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| | | " ABSTRACT - | B
C : |

The seismic design of concre-zte dam-foundation-reservoir systems, must be able
- to ensure the survivability of these structures to extreme magnitude earthquakes. The
need to represent non homogeneous geometrical and material foundation properties,
and to predict damages which are generally due to non-linear effects irpplies"that 'the

" solution must be deterriined in the time domain. - ’ /

This study is concerned with' the evaluation of four different earthquake input

mechanisms that are suitable for time domain analysis of dam—foundation systems.

- These are: B 2 .

_A) the standard rigid base input model, : " .
B) the massless foundation input model,

- C) the deconvolved base rock input model,

- o

: ( D) the free-field dam-foundation interface input model,

The relative performances of various coordinates reduction techniques to solve the re-
sulting time domain dynamic equilibrium equations have also been investigated. Para-
> . metric studies have been conducted from numerical experiments by applying the pro-

posed earthquake input mechanisms to simplified 2-D finite eleme,nt models of gravity
. da.m—foundatiorf systems. The principal parameters retained if; £he analyses were the.

4 ,
ratio of the modulus of elasticity between the foundation rock and the concrete dam’

TR T AT

and the damping ratio of thg ?oundation. ] , ‘
It has been found that the use of model A is not acceptable, producing sigdificant

. artificial ampliﬁcai:ions. Model C, which is theoretically the most accurate model, and

? model D produced results which were almost identical for the complete range of selected
pa.ra.meters: Model B although not as accurate as models C and D can b_e,flsed for
practical analyses if a proper modelling of the enetgy dissipation characteristics Bf the

( ‘ foundafion is provided in the mathematical model. Coordinate reduction techniquoes /,- N
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P RESUME | | -

" La conception parasismique de systémes barrage-fondation—réservoir, doit gssurer

) N

— o 8
une performance adéquate de ces structures lorsque soumises a des séismes de mag-
’ \

nitude extréme.” La nécessité de représenter une géoﬁnétrie et des propriétés non-
uniformes de la fondation et de prédire d’ éventuels dommages, dus généralement &

des effets non-linéaires, implique que la solution soit déterminée dans le domaine du

~— “

temps. . A ‘ v

+

Cette étude se consacre & l’évaluation de quatre méthodes différentes d’application

du chargement sismique, qui f)euvént étre utilisées pour I’étude dans le domaine du

-

temps d’un barrage poids et de 'interaction avec sa fondation: Ces méthodes sont:

A) le modéle standard d’application & la base rigide du i'ocher,

’
<~

B) le modéle de fondation sans masse, ¢

"

i

IS

' C) le modéle d’application’ de ’accélérogramme déconvolué & la base du rocher,
° . N é .
D) le modele d’application de I’accélérogramme enregistré au niveau de la surface 3

Pinterface 'du barrage et de la fondation.

-Une étude comparative de 'efficacité de différentes techniques de réduction du nombre®

i

de coordonnées pour la résolution des équations d’équilibr%,dynamiqu'e du systemé

barrage-fondation a également: ét;é complétée. Des études paramétriques ont été menées
A partir de simulations numériques qui ont consisté & appliquer les quatre méthodes
‘proposées aun modélgbidimensionnel d’éléments finjs, utilisé pour la représent\ation du
systéme barrage—fondation.- Le‘s parameétres retenus étaient le rapport des module§
d’élasticité du b;rrage et de la fondation-rocheuse ét l’amonisseme;lt de la fondation.

Il a été montré que l'utilisation du modéle A est inacceptable, puisqu’il produit

’ ;

des amplifications artificielles trés significatives. Le modéle C, qui gst théoriquement le

plus précis, et le mgdéle D ont produit des résultats presque identiques pour toutes les

combinaisons de paramétres considérées. Le modéle B bien que moins précis que les
R { . .




. modéles C et D peut étre utilisé en prathue g une idéalisation ;déquate des mécamsmes
. de dwsxpatxon d’énergle de la fondation est incluse dans le modéle mathématxque. Ila
, 6té aussi montré que I'application des techniques de réductxbn de coordonnées basées
N sur les vecteurs de Ritz, dépendants du charggment, perrpettait de réduire d’une fagon

notable le coiit de‘l‘?ylalyse sans pom" autant sacrilﬁer la i)récision des résultats.
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CHAPTER 1 SR
INTRODUCTION / ~

©

‘11  Overview and Objectives

0
'~ Dynamic analysis of concrete dams, subjected to earthquake ground moétions, has

been the subject of much research si;ige the mid sixties. Although there are nc; doc-
umented failures of concrete dams subjected to earthqua.k;as, there are however, some
cases where this type of darns have suffered major structural damages. Some of the
concre;:e dams which experienced such severe damages due to earthquakes, include the

Ponteba dam in Aléeria, in 1954, the Hsinfengkiang dam in China, in 1962, and the
Koyna dam in India, in 1967".
“ The c;nsensus was that thé method u;ed E_o analy;‘ze these dams gad some major
flaws in predicting their structural response when subjected to se.\'smice Ioading. The
method used in the earthquake response was the pseudo-static method. This method
consists of determining the structural behaviér of the dam subjected to a set of static
loads obtained from average ilorizon{;al and vertical ground accelerations of a, speci-
fied seismic zonal map. The hydrodynamic forces are determined using Westergaard’s
approximation? for an equivalent mass of water to niove with the dam. The pseudo-
static method does not consider the dynamic vresponse characteristics of the dam-

foundation-reservoir system, nor the characteristics of the earthquake ground motions.

Studies on the earthquake performance of Koyna dam® have shown that stresses in

S .

o
\ .
i v . ~
’
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gravity dams found by applying the pseudo-static method, have little resemblance to
the dynamic respoﬁse of such dan‘ls when "subjected to earthquake ground motions.
The development of the finite element method and recent advances in dynamic
analyses, as well as the progress in the field of computer science, Ix;ake the use of realistic
analysis of the seismic response of dams possible. This has led to the development of
new regulations concerning the analysis and designl of concrete dams. In the United
States several agencies such as the “U.S. Bureau of Reclamation”, the “U.S Corps of
Engineers” and the “U.S. Commission on Large Dams”f; have had an or;going interest °

in the safety of dams since the early seventies*>:¢, These agencies have been involved

-in an extensive program aimed at determining the safety of existing dams and also

in formulating new design criteria for dams. In contrast to the pseudo-static method
i

of analysis previously used, the new regulations consider in more realistic terms the

dynamic properties of the dam, the local seismicity of the site and the interaction
LN .

among the dam, reservoir and foundation rock. .

The three basic steps.in a realistic analytical evaluation of the seismic safety of a

[

dam are as follows”;

1-'Estimation of the maximum expected earthquake excitation.

" 2- Analysis of the response to this dynamic input.
3- Comparison of predicted response-with the strength and deformation capacity of
the structure. «

*

The selection of the design earthquake may well be the most imporf;a.nt part of

. this total procedure. The first step ‘in this process is to investigate the geologic and

¢

seismic conditions in the region of the intended site, the consequences of failure and

hazards associated with the facility. The second step is to select the operating basis

earthquake (OBE) and the maximum design earthquake (MDE), on the basis of an

integrated evaluation of the previously defined earthquake factors. The OBE represents -

the maximurn level of ground shaking that can be expected to occur at the site during

<

2
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the econontic life of the dam. The MDE is the most severe earthquake associated with
the re-gion, it is generally equated to the maximum credible earthquake (MCE) The
dam should b% able to resist the OBE without any significant damages. In the case
of the MDE héwever, the main criterion is to avoid any release of the \;va.teg contained
in the reservoir. To remain economical the design of the dam subjected to the MDE

’

should not prevent all damages possibilities, but control what can be considered as an
4

acceptable level of damage. .
This design philosophy admits that stresses exceeding the linear elastic range can

be acceptable and will thus indicate a non-linear Beha\vior of the structure. These

= !

non-linearities may take the form of concrete crackingy opening of joints between
adjacent monoliths or uplift at the dam foundation-interface and cavitation at the
dam-reservoir interface. Numerical techniques to treat the dam—foundation-reservoir

k4

dynamic interaction problem have been mainly concerned with frequency domain meth-"
~-

ods. However, frequency domain techniques can not solve non-linear problems and are
relatively inefficient for three dimensional problems. The other alternative to solve
the dam— foundation-reservoir interaction problem, is the solution in the time domain.

This will require a proper mathematical modeling of the reservoir, the dam and the
fouﬁda.tion '
" Specific ea.rthquake input mechanisms can be a.ssoclated with particular foundation
models and it w1ll be obviously questxona.ble to put a great deal of effort in defining s
the characteristics of ground motions if the way in which they are applied can influence
the structural response significantly. ' i
° The work presented in this report is the first part of a rgseé.rch program aimed‘ai‘.
developing efficient numerical techniques in the time domain that can solve the soil-
fluid-structure interaction problem ir: ltwo a.nd three dimensions and at the same time
leave the door open for the practical solution of locally non-linear problems such as

7

the uplift and relative slip at the interface of the structure foundation system.

‘ ) |
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. The principal objectives of this study a.re:‘
a~ To assess the influence of various earthquake input models, such as;

- the standard rigid base rock input model, ) .

— the massless base rock input model,
o - the .deconvolved base r‘ock input °model,’

— the'free-field concrete rock interface medel,l
, on the time domain structural response of a dam-foundation—reservoir system,
|
definition of the intensity and frequency propert:.ies of a design ea.féhqua.ké.

b- To determine-a specific range of para.metefs such as the ratio of medulus of elastic-
ity between ?:he foundation and the structure and the damping ratio in the foun-
dation roc}c, for which particular input me;:h;nisms are more suitable to be used
in order to get an accurate time domain seismic response of the dam- foundation-
reservoir system. , J

c- To develop efficient time-domain coordinate reductlon procedure, to compute the

earthquake response of a &am-foundatxon-reservou' system

-

1.2 Review of Past Work K

4

The earthquake analysis of concrete da.ms has come a long way, progressing from
simple pseudo-static methods for computing design forces, to sophisticated dynamic
analysis. The system represented by the dam-foundation-reservoir subjected to an
earthquake, can be solved by either a freduency domain solution in the linear range
or by a time ‘domain solutlon in the linear or the non-lmear range. The frequency
domain approach has the'’ advantage to include the frequency—dependent properties of

the interacting soil and fluid systems.

The dam—foundation-reservoir system can obviously be partitioned into three sub-

H

structures: the dam, the reservoir and the foundation rock, to evaluate the seismic

4 4

in order to get an appreciation of the significance of the effort to be put in the °

<

‘o
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fesponse. The problem is compounded by the fact that these three substructures do
_mot behave independently). Early works, investigated the effect of the dam-reservoir

interaction®:® and the dam—foundation rock interaction'® separately.

| Chopra and Chakrabarti!! developed over a period of several years, a technique

whereby a two dimensional reservoir-dam system is divided into two substructures.

The flexible dam substructure is represented as an assemblage of finite elements and
ol

the reserv’oir substructure is represented as a semi-infinite continuum governed by the
- wave equatiox‘x.n The response of the total system is computed by combining the com-
plex frequeﬁcy-response funct‘ion of the hydrodynamic forces with modal frequency
response’ functions of the da:m 'a.nd calculating the response to arbitrary excitation

through Fourier integration. The water impounded in the reservoir could also be ideal-

A s

ized as a finite region of irregular geometry a.dja"cent to the dam, connected to a channel
of uniform cross section extending t'o inﬁnify in the upstream direction®?.

The other important effect influencing the earthquake response of (fam-fo;xndation-
reservoir systems, is the interaction between the dam and the f({undation rock: A lot of

work related to that problem has been done under the heading #bil-structure interaction,

A}

and a lot has been gained from seismic studies of nuclear power plants in the “recent

ks '

years!s. '

The methods of treating thq soil-structure interaction problem in the frequency

*
-

domain can be divided into three categories :

(i) Complete methods!* - ' -

(i) Hybrid methods!® P
(iii) Substructure methods!® : b &

\For massive structures such as concrete da.ms: the substructure mgfhod was mostly

used to treat the dam—foundation interaction problem. Chopra and Perumalswamf'® -

used the idea of separately analyzing the.foundation rock system, idealizing it as an

elastic half-space, and then using its frequency dependent compliance characteristics in

o N \
,
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the determination of the structural behavior. Throughout the last two decades the sub-

A‘ .
structure method to treat the dam—foundation—reservoir system subjécted to an earth-

quake loading, has :l)een refined. This has led recently to the development of realistic_

frequency domafn 'procedures and related computer programs, for the linear earthquake
response analysis of concrete gré.vity dams idealized as two—dimensional systems!?:18
and a.ls_o for concrete dams in general treatgd as three dimensional systems®®.

The major drawback of the frequency domain approach, is that it can not solve
non-linear problems; these can onlyTbe treated effectively in the time domain. Numer-
ical techniques. to solve the ea.rthqt'mke response of a da.m—foi;,ndation—;eservoir system
in the time domain rec;aived.very little attention. Wil’soil20 solved the problem of a dam
on a layered foundation by constructing alarge planar finite element mesh through the
entire system and solving for a base rock seismic excitation usihg the stel;-by-step
integration procedure. However this approach was relatively expensive due to the large

numbér of degrees—of-freedom (d.o.f) of the discretized model. Methods to treat the

soil-structure interaction problem in the time domain can be divided into three main

groups:

(i) Complete methods?*:22 | ' \ ‘ ,
(i) Boundary methods?!+2° ‘
(i) Volume methods™ ~ ) \

p LS

The problem inherent for all these three methods is the cost of the analysis. Recently
Léger and Wilson?*, Bayo and Wilson®®, ami Clough and Wilson?® presented some
coprdinate reduction proceiures suitable for time domain analysis of soil-structure
problems. - 0

In current practice in engineering offices, the complete method is the one that
is used most conveniently for Canalysis of the earthquake response of concrete gravit};

dams. A finite element discretization is used for both the dam and the foundation rock.

The hydrodynamic forces are computed by the added mass approach originated by

, 6 .
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Westergaard?. The input earthquake motions, generally a free-field recorded accelero-
gram, can then be introduced according to one of the following inptit mechanisr}m: ’
A- The standard rig?d base input model??-%7, whex:e the free field motions recorded at
" the ground surface are applied directly at the base of the deformable foundation \
rock.
B- Massless foundation rock model?*?:3%, which is the same as the previous model
but with the défprrz;able foundation rock assumed to be massless to reduce the
number of dynamic d.o.f. )

" C- Deconvolved base rock input model?®3!, where the base rock motions at the de-

formable foundation rock are derived from the free-field motions by the deconvo-

lution process. . , -

- D- The free field concrete rock interface model®*+?%'", where the equations of motion

of thg complete a.m—foundatiop rock system are:rewritten so that the effective
seismic in&ﬂ:\ is expressed directly in terms of the free field motions.
Clough and Chang?®? discussed the possibility of combining some of these input.
mechanisms to develop appropriate cross—canyon seismic excitation of arch dams. Al-
: )

though no qﬁa.ntitative conclusions could be reached, it was pointed out that the use of

different input assumptions can lead to significant variations in the structural response.

4

1.3 -Scope of the Present Study ’ N

In this report, the four proposed earthquake input mechanisms are applied to a sim-
plified two-dimensional finite element model representing a gravity dam-foundation—-

reservoir system and the response is computed in the time domain. Comparative studies
. .

of the resulting response quantities are carried out for the various controlling parame-

1

‘ters such as, the ratio of moduli of elasticity of the foundation rock and the concrete

dam and the level of da&ﬁping provided by the foundation rock. The earthquake struc-

tural response is measured in terms of the acceleration levels, structural displacements
‘,\.

7




3 : _
and related stresses at representative locations.

"In a second phase coordinate reduction techniqugs to soive the‘time domain dy-
namic equilibrium equations of the dam-fouﬂdation—reser\;oir system are investigated.
The damping levels provided by the dam and the foundation rock are usually differ-
ent, as a consequence the modal equations of motion are coupled, which corresponds
to a condition of non—proportional damping. Various solution stro.tegies including tho
non-proportional da;:nping effect are presented. .

In Chapter 2, the formulations of the four proposed earthquake input mechanisms

models are presented:- The advantages and drawbacks of each model are also discussed.

The mathematical mod@l\representing the dam-foundation-reservoir system for the ac-

tual numerical applications is presented in Chapter 3. The structural behavior of this

model for free vibration response is investigated and a preliminary earthquake analysis
is carried out. In Chapter 4, the relative performance of the four propoged models of
ea.rthqua.ke input mechanisms are investigated in terms of typxcal respqnse quantities
of interest which are derived for various range of controlling parameters. In Chap-
ter 5, coordinate reducti’on techniques suitable for the time domain solution of the
dam-foundation—reservoir system subjected to earthquake gr?)und motions, are pre-
sentfad. The response is expressed in terms of the supevrpositioﬂ of a truncated vector
*basis, using either the eigenvectors of the free vibration eigenproblem or the derived
" load dependent Ritz transformation vectors. The pe}formance of different solu.tior“ls

slfrategies to compute the earthquake response of the non—-proportionally damped dam-

A

foundation system, is also investigated. Finally the conclusions, recommendations and

s o
some remarks concerning the needs for future research on the time domain solution of

dam-foundation—reservoir systems are presented in Chapter 6.
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 .CHAPTER 2

. MODELS FOR THE EARTHQUAKE
INPUT MECHANISMS

~—

2.1 Introduction

$

In this chapter, the equations of dynamic equilibrium for the four models of earth-

S Ne
( quake input mechanisms described in Chapter 1 (Section 1.2) are examined. A typical
concrete gravity dam is chosen to formulate these different models. Although the dam
is considered to be constructed from a homogeneous, elastic and isotropic material,

- its foundation is generally heterogeneous and anisotropic. The system considered is

idealized by a two-dimensional linear elastic, finite element model which includes the

entire concrete dam, plus a portion of the rock on which the dam is founded. The ~
hydrodyna.mic effect is implicitly included by the added mass approach? The seismic
loading is represented by a free-field recorded accelerogram time history Qg(t), acting
in the horizontal direction, perpéndicula.r to the longitudinal axis of the dz;,m. The

-

_problem is simplified by assuming that the motions in the free—field could be described °

by vertically propagating waves.

' The earthqﬁa.ke input mechanisms considered, and the related dam—foundation }
rock models, are shown in Figure 2.1. The idealization of the dam-foundation rock

G system is essentially the same for the four models, except for model B where the foun-
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dation rock is considered to be massless. Note that appropriate supports are émploy_eil
at all vertical boundaries at the dam-foundation rock system shown in Figure 2.1, to

o

model its response to thg horizontal earthquake motions.

J

2.2 Model A: Rigid Base Input .

In this model the specified free-field accelerogram time history, is applied at the
rigid base rock of the finite element model (Fig. 2.1a)). These base mqtions propagate
vertically through the deformable foundation rock, by elastic wave mechanisms. The
earthquake that reaﬂthes the interface between the concrete dam and the foundation
rock, will thus be different, in frequency content and in intensity, as cox;npaﬁad with the

~motions produced by the real rigid base inpuf which has its focus beneath the local

base rock. , v
~ ~
The equations of motion for the finite element model of Figure 2.1a) subjected to _
. ﬂ . P
a single horizontal earthquake component may be written as:
) ‘o
[M]g +[Cla o (Klp = ~[M]r, ,(t) (2.1)

e

< ]

in which [M], [C] at;d [K] are the finite element mass, damping and stiffness matrices
for the complete dam—foundatxon—reservoxr system, v, ¢ and ¥ are respectively the
N displacement, v:alocity and acceleration vectors of the nodal points, §,(t) is the specified
base earthquake acceier?.tion time history and r, is thc; influence coefficient vector,
expressing the nodal displacements resulting from a uniform horizorita:l unit.value of
* .the base roék‘/\displacemgnt, v, =1 .

