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Use "entropy" and you can never lose a debate, von Neumann told Shannon - because no one 

really knows what "entropy" is. 
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ABSTRACT  

Tourmaline, XY₃Z₆T₆O₁₈(BO₃)₃V₃W, is a common borosilicate in crustal settings, recording 

phase relationships with minerals, fluids, and melts across tectonic environments. Its diverse 

sites enable elemental incorporation, while stability and low diffusivity preserve zoning, which is 

crucial for reconstructing P-T-X histories. Accurate interpretation requires a thermodynamic 

model, which this thesis develops through crystal-chemical and calorimetric measurements. 

A tourmaline set of ~50 natural and synthetic samples was assembled within the Na-Ca-B-Fe²⁺-

Fe³⁺-Mg-Al-Si-Ti-O-H-F system. Natural samples capture real-world variability, while synthetic 

samples reduce multicollinearity. Tourmalines were characterised by EMPA (main elements), 

LA-ICP-MS (trace), Karl-Fischer titration (H2O) and Mössbauer spectroscopy (Fe²⁺/³⁺). Single-

crystal XRD provided structural constraints for formula optimisation using composition, site 

electrons, bond valence sums, and crystal-chemical assumptions. A uniform methodology 

including uncertainty assessment ensured internal consistency. 

Two models were developed: 1. The bulk model, X(YZ)₉SixAl(1-x)(VW)₄, defines a polytope with 

9 independent endmembers and applies when only bulk composition is available; 2. The 

speciation model, XY₃Z₆T₆V₃W, uses 14 independent endmembers and requires site assignments. 

For both models, entropy (S), molar volume (VM), and heat capacity (CP) were measured and 

regressed to endmembers, while enthalpy (∆H) was determined only for the bulk model due to 

data scarcity.  

Molar volume was calculated from SC-XRD data. Given tourmaline’s complexity, 50 samples 

were insufficient to assign endmember VM conclusively, so 21 methods, including OLS, errors-

in-variables, and robust regression, were compared to find best estimates. Robust regression 

minimised outlier effects for the bulk model, while EIV regression worked best for the speciation 

model, mitigating multicollinearity. Hierarchical subset selection identified interaction 

parameters, but test validation showed insignificance. 

Heat capacity was measured from 2 to 774 K and integrated to entropy using linear interpolation 

(to 298 K) and a Berman fit for high-T data. S₀ is dominated by a low-T spin-glass transition. 

Enthalpy was measured for 15 samples in lead-borate drop-calorimetry at 700°C under O₂ 
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flushing and converted to ∆Hf
ox through a thermodynamic cycle of oxidation, devolatilization, 

and reference oxide formation. Major uncertainty sources included Fe²⁺/Fe³⁺ ratios, reference 

oxides, and mineral normalization. Bulk model H exhibited multicollinearity due to data scarcity. 

No excess S or ∆H was found. Configurational S was modelled using Bragg-Williams long-

range order or molecular short-range order models. The SRO model with limited dimensions 

provides the simplest Sconf description but leads to fixed element correlations from missing 

polytope dimensions. 

The model enables forward modelling of net-transfer and exchange equilibria, allowing 

tourmaline to be used in thermobarometry, provenance studies, mineral exploration, and fluid 

and magma reconstructions. 
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RÉSUMÉ   

La tourmaline, XY₃Z₆T₆O₁₈(BO₃)₃V₃W, est un borosilicate commun dans les environnements 

crustaux, enregistrant les relations de phase avec minéraux, fluides et liquides magmatiques dans 

divers contextes tectoniques. La diversité de ses sites cristallographiques permet l'incorporation 

d'éléments, tandis que sa stabilité et faible diffusivité préservent la zonation, paramètres 

essentiels pour reconstruire les historiques P-T-X. Une interprétation précise nécessite un modèle 

thermodynamique, développé dans cette thèse à partir de mesures cristallochimiques et 

calorimétriques. 

Un ensemble d’environ 50 échantillons naturels et synthétiques de tourmaline a été constitué 

dans le système Na-Ca-B-Fe²⁺-Fe³⁺-Mg-Al-Si-Ti-O-H-F. Les échantillons naturels capturent la 

variabilité réelle des compositions, tandis que les échantillons synthétiques réduisent la 

multicolinéarité. Les tourmalines ont été caractérisées par EMPA (éléments majeurs), LA-ICP-

MS (traces), titrage Karl-Fischer (H₂O) et spectroscopie Mössbauer (Fe²⁺/³⁺). La diffraction des 

rayons X sur monocristal (SC-XRD) a fourni des contraintes structurales permettant 

l’optimisation des formules à partir de la composition chimique, du nombre d’électrons par site, 

des sommes de valence de liaison et d’hypothèses cristallochimiques. Une méthodologie 

uniforme avec évaluation des incertitudes a assuré la cohérence interne. 

Deux modèles ont été développés : 1. Le modèle global, X(YZ)₉SixAl(1-x)(VW)₄, définit un 

polytope à 9 pôles indépendants et s'applique lorsque seule la composition totale est disponible ; 

2. le modèle de spéciation, XY₃Z₆T₆V₃W, utilise 14 pôles indépendants et requiert une 

affectation des sites cristallographiques. Pour les deux modèles, l'entropie (S), le volume molaire 

(VM) et la capacité calorifique (CP) ont été mesurés et régressés sur les pôles, tandis que 

l'enthalpie (∆H) n'a été déterminée que pour le modèle global en raison du manque de données. 

Le volume molaire a été calculé à partir des données SC-XRD. Compte tenu de la complexité de 

la tourmaline, 50 échantillons étaient insuffisants pour assigner un VM précis aux pôles. Par 

conséquent, 21 méthodes, incluant la régression des moindres carrés ordinaires (OLS), la 

régression avec erreurs sur les variables (EIV) et la régression robuste, ont été comparées pour 

obtenir les meilleures estimations. La régression robuste a minimisé l’effet des valeurs aberrantes 

dans le modèle global, tandis que la régression EIV a été plus efficace pour le modèle de 
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spéciation en atténuant la multicolinéarité. Une sélection hiérarchique de sous-ensembles a 

permis d’identifier les paramètres d’interaction, mais leur validation statistique a révélé une 

insignifiance. 

La capacité calorifique a été mesurée entre 2 et 774 K, puis intégrée à l’entropie par interpolation 

linéaire jusqu’à 298 K et par un ajustement de Berman pour les données à haute température. S₀ 

est dominée par une transition des verres de spin à basse température. L'enthalpie a été mesurée 

pour 15 échantillons par calorimétrie à chute au borate de plomb à 700°C sous flux d'O₂, puis 

convertie en ∆Hf
ox par un cycle thermodynamique d'oxydation, dévolatilisation et formation 

d'oxydes de référence. Les principales sources d'incertitude incluaient les rapports Fe²⁺/Fe³⁺, les 

oxydes de référence et la normalisation minérale. Le modèle global a montré une multicolinéarité 

de ∆H, due à la rareté des données. Aucun excès de S ou ∆H n’a été trouvé. L’entropie 

configurationnelle (Sconf) a été modélisée à l'aide des modèles d'ordre à longue portée de Bragg-

Williams ou d'ordre à courte portée moléculaire (SRO). Le modèle SRO à dimensions limitées 

offre la description la plus simple de Sconf, mais impose des corrélations fixes entre éléments en 

raison de dimensions manquantes dans le polytope. 

Le modèle permet de modéliser les équilibres de transfert net et d’échange, permettant 

l'utilisation de la tourmaline en thermobarométrie, études de provenance, exploration minérale et 

reconstructions de fluides et magmas. 
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CONTRIBUTION TO ORIGINAL KNOWLEDGE 

Albert Einstein once remarked on thermodynamics, stating, "A theory is the more impressive the 

greater the simplicity of its premises, the more different things it relates, and the more extended 

its area of applicability. Therefore, the deep impression that classical thermodynamics made 

upon me. It is the only physical theory of universal content which I am convinced will never be 

overthrown, within the framework of applicability of its basic concepts."  

In the spirit of Einstein's perspective, this thesis provides a foundational thermodynamic model 

for tourmaline, designed with the aspiration that it will serve as a robust and enduring basis for 

future studies. Given that computational modelling of phase equilibria must be constrained by 

real thermodynamic data, the original contributions of this thesis are significant and manifold. 

Firstly, it provides an extensive dataset of previously unavailable thermodynamic properties for 

tourmaline, including molar volumes, entropies, and heat capacities for approximately 50 

samples. Additionally, 15 new enthalpy measurements are presented, which represent a notable 

enhancement to existing knowledge. This thesis also introduces critical advancements in mineral 

formula optimisation, extending techniques to accurately account for minor elements and anions, 

and incorporating rigorous uncertainty propagation methods. This approach addresses 

compositional uncertainties in thermodynamic data and emphasises the importance of 

maintaining normalisation consistency within thermodynamic datasets.  

Furthermore, this work contributes to an internally consistent and integrated thermodynamic 

model for tourmaline, the first of its kind based on direct measurements. Detailed descriptions of 

the derivation of model parameters are included, enabling future researchers to reproduce, refine, 

and expand upon this model. Before this thesis, only a limited set of isolated measurements were 

available, which required earlier studies to largely depend on estimation methods. This research 

marks a significant advancement by providing a foundational framework that enables tourmaline 

integration into internally consistent thermodynamic databases. This inclusion enables forward 

modelling of tourmaline net transfer and exchange equilibria across pressure, temperature, and 

chemical potentials via Gibbs free energy minimisation. Given tourmaline's ubiquity as an 

accessory mineral, this significantly broadens its application in pseudosection thermobarometry, 

provenance studies, ore exploration, and tracing fluid and magma evolution as its mineral record 
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in the form of compositional zoning can finally be read. We hope that this model excites 

geoscientists about tourmaline's potential as a valuable petrogenetic indicator. 

  



19 
 

CONTRIBUTIONS OF AUTHORS 

Chapter 1. Creating a consistently characterised tourmaline sample set with uncertainties 

for thermodynamic model calibration 

Co-authors: 
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refinement. Performed final refinement of Mössbauer spectroscopy data initially measured and 
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Implemented changes to the mineral formula optimisation code, including the bond valence 

analysis. Led the overall planning and design of the study in collaboration with Vincent van 

Hinsberg. 

• Vincent van Hinsberg: Collaborated on the overall planning and design of the study and 

assisted with the refinement of the EMPA and LA-ICP-MS data. Reviewed the manuscript, 

correcting and refining its scientific accuracy. 
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Chapter 2. Thermodynamic Model for Tourmaline – Model Derivation and Calibration of 

Molar Volumes 
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• Stan Roozen: Performed all model definitions, fit the mineral formula to the bulk and 

speciation endmember models, performed the regression methods to determine endmember 
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Chapter 3. Thermodynamic Model for Tourmaline: Entropy and Heat Capacity 
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LIST OF FIGURES 
 

Chapter 0. Introduction 

• Figure 0A. Schematic representation of tourmaline’s crystal structure, shown normal (A) 

and parallel (B) to the c-axis. The X site (purple) is positioned above the tetrahedral ring 

(blue), bonding to the inner corners of T sites and trigonally coordinated B sites (green). 

The O1 (W) site (red) is linked to three Y sites (yellow), with its O1-H1 bond directed 

toward the X site (H in light blue). The O3 (V) sites (red) each coordinate one Y (yellow) 

and two Z sites (orange), while the O3-H3 bond is oriented in the c⁻ direction, where H3 

shares an H-bond with the O5 site (dashed circle) in the tetrahedral ring. (Figure after 

Berryman et al.(2016)) 

• Figure 0B. This master equation describes the molar Gibbs free energy G(P,T,X) of a 

multicomponent solid solution as a function of pressure P, temperature T, and 

endmember vector X with endmember mole fractions components Xi. The     standard-

state properties include the reference enthalpy Hi
0, entropy Si

0, and molar volume Vi
0, at 

298.15 K and 1 bar with enthalpies referenced to the elements. The     caloric EoS 

captures temperature effects through heat capacity integrals: Cp,i(T) is used to correct 

both enthalpy and entropy, respectively. The     volumetric component captures pressure 

effects through direct integration of the volume function V(P,T). Thermal expansion α(T) 

is required to evaluate V(P0,T) at elevated temperatures, but it is not integrated as a 

separate energy contribution. Instead, it adjusts the temperature-dependent volume, which 

is then used in the pressure integral. Only the pressure integral ∫ V(P,T) dP contributes 

cumulatively to Gibbs free energy. The     compositional EoS includes the ideal 

configurational entropy, calculated from species (j) site (s) occupancies xj,s, site 

multiplicities Ms, and total number of independent species nind,s. The nind,s  reflect the 

system’s degrees of freedom+1 and can be expressed as linear combinations of the 

independent endmember fractions. The excess Gibbs energy forms from non-ideal 

interactions here as example modelled via regular parameters Wij(P,T). The final term, 

Gother(P,T,X), accounts for energetic contributions not captured by endmember-based 

mixing, such as magnetic ordering or electronic transitions. These effects are typically 
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non-linear in composition and cannot be expressed as separable functions of P, T, and X; 

for example, Curie or Néel temperatures may vary non-trivially with Fe content. 

 

Chapter 1. Creating a consistently characterised tourmaline sample set with uncertainties 

for thermodynamic model calibration. 

Figure 1A.  Mössbauer spectrum for tourmaline sample Tm72, illustrating one of the more 

complex cases encountered in the dataset.The fitted model includes Fe²⁺ doublets assigned to Y1, 

Y2, and Y3 sites, Fe³⁺ doublets representing Y or Z site occupancy, and a Fe².⁵⁺ mixed-valence 

component to account for broadening effects. The addition of the Fe².⁵⁺ component improves the 

fit but increases the uncertainty of precise site and valence assignments. Residuals remain within 

±2σ limits, confirming the quality of the fit. 

Figure 1B. Stacked bar chart showing the bulk compositions of all analysed tourmaline samples. 

Cationic abundances were calculated by summing all measured elements and renormalizing to 

100% for each sample. Major components include Si, Al consistent with the expected framework 

of tourmaline. Significant proportions of Na, Mg, Fe2+, and Fe3+ reflect substitutions at the X and 

Y sites, while minor amounts of Ca, Ti4+, F and trace elements (e.g., Li, Cr, V, Mn, Zn, REEs) 

are also observed. The renormalization emphasizes compositional trends across major and minor 

elements and facilitates direct comparison between samples. You excluded boron, ogygen and 

water from the bulk plot to improve the visibility of the variation in minor and trace elements. 

Figure 1C. Stacked bar chart showing the X site occupancies for all analysed tourmaline 

samples. The occupancies of NaX, CaX, KX, SrX, BaX, LaX, CeX, NdX, Pb(II)X, Bi(III)X, and 

VacancyX are displayed as a percentage of total X site occupancy. Na is the dominant occupant 

in most samples, with varying proportions of Ca and minor K, Sr, and rare earth elements 

(REEs). Site vacancies are significant in some samples, reflecting incomplete X-site occupancy. 

Figure 1D. Stacked bar chart showing the Y site occupancies for all analysed tourmaline 

samples. The occupancies of MgY, Fe(II)Y, Fe(III)Y, AlY, Mn(II)Y, Ti(IV)Y, LiY, Cr(III)Y, V(III)Y, 

ZnY, Sn(IV)Y, Cu(II)Y, Ni(II)Y, Co(II)Y, ScY, GaY, Nb(V)Y, and VacancyY are shown. The Y site 

is primarily occupied by Mg, Fe²⁺, and Al, with significant contributions from Fe³⁺ and Ti⁴⁺ in 
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some samples. Minor trace element substitutions (e.g., Zn, Cr, V) and vacancies are present but 

generally subordinate. 

Figure 1E. Stacked bar chart showing the Z site occupancies for all analysed tourmaline 

samples. The occupancies of MgZ, Fe(II)Z, Fe(III)Z, AlZ, Mn(II)Z, Ti(IV)Z, LiZ, Cr(III)Z, V(III)Z, 

ZnZ, Sn(IV)Z, Cu(II)Z, Ni(II)Z, Co(II)Z, ScZ, GaZ, and Nb(V)Z are plotted. 

The Z site is overwhelmingly dominated by Al, typically exceeding 80% occupancy in all 

samples. Minor Mg, Fe²⁺, and Fe³⁺ substitutions are observed, with very low contributions from 

trace elements. 

Appendix 1E: Contains all Mossbauer Figures. 

Appendix 1K1: Bond Valence Table Figure. 

Appendix 1K2: Bond Valence Table Figure for tourmaline with X-vacancy. 

 

Chapter 2. Thermodynamic model for Tourmaline. Model derivation and calibration of the 

molar volumes 

• Figure 2A. Scree plot showing the variance explained by each principal component for 

the speciation model. Principal component analysis (PCA) reveals that the first two 

principal components (PC1 and PC2) capture the majority of the variance across the 

dataset, while higher components contribute progressively less. The sharp drop in 

explained variance indicates that sample variability is largely confined to a low-

dimensional subspace in X-space, and highlights directions that are poorly sampled, 

contributing to multicollinearity in model parameters 

• Figure 2B. PCA biplot of PC1 versus PC2 for the distribution of samples and 

endmember loadings in the speciation model. Samples are primarily distributed along 

PC1, with limited spread along PC2. Loading vectors show that endmembers such as 

odrv, foi, and drvdis dominate the primary sampled variability, whereas endmembers like 

pov, mdtw, bu, and bole exhibit minimal independent variance. This confirms that certain 

directions in endmember X-space are poorly represented, weakening parameter 

resolution. 
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• Figure 2C. PCA biplot of PC1 versus PC3 for the distribution of samples and 

endmember loadings in the speciation model. The PC1 vs PC3 projection further 

illustrates the confinement of samples along dominant axes, with minimal independent 

variability along PC3. Endmember loadings in this plane reinforce those key 

compositional directions involving pov, mdtw, bu, and related endmembers are 

underexplored in the current dataset. 

• Figure 2D. PCA biplot of PC1 versus PC4 for the distribution of samples and 

endmember loadings in the speciation model. Samples show almost no meaningful spread 

along PC4, confirming that this direction is extremely poorly sampled. Endmember 

contributions to PC4 are negligible, supporting the conclusion that multicollinearity 

stems from missing coverage in certain compositional vectors, which should guide future 

synthesis and sample acquisition strategies. 

• Figure 2E. Scree plot showing the variance explained by each principal component for 

the bulk model. Principal component analysis (PCA) shows that the first two principal 

components capture most of the variance, while higher components contribute little, 

indicating poor sampling across certain endmember directions in X-space. 

• Figure 2F. PCA biplot of PC1 versus PC2 for the distribution of samples and 

endmember loadings in the bulk model. Samples are strongly clustered along PC1, with 

limited spread along PC2. Endmember loadings show that drvB, foiB, and oleB dominate 

the primary variability, while endmembers like buB, mdtwB, and aosrmB contribute 

little, revealing underexplored directions. 

• Figure 2G. PCA biplot of PC1 versus PC3 for the distribution of samples and 

endmember loadings in the bulk model. PC1 vs PC3 projections confirm that sample 

spread along PC3 is minimal, reinforcing that much of the X-space is poorly sampled 

beyond the dominant PC1 direction. 

• Figure 2H. PCA biplot of PC1 versus PC4 for the distribution of samples and 

endmember loadings in the bulk model. Samples show negligible spread along PC4. This 

further demonstrates that poor coverage along specific compositional directions leads to 

multicollinearity and uncertainty in the associated thermodynamic parameters. 

• Figure 2I. Scatter plot showing the projection of the training and test sets of the Bulk 

model onto the first two principal components (PC1 and PC2). Convex hulls in PCA1-
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PCA2 space encapsulate the boundary of each set, highlighting areas of overlap and 

potential extrapolation where samples from one set fall outside the convex hull of the 

other. Sample labels are included to identify specific data points. Percentage of training 

samples in test convex hull: 80.77%. Percentage of test samples in training convex hull: 

72.16%. 

• Figure 2J. Histogram displaying the Mahalanobis distances of test samples from the 

centroid of the training set for the Bulk model. The distances quantify how well the test 

samples align with the core distribution of the training set, with larger distances 

indicating potential outliers or regions of poor coverage. 

• Figure 2K. Comparing composition space for the training and test set for the Bulk 

model. Multivariate visualization comparing the standardized distributions of predictors 

between the training and test sets. Standardization (zero mean and unit variance) ensures 

comparability across variables with different units and scales. Each line represents a 

sample crossing axes for the predictors, highlighting variables where the test set 

significantly diverges from the training set. 

• Figure 2L. Scatter plot showing the projection of the training and test sets of the Bulk 

model onto the first two principal components (PC1 and PC2). Convex hulls in PCA1-

PCA2 space encapsulate the boundary of each set. Percentage of training samples in test 

convex hull: 100%. Percentage of test samples in training convex hull: 46.60% 

• Figure 2M. Histogram displaying the Mahalanobis distances of test samples from the 

centroid of the training set for the speciation model. 

• Figure 2N. Parallel coordinate plot comparing composition space for the training and test 

set for the speciation model. Each line represents a sample crossing axes for the 

predictors, highlighting variables where the test set significantly diverges from the 

training set. 

• Figure 2O. Illustration demonstrating the general effect of the Bias-Variance Tradeoff. 

Modified from Hastie et al. (2017) 

• Figure 2P. buB endmember fraction versus molar volume. Combined training and test 

set. 

• Figure 2Q. The Cauchy robust model fit to the training set data. Green bands show 

confidence intervals for the mean response, while blue bands represent prediction 
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intervals for individual measurements. The increased estimation bias is mainly due to 

worsen fit to F-buergerite (tm64). 

• Figure 2R. The Cauchy robust model fit to the test set data. Green bands show 

confidence intervals for the mean response, while blue bands represent prediction 

intervals for individual measurements. The centroid of data is fit well but compositional 

bias is high. 

• Figure 2S. The CWTLS model fit to the training set data. Green bands show confidence 

intervals for the mean response, while blue bands represent prediction intervals for 

individual measurements. 

• Figure 2T. The CWTLS model fit to the test set data. Dark grey bands show confidence 

intervals for the mean response, while blue dotted lines represent prediction intervals for 

individual measurements. 

• Figure 2U. Combined dataset and the bulk model. Scatter plot of measured vs. predicted 

molar volume (J/bar⋅mol) with error bars from covariance matrix propagation. WLS 

regression (green) accounts for uncertainty variations, while the 1:1 line (dashed red) 

indicates perfect agreement. 

• Figure 2V. Combined dataset and the speciation model. Scatter plot of measured vs. 

predicted molar volume (J/bar⋅mol) with error bars from covariance matrix propagation. 

WLS regression (green) accounts for uncertainty variations, while the 1:1 line (dashed 

red) indicates perfect agreement. 

Appendix 2A. Endmember Fraction Box and Violin Plots 

• Figure 2A.1. Bulk compositional model training set endmember fractions. 

• Figure 2A.2. Violin plots showing the distributions of the bulk compositional model 

training set endmember fractions. 

• Figure 2A.3. Speciation model training set endmember fractions. 

• Figure 2A.4. Violin plots showing the distributions of the speciation model training set 

endmember fractions. 

• Figure 2A.5. Bulk compositional model test set endmember fractions. 
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• Figure 2A.6. Violin plots showing the distributions of the bulk composition model test 

set endmember fractions. 

• Figure 2A.7. Speciation model test set endmember fractions. 

• Figure 2A.8. Violin plots showing the distributions of the speciation model test set 

endmember fractions. 

• Figure 2A.9. Bulk composition model combined dataset endmember fractions. 

• Figure 2A.10. Violin plots showing the distributions of the bulk compositional model 

combined dataset endmember fractions. 

• Figure 2A.11. Speciation model combined dataset endmember fractions. 

• Figure 2A.12. Violin plots showing the distributions of the speciation model combined 

dataset endmember fractions. 

Appendix 2D. Model Selection Bulk Model 

• Figure 2D.1. Bulk model. OLS without interaction parameters and tm164. A) Training 

set fit. B) Test set fit. Green bands show confidence intervals for the mean response, 

while blue bands represent prediction intervals for individual measurements. 

 

• Figure 2D.2. Bulk model. CWTLS without interaction parameters and tm164. A) 

Training set fit. B) Test set fit. Green bands show confidence intervals for the mean 

response, while blue bands represent prediction intervals for individual measurements. 

 

• Figure 2D.3. Bulk model. Cauchy robust fit without interaction parameters. A) Training 

set fit. B) Test set fit. Green bands show confidence intervals for the mean response, 

while blue bands represent prediction intervals for individual measurements. 

Appendix 2E. Model Selection Speciation Model 

• Figure 2E.1. Speciation model. OLS without interaction parameters. A) Training set fit. 

B) Test set fit. Green bands show confidence intervals for the mean response, while blue 

bands represent prediction intervals for individual measurements. 
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• Figure 2E.2. Speciation model. OLS without interaction parameters. A) Training set fit. 

B) Test set fit. Green bands show confidence intervals for the mean response, while blue 

bands represent prediction intervals for individual measurements. 

 

Chapter 3. Thermodynamic model for Tourmaline. Entropy and Heat Capacity 

• Figure 3A. Heat capacity of Foitite sample (Tm 6) between 0-17K as measured using the 

PPMS and the uneven power series extrapolation to 0K. 

• Figure 3B. Heat capacity of F-buergerite sample (tm64) between 0-17K as measured 

using the PPMS and the uneven power series extrapolation to 0K. 

• Figure 3C. Specific heat capacity (Cp) of tourmalines. Buergerite (red) has the highest 

Cp at low T but the lowest above ~250 K, while uvite (blue) shows the highest Cp at high 

T. Other tourmalines are intermediate. The uncertainties are smaller than the thickness of 

the lines. The inset highlights the Cp behavior at the lowest temperatures, which 

disproportionately influences the integrated entropy. 

• Figure 3D. Cp/T curves (coloured) and Interquartile Range (blue) showing that the mid-

range (50–200 K) dominates entropy but has low variance, while the magnetic 

contribution at low temperatures, with high Cp variability, most influences entropy 

differences. 

• Figure 3E. The Cp difference between foitite (tm6) and dravite (tm23) highlights 

significant variability in the 0–50 K T range, driven primarily by magnetic contributions. 

This range has the largest impact on Cp curve differences and dominates uncertainty in 

both Cp and integrated entropy, as entropy is highly sensitive to 1/T at low T. 

Measurements were conducted down to 2 K. 

• Figure 3F. Heatmap of training set samples showing Cp Z-scores per T compared to the 

dataset mean, with white indicating values near the mean, blue lower, and red higher, 

illustrating how relative differences vary with T. 

• Figure 3G. Heatmap of training set samples showing Cp uncertainties Z-scores per T 

compared to the dataset mean uncertainty. 

• Figure 3H. The jump between PPMS and DSC data at 298.15K in terms of relative 

percentages. 
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• Figure 3I. Relative percentage % differences between PPMS-DSC. 

• Figure 3J. Predicted  𝑆298.15𝐾
773.15 𝐾 using uncorrected DSC Berman fits. Samples with 

overestimated values correspond to positive jumps, while underestimated ones show 

negative jumps, indicating inaccuracies in the DSC data. A vertical correction was 

applied, assuming accurate slope determination. 

• Figure 3K. Bulk compositional endmember low-T Cp curves with their confidence 

intervals. 

• Figure 3L. Heatmap of bulk compositional model Cp curves Z-scores at 0.1 K intervals, 

comparing each endmember to the mean of all endmembers. White indicates Cp near the 

mean, blue lower than the mean, and red higher. The plot highlights how relative 

differences between curves vary with T. 

• Figure 3M. The relative uncertainty in endmember in low-T Cp (J/K/mol) and its 

dependence on T. 

• Figure 3N. VIF factors for the bulk compositional model. VIF factors depend on the 

designer matrix and are therefore equal for all regressions relating to the bulk 

compositional model. 

• Figure 3O. Mean Squared Error (MSE) of Cp curve versus Measured Entropy (J/K/mol) 

for the low-T Cp curve regression of the Bulk Compositional Model. 

• Figure 3P. Relative residuals (%) between measured and predicted low-T Cp curves for 

the bulk compositional model, plotted on a log scale. Higher uncertainties (>1%) occur 

below 100 K, while they remain <2% above 100 K. 

• Figure 3Q. Measured versus predicted entropy using Method 1. 

• Figure 3R. Bulk compositional endmember high-T Cp curves with their CI. 

X(YZ)9SixAl(1-x)(VW)4 

• Figure 3S. Heatmap of bulk compositional model high-T Cp curves Z-scores at 1 K 

intervals, comparing each endmember to the mean of all endmembers. X(YZ)9SixAl(1-

x)(VW)4. 

• Figure 3T. The relative uncertainty in Cp (J/K/mol) dependence on T. X(YZ)9SixAl(1-

x)(VW)4. Residuals from the OLS fit are randomly distributed. 
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• Figure 3U. Measured versus predicted entropy using Method 1. Uncertainties are 

propagated from the polynomial model fit and therefore assumed a ‘perfect’ Berman 

model. 

• Figure 3V. Distribution of ΔG differences at 773.15 K arising from discrepancies 

between measured and predicted Cp for the bulk compositional model. The figure 

highlights the contributions from differences in S0, integrated entropy along the high-T 

Cp curve (𝑆298.15𝐾
773.15 𝐾), and their combined impact on ΔG values at 773.15 K. 

• Figure 3W. Relative deviations between training set data and model for high-T Cp. 

X(YZ)9SixAl(1-x)(VW)4. 

• Figure 3X. Predicted versus measured Cp at four different T with the 1:1 line. Note the 

increasingly horizontal distribution of samples around the 1:1 line at higher T. 

• Figure 3Y. Slope weighted linear regression where the weight was multiplied with a 

factor of 20. 

• Figure 3Z. S₀ versus buB fraction. Two distinct trends are evident: one toward buergerite 

(bu) and another toward povondraite (pov), reflecting differences in Fe³⁺ speciation and 

Z-site substitution (Al versus Fe³⁺+Mg) in tourmalines. Arrows qualitatively indicate 

samples that, in the speciation model, have either high pov–low bu or high bu–low pov 

contents. 

• Figure 3AA. S298.15K
773.15 K versus buB fraction. The data show two separate trends toward bu 

and pov compositions, highlighting how Fe³⁺ speciation coupled with Z-site substitution 

influences entropy evolution. Arrows qualitatively indicate samples with dominant pov or 

bu components based on the speciation model. 

• Figure 3AB. Molar volume versus buB fraction. Two distinct trends emerge 

corresponding to bu and pov behavior, underscoring the effects of Z-site chemical 

differences in addition to Fe³⁺ speciation. Arrows qualitatively point to samples enriched 

in pov or bu in the speciation model; light green points indicate intermediate 

compositions (pov-bu mixtures). 

• Figure 3AC. Measured vs Predicted Entropy with Uncertainties, York Regression, and 

Integral Difference for the Polyhedron method with OHO polyhedra without Sconf. The 

method underpredicts by 25 J/(K·mol). 
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• Figure 3AD. Relative difference between measured Cp values and predictions from the 

polyhedron method, where negative values indicate overprediction. Both measured and 

predicted Cp data were fitted using the Berman model for consistency. 

• Figure 3AE. Cp curves from the polyhedron model vs. measured Cp, both fitted using 

the Berman model. The 1:1 line indicates a perfect fit. Measured data is available up to 

~1200 J/mol·K, with the remainder extrapolated. 

• Figure 3AF. ΔG differences at 1000 K resulting from discrepancies between measured 

and predicted high-T Cp in the polyhedron model, highlighting the impact of model 

simplifications. 

• Figure 3AG. Relative difference between measured Cp values and predictions from the 

bulk compositional method, where negative values indicate overprediction. Both 

measured and predicted Cp data were fitted using the Berman model for consistency and 

extrapolated up to 1200 K. 

• Figure 3AH. ΔG differences at 1000 K resulting from discrepancies between measured 

and predicted high-T Cp in the bulk compositional model, highlighting the impact of 

model simplifications. 

• Figure 3AI. Extrapolated Cp curves from the bulk compositional model compared to 

extrapolated measured Cp curves, with the 1:1 line indicating a perfect fit. Measured data 

is available up to ~1200 J/mol·K, with the remainder extrapolated. 

• Figure 3AJ.  Relationship between FeTotal (apfu) and standard-state entropy (S₀) for 

tourmaline samples. Sample labels are shown. The strong positive correlation reflects the 

dominant role of Fe²⁺ and Fe³⁺ spin disorder in contributing to magnetic entropy. 

Additionally, the high mass of Fe enhances acoustic phonon contributions, while weaker 

Fe²⁺ bonds allow more optical phonon modes, further increasing entropy. 

Appendix 3B. Theoretical Framework Calorimetry 

• Figure A3B.1. DSC signal before drift correction. Isothermal sections should be the 

same for blank (black), reference (green), and sample (red). The fact they are not the 

same indicates instrumental drift. 

• Figure A3B.2. DSC signal after drift correction. Isothermal sections are made the same 

for blank (black), reference (green), and sample (red). 
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Appendix 3C. Magnetic Spin Glass Transition Proof 

• Figure A3C.1. Mössbauer spectra of tourmaline samples Pa (Fe: 2.73 apfu), Y (Fe: 1.92 

apfu), MC (Fe: 0.795 apfu), and UM (Fe: 0.6 apfu). Downward-pointing arrows indicate 

a magnetic sextet, possibly from magnetic ordering in tourmaline at 5 K. However, oxide 

inclusions can also be the culprit. Figure (4.18) and sample spectra from the thesis of 

Saegusa (1978). 

Appendix 3D. Method 2 Bulk and Speciation 

• Figure A3D.1. Measured versus predicted entropy using Method 2. A) Using the SE of 

the confidence interval. B) Using the SE of the prediction interval. 

• Figure A3D.2. Measured versus predicted 𝑆298.15𝐾
773.15 𝐾 using Method 2. Prediction 

uncertainty based on the confidence interval. This figure is identical to Method 1 (Figure 

3U), showing that the order of integration and regression does not matter for high-T Cp 

data. 

• Figure A3D.3. Measured versus predicted entropy using Method 2 using CI and PI 

uncertainties. 

Appendix 3E. Bulk Model endmember curves 

• This Appendix contains all the Bulk model endmember Cp curves. 

Appendix 3G. Bulk Model. 4 Temperature Zoom in Predicted vs Measured 

• This Appendix contains all the Bulk Model. 4 Temperature Zoom in Predicted vs 

Measured for 298.15, 373.15, 573.15 and 773.15K. 

Appendix 3H. Speciation Model Regression 

• Figure A3H.1. Speciation endmember low-T Cp curves with their confidence intervals. 

• Figure A3H.2. Heatmap of speciation model Cp curves Z-scores at 0.1 K intervals, 

comparing each endmember to the mean of all endmembers. White indicates Cp near the 

mean, blue lower than the mean, and red higher. The plot highlights how relative 

differences between curves vary with temperature. 
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• Figure A3H.3. The relative uncertainty in endmember in low-T Cp (J/K/mol) and its 

dependence on T. 

• Figure A3H.4. VIF factors for the speciation model. VIF factors depend on the designer 

matrix and are therefore equal for all regressions relating to the speciation model. 

• Figure A3H.5. Mean Squared Error (MSE) of Cp curve versus Measured Entropy 

(J/K/mol) for the low-T Cp curve regression of the speciation model. 

• Figure A3H.6. Relative residuals (%) between measured and predicted low-T Cp curves 

for the speciation model, plotted on a log scale. Higher uncertainties (>1%) occur below 

100 K, while they remain <2% above 100 K. 

• Figure A3H.7. Measured versus predicted entropy using Method 1. 

• Figure A3H.8. Speciation endmember high-T Cp curves with their confidence intervals. 

XY3Z6T6V3W 

• Figure A3H.9: Heatmap of speciation model high-T Cp curves Z-scores at 1 K intervals, 

comparing each endmember to the mean of all endmembers. XY3Z6T6V3W 

• Figure A3H.10. The relative uncertainty in Cp (J/K/mol) dependence on T. 

XY3Z6T6V3W. Uncertainty is high for the pov endmember.  

• Figure A3H.11. Measured versus predicted entropy using Method 1. Uncertainties are 

propagated from the polynomial model fit and therefore assumed a ‘perfect’ Berman 

model. 

• Figure A3H.12. Distribution of ΔG differences at 773.15 K arising from discrepancies 

between measured and predicted Cp for the speciation model. The figure highlights the 

contributions from differences in standard state entropy (S₀), integrated entropy along the 

high-T Cp curve (𝑆298.15𝐾
773.15 𝐾), and their combined impact on ΔG values at 773.15 K. 

• Figure A3H.13. Relative deviations between training set data and model for high-T Cp. 

XY3Z6T6V3W. 

• Figure A3H.14. Predicted versus measured Cp at four different T with the 1:1 line, 

highlighting the more horizontal distribution of samples at higher T, though less 

pronounced than in the bulk compositional model.  

• Figure A3H.15. Pov versus bu endmember fraction. Size of points indicate molar 

volume whereas the colour indicates in a) standard state entropy and in b) 𝑆298.15𝐾
773.15 𝐾. Note 
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the difference in scale for the pov and bu axis. The figures do show how pov and bu have 

drastically different properties. 

Appendix 3I.  Speciation Model 4 Temperature Zoom in Predicted vs Measured 

This Appendix contains all the Speciation Model. 4 Temperature Zoom in Predicted vs Measured 

for 298.15, 373.15, 573.15 and 773.15K. 

Appendix 3J.  Speciation Model endmember curves 

• This Appendix contains all the Speciation model endmember cp curves. 

Appendix 3K. Alternative Regression Methods 

• Figure 3K.1. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for OLS. Notice the high LOOCV MSE of F-

buergerite (tm64). 

• Figure 3K.2. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for CWTLS using the Full weight matrix with 

block diagonal covariances of each sample and covariances of the covariances. While 

overall fit is good, there is compositional bias as demonstrated by the high integral 

difference between the York line and the 1:1 line. 

• Figure 3K.3. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for robust regression using the Cauchy weight 

function. The most robust method. 

• Figure 3K.4. Speciation model measured entropy versus LOOCV Entropy with 

Uncertainties, York Regression, and Integral Difference for OLS. Notice the high 

LOOCV MSE of F-buergerite (tm64). 

Appendix 3N. State Variable Correlations. 

• This Appendix contains all the state variables correlations. 

 

Chapter 4. Thermodynamic model for Tourmaline. Enthalpy 
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• Figure 4A. Independent endmember fractions of the Bulk model for the 15 natural 

samples selected for enthalpy measurements. Chapter 2 outlines their calculation and 

defines the Bulk model endmember abbreviations. 

• Figure 4B. Thermodynamic Cycle for Formation Enthalpy of Tourmaline This 

diagram outlines the thermodynamic cycle used to derive the enthalpy of formation of 

tourmaline. The cycle begins with drop-solution calorimetry measurements of tourmaline 

and its reference oxides. The formation enthalpy from oxides is calculated as the 

difference between product and reactant solution enthalpies, using the sign convention 

appropriate for dissolution (opposite to formation). To obtain the formation enthalpy 

from the elements, standard enthalpies of formation for the oxides (from Robie and 

Hemingway, 1995) are added. An oxidation correction is applied via Hess’s Law to 

account for transition metal oxidation during dissolution in lead borate. For example, FeO 

is oxidized to Fe₂O₃, corrected to 973 K using Cp integrals, and hematite’s solution 

enthalpy is incorporated. Dividing the total corrected enthalpy by 4 yields the drop 

solution enthalpy of FeO. This cycle leverages the state function nature of enthalpy to 

isolate measurable steps while highlighting the complexity and error accumulation when 

multiple oxide references are required.  

• Figure 4C. Independent endmember fractions of the Bulk model for the 49 natural 

samples selected for FTIR measurements. Chapter 2 outlines their calculation and defines 

the Bulk model endmember abbreviations. 

• Figure 4D. Measured versus Predicted ΔHf°el of our training set tourmalines. 

Uncertainties are the Monte Carlo 2 standard deviations in case of the measured values.  

• Figure 4E. Measured versus predicted standard-state enthalpies of formation (ΔHf°) for 

tourmaline test samples. Error bars represent the propagated uncertainty from the 

endmember regression model. The dashed line indicates the 1:1 line for perfect 

agreement between predicted and measured values. 

Appendix 4B. TGA-DSC 

• This Appendix contains all the TGA-DSC Figures. 
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Chapter 5. Model Integration and Conclusions 

• Figure 5A. Comparison of Configurational Entropy (Sconf) The four bars per sample 

represent independently calculated entropy contributions from different models: LRO 

Sconf Speciation (blue), LRO Sconf Bulk (orange), SRO Sconf Speciation (green), and SRO 

Sconf Bulk (red). Each bar shows the calculated Sconf value in J/(mol·K), with its exact 

value labeled at the right end of the bar. At 1000 K, differences in Sconf  translate into 

Gibbs free energy differences of ~40–60 kJ/mol, comparable to many mineral reaction 

energies, emphasizing that the choice of configurational entropy model can significantly 

affect thermodynamic predictions. 
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LIST OF TABLES 
 

Chapter 0. Introduction 

Table 0A. Tourmaline nomenclature endmembers of this study. The endmembers relate to each 

other by homo- and hetero-valent coupled substitutions and their associated exchange vectors, as 

mentioned at the bottom of the table.  

Chapter 1. Creating a consistently characterised tourmaline sample set with uncertainties 

for thermodynamic model calibration 

Table 1A. Nomenclature tourmalines within the Na-Ca-Fe-Mg-Al-Ti-Si-B-H-F for which we 

estimate the atomic radii based on the a-priory BV matrix method.  

Table 1B. List of tourmaline endmembers considered unstable based on first-order bond-valence 

stability analysis. Instabilities predominantly affect compositions with elevated Ti, B, Al at the T 

site, or ferric iron (Fef) content, as well as those with partial Ca–vacancy occupancy on the X 

site. The endmember [Na][Al]₃[Al]₆[B₁/₂Si₁/₂]₆[OH]₃[OH] from the speciation-based model is 

also predicted to be unstable. 

Appendix 1M: A-priory bond length 

Table A1N.1. A-priory bond length of LRO endmembers. 

 

Chapter 2: Thermodynamic model for Tourmaline. Model derivation and calibration of the 

molar volumes 

 

Table 2A. Combined evaluation of compositional overlap, predictor constraints, and 

multicollinearity for the speciation model. Train in Test (%) and Test in Train (%) indicate the 

percentage of samples covered by the opposing set. VIF measure multicollinearity, with higher 

values reflecting stronger predictor correlations and inflated variance. Diagonal of X'X indicate 

predictor constraints, where smaller values reflect broader coverage and reduced redundancy, 

and larger values indicate poor constraints and limited variability. 
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Table 2B. Combined evaluation of compositional overlap, predictor constraints, and 

multicollinearity for the second model. Column definitions and interpretations are the same as 

described in Table 2A. 

Table 2C. Regression Method Categories 

Table 2D. Structural Formulas and Molar Volumes for Buergerite and Bosiite 

Table 2E. Cauchy robust endmember molar volumes for the X(YZ)9SixAl(1-x)(VW) model and 

the SD based on the covariance matrix. Regression model without interaction parameters. The 

correlation matrix is plotted directly below the table for visual reference, with correlation 

coefficients annotated inside each coloured cell to illustrate the strength and direction of 

relationships between endmembers. 

Table 2F. CWTLS endmember molar volumes for the XY3Z6T6V3W model and the SD based on 

the covariance matrix obtained from the Hessian at the nonlinear minimisation surface. 

Regression model without interaction parameters. The correlation matrix is plotted directly 

below the table for visual reference, with correlation coefficients annotated inside each coloured 

cell to illustrate the strength and direction of relationships between endmembers. 

Appendix 2B. Statistical Methods Appendix 

• Table 2B.1. Weight functions used by the robustfit algorithm in Matlab2022a. 

Appendix 2C. OLS Regression Analysis 

• Table 2C.1. X(YZ)₉SiₓAl(1-x)(VW)₄ model without interaction parameters. 

• Table 2C.2. X(YZ)₉SiₓAl(1-x)(VW)₄ model with interaction parameters. 

• Table 2C.3. X(YZ)₉SiₓAl(1-x)(VW)₄ model without interaction parameters using the 

combined dataset. 

• Table 2C.4. X(YZ)₉SiₓAl(1-x)(VW)₄ model with interaction parameters using the 

combined dataset. 

• Table 2C.5. X(YZ)₉SiₓAl(1-x)(VW)₄ model with subregular interaction parameters using 

the combined dataset. 

• Table 2C.6. XY₃Z₆T₆V₃W model without interaction parameters. 
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• Table 2C.7. XY₃Z₆T₆V₃W model without interaction parameters using the combined 

dataset. 

Appendix 2D. Model Selection Bulk Model 

• Table 2D.1. Bulk Model. Best performing models based on a single statistic. 

• Table 2D.2. Bulk model Z-score heuristics combining the sample-amount averaged index 

performance on the training and test sets. For the meaning of the different Z scores and 

how they are summed into one heuristic, see main text. Best performing robust regression 

method and x-uncertainty regression methods with lowest sum Z scores are in bold and 

yellow. 

Appendix 2E. Model Selection Speciation Model 

• Table 2E.1. Speciation Model. Best performing models based on a single statistic. 

• Table 2E.2. Speciation model. Top 10 Model-method combinations based on total Z-

score minimisation. Z-score heuristics combining the sample-amount averaged index 

performance on the training and test sets. For the meaning of the different Z scores and 

how they are summed into one heuristic, see main text. Best performing robust regression 

method and x-uncertainty regression methods with lowest sum Z scores are in bold and 

yellow. 

Appendix 2F. Model Assessment 

• Table 2F.1. Cauchy Robust Regression without interaction parameters including outlier 

tm164; Internal and External validation. Internal validation using the training data. The 

results of the internal validation of the X(YZ)9SixAl(1-x)(VW) model. 

• Table 2F.2. CWTLS without interaction parameters with outlier tm164. Internal 

validation using the training data. The results of the internal validation of the 

XY3Z6T6V3W model, including output from the Matlab script and figures, are included in 

Appendix X. 

 

Chapter 3. Thermodynamic model for Tourmaline. Entropy and Heat Capacity. 
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• Table 3A. S0 of the endmembers obtained using method 1 for the bulk compositional 

model. Correlation matrix of the S0 bulk model endmembers. Correlation matrix figure 

for S0 bulk model. 

• Table 3B. Bulk model Berman polynomial regression coefficients for the endmember 

high-T Cp. The high number of significant figures are given as there are strong parameter 

correlations, rendering standard significance rules inapplicable. 

• Table 3C. Bulk model covariance matrices for the Berman fit to endmember high-T Cp. 

Due to the high correlation between the Berman polynomial coefficients, uncertainty 

propagation should utilize the covariance matrices instead of the standard deviations of 

individual coefficients to avoid overinflating uncertainties. Additionally, the correlation 

matrices of the parameters are plotted. The correlation matrix of the heat capacity at 

600 K (Cp₆₀₀) is also provided. 

• Table 3D. Standard State Entropy of the endmembers obtained using method 1 for the 

speciation model. Additionally, the correlation matrices of the parameters are plotted.  

• Table 3E. Speciation model Berman polynomial regression coefficients for endmember 

high-T Cp. The high number of significant figures are given as there are strong parameter 

correlations, rendering standard significance rules inapplicable. 

• Table 3F. Speciation model covariance matrices for the Berman fit to endmember high-T 

Cp. Due to the high correlation between the Berman polynomial coefficients, uncertainty 

propagation should utilize the covariance matrices instead of the standard deviations of 

individual coefficients to avoid overinflating uncertainties. Additionally, the correlation 

matrices of the parameters are plotted. The correlation matrix of the heat capacity at 

600 K (Cp₆₀₀) is also provided. 

• Table 3G. Polyhedral Calculation in Tourmaline: Ordered vs. OH-Disordered Model for 

example tourmaline (fschorl). 

• Table 3H. Polyhedral entropies for oct and OHO polyhedra (van Hinsberg et al. 2005a). 

• Table 3I. Comparing the measured versus predicted of the speciation and all polyhedral 

models. 

Appendix 3H. Speciation Model Regression. 
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Table A3H.1. Standard State Entropy of the endmembers obtained using method 1 for the 

speciation model. 

Appendix 3K. Alternative Regression Methods. 

Table 3K.1. Bulk Model: LOOCV MSE and Mean Residual Analysis. The LOOCV MSE and 

mean residuals assess the performance and robustness of different regression methods. Negative 

mean residuals indicate general underestimation, while positive values suggest general 

overestimation. LOOCV MSE highlights model sensitivity to extreme outliers, reflecting method 

robustness. The most robust models balance low MSE with minimal bias in residual means and 

are indicated with yellow. OLS is the reference method. 

Table 3K.2. Bulk model Z-score heuristics using the LOOCV as an estimate for the test set show 

which models have lowest training set uncertainty and is most robust. For the meaning of the 

different Z scores and how they are summed into one heuristic, see Chapter 3. Best performing 

robust regression method and x-uncertainty regression methods with lowest sum Z scores are in 

bold and yellow. 

Table 3K.3. Speciation Model: LOOCV MSE and Mean Residual Analysis.  

Table 3K.4. Speciation model Z-score heuristics using the LOOCV as an estimate for the test set 

show which models have lowest training set uncertainty and is most robust. For the meaning of 

the different Z scores and how they are summed into one heuristic, see Chapter 3. Best 

performing robust regression method and x-uncertainty regression methods with lowest sum Z 

scores are in bold and yellow. 

Appendix 3M: Improvements suggestions for the Polyhedron Method. 

Table 3M.1. Adding molecular (SRO) model Sconf to the polyhedron method estimates. 

 

Chapter 4. Thermodynamic model for Tourmaline. Enthalpy. 

• Table 4A. Thermogravimetric analysis (TGA) results for selected tourmaline samples. 

Each sample was heated under either inert (N₂) or oxidative (air) conditions, and mass 
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loss was monitored as a function of temperature. Three distinct mass loss intervals (T1, 

T2, T3) are reported where applicable, corresponding to devolatilization events observed 

during heating. The table lists the temperature range (°C) and associated weight loss (%) 

for each step. The melting temperature indicates the onset of endothermic melting from 

differential scanning calorimetry (DSC) where available. Total weight loss is the 

cumulative mass loss over the full TGA run, and values corrected to exclude physically 

adsorbed water are given in the adjacent column. Karl-Fisher titration values from 

Chapter 1 provide an independent estimate of structural water. Samples measured in air 

(oxidizing conditions) are indicated with “air” in the name. Bolded values highlight 

measurements outside the expected dehydration behavior, possibly indicating 

experimental artifacts or compositional variability. 

• Table 4B. Melting temperatures extrapolated to the bulk compositional model 

endmembers using ordinary least squares multiple linear regression on the 14 samples for 

which melting temperatures were obtained. The regression coefficient for each variable 

represents the predicted melting temperature (in °C) of the pure endmember. The 95% 

confidence intervals indicate the uncertainty in this extrapolation, based on the standard 

error of each coefficient. 

• Table 4C. Drop-solution enthalpy measurements of tourmaline samples in lead-borate 

solvent at 700 °C. The first column lists the number of drops used per sample for 

calculating the mean and the total number of drops. Drops which gave inconsistent results 

were not used for the calculation of the mean. The second and third columns report the 

measured enthalpies of solution in kJ/g. These were converted to molar values using the 

molar mass of each sample (not shown). The fourth and fifth columns give the heat 

contents (H⁰(700 °C) – H⁰(25 °C)) in kJ/mol, obtained by integrating the caloric equations 

of state (Cp) from 25 °C up to 700 °C. 

• Table 4D. Measured enthalpies of formation from the elements for our sample 

tourmalines. The first column lists Δ𝐻°𝑓, oxides 
tourmaline  using preferred values for composition 

and reference oxide enthalpies. The second column is the Δ𝐻°𝑓, element 
tourmaline . The MC mean 

Δ𝐻°𝑓, element 
tourmaline  is the average from 2000 Monte Carlo trials, incorporating the mean and 
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2SE of compositions and Δ𝐻°𝑓, oxides 
tourmaline  measurements. 2SD represents the standard 

deviation of the MC trials. All enthalpy values are at standard state (298.15 K, 1bar) 

• Table 4E. ΔHf°el extrapolated to the bulk compositional model endmembers by ordinary 

least squares multiple linear regression of the 16 samples for with drop enthalpies were 

obtained.  Figure of the correlation matrix of the bulk model ΔHf°el is found below. 

• Table 4F. Summary of the most important statistical parameters of the ΔHf°el 

extrapolation to the bulk compositional model endmembers by ordinary least squares 

multiple linear regression of the 16 samples for with drop enthalpies were obtained.  

Correlations show relationships between variables, VIF measures how multicollinearity 

inflates the variance of regression coefficients, R² versus IVs indicates variance explained 

by other variables, tolerance reflects unexplained variance (1 - R²), and diagonal (X'X 

inverse) reflects sensitivity of coefficients to data changes, with larger values suggesting 

higher instability. 

• Table 4G. Comparison between measured and predicted standard-state enthalpies of 

formation (ΔHf°) for the tourmaline samples schorl_Ogo, dravite_Ogo, and kuyunko. 

Predicted values and their propagated uncertainties are based on regression from 

endmember enthalpies. The difference column shows predicted minus measured ΔHf° 

values. 

• Table 4H. ΔHf°el of select bulk model endmembers compared with the same 

endmembers as derived from the polyhedron method of van Hinsberg and Schumacher 

(2007c). 

 

Chapter 5. Model Integration and Conclusions 

Table 5A. Speciation independent endmember definitions and independent site fractions. 

Table 5B. Speciation model standard state molar volume and Entropy. Note that due to 

multicollinearity present in the data the uncertainties are not independent and it is better to use 

the covariance matrix which for molar volume can be found in Electronic Appendix 2D and the 
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correlation matrix for entropy can be found in Appendix 3D3 (which is the correlation matrix of 

method 2 but only minimal changes are assumed for method 1) 

Table 5C. Heat capacity coefficients of a Berman and Brown (1985) model fit to speciation 

endmember curves. Cp polynomial was calibrated using measured Cp between 298-778K. Due 

to strong correlations in the Berman polynomial equations, individual variance uncertainties are 

not meaningful. Instead, uncertainties must be assessed using the covariance matrix, provided in 

Chapter 3. 

Table 5D. Bulk independent endmember definitions and independent bulk parameters. 

Table 5E.  Bulk model standard state molar volume and Entropy. Note that due to 

multicollinearity present in the data the uncertainties are not independent and it is better to use 

the covariance matrix which for molar volume can be found in Electronic Appendix 2E and the 

correlation matrix for entropy can be found in Appendix 3D2 (which is the covariance matrix of 

method 2 but only minimal changes are assumed for method 1). For the Enthalpy data with 

strong multicollinearity due to the sparse dataset the correlation matrix can be found in Appendix 

4F. 

Table 5F. Heat capacity coefficients of a Berman and Brown (1985) model fit to bulk 

endmember curves. Cp polynomial was calibrated using measured Cp between 298-778K. Due 

to strong correlations in the Berman polynomial equations, individual variance uncertainties are 

not meaningful. Instead, uncertainties must be assessed using the covariance matrix, provided in 

Chapter 3. 

Appendix 5A. Bulk Model exchange reactions between endmembers 

• This Appendix contains all exchange reaction between endmembers in the Bulk model. 

Appendix 5B. Speciation Model exchange reactions between endmembers 

• This Appendix contains all exchange reaction between endmembers in the Speciation 

model. 
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LIST OF ABBREVIATIONS 
 

Abbreviation Definition 

AdjR² Adjusted R-Squared 

AFM Antiferromagnetism 

aorsm Alumino-oxy-rossmanite 

aorsmB Bulk model Alumino-oxy-rossmanite 

bu Buergerite 

buB Bulk Model Buergerite 

BV Bond Valence 

BVS Bond Valence Sum 

CALPHAD Computer Coupling of Phase Diagrams and Thermochemistry 

CI Confidence Interval 

Cmol Curie Constant (Magnetic Susceptibility) 

Cp Heat Capacity 

Cp(T) Heat Capacity as a Function of Temperature 

CWTLS Correlated Weighted Total Least Squares 

DFBETAS Difference in Betas 

DFFITS Difference in Fits 

DFT Density Functional Theory 

DM Dzyaloshinskii-Moriya Interaction 

drv Dravite 

drvB Bulk Model Dravite 

dravsyn Synthetic Dravite 

drvdis Disordered Dravite 

DSC Differential Scanning Calorimetry 

e-DOS Electronic Density of States 
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Abbreviation Definition 

ED Electron Density 

EFG Electric Field Gradient 

EoS Equation of State 

E‖c Electric Field Parallel to the c-axis 

E⊥c Electric Field Perpendicular to the c-axis 

F0 Standard Free Energy in the Absence of Phase Transition 

fluvt Fluor-uvite 

fluvtB Bulk Model Fluor-Uvite 

FM Ferromagnetism 

foi Foitite 

foiB Bulk Model Foitite 

FTIR Fourier Transform Infrared 

G Gibbs Free Energy 

G(Q) Free Energy as a Function of Q 

Ga Giga annum 

gtls Generalized Total Least Squares 

gtls-block-diag Constrained Weighted TLS using block-diagonal covariance structure 

gtls-cov-data Generalized TLS using covariance matrix from full dataset 

gtls-row-column Generalized TLS using row-column structure 

H Enthalpy 

H₀ Standard Enthalpy 

H°f Standard Enthalpy of formation 

HFSE High Field Strength Elements 

HKF Helgeson-Kirkham-Flowers model 

HP Holland and Powell 

ICP-MS Inductively Coupled Plasma Mass Spectrometry 



48 
 

Abbreviation Definition 

IMA International Mineralogical Association 

IWLS Iteratively Weighted Least Squares 

J Exchange Interaction Constant 

J′ Secondary Exchange Constant 

J″ Tertiary Exchange Constant 

kB Boltzmann Constant 

LA Laser Ablation 

Leff Effective Orbital Angular Momentum 

LOOCV Leave-One-Out Cross-Validation 

LRO Long-Range Order 

MAD Median Absolute Deviation 

MAE Mean Absolute Error 

mdtw Midway Tourmaline 

mdtwB Bulk Model Midway Tourmaline 

Ms Equivalent Mixing Sites in Configurational Entropy 

MSE Mean Squared Error 

NCSS Statistical software used for regression analysis 

nind Independent Component Count for Configurational Entropy 

NNLS Non-Negative Least Squares 

odrv Oxy-Dravite 

ole Olenite 

oleB Bulk Model Olenite 

OLS Ordinary Least Squares 

P Pressure 

PE Polyethylene 

PCA Principal Component Analysis 
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Abbreviation Definition 

pov Povondraite 

PPMS Physical Property Measurement System 

pXRD Powder X-Ray Diffraction 

Q Order Parameter in Landau Theory 

QSD Quadrupole Splitting Distribution 

R Gas Constant 

RMSE Root Mean Square Error 

RPRESS² Predictive Residual Sum of Squares 

RT Room Temperature 

R² Press Cross-Validation R-Squared 

S Entropy 

S₀ Standard Entropy 

SC-XRD Single Crystal X-Ray Diffraction 

SE Standard Error 

SEM Scanning Electron Microscope 

Smag Magnetic Entropy 

Smax Maximum Entropy 

Sconf Configurational Entropy 

SRO Short-Range Order 

Svib Vibrational Entropy 

srl Schorl 

srlB Bulk Model Schorl 

T Temperature 

Tc Critical Temperature 

TGA Thermogravimetric Analysis 

TLS Total Least Squares 
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Abbreviation Definition 

TN Néel Temperature 

V Molar Volume 

V₀ Standard Molar Volume 

V-DOS Vibrational Density of States 

VIF Variance Inflation Factor 

VM Molar Volume 

Weiss T Weiss Temperature 

wMSE Weighted Mean Squared Error 

WLS Weighted Least Squares 

X Composition 

XPS X-ray Photoelectron Spectroscopy 

XRD X-Ray Diffraction 

Z-score Standard Score for Statistical Analysis 

Δ Energy Gap 

ΔCorr Autocorrelated FTIR linewidth 

δΔCorr Excess FTIR line width compared to mechanical mixing 

ΔQ Differential Heat Flow 

ΔHdrop Drop solution enthalpies 

ΔHf°el Enthalpy of formation from the elements 

ΔHf°ox Enthalpy of formation from the oxides 

θ Curie-Weiss Temperature 

θD Debye Temperature 

θE Einstein Temperature 

τ Relaxation Time Constant 

Ω Number of Microstates 

ω Angular Frequency 
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Abbreviation Definition 

ᵌ(ω) Phonon Density of States Function 
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Thermodynamic model for Tourmaline 

 

 

 

 

Computational phase diagrams need real thermodynamic anchors—without them, they drift into 

uncertainty. 
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1. INTRODUCTION 

Tourmaline is an exceptional geochemical recorder due to its ability to incorporate a wide range 

of elements across diverse crystallographic sites (van Hinsberg et al. 2011a), It is resistant to 

chemical weathering, has low volume diffusivity (Hawthorne and Dirlam 2011), and remains 

stable across extensive PTX conditions (Dutrow and Henry 2011). Its record is preserved from 

diagenesis (Henry and Dutrow 2012) to deep crustal levels (Lussier et al. 2016), and from recent 

to Archean times (Appel 1984). As an accessory phase, it does not significantly control host rock 

or fluid compositions (van Hinsberg et al. 2011a) and instead acts to capture its host rock’s 

signature while zoning patterns track transient changes in fluid or magma (van Hinsberg et al. 

