r-I B 't2.1 1 2.0 13.7 3.1 16.1 4.1 16.6 3.8 18.5 8.7 19.5 8.7 ...... 
Q) C 11'.5 2.2 13.6 2.7 19.5 4.i 19.6 <0 4.1 19.8 3.3 21.9 3.9 

'1:l 
0 D 11.4 2.2 1'3.1 2.5 19.6 4.2 19.4 4.2 19.8 0 3.2 2104 3.8-
Z 

~ ~"'~~~ 
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Table A.9 Stresses at Element 5 (Node h), Derived from the Four Input Modela, 
El Centro Earthquake (e" = 5%, el = 15%). 

Moduli Ratio ~I / E" 1/8 1/4 

~-

'V 1/2 1 2 4 

Input Model R.M.S.S Max.S R.M.S.S Max.s R.M.S.S Max.' R.M.S.S Max.S R.M.S.S Max.S R.M.S.S 
(MPa) (MPa) (MPa) (MPa) (MPa) 

. 
/A. 5.74 0.85 5.90- 1.12 6.97 1.33 5.80 1.15- 5.39 0.95 5.39 

2.64 0.39 2.88 0.62 3.63 0.71 3.78 0.69 4.08 0.65 4.30 

2.76 0.35 2.98 0.57 4.46 0.80 4.58 0.88 4.63 0.75 4.70 

2.67 0.35 2.95 0.55 '4.74 0.81 4;50 0.85 4.61 0.75 4.69 

40.75 6.73 44.42 8.46 53.36 11.34 47.46 11.73 44.68 8.85 41.88 

.. B 18.73 3.41 21.18 4.80 27.15 5.15 1 28.84 5.93 31.54 5.78 33.23 
b" C 19.26- 2.74 21.56 4:69 32.74 5.65 34.40 6.97 36.15 6.29 37.38 

D 18.64 2.75 21.23 4.66 32.84 5.65 -33.63 6.67 35.90 6.21 37.19 

... 
A .3.7~ 0.47 3.52 0.67 4.09 0.65 3.47 0.61 3.61 0.68 8.80 

.. B 1.74 0.22 1.83 0.37 2.22 0.44 2.30 0.39 2.46 0.37 2.61 
b .... C 1.86- 0.22 1.94 0.31 2.75 0.49 2.71 0.47 2.69 0.89 • 2.91 

D 1.79 0.22 1.94 0.31 2.76 0.50 2.68 0.46 2.68 0.3~ 2.90 

" -

Max.S 
(MPa) 

~ . 
1.00 

0.68 
0.71 

0.70, 

7.37 

5.68 

6.09 

6.02 

0.69 

0.39 

Q.41 
0.39 

~"'~ 

~_:--'; 