The application of this rigid base input model is relatively simple, because no
modifications "have to be made to the recorded accelerogram and also because the

"* matrices representing the physxcal properties of the complete dam—foundation—reservoir

system, and the‘specxﬁed selsrgxc loadmg can be used directly. This makes possﬂ_)le the

11
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application of standard finite element program for the earthquake response énalysis, in

which the system properties are exp_r&sed in terms of global matrices.

The rigid base input model is not expected to give very accurate results, since the
ea.rtixquake applied at the base rock has been actually recorded at the ground surface.
This is a crude assumption linovfling that when these free-field motions are a.ppliéd at
the base rock level they are modified firstly by propagation through the deforx;lable
f;)unda.tion rock and secondly by the interaction between the dam and the foundation

rock.

2.3 Model B: Massless Foundation Rock

This model has bee1‘1 pr?posed‘in the.late seventies®® and has been used exten-
sively for seismic analysis of concrete da.mé since then®°:34:35, The only difference with
model ;k, is that the idealized f&und;tiom rock model is assumed to be massless. This
results firstly, in a redu.ction in'the number |of dynamic d.o.f of the system. ‘Secondly,
the absence of mass makes the foundation rock function as a spring, in o;her words
only the flexibility of the foundation 1;9ck is taken into account. Thus, the rigid base
rock input motions are transmitted inséa.n(ta.neously through the foundation rock to the

base of the dam, without any wave propagation effects. This will eliminate the prob-

lem of artificial amplification of the free-field accelerogram, as discussed for model A. If -

there were no da.m-foundatign interaction effects, the 8ame free-field motions, apl;lied
at the base rock, would be observed at the surface of the foundation rock. It is ti;us
appropriate to apply‘t{le free-field surface motions as the earthquake input at the base
rock in this model. ‘ ,

The damping of the foundafion rock imabsence of mass is usually taken as zero,
but this nezlects the radiation damping of the foundation. Thus to assess the extent

of this effect, two cases can be considered in the analysis: massless foundation rock

including damping and massless foundation neglecting damping.

3
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Basically the advantages of model A can be restated i:or ‘model B, w'hich are the

simplicity of its application and the possibility of using standard finite element pro-

% grams, for the earthquake responsé analysis. Furthermore, the dam vibrations will not
be affected by the mass of the foundation. If a large volux\ne of foundation rock with
mass is included in the model, it is possible that the vibration modes of the founda-
tion may tend to dominate thg dynamic response of the dam such that the numerical
solution can become more costly and difficilt to implement.

Model B is ex?ected tp give better results than model A, however, the idealized
foundation rock without mass does not totally mode‘l the dam-foundation interaction
mechanism and it is not certajn that the system frequencies given by this model will
be valid. ,

2.4 Model C: Deconvolved Base Rock Input

A more realistic approach to the problem of the earthquake input mechanism, is to
define more appropriate rigid base rock motions in equation (2.1). This can be achieved
by performing a deconvolution analysis®® to the recorded free-field accelerogram. This
is equivalent to compute the base rock accelerogram which might have produced the
free-field accelerogram, after propagation through the deformable foundation. This
analysis requires the application of specialized computer ;'>rog1:a.ms to the free—field
system. A program Ci;.l!ed "SHAKE” designed for the earthquake response analysis

of horizontally layered sites®®, can be used to pefforin the deconvolution analysis. In

" this program¢ the foundation rock is assumed to be uniformly layered and extending

to infinity in the horizontal direction. Then a shear beam model is used to idealize the
deformable foundation, reducing the problem to a orfe-dimensional system. The decon-

volved accelerogram is determined by the inverse application of the one-dimensional

o

wave propagation equation. In order to verify the accuracy of the computed base rock

accelerogra.n, a separate analysis has to be carried out. It consists in applying the

-
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computed deconvolved accelerogram at the base of the two-dimensional finite element

model, representing the foundation rock and deriving the corresponding free-field ac-
celerogram. The computed and the original free-field accelerograins are then compared

by means of the corresponding pseudo-acceleration spectra (PSa). The two PSa should

exhibit a close match especially at the periods of modes contributing significantly to the

dynamic response of the da.m—fdundation—r&erv‘oir system. The complete ﬁrocedtire of
the deconvolved base rock input mechanism is summarized in Figure 2.2.

The deconvolution analysis is a complex task to l;e dhieved and the assumptions
made in the program *SHAKE?” illustrate some limitations to its general applicability.
Indeed, the assumption of uniformly layered system can not be applied to any site.
Furthermore, some adjustments may have to be made to the foundation rock properties,

or to the parameters controlling the numerical stability of the procedure such that the

* deconvolved accelerogram obtained from the one-dimensional analysis will produce,

after propagation through the two-dimensional finite element model representing the
foundation, a free-field accelerogram for which the PSa coincides with the PSa of the
origi_l_la.l free-field accelerograﬁl. It should be not%ed that this requirement might be
theoretically avoided by as{sumixfg that the deconvolved accelerogram applied z;‘; the

rigid basea, beneath the deformable foundation rock was obtained by a one-dimensional
T

. deconvolution analysis of a specified free-field ea.ljthg_ua.ke motions. - This deconvolved

a,cgelerogra.m can then be arbitrarily applied to a two—dimens}onal modeol which incl;xdes
different geological features than those retained in the deconvolution analysis. The
a;ctua.l computer implementation of the deconvolution analysis retained for this study
will be discussed in more details in Chapter 4. )

The results obtained from model C, will be ovausly dependent upon the quality

~ of the deco'wolutlon process. Typical structur&l response quantities of interest found by

applying the deconvolved accelerogram at the rigid base rock, should theoretically be

more accurate than those obtained by applying models A and B. The main disadvantage

14
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2.5 Model D: Free—Field Input

q

_ of model C is that the complete response analysis is rather tédious, since it involves

two separate analyses. The first one, the deconvolution analysis, requires»a.' specific
computer program and some form of sensitivity analysis in order to be implemented
reliably. The main advantages are that the dam—foundation interaction mechanisms

will be well represented and the earthquake input motions will be treated in a more

=

realistic manner.

Al

An alternative approach to the problem of defining an appropriate earthquake

input mechanism, is to express the effective seismic input in the equation of motion of

the dam-foundation rock system directly in terms of the free-field motions recorded at

the ground surface”"31-23, g

The formulation of this free-field input-is presented in this section, Figure 2.3

» .
illustrates the system considered and the corresponding properties.

The free-field response to the base rock excitation is expressed as follows?2:

£

-

. [yls, + (38, + [’;‘/ g, = —[mo]B, = [es]2y — [ks]u, =F, - (2.2)

in which [, ], [¢,] and [k,] represent the properties.of the existing foundation rock

before the dam is constructed and g, represents the corresponding free—field motionL

‘of the system. The vector F, represents the force exerted by the basement rock on the

finite element model, “[m,,], [¢s] and [k;] are the coupling terms expressing forces in the

1}

foundation material, due to motions of the basement rock (v, ).

Ll

The corresponding equation after construction of the dam may be written as: ¢

L}

\ .

2
[y +maal{B, +BY+ (6 +edldy +8)+ [ +RJE + 2} =B (29)

-

16

P



s : a |
g a) Free—Field System ~ ' | b) Combined System ]
3 - & ' ,
: ) : Dam
- . . vt
Properties | Properties (dof. ¥) 1 .
' trhy) T demy i
, 9] ’ &1 + [ca)
(k] ‘ [k +Ckql ) .
Displacements . . Displacements )
\7:{\:’9} . l Ve V! | "
A ‘
- _ - Contact Zone.
& / ! . N - - z
: f (d.O.f ¥ .yﬂ'.'Y;)‘
| » ‘
Foundation Rock
: ] ’ . ) 1 (d.o.f, ¥, + %)
i
/ d 7 7777 777 1rl 777 ‘ 77777 77477 Iil'd!l 77
AR 13 .

Seismic Input: E=tmiVe+ (col Y +Ikgl Vy, |,

Figure 2.3 Formulation of the Free-Field Input Mechanism (Model D).

- ¢

-



in which [my], [ca] and [k,4] are the dam properties and 7' represents the added response
resulting from superimposing the dam on the free—ﬁeld‘systeﬁn. Substituting equation

(2.2) into equation (2.3) one can reduce equation (2.3) to:

[y +mald’ + (6 + cald’ + [y +kalt = —[mall, — [calf, — kg, (2.4)

Equation (2.4) could be further simplified, by partitioning the added and the free-field

displacements as follows:

¢

=t _ ) =t - )~

#={g B =14 (2.5)
-t ~
- Qa -

N

in which the three partitions refer respectively ‘to_the d.o.f, in the dam, d.o.fat the dam-~
- foundation interface, and the non—contact d.o.f in the foundation-rock (Fig. 2.3b)).
All physical property mai;rices are then partitioned accordingly, such that the dam

and foundation mass matrices can be written as:

’ Maa My, O 0. 0 0
) [ma] = | mga my, O [ay] = pO 1y, figa (2.6)
o o0 o] 0 Moy 1haa

- Similar expressions can be written for the damping and stiffness matrices. Using the

partitions of equations (2.5) and (2.6), one can rewrite équation (2.4) as follows:

A

[y + mali + [6 + cald’ + [k, + k)T =

myy - Cod . kgd - (2.7)
Mgy | Yy, — [ Cgg | Yy — kqg Y,
0 0 0

These equations of motion can be cast in a simpler form by expressing the added

L]

response ' as the sum of a dynamic component § and a pseudo-static component *.

18
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The pseudo-statxc component may be derived ftom equation (2. 7) by eliminating the

-

dynamlc terms. Hence, ~

%

) . o w . kgd '
. . A ok k) == kg, |8,
\ \ ’ . 0 "
oo (2.8)
or . -
’ : -
2 =[],
. i -
in which .
0 kﬂd
[Fl=—[ks +ka]™" | kg (2.9)
.0 '
»
Thus . ’
B=5+[fls, (2.10)
‘ *
. _ A
In principle, any desired spatial‘variation of the free-field components could be con-
' éidered, however there seldom is sufficient information to specify such variation. If we
‘assume the same free-field input motion at each contact point, equation (2.10) will
+  reduce to: o ) .
2 =3+ [F|15,
(2.11) 14
_ v B =841,
! ( .
Equation (2.7) can thus be simplified to: .
L 4 * . 3 .
L ) . -~ v
- - o | - .
C o [y Fmali G calb [k + RalB = = IRy FmaE+ | mg, | 08, (212)
‘ : . 0

) .



It can be noticed that the effective force vector on the right hand side of equation

(2.12) is in terms of the free-field accelerations only. The stiffness dependent term has

dropped out because the pseudo-static displacements were defined so that

\v ‘o L -

- e koa

(kg + ka][F] + | koo | = [0] (2.13)
-0

1

The damping ,depeﬁdent' term due to support motions has also been omitted in equa-~
tion (2.12), these forces bei;lg um;a.lly negligible either because the damping matrix is
proportional to the stiffness matrix which would impose a condition similar to the one
given by equation (2.13) or because these da;nping coefficients are themselves negligible.

The free—field input model (ﬁo*del D) can be seen as an improved version of the

massless foundation model (model B). In both models B and D the original free-field

accelerogram would be observed in the absence of the dam. In model B this is achieved -

by neglecting the {nertial effect of the foundation rock whereas in model D this is done
simply by rewriting the equations of motion in terms ththe'free—ﬁeld mo‘tions. Thus
the improvement in model D is that the mass of the foundation rock is taken into
account in the analysis so that it w_ill represent the dam-foundation interaction in’a’
relatively more realistic manner. The formulation of model~ D is based on some basic
assumptions. The first one was that the input motion at the level of the base rock is not

modified when the dam is superimposed on the free-field system (equation 2.3). This

. -
is due to the fact that far from the structure the input is not considered to be affected

by the presence of the dam’. The other basic assumption is to neglect the damping

"dependent term in equation (2.12) which suppose that, either the damping matrix is

proportional to the stiffness matrix or that the damping ‘coefficients are themselves
negligible for a practical implementation of this formulation. The last assumption is

that all interface nodes are subjected to the same free—field accelerogram. It is believed

‘that this aseumption will be reasonable for the contact surface at the base of a gravity -

-
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dam. However for an arch dam where the free-field motions are not uniform along the
canyon wall contact surface, such an assumption can be seriously questioned”.
The free-field input mechanism if compared with the deconvolved input model,

is advantagedus in the sense that the analysis can be carried in one step since no

preliminary analysis is required to define the base rock input because the equation of

motion (equation 2.12) is expressed directly in terms of the free-field accelerogram.
. The comparative study between the free-field input model and the deconvolved input
model will allow us to assess to what extent the assumptions made in the formulation
of the free—field input model \:rill affect the respoﬁse quantities of interest. Comparisons
between the free—field inpl;t model and the massless fou'ndation model will illustra.i:;e

the importance of the mass of the foundation rock on the dynamic behaviour of the

dam-foundation—reservoir system.

-

~

2.6 Exploitation of the Response Quantities in the Analysis

In the seismic analysis of a dam—reservoir—foundation system, typica.l’response
quantities of engineering interest can be defined in terms of the displacements, the

N

accelerations and the related stresses. -

To illustrate the different displacement components resulting from applying a rigid

base rock input (models A, B and C) using equation (2.1) and a free—field input (model
D) using equation (2.12), let us consider the si?mple cantilever beam of Figure 2.4. This
cantilever beam has three nodes, each oné with a single d.o.f (lateral displacement).
Node 3 represents the displacements of the dam, node 2 represents the displacements
.of the dam~foundation interface and node 1 represents the foundation displacements.
o As can be seen in Figure 2.4 the dynamic displacements v derivedo from equa-
tion (2.1) and ¥ obtained from equation (2.12), are not computed with respect to the

same location. To be able to make a comparative study between the four proposed

earthquake input mechanisms, these response quantities should be expressed according

21
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dam are given as:

«

to a commeon reference. One way to do this will be to expfess the displacements in
Q
terms of total motions with respect to the initial position before the occurrence of the -
earthquake. For models A, B and C, the t)ota.l dam displacements can be expressed as:
1 Q.

¢ .- L Yy=v, Ly, _ (2.14)__

in which v, is the dynaxmc displacement vector found by solving equation (2. 1) and r,
is the influence coefficient vector expressing nodal dlsplacements due to a uniform unit

horizontal displacement of the ba/sbrock. For model .D the total displacements of the
N : .

a

(2.15)

134

vg=04+
where @, is the dynamic displacement vector computed from equation (2 12) and the
product 7, is the pseudp-static dlsplacement vector Note that the pseudo-static
displacements in model D are different from those of models A, B and C* Indeed 7 in

equatxon (2.15) is the influence coefficient vector expressing the nodal dlsplacements of

the dam due to a umform unit displacement applied at the base of the dam (not the

bd

base rock) 7, = 1.
Expressing the displacements in total quantities has the inconvenient of requiring

the application of the dispTacements corresponding to the input accelérogram, which

computing relative

are often not directly available. This procedure can be avoided
displacements quantities in the dam with respect to the displacements of the dam—

foundation rock interface. Thus for models A, B and C these displacements can be

written as:

. (216)




-~ .

ki

in which g, is the dynamic displacement vector of the interface nodes (Fig. 2.4), v, is

the vector of nodal dam displacements computed from equation (2.1) and [f] is defined

<

in equation (2.9). .

For model D, displacements relative to the dam-foundation interface can be ex-
. : ¥ . )

pressed as: j

v

@

: e=0-Flg. (217)

where g, is the-dynamic component of the added displa::ement vector corresponding to
. the interface nodes found by solving equa.ti:m (2.12)-and g, is the dynamic displacement
vector of the structural system, found from t}; same equation.

'In this study, the dam disp}écements are con;puted relat;ve to the displacements
of the dam-foundation rock interface for all of the considered earthquake input mech-

anisms in order to make comparative analyses on a consistent basis.
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CHAPTER 3 - - v 1

MATHEMATICAL MODELLING OF THE .

DAM-FOUNDATION-RESERVOIR SY%TEM

» o

3.1 ’Introduction

Pl

The structural system consxdered in this report represents a section of the Koyna.

Da.m in India, a typical concrete gra.v1ty dam’ which was subjected to an ea.rthquake
6

in 1967°. The system is idealized by a two—dimensional finite element niodel which

includes the entire concrete dam, along with a portion of the rock on which the dam is

'y ~

' founded.

The behavior of the dam structure during large amplitude motions depends on the
extent to which the inertia forces can be transmi?téd across the joints. For concrete
gravity 'dams with straiéht contraction joinﬁs, the inertia forces thaj: develop during
large a.mplitude: motiqxis are much grea;;er than the shear forces that the joint dcan

transmit. Therefore the joints would slip and the individual monoliths would vibrate

. independently. This was one of the observa.tiogs\{rom the study of the damages of

o

the Kbyna dam®. For such gravity dams, a two-dimensional plane stress model <_)f
the individual monoliths is an acce‘iitab]e.:?ssumption for predicting the earthquake

response. However, for dams with keyed dontraction joints the -above assumption is

o

inappropriate and a two-dimensional plane strain system is more suitable.
/‘//‘
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For the concrete gravity dam selécted for this study a plape stress model has

F3

been‘}u‘;gd, a | }fnit slice taken-normal to the longitudinal axis of t~he‘ dam is considered
\rep;é;entaéigé hof the“ behavior of the entire structure. The foundation rock is also
a.s's:lmed to be in a state of generalized plane stress. This assumption, is also éligtated
by the relatively sm;:.ll longitudinal volume of foundation rock expected to participate
\in the earthquake response of a single dam mon‘olith”. The ﬁydrod};namic effect is

included by the added mass approach originated by Westergaard?®.

Several finite element models using coarser to finer %eshes were considered in a
soeries of preliminary sasta.tic and dynamic analyses in order to select a system with a
reasonable number of d.of for ease of manipulation, but still providing a represen-
tative structural behavior in terms of the response quanfities: of interest. Two finite
element meshes representative of the different meshes analyzed are shown in Figure 3.1.
The mesh that was finally selected for further numerical applica.tions is the finer mesh
(Fig. 3o.lb)), ina which the dam is idealized as an assemblage of 8-nodes linear isopara-

metric elements with a total of 178 d.o.f. The foundation block is represented by an

assemblage of 4-nodes linear isoparametric elements with a total of 80 d.o.f.

’

3

3.2 Finite Element Model of the Dam-Foundation—Reservoir System

3.2.1 Computational Procedure

e

The methodology used to evaluate the influence of the four proposed earthquake

input models on the time domain structural response of the dam~foundation-reservoir

system is somewhat similar to the technique used to construct response spectra. The,

dynamic properties of the dam (mass, da.mping,lstiﬂness) were assumed constant for
all analyses. The critical parameters were selected as:
1- the moduius of elasticity of the foundation rock,

4 o -
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2- the inertial properties of the foundation rock,

v

3- the energy dissipation charatteristics of the foundation rock,
to

4- the frequency content of the specified free—field input accelerogram..

It should be noted that variations in the stiffness and material properties of the foun-
dation will in fact résult in changes i'n the natural periods of vibration of the combined

system. ' ] ’ .
L 2 . ) X 1
Time domain analyses were carried out for selected range of the above critical
t N ’

4

" parameters and the intensity of the response of typical quantities of engineering interest

0
were computed from the equations of dynamjc equilibrium derived in Chapter 2, to

compare the relative performance of the four earthquake input models.