2011b). While other minerals may reset, and fluids can enter and leave the system, tourmaline 

retains a record of their former chemical presence, preserving geochemical signatures across 

diverse geological environments.  

 

Predicting exchange reactions between tourmaline, minerals, and internally or externally 

buffered fluids or melts during reactive fluid flow requires a high-quality, internally consistent 

thermodynamic model. This model must include standard-state properties and caloric, 

volumetric, and compositional equations of state (EoS) to describe PTX dependencies. Forward 

modelling, integrating mineral, fluid, melt, and aqueous speciation models (e.g., HKF (Helgeson 

et al. 1981)), enables the reconstruction of past fluid or melt compositions and the prediction of 

mineral exchange and net transfer reactions. Given tourmaline’s widespread occurrence, such a 

model supports thermobarometry, provenance studies, mineral exploration, and fluid and magma 

reconstructions in metamorphic, igneous, and hydrothermal systems. 

1.1. Tourmaline supergroup mineral 

The tourmaline chemical composition is the result of external (temperature, pressure, mineral 

assemblage, fluid and magma composition) and internal influences (crystallographic constrains) 

and these controls need to be critically evaluated before tourmaline can be used as a mineral 

probe. The generalized structural formula for Tourmaline is XY3Z6(T6O18)(BO3)3V3W where:  

X = Na1+, Ca2+, K1+, vacancy                                      

Y = Fe2+, Mg2+, Mn2+, Al3+, Li1+, Fe3+, V3+, Cr3++, Ti4+   

Z = Al3+, Fe3+, Mg2+, V3+, Fe2+, Cr3+    
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T = Si4+, Al3+, B3+ 

B = B3+ 

V = OH1-, O2- 

W = OH1-, F1-, O2- 

Most of the compositional variability in tourmaline occurs at the X, Y, Z, W, and V sites. Its 

structure, based on a rhombohedral lattice (R3m) with trigonal symmetry, consists of a 3D 

network of octahedral ZO₆ sites interwoven with columns of XO₉, YO₆, BO₃, and TO₄ polyhedra 

(Bosi 2018). The tetrahedral ring aligns with the c-axis, imparting noncentrosymmetry and a 

polar character responsible for its pyro- and piezoelectric properties (Hawthorne and Dirlam 

2011). This influences growth, morphology, and zoning, with the slower-growing c⁻ (‘analogous 

pole’) and faster-growing c⁺ (‘antilogous pole’) exhibiting hemimorphism  (Henry and Dutrow 

1996). Diffusion is negligible, as shown by H-diffusion experiments (Desbois and Ingrin 2007) 

and sharp compositional and isotopic zoning in high-temperature-experienced tourmaline (van 

Hinsberg and Marschall 2007a). 

 

Figure 0A. Schematic representation of tourmaline’s crystal structure, shown normal (A) and 

parallel (B) to the hexagonal c-axis. The X site (purple) is positioned above the tetrahedral ring 

(blue), bonding to the inner corners of the T sites and trigonally coordinated B sites (green). The 

O1 (W) site (red) is linked to three Y sites (yellow), with its O1-H1 bond directed toward the X 
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site (H in light blue). The O3 (V) sites (red) each coordinate one Y (yellow) and two Z sites 

(orange), while the O3-H3 bond is oriented in the c⁻ direction, where H3 shares an H bond with 

the O5 site (dashed circle) in the tetrahedral ring. (Figure modified after Berryman et al.(2016)) 

 

Table 0A. Tourmaline nomenclature endmembers of this study. The endmembers relate to each 

other by homo- and hetero-valent coupled substitutions and their associated exchange vectors, as 

mentioned at the bottom of the table.  

  

Species (X) (Y3) (Z6) T6O18 (BO3)3 V3 W 

Alkali tourmaline, subgroup 1 

Schorl Na Fe2+
3 Al6 Si6O18 (BO3)3 (OH)3 (OH) 

Dravite Na Mg3 Al6 Si6O18 (BO3)3 (OH)3 (OH) 

Alkali tourmaline, subgroup 3 

Oxy-dravite Na Al2Mg1 MgAl5 Si6O18 (BO3)3 (OH)3 (O) 

Povondraite Na Fe3+
3 Fe3+

4 Al2 Si6O18 (BO3)3 (OH)3 (O) 

Magnesium-

Dutrowite 

Na Mg2.5Ti0.5 Al6 Si6O18 (BO3)3 (OH)3 (O) 

Alkali tourmaline, subgroup 5 

Olenite Na Al3 Al6 Si6O18 (BO3)3 (O)3 (OH) 

Buergerite Na Fe3+
3 Al6 Si6O18 (BO3)3 (O)3 (OH) 

Alkali tourmaline, subgroup 6 

Na-Al-Al-B root name Na Al3 Al6 Si3B3O18 (BO3)3 (OH)3 (OH) 

Calcic tourmaline, subgroup 1 

Uvite Ca Mg3 MgAl5 Si6O18 (BO3)3 (OH)3 (OH) 

Feruvite Ca Fe2+
3 MgAl5 Si6O18 (BO3)3 (OH)3 (OH) 

Fluor-uvite Ca Mg3 MgAl5 Si6O18 (BO3)3 (OH)3 F 

X-site vacant tourmaline, subgroup 1 

Foitite  Fe2+
2Al Al6 Si6O18 (BO3)3 (OH)3 (OH) 
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X-site vacant tourmaline, subgroup 7 (?) 

Alumino-oxy-

rossmanite 

 Al3 Al6 Si5Al1O18 (BO3)3 (OH)3 (O) 

 

Generalized coupled 

substitutions Resulting actions 

XR1+ + R2+ ↔ X + R3+ relates alkali-vacant groups 

XR1+ + R3+ ↔ XCa + R2+ relates alkali-calcic groups 

R2+ + OH1- ↔ R3+ + O2- relates deprotonation in all groups 

R2+ + TSi4+ ↔ R3+ + TR3+ 

relates Tschermak-like tetrahedral-octahedral substitution in all 

groups 

Note: R represents generalised cations such that XR1+ = Na1+; R2+ = Mg2+, Fe2+; R3+ = 

Al3+, TB3+ and no site designation reflects possibilities involving multiple sites. 

 

The Nomenclature and Classification Committee (CNMNC) of the International Mineralogical 

Association (IMA) recognises 41 natural tourmaline species, with many additional synthetic and 

hypothetical end members (Henry et al. 2011). The primary classification is based on occupancy 

at X site, dividing tourmalines into alkali, calcic and X-vacant groups. Heterovalent coupled 

substitutions link these groups and their subgroups, while homovalent cation or anion 

substitutions define species within subgroups, indicated by prefixes (Henry et al. 2011).  

This study focusses on tourmaline species within the Na-Ca-Mg-Fe²⁺-Fe³⁺-Ti-Al-B-O-H-F 

system, which are the most commonly found tourmalines in hydrothermal, igneous, and 

metamorphic environments. Li-bearing tourmalines are excluded as these are much rarer and 

essentially restricted to evolved igneous rocks and due to the apparent presence of a significant 

solvus separating dravite-elbaite and possibly schorl-elbaite, which would require extensive 

experiments to properly characterise (London 2011). Tourmalines with atypical enrichment in 

elements such as K, Mn, Cr, V, Zn, Ni, Co, or Cu, as well as those with non-rhombohedral 

symmetry (orthorhombic, monoclinic, or triclinic), are also omitted. Such tourmalines are rare, 

and deviations from rhombohedral symmetry typically result from minimal atomic displacements 

off symmetry positions, often explainable by compositional inhomogeneity or slight positional 
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disorder caused by short-range ordering (SRO) effects. With these exclusions, the study focusses 

on the following end-member species: 

 

1.2. Tourmaline: Net transfer reactions determine the stability. 

Experimental studies have explored the P-T-X stability range of tourmaline. Its upper thermal 

limit varies by endmember species, mineral assemblage, and fluid composition. Dravite-schorl in 

a natural assemblage undergoes incongruent melting at 725–800 ° C and 4–4.5 kbar (Von 

Goerne et al. 1999; Ota et al. 2008), while as a single-phase tourmaline without coexisting 

minerals, it remains stable up to 950 °C, i.e., showing no melting or breakdown (Robbins and 

Yoder Jr. 1962). The upper pressure limit for single-phase dravite is ~60–80 kbar (Krosse 1995) 

but stability depends on composition, with olenite and K-dravite stable at 40–50 kbar (Schreyer 

et al. 2000; Berryman et al. 2014) and influenced by mineral assemblage (Ota et al. 2008). The 

lower stability limit is uncertain but may be as low as 150°C and 1 kbar, as X-vacant tourmaline 

occurs in meta-evaporites and oceanic alteration (Byerly and Palmer 1991; Henry et al. 2008). 

Dravite has been synthesised at 0.5 kbar and 350 ° C (Palmer et al. 1992). 

The breakdown products depend on the composition of the system. At high temperatures, 

tourmaline melts incongruently to cordierite, sillimanite, and B-bearing fluids or melts, 

sometimes with quartz or albite (von Goerne et al. 1999). In Fe–Al-rich systems, it may yield 

kornerupine, grandidierite, or sapphirine (Robbins and Yoder 1962; Werding and Schreyer 

1978). Breakdown also occurs in calc-silicates (to serendibite, datolite, danburite) (Grew and 

Anovitz 1996) and in retrograde settings to muscovite, biotite, chlorite, or albite (Slack et al. 

1996), especially under high-pH, boron-undersaturated fluids (Morgan and London 1989). In 

fluorine-rich granitic melts, tourmaline can dissolve entirely (Wolf and London 1997). In all 

cases, boron is released into fluid, melt, or new B-bearing phases.  

 

Tourmaline growth and dissolution depend on the cation/anion activity ratio of its major 

elements (Dutrow et al. 1999). Its stability is influenced by the activity product of the oxide 

components, weighted by the stoichiometric exponent (London 2011). The oxide with the 

smallest activities, which also depend on other phases, has the largest role in its solubility. While 

silica is not a limiting factor, as evidenced by tourmaline’s presence of tourmaline in mafic 
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rocks, alumina is, given tourmaline’s peraluminous nature (London 2011). The activities of other 

Y site cations are often sufficient in many rocks, and tourmaline seems to be stable under a wide 

range of oxygen fugacities. Boron activity is critical, as tourmaline forms only in B-rich 

environments or through B-metasomatism. It stabilizes in neutral to acidic fluids, while alkaline 

conditions promote dissolution by forming tetrahedral B(OH)₄⁻ complexes, whereas at lower pH, 

boron remains in the trigonal B(OH)₃ form, matching its coordination in tourmaline (Morgan and 

London 1989; Henry and Dutrow 1996).  

 

Experimental studies indicate that tourmaline formation generally requires a minimum of 0.5–

1.0 wt% B₂O₃ in acidic fluids at 600 °C and 200 MPa (Morgan and London 1989). At higher 

temperatures, this threshold increases; for instance, ~2.0 wt% B₂O₃ is needed at 700 °C and 

100 MPa to stabilize tourmaline in a granitic system (London 2011). Below these concentrations, 

boron remains in the fluid, and tourmaline is unstable or does not nucleate. These thresholds may 

also vary depending on fluid pH, cation availability, and the presence of nucleation surfaces. 

 

1.3. Tourmaline: External effect on element exchange   

Tourmaline’s potential for thermobarometry has been explored in tourmaline-biotite experiments 

and equilibrium mineral assemblages. The Mg-Fe exchange between tourmaline and biotite, 

staurolite, garnet, chlorite, and muscovite shows a wide distribution coefficients, 𝐾𝑑
Fe−Mg

=

(𝐹𝑒/𝑀𝑔)tourmaline 

(𝐹𝑒/𝑀𝑔)biotite 
, range due to inter-site partitioning at the Y and Z sites, affecting P-T-X 

dependencies (van Hinsberg and Schumacher 2009). Ca-Na exchange with plagioclase occurs at 

the X-site but is influenced by coupled substitutions involving the Y or Z site. K-based 

barometry remains semi-quantitative due to the lack of a K-saturating phase in experiments  

(Berryman et al. 2015). Other experiments show that K/Na ratios in tourmaline increase with 

pressure when buffered by biotite, but data scarcity prevents calibration of a reliable barometer 

(van Hinsberg et al. 2011b). Tourmaline exhibits sector zoning along the c-axis (Henry and 

Dutrow 1996) with the c+ sector enriched in Al and depleted in Ti, Ca, Mg, and Na, while the c- 

sector shows the opposite trend (van Hinsberg et al. 2006). Surface charge and morphology 

influence charged species' incorporation, with vacancies preferentially forming at the antilogous 

pole, and light elements like B and H fractionate as charge-balancing cations (van Hinsberg and 
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Marschall 2007). The a-sector does not exhibit sector zoning as it is oriented perpendicular to the 

asymmetry in the crystal structure (see Figure 0A for sector axes). 

Inter-sector partitioning of XCa and YTi has been empirically calibrated, providing a single-

crystal thermometer for rocks above 350°C, independent of element concentration and pressure 

(van Hinsberg and Schumacher 2007b). Furthermore, BT concentrations in Al-rich tourmalines 

correlate with P-T conditions (Ertl et al. 2010). 

Tourmaline’s X-site occupancy of Ca and Na provides insight into fluid composition. XNa 

reflects fluid Na⁺ content but is assemblage- and temperature-dependent, and this empirical 

correlation works best for Na-rich tourmaline endmembers. XCa is a more robust proxy for Ca²⁺ 

concentration in equilibrium with tourmaline, albite, and quartz at ~300°C and 2 kbar (von 

Goerne et al. 2011; Berryman et al. 2016), allowing estimation of the Ca, Na equivalent salt 

content of a fluid when the appropriate buffers are in place (van Hinsberg et al. 2017). Late-stage 

fibrous tourmalines in open veins are highly responsive to fluid changes, with alkali tourmalines 

stable in Na⁺-rich fluids and foitite forming in Na⁺-poor conditions (Dutrow and Henry 2016). 

Fluorine incorporation depends on fluid F content but is also influenced by X-site charge and 

crystal chemistry (Henry and Dutrow 2011). The Fe³⁺/Feᵗ ratio in tourmaline is a promising 

redox proxy, based on limited experimental data (Fuchs et al. 1998; Williamson et al. 2000). At 

fixed temperature, the ratio increases with fO2 across buffers (Magnetite-Hematite (MH) < Ni-

NiO < Quartz-Fayalite-Magnetite (QFM)), confirming redox sensitivity. Within a single buffer, 

it rises also with temperature to ~550 °C, then declines, likely due to dehydrogenation or 

structural changes. The correllation remains empirical and may be influenced by crystal-

chemical and pressure effects (Celata et al., 2023). Broader calibration is needed for reliable 

application. 

Tourmaline composition reflects rock chemistry, as it exchanges elements with a buffering 

mineral assemblage, a principle widely applied in provenance studies (Henry and Guidotti 1985). 

Some chemical variation arises from the host rock rather than the fluid (Slack 1996). The 

fluid:rock ratio determines the relative influence of host rock and external fluid. Fluid-buffered 

elements, controlled by solubility, remain independent of bulk composition until a saturating 

phase is exhausted, whereas rock-buffered systems imprint their chemistry onto tourmaline (van 

Hinsberg et al. 2017). 
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Compositional features such as concentric, patchy, and hourglass zoning, recrystallisation after 

brecciation, overgrowth, replacement, and crack- or vein-filling textures are recognised in 

multistage ore-forming processes (Slack and Trumbull 2011).  Combined with exchange 

equilibria, these zoning patterns record the evolution of tourmaline’s growth environment, 

including temperature, host rock, fluid composition, and occasionally pressure.  

These empirical trends in tourmaline composition seem to reliably track external conditions, but 

many can also result from crystal chemical controls such as charge balance, site occupancy, and 

structural preferences. Inter-site partitioning, sector zoning, and coupled substitutions influence 

element incorporation, making it difficult to fully separate intrinsic effects from external 

availability.  

1.4. Tourmaline: Internal influences on element exchange  

Element exchange in tourmaline is strongly governed by crystallographic constraints, as structure 

and local charge compensation dictate coupled substitutions among endmembers (London 2011). 

Chemical variation is limited by what can fit within the crystal lattice rather than directly 

mirroring the surrounding chemistry. 

Tourmaline’s structure influences exchange at both the short- and long-range scales (Bosi 2018). 

Short-range structure clusters atoms in non-translational symmetry, governed by charge balance 

which can be estimated via the Bond Valence Model, where bond valences approximate formal 

valence (Brown 2016). This stabilizes specific cation arrangements around the O1 (V) and O3 

(W) sites (Bosi 2018) and affects heterovalent order-disorder reactions linked to anion charge 

changes. These short-range structures contribute to low diffusivities (Bosi 2018). The long-range 

structure in tourmaline arises from stable short-range structures, maintaining mineral symmetry 

and controlling intra-crystalline LRO order-disorder reactions. Disorder of R²⁺ and R³⁺ over Y 

and Z sites helps minimize structural misfit by keeping the Y-O and Z-O bond length difference 

below 0.15 Å (Bosi and Lucchesi 2007). A similar mechanism may explain misfit between the Y 

and T sites, as tetragonal B has been observed in Al-rich tourmalines from <300°C environments 

(Ertl et al. 2008, 2010). Since Y-O bonds are consistently longer than Z-O bonds, larger ions 

preferentially occupy the Y site, while smaller ions favor Z. Despite advances in understanding 

cation and anion site distribution, uncertainties remain, particularly in assigning Mg²⁺, Al³⁺, and 

Fe²⁺ to Y and Z sites, especially in tourmalines with deprotonated coupled substitutions. 
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Structural refinement data indicate that position of crystal sites and their respective sizes vary 

with composition (Bačík 2015).  

1.5. Need for a Thermodynamic model 

A single thermodynamic model for tourmaline provides a physically grounded alternative to 

empirical calibrations described so far, which are constrained by small experimental datasets and 

have uncertain general applicability. Empirical thermobarometry and fluid reconstructions 

assume equilibrium P-T conditions, an assumption often invalid due to kinetics and bulk 

composition effects, leading to oversimplified stability models and potential biases. By selecting 

a single reaction, empirical methods neglect other coexisting equilibria that may be equally or 

more important in defining phase stability (Connolly 2016). This partial equilibrium approach, 

i.e., μi
α=μi

β, where the chemical potential μi  of component i is equal between phases α and β, is 

defined as 𝜇𝑖 = (
𝜕𝐺

𝜕𝑛𝑖
)
𝑇,𝑃,𝑛𝑗≠𝑖

with G as the extensive Gibbs free energy, ni the number of moles of 

component i, T temperature, and P pressure. The subscript nj≠i indicates that the mole numbers of 

all other components are held constant during differentiation. This criterion, when applied to 

only one component while allowing others to remain out of equilibrium, risks misrepresenting 

mineral compositions—particularly in multi-component systems where multiple reactions jointly 

govern the equilibrium state (Connolly 2016). In contrast, a thermodynamic model considers the 

full set of potential reactions, ensuring internal consistency and more accurate predictions. 

 

The key advantage is that well calibrated thermodynamic models generalize beyond 

experimental conditions, enabling forward modelling of net-transfer and exchange reactions 

across P-T-X space while reducing reliance on specific chemical subspaces. However, their 

accuracy depends on the completeness of thermodynamic data and equilibrium assumptions, 

necessitating continuous refinement and validation against experimental and natural 

observations. 

 

1.6. Thermodynamic Modelling    

Thermodynamic databases in the Earth Sciences describe phase equilibria under high 

temperatures and pressures by modelling the extensive Gibbs free energy G as a function of 

pressure, temperature, and composition G = f(P, T, n₁...nₙ) (Connolly 2016), where ni represents 
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the number of moles of each i component or endmember. This formulation captures the 

extensive nature of G and allows for the computation of stable mineral assemblages and their 

evolution by minimizing G under specified P–T–X conditions. Since only a limited portion of 

phase space can be experimentally measured, thermodynamic models serve as low-parameter 

fits, linking discrete energetic observations to estimate the energy of minerals like tourmaline. 

The key requirement is that the model parameters retain physical significance, ensuring robust 

extrapolation beyond the calibration range. Without this constraint, alternative data-driven 

methods like neural networks could interpolate effectively but lack predictive extrapolation 

capability. 

To obtain extensive G = f(P, T, n₁...nₙ) requires integrating the differential:𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 +

∑  𝑖 𝜇𝑖𝑑𝑛𝑖  from a reference state (Pᵣ, Tᵣ) where mineral thermodynamic properties are tabulated 

(Connolly 2016). Since standard-state properties refer to an ordered endmember composition, 

μdn term vanishes during integration because the composition is constant and dni=0; hence, only 

temperature and pressure integrals contribute to changes in G. The differential dG can be split 

into isothermal and isobaric components because entropy S and molar volume V are state 

functions, meaning their integrals depend only on initial and final states, not the integration path. 

By first integrating the caloric EoS over T at constant P, evaluating thermal expansivity at T to 

obtain V at T and then integrating the pressure dependent) volumetric EoS (containing the 

compressibility) over P at constant T, we obtain  (Connolly 2016): 

𝐺(𝑃, 𝑇) = 𝐺(𝑃𝑟 , 𝑇𝑟) − ∫  
𝑇

𝑇𝑟
𝑆(𝑃𝑟 , 𝑇)𝑑𝑇 + ∫  

𝑃

𝑃𝑟
𝑉(𝑃, 𝑇) 𝑑𝑃                    (eq 1) 

In case of Gibbs free energy the Maxwell relation relationships (
𝜕𝑆

𝜕𝑃
)
𝑇
= −(

𝜕𝑉

𝜕𝑇
)
𝑃

 ensures that 

entropy’s pressure dependence does not need to be integrated to add their cumulative addition to 

Gibbs free energy as this integral is exactly offset by the volume’s temperature integral (Berman 

1988). This maintains thermodynamic consistency and ensures that (
𝜕𝐺

𝜕𝑃
)
𝑇
= 𝑉 and (

𝜕𝐺

𝜕𝑇
)
𝑃
= −𝑆. 

Semi-Empirical functions for the volumetric V(P,T) and caloric S(T) EoS’s must, however, be 

carefully selected. 

In geosciences, the isobaric portion is traditionally rewritten using  G= H - TS for convenience 

(Connolly 2016). 



64 
 

𝐺(𝑃𝑟 , 𝑇) = 𝐻(𝑃𝑟 , 𝑇𝑟) + ∫  
𝑇

𝑇𝑟

𝐶𝑃d𝑇 − 𝑇𝑆(𝑃𝑟 , 𝑇) 

(eq 2) 

The S(Pr, T) is the third-law entropy. 

𝑆(𝑃𝑟 , 𝑇) = 𝑆(𝑃𝑟 , 𝑇𝑟) + ∫  
𝑇

𝑇𝑟

𝐶𝑃
𝑇
𝑑𝑇 

(eq 3) 

Putting eq 2 and eq 3 in eq 1 and taken the enthalpy compared to a reference enthalpy of the 

elements one obtains for homogenous ordered endmember phase: 

Δ𝐺 = Δ𝐻0 +∫  
𝑇

𝑇0

𝐶𝑝(𝑇)𝑑𝑇 − 𝑇 {𝑆0 +∫  
𝑇

𝑇0

𝐶𝑝(𝑇)

𝑇
𝑑𝑇} + ∫  

𝑃

𝑃0

𝑉(𝑃, 𝑇) 𝑑𝑃 

(eq 4) 

(Anderson 2005). Here, all terms refer to per-mole quantities, i.e., the molar Gibbs free energy, 

which is intensive.  Cp(T) and V(P) must be parameterized for integration, and V0 corrected to T 

using the V(T) (thermal expansion) EoS evaluation at T to compute ΔG at given P and T. ΔH°, 

S°, and V° are listed in databases, with several studies providing optimised thermodynamic 

parameters for rock-forming minerals  (Holland and Powell 1985, 1990, 1998, 2011; Berman 

1988; Powell and Holland 1988; Gottschalk 1996; Chatterjee et al. 1998). Each database applies 

specific thermodynamic models and mathematical optimisation methods, but all adhere to the 

fundamental requirement that a thermodynamic cycle must sum to zero energy within 

uncertainty, i.e are internally consistent. The Cp(T) and V(P,T) equations of state vary between 

databases, requiring caution when combining sources. Frequent updates reflect the dynamic 

nature of these datasets, as additional constraints or more precise measurements can lead to shifts 

in linked phases. This is not a problem as long as internal consistency is maintained and 

improves model accuracy, but does mean that absolute values are not fixed. 

 

Solution phases are represented as mixtures of endmember components and generally stored in 

separate thermodynamic databases. The total free energy of a solution Gsol consists of three 

components: 

𝐺𝑠𝑜𝑙 = 𝐺mech + 𝐺conf + 𝐺𝑒𝑥 
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where Gmech is the mechanical mixing energy which is eq 4 for each respective endmember, Gconf 

Gconf accounts for residual atomic disorder not explicitly represented by the endmember model. 

This remaining disorder is assumed to be random and is quantified using statistical mechanics. 

The associated configurational entropy Sconf  reflects the number of ways atoms can be arranged 

across crystallographic sites, following Boltzmann’s equation: 

𝑆conf = k ln𝑊 

where k is Boltzmann constant and W is the number of microstates. For multi-site solid 

solutions, Sconf  becomes in molar basis: 

𝑆conf = −𝑅∑  

𝑠

𝑀𝑠 ∑  

𝑛ind𝑠

𝑖=1

𝑥𝑖,𝑠 ln 𝑥𝑖,𝑠 

where: 

• s: index for crystallographic site types 

• Ms: number of equivalent sites of type s per formula unit (Multiplicity) 

• xi,s: site fraction of species i on site s 

• nind: number of independent species on site s 

This equation assumes ideal configurational entropy, meaning all arrangements are energetically 

equivalent and neglects any enthalpic interactions. In real systems, energetic interactions, such as 

differences in bond strength or atomic size, can make certain configurations more favorable, 

reducing the entropy below the ideal value and introducing an enthalpic component to mixing. 

The configurational contribution to Gibbs free energy is then: 

𝐺conf = −𝑇𝑆conf 

For more detail, see Blundell and Blundell (2009). 

Gex represents excess energy, which is often associated with the enthalpy of mixing. In many 

cases, it primarily compensates for oversimplifying assumptions made in configurational entropy 

calculations, although the Gex also captures non-ideal interactions between mixing components 
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that lead to asymmetry in the Sconf or development of a solvus. Gex(P,T,X) is the compositional 

EoS and its exact form depends on the type of solution model, e.g. regular solution model is 

𝐺ex = 𝑊𝑋1𝑋2 and for a subregular model is 𝐺ex = (𝑊1𝑋2 +𝑊2𝑋1)𝑋1𝑋2 and these W terms can 

be P, T dependent. Figure 0B shows the complete integral molar Gibbs free energy equation 

colour coded for all the standard state properties and EoS needed for a thermodynamic model.  

𝐺(𝑃, 𝑇, 𝐗) =∑  

𝑖

𝑋𝑖[ 𝐻𝑖
0 − 𝑇𝑆𝑖

0
⏟      

 Standard-state properties 

+∫  
𝑇

𝑇0

𝐶𝑝,𝑖(𝑇)𝑑𝑇 − 𝑇∫  
𝑇

𝑇0

𝐶𝑝,𝑖(𝑇)

𝑇
𝑑𝑇

⏟                    
Caloric equations of state 

+ ∫  
𝑃

𝑃0

𝑉𝑖(𝑃, 𝑇)𝑑𝑃
⏟        

Volumetric equation of state (V0 inside) 

]

−𝑇𝑅∑  

𝑠

𝑀𝑠 ∑  

𝑛ind ,𝑠

𝑗=1

𝑥𝑗,𝑠 ln 𝑥𝑗,𝑠

 Ideal configurational interactions

+ ∑  

𝑖<𝑗

𝑋𝑖𝑋𝑗𝑊𝑖𝑗(𝑃, 𝑇)

⏟          
Excess (non-ideal) interactions 

+ 𝐺other (𝑃, 𝑇, 𝐗)⏟        
Other contributions (e.g., magnetic) 

 

 

Figure 0B. This master equation describes the molar Gibbs free energy G(P,T,X) of a 

multicomponent solid solution as a function of pressure P, temperature T, and endmember vector 

X with endmember mole fractions components Xi. The     standard-state properties include the 

reference enthalpy Hi
0, entropy Si

0, and molar volume Vi
0, at 298.15 K and 1 bar with enthalpies 

referenced to the elements. The     caloric EoS captures temperature effects through heat 

capacity integrals: Cp,i(T) is used to correct both enthalpy and entropy, respectivly. The     

volumetric component captures pressure effects through direct integration of the volume function 

V(P,T). Thermal expansion α(T) is required to evaluate V(P0,T) at elevated temperatures, but it 

is not integrated as a separate energy contribution. Instead, it adjusts the temperature-dependent 
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volume, which is then used in the pressure integral. Only the pressure integral ∫ V(P,T) dP 

contributes cumulatively to Gibbs free energy. The     compositional EoS includes the ideal 

configurational entropy, calculated from species (j) site (s) occupancies xj,s, site multiplicities Ms

, and total number of independent species nind,s. The nind,s  reflect the system’s degrees of 

freedom+1 and can be expressed as linear combinations of the independent endmember 

fractions. The excess Gibbs energy forms from non-ideal interactions here as example modelled 

via regular parameters Wij(P,T). The final term, Gother(P,T,X), accounts for energetic 

contributions not captured by endmember-based mixing, such as magnetic ordering or electronic 

transitions. These effects are typically non-linear in composition and cannot be expressed as 

separable functions of P, T, and X; for example, Curie or Néel temperatures may vary non-

trivially with Fe content. 

The equation gives the molar Gibbs free energy 𝐺(𝑃, 𝑇, 𝐗), of a solution, where Xi are 

endmember mole fractions. The molar Gibbs free energy 𝐺 = ∑  𝑖 𝜇𝑖𝑋𝑖 as a composition-

weighted average of chemical potentials. Geometrically, the tangent plane to the 𝐺 (X)  surface 

at a given composition defines the set of μi, where each chemical potential corresponds to the 

constrained partial derivative of 𝐺 with respect to Xi, under the condition ∑  𝑖 𝑋𝑖 = 1 . 

1.7. Gibbs Free Energy Minimisation in Multi-Component Systems  

In a c-component system with p coexisting phases (e. g. ,𝛼 and 𝛽), equilibrium requires that the 

total Gibbs free energy of the system is minimised across all phases, ensuring no further 

spontaneous transformations (Connolly 2005). This defines the minimum free energy surface, 

where the chemical potentials of each component remain equal across phases (Connolly 1990): 

𝜇1
𝛼 = 𝜇1

𝛽
, 𝜇2
𝛼 = 𝜇2

𝛽
, … , 𝜇𝑐

𝛼 = 𝜇𝑐
𝛽

 

Although solution phases are described internally by endmember mole fractions, they follow the 

same thermodynamic principles. In these models, the molar Gibbs energy G(P,T,X) is a function 

of endmember proportions, and the chemical potentials of system components are obtained by 

projecting the endmember derivatives through the phase’s stoichiometric matrix A: 

𝝁components = 𝐀T ⋅ (
𝜕𝐺̅

𝜕𝐗
)
∑𝑋𝑖=1

. 
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At equilibrium, these component potentials correspond to the tangent plane slopes of the molar 

Gibbs free energy surface with respect to conserved system components (Connolly 2016). At 

equilibrium, chemical potentials correspond to the slopes (gradients) of the minimum Gibbs free 

energy surface with respect to component amounts, and can be extracted by projecting the 

tangent plane onto the respective composition axes (Connolly 2016). 

Mass balance constraints ensure that the total number of moles of each component remains fixed 

across all phases: ∑  𝑝
𝛼=1 𝑛𝑖

𝛼 = 𝑛𝑖
total , where 𝑛𝑖

𝛼 is the number of moles of component i in phase α, 

p is the number of phases, 𝑛𝑖
total is the bulk composition of the system (Connolly 2005). 

Additionally, all component amounts must satisfy the non-negativity constraint: 𝑛𝑖
𝛼 ≥ 0, which 

prevents unphysical negative concentrations (Connolly 2005). 

Gibbs free energy minimisation ensures stability only if the Gibbs function is convex; the 

stability criterion requires that the second derivative of G with respect to composition is positive 

definite, i.e., 

(
𝜕2𝐺

𝜕𝑛𝑖𝜕𝑛𝑗
)
𝑃,𝑇

> 0 

which prevents metastable solutions and ensures that any small compositional perturbation 

increases G. In the pseudocompound approach (Connolly 2005), Gibbs free energy minimisation 

inherently ensures stability by selecting only stable phase assemblages. If the free energy surface 

has negative curvature, the system decomposes into coexisting phases that restore convexity. By 

discretizing a solid solution into virtual endmembers, this method ensures selection from the 

convex hull of free energy, making explicit convexity checks unnecessary (Connolly 2005). 

Unlike polynomial models, which require stability verification, this approach inherently enforces 

it. 

1.8. Tourmaline thermodynamics 

Thermodynamic data for tourmaline are limited, except for V0 and V(P,T). High-T Cp and ΔH°f 

were measured for several natural elbaite, schorl, and dravite grains via high-T drop solution and 

DSC (Ogorodova et al. 2004, 2012), with additional High-T Cp data presented in Anovitz and 
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Hemingway (1996). A single low-T entropy measurement exists for a poorly characterised 

dravitic tourmaline (Kuyunko et al. 1984). 

Limited thermodynamic data for tourmaline led to use of estimation models to estimate the 

thermodynamic properties, including the polyhedron method, where properties are derived as 

linear combinations of averaged polyhedral contributions (Garofalo et al. 2000; van Hinsberg et 

al. 2005b, 2005a; Van Hinsberg and Schumacher 2007c). These fractions are obtained via 

multiple linear regression on a database of endmembers with diverse polyhedral sizes, structures, 

polymerization levels, and crystal family classes, then summed into the required endmember.  

This method averages polyhedral properties across minerals that may share the same 

coordination number but have vastly different polyhedral sizes, shapes, and distortions, leading 

to oversimplified estimates. 

2. OBJECTIVES 

The primary objective of this study is to develop a comprehensive thermodynamic model for 

tourmaline that accurately describes its stability, and phase equilibria in geological systems. This 

model integrates internal controls—crystallographic constraints, site occupancy, and charge 

balance—determined by the definition of the endmember compositions, along with 

thermodynamic properties (standard state and EoS). By comparing solution energetics with those 

of coexisting phases, it allows for predicting tourmaline compositional evolution in response to 

external controls like pressure, temperature, mineral assemblages, and fluid/magma interactions.  

To achieve this, the following sub-objectives will be addressed: 

1. Characterizing Tourmaline with Internal Consistency (Chapter 1) 

• Assemble a dataset of natural and synthetic tourmalines within the Na-Ca-B-Fe²⁺-Fe³⁺-

Mg-Al-Si-Ti-O-H-F system.  

• Use a multi-instrument approach to fully characterize tourmaline: EMPA for major 

elements, LA-ICP-MS for trace elements, Karl-Fischer titration for H₂O content, and 

Mössbauer spectroscopy for Fe²⁺/³⁺ ratios. 
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• Determine site partitioning since elements can independently occupy multiple 

crystallographic sites. Single-crystal XRD provides structural constraints, but with more 

than three elements per site, formula optimisation is required which incorporates 

composition, site electrons, bond valence sums, and crystal-chemical constraints to refine 

order-disorder relationships. 

• Ensure internal consistency by standardizing all methodologies. Thermodynamic 

properties are highly sensitive to normalization, requiring coherence across 

measurements to maintain reliability. 

• Conduct an uncertainty analysis to quantify measurement precision, allowing for 

sensitivity analysis of thermodynamic properties and robust regression modelling. 

2. Defining a Thermodynamic Model (Chapter 2) 

• Develop a bulk compositional model for users relying only on chemical analyses. 

• Develop a speciation model based on optimised mineral formulas, incorporating site-

specific occupancies and structural constraints. 

3. Obtaining Key Thermodynamic Properties 

• Molar Volume (V) (Chapter 2): Calculate from single-crystal XRD measurements and 

extrapolate to endmembers using regression techniques. Given the abundance of 

published tourmaline molar volumes, test different regression methods, including robust 

regression and errors-in-variables (EIV) approaches, to manage multicollinearity and 

outliers and to test how sensitive parameter extraction is to compositional uncertainty. 

• Entropy (S°) and Heat Capacity (Cp) (Chapter 3): Measure absolute entropy by 

integrating low-temperature heat capacity data from relaxation calorimetry. Fit high-

temperature Cp data from differential calorimetry using polynomial functions. 

Endmember entropies and caloric equations of state are derived through regression of the 

full dataset. 

• Enthalpy (ΔH) (Chapter 4): Determine enthalpy values using high-temperature lead-

borate drop solution calorimetry at 700°C under O₂ flushing. Integrate results into a 
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thermodynamic cycle, accounting for oxidation, devolatilization, and reference oxide 

formation. A sensitivity analysis will assess uncertainties. 

4. Model Integration and conclusions (Chapter 5) 

• Configurational Entropy Model: Develop a statistical mechanics-based model for 

configurational entropy, incorporating Bragg-Williams long-range order and molecular 

short-range order models to capture disorder effects that are not explicitly included in the 

thermodynamic model. 

• Integrate all components into a comprehensive thermodynamic solution model for 

tourmaline, suitable for incorporation into existing thermodynamic databases. 

By addressing these sub-objectives, this study will establish a thermodynamic foundation for 

modelling tourmaline stability and compositional evolution across P-T-X conditions. The model 

will support pseudosection thermobarometry, provenance studies, mineral exploration, and fluid 

and magma evolution reconstructions by providing internally consistent thermodynamic 

parameters for phase equilibrium modelling. 
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Thermodynamic model for Tourmaline 

 

“Crystallography is the experimental science of determining the arrangement of atoms in solids. In a 

way, crystallography is the mother of all materials science.” 

— William Lawrence Bragg 

 

The Nobel laureate also called Tourmaline a ‘Garbage can mineral’. (Bragg, 1937) 

one person's trash really is another one's treasure. 
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Chapter 1. Creating a consistently characterised tourmaline sample set with 

uncertainties for thermodynamic model calibration 
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ABSTRACT 

Tourmaline, a complex mineral phase, serves as a key geochemical archive for reconstructing P-

T-X histories across tectonic settings. A thermodynamic model is essential for interpreting its 

chemical record, enabling phase equilibria and elemental exchange predictions. Here, we present 

an internally consistent, normalization-coherent tourmaline sample set of natural solid solutions 

and selected synthetic samples for thermodynamic property measurement (molar volume, 

entropy, heat capacity, enthalpy) within the Na₂O-CaO-B₂O₃-FeO-Fe₂O₃-MgO-Al₂O₃-SiO₂-TiO₂-

H₂O-F system. To determine tourmaline’s compositional complexity a multi-instrumental 

approach is needed: wavelength-dispersive electron microprobe for major elements, Karl-Fischer 

titration for H₂O, laser ablation ICP-MS for trace elements, and Mössbauer spectroscopy for Fe 

valence. In addition, single-crystal X-ray diffraction provides electron densities, which, 

combined with composition, bond valence sums, charge balance and site occupancy constraints 

reveals site-specific speciation. Existing code for crystal formula refinement (Wright et al. 2000) 

is extended to include minor elements, V and W anion sites, and mixed anion/cation 

environments, with Monte Carlo error propagation capturing sample heterogeneity and analytical 

uncertainties to determine the final optimised formula. Sensitivity analysis shows that crystal 

chemical assumptions dominantly control the obtained site fractions. Including these 

compositional and speciation uncertainties in subsequent thermodynamic model development 

prevents model overfitting. 

1. INTRODUCTION 

Tourmaline, a prevalent borosilicate in crustal settings, is widely used in petrology as a record of 

phase relationships with mineral assemblages, internal and external buffered fluids and melts 

across tectonic environments (Henry and Dutrow 1996). Its diverse crystallographic sites allow 

for diverse elemental incorporation, while its large P-T-X stability and low diffusivity preserve 

compositional records, often as growth zoning (van Hinsberg et al. 2011). Formed in boron-rich 

environments, tourmaline is a valuable geochemical archive for reconstructing P-T-X histories, 

essential in petrogenetic and provenance studies (Henry and Dutrow 1996; van Hinsberg et al. 

2011). 
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A thermodynamic model is necessary to interpret tourmaline’s chemical record, consisting of an 

independent, internally consistent set of thermodynamic end-member properties at standard state 

and caloric, volumetric, and compositional equations of state. Such a model allows phase 

equilibria and elemental exchange predictions across pressure, temperature, and chemical 

potentials, essential for phase equilibrium modelling tools like Perplex (Connolly 2005), 

Theriak-Domino (Capitani and Petrakakis 2010), MELTS (Asimow and Ghiorso 1998) and 

Gems-selector (Kulik et al. 2013). Despite increased tourmaline research in the past decade 

(Henry and Dutrow 2018), thermodynamic models for theoretical support remain limited, and 

were identified as one of the principal targets for future tourmaline research (van Hinsberg 

2011). At present, only a handful of isolated thermodynamic data exist (Kuyunko et al. 1984; 

Hemingway and Evans Jr 1996; Ogorodova et al. 2004, 2012), which formed the basis of the 

estimated properties based model of van Hinsberg and Schumacher (2007).  

Tourmaline’s composition spans a wide range, requiring at least seven endmembers to describe 

each natural composition. Its generalized formula, XY₃Z₆(T₆O₁₈)(BO₃)₃V₃W, includes major 

elements on the following sites (Henry et al. 2011, 2013): 

X = Na¹⁺, Ca²⁺, K¹⁺, □ = vacancy 

Y = Fe²⁺, Mg²⁺, Mn²⁺, Al³⁺, Li¹⁺, Fe³⁺, V³⁺, Cr³⁺, Ti⁴⁺ 

B = B³⁺ 

Z = Al³⁺, Fe³⁺, Mg²⁺, V³⁺, Fe²⁺, Cr³⁺ 

T = Si⁴⁺, Al³⁺, B³⁺ 

V = OH¹⁻, O²⁻ 

W = OH¹⁻, F¹⁻, O²⁻ 

This study focuses on the Na-Ca-Mg-Fe²⁺-Fe³⁺-Ti-Al-B-O-H-F system, omitting the elements Li, 

K, Mn, V, and Cr, which are less common in typical hydrothermal, igneous and metamorphic 

tourmalines. 

In this study, a thermodynamic tourmaline model is developed from directly measuring 

properties including molar volume (V), heat capacity (Cp(T)), and enthalpy from the oxides 

(Δ𝐻𝑓
∘). S is derived from the low (T) Cp(T) measurement. While direct measurements of absolute 



82 
 

thermodynamic values may have higher uncertainties than phase equilibria fitting, they provide 

complimentary constraints. A tourmaline sample set that has been consistently characterised for 

composition and structure is critical for this approach. Without consistent composition, valence, 

and structural data, discrepancies in normalization, calibration, and analysis can lead to 

significant errors in correlating composition with thermodynamic properties. Indeed, 

compositional uncertainty is a major concern for the previously published thermodynamic data 

for tourmaline (see Hemingway et al. 1996; van Hinsberg and Schumacher 2007). Moreover, 

careful uncertainty analysis is crucial to identify the nature and sources of uncertainty in 

thermodynamic measurements and tourmaline compositions, as it determines where flexibility is 

justified and prevents overfitting in thermodynamic model calibration. 

Creating a consistent tourmaline database from literature data is challenging due to 

inconsistencies in instrumentation, normalization, and evolving crystal chemical assumptions, 

which means that reported mineral formulae are not consistent. Given that mineral formulae are 

the critical step in converting the per mass calorimetric measurements to their molar equivalent, 

this is of crucial importance in thermodynamic studies. Existing guidelines (Henry et al. 2011, 

2013) need updating, by first assigning Al³⁺ to the Z site using an empirical equation, then 

allocating Mg²+ (up to 2 apfu), Cr³+, V³+, and Fe³+, with any excess trivalent cations placed in Y 

(Bosi 2018). This improves consistency between empirical and calculated formulas, ensuring 

accurate species identification. This study assembles a tourmaline sample set for subsequent 

thermodynamic study and proposes a detailed approach towards consistency, essential for 

deriving statistically significant generalisations. Future renormalization may be necessary as 

tourmaline chemistry knowledge advances, and integrating this database with others will require 

community collaboration. Currently, no uncertainty propagation is conducted during tourmaline 

mineral formula optimisation, giving the misleading impression that these formulas are 

extremely well constrained. By explicitly including uncertainty envelopes, it becomes clear that 

tourmaline compositions are significantly less well characterised than previously assumed. 

To assemble a tourmaline sample set, we primarily used natural crystal with an intermediate 

solid solution composition, with a few synthetic samples to reduce the multicollinearity inherent 

in natural samples as dictated by the dominant exchange vectors. Since all tourmaline end 

members are hypothetical and tourmaline exists only as solid solutions, this approach reflects its 
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natural stability. We favor this over synthesizing tourmaline endmembers for thermodynamic 

measurement as their synthesis is challenging and rarely produces end-member compositions 

(von Goerne et al. 2011), complex crystal Short Range Order (SRO) (Hawthorne 1996, 2002; 

Bosi 2010, 2011, 2013) and Long Range Order (LRO) (Bosi and Lucchesi 2007; Henry and 

Dutrow 2011; Vereshchagin et al. 2018) chemical controls, and external factors that hinder 

formation of pure endmembers or binary solutions. 

Tourmaline is one of several minerals exhibiting structural and compositional complexity 

comparable to that of amphiboles, micas, and high-entropy ceramics. The rigorous normalization 

procedures and uncertainty analyses presented here can serve as a template for studies on these 

similarly complex solid solutions, thus offering broader applicability in mineralogy and materials 

science (McCormack and Navrotsky 2021). 

2. DATABASE SAMPLE SELECTION AND SYNTHESIS 

2.1 Natural tourmaline sample collection 

Approximately 220–250 natural tourmalines were assembled from the McGill University 

Department of Earth and Planetary Science and Redpath Museum collections, Tourmaline 2017 

and 2021 conference excursions, and purchased at several mineral shows. Samples were visually 

inspected for inclusions and homogeneity using SEM imaging, and analysed by EMPA along 

well-distributed points across the mounted sections. Measurements were performed along both 

the c- and a-axes of the hexagonal cell to assess compositional variation. A subset of about 50 

samples from metamorphic, igneous, and hydrothermal settings was selected to establish a 

network within the Na-Ca-Fe-Mg-Al-Ti-Si-B-H-F system, focusing on pseudobinary and some 

ternary/quaternary compositions. Inclusion criteria encompassed homogeneity, with no variation 

over 0.2 apfu for major elements and 0.10 apfu for minors, and no samples with impurities over 

0.2 apfu for Li, K, Mn, V, and Cr. Sample details are in Electronic Appendix (e-Appendix) 1A.  

2.2 Synthetic tourmalines  

Three previously synthesized near-monophase synthetic tourmalines (dravite, uvite, and 

oxyuvite) were included to fill compositional gaps and reduce elemental correlations, while B-
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olenite from Wodara (1996) adds a composition with a high fraction of tetrahedrally coordinated 

boron (BIV) that allows for assessing this component. 

Dravite, Uvite, and Oxyuvite synthesis Dravite ("Dr 14-1") was synthesized using Krosse’s 

(1995) gel method with stoichiometric Na₂O, Al₂O₃, SiO₂, and MgO, along with H₂O and excess 

B₂O3. Gold-encapsulated gels were subjected to 2.5 GPa and 800°C in a piston cylinder (Boyd 

and England 1960) at Ruhr University Bochum, using NaCl as the pressure medium in a 

steel/graphite resistor oven (Massonne and Schreyer 1986) with a Ni/NiCr thermocouple for 

temperature control. The process produced ~10 µm tourmaline crystals with minor (<1%) 

corundum, spinel (MgAl₂O₄), and pseudosinhalite as identified by XRD. 

Uvite and oxyuvite were synthesized following Henry and Dutrow (1990) with stoichiometric 

CaCO₃, MgO, γ-Al₂O₃, and SiO₂, plus excess boric acid and H₂O. Gold-encapsulated mixtures 

were annealed at 700°C, then subjected to 2 GPa and 820 °C in a piston cyllinder for two weeks 

at the Steinmann Institute, University of Bonn. Near-monophase crystals of uvite (~20 µm) 

formed, with SEM imaging and EDX analyses showing minor <5% enstatite (see P-XRD results) 

B-Olenite synthesis Wodara (1996) synthesized mono-phase boron-rich olenite (sample V81) 

using a gel composed of 0.625 Na₂O, 4.5 Al₂O₃, and 6 SiO₂, with 100% excess B₂O₃. Gel 

preparation followed Hamilton and Henderson (1968): elemental Al and sodium carbonate were 

mixed, converted to nitrates with water and diluted nitric acid, evaporated, then dissolved in 

deionized water and 50% ethanol. TEOS (Si(C₂H₅O)₄) was added for silica, with ethanol aiding 

miscibility. Ammonium hydroxide induced gel formation, decomposed in a platinum crucible 

under a Bunsen burner, then heated to 700°C and ground. The amorphous nature of the gel was 

confirmed by P-XRD. This material was loaded in gold capsules, sealed, and subjected to 25 

kbar and 750°C for 96 hours in an end-loaded piston cylinder (Renner et al. 1997) at Ruhr 

University Bochum (Wodara 1996; Schreyer et al. 2000). 

This dataset spans the targeted tourmaline compositional space with sufficient samples to 

independently constrain thermodynamically relevant properties in the following chapters.  

3. COMPOSITIONAL CHARACTERISATION 
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 3.1 Wavelength Dispersive Electron Microprobe (WD-EMPA) 

Data Acquisition Natural tourmaline samples (±0.5 cm diameter, cut perpendicular and parallel 

to the c-axis) and synthetic powders were epoxy-mounted, polished, and carbon-coated. Major 

elements were measured on a Cameca SX100 FE microprobe using wavelength dispersive (WD) 

spectrometry at McGill University, predominantly with a 3 μm defocused beam with the 

remainder at 20 μm, a 20 nA current, and 20 kV voltage. WD monochromator crystals and Kα 

peak counting times were F (140 s), Si (20 s), Mg (30 s) on LTAP; Na (30 s), Al (20 s) on TAP; 

K (50 s), Ca (40 s), Ti (40 s) on LPET; and Fe (30 s), Mn (30 s), Cr (60 s) on LLIF. Background 

times were set at half the peak times and linearly interpolated. Despite long counting times, beam 

damage was minimal, and no time-dependent intensity correction was needed as determined by 

repeated analyses on a single point for 10 minutes. Primary standards were Fluorite for F, 

Diopside for Si, Mg, and Ca, Albite for Na, Sanidine for Al and K, Rutile for Ti, Magnetite for 

Fe, Spessartine for Mn, and Chromite for Cr. Homogeneity and variance were assessed by 

measuring 20 points per sample. In-house secondary tourmaline standards TM40, TM42, and 

TM49 were measured five times every 20 hours for drift and accuracy monitoring.  

Data Normalisation Averaged k-ratios deviating from 1 and density differences between 

primary standards and tourmaline necessitated matrix corrections. Second-generation X-Phi ZAF 

corrections (Merlet 1992, 1994) were used to linearize calibration curves and link k-ratios to 

concentration ratios accurately. Fixed B₂O₃ (10%) and H₂O (2.5%) values were included as 

rough estimates for the matrix correction; these oxide components will be measured and/or 

refined later for greater accuracy. Tourmaline is sensitive to matrix correction methods due to 

differences in mass absorption coefficients for its light elements. Average detection limits for 

major elements were determined using the Goldstein method (Goldstein et al. 2003). Based on 

secondary standards, we applied post-processing corrections for both instrumental drift and bias. 

Drift in SiO₂ (the only element with consistent drift) was corrected using a linear model. Bias 

corrections for all elements, based on secondary standards, included concentration-dependent 

adjustments when the slope was significant, and fixed corrections when only the intercept was 

significant or for extrapolations beyond 20% (α=0.05). Consistent results between 5 μm and 20 
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μm beams confirmed the effectiveness of these corrections, allowing for dataset merging. The 

small grain size (10–20 μm) of synthetic tourmalines complicated achieving high totals due to 

matrix correction issues like mixed tourmaline-epoxy interaction volumes, non-flatness, and non-

homogeneity. Only measurements with totals exceeding 90% for olenite (n=19) and 98% for 

oxyuvite (n=27), uvite (n=7), and dravite (n=9) were used. These totals included fixed values of 

2.5 wt% H₂O and 10 wt% B₂O₃, with olenite’s low total suggesting higher-than-average boron 

content. 

Results and Uncertainties E-Appendices 1B1(natural samples)–1B2 (synthetics) provide mean 

and SD for parallel and perpendicular sections, merged values, and sample uncertainty. Matrix 

corrections (e-Appendix 1B3), standards (e-Appendix 1B4), and instrument settings (Appendix 

1A2) are further discussed in Appendix 1B and accuracy in Appendix 1B5 and limits of 

detection (LOD) in e-Appendix 1B6. Merged values were used to calculate mineral formulas, 

with accuracy estimated from the average difference in measured secondary standards after bias 

corrections and their accepted values. This EMPA uncertainty does not take uncertainty in the 

accepted values of the primary standards into account.  

Millimeter-scale sample heterogeneity is equivalent to total uncertainty, justifying standard 

deviation on the mean of the 20 measured points as the total compositional uncertainty from 

EPMA.  

3.2 Laser-Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) 

Data Acquisition Epoxy-mounted tourmalines were repolished and analysed with a NewWave 

213 nm Nd-YAG laser (140 μm spot size (preablation 160 μm), 3.78 J/cm² at 10 Hz) coupled to 

a Thermo Finnigan iCapQc Quadrupole ICP-MS. We used a 70 s washout, 20 s warmup and gas 

blank, and 40 s measurement. Helium (0.8 L/min) and Argon (1 L/min) carrier gases transported 

the aerosols to the ICP-MS. Ions passed through a Ni-sample cone. ICP-MS optimisation gave 

0.34% 238U/238U16O oxide formation and 0.25% 137Ba1+/137Ba2+ double-charged ion formation 

(Kent and Ungerer 2005), as determined on NIST SRM 610, requiring no interference 

corrections. The 238U/232Th ratio (~1) indicated minimal fractionation and complete evaporation 

(Günther and Hattendorf 2005). 
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Isotopes measured included: 7Li, 23Na, 24Mg, 27Al, 29Si, 39K, 43Ca, 45Sc, 47Ti, 51V, 53Cr, 55Mn, 

57Fe, 59Co, 60Ni, 63Cu, 66Zn, 71Ga, 88Sr, 93Nb, 118Sn, 137Ba, 139La, 140Ce, 143Nd, 208Pb, 209Bi. 

analysed with synthetic (NIST SRM 610) and natural glass standards (StH6-80, BIR-1G, BCR-

2G). Each tourmaline's perpendicular and parallel sections were measured six times. Further 

details are in Appendix 3. 

Data Normalization Data processing in Iolite 4 (Paton et al. 2011; Paul et al. 2023) involved 

setting integration windows to avoid surface contamination, large particle generation, inclusions, 

and washout tails. Windows with stable element ratios were selected and adjusted for each 

sample, and background (gas blank) was subtracted using a step-forward method. External 

calibration and drift correction were performed in Iolite using the multi-standard 3D trace 

element function, with NIST SRM 610 and natural standards (StH6-80, BIR-1G, BCR-2G) 

calibrated to GEOREM preferred values (as of 09-07-2018) (Jochum et al. 2005). Weighted least 

squares regression with a zero intercept (except for 118Sn due to He-gas contamination) was 

applied. Median yield normalization factors corrected ablation yield differences for each RM 

relative to NIST SRM 610 based on shared elements. RMs measured at the session’s start and 

end provided step-linear interpolation to correct for temporal drift, converting counts to 

concentrations for all samples. 

Matrix differences in ablation yield, influenced by laser coupling, aerosol transport, particle size, 

and plasma volatility (Kuhn and Günther 2004) varied among RM glasses and tourmalines. 27Al 

served as an internal standard (Longerich et al. 1996) due to its stable concentration and 

correlation with colour in tourmaline. In Excel, secondary internal standardization compared 

27Al-corrected concentrations of 23Na, 24Mg, 43Ca, and 47Ti to electron microprobe values, 

generating four correction factors per sample averaged into a single mean factor, applied to all 

elements. This step was essential, as single internal standard corrections can vary by over 30% 

and apply effectively only to adjacent periodic groups (Liu et al. 2008). No downhole 

fractionation correction was needed, as element ratios with internal standards remained flat 

during ablation. 

A bias correction was applied using nine in-house secondary tourmaline standards measured 

three times initially, with TM40, TM42, and TM44 repeated at session end. A concentration-
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dependent correction curve was determined via ordinary linear regression on all samples. 

Ordinary linear regression estimates the best-fitting straight line through a set of data points by 

minimizing the sum of squared differences between observed and predicted values. No 

correction was applied if regression coefficients were insignificant; a fixed correction was used if 

only the intercept was significant or if extrapolation exceeded 20%. 

Results and Uncertainties Statistics (mean, median, SD, and SE, with and without propagated 

RM errors) and detection limits are in e-Appendix 1C2 for parallel and perpendicular sections, 

and in e-Appendix 1C3 for merged values with the non-Iolite normalization procedure. Final 

normalised means and SD are in e-Appendix 1C2, and tourmaline standard compositions in e-

Appendix 1C4. Tourmaline standard TM39, excluded from bias correction, showed a median 

relative difference of 13%, totaling 150 ppm for trace and 3.2 wt% for major elements. Final 

bias-corrected secondary standards showed cumulative residuals of 235 ppm for trace and 1.9 

wt% for majors. Due to greater uncertainty in major elements, EMPA data was used for mineral 

formula optimisation, while LA-ICP-MS data was used for elements <0.5 wt%. 