3.2.2 System Properties and Grpund Motions

The mass concrete in the dam is assumed to be a homogeneous, isotropic, linear
elastic solid with the following properties: modulus of elasticity, E; = 2.4 x 10* M l.l,’:a
mass density, p; = 2640 kg/m® and Poisson’s ;atio, vy = 0.20.. Energy dissipation in
the dam is repfesented by a constant viscous damping ratio (£z = 5%) for ‘a.}l vibration
modes. The foundation rock region supporting the dam monolith is idealized as a
homogeneous, isotropic, linear elastic system.‘F;or the founda{:ion rock, the modulus of
elastit;ity, E\',, is va:ieti such that E, /E; =4, 2, 1, 1/2, 1/4, 1/8. The mass density is
taken as p, = 2643 kg/m® and the Poisson’s ratio, v; = 0.33. The damping ratio for

¥

the foundation rock, ;, is specified as 5, 10 and 15 percent of critical. An example

¢

of a possible range of the elastic properties of soft foundation rock of a typical finite

element model developed for the static analysis of a dam foundation S)}stem is shown
{

in Figure 3.2.
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™ The ground motions selected for this study are the horizontal components of:
— the 1940 El Centro eae.?’rthqua.ke‘(NS component),
~ the 1971 San-Fernando earthquake recorded at Pacoima (SW component),
— the 1966 Parkfield, California earthquake (NW. component). l
Figures 3.3 to 3.5 show the considered timie history accelerograms and the correspond-

ing spectral accelerations. It should be.noted that the Pacoima and the Parkfield

" accelerograms were scaled to 0.35g, which represents the maximum acceleration of the

EL Centro earthquake. . .

3.2.3 Stiffness Matrix

A

The stiffness matrix of the combined system is found by direct assémbly of the
stiffness matrices of the concrete dam and the foundation rock evaluated using the

specified values of the moduli of elasticity. These matrices can be written respectively
/

-
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The global stiffness matrix of the dam-foundation system will be of dimension 248x 248.
In order to reduce the size of the global stiffness matrix of the system, a static conden-

sation of the mid-side element nodes in the dam substructure has been performed; the

size of the global stiffness matrix was thus reduced to 140 x 140.

3.2.4 Mass Matrix

The global mass matrix is contributed by the dam, the foundation and the reser-
Ygir. _For the dam and the founda.j:ion blocli:,’ a lumped mass formulation was us/ed/,
leading to a diagonal mass matrix having the same dimengion as the stiffness matfix.

The mass that is contributed by the reservoir is supposed to represen,t/the hy-
drodynamic effect, this-is called the “added mass” approach and was originated by
Wetergaard?. The basic assumptions of this method are:

1- the dam is rigid,
2- the upstream face-is a vertical plane, .
'3- the liquid is incompressible, |

4- the dam is located in a broad on so that a 2-D model is valid,

5- the reservoir extends to i e upstr;aam direction.

Westergaard stated that for 4 gravity dam subjected to a horizontal acceleration, the

ing at the dam face (Fig. 3.6a)) and could

L3

only significant reservoir pressures are ac

4

be evaluated by the following\form

Ply=0)=1 o H (1~ 2% 5,0 (3:2)°

-

which represents a parabolic pressure distribution.

33
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.The same effect can be obtained if a block of water is attached to the upstream
1]

face of the dam. Acco}ding to Westergaard, this block should have a parabolic shape
with the base width equal to 7/8 H-as shown in Figure 3.6b). The massesg (ml yeoeyMg)
attached to the nodes of the upstream face (Fig 3.3b)) are computed proportionally"
to their respective tributary area of yvafer and are only activated by horizonta.l_ g;oﬁnd

2
¥
¥

motion. e

8

3.2.5 Damping Matrix

The global damping matrix is founﬁ by assembling the damping matrices of the
dam and the foundation. The. damping ratio specified for th(? concrete dam v.vgs 5
percent of critical and the damping ratios specified for the foundation rock were set
at 5, 10 and 15 percent of critical for a parametric evaluation of the corresponding
earthquake response.

In the case where, the da.mpin; ratios of the concrete dam and the foundation
rock a.fe not equal, the modal coordina.tes equations of motion are coupled, this is

¥
called‘non-proportx%na.l damping®®. Non-proportional damping may pe expected in

any structure-foundation system in which significant interaction is developed and where

>

' the damping properties of the structure and the foundation medium are quite different.

ItTon-proportion;J.l damping can be éxpressed only in terms of an explicit matrix [C].
The ﬁlé%ho s to construct such a matrix are numert;us, but the most efficient approach
from a computer implementation stax}dpoint is the concept of Rayleigh damping which
is widely used in practice. The popularity of this method is due to the fact that the
damping matrix of each sui)structure is given by a linear‘iombination of the n\1ass
and the stiffness matrices of the subsystem considered, and therefore, no additional
storage in the computer memory is needed for the damping ma.trix. If more than two

proportionality!-constantg are used, the matrix [C] will in general be full. Since the cost

of the analysis is increased by a very significant amount if a full [C] matrix has to be

34
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used, in most practical analyses using direct integration, Rayleigh damping is assumed.

The damping matrix of each substructure can thus. be expressed as:

¢ -

[C'] = @, [M] + ay, [K'] .. (3'3)

i

in which a,, and ga,, are proportionality constants specified for the ith substructure.

\g In order to select the coefficients a,, and a,, the following formula can be used.if the

!

same damping ratio, €, is specified for mode 1 and mode r:

’ ™~
ao; 2£ wl Wy ‘ #
P =
. a,

3.4
W, +wr 1 -/ _v}/' ( )

The frequencies w, and w, are generally chosen as 'the unda.;nped frequencies of the
lowest and the highest modes of the entire struct:xre which-are expected to contribute’
signiﬁca;nt)fy to the response; damping ratios of other important pnodes will then receive
a re’agonablewalue. J

" In the case where the foundation is assumed to be massless (Model B), the damping
II{latri‘;t of the foundation is proportional to the corresponding stiffness matrix only, that

- is: \ .

ﬂ S [Cr] = a4, [ks] T (39)

in which a,, is the pmportié)‘naliti constant and is given by:

2¢ - 2
a, = :’-JL _ (.6) .

in which w, is generally chosen.as the undamped frequency of the mode of vibration

of the entire structure (with massless foundation), that is expected to contribute most

significantly to the response.
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For the dam—fm\mdation system considered in this study, the damping matrix of
the da.x?n substructure will He computed from equation (3.3). For the foundation, the
damping matrix is computed from equation (3.3) in the case where the mass of the
foundation rock is taken into account (Models A, C and D) and from equation (3.5)
in the case of a massless foundation (Model B). The global da?a-pmg matrix for the

complete structure will be obtained by assembling the damping matrices of the dam

and the deformable foundation using standard structural property assembly procedures.

)

e

) (Cal = a0, [My] + a,, (K]

~ [C] = ’ -l f!]=a°![M11+a1![K!]
cy [Cs) = oy, K]

The major disadvantages of the Rayleigh damping method arg:

— the higher modes are considerably more damped than the lower modes,

S

damping matrix is proportional to both the mass and stiffness matrices) in between

these two modes the values of the damping ratio are less thar the assigned value, J

)

, L&)
— in the case of a damping matrix proportional only to the stiffness matrix, the
-~ “
damping ratiq is controlled at only one mode, generally the fundamental mode, ,

therefore the higher modes will be much more damped than the first one.
In order to illustrate the above remarks, the variation of the cia.mping ratio of the
foundatiqn rock in the different modes of vibration for the case wher;a a value of ¢, =

-

15% has been assigned to the foundation medium, is shown in Figure 3.7. Two cases

have been considered: a foundation model with mass (Fig. 3.4a)) and a massless

foundation model, for two values of the moduli ratio E;/E4, 1/8and 4, which represent

respectively a flexible and a rigid foundation rock. Figure 3.7a) shows that when the
’ «
37

— the damping is controlled at only twq modes of vibration (in the case where the




damping is controlled at two r:mdes (mode 1 and 6 in this case), the variation of
the (}(amping ratio versus the circular frequencies of vibration is of a parabolic shape.
The.fefore, the values sof the damping ratio iq the other modes expected to contribute
significantly to the total respox;se (modes 2 to 5 in this case) are less than the assigned
value of damping ratio (§, = 15%)‘. For the flexible foundation case (E, /Ey = 1/8),
the decrease in the damping ratio-for modes 2 to 5 is not as important as in the case
of a rigid foundation (E,/E, =/4). f‘or the massless foundation case, the damping is
controlled at 'only the first mode‘pf Xibra.tio'ﬁ. ' The variation of the damping ratios of
the foundjtion with the circular frequencies of the system (with massless found;tion)
is linfear, this leads to a vex\'y sfgniﬁca.nt adgfnentation of the damping ra.tic’m in the
higher modes as shown'in, Figure 3.7b). Indeed for both cases, B/ E". = 18 and 4,
" the second mode o(f vibrxtion receives a damping ratio \ra.hge of 36%. This shows that
the a.ctlial value of damping corresponding to the massless foundation system that is
effectively used in the analysis, depends to a large extent on the contribution of the
highe? modes to the total response. i s

The most obvious method to analyze a structure with non-proportional da'.mping
is to integrate directly the coupled eq/u'altions of motion expressed in original geometric
coordinates as performed in this study. The important"disa;lvantage of this proceadure‘
is that all of the equations of motion ;;ust be included in the analysis requiring a

larger computational effort. Alternate strategies for a more effective solution of non-

proportional damped systems will be presented in Chapter &.

ks

3.2.6 Influence of Boundaries Location

&

One of the critical issues in the process of mesh selection is the location of the
boundaries of the foundation block which should be included in the finite element
mo:jlel, to reflect the flexibility of the foundation. The process of locating the foundation
. block boundaries in the finite element model is in fact divided in two parts. First is; the
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/
determination of the location of the rigid boundafy at the bottom of the foundation
and set_:c;nd is the determination of the location ‘of the lateral boundaries. Since this
study was restricted to the ;.pplica.tion of horizontal ground motions, ahtisymmetric
lateral boundary conditions were used to mini'mize’;.hé horizontal dimensions of the |
foundation block model.

The rigid lower boundary has the effect of trapping energy radiating away from

the foundation, thus potentially introducing artificial resonance conditions. Therefore .

to minimize this effect, this low’;r boundary should be located at a reasonable depth.
V The lateral boundaries if placed too close to the structure will reflect the incident waves
which Will also interfere with the response of the structure.

In the current practice, there are no precise rules for the location of the foundation
boundaries, the only method available is the trial and error procedure. This means that,
the boundaries of the foundation block are moved away from the dam in both the lateral
and vertical directions and the dynamic response characteristics of the corresponding
system are evaluated. If a certain stabilization in the response is rea.cht;d, the model
can then be accepted as representative of the behavior o~f" the physical“system. It should
be noted that a smaller foundation block could be used in the finite element model if
transmitting boundaries are used. The most frequently used transmitting boundaries
are of the simple viscous type’, and they are usually more appropriate for a frequency
domain analysis.

Foqr the finite element mesh selected for this study, the lateral boundaries were
displaced by 22 meters on either side of the base of the dam and the depth of the rigid
boundary was displaced downward by 25 meters. The characteristics of the dynamic

response were’ evaluated in terms of the free-vibration properties and displacements

of preliminary transient analysis with specified E, /E, value of 1 and &, = 5%. The .

fundamental period of thé enlarged system increased by 1.2% and the maximum dis-

n

pla.ceme;lt in the Y-dir increased by 8% as compared with the original model. These

40
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differences were judged to be sufficiently small to justify the use of the selected model.

@

3.2.7 Dynamic Analysis Procedure

The development of appropriate mathematical models, for complete earthquake
response-analysis of a typical structural system requires the application of the following

procedures:

static analysis,

o 5 v

study of the free vibration response,

spectral analysis,

linear time history analysis,

non-linear time history analysis.

In the free-vibration study, the natural periods and the associated mode shapes of

the mg:hematical model are computed. The periods indicate possible resonant condi-
_ — £
tions with maximum dynamic amplification. The mode shapes are useful to visualize

(=]

the deformed shape of ‘the structure in the different modes of vibration, indicating

which regions of the structure are most flexible. The mode shapes are also needed to

compute the effective modal mass in order to identify modes which a.rfa contributing ,
' significantly to the dynamic response of the system (see Section 3.3). Natural periods

of vibrations of the system will also provide indications to select an appropriate time

step for the transient response analysis.

The spectral analysis is performed in order to get an appreciation of the magnitude
of the probable maximum disﬁlara',cements and stresses in the structure. If these values
are acceptable, no further analyses are generally required. On the other hand, if they

_ are excessive, a linear or non-linear time history analysis of the critically stressed
elements can’be performed to determine the length of time over which unacceptable
stresses occur. This type of andlysis will also allow to determine the magnitude of

stresses which occur at fhese locations immediately before and after the occurrence of
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the critical values, and the number of repetitions during the earthquake of values close -
to critical ones. Such an indepth analysis can be a basis for a judgment decision of the
actual structural significance of unacceptable stresses since such factors as time.span
and stress recurrence can be considered. The volume of computations involved in the

transient analysis is much more significant jﬁa.‘n in the spectra analysis.

3.3 Structural‘Behavior of the Mathematical Model in Freé-Vibration

3.3.1 Effective Modal Mass . ‘ s

The effective modal mass can be used to identify the modes that contribute sig-

nificantly to the tctal structural behavior. The effective modal mass for mode i in the

Y-direction can be expressed as?2-24:

j
EMM, = T (3.7)

1

in which p; , is the earthquake participation factor in the Y-direction for mode i given

s -
by: : . , .
piy =X] [M]r; L (3.8)
and M; is the generaliged mass fof modé‘i \
M, = XT M| X, (3.9)

X, is a transformation vector (eigenvector or derived Ritz vector) corresponding to

mode i, r, is defin'ed in equation (2.1). The generalized mass M; is often gi&ma.lized

r
—oy
to unity to simplify the computations. The total mass of the system, in the horizontal

AN

direction can be expressed as: g

2




My =17 M)z S (3.10)

‘The percentage of effective modal mass in the Y-direction (PEMMy) which represents
the fraction of the total mass particfpating in the response in this direction by the

direct superposition of a truncated vector basis can then be expressed as:

"+ ps . )
PEMM, = 2% x 100 (311) /

T

i=1
for r modes retained in the summat{on. In this analysis, the procedure used to identify
the modes which are contributing significantly to the total structural response was to
fix a required percentage of effective modal mass in the Y-direction where the structure
is excited, to a value of 95 percent and to compute the number of modes necessary to .

reach this value. , -

3.3.2 Ratio of Foundation Rock Elastic Modulus to Concrete Elastic Modulus

The dam-foundation interactioxi effect, is basically controlled by the ratio of foun-
dation rock modulus to concrete modulusw(E, /E4) and therefore the behavior of the
dam-foundation -reservoir system in free-vibration, will also be dependent on the ratio
E,; |E4. The periods of the combined system as a function of the foundation fexibility
are presented in Table 5.1 for a mass foundation system and Table 5.2 for a massless
foundation system.

It can be noticed frox;1 these tables that the periods of vibration lengthen with
the in‘crease of the foundation flexibility. Furthermore, negl‘ecting the mass of the
foundation reduces the periods of the system. Figure 3.8 shows the displacements of the
dam-foundation system in the first two modes of vibratios as a function of the flexibility
of the -founda.tion rock for the modes with mass foundation. It should be observed that

for the case E; /E‘d = 4 which represents a relatively rigid foundation, the foundation
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Table 3.1 Periods (in sec) of Dam-Foundation System, Foundation '
with Mass (Models A, C, D). )

E,JE; 18 1ys& 12 1 2 4

T, 0.948 0.718 0.579 0.504 0.467 0.448

Iz 0.582 0.440 0.338 0.262 0.212 0.189

T 0.451 0.325 0.237 0.184 0.153 0.126

T, 0.309 0.242 0.206 0.168 0.133 0.111

Ts 0.290 0.221 0.159 0.115 0.098 0.089 .
' Te 0.247 0,177 0.131 0.109 0.082 0.067

Table 8.2 Periods (in sec) of Dam-Foundation System, Massless
Foundation (Model B).

E,/E;, 1/8 1/4 1]2 1 2 4

&
T 0.867 0.680 0565 0.500 0.465 0.447
T 0.362 0.292 0.250 0.220 0.199 '0.186
Ts 0.316 0.245 0.190 0.153 0.131 0.118
T, -0.165° 0.146 0.129 0.115 0.105 0.099 ]
T 0.086 0.082 0.077 0.073 0.070 0.068 >
Te 0.071 0.070 0.067 0.064 0.059 0.056

-

bloclf remains almost sundeformed during the dam vibrations.  Figure 3.9 shows the
effect of the foundation flexibility on the periods of the ﬁrgt three modes of vibration of
the dz;.m-foundatit;n- reservoir system. Two cases are considered: foundation block with
mass and massless foundation block. Results indicate that for the flexible foundation
rock with mass, the periods of wibration increase considerably as compared to those of

infinitely rigid fo,unda.tion. For the massless foundation case, the increase is relatively

S

less than in the mass foundation case. Thus, the massless foundation model is less

affected by the flexibility of the foundation fock.
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(b) Second Mode of Vibration

Figure 3.8 Effect of Dam-Foundation interaction on the First Two Modes of
Vibration of the Models with Mass Foundation (A, C, D).
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The effective modal mass is also affected by the ratio of moduli E;/E,. Figure 3.10

shows the variation of the number of modes required to reach 95 percexqﬁ; of the effective
fnodal mass in the Y-direction (EMM,), as a function of the ratio E,/E;. The results
indicate that the number of modes requlired to reach the imposed value for the EMM,,
increase with the a'.ugmentation of the stiffness of the system as given by the ratio
E, /|E4. For a gravity dam with a flexible foundation, a relatively small number of
low frgquency modes is thus able to represent adequately the dynamic response of the
system.

It should also be observed that for any specified value of E, /E; the number of
modes required to reach a horizontal effective modal mass of 95% is signiﬁgantly less
for the massless foundation earthquake input model than for the input models with
non zero mass foundation (models A, C, D). This is due to the fact that in model B
there is no need to represent the inertial vibration characteristics of the foundation by
the truncaied eigenbasis.

This will also repreéent a significant computational advantage for model B as
compared to models A, C, D, if the time history response analysis is to be carried
out from a reduced system of dynamic equilibrium equatidns expressed in generalized

coordinates. —

]

3.3.3 Hydrodynamic Interaction Effect

The hydrodynamic effect which was included by the added mass approach, as
mentioned previously will produce an increase in the periods of vibration of the system.
The periods of vibration for the selected finite element model neglecting the added
mass of water have also been computed. Comparison with the model in which the added
mass of water was included shows that for the case E;/E,; = 1/8 which represents a
relatively flexible foundation rock, the increase in the periods of vibration due to the

a@ded mass of water was of 15% for the first mode and 5% for the second mode. For
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( Vibration of the Combined System. ]
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the ratio E,/E; = 4, the increase was of 16% and 19% for the first and second mode,
respectively. This shows that the hydrodynamic effect when represented by the added
mass approach, will cause a greater perturbation of the vibration modes for a rigid

]

foundation than for a flexible foundation.

.Analysis

3.4 Preliminary Earthqu

; 4

Preliminary earthquake analyses were performed in order to get a general idea of

the behavior of the selected dam—foundation-reservoir syste '

The first step consisted of performing a spectral analysis, using the PSa shown in
Figure 3.3b). The finite element program SAP 80*! was used to perform the spectral
analyses. A number of modes varying from 7 to 15, depending on the flexibility of the

foundation, was included in the response. Results showed that there is a concentration

of high stresses in the vicinity of the reentrant corner in the upper part of the dam

_section, and at the base of the dam. The maximum displacements in the Y-dir occurred

at the top of the dam.

The second step in the preliminary earthquake analyses was to‘perform a transient
analysis to obtain a time Ristory of the structural re.’sponse for the El Centro earthquake.
The transient analysis consists of a step—by—step integration of the equation of motion
expressed in geometrical coordinates. Thus, a proper numerical integfa:tion scheme as
well as a time step had to be selected. The first consideration in selecting a numerical
iﬁtegraiion method, is its stability. Usually, it is desirable to use 'a method that is
unconditionally stable. For linear systems, the errors associated with the numerical

integration result in elongation of the free—vibration periods and in decrease of the

vibration amplitudes. In this study, the Newmark average acceleration method has

been selected, it is un;:onditiona.lly stable and it produces no amplitude decay. The
cost of a transient analysis as well as its accuracy relate directly to the size of the

time step (At) chosen. A value of At=0.01 second was selected for the analysis, it

L
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can be obsefved that the earthquake logdings that are repfesented by the recorded
accelerograms have been discretized at t=0.02 second interval and therefore they will
be well represented by the chosen At. To ensure that the selected time step will lead to
accurate results, a smaller time step equal to 0.001 second has been used in the transient
anéi.lysis of therretained finite element-model. The foundation réck was chosen to be
rigid, E, /E; = 4, so that the periods of \;ibration will be the smallest in the range of
the considered parameters. The chosen At=0.001 second represents 1/66 of the period
of the highest mode expected to contribute significantly to the total response. The
results of the analysis using At=0.001 second weré very close to those using a larger
time step At=0.01 second. As an example the maximum displacement in the horizontal
direction at the dam crest varied by only 2.8 percent. Therefore, the chosen At=0.01
second is sufficiently small to lead to accurate rgsults. .

The preliminary transient analyses indicated also that the maximum structural
response occurs around t=2 and t=>5 seconds for that particular earthquake. In or-
der to reduce the numerical effort involved in this study, it was decided to conduct

"the parametric response analyses of the four proposed, earthquake input models using
the first six seconds of the El Centro earthquake to obtain a complete set’of results.
The Pacoima and ‘Pa.rkﬁeld accelerograms (scaled to 0.35g) were then used to validate
the observations and coricnlusions obtained from the El Centro earthquake by perform-
ing some complementary analyses. A detailed description and interpretation of the

quantitative results obtained is presented in the next chapter.
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CHAPTER 4 .

-

COMPIiTER IMPLEMENTATION AND
NUMERICAL ANALYSES
{ .

43

- 4.1 Introduction

In this chapter, numerical s;)lutions of dynamic behavior obtained from' apply-
ing the four proposed earthquake mechanisms to the dam-faundation-reservoir system
considered in Chapter 3, are presented. In Secti\on 4.2 the cc;mputer implementatign
of the deconvolution process is discussed. The different cases analyzed and param-
eters sel;cted for the analyses are presented in Séction 4.3. In Section 4.4, rtypicé'.l
response quantities of engineering interests resulting from applying the NS component
of the El Centro earthquake accelerogram, according to each specific input model, are
discussed and compared. The effect of the damping ratio of the foundation on the mass-
less foundation mo;iel is examineé in Section 4.5. The effect of using different ground
motions, is investigatgd in Section 4.6. For that purpose th;z time domain earthquake
responses of the dam-foundation-reservoir system are computed by applying the four

proposed input models, considering two additional eari;hqua.ke loadings representea by

the Pacoima and the Parkfield accelerograms.

The computations in the different analyses have all been carried out on micro-

coniputers. The computer programs that have been used are:
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n a- CALDAM vghich is a modified version of the computer program CAL-86%2 spe-

cially developed for this study in order to evaluate the static and dynamic behavior

. of small structural systems that can be modeled usmg@ two-dimensional finite ele—

ments. CALDAM uses a macro language operating on a data base which a.llow the
user a complete control on the sequence of operations required for the solutions.

b: SHAKE3®¢, a computer program designed for the ea.rthqueke response analysis of

horizonta.lly layered sites, used to performdthe deconvolution analysis.

-—
-

c- SPECTR *3, a program to evaluate dynamic response spectra.
A special /Mterfa.ce progra.m has a.lso been developed to produce graphlc display of the-

numenca.l results produced by these programs using the plotting package Grapher**
«l

4.2 Computer Implementation of the Deconvolution Process”™

<

The deconvolution process is performed in order to compute the base rock ac-
celerogram which might have prodﬁced the free-field a.ccelerogra.m This process is in
fact divided into two parts. First, the foundatlon block is idealized as a simple shear
beam, then the program SHAKE can be used to computevthe accelerogram at any
level of the layered foundation bloclg.ﬁ The pc.ra.meters tiia.t,control the anaalysis in the
program SHAKE are: the shear niodulus and the equivalent viscous da;nping ratio
of the foundation rock end toa Iess:er degree the ;nadcimum, freqency that should be
transmitted through the foundation rock. The second consists in analyzing the
two-dimensional finite element model representing the fouI;dati:n block subjected to
the deconvolved accelerogram applied at the base of the model. From this analysis, the
new free-field accelerogram will be’ derived and comp?ed‘ to the orfginal one by means
(_‘f the corresponding PSa, computdé by the program SPECTR. This proce;s has been
summarized in Figure 2.2. If the match nbetween the two PSa’s-is satisfactory then the
computed deconvolved accelerogram will be retained for the transient analysis of the

l
dam-foundation system. If the match between the two PSa is not satisfactory, then
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the rieconvolution process should restart at the first step and some adjustments have

- to be made to the controlling parameters-in the program SHAKE in order to reduce
the differences between the two i’Sa’s, the ta.rge.t and the computed.

i Figure 4.1 shows the comparison of the PSa for the cases of a flexible and a rjgid
foundation. It can be observed that for the rigid foundation case (Fig. 4.1b)), the
difference between the two PSa’s is’Very small. This was achieved easily by inputting
the actual values of the sheal; mdéulus, G, , and damping ratio, &, corresp(;nding to

N " the foundation rock in thie program SHAKE. In other words for a rigid foundation rock
. ., the‘one-dimensiona.l representation ’use‘d in the program SHAKE is not too sengitive
to the controlling parameters and is very close to the two:dimensional ﬁnife element
representation used in CALDAM. For the flexible foundation case, as can be seen 1n
_ Figure 4.1a), the two PSa’s do not exhlbxt a close match throughout the whole /peg‘lod
ra.nge It is very dxﬂ'icult to 1mprove the situation, because the responses are now very
( sensitive to the values of G, a.nd ¢,” retained for the computations. It should however
be recogliized that to obtain a satisfactory response by this method it is only required
to achieve a close match at the periods of modes of vibration ‘which are gontril;uting
* significantly to the dynamic response of the- dam-foundation-réservoir system. As the ...

ﬂexibilfty of theifoundatit;n is increased, the periods of the important modes lengthen.

For example considering the case E, / E,; = 1/8, it ;vas still possible to obtain an average

relative error of the order of 3% between the computed and the target PSa for the first *

three modes represeJnting 90% of horizontal effective modal mass.

4.3 Cases Analyzed and Selected Parameters
e @ .

The ea.rthqua.ke response of a gravity dam-foundation-reservoir system?é affectnd

L ual

by the folldwing factors:
( . F frequency content and intensity of thi*sigeciﬁed accelerogram, .
b- dam-foundation interaction,
¢
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¢~ dam-water interaction,

d- reser"/oir bottom absorption,

e- water compressibility. )
In this study, only the first three factors have been taken into account, in order to
sfmplify the analysis. It shoﬁld be noted that a rigorous freatment of water compress-
ibility is only possible in the frequency domain. The dam-water interaction has been
inclzuded by the added mass approach. For the dam-foundation interaction, two pa

rameters have been selected to cover a wide range of foundation materials and different

1 site conditions. These two parameters are the ratio of moduli of elasticity between the

dam and the foundation and the equivalent viscous damping ratio of the foundation
rock. The values assigned to these two parameters have been presented in Section 3.2.
It should be noted that when the damping ratio of tﬁe foundation, &,, is assigned a
value of 5 percent of critical, the damping levels provided by the concrete dam and
the foundation rock are the same. This corresponds to a condition of proportional
damping. In the cases where £, is not lequal to 5 percent, the damping matrix of the
combined dam-foundation system will be non—proportional.

For the massless foundation input model (Model B), in the case of a propor-
tional dampin.g, the damping matrix of the dam-foundation syste\m can be established
in two different ivays that yield different results. The first procedure, which is the
most commonly used in practice consists of applying directly the Rayleigh method to
the combiﬁed dam-foundation system. The second procedure consists of establishing
separately the damping ma.triceéhof the dam and the massless foundation Da.nd then
assembling them to get the global damping matrix. In this last procedure the fact that
the damping matrix corresponding to the massless foundation rock is proportional only
to the stiffness matrix of the foundation is taken into account. A value of ze;'o damping

for the massless foundation rock "has also been considered in the analyses, in order

to assess the effect of the damping when the inertial effect of the foundation rock is
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neglected. Table 4.1 summarizes the cases analyzed using the El Centro earthquake as

the input motion.

L]

Table 4.1 Cases Analyzed Using the El Centro Earthquake as the Input Motion.

Input Mechanism .. Moduli Ratio E, /E; = Damping Ratio

Model - of the Foundation
2
Model A : 5% ,
Model C 4,2,1,1/2,1/4, 1/8 10% &
Model D ) 15%
-
0%
Model B 4,2,1,1/2,1/4, 1/8 5%
10%
N 15% -

The time domain earthquake response of the system has been measured in terms
of the displacements, the acceleration levels and the stresses developed in the structure.
A preliminary transient analysis was performed in order to study the intensity of the

response in the complete model and to select representative nodes and elements in the

. mathematical model, for which the results “SE the various analyses will be examined.

For the displacements and the accelerations nodes 1, 11 and 31 as shown in Figure-
4.2 have been selected. The three nodes are located on the upstream face of the dam,
the ma.ximum‘ displacements and acceler-ations occur at node 1, nodes 11 and 31 were
chosen in order to cover the height of the dam. The stress results will be retained for
elements 1 and 5 at poix;ts a, b and ¢ which have the same coordinates as the Gauss
quadrature points.

The results of the computer analyses consist of the response history of horizontal

\and vertical displacements and accelerations at the noila.l points of the finite element

56 .
. /\\ .



AT TNy

.
- Z
- ) nodet T p A
/.
elements{ A
~ - _ .
3 . ’~ - Y
node 11 ) ~ . = \
6
Hoh %
[ ) t
~ n +c — vty )
Nyz"i'y
' node 31
e — -
& A
k]
. - i
A ¥
¥
L3 a ‘
& 5\/ Ty
2 y "
»
: @ ‘ Figure 4.2 Nodes and Elements Selected for Presentation of Results. N
&] ‘ ) ! ) s -
. B 57
- [74



3,
e

mesh and the three components of plane stress (0,,, 0,,, 0y,) at the Gauss points of
the finite elements. Comparing directly these response quantities given as time histories
is not very practical. Thus, there is a need to define some measure of the intensity of
these response quantities. The first me;su:ebof intensity to consider in the comparison
of the results is the maximum that occurs dﬁriﬁg the time of excitation. This maximum
value is an interesting indicator especially from a design point of view. The maximum
v\alue can not be used alone as an indication of the intensity of the response quantity
of interest because it is a local measure and rﬁight not be representative of the generall
trend of the specified response quantity. The root mean square (R.M.S) value of a given
time history can be considered as a global measure of the intensity and as an indicator
of the general trend. For example the R.M.S.D, root mean square of the displacements

will be given as:

n 1/2
- RM.S.D= (Z v? (t.-)) (4.1)

where {; represents the cumulative time achieved after every two time steps and n is
the total number of time steps for which results were output. Therefore, the response
quantities computed in the various analyses are compared in terms of their maximum

(Max) and the corresponding root mean square (R.M.S) values.

4.4 Numerical Results from the Four Input Models

The response quantities under consideration have been computed for all the cases
shown in Table 4.1. It should be noted that for the propc;rtional]y damped case,
¢ = 5%, the global @?ﬁng matrix [C] was established by applying the' Rayleigh
damping method for the complete system, unless otherwise specified. Due to the large
amount of data, only important numerical results are presented in order to illustrate the

relative performance of the four proposed earthquake input models. A more complete

set of results in terms of the Max and the R.M.S values is presented in the Appendix.

-
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4.4.1 Displacements

44.1.1 Time Histories

The responses time histories of horizontal displacements at node 1, resulting from
the application of the El Centro accelerogra.’m according to tl;e four proposed input
mechanisms are presented in Figures 4.3 a.nci 4.4 for E,/E;=1/8,4 and §;, = 5 and
15 percent of critical, representing the lower and the upper limits of the range ofJ
the selected parameters. First let us consider the case E;/E,; = 1/8 with §{, = 5%
which represents a flexible foundation rock with low damping. From Figure 4.3a) it
can be observed that the results given by model A, the rigid base input model, are
considerably larger than tlhsga derived from the other models. The second observation

that can be made is that the responses given by model C, the deconvolved input

mode,l and model D, the free-field interface input model, are almost identical. The

displacement time history corresponding to model B, the massless foundation input
model, is larger than those obtained from models}C and D, but the frequency content
is very similar for these three models. The displacements time histories derived from
modgls B, C and D can be approximated by harmonic functions with periods close
to 1 second. Considering Figure 4.3b) in which the damping ratio of the foundation
has been increased from 5 to 15 percent, shows that the frequency content of the
displacements histories is not affected by the increase of the damping ratio of the
foundation. However, the amplitudes of the responses diminish when the damping
ratio, £;, is increased. Furthermore, the amplitude qf the displacements derived from

{
models B, C and D are quite close.

N '
Figure 4.4a) presénts the displacements histories corresponding to E,/E, = 4,

which represents a rigid foundation rock, the damping ratio of the foundation is set

equal to 5 percent. In this case, the displacements derived from model A are still the

( » largest but the difference with respect to the displacements derived from the other
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L=

models is not very significant as compared to uther flexible foundation case. It should
also be observed that for this case th;a four response histories can be approxi_mated by
harmonic functions with periods of approximately 0.5 second. The effect of increasing
the damping ratio of the foundation from 5 to 15 percent is shown in Figure 4.4b. Only
the amplitudes of the responses are affected by the highe/r damping values.

The examination of the stplacements time histories has shown qualitatively the
general behavior of the seismic displacement responses, obtained from the applicatio;x
of the four proposed ;uthquake input models. In order to assess the effect of the
parameters ret-;ained in the analysis and to quantify the differences restvxlting from the
different analyses, the effects of the controlling parameters will be studied in the fol-

lowing sections. The displacements response quantities will be represented by their

maximum value (Max.D) and reot mean square (R.M.S.D) values.

4.4.1.2 Inﬂ;jence of Controlling Parameters, E, /I_";'d. &

' The displacéments time histories represented by their corresponding Max.D and
R.M.S.D are plotted as a function of the moduli ratio E, /E, in Figures 4.5, 4.6 and 4.7,
for the three selected values of the damping ra.t;io, §. In order to emphasize how the
displacements derived from the four input models are influenced by the variation of,the
damping ratio of the foundation rock, the R.M.S.D of the displacements are plott'ed
as a function of the damping ratios in Figure 4.8, for the three different foundation

flexibility conditions. From these figures the following observations can ba made.
a) The displacements derived using model A are the largest in terms of the Ma.x.E>and

the R.M.S.D and this is for the complete range of parameters. This was expected,
since the accelerogram that was applied at the base rock was actually recorded at
the surface of the foundation rock. The propagation of the ground motions throughﬂ
the deformable foundation rock resulted in an artificial amplification. To quantify
the amount of artificial amplification, the PSa of the recorded free-field accelero-

gram was compared with the pseudo-spectra of the derived free-field accelerogram

— %
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b)’

c)

d)

that resulted from thé aﬁplication of the recorded accelerogram at the base rock.
The case shown in Figure 4.9 c<‘>rresponds toE,/E; =1/2 and ¢, = 5%. It is clear
that the a.mpnliﬁca.tions that the diﬁerent modes of vibration of the structure will\
receive are larger than those that they wouid have received if they were subjected
to the a.ccelerogra.@ that corresponds at the surface to the PSa shown in dasiled
lihe:in Figure 479. It'; shc;uld also be noted, that the difference between the two PSa

shown in Figure 4.9 will increase for a more flexible foundation rock than the one

considered (E; /E4 = 1/2) and it will decrease for a more rigid foundation rock

where the effect of soil-structure interaction become-less importa.flt.

For the case E,/E, = 1/8 (Fig. 4.8a)), which represents a flexible foundation

rock, there is a substantial diminution in the displacements-derived from model A,

‘when the damping ratio is increased from 5 to 15 percent. \

The displacements computed froiﬁ model C, the deconvolved input model and
model D, the free-field interface input model are almost identical for the comi:leté
range of the controlling parameters. It can also be noticed (Fig. 4.8a)) that the
displacements derived from models C and D were not affected sig'niﬁcantly(byo the
increase of the damping ratio of the foundation.

For model B, the massless foundation mput model with E, = 5%, artificial am‘-
plifications of the displacements, of the order of 40 % in terms of the R.M.S.D,
with respt_act to models C and D are observed in Figure 4.5 for thg case of flexible
foundations (E; /E; < 1/4). These ampiiﬁcations are partly due to the differ-
ent free—vibration characteristics of the massless foundation model as compared
to models with mass foundation. It should also be noted that these results were
obtained by using a proportional damping matrix computed hy Rayleigh’s method
for the complete system. i

Further numerical experimentation has shown that for the case discussed in d), if

the damping matrix is computed by assembling the mass and stiffness proportional

, . : 68
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g)

damping matrix of the dam with the stiffness proportional damping matrix of the

to 10%.
As the damping level of the massless foundéti;mfincreased (Figures 4.6 and 4.7),
which corresponds to a conr}ition of non-proportional damping, it can be'_noticed
that the displa.cexﬁents derived from model B are very close to those deri;ed from
models C and D for very flexible foundation, cases.

The displacements obtained from model B are however underestimated by an av-
erage of 15% with respt;ct to models C and D (for ¢, = 15%), for values of E, /E,
equal to 1/2 or higher. This can be explained by the fact that the damping for non-
proportional rhassless foundation I:mdels was controlled ‘only for the first mode o-f
vibration, higher modes receiving significantly higher da.mpin'é levels as explained
in Section 3.2. TheTelative contribution of the first mode of vibration to the total
resi)onse depends on the flexibility of t~he foundation rock. The more flexible the
foundation rock, the higher is the contribution of the fundamental mode. This is

significant, and explains the good agreement found for the values of E, /E;=1/8,

1/4, for ‘which the first mode contributes for 86% and 68%,’ respectively to the

. total response. For relatively more rigid foundations, one should expect that the

h)

effective damping will be higher than the assigned value, since the individual modal
contributions will be spread over many modes. This explains some of the discrep-
ancies shown between models B and C, D for the stiffer foundation models.