3.3 Karl Fisher Titration 

Structural water (OH) concentrations in tourmaline were measured via vaporization coulometric 

Karl Fischer titration (Meyer and Boyd 1959) at Ruhr University Bochum. Samples were 

powdered in acetone, dried at 150°C, and heated to 1000°C in platinum crucibles within an 

argon-purged induction furnace. Volatiles were carried to the titration cell, where water content 

was measured using a CA-200 moisture meter (Mitsubishi Chemical). Precision from five 

repeats of TM23 (10-50 mg), was 1σ = 0.08 wt% H₂O. At 1000°C, tourmaline releases H₂O, 

with possible inflation from decomposing inclusions or unreacted phases. Volatile species 

containing F, Li, Na, and Zn may also be released; in F-rich samples, fluorine (likely as F₂ or 

HF) can oxidize iodide, potentially leading to an underestimation of H₂O. The results and details 

of the method can be found in Appendix 1D and e-Appendix 1D. 

The missing elements Boron measurement was attempted by EMPA by peak scanning, but 

results were unsatisfactory with large uncertainty for the McGill EPMA instrument due to low 

atomic number, weak X-ray emission, and matrix sensitivity (Handt and Mosenfelder 2019; 
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Llovet et al. 2023). LA-ICP-MS, suited for trace boron, struggles with high concentrations due to 

boron's high ionization potential, matrix effects, retention in tubing, and calibration challenges, 

limiting precision at the 10% wt. level required to detect B beyond that on BIII sites. Boron was 

instead estimated by charge balance, adding uncertainty from propagated errors. Oxygen was 

assumed to be stoichiometric. 

4. VALENCY CHARACTERISATION 

Iron is the only major element in our samples with variable valence and more than 0.2 apfu. 

4.1 57Fe Mossbauer Spectroscopy 

Data Acquisition Tourmaline samples with >0.5 wt% FeOTotal were analysed for Fe³⁺/Fe²⁺ ratios 

using Mössbauer spectroscopy at McGill University, Paris-Lodron University Salzburg, and 

Palacký University. Samples, adjusted to contain 8 mg Fe, were hand-ground in acetone for 10 

minutes and loaded into 2 cm² sample holders. McGill and Palacký used 10 μm Kapton windows 

with boron nitride for high-iron samples, while Salzburg used a Cu ring with Al-foil and epoxy. 

Low-iron samples were directly loaded. The final absorber thickness was 3-5 mg/cm² Fe. Room-

temperature Mössbauer spectra were collected in transmission mode at all labs with constant-

acceleration spectrometers, using a triangular waveform and ±4 mm/s velocity range. Calibration 

with a 25 μm α-Fe foil set the velocity scale and zero-velocity at the Zeeman-split centroid using 

the data of Violet and Pipkorn (1971), defining the nuclear ground state reference for all nuclear 

transitions. Mirror-image spectra from bidirectional velocities were folded to improve signal-to-

noise, with no observed issues in velocity linearity. 

Laboratory-Specific Instrumentation Configurations McGill and Palacký used a 1.85 GBq 

⁵⁷Co(Rh) source, while Salzburg used a 0.925 GBq source, both emitting 14.4125 keV gamma 

rays. McGill employed a 2” Kr-CO₂(5%) proportional counter at 1 atm and an 8 cm source-

detector distance to balance count rates with minimal cosine smearing, achieving 4×10⁶ off-

resonance background counts with a 512-channel scalar. Palacký and Salzburg used 1024-

channel analysers for higher resolution. Palacký used an MS2006 spectrometer (Pechoušek et al. 

2012) with a YAlO₃:Ce scintillation detector, reaching 6×10⁶ counts. Salzburg used a Halder 
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Electronics instrument with a Xe-filled counter and a 5 cm source-absorber distance, achieving 

2×10⁶ counts. 

Model Fitting We used the Voigt-based Quadrupole Splitting Distribution (QSD) model 

(Rancourt and Ping 1991) in the fast relaxation limit, treating Quadrupole Splitting (QS) as a fit 

parameter sensitive to Electric Field Gradient (EFG) changes in each SRO structure, while 

assuming the Isomer Shift (IS) remains stable across clusters due to its dependence on mean 

bond distances (Grodzicki and Lebernegg 2011). Gaussian broadening was applied to QS of 

Lorentzian peaks, using multiple smaller Gaussians to approximate the true, likely lognormal site 

distribution suggestive of cluster preference of Fe, for comparison with earlier literature. 

Doublets were added incrementally, using initial parameters from Andreozzi et al. (2008), until a 

realistic fit was achieved. We optimised fits using the Levenberg-Marquardt algorithm in Recoil 

software (Lagarec and Rancourt 1998) to minimize the chi² function, with the Voigt line shape 

numerically approximated by Puerta and Martin (1981) achieving better results (χ² < 2) than 

single Lorentzian doublets. Fit errors were derived from the covariance matrix (Hessian 

inversion of the χ² function), excluding overlap or misidentification effects, with standard error 

propagation used to estimate uncertainty in the Fe³⁺/Fe²⁺ doublet ratio. No matrix corrections 

were applied. Full results for linewidths (Γ), isomer shift (δ), QS, and resonance areas (A) are 

found in e-Appendix 1E and are further detailed in Appendix 1E. Figures of the Mossbauer 

spectra can be found in Appendix 1E. 

Uncertainty and Need for Ab Initio Calculations Main uncertainties in Fe³⁺/Fe²⁺ ratios in 

tourmaline are described in Appendix 1E, and arise from spectral overlap, InterValence Charge 

Transfer (IVCT) interpretation, and missing recoil-free fractions, each adding 5-10% error (De 

Grave and Van Alboom, 1991), and, along with minor thickness effects (Rancourt et al., 1993) 

total 15-30%. This challenges Mössbauer spectroscopy's reliability for Fe valence/site fraction 

determination, highlighting the need for a multi-spectroscopy approach with theoretical support 

from ab initio calculations (Filatov 2009). These methods can predict Mössbauer parameters for 

iron in SRO structures, partial v-DOS to address recoil-free fraction and activation energies for 

electron hopping. Simultaneous fitting of spectra using ab initio constraints would reduce 

overlap issues and uncertainties, making Mössbauer more robust for iron analysis in tourmaline. 
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Current fit uncertainties are minimal, but are therefore with Fe³⁺/Fe²⁺ ratios as best estimates 

based on present methods. 

5. CRYSTALLOGRAPHIC CHARACTERISATION 

 5.1 Single crystal x-ray diffraction (SC-XRD) 

Data Acquisition 

Salzburg Room temperature (RT) SC-XRD of tourmaline was conducted at the University of 

Salzburg using a Bruker SMART APEX 3-circle CCD diffractometer. Crystal fragments (0.1-0.2 

mm) were selected for homogeneity and glued onto 0.1 mm boron-silicate-glass capillaries. Data 

were collected with graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å) at 50 kV, 20 

mA, and a 30 mm crystal-to-detector distance. The APEX I CCD detector was calibrated at -30° 

and -50° 2θ positions. Data were acquired via ω-scan at four φ positions, achieving >95% 

completeness. Each run collected 630 frames (Δω = 0.3°) with 3-10 s exposure. Data processing 

used Bruker APEX3 software with SAINT for peak integration, dynamic box refinement, and 

Gaussian profile fitting. Spot shape correlation exceeded 0.8, with automated background 

subtraction. 

Ottawa RT SC-XRD data were collected at the University of Ottawa using a Bruker Kappa 

ApexII diffractometer (50 kV, 30 mA, Mo Kα source, 4-circle goniometer, Triumph graphite 

monochromator, ApexII CCD detector). The Apex3 suite facilitated data acquisition, initial 

solution, and unit cell determination from 36 images with 3 omega scans. Scanning angles (2θ, 

Ω, χ, and φ) were optimised per crystal, using omega and phi scans with 0.5° image widths. 

Integration used SAINT with dynamic box refinement.  

British Columbia Crystal fragments (0.1-0.2 mm) were mounted on glass fibers with quick-set 

epoxy. Data were collected at RT using either a Bruker X8 diffractometer with an Incoatec 

MoKα microsource or a Bruker DUO APEX II diffractometer with Triumph graphite 

monochromated MoKα radiation. Maximum 2θ values ranged from 2.6° to 36.4°, using φ and ω 

scans in 0.3° or 0.5° oscillations with 3–10 s exposures depending on sample intensity, and a 

crystal-to-detector distance of 38, 40, 50, or 60 mm was adjusted based on sample quality, 

diffraction intensity, and resolution requirements, with shorter distances enhancing low-angle 
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reflection coverage and longer distances improving spot separation and high-resolution data 

collection. 

Data Normalization Measured intensities were converted to |F(hkl)|2obs using I(hkl) = 

K·A·L·P·|F(hkl)|², where K scales intensities, A corrects for absorption, L accounts for Lorentz 

effects, and P corrects for polarization. APEX 3 applied Lorentz and polarization corrections. 

High redundancy of symmetry-equivalent reflections improved intensity precision, normalised 

exposure variations, and enhanced absorption corrections. SADABS’ multi-scan method further 

refined absorption modelling by analyzing intensity variations across crystal orientations using 

spherical harmonics. Mass attenuation coefficients were chosen based on the bulk composition 

(Creagh and Hubbell 2006), with absorption coefficients and transmission factors in the cif files. 

The scale factor K was estimated via the Wilson plot in SCALE (APEX 3). High-angle data were 

used to reduce Fourier truncation and electron density noise, with reflections down to 0.60 Å 

included for precise anisotropic displacement and minimised parameter correlations. 

Cell refinement Auto-indexing in XPREP (APEX 3) determined unit cell parameters by 

analyzing the positions and symmetry of the 3D reflection grid (hkl). Reflections with an 

intensity-to-noise ratio I/σ(I)>2 were used, where I is the measured reflection intensity and σ(I) 

its standard deviation. Each reciprocal lattice point represents a specific crystallographic 

direction and d-spacing, defining the crystal structure. Normalised structure factors (∣E∣) were 

calculated using the Wilson method to remove thermal and sin(ϑ)/λ effects. Space group R3m 

was confirmed by absence analysis and ∣E∣ distribution, yielding the lowest merit figure. Non-

linear least squares refined the orientation matrix, determining unit cell dimensions from up to 

1865 reflections. Rint were generally below 3%, with no violations or discrepancies among 

equivalent reflections. 

Structural Solution The crystal's diffraction pattern intensities, weighted by structure factor 

F(hkl) with amplitude ∣F(hkl)∣ and phase Φ(hkl), reveal the unit cell's internal structure. Real-

space electron density was reconstructed by summing F(hkl) in a Fourier series, with |F(hkl)|obs 

and initial Φ(hkl)calc estimated by SHELXL (Sheldrick 2015)'s "intrinsic phasing" through 

probabilistic correlations and Monte Carlo simulations, producing a preliminary map revealing 

atomicity, symmetry, and non-negativity. 
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Structure Refinement by Fourier Synthesis Using Single Atomic Scattering Factor per Site 

This map guided model building with the Independent Atom Model (IAM) in Olex2 for 

SHELXL 2018/3 (Sheldrick 2015), using neutral atomic scattering factors from Maslen et al. 

(2006). These scattering factors, Fourier transforms of atomistic electron density, decrease with 

atomic radius and sin(ϑ)/λ. Anomalous dispersion near absorption edges was corrected using ∆f΄ 

(real part) and ∆f˝ (imaginary part), which account for changes in X-ray scattering and 

absorption effects, respectively (Creagh 2006). F(hkl)calc were generated by summing neutral 

atomic scattering factors and deriving new Φ(hkl)calc from atomic positions in the model. 

Refinement iteratively minimised differences between |F(hkl)|calc and |F(hkl)|obs in a Fourier cycle 

using weighted least squares until ρ(xyz) converged and all non-hydrogen positions were refined.  

Electron density smearing from thermal vibration and positional disorder, differing from atomic 

electron density in their dependence on sin(ϑ)/λ, was initially refined for non-hydrogen atoms 

using isotropic displacement parameters, then refined anisotropically. Structural sites in 

tourmaline were modelled with a single representative element, typically the dominant one, or 

larger minor elements if they improved the fit. H atoms on 3V sites were located using the 

F(hkl)obs - F(hkl)calc difference electron density map (Fo−Fc map), which highlights unmodelled 

electron density and aids in locating weakly scattering atoms such as hydrogen. Their 

displacement parameters were set as isotropic. We used the measured H position in SHELXL 

instead of fixing it to better capture true electron density. The H atom at the W site was not 

directly observed. Except for the Fe-rich O1 site, displacement parameters were below 0.01. 

Absolute configuration was determined using Bijvoet differences, and van Hooft/Flack 

parameters. SHELXL suggested twinning early, but PLATON's TwinRotMat analysis ruled it 

out. An isotropic extinction parameter was applied in the final refinement as F(hkl)obs < 

F(hkl)calc. Convergence was reached with a shift/error <0.001, yielding favorable R1, Rw2, and 

GooF values. Refining site occupancies involved adjusting the scattering power of a model 

element per site to match experimental structure factors, analogous to comparing time- and 

space-averaged electron density with model atom densities to estimate LRO site occupancies. 

Full results are detailed in supplementary CIFs (e-Appendix 1F). 
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Final Fo−Fc maps showed unexplained density due to occupational disorder at X, Y, O1, 

sometimes Z sites, bonding electrons at B-O and Si-O, and notable O1 displacement in Fe-rich 

samples. Electron density magnitudes depend on measured Fobs and resolution, while 

localization relies on unmeasured phases of the structure factors and model assumptions. Site 

occupancies and displacement parameters, influenced by the extinction parameter, were highly 

correlated and dependent on Fourier synthesis assumptions. While the extinction parameter 

enhanced refinement, it may act as a compensatory factor, with discrepancies potentially arising 

from delocalisation, disorder, absorption, or thermal motion, underscoring the limitations of 

single-element modelling and the Independent Atom Model (IAM), which misses valence 

electron deformation.  

Method limitations This method approximates electron density by focusing only on the orbital 

space of the reference spherical atom, excluding contributions from other orbitals influenced by 

the crystal potential or from other mixed elements on the site, which may have different orbital 

configurations (reflected in Rw2 or thermal displacement parameters). While robust against 

changes to the site model element, they remain IAM-based approximations. Defining site volume 

is subjective due to shared valence electrons and unclear boundaries. The neutral atom scattering 

factor underestimates electron density, particularly for covalently bonded elements like Si, B, 

and Al, and does not consider positional disorder (e.g., Na, Ca on the X site), potentially leading 

to occupancies >1 or missed valence charge on bonds. We considered adding residual electron 

density (ED) peaks from Fourier maps to T and B site occupancies, but the changes were 

minimal, so this was not pursued further. Results represent the best achievable approximation 

with current SHELXL models.  

5.2 Powder XRD (pXRD) 

pXRD was used for the synthetic tourmalines due to their small crystal size.  

Data Acquisition Samples were ground in an agate mortar with alcohol for 5 minutes, visible 

contaminants removed, and placed in 16 mm metal cups or silicon zero-background holders for 

XRD. Step-scan pXRD data were collected at RT using a Bruker D8 Advance diffractometer 

(DaVinci Design, 280 mm goniometer radius, Lynxeye I detector, automatic sample changer) in 
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θ–θ reflection mode with Cu Kα₁,₂ radiation (Kα₁ λ = 1.540590 Å), 40 kV, and 40 mA. Cu 

radiation’s larger Ewald sphere captures fewer, better-separated reciprocal points. Measurements 

ranged from 10° to 90° 2θ, with 0.015° steps and 1 s integration time per step. Beam spill and 

divergence were minimised with 0.3 mm divergence and 2.5 mm receiving slits, and 2.5° Soller 

slits, and a 2.93° detector window. The sample was rotated, and detector energy filtering 

eliminated the need for a monochromator or K-beta filter. Alignment checked with corundum 

showed peak deviations within 0.002°. 

Peak search/match PowderDLL was used to convert .raw data to XY format for Fullprof 

compatibility, and peaks were identified with QualX using the Crystallography Open Database 

(COD) and Hanawalt index. Tourmaline was confirmed as the main phase in all synthetic 

samples. Uvite samples had additional peaks at 20.145°, 28.163°, and 31.112° 2θ, while oxyuvite 

had peaks at 16.597°, 20.160°, 28.163°, and 31.112° 2θ. These persisted after Kα2 stripping. 

EMPA showed a rare phase with Si = 57%, Mg = 39%, Al = 1.8%, and Ca = 0.73%, consistent 

with clino-enstatite, confirmed by search/match algorithms. Multiphase Rietveld refinement with 

uvite and enstatite in Fullprof diverged, typical for phases <5 wt%. As this minor phase 

minimally obscured tourmaline peak centroids and volume, it was ignored from molar volume 

calculations but may affect specific heat capacity or entropy in later work (see chapters 3 and 4).  

Rietveld refinement Rietveld refinement was conducted in the FullProf suite (Rodríguez-

Carvajal 1993) to determine unit cell size and shape based on peak positions and symmetry of 

the powder diffraction pattern. Lattice centering and atomic distribution were inferred from peak 

intensities, though these are less constrained due to peak overlap in powder spectra compared to 

3D patterns. Instrumental zero, unit cell dimensions, peak shape, and asymmetry affect peak 

positions, while fractional coordinates, displacement parameters, site occupancy, and preferred 

orientation impact intensities. Preliminary background points were calculated in Winplotr with a 

0.01 tolerance and 11 iterations, then refined in EdPCR. Structural models from Kutzschbach et 

al. (2016) for olenite and Bosi et al. (2022) for uvite were used. The 2θ range from 0–12° was 

excluded due to beam stop interference. 

Peak broadening was modelled with an empirical Voigt line shape, defined by η 

(Gaussian/Lorentzian ratio) and its 2θ dependence via X, without separating instrumental, size, 
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or strain effects. The total peak width followed Caglioti formula: 𝐻𝑘 = 𝑈tan
2 𝜃 + 𝑉tan 𝜃 +𝑊. 

Preliminary background points were imported into EdPCR and refined and linearly interpolated. 

The initial Rietveld refinement was performed using a tourmaline CIF file as a single phase in 

space group R3m over 10 refinement cycles with isotropic thermal parameters. Profile and line 

asymmetry were set before optimizing fractional coordinates.  Parameters were refined 

sequentially: scaling factor, zero-shift, Caglioti W, lattice parameters, Gaussian/Lorentzian ratio 

η, Caglioti U, V, and atomic positions (excluding H), monitored to prevent excessive shifts. 

Refining individual atom displacements (B) resulted in unphysical values, so an overall (Debye-

Waller) B for the unit cell was used. Background heights were then refined, yielding R-factors 

for the synthetic samples: 

Olenite:    Pattern: Rp: 10.4, Rwp: 11.0. Rexp: 6.11, χ2: 3.24,  

            Global user-weighted χ2 (Bragg contrib.): 3.380 

                 Phase: Bragg R-factor: 3.064, RF-factor: 1.454 

 

Uvite:       Pattern: Rp: 25.9, Rwp: 28.0. Rexp: 7.41, χ2: 14.3,  

            Global user-weighted C χ2 (Bragg contrib.): 15.54 

                 Phase: Bragg R-factor: 10.76, RF-factor: 7.260 

 

Oxyuvite: Pattern: Rp: 24.4, Rwp: 26.6. Rexp: 6.39, χ2: 17.3,  

            Global user-weighted χ2 (Bragg contrib.): 19.09 

                 Phase: Bragg R-factor: 9.016, RF-factor: 5.926 

where Rwp is the weighted profile R-value, Rexp indicates observed data quality, and χ2 is 

defined as χ2=Rwp/Rexp. The RF-value, like the SC-XRD R-factor, compares observed and 

calculated structure factors, while the Bragg R-factor compares Bragg intensities, 𝐼 = 𝑚 ⋅ |𝐹|2 , 

where |𝐹|2 is the squared structure factor, representing the electron density contribution from a 

set of atomic planes, and m accounts for reflection multiplicity. High R-values in the uvite 
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samples stem from the missing enstatite phase, leaving unexplained peaks. Rietveld refinement is 

reliable only for phases over 5 wt%, so this issue could not be resolved. Refined parameter 

summaries are in .sum files (e-Appendix 1G). The final isotropic displacement parameter was 

reasonable, and standard deviations were scaled using the scor factor in FullProf, which adjusts 

uncertainties based on the goodness-of-fit (χ²) to ensure they reflect the true quality of the 

refinement. 

pXRD spectra preserve d-spacings and Bragg angles from the 3D diffraction pattern but average 

directional data. If Φ(hkl) were known,  a Fourier transform of  the structure factors would yield 

a spherically averaged 3D electron density centered on the unit cell origin. Although Rietveld 

refinement operates solely in reciprocal space, this highlights its strength in determining unit cell 

parameters but its limitations in providing detailed insights into internal unit cell structure. 

6. BOND VALENCE THEORY 

Bond Valence (BV) theory (Brown 2016), building on Pauling’s rules, models solids by 

simplifying 3D electron density into a bond network analysed with electrostatics and graph 

theory. It treats bonds like an electrical circuit, where valence sums follow Kirchhoff’s law to 

align bond strengths with atomic charges. Bond strength relates to bond length via the empirical 

equation 𝑠𝑖,𝑎 = exp (
(𝑟0
𝑖,𝑎𝑑𝑖,𝑎)

𝑏𝑖,𝑎
). This empirical expression relates the bond strength 𝑠𝑖,𝑎 (also 

called bond valence) between a cation i and an anion a to their bond length 𝑑𝑖,𝑎. Bond strength 

reflects the contribution of a single bond to the oxidation state of an atom, with the sum of all 

bond valences ideally matching the formal valence. The bond valence model parameters 𝑟0
𝑖,𝑎

 and 

𝑏𝑖,𝑎 are empirically derived from a large database of "unstrained" endmember structures. Here, 

𝑟0
𝑖,𝑎

 is the reference bond length for a bond valence of 1 valence unit (v.u.), and 𝑏𝑖,𝑎 controls the 

rate at which bond strength decreases with distance, influenced by the polarizability and 

anisotropy of the bonded atoms’ electron clouds. 

BV theory, formally applicable only to the SRO structure, can also approximate LRO structure 

with simplifications (Bosi 2014a). While BV analysis using topology overlooks electronic and 
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structural strain from quantum mechanical and symmetry needs (Bosi 2014b; Brown 2016), it 

effectively predicts structural stability in complex minerals. 

7. TOURMALINE MINERAL FORMULA OPTIMISATION AND 

UNCERTAINTY ANALYSIS  

Limitations of Crystallography Software Assigning site occupancies in high-entropy solid 

solutions is essential in materials science and petrology. While binary substitutions involving 

two species on a site can often be successfully refined using crystallographic software like 

SHELXL, introducing three or more substituents (or allowing vacancies) creates an 

underdetermined problem. In these cases, the number of unknown site fractions exceeds the 

number of independent constraints provided by diffraction data, such as total site scattering 

power or bond lengths. As a result, multiple sets of occupancies can fit the observed data equally 

well, and the refinement cannot converge to a unique physical solution without imposing 

additional assumptions or external constraints. 

Due to these limitations, in this study, site occupancy optimisation was performed using 

constrained optimisation methods in Matlab, where physical and chemical constraints were 

explicitly enforced to produce chemically meaningful and internally consistent site distributions. 

Given the imperfect nature of both compositional and crystallographic data, as well as the 

underlying theoretical and crystal-chemical assumptions and constraints, the optimisation treated 

all inputs as minimisation goals rather than strictly enforced hard values, allowing flexibility to 

achieve the best overall fit. 

Preparation of input files Custom Python scripts were used to generate 2000 MATLAB input 

files for OccQP's quadratic programming method (Wright et al. 2000) to determine optimal 

cation site occupancies within the crystal structure and evaluate the impact of measurement 

uncertainties on tourmaline formula optimisation. The optimal number of trials was determined 

in Matlab by stabilizing the inverse cumulative relative standard error. Two input files were: 

bulk compositional data as apfu values and uncertainties without site assignments, and a .cif file 

containing structural constraints for tourmaline. 
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Chemical constraints: Conversion to Bulk apfu Tourmaline compositional data (EMPA, LA-

ICP-MS, Mössbauer) were converted to bulk apfu using a 31-oxygen normalization (Henry et al. 

2011). A 2000-trial Monte Carlo (MC) simulation in Excel sampled Gaussian distributions based 

on mean and standard deviation, incorporating sample inhomogeneity. Boron was estimated via 

charge balance, with uncertainty from propagated MC errors (e-Appendix 1H2-3). Apfu values 

for site occupancy optimisation (eAppendix 1H1) excluded elements <0.001 apfu to simplify 

optimisation. Total ionic charge was calculated as 60 + F + (1 − F) × 2, highlighting the 

importance of precise fluorine measurements. 

Structural constraints Structural constraints were obtained by parsing .cif data with Python 

scripts and Gemmi (Wojdyr 2022) to provide bond lengths and convert SHELXL crystal 

occupancies to chemical occupancies by multiplying by their Wyckoff multiplicities. Electrons 

per site for X, Y, Z, T, B, and O1 sites were calculated by multiplying chemical occupancies by 

the electron count of a neutral model atom, yielding electrons per formula unit (epfu) 

(Hawthorne et al. 1995). Crystal occupancy uncertainties were converted to site electron 

uncertainties. epfu are projections of measured averaged density onto model atom orbitals. SC-

XRD-derived O-H bond lengths at V and W sites were replaced with neutron diffraction values 

(V: 0.972 Å, W: 0.958 Å) from oxydravite, as SC-XRD H’s electron density is concentrated in 

the bonding region rather than at the nucleus. Despite fractional coordinate variation, these fixed 

lengths are optimal H-bond constraints for optimisation. O1 anion site electrons were used to 

validate EMPA fluorine apfu via x=O1−8. 

Tourmaline CIF files often use inconsistent names for equivalent sites (e.g., NaX, Na1, X) and 

vary site order, complicating data parsing and requiring script adjustments. Standardizing site 

names in future nomenclature papers would simplify data processing and enhance consistency. 

Bond valence sum constraints for mixed anionic and cationic sites Optimisation used metal-

oxygen and metal-fluorine BV parameters from Gagné and Hawthorne (2015) and Brese and 

O’Keeffe (1991) where b is fixed in the latter and both b and R vary in the former, yielding 

similar bond strengths through correlated changes. Uncertainties were recorded to the second 

decimal for Brese and O’Keeffe (1991) and to the third for Gagné and Hawthorne (2015), 

reflecting fitting errors but not accounting for systematic issues like isotopic or anisotropic strain 
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in reference structures. Additional tests with Brown and Altermatt (1985) showed minimal 

differences, except for H. 

We modified OccQP (Wright et al. 2000) to include mixed anionic sites. The Bond Valence Sum 

(BVS) for mixed cationic sites surrounded by different anions is calculated as: 

BVS = ∑  

𝑛conrl 

𝑘=1

(∑  

𝑚

𝑖=1

𝑋cation ,𝑖 [∑  

𝑝

𝑎=1

exp (
(𝑟0
𝑖,𝑎 − 𝑑𝑖,𝑎)

𝑏𝑖,𝑎
)𝑋𝑎,𝑘]) 

where ncoord is the total number of bonds, m the cations, and p the anions and Xcation,i and 

Xa,k their fractions. The exponential in the brackets are the bond valences, 𝑠𝑖,𝑎 =

exp (
(𝑟0
𝑖,𝑎𝑑𝑖,𝑎)

𝑏𝑖,𝑎
), depends on ideal (r0) and observed (di,a) bond lengths and the bond softness 

parameter b. 

This approach models BVS for Y cations with mixed O/F occupancy at O1 in tourmaline. No H-

bonding to F at O1 was allowed. Due to EMPA uncertainty, F content was fixed, and Monte 

Carlo (MC) methods recalculated site occupancies at varying F concentrations. Cation sums 

were used for optimisation, and anion sums validated results. Path equations were excluded as 

they are sensitive to electronic or anisotropic strain, while BVS is mainly affected by isotropic 

strain and missing H-bond interactions. 

In tourmaline, diverse SRO configurations create varied bond lengths and valences that, when 

averaged into LRO, do not accurately reflect local charge distributions, leading to systematic 

BVS errors, particularly in regular polyhedra (Bosi 2014a). These errors arise from the nonlinear 

bond valence-length relationships specific to each element and are most pronounced at 50/50 

mixed occupancy, influenced by BV parameters and valence differences between mixed-site 

occupants, thus reducing BVS accuracy in solid solutions. Unfortunately, systematic 

uncertainties for nonregular sites have not been derived. Minimizing the BVS residual from V is 

an optimisation goal but need not be exact. 

Hard-coded crystal chemical constraints The following element site assignments were hard 

coded: Na, K, Ca, Sr, Ba, La, Ce, Nd, Pb(II), Bi(III) to X; Mg, Fe(II/III), Mn(II), Cr(III), Li, Sc, 
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V(III), Co(II), Ni(II), Cu(II), Zn, Ga, Nb(V), Sn(IV) to Y/Z; H to V/W; Si to T; Al to Y/Z/T; 

Ti(IV) to Y. These are based on the minimum mismatch relative to the site properties (cf. (van 

Hinsberg et al. 2017)) Relaxing Ti's restriction to Y showed potential Z site occupation, 

suggesting further study (e.g., Ti-Kα XAFS) is needed for clarity. Boron was set to fully occupy 

the B site, and transition metals were assigned assumed oxidation states. 

Weighting scheme for the constraints Initial optimisation with equal weights failed for minor 

elements due to data heteroscedasticity and differing variable units (e.g., wt%, electrons per site, 

bond lengths). Unweighted runs had the lowest residuals but drove minor elements to 0 wt%, 

which is unphysical. Various weighting schemes were tested (1/amount, 1/amount², 1/s2, 1/RSD, 

1/RSD²), with 1/s (standard deviation) yielding the best results and aligning with Bosi and 

Lucchesi (2004), despite the theoretical preference for 1/s² (variance) (Bevington and Robinson, 

2002), where the sample standard deviation is 𝑠 = √
1

𝑛−1
∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥̅)

2 and s2 is the sample 

variance. This suggested correlations in the 31-O normalised compositional input data. Fixing 

minor elements led to unrealistic fits. Weights were prepared using 1/std for bulk composition 

parameters (apfu) (Wchem,), charge balance (Wi (based on F uncertainty)), site electrons (Wq), 

and bond valence sums (Wval), adopting a 0.05 valence units (vu) uncertainty per Bosi et al. 

(2017) due to H-bonding exclusion. Weights were normalised, with zero weights for apfu B 

(charge-balance derived). Infinite weights were set for full Z, T, B occupancies (Ertl 2023), 

allowing X, Y, V, W vacancies. Weighting choice impacted site distributions more than 

analytical errors. Thus, rather than prioritizing analytical precision for each instrument, it is 

crucial to consider the relative importance of each measurement type and carefully evaluate the 

crystal chemical assumptions applied during data normalization or optimisation. 

Tourmaline mineral formula optimisation in OccQP The final disordered tourmaline formula 

was determined using a constrained Non-Negative Least Squares (NNLS) algorithm following 

convex quadratic programming principles (Lawson and Hanson 1974), optimizing site 

occupancies based on 1/standard deviation weighted site electron density, bulk apfu, 

electroneutrality, and bond valence sums. This modified NNLS algorithm (adapted from Wright 

et al (2000)) incorporated Monte Carlo (MC) propagation, heteroligand polyhedra, minor 

elements, hydrogen sites, and output additional structural proxies. The objective function 
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minimised weighted residuals for electrons per site, chemical composition, and BVS, yielding 

optimal non-negative occupancies: 

𝑇∗ =∑  

𝑚

𝑗=1

𝑊𝑄
(𝑗)
(∑  

𝑛

𝑘=1

𝑥𝑘
(𝑗)
𝑄𝑘 − 𝑄obs

(𝑗)
)

2

+∑  

𝑛

𝑘=1

𝑊𝑘
𝐶 (∑  

𝑚

𝑗=1

𝑥𝑘
(𝑗)
𝐶(𝑗) − 𝐶𝑘

obs)

2

+∑  

𝑚

𝑗=1

𝑊𝑉
(𝑗)
[∑  

𝑛

𝑘=1

𝑥𝑘
(𝑗)
(𝑍𝑘 − 𝑉𝑘

(𝑗)
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2

+∑  

𝑚

𝑗=1

𝑊𝑂
(𝑗) (1 −∑  

𝑛

𝑘=0

𝑥𝑘
(𝑗))

2
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𝑚

𝑘=1

∑ 

𝑛

𝑘=1

𝑥𝑘
(𝑖)𝐶(𝑖)𝑍𝑘(= 𝐼𝐴)

 

Here, 𝑥𝑘
(𝑗)

represents the target occupancy fraction of species k at site j, with residuals calculated 

as the difference between calculated and observed values. Weights  

𝑊𝑄
(𝑗)
,𝑊𝑘

𝐶 , 𝑊𝑉
(𝑗)
, and 𝑊𝑂

(𝑗)
controlled deviations in electron per site, composition, BVS, and full 

site occupancy, respectively. The variable IA enforced charge balance (Z= formal ionic valence).  

Traditional crystallographic refinement fails for complex minerals like tourmaline because 

diffraction data constrain only total site scattering and average bond lengths, not the detailed 

distribution of cations and vacancies. When more than two substituents share a site, the system 

becomes underdetermined, allowing multiple plausible solutions to fit the observed data (Wright 

et al. 2000). Bond Valence analysis was employed as a physical constraint to assist in resolving 

this underdetermination. By requiring that the average formal site valence (sum of occupancies × 

ionic valences) and the calculated bond-valence sums match, it introduces an additional 

independent constraint tied to local bonding environments. This approach is theoretically 

justified because ideal bond-valence sums reflect local electrostatic stability: in a stable crystal 

structure, the sum of bond valences at each site should match the formal ionic charge. Bond-

valence theory replaces detailed electron density with a graph of discrete bond strengths, where 

the total charge is distributed across bonds, and the site bond-valence sums approximate the 

correct first-order charge distribution around each atom (Brown,  2016). Enforcing bond-valence 

sums thus guides occupancies toward chemically reasonable and energetically favorable 

configurations, even when diffraction data alone are insufficient to resolve species distributions. 
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However, bond valence theory also has intrinsic limitations. The empirical bond-valence 

parameters (R₀ and b) used to relate bond length to bond strength are derived by averaging over 

many minerals, often under the assumption that similar cations behave similarly across different 

structures. In reality, bond valence parameters may be mineral-specific, and tourmaline ,  with its 

complex, flexible, and multi-site structure, might deviate from average calibrations. 

Consequently, bond-valence matching provides a useful but imperfect constraint, reinforcing 

chemical plausibility without guaranteeing unique or fully accurate site assignments. 

Additionaly, charge balance and site occupancy constraints offer powerful ways to regularize the 

solution space. In principle, crystallographic refinement software such as SHELXL allows 

certain constraints to be imposed, such as restraining site occupancies to sum to full site 

occupancy (SUMP constraints) or using EADP/SIMU to tie displacement parameters. However, 

enforcing exact electroneutrality or detailed site-specific charge constraints during refinement is 

not straightforward in SHELXL. These typically require either external post-processing or 

custom refinement protocols, and are not automatically handled within standard least-squares 

cycles. For complex solid solutions like tourmaline, direct incorporation of full charge balance 

and multi-site occupancy constraints into crystallographic refinement remains difficult, 

supporting the need for external constrained optimisation approaches as used here. 

In this optimisation approach, all constraints , site electron densities, chemical compositions, 

bond valence sums, and full site occupancy, were treated as flexible minimisation goals rather 

than strict hard conditions, acknowledging the combined uncertainties from experimental data 

and theoretical approximations. The goal was to find the most chemically meaningful and 

internally consistent site distributions while allowing for realistic deviations. Relative occupancy 

differences between tourmalines are more reliable than absolute values due to error cancellation 

when internally consistent. The modified program can be found in e-Appendix 1I. 

Mean MC and lowest Z score formula The first MC run used mean values, while subsequent 

runs sampled from Gaussian distributions defined by mean and standard deviations of apfu, F 

content, ionic totals, bond lengths, electrons per site and BV parameters. Comparing 

uncertainties in bulk apfu based on MC runs of the 31O normalisation based solely on chemistry 
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and electroneutrality to those recalculated from the optimised disordered formula reduced 

uncertainties by half.  

The MC run with the lowest total absolute Z-score from 2500 trials was identified by converting 

optimised values to Z-scores based on original means and standard deviations. Z-scores were 

calculated for apfu, ionic totals, disordered formula, vacancies, valences, BVS, anion sums, bond 

valences, BSI, site charges, and bond lengths (e-Appendix 1J). The Excel sheet lists the lowest 

Z-score formula, MC mean formula, standard deviation, and the Z-score difference between the 

two formulae.  

The final disordered tourmaline formula used the mean of all MC runs as it has an uncertainty 

estimate, despite slight inconsistencies with the ionic balance equation. 

8. POST-OPTIMISATION BOND VALENCE ANALYSIS 

Using BV theory, we derived stability indices and strain calculations as first-order 

approximations to assess structural trends and deviations from regularity. These values serve as 

qualitative stability indicators rather than precise measures. 

Pauling Local Bond lengths The mean Pauling bond length Rj for any hypothetical polyhedron 

can be calculated using BV parameters and formal valences Z: 

𝑅𝑗 =
1

𝑛coord 

∑  

𝑛corrd 

𝑘=1

([(𝑟𝑅𝑖,𝑎 − 𝑏𝑖,𝑎ln (
𝑍

𝑛coord 

))]) 

This equation is derived from solving the BV equation for Rj using the Pauling bond strength, 

𝑍/𝑛coord , as 𝑠𝑖,𝑎. Rj represents hypothetical regular polyhedral bond lengths. This is an 

approximation, as BV parameters themselves were calibrated on a broad database of strained 

crystal structures and represent ‘average’ not ‘ideal’ valence-bond length relationships. Fixed 

ionic radii (e.g., Shannon (1976)'s) or regular Pauling local bond lengths fail to estimate bond 

lengths in strained structures with distorted polyhedral due to polymerization, isotropic steric 

strain, and anisotropic electronic/steric strains (Bosi 2014b), making them unsuitable as 

optimisation constraints (Wright et al. 2000; Bosi and Lucchesi 2004). 



105 
 

Pauling bond lengths can be calculated post-optimisation. Using occupancies from the disordered 

tourmaline formula, average site valences were derived to obtain Pauling bond strengths, 

allowing for bond length estimation as if tourmaline were composed of a set of hypothetical 

structures of isolated regular polyhedral with different coordination numbers: 

𝑅𝑗 =
1

𝑛coord 

∑  

𝑛corrd 

𝑘=1

(∑  

𝑚

𝑖=1

𝑋cation ,𝑖 [∑  

𝑝

𝑎=1

(𝑟𝑅𝑖,𝑎 − 𝑏𝑖,𝑎ln (
𝑍

𝑛coord 

))𝑋𝑎,𝑘]) 

This method averages fluorine, oxygen, and cation contributions within the coordination shell 

Post-optimisation a-priori bond valences Post-optimisation topological (a-priori) bond 

valences can estimate local bond lengths using bond topology and average site valences as a 

validation step to make stability proxies which can identify compositional stability limits. This 

method improves on Pauling bond lengths by considering topology effects, however isotropic 

steric strain (affecting BVS) and electronic/steric anisotropic strains (influencing path equations) 

can still cause deviations.  

Network equations We present an algebraic solution (Gagné et al. 2018) to Bacik’s graphical 

method (Bačík 2015, 2018; Bačík and Fridrichová 2021), adapted for solid solutions, applying 

averaged valences to the bond topology’s network equations. Appendix 1K presents the bond 

valence table, with cation BVS derived from rows and anion BVS from columns. A network 

equation matrix G was built from these BVS, with the T-site BVS removed as linearly dependent 

due to the electroneutrality constraint, leaving 14 BVS equations for 19 symmetry unique bond 

valences. 5 path equations representing closed paths through the bond valence table were added 

to solve this. This matrix is valid when X, Y, Z, T, B are at least partially occupied and not 

completely vacant, as this would change the topology. V and W site vacancies do not affect this, 

as their bonding is terminal when H-bonding is excluded. The matrix equation was then inverted 

to obtain the topological bond valences for the full 3D topology. 
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𝐺 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b c d e f g h i j k l m n o p q r s  Comments 

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  O1 

0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  O2 

0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0  O3 

0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0  O4 

0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0  O5 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0  O6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0  O7 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1  O8 

0 0 3 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0  X 

1 0 0 2 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0  Y 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 2 0  Z 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2  B 

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 𝑇( lineardependent )
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  V 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  W 

0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0  Path 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0  Path 2 

0 0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0  Path 3 

0 0 0 1 −1 0 0 0 0 0 0 0 −1 1 0 0 0 −1 1  Path 4 

0 0 1 −1 0 0 0 0 −1 1 0 0 1 0 −1 0 0 0 0  Path 5 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

To solve for individual bond valences vector I we use: 𝐆 ⋅ 𝐈 = 𝐇 , where matrix G encodes BVS 

and path equations, and H is the average site valence vector with zeros for the paths. 

𝐇 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 avO1 

2
2
2
2
2
2
2
avX
avY
avZ
avB

 avV 

 avW 

0
0
0
0
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The solution is 𝐈 = 𝐆−1 ⋅ 𝐇.  

Empirical bond Valences Subsequently, bond valences derived from empirical bond lengths, 

calculated using 𝑠𝑖,𝑎 = ∑  𝑚
𝑖=1 𝑋cation ,𝑖 [∑  𝑝

𝑎=1 exp (
(𝑟0
𝑖,𝑎−𝑑𝑖,𝑎)

𝑏𝑖,𝑎
)𝑋𝑎,𝑘] where rearranged in order to 
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get unique bond valences for each topologic different bond (e.g. sX-O2, sX-O4). The bond 

valence table was defined as: 

𝐁𝐕𝐭𝐚𝐛𝐥𝐞1 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛, 𝑜, 𝑝, 𝑞, 𝑟, 𝑠] 

Stability Indices Topological bond valence analysis provides a first-order check on the 

structural and chemical validity of optimised tourmaline formulas by modelling electron density 

as a charge distribution over the bond network, ensuring valence sums match formal site charges. 

Low bond valences indicate weak bonding and local strain and derived proxies quantifies 

deviations from ideal geometry. This method highlights chemically implausible site occupancies, 

flags overfitting in optimisation routines, and identifies substitutions that approach structural 

instability. 

Pauling bond strengths, topological bond valences, and empirical bond valences were used to 

derive stability proxies (Gagné and Hawthorne 2020). 

Topological bond strain (Topostrain) was calculated as:  Topostrain 
1
= 𝐼 − Pauling1

𝑇, and the 

average Topological Bond Strain Index (Δtopo ) for the unit cell was computed using cation site 

multiplicities (Catmult 
1
= [3,1,1,3,3,3,6,3,1,6,1,6,3,6,6,6,6,6,3], columns BV table) and bond 

multiplicities to the cation as weights ( 𝑤1 =

[1,1,3,2,1,1,1,1,3,1,3,1,2,1,1,2,1,2,2], arrows down in BV table). 

Δtopo =
√
∑( Catmult 𝑖 ⋅ 𝑤𝑖 ⋅ (𝐼𝑖 −  Pauling 

𝑖
)
2
)

∑( Catmult 𝑖 ⋅ 𝑤𝑖)
 

This represents the difference between the topological structure and the hypothetical structure 

made out of regular polyhedra. 

Electrosteric bond strain was calculated as: Electrostericstrain = I - BVtable^T, measuring steric 

and electronic strains. The average Bond Strain Index (BSI) for the unit cell was computed using 

the same cation site multiplicities and bond multiplicity weights: 
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Δelectrosteric =  BSI = √
∑(Catmult1

𝑇 ⋅ 𝑤1
𝑇 ⋅ (𝐼 − BVtable1

𝑇)2)

∑(Catmult1
𝑇 ⋅ 𝑤1

𝑇)
 

We calculated the polyhedral versions of Δtopo and Δelectrosteric where multiPoly indicates 

how often the topological distinct bonds occur in the polyhedron: 

Δtopo_poly (𝑗) =
√
∑( multiPoly ⋅ (IPoly −  Pauling 

Poly 
)
2
)

𝑛coord 

 

 

Δelectrosteric_poly (𝑗) =
√
∑(multiPoly ⋅ (𝐼Poly −  BVtable Poly )

2
)

𝑛coord 

 

Our equations extend and slightly modify the Gagné & Hawthorne’s (2020) formulation, with 

detailed method comparison in Appendix 1L. Correlations over 0.6 showed bond strain 

interdependencies, especially within polyhedra (e.g., Y, T) and between X and Y sites. 

Occupancy-bond strain correlations were generally low, except for O1 by W due to terminal 

bonding. Polyhedral strain indices could serve as rough correction factors for topology and 

steric/electronic effects in hard sphere models. The BV table, Stability indices, Bond distortion 

and GII index (which serves as a unit cell version of the BVS residuals in the optimisation) can 

be found in Appendix 1L. 

9. OUTPUT AND FINAL FOURIER SYNTHESIS 

Final output The final data includes average input variables and SD, such as electrons per site 

(Q_obs), O1 electrons per site (Q_O1), F, ionic total, bond lengths, and apfu. Optimised outputs 

averaged from MC runs and their SD included bulk apfu, ionic totals, site fractions, vacancies, 

BVS (sole occupant element), BVS per site, anion valence sums, empirical bond valences, 

electrosteric bond strains, electrosteric strain unit cell (BSI), site charge, local/mean bond 

lengths, and residuals for apfu, Q, bond length, valence, and ionic total. Z-scores for apfu, Q, 

bond length, valence, and ionic total, along with Z-scores using fixed SD (0.003 for bond length, 



109 
 

0.05 for valence), were provided. Post-processing metrics included mean bond length, bond 

distortion, Global Instability Index (GII), unit cell Δtopo , Δelectrosteric, and polyhedral 

equivalents of these formulations (e.g., this chapter, Gagné and Hawthorne (2020)). See e-

Appendix 1J. 

Final Fourier synthesis Optimised occupancies were exported and converted to crystal 

occupancies and ShelXL SFAC cards using a custom Python script (e-Appendix 1I) and resulted 

in optimised site occupancies for the CIF files (E-Appendix 1F2). Directly imposing all fixed site 

occupancies during Fourier synthesis led to divergence during structure refinement, likely due to 

the model being over-constrained by too many changes introduced simultaneously. Instead, 

iterative manual addition of site occupancies was required to maintain refinement stability and 

achieve convergence. Refining fractional coordinates and thermal ellipses improved the final 

Φ(hkl) of the structure factors and led to slightly lower R values. In the future, incorporating the 

current methodology for high-entropy solids including bond valence and electroneutrality 

constraints directly into ShelXL refinements, would help minimize differences between 

calculated and observed structure factors in the Fourier synthesis. 

Combined, this results in the final molecular formula for each of the tourmalines characterised in 

this study, its molecular weight and its molar volume as converted from the unit cell volume. 

This molecular formula is essential to convert measured calorimetric data from units per mass to 

units per mole, and is the basis for endmember deconvolution necessary to extrapolate measured 

intermediate compositions to endmember thermodynamic properties.  

10.  COMPARISON TO ALTERNATIVE OPTIMISATION SCHEMES 

Bosi and Lucchesi (2004) method Most tourmaline studies currently use the method of Bosi 

and Lucchesi (2004), which differs somewhat from ours. The following compares the two 

methods. Bosi and Lucchesi (2004), minimised squared residuals normalised by uncertainties 

using: 

F(𝑋𝑖) =
1

n
∑  

n

j=1

(
Oj − Cj(𝑋𝑖)

𝜎j
)

2
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Where Oj represents an observed structural or chemical parameter, and Cj(Xi) is the calculated 

equivalent based on trial site occupancies Xi and σj is the SD. The observed quatition Oj include 

mean bond distance, apfu, site electrons, bond valance sums, and site occupancy and charge 

balance constrains. This approach, similar to our 1/σj weighting, converts each residual into a Z-

score,  𝑍𝑗 =
𝑂𝑗−𝐶𝑗(𝑋𝑖)

𝜎𝑗
, in contrast, averages over n, and minimises the mean of squared Z-scores, 

ensuring equal contribution of each measurement. The residual is calculated as (obs - calc). 

Our method differs by using: 

𝐹(𝑋𝑖) =∑  

𝑛

𝑗=1

𝑤𝑗 ⋅ (𝐶𝑗(𝑋𝑖) − 𝑂𝑗)
2
, where 𝑤𝑗 =

1/𝜎𝑗
∑  𝑛
𝑘=1 1/𝜎𝑘

 

Each observation is weighted individually by the inverse of its own standard deviation. The weights are 

normalised to sum to one, preserving the relative influence of each observation while reducing sensitivity 

to the absolute scale of uncertainties. This approach gives proportionally more influence to observations 

with lower uncertainties and mitigates heteroscedasticity, particularly from minor or poorly constrained 

elements. We extended the optimisation to also obtain uncertainties using the MC method. 

Including minor elements and hydrogen sites in optimisation adds parameters, often surpassing 

available data for constraining them independently. Despite sufficient degrees of freedom, 

multicollinearity persists, as indicated by a variance-covariance matrix of MC optimised apfu, 

electrons per site, valences, bond lengths, and ionic totals showing correlations over ±0.6, 

highlighting the need for additional constraints to reduce it. 

Bosi and Lucchesi (2004) introduced 'size' constraints using empirically derived mean local bond 

lengths at specific sites by optimizing local bond lengths and unit cell dimensions with 

symmetry-compliant equations, based on a small tourmaline database pre-optimised with 

Shannon (1976) radii. Details are in the Appendix 1M. They assume fixed bond lengths across 

tourmaline chemistries, an assumption questioned in the next paragraph. Bosi and Lucchesi 

(2004) exclude minor elements, due to missing local bond lengths (Bosi 2018), fixing their 

occupancies and leaving it unclear if their contributions are subtracted from total electrons, bond 
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length, or ionic total. Minor elements influence partitioning, shown by residual variations when 

assigning infinite weight or making them optimizable. 

While both our method and that of Bosi and Lucchesi (2004) aim to minimize uncertainty-

weighted residuals, it is not claimed that our optimisation formulation is inherently better in 

minimizing residuals. Rather, the key advantage of our approach lies in its flexibility: it allows 

minor elements and anionic site occupancies to be included as optimizable variables within the 

same least-squares framework. In contrast, the Bosi and Lucchesi (2004) formulation, which 

relies on fixed local bond lengths calibrated from major elements, makes it difficult to 

incorporate species like minor cations and H-bearing anions for which reliable bond parameters 

are unavailable. Therefore, our formulation expands the range of site occupancies that can be 

optimised while maintaining internal consistency, particularly important for chemically complex 

tourmalines where minor elements and anionic substitutions significantly impact the structure. 

Bond Length Variance in Tourmaline The a-priori BV matrix method (matrix G) can also be 

used on hypothetical endmember structures, providing a back-of-the-envelope framework to 

qualitatively estimate atomic radii and bond lengths ranges for elements. To demonstrates such 

use we apply method on Na-Ca-Fe-Mg-Al-Ti-Si-B-H-F nomenclature endmembers (Table 1A). 

This will calculate approximate atomic radii which illustrate general trends, not precise 

measurements. 
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Table 1A. Nomenclature tourmalines within the Na-Ca-Fe-Mg-Al-Ti-Si-B-H-F for which we 

estimate the atomic radii based on the a-priory BV matrix method.  

 Formula Name 

 [Ca][Fe]3[Al]6[Si5/6Al1/6]6[OH]3[OH] Adachiite 

 [V][Al]3[Al]6[Si5/6Al1/6]6[OH]3[O] Alumino-oxy-rossmanite 

 [Na][Fef]3[Al4/6Mg2/6]6[Si]6[OH]3[O] Bosiite 

 [Na][Mg]3[Al]6[Si]6[OH]3[OH] Dravite 

 [Na][Fe5/6Ti1/6]3[Al]6[Si]6[OH]3[O] Dutrowite 

 [Na][Al]3[Al]6[Si4/6B2/6]6[OH]3[O] Ertlite 

 [Na][Fef]3[Al4/6Fe2/6]6[Si]6[OH]3[O] Ferro-bosiite 

 [Ca][Fe]3[Mg1/6Al5/6]6[Si]6[OH]3[OH] Feruvite 

 [Na][Fef]3[Al]6[Si]6[O]3[F] Fluor-buergerite 

 [Na][Mg]3[Al]6[Si]6[OH]3[F] Fluor-dravite 

 [Na][Fe]3[Al]6[Si]6[OH]3[F] Fluor-schorl 

 [Ca][Mg]3[Al5/6Mg1/6]6[Si]6[OH]3[F] Fluor-uvite 

 [V][Fe2/3Al1/3]3[Al]6[Si]6[OH]3[OH] Foitite 

 [Ca][Fe]3[Al]6[Si]6[OH]3[O] Lucchesiite 

 [Na][Mg5/6Ti1/6]3[Al]6[Si]6[OH]3[O] Magnesio-dutrowite 

 [V][Mg2/3Al1/3]3[Al]6[Si]6[OH]3[OH] Magnesio-foitite 

 [Ca][Mg]3[Al]6[Si]6[OH]3[O] Magnesio-lucchesite 

 [Na][Al]3[Al]6[Si]6[O]3[OH] Olenite 

 [Na][Al2/3Mg1/3]3[Al5/6Mg1/6]6[Si]6[OH]3[O] Oxy-dravite 

 [V][Fe1/3Al2/3]3[Al]6[Si]6[OH]3[O] Oxy-foitite 

 [Na][Fe2/3Al1/3]3[Al]6[Si]6[OH]3[O] Oxy-schorl 

 [Na][Fef]3[Fef4/6Mg2/6]6[Si]6[OH]3[O] Povondraite 

 [Na][Fe]3[Al]6[Si]6[OH]3[OH] Schorl 

 [Ca][Mg]3[Al5/6Mg1/6]6[Si]6[OH]3[OH] Uvite 

The previous network equation matrix applies when all sites except V and W are at least partly 

occupied.  X-site vacancies in the nomenclature dataset alter the bond topology by eliminating 
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X-O2 (c), X-O4 (i), and X-O5 (k) bonds, requiring adjustments to remove these columns, the X 

mean valence row, and "loop 1" and "loop 5" involving X bonds. The new BV Table can be 

found in Appendix 1K2.The updated matrix incorporates these changes. 

𝐺 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎 𝑏 𝑑 𝑒 𝑓 𝑔 ℎ 𝑗 𝑙 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 O1
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O2
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 O3
0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 O4
0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 O5
0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 O6
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 O7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 Y
1 0 2 0 1 0 0 0 0 2 0 0 0 0 0 0 Z
0 0 0 0 0 1 0 0 0 0 1 0 2 0 2 0 B
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 V
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W
0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 0 0  loop2 

0 0 1 −1 0 0 0 −1 1 0 0 0 −1 1 0 0  loop3 

0 0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 0  loop4 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The modified H vector of the average site valences is: 

𝐻 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

avO1
2
2
2
2
2
2
2

 avY

 avZ 

 avB 

 avV 

 avW 

0
0
0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bond valences from matrix inversion were reordered to compute bond lengths in the sequence: 

c,c,c,i,i,i,k,k,k,a,d,d,f,m,m,g,n,p,p,r,r,j,l,o,q,e,s,s,h,b for X, Y, Z, T, B, V, and W sites (see BV 

table). The average bond length for each site 𝑅𝑗̅ is computed as 

𝑅𝑗̅ =
1

𝑛coord 

∑  

𝑛corrd 

𝑘=1

(∑  

𝑚

𝑖=1

𝑋cation ,𝑖 [∑  

𝑝

𝑎=1

(𝑟𝑅𝑖,𝑎 − 𝑏𝑖,𝑎 ln(𝑠𝑘))𝑋𝑎,𝑘]) 
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This method models bond lengths in tourmaline with mixed oxygen, fluorine, and cation 

occupancy. Our LRO analysis of ordered and disordered nomenclature endmembers focuses on 

bond lengths where an element solely occupies a site, with neighboring mixed sites exerting 

averaged inductive effects. In tourmaline, a-priori bond lengths vary per endmember, even under 

full site occupancy. Appendix 1N summarizes these ranges for X, Y, Z, and T site cations across 

nomenclature endmember structures. The tables report minimum and maximum bond lengths, 

total range, and the endmembers contributing to these extremes. Bond length variability is most 

pronounced for larger, more polarizable cations such as Na, Ca, and Mg, and minimal for rigidly 

bonded cations like Al and Si. Valence ranges between the different endmembers indicate a bond 

length variability of up to ±0.05 Å at the X site. The Y-site cations Fe²⁺ and Mg exhibit similar 

bond length variability, while YFe³⁺ shows a ±0.01 Å. In contrast, Al and Si maintain more 

consistent bond lengths (<0.01 Å).  

This qualitative analysis highlights topology and nearest neighbour effects on mean bond lengths 

of elements in different endmember. This analysis is simplified because BV parameters are 

derived from a broad set of crystal structures and represent average bond behavior, omitting 

structure-specific steric and electronic constraints—such as those required for R3m symmetry or 

quantum mechanical effects—which both can be significant (Gagné and Hawthorne 2017). 

Crystals consist of various short-range ordered (SRO) configurations forming an average unit 

cell where local symmetry breaks but R3m symmetry is restored at the LRO scale. LRO average 

charges may not reflect true SRO distribution averages, where valence graphs differ. Locally, 

atoms form bonds with distinct valences and lengths, and mean valence does not match the 

average bond length's due to the non-linear bond length-valence relationship, introducing 

systematic errors (Bosi 2014a). SRO structures show greater bond length variability, with BV 

analysis of SRO clusters revealing wide bond length ranges and using extremes to assess SRO 

stability (Hawthorne 1996, 2002; Bosi 2010, 2011, 2013). 

Empirical mean local bond lengths (Bosi and Lucchesi 2004) vary with similar magnitude due to 

experimental error, neighboring effects, partial occupancy, and atomic polarizability (Bosi 2018). 

BV analysis using LRO topology suggests next-nearest neighbor effects, however the variance 

likely falls within method error, comparable to errors from mean valence in mixed sites or 

electronic/steric strain (Bosi 2014a). Observing these patterns empirically and in BV analysis 
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implies minor electronic/steric effects. Whatever the true origin of the bond length variance, this 

variance exceeds Bosi et al. (2017)’s 0.003 Å assumed variance, challenging the unimodal 

Gaussian assumption and indicating bond lengths, both SRO and LRO, may be multimodal. 

Optimizing tourmaline formulas with flexible size constraints better captures natural variability 

where fractional site coordinates vary, avoiding fixed size assumptions that ignore next-neighbor 

effects and lead to statistical averages that may misrepresent true bond distances ranges and 

guides optimisation toward a false minimum.  Using mean local bond lengths to predict order-

disorder while the mean bond length itself is influenced by order-disorder creates a circular 

issue. Until this issue is resolved, we exclude size constraints in our approach, though this 

unfortunately introduces correlations between some elements in the optimised mineral formula 

due to lack of constraint for the optimisation. 