The last observation is that as E,/E, increases, which for a fixed E,; means an
inci‘easingly rig{d foundation: the displacement quantities derived from the four
input models show closer agreement. The increase of the dampiné ratio of the .

foundation rock in the cases of rigid foundations does not affect significantly the

\
displa.cemerﬁquantites. Furthermore, it can be noticed that as E,/E, increases,
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the displacements of the four input models converge toward a value corresponding

to an infinitely rigid foundation rock.
4.4.2 Accelerations y

4.4.2.1 Time Histories 2
The horizontal accelerations histories at nod%a 1, resulting from the application of
the El Centro accelerogram according to the four proposed input models are presented
in Figures 4.10 and-4.11, respectively for E; /E; = 1/8 and 4, and for a damping ratio
of the foundation equal to 5 percent.. As for the displacements, model A yielded to
the largest response in terms of the acceleration values. The accelerations compﬁted
from models C and D are almost identical for the complete range of parameters. The
frequency content of the accelerations derived from model B is very similar to the ones
derived from models kC and D. The major differences between the acceleration histo;ies
of model B and those of models C and D are in their amplitudes.
For the case E, /E; =1/8 (¢, = 5%), the maximum acceleration is 3.1g for model
A: corresponding to an amplification factor (AF) of 9.4, 1.38g for model B (AF=4.1.8)
and .96g (AF=2.9) for models C and D. Considering the case E, /E, = 4, which repre-
sents a rigid rock foundation, it can be observed that the intensity of the accele,rations
, has intréased comparatively with the previous case, but the difference between the
accelerations derived from the four input models has diminished. The maximum accel-
er?.tion from model A is 3.9g (AF=11.8), from model B it is 2.4g (AF=7.27) and from
m’g{iel C and D it is 2.5g (AF=7.37). Therefore, as was noted for the displ&_lcements, as

the stiffness of the foundation is increased, the accelerations tend to convfgé toward

the value obtained for the dam fixed at its base.
Q*

4.4.2.2 Influence of Controlling Parameters, E,/E,, &
Following the same procedure as for the displacements, the effects of the modular

ratio E,;/E, and the damping ratio, &, on the accelerations are examined in this
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section. The R.M.S.A of the accelera.tions, and the corresponding Max.A, are plotted \

as a function of the ratio E, /E, in Figures 4.12 to 4.14, for the three selected values
of the damping ratio, £,, of the foundation rock. The variation of the horizontal
accelerations due to the increase in the dami)ing ratio, £, for three different levels of

foundation flexibility, i shown in Figure 4.15. These figures show that:

a) The accelerations derived from medel A are larger than the ones derived from the

' other models for the complete rwée of the controlling parameters. Thé increase
in the damping ratio, £, , resulted in a substantial decrea.‘%{g in the accelerations
derived from model A for ﬂexible“ foundation cases, whereas for rigid foundations
the}scgplerations were affected to a lesser degree.

b) The accelerations derived from models C and D are very similar, except; at some
points where Small deviations between the two models are observed. Tflis is mainly
due to the fact that’ the response is more sensitive in terms of the acceleration
quantities than it is in terms of the displacements. This is because the accelerations
are the second derivatives of the diépla.cements with respect to time. The increase
of the damping ratio, &,, did not affect significantly the-accelerations of models C
and D.
c¢) The accelerations &erived from model B for the proportionally damped case,¢, =

5% (Fig. 4.12), are close to those derived from models C and D for relatively rigid
foundation cases (E; /E; > 1). For very flexible foundation cases, as was noted

r

for the displacements,’a.?, artificial amplification is observed belgween”model B and
models C, D. The maximum difference in terms of the R.M.S.A which was of the
order of 55% for the caseC E,/E;=1/8, was reduced to 20% when the damping
matrix of the comple‘e system was established by assembling the Rayleigh damped
;  matrix of the dam and the'stiffness proportional damping matrix of the foundation.

| d) For the non-proportionally damped cases (¢, = 10%, 15%), the accelerations de-

rived from model B were close to those of models C and D. Indeed, for E,/E4=1/8

-«
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0.

the .difference i—r’x the accelerations of mode} B, in terms of the,R.M.S.:D\ as compared
to models C and D was 12% for & = 10% and 4% for ¢, = 15%. For relatively
rigivd foundations, deviations are observed befween models B and d, D, leading to
an average difference of 8% for £, = 10% and 12% for &, = 15%."

e) It should be noted that the differences between model B and models C, D noted
previously were'in terms of the R.M.S.A, if the Max.A are cc;nsid,ered the differ-
ences in the results of model B as compared to those of models C and D are le;s

“

significant.
|

1

- h) For the most rigid foundation case considered (Fig. 4.15c}), the accelerations

* derived from -the four input models are quite close to each other., In this stiffer

1

range, the increase of the damping ratio, &,, does not affect the acceleratidns of

the four models to a great extent. - : | ) ) Y

4.4.3 Stresses

The stress results presented in Appendix A, consist of normal stresses in the hor-

b

izontal (0,,) and vertical (o,,) directions and shear stresses ( ,,). For the desigi of

the dam, the magnitude of the normal stresses in the vertical direction will be critical.

Therefore, the following discussion will be based on them. However it should be noted

b

“that qualitative observations derived for vertical stress copnponents remain valid for
?

the other stress components. \

s
-

4.4.31 Time Histories ' - _ .,

The normal stress historigsrthe vertical dfrectioxi, for glem'ént 5 (point b), are

, shown in Figures 4.16 and 4.17 respectively for E, /E; = 1/8 and 4,and a dampi‘ng ratio

& =5%. It}is clear from these figures that as for the displacement and the acceleration
histories, model-A results in the la.i‘"gesf; stresses. The stresses derived from modeﬁl’ C

and D are almost identical in terms of both the frequency content and amplitudes.

T};e‘stresses/ derived from model B for the flexible foundation case, E, /E; = 1/8, afe
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larger than those derived from models C and D. For the case E, /E; = 4, the frequencxw

content of the stressesponses derived from the four, input“mce‘dels, are almost identical.

- Fﬁrthermom for that case, the amplitudes of the stresses derived from model B are very*

close’to those from models C and D L

4.4.3.2 Influence of Controlling Parameters; E, /E,, ¢,
The effects of both the flexibility and damping level of the foundation on the
verti¢al normal stressessare investigated in this section. As was done for the previous

response quantites, the R.M.S.S and the Max.S of the normal stresses in the vertical
direction at element 5, are plotted as a function of the moduli ratio E,;/E, in Figures
4.18 to 4.20, for the three selected values of the damping ratio. Fxgure 4.21 shows the
variation of the vertical normal stresses at element 5 represented by their corresponding

R.M.S.S, as a function of the damping ra.tio‘of the foundation, £,. From these figures

* the following observations can be, made'

" a).Model A results In the largest normal stresses and this is for the‘complete range
of selected pa.ra.meters However, for the most rigid founda.tlon case considered

(E,/Es = 4) , the difference between stresses derived from model A and the stresses

Lad
7

derived from the three other models is not very signlﬁcant
b) In the case of the stresses also, the results derived from models C arid D are slmllar
Sfor the complete range of para.meters

c) Model B for the case f, = 5% and for flexible foundation cases, yielded vertical

normal stresses which are relatively different in terms of the R.M.S.S from those’

" of models C and D with an average relative error of about 38%. From Figure
4.21 it can be noticed that for ‘the cases E, /E;=1 and 4, the normal stresses

increase when the damping ratio is increased from 5 to 10 percent. "This has been

)

observed only for the stresses and can again be explained by the ;vay the global .

damping matrix was established for £, =5%, for which a condition of proportional

damping allowed the application of the Rayleigh dampiné method to the complete
‘ : ¥
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Figure 4.19 Vertical Normal Stresses at Element 5 Derived from the Four I.tiput
Models as a Function of E;[E4 (§ = 10%), El Centre Earthquake.
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system. It has been verified that if the damping matrix corresponding to £, = 5%,

is established by assembling the damping matrices of the two substructures, the

~

stresses corresponding to§, = 5%, for the cases E, /E; of 1 and 4, will be larger
e I’

o than those corresponding to &, = 10%. Furthermore, the stresses for the flexible

—_

foundatlon cases (E; /E; < 1/4), derived from model B will then exhlblt a relatlve
error of the order of 15% as compared tor those obtained from models C and D.
d) For higher damping ratios (§, =10%, 15%), phe vertical normal stresses derived
from 'model B are very close to those .of mociels C, D, for very flexible foundations
(Ey /E4 < 1/4). For the other values of the rat'i;]), E, [E,, medel B underestimated
the stresses by an average of 13% as compared to models C and D.
e) As-—was‘hoted previously for the acceleretions, the ma.x.iumum values of the vertical

- normal stresses derived from model B and models C, D, are closer than are the
4

)

corresponding R.M.S,S.

. . ;
4.5 ] Effect of the Damping Ratio on the Massless Foundation Model

o

It has been shown in the previous sections that the performance of model B is

)

. closely related to the value of damping ratio assigned to the foundation rock and the

computat‘:ionalﬂtechnique used to form the global damping-fmatrix [C]. T?le performance
of model B can be impl:oveci by aﬁbettexl numerical control of the ve.lues of the damping
ratio of the foundation rock. It ehoul;i be noted however, that the differences in the
response quantities computed from model B and those of models C and D are also due

¢

to the fact t}iat;ﬂthe beh:;,vior of the massless foundation model .in free-vibration is not
the same ‘as compalie’d to the mass foundation I;mdel. . ;

In order.to illustrate the effect of the damping ratio, &,, of the massless foun-
dation model on the displacement.s quantities, the horizontal ‘displacement at node 1

represented by the corresponding R.M.S.D is plotted in Figure 4.22 as a function of

the modular ratio, E,/E,, for four selected values of the damping ratio, § =0, 5,
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10 and 15 percent “of critical, It should be noted that for the proportionally da.mped
casé (¢, = 5%), two cases are shown. The ﬁrst case corresponds to a da.mpmg matrix
formed by applying the Rayleigh method to the complete system, while the second case

L~ 3

corresponds to a damping matrix established by dssembling the damping matrices of
the dam and the fdundation recognizing explicitly their different idertial characteristics.
It can be noticed from Figure 4.22 that the effect of the damping ratio is dependent on
the flexibility of the foundation. For \;ery flexible foundation cases,-a’ss’igning a value
of zero damping to the massless foundation increases the displacement quantities sig-
nificantly, whereas for relatively rigid foundation cases the value of the damping ratio
does not have a significant influence on the magnitude of 1;he displgcements quantities.
The use dof a stiffness propo;tioné.l onl3; foundation damping matrix is also shown to
reduce significantly the amlplitude of the response for relatively flexible foundations.
The displacements de;ived from model B, with a value of zero ddmping for the
massless foundation are compared in Figure 4. 23_g\nth the average displacements derived
from models C and D in which the damplng ra.tlo of the foundation was ass;gned the
values of &, =5, 10, 15%, for the various foundatmn flexibility levels. It is noteworthy
from Figure 4.23 tflat model B with ¢, = 0% is in good agreement with models C
and D for relatively rigid foundations, with E,/E; > 1, especially for) the lightly
damped foundation rock (&, = 5% in models C, D). For flexible foundation cases, Witl\l

E;/E4 < 1, it can be noticed from Figure 4.23 that a damping value different from

zero has to be assigned to the massgs/\s foundation in order to improve the performance

&

of this model.

Arf* alternative mefhod to control the numerical dampidg of the dam—foundation
system with a massless foundation, would be to define a weighted damping ratio/t:or
each mode expected to contnbute significantly to the total response, then to combine
these modal damping ratios to the prorata of the corresponding modal participation

\fa.ctors to end up with a unlque effective damping ratio for the combined system. An
b
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example of a formula that can be used to obtain,a weighted damping ratio is éiven in

the STARDYNE computer program*®. The weighted modal damping ratio is based

o

on a weighted Aaverage of strain energies in each material, for each mode the weighted
¥ )

damping ratio §; for the vector X, is computed’as: p

> XIIKX, &

Gz_&wm":- S (@

'

»

[ )

“7 where m is the number of substructures, ¢, is the percent critical damping associated e

with component i, [K,] is the stiffness’associated with component i, [K] is the stiffness
of the complete system. Having determined the weighted damping ratios of the first r

modes exp‘ected to contribute significantly to the total response, the effective ;%ping

o

ratio of the complete system is found by the following formula: 0
. ‘ ®
~
A}
s . Z y 2 E;
= =1 R
o, G = )

\

~ ° E
i pj
. y=1

Y

where p; is the participation factor of mode j (Eq. (3.12)) .
The main advantage of this method is that it transforms the non—proportional

o
damping characteristics of a system to an equivalent proportional system with all en-

suing advantages. In order to investigate the performance of the above procedure, the
ple “ .

dam—foundation system considered has been reanalyzed for the case E, /E; = 1 and

a foundation damping ratio, £, = 15%. The weighted modal damping ratios derived

from equation (4.2) are listed in Table 4.2. The effective damping ratio for The complete
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sysgem was“derived from equation (4.3) as, ;,=8.1%. The global damping matrix - -
L

was established by the Rayleigh method assuming a condition of proportional damping
‘ )

between.the dam and the foundation. The iea.rthqua.ke response of the dam-foundation \
" system, using thé€ effective damping ratio found above has imlﬁwd slightl} the per-

formance of model B with non-proportional damping as compared to models C and

" .D. Y:at, the most importantifeature of this method is that it .allows assignmeént of a

unique damping ratio to the complete system which implies a condition of prop/bgtional

b

;o damping. L ) e }
9 - *é“ -
e, ' )
[ o * ‘
N 5, ¢ ! -
.§!}ﬁ * I '
- e > - . <
] Ta@éj&.z Weighted Modal Damping Ratios Derived From Equation (4.2)
Ry ¢
. /1 ‘(EI/Ed =1, ff =15%, fd = 5%). ’
72 . ) -
Mode  Computed Damping ratios (in %) — 8
1 7.6
2 8.3 ® - :
. 8 ,10.0 -
. . A " 7.9 )
& ° ) ’ Al .
N 4.6 Effect of Using Different Ground Accelerations

The time history analysis is attractive in the sense that it provides completely
0
- \ i \
deterministic results for specified ground motions. However, any! two motions may

"

produce quite different peak responses, even though 'they have the same intensity and

statistical properties. Theréfore, to validate the conclusions regarding the application
1 &G

&

of the four proposed input mechanisms, the dam-foundation system consideréd has

e 1

been subjected to the Pacoima and the Parkfield accglerogr;a.ms, scaled to 0.35g which

0 ] " represents the maximum acceleration of the El' Centro accelerog‘rg.m. The foundation

]
[}
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flexibility was varied such that the modular ratio has the same values'as presented
ln S&tion 4.3, and the dampingm ratio of the foundation has been assigned a value
of 10 percent of critical. The cases analyzed using the Pacoima accelerogram as the
input motion, covered the complete range of the E, /E, para.mete::. :Additional cases
considering diﬂ‘ei‘exit damping ratios, and using the Parkfield axgcelerogram as the input

©

motion were also analyzed.

The displacements of the dam crest (node 1) resulting from applying the Pacsima, °

accelerogram according to the four proposed input models, are represented in Figure
4.23 as a function of the E, /E, ratio. It can be observed that as lfor the El Centro
accelébogram, model A yields the largest response, models C and D are almost identical
for the complete range of parameters. Model B is in good agreement with models 'C
and D for very flexible foundation rock (E; /E; = 1/8, 1/4). For other values modsl B
underestimated the displacements by an average of 7%6 as compa;gc} to models C and D.
The relative performance of model B with respect to ;ﬁodels C and IS, are very similar

to the results presented in Figure 4.6 obtained from the application of the El Centro

accelerogram. For the additional cases analyzed using the Parkfield accelerogram as the

- input motion the same trends concerning the performance of the four proposed input

models have also been observed. The qualitative observations reported in Section 4.4

- . ~ -
can thus be considered independent of the frequency content of a particular earthquake

record. ' \

4.7 Conclusions from Numerical Analyses - C o
3 .

This section presents a summary of the conclusions that were obtained from the

application of the four proposed earthquake input mechanisms to the concrete gravity

dam—foundation system considered. The main conclusions were: Y
. h . o

a) The use of different earthquake input models can lead*to significant differences in -

the structural response of a concrete gravity dam—foundation system.
13

%

3
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b) The application of model A, the ngxd base rock mput model induced very signifi-

cant artificial amplifications in the response quantltles of interest. The magnitude
of these artlﬁcxal amplifications were shown to increase with the level of foundation

ﬂexxblhty Model A is therefore recognized madequate to evaluate “time doma.m

* seismic responses of dam-foundation systems and should not be used in pra.ctlce

)

d)

g)

The reha.bxhty of model C; the deconvolved a.ccelerogra.m input model, which is

theoretically the most accurate model depends on the quality of the deconvolut:on

ana.lysgs. The verification of the deconvo}ved a.ccelerogra;m by computing the free-
tield response of the finite element foundation quel is a mandatory step, to ensure
acquxfate results for model C.

The use of model D, the free-field input model; led to results which were almost
identical to those derived from the theoretically more accurate model C and that
was shown to be independent of the levels of flexibility and dan‘lping of the t'oun-
dation rock. Model D can thus be considered the most efficient to evaluate the

-

time domain responses of gravity dam-foundation Systems since it is much easier

'to implement than model C.

k.3

The good pe;formance of the free-field input model (model D), showed that the
assumption of the same free-field accelerogram at all interface nodes is adequate

for a concrete gravity dam.

The performance of model B, the massless foundation iﬁput model, was shown to |

be dependent on the foundation ﬂexibi}ity, on the level of &qmping of the xfna.ssless
fopndation rock and on the computational procedure reta{ned to fornln the global
damping matrix. '

For model B, in the case of a proportional damping (¢ , = S%i, it was shown that
for relatively flexible foundatlons (E, /E4 £ 1/4), the performance of this model
was 1mproved when the damplng matrix of the complete system was esta.bhshed

by assembling the damping matrices of the dam and the massless foundation ([C; |
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proportioﬁal:to (K] only), which were separately formed by the Rayleigh damping
method. ) ‘

h) For a relatively rigid fo?qdation (E; /E4 > 1), and still in the case of a lightly
damped foundation (¢, = 5%), a value of zero damping for the massless foundation
model led to ;esults which were in gogd agreement with those derived from models
C and D.

i) For higher damping ratios, £, = 10 and 15% it was shown that in the case of

model B with a relatively flexible foundation, controlling the damping at only the

first mode in the foundation, led to results which were almost similar to the results |

derived from models C and D. For relatively rigid founda\tion rock (E,; /By > 1), .

\model B underestimated the response and that was partly due to the poor numer-
ical control of the damping provided in higher modes of the massless foundation
model. .