Accurate bond lengths across tourmaline compositions are essential to evaluate the effects of 

ordering on structural metrics. This involves distinguishing between two key concepts: (1) mean 

bond lengths at crystallographic sites (e.g., ⟨Y–O⟩ or ⟨Z–O⟩), which are averaged over the unit 

cell and reflect the effects of long-range order (LRO), and (2) local bond lengths in individual 

atomic configurations or clusters, which can vary due to short-range order (SRO), even when the 

average site occupancy (and thus the mean bond length) remains constant. Testing whether SRO 

induces systematic deviations from the LRO-defined mean bond lengths requires high-resolution 

techniques such as XANES, XAFS, diffuse x-ray scattering (PDF), or DFT with Bader analysis 

(Gibbs et al. 2014, 2022), though peak overlap and accuracy of ab initio bondlength remain 

challenging. Estimated atomic radii (e.g., Shannon (1976), Bosi (2018), Bačík and Fridrichová 

(2021)) may suffice for partitioning studies but are inadequate for precise site occupancy 

optimisation due to local strain, topology, partial occupancy, polarizability, neighboring effects, 

symmetry, and electron delocalisation. 

Therefore, we consider that bond lengths are composition-dependent and vary systematically 

across the tourmaline compositional space. 

11.  BOND VALANCE LIMITING COMPOSITION/SPECIATION 

SPACE. 



116 
 

In the last paragraph, we perform bond-valence analysis on a small subset of tourmalines 

corresponding to established nomenclature species. However, the flexibility of charge 

configurations within the tourmaline structure permits the existence of many more hypothetical 

compositions beyond those currently recognised. To comprehensively explore this expanded 

chemical space, a complete list of 606 hypothetical, charge-balanced dependent endmembers 

was generated; the theoretical framework and enumeration procedure for deriving these 

endmembers is detailed in Chapter 2. We then apply a priori bond-valence analysis to this full set 

to assess their structural plausibility: any hypothetical endmember exhibiting negative bond 

valences at any site is classified as unstable. Out of the 660 candidate endmembers, 120 are 

considered unstable based on this analysis. The relatively small proportion of rejected 

compositions likely reflects the first-order nature of the bond-valence stability criterion applied. 

Most of the unstable compositions correspond to unusual tourmalines with elevated Ti, B, Al at 

the T site (AlT), or ferric iron (Fef) contents. Instability is also predicted for some more regular 

compositions, notably tourmalines with [Ca₀.₅Vac₀.₅] occupancy on the X site, suggesting the 

existence of a miscibility gap in this region of the compositional space. Furthermore, 

[Na][Al]₃[Al]₆[B₁/₂Si₁/₂]₆[OH]₃[OH], an endmember of the speciation-based model (discussed in 

the next chapter), is also predicted to be unstable. This allows a first-order delineation of the 

composition space, highlighting regions that are unlikely to yield stable or naturally occurring 

tourmalines. The code can be found in Electronic Appendix 1K1 and 1K2. 
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Table 1B. List of tourmaline endmembers considered unstable based on first-order bond-valence 

stability analysis. Instabilities predominantly affect compositions with elevated Ti, B, Al at the T 

site, or ferric iron (Fef) content, as well as those with partial Ca–vacancy occupancy on the X 

site. The endmember [Na][Al]₃[Al]₆[B₁/₂Si₁/₂]₆[OH]₃[OH] from the speciation-based model is 

also predicted to be unstable. 

[Na][Al]3[Al]6[B1/2Si1/2]6[OH]3[OH] [Na][Ti]3[Fef]6[B]6[OH]3[F] [Na][Ti]3[Fef]6[B]6[OH]3[OH] 

[Na][Ti]3[Fef]6[Al]6[OH]3[F] [Na][Ti]3[Fef]6[Al]6[OH]3[OH] [Na][Ti]3[Al]6[B]6[OH]3[F] 

[Na][Ti]3[Al]6[B]6[OH]3[OH] [Na][Ti]3[Al]6[Al]6[OH]3[F] [Na][Ti]3[Al]6[Al]6[OH]3[OH] 

[Na][Ti]3[Fef]6[B5/6Si1/6]6[OH]3[O] [Na][Ti]3[Fef]6[Al5/6Si1/6]6[OH]3[O] [Na][Ti]3[Fef]6[B1/2Si1/2]6[O]3[F] 

[Na][Ti]3[Fef]6[Al1/2Si1/2]6[O]3[F] [Na][Ti]3[Fef]6[B1/3Si2/3]6[O]3[O] [Na][Ti]3[Fef]6[Al1/3Si2/3]6[O]3[O] 

[Na][Ti]3[Fef]6[B1/2Si1/2]6[O]3[OH] [Na][Ti]3[Fef]6[Al1/2Si1/2]6[O]3[OH] [Na][Fef]3[Fef]6[B1/2Si1/2]6[OH]3[F] 

[Na][Fef]3[Fef]6[Al1/2Si1/2]6[OH]3[F] [Na][Fef]3[Fef]6[B1/2Si1/2]6[OH]3[OH] [Na][Fef]3[Fef]6[Al1/2Si1/2]6[OH]3[OH] 

[Na][Al]3[Fef]6[B1/2Si1/2]6[OH]3[F] [Na][Al]3[Fef]6[Al1/2Si1/2]6[OH]3[F] [Na][Al]3[Fef]6[B1/2Si1/2]6[OH]3[OH] 

[Na][Al]3[Fef]6[Al1/2Si1/2]6[OH]3[OH] [Na][Ti]3[Al]6[B1/2Si1/2]6[O]3[F] [Na][Ti]3[Al]6[Al1/2Si1/2]6[O]3[F] 

[Na][Ti]3[Al]6[B1/3Si2/3]6[O]3[O] [Na][Ti]3[Al]6[Al1/3Si2/3]6[O]3[O] [Na][Ti]3[Al]6[B1/2Si1/2]6[O]3[OH] 

[Na][Ti]3[Al]6[Al1/2Si1/2]6[O]3[OH] [Na][Ti]3[Al]6[B5/6Si1/6]6[OH]3[O] [Na][Ti]3[Al]6[Al5/6Si1/6]6[OH]3[O] 

[Na][Fef]3[Al]6[B1/2Si1/2]6[OH]3[F] [Na][Fef]3[Al]6[Al1/2Si1/2]6[OH]3[F] [Na][Fef]3[Al]6[B1/2Si1/2]6[OH]3[OH] 

[Na][Fef]3[Al]6[Al1/2Si1/2]6[OH]3[OH] [Na][Al]3[Al]6[B1/2Si1/2]6[OH]3[F] [Na][Al]3[Al]6[Al1/2Si1/2]6[OH]3[F] 

[Na][Al]3[Al]6[B1/2Si1/2]6[OH]3[OH] [Na][Al]3[Al]6[Al1/2Si1/2]6[OH]3[OH] [Ca1/2V1/2][Fe]3[Al]6[Si]6[OH]3[OH] 

[Ca1/2V1/2][Fe]3[Al]6[Si]6[OH]3[F] [Ca1/2V1/2][Fe]3[Fef]6[Si]6[OH]3[OH] [Ca1/2V1/2][Fe]3[Fef]6[Si]6[OH]3[F] 

[Ca][Ti5/6Fe1/6]3[Fef]6[B]6[OH]3[F] [Ca][Ti5/6Fe1/6]3[Fef]6[B]6[OH]3[OH] [Ca][Ti5/6Fe1/6]3[Fef]6[Al]6[OH]3[F] 

[Ca][Ti5/6Fe1/6]3[Fef]6[Al]6[OH]3[OH] [Ca][Ti5/6Fe1/6]3[Al]6[B]6[OH]3[F] [Ca][Ti5/6Fe1/6]3[Al]6[B]6[OH]3[OH] 

[Ca][Ti5/6Fe1/6]3[Al]6[Al]6[OH]3[F] [Ca][Ti5/6Fe1/6]3[Al]6[Al]6[OH]3[OH] [Ca][Mg1/6Ti5/6]3[Al]6[Al]6[OH]3[OH] 

[Ca][Mg1/6Ti5/6]3[Al]6[Al]6[OH]3[F] [Ca][Mg1/6Ti5/6]3[Al]6[B]6[OH]3[OH] [Ca][Mg1/6Ti5/6]3[Al]6[B]6[OH]3[F] 

[Ca][Ti2/3Al1/3]3[Al]6[Al]6[OH]3[OH] [Ca][Ti2/3Al1/3]3[Al]6[Al]6[OH]3[F] [Ca][Ti2/3Al1/3]3[Al]6[B]6[OH]3[OH] 

[Ca][Ti2/3Al1/3]3[Al]6[B]6[OH]3[F] [Ca][Ti2/3Fef1/3]3[Al]6[Al]6[OH]3[OH] [Ca][Ti2/3Fef1/3]3[Al]6[Al]6[OH]3[F] 

[Ca][Ti2/3Fef1/3]3[Al]6[B]6[OH]3[OH] [Ca][Ti2/3Fef1/3]3[Al]6[B]6[OH]3[F] [Ca][Mg1/6Ti5/6]3[Fef]6[Al]6[OH]3[OH] 

[Ca][Mg1/6Ti5/6]3[Fef]6[Al]6[OH]3[F] [Ca][Mg1/6Ti5/6]3[Fef]6[B]6[OH]3[OH] [Ca][Mg1/6Ti5/6]3[Fef]6[B]6[OH]3[F] 

[Ca][Ti2/3Al1/3]3[Fef]6[Al]6[OH]3[OH] [Ca][Ti2/3Al1/3]3[Fef]6[Al]6[OH]3[F] [Ca][Ti2/3Al1/3]3[Fef]6[B]6[OH]3[OH] 

[Ca][Ti2/3Al1/3]3[Fef]6[B]6[OH]3[F] [Ca][Ti2/3Fef1/3]3[Fef]6[Al]6[OH]3[OH] [Ca][Ti2/3Fef1/3]3[Fef]6[Al]6[OH]3[F] 

[Ca][Ti2/3Fef1/3]3[Fef]6[B]6[OH]3[OH] [Ca][Ti2/3Fef1/3]3[Fef]6[B]6[OH]3[F] [Ca][Ti]3[Mg1/6Al5/6]6[Al]6[OH]3[OH] 

[Ca][Ti]3[Mg1/6Fef5/6]6[Al]6[OH]3[OH] [Ca][Ti]3[Mg1/6Al5/6]6[Al]6[OH]3[F] [Ca][Ti]3[Mg1/6Fef5/6]6[Al]6[OH]3[F] 

[Ca][Ti]3[Mg1/6Al5/6]6[B]6[OH]3[OH] [Ca][Ti]3[Mg1/6Fef5/6]6[B]6[OH]3[OH] [Ca][Ti]3[Mg1/6Al5/6]6[B]6[OH]3[F] 

[Ca][Ti]3[Mg1/6Fef5/6]6[B]6[OH]3[F] [Ca][Ti]3[Fe1/6Al5/6]6[Al]6[OH]3[OH] [Ca][Ti]3[Fe1/6Fef5/6]6[Al]6[OH]3[OH] 

[Ca][Ti]3[Fe1/6Al5/6]6[Al]6[OH]3[F] [Ca][Ti]3[Fe1/6Fef5/6]6[Al]6[OH]3[F] [Ca][Ti]3[Fe1/6Al5/6]6[B]6[OH]3[OH] 

[Ca][Ti]3[Fe1/6Fef5/6]6[B]6[OH]3[OH] [Ca][Ti]3[Fe1/6Al5/6]6[B]6[OH]3[F] [Ca][Ti]3[Fe1/6Fef5/6]6[B]6[OH]3[F] 

[Ca1/2V1/2][Mg]3[Al]6[Si]6[OH]3[OH] [Ca1/2V1/2][Mg]3[Al]6[Si]6[OH]3[F] [Ca1/2V1/2][Al]3[Al]6[Si]6[O]3[OH] 

[Ca1/2V1/2][Al]3[Al]6[Si]6[O]3[F] [Ca1/2V1/2][Fef]3[Al]6[Si]6[O]3[OH] [Ca1/2V1/2][Fef]3[Al]6[Si]6[O]3[F] 

[Ca1/2V1/2][Ti]3[Al]6[Al]6[OH]3[OH] [Ca1/2V1/2][Ti]3[Al]6[Al]6[OH]3[F] [Ca1/2V1/2][Ti]3[Al]6[B]6[OH]3[OH] 

[Ca1/2V1/2][Ti]3[Al]6[B]6[OH]3[F] [Ca1/2V1/2][Mg]3[Fef]6[Si]6[OH]3[OH] [Ca1/2V1/2][Mg]3[Fef]6[Si]6[OH]3[F] 

[Ca1/2V1/2][Al]3[Fef]6[Si]6[O]3[OH] [Ca1/2V1/2][Al]3[Fef]6[Si]6[O]3[F] [Ca1/2V1/2][Fef]3[Fef]6[Si]6[O]3[OH] 

[Ca1/2V1/2][Fef]3[Fef]6[Si]6[O]3[F] [Ca1/2V1/2][Ti]3[Mg]6[Si]6[OH]3[OH] [Ca1/2V1/2][Ti]3[Mg]6[Si]6[OH]3[F] 

[Ca1/2V1/2][Ti]3[Fe]6[Si]6[OH]3[OH] [Ca1/2V1/2][Ti]3[Fe]6[Si]6[OH]3[F] [Ca1/2V1/2][Ti]3[Fef]6[Al]6[OH]3[OH] 

[Ca1/2V1/2][Ti]3[Fef]6[Al]6[OH]3[F] [Ca1/2V1/2][Ti]3[Fef]6[B]6[OH]3[OH] [Ca1/2V1/2][Ti]3[Fef]6[B]6[OH]3[F] 

[Ca][Ti]3[Fef]6[B]6[OH]3[O] [Ca][Ti]3[Fef]6[Al]6[OH]3[O] [Ca][Ti]3[Al]6[B]6[OH]3[O] 

[Ca][Ti]3[Al]6[Al]6[OH]3[O]   
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12.  SAMPLE CHARACTERISATION DISCUSSION 

Sample Coverage over composition and site-occupancy space Optimised site occupancies and 

bulk compositions are provided in Electronic Appendix 1J. Due to document size restrictions and 

formatting limitations, these large data tables are not included directly in the main body of the 

thesis but are made available electronically for reference and reproducibility.  

Bulk compositions were determined for all tourmaline samples and are reported as atom 

proportions per formula unit (apfu). These apfu values were summed (excluding boron and 

water) and renormalised to 100% solely for illustrative purposes, to better visualize the broad 

chemical variability captured across the sample set (Figure 1B). Major elements, including Si, 

Al, Na, Mg, and Fe, dominate the bulk chemistry. Minor elements, such as Ca and Ti4+, 

contribute to secondary substitution mechanisms. Trace elements, including Li, Mn, Zn, Cr, and 

rare earth elements (La, Ce, Nd), occur at low concentrations and reflect localized geochemical 

variations within the samples. The consistent structural framework provided by high Si and Al 

contents, combined with the compositional spread in transition metals and alkalis, ensures that 

the samples comprehensively represent the natural chemical diversity observed in tourmaline. 

The most precise measurements were obtained for Si, Al, Na, and Mg, with absolute 

uncertainties between 0.01 and 0.03 apfu, corresponding to relative uncertainties of less than 4%. 

The partitioning between Fe²⁺ and Fe³⁺, constrained by Mössbauer spectroscopy, yielded 

relatively high internal precision, with absolute uncertainties around 0.01 apfu and relative 

uncertainties of 5–10%; however, uncertainties related to the absolute accuracy of the site 

assignments are not propagated here, and thus the reported values represent a minimal estimate 

of the true uncertainty (see Figure 1A). Moderately precise measurements were obtained for Ti4+, 

and Ca, which exhibit relative uncertainties of approximately 10%, and 18%, respectively, 

reflecting their lower abundances in most samples. Minor and trace elements such as Li, Mn, Cr, 

and Zn display substantially larger relative uncertainties, often exceeding 50%, due to their low 

concentrations near detection limits. Overall, the high precision obtained for major elements 

ensures that the bulk compositions are robust and suitable for reliable thermodynamic model 

calibration, despite larger uncertainties in minor-element concentrations. 
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Figure 1A.  Mössbauer spectrum for tourmaline sample Tm72, illustrating one of the more 

complex cases encountered in the dataset. The fitted model includes Fe²⁺ doublets assigned to 

Y1, Y2, and Y3 sites, Fe³⁺ doublets representing Y or Z site occupancy, and a Fe².⁵⁺ mixed-

valence component to account for broadening effects. The addition of the Fe².⁵⁺ component 

improves the fit but increases the uncertainty of precise site and valence assignments. Residuals 

remain within ±2σ limits, confirming the quality of the fit. 

Mössbauer Mössbauer spectra were interpreted using a multi-component doublet distribution 

fitting approach, allowing for the resolution of Fe²⁺, Fe³⁺, and intermediate Fe².⁵⁺ (mixed valence) 

components. Fe²⁺ doublets were modelled separately for distinct crystallographic environments 

(Y1, Y2, Y3 sites) based on variations in center shift and quadrupole splitting parameters. 

Fe³⁺ doublets were attributed to shared Y and Z site occupancy (YZ1, YZ2) reflecting partial site 

disorder between octahedral sites. An additional Fe².⁵⁺ component was incorporated where 
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necessary to account for broadened distributions indicative of mixed valence or electron 

delocalisation effects. Residuals between the modelled and observed spectra were evaluated to 

confirm the quality of fits, with the majority of fits remaining within ±2σ confidence intervals. 

This deconvolution approach enables quantitative partitioning of Fe²⁺ and Fe³⁺ across 

crystallographic sites, providing critical input for site-occupancy refinements and charge-balance 

calculations. Rest of the Mossbauer figures can be found in Appendix 1E. 

Site occupancies The characterised samples span a wide range of crystallographic site 

occupancies, providing extensive coverage across the major chemical substitution vectors in 

natural tourmaline. Detailed site occupancy distributions for the X, Y, and Z sites, the principal 

crystallographic sites where substitution affects thermodynamic behavior, are illustrated in 

Figures 1C, 1D, and 1E, respectively. X-site occupancies vary from Na-dominant compositions 

to mixed Na–Ca–vacancy fields, reflecting substitution mechanisms along the alkali–vacancy 

and alkali–earth exchange vectors. Y-site compositions are dominated by Fe²⁺- and Mg-rich 

endmembers, with additional contributions from Al, spanning a broad range of Fe–Mg–Al 

substitution space. Z-site occupancies are consistently Al-rich, with minor Mg substitution 

observed in selected samples, providing excellent coverage along the Al–Mg substitution vector. 

The T site is characterised by near-ideal Si occupancy, with minor Al-for-Si and B-for-Si 

substitutions captured across the sample set. The V and W sites are primarily OH-dominant, with 

systematic variation in F and O contents at the W site. This compositional spread ensures that the 

samples collectively occupy a wide volume of site-occupancy space, necessary for reliable 

calibration of thermodynamic models across diverse tourmaline compositions. 
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Figure 1B. Stacked bar chart showing the bulk compositions of all analysed tourmaline samples. 

Cationic abundances were calculated by summing all measured elements and renormalizing to 

100% for each sample. Major components include Si, Al consistent with the expected framework 

of tourmaline. Significant proportions of Na, Mg, Fe2+, and Fe3+ reflect substitutions at the X and 

Y sites, while minor amounts of Ca, Ti4+, F and trace elements (e.g., Li, Cr, V, Mn, Zn, REEs) 

are also observed. The renormalization emphasizes compositional trends across major and minor 

elements and facilitates direct comparison between samples. You excluded boron, oxygen and 

water from the bulk plot to improve the visibility of the variation in minor and trace elements. 
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Figure 1C. Stacked bar chart showing the X site occupancies for all analysed tourmaline 

samples. The occupancies of NaX, CaX, KX, SrX, BaX, LaX, CeX, NdX, Pb(II)X, Bi(III)X, and 

VacancyX are displayed as a percentage of total X site occupancy. Na is the dominant occupant 

in most samples, with varying proportions of Ca and minor K, Sr, and rare earth elements 

(REEs). Site vacancies are significant in some samples, reflecting incomplete X-site occupancy. 
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Figure 1D. Stacked bar chart showing the Y site occupancies for all analysed tourmaline 

samples. The occupancies of MgY, Fe(II)Y, Fe(III)Y, AlY, Mn(II)Y, Ti(IV)Y, LiY, Cr(III)Y, V(III)Y, 

ZnY, Sn(IV)Y, Cu(II)Y, Ni(II)Y, Co(II)Y, ScY, GaY, Nb(V)Y, and VacancyY are shown. The Y site 

is primarily occupied by Mg, Fe²⁺, and Al, with significant contributions from Fe³⁺ and Ti⁴⁺ in 

some samples. Minor trace element substitutions (e.g., Zn, Cr, V) and vacancies are present but 

generally subordinate. 
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Figure 1E. Stacked bar chart showing the Z site occupancies for all analysed tourmaline 

samples. The occupancies of MgZ, Fe(II)Z, Fe(III)Z, AlZ, Mn(II)Z, Ti(IV)Z, LiZ, Cr(III)Z, V(III)Z, 

ZnZ, Sn(IV)Z, Cu(II)Z, Ni(II)Z, Co(II)Z, ScZ, GaZ, and Nb(V)Z are plotted. 

The Z site is overwhelmingly dominated by Al, typically exceeding 80% occupancy in all 

samples. Minor Mg, Fe²⁺, and Fe³⁺ substitutions are observed, with very low contributions from 

trace elements. 
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Site occupancy uncertainties A total of 50 tourmaline samples were characterised for their 

complete site occupancies based on optimised chemical formula recalculations and, where 

available, Mössbauer spectroscopy-derived Fe²⁺/Fe³⁺ distributions. Occupancies were determined 

for the X, Y, Z, T, V, W, and O1 crystallographic sites, with each value paired with a 

quantitative uncertainty estimate propagated from analytical and stoichiometric errors. 

Uncertainties vary systematically across sites: T-site occupancies (Si, Al, B) are the most tightly 

constrained, typically exhibiting absolute uncertainties below ±0.015 atoms per formula unit 

(apfu), with relative uncertainties for SiT consistently below 1%. Y- and Z-site occupancies (e.g., 

Mg, Al, Fe) show moderate absolute uncertainties around ±0.05 apfu, corresponding to relative 

uncertainties of approximately 18% for Mg and below 10% for Al. X-site occupancies (Na, Ca, 

vacancy) have intermediate uncertainties, generally below ±0.03 apfu, with Ca showing a mean 

relative uncertainty of approximately 18%. Minor and trace elements at the X, Y, and Z sites, 

such as K, Sr, Li, Zn, and Ga, exhibit significantly larger relative uncertainties (typically >100%) 

due to their low occupancies, although their absolute uncertainties remain small (typically 

<±0.01 apfu). 

The V and W sites, associated with OH, O, and F groups, are generally well constrained, with V-

site absolute uncertainties around ±0.008 apfu (relative uncertainty ~0.5%) and W-site absolute 

uncertainties around ±0.004 apfu (relative uncertainty ~14%), although greater variability is 

observed at the O1 site where F–OH partitioning introduces relative uncertainties up to ~19%.  

Overall, the uncertainties on major cations (Si, Al, Mg, Fe, Ca) are sufficiently small—typically 

better than ±0.05 apfu absolute and below 20% relative error, to ensure the data's robustness for 

subsequent thermodynamic modelling. The characterised samples span a broad range of site-

occupancy space, including Na- to Ca-dominant X sites, Fe²⁺- to Mg-rich Y sites, and near-ideal 

Si occupancy at the T site, providing a comprehensive representation of natural tourmaline 

compositional variability. 

13. CONCLUSIONS  

This study assembles a tourmaline sample set from natural and synthetic samples to future 

thermodynamic property measurement and compositionally and structurally characterises these 

tourmalines using a consistent multi-method analytical strategy and approach. Standardized 
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characterisation ensures accurate property-composition correlations. This compositional 

characterisation is combined with crystal-structure measurements by XRD and their Rietveld 

refinement, and subsequently analysed and optimised using bond-valence modelling. This allows 

elements to be assigned to the sites of the tourmaline structure, provides information on the bond 

network, and validates structural stability. In post-processing, we compared bond lengths from 

Rietveld refinement with those predicted by valence-distributed topology and regular polyhedra, 

using anion/cation bond valence sums and a loop equation-containing matrix method. Qualitative 

analysis of these results suggests that mean bond lengths in tourmaline may not be fixed. This 

combined structural and compositional characterisation of the tourmaline set results in obtaining 

the best estimate of their molecular formulae, which is the essential information needed to 

convert measured per mass thermodynamic properties to per mole values, and to deconvolute 

intermediate compositions to endmember fractions. Careful propagation of uncertainties shows 

that significant uncertainty in site assignment, and hence molecular formula, exists, even for the 

best practice analytical methods applied here, and this finding is directly applicable to other 

mineral groups with complex crystal-chemistry. As will be shown in subsequent chapters, 

uncertainties in this molecular formula represent a major component of the total uncertainty on 

endmember thermodynamic properties. 
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Bridging Text Between Manuscripts (Chapter 1-Chapter 2)  

From Composition Space Definition (Characterisation and Endmember Basis) to Initial 

Energy Equation Calibration (Molar Volume) 

The tourmaline sample set developed in Chapter 1, fully characterised using an internally 

consistent data normalization scheme, provides the foundation for the thermodynamic model 

calibration presented in Chapter 2. Natural and synthetic samples were analysed using a multi-

technique approach, electron microprobe, Mössbauer spectroscopy, single-crystal X-ray 

diffraction (or powder XRD for synthetics), and Karl-Fischer titration, to derive optimised 

mineral formulas. These were refined through quadratic programming, using a weighted scheme 

that incorporated composition, site occupancy constraints, bond valence sums, electron densities, 

and charge balance. Monte Carlo-based error propagation accounted for analytical uncertainties 

and sample heterogeneity, resulting in a dataset that captures both compositional variability and 

its uncertainty structure. 

Chapter 2 builds directly upon this framework by formally defining the compositional and 

speciation space for tourmaline, the first ingredient for a thermodynamic model. Two model 

formulations are introduced: 

1. A bulk compositional model, suitable when only chemical analyses are available. 

2. A speciation model, applicable when complete site occupancy data from structural 

analyses are provided. 

The optimised formulas from Chapter 1 are mapped from bulk parameters/site fractions into 

composition/speciation endmember space. Together, these mappings define the 

compositional/speciation domain over which the thermodynamic energy equations operate. 

The second ingredient, the energy equations themselves, begins here with the calibration of one 

of their key parameters: the molar volume. As a primary contributor to the pressure term in 

Gibbs free energy, molar volume plays a crucial role in phase stability modelling. Regression 

calibration was performed using the internally consistent dataset, with careful evaluation of 

multicollinearity, endmember independence, the uncertainty structure and model robustness. 
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The methodological continuity between chapters ensures that the derived thermodynamic 

properties and resulting energy equations are firmly anchored in a well-defined composition and 

speciation space. The approach not only underpins the molar volume model presented here but 

also establishes the compositional framework for calibrating entropy, heat capacity, and enthalpy 

in subsequent chapters. This progression from mineral characterisation to thermodynamic model 

construction reflects a central objective of this thesis: to develop a data-driven, experimentally 

constrained thermodynamic model for tourmaline solid solutions. 
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Thermodynamic model for Tourmaline 

 

 

 

Tourmalines (Modified from Rustemeyer (2022) The inner architecture of tourmaline crystals, 

as inferred from the morphology of colour zones in thin slices. Journal of geosciences 67), at the 

right, and the Fourier Transform of the same image, at the left.  

Do it for any image of your chose:  

https://bigwww.epfl.ch/demo/ip/demos/FFT/ 
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Chapter 2. Thermodynamic model for Tourmaline. Model derivation and 

calibration of the molar volumes 
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ABSTRACT Tourmaline, the most common crustal borosilicate, records phase relationships 

with minerals, fluids, and melts across divers tectonic settings. Its elemental flexibility, stability 

under wide P-T conditions, and low diffusivity preserve compositional zoning, making it a key 

archive of P-T-X histories for petrogenesis and provenance studies. Accurate interpretation of 

this record requires a thermodynamic model to predict its compositional response to changing 

conditions. This chapter formulates a molar volume model based on crystal-chemical 

measurements. 

Two thermodynamic models were developed: a bulk model for cases with limited data, such as 

EMPA-only characterisation, and a speciation model requiring element site assignments from 

crystal-structure refinements. The bulk model, X(YZ)₉SixAl(1-x)(VW)₄, a reciprocal model with 

dependent speciation, was derived using valences, site occupancy, and charge balance constraints 

to define a convex polytope with 9 independent endmembers and related independent bulk 

parameters. Stoichiometry matrices linked endmembers to bulk variables, with the nullspace 

revealing linear dependencies. A robust, independent bulk parameter set was selected to prevent 

negative dependent parameters or non-summing-to-1 endmember fractions caused by 

measurement imperfections, since any uncertainty propagates to the dependent parameters. The 

stoichiometry matrix using only independent bulk parameters formed a square matrix, and its 

inversion yielded linear mapping equations to the endmembers. For the speciation model, 

XY3Z6T6V3W, linear mapping equations link 14 independent speciation endmembers to 

independent site fractions. An implicit order-disorder formulation is also provided for 

convenience. Monte Carlo simulations propagated analytical and sample uncertainties into the 

endmember fractions.  

Molar volume (VM) was derived from SC-XRD crystal-structure refinements and linked to the 

optimised mineral formulas, normalised for internal consistency (Chapter 1). Multiple linear 

regression was used to extrapolate endmember VM but due to tourmaline’s complexity and 

limited sample size (50 samples), 21 regression methods, including OLS, x-uncertainty, and 

robust regression, were compared to identify the most reliable estimates. The methods were 

assessed using a reference database as a test set to balance bias, variance, and total error. Robust 
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regression provided the best results for the bulk model by minimizing the impact of outliers that 

needed speciation to be captured (F-buergerite), Correlated Weighted Total Least Squares 

(CWTLS), with block-diagonal weight matrices based on sample covariance worked best for the 

speciation model, mitigating multicollinearity. This approach ensures accuracy in well-sampled 

regions while maintaining reasonable extrapolation capabilities. Hierarchical subset selection 

identified interaction parameters, but test set validation showed they often overfit by capturing 

noise instead of real physical interactions.  

A molar volume model is presented, essential for determining Gibbs free energy, as pressure 

variations strongly affect the stability of minerals with different molar volumes. In this work the 

first step to a comprehensive thermodynamic model for tourmaline is made by integrating direct 

measurements of key properties, including molar volume (this chapter), entropy and heat 

capacity (chapter 3), and enthalpy (chapter 4). 

1. INTRODUCTION 

Tourmaline's structural flexibility, reflected in its generalized formula XY₃Z₆(T₆O₁₈)(BO₃)₃V₃W, 

accommodates extensive compositional variability (Henry et al. 2011):  

X = Na¹⁺, Ca²⁺, K¹⁺, □ = vacancy 

Y = Fe²⁺, Mg²⁺, Mn²⁺, Al³⁺, Li¹⁺, Fe³⁺, V³⁺, Cr³⁺, Ti⁴⁺ 

B = B³⁺ 

Z = Al³⁺, Fe³⁺, Mg²⁺, V³⁺, Fe²⁺, Cr³⁺ 

T = Si⁴⁺, Al³⁺, B³⁺ 

V = OH¹⁻, O²⁻ 

W = OH¹⁻, F¹⁻, O²⁻ 

Its chemical diversity arises from homovalent substitutions (e.g., R²⁺ ↔ R²⁺), coupled 

substitutions (e.g., XR⁺ + YR²⁺ ↔ X□ + YR³⁺) and order-disorder relationships (Bosi 2018). 

However, the resistance to weathering, abrasion, and diffusion allows it to remain stable across a 

wide pressure-temperature-composition range, preserving records from the Archean to the 

present (Dutrow and Henry 2011). Its zoning patterns reflect phase relationships with 

surrounding minerals and internally or externally buffered fluids or melts, even when other 
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minerals reset (van Hinsberg 2011). Stable in acidic environments, its formation depends on 

boron and aluminum availability (Henry and Dutrow 1996). Despite increased research on 

tourmaline petrogenesis (Henry and Dutrow 2018), theoretical support remains limited. A 

thermodynamic model would provide a quantitative framework to test and refine proposed 

petrogenetic processes. This study develops the first part for a comprehensive thermodynamic 

model of tourmaline, addressing the absence of such a model in major databases. It is essential 

for predicting tourmaline’s phase behavior, elemental exchange, and interpreting zoning patterns. 

The model focuses on the Na-Ca-Mg-Fe²⁺-Fe³⁺-Ti-Al-B-O-H-F chemical system, which 

encompasses the most common Li-K-Mn-V-Cr-poor tourmaline solid solution chemistries 

Molar volume is particularly critical for determining Gibbs free energy, as pressure variations 

significantly impact the relative stability of minerals with differing molar volumes. Tourmaline 

has been documented across a wide P–T range, from diagenetic settings (Biernacka 2019) to 

ultra-high-pressure conditions (Ertl et al. 2010), and experiments conducted at room temperature 

revealed it can withstand pressures up to 60 GPa (Berryman et al. 2019).  

Previous research on tourmaline, including single-crystal and powder XRD studies, primarily 

emphasized mineralogical aspects, often treating molar volume data as secondary (Bosi and 

Lucchesi 2007; Lussier et al. 2011, p. 333; Ertl et al. 2018; Vereshchagin et al. 2018). 

Thermodynamic models like Van Hinsberg and Schumacher (2007), refining Garofalo et al.’s 

(2000) work, used the polyhedron method to estimate molar volumes but are limited by 

oversimplified assumptions. The method poorly predicts tourmaline’s molar volume due to its 

reliance on average polyhedral properties from diverse minerals, overlooking its highly 

polymerized structure with extensive edge- and face-sharing (Ertl et al. 2002; Bosi 2018). This 

omission is critical, as bond valence theory highlights polymerization as a dominant energetic 

factor (Brown 2016). Normalization inconsistencies affect molar volume accuracy in a more 

indirect but critical way. While the molar volume itself is derived primarily from the unit cell 

parameters and symmetry determined by SC-XRD, and is thus not strongly influenced by the 

mineral formula, the positioning of this volume in composition or speciation space depends 

entirely on an accurately optimised formula. Inaccurate normalization affects how the volume is 

assigned to a given endmember or solid solution configuration, which in turn impacts its 

contribution to thermodynamic regressions. As a result, even if the measured volume is precise, 
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its interpretation and integration into the model can be significantly biased by formula 

inconsistencies. 

In this chapter we calibrate a model for tourmaline’s molar volume, using direct crystal chemical 

measurements and optimised mineral formula of an internally consistent database from Chapter 1 

with ~50 natural and synthetic samples. The model includes a bulk version for users with only 

compositional data and a speciation version for those with site occupancies from SC-XRD. This 

work is part of a broader effort to develop a comprehensive thermodynamic model by 

incorporating direct measurements of key properties, including enthalpy (ΔH), entropy (S), heat 

capacity (Cp), and molar volume (V). 

2. DEFINING THE THERMODYNAMIC MODEL FOR TOURMALINE 

Mean field model The generalized Bragg-Williams model, a mean field theory, describes solid 

solutions by averaging site occupancies and neglecting individual site and local interactions 

focusing instead on the long range order (LRO) (Bragg and Williams 1934, 1935). This approach 

applies when site multiplicities represent averaged sites and partial, rather than full, occupancies 

describe the solid solution. Chemical components are defined based on a LRO averaged unit cell 

constrained by space group symmetry, determined via single-crystal X-ray diffraction (SC-

XRD). It is essential to note that the unit cell, sites and partial occupancies are modelling 

constructs, and such occupancies do not physically exist. Defining endmembers as chemical 

components accounts for the averaged electron density, transcending a purely ionic model. The 

model assumes a random distribution of elements across equivalent sites.  

Endmembers incorporate element exchange and charge balance constraints, with endmember 

reactions describing (combinations of) coupled substitutions. While the Bragg-Williams model 

captures long-range order, it is less effective for systems with significant short-range order or 

clustering due to its neglect of local interactions (Will 1998). 

Tourmaline thermodynamic model We present two mean field tourmaline models: a speciation 

model, which defines endmembers through site fractions, and a compositional model, which uses 

bulk compositional parameters to define endmembers. Both models apply the Myhill and 

Connolly (2021) mathematical framework, utilising geometry, set theory, and linear algebra via 
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Burman (Myhill et al. 2023), to establish independent endmembers for a Bragg-Williams-type 

solid solution model (Thompson (1967; 1969), Powell and Holland (1999)). The polytope for 

tourmaline is constrained by site occupancy and charge, allowing for the enumeration of all 

possible endmembers of its chemical space by specifying species identity, valences, and total 

charge of non-exchanging species (Myhill and Connolly 2021). 

2.1 Tourmaline Speciation Model 

We begin with the definition of the most complex model, as it closely aligns with the original 

mineral structural formula. 

Tourmaline speciation model: XY3Z6T6V3W The tourmaline speciation model operates as a 

charge-balanced order-disorder system. To utilize this model, the complete structural formula of 

tourmaline, expressed in terms of site fractions, is essential. The charge balance constraint and 

the requirement that site fractions sum to 1 make some site fractions linearly dependent (Powell 

and Holland 1993, 1999). Both explicit and implicit order-disorder models are derived, differing 

in computational approach yet structurally identical (Myhill and Connolly 2021). Explicit models 

compute the full speciation space by assigning real site occupancies to each endmember, 

requiring global Gibbs free minimisation across all species—a robust but computationally 

intensive method (Myhill and Connolly 2021). Implicit models, however, simplify calculations 

by transforming independent endmembers in speciation space (site fractions) into bulk 

compositional endmembers, using Q ordering vectors to distribute bulk parameters across sites 

(Holland and Powell 1996a, 1996b) . By discretizing the composition space and performing local 

Gibbs minimisation for each composition, this method can reduce computational costs. As 

speciation is not known beforehand, the composition space must be defined by a set of fully 

disordered endmembers that span the compositional range (disordered limit, see Tajčmanová et 

al (2009)). 

Explicit order-disorder model 

Derivation of the speciation polytope  In thermodynamic modelling of ionic solutions, defining 

crystallographic sites and the valences of ionic species occupying each site is essential for 

establishing linear constraints and inequalities. These include non-negative occupancies, 

complete site filling, charge balance, and site multiplicities, all of which form a convex polytope 
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(generalized polyhedron). (Myhill and Connolly 2021). This high-dimensional geometric shape 

represents all feasible configurations of site-species occupancies that comply with these 

constraints. Each polytope vertex is an endmember, a unique site population arrangement that 

collectively defines the bounds of the speciation space (Myhill and Connolly 2021). The 

polytope’s dimensionality corresponds to the number of independent site-species configurations, 

each dimension representing a unique degree of freedom, plus one to make the sum of 

independent endmembers 1 (Myhill and Connolly 2021). Independent endmembers define these 

degrees of freedom as distinct axes, while dependent endmembers are combinations of these, 

positioned along edges or faces without adding dimensions (Myhill and Connolly 2021). The 

choice of independent endmembers is arbitrary and interchangeable, a result of the linearity 

assumption, which ensures that combinations of endmembers satisfy constraints while preserving 

convexity and dimensionality (Helffrich and Wood 1989; Holland and Powell 2003; Myhill and 

Connolly 2021). Convexity here refers to the requirement that all physically meaningful 

compositions lie within the convex hull formed by linear combinations of the chosen 

endmembers, ensuring the composition space is continuous and mathematically well-defined. 

Based on Gibbs' (1957) (reprint from his work from 1873) definition of a "component" as the 

minimum set of chemical entities needed to define the composition of all phases, tourmaline’s 

variability is described by independent endmembers spanning its solid solution space. Connolly’s 

(1990) generalized linearity assumption ensures any valid set of endmembers satisfies mass 

balance, preserves convexity, and maintains dimensionality, making their choice 

interchangeable. Convexity ensures all endmember combinations stay within the solid solution’s 

compositional limits, capturing the full range of possible compositions and interactions. (Myhill 

and Connolly 2021). Defining site multiplicities assumes species are randomly distributed across 

equivalent sites, resulting in a polytope that represents a long-range ordered subset (generalized 

Bragg-Williams). In contrast, the complete polytope, which represents the full configurational 

space, would treat each site uniquely and include all possible configurations, capturing both 

long-range and short-range order (see Discussion chapter). 

The original tourmaline formula is expressed as XY₃Z₆(T₆O₁₈)(BO₃)₃V₃W, capturing the 

crystallographic site topology. For the speciation model this formula is reduced to include only 

the variable sites, those that allow chemical substitution. Fixed sites, such as the [B]₃ triangle 

(occupied solely by B³⁺) and the framework oxygen atoms [O]18+ 3 *[O]3 = [O]₂₇, are excluded 
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from the model. The reduced speciation model includes the following variable site populations 

XY3Z6T6V3W: 

[Na Ca Vac][Fe²⁺ Mg Al Fe³⁺ Ti]₃[Al Mg Fe²⁺ Fe³⁺]₆[Si Al B]₆[OH O]₃[OH O F] 

Site occupancy constraints are represented by the matrix equation Px=b (Myhill and Connolly 

2021). Matrix P specifies allowable species (elements, OH, or vacancies) at each 

crystallographic site, with rows for sites, columns for species. The last row of P captures species 

valences times site multiplicity (e-) for charge balance. Vector b enforces total occupancy of 1 

per site and overall charge neutrality. The site charge composition is balanced to 45 e-, derived 

from 62 e⁻ for 31 O²⁻ minus charges for 4 anionic oxygens (V3, W) and 3 fixed borons: 62 −

(4 ∗ 2) − (3 ∗ 3) = 45𝑒−. In the case of tourmaline, the charge balance constraint is 

independent and cannot be derived from other occupancy constraints; thus, P is a full-rank 

matrix. Solving the equation Px=b gives the set of linear equality constraints that the occupancy 

vector x must satisfy. Together with the inequality constraints xi≥0, these equations define a 

convex polytope representing the entire accessible speciation space (Myhill and Connolly 2021). 

𝑃 =

{
 
 
 

 
 
 

𝐍𝐚 𝐂𝐚 𝐕𝐚𝐜 𝐅𝐞2+ 𝐌𝐠 𝐀𝐥 𝐅𝐞3+ 𝐓𝐢 𝐀𝐥 𝐌𝐠 𝐅𝐞2+ 𝐅𝐞3+ 𝐒𝐢 𝐀𝐥 𝐁 𝐎𝐇 𝐎 𝐎𝐇 𝐎 𝐅
𝑋 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑌 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑍 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
𝑇 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
𝑉 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
𝑊 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
𝑒− 1 2 0 6 6 9 9 12 18 12 12 18 24 18 18 −3 −6 −1 −2 −1}

 
 
 

 
 
 

 

𝑏 = {
𝑋 𝑌 𝑍 𝑇 𝑉 𝑊 𝑒−

1 1 1 1 1 1 45
} 

The polytope defined by these constraints enables the use of geometric algorithms (e.g., vertex 

enumeration) to derive all possible endmembers, which are stored in matrix E (Myhill and 

Connolly 2021). Without a charge constraint, this approach would simply enumerate all site-

species combinations, but tourmaline’s charge constraint restricts the vertices to a hyperplane, 

resulting that some endmembers are disordered. The Python script 

solution_polytope_from_charge_balance (Burnman Software (Myhill et al. 2023)) was used to 

enumerate all possible endmembers of the polytope, creating the endmember matrix E, this 

process yielded 606 total endmembers (dependent and independent). Hawthorne (2012) applied 

these principles in Chemographic Exploration (Gagné and Hawthorne 2016), with a 

mathematical proof (Hawthorne 2021) showing that a dominant endmember formula can always 
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be defined for any mineral or crystal structure. However, handling 606 endmembers in 

thermodynamics (or possibly nomenclature) remains impractical. 

Independent endmembers The number of independent endmembers is determined by the 

matrix P, where columns represent site species and rows represent site constraints. If the charge 

balance constraint is linearly independent of the site constraints, it adds one additional row (c = 

1); if not, c = 0. The number of independent endmembers is then given by: 𝑁ind − 1 =

𝑛site-species − (𝑛sites + 𝑐) (Myhill and Connolly 2021). This represents the number of degrees of 

freedom (DOF), defined as the number of variables (site species) minus the number of 

constraints (site occupancy plus charge). One additional endmember is required to close the 

compositional simplex. For the XY3Z6T6V3W tourmaline model, with nsite-species = 20, nsites = 6 

and c=1, so there are 14 independent endmembers. This means that the polytope has a dimension 

of 14, requiring only 14 independent endmembers to fully describe it, despite being bounded by 

606 total endmembers. This significantly reduces complexity, as dependent endmembers grow 

geometrically while independent endmembers grow linearly with the number of sites (Myhill and 

Connolly 2021). 

Independent endmembers can be obtained by row-reducing matrix E (e.g., via Gaussian 

elimination), however, to control the selection, we chose endmembers in E closest to known 

nomenclature, forming our preferred basis Eind, and confirmed that its rank matched the number 

of independent endmembers to ensure linear independence. We aimed to use established 

nomenclature endmembers as the axes of our polytope. These components naturally occur in 

tourmalines with at least 50% abundance. This aids direct measurement, reduces the need for 

extrapolation, and limits the associated increase in uncertainty. The independent speciation 

endmember in terms of the original tourmaline formula in apfu Kind: 
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Kind =  

(

 
 
 
 
 
 
 
 
 
 
 
 
 

 Endmember 1X 3Y 6Z 6T 3B 27O 3V W
 schorl (srl) Na Fe3 Al6 Si6 B3 O27 OH3 OH

 dravite (drv) Na Mg3 Al6 Si6 B3 O27 OH3 OH
 uvite (uvt) Ca Mg3 MgAl5 Si6 B3 O27 OH3 OH

 feruvite (fuvt)* Ca Fe3 FeAl5 Si6 B3 O27 OH3 OH
 foitite (foi) Vac Fe2Al Al6 Si6 B3 O27 OH3 OH
 olenite (ole) Na Al3 Al6 Si6 B3 O27 O3 OH

 dravite-disordered (drvdis)* Na Mg2Al MgAl5 Si6 B3 O27 OH3 OH
 oxy-dravite (odrv) Na Al2Mg1 MgAl5 Si6 B3 O27 OH3 O
 fluor-uvite (fluvt) Ca Mg3 MgAl5 Si6 B3 O27 OH3 F
 buergerite (bu)* Na Fef3 Al6 Si6 B3 O27 O3 OH

 magnesium-dutrowite (mdtw)* Na MgTi2 Al6 Si6 B3 O27 O3 O
 boron-olenite (bole) Na Al3 Al6 Si3B3 B3 O27 OH3 OH

 alumina-oxy-rossmanite (aorsm) Vac Al3 Al6 Si5Al1 B3 O27 OH3 O
 povondraite (pov) Na Fef3 Fef4Mg2 Si6 B3 O27 OH3 O )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

*Adjustments included: placing Fe²⁺ on Z in fuvt to allow Fe²⁺ occupancy there and ensure linear 

independence; selecting bu-OH over fluor-buergerite (Fbu) to decouple F and Fe³⁺, to ease 

projection of the model to lower chemical subspaces; and reconfiguring mdtw with maximized 

Ti on Y, leaving V and W vacant to avoid fractional occupancies. Dravite-disordered (drvdis) is 

linearly independent and was included to separate Al–Mg and OH–O disordering across the Y/Z 

and V/W sites, which are both combined in the odrv endmember. It was retained despite not 

being an endmember under IMM rules (Bosi et al., 2019).(Bosi et al. 2019). This example 

highlights that mineral nomenclature, while essential for classification, imposes constraints that 

limit its usefulness in thermodynamic modelling. These include artificial boundaries like the 

50% rule, which fails to capture continuous occupancy variations in solid solutions below this 

threshold, and arbitrary restrictions that prevent naming new species for disordered states—

limiting full representation of site-species interactions. 

The nomenclature fuvt, mdtw, bu-F are derivable as linear combinations as are the rest of the 

nomenclature tourmaline within the [Na Ca Vac][Fe2+ Mg Al Fe3+ Ti]3[Al Mg  Fe2+ Fe3+]6[Si Al 

B]6[B]3[O]27[OH O]3[OH O F] system, and are not further considered here (e.g. Lucchesite, 

adachiite, bosiite, dutrowite, ect). This shows that many nomenclature endmembers under 

linearity assumptions are dependent and redundant. This highlights a problem with current 

nomenclature: with 606 potential endmembers in our chemical subsystem, many meeting IMA-

CNMNC rules, we would quickly run out of names honoring distinguished mineralogists often 

used to name new mineral species. Instead, these polytope endmembers could be more 

efficiently described using a compact, independent set, provided negative endmember fractions 
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are accepted. If positive fractions are needed one can always recast the independent endmember 

fractions into linear combinations which are always positive (see Chapter 5). 

Each independent endmember is essential to the model; removing even an unusual one would 

reduce the polytope’s dimensionality, making dependent endmembers on that dimension 

inaccessible. This impacts projections to subchemical systems: if a certain independent 

endmember does not exist within restricted bulk compositions but other dependent endmembers 

along that same dimension do exist, the independent basis of the solution model must be 

recalculated using the methods from Myhill & Connolly (2021). 

The stoichiometry matrix Eind in terms of site fractions of the complete set of site-species is: 

Eind

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥nax 𝑥cax 𝑥vx 𝑥fey 𝑥mgy 𝑥aly 𝑥fefy 𝑥Tiy 𝑥alz 𝑥mgz 𝑥fez 𝑥fefz 𝑥sit 𝑥alt 𝑥bt 𝑥OHv 𝑥Ov 𝑥OHw 𝑥Ow 𝑥Fw

 srl 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0

 drv 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0

 uvt 0 1 0 0 1 0 0 0 (
5

6
) (

1

6
) 0 0 1 0 0 1 0 1 0 0

 fuvt 0 1 0 1 0 0 0 0 (
5

6
) 0 (

1

6
) 0 1 0 0 1 0 1 0 0

 foi 0 0 1 (
2

3
) 0 (

1

3
) 0 0 1 0 0 0 1 0 0 1 0 1 0 0

 ole 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0

 drv-dis 1 0 0 0 (
2

3
) (

1

3
) 0 0 (

5

6
) (

1

6
) 0 0 1 0 0 1 0 1 0 0

 odrv 1 0 0 0 (
1

3
) (

2

3
) 0 0 (

5

6
) (

1

6
) 0 0 1 0 0 1 0 0 1 0

 fluvt 0 1 0 0 1 0 0 0 (
5

6
) (

1

6
) 0 0 1 0 0 1 0 0 0 1

 bu 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0

 mdtw 1 0 0 0 (
1

3
) 0 0 (

2

3
) 1 0 0 0 1 0 0 0 1 0 1 0

 bole 1 0 0 0 0 1 0 0 1 0 0 0 (
1

2
) 0 (

1

2
) 1 0 1 0 0

 aorsm 0 0 1 0 0 1 0 0 1 0 0 0 (
5

6
) (

1

6
) 0 1 0 0 1 0

 pov 1 0 0 0 0 0 1 0 0 (
2

6
) 0 (

4

6
) 1 0 0 1 0 0 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Selection of Robust Independent Site Fraction Set for Endmember Description To describe 

the independent endmember set, we have to select 14 site fractions from nsite-species=20, as these 

uniquely map to the 14 independent endmembers and satisfy all constraints (occupancy and -

charge balance). The remaining 6 fractions are dependent and add no new information. This is 
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shown by converting the nonsquare stoichiometry matrix to an apfu matrix via site multiplicities, 

where its Nullspace reveals 14 degrees of freedom, yielding 6 dependency equations: 

−aly − 3cax − fefy − 2fey − fez + Fw − 2mgy − mgz − 4nax + OHv + OHw + sit − 5vx 

aly + 2cax + fefy + 2fey + fez + 2mgy + mgz + 3nax − OHv + Ow − sit + 4vx 

−3cax − 3nax + OHv + Ov − 3vx 

alt + bt − 6cax − 6nax + sit − 6vx 

alz − 6cax + fefz + fez + mgz − 6nax − 6vx 

aly − 3cax + fefy + fey + mgy − 3nax + tiy − 3vx 

Ideally, any independent set would work if tourmaline chemistry were perfectly measured and 

the model matched chemistries and charge balance exactly; however, given practical 

measurement limitations, we sought a robust set. Using our database, we tested measured 

tourmaline formulas (normalised projected) and enumerated 20,639 possible independent site 

fraction sets with a Mathematica script. After filtering for consistency (removing sets for which 

our measured compositions gave rise to negative or non-summing-to-1 endmember fractions), 

9,541 robust sets remained. We calculated the mean and standard deviation of endmember 

fractions across the 9,541 robust sets to assess uncertainty in choosing different robust 

independent site fraction sets (see Electronic Appendix 2A). Our final selected set is: 

{𝑥NaX, 𝑥CaX, 𝑥FeY, 𝑥MgY, 𝑥AlY, 𝑥FefY, 𝑥TiY, 𝑥AlZ, 𝑥MgZ, 𝑥FeFZ, 𝑥SiT, 𝑥AlT, 𝑥OHV, 𝑥FW} 

where Fe is ferrous and Fef is ferric iron (and therefore require Mossbauer or equivalent 

techniques). 

In a later step, we apply a projection method in which charge balance is explicitly enforced, 

ensuring all sets yield valid model inputs. However, the robust set above is provided for cases 

where users prefer to work without projection, or when model applications require independently 

specified site occupancies. 
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Alternatively, measured tourmaline formulas can be fit using multiple linear regression, but this 

often yields lengthy equations with insignificant coefficients. We chose analytical equations as 

fixed site fractions to map site fractions to independent endmember space, meeting 

thermodynamic software requirements, reducing uncertainty in well-constrained sites, and 

concentrating it in dependent ones, unlike least squares, which distributes uncertainty evenly. 

Mapping from Site Fraction Space to Independent Endmember Space  The square 

independent endmember stoichiometry matrix using these 14 independent site fractions is (Find): 

Find =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑛𝑎𝑥 𝑥cax 𝑥fey 𝑥mgy 𝑥aly 𝑥fefy 𝑥tiy 𝑥alz 𝑥mgz 𝑥fefz 𝑥sit 𝑥alt 𝑥OHv 𝑥Fw
 srl 1 0 1 0 0 0 0 1 0 0 1 0 1 0
 drv 1 0 0 1 0 0 0 1 0 0 1 0 1 0

 uvt 0 1 0 1 0 0 0 (
5

6
) (

1

6
) 0 1 0 1 0

 fuvt 0 1 1 0 0 0 0 (
5

6
) 0 0 1 0 1 0

 foi 0 0 (
2

3
) 0 (

1

3
) 0 0 1 0 0 1 0 1 0

 ole 1 0 0 0 1 0 0 1 0 0 1 0 0 0

 drvdis 1 0 0 (
2

3
) (

1

3
) 0 0 (

5

6
) (

1

6
) 0 1 0 1 0

 odrv 1 0 0 (
1

3
) (

2

3
) 0 0 (

5

6
) (

1

6
) 0 1 0 1 0

 fluvt 0 1 0 1 0 0 0 (
5

6
) (

1

6
) 0 1 0 1 1

 bu 1 0 0 0 0 1 0 1 0 0 1 0 0 0

 mdtw 1 0 0 (
1

3
) 0 0 (

2

3
) 1 0 0 1 0 0 0

 bole 1 0 0 0 1 0 0 1 0 0 (
1

2
) 0 1 0

 aorsm 0 0 0 0 1 0 0 1 0 0 (
5

6
) (

1

6
) 1 0

 pov 1 0 0 0 0 1 0 0 (
2

6
) (

4

6
) 1 0 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We derived the mapping equations from the site fraction to the independent endmember 

coordinate system by obtaining the inverse of the independent endmember matrix in terms of 

independent site fractions. 
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𝑦slr = 4 ⋅ 𝑥alt −
20 ⋅ 𝑥aly

3
+ 6 ⋅ 𝑥alz +

2 ⋅ 𝑥cax
3

−
20 ⋅ 𝑥fefy

3
+ 6 ⋅ 𝑥fefz −

17 ⋅ 𝑥fey

3
−
20 ⋅ 𝑥mgy

3
+ 6

⋅ 𝑥mgz +
2 ⋅ 𝑥max
3

−
20 ⋅ 𝑥tiy

3
 

𝑦drv = −2 ⋅ 𝑥alt −
7 ⋅ 𝑥aly

3
+
𝑥cax
3
−
7 ⋅ 𝑥fcfy

3
+
3 ⋅ 𝑥fefz
2

−
10 ⋅ 𝑥fcy

3
−
7 ⋅ 𝑥mgy

3
− 6 ⋅ 𝑥mgz +

𝑥nax
3

+ 𝑥OHv + 2 ⋅ 𝑥sit −
7 ⋅ 𝑥tiy

3
 

𝑦uvt = −6 ⋅ 𝑥aly + 6 ⋅ 𝑥alz + 𝑥cax − 6 ⋅ 𝑥fefy + 6 ⋅ 𝑥fcfz − 6 ⋅ 𝑥fey − 𝑥Fw − 6 ⋅ 𝑥mgy + 6 ⋅ 𝑥mgz

− 6 ⋅ 𝑥tiy 

𝑦fuvt = 6 ⋅ 𝑥aly − 6 ⋅ 𝑥alz + 6 ⋅ 𝑥fefy − 6 ⋅ 𝑥fefz + 6 ⋅ 𝑥fey + 6 ⋅ 𝑥mgy − 6 ⋅ 𝑥mgz + 6 ⋅ 𝑥tiy  

𝑦foi = −6 ⋅ 𝑥alt + 𝑥aly − 𝑥cax + 𝑥fefy + 𝑥fey + 𝑥mgy − 𝑥nax + 𝑥tiy  

𝑦ole = 𝑥aly +
3 ⋅ 𝑥fefz 

2
+ 𝑥fey + 𝑥mgy − 𝑥OHv −

𝑥tiy 

2
 

𝑦drvdis = 6 ⋅ 𝑥alt + 19 ⋅ 𝑥aly − 12 ⋅ 𝑥alz − 3 ⋅ 𝑥cax + 19 ⋅ 𝑥fefy −
27 ⋅ 𝑥fefz

2
+ 22 ⋅ 𝑥fcy + 22

⋅ 𝑥mgy − 𝑥max − 3 ⋅ 𝑥OHv − 6 ⋅ 𝑥sit +
35 ⋅ 𝑥tiy

2
 

𝑦odrv = −6 ⋅ 𝑥alt − 13 ⋅ 𝑥aly + 6 ⋅ 𝑥alz + 2 ⋅ 𝑥cax − 13 ⋅ 𝑥fefy +
9 ⋅ 𝑥fefz
2

− 16 ⋅ 𝑥fey − 16 ⋅ 𝑥mgy

+ 𝑥nax + 3 ⋅ 𝑥OHv + 6 ⋅ 𝑥sit −
23 ⋅ 𝑥tiy

2
 

𝑦fluvt = 𝑥Fw  

𝑦bu = 𝑥fefy −
3 ⋅ 𝑥fefz
2

 

𝑦mdtw =
3 ⋅ 𝑥tiy 

2
 

𝑦bole = −2 ⋅ 𝑥alt + 2 ⋅ 𝑥aly + 2 ⋅ 𝑥fefy + 2 ⋅ 𝑥fey + 2 ⋅ 𝑥mgy − 2 ⋅ 𝑥sit + 2 ⋅ 𝑥tiy  

𝑦aorsm = 6 ⋅ 𝑥alt  

𝑦pov =
3 ⋅ 𝑥fefz
2

 

In this model, species mix across multiple sites (e.g., Fe²⁺, Mg, and Fe³⁺ across Y and Z; Al 

across Y, Z, and T; OH and O across V and W), forming an order-disorder solution where 

composition and speciation spaces are non-equivalent. Here, we define an ordered endmember as 
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one where each site is occupied by a single species. Thus, slr, drv, ole and bu are ordered 

endmembers, while all others are disordered. 