}) It was also shown that in the case of ﬁon—px:oportiona,l daz'nping, the use of weighted
damping rat;ios (Eq. 4.2) for the different modes of vibration expecteci to contribute

significantly to the total respox?se, improved slightly the response of model B as
compared to models C and D. Furthermore, this p;'o’cedure eliminates the needs
to consider explicitly the combined system as non-proportional.

k) Comparison of the numerical results between model B and models C , D, showed
that the maximum values of the response quantities derived from these models are
generally in better agreement tlia.xi their corresponding r(;gt mean\square. o
In summary, model B although not as accurate as models C and D, do present

several practical advantages allowing a significant réad,uction of the number of dynamic
degrees-of-freedom. It can be used in time domain seismic analyses of dam-foundation
systems if certain precautions are taken with regard tc; the mathematical idealization

of the energy dissipation characteristics of the foundation;

i) The damping matrix should be constructed by considering the foundatjon damping
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characteristics to be only stiffness proportional, even when similar damping ratios
are assigned to the dam and foundation. N )
For the flexible foundation cases (E; /E; < 1/4), a good correlation of typical
response quantites of interest has been observed between model B, in which the
damping was controlled only in the first mode of #ibration, and models C and D.
In order to obtain a good correlation between model B and models C, D, for stiffer
foundation caseg; the damping ratio assigned to the foundation of the massless
foundation input model should be smaller than the one that would have been
retained for the application of models C a.n‘d D. For example,, in the case where
a value of 6{ = 15% is assigned to the mass foundation in models G, D, g,value
of {, =-.5% in model. B lead to an average error of 3.6% in the R..M.S.D, for
E,[E;, > 1/2. T § = 109% eif. considered in models C and D then a value of
¢, = 0% in model B lead to an average error of 6% in the R.M.S.D for the same

foundation flexibility conditions as for the previous case. - -
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CHAPTER -5

Coordinates Reduction Techniques for

e
]

vt Dam-Foundation Interaction

&

5.1 Introduction

-

The importance of dam-foundatien interaction has been emphasized in the pre-
vious chapter, illustrating the phenomenon in detail for the relatively simple two—
dimensional system described in Chapter 3. In this chapter attention will be direcééd

toward numeric%l methods that have been developed recently to overcome the limi-

—ta.tfoans inherent to -the analytical solutions of systems that requires a large number

of dynamic d.o.f for their idealization such as a three-dimensional extension of dam-
foundation—fluid interaction problems. The application of these methods and the de-
velopment in computer hardware are already making possible the solution of high:ly
complex problems on relatively inexpensive micro-computers. A key to this‘ capability
is obviously the minimization of the number of unknowns in the da.m—~foun@é.tion—ﬂuid
Mealization and it is this aspect that will often govern the manner in which the inter-
action problem will be best formulated. )

The selection of coordinates to carry out a dynamic analysis can be made using

— kinematic constraints enforced by constraint equation and proper boundary con-
.. .

ditions,
¢ ' ]

a]

o ‘:fé

¥



s v
c ~ static constraint or static condensaﬁon,
~ finite element modal coordinates, ' '
\ — derived Ritz or Lanczos cgordina.tes using load aependent tra\ns;'ormation ve:ctors:
Each of these techniques can be \understood as Ritz analysis. Variations in the methods °

, are related to the choice of the Ritz basis transformation vectors. Practical capabilities

'to apply these coordinates reduction procedures to locally non-linear systems have also .

been developed.?%:4¢ . . . ‘ -
Usually the geometry of a structure does not permit the discretization in a few
finite elements but the i)ehaviour may be perfectly characterized by a few generalized
coordinates. This is generally true for structural dynamics problems such as earthquake
+  analysis where typ;cal modal analysis studies based on the frequency content and spatial
distribution of the excitation have shown that the response is controlled by a relatively
small number of low frequency modes. Therefore, the solution needs to be calculated
c only in these modes. This is achieved.by vector superposition a‘r—xab!(sis by considering
only the important modes of the system. This has thf: advantage of reducing drastically

the computer cost of the analysis as compared to the solution where the dynamic

- equilibrium equations expressed in geometric coordinates are integrated simultaneously.

In this chapter coordinates reduction techniqueés to solve the dynamic equilibrium_
equations of the dam—foundation system are examined. -In addition to the classical ,
analysis technique using eigenvectors as bases for response computations, a solution

technique using derived Ritz vectors to reduce the size of the system of dynamic equi-

librium equations is also considered. The rate of convergence as well as the total \

computer time for these two solution techniques have been considered to compare their

relative efficiency. ' r

’ -
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, Si Selection of Generslized Coordinates for D&namic Analysis

\

~ The équations of dynamic eq;lilibrium (expressed in geometric cordinates) of the

dam-foundation system subjected to an earthquake loading can be expressed as:

‘[M]5+[Cl o+ [K]p = 1690t

&

The terms of the left ha.nd side are the same as defined in Chapter 2, f(s) representlng

the spatial components of the earthquake loading and g(t) the prescrlbed accelerogram

The vector of nodal dlspla.ceménts v can be approx1ma.ted by a linear combination of r *

linearly independent vectors,w:th r much less than n, as?*:

b

LY

4

‘;
p=) X
s=1 .

1

A

(5.2)

. s . o )
where X, are the linearly independent basis vectors and y; (t) are unknown parameters,

-

the generalized coordinates, obtained by sol;riﬁg a reduced syétem of r equations written

" as:

where

s O

/'l

MF g+ (61" 3Ky = £°(2) ot

1

M) = [xPMIX)
e =[xFle)ix]
K" = X7 [K][X] -

J*(s) = [XI" £ (s
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(53) :

(5.4) -

(5.5)

(5.6)

(5.7)
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The objectwes ‘of the transformation -are to obtain new system mass, damping and
* " stiffness matrices which are reduced to size (rxr) #nd have a smaller bandwidth than the

original system matrices while maintaining a good accuracy for the response quantxtxes

-

of interest.

¢ The success of vector superposition methods depends on proper. selection of the

basis vectors [X] to be used in the coordinates transformation.’ Idea.lly the vectors

should:
o ° i) be linearly independent and completely span the space of the solution to fully
characterize the dyna,mif. ;esponse, | .
ii) satisfy the geometric boundary conditions, s
y T iii) form certain geometric patterns producin‘g acceptable deformation shapes to char-
acterize the dynamic response, v L - . \ .
" , ' iv) be simple and comr;utationa.lly inexpensive to generate.
C 5.2.1 Finite Element Modal Coordinates
. This is the classical method which consist of using as transformation vectors, the _ -
. “mode shapes [@] of the system. . These mode shapes ‘are found by solvir’xg the free-°
vibration eigenproblem which can be written as: ' C
— - - ' ’ , . . )
(Kl[d) =MW" (5
For large sytems such‘ as d@—foun&tion, the solution of Ehe eigenproblem is usually
performed by either the subspace iteration method or the Lanczos method. For both
methods there are usually three phases in the solution procedure: ‘
1= Sc;lve equation (5.8) for [¢] and [w].
2- P(erform a Sturm sequence check, in order to verify that n{ eigenvalues have been_‘
é , ) missed in the computations. | ’
3 3— Evaluate the error of eigenpairs (w;?, ¢;) from . g

_ [ - . o
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||[K1¢ - w?[M]g,
. 2 < specified error (5.9)
\ N lixe], '
The mode shapes have the property of béing orthogonal to both the mass and the

stiffness matrices. Thus the reduced mass matrix [M]* and the reduced stiffnes matrix
[K]* will be diagonal matrices. In the case of a propértioha.l damping, the reduceq
damping matrix [C]* will also be diagonal. This will result in a set of uncoupled modal

equations written as:

/ .
~ , §+26w]g+w?y = £ (s) olt) . (5.10)

. ,

On the other hand in the case of a non-proportional da.mpmg, the matrix [C]* will

'

not be diagonal leading to a set of coupled modal equatlons The principal problem
associated with the use of finite element modal coordinates a.re that the truncated eigen
‘basis do not span the complete solution space and the high numerical effort required for
the: generation of eigenvectors for large structural systems. It should also be noted that
the eigenbasis ignores impértant information about the structural dynamic problem
related to the specified loading characteristics such that computed eigenvectors can be
nearly orthogonal to the applied loading and therefore will not participate sig.niﬁcan’tly

-~

in the solution. .

5.2.2 The Derived Ritz €oordinates . .

The Ritz extension of the Rayleigh’s method known as Rayleigh—Ritz analysis has
been widely used to find approximate values of the lowest eigenvalues and corresponding
eigenvectors of the free-vibration problem. It should be noted that the use of the
derived Ritz transformation vectors is.not to obtain an accurate solution of the free-

vibration eigenproblem (Eq. 5.8), but rather to form an accurate load dependent vector
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e
basis to reduce the size of the original 3):stem of equation (Eq. 5.1). Recently, Wilson,
et al. *7, have-presented a simple numerical-algorithm baged on an invetse iteration
type of scheme and using the spatial distribution of the dynamic load to generatea set
of mass orthonormal load depende:t transformation vectors to be used in Ritz type of

analyses as an economic alternative to the classical modal superposition method. The

> algorithm used to generate the Ritz vectors in this study is a computational variant

of the original anorit'hm presented by Wilson et al.*”. It was shown by Léger et
al.*® that this new algorithm is numerically more stable for systems carrying massless
d.o.f.. Furthermore, it produces a ‘higher degree of linear independence among the

' . { .
transformation vectors, and allow a better control of the static correction effects that are

- automatically included in the basis to approximate the pa}ticipation of higher vectors

not retained in the summation. Table 5.1 presents the algorithm used to generate the
Ritz vectors. The vectors X, generated by this algorithm are orthogonal to the mess

matrix. The orthogonalization with respect to the stiffiiess matrix is optional.

o

5.3 Rfep\rés)entation of Seismic Load from Truncated Vector Bases

.

* One of the important aspect of direct vector superposition techniques for the so-

-

lution of dynamic equilibrium equations, pertains to the number of vectors that must

be retained in the analysis. Hansten and Bell** demonstrated that the inaccuracies of

‘vector truncation are caused by the omission of load components that are orthogonal

| to the vectors included in the solution.

For ‘earthquake analysis, the concept of effective modal mass (defined in Sec-
tion 3.4) corresponding to the part of the total mass responding to the earthquake
in each eigen ;>r Ritz mode, is commonly used as a good indication of the relative
contribution of a particular mode to the global structural response.? A spatial error
estimate indicating the relative percentage of the total earthquake load represented by

the truncated vector baﬁ?can thus be written as:
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Table 5.1 Algorithm for the Generation of the Ritz Vectors (Reference 24) .

N

" 1-Given mass, stiffness matrices [M] [K]and load vector f (8).
2~Triangularized stiffness matrix.
(K] = (L] [D] 2]
3—Solve for initial static deflected shape.

[K]y, = f(s) - solve for v,
. © 4-Solve for first vector.
) K| X; = M)y, solve for X} v
T 1/3 :
. b = (X" [M1X;) i} .
- X, =X x t [M] normalize X7 .
. ¢, = v2 [M]X, . update static vector 9,

vl =Y _c"x

5—Solve for additional vectors t = 2,+++, 7 — 1.

= [M]y;_ solve for X .
c; = LT[M])_(: *  compute for j=1, i-1 ’
§=1 ¢ ,
X=X - Z 79.¢ [M] orthogonalize X;
f y=1 g
' 1,2
!=(—4'T[M]—X:-) . .
. X= X' x1i [M]normalize{ X*}
Cy, = _Qf'_ 1 [M]X, update static vector v;._ ,
. pﬁ. = -1 - c”! -Xl' =
- > 6-Add static residual ¥__, as static cotrection vector X, (optional)
i-1

J'e

S e 1L

‘b = (vT [M] )1/2 [Mkl.i?lhonormalizey_'_1
X, =9, X ¢
7—Orthogonahza.txon of transformation vectors with respect to [K] (optmnal)
[K]* = [X]" [K][X]
[M]* = [XF [M][]
[K ] [Z ] [M ]' [Z ] [&'JQ] solve reduced eigenvalue problem -
W= approximate structural frequencies

[X ] [X ][Z ] compute final transformation vectors

)
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In this section the representation of the seismic load from a truncated vector basis
\ using either the eigé;lvectors or the derived load dependent Ritz transformation vectors /
is investigated.

To compare the number of vectors for the eigen and the Ritz solutions, required
to represent adequately the seismic load, a target percentage of effective modal mass
was fixed at a value of 95% and the required number of vectors to reach this value
was détermined for both solutions. This has been done for the horizontal and vertical
directions. The effect of the inertia of the foundation block on the representation of the
seismic load by a set of transformation vectors was also investigated. Two models i'or the
foundation block were considered; t}}fa mass and the massless foundation models. The

foundation flexibility wa varied such that the modular ratio Between the foundation

rock and the concrete dam takes the lower and upper limits of the values used in the

analyses presented in Chapter 4.

5.3.1 Comparison Between Derived Ritz Vectors and Exact Eigenvectors

5.3.1.1 Mass Foundation Model (Earthquake Input Models A, C, D)

The percentage effective modal mass in the Y-dir is represented as a function of
the number of eigenvectors and the number of Ritz vectors in Figures 5.1a) and 5.1b)
for a flexible and rigid foundation respectively. It can be noticed from these figures thag
for both the eigen and Ritz solutions, the contribution of the first mode of vibrat;on

~

~to the total response increases with the flexibility of the foundation rock. Indeed for

the most flexible case (£, /E, = 1/8), the contribution of the first mode to the total

response is around 60% for both the eigen and Ritz solutions. This contribution drops

( to nearly 10% for the most rigid case (E, /E4 = 4). The number of vectors needed to

rl
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reach the required 95% of effective modal mass is dependent on the flexibility of the
foundation rock. For E;/E; = 1/8, which represents a flexible foundation, 6 vectors
for the eigensolution and 8 vectors for the Ritz solution were needed to get 95% of the

PEMM, . For the case E; / E; = 4, which represents a rigid foundation rock, 15 vectors

: were needed in the eigensolution to reach the required 95% of the PEM M, , while the

Ritz solution converged with 14 vectors. This shows that the eigensolutionﬁand the-
R?tz solution converge with very similar characteristics in the horizontal direction.
The same ’study has been carried out for the Z-dir, the results are presented in
Figure 5.2. The ﬁrst observation that can be made is that the required number of
vectors for both solutions to converge , is more important as compared to the horlzontalf
direction since axial modes of deformation are stiffer than lateral modes of deforn&ation.
It can also be noticed in this case that the derived Ritz solution achieveq loading
convergence with fewer vectors than the eigensolution and this is for the complete
range of the selected parameters. " For the case E,/E; = 1/8, 17 eigenvectors were
needed to achieve 95% of the PEMM,, whereas oniy 11 vectors were needed for the
Ritz solution to converge. For the case of the relatively rigid foundation (E,/E, = 4)

the eigensolution converged with 37 vectors, while only 20 vectors were needed for the

- Ritz solution to converge.

5.3.1.2 Massless Foundation Model (Earthquake Input Model B)
For the massless foundation model as one should expect, the convergence for both

& .
vector bases is achieved with fewer vectors than' the models where the mass of the

foundation block is taken mto account This is because the mass of the founda.tlon
being neglected, the foundation block w1ll not tend to dommate the dyna.mlc response
of the dam-foundation system. The percentage effective modal masses in the horizontal
and vertical directions are represented in Figures 5.3 and 5.4 respecti\(ely, as a;function

of the number of vectors retained in the analysis. From Figure 5.3, it can be noticed

that the contribution of the first mode of vibration to the total response in the Y-dir is

9

107

4

LY

©



3
o
8.
— Eigensoiution
- = =Ritz solution
30 ~
20 =~
10 ~
0T 1 ! ! 1 T
. 1 2 3 4 5 6 7 8
R No. of J‘mnsfcrmntlon Vectors
(a) Flexible Foundation Case: Ef/Ed=1/8
100 v
Y = . ___‘__/
90 - 4
80 -
”
’ 70 ‘
, ¥
80—
- .
p-
E 50 -
o
40~ - Elgansoiution
- = «=Ritz solutlon
30 ~
20 -
10 -~ o
¢ o .
- ™71 1 1 1 117 1T71
v 3 S 7 9 11 13

-

Figure 5.1 Percentage Effective Modal Mass in the Y-Dir as a Function of the
. Number of Vectors Retained in-the Analysis (Mass Foundation Model). '

No. of Transformation Vectors

(b) Rigid Foundation Case:Ef/Ed=4 ,

i

108

15

2]




= g

100-

PEMMz
14, ]
(=]
]

Eigensolution
- = =Ritz solution

L4

Y | { | )
4 7 10 13 16

No. of Transformation Vectors

(a): Flexibie Foundation Case: Ef/Ed=1/8

*»

19

100
90 —
]
704 I
1
so+ !

S0~

PEMM2z

40—

30 -

= Elgensolution
- - =Ritz solution

o

1 . 1 |
10 18 28
No. of Transformation Vectors

(b) Rigid Foundation Case: Ef/Edm4

Figure 5.2 Percentage Effective Modal Mass in the Z-Dir as a Function of the
Number of Vectors Retained in the Analysis (Mass Foundation Mddel).

J 109
{«q --

4



-

s,
149

more significant than in the miass foundation model. The convergence characteristics
of the solution using the'eigenvectors and the solution using the Ritz vectors are very

similar in the horizontal direction. For the case E,/E; = 1/8, the required number

of vectors to reach 95% of the PEMM; is 2 for the eigensolution and 4 for the Ritz

solution. For the rigid foundation case, E, /E, = 4, the solution using the eigenvectors

converged:with 9 vectors while the Ritz solution converged with 7 vectors.
Considering Figure 5.4 whith represents the variation of the PEMM in the vertical
direction as a function of the number of vectors retained in the analysis, it can be n_oticed
that for the case E, /E; = 1/8, the eigensolution and the Ritz solution converged with 3
and 4 vectors respectively. For the case E, /E4 = 4, the convergence of the eigensolution

was achieved by 11 vectors and for the Ritz solution the required number of vectors

4

was of 10. Thus for the massless foundatien model, the sglution using the eigenvectors

and the solution using the Ritz vectors have very similar convergence characteristics in -

both horizontal and vertical directions.

5.3.1.3 Relative Computational Efficiency
The study of the representation of the seismic load by a truncated vector basis

showed, that for mass foundation models, if vertical excitation is to be disregarded, the

4 : -
" eigenvectors and the Ritz vectors have very similar convergence characterististics. If

I
vertical excitation is to be considered, it has been shown that the Ritz solution achieved

loading convergence with fewer vectors than the eigensolution. For the masslt;ss foun-
dati;m model, the required numb‘er of vectors ?or both the eigen and Ritz solutior;s was
very close in the horizontal and vertical directions.

. The required number of vectors to achieve eﬁ'egtive modal mass’con\:ergence is not
the only important factor if comparison between the performances of the eigensolution
and the Ritz solution is to be made. Indeed the numerical cost in terms of computer

execution time is also an important factor since low computer costs of a t&pical analysis

cycle will allow inexpensive reanalysis to conduct reliability evaluation of the numerical
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results. The genera.tion‘ of the derived Ritz vectors was approicimately 7 to 9 times more

efficient than the eigensolutioﬁ when a subspace iteration scheme was used and 2 to 3

-~

times more efficient when the Lanczos method was used to generate the eigenvectors.

On the basis of the previous observations it can be stated that the use of the derived
- 8

Ritz vectors for the representation of a seismic load applied to a concrete gravity dam- .
foundation system, is mo%é’appropriate than the use of the eiéenvectors. It should also
be noted that a satisfactory seismic loading representation by truncated load duependent
Ritz transformation vectors has been shown to ensure convergence of typical response

quantities such as stresses and displacements of typical civil-engineering structures.*7:48

o

1

5.4 Dynamic Response Analysis Procedure

Having selected the transformation vectors and the number of vectors required to
represent adequately the seismic load, a solution strategy has to be adopted to solve -
+

the reduced system of dynamic equili‘b'rium equations (Eq. 5.3). Two cases have to

be considered. One with proportional damping and the other with non-proportional

damping. For the case where the da.mpiné is proportional, the dynamic equilbrium

equations are uncoupléd and can thus be solved separately. The total response is then
obtair;ed by superposgg the Ritz or eigen modal responses. ‘In the case of. a non-,
proportional damping, the reduced damping matrix [C|* (Eq. 5.5) is not dia.gonall an&d\g’} )
its off~diagonal coefficients pro‘duce coupling of the modal equations of motion: Three
possible methods to solve the coupled reduced system of 'd}.'na.mic equilibrium equations
(Eq 5.3) are:

1) Mode superposition \using complex mode Shapes (Method 1) N

The equations of motion of a structure with' non—propo}tional damping may also be

uncoupled by the solution of the complex eigenproblem which may be written as:

\J

0 ~[w*1IM1[9] + wl(Clig] + [K][¢] =0 | (5:12)
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In such a case the complex ‘mode shapes and ‘frequencies will contain in-phase and
out-of-phase components such that the eigenp.roblem is essentially of order 2n. The’
details of this method can be found in Reference (39). It should be noted that the
same approach can be used to diagonalize t};e reduced system expressed in derived
Ritz coordinates by the matrices [M]*, [C]* and [K]*. The order 3t the complex
eigenproblem will then be 2t where r is Ehe number of vectors retained in the analysis.

The major drawback of the complex eigenmethod is the larger size of the eigenproblem

that must be considered and the necessity of dealing with complex numbers in the
dynamic response.