Implicit order-disorder model In the speciation model, species can redistribute across sites 

while keeping bulk composition fixed, making the site speciation space larger than the 

compositional space. Order-disorder reactions are described by isochemical reactions within or 

between endmembers. An implicit order-disorder model is achieved by transforming a complete 

set of independent endmembers in speciation space (site fractions) into a combination of 

compositional endmembers (bulk parameters) in composition space, along with Q ordering 

vectors to partition bulk parameters across sites (Holland and Powell 1996a, 1996b). This 

demonstrates that the basis can alternatively be described by isochemical reactions rather than 

endmembers (Myhill and Connolly 2021). The basis of independent reactions is found by 

calculating the nullspace of the stoichiometric matrix Sind, which expresses the compositions of 

the independent endmembers in terms of bulk components (atoms per formula unit). This 

nullspace identifies linear dependencies among the endmembers—i.e., combinations that sum to 

zero change in total composition—and represents internal isochemical reactions among them 

(Myhill and Connolly 2021). 

Sind = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

 na  ca  vac  fe  mg  al  fef  ti  si B OH F O
 srl 1 0 0 3 0 6 0 0 6 3 4 0 0
 drv 1 0 0 0 3 6 0 0 6 3 4 0 0
 uvt 0 1 0 0 4 5 0 0 6 3 4 0 0
 fuvt 0 1 0 4 0 5 0 0 6 3 4 0 0
 foi 0 0 1 2 0 7 0 0 6 3 4 0 0
 ole 1 0 0 0 0 9 0 0 6 3 1 0 3

 drvdis 1 0 0 0 3 6 0 0 6 3 4 0 0
 odrv 1 0 0 0 2 7 0 0 6 3 3 0 1
 fluvt 0 1 0 0 4 5 0 0 6 3 3 1 0
 bu 1 0 0 0 0 6 3 0 6 3 1 0 3

 mdtw 1 0 0 0 1 6 0 2 6 3 0 0 4
 bole 1 0 0 0 0 9 0 0 3 6 4 0 0

 aorsm 0 0 1 0 0 10 0 0 5 3 3 0 1
 pov 1 0 0 0 2 0 7 0 6 3 3 0 1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mathematically, any vector Rind in the nullspace satisfies: 𝑆ind ⋅  𝑅ind = 0. Each row vector in 

𝑅ind is a balanced reaction: the left-hand side (negative coefficients) and right-hand side 
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(positive coefficients) consist of different combinations of endmembers that together conserve 

the total number of atoms of each bulk component. This gives 4 reactions Rind: 

-2 drv - 7 bu + 6 ole + 3 pov 

-2 drv - ole + 3 odrv 

-drv+ drvdis 

4 drv + 3 fuvt - 4 srl- 3 uvt 

Each of these reflects redistribution of atoms within the solid solution space (e.g., order–disorder 

or coupled substitutions), without changing the overall bulk chemistry. In analyzing site-species 

redistribution within Rind, the dot product of reaction vectors Rind with the transpose of the 

stoichiometry matrix in site fractions EindT generates isochemical reactions in terms of site 

exchanges, represented as ordering vectors Q (Myhill and Connolly 2021): 

𝑄1 = 6aly − 3alz − 4fefy + 2fefz − 2mgy + mgz + OHv − 3OHw − Ov + 3Ow 

Q2 = aly −
alz

2
−mgy+

mgz

2
+ OHv − 3OHw − Ov + 3Ow 

𝑄3 =  
aly

3
−
alz

6
−
mgy

3
+
mgz

6
 

𝑄4 = −fey +
fez

2
+ mgy −

mgz

2
 

Ordering vectors simplify speciation space by projecting it into bulk compositional space, 

reducing dimensions. This approach projects the site species polytope along ordering vectors 

onto a bulk composition hyperplane, allowing the model to be represented through bulk 

compositionally independent endmembers and order parameters. The resulting shape remains 

convex because linear projections of convex sets are themselves convex, ensuring the 

thermodynamic model maintains a physically meaningful, stable solution space. Four speciation 

endmembers are replaced by ordering vectors Q, with remaining endmembers derived from bulk 

parameters instead of site fractions. The maximum disordered limit is obtained by setting Q =0. 

Holland and Powell solid solution models commonly define speciation endmembers in order-

disorder models using bulk parameters and Q vectors (Powell and Holland 1999; White et al. 
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2007; Green et al. 2016; Weller et al. 2024), and other authors have since adopted this 

formulation (Dachs and Benisek 2019, 2021, 2024; Dachs et al. 2021).  

Isochemical Q vectors indicate how bulk parameters are distributed across sites to reproduce 

independent speciation endmembers, which appear dependent in terms of bulk parameters. Our 

model includes isochemical homogeneous reactions between endmembers with identical bulk 

compositions (e.g., -drv + drvdis, reaction 3) and heterogeneous isochemical reactions among 

multiple endmembers which individually have distinct bulk compositions (e.g., 4 “drv” + 3 

“fuvt” - 4 “srl” - 3 “uvt”, reaction 4). All Q vectors must be retained when projecting to lower 

chemical subsystems. One unfortunate consequence of using heterogeneous isochemical 

reactions is for instance, that projecting to an Mg-free system would eliminate Al-Fe and Fe-Al 

substitutions, requiring a basis transformation. Homogeneous isochemical reactions are simpler 

to interpreted as the Q vector is directly related to the ordering/disordering of elements among 

sites, as disordered endmembers share bulk composition with ordered counterparts, which 

facilitates easy projections to lower chemical subsystems. However, we prioritised naturally 

occurring disordered endmembers over theoretical ones, as these can be physically measured and 

have been observed in nature at ≥50% concentrations, the IMA-CNMNC requirement for 

designation as a nomenclature endmember 

Homogeneous Q3 involves Mg-Al disorder among Y-Z sites (drvdis = drv, disordered = 

ordered). Heterogeneous isochemical reactions are more complex to interpret and require a basis 

change to yield homogeneous isochemical reactions; however, by qualitatively analyzing and 

removing redundancies across the Q vectors, we can identify the site-specific ordering reactions 

represented. Although each isochemical reaction corrects for bulk composition differences 

between ordered and disordered endmembers using additional endmembers, the main order-

disorder interactions are as follows: Fe2+-Al ordering among Y-Z aligns with Q4 (fuvt = uvt), 

Fe³⁺-Al ordering among Y-Z with Q1 (pov = bu), and OH-O ordering among V-W with Q2 (odrv 

= drv). Fe-Mg ordering among Y-Z sites is dependent, as is order-disorder on the T site, 

constrained by site fraction summing to 1. BT is any B > 3 apfu, and AlT=6−Si−BT. In natural 

samples, BT was fixed at 3 apfu (no B on T), but in the synthetic olenite, BT > 3, indicating B–

Si substitution at T. AlT was adjusted accordingly to maintain a total T-site occupancy of 6 apfu. 
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2.2 Tourmaline Bulk Compositional Model 

Many users of the thermodynamic model will only have bulk compositional data, without 

detailed site occupancy information from techniques such as single-crystal XRD. Because site 

distributions control key thermodynamic properties like entropy and free energy, traditional 

thermodynamic modelling requires more than just bulk chemistry. To overcome this, the bulk 

compositional model simplifies the problem by removing endmembers which become invariant 

in bulk compositional parameters by grouping chemically active sites which are similar. This 

allows thermodynamic properties to be modelled directly from bulk compositions without 

assuming specific site assignments. It avoids large errors associated with heuristic site-

distribution rules and enables modelling of phase stability and compositional trends even when 

ordering is unknown. In addition, by merging sites together, the model effectively reduces the 

dimensionality of composition space, allowing a lower-parameter thermodynamic model to be 

calibrated. This loosening of compositional constraints increases the robustness of the fit, not by 

introducing greater uncertainty in thermodynamic properties, but by allowing greater flexibility 

in composition space to accommodate natural variations across a broad range of samples.  

Tourmaline reciprocal model with dependent speciation: X(YZ)9SixAl(1-x)(VW)4  The 

compositional model aids thermodynamic modelling for users with only chemical data, 

providing insights into property variations despite incomplete structural information. The 

original tourmaline formula is expressed as XY₃Z₆(T₆O₁₈)(BO₃)₃V₃W. To obtain the reciprocal 

formula from the original tourmaline formula, we remove all atoms that are structurally fixed 

and do not participate in substitution or disorder. These include: 

• B at the [BO₃]₃ group: B is always present as 3 apfu and does not vary. 

• Framework oxygen atoms: 18 from T₆O₁₈ and 9 from [BO₃]₃ groups, totaling 27 O atoms 

that are not substitutable. 

Excluding these leaves only the X, Y, Z, T, V, and W sites with variable cation and anion 

occupancy. To express this in reciprocal form: 

1. Combine Y₃ + Z₆ = (YZ)₉: These are the octahedral sites that can accommodate various 

cations (e.g., Mg, Fe²⁺, Al, Ti, Fe³⁺). 
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2. Reduce T₆ to SixAl(1–x): Since T-site occupancy is constrained to Si and Al only, and 

total T = 6, Al content is directly dependent on Si (i.e., Alₜ = 6 – Si). 

3. Merge the V₃ and W sites into (VW)₄: these sites host anions (OH, O, F), but in most 

tourmaline compositions, the substitution is across the combined (VW) group due to 

crystallographic and energetic similarities. 

Thus, the simplified reciprocal formula (Wood and Nicholls 1978; Powell and Holland 1993; 

Connolly 2016) with dependent speciation becomes: 

X(YZ)₉SixAl(1–x)(VW)₄ 

Aluminium occurs twice across two sites, typically indicating order-disorder, but here, T-site Al 

depends directly on Si in SixAl(1-x) and cannot independently order. Thus, speciation is fixed by 

the site occupancy constraint. In the rest of the model, X(YZ)9(VW)4, each species is confined to 

a single site, so each speciation point is uniquely defined by a bulk composition, making 

composition and speciation spaces identical, a pure reciprocal model described by bulk 

parameters.  

Derivation of the reciprocal model with dependent speciation Derivation of the bulk model 

follows the same steps as the speciation model and thus references are not duplicated.  

X(YZ)9SixAl(1-x)(VW)4 with: [Na, Ca, Vac][Fe2+,Mg, Al, Fe3+,Ti]9[Si,Al]6[OH, O, F]4.  

Site charges are as follows: [1,2,0],[18,18,27,27,36],[24,18],[−4,−8,−4], balanced again to 45 e-. 

B is excluded from the T site; though theoretically constrained by bulk composition, it was 

omitted in this model for robustness. The P matrix and b vector are: 

𝑃 =

(

 
 
 

Na Ca Vac Fe2+ Mg Al Fc3+ Ti Si Al OH O F
𝑋 1 1 1 0 0 0 0 0 0 0 0 0 0
(𝑌𝑍) 0 0 0 1 1 1 1 1 0 0 0 0 0
𝑇 0 0 0 0 0 0 0 0 1 1 0 0 0

(𝑉𝑊) 0 0 0 0 0 0 0 0 0 0 1 1 1
𝑒 − 1 2 0 18 18 27 27 36 24 18 −4 −8 −4)

 
 
 

 

 

𝑏 = (
𝑋 (𝑌𝑍) 𝑇 (𝑉𝑊) 𝑒−

1 1 1 1 45
) 
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These equality constraints were used in vertex enumeration to obtain a polytope with 104 

endmembers. The charge balance constraint, independent of composition, defines a hyperplane 

in bulk composition polytope, as occupancy of unequal valences occurs on three sites 

X(YZ)9(VW)4 and are interdependent. For the X(YZ) 9SixAl(1-x)(VW)4 model, nsite-species = 13, 

nsites = 4 and c=1, so there are 9 independent endmembers. We selected the following 9 

independent endmembers to describe the dimensions of the 9D hyperplane in the composition 

polytope. The complete bulk formulas of the independent endmemeber set for the bulk model 

including the sites with fixed occupancy are: 

Kind = 

(

 
 
 
 
 
 
 
 

1X 9(YZ) 6T 3B 27O 4(VW)
 schorl (srlB) Na Fe3Al6 Si6 B3 O27 OH4

 dravite (drvB) Na Mg3Al6 Si6 B3 O27 OH4
 uvite (uvtB) Ca Mg4Al5 Si6 B3 O27 OH4
 foitite (foiB) Vac Fe2Al7 Si6 B3 O27 OH4
 olenite (oleB) Na Al9 Si6 B3 O27 OH3

 fluor-uvite (fluvtB) Ca Mg4Al5 Si6 B3 O27 OH3F
 buergerite (buB)* Na Fef3Al6 Si6 B3 O27 OH3

 magnesium-dutrowite (mdtwB)* Na MgTi2Al6 Si6 B3 O27 O4
 alumina-oxy-rossmanite (aorsmB) Vac Al9 Si5Al B3 O27 OH3O )

 
 
 
 
 
 
 
 

 

Asterix indicate the same modifications compared to the nomenclature endmembers as in the 

speciation model. We added an additional B to the abbreviation to indicate that it is an 

endmember defined using bulk parameters.  

The stoichiometry matrix in terms of the complete set of bulk parameters is: 

Eind = 

(

 
 
 
 
 
 
 

 na  ca  vac  fe mg  al  fef ti si B OH F O
 shlB 1 0 0 3 0 6 0 0 6 3 4 0 0
 drvB 1 0 0 0 3 6 0 0 6 3 4 0 0
 uvtB 0 1 0 0 4 5 0 0 6 3 4 0 0
 foiB 0 0 1 2 0 7 0 0 6 3 4 0 0
 oleB 1 0 0 0 0 9 0 0 6 3 1 0 3

 fluvtB 0 1 0 0 4 5 0 0 6 3 3 1 0
 buB 1 0 0 0 0 6 3 0 6 3 1 0 3

 mdtwB 1 0 0 0 1 6 0 2 6 3 0 0 4
 aorsmB 0 0 1 0 0 10 0 0 5 3 3 0 1)
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Selection of Robust Independent Bulk Parameter Set for Endmember Description The null 

space of the stoichiometry matrix reveals 4 linear dependencies among bulk parameters in the 

bulk composition model: 

al − 13ca + 2fe + fef + 2mg − 12na + O − 11vac 

−al + 9ca + F − 2fe − fef − 2mg + 8na + OH + 7vac 

B− 3ca − 3na − 3vac 

al − 15ca + fe + fef + mg − 15na + si + ti − 15vac 

Using our database, we tested measured tourmaline formulas (normalised projected) in terms of 

bulk parameters and enumerated 512 possible independent bulk parameter sets. 250 robust 

parameters sets remains which did not give rise to negative bulk parameters after back 

transformation or gave rise to non-summing-to-1 endmember fractions. Electronic Appendix 2A 

provides the mean and standard deviation of endmember fractions for these sets. We selected the 

independent bulk parameter set: 

{na, ca, fe, mg, al, fef, ti, si, F}.  

Mapping from bulk parameter space to independent endmember space. The square 

independent endmember stoichiometry matrix using these 9 independent bulk parameters is 

(Find): 

Find = 

(

 
 
 
 
 
 
 

 na  ca  fe  mg  al  fef  ti  si F
 srlB 1 0 3 0 6 0 0 6 0
 drvB 1 0 0 3 6 0 0 6 0
 uvtB 0 1 0 4 5 0 0 6 0
 foiB 0 0 2 0 7 0 0 6 0
 oleB 1 0 0 0 9 0 0 6 0

 fluvtB 0 1 0 4 5 0 0 6 1
 buB 1 0 0 0 6 3 0 6 0

 mdtwB 1 0 0 1 6 0 2 6 0
 aorsmB 0 0 0 0 10 0 0 5 0)

 
 
 
 
 
 
 

 

Which resulted in these linear mapping equations by matrix inversion: 
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srlB =  
2 ⋅ al

9
+
2 ⋅ ca

3
+
5 ⋅ fe

9
+
2 ⋅ fef

9
+
2 ⋅ mg

9
+
2 ⋅ na

3
−
4 ⋅ si

9
+
2 ⋅ ti

9
 

drvB = −
4 ⋅ ca

3
+
mg

3
−
ti

6
 

uvtB =  ca − f 

foiB =  −
2 ⋅ al

3
− ca −

fe

3
−
fef

3
−
mg

3
− na +

2 ⋅ si

3
−
ti

3
 

oleB = −
2 ⋅ al

9
+
2 ⋅ ca

3
−
5 ⋅ fe

9
−
5 ⋅ fef

9
−
5 ⋅ mg

9
+
na

3
+
4 ⋅ si

9
−
5 ⋅ ti

9
 

fluvtB =  f 

buB =  
fef

3
 

mdtwB = 
ti

2
 

aorsmB =  
2 ⋅ al

5
+
2 ⋅ fe

5
+
2 ⋅ fef

5
+
2 ⋅ mg

5
−
3 ⋅ si

5
+
2 ⋅ ti

5
 

2.3 Other uses for the independent bulk parameters and site fractions 

Beyond thermodynamics, independent endmember and bulk/site fraction spaces improve mineral 

classification, simplify solid solutions, and enhance statistical analyses by removing constant-

sum constraints. In geochemistry, they isolate environmental signals in provenance studies, and 

in machine learning, they provide independent variables for predictive modelling. 

Independent bulk /site fractions as a way to remove crystal chemical control Independent 

bulk/site fractions can replace all site fractions, removing variance from crystal chemical control 

(Thompson Jr 1969) and isolating zoning patterns driven by external factors like P-T conditions 

and chemical potentials. This approach assumes selected endmembers capture all exchange 

reactions in the tourmaline system. It aids multivariate analysis (e.g., principal component 

analysis (PCA)) in provenance studies by eliminating crystal chemical effects, ensuring 

environmental signals remain distinct (Spear et al. 1982; Thompson Jr. 1982a, 1982b). 

Additionally, transforming independent endmembers removes constant-sum constraints, 

allowing direct application of traditional statistical methods without having to resort to 

complicated compositional statistics. 
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Concise Nomenclature A concise thermodynamic mineral nomenclature can be based on 

independent bulk/site fractions, which are always positive linear combinations of independent 

endmembers. This avoids the issue of negative endmembers while providing a practical way to 

classify solid solutions. For example, all tourmalines with Mg as dominant independent site 

fraction/bulk parameter tourmalines could be labeled as dravite, simplifying tourmaline 

nomenclature from 40+ endmembers to just 9 in bulk models or 14 in speciation models. 

3. TRAINING SET ENDMEMBER FRACTIONS 

In Chapter 1, we developed a set of internally consistent tourmalines which we used as training 

set for thermodynamic model calibration. Tourmalines in this set were characterised using 

identical instruments and lab procedures to ensure coherent normalization. They cover a broad 

compositional range, with uncertainties incorporated from analytical methods, sample 

heterogeneity, and assumptions. The database includes natural solid solutions and select 

synthetic samples. Monte Carlo simulations provided 2000 optimised formulas, with 

uncertainties derived from their mean and standard deviation.  

Cell volumes and their uncertainties were extracted from the structure solution of the SC-XRD 

(natural samples) and Rietveld refinement of P-XRD (synthetics). To obtain molar volumes (Vm) 

we converted Vcell (Å
3
) to cm3 by multiplying by 10−24, calculated 𝑉𝑚 =

𝑁𝐴𝑉cell 

𝑍
, with Z=3 as 

there are 3 formula units of tourmaline in the hexagonal cell, and converted cm3/mol to J/mol/bar 

using 1 cm³/mol = 1 J/mol/kPa, because 1 Pa = 1 J/m³. Since 1 bar = 100 kPa, this implies 

1 cm³/mol = 0.01 J/mol/bar. While not SI, this unit is conventional in geosciences for expressing 

molar volume. 

Projection and mineral re-optimisation Samples with >0.2 apfu impurities were excluded. 

Tourmalines with <0.2 apfu impurities were projected, their formulas were renormalised for 

charge balance and full site occupancy.  

Projection and re-optimisation simplified the formulas to fit the charge-balanced thermodynamic 

model, reducing dimensionality, assuming they have minimal (though untested) influence. 

Charge balance (I=60+F+(1−F)×2) was an optimisation goal but was not strictly constrained in 

the initial formula optimisation in chapter 1 due to F measurement uncertainty. Projection was 



160 
 

chosen over least-squares fitting to map the higher-order composition space to a lower-order 

model, providing cleaner equations for linking site fractions and bulk parameters to endmembers. 

In MATLAB, re-optimisation fixed the fluor content (F) in each Monte Carlo run, as it 

determined charge balance in the objective function. This objective function minimised 

deviations from initial estimates while enforcing charge balance and site occupancy. The 

objective function, 

Obj(𝑥) = ∑(
𝑥 − 𝑥init 

𝑥init + 𝜖
)
2

⋅ (1 −  ZeroMask ) + (
∑𝑥𝑖 ⋅ 𝑉𝑖 − 𝐼

𝐹 + 𝜖
)
2

+ ∑SiteConstr(𝑥)2 

includes three squared terms: deviation from the initial composition, charge balance, and site 

occupancy constraints. Here, x is the composition vector, xinit the initial composition, V the site 

species valences, and I the target charge. Weighting by 1/xinit emphasizes smaller components in 

proportion to their initial amounts. The ZeroMask is a logical array that flags variables set to zero 

in the initial composition /speciation and ensures they remain unchanged during optimisation by 

excluding them from the deviation penalty. It ensures these variables are excluded from the 

penalty term in the objective function, preventing division by zero and avoiding unnecessary 

penalization of values already fixed by the bounds. The charge balance target, I=60+F+(1−F)×2, 

is similarly weighted by 1/F, strengthening charge balance for samples with low fluorine. The 

site constraints differ between models: 

Bulk composition model: 

na + ca + vac = 1, fe + mg + al + fef + ti + si = 15, b = 3, h + o = 4 − 𝐹 

with a lower bound of 0 on each variable. 

Speciation model: 

nax + cax + vx = 1, fey +mgy + aly + fefy + Tiy = 1, alz + mgz + fez + fefz = 1
 sit + alt + bt = 1, OHv + Ov = 1, Ow + OHw = 1 − Fw

 

with each variable constrained between 0 and 1. 
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With a quadratic objective and linear constraints, this convex problem ensures any local 

minimum is global (Boyd and Vandenberghe 2004) . MATLAB 2022a’s fmincon efficiently 

handles constraints, with site fractions adjusted for projected elements of varying valences to 

ensure both cation (summing to 1, including vacancies) and anion (charge balance) totals are 

closely met. For reoptimizing bulk parameters, we used the interior-point algorithm for its 

efficient convergence in smaller, well-constrained problems. For the larger, complex site fraction 

reoptimisation, we applied sequential quadratic programming, which handles extensive 

constraints through iterative approximations. This combination ensured efficient, accurate 

optimisation across scales. 

The initial formula optimiser was not used because the electrons per site and bond valences 

derived from bond lengths included the impurities. Reoptimised bulk parameters and site 

fractions, charge residuals, and discrepancies between measured and reoptimised tourmaline 

compositions are detailed in Electronic Appendix 2B.  

All 2000 MC reoptimised bulk parameters and site fractions were used to calculate endmember 

fractions and their uncertainties for both the speciation and bulk compositional models using the 

mapping equations derived in paragraph 2.1 and 2.2, respectively.  

To concisely describe the solution polytope, endmembers must be linearly independent, which 

inherently allows negative endmember fractions, as the description using all polytope vertices 

requires hundreds of endmembers and thousands of interactions. Negative fractions, though 

mathematically valid, can bias regression and hinder extrapolation if training data is poorly 

distributed. This leads to interdependent fractions, such as uvt and fluvt or odvt and drvdis, 

which describe F content and OH-O disordering, respectively, even in cases where the solid 

solution lacks a uvit or dvt component. Balanced datasets, careful calibration, and rigorous 

validation are therefore essential for consistent and reliable thermodynamic models. Bar plots of 

the endmember fractions for each sample and violin plots illustrating their distributions in the 

training set are provided in the Appendix 2A. 

Data Screening Multivariate outliers were identified using the Mahalanobis distance 

(Mahalanobis 1936) (reprint), measuring each observation's distance from the mean while 
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accounting for variable correlations, and flagged via Hotelling's T2 test with a critical F-

distribution threshold (p<0.05). A minimum of five observations per variable was required. 

Outliers included F-buergerite (tm64) for the X(YZ)9SixAl(1-x)(VW)4  model and F-buergerite 

(tm64) along with the synthetic B-olenite for the complete speciation model XY3Z6T6V3W. 

Principal Component Analysis of Sample Distribution in X-Space (Speciation Model) To 

directly assess multicollinearity and identify which thermodynamic parameters are poorly 

resolved due to insufficient sampling of endmember X-space, principal component analysis 

(PCA) was performed on the distribution of samples in independent endmember fraction space 

for the speciation model. 

 

Figure 2A. Scree plot showing the variance explained by each principal component for the 

speciation model. Principal component analysis (PCA) reveals that the first two principal 

components (PC1 and PC2) capture the majority of the variance across the dataset, while higher 

components contribute progressively less. The sharp drop in explained variance indicates that 

sample variability is largely confined to a low-dimensional subspace in X-space, and highlights 

directions that are poorly sampled, contributing to multicollinearity in model parameters 
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The scree plot (Figure 2A) shows that the first two principal components (PC1 and PC2) capture 

the majority of the variance, while higher-order components contribute minimally, indicating 

that variation is confined to a lower-dimensional subspace. The biplots for PC1 vs PC2, PC1 vs 

PC3, and PC1 vs PC4 (Figures 2B–2D) illustrate that samples are primarily distributed along a 

dominant axis (PC1), with progressively less spread in subsequent principal component 

directions. 

 

Figure 2B. PCA biplot of PC1 versus PC2 for the distribution of samples and endmember 

loadings in the speciation model. Samples are primarily distributed along PC1, with limited 

spread along PC2. Loading vectors show that endmembers such as odrv, foi, and drvdis 

dominate the primary sampled variability, whereas endmembers like pov, mdtw, bu, and bole 

exhibit minimal independent variance. This confirms that certain directions in endmember X-

space are poorly represented, weakening parameter resolution. 
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Figure 2C. PCA biplot of PC1 versus PC3 for the distribution of samples and endmember 

loadings in the speciation model. The PC1 vs PC3 projection further illustrates the confinement 

of samples along dominant axes, with minimal independent variability along PC3. Endmember 

loadings in this plane reinforce those key compositional directions involving pov, mdtw, bu, and 

related endmembers are underexplored in the current dataset. 
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Figure 2D. PCA biplot of PC1 versus PC4 for the distribution of samples and endmember 

loadings in the speciation model. Samples show almost no meaningful spread along PC4, 

confirming that this direction is extremely poorly sampled. Endmember contributions to PC4 are 

negligible, supporting the conclusion that multicollinearity stems from missing coverage in 

certain compositional vectors, which should guide future synthesis and sample acquisition 

strategies. 

PCA loadings reveal that endmembers such as odrv, foi, and drvdis dominate the major sampled 

directions (PC1 and PC2), whereas endmembers like pov, mdtw, bu, and bole show very low 

variance across the dataset. These poorly sampled vectors correspond to parameter directions 

that are weakly constrained and contribute strongly to multicollinearity in the model calibration. 
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Thus, PCA analysis clearly shows that multicollinearity arises not simply from model structure, 

but from incomplete coverage of endmember space. Poor resolution along specific compositional 

directions are directly linked to the instability of the associated thermodynamic parameters. 

To address this, targeted synthesis or selection of future samples should prioritise compositions 

enriched in pov, mdtw, bu, and bole, and compositions that decouple the strong covariation 

observed between fluvt, uvt, and drvdis. Expanding the dataset into these poorly sampled regions 

of X-space would systematically reduce multicollinearity, improve parameter resolution, and 

enhance the predictive robustness of the thermodynamic model. 

Principal Component Analysis of Sample Distribution in X-Space (Bulk Model) To further 

assess multicollinearity and incomplete sampling in X-space, principal component analysis 

(PCA) was also applied to the distribution of samples in the bulk endmember fraction model. 

The scree plot (Figure 2E) shows that variance is strongly concentrated in the first two principal 

components (PC1 and PC2), with subsequent components contributing minimally, indicating 

confinement to a low-dimensional subspace. 
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Figure 2E. Scree plot showing the variance explained by each principal component for the bulk 

model. Principal component analysis (PCA) shows that the first two principal components 

capture most of the variance, while higher components contribute little, indicating poor sampling 

across certain endmember directions in X-space. 

The PCA biplots for PC1 vs PC2, PC1 vs PC3, and PC1 vs PC4 (Figures 2F–2H) illustrate that 

sample variability is again dominated by a primary direction (PC1), with limited independent 

variation along higher principal components. 

 

Figure 2F. PCA biplot of PC1 versus PC2 for the distribution of samples and endmember 

loadings in the bulk model. Samples are strongly clustered along PC1, with limited spread along 

PC2. Endmember loadings show that drvB, foiB, and oleB dominate the primary variability, 

while endmembers like buB, mdtwB, and aosrmB contribute little, revealing underexplored 

directions. 
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Figure 2G. PCA biplot of PC1 versus PC3 for the distribution of samples and endmember 

loadings in the bulk model. PC1 vs PC3 projections confirm that sample spread along PC3 is 

minimal, reinforcing that much of the X-space is poorly sampled beyond the dominant PC1 

direction. 

 



169 
 

 

Figure 2H. PCA biplot of PC1 versus PC4 for the distribution of samples and endmember 

loadings in the bulk model. Samples show negligible spread along PC4. This further 

demonstrates that poor coverage along specific compositional directions leads to 

multicollinearity and uncertainty in the associated thermodynamic parameters. 

Examination of the loading vectors reveals that endmembers such as drvB, foiB, and oleB 

dominate PC1 and PC2, while endmembers like buB, mdtwB, and aosrmB contribute very little 

to the major axes. Poor sampling of these latter directions explains instability and correlation of 

parameters associated with these endmembers in the thermodynamic model. 

Thus, the PCA for the bulk model confirms that multicollinearity results from limited exploration 

of X-space, not solely model structure. Future synthesis efforts should target compositions 

enriched in buB, mdtwB, and aosrmB, and attempt to better separate substitutions involving oleB 
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and foiB. Expanding the sampling coverage in these poorly represented directions would 

significantly improve parameter resolution and model robustness. 

4. TEST SET: ENDMEMBER FRACTIONS 

Literature dataset molar volume For molar volume, SC-XRD data provides a literature-based 

test set, but inconsistencies in preprocessing, instrumentation, and assumptions limit its ability to 

fully evaluate model performance. The mineral formulas were taken directly from the papers, 

projected and renormalised as described in the former paragraph, and fitted to the same 

endmember equations as the training set. Ideally, an internally consistent dataset would be split 

into training, validation, and test sets (50-25-25%) (Hastie et al. 2017), but data scarcity 

necessitates reusing an (inconsistent) test set for both selection and assessment. Using the test set 

for both purposes introduce data leakage and inflates performance estimates. Despite its 

imperfections, the test set spans the predictor and feature space, balancing central regions with 

sparse outliers to evaluate interpolation and extrapolation. Extreme compositions are a strong test 

for the predictive power as they likely reflect chemical differences rather than normalization 

inconsistencies. It simulates real-world scenarios with incomplete or inconsistent inputs, offering 

insights into both predictive power and robustness. Performance proxies help to identify models 

that balance robustness and accuracy for thermodynamic modelling. Future improvements 

should involve creating an internally consistent test set using the same mineral optimisation. This 

would separate robustness, evaluated using inconsistent test sets, from generalisation, assessed 

through the consistent test set, ensuring a clearer distinction between the two. 

Bulk model The test database for the bulk composition model included 97 SC-XRD tourmalines 

that comply with the same selection criteria as our training dataset within the modelled chemical 

system, sourced from 31 literature references (MacDonold and Hawthorne 1995; Taylor et al. 

1995; Pieczka 1996; Bloodaxe et al. 1999; Cámara et al. 2002; Ertl et al. 2003, 2010, 2012, 

2016; Bosi and Lucchesi 2004; Pieczka and Kraczka 2004; Bosi et al. 2005, 2010, 2015, 2017, 

2022; Cempírek et al. 2006; Bosi 2008; Bačík et al. 2012, 2013; Bosi and Skogby 2013; Gadas et 

al. 2014; Gatta et al. 2014; Bačík 2015; Pieczka et al. 2018; Vereshchagin et al. 2018; Berryman 

et al. 2019; Andreozzi et al. 2020; Scribner et al. 2021; Ballirano et al. 2022; Biagioni et al. 

2023). Bar plots of the endmember fractions for each sample and violin plots illustrating their 

distributions in the test set are provided in the Appendix 2A. 
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In Table 2A, the inverse Gram matrix, (𝑋𝑋′)−1 compares compositional spaces by indicating 

predictor constraints. Smaller diagonal values reflect broader coverage and better independence, 

while larger values indicate redundancy or poor constraints (Montgomery et al. 2021). In the test 

set, smaller diagonal values (e.g., srlB=0.41 vs. 1.20, mdtwB=15.26 vs. 29.47) indicate broader 

coverage and better validation capability, though some predictors (fluvtB=0.56 vs. 0.40, 

buB=2.72 vs. 1.9) are better constrained in the training set, reducing their validation power. 

Overall, the test set reduces redundancy and offers a more diverse validation range. 

The Variance Inflation Factor (VIF) measures how much a predictor’s coefficient variance is 

inflated due to multicollinearity, given by: VIF(𝑋𝑗) =
1

1−𝑅𝑗
2 where 𝑅𝑗

2is the coefficient of 

determination from regressing Xj on other predictors (Montgomery et al. 2021). The VIF values 

reveal that multicollinearity is generally reduced in the test set. For example, oleB drops from 

9.16 in training to 6.05 in the test, and foiB from 9.78 to 1.76, suggesting improved predictor 

independence. However, some predictors, like uvtB, experience an increase in VIF (1.70 to 

3.59), indicating higher correlation under test conditions (see also Figure 2I). 

Compositional overlap, measured by Train in Test (%) and Test in Train (%), shows that most 

predictors maintain high coverage across both sets (e.g., srlB, drvB, and foiB exceed 90% in both 

metrics). However, aormsB shows limited overlap, with only 63.46% of training samples within 

the test range, suggesting novel compositional combinations in the test set. Overall, the test set 

offers broader coverage and reduced multicollinearity and tighter constraints for certain 

predictors. 

Table 2A. Combined evaluation of compositional overlap, predictor constraints, and 

multicollinearity for the speciation model. Train in Test (%) and Test in Train (%) indicate the 

percentage of samples covered by the opposing set. VIF measure multicollinearity, with higher 

values reflecting stronger predictor correlations and inflated variance. Diagonal of X'X indicate 

predictor constraints, where smaller values reflect broader coverage and reduced redundancy, 

and larger values indicate poor constraints and limited variability. 
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Independent Variable 

 
VIF 

(Training) 

Diagonal of 

X'X 

(Training) 

Train in 

Test (%) 

VIF 

(Test) 

Diagonal of 

X'X (Test) 

Test in 

Train 

(%) 

srlB  4.3557 1.2017 100.00 1.9391 0.4113 95.88 

drvB  2.5402 0.8536 100.00 1.1385 0.1786 92.78 

uvtB  1.6999 0.6050 96.15 3.5908 0.4415 86.60 

foiB  9.7840 3.2866 100.00 1.7587 0.4030 96.91 

oleB  9.1576 7.8468 100.00 6.0527 3.0180 95.88 

fluvtB  1.0072 0.4023 100.00 4.3375 0.5602 85.57 

buB  1.7345 1.9030 100.00 5.3988 2.7165 98.97 

mdtwB  1.3731 29.4688 100.00 1.9665 15.2566 97.94 

aormsB  7.3938 3.2235 63.46 2.6157 1.7879 98.97 

To visualize these relationships, we used Principal Component Analysis (PCA); see Hastie et al 

(2017) for technical details. PCA reduces the data to two dominant components (PC1 and PC2) 

(Figure 2I), providing a visual representation of the overlap. Convex hulls are constructed to 

define the boundaries of each set, with test samples falling outside the training convex hull 

indicating potential extrapolation. For the bulk model, PC1 and PC2 explain 65.6% of the 

variance in the training set and 57.6% in the test set.  
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Figure 2I. Scatter plot showing the projection of the training and test sets of the Bulk model onto 

the first two principal components (PC1 and PC2). Convex hulls in PCA1-PCA2 space 

encapsulate the boundary of each set, highlighting areas of overlap and potential extrapolation 

where samples from one set fall outside the convex hull of the other. Sample labels are included 

to identify specific data points. Percentage of training samples in test convex hull: 80.77%. 

Percentage of test samples in training convex hull: 72.16% 
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Figure 2J. Histogram displaying the Mahalanobis distances of test samples from the centroid of 

the training set for the Bulk model. The distances quantify how well the test samples align with 

the core distribution of the training set, with larger distances indicating potential outliers or 

regions of poor coverage. 

The Mahalanobis distance (Figure 2J) further quantifies the degree of overlap by measuring how 

far each test sample deviates from the center of the training distribution, accounting for 

correlations among variables. A histogram of these distances highlights potential outliers and 

assesses whether the test set is well-covered within the training space. 
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Figure 2K. Comparing of composition space for the training and test set for the Bulk model 

Multivariate visualization comparing the standardized distributions of predictors between the 

training and test sets. Standardization (zero mean and unit variance) ensures comparability across 

variables with different units and scales. Each line represents a sample crossing axes for the 

predictors, highlighting variables where the test set significantly diverges from the training set. 

A parallel coordinate plot (Figure 2K) visualizes these overlaps and divergences, offering a 

comprehensive view of both global and variable-level coverage. Together, these analyses show 

relatively good compositional overlap, ensuring that model validation reflects meaningful 

generalisation rather than extrapolation artifacts. 

Speciation model The speciation model test set comprised the same 97 SC-XRD tourmalines as 

the bulk composition model test set, supplemented by 7 additional tourmalines, and 3 extra 

literature sources, totalling 104 tourmalines (Ertl and Hughes 2002; Marler et al. 2002; Marschall 

et al. 2004) . Bar plots of the endmember fractions for each sample and violin plots illustrating 

their distributions in the test set are provided in the Appendix 2A. 

The smaller (𝑋𝑋′)−1 diagonal values in the speciation test set (Table 2B) indicate broader 

speciation space, better constraints and reduced redundancy compared to the training set. This 

enables more independent molar volume validation, though predictors like ole, bu and mdtw 

remain weakly constrained.  

VIF values reveal that multicollinearity is generally lower in the test set. For example, srl drops 

from 24.86 in training to 4.42 in the test, and foi from 28.42 to 1.52, indicating reduced 

interdependence and more stable coefficient estimation. However, certain predictors, such as uvt 

(4.60 in the test vs. 15.56 in training) and drvdis (5.31 in the test vs. 22.99 in training), retain 

moderate VIFs probably due to near-equality of drv and drvdis endmembers which might 

indicate mineral formula optimisation challenges. 

Compositional overlap shows that most predictors have near-complete overlap, with srl, drv, foi, 

and fuvt covering 100% of training samples in the test set and over 90% of test samples in the 

training set. However, drvdis shows limited overlap (64.08% Test in Train), and bole highlights 

novel conditions with only 52.83% Train in Test. Overall, the test set improves coverage and 



176 
 

reduces redundancy, but predictors with high VIFs or limited overlap, such as drvdis and bole, 

require careful consideration for validation robustness. 

Table 2B. Combined evaluation of compositional overlap, predictor constraints, and 

multicollinearity for the second model. Column definitions and interpretations are the same as 

described in Table 2A. 

Independent 

Variable 

VIF 

(Training) 

Diagonal of 

X'X 

(Training) 

Train in 

Test (%) 
VIF (Test) 

Diagonal of 

X'X (Test) 

Test in 

Train (%) 
 

srl 24.8593 10.8686 100.00 4.4226 0.7042 91.26  

drv 8.8975 7.4539 100.00 3.4534 0.3355 73.79  

uvt 15.5622 5.5483 100.00 4.5981 0.6230 97.09  

fuvt 2.3110 25.3038 100.00 2.5523 2.6074 90.29  

foi 28.4230 14.4832 100.00 1.5208 0.3168 97.09  

ole 6.1399 24.3884 100.00 12.8605 16.8221 93.20  

drvdis 22.9906 9.2240 100.00 5.3057 0.1887 64.08  

odrv 8.0786 1.4863 100.00 1.5770 0.1747 91.26  

fluvt 1.8073 0.7100 100.00 1.9574 0.6208 86.41  

bu 9.2310 18.4398 98.11 13.1603 18.1288 90.29  

mdtw 1.3892 27.7116 98.11 3.4332 25.4434 98.06  

bole 2.4609 3.6161 52.83 1.3377 1.2142 100.00  

aorms 16.7683 18.1755 100.00 2.5404 1.6376 99.03  

pov 5.1553 221.7398 100.00 1.1743 3.8737 95.15  
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The low VIF of pov in the training set (5.1553) indicates minimal multicollinearity with other 

predictors, but its high diagonal value in the inverse Gram matrix (221.7398) reveals poor 

constraint. This suggests that pov is sensitive to small data changes, likely due to limited 

coverage or narrow variance, causing instability in its coefficient estimation. 

Additionally compositional overlap between the training and test sets is shown in Figures 2D, 

2E, and 2F. PCA (Figure 2L) visualizes the overlap, with convex hulls indicating that the test set 

is much larger than the training set, see also the Mahalanobis distance (Figure 2M). For the 

speciation model, these two PCA components account for 43.6% of the variance in the training 

set and 50.1% in the test set. The parallel coordinate plot (Figure 2N) highlights variable-level 

coverage, showing the test outliers are mainly in the pov and fuvt species. These results confirm 

sufficient overlap for reliable model validation, while significant extrapolation allows for a more 

thorough evaluation of the model's generalisation. 

 

Figure 2L. Scatter plot showing the projection of the training and test sets of the Bulk model 

onto the first two principal components (PC1 and PC2). Convex hulls in PCA1-PCA2 space 
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encapsulate the boundary of each set. Percentage of training samples in test convex hull: 100%. 

Percentage of test samples in training convex hull: 46.60% 

 

 

Figure 2M. Histogram displaying the Mahalanobis distances of test samples from the centroid of 

the training set for the speciation model 
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Figure 2N. Parallel coordinate plot comparing of composition space for the training and test set 

for the speciation model. Each line represents a sample crossing axes for the predictors, 

highlighting variables where the test set significantly diverges from the training set 

5. REGRESSION METHODS 

Extrapolation of molar volumes to endmembers 

Since measured molar volumes of tourmalines are of mixed compositions, extrapolation to 

endmembers is necessary. Multiple linear regression was used for this extrapolation, but due to 

tourmaline’s complexity and limited sample size (50 samples), reliable endmember data could 

not conclusively be obtained from a single method. To calibrate the thermodynamic model for 

tourmaline’s molar volume, we applied 21 regression methods, including OLS, WLS, 11 total 

least squares (errors-in-variables), and 8 robust regression methods, leveraging the full 

uncertainty structure of endmember fractions and molar volumes from Monte Carlo simulations 

to balance bias, variance, and total error. These regression methods model thermodynamic 

systems with a global linear function Y=Xβ+ε (Hastie et al. 2017), capturing endmember 

fractions and additive interactions. In this formulation, Y is the molar volume, X the endmember 

fractions, β the endmember volumes, and ε the residuals. A linear model is appropriate as molar 

volume is additive and expected to scale linearly with composition. Even when including 

interaction terms, the model remains linear in its parameters, allowing robust estimation of 

endmember contributions and interaction effects. However, since endmember fractions sum to 1 

and cannot all be zero, the intercept, representing Y when all variables are zero, is physically 

meaningless. Comprehensive explanations of all analytical regression methods are included in 

Appendix 2B. 

Regression methods considering molar volume uncertainties Ordinary Least Squares (OLS) 

provided a baseline by minimizing squared differences assumed only in molar volumes, while 

Weighted Least Squares (WLS) addressed molar volume heteroscedasticity by applying inverse 

variance weights to (𝑋𝑋′)−1 (Hastie et al. 2017).  

Regression methods considering molar volume and endmember fraction uncertainties  
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Analytical methods Total Least Squares (TLS) accounts for errors in both endmember fractions 

(X) and molar volumes (y), providing greater flexibility by introducing 'wiggle room' as X values 

are no longer assumed to be perfect, allowing adjustments in both dimensions, accommodating 

uncertainties, and potential lead to better generalisation (Markovsky and Van Huffel 2007; 

Markovsky 2010). TLS redistributes variance between predictors and response variables, 

addressing training set constraints differently than OLS/WLS. We used MATLAB script of 

Wurm (2021) to apply various TLS methods. X-Scaled and XY-Scaled TLS apply column-wise 

scaling to equalize variances while ensuring homoscedasticity within X and Y, addressing 

differing magnitudes and greater uncertainty in some endmember fractions (Wurm 2021).  

Generalized Total Least Squares (GTLS) assumes a single, constant covariance matrix that 

applies uniformly across all data points. We performed five GTLS versions: (1) using the mean 

covariance matrix derived from all individual covariance matrices obtained from sample 

optimisations across 2000 MC repetitions, (2) applying this matrix with additional scaling for Y, 

(3) using a covariance matrix directly from the standard deviations across all samples, rather than 

individually for each sample, (4) the same matrix with y scaling, and (5) Incorporating row- and 

column-wise correlations by deriving two covariance matrices: one for variables and one for 

samples (Wurm 2021).  

Numerical methods While exact analytical solutions are available for the above methods, they 

are limited in the error structures they can handle. Ideally, we would use weighted TLS with 

individual covariance matrices per observation, forming a block-diagonal structure. With no 

analytical solution available, we applied the nonlinear optimisation from Wurm (2021) via 

MATLAB’s lsqnonlin using the trust-region reflective algorithm to solve the Correlated Weights 

Total Least Squares (CWTLS). CWTLS extends GTLS by weighting each observation 

individually by its covariance matrix (block-diagonal) and, alternatively, using additionally the 

covariances of the covariance matrices of each individual observation (full W) to account for all 

uncertainties and correlations (Wurm 2021). Second-order covariances were calculated as matrix 

products of each pair of covariance matrices (𝑖, 𝑗), 𝑖 ≠ 𝑗, reflect the combined variability and 

interaction between variables across the samples. Zero uncertainties in the weight matrix (e.g., 

due to absent Fe³⁺ or B-olenite endmember fractions) were handled using an indicator matrix. To 

set initial conditions, we used the nearest GTLS solution (Wurm 2021). This involved matrix 
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decomposition, deriving the column matrix 𝑃𝐶 and row matrix 𝑃𝑅, which are closest to the 

weight matrix W, by solving the nearest Kronecker product problem (Loan and Pitsianis 1993): 

𝑚𝑖𝑛‖𝑊−1 − 𝑃𝐶⊗𝑃𝑅‖𝐹
2 , where ‖ ⋅ ‖𝐹, is the Frobenius norm. The Kronecker product (𝑃𝐶⊗𝑃𝑅) 

combines 𝑃𝐶 (m×n) and 𝑃𝑅 (p×q) into an mp×nq matrix, with each element of 𝑃𝐶 scaled by 𝑃𝑅. 

These GTLS (block-diagonal) and GTLS (full W) starting value solutions are also provided. To 

ensure CWTLS convergence to a global minimum, we calculated CWTLS-equivalent solutions 

for all LS, TLS, and GTLS methods (Wurm 2021). Differences in regression coefficients were 

negligible, with no impact on predicted volumes to at least three decimal places. Covariance 

matrices for nonlinear least squares were numerically computed using the Hessian matrix 

(second-order partial derivatives) at the estimated global minimum (Wurm 2021). These 

covariance matrices, which are minimal uncertainty estimates, propagated uncertainties to the 

predicted endmember molar volumes. 

Use of βTLS in OLS framework Formally, TLS cannot be directly used as a predictive model 

because the solution it provides is in terms of an adjusted basis that incorporates small 

perturbations, denoted 𝑋 + 𝑋̃, which corrects X for measurement errors (Gavin 2025). This 

means that the regression coefficients βTLS obtained through TLS depend on the adjusted data 

matrix, rather than the original X alone. Consequently, any predicted values ŷTLS would 

theoretically need to be calculated using this modified basis 𝑋 + 𝑋̃, which perturbation is not 

directly applicable to new or unseen values of X. However, in practice, the basis changes 𝑋̃ in 

our case are often very small (perturbed endmember sums between [0.98–1.01]), allowing the 

TLS coefficients to be used approximately within an OLS framework for prediction if the data 

deviations are minimal.  

Use of βTLS in OLS framework is a form of Regularisation  To address the documented 

multicollinearity and underconstrained nature of the observations, a regularisation strategy was 

adopted. Specifically, using TLS-derived coefficients within an OLS prediction framework 

constitutes a form of regularisation, stabilizing the model by introducing fit flexibility that 

accommodates measurement uncertainty in the predictor space. This approach suppresses noise 

amplification by preventing large or unstable coefficients, thereby improving predictive 

robustness without overfitting. Critically, regularisation here is grounded in true compositional 

uncertainties—specifically, uncertainties in endmember fractions—rather than arbitrary model 
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heuristics. By incorporating these uncertainties, the TLS-corrected coefficients are applied in a 

statistically and physically meaningful way, systematically reducing multicollinearity among 

thermodynamic parameters. 

Robust regression methods Robust regression methods, including Iteratively Reweighted Least 

Squares (IRLS), reduce outlier influence by iteratively reweighting (𝑋𝑋′)−1 indirectly using 

residual-based weight functions (e.g., Huber, Tukey bisquare) (Huber 1981). These methods 

excel at fitting data centroids but may generalize poorly in the presence of extreme outliers. 

Detailed descriptions of each method are provided in Appendix 2B and in MATLAB 2022a Help 

file for robustfit. 

Regularisation and Covariance Matrix Adjustment in Regression Methods Weight matrices 

in all methods must be symmetric, full rank, non-singular, and positive definite (Hastie et al. 

2017). Covariance matrices from tourmaline chemical formula optimisation, being estimates, 

may occasionally fail these criteria. To address this, we implemented a MATLAB code that 

adjusts a regularisation parameter incrementally until the weight matrix has a nonzero 

determinant, positive eigenvalues, and full rank within a tolerance of 1×10-45. This tolerance 

ensures the regulation parameter remains at least an order of magnitude smaller than the original 

variances and covariances, preserving regression accuracy. Regularisation parameters, listed in 

Electronic Appendix 2C, are approximately 1×10−6. Note: The regularisation applied here was 

used solely to adjust the covariance matrices into a valid form for regression, ensuring they are 

symmetric, full rank, and positive definite. This adjustment is not a regularisation method in the 

sense of least-squares regularisation or coefficient penalization (i.e., the use of βTLS in OLS 

framework is in essence a form of such regularisation), but purely a technical correction to meet 

matrix requirements. 
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Table 2C. Regression Method Categories 

Category Methods 

LS Methods LS, WLS 

TLS Methods 

TLS, Xscaled TLS, Xyscaled TLS, gtls y scaled, gtls cov data, gtls cov 

data y scaled, gtls row column, gtls block diag, cwtls block diag, gtls 

fullW, cwtls fullW 

Robust Methods andrews, bisquare, cauchy, fair, huber, logistic, talwar, welsch 

6. SOLID SOLUTIONS MODELS AND HIERARCHICAL SUBSET 

SELECTION 

Molar volume depends not only on fractional contributions from the partial volumes of 

endmembers but also on non-ideal interactions between elements on crystallographic sites and 

their associated endmembers. In geosciences, these interactions are typically described using the 

Margules formalism (Margules 1895). To identify and quantify such interactions within the 

dataset, we applied hierarchical subset selection (NCSS 2023b). 

Hierarchical subset selection Hierarchical subset selection evaluates variables systematically to 

identify key predictors of molar volume. Interaction parameters (W), representing combined 

endmember effects beyond individual contributions, are included only when their lower-order 

terms, endmember volumes, are present and explain additional variance. These interaction 

parameters are linear with respect to their coefficients. Using OLS in NCSS 2023, we tested all 

possible interactions between endmembers, adding significant terms and removing redundant 

variables at each iteration to optimize model accuracy and prevent overfitting. 

Interactions in the Generalized Bragg-Williams model  The Bragg–Williams model is a 

mean-field theory that assumes a random distribution of components over site multiplicities. This 

assumption of random mixing applies equally to both the microscopic and macroscopic 

formulations of Bragg-Williams solid solution models. Microscopic Bragg-Williams models 

treat individual sites as chemical components, considering only nearest-neighbor interactions 

(intra-site and cross-site) while neglecting next-nearest and longer-range interactions (Ghiorso 

and Sack 1991; Sack and Ghiorso 1994; Sack 2017).  In contrast, macroscopic models use 
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endmembers as components, averaging these interactions to describe collective energetics 

(Powell and Holland 1993). Critically, both models must respect the same fundamental degree of 

freedom (DOF) dictated by the crystallographic structure. These DOF are determined by the total 

number of variable site-species minus the number of site balance and charge balance constraints, 

and define the dimensionality of the thermodynamic model. 

In the macroscopic model, random mixing applies to endmembers, long-range ordered 

combinations of site occupancies. The configuration space is spanned by independent 

endmember fractions, from which independent site-species occupancies are derived as linear 

combinations to compute configurational entropy using strictly positive values 

In the microscopic model, entropy is computed from a minimal set of independent site-species 

fractions that define the configuration space. All variables represent physically meaningful, 

strictly positive site occupancies, eliminating the need to handle negative component fractions. 

Thus, while the microscopic and macroscopic models differ in how they represent composition, 

independent site-species versus independent endmembers, they are mathematically equivalent 

representations of the same solution space. The Bragg–Williams assumption of ideal 

configurational entropy applies to both, as long as it is implemented over the appropriate 

independent variables that preserve the crystal-chemical constraints of the mineral system. 

While both models describe the same number of compositional degrees of freedom, the 

microscopic model resolves interactions at a lower structural scale. 

• In the macroscopic model, each endmember is a weighted combination of site-species 

across the structure. So, when two endmembers interact, the interaction energy is an 

averaged or “bulk” value, essentially a composite of all underlying site-species 

interactions 

• In the microscopic model, each site-species is treated explicitly. This allows the model 

to distinguish between: 

o Intra-site interactions (e.g., Fe²⁺–Mg on site Y), 

o Cross-site interactions (e.g., Al on site T interacting with Fe³⁺ on site Z), 
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o Charge-compensating or coupling substitutions across sites. 

Although this microscopic representation appears more detailed, the number of independent W 

parameters is mathematically equivalent in both models. That’s because the total number of 

unique pairwise interactions between independent degrees of freedom, whether endmembers or 

site-species, is the same. However, the microscopic model provides more interpretability and 

flexibility, as it separates contributions from specific crystallographic sites and enables clearer 

mapping to local substitution mechanisms. 

Basis transformations, as described by Myhill and Connolly (2021), link the two approaches, 

allowing macroscopic W parameters to be interpreted in terms of their microscopic origins 

within the generalized Bragg-Williams framework in the same way as basis transformations 

between set of independent endmembers (Powell and Holland 1999) . 

Power series solution models for mean field endmember thermodynamic models Energy in 

multicomponent systems, like Vex, is described by a power series that represents interactions as a 

sum of mole- endmember fraction terms (Thompson 1967; Helffrich and Wood 1989). A Taylor 

series, derived by centering the expansion around pure endmembers where Vex=0, replaces the 

general coefficients with derivatives of Vex evaluated at those points, ensuring thermodynamic 

consistency (Wohl 1953; Helffrich and Wood 1989; Mukhopadhyay et al. 1993; Cheng and 

Ganguly 1994). Interaction parameters derived from the power series are accurate near 

endmembers, dictated by slopes at endmember fractions and reflecting infinite dilution behavior . 

(Sluiter and Kawazoe 2000; Vinograd et al. 2009; Li et al. 2014; Benisek and Dachs 2020). It’s 

the difference between Henry’s law and Raoult standard state chemical potential (Spear 1993) 

and therefore should connect to trace element geochemistry, capturing effects at low 

concentrations. Truncating higher-order terms reduces accuracy for intermediate compositions. 

Regular Model For 2-way interactions, self-interaction terms were excluded, testing only single 

regular solution interaction parameters. The regular model (Hildebrand 1929) is derived from the 

Taylor series truncated at the second degree, and assumes constant, symmetric, composition-

independent binary interactions:  𝑉ex =
1

2
∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑋𝑖𝑋𝑗𝑊𝑉,𝑖𝑗where 𝑊𝑉,𝑖𝑗=𝑊𝑉,𝑗𝑖 and 𝑋𝑖, 𝑋𝑗 are 

endmember mole fractions (Ganguly 2001).  
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Subregular Model Extending the Taylor series to the third degree, the subregular model 

(Andersen and Lindsley 1988; Helffrich and Wood 1989; Cheng and Ganguly 1994) introduces 

compositional dependence of 𝑤𝑖𝑗, capturing asymmetry: 𝑉ex =
1

2
∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑋𝑖𝑋𝑗(𝑊𝑉,𝑖𝑗𝑋𝑖 +

𝑊𝑉,𝑗𝑖𝑋𝑗) +
1

6
∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 ∑  𝑛
𝑘=1 𝑋𝑖𝑋𝑗𝑋𝑘𝑊𝑉,𝑖𝑗𝑘, where 𝑊𝑉,𝑖𝑗 ≠ 𝑊𝑉,𝑗𝑖, involving cubic terms (𝑋𝑖

2𝑋𝑗 

and 𝑋𝑖𝑋𝑗
2).  

Despite the first term describing asymmetric binary interactions, subregular terms act as 3-way 

interactions in subset selection due to the cubic dependence on endmember fractions, where one 

endmember composition repeats to reflect compositional changes in interaction parameters. The 

model inherently includes ternary interactions, as demonstrated by a basis transformation applied 

to a subregular model without ternary terms introduces nonzero ternary terms, making 

conventional zero-ternary assumptions thermodynamically implausible (Myhill and Connolly 

2021). The truncation eliminates quaternary terms (Cheng and Ganguly 1994). For a statistical 

interpretation of the subregular model see Gottschalk (2016).  

Assumptions and Linear Regression Fit Both models assume Taylor series can represent 

interactions and rely on Muggianu's projection for multicomponent systems (Muggianu et al. 

1975). Despite the non-linear dependence on composition and the resulting non-linear 

extrapolation to endmembers, the interaction parameters 𝑊𝑉,𝑖𝑗 and 𝑊𝑉,𝑗𝑖 remaining linear 

coefficients in the regression framework, as they directly scale the mole-fraction terms, allows 

the usage of standard regression techniques. Other series solution models differ in truncation, 

projection, and interaction scaling assumptions, leading to varying results based on these 

assumptions (Ganguly 2001). In our case, only one binary subregular w terms were significant, 

so ternary interactions were avoided to minimize the risk of multicollinearity. 

Fundamental Differences Between Regular and Subregular Models: The Role of 

Compositional Constraints in Their Equivalence The equivalence of the second-order term 

𝑤reg 𝑥1𝑥2  with the third-order subregular terms is valid under the constraint:𝑤reg 𝑥1𝑥2 =

𝑤sub 𝑥1𝑥2𝑥2 + 𝑤sub 𝑥1𝑥1𝑥2. This implies that 𝑤sub =
𝑤reg

𝑥1+𝑥2
 when x1+x2=1 (as in a binary system 

where x1 and x2 are mole fractions summing to unity). If x1+x2≠1 (e.g., in a system where other 

components exist or the fractions deviate from the constraint), wsub≠wreg. This demonstrates that 
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the equivalence depends on the specific compositional constraints (Connolly, personal 

communication). 

Number of parameters In a regular model, only binary interactions (𝑤𝑖𝑗) are considered, with 

36 binomial combinations for a 9-endmember model and 91 for a 14-endmember model ((𝑛
2
) =

𝑛(𝑛 − 1)/2) (Tucker 1994). In a subregular model, binary interactions are doubled (72 for 9 

endmembers, 182 for 14), and ternary interactions (𝐶𝑖𝑗𝑘) are included, with 84 for 9 endmembers 

and 364 for 14 ((𝑛
3
) = 𝑛(𝑛 − 1)(𝑛 − 2)/6). These parameter counts far exceed the calibration 

capacity of a limited training set, necessitating hierarchical subset selection. However, this 

approach is nonunique, as combinations of interaction parameters could equally explain a single 

interaction, making the final subset inclusion merely empirical in origin. 

7. TRAINING DATASET REGRESSION: ORDINARY LEAST SQUARES 

We begin with least squares regressions (OLS) on the training data in Number Cruncher 

Statitical Systems (NCSS) software by single inversion, providing the best fit per the Gauss-

Markov theorem and ensuring unbiased estimates (Gauss 1823; Hastie et al. 2017). Least squares 

is chosen for its minimal assumptions, robustness to dataset changes as each observation is 

treated equally, and as a reference for evaluating more complex, potentially biased models. 

Subset selection in NCSS using least squares determined the hierarchical predictor subsets. 

Although formally valid only for least squares, the obtained interaction parameters were applied 

to other regression models to assess robustness. Detailed statistical summaries of OLS fits both 

the bulk composition and the speciation model and their subset predictors in NCSS can be found 

in Appendix 2C. 

Bulk compositional model The bulk composition model has 9 endmembers across 52 samples. 

Poorly sampled endmembers like oleB, foiB, and aorsmB required extrapolation, yielding 

broader standard errors than well-sampled ones like drvB. The bulk compositional model was 

analysed with and without additional subset interaction parameters, including WdrvB-fluvtB (-

1.28) and WfoiB-fluvtB (0.71), significant at α = 0.05. Including more predictors reduced MSE 

(0.0048 to 0.0039), their R² contributions modest (0.07–0.03), but did not ensure better 

generalisation with PressR2 (0.65 to 0.66). Interaction terms shifted drvB and fluvtB (~31.95 to 
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~32.15) beyond original confidence intervals, driven by the Wdrv-fluvt effect (-1.28), while 

changes in other endmembers, though larger in magnitude, were less significant due to wider 

confidence intervals. These binaries, linked to coupled substitutions, suggest potential 

nonideality, but it remains unclear whether the fitting parameters represent genuine interactions 

or fit noise. 

Including interaction parameters increased multicollinearity, with VIF values (Appendix 2C) 

rising for foiB (9.78 to 12.54), oleB (9.16 to 11.03), aorsmB (7.39 to 7.54), and WdrvB-fluvtB 

(9.89). Strong correlations, such as srlB-drvB (-0.83), oleB and aorsmB with multiple 

endmembers, persisted, while new weak ones between W parameters and endmembers emerged. 

This highlights that the enhancing model fit comes at the cost of greater redundancy among 

predictors, complicating interpretability. The correlations between endmembers and interaction 

parameters were not strong enough for subregular parameterizations to be significant. 

The W parameters fit tm164, reducing its residual from -0.27 to -0.18, but became insignificant 

without it. Residuals become normal with w parameters or exclusion of tm164. Leave-one-out-

cross validation shows that our fluor-buergerite sample (tm64) is the most influential point in 

both models, strongly affecting fluvtB, drvB, and oleB, while tm164 influenced drvB, uvtB, and 

foiB.  

Speciation model The speciation model, with 14 endmembers, includes 53 samples, adding 

synthetic B-olenite to constrain its extremely small molar volume despite a 0.2 apfu Y-site 

vacancy before projection. No additional interaction parameter was found significant during 

subset selection. Direct comparison is challenging due to differing training datasets and the shift 

from bulk parameters to site fractions in endmember definitions. The training set shows uneven 

coverage, with pov, fuvt, ole, and mdtw observed only in trace to minor amounts, increasing 

extrapolation uncertainty. The model achieves a mean squared error (MSE) of 0.0058, a slightly 

worse fit than the bulk composition model (MSE: 0.0048). Uvt and fluvt are similar between 

models. Foi, ole, and mdtw remain within 95% confidence intervals, while aor is higher 

(30.76→31.12) and ordered srl (32.26→31.94), drv (31.95→31.75), and bu (31.91→31.40) are 

lower, all outside the bulk compositional model’s limits. Disordered drvdis (31.87) aligns with 

drvB’s confidence range, indicating drvB is dominated by disordered drv. Ordered endmembers 
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generally predict lower volumes than disordered ones, though this trend is unclear for the other 

disordered endmembers that are combinations of ordered (pov, odrv) or mixed (fuvt) 

compositions. 

However, these trends must be taken with a grain of salt as the fit suffers from extreme 

multicollinearity, see Table 2B. Very high VIFs (foi 28.42, srl 24.86, drvdis 22.99, aorsm 16.76) 

and strong correlations (foi-uvt -0.62, foi-aorsm -0.76, bole-molar volume -0.86) arise from 

fitting 14 highly interdependent endmembers with only 53 samples, far below the recommended 

sample-to-parameter ratio, severely impacting robustness (R²Press=0). Using chemically similar 

endmembers, like odrv, drvdis, drv, or aorsm and olenite, increases multicollinearity, inflating 

VIFs and reducing robustness. Choosing distinct endmembers avoids this but can lead to 

negative fractions, which are acceptable in principle but may cause poor extrapolations with 

poorly distributed data. Thus, selecting independent endmembers requires balancing 

distinctiveness and compositional plausibility. 

Residuals are not normally distributed, with tm164 (-0.31) as a significant outlier. Removing it 

reduces MSE by nearly 2 orders of magnitude to 0.00003 and normalizes residuals. tm164, an 

outlier in both reciprocal and speciation models, is unlikely an order-disorder effect. Interaction 

parameters primarily serve to fit this outlier, as no W terms remain significant without it. Its 

uncertainty, an order of magnitude higher than the training average, suggests a potential 

analytical error (e.g., inclusions) but is within the test dataset’s normal range. This highlights that 

when extracting W interaction parameters from natural solid solutions, the regression often 

reduces to fitting outliers—data points that may reflect true physical effects or simply analytical 

error. Influential points include tm64, tm164, and olenite, with high Cook’s D, DFFITS, and 

DFBETAS (see NCSS (2023a) for their definitions). 

8. MODEL SELECTION 

Models We performed all 21 regression methods on both the bulk and speciation models without 

any interaction parameters, with regular significant interaction parameters found by the subset 

selection using OLS, and with subregular significant interaction parameters found by the subset 

selection using OLS. We also performed the regression method with and without tm164 as this 

sample was the dominant contributor to the interaction parameters. 
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Model Bias–Variance Trade-off Total uncertainty in regression models comes from bias, 

variance, and irreducible error, such as noise and distribution shifts (Hastie et al. 2017). Due to 

data scarcity, we do not use formal definitions which includes cross validations but rely on 

simplified estimates to illustrate the concept and overall model behavior. Bias², estimated by 

training set MSE, reflects underfitting, while variance, measured by the gap between test and 

training errors, captures overfitting (but is inflated by noise in inconsistent test sets). Balancing 

bias and variance is crucial to minimizing error (Figure 2O). Robust methods, like x-uncertainty-

weighted regressions, reduce variance by introducing bias to improve generalisation. Bias 

includes model bias (difference between estimates and true values) and estimation bias 

(difference between robust and OLS) (Hastie et al. 2017). Model complexity depends on 

parameters relative to data points and loss function constraints (Hastie et al. 2017). In 

thermodynamic databases, too many parameters and limited training data often lead to 

overfitting and poor generalisation. To control variance, we selected subsets capturing key 

effects. Using an inconsistent test dataset increases variance and error due to test set 

inconsistencies, but partial error cancellation from using the test set for both selection and 

assessment leads to generally underestimated uncertainty and model quality estimates. 

 

Figure 2O. Illustration demonstrating the general effect of the Bias-Variance Tradeoff. Modified 

from Hastie et al. (2017) 
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Selecting the correct degrees of freedom (df) top determine complexity is challenging because it 

is not well-defined across all regression types used. In OLS, df equals the number of 

observations minus parameters, but for total least squares (TLS) and robust regressions, where 

uncertainties exist in predictors and residuals are adaptively weighted, the effective df is unclear 

as is the use of some df in subset selection. TLS adjusts both predictors and responses, increasing 

model flexibility beyond the parameter count, while robust methods alter data influence through 

weighting. Classical df assumptions, fixed predictors and homoscedastic errors, do not fully 

apply, making it difficult to penalize complexity or accurately estimate variance inflation. As a 

result, the bias–variance versus complexity graph (Figure 2O) illustrates the concept 

qualitatively, and no formal curve was calculated for our set due to ambiguity in defining degrees 

of freedom across methods. 

Train Error: Internal Validation Using Calibration Data All regression techniques minimize 

a quadratic loss function as a χ2-based goodness-of-fit statistic (Bevington and Robinson 2003). 

OLS minimises unweighted vertical residuals, WLS weights deviations by y-variances, robust 

methods down-weight outliers, and TLS minimises the Frobenius norm of the residual matrix, 

capturing perpendicular distances with weighting schemes like S-TLS, GTLS, and CWTLS (see 

Appendix 2B). While traditional goodness-of-fit metrics are incompatible across methods due to 

differences in residual definitions, all regression coefficients are applied in an OLS predictor 

model, enabling a uniform comparison based on unweighted vertical y-residuals. These 

residuals, rather than the original fitting methods or minimised loss functions, are used for all 

goodness-of-fit metrics, assumption checks, confidence intervals, outlier and regression analyses, 

providing a consistent evaluation of each method’s fit to the training dataset in terms of model 

and estimation bias. A self-written MATLAB script was used for this internal validation. OLS 

achieves the best fit per the Gauss-Markov theorem, ensuring unbiased estimates, while biased 

methods like weighted TLS coefficients in an OLS predictor model reduce complexity, 

increasing training bias but potentially lowering variance and test errors (Hastie et al. 2017). To 

test if tm164 is an unphysical outlier we perform the model selection using different regression 

methods with and without tm164 included in the training dataset. 

Test Error: External Validation Using Literature Data The predictive OLS model with the 

regression coefficients from the various methods was used to predict the molar volumes of the 
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test set tourmalines and compared to their measured values. The same MATLAB script was used 

for the external validation of the test dataset. For external validation, the goodness of fit 

parameters represents the total test set errors. Subtracting the training error from the test error 

estimates the model variance. Z-score regression of the residuals against the predictors identifies 

the endmember contributing to high variance. Jackknife resampling (Quenouille 1956) highlights 

test samples inflating test errors, identifying compositions poorly fit by the model. 

Scatterplot Analysis and York Regression To assess test and train errors of regression models 

(OLS, WLS, TLS, weighted TLS, IRLS) with and without interaction parameters, scatterplots of 

predicted vs. measured values were analysed. A good fit aligns points along the 1:1 line, while 

deviations indicate disagreement. Scatterplots include prediction uncertainties from covariance 

matrices and (underestimated) SC-XRD analytical uncertainties, which omit sample variability, 

systematic errors, and X-uncertainties. These y-𝑦̂ plots provide a comprehensive visual and 

quantitative assessment of model performance.  

Goodness-of-fit metrics use unweighted y-residuals, representing the vertical distance of each 

point from the 1:1 line. Standard goodness of fit statistics are used (NCSS 2023a). R2 and 

adjusted R2 compare the model's performance against the mean, while Mean Squared Errors 

(MSE) captures overall error; all three are sensitive to outliers due to their reliance on squared 

residuals. In contrast, Mean Absolute Error (MAE) highlights typical prediction error by treating 

all residuals equally, and Median Absolute Deviation (MAD) robustly measures central error by 

minimizing the influence of outliers. These metrics provide a comprehensive assessment of 

overall, typical, and central residual trends in model performance but ignore uncertainties. 

A York regression (York et al. 2004), accounting for uncertainties in both y-𝑦̂, was performed on 

the scatterplots, see Appendix 2B for details. York regression adds flexibility to fit the data, but 

with larger prediction errors at extremes and smaller errors for central data, it primarily fits 

central data while increasing bias at extremes due to higher uncertainties and sparse samples. 

The Bias Integral measures the area between the York fit and the 1:1 line, reflecting 

composition-dependent error. A high Bias Integral indicates large errors at extremes, while a low 

value signifies consistent performance across compositions, making it essential for model 
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comparison. In internal validation, the integral reflects compositional dependent training bias, 

while in external validation, it captures compositional dependent total error (bias + variance). 

The metrics wMSE, wRMSE, wMAE, and their robust equivalent wMAD measure variance 

around the York line, while wR and AdjwR assess model performance relative to the mean. By 

focusing on weighted residuals, these metrics primarily evaluate the strength of composition-

dependent bias in the dataset, with R²PRESS (Allen 1974) indicating its robustness.  

Model selection heuristic To select the final regression model for molar volumes, we used a 

heuristic based on the weighted average of training and test errors. Goodness-of-fit statistics 

(MSE, MAE, MAD, Adj_R², wMSE, IntegralBetweenYorkand1_1, AdjR², R²PRESS) were 

standardized into Z-scores, with maximized metrics inverted. Training and test data statistics 

were weighted by observation counts to balance internal fit and generalisation. The model with 

the lowest Z-score sum was selected, minimizing residuals (MSE, MAE, MAD, Adj_R²) and 

compositional bias (wMSE, IntegralBetweenYorkand1_1, AdjR², R²PRESS). Using four 

indicators for each aimed to balance fit and generalisation for both the central samples and the 

extremes. This was implemented using custom Matlab code.  

Although final molar volume predictions use an OLS framework, comparison based solely on the 

generalized chi-squared misfit 

𝜒2 = (𝑥obs − 𝑥model )
𝑇COV−1(𝑥obs − 𝑥model ) 

is not inappropriate, but it is limited. This misfit assumes BLUE conditions—linearity, perfectly 

known predictors, and correctly modelled error covariances—which are only partially satisfied 

across OLS, error-in-variables, and robust regression methods. As a result, residuals differ 

systematically across models. The heuristic model selection, combining standardized goodness-

of-fit and bias metrics, provides a more multidimensional and holistic assessment of model 

quality, rather than relying on a single statistic whose assumptions may not fully align with all 

regression approaches evaluated. 

While effective, the approach has weaknesses: test set reuse risks data leakage, equal Z-score 

weighting may misrepresent metric importance, the heuristic lacks theoretical grounding, and 
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metric correlations could bias results (dimension reduction could help). But overall, this 

methodology offers a practical, adaptable framework for balancing residual minimisation and 

generalisation in complex datasets. 

Bulk compositional model X(YZ)9SixAl(1-x)(VW) Appendix 2D summarizes the minimisation 

of Z-score sums for eight weighted statistics across training and test sets. The best results were 

obtained without interaction parameters. No single model performs best overall; instead, three 

models focus on different aspects of the fit: 

1. CWTLS (block diagonal weight matrix): Best for generalisation, with low bias integral 

and reliable extrapolation to extremes. However, it poorly fits bulk data, with samples 

distributed far from the 1:1 line, indicating high residuals. 

2. Robust models (Cauchy, Welsch, Bisquare, Andrews): Fit centroid samples well but 

struggle with extremes due to compositional bias and slope changes near the 1:1 line, 

making them unreliable for extrapolation. 

3. Ordinary Least Squares (OLS): Strikes a balance, fitting bulk data almost as well as 

robust models and generalizing moderately well.  

The results highlight the challenge of fitting extreme samples without sacrificing precision for 

central data. For bulk compositional models, OLS provides a robust option, while CWTLS is 

preferred for generalisation, and robust models excel in centroid-focused fits. The choice 

depends on whether the priority is overall fit or generalisation. Bulk compositional models, 

common in older thermodynamic solution models, are robust against endmember fraction 

uncertainties. They perform well within the calibration range but poorly at extremes. Statistically 

significant interaction parameters from subset selection likely fit noise, increasing test dataset 

variance without improving the model fit. 

Limitations of the Bulk Model for order-disorder effects on Molar volume The reciprocal 

bulk composition model merges Y/Z and V/W sites into bulk parameters, failing to distinguish 

ordered buergerite from disordered bosiite. Both are assigned similarly high buB components, 

despite F-buergerite having one of the smallest molar volumes in the dataset (larger only than 

ole, bole, and aorsm), while bosiite (Ertl et al. 2016) (the largest in the test set) and similarly 

disordered povondraite (Bosi et al. 2023) (not in test set) have the largest molar volumes in the 
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tourmaline system (Table 2D). This failure to capture speciation differences results in large 

residuals, with subset selection identifying W parameters that reflect the model’s inability to 

address speciation effects or explain the extreme molar volume variations. 

Table 2D. Structural Formulas and Molar Volumes for Buergerite and Bosiite 

Mineral Speciation 
Projected and Renormalised 

Bulk Compositional model 

Molar 

Volume 

(J/mol/bar) 

Uncertainty 

(J/mol/bar) 

F-

Buergerite 

NaFef3(Al6)(Si6O18

)(BO3)3(O3)(F) 

(Na0.821 Ca0.04Vac0.14)(Al 

6.42Fef2.41Ti0.09 

Mg0.07)(Si5.59Al0.41) 

(B3)(F0.73H0.75 O2.52) O27.75 

31.512 ±0.001 

Bosiite 
NaFef3(Al4Mg2)(Si6O18

)(BO3)3(OH3)(O) 

(Na0.73 

Ca0.23Vac0.04)(Al3.36Fef3.35Ti0.01 

Mg1.69)(Si5.92Al0.08)(B3) (H3.16 

O0.84) O30.16 

33.02 ±0.01 

In the molar volume vs. buB plot (Figure 2P) of the combined training and test datasets, most 

Fe³⁺-rich samples trend toward bosiite, while F-buergerite stands out as a true outlier in the bulk 

compositional model. The limited sample trending towards buergerite may indicate a miscibility 

gap or an island of stability for ordered buergerite, though further sampling is required to 

confirm this hypothesis. In principle, poorly fitting elements initially can increase molar volume 

due to strain but can stabilize the structure at higher concentrations, reducing molar volume. 

Removing F-buergerite (tm64) from the training dataset renders all buB-related W parameters 

insignificant. 
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Figure 2P. buB endmember fraction versus molar volume. Combined training and test set.  

The residuals for F-buergerite and bosiite disappear in the speciation model, allowing distinct 

molar volumes for ordered and disordered endmembers. The crystal chemical origin of the molar 

volume difference between buergerite and povondraite remains unclear. Bosi et al. (2023) 

observed a general trend of increasing molar volume with higher Fe³⁺ and decreasing volume 

with VIAl³⁺, but their Figure 6 oversimplifies the compositional space and fails to explain slope 

changes or why Fe³⁺-rich buergerite has such a small molar volume. Molar volume differences 

stem from site occupancy, vacancies, and Y/Z and V/W disorder.  

Bulk Compositional model with Cauchy Robust Regression  

OLS rigidly fits outliers, CWTLS offers intermediate flexibility, and robust regression focuses 

on the data centroid. Cauchy robust regression is preferred for the bulk compositional model as it 
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assigns low weight to the small molar volume of F-buergerite, present only in the training set. 

This resolves its incompatibility with bosiite and improves the fit for the buB centroid, which 

primarily aligns with bosiite with only a minor trend toward buergerite in the combined dataset 

(Figure 2P). This make the resulting bulk compositional model unsuitable for buergerites, which 

require a speciation solid solution model and should be added as a separate pure endmember 

phase in the database. Table 2E shows the bulk endmember molar volumes. 

Table 2E. Cauchy robust endmember molar volumes for the X(YZ)9SixAl(1-x)(VW) model and 

the SD based on the covariance matrix. Regression model without interaction parameters. The 

correlation matrix is plotted directly below the table for visual reference, with correlation 

coefficients annotated inside each coloured cell to illustrate the strength and direction of 

relationships between endmembers. 

Mineral Molar Volume SD Difference with OLS Outside OLS CI 

srlB 32.1075 0.0672 -0.1525 Yes 

drvB 31.8568 0.0567 -0.0991 No 

uvtB 32.0976 0.0477 -0.0948 No 

foiB 31.6362 0.1112 -0.1943 No 

oleB 31.1157 0.1718 +0.3252 Yes 

fluvtB 32.0113 0.0389 +0.0569 No 

buB 32.1980 0.0846 +0.2810 Yes 

mdtwB 31.9796 0.3330 +0.4790 Yes 

aorsmB 30.8704 0.1101 +0.1015 No 
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Compared to the OLS correlation matrix (Electronic Appendix 2C2), many of the strong 

correlations are broken in the robust regression. The largest differences in the regression 

coefficients relative to OLS, exceeding the OLS confidence intervals, are observed for mdtwB 

(+0.4790) and oleB (+0.3252), both of which are strongly extrapolated. and buB (+0.2810), due 

to the robust regression's lower fit hardness to F-buergerite. More detail on the internal and 

external validation of the robust Cauchy fit to the X(YZ)₉SiₓAl₁₋ₓ(VW) model is detailed in 

Appendix 2D. 

Speciation model XY3Z6T6V3W Appendix 2E summarizes the minimisation of Z-score sums 

for eight weighted statistics. For the XY₃Z₆T₆V₃W model, the best results were achieved without 

interaction parameters using CWTLS (block diagonal) with individual covariance matrices as 
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weights, making it the most reliable model due to its balance of fit, generalisation, and 

compositional robustness. CWTLS outperforms other methods for speciation modelling, unlike 

the bulk compositional model where several methods performed similarly. 

As shown in Figure 2L, the test set had more outliers for the speciation model than the bulk 

compositional model, allowing direct extrapolation testing. This is common in speciation 

models, where the larger speciation space shifts minerals away from the compositional centroid 

sue to the increase in dimensions. Endmember fraction uncertainties are larger in speciation 

models than in bulk models. TLS methods outperform OLS and robust regression by addressing 

Y- and X-uncertainty, multicollinearity, and extremes, achieving strong generalisation and low 

bias integrals. However, some compositional bias exists particularly low-volume, B-rich 

tourmalines (e.g., samples 1, 2, and 179), likely due to deficiencies in Al-rich and BIV-rich 

tourmalines in the training set. The dominance of Y-scaling methods likely arises from their 

ability to adding flexibility to the fit, making data points less stringent. This suggests the 

hypothesis that weighted least squares (WLS), with weights based on total x uncertainty, could 

be equally effective in adding flexibility to the fit—essentially functioning as a multivariate 

equivalent of York regression (York et al. 2004). However, testing this hypothesis remains a task 

for future work. 

CWTLS excels but is sensitive to training data, with reduced performance without sample 

tm164. Errors-in-variables methods weigh data points differently, making them highly data-

dependent. In contrast, least squares treat all points equally, offering more stability but less 

adaptability. While uncertainty-based methods like CWTLS improve generalisation, their 

performance relies heavily on the dataset's specific composition. Model success depends on the 

number of parameters, degrees of freedom, the scaling and magnitudes of X and Y, their 

sensitivity (partial derivatives), and data distribution, highlighting the data-dependent nature of 

performance and the importance of a test set for validation. 

Speciation model with CWTLS and Block-Diagonal Weights 

The CWTLS speciation model without interaction parameters provides regression coefficients, 

their covariance matrix, residuals in endmember fractions and molar volumes, total residuals 
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(Frobenius norm of combined x and y residuals), and a misfit parameter (Frobenius norm of all 

total residuals, 0.03), comparable to other TLS models (~0.005–0.05). Matrix correction of the 

covariance matrices (~1×10⁻⁵ regularisation) ensures positive definiteness for this type of 

regression. TLS mitigates multicollinearity better than OLS, WLS, or robust regression by 

minimizing errors orthogonally using SVD, though very small singular values can still cause 

instability. Results are in Appendix 2E. Table 2F shows the molar volumes of the speciation 

endmembers. 

Table 2F. CWTLS endmember molar volumes for the XY3Z6T6V3W model and the SD based on 

the covariance matrix obtained from the Hessian at the nonlinear minimisation surface. 

Regression model without interaction parameters. The correlation matrix is plotted directly 

below the table for visual reference, with correlation coefficients annotated inside each coloured 

cell to illustrate the strength and direction of relationships between endmembers. 

Mineral CWTLS Molar Volume Standard Deviation Difference with OLS Outside OLS CI 

srl 32.037 0.0422 -0.0898 No 

drv 31.826 0.0465 -0.0671 No 

uvt 32.087 0.0490 -0.0698 No 

fuvt 32.362 0.0398 +0.2128 No 

foi 31.612 0.0410 -0.0950 No 

ole 30.854 0.0986 -0.1241 No 

drvdis 31.913 0.0728 +0.0401 No 

odrv 31.713 0.0319 +0.0156 No 

fluvt 31.915 0.0391 -0.0695 No 

bu 31.648 0.1131 +0.2444 No 

mdtw 31.910 0.0650 +0.1264 No 

bole 29.596 0.0297 +0.0518 No 

aorsm 30.964 0.0586 -0.1568 No 

pov 34.557 0.0301 -1.0704 No 
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The CWTLS fit closely matches OLS for most endmembers, except for pov (−1.0704 J/mol·bar) 

and bu (+0.2444), fuvt (+0.2128) and aorsm (−0.1568), but remain within the (large) SE of the 

OLS coefficient. CWTLS uncertainties are likely underestimated because the Hessian, relying on 

local curvature and assuming a quadratic surface, ignores residual variance, predictor scaling, 

and global variability, which the covariance matrix accounts for, providing more realistic 

estimates. 

The largest molar volume differences between the bulk compositional model (Cauchy robust) 

and the CWTLS speciation model are for bu (-0.5500), ole (-0.2617), and fluvt (-0.0963), with 
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bu and fluvt falling outside the SD’s, indicating significant discrepancies. The speciation model 

predicts much lower bu volumes as it better separates the buergerite effect and distinguishes 

trends toward the buergerite and povondraite endmembers. 

Isochemical ordering changes with molar volume Drv and drvdis fall within each other’s 

uncertainty range and show no clear evidence of a molar volume increase from Mg–Al 

disordering at constant bulk composition. In contrast, other ordered/disordered pairs involve 

isochemical reactions but differ in bulk composition, complicating separation of disordering 

effects from compositional effects. Isolating the ordering effect would require base-transforming 

the model to include only ordered and disordered endmembers at identical compositions. 

Hydrogen disorder may slightly reduce molar volume, as suggested by the lower volume of odrv 

compared to drvdis, although W-site vacancies may also contribute. For Fe endmembers, the 

larger volume of fuvt relative to its ordered analog may indicate that Fe²⁺ disorder increases 

molar volume, while the much larger volume of povondraite compared to buergerite may 

similarly reflect Fe³⁺ disorder, though bulk composition effects cannot be excluded in either case. 

9. MODEL ASSESSMENT 

The test set was used for model assessment, slightly overestimating due to internal consistency 

but underestimating as it was partly used for model selection. By cancelling these errors, it 

provides a semi-quantitative estimate of the overall uncertainty expected from this molar volume 

model. 

Bulk Compositional model with Cauchy Robust Regression 

Model assessment statistics can be found in Appendix 2F (Table 2F.1). 

Internal Validation The estimation bias of the Cauchy fit compared to OLS is 0.003 (MSE 

0.007 vs 0.004). F-buergerite (tm64), previously tightly fit by OLS, now shows high residuals 

(0.3–0.4) alongside tm164, marking the only major difference in residuals (Figure 2Q). 
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Figure 2Q. The Cauchy robust model fit to the training set data. Green bands show confidence 

intervals for the mean response, while blue bands represent prediction intervals for individual 

measurements. The increased estimation bias is mainly due to worsen fit to F-buergerite (tm64). 

Regression model without interaction parameters 

External Validation The Cauchy robust fit model achieves an MSE of 0.007 for both internal 

and external validation, with zero model variance, demonstrating better generalisation. In this 

case, the bias-variance tradeoff, with a slight increase in estimation bias (0.003), resulted in a 
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better model compared to the OLS model, which has lower model bias (0.004) but higher 

variance (0.009) and total error (0.013), indicating overfitting. Schorl-dravite (sample 9 

(Bloodaxe et al. 1999)) is a clear outlier (Figure 2R). The model performs well near the data 

centroid (31.5–32.5 J/mol·bar) but shows systematic composition-dependent bias, overestimating 

low and underestimating high molar volumes, demonstrated by a higher bias integral than the 

OLS/CWTLS fits. 

 

Figure 2R. The Cauchy robust model fit to the test set data. Green bands show confidence 

intervals for the mean response, while blue bands represent prediction intervals for individual 

measurements. The centroid of data is fit well but compositional bias is high. Regression model 

without interaction parameters 
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Speciation model with CWTLS and Block-Diagonal Weights 

Model assessment statistics can be found in Appendix 2F (Table 2F.2). 

Internal Validation The training fit is similar to the bulk composition model with the same 

outliers (tm164), except F-buergerite (tm64) is well fit (Figure 2S). The higher R2 results from 

the high-leverage synthetic B-olenite sample. 

 

Figure 2S. The CWTLS model fit to the training set data. Green bands show confidence 

intervals for the mean response, while blue bands represent prediction intervals for individual 

measurements. Regression model without interaction parameters 
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External Validation The external validation of the XY₃Z₆T₆V₃W model is detailed in Figure 2T. 

Comparison with the OLS fit for both training and test set can be found in Appendix 2E which 

clearly shows the bias-variance tradeoff. 

The CWTLS model has low bias (training MSE: 0.005) and lower total error (test MSE: 0.017), 

yielding a model variance of 0.012, while the OLS model, with similar bias (0.004), has higher 

total error (0.028) and variance (0.024). A slight bias increase (0.001) in CWTLS improves 

model performance with lower variance. The bulk composition model fits better (test MSE: 

0.007, MAE: 0.055) due to fewer extreme samples but still shows greater composition-dependent 

bias (bias integral: 0.51 vs. 0.276). The speciation model, though less tightly fit, generalizes 

better across compositions, performing well on extreme samples with smaller bias (Figure 2T). 

Compositional bias in the speciation model persists for low-volume, B-rich tourmalines (e.g., 

samples 1, 2, and 179) due to the lack of Al-rich and BIV-rich tourmalines in the training set. 

CWTLS excels in generalisation but is highly sensitive to training data, with reduced 

performance without sample tm164 demonstrating its data-dependence. 
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Figure 2T. The CWTLS model fit to the test set data. Dark grey bands show confidence 

intervals for the mean response, while blue dotted lines represent prediction intervals for 

individual measurements. Regression model without interaction parameters 

Model uncertainty estimation The external validation plots of the bulk and speciation models 

can be used for uncertainty estimation of the predicted molar volumes. The York regression 

confidence intervals in the y-𝑦̂ plot estimate a minimal uncertainty in predicted molar volumes, 

while wider prediction intervals include individual variability for single observations, providing 

a maximum estimation (dark green and blue bands, respectively, in Figure 2Q to 2L), see 

theoretical details NCSS Helpfile (NCSS 2023a). Error propagation from the covariance matrix 
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of the regression coefficients offers an alternative, but likewise may overestimate uncertainty due 

to its worst-case-scenario nature (Bevington and Robinson 2003).  

Multicollinearity Multicollinearity in bulk and compositional models arises primarily from 

limited sampling of the endmember space. This issue results in correlated regression coefficients, 

as many of the parameters are poorly resolved. The root of the problem lies in the inherent 

limitations of the sample space, which does not encompass the full diversity of possible 

compositions. Factors such as crystal-chemical controls, site and charge balance constraints from 

mineral formula optimisation, and natural alignment of samples along dominant exchange 

vectors due to common bulk compositions contribute to this issue. These natural alignments 

reinforce multicollinearity, making it difficult to eliminate entirely. Robust regression and CW-

TLS help mitigate some of this multicollinearity by weighting the data, thereby reducing the 

influence of correlated variables. However, the most effective solution is to synthesize additional 

samples that break these natural trends. Principal component analysis (PCA) vectors (e.g., Figure 

2I) can guide the synthesis of new samples by identifying compositional regions where these 

trends can be disrupted. 

10.  COMBINED DATASET. ORDINARY LEAST SQUARES 

For both the X(YZ)₉SiₓAl₁₋ₓ(VW)₄ bulk composition and XY₃Z₆T₆V₃W speciation models, high 

VIF factors indicate multicollinearity and data scarcity lead to broad OLS confidence intervals 

for the endmember molar volumes. Correlated endmember molar volumes reduce independence 

and applicability, making the models heavily data-dependent. This limits model use, as removing 

an endmember for smaller chemical systems requires refitting the entire model. The need to refit 

thermodynamic models with correlated endmember sets is a crucial yet often overlooked issue 

when projecting models to smaller chemical subsystems. Projection is only valid when the 

chosen endmembers are statistically independent, meaning they do not exhibit multicollinearity. 

In this case, the model can be directly reduced without introducing bias or instability. However, 

when endmembers are correlated, projection without refitting can distort model behavior, and 

reparameterization is required to maintain thermodynamic consistency. Although the CWTLS 

method mitigated some multicollinearity by increasing fit flexibility, it did not eliminate data 

dependence, as weighting altered the influence of each data point. To mitigate these issues, we 
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calibrated regression coefficients using the combined training and test datasets. However, 

merging the training and test datasets eliminates any independent validation set, precluding 

meaningful model assessment. In addition, the model lacks internal consistency, as the 

tourmaline compositions in the test data were not normalised using the same crystal-chemical 

assumptions as the training set, leading to compositional incompatibility. Furthermore, the 

absence of covariance matrices prevents the application of total least squares (TLS), which is 

required to account for uncertainty in both variables. Regression was therefore conducted using 

OLS in NCSS and details of the regressions can be found in Appendix 2C. 

Bulk composition model The regression model based on the combined dataset of 149 

observations demonstrates improved robustness compared to the original training dataset of 52 

observations, primarily due to the increased sample size and reduced multicollinearity. The 

combined dataset shows broader predictor ranges, especially for drvB, aorsmB, fluvt, bu, and 

mdtw. Except for (hypothetical) mdtw, all (𝑋𝑋′)−1 diagonal values are below 1. Standard errors 

halved, tightening confidence intervals and improving model reliability. Significant shifts in foiB 

(-0.24), buB (+0.24), and oleB (+0.32) exceeded the original confidence intervals and standard 

errors, while other predictors, despite a large shift; mdtwB (+0.1747), remained within bounds. 

Multicollinearity was substantially reduced in the combined dataset, with all VIF factors falling 

below 3.3 compared to values exceeding 9 in the training set model. In the combined dataset, 

several correlations from the original model disappeared, particularly those involving aorsmB, 

while new correlations emerged, notably between uvtB and fluvtB, oleB and buB, and oleB and 

Molar Volume. 
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Figure 2U. Combined dataset and the bulk model. Scatter plot of measured vs. predicted molar 

volume (J/bar⋅mol) with error bars from covariance matrix propagation. WLS regression (green) 

accounts for uncertainty variations, while the 1:1 line (dashed red) indicates perfect agreement. 

Regression model without interaction parameters 

In the combined dataset, fluor-buergerite (tm64, -0.29 residual, Cook's D 1.35, DFFITS -3.77) 

and bosiite (206, 0.20 residual, Cook's D 1.07, DFFITS 3.24) are significant influential outliers 

which affect multiple predictors, but specifically buB, while high residuals of tm164, dutrowite 

156, 33, and 17 show reduced or minor influence with Cook's D values of 0.06, 0.05, 0.08, and 

0.03, respectively (Figure 2U).  
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Subset selection identified five significant binaries to address outlier influence. Two extreme 

ones involving bu: Wsrl-bu (1.64), Wdrv-bu (1.19), and moderate negatives for W involving drv: 

Wdrv-fluvt (-0.66), Wdrv-uvt (-0.64), and Wdrv-foi (-0.47). Interaction parameters improved model fit 

(MSE 0.0065 to 0.005, R²Press 0.79 to 0.83) but introduced severe multicollinearity, with VIFs 

for WdrvB-fluvtB (21.73) and WdrvB-uvtB (12.66), buB (7.38), WsrlB-buB (6.71) exceeding the previous 

threshold of 3.3. Molar volume shifts beyond confidence intervals were observed for srl 

(smaller), drv, uvt, fluvt (larger), and bu (much larger). New correlations, such as WdrvB-uvtB (-

0.85) and WsrlB-buB (0.75), suggest subregular interactions, with WsrlB-buB replaced with Wsrl-bu-bu 

and Wsrl-srl-bu proven significant. 

Unlike the training model, removing tm164 did not affect drv W's, indicating tm164 is not the 

sole driver, and the excess volumes in drv W's likely result from coupled substitutions involving 

X-site cations.  However, none of the interaction parameters from the training model performed 

well on the test set, and strong multicollinearity suggests they may reflect inaccuracies in 

endmember properties, with their inclusion likely leading to overfitting. 

The extreme (subregular) bu interaction terms primarily addressed discrepancies in F-buergerite 

(tm64) and bosiite (206). tm64 maintained a residual of -0.29 but saw its Cook's D drop from 

1.35 to -0.7, reducing influence. Similarly, 206's residual decreased from 0.20 to 0.11, with 

Cook's D falling from 1.07 to -0.7. Removing tm64 rendered all bu-related interaction 

parameters insignificant proving that the bulk compositional model cannot deal with Fe3+-Al 

order-disorder effects.  

XY3Z6T6V3W model The speciation model calibrated with the combined dataset (157 

tourmalines) shows significant improvements in precision, coverage, and multicollinearity 

compared to the training dataset (53 tourmalines). The combined dataset broadens compositional 

coverage, extending endmember ranges for srl, drv, fuvt, foi, drvdis, mdtw, aorsm, and pov. 

Molar volume ranges expand from 29.82–32.24 J/mol/bar to 29.71–33.02 J/mol/bar, 

incorporating more small-volume olenites and large-volume bossiites, enhancing 

representativeness. The combined dataset achieves a higher RPress2 (0.91 vs. 0) but slightly 

higher MSE (0.0089 vs. 0.0058). Endmember molar volumes vary from povondraite (34.23 

J/mol/bar) to B-olenite (29.41 J/mol/bar), with intermediate values for foi (31.53), drv (31.93), 
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uvt (32.14), and fluvt (32.61). Drv and drvdis share volumes (31.9), while odrv (31.64) reflects 

protonation/deprotonation effects. 

Regression coefficients remain within original confidence intervals, but pov decreased (-1.40), 

while fluvt (+0.46), srl (+0.27), and aorsm (-0.58) exceeded standard deviations. Standard errors 

decreased 2–7x with tighter confidence intervals. Multicollinearity improved significantly, with 

VIF values dropping below 5.0 (e.g., srl from 24.86 to 3.3). Most correlations are broken except 

for foi and aorsm (-0.69) and bole and molar volume (-0.83) and a new correlation emerged 

between drv and drvdis (-0.73) which explains the interdependence demonstrated by the 

intermediate high VIF factor of drvdis (5).  An interaction parameter could decouple shared 

variance between correlated endmembers. 
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Figure 2V. Combined dataset and the speciation model. Scatter plot of measured vs. predicted 

molar volume (J/bar⋅mol) with error bars from covariance matrix propagation. WLS regression 

(green) accounts for uncertainty variations, while the 1:1 line (dashed red) indicates perfect 

agreement. Regression model without interaction parameters 

Residuals remain non-normal due to outliers. F-buergerite (tm64) and bosiite (206) are fit well in 

the speciation model (Figure 2V). Tm164 remains an outlier but with reduced influence. 

Synthetic B-olenite residual increased, likely due to its 0.2 apfu Y vacancy. High residuals for 

schorl-dravite 9 (Bloodaxe et al. 1999) and dravite 23 (Marschall et al. 2004) suggest potential 

internal consistency issues or unmodelled IVB. Large residuals of high IVB -tourmalines (175, 

179) indicate the model’s bole endmember requires refinement.  

Comparing bulk composition and speciation models reveals notable coefficient differences: bu 

(0.4627) reflects buergerite-povondraite incompatibility, while mdtw (0.2450) and ole (0.1508) 

result from large extrapolations. 

 

Combined dataset verdict Regression on the combined dataset improved robustness and 

tightened confidence intervals for the regression coefficients, highlighting the bulk model's 

inability to capture Fe³⁺-Al speciation effects. It also suggests a potential interaction effect 

between dravite and uvite (~-0.5 J/bar·mol). It also showed that for the speciation model, ~150 

samples are needed to better constrain all endmembers, though the absence of significant 

interaction parameters in the larger model indicates that a few extreme compositions could break 

the multicollinearities. Regression on the combined dataset demonstrably improved robustness 

and tightened confidence intervals for the thermodynamic parameters. However, the training and 

test sets were not normalised consistently, leading to compositional inconsistencies between 

them. Addressing this issue would require re-normalizing the test set according to the current 

normalization scheme and retraining the combined model. Until such a reanalysis is performed, 

we do not recommend using the regression values of the combined dataset due to these 

compositional inconsistencies, even though the parameter constraints are markedly improved. 
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11.  CONCLUSIONS 

This study presents two models for predicting the molar volume (V) of tourmaline: a bulk 

compositional model (based on bulk parameters) and a speciation model (using site fractions). 

We provide a detailed explanation of their derivation, strengths, and limitations, highlighting 

their ability to achieve accurate predictions against test sets. These models represent a significant 

advancement, offering the first validated tourmaline molar volume framework based on an 

internally consistent dataset of natural and synthetic samples. 

The two models have strengths and limitations that must be carefully considered. The bulk 

model effectively captures general trends but fails to represent order-disorder effects and 

compositional extremes, such as distinguishing buergerite from bosiite. The speciation model 

accounts for site-specific interactions and order-disorder processes, making it better suited for 

complex compositions but more sensitive to input uncertainties as small changes in the chemical 

composition can lead to large changes in the endmember fractions. A critical takeaway is the 

need to balance the bias-variance trade-off between centroid and extreme compositions. The bulk 

model’s failure at extremes indicates that prioritizing interpolation over generalisation limits its 

applicability beyond the calibration range. Conversely, the speciation model generalizes 

effectively but risks higher variance when the thermodynamics is dominated by noisy extremes. 

Therefore, models intended for extrapolation must tolerate higher variance, while those focused-

on interpolation require stricter bias control.  

Overfitting, a common issue in thermodynamic modelling, often arises from noisy data and 

outliers due to analytical artifacts, improper characterisation, model limitations, or impurities. In 

this study, reducing the influence of outliers—through robust techniques for the bulk model or 

flexible fitting for the speciation model—improved performance by reducing model variance and 

enhancing predictive accuracy. Overfitting was evident in the behavior of the W interaction 

parameters. While W terms improved fits within the training set, they significantly worsened 

prediction accuracy on test sets. As a result, no non-ideal W terms were retained in the final 

models. This emphasizes the critical importance of test set validation to identify and eliminate 

overfitted parameters that lack generalizability. 
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Multicollinearity is another issue in fitting thermodynamic models, affecting both the bulk model 

and, more significantly, the speciation model. Strong correlations between endmember properties 

and interaction terms obscure independent parameter contributions and compromise model 

accuracy. This emphasizes the need for recalibration of the model in smaller chemical spaces as 

endmembers can no longer be independently projected out. While it may be tempting to apply 

the most complex solid-solution model, the speciation model, simply because it is the most "up-

to-date" option, data scarcity and multicollinearity issues can prevent such models from 

providing reliable, independent parameter estimates upon projection, limiting their effectiveness 

in simpler chemical systems and one is better off using the bulk model. These characteristics 

should be explicitly reported in thermodynamic models to highlight calibration gaps. 

Overall, by addressing these challenges and leveraging the strengths of both models, this study 

provides a solid foundation for advancing tourmaline molar volume predictions, with future 

improvements achievable by breaking residual correlations, such as Mg-Fe, through controlled 

synthesis in iron-rich systems under strict oxygen fugacity or computational studies. 
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Bridging Text Between Manuscripts (Chapter 2-Chapter 3)  

Energy Equation Calibration: Molar Volume to Entropy and Heat Capacity Calibration 

The thermodynamic model developed in Chapter 2 establishes the composition and speciation 

space for tourmaline and calibrates one of the key parameters of the energy equation: molar 

volume. This parameter, derived from crystal-chemical measurements controls the pressure 

sensitivity of Gibbs free energy and is thus essential for describing phase stability and exchange 

equilibria as function of pressure.  Using internally consistent mineral formulas in terms of bulk 

parameters and site occupancies, two models were constructed: a bulk compositional model and 

a site-based speciation model. The calibration applied multivariate regression techniques to a 

dataset of ~50 samples, rigorously tested for multicollinearity, model robustness, and predictive 

accuracy using a molar volume literature test set. Together, the composition/speciation space and 

the molar volume calibration define the first components of the tourmaline thermodynamic 

framework—bounding the system both compositionally and volumetrically. 

Chapter 3 extends this foundation by addressing the temperature dependence of the Gibbs free 

energy through direct measurement of heat capacity and entropy. Using the same internally 

consistent tourmaline dataset, high-precision calorimetric experiments were conducted from 2 to 

773 K. These data enable regression of endmember entropies and Cp(T) functions in both bulk 

compositional and speciation models, applying the same structural and compositional framework 

used in the molar volume calibration. In contrast to molar volume, where a separate literature-

based test set was available for model validation, no such dataset exists for entropy or heat 

capacity. As a result, model performance is assessed by comparing the fit of our new models to 

the training set against the fit of the previously published estimation model—using the same 

dataset as a proxy test set for the latter. This chapter therefore adds the thermal component to the 

energy equations, capturing both vibrational and magnetic entropy contributions, while ensuring 

physical consistency through rigorous uncertainty propagation. The integrated treatment of 

entropy, heat capacity, and molar volume across Chapters 2 and 3 represents a significant 

advance over estimation-based approaches and marks the next step toward a fully experimentally 

calibrated thermodynamic model for tourmaline solid solution. 
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ABSTRACT Tourmaline is a critical accessory mineral in igneous, metamorphic, and 

hydrothermal environments, serving as a geochemical recorder due to its compositional 

flexibility and large stability range in physical and chemical parameter space. However, the 

existing thermodynamic model for tourmaline, based on estimation methods, is insufficient for 

accurately predicting its phase equilibria and energetic behavior. To address this gap, we 

developed a solution model for entropy and high-temperature heat capacity in tourmaline, 

focusing on the Na-Ca-Mg-Fe²⁺-Fe³⁺-Ti-Al-B-O-H-F chemical system, which encompasses the 

most common tourmaline solid solution chemistries in typical igneous, metamorphic and 

hydrothermal settings, which are Li, K, Mn, V and Cr poor. The model is based on direct 

calorimetric measurements from 2 to 773.15 K, combining relaxation calorimetry and 

differential scanning calorimetry data, using the consistently characterised tourmaline database 

of chapter 2. 

Two models were developed: a bulk compositional model, requiring only chemical composition 

with endmembers defined by bulk parameters, and a speciation model, relying on additional 

single crystal-XRD data with site fractions defining endmembers. This work builds on the molar 

volume models of chapter 3 and extends these to entropy and high-T heat capacity.  

1. INTRODUCTION 

Tourmaline is the most abundant borosilicate in Earth’s crust and an exceptional geochemical 

recorder due to its structural flexibility, stability over a wide P–T–X range, and resistance to 

alteration and diffusion Hinsberg et al. (2011). Its XY₃Z₆(T₆O₁₈)(BO₃)₃V₃W structure supports 

diverse homovalent and coupled substitutions, allowing it to preserve compositional zoning and 

record interactions with minerals, fluids, and melts from diagenesis to ultrahigh-pressure 

metamorphism. This makes tourmaline a key tracer for reconstructing fluid histories (van 

Hinsberg et al. 2017), metamorphic reactions (Henry and Dutrow 1996), and P–T conditions 

(Hinsberg and Schumacher 2007). Yet, the rapid increase in tourmaline-based studies (Henry and 

Dutrow 2018) often outpaces the development of robust theoretical frameworks needed for 

quantitative interpretation.  

The existing thermodynamic model for tourmaline is based on an estimation method. The 

polyhedron estimation method determines fractional polyhedral thermodynamic properties using 
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regression on databases containing minerals from diverse structures, polymerization levels, and 

crystal family classes (Van Hinsberg et al. 2005a, 2005b). These polyhedra are then 

stoichiometrically summed to estimate the thermodynamic properties of unknown, including 

tourmaline endmembers. The resulting endmembers were optimised by calibrating them against 

a limited set of natural and experimental phase assemblages (van Hinsberg 2006). This method 

only provides average polyhedral properties, combining data from minerals with vastly different 

sizes, shapes, distortions, and structural densities, leading to oversimplified and generalized 

estimates. Moreover, the “fitting the rock” approach without experimental constraints produces 

empirically tuned parameters that are highly correlated and lack physical significance, limiting 

their predictive power beyond the calibration range. As a result, these models are primarily 

capable of predicting the general order of net transfer reactions but offer little accuracy in 

describing more detailed thermodynamic processes, such as order-disorder relationships or local 

site interactions, as stated for tourmaline in van Hinsberg and Schumacher (2007). 

This study presents two improved models for entropy (S) and heat capacity Cp(T) in tourmaline 

(bulk compositional and site-specific) derived from direct calorimetric measurements of 

synthetic and natural compositions using the tourmaline database of chapter 2 Endmember 

entropy and high-T Cp are determined by regressing and integrating the samples vibrational and 

magnetic contributions. Using these tourmaline specific endmember components as chemical 

units, instead of general polyhedra, enhances predictive accuracy. Incorporating order-disorder 

and site-specific interactions, they outperform estimation methods, offering a reliable framework 

for phase equilibria and petrological applications. The methodology allows the model parameters 

to retain physical meaning while avoiding overfitting and parameter correlation problems. This 

approach not only advances the thermodynamic modelling of tourmaline but also offers a 

transferable methodology for addressing similarly complex mineral systems. We will compare 

the performance of the bulk compositional and speciation models against the polyhedron model 

and show that these new models improve on S and Cp(T) predictions. 

2. METHODS 

The tourmaline dataset of chapter 2 provides detailed compositional characterisation and 

uncertainty analysis for natural single-crystal solid solutions and select synthetic samples, 
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ensuring robust normalization and data consistency. This dataset was used to calibrate a molar 

volume model in chapter 3, and in this study, it is utilized to directly measure entropy and heat 

capacity. 

Theoretical Background Theoretical background about all the physical phenomena which give 

rise to Cp (T) curve can be found in Appendix 3A. 

2.1 Relaxation Calorimetry (Heat Capacity below 298.15K) 

Natural tourmaline single crystals (~3 × 3 mm) with polished bottoms were prepared to ensure 

optimal thermal contact and inspected under a binocular microscope for major inclusions. For 

samples that lacked sufficiently sized crystals for single crystal determination, powdered samples 

(5–25 mg) were used instead. These were finely ground in an agate mortar (under acetone to 

minimize oxidation of transition metals), packed into high-purity aluminum pans (~5.5 mg, 

0.025 mm foil pre-formed with a 4 mm drill bit), sealed by folding the edges, and compressed to 

~0.5 mm thickness using a hydraulic press at 1.5 tons for 1–2 minutes to eliminate voids and 

obtain pellets with parallel upper and lower surfaces, enhancing thermal conductivity (Dachs and 

Benisek 2011; Dachs et al. 2014). The pellet was reweighed to confirm integrity. The Quantum 

Design Physical Property Measurement System (PPMS) Cp Option setup consists of a helium-

filled dewar, a thermally isolated vacuum chamber, and a puck containing a sapphire sample 

mounting platform with a heater and thermometer suspended by thin wires for precise thermal 

links (Lashley et al. 2003; Dachs and Bertoldi 2005; Kennedy et al. 2007). The platform was first 

cleaned with toluene and coated with a thin, uniform layer of Apiezon N grease to ensure good 

thermal contact with the sample. To isolate the sample's heat capacity, separate addenda 

measurements—referring to the combined heat capacity of the empty platform and grease—were 

performed and later subtracted from the total signal during sample runs. For the subsequent 

sample measurement, the polished side of the single crystal or the prepared pan was mounted on 

the platform. Measurements were performed on cooling from 300 K to 2 K using a 4He system, 

with 60 logarithmically spaced T points, denser at low T. At each T point during the same 

cooling run, the heat capacity was measured three consecutive times to determine the analytical 

uncertainty. Heat capacity values were derived by subtracting addenda measurements (platform, 

grease) from the total, and subtracting the Al pan contributions which whose empirical Cp(T) 
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was determined prior and was fit with a cubic spline. Sample coupling was estimated by 
100𝐾𝑔

(𝐾𝑔+𝐾𝑤)
, 

where Kg and Kw are the thermal conductance’s of the sample-platform interface and wires, 

respectively. Further theoretical detail about the method can be found in Appendix 3B. 

Relaxation Calorimetry Data Processing Heat capacity was converted from μJ/K to J/mol⋅K 

by scaling to joules, normalizing by sample mass J/g⋅K, and multiplying by the molar mass, 

which depends on the precision of the tourmaline formula from compositional analysis. A ±0.02 

mg weight uncertainty was assumed for this conversion. Linear interpolation was applied 

between measured data points to obtain a smooth Cp curve, though this simplification slightly 

underestimates the true, nonlinear curve. Using second-order instead of piecewise linear 

interpolation changes the entropy at 298.15 K by only 0.2 J/mol·K. Heat capacity uncertainty 

was determined via piecewise linear interpolation of the analytical uncertainty, and entropy 

uncertainty was derived by integrating this uncertainty function divided by T. Entropy 

calculations employed the equation 𝑆 = ∫  
𝑇

𝑇0

𝐶𝑝

𝑇
𝑑𝑇 evaluated using Mathematica’s NIntegrate 

function over the range 2–298.15 K. Error propagation included analytical uncertainties from 

repeated measurements but did not account for sample-related or hysteresis-induced 

uncertainties. Accuracy and precision of the PPMS have been previously evaluated using 

standards and will be discussed in the Result section. 

2.1 Differential Scanning Calorimetry (DSC) (above 298.15K) 

Above 298.15K, heat capacity was measured using DSC. A Perkin Elmer Diamond DSC 

measured Cp from 243.3 to 773.15 K (high-T Cp signal) for powders and polished single crystals 

in Perkin Elmer aluminum pans (kit No. 0219-0041) with lids. Proper thermal coupling 

minimised T lag, with powdered samples exhibiting slightly more lag than single crystals. For 

one sample, Cp values from powders and single crystals were within uncertainty and merged. 

Samples were preheated to 500 °C to eliminate absorbed water and ensure no phase transitions 

occurred, then cooled and reweighed post-run to check for mass loss due to evaporation. DSC 

was performed before PPMS to ensure the same quenched state from 500°C was measured in 

both techniques. Most weight changes measured before and after DSC were below the 0.02 mg 

uncertainty, except for tm23, tm29, tm13 (0.03 mg), tm171 (0.04 mg), tm160A (0.08 mg), tm42 
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(0.13 mg), uvite (0.21 mg), and oxyuvite (0.50 mg), indicating possible evaporation of inclusions 

or experimental impurity phases. 

Measurements began after stabilizing the calorimeter block at 243.3 K for 5 minutes using a 

Perkin Elmer Intracooler with a dried air flow (200 ml/min) to prevent ice formation. Runs were 

conducted under argon gas in step-scanning mode at a 10 K/min heating rate, with 50 K intervals 

and 2 minutes of isothermal time per step. Three runs were performed for each sample: blank 

(empty pans), reference (31.764 mg corundum crystal), and sample. Calibration used NIST 

Cp(T) values for sapphire, with a sapphire run calculating the calibration factor 

F=Cp(lit)/Cp(obs). Runs were accepted if within 1% of literature values, and each set (empty, 

sapphire, and sample) was repeated three times. DSC, as a dynamic heating method, can 

introduce hysteresis errors, highlighting the need for calibration, which is performed using 

indium’s melting point and enthalpy of fusion. Further theoretical detail about the method can be 

found in Appendix 3B. 

DSC Data Processing The data were analysed using a custom Mathematica script (Dachs and 

Benisek 2011) based on Mraw (1988)'s method. Ideally, isothermal baselines, representing the 

power required to maintain constant T at zero scan rate, should be identical for the empty pan, 

reference, and sample, but corrections were applied to account for system drift. These baselines 

were aligned by averaging data points within each isothermal section i, excluding dynamic 

equilibration periods. Mean T ( 𝑇̅𝑖) and heat flows (𝑄̅𝑖) were calculated as: 𝑇̅𝑖 =
1

𝑛
∑  𝑛
𝑗=1 𝑇𝑖𝑗, and 

𝑄̅𝑖 =
1

𝑛
∑  𝑛
𝑗=1 𝑄𝑖𝑗, where j indexes data points, and n is the number of points in section i. Scalar 

correction factors for the isothermal sections were computed as: Δ𝑄ref,𝑖 = 𝑄̅empty,𝑖 − 𝑄̅ref,𝑖,  

Δ𝑄sample ,𝑖 = 𝑄̅empty ,𝑖 − 𝑄̅sample ,𝑖. 

Polynomial fits (up to cubic terms) are applied to the averaged isothermal corrections across all 

sections to derive T-dependent bias correction functions: 

Δ𝑄ref(𝑇) ≈ 𝑎ref + 𝑏ref𝑇 + 𝑐ref𝑇
2 + 𝑑ref𝑇

3

Δ𝑄sample (𝑇) ≈ 𝑎sample + 𝑏sample 𝑇 + 𝑐sample 𝑇
2 + 𝑑sample 𝑇

3 
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and are applied to drift correct both isothermal and non-isothermal heat flow data of the 

reference and sample heat flow data, aligning them with the empty pan baseline: 

𝑄corrected,ref (𝑇) = 𝑄original,ref (𝑇) + Δ𝑄ref (𝑇)

𝑄corrected,sample (𝑇) = 𝑄original,sample (𝑇) + Δ𝑄sample (𝑇)
 

Figures of the heat signal before and after drift correction can be found in Appendix 3B (Figure 

A3B.1 and A3B.2). The sample Cp was calculated as: 

𝐶p sample =
𝑄sample − 𝑄empty 

 heating rate 
⋅
1

60
 

by subtracting the baseline heat flow (Qempty) from the measured heat flow (Qsample), normalizing 

it by the heating rate to account for T change over time. The 1/60 converts from seconds to 

minutes. The Cp differences of the aluminum DSC pan between empty and ref/sample, and for 

powders, the additional Cp of the aluminum foil, were subtracted using a polynomial expression 

for the heat capacity of the Al pan material (Dachs and Benisek 2011), whose heat capacity was 

taken from the JANAF-Tables (Chase, 1998): 

 𝐶pan, diff =
135.18−0.139983𝑇+0.000117942𝑇2−3.2767×10−8𝑇3−1478⋅𝑇−0.5+595094⋅𝑇−2

 mass pan 
⋅  mass diff 

Here, T is the T, and the coefficients are specific to the pan material.  