2) Direct integration of the reduced system (M~ethod 2)
An interesting approach to sqlve the coupled equations of motion expressed in gener-

alized eigen or Ritz coordinates (Eq. 5.3) is to integrate these equations directly. By

limiting the transformation to the modes that are expected to contribute significantly

. to the dyna.moic ;esponse, an efficient solution {echnique is obtained. This procedure

was recommended by Clough and Mojtahedi®®, a numerical example to illustrate the
effectiveness of the method was presented. The major drawback of this method is that
if damping coupling between one of the lower modes with a higher mode exists, this-
effect will not be taken into account since the solution is found by including only a
small number of mf)dés expected to contribute significantly to ’the total response from
the consideration of the effective modal mass.
3) Vector superposition using weighted dampizig ratios (Method 3)

The simpleist but only approximate procfedure for treating the non—proportbnaLdamped
case, is to ignore the off-diagonal terms of the reduced damping matrix [b]‘, and
to assign a weighted damping ratio to each uncoupled modal equation. In practice
different approaches to determine the weighted damping ratios to be assigned to each
modal equation, have been proposed.

— In a first a.pprba.ch the non-diagonal matrix [C]* can be replaced by a diagonal
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matrix-with the same diagonal terms as in thg original matrix. Then the stan-
dard modal analysis procedure is followed in order to solve the uncoupled dynamic
equilibrium equa.t\ions. It is obvious that this procedure introduces errors in the
- solution, l}owever Warburton and Soni®? proposed a criterion that should be sat-

isfied in order that neglecting the off—diagonal terms in matrix [C]* leads to a

maximum error in typical response qua.ptiti&, of the order of 10%.

. 2
5 (59
2, \w?

.
- -

. (5.13)

mins @

¢ <0.05

§; is calculated from the diagonal element from ¢;; = 2&w;, w; and w, which are ’

natural frequencies, ¢;; and ¢, are element of the [C]*- matrix and the minimum
L Y

H .
_of the expression | --- | with respect to s is taken, s may be any integer between 1

and r (s # 1), r being the number of vectors retained in the analysis.
— Another approach to find the weighted damping ratios is based on the weighted

average of strain energjes in each material, presented in Chapter 4 (Section 4.5).

: ilﬂm]x,e.- .

-

It is clear that ignoring the off-diagonal terms of the reduced damping matrix [C]*

"and assigning weighted damping ratios to each modal equation will introduce errors in
the solution. However this procedure is frequently used in practice, and it has been
“demonstrated to give acceptable results using only a few modal coordinates in the

"

earthquake response analysis of a soil-building system.®!
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5.5 Analysis of Structural Response

In this section the performances of Method 2, the direct jntegration of the reduced

system and Method 3 using weighted damping ratios, as presented in the previous sec-

o

tion for the analysis of systems“with non-proportional damping were tested by carrying
out the earthquake response analysis of the considered concrete gravity dam—foundation

system described in Chapter 3. The foundation flexibility was set to a value correspond-

ing to E; /E4 =1/2. The damping ratio for the concrete gravity dam was taken as 5

‘percent of critical. For the foundation rock the damping ratios were taken as 5, 10, 15

and 40 percent of critical.
The dynamic response of thé dam—foundation system to the NS component of the
El Centro earthquake was determined for each of the damping case mentioned above.

@ ’ 5
The earthquake input model used for these analyses was model C, the deconvolved

accelerogram input mechanism. For the propartionally damped systerﬁ using &, = 5%,
the uncoupled equations of motion were integrated independently and the total response
was obtained by vector superposition. 'fhese results were then compared to those
obtained from the step-by-step integration of the equations—of motion expressed in
geometric coordinates. } . -

For the cases £, = 10% and 15%, where the equations expressed in generalized
coordinates were coupled by the reduced damping matrix [C]*, Methods 2 and 3 were
used to solve the system of coupled equations. For each méthod two types of solution
were. obtained. For Method 2, which consists of integrating simultaneously the coupled
modal equations, two types of transformation vectors were used to obtain the solution;
the eigenvectors and the derived Ritz vectors. For Method 3, which cons}sts of inte-

grating indepencfently the uncoupled equations of motion by ignoring the off-diagonal

terms in the reduced damping matrix [C]*, two types of weighted damping ratios were

b

_used. First, the weighted damping ratios were computed from equation (5.14), second

the weighted damping ratios were computed directly from the diagonal terms of ma-
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trix [C]*. The damping ratio of foundation was then set at 40 percent of critical to

investigate a heavily damped foundation system. The same procedure as in cases of

- & = 10% and 15% was followed except that in Method 2 only the Ritz vectors were

used as transformation vectors'and in Method 3 the damping ratios wére compute§
from the (l\ia.gona.l terms of the reduced damping matrix [C]ut . It should be noted that
the results <‘)f the above analyses were also compared with the results obtained from
a step-by-step integration of the coupled equations of motion expressed in geometric
coordinates. -

Although a complete set if stress and displacement histories was generated for
each analysis, it was verified tha'.t the disi>la;cements at node 1 (Fig. 4.2) represented by
their R.M.S.D and the corresponding Max.D can be considered to p:rovide an adequate
indication of the relative results given in the different analyses for typical quantities of
erigineering interest.

The numbe; of vectors expected to contribute significantly to the total response,
was selected by determining the required number of transformation vectors (eigenvec-
tors or Rit\z vectors) to reach a value of percentage effective modal mass of 95 percent
in the horizontal direction. This requirement has lead to a number of 7 vectors when
an eigensélution was used and 8 vectors for the Ritz solution. : |

The results of the different analyses for cases £, = 5, 10, 15 and 40 percent are
presented in Table 5.2. ,The results for £ = 5% showed that for a proportionally
damped system, the integration of the uncoupled modal equations lead to almost the
same displacements in terms of the R.M.S.D and the Max.D, as the ones obtained from
a step-by-step integration carried out in geometric coordinates. In the case of a non-

proportionally damped system, it is noteworthy that the integration of the reduced

coupled equationg of motion lead to results which are in good agreement with those

bt

obtained from a direct integration of the equations of motion expressed in geometric

coordinates and this is for cases {, = 10, 15 and 40%. Furthemore, the use of the’
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derived Ritz vectors maintains or iﬁprove the accuracy of the response as compared
to the solution using the eigenvectors as bases f;>r computations. The performance of
Method 3 depends on the values of weighted damping ratios assigned to the different
modes contributing significantly to the response. Indeed, it can be noticed‘ from Table
5.2 that in the case where the weighted damping factors are computed from eqﬁation
(5.14), the resulting displacements are underestimated. In\ other ‘words, the use of

equation (5.14) leads to damping ratios that are too high. The other alternative in

Method 3, which consists of computing the damping ratios directly from the diagonal -

3

‘terms of the reduced damping matrix [C']*, showed to give results which are in good

agreement with those derived from a step<by-step integration in geometric coordinates.

The largest error introduced in the results due to the négleét of the off-diagonal terms
in [C]*, corresponds to the heavily damped case of ¢, = 40%. It should be noted also
that the Warburton criteria &Eq. 5.12) was satisfied for cases of £, = 10 and 15%, for
€, = 40% this criterion was not satisfied for all the transformation vectors. This shows

that this criterion can be restrictive in some cases since the maximum relative error

in the displacements was approximately 3%. It should be noted that the use of the

previously investigated methods can also be a.pi?lied directly to a massless foundation
model.

"The total execution computer times required by the different methods considered
above, to compute the displacements history are listed in Table 5.3. The computations
were performed in double arithmetic précision,‘on a micro—computer working with
the 80286/80287 micro—processors, n‘o advantages were taken of symmetry and of the

reduced bandwidth of stiffness and damping matrices for the step-by-step integration

‘of the-coupled system.

It should be noted that the total computer execution times shown in Table 5.3 for
any method, represent the time required to derive the displacements history, given the

system matrices [M], [C] and [K]‘a.nd the load vector f(s), which includes the generation
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Table 5.2 Horizontal Displacements at Node 1 Derived from the Different Solution ¢

Strategies.
. ]
o Foundation damping, £, O 10% 15% 40%
. B
_ Bolution method RMSD MaxD RMSD MaxD RMSD Max.D
q (cm) @ . (em) -
; .
Step-by step integration 79.00 12.85 73.44 12.41 63.72 11.82
; - N - ’
Reduced coupled equations ' ) i
a) Derived Rits vectors - 78.75 12.78 73.21- 12.39 63.37 11.78
° b) Eigenvectors 7875 12.75 7320«  13he -~ —
- (Non~proportional damping) . '
_ Assumed uncoupled equations 7
a)€ from ¢}, 7813 1275 72004 12217 6196 11.47
@ b) € from Eq.(5.14) , 67.43 11.74 56.00 10.43 — —
(Non-proportional damping)
Damping in concrete gravity dam 5%, E; /E4 = 1/2
- o 1 l
o Table 5.3 Computer Times Used in Computing the Displacements History.
‘ Step-by-step integration coupled equations (140 x 140) 4800 sec
- -~ 7 A4
Direct integration of reduced system (8 x 8) 300 sec ,
(using Rits vectors as transformation vectors)
o - Independent integration of uncoupled equations (8 x 8) ~ 450 sec ,
. - i - 11
L . ] .
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( . §nd application of transformation vectors. The advantages of using the coordinates
reduction techniques for linear systems are put onto gvidence by the examination of ’
the values siown in Table 8.3. The integration of the reduced coupled system is more
than ten times faster than integrating the complete system of equations.

A major advantage of integrating directly the assumed uncoupled reduced equa-
tions of motion, as compared to the redujced “coupled system is that an exact closed
form mathematical solution is possible if the seismic load is described by a series of
straight lines between equal intervals of time. This approximate loading description is

- - -~ generally used for any digitized transient record. On the other hand, the direct inte-

’ gration of the coupled system of equations will generally exhibit period elongation and

amplitude decay with time. -

5.6 Conclusions . | | .

| c ' In this chapter, it was shown that a sign'iﬁca.nt reduction in the computatioﬂal effort
involved in the tim\: domain ea.fthquake response analysis of a concrete gravity dam—
foundation system, can be gained by the application of recen A déveloped coordinates
reduction techniques while mainta?il'ling a good accuracy of'L;he computed response
v quantities. "The main conclusions of this chapter can be summarized as follows:
~ The number of transformation vectors required to represent the seismic load was
more important for a rigid foundation than it was for a flexible foundation.
~" The solutions using the the eigenvectors and the derived Ritz.vectors as bases for
computations had the same convergence characteristics in the horizontal direction
for mass foundation models.
a) The Ritz solution converged more rapidly than the eigensolution in the stiffer
vertical direction for mass foundation models.

b) .Ignoring the inertial effect of the foundation reduced the number of transformation

vectors required to represent adequately the earthquake load vector.

c {““\‘

!
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sithilar convergence characteristics in both the horizontal and vertical directions.

_ y}é‘; the massless foundation model, the eigensolution and the Ritz solution had
!

5

>

d), The time of gel;eration of the derived Ritz vectors was 7 to 9 times less than the

time required to generate the eigenvectors when a subspace iteration was used and

2 to 3 times faster when the Lanczos method was used.

¢) The use of the effective modal mass approach provided a good guidance to monitor

the number of transformation vectors to be included in the response.

f) In the case of proportional damping, the integration of the uncoupled modal equa-

tions lead to similar results as the step-by-step integration of the coupled equations

. - .
expressed in geometric coordinates.

g) In the case of non-proportional damping, the direct integration of the cmﬁ:pled Te-

duced system expressed in generalized coordinates led to results which were very
.Close to the results derived from the step-by-step integration (geometric coordi-

nates).

h) The use of the derived Ritz vectérs maintained or improved the accuracy of the

response as compared to the solution \u;l}g the eigenvectors as bases for computa-

tions." , . - 0

i) In the case of non-proportional damping, ignoring the off-diagonal terms of the

reduced damping matrix [C]* and computing the weighted damping ratios from

equation (5.14) underestimated the response. )

i

j) The Warburton criterion®® when satisfied ensured an acceptable level of errors in:

the response quantities derived from the solution that used the damping ratios

computed from the diagonal terms of the reduced damping matrix.
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CHAPTER 6 - . * \
SUNINIARY AND CQNCLUSION S X
~ ‘ o _ , J/

N
I
’

6.1 Summary

-

The importance of foundation interaction on the behavior of concrete gravity dams

under earthquake ground motions has long been recognized. Previous studies®!'!? have
. [ 4

c been carried out typically in the frequency domai;l using foundation models based on
analytical half-space soltition and two—dimensic;nal linearly elastic dam models in order
to identify and quantify the effect of critical parameters. However, the neéd to represent
non homogeneous geometrical and material foundation properties for which analytical
models are not available and‘ the need to consider noh—liﬂear behavior under severe
seismic excitation require the extension of the anilysis of dam-foundation systems in

- the Eime domain. c

‘ ' This s‘tﬁdy has presented the effect of using four different earthquake input 11'1echa.-

nisms suitable for wtin;e 'c)lorhauin structural analysis of concrete gravity dam-foundation— - -
reservoir system. These were, D
A) the standard rigid base input model,
B) the massless foundation input model, . . , .
C) the deconvolved base rock input odel,

D) the free—field dam.foundation integface input model.
: o2 ‘
) N\




A two—;iimensional linear elastic finite element model was selected to represent a typical

P

dam-—foundation system. .The time domain responses were computed for a wide range
of the moduli ra.t?o,“ ’E,o;,,.d,,,.-o,.} E,.» and the damping ratio of the fo‘gmdation, & .
Coordinates reduction techniques suitable for the time domain solutions of large
linear or locally non linear structural modelséenerally reqﬁlred to represent seismic
dam—foundation interaction problems were also examined.
v  Two types of transformation vectors were presented, the eigenvectors and the de-
rived load dependent Ritz vectors. Their relative perforéna.nces to represent adequately
the seismic load were compared in terms of the rate of convergence as well.as the time
required for theirﬂrespective generation. The efficiency of different solution strategies

in solving the reduced system of dynamic equilibrium equations in the cases of propor-

tional and non-proportional damping were investigated.

6.2 Conclusions

The results derived from the application of the four proposed earthquake input
mechanisms to the idealized dam—foundation—-reservoir system have clearly shown that
the use of different input models lead to signiﬁc;nt differences in the structural response
of this type structulzes. The perform%mce of each of the proposed input models for a
wide range of system parameters was established. The main conclusions were that,

1. Model A, the rigid base rock input model, induced very significant artificial am-
plifications in the response qua.ntltxes of interest. These artificial amplifications
were shown to increase with the level of founda.txon ﬂex1b1hty Model A is there-
fore recognized to be inadequate to evaluate time domain seismic responses of
dam-foundation systems and should not be used in practice.

2. The reliability of model“ C, the deconvolved accelerogram input model, which is

theoretically the most accurate model, depends on the quality of the deconvolution

analysis. The verification of the deconvolved accelerogram by computing the free-
&

<
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field response of the finite element foundation model is a mandatory step to ensure

~

accurate results for model C>-

. The use of model D, the free-field input model, led to results which were almost

identical to those derived from the theoretically more accurate model C and that
was shown to be indepemfent of the levels of flexibility and damping of the foun-
dation rock. Model D can thus be considered the most efficient to evaluate the
time domain responses of gravity dam-foundation systems since it js much easier

‘to implement than model C.

. The goad performance of the free-field input model (model D), showed that the

" assumption of the same free-field accelerogram at all interface nodes is adequate

L

for a concrete gravity dam.

. The performance of model B, the massless foundation input model, was shown to

be dependent on the foundation flexibility, on the level of damping of the massles#

foundation rock and on the computational procedure retained to form the global

damping matrix.

. For model B, it was shown that in drder to obtain a good correlation with models

C, D, the damping matrix should be constructed by considering the foundation
damping characteristics to be stiffness proportional only, even when similar damp-

ing ratios are assigned to the dam and the foundation.

. For flexible foundation cases (E,/E; < 1/4), very similar results in typical re-

sponse quantities of interest have been observed between model B, in which the

damping was controlled at only the first mode of vibration, and models C, D.

. For stiffer foundation cases, the numerical results showed that the damping ratio

assigned to the foundation in model B should be smaller than the one that would
have been retained for the application of models C, D, in order to get an accurate

response from this massless foundation model.
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The application of coordinates reduction techniques to solve the time domain dy-
namic equilibrium equations in Chapter 5, lead to the following conclusions:

1. For mass foundation modelso(models A C, D), the convergence characteristics of
the derived Ritz solution and the eigensolution were very close in thé horizontal
direction. In the stiffer vertical direction the derived Ritz solutlon converged more
rapidly tha.n the eigensolution.

2. For massless foundation model (modf.l B}, the derived Ritz solution and the eigen-

’ solution had similar convergence characteristics.

3. Ignoring the inertial effect of the foundation reduces the number of tra.nsformati-on
vectors required to.represent adequately the seismic load vector.

4. The use of the derived Ritz vectors is advantageous-in terms of the cost of the
analysis, since the time of generation 6f, the Ritz vectors is approxim;tely one
seventh the time required to generate the exact eigenvectors.

5. The structural response obtained from the direct integration of the reduced cou-
pled system of equations (non-proportiona! damping) expressed in generalized Ritz
coordinates, is very close to the solutiog obtained from a step-by-step integraﬁon
of the coupled equations expressed inogeorhetric tc\oordina.tes.

6: Ignoring the off-diagonal terms in the reduced damping matrix and integrating
simultaneously't:.he assumed uncoupled equations of motion, showed to-be efficient
wilen the damping ratios were computed from the diagonal terms of the reduceg

damping matrix, especially for cases.where the Warburton criterion®® was satisfied.

6.3 Recomet;endations and Suggestions for Future Research

L .
In summary, the main recommendations that shopld be retained from the present
9 -

study are that the use of model A is inadequate to evaluate the time domain responses
of dam—foundatiqn systems. Model D can be considered the most efficient, since it is

" relatively simple to implement and leads to accurate results. Model B although not as
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accurate as model D was shown to be able to produce I;umerica.l results with an accept-
dble level of confidence for typical engineering applications if it is implemented following
the recommex}dations presented in Section 6.2. Model B present several practical ad-
vantages, ﬁrst‘ it is relativel){ simple to implement numerically, second the massless
foundation provides a specified amount of flexibility that could be replaced by-equiva-
lent linear or non-linear springs resultian in an important reduction in the number of

dynamic degrees-of-freedom. In the case where the damping is to be included, dashpots

* can be used to model the energy dissipation characteristics of the foundation. Concern-

ing the time domain solution of the dynamic equilibrium equations, advantage should

be } 4 from coordmate teductxbn techniques based on the derived load dependent
™ i

Ritz transformation vectors that can be adapted to treat locally non linear systems, in

order to reduce significantly the computational effort.
The time domain seismic response of large structural —S}"stems, such as concrete
da.m-,foundation—reservoir systexi:s, is an area where research is still needed in order to
“achieve safe and economical design. More specifically, work is needed to include the
effect of local and global non-linearities such as uplift and relative slip at the interface of
the dam and the foundation, com{rete cracking and non-linear foundation behavior. It

would be also appropriate to extend the problem to a three—dimensiona.l representation

to obtain a more realistic model of the foundation behavior. Investigation on the

" applicability of the free-field input model in a 3-D representation can be carried out.