This correction ensures high accuracy and reproducibility, with DSC measurements accurate to 

within ±1%. 

The data were averaged with SD calculated and fit to the empirical Berman & Brown (1985) Cp 

polynomial for cp data without λ transitions (further called the “Berman fit”): 

𝐶𝑝 = 𝑘0 + 𝑘1𝑇
−0.5 + 𝑘2𝑇

−2 + 𝑘3𝑇
−3 

in Mathematica using LinearFit with singular value decomposition, as the equation is linear in its 

coefficients. The covariance matrix of fit parameters was computed. Fit quality was assessed 

using the chi-square probability from the chi-squared statistic and degrees of freedom. With k1 
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and k2≤0, inflections are avoided in the Cp(T) function above 298.15 K ensuring reliable 

extrapolation of Cp to higher T, crucial for tourmaline which is stable beyond current 

calorimetric limits. The equation cannot be used below 298.15 K due to potential inflections 

caused by the positive k3 term at lower T. 

This method minimises thermal lag, corrects baseline drift, and ensures accuracy through a 

uniform heating rate. 

2.2 Extrapolation from 2.5 K to 0K 

PPMS Cp measurements using ⁴He cooling down to 2 K revealed a low-T Cp anomaly in iron-

rich tourmaline, interpreted as a second-order magnetic spin glass transition (see Appendix 3A 

for details and Appendix 3C for proof). Unlike first-order transitions, where relaxation 

calorimetry struggles with profile fitting, second-order transitions can be accurately measured. 

(Rosen and Woodfield 2020). Measurements were taken up to the transition onset, avoiding 

direct magnon detection, and Cp was extrapolated from 0 K to 5 K using a series expansion with 

uneven powers (Cp=aT+bT3+cT5+dT7) (Rosen and Woodfield 2020). The uncertainty was fixed 

at 0.01 for the 0–5 K range. The Cp and vibrational entropy Svib are extrapolated to 0 J/(K·mol) 

at 0 K to satisfy the third law of thermodynamics (see Appendix 3A for a detailed explanation). 

In antiferromagnetic tourmaline, spin wave contributions can be estimated using a linear magnon 

dispersion (ω∝k) leads to a DOS scaling as ω2, resulting in a Cp∝T3 behavior at low-T(Gopal 

1966; Miller 1988). Since the Néel T is low, the magnon T3 behavior dominates over the phonon 

T3 contribution in this range. The T5 and T7 terms provide fit flexibility, capturing non-standard 

behaviors such as critical fluctuations, nonlinear magnon interactions, anisotropies, or higher-

order exchange effects near the critical T, beyond mean-field theory.  

However, fitting with only bT3+cT5+dT7 did not produce accurate results, necessitating the 

addition of a linear term. Linear terms are rare in low-T Cp for insulators but common in metals 

due to conduction electron contributions (Gopal 1966). In tourmaline, this linear term may 

indicate a low-T Schottky anomaly with a small energy level separation such as due to vacancies 

an/or impurities (Schliesser and Woodfield 2015), short-range spin-glass behavior, the low-T tail 

of the magnetic transition (Miller 1988). In Figure 3A and Figure 3B, the series expansion fit is 
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demonstrated for foitite and F-buergerite, respectively. In F-buergerite, Cp between 2–5 K shows 

two peaks, with the second likely at lower T, supported by relatively high Cp at 2.5 K. 

The integral of Cp/T from 0–5 K is a maximum of 5J/mol·K using extrapolation, a small but 

significant contribution (~0.5–1%) to the entropy at 298.15 K, comparable to the total integrated 

uncertainty of Cp//T up to standard state conditions. 

The <5 K empirical function, PPMS interpolation, and Berman fit were combined into a single 

Mathematica function covering 0–798.15 K for each sample, enabling calculation of Cp and S 

and their uncertainties at any T 

 

 

Figure 3A. Heat capacity of Foitite sample (Tm 6) between 0-17K as measured using the PPMS 

and the uneven power series extrapolation to 0K. 
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Figure 3B. Heat capacity of F-buergerite sample (tm64) between 0-17K as measured using the 

PPMS and the uneven power series extrapolation to 0K. 

3. RESULTS 

Combined heat capacity function and uncertainty propagation The heat capacity Cp(T) 

curve, spanning 0–774.15 K, is represented as a single Mathematica function combining three 

sections. The low temperature range (0-5K) is modelled using a power series 𝐶𝑝(𝑇) = 𝑎𝑇 +

𝑏𝑇3 + 𝑐𝑇5 + 𝑑𝑇7. The intermediate range (5–298.15 K) is based on linearly interpolated 

relaxation calorimetry data. The high temperature range (298.15–774.15 K) follows a Berman 

and Brown (1985) fit 𝐶𝑝(𝑇) = 𝑘0 + 𝑘1𝑇
−2 + 𝑘2𝑇−0.5 + 𝑘3𝑇2, applied to the DSC data, were 

k0-k3 are fit coefficients. 
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A constant uncertainty (0.01 J/mol·K) was assumed for the low temperature range (Cp <5 K). 

Entropy (S) is computed as 𝑆 = ∫
𝐶𝑝

𝑇
𝑑𝑇, with uncertainty propagated via 𝜎𝑆 = ∫

𝜎𝐶𝑝

𝑇
𝑑𝑇, 

evaluated numerically using NIntegrate. To address the known issues with large swings in 
𝐶𝑝

𝑇
 at 

low temperatures, we also tested the entropy calculation using ∫ 𝐶𝑝𝑑(ln 𝑇) formulation. 

However, the differences between the standard ∫
𝐶𝑝

𝑇
𝑑𝑇 and the ∫ 𝐶𝑝𝑑(ln 𝑇) integrals were found 

to be extremely small (changes < 0.0001), and thus negligible for the purposes of this study. 

In the intermediate T range (5 < 𝑡 ≤ 298.15K), uncertainty of Cp is obtained by a linear 

interpolation function trough the Cp uncertainties at each point, 𝜎𝐶𝑝(𝑇) =
𝑇−𝑇lower 

𝑇upper −𝑇lower 
⋅ 𝜎upper +

𝑇upper −𝑇

𝑇upper −𝑇lower 
, where σupper and σlower are uncertainties of the bounding data points. The PPMS 

measured Cp three times per T during cooling without moving the sample, yielding higher 

apparent analytical precision. However, the lack of duplicate measurements in the PPMS likely 

underestimates true uncertainty While the calculation is independent of the number of points 

along the Cp curve due to continuous integration, the accuracy of the fit, and consequently the 

propagated uncertainty, depends on the sampling density of the raw Cp data used to derive the 

coefficients and their covariance and simplicity assumptions of the linear interpolation. 

Accuracy and precision of the PPMS have been previously evaluated with studies showing that 

polished single crystals provide better thermal coupling and precision than powders (Dachs and 

Bertoldi 2005; Benisek and Dachs 2008). Studies using materials like synthetic corundum 

(SRM-720), fayalite, sanidine, and various silicates (e.g., anorthite, albite, forsterite) report 

PPMS accuracy for single crystals at ±0.1–0.2% above 50 K, with precision around ±0.3%. 

Powders exhibit lower accuracy (1–2% deviation above 50 K) and precision (±0.5% for 10–20 

mg samples) (Geiger and Dachs 2018). Below 50 K, uncertainties increase to ±3–5%, reaching 

±10% below 5 K due to thermal conductance changes. The PPMS matches adiabatic calorimetry 

precision with smaller sample sizes (~5–25 mg vs. 5–50 g), yielding S0 uncertainties of 0.2–0.5% 

for powders and ~0.1% for single crystals. Our standard deviations are higher because we 

estimate uncertainties by integrating the interpolated uncertainty function over T, rather than 

deriving them from the covariance matrix of a fitted Cp polynomial or lattice model. Fit 

uncertainties are smaller because they assume the model perfectly represents the data, limiting 
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errors to fitting parameters, while propagated uncertainties capture variability across the dataset. 

However, we consider these propagated uncertainties reasonable, as they account only for 

analytical error based on triplicate measurements of a single sample at each temperature, and do 

not include variability from different sample preparations, such as mounting flatness or sample 

inhomogeneity, providing a conservative but realistic error estimate 

The uncertainty of Cp at the Berman fit, 𝐶𝑝 = 𝑘0 + 𝑘1𝑇
−0.5 + 𝑘2𝑇

−2 + 𝑘3𝑇
−3, (high 

temperature range; 298.15–774.15 K) is propagated as in eq 1 with partial derivatives as: 
𝜕𝐶𝑝

𝜕𝑘0
=

1,
𝜕𝐶𝑝

𝜕𝑘1
= 𝑇−0.5,

𝜕𝐶𝑝

𝜕𝑘2
= 𝑇−2, and 

𝜕𝐶𝑝

𝜕𝑘3
= 𝑇−3. 

√∑  4
𝑖=1 (

𝜕𝐶𝑝

𝜕𝑘𝑖
𝜎𝑘𝑖)

2

+ 2∑  𝑖<𝑗
𝜕𝐶𝑝

𝜕𝑘𝑖

𝜕𝐶𝑝

𝜕𝑘𝑗
Cov(𝑘𝑖 , 𝑘𝑗) (eq1) 

To propagate uncertainties in entropy calculations, we evaluated the variance of 
𝐶𝑝

𝑇
 at each T 

using the covariance matrix (Cov(ki,kj)) of the fitted heat capacity coefficients {k0,k1,k2,k3}, 

and the partial derivatives in eq 2: 

𝜕(
𝐶𝑝

𝑇
)

𝜕𝑘0
=

1

𝑇
,
𝜕(
𝐶𝑝

𝑇
)

𝜕𝑘1
=
𝑇−0.5

𝑇
,
𝜕(
𝐶𝑝

𝑇
)

𝜕𝑘2
=
𝑇−2

𝑇
,
𝜕(
𝐶𝑝

𝑇
)

𝜕𝑘3
=
𝑇−3

𝑇
 (eq2) 

The variance was computed as in eq 3 where 𝐩(𝑇) = [
1

𝑇
,
𝑇−0.5

𝑇
,
𝑇−2

𝑇
,
𝑇−3

𝑇
] is the vector of partial 

derivatives. 

Var (
𝐶𝑝

𝑇
) = 𝐩(𝑇) ⋅ Cov(𝑘𝑖 , 𝑘𝑗) ⋅ 𝐩(𝑇)

𝑇 (eq3) 

The total propagated uncertainty in entropy was obtained by integrating the variance over the T 

range and taking the square root (eq4): 

𝑆Uncertainty = √∫  
𝑇2
𝑇1
Var (

𝐶𝑝

𝑇
)𝑑𝑇 (eq 4) 
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This method fully accounts for contributions from both diagonal and cross-term elements of the 

covariance matrix, incorporating correlations between coefficients which are high for Berman 

polynomial coefficients and so without the crossterms the uncertainty would get inflated. 

In the DSC, sample uncertainty matched analytical uncertainty due to repositioning, with ±1% 

accuracy and ±1% precision for single crystals and ±2% for powders. Final Cp uncertainty from 

the Berman fit covariance matrix was 0.1%, reflecting order of magnitude improvement of 

precision when the physical form of Cp is known. This assumes the Berman fit is error-free and 

accurately represents Cp, with uncertainties derived solely from the fit's covariance matrix, valid 

only if the model is physically correct.  

Observed trends in sample heat capacities The entropy (S) and specific heat (Cp) of 

tourmalines exhibit notable variability, with the mean entropy calculated as 658.62J/mol·K and 

ranging from 617.76J/mol·K in synthetic Mg-foitite (dravsyn) to 709.54J/mol·K in for Ca-Fe3+ 

rich schorl (tm156B). The propagated analytical uncertainty in entropy (Ssd) has a mean of 

9.55J/mol·K (~1.4 %) and a standard deviation of 2.78J/mol·K. For Cp at 600 K, the mean value 

is 1127.53 J/mol·K, spanning a range of 1092.80 J/mol·K in F-buergerite (tm64) (blue line in 

Fig. X) to 1165.54 J/mol·K in synthetic uvite (red line in Fig X.). The analytical uncertainty in 

Cp (Cp,sd) averages 0.70 J/mol·K (0.06%) with a standard deviation of 0.55 J/mol·K, 

emphasizing the precision of the data. Tourmaline entropies (621.78–709.54 J/mol·K) exceed 

simpler phases like amphiboles such as tremolite (553 J/mol·K) but are lower than sanidine (835 

J/mol·K) and hydrated phases like lawsonite (876 J/mol·K), reflecting their intermediate 

thermodynamic complexity. Individual measured sample Cp curves and standard errors are 

shown in Figure 3C and further detailed in Electronic Appendix 3A and 3B, respectively. 
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Figure 3C. Specific heat capacity (Cp) of tourmalines. Buergerite (blue) has the highest Cp at 

low T but the lowest above ~250 K, while uvite (red) shows the highest Cp at high T. Other 

tourmalines are intermediate. The uncertainties are smaller than the thickness of the lines. The 

inset highlights the Cp behavior at the lowest temperatures, which disproportionately influences 

the integrated entropy. 

Notably, F-buergerite shows distinct behavior, with a high Cp at low T but becoming the lowest 

among all samples at higher T, such as 600 K. This highlights a significant T-dependent shift in 

its thermodynamic behavior. As shown in Figure 3D, entropy—calculated as the integral of Cp

/T—accumulates most significantly between 100 and 200 K, with a significant magnetic 

contribution at low temperatures. 
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Figure 3D. Cp/T curves (coloured) and Interquartile Range (blue) showing that the mid-range 

(50–200 K) dominates entropy but has low variance, while the magnetic contribution at low 

temperatures, with high Cp variability, most influences entropy differences. 

While the upward peak in Cp/T below 20 K may appear small, the 0–50 K range shows 

significant Cp variance between tourmalines, such as dravite-rich (TM23) and foitite-rich (TM6), 

Figure 3E, highlighting where most relative differences in Cp arise, mainly due to magnetic 

effects, see Appendix 3C. Accurate measurement and modelling of this low temperature 

behaviour are crucial, as it this range dictates tourmaline’s S₀ variance. Our study extends 

measurements down to 2 K, capturing critical low-T contributions often missed in older datasets, 

as adiabatic calorimetry historically was limited to 5–10 K (Westrum 1988).  Geological 

thermodynamic databases based on these older measurements might not be entirely inconsistent 

with PPMS data especially for iron containing phases. For example, the Robie and Hemingway 

(1995) is mainly based on adiabatic calorimetry which also is the base for the Holland and 
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Powell database (2011). 

 

Figure 3E. The Cp difference between foitite (tm6) and dravite (tm23) highlights significant 

variability in the 0–50 K T range, driven primarily by magnetic contributions. This range has the 

largest impact on Cp curve differences and dominates uncertainty in both Cp and integrated 

entropy, as entropy is highly sensitive to 1/T at low T. Measurements were conducted down to 2 

K. 

Heatmaps. Heatmaps were created by extracting Cp values every 5 K from 0–100 K and every 

20 K from 100–800 K using piecewise linear interpolation of each measured Cp curve. At each 

T, the mean and standard deviation were calculated, and Cp values were converted to Z-scores to 

standardize and compare curves, highlighting whether Cp is lower (blue) or higher (red) than the 

mean (Figure 3F). The same process was applied to Cp uncertainties to provide a visual 

comparison of relative magnitudes (Figure 3G). this shows that our sample show variance which 

is needed if we want to extract endmember data from these solid solutions.  
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Figure 3F. Heatmap of training set samples showing Cp Z-scores per T compared to the dataset 

mean, with white indicating values near the mean, blue lower, and red higher, illustrating how 

relative differences vary with T. 
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Figure 3G. Heatmap of training set samples showing Cp uncertainties Z-scores per T compared 

to the dataset mean uncertainty. 

Jump between PPMS and DSC 

To connect the Cp values between the PPMS and DSC instruments, piecewise linear 

interpolation was initially used, resulting in either a jump or drop when transitioning from one 

technique to the other. The source of this discrepancy, whether from the PPMS, DSC, or both, 

was unknown. Since the goal was the final endmember Cp curves, no immediate correction was 

applied, assuming the random nature of these jumps would cancel out during regression, yielding 

smooth endmember Cp curves, see histogram in Figure 3H, whereas individual jumps in relative 

percentages (rel%) at RT (Room Temperature, 298.15K) are shown in Figure 3I.  

The regression on low-temperature Cp data revealed that samples with jumps at 25°C were not 

flagged as outliers in the PPMS regression used to obtain the standard state entropy. However, 



244 
 

when regressions were performed on the high-temperature Cp functions from 298 to 773.15 K, 

and the integral of these Cp values over this temperature range was used to calculate 𝑆298.15𝐾
773.15𝐾, all 

samples with large DSC jumps were identified as significant outliers compared to the rest of the 

dataset. This discrepancy indicates that the offset observed between PPMS and DSC at room 

temperature arises from a systematic baseline shift in the DSC Cp signal, not in the PPMS data. 

This is shown in Figure 3J, where we compare measured and predicted 𝑆298.15𝐾
773.15𝐾, supporting the 

conclusion that the bias lies in the DSC data. 

To address this, a correction factor was calculated at 298.15 K using the integral equation for 

low-T Cp and the Berman equations for high-T Cp. This additive factor was applied to the DSC 

data above 298.15 K, aligning it vertically with the PPMS signal. No correction was applied for 

the slope or other higher derivatives. No horizontal differences between DSC and PPMS data 

due to T lag were observed. This normalization of the DSC to the PPMS is opposite to the 

method suggested by Dachs and Benisek (2011), where they recommend correcting PPMS data 

to align with DSC values at 298.15 K. This correction is superior as it addresses the systematic 

baseline shift in the DSC Cp signal, likely worsened since Dachs and Benisek’s work due to 

instrument degradation. By normalizing the DSC to the PPMS, we avoid introducing bias and 

improve the internal consistency of the thermodynamic model, yielding more accurate 

endmember Cp curves and standard state entropy values. 

 

Figure 3H. The jump between PPMS and DSC data at 298.15K in terms of relative percentages.  
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Figure 3I. Relative percentage % differences between PPMS-DSC. 
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Figure 3J. Predicted 𝑆298.15𝐾
773.15 𝐾 using uncorrected DSC Berman fits. Samples with overestimated 

values correspond to positive jumps, while underestimated ones show negative jumps, indicating 

inaccuracies in the DSC data. A vertical correction was applied, assuming accurate slope 

determination. 

4. TRAINING DATASET REGRESSION: ORDINARY LEAST SQUARES 

The heat capacity Cp is related to the Gibbs free energy through the differential: 

𝐶𝑝 = −𝑇 (
𝜕𝑆

𝜕𝑇
)
𝑃
= −𝑇(

𝜕2𝐺

𝜕𝑇2
)
𝑃

 

The low-temperature Cp curve is formulated using piecewise linear interpolation: 

𝐶𝑝
predicted(𝑇) =∑  

𝑛

𝑖=1

𝑓interp ,𝑖(𝑇) 
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where 𝑓interp ,𝑖(𝑇) represents the linear interpolation function for each temperature segment. 

Specifically, for each interval [𝑇𝑖, 𝑇𝑖+1], the linear interpolation is given by: 

𝑓interp ,𝑖(𝑇) = 𝑓(𝑇𝑖) +
𝑓(𝑇𝑖+1) − 𝑓(𝑇𝑖)

𝑇𝑖+1 − 𝑇𝑖
(𝑇 − 𝑇𝑖) 

Here, 𝑓(𝑇𝑖) and 𝑓(𝑇𝑖+1) are the heat capacity values at the boundaries 𝑇𝑖 and 𝑇𝑖+1, and T is the 

interpolated temperature within this segment. 

The standard state entropy S0 at 298 k and 1bar can be expressed both as an integral and as a 

derivative of the Gibbs free energy divided by temperature. First, using the integral of  
𝐶𝑝

𝑇
 over 

temperature: 𝑆0 = −∫  
𝑇

𝑇0

𝐶𝑝

𝑇
𝑑𝑇, which simplifies, given the linear interpolation of  

𝐶𝑝

𝑇
 , to: 

𝑆0 = −∫  
𝑇

𝑇0

∑ 

𝑛

𝑖=1

𝑓interp ,𝑖(𝑇
′)
𝑑𝑇′

𝑇′
 

Alternatively, S0 can be directly calculated as the derivative of G: 

𝑆0 = −(
𝜕𝐺

𝜕𝑇
)
𝑃,𝑇=𝑇0

 

ensures that the thermodynamic model is consistent with both the Cp and entropy calculations. 

We performed regression analyses on our solid solution dataset to extract the heat capacity (Cp) 

and entropy (S) functions of thermodynamic endmembers. Both bulk compositional and site-

speciation models were derived. To derive endmember Cp and S properties from mixed-

composition (impure) samples, we used two distinct methods: 

• Method 1 – Regression at each temperature (Cp-based regression): 

First we fit linear interpolation functions to our measured Cp curves. Then at each 1K 

temperature, we regressed the Cp values of all samples against their endmember fractions 

using a ordinary linear regression model. This yields a Cp value for each endmember at 

each temperature, effectively reconstructing the Cp(T) function of each endmember. 

These functions were then interpolated (linearly), and the entropy for each endmember 

was calculated by numerically integrating Cp/T from to 298.15 K. This method captures 

fine details and trends in Cp(T) but may risk overfitting due to the large number of 

regressions. 
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• Method 2 – Regression of integrated entropy (S-based regression): 

Here, we first interpolated and integrated the measured Cp/T curves for each sample to 

obtain the standard state entropy. These integrated entropy values were then regressed 

against the endmember fractions, yielding endmember entropies directly. This method is 

simpler, avoids overfitting, and provides robust estimates, but it loses detailed 

information on how Cp varies with temperature. This approach was performed in the 

NCSS software (Appendix 3D), which also generated additional statistical diagnostics 

such as variance inflation factors, multicollinearity, confidence intervals, Cook’s 

distance, and residual behavior. 

In short, Method 1 provides high-resolution temperature-dependent Cp behavior per endmember, 

while Method 2 is more stable but compresses the data into a single entropy value per sample. 

4.1 Bulk Compositional Model: Low-T CP (Method 1) 

Bulk compositional endmember low-T Cp curves (0–298.15 K) were obtained using ordinary 

least squares (OLS) of the combined Cp functions in Mathematica. Parameter estimates were 

calculated as 𝛽̂ls = (𝑋𝑇𝑋)−1𝑋𝑇𝑦, where X is the design matrix and y the dependent variable and 

the pseudoinverse method was used to obtain the inverse matrix. Residuals were squared and 

summed to compute total squared residuals, with fit variance obtained by dividing by degrees of 

freedom. The covariance matrix was scaled by the variance, and parameter standard errors 

derived from the square root of its diagonal elements.  

Regression was performed in 0.1 K steps, with 0.01 K steps yielding identical results. Figure 3K 

overlays all endmember Cp curves with their confidence intervals (CI). Standard errors (SE) 

were combined with a z-score of 1.96 to calculate CIs for the low-T Cp curves of endmembers. 

CIs are tight for most endmembers but are notably wider for oleB, mdtwB, aorsmB in the bulk 

compositional model, highlighting their extrapolated nature. Heatmap of Cp Z-scores at 0.1 K 

intervals compares endmember curves to each other, highlighting T-dependent variations (Figure 

3L). Individual endmember Cp curves and standard errors are detailed in Appendix 3E, 

respectively.  
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Figure 3K. Bulk compositional endmember low-T Cp curves with their confidence intervals.  
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Figure 3L. Heatmap of bulk compositional model Cp curves Z-scores at 0.1 K intervals, 

comparing each endmember to the mean of all endmembers. White indicates Cp near the mean, 

blue lower than the mean, and red higher. The plot highlights how relative differences between 

curves vary with T. 

The SE’s, nearly linear in absolute values, show sharp increases in relative uncertainty below 50 

K, particularly around 15–20 K due to the small magnitudes of Cp in this T range, especially for 

drvB/uvtB (Figure 3M). If the designer matrix is orthogonal or nearly orthogonal to the 

regression basis functions, predicted entropy remains unaffected by correlation. However, 

moderate multicollinearity in oleB (Variance Inflation Factor; VIF = 8.8), foiB (VIF = 8.5), and 

aorsmB (VIF = 6.4) complicate the independence of the regression coefficients (Figure 3N). The 

use of aorsmB as the AlT endmember was problematic due to its correlation with oleB, a poorly 

constrained but essential variable. These VIF values are consistent across bulk compositional 

model regressions due to their dependence on the designer matrix. 
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Figure 3M. The relative uncertainty in endmember in low-T Cp (J/K/mol) and its dependence on 

T. 
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Figure 3N. VIF factors for the bulk compositional model. VIF factors depend on the designer 

matrix and are therefore equal for all regressions relating to the bulk compositional model.  

Endmember interpolation functions (finterp,i) were combined with the designer matrix (X) to 

recalculate Cp curves for each sample as 𝐶𝑝
predicted (𝑇) = ∑  𝑛

𝑖=1 𝑋𝑖𝑓interp,𝑖(𝑇). These predicted 

curves were compared to measured Cp curves from training samples to evaluate model bias. 

Goodness of fit was assessed using the mean squared error (MSE) calculated of the vertical 

residuals at all 0.1 K intervals (Figure 3O), and relative deviations were computed as the ratio of 

residuals to measured values. The largest relative deviations of the samples were observed at low 

T again due to the low magnitudes of Cp (Figure 3P).  

 

Figure 3O. Mean Squared Error (MSE) of Cp curve versus Measured Entropy (J/K/mol) for the 

low-T Cp curve regression of the Bulk Compositional Model. 
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Figure 3P. Relative residuals (%) between measured and predicted low-T Cp curves for the bulk 

compositional model, plotted on a log scale. Higher uncertainties (>1%) occur below 100 K, 

while they remain <2% above 100 K. 

Endmember Cp curves were piecewise linearly interpolated and integrated over T to compute 

standard state entropies at 298.15 K, with uncertainties derived by integrating standard errors 

from the regression covariance matrix at each T (Table 3A).  

Table 3A. S0 of the endmembers obtained using method 1 for the bulk compositional model. 

Correlation matrix of the S0 bulk model endmembers. Correlation matrix figure for S0 bulk 

model. 

Endmember Entropy (J/mol·K) Uncertainty (J/mol·K) 

srlB 714.434 8.497 

drvB 633.572 7.728 

uvtB 647.370 6.526 

foiB 655.825 14.005 
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Endmember Entropy (J/mol·K) Uncertainty (J/mol·K) 

oleB 606.501 22.357 

fluvtB 647.343 5.395 

buB 681.534 11.401 

mdtwB 658.136 44.871 

aorsmB 609.034 13.795 

   

 

Internal Validation. Predicted and measured Cp curves were also integrated over T to compare 

entropies, which have been plotted in Figure 3Q. Gibbs free energy differences at 298.15 K were 

calculated using: Δ𝐺 = ∫  
298.15

0
Δ𝐶𝑃𝑑𝑇 − 𝑇 ∫  

298.15

0

Δ𝐶𝑃

𝑇
𝑑𝑇 where the enthalpy and entropy 

increments counteract to calculate the ΔG discrepancy introduced by model simplifications. This 



255 
 

excludes Sconf, which, being constant and independent of T in our model, only affects ΔG by a 

constant term Sconf⋅T. 

 

Figure 3Q. Measured versus predicted entropy using Method 1. 

A Table with the largest MSE per sample is presented in Appendix 3F, highlighting that most 

deviations occur at high levels of nonbuergeitic Fe³⁺. The ΔS difference between measured and 

predicted values results in ΔG differences of 2 kJ/mol, with synthetic uvite being the outlier with 

4 kJ/mol which is the same order of many interaction parameters (1-50 kJ/mol). 

Low-T Cp Curve Regression Details To evaluate regressions along the Cp curve, 55 points 

were generated per sample using piecewise linear interpolation at 5 K intervals up to 100 K and 

20 K intervals from 100 to 800 K. NCSS analysis assessed OLS regression metrics and linearity 

across the T range. Below 21 K, non-transition metal tourmalines (drvB, uvtB, fluvtB, oleB, and 
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aorsmB) show negligible Cp contributions, with drvB exhibiting unphysical negative values (-

0.21J/mol·K), uvtB/fluvtB contributing 0.1–0.2J/mol·K, and oleB 0.7J/mol·K. Significant 

contributions only appear at 16 K for uvtB, fluvtB, and aorsmB, and at 21 K for drvB and oleB. 

Residuals at 5 K are non-normal, but they are normally distributed and random at other T, with 

high-residual samples varying across the range. Surprisingly, RPRESS² remains ~0.85 up to 100 K 

despite higher uncertainties at lower-T, before steadily declining to 0 at 400 K, indicating 

robustness in the low-T regression. The trend may result from lower-T Cp data, despite higher 

uncertainties, exhibiting stronger or more distinct patterns that the model captures effectively, 

maintaining high RPRESS². At higher T, reduced variability in Cp may limit the model's 

explanatory power, leading to the decline. Additionally, the lognormal distribution of data points 

along the Cp curve resulted in measurements being taken at wider intervals at higher T, 

potentially increasing inaccuracies due to the reliance on linear interpolation. 

Correlations between endmembers and Cp highlight their significant positive or negative 

contributions in determining Cp values and therefore can be used alongside the Z-score heatmaps 

in Figure 3L. Strong correlations between srlB-drvB, srlB-S0, and drvB-S0 observed in S0 OLS 

(298.15 K) persist at low-T Cp. SrlB-drvB correlations (-0.82) hold over the entire range (0–800 

K). SrlB-Cp correlations grow from 0.71 at 1 K to 0.89 at 40 K before decreasing steadily to 0.55 

at 300 K and almost 0 by 800 K. DrvB follows a similar trend, starting at -0.64, peaking at -0.75 

at 40 K, and dropping to -0.5 at 300 K and near 0 by 800 K.  

BuB’s Cp correlation starts at 0.63 until 20 K, where it has the highest low-T Cp, likely due to 

the magnetic anomaly associated with its high Fe³⁺ content, turns negative at 430 K (-0.3), and 

drops to -0.4 by 800 K, reflecting high magnetic entropy at low T and low high-frequency 

vibrations at high T. OleB-Cp rises from -0.32 at 0 K to -0.77 at 220 K before nearing 0 by 280 

K. AOR increases from 0.27 at 0 K to 0.55 at 36 K, stabilizing until 280 K. FoiB shows no 

correlation at low T, reaching -0.6 at 300 K, with no correlations beyond this point. 

Impact of Low-T Magnetic Anomalies on S0 in Transition Metal Tourmalines Magnetic 

entropy significantly affects S0 through low-T (<30 K) magnetic anomalies in transition metal 

tourmalines (Figure 3E, foitite sample, for example), with strong (anti-)correlations (srlB−S0, 

drvB−S0, srlB−Cp, drvB−Cp), emphasizing the need for accurate low-T measurements, as 
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magnetic peaks in low-iron systems dominate Cp and disproportionately influence standard state 

entropy. These anomalies arise from spin system transitions, influenced by local crystal fields, 

magnetic ion distributions, and inter-site interactions, potentially introducing non-linear effects 

relative to endmember fractions, which are not captured in our regressions. In the absence of 

significant interaction parameters, linear behavior is assumed as an approximation. 

Assessing model robustness trough LOOCV Leave-One-Out Cross-Validation (LOOCV), 

preferred for small datasets (Hastie et al. 2017), recalculates regression coefficients with one 

sample excluded. While residuals between the excluded sample and the model estimate test 

error, they often underestimate true errors due to minimal training set changes. Consequently, 

LOOCV is better suited as a proxy for assessing model robustness, particularly our dataset with 

extreme samples, as it effectively identifies high-leverage samples with significant residuals that 

strongly influence the model. 

The LOOCV MSE doubles in the bulk compositional model due to the F-buergerite (tm64) 

outlier, though median residuals decrease, indicating better overall fit without it to the centroid of 

data. Removing F-buergerite results in large negative residuals, with the model predicting a Cp 

curve for buergerite with much higher integrated entropy than observed. Synthetic samples in the 

bulk model show high LOOCV uncertainty, just like F-buergerite due to their extreme 

compositions, poorly captured by the rest of the training set due to the correlations they aim to 

break, compounded by sample coupling differences between powdered synthetic and single-

crystal natural samples. 

4.2 Bulk Compositional Model High-T Cp (Method 1) 

Endmember Cp curves Bulk compositional endmember high-T Cp curves (>298.15 K) were 

obtained using OLS in Mathematica, fitting DSC Cp data prefit with Berman & Brown (1985)’s 

empirical polynomial equation. OLS was performed at 1 K intervals along the Cp curve to 

regress endmember values. The Cp(T) endmember curves for the bulk model are shown on top 

of each other in Figure 3R and individual plots can be found in Appendix 3E. Standard error 

analysis shows absolute uncertainty linearly increases with T, while relative stays relatively 

constant (Figure 3T). The confidence intervals (CI) are tight except for oleB and mdtwB. 



258 
 

 

Figure 3R. Bulk compositional endmember high-T Cp curves with their CI.  



259 
 

 

Figure 3S. Heatmap of bulk compositional model high-T Cp curves Z-scores at 1 K intervals, 

comparing each endmember to the mean of all endmembers.  

The heatmap of Z-scores across T reveals that srlB, uvtB, mdtwB and drvB have the highest 

while foiB, buB, and aorsmB exhibit the lowest high-T Cp curves (Figure 3S). Fluorine lowers 

Cp compared to non-fluorine due to the loss of high frequency OH vibrations. 
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Figure 3T. The relative uncertainty in Cp (J/K/mol) dependence on T. X(YZ)9SixAl(1-x)(VW)4. 

Residuals from the OLS fit are randomly distributed. 

Endmember caloric Equation of State (EoS) All endmember high-T Cp curves and their 

standard errors were fitted using four empirical caloric EoS: HP (Holland and Powell 1990), 

Berman (Berman and Brown 1985) , Stix (Stixrude and Lithgow-Bertelloni 2011) , and Supcrt 

(Johnson et al. 1992). These models differ in coefficients and T dependencies but are all linear in 

regression coefficients. Singular value decomposition was used for fitting. The chi-squared 

goodness-of-fit was similar for HP, Berman, and Stix, with better fits from models with more 

coefficients. Residuals showed no T dependence except in the Supcrt model which is therefore 

unsuitable for high-T applications. Covariance matrices revealed highly correlated regression 

coefficients (>0.95) with no physical significance, preventing their use for direct determination 

of endmember Cp coefficients by regression due to a lack of independence. 
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𝐶𝑝 = 𝑐1 + 𝑐2 ⋅ 𝑇 +
𝑐3

𝑇2
+ 𝑐4 ⋅ 𝑇

2 +
𝑐5

𝑇
1
2

+
𝑐6

𝑇
 (𝑆𝑡𝑖𝑥)           𝐶𝑝 = 𝑐1 + 𝑐2 ⋅ 𝑇 +

𝑐3

𝑇2 
 (𝑆𝑢𝑝𝑐𝑟𝑡) 

All these models can be accommodated within the Perplex generalized empirical caloric EoS 

used in Perple_X software (Connolly 2005): 

 𝐶𝑝(𝑇, 𝑃𝑟) = 𝑐1 + 𝑐2𝑇 +
𝑐3

𝑇2
+ 𝑐4𝑇

2 +
𝑐5

𝑇1/2
+
𝑐6

𝑇
+
𝑐7

𝑇3
+ 𝑐8𝑇

3 (𝑃𝑒𝑟𝑝𝑙𝑒𝑥).  

We use the Berman polynomial, but the additional equations are included in the Mathematica 

script as a courtesy to the user. The bulk model endmember Berman polynomial coefficients and 

their covariance matrices can be found in Table 3B, Table 3C. 

Table 3B. Bulk model Berman polynomial regression coefficients for the endmember high-T 

Cp. The high number of significant figures are given as there are strong parameter correlations, 

rendering standard significance rules inapplicable. 

[
 
 
 
 
 
 
 
 
 
 Endmember 𝑥0 Coefficient (c1) 𝑥−0.5 Coefficient (c3) 𝑥−2 Coefficient (c5) 𝑥−3 Coefficient (c7) 

 srlB 1.72655 × 103 −1.25681 × 104 −2.91141 × 107 3.91145 × 109

drvB 1.64552 × 103 −1.05030 × 104 −4.07394 × 107 5.83319 × 109

uvtB 1.59346 × 103 −8.58155 × 103 −4.82376 × 107 6.83545 × 109

 foiB 1.71539 × 103 −1.34417 × 104 −2.81039 × 107 4.41008 × 109

 oleB 1.62643 × 103 −1.05078 × 104 −2.93238 × 107 2.40959 × 109

fluvtB 1.64728 × 103 −1.09333 × 104 −3.31115 × 107 4.33330 × 109

buB 1.61351 × 103 −1.12091 × 104 −3.01809 × 107 4.25520 × 109

 mdtwB 1.23174 × 103 3.20011 × 103 −1.06815 × 108 1.55868 × 1010

aorsmB 1.63565 × 103 −1.14735 × 104 −3.03345 × 107 3.95967 × 109 ]
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Table 3C. Bulk model covariance matrices for the Berman fit to endmember high-T Cp. Due to 

the high correlation between the Berman polynomial coefficients, uncertainty propagation should 

utilize the covariance matrices instead of the standard deviations of individual coefficients to 

avoid overinflating uncertainties. Additionally, the correlation matrices of the parameters are 

plotted. The correlation matrix of the heat capacity at 600 K (Cp₆₀₀) is also provided. 

 srlB 

[

2.88737 × 103 −1.00746 × 105 6.0799 × 108 −1.04624 × 1011

−1.00746 × 105 3.5217 × 106 −2.1362 × 1010 3.68663 × 1012

6.0799 × 108 −2.1362 × 1010 1.3157 × 1014 −2.29134 × 1016

−1.04624 × 1011 3.68663 × 1012 −2.29134 × 1016 4.01346 × 1018

]
 

 drvB 

[

2.38865 × 103 −8.33445 × 104 5.02976 × 108 −8.65531 × 1010

−8.33445 × 104 2.91342 × 106 −1.76723 × 1010 3.04986 × 1012

5.02976 × 108 −1.76723 × 1010 1.08845 × 1014 −1.89557 × 1016

−8.65531 × 1010 3.04986 × 1012 −1.89557 × 1016 3.32024 × 1018

]
 

 uvtB 

[

1.70356 × 103 −5.94402 × 104 3.58716 × 108 −6.17285 × 1010

−5.94402 × 104 2.07781 × 106 −1.26037 × 1010 2.17512 × 1012

3.58716 × 108 −1.26037 × 1010 7.76268 × 1013 −1.3519 × 1016

−6.17285 × 1010 2.17512 × 1012 −1.3519 × 1016 2.36795 × 1018

]
 

 foiB 

[

7.84498 × 103 −2.73726 × 105 1.65191 × 109 −2.84263 × 1011

−2.73726 × 105 9.56845 × 106 −5.80406 × 1010 1.00166 × 1013

1.65191 × 109 −5.80406 × 1010 3.57476 × 1014 −6.22556 × 1016

−2.84263 × 1011 1.00166 × 1013 −6.22556 × 1016 1.09045 × 1019

]
 

 oleB 

[

1.99915 × 104 −6.97541 × 105 4.20959 × 109 −7.24395 × 1011

−6.97541 × 105 2.43835 × 107 −1.47906 × 1011 2.55254 × 1013

4.20959 × 109 −1.47906 × 1011 9.10964 × 1014 −1.58647 × 1017

−7.24395 × 1011 2.55254 × 1013 −1.58647 × 1017 2.77883 × 1019

]
 

 fluvtB 

[

1.16422 × 103 −4.06217 × 104 2.45148 × 108 −4.21855 × 1010

−4.06217 × 104 1.41999 × 106 −8.61339 × 109 1.48649 × 1012

2.45148 × 108 −8.61339 × 109 5.30505 × 1013 −9.23891 × 1015

−4.21855 × 1010 1.48649 × 1012 −9.23891 × 1015 1.61827 × 1018

]
 

 buB 

[

5.19888 × 103 −1.81398 × 105 1.09472 × 109 −1.88382 × 1011

−1.81398 × 105 6.34102 × 106 −3.84636 × 1010 6.63798 × 1012

1.09472 × 109 −3.84636 × 1010 2.369 × 1014 −4.12568 × 1016

−1.88382 × 1011 6.63798 × 1012 −4.12568 × 1016 7.22646 × 1018

]
 

 mdtwB

[

8.05279 × 104 −2.80977 × 106 1.69567 × 1010 −2.91794 × 1012

−2.80977 × 106 9.82192 × 107 −5.95781 × 1011 1.02819 × 1014

1.69567 × 1010 −5.95781 × 1011 3.66946 × 1015 −6.39047 × 1017

−2.91794 × 1012 1.02819 × 1014 −6.39047 × 1017 1.11934 × 1020

]
 

 aorsmB 

[

7.61086 × 103 −2.65557 × 105 1.60261 × 109 −2.7578 × 1011

−2.65557 × 105 9.2829 × 106 −5.63085 × 1010 9.71763 × 1012

1.60261 × 109 −5.63085 × 1010 3.46808 × 1014 −6.03977 × 1016

−2.7578 × 1011 9.71763 × 1012 −6.03977 × 1016 1.05791 × 1019

]
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Internal Validation The Berman Cp model regression coefficients for endmembers were used to 

predict Cp curves for training samples, with uncertainties propagated from the covariance matrix 

of the polynomial fit, which are likely underestimated due to the assumption of a ‘perfect’ 

Berman model. Residuals between predicted and measured Cp were squared and averaged over 

298.15–798.15 K, and these sample MSE averaged resulting in a mean MSE of 67.2 (median 

37.6). Residuals were random and showed no T dependency, unlike low-T Cp curves. Most 

samples had relative deviations within 1%, with outliers reaching 2% (Figure 3W). 

Predicted Cp curves were piecewise linearly interpolated, integrated over T to compute S298.15K
773.15 K, 

and compared to measured values, resulting in an entropy MSE of 51.02. Measured S298.15K
773.15 K 
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exhibits greater variance than predicted Cp/T integrals which leads to systematic bias, as shown 

in Figure 3U. 

 

Figure 3U. Measured versus predicted entropy using Method 1. Uncertainties are propagated 

from the polynomial model fit and therefore assumed a ‘perfect’ Berman model. 
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Figure 3V. Distribution of ΔG differences at 773.15 K arising from discrepancies between 

measured and predicted Cp for the bulk compositional model. The figure highlights the 

contributions from differences in S0, integrated entropy along the high-T Cp curve (𝑆298.15𝐾
773.15 𝐾), 

and their combined impact on ΔG values at 773.15 K. 

Gibbs free energy discrepancies due to model simplifications at 773.15 K, excluding standard 

state enthalpy/entropy and Sconf, reached a maximum of 4.5 kJ, again comparable to interaction 

parameters, underscoring the need for Cp measurements with <1% relative uncertainty for 

accurate high-T energy calculations in solid solutions (Figure 3V). Adding the two ΔG together 

per samples shows the total model simplification energies at 773.15 K can be up to 6 kJ/mol 

(Figure 3V, bottom). This shows that published Cp measurements with more than 2% 

uncertainty are may not provide the precision required for accurate thermodynamic modelling.  

 

Figure 3W. Relative deviations between training set data and model for high-T Cp.  
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At 300.15 K, 373.15 K, 573.15 K, and 773.15 K, measured versus predicted Cp comparisons 

showed good agreement with the 1:1 line (Figure 3X). However, a systematic offset was 

observed, with the model near uniform high-T Cp values (1190–1220 J/mol·K), while measured 

values spanned 1180–1250 J/mol·K, creating a horizontal spread at higher T in the 1:1 plot. 

Appendix 3I figures provide zoomed-in predicted vs. measured Cp plots at each T with York 

regression fits, showing residuals that are nonrandom and heteroscedastic. The York regression 

and the integral between the York fit and the 1:1 line confirm the systematic bias of the 

overprediction for low Cp samples and underprediction for high Cp samples at high T. This 

discrepancy is not attributable to the Berman polynomial limitations, as both measured and 

predicted curves were independently fitted to this polynomial, and alternative parameterization 

(e.g., Perplex polynomial or linear interpolation) yielded similar results.  

 

Figure 3X. Predicted versus measured Cp at four different T with the 1:1 line. Note the 

increasingly horizontal distribution of samples around the 1:1 line at higher T. 
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LOOCV The LOOCV MSE nearly tripled for the bulk compositional model (67.2 to 149.5), 

highlighting the high leverage of F-buergerite (Tm64) and synthetic samples also at high T. This 

emphasizes the Cp model's data dependence and the need for correlation-breaking simple 

tourmalines to enhance robustness. Weighted least squares (WLS), using the inverse of variance 

at each point as weights, produced excessively wiggly high-T Cp fits due to disrupted 

correlations between Cp values across T, rendering the method unusable. 

4.3  Speciation Model 

The methodology and figures used in the speciation model are identical to those in the bulk 

compositional model, including the regression analysis, predicted versus measured comparisons, 

and entropy calculations. These details are provided in Appendix 3H, which presents the figures 

and analysis for the speciation model in the same format as the bulk compositional model. 

Appendix 3J contains the individual endmember curves, while Appendix 3F covers the method 1 

statistics. Method 2 is detailed in Appendix 3D. Appendix 3I highlights the four-temperature 

zoom, showing that the speciation model also experiences regression sensitivity loss as the Cp 

curves flatten at high temperatures. Only final tables with endmember entropies (Table 3D), 

Berman coefficients (Table 3E) and Berman coefficients covariance matrices (Table 3F) are 

presented here. 
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Table 3D. Standard State Entropy of the endmembers obtained using method 1 for the speciation 

model. Additionally, the correlation matrices of the parameters are plotted.  

Endmember Name Entropy (J/K/mol) Entropy Uncertainty (J/K/mol) 

srl 710.54 18.85 

drv 621.85 8.77 

uvt 648.33 16.36 

fuvt 725.19 40.70 

foi 669.94 25.04 

ole 656.99 41.44 

drvdis 641.39 18.50 

odrv 629.22 8.75 

fluvt 641.06 6.46 

bu 657.44 28.02 

mdtw 690.41 43.41 

bole 568.46 15.38 

aorsm 638.87 26.07 

pov 1000.44 120.65 
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Table 3E. Speciation model Berman polynomial regression coefficients for endmember high-T 

Cp. The high number of significant figures are given as there are strong parameter correlations, 

rendering standard significance rules inapplicable. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Endmember 𝑥0 Coefficient (c1) 𝑥−0.5 Coefficient (c3) 𝑥−2 Coefficient (c5) 𝑥−3 Coefficient (c7) 

 srl 1.0892 × 103 9.27407 × 103 −1.48237 × 108 2.26211 × 1010

 drv 1.27704 × 103 2.25033 × 103 −1.12376 × 108 1.72737 × 1010

 uvt 1.07092 × 103 9.26158 × 103 −1.45642 × 108 2.22102 × 1010

 fuvt 5.7365 × 102 2.9335 × 104 −2.85716 × 108 4.58651 × 1010

 foi 1.0618 × 103 8.0897 × 103 −1.33455 × 108 2.03064 × 1010

 ole 7.16118 × 102 2.14646 × 104 −1.96593 × 108 2.76376 × 1010

 drvdis 1.08946 × 103 8.2565 × 103 −1.37159 × 108 2.03493 × 1010

 odrv 1.72823 × 103 −1.34833 × 104 −2.0288 × 107 1.80596 × 109

 fluvt 1.72914 × 103 −1.37634 × 104 −1.92416 × 107 2.30223 × 109

 bu 5.62016 × 102 2.51396 × 104 −2.40675 × 108 3.83514 × 1010

 mdtw 7.60559 × 102 2.02213 × 104 −2.01319 × 108 3.07205 × 1010

 bole 1.65844 × 103 −1.16786 × 104 −5.39347 × 107 9.29786 × 109

 aorsm 2.31906 × 103 −3.55637 × 104 1.15461 × 108 −2.01997 × 1010

 pov 3.2381 × 103 −7.01221 × 104 3.71811 × 108 −6.26094 × 1010 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  srl 

[

1.48856 × 104 −5.18897 × 105 3.12289 × 109 −5.36558 × 1011

−5.18897 × 105 1.81219 × 107 −1.09626 × 1011 1.88898 × 1013

3.12289 × 109 −1.09626 × 1011 6.73387 × 1014 −1.17093 × 1017

−5.36558 × 1011 1.88898 × 1013 −1.17093 × 1017 2.0478 × 1019

]
 

  drv 

[

3.22367 × 103 −1.12374 × 105 6.76299 × 108 −1.16198 × 1011

−1.12374 × 105 3.92452 × 106 −2.37408 × 1010 4.09083 × 1012

6.76299 × 108 −2.37408 × 1010 1.4583 × 1014 −2.53578 × 1016

−1.16198 × 1011 4.09083 × 1012 −2.53578 × 1016 4.43475 × 1018

]
 

 uvt 

[

1.12203 × 104 −3.91128 × 105 2.35393 × 109 −4.0444 × 1011

−3.91128 × 105 1.36597 × 107 −8.26322 × 1010 1.42386 × 1013

2.35393 × 109 −8.26322 × 1010 5.07577 × 1014 −8.82606 × 1016

−4.0444 × 1011 1.42386 × 1013 −8.82606 × 1016 1.54356 × 1019

]
 

 fuvt 

  [

6.94389 × 104 −2.42056 × 106 1.45677 × 1010 −2.50295 × 1012

−2.42056 × 106 8.45355 × 107 −5.11383 × 1011 8.81177 × 1013

1.45677 × 1010 −5.11383 × 1011 3.14123 × 1015 −5.46216 × 1017

−2.50295 × 1012 8.81177 × 1013 −5.46216 × 1017 9.5526 × 1019

]
 

  foi 

[

2.62845 × 104 −9.16250 × 105 5.51428 × 109 −9.47435 × 1011

−9.16250 × 105 3.1999 × 107 −1.93573 × 1011 3.3355 × 1013

5.51428 × 109 −1.93573 × 1011 1.18904 × 1015 −2.06758 × 1017

−9.47435 × 1011 3.3355 × 1013 −2.06758 × 1017 3.61593 × 1019

]
 

 ole 

[

7.19787 × 104 −2.5091 × 106 1.51005 × 1010 −2.59449 × 1012

−2.5091 × 106 8.76275 × 107 −5.30088 × 1011 9.13407 × 1013

1.51005 × 1010 −5.30088 × 1011 3.25612 × 1015 −5.66194 × 1017

−2.59449 × 1012 9.13407 × 1013 −5.66194 × 1017 9.902 × 1019

]
 

  drvdis 

[

1.43458 × 104      −5.0008 × 105 3.00964 × 109 −5.171 × 1011

−5.0008 × 105     1.74647 × 107 −1.0565 × 1011 1.82048 × 1013

3.00964 × 109   −1.0565 × 1011 6.48967 × 1014 −1.12846 × 1017

−5.171 × 1011 1.82048 × 1013 −1.12846 × 1017 1.97353 × 1019

]        

 odrv 

[

3.20874 × 103 −1.11853 × 105 6.73167 × 108 −1.1566 × 1011

−1.11853 × 105 3.90635 × 106 −2.36308 × 1010 4.07188 × 1012

6.73167 × 108 −2.36308 × 1010 1.45155 × 1014 −2.52404 × 1016

−1.1566 × 1011 4.07188 × 1012 −2.52404 × 1016 4.41421 × 1018

]
 

 fluvt 

[

1.74663 × 103 −6.08857 × 104 3.66429 × 108 −6.29579 × 1010

−6.08857 × 104 2.12637 × 106 −1.28631 × 1010 2.21647 × 1012

3.66429 × 108 −1.28631 × 1010 7.9013 × 1013 −1.37393 × 1016

−6.29579 × 1010 2.21647 × 1012 −1.37393 × 1016 2.40282 × 1018

]
 

 bu 

[

3.29042 × 104 −1.147 × 106 6.90302 × 109 −1.18604 × 1012

−1.147 × 106 4.00578 × 107 −2.42323 × 1011 4.17553 × 1013

6.90302 × 109 −2.42323 × 1011 1.4885 × 1015 −2.58829 × 1017

−1.18604 × 1012 4.17553 × 1013 −2.58829 × 1017 4.52658 × 1019

]
 

 mdtw 

[

7.89717 × 104 −2.75287 × 106 1.65676 × 1010 −2.84656 × 1012

−2.75287 × 106 9.61409 × 107 −5.81588 × 1011 1.00215 × 1014

1.65676 × 1010 −5.81588 × 1011 3.57247 × 1015 −6.21203 × 1017

−2.84656 × 1012 1.00215 × 1014 −6.21203 × 1017 1.0864 × 1020

]
 

 bole 

[

9.90723 × 103 −3.45355 × 105 2.07845 × 109 −3.57109 × 1011

−3.45355 × 105 1.20611 × 107 −7.29619 × 1010 1.25722 × 1013

2.07845 × 109 −7.29619 × 1010 4.48176 × 1014 −7.79316 × 1016

−3.57109 × 1011 1.25722 × 1013 −7.79316 × 1016 1.36292 × 1019

]
 

 aorsm 

[

2.84943 × 104 −9.93279 × 105 5.97786 × 109 −1.02709 × 1012

−9.93279 × 105 3.46892 × 107 −2.09847 × 1011 3.61592 × 1013

5.97786 × 109 −2.09847 × 1011 1.289 × 1015 −2.2414 × 1017

−1.02709 × 1012 3.61592 × 1013 −2.2414 × 1017 3.91992 × 1019

]
 

  pov 

[

6.10085 × 105 −2.12669 × 107 1.27991 × 1011 −2.19907 × 1013

−2.12669 × 107 7.42723 × 108 −4.49298 × 1012 7.74195 × 1014

1.27991 × 1011 −4.49298 × 1012 2.75986 × 1016 −4.79901 × 1018

−2.19907 × 1013 7.74195 × 1014 −4.79901 × 1018 8.39284 × 1020

]
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1. DISCUSSION ORDINARY LEAST SQUARES MODELS 

Method 1 vs. Method 2 Entropy, as a state function, depends only on the initial and final states 

of the system. However, deriving entropy from heat capacity data can be influenced by the order 

of regression and integration, particularly at low T (<298.15 K) where Cp variations contribute 

disproportionately due to 1/T weighting in the integration. In Method 1, linear interpolation 

approximates Cp curves, regression derives endmember Cp curves, and integration follows. This 

approach reduces noise by leveraging regression to average out inconsistencies across samples, 

and only the Cp curves of the endmembers are integrated, minimizing the potential for 

cumulative errors (Main text and Appendix 3F) In contrast, Method 2 (Appendix 3D1-3D3) first 

integrates sample Cp fits to calculate entropy, then applies regression to derive endmember 
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entropies. While simpler, here, all sample Cp curves are integrated which amplifies errors when 

the samples fits are imperfect. At high T (>298.15 K), where Cp curves are smoother and 

dominated by Dulong-Petit behavior, both methods yield comparable results due to reduced 

sensitivity to interpolation errors.  

Dulong-Petit due to Systematic Bias at high T Cp Although the overall accuracy of the 

predicted 𝑆298.15𝐾
773.15 𝐾 is reasonable <2 %, significant compositional biases arise in 𝑆298.15𝐾

773.15 𝐾  and Cp 

regressions above 500 K. When performing linear regression on Cp curves, the slope (dCp/dT) 

heavily influences model sensitivity to deviations. At low T, where Cp curves are steep, even 

small inaccuracies yield large residuals, forcing the regression to align data around the 1:1 line, 

including extreme samples. At high T, as Cp curves flatten, deviations produce smaller residuals, 

reducing regression sensitivity. This leads to nearly constant regressed Cp values across 

compositions, resulting in horizontal spreading and underpredicted variability at high T, while 

measured data still show subtle differences. This systematic offset reveals the inability of 

endmember Cp curves from linear regression to capture subtle anharmonic effects or deviations 

from the Dulong-Petit law, critical for mineral behavior above 773.15 K. 

Attempts to increase regression sensitivity in flat regions included removing high-leverage 

points, weighted regression using inverse dCp/dT, z-score transformations with back-

transformation, and nonlinear regression directly fitting Berman coefficients. None eliminated 

the flattening effect at high T. Only amplifying slope importance by a factor of 20 reduced the 

horizontal spread, but this increased overall uncertainty (Figure 3Y).  
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Figure 3Y. Slope weighted linear regression where the weight was multiplied with a factor of 

20. 

Standardizing the variables does not fully resolve the issue, as low Z-scores, corresponding to 

regions of the Cp curve with low variability, still result in weak explanatory power or model fit. 

This highlights a fundamental challenge in modelling high-T Cp curves and their extrapolations. 

The same problems were experienced for the flat parts of the low-T Cp curve where the relative 

uncertainties increased many folds due to the low magnitudes but also the regression problems 

for horizontal Cp/T slopes. The fit minimises absolute deviations, but due to Cp data spanning 

several orders of magnitude, fractional deviations, based on the inverse of first or second 

derivative, could prioritise flat gradients. Logarithmic or exponential scaling could down-weight 

deviations in high Cp regions while capturing finer deviations in flat regions. Alternatively, 

fitting flat regions separately or setting the standard state at a higher T could improve model 

balance across both flat and steep sections. 
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This issue is pervasive across mineral thermodynamic models in Earth sciences, where linear 

regression is almost ubiquitously employed to derive endmember Cp curves from solution 

models (Holland and Powell 1990; Gottschalk 1996). Although deviations are small (~30 

J/mol·K on total measurement value of ~1200 J/mol·K), when extrapolated to 1200 K (see 

polyhedron comparison paragraph), they cause minor (~4 rel%) yet significant discrepancies 

between measured and predicted Cp curves, slightly affecting phase stability calculations at near-

melting temperatures. Including physically motivated constraints, such as anharmonicity 

corrections or separate fits for Cp >500 K, could mitigate these systematic biases 

Fe³⁺ Speciation and Z-site Substitution Effects Not Captured by the Bulk Compositional 

Model The bulk compositional model fails to account for internal speciation effects and site-

specific chemical differences, such as the systematic offset in Cp evolution between F-buergerite 

(Tm64) and other Fe³⁺-rich tourmalines, revealing its inability to model differences between bu 

and pov components (refer to Chapter 2 for endmember abbreviations; see Figure 3Z). While 

both buergerite and povondraite share high Fe³⁺ contents, their compositional differences extend 

beyond Fe³⁺ speciation: buergerite features Al-dominant Z-sites, whereas povondraite shows 

Fe³⁺-Mg substitution at the Z-site. This Z-site chemical variation significantly impacts 

thermodynamic properties, including molar volume, entropy, and heat capacity, but is not 

represented in bulk compositional models. Furthermore, uncertainties in buB and oleB fractions 

are amplified by errors in the hydrogen component, a dependent parameter excluded from 

reciprocal model endmember definitions, complicating deprotonation thermodynamics 

modelling. Excluding F-buergerite reduces the LOOCV MSE from 231.5 to 84.5, confirming it 

as the primary outlier. However, its exclusion increases multicollinearity and disrupts the 

smooth, Berman-like shape of some endmember curves due to extrapolation, highlighting the 

poor modelling of tourmalines with significant pov components. 