More work is also needed for a better idealization for time domain solution, of the

-4

resevoir system including the effect of water compressibility.
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APPENDIX

o :
o . This al;pendix includes the results derived froin the applic;tion of the El Centro K

ﬂ accelerogram to the dam—foundation system according to the four proposed earthquake

input mechanisms. The horizontal and vertical displacements and accelerations are

presented at nodes 1 a‘.nd 11 (Fig. 4.2), the normal and shear stresses are presented at

element 5 (node b). It should be noted that the response quantities are repreéented by .

their maximum values (Max) and the corresponding root mean square (R.M.S). (



PET

~ ‘
Table A.1 Displacements at Selected Nodal Points, Derived from the Four Input
* Models, El Centro Earthquake (§; = 5%, & = 5%). -
y
Moduli Ratio E; /E, 1/8
L 1
Input Model RMSD MaxD RMSD Max.D RMSD MaxD RMSD Max.D RMSD Max.D RMSD MaxD
(cm) (cm) (cm) (cm)” (cm) o (om)
> A 227.2 32.1 152.7 25.8, 128.2  23.4 90.3 19.1 73.5 12.2 66.8 10.3
e B 138.5 15.8 94.1 15.1 92.2 13.8 67.1 12.1 63.2 9.7 60.4 9.17
g C 95.1 12.5 69.2 11.8 93.3 13.1 68.9 12.4 64.2 10.1 62.1 9.4
2 D 96.8 12.7 69.3 1.7 81.3 12.9 66.8 121 ‘629 2.9 62.0 9.3
Q A 83.9 . 11.7 46.5 8.2 34.3 5.3 20.8 35 182 2.3 14.1 1.8
~ B 51.4 5.9 30.2 4.5 25.2 4.0 16.2 2.7 13.8 2.0 12.6 1.7
g C 36.0 4.7 22.9 3.5 23.2 3.7 187 2.8 13.9 1.9 12.9 1.7
ZO D 36.7 4.8 22.9 3.4 22.7 3.7 . 16.1 2.7 1376 1.9 12.8 1.7
N A 75.3 \ 103 47.8 7.9 37.8 7.1. 26.1 5.8 21.0 3.6 19.0 2.8
—~ B 44.2 5.1 28.5 4.7 26.9 4.1 19.2- 3.4 18.0 2.8 17.0 2.6
5 C 30.3 4.2 20.9 3.5 24.3 3.8 19.7 3.5 18.2 2.9 17.5 2.6
2 D 30.8 4.2 20.9 3.6 23.7 38 . 191 34 17.8 2.8 17.4 2.6
Q A 64.4 9.2 36.3 6.2 26.0 45 16.0 3.2 12.4 1.8 11.0 1.7
- B 37.7 44 22.0 3.5 18.7 2.8 12.2 2.0 10.7 1.6 9.8 1.5
g C 26.2 3.6 16.4 2.6 17.2 2.7 12.6 2.1 10.8 1.6 10.1 1.5
o :
2 D 26.6 | 87 16.5 2.6 16.7 2.7 12fsfﬁ~.o 10.6 1.6 10.1 15
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Table A.2 Accelerations at Selected Nodal Points, berived from the Four Input “a
Models, El Centro Earthquake (¢4 = 5%, & = 5%). . ¢

Y

g

%

Moduli Ratio E, / Eq | 1/8 1/4 o~ 1/2 ot B 2 . 4
Input Model R.MS.A MaxA RMSA/ MaxA RMSA MaxA RMSA MaxA RMSA Max.A RMSA MaxA
¢ ° (m/s?) T (mfs?) | J?I/S’) ) (m/s?) " (m/s?) (m/s?)
i - - ¢ »
> A 172.9 307 ° 2143 341 212.1 643 223.0 54.7 202.9 39.6 178.4 38.3
o B - 98.3 17.38 1103 21.1 _ 1400 297 1331 274 141.2 25.3 134.2 24.4
g-C 61.1 9.4 67.6 156  108.6 16.9' 1169 249 133.7 23.0 137.7 25.0
2 D 61.1 9.4~ 68.7 . 16.2 108.1 16.9 1284 213 1284 - 21.6 136.9 2.1
<\ 60.0 5.6 59.2 1.1 516 9.0 47.6 10.3 67.9 11.8 62.4 13.8
‘= B 317 4.9 292 58 34.8 1.3 326 17 371 79 810 69
g C 19.4 2.8 20.3 3.6 31.6 6.0 26.8 5.5 29.6 5.9 36.9 73
2 D 198 . 31 . 206- 39 326 6.1 31.4 7.5 28.4 5.8 36.4 7.1
Q A . 34.4 6.8 50.0 86 ° 574 13.2 68.6 17.1 66.4 13.9 66.7 12.1
~ B $214 41 28.3 5.6. 382 . 8.0 40.9 7.4 431 . 86 41.5 7.8
g C- 138 ° 23 17.9 4.2 27.8 45 32.0- 6.4 39.3 73 . 41.5 1.2
2 . D 13.8 2.4 18.2 46 29.0 46 38.8 7.4 37.5 6.8 41.2 72"
[ ) v -
~ A 49.5° 7.3 54.2 8.6 42.6 8.7 40.3 9.0 48.0 1.9 54.9 10.5
= B 32.9 5.4 25.8 - 5.2 27.2 6.2 23.5 4.4 23.8 4.9 23.6 4.7
,_g C © 149 2.7 14.2 2.9 22.5 4.1 ) 21.5 4.3 20.8 3.5 24.3 4.3
2 D 46, 28 . 143 2.6 22.1 44 228 44 20.4 3.4 23.4 3.9

.
-

~
Y
t

Mo b an
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. Table A.3 Stresses at Element 5 (Node b), Derived from the Four Input Models,
El Centro-Earthquake (¢; = 5%, £, = 5%). .
Moduli Ratio E, /E, ° 1/8 1/4 . 1/2 1 .2 4 '
Input Model R.MS8S Max.S R.MSS MaxS RMSS MaxS R.MSS MaxS RMSS MaxS R.MBS Max3
(MPa)* (MPa) (MPa) (MPa) (MPa) (MPa)
i A 7.84 112 7.79 132 795 154  6.32 1.28 5.72 1.1 594 122
* B 4.85 064 463 080 569 094 473 089 480 074 479  0.78
s C 3.18 0.41 3.27 0.58 5.06 0.83 4.82 0.94 4.85 0.81 4.88 0.69-
D 3.22 042 328 059 494 084 470 0.88 477 071 48 071
g ) )
A 57.04 899 6096 1003 6239 1311 5566 13.58 49.06  9.43 4436 772
. w B 34.63 510 3468 6.36 4336 772 3773 745 3850 654 3800 6.11
© C 22.31 3.03 23.68 4.85 =37.21 5.80 36.53 7.12 38.57 6.40 39.08 6.23
D 22.58 3.06 23.8 s0¢ 3650 573  37.14 742 3753 620 3893  6.16
" A 500 069, 440 080 462 069 381 ° 075 428 068 442 079
« B 320 037 291 048  3.46 057 294  0.48 300 048 304 ' 045
o ¢ 2.13 028 214 032 3.07 054 289 047 280  0.38 305 - 042
D 2.17 .29 2.15 0.32 3.07 0.54 2.89 0.47 2.80° 0.38 3.05 0.42
o
“1&;,; ;f *
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Table A.4 Displacements at Selected Nodal Points, Derived from the Four Input
Models, El Centro Earthquake (¢4 = 5%, &, = 10%).

L

Moduli Ratio E, /E,

1/2

4

Input Model

RMSD MaxD RMSD MaxD RMSD MaxD RMSD MaxD RMSD MaxD RMSD MaxD
(cm) (cm) (em) (cm) (cm) (cm)
,/\
> A 194.1 260 1265 231 1203 221 861 180 718 120 648 100
= B 85.6 109 647 123 . 641 116 573 104 582 89 ' 560. 8.4
g C 90.5 114 660 114 0 128 670 119 . 619 9.7 60.1 9.1 o
2 D 87.9 112 630 111 715 127 660 118 619 97 60.1 9.1
2 A 72.2 93 -394 7.3 32.5 5.1 20.2 3.3 15.7 2.3 18.7 1.8
- B 31.7 3.9 20.7 3.6 181 3.3 13.9 2.4 12.3 1.8 11.6 1.6
'_g C 34.3 4.2 -21.8 3.3 22.1 3.7 16.2 2.7 13.4 l.b 12.6 | 1.7
2 D 33.3 42 208 32 21.7 3.6 16.1 2.7 13.4 L9 RS . 17
N oA 63.4 8.8 39.3 7.1 35.4 6.6 24.8 5.4 20.5 3.5 18.4 2.7
~ B 27.0 3.5 19.5 3.8 19.2 3.4 16.3 3.0 15.8 2.5 15.8 2.4
3 c 28.7 3.7 19.9 3.5 23.1 3.8 19.1 3.4 175 28 169 2.8
2 D 27.9 3.6 19.0 3.4 22.6 3.7 18.8 34 . 175 28 169 26
N, 54.4 7.4 30.1 5.5 245 p 4.3 155. 3.0 12.1 1.8 10.7 1.7
: B 22.9 2.8 . 15.0 2.8 13.4 2.4 10.5 1.7 9.5 1.5 9.1 1.3
3 C 24.8 32 157 2.6 16.3 2.7 123 21 °105 1.6 9.8 14
2 D 24.1 . 3.1 15.0 2.5 16.0 2.6 12.1 2.0 10.5 1.6 98 14

A
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A - Table A.5  Accelerations at Selected Nodal Points, Derived from the Four Input
Models, El Centro Earthquake (£; = 5%, £, = 10%).
B
Moduli Ratio E, /E, 1/8 _ 2 4
Input Model R.MS.A Max.A RMSA MaxA RMSA MaxA RMS.A MaxA RMSA MaxA RMS.A MaxA
(m/s?) (m/s?) (m/s?) (m/s?) (m/s*) (m/s*)
N o)
A 1384 26.0 163.8 30.3 189.4 43.2 189.8 499  "183.0 38.1 1704 374
= "~ B 61.8 12.5 72.8 17.6 95.6 21.3 100.6 23.6 112.2 230 117.0 22.8
) ® g C 55.8 9.3 84.0 15.3 102.7 17.1 ,109.3 23.8 122.8 22.5 131.8 24.1
) ;2 D 549 9.6 62.5 15.6 101.7 17.2 107.1 24.0 122.9 22.1 132.1 23.8
E A 48.2 7.5 46.0 9.7 46.4 8.3 42.3 °9.1 56.8 \gl 58.7 12.7
~ B 20.1 2.9 20.1 4.6 24.4 5.8 24.8 5.6 28.1 4 30.3 7.1
g C 18.3 2.5 19.3 3.8 29.7 5.7 25.5 5.1 26.7 5.5 34.7 7.1
2 D 18.2 2.7 18.9 3.7 29.7 6.0 26.3 5.6 27.3 59 -35.0 6.9
=

N A 27.1 5.7 38.2 7.4 49.8 11.7 56.9 15.2 58.0 12.5 612 ¢ 108
~ B ° 134 3.1 18.0 4.7 25.2 5.7 28.4 6.2 '32.5 6.1 35.4 6.1
,“c’ C 12.0 ~ 2.3 16.3 4.2 26.1 4.6 29.2 6.3 ,35.1 6.2 . 394 6.8
2 D . 12,0 2.4 16.4 4.4 26.1 4.7 .28.8 6.2 35.2 62 396 70
5\ A 37.0 5.8 40.2 7.5 37.9 7.7 33.1 7.5 ‘38.0 8.4 48.3 9.7
,."'_',' B 14.4 2.2 15.6 3.5 18.3 4.5 17.9 4.1 19.6 3.8 20.3 39
g C 12.5 2.3 13.7 2.7 21.1 4.1 20.1 4.1 19.7 33 223 38
2 D 12.5 2.3 13.3 2.6 20.7 4.2 202 44 197 3.3 22.3 3.9

o
sk,
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Table A.8 Stresses at Element 5 (Node b), Derived from the Four Input Models, .
El Centro Earthquake (¢; = 5%, ¢, = 10%). ; ' '

VA

* -

6¢1

Moduli Ratio E, / E, 1/8 1/4 ) 1/2 1 2 . 4
Input Model R.MSS Max5 R.MSS Max.S RMSS MaxS RMSS -MaxS R.MSS Max8 RMSS MaxS &
(MPa) (MPa) (MPa) (MPa) * (MPa) (MPa)
A 6.63 097 635 119 743 143  6.02 - 1.517 552 100 566 109
. B 3.0 042 321 . 065 408 076 408 074 ) 427 068 444 070
& C "3.01 039 312 058 480 082 467 091 468 077 472 0.8
"D 292 ., 039 298 055 470 083 461 087 469 -077 478 070
A 47.48 1.75 4362 8.98 57.37 12.07 50.46 12.53 46.40 9.10 42.85 7.53’ =
. B 2162 364 2360 521 3060 574 30.89 637 3329 604 3454 581
g c 2094  2.88 2251 482 3524 575 3511 692 3662 625 3760 6.1l
D 2038 289 2165 477 3460 572 3453 679 3661 622 3770  6.08
A 4.2 054 371 071 435 066 361 067 384 065 416  0.74
3B 2.01 0.25 203 040 249 047 244 040 258 039 270 040
c 2.03 0.25 204 031 295 052 276 048 271 038 294 041
D

1.97 0.25 1.95 0.31 2.91 0.52 2.75 0.48 2.72 0.38  2.95 0.41
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Table A.7 Displacements at Selected Nodal Points, Derived from the Four Input .
Models, El Centro Earthquake (¢; = 5%, &, = 15%).

"Moduli Ratio E, /E, 1/8 - 1/4 1/2 -1 2 1
* Input Model RM.S.D Max.D RMSD Max.D RMSD MaxD RMSD MaxD RMSD MaxD RMSD MaxD
’ (cm) (em) (cm) (cm) (cm) . (cm)
' A 168.2 229 1188 221  113.0 208  ,83.1 17.2 70.4 119 642 9.9 .
~ B 73.0 99 . 575 113 584 107 536 96 - 53.3 8.5 54.0 8.1
N g 82.8 101 627 - 113 734 124 657 118 613 95 59.8 9.0
2 B .. 199 99 624 11.0 736 124 644 115 610 95 596, 90
© . AT ~ g 0 N .
/“"”"h.""’» o - . *
' .- a A 62.7 8.0 % 37.4 6.9 30.6 4.9 19.6 3.1 15.3 . 2.2 ~ 13.5 1.8
* = B 26.9 s4 /- 184 33 160 31 120 23 17 17 112 16
g c 313 3.7 207 ¢ 3.3 20.5 3.5 16.0 27 . 133 1.9 12.4 17
. S D 30.2 3.6 20.6 3.2 20.8 3.5 15.7 2.7 13.2 1.9 12.4 1.7
N 3 54.5 7.7 36.6 6.8 33.2 6.2 23.8 5.1 20.0 3.5 1811 27
~ B 22.9 3.2 17.2 3.4 16.9 3.1 1525 28 - 151 2.4 152 2.3
S ¢ 26.3 3.2 18.9 35 o 314 3.6 18.7 3.4 17.3 2.7 16.8 2.5
2 D 253 . 3.2 18.8 34 21.5 3.6 18.4 3.4 17.2 2.7 168 25
[ o 46.7 6.4 28.2 5.2 23.0 4.0 15.0 2.8 119 1.8 10.5 1.6
~ B 19.4 2.5 133 25 11.8 2.2 9.7 1.6 9.1 1.4 8.8 1.3
8 ¢ 22.7 2.8 14.9 2.6 152 26 12.1 2.0 10.4 1.6 &7 14
. 2 D 21.8 2.7 14.8 2.5 15.2 2.6 11.8 2.0 _ 10.3 186 9.7 1.4
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Table A.8 _Accelerations at Selected Nodal Poinj;s; Derivedérom the Four Input
Models, El Centro Earthquake (§; = 5%, &, = 15%).

~

" Moduli Ratio E, [/ E, 1/8 1/4 : /2 1 ' 2 : 4
- Input Model R.MSA MaxA RMSA MaxA RMSA MaxA RMSA MaxA RMSA MaxA RMSA MaxA
: 2 2 2 2 2 v
L (nt/s?) (m/s?) (m/s?) (m/s?) (m/s*) (m/s?)
t A 116.9 22.7 144.7 28.2 173.6 40.3 171.8 46.2 1713 36.9 161.3 35.8
—~ B 54.2 11.8 65.5 16.5 84.9 189 . 932 21.9 1054  22.16 1118 22.2
;8 C 52.0 9.3 62.6 15.4 95.5 16.9 106.6 24.4 120.7 .22.9 130.0 240 °
> D 51.1 9.8 60.4 15.1 95.9 17.2 103.5 23.6 119.5 22.2 128.9 23.5
i A 40.8 6.5 41.1 8.8 _ 428 7.8 39.2 ) 8.5 50.7 10.6 52.5 10.7
- B 17.5 ‘ 2.7 " 18.2 4.3 21.8 5.5 23.1 5.1 26.5 6.4 28.9 7.1
L G 17.1 "24 184 - 37 27.5 56 « 25.1 5.2 26.7 5.7 34.0 6.9
2 D 17:0 2.6 18.5° 3.7 27.9 5.9 25.3 5.5 26.7 8.0 33.5 6.5
N A 22.8 4.9 33.3 6.7 45.2 109 50.6 13.8 53.3 11.7 53.9 10.0
~ B 11.8 3.0 16.3 44 22.4 5.0 25.9 5.8 30.3 5.8 32.8 5.8
% C 11.1 - 22 15.8 3.9 24.4 4.7 284 . 6.4 34.3 6.0 38.8 6.9
> D 11.1 24 . 152 4.2 24.5 4.7 27.6 6.1 34.0 5.8 38.4 6.9
~N\ -A 29.8 4.8 345 6.7 34.6 6.9 29.7 6.5 33.2 5.6 38.2 8.0
- B 121 2.0 13.7 3.1 16.1 4.1 16.6 3.8 18.5 8.7 19.5 8.7
_g C 115 . 2.2 13.6 2.7 19.5 4.1 19.6 4.1 19.8 3.3 21.9 3.9
Zo D 114 2.2 13.1 2.5 19.6 4.2 19.4 4.2 19.8 .3.2 21.4 3.8

x“
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o Table A.9 Stresses at Element 5 (Node b), Derived from the Four Input Models,
: El Centro Earthquake (§; = 5%, &, = 15%). -
Moduli Ratio E, [E, 1/8 . 1/4 “/;/2 1 2 - 4
Input Model RMSS MaxS RMSS MaxS RMSS Max¥® RMSS MaxS RMSS Max.S R.MSS Max.S
{(MPa) (MPa) {MPa) (MPa) (MPa) (MPa)
A 5.74 085 590 112 697 133 580 115~ 539 095 539 100
B 2.64 0.39 2.88 0.62 3.63 0.71 3.78 0.69 4.08 0.65 4.30 0.68
' . C 2.76 035 298 057 446 080 458 088 463 075 470 071
D 2.67 035 295 055 474 081 450 085 461 075 489 070,
] 7 N —
u I 40.75 6.73 44.42 8.46 53.36 11.34 47.46 11.73 44.68 8.85 41.88 1.37
. B 18.73 3.41 21.18 4.80 27.15 5.15 , 28.84 593 31.54 5.78 33.23 5.68
. o C. 19.26 274  21.56 469 3274 565 3440 697 3615 629 37.38  6.09
D 18.64 .275 2123 466 3284 565 3363 667 3590 621 37.19  6.02
\ — -
A .3.73 0.47 3.52 0.67 4.09 0.65 3.47 0.61 3.61 0.63 3.8‘0 0.69
» B 1.74 0.22 1.83 0.37 2.22 0.44 2.30 0.39 2.46 0.37 2.61 0.39
® ¢ 1.86 0.22 1.94 0.31 2.75 0.49 2.71 0.47 2.69 0.39 : 2.91 0.41
D 1.79 0.22 1.94 0.31 2.76 0.50 2.68 0.46 2.68 . 0.38 2.90 0.39