This mirrors the issue encountered in the molar volume model in Chapter 2, where bulk 

parameter-based endmembers like buB failed to capture the significant differences between bu 

and pov in V, S0 and S298.15K
773.15 K. Figures 3Z, 3AA, and 3AB illustrate how both Fe³⁺ speciation and 

Z-site chemical substitution (Al versus Fe³⁺+Mg) result in distinct thermodynamic behaviors 

between buergerite- and povondraite-like tourmalines, trends not captured by bulk compositional 

models." 
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Figure 3Z. A. S₀ versus buB fraction. Two distinct trends are evident: one toward buergerite 

(bu) and another toward povondraite (pov), reflecting differences in Fe³⁺ speciation and Z-site 

substitution (Al versus Fe³⁺+Mg) in tourmalines. Arrows qualitatively indicate samples that, in 
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the speciation model, have either high pov–low bu or high bu–low pov contents. 

 

Figure 3AA. S298.15K
773.15 K versus buB fraction. The data show two separate trends toward bu and 

pov compositions, highlighting how Fe³⁺ speciation coupled with Z-site substitution influences 

entropy evolution. Arrows qualitatively indicate samples with dominant pov or bu components 

based on the speciation model. 
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Figure 3AB. Molar volume versus buB fraction. Two distinct trends emerge corresponding to bu 

and pov behavior, underscoring the effects of Z-site chemical differences in addition to Fe³⁺ 

speciation. Arrows qualitatively point to samples enriched in pov or bu in the speciation model; 

light green points indicate intermediate compositions (pov-bu mixtures). 

Magnetic Entropy Contributions The standard state entropy of tourmaline is strongly 

dominated by magnetic contributions from Fe²⁺ and Fe³⁺ spin disorder, as most of the variance in 

Cp/T curves occurs below ~20 K (Figure 3D). Strong correlations between Fe content and 

entropy (see Paragraph 4), as well as between low-temperature Cp and schorl composition, 

suggest that magnetic effects are the primary source of standard state entropy variations. It is 

therefore natural to compare the magnitude of observed entropy variations with predictions based 

on maximum magnetic randomization, as discussed in Appendix 3A and 3C. 

The theoretical background for magnetic entropy contributions is detailed in Appendix 3M. 

There, we outline how the maximum magnetic entropy (Sₘₐₓᵐᵃᵍⁿᵉᵗᶦᶜ) can be derived from the 

Boltzmann formula S = R ln Ω, where Ω depends on the total angular momentum J = |L–

S|,…,L+S. For high-spin Fe³⁺ (S = 5/2, L = 5/2) in octahedral environments, crystal field splitting 

quenches the orbital contribution, yielding Sₘₐₓᵐᵃᵍⁿᵉᵗᶦᶜ = R ln(6) ≈ 14.89 J/mol·K. High-spin Fe²⁺ 
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(S = 2, L = 2) can show incomplete orbital quenching depending on the degree of site distortion, 

potentially enhancing magnetic entropy beyond the spin-only value R ln(5). In tourmaline, local 

distortions at the Y site (Ertl et al., 2002), optical evidence of residual spin-orbit coupling (Altieri 

et al., 2022), and dynamic electron hopping between Fe²⁺ and Fe³⁺ (Mattson and Rossman, 1987) 

suggest that spin-orbit effects may contribute variably across samples. Although we could not 

separate the magnetic and lattice contributions in the heat capacity, an analysis that would 

require low-temperature phonon modelling beyond the scope of this study, the dominance of 

magnetic entropy is clear. A detailed comparison between the measured entropy and theoretical 

spin-only or spin–orbit–coupled models remains an important future step to conclusively 

determine the magnitude of magnetic disorder contributions in tourmaline. 

2. ALTERNATIVE REGRESSION METHODS 

Various alternative regression methods were applied to the integrated entropy data which were 

also applied to molar volume data in Chapter 2. The regression methods, including method 

which include both y and x-uncertainty, and robust approaches, were tested alongside leave-one-

out cross-validation (LOOCV) to assess model robustness and performance. These analyses 

highlight how uncertainties, parameter-to-data ratios, and method-specific sensitivities 

influenced the prediction accuracy and sensitivity to outliers across bulk and speciation models. 

However, we do not have a test set for entropy, therefore, OLS is preferred for its unbiased, 

efficient estimates, minimizing squared residuals under normality assumptions. Alternative 

methods are detailed in Appendix 3K for reference. 

 

3. COMPARISON TO ESTIMATION MODELS BASED ON THE 

POLYHEDRON APPROACH 

Polyhedron Estimation Method The polyhedron method (The Neumann-Kopp approach for 

polyhedra instead of elements) estimates mineral entropy and its high T Cp curve by treating 

coordination polyhedra, such as SiO₄ tetrahedra and AlO₆ octahedra, as independent chemical 

components (Chermak and Rimstidt 1989), similar to the microscopic Bragg-Williams models, 

e.g. (Sack and Ghiorso 1994). It decomposes the unit cell's electron density into contributions 

from these polyhedra, neglecting interactions beyond the first coordination sphere, 
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polymerization, and bond topology. Entropy is calculated as a linear combination of polyhedral 

contributions, weighted by stoichiometric coefficients. Polyhedral vibrational modes are 

modelled using the Einstein lattice method, which assumes independent atomic vibrations in 

harmonic potentials with single characteristic frequencies, neglecting vibrational coupling and 

treating phonons as localized to individual atoms rather than as collective excitations (Einstein 

1907), see Appendix 3A. The method assumes structure averaged, idealized, and transferable 

polyhedral geometries without Jahn-Teller distortions and excludes hydrogen bonding, structural 

distortions, but provides a postprocessing correction for magnetic contributions, and long-range 

order/disorder effects (Holland 1989; Holland and Powell 1990, 1998).  

This method, effective for minerals with isolated or weakly connected corner sharing polyhedra 

like olivine, has been applied to highly polymerized edge and face sharing tourmaline in the 

absence of thermodynamic data. Van Hinsberg et al. (2005a, 2005b) calibrated it using a 

database of 105 end-members from a range of different mineral classes, excluding intermediates 

to avoid mixing effects, and incorporated polyhedra with hydroxide ligands for improved high T 

Cp and entropy estimates without volume corrections. Van Hinsberg and Schumacher (2007) 

extended the model to include BIII and BiV polyhedral entropies and high T Cp by analyzing 

residuals after subtracting nonboron polyhedral contributions from 2 tourmaline solid solutions 

and additional borosilicate minerals, ignoring mixing effects.  

Fluorine was excluded from the original regression model due to limited F-bearing minerals for 

parameterization. Corrections were applied using the exchange equilibrium: F-phlogopite +

 OH-pargasite →  OH-phlogopite +  F-pargasite, assuming Δ𝐻reaction ≈ 0 and Δ𝑆reaction ≈ 0. 

Assuming Δ𝑆reaction ≈ 0, implies a balanced entropy change, where the entropy gained by one 

mineral offset the loss by another, resulting in a constant transferable ΔS/mol F (Van Hinsberg et 

al. 2005a, 2005b). F-bearing endmember properties were estimated using the ΔS/mol F 

difference between fluor and hydroxyl endmembers of phlogopite, with a similar entropic effect 

assumed for tourmaline. 

Corrections Applied to the Training Database of the Polyhedron Method The training 

database for the polyhedron method has been corrected for non-transferable entropic properties: 

Magnetic entropy (𝑆magnetic 
𝑚𝑎𝑥 = 𝑅∑𝑛ln (2𝑠 + 1)) , where s is the spin quantum number, R is the 
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gas constant, and n is the number of cations, and the configurational entropy for disorder, 

𝑆disorder 
𝑚𝑎𝑥 = −𝑚𝑅∑𝑋𝑖ln 𝑋𝑖, where Xi is the site mole fraction and m is the site multiplicity, both 

fixed and T independent were subtracted from the entropies of the training set entropies (Van 

Hinsberg et al. 2005a, 2005b).  

For endmember minerals undergoing a tricritical phase transition at T>298 K, thermodynamic 

properties of the ordered precursor and high-T disordered phases are derived using the mean-

field Landau free energy model (Holland and Powell 1990, 1998). The excess properties are 

described relative to the low-T ordered phase. The ordered phase exhibits a Landau anomaly in 

Cp, with entropy combining vibrational and configurational contributions. A baseline Cp is 

subtracted, and the residual peak at Tc is integrated to obtain Smax. Excess properties were 

derived from:  

 For 𝑇 < 𝑇𝑐 : 

𝐶𝑝
ex =

𝑇𝑆𝑚𝑎𝑥

2√𝑇𝑐
(𝑇𝑐 − 𝑇)

−
1
2

𝑆cx = 𝑆𝑚𝑎𝑥(1 − 𝑄
2)

 with 𝑄 = (1 −
𝑇

𝑇𝑐
)

1
4

 For 𝑇 > 𝑇𝑐 : 
𝑆ex = 𝑆max , and 𝑄 = 0.

 

See Appendix 3L for the derivations of these equations 

Entropy: Comparison of Speciation Model and Polyhedron Method Measured entropies 

ranged from 574.16–709.5J/mol·K with uncertainties of 6–18J/mol·K (1–3% relative), a mean of 

9.7J/mol·K, and a median of 8.7J/mol·K (~1.5% relative). 

Speciation model The least-squares speciation model predicted entropies range from 574 to 

710J/mol·K, with propagated uncertainties between 1.5 and 6.4J/mol·K. The average absolute 

mean propagated uncertainty is 3.18J/mol·K, with an absolute relative uncertainty of 0.4%. 

Model uncertainties are one-third of the measured uncertainties due to using multiple Cp curves 

to estimate endmember Cp. 
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Internal validation showed that residuals between measured and predicted entropies ranges 

between ±15J/mol·K (2.4% relative), with a mean and median not significantly different from 

zero, indicating no systematic bias. The average absolute mean residual is 3.86J/mol·K, with a 

mean absolute relative uncertainty of 0.5% and a median absolute relative uncertainty of 0.3%. A 

3.86 J/(K·mol) difference in standard entropy results in a ΔG change of -1.15 kJ/mol at 298 K 

and -2.98 kJ/mol at 773 K. The speciation model's relative residuals are within the propagated 

uncertainties of measured entropies, except for tm38B, tm111, tm129, tm183, and uvit. 

Polyhedron model The polyhedron method (Van Hinsberg et al. 2005a, 2005b; Van Hinsberg 

and Schumacher 2007) was applied using the thermodynamic model's training set as its test set. 

Tourmaline mineral formulas were recalculated from the speciation model, ensuring consistent 

normalization, charge balance, and site occupancies. Differences between models stem solely 

from thermodynamic formulations, not normalization discrepancies. Site fractions were 

multiplied with the multiplicities and summed into bulk components (Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, Alᴼᴴᴼ, 

Mgᴼᴴᴼ, Fe²⁺ᴼᴴᴼ, Fe³⁺ᴼᴴᴼ, Alᵒᶜᵗ, Mgᵒᶜᵗ, Fe²⁺ᵒᶜᵗ, Fe³⁺ᵒᶜᵗ,Tiᵒᶜᵗ, Siᵀ, Alᵀ, Bᵀ, B³) to form the new 

chemical component basis. Multi-assignment of Na and Ca describes large alkali (earth) sites 

with coordination >8. The polyhedron method incorporates OH into the polyhedra, removing it 

as a separate constituent. It does so as fully OH-coordinated (X-OH) and as partially O and OH-

coordinated polyhedra (X-OHO). Van Hinsberg and Schumacher (2007) assigned all tourmaline 

octahedral sites to be OHO, except for Ti, which was assigned to have no OH groups due to its 

high charge and was assumed to only occur as Ti-Oct.  

The number of Y and Z polyhedra with 0, 1, or 2 OH groups is determined by their connectivity 

to O1 (W-site) and O3 (V-site) and the OH occupancies XW  and XV. Y polyhedra connect to one 

O1 and one O3, while Z polyhedra connect only to O3. The number of Y-sites with 0 OH is 

𝑁Y,0OH = 3 ⋅ (1 − 𝑋𝑊) ⋅ (1 − 𝑋𝑉), reflecting the scenario where neither O1 nor O3 contains OH, 

with 1 OH is 𝑁Y,1OH = 3 ⋅ [𝑋𝑊 ⋅ (1 − 𝑋𝑉) + (1 − 𝑋𝑊) ⋅ 𝑋𝑉], reflecting cases where either O1 or 

O3 contains OH but not both, and with 2 OH is 𝑁Y,2OH = 3 ⋅ 𝑋𝑊 ⋅ 𝑋𝑉 , representing the situation 

where both O1 and O3 contain OH. For Z-sites, which connect only to O3, the number with 0 

OH is  𝑁Z,0OH = 6 ⋅ (1 − 𝑋𝑉), , and with 1 OH is 𝑁Z,1OH = 6 ⋅ 𝑋𝑉. As the polyhedron method 

does not differeniate between Y and Z sites, and 1OH or 2 OH containing octahedra these were 

merged.  
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It was unclear if the OH around cations should be ignored, if we should assumed a ordered or a 

disordered state between the OH between Y and Z. Van Hinsberg  and Schumacher (2007) 

suggested disordered OH at Y and Z sites results in OHO-coordination for Xtotal≥2.9, but this is 

questionable as probabilistically disorder actually reduces OH fractions at individual sites, 

increasing O2- polyhedra at Y and Z sites. In the ordered state, OHV ensures at least one OH 

ligand per polyhedron, with Y sites linking to V and W, and Z sites to V. Disorder, however, 

spreads OH, increasing O2- only polyhedra, contradicting universal OHO-coordination under 

disorder (Table 3G). The model assumes Ti-oct without Ti-OHO polyhedra due to the high 

charge introduces small charge imbalance. Order or disorder would not change the overall charge 

balance of the structure but does break the bond valence sums of the sites. 

Table 3G. Polyhedral Calculation in Tourmaline: Ordered vs. OH-Disordered Model for 

example tourmaline (fschorl). 

Polyhedra Ordered State Disordered State 

X_W 0.437 0.860 

X_V 1.000 0.860 

Y0OH 0.000 0.0588 

Y1OH 1.689 0.7224 

Y2OH 1.311 2.2188 

Z0OH 0.000 0.840 

Z1OH 6.000 5.160 

Differences between using different amounts of oct and OHO polyhedra makes big differences 

as the thermodynamics of these polyhedra differ (Table 3H). 

Table 3H. Polyhedral entropies for oct and OHO polyhedra (Van Hinsberg et al. 2005a). 

Component Value Component Value 

Mg - oct 28.28 Mg - OHO 35.83 

Fe - oct 42.97 Fe - OHO 50.67 

Fe3 - oct 30.68 Fe3 - OHO 49.14 

Al - oct 22.24 Al - OHO 38.87 
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If OH is assumed to hop between sites, the full OHO model of Hinsberg and Schumacher (2007) 

holds, though strong evidence for this process is lacking. In this model all octahedral sites, 

except TiO₂, were assumed as XOH. We tested models using Oxy+OHO polyhedra with the 

ordered formula, the ordered formula with disordered OH on the V and W sites, and pure OHO 

polyhedra (except Tioct). 

Polyhedral stoichiometry matrices multiplied by polyhedral entropies yield lattice dynamical 

entropy, while magnetic entropy (𝑆magnetic 
𝑚𝑎𝑥 = 𝑅∑𝑛ln (2𝑠 + 1)) was calculated using Fe²⁺ and 

Fe³⁺ concentrations assuming orbital quenching for both. The results of the comparison between 

the speciation model and the polyhedron-based models are summarized in Table 3I. 

Table 3I. Comparing the measured versus predicted of the speciation and all polyhedral models. 

Model Name 
Mean Absolute Relative 

Deviation (%) 

Residual 

Range (%) 

Median 

Residual (%) 

Speciation Model 0.5 -2.4 to 2.4 0 

Without Sconf    

Oxy+OHO Polyhedra, Ordered 

V+W, with Svib + Smag 
4.1 -0.4 to 18 3.5 

Oxy+OHO Polyhedra, Disordered 

V+W, with Svib + Smag 
6.2 -2 to 18 6 

OHO Polyhedra, with Svib + Smag 3.7 -0.4 to 9 3.5 

The speciation model outperforms all polyhedron-based models, with a mean absolute residual 

(0.5%) that is 7.5-12.4 times lower and a narrower residual range. Polyhedron models 

underestimate entropy, with results strongly influenced by assumptions such as OH 

order/disorder and polyhedral types. While OHO polyhedra, with Svib + Smag performs best, 

uncertainties in OH ordering, polyhedral types, and the merging of all OHO polyhedra with more 

than 1 OH prevent definitive conclusions. Additionally, the calculation of OHO polytopes in the 

training dataset of the polyhedron method and the associated assumptions of OH order/disorder 

remains unclear, as this depends on the bond graphs of each respective mineral and whether 

disorder increases or decreases OHO polyhedra, as shown with tourmaline. The extreme sample 

buergerite is the one that gives the high residual for the Oxy+OHO so it seems to behave more 
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like an OHO polyhedra. Figure 3AC shows that at average the polyhedron method underpredicts 

by 25 J/(K·mol). 

The current polyhedral entropies are an average of many mineral systems with both open or 

dense minerals. Using an Einstein model for each average polyhedron accounts for some 

variations in vibrational frequencies but still underestimates entropy compared to measured Cp. 

This is due to the model's inability to capture the full phonon density of states, particularly low-

frequency collective vibrations that significantly contribute to entropy at low T. 
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Figure 3AC. Measured vs Predicted Entropy with Uncertainties, York Regression, and Integral 

Difference for the Polyhedron method with OHO polyhedra without Sconf. The method 

underpredicts by 25 J/(K·mol). 

Polyhedron method is similar as using the mean of measured S as a model The polyhedron 

method performs similarly to the mean of measured entropies as a model for tourmaline, with 

similar relative errors ranging from -13% to 8%, a mean absolute relative deviation of 3% an 

average of 0%. Therefore, the polyhedron method can predict the average T evolution and order 

of relative stability fields of tourmaline compared to other minerals, such as breakdown or first 

occurrence (net-transfer reactions), but not detailed chemical changes within tourmaline 

(exchange reactions), as also stated in van Hinsberg and Schumacher (2007) .  

This comparison is limited as it contrasts the speciation model's training error with the 

polyhedron method's test error. A fair comparison requires a separate test set for both methods. 

However, the near 7-12-fold decrease in mean absolute residual and uncertainty and 3-18 fold 

reduction in the range of residuals indicate improved predictions of tourmaline thermodynamics.  

LOOCV cross-validation of the OLS speciation model, used as a rough indication of test error, 

shows the relative error range increasing from ±2.4% to -16% to +2.4% due to two synthetic 

tourmalines (drav_syn, olenite), which uniquely define specific endmember speciation, are 

excluded from the training set and predicted using the rest. Their high leverage and extreme 

compositions disrupt correlations, and their exclusion forces reliance on natural sample 

correlations, leading to poor extrapolation for predicting their extreme compositions, raising the 

mean absolute deviation to 1.3% while the median remains around 0.5%. Excluding these 

samples increases the relative error range slightly from ±2.4% to ±3%. Including the sensitivity 

of the synthetics, the test set error shows a 3-fold reduction in mean residuals compared to the 

polyhedron method, demonstrating improvement. 

The polyhedron method underestimates measured entropies by approximately 25 J/(K·mol). A 

25 J/(K·mol) difference in standard entropy results in a ΔG change of -7.45 kJ/mol at 298 K and 

-19.33 kJ/mol at 773 K. Although these new measured data, and the end-member properties 
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derived from them negate the need for estimated properties, Appendix 3M lists several ways to 

improve the polyhedron method. 

High-T Cp: Comparison of Bulk Compositional Model and Polyhedron Method High-T Cp 

functions from the bulk compositional model and the polyhedron method were compared to 

measured Cp values using recalculated tourmaline mineral formulas derived from bulk 

compositional independent endmembers. This ensures consistent data normalization and isolates 

differences in thermodynamic formulation. For synthetic compositions, recalculated speciation 

model values were summed into bulk parameters. Additionally, the Cp functions were 

extrapolated up to 1200 K to evaluate how both models perform beyond their calibration domain. 

Figure 3AD shows the comparison between measured Cp and polyhedron method predictions, 

with both curves fitted using the Berman model for consistency. 

Polyhedron Method. 

 

Figure 3AD. Relative difference between measured Cp values and predictions from the 

polyhedron method, where negative values indicate overprediction. Both measured and predicted 

Cp data were fitted using the Berman model for consistency.  
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The bulk compositional and speciation models show relative uncertainties within ±2% up to 

773.15 K (Figure 3W), while the polyhedron method has higher residuals, around -7.5% to 5%, 

and slightly higher for F-buergerite (Figure 3AD). Residuals for the bulk model are 2–3 times 

lower than the polyhedron method, but the latter performs well given its use of a diverse mineral 

dataset. Unlike entropy, which is challenging to predict due to its reliance on low-T details, the 

polyhedron method provides more stable Cp curves, making it suitable for estimation. At lower 

T, the polyhedron method both over- and underpredicts Cp, but at higher T, many tourmalines 

show negative relative differences, indicating overprediction (Figure 3AD). This shows that the 

polyhedron method does not extrapolate well beyond 773.15 K and agrees with the divergence in 

fractional IIIB Cp observed by van Hinsberg and Schumacher (2007) at >800K. With only 3 

measured tourmaline high-T Cp curves, these authors were unable to determine which was/were 

to be preferred and used the mean, but this comparison suggests that the Cp data of Hemingway 

et al. (1996) are more accurate than those of Kuyunko et al. (1984) and Ogorodova et al. (2004) 

or the non- IIIB polyhedra the Hemingway are better constrained. 
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Figure 3AE. Cp curves from the polyhedron model vs. measured Cp, both fitted using the 

Berman model. The 1:1 line indicates a perfect fit. Measured data is available up to ~1200 

J/mol·K, with the remainder extrapolated. 

The deviations in Figure 3AD and 3AE result that the polyhedron model at 1000 K has ΔG 

differences of up to 25 kJ/mol, considering the balance between Cp integration into H and Cp/T 

integration into −TS (Figure 3AF). While this ΔG is within the order of magnitude of high-T net 

transfer reactions, it far exceeds the 1–10 kJ/mol range of exchange reactions, indicating that the 
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polyhedron method can approximate net transfer magnitudes but lacks precision for exchange 

reactions. Most ΔG differences cluster around 10 kJ/mol, within the exchange reaction range. 

This assumes the measured Cp values are perfect, which is not the case; however, even if ΔG 

values are halved and considering that Cp is only part of the whole, the conclusions remain 

unchanged. 

 

Figure 3AF. ΔG differences at 1000 K resulting from discrepancies between measured and 

predicted high-T Cp in the polyhedron model, highlighting the impact of model simplifications. 

Bulk Composition model. The bulk compositional model maintains ±2% (~±20 J/mol·K) 

uncertainty up to 773.15 K, but regression-based loss of sensitivity at high T leads to misfits of 

up to 3% (~30–40 J/mol·K) and one outlier at 4% (~50 J/mol·K) when extrapolated to 1200 K 

(Figure 3AG, 3AI)). Endmember Cp curves derived from OLS regression on measured solid 

solutions tend to converge toward the Debye-Petit limit, while measured Cp curves retain slope 

variations, causing erroneous extrapolations (Figure 3U). This issue affects all thermodynamic 

databases relying on least-squares regression and requires an internally consistent solution. 

Despite these extrapolation challenges, the bulk model still outperforms the polyhedron method, 

which exhibits relative errors up to -15% (Figure 3AD). 
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Figure 3AG. Relative difference between measured Cp values and predictions from the bulk 

compositional method, where negative values indicate overprediction. Both measured and 

predicted Cp data were fitted using the Berman model for consistency and extrapolated up to 

1200 K.  

At 1000 K, Cp misfits in the bulk compositional model can cause ΔG deviations up to 8 kJ/mol, 

balancing Cp integration into H and Cp/T into −TS (Figure 3AH). A 6 kJ/mol uncertainty is 

significant for exchange reactions (1–10 kJ/mol), introducing high-T uncertainties, but is still 

acceptable for net transfer reactions (10–50 kJ/mol), which would result in only slight phase 

boundary errors. We conclude that the bulk (and speciation) models remain reliable predictors up 

to the melting T of tourmalines (which is at ~850 to 950˚C at 1 bar, see chapter 5). 
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Figure 3AH. ΔG differences at 1000 K resulting from discrepancies between measured and 

predicted high-T Cp in the bulk compositional model, highlighting the impact of model 

simplifications. 
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Figure 3AI. Extrapolated Cp curves from the bulk compositional model compared to 

extrapolated measured Cp curves, with the 1:1 line indicating a perfect fit. Measured data is 

available up to ~1200 J/mol·K, with the remainder extrapolated. 

4. CORRELATIONS BETWEEN STATE VARIABLES 

A correlation analysis was done on tourmalines measured using SC-XRD, focusing on natural 

samples, as synthetics were excluded. Due to multicollinearity and dataset dependencies, these 
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correlations should be interpreted cautiously, as they do not imply causation and may result from 

underlying variables affecting both factors. However, they provide a basis for qualitatively 

assessing entropy differences between tourmalines. The most important correlation scatterplots 

are presented in Appendix 3N. 

Entropy Entropy (S₀) in tourmaline primarily correlates with the Fe/Mg ratio and electron count 

at the Y and Z sites. Strong correlations were found with schorl, dravite, olenite, Y- and Z-site 

electron counts, and the Y-O6 bond (except buergerite), which links Y and Z sites to the 

downward-pointing tetrahedra. In the speciation model, the anti-correlation with dravite is 

broken, indicating that the Fe-Mg relationship arises from multicollinearity and could be 

resolved using synthetic endmembers without natural Fe-Mg dependencies. Entropy and 

enthalpy (see chapter 5) are correlated (0.82), with higher enthalpy (less negative) corresponding 

to higher entropy, reflecting the trend in silicates where Fe-endmembers have lower formation 

enthalpies than Mg- or AlVI-endmembers (Holland and Powell 2011). Weaker Fe2+ bonds allow 

more vibrational modes, while stronger Mg and AlVI bonds restrict them. Fe also contributes 

significantly to magnetic entropy (Smag). Entropy variations show a strong correlation with the 

presence and magnitude of magnetic Cp/T peaks at low temperature (Figure 3D, Appendix 3A, 

3C), confirming that Fe spin disorder dominates the standard-state entropy. Figure 3AJ shows 

the correlation between Fetotal (apfu) versus entropy. Entropy shows no significant correlation 

with molar volume but correlates with the hexagonal a-axis, except for buergerite. The a-cell axis 

similarly depends on the Y-O6 bond length. 
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Figure 3AJ.  Relationship between FeTotal (apfu) and standard-state entropy (S₀) for tourmaline 

samples. Sample labels are shown. The strong positive correlation reflects the dominant role of 

Fe²⁺ and Fe³⁺ spin disorder in contributing to magnetic entropy. Additionally, the high mass of Fe 

enhances acoustic phonon contributions, while weaker Fe²⁺ bonds allow more optical phonon 

modes, further increasing entropy. 

High-T Cp High-T Cp shows weak to non-existent correlations with mineralogical and other 

thermodynamic parameters. 

Molar Volume Molar volume correlations are complex, with the strongest found with B-olenite 

(-0.79) and stronger correlations to the hexagonal a-cell axis length (0.78) than the c-cell axis 

length (0.69). While Fe dominates entropy and enthalpy, Al primarily controls molar volume, 

with high correlations to total Al (-0.82), AlY (-0.76), and AlZ (-0.73). Structural correlations 

include T-O4 (0.80) and T-O5 (0.78), connecting the bottom X site to the T site, and Y-O2 

(0.85), linking the top X site to Y. The a-cell axis length is closely related to AlY (-0.84), YO3 

(Y-Z-V connector), and YO6 (0.86, Y-Z-T connector), where Al on the Y site reduces a-cell 

length. The c-cell axis length depends on nearly all site occupancies, showing correlations with 

XO5 (-0.72, bottom X to T), YO2 (0.78, top X to Y), ZO6 (0.75, Y-Z-T connector), TO6 (-0.77, 
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Y-Z-T connector), and BO2 (0.81, top X to Y and B). Key contributors include Mg (0.72), Al (-

0.87), MgZ (0.85), and X-site vacancies (-0.88), mainly affecting bonds involving the X, Z, and 

T sites. 

5. QUALITATIVE ASSESSMENT OF ENTROPY DIFFERENCES IN 

TOURMALINE  

Comparison of the bulk compositional, speciation, and polyhedron models reveals the origins of 

entropy differences in tourmaline endmembers. The electronic density of states (e-DOS) dictates 

the force constants and the dynamical matrix, which governs phonon dispersions and the 

vibrational density of states (v-DOS) (Kittel and McEuen 2018). The v-DOS, representing the 

number of vibrational states available for phonon occupation, contributes to heat capacity (Cp) 

and, when integrated over T, to entropy. It includes acoustic phonons (3L) representing whole-

unit cell vibrations and optical phonons (3L(n-1)) describing internal unit cell deformations 

(Dove 1993). Stronger bonds, reflected in higher enthalpy, increase force constants and suppress 

low-frequency phonon modes, reducing atomic motion and entropy (Stølen and Grande 2004). 

Weak bonds allow greater atomic flexibility, raising entropy while lowering enthalpy (Grimvall 

2001). Larger molar volumes enhance low-T entropy through acoustic vibrations (Debye modes) 

driven by unit cell mass and volume, while high-T optical phonons (Einstein modes) depend on 

bond stiffness and local structural deformations (Kieffer 1979). Using Shannon’s crystal radii 

(1976) for octahedral coordination comparing the ions shows that Al³⁺-O bonds are the strongest 

due to Al’s small ionic radius (~0.675 Å (Shannon, 1976)), high charge density (+3), and strong 

orbital overlap (Gibbs et al., 2006). Mg²⁺-O bonds are weaker but stable, with a moderate ionic 

radius (~0.86 Å (Shannon, 1976)) and purely ionic nature (Gibbs et al., 2006). High spin Fe³⁺-O 

bonds, despite a smaller radius (~0.785 Å (Shannon, 1976)) and oxidation state (+3), are less 

stable due to reduced orbital overlap from Fe³⁺’s high-spin d⁵ configuration, weak d-orbital 

interactions, and high spin electronic instability (Grodzicki and Lebernegg 2011). Fe²⁺-O bonds 

are the weakest, with a large ionic radius (~0.92 Å (Shannon, 1976)) and weakly antibonding 

orbitals (Grodzicki and Lebernegg 2011). The bond strength ranking is Al³⁺-O > Mg²⁺-O > Fe³⁺-

O > Fe²⁺-O. This interplay offers a simplified model of tourmaline’s complex vibrational 

behavior.  
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In summary, ionic radius (Shannon, 1976) and bond strength, governed by electrostatics (Brown, 

2002) and orbital overlap (Gibbs et al., 2006), control vibrational properties in tourmaline. 

Strong, short, covalent bonds (e.g., Al–O) stiffen the lattice, raising phonon frequencies and 

delaying thermal activation. In contrast, weaker, longer, ionic bonds (e.g., Fe²⁺–O) lower 

vibrational frequencies, allowing modes to activate at lower temperatures. Smaller unit cells 

restrict acoustic phonons, while larger cells enable low-energy vibrations. These factors shape 

the vibrational density of states, and thus entropy and heat capacity evolution. 

Bulk compositional effects High spin Fe²⁺ (3d⁶), with its larger ionic radius in octahedral 

coordination (~0.92  Å), forms long Fe²⁺-O bonds with reduced orbital overlap, occupying 

weakly antibonding orbitals in octahedral coordination, destabilizing bonds and inducing Jahn-

Teller distortions (Grodzicki and Lebernegg 2011). At low T, Cp in Fe²⁺-rich tourmalines is 

dominated by the magnetic phase transition peak, with Smag as the primary contributor to S₀ 

differences between tourmalines, see Figure 3D and 3E. Additionally, Fe’s heavier atomic mass 

lowers the Debye frequency, enhancing low-frequency acoustic modes and increasing Cp and 

entropy (Figure 3L, srlB), primarily due to mass rather than volume effects (Grimvall 2001). At 

higher Ts, Cp is dominated by optical phonons with weaker Fe²⁺ bonds shifting optical phonons 

to lower frequencies and increasing accessible microstates (Grimvall 2001). The 0.82 correlation 

between enthalpy and entropy and both their correlation with Fe2+ reflects this bond-weakening 

effect (Appendix 3N), as weaker bonds store less potential energy and allow greater vibrational 

flexibility (Dove, 1993). Thus, Fe²⁺’s unique combination of weak bonding, heavier mass, and 

magnetic effects significantly enhances both vibrational and magnetic contributions to Cp and 

entropy, driving the key thermodynamic differences between Fe²⁺-rich and other tourmalines, 

with minimal influence from volume changes. 

Fe³⁺ forms stronger, stiffer bonds due to its smaller Shannon ionic radius (~0.785 Å) in 

ocathedral coordination, which creates shorter more ionic Fe³⁺-O bonds with greater orbital 

overlap (Grodzicki and Lebernegg 2011). Its higher oxidation state (+3) enhances electrostatic 

attraction to oxygen, compensating for reduced covalency and further strengthening the bond. 

Unlike Fe²⁺, high-spin Fe³⁺ has a more symmetric electronic configuration, minimizing Jahn-

Teller distortions, making Fe³⁺-O bonds more stable and less sensitive to local distortions 

(Grodzicki and Lebernegg 2011). Fe³⁺-rich tourmalines exhibit high Cp at low T due to the 
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magnetic phase transition associated with Fe³⁺'s d⁵ configuration and spin states, combined with 

contributions from acoustic phonons  (Figure 3L, buB) and possible electronic excitations 

(second peak at low T, see Figure 3B), but their contributions diminish at higher T due to spin 

disorder. The stronger Fe³⁺-O bonds, with higher force constants, elevate optical phonon 

frequencies, reducing thermally accessible modes and resulting in low high-T Cp compared to 

softer-bonded Fe²⁺ tourmalines (Figure 3L, Fe2+ srlB vs. Fe3+ buB) (Grodzicki and Lebernegg 

2011).  

Mg- and Al-rich tourmalines, with lighter atomic masses and stronger, stiffer bonds, exhibit 

increase the Debye frequency and shift acoustic phonons to higher frequencies, as described by 

𝜔 ∝ √𝑘/𝑚 (Grimvall 2001). Fewer low-frequency modes are available at low T, resulting in 

lower Cp and reduced entropy (Figure 3L, drvB, uvtB, oleB). Al-rich tourmalines also have 

smaller unit cells (Table 2F, bole, ole, aorsm). At higher T, optical phonons dominate Cp, and 

the high force constants of Mg-O and Al-O bonds gradually activate higher-energy vibrational 

modes (Figure 3L, drvB, uvtB) (Dove, 1993). This steady activation eventually leads to Cp 

surpassing that of Fe³⁺-rich tourmalines (Figure 3L, drvB vs. buB). 

Shannon (1976)’s Al-O bond in tetrahedral coordination (0.53 Å) is longer and less covalent than 

Si-O bond in tetrahedral coordination (0.40 Å) (Gibbs et al., 2006). Al’s smaller ionic radius, 

lower charge and weaker bonding compared to Si, lowers optical phonon frequencies, increases 

vibrational flexibility, and makes thermal states more accessible at high T, increasing Cp. 

Compared to the rigid Si–O tetrahedra, Al–O octahedra form larger and more flexible units. This 

expands the polyhedral environment, increases molar volume, and relaxes the structure, 

enhancing low-frequency acoustic modes (Dove, 1993). When comparing the olenite and AOR 

speciation endmembers (Table 2F, ole, aorsm), we observe the opposite effect—likely due to Na⁺ 

being replaced by a vacancy on the X site, which perturbs the structure more significantly than 

an Al³⁺–Si⁴⁺ substitution on a single tetrahedral site.  B³⁺ substitution at the T site, with its much 

smaller ionic Shannon radius (~0.25 Å) in tetrahedral coordination has the opposite effect, it 

contracts the tetrahedron, strengthens local bonding, and raises optical phonon frequencies, 

lowering Cp (Figure A3H.9, bole) and reduce molar volume (Table 2F, bole). 
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In tourmalines, the W site, as a terminal bond, minimally impacts molar volume and entropy. F 

at the W site stiffens the lattice (Henry and Dutrow, 2011), raising vibrational frequencies and 

lowering entropy compared to OH as shown by the differences S0 of uvt and fluvt (Table 3A 

uvtB vs fluvtB). The V site connects the Y and Z polyhedra, with OH contributing to structural 

flexibility. Tourmalines like olenite and buergerite, lacking OH on the V site, exhibit extreme 

thermodynamic effects due to polyhedral stiffening, often coinciding with high 3+ cation content 

(e.g., Fe³⁺, Al³⁺) for charge balance. We propose that OH primarily serves as a charge regulator, 

with its influence on entropy and molar volume linked to higher-charge ions. The stark 

differences between oxy and OHO polyhedral (Van Hinsberg et al. 2005a) challenge the idea 

that OH solely regulates charge. However, OH-deficient tourmalines being better modelled with 

OHO polyhedra suggests that, in tourmaline, the structural differences between polyhedra with 

and without OH may be less pronounced than in other mineral systems. 

Order-disorder effects The structural impact of Fe³⁺-Al³⁺ ordering and disordering significantly 

affects the thermodynamic properties of tourmalines, particularly entropy and molar volume, 

requiring a speciation model. 

Tourmalines with Fe³⁺ at both the distorted Y site and regular Z site, such as povondraite, exhibit 

high entropy and large molar volumes (Figure A3H.15, A3H.16) due to the replacement of Al (or 

Mg) compact ridged bonding by (larger), weaker, and more flexible Fe³⁺-O bonds (Bosi et al. 

2023). Al strongly controls molar volume, as shown by its high correlations with total Al (-0.82), 

AlY (-0.76), and AlZ (-0.73), Appendix 3N. Replacing the stiffer Al-O (or Mg-O) bonds at the Z 

site increases lattice flexibility, lowers the Debye frequency, and enhances low-energy 

vibrational modes, contributing to low-T entropy. At high T, when Al begins to contribute to Cp, 

povondraite is overtaken by Al-rich tourmalines, though extrapolation issues persist (Figure 

A3H.9) .  

Our study shows that Al-rich tourmalines with Fe³⁺ on the Y site and Al³⁺ on the Z site exhibit 

low entropy and small volumes (Figure 3Z, 3AA, 3AB). Al³⁺’s smaller ionic radius and strong 

Al-O bonds contract the unit cell and stiffen the Z site, shifting phonon frequencies higher and 

reducing vibrational entropy by limiting low-frequency modes (Dove, 1993). Fe³⁺’s smaller 

radius and stronger Fe³⁺-O bonds further contract the Y site compared to larger, weaker-bonded 



302 
 

Mg²⁺ or Fe²⁺ which explain their smaller cell size and entropy than schorl-dravite. The absence of 

OH groups on the Z site minimises hydrogen bonding and structural distortions, enhancing unit 

cell contraction.  

In contrast, Mg-Al ordering or disordering has minimal effect due to their similar ionic radii in 

ocathedral coordination (Shannon 1976) and strong, stiff bonds (Gibbs et all, 2006), see Table 2F 

drvdis vs drv). Fe²⁺ could cause substantial changes when disordered between Y and Z sites, 

given its larger radius and weaker bonds, though significant Fe²⁺ occupancy on the Z site in 

tourmalines remains controversial (Ertl et al. 2012; Bosi and Andreozzi 2013) . 

The observed correlations between entropy, heat capacity, enthalpy, molar volume, and 

structural parameters in tourmalines remain qualitative. Ab initio methods, like density 

functional theory (DFT), are needed to compute the complete and partial vibrational density of 

states (v-DOS), revealing site-specific vibrational contributions and capturing the full electronic 

density of states (e-DOS). By comparing the e-DOS of individual elements, DFT provides 

precise insights into phonon softening, optical and acoustic mode shifts, and their effects on 

thermodynamic properties. This approach could also help establish correction factors for 

polyhedral in different mineral systems. 

6.  CONCLUSION 

In conclusion, we present a bulk and speciation model for entropy (S) and high-T Cp in 

tourmaline, derived from linear regression of direct calorimetric measurements and an internally 

consistent tourmaline database. These models significantly improve upon the polyhedron 

approach, offering the first robust thermodynamic framework for tourmaline, with predictive 

accuracy suitable for net transfer and exchange phase equilibria.  
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Bridging Text Between Manuscripts (Chapter 3-Chapter 4)  

From Derivative Constraints to Energetic Anchoring 

Chapter 4 completes the thermodynamic framework developed in the preceding chapters by 

introducing the final component of the Gibbs free energy function: the enthalpy of formation. 

Chapters 1 and 2 defined the composition and speciation space, enabling a consistent mapping of 

endmember proportions. Chapter 2 constrained the pressure dependence of Gibbs energy through 

molar volume, and Chapter 3 addressed its temperature dependence via entropy and heat 

capacity. Together, these properties define the derivative behavior of the Gibbs free energy, 

capturing how it varies with pressure and temperature, i.e., the slopes of phase boundaries in P–

T–X space. However, without enthalpy of formation, these functions remain unanchored, lacking 

the absolute energy offset needed to fix phase stability fields in energy space. 

Chapter 4 addresses this gap by presenting direct measurements of enthalpies of formation from 

oxides for a representative subset of tourmaline samples, using high-temperature drop-solution 

calorimetry. Anchored to the same internally consistent compositional dataset used in earlier 

chapters, these measurements define the energy baseline upon which the derivative properties 

act. Because no extensive external test dataset exists for tourmaline enthalpies, model 

performance is evaluated by comparing regression fits to the training data against previous 

estimation-based models. The study includes a rigorous Monte Carlo error propagation analysis 

to assess precision, and a comprehensive sensitivity analysis evaluating the impact of reference 

materials, thermodynamic cycles, and normalization schemes on model accuracy. This not only 

quantifies uncertainty but also identifies sources of systematic bias—critical for integrating 

tourmaline into internally consistent thermodynamic databases. 

Furthermore, the derived enthalpy values serve as initial estimates for CALPHAD-style 

optimisation, where experimental, computational, and natural assemblage data are jointly refined 

to achieve global consistency. With the addition of Chapter 4, the model transitions from a 

framework defined by relative slopes to one fully anchored in absolute energy—enabling 

predictive modelling of tourmaline stability and compositional evolution across geologic 

conditions. 
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Thermodynamic model for Tourmaline 

 

"It is important to realize that in physics today, we have no knowledge of what energy is. We do 

not have a picture that energy comes in little blobs of a definite amount. [...] It is an abstract 

thing in that it does not tell us the mechanism or the reasons for the various formulas" 

(Feynman, 1963). 

Energy is precisely measurable and highly useful in calculations; its fundamental nature remains 

abstract and elusive. Similarly, in thermodynamics, we utilize concepts like entropy and energy 

effectively in models, even though their underlying physical realities remain beyond direct 

observation or intuitive understanding. 
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ABSTRACT  Tourmaline’s low diffusion rates, preserved zoning patterns, and large stability 

range make it a key recorder of geochemical processes. Interpreting these patterns requires a 

thermodynamic model, yet enthalpies of formation remain poorly constrained. This study 

presents direct enthalpy measurements for 15 natural and 1 synthetic tourmaline using high-

temperature drop solution calorimetry in a lead borate solvent at 700°C, with FTIR line-

broadening as an indirect proxy for enthalpy of mixing. Precision was evaluated using Monte 

Carlo error propagation, while accuracy was assessed through sensitivity analysis of the impact 

of methodological choices, including thermodynamic cycle selection, reference oxides, and 

normalization schemes. The measured enthalpies are regressed to bulk compositional model 

endmembers using linear regression, providing the current best estimates, but due to data scarcity 

have multicollinearity issues. These values serve as starting points for optimisation using the 

CALPHAD approach and subsequent incorporation of internally consistent thermodynamic 

databases. No significant enthalpies of mixing were found. refining predictive models of 

tourmaline stability and geochemical behavior. This advances tourmaline’s integration into 

forward thermodynamic modelling, enhancing its use in interpreting geochemical processes, 

constraining its formation conditions, and refining mineral equilibrium predictions in natural 

systems. 

1. INTRODUCTION 

Tourmaline is a complex borosilicate mineral group with a wide compositional range that 

reflects its geochemical formation environments (van Hinsberg et al. 2011). Its ability to 

incorporate diverse elements provides valuable information about phase reactions (Dutrow and 

Henry 2011), but interpreting this geochemical record requires the ability to predictively model 

these reactions and hence a thermodynamic model for the tourmaline mineral group. Previous 

chapters have presented direct measurements of molar volumes, heat capacities, and entropies 

but we also need enthalpies of formation for the various tourmaline endmembers and interaction 

energies between these to provide a full thermodynamic description of tourmaline. Accurate 

enthalpy measurements are essential for understanding tourmaline's stability and geochemical 

behavior under different pressure, temperature and geochemical conditions. While volume and 

entropy are absolute properties, enthalpy provides relative energy values compared to other 

phases at standard state conditions (Anderson 2005). Ensuring internal consistency with these 
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phases is crucial; otherwise, the validity of including tourmaline in thermodynamic modelling is 

compromised. Thermodynamic databases (Berman 1988; Holland and Powell 1990; Gottschalk 

1996) optimize enthalpy values using the CALPHAD approach, relying on experimental and 

field-based phase relationships for internal consistency. They refine directly measured enthalpies 

of reactions, avoiding the large uncertainties associated with the absolute values of the enthalpies 

of formation from the elements (Δ𝐻form,el ). However, data for tourmaline remain limited. Solely 

relying on field data can lead to enthalpy values that are highly correlated with other phases, 

making them empirical fit parameters rather than independent measurements. Instead, here we 

present directly measured enthalpies of formation for tourmaline species to provide initial 

estimates with their uncertainty margins. These measurements will provide first-order constraints 

on the absolute enthalpy values of tourmaline, even if they are later correlated with other phases 

trough internally consistency optimisation. We aim to use the limited constraints from 

experiments and natural assemblages as a test set for our model 

This study quantifies tourmaline enthalpies from the oxides using high-temperature lead borate 

drop solution calorimetry , and enthalpies of mixing were indirectly assessed via empirical 

calibrations using line broadening of FTIR spectroscopy (Boffa Ballaran and Carpenter 2003). 

We show how different methodological choices, such as the thermodynamic cycle and reference 

oxides, and normalization schemes, can impact the results. Given that even small compositional 

variations can significantly affect outcomes, precise compositional data are essential for accurate 

thermodynamic modelling. Our findings address key uncertainties and challenges, provide 

valuable insights not only for tourmaline but also for modelling other mineral systems with 

complex solid solutions. 

2. METHODS 

Sample characterisation is detailed in Chapter 1. For this study, we used a subset (N=15) of the 

natural samples for which we measured molar volumes, heat capacities, and entropies. Figure 4A 

presents their compositions in terms of the independent endmembers of the bulk composition 

thermodynamic model. Additionally synthetic B-olenite was also measured (1 single 
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measurement).

 

Figure 4A. Independent endmember fractions of the Bulk model for the 15 natural samples 

selected for enthalpy measurements. Chapter 2 outlines their calculation and defines the Bulk 

model endmember abbreviations. 

2.1 Thermogravimetric Analysis (TGA) 

Our drop solution calorimetry thermodynamic cycles assume that no phase transition occurs 

when the sample is dropped into the 700°C solvent. To evaluate this, we performed TGA-DSC 

analysis using a Setaram SetSys Evolution thermogravimetric differential scanning calorimeter at 

the Guo lab at the Alexandra Navrotsky Institute for Experimental Thermodynamics at 

Washington State University. Tourmaline samples were heated from room temperature to 

1100°C at 10°C/min under a flowing N₂ atmosphere (100 ml/min). Two Fe-rich samples were 

additionally analysed under flowing air (100 ml/min) with otherwise identical conditions. 
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Temperature and heat calibrations were performed using indium, tin, lead, zinc, and aluminum, 

by comparing their fusion temperatures and heats to certified values. For both blank and sample 

runs, we used the same crucible, ensuring that the mass difference with the reference crucible 

was within 20 mg for each run. Blank-subtracted mass and heat flow data were analysed in 

Origin to estimate melting temperatures, determined visually from the onset of the endothermic 

heat flow peak. The heat of melting was not extracted due to tourmalines known incongruent 

melting behavior, and the product phases were not characterised. Synchronous DSC 

measurements, included in the results section figures, are for qualitative purposes only due to 

uncertainties of over 10%. Attempts to correlate these DSC signals with high-precision Cp 

measurements from Chapter 3 showed significant slope changes, attributed to non-optimised 

instrumentation and lack of isothermal or sapphire standard measurements. The primary aim of 

these measurements was to assess if major structural changes occur before the tourmaline 

reaches the solvent. 

2.2 Drop Solution Calorimetry 

The mineral sample was finely ground under acetone in an agate mortar for 5-10 minutes which 

is known to achieve an average particle size of around 20 µm. Intermittent microscopic 

inspections were conducted to identify and remove any impurities or inclusions, thereby ensuring 

the purity of the sample and particle size uniformity was also verified and checked to be well 

above the nanometer scale to avoid surface thermodynamic effect’s dominating over bulk 

thermodynamics (Navrotsky 2001; Navrotsky et al. 2008). 

Enthalpy measurements were conducted using a Setaram AlexSYS-1000 calorimeter, which is a 

Tian-Calvet twin integrated heat flow microcalorimeter with two sample chambers. This 

instrument is housed at the Guo lab at the Alexandra Navrotsky Institute for Experimental 

Thermodynamics at Washington State University. The system was set up the night before to 

stabilize the baseline. Sample powder pellets, weighing between 3-5 mg, were hand-pressed 

using a custom pellet die and then dropped from room temperature into 20 g of molten lead 

borate (2PbO-B2O3) contained in a 106 mm long Pt crucible, about 1 cm in diameter, 

surrounded by a SiO2 glass liner at 700°C. Hand pressing ensured that the powder remained 

intact during drop without being overly compacted to aid dissolution. The headspace above the 
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solvent was continuously flushed with O2 gas at 100 mL/min to maintain a constant gas 

atmosphere and bubbled through the lead borate melt at 5 mL/min using an Al2O3 tube with a Pt 

extension. This setup ensured mixing of the melt, removal of devolatilized H2O, and control of 

the redox state of both the sample and melt (Navrotsky et al. 1994). Measurements were repeated 

until at least three measurements with less than 5% uncertainty were obtained and/or until the 

solvent reached a dilution factor of 1:1000. A 1–2-hour wait was necessary for the enthalpy 

signal to return to baseline before introducing a new sample, making typical sample 

measurements take about 8-10 hours. The induced temperature change was detected in each 

chamber by a Pt-PtRh thermopile housed within an Inconel block, which served as an infinite 

heat sink. The differential electromotive force of the two thermopiles was recorded using a 

Keithley microvoltmeter. Signal integration involved constructing a background for each 

enthalpy peak, subtracting this background, and integrating the corrected signal to obtain heat 

flow data in µV·s. Due to relatively large baseline noise compared to the enthalpy signal, manual 

setting of the background was user-dependent, emphasizing the need for consistency in handling 

relative energy differences. The integrated emf over time is proportional to the heat released or 

absorbed. The calibration factor (J µV⁻¹ s⁻¹) for converting measured voltage into kJ/mol was 

obtained by measuring the heat content, ∫  
700∘C

RT
𝐶𝑝(𝑇)𝑑𝑇), through transposed temperature drop 

calorimetry using 35-50 mg of hand-pressed α-Al₂O₃ powders (pre-calcined at 1673 K) or 15-

200 mm Pt wire, and comparing results with literature values in the JANAF table. The error in 

the calibration factor was kept 0.5%. Calibration and further methodology details are described 

in earlier studies (Guo et al. 2015, 2016, 2018; Strzelecki et al. 2020, 2024; Goncharov et al. 

2022; Reece et al. 2024). At least three measurements that were closest to each other were 

selected to obtain the mean and 2 standard error. Samples with integrated heat signals deviating 

by more than 5% from the selected three were considered outliers and excluded, requiring an 

unfortunate but necessary selective consideration of enthalpy signals. This was essential due to 

potential issues during the drop, such as incomplete dissolution, sample adhesion to the crucible, 

or baseline shifts. 

2.3 FTIR powder absorption spectra  



315 
 

In the theoretical background Appendix 4A, we explain the physical and chemical basis for the 

assumption that spectral broadening correlates with enthalpy of mixing, as well as how the FTIR 

autocorrelation function quantitatively represents this broadening. 

For mid-infrared (MIR) spectroscopy (3800 cm⁻¹ to 400 cm⁻¹), we prepared KBr pellets with the 

powdered tourmaline samples. The process began by drying spectroscopic-grade KBr powder at 

150°C for 24 hours to eliminate residual moisture. The mineral sample was finely ground under 

acetone in an agate mortar for 5-10 minutes to achieve uniform particle size and ensure 

homogeneity. Microscopic inspection was performed intermittently to remove impurities or 

inclusions, ensuring sample purity. The ground sample was then mixed with KBr in a 1:200 ratio 

and ground for an additional five minutes to ensure even distribution within the KBr matrix. This 

mixture was dried again at 150°C for 24 hours before being carefully loaded into a preheated die 

(100°C) while avoiding powder sticking to the sides. A vacuum pump was applied to the die for 

2-5 minutes, followed by a series of loadings using a hydraulic press to a 13 mm diameter piston: 

3 tons/cm², 7 tons/cm² held for 30 seconds to 2 minutes, and finally 10 tons/cm² held for 10 

minutes. Each loading was released slowly to prevent pellet cracking. The resulting disk pellets 

were clear and free of water absorption. Due to KBr's hygroscopic nature, the pellets were 

handled with gloves and immediately stored in a desiccator to prevent moisture absorption. 

For far-infrared (FIR) spectroscopy (680 cm⁻¹ to 50 cm⁻¹), we prepared polyethylene (PE) pellets 

containing powdered tourmaline. 2 mg of the powdered sample was weighted and mixed with 75 

mg of spectroscopic-grade PE powder. The mixture was carefully ground in an agate mortar, 

avoiding static buildup, until homogeneous. It was then placed into a die, ensuring no material 

adhered to the sides, and pressed at a consistent loading of 10 tons using a hydraulic press. These 

steps ensured the optical clarity and mechanical stability of the PE pellets. 

After preparing the sample pellet, they were carefully positioned in the sample holder of the 

Bruker IFS66 FTIR spectrometer at the Maurizio Musso Vibrational Spectroscopy Lab, 

Department of Chemistry and Physics of Materials, at the Paris-Lodron University Salzburg with 

the help of Christian Pruner. The spectrometer is equipped with a heated silicon carbide Globar 

blackbody source, which emits broadband infrared light. The spectrometer was set up for the 

desired spectral range: MIR or FIR. For MIR measurements with KBr pellets, the KBr 
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beamsplitter and MIR pyroelectric TD6S FGSC detector (DTGS) were used. For FIR 

measurements with PE pellets, the multilayer Mylar beamsplitter (T222/8) and pyroelectric 

TD6S FIR (DTGS-2) detector were employed; these pyroelectric detectors measure temperature-

induced capacitance changes as voltage variations. The chamber was not at vacuum, but the 

spectrometer was purged with dry air at 200 L/h to reduce water vapor and CO₂ interference, and 

desiccant material was added to the sample chamber. A 10-minute wait after a sample change 

was required to establish steady-state environmental conditions. 

The FTIR measurements were done of a single set of instrumental conditions. A resolution of 4 

cm⁻¹ was used for both the background and the sample. The alignment of the Michelson 

interferometer mirrors was optimised for maximum instrumental gain (amplitude of the ZPD 

centerburst > 20,000). All measurements were conducted at room temperature with a 10 mm 

aperture to minimize nonparallel radiation. The interferogram was recorded at a mirror speed of 

1.22 kHz, with wavelength calibration using a 632.8 nm HeNe reference laser as an internal 

standard, and data acquisition in double-sided forward-backward mode. No intensity calibration 

was performed; normalization was applied as a postprocessing step. A 1-16 kHz low-pass filter 

reduced noise. These settings resulted in an interferogram comprising 14,218 points, with the 

Fourier transform providing a frequency domain resolution of 16k points. Phase resolution was 

set to 16 bits, with Mertz phase correction applied. To reduce FT truncation errors, a Blackman-

Harris 3-term apodization function was applied, and zero-filling was used to double the number 

of data points. Each spectrum was recorded as absorbance, α= -log10(Isample/Ireference), where I 

represent transmission intensity. The spectra were calculated from the Fourier transform of 64 

interferometer scans, providing a satisfactory signal-to-noise ratio for both MIR and FIR 

measurements.  

Performing a background scan with a reference KBr/PE pellet in the sample holder and air as the 

reference yielded a flat signal at approximately 70% transmission. Although the FIR beamsplitter 

is specified for use up to 30 cm⁻¹, reliable data could not be obtained beyond 50 cm⁻¹, likely due 

to the wavenumber range limitations of the Globar IR source. For all subsequent measurements, 

a reference pellet (PE or KBr) was placed in the reference beam path and the sample pellet in the 

sample path; the reference pellet served to record the baseline, allowing for accurate baseline 

correction of the sample spectrum. To ensure consistent transmission percentages, the weights of 
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the reference and sample pellets were kept as close as possible, always within 5 mg. This 

baseline correction accounts for any instrumental or environmental contributions to the measured 

signal.   

Spectra were acquired with on the sample KBr/PE pellet, and absorbed water + CO2 was 

removed using the atmospheric compensation algorithm in the instrument software OPUS. 

Effective H₂O compensation requires no sample absorption between 3600–4000 cm⁻¹, and CO₂ 

compensation requires none between 2300–2400 cm⁻¹. While the samples had no peaks in the 

CO₂ range, sample absorption in the H₂O range may have led to their overcorrection. The spectra 

were loaded into Spectraglyph 1.2 for postprocessing. We normalised the NIR/MIR and FIR 

spectra to the same value based on a dominant peak near 400 cm⁻¹ visible in both the MIR and 

FIR spectra. After normalization, the spectra were merged. We cut the spectra from 3800 cm⁻¹ 

and removed any residual CO₂ peaks around 2350 ± 200 cm⁻¹ if present. Initial tests indicated 

that these procedures did not affect the resulting autocorrelation analysis. The only procedure 

affecting the autocorrelation analysis was the nonlinear advanced background subtraction in 

Spectraglyph. Consequently, we prepared two sets of merged spectra: one with linear 

background subtraction and one with nonlinear background subtraction. While the absolute 

values differed between the sets, the relative differences were similar, as was also found by 

Boffa Ballaran et al. (1999). 

A Mathematica 5.2 script written by Artur Benisek was used for the autocorrelation analysis, 

selecting the spectrum from 50 cm⁻¹ to 2000 cm⁻¹. The FTIR spectra of tourmaline display 

continuous overlapping peaks from 50 cm⁻¹ to 2000 cm⁻¹, with no gaps. The main challenge in 

using FTIR broadening to correlate with the enthalpy of mixing lies in defining the relevant 

spectral range (Boffa Ballaran and Carpenter 2003). However, due to the absence of gaps in 

tourmaline’s spectrum, the broadening across the entire FTIR range must be used as a probe for 

the enthalpy of mixing. This assumes that the dipole changing optical phonons in the 5000 to 

200,000 Å range can indirectly detects the strain fields responsible for enthalpy of mixing (see 

Appendix 4A).  The range was chosen to avoid inaccuracies in the OH vibration broadening 

around 3500 cm⁻¹, which could be affected by water absorption in the sample chamber and the 

applied atmospheric correction. The autocorrelation function, Corr(𝛼(𝜔), 𝛼(𝜔′)) =
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∫  
∞

−∞
𝛼(𝜔)𝛼(𝜔 + 𝜔′)𝑑𝜔  measures how the spectrum correlates with itself when shifted by a 

frequency ω’, i.e., lagged version of itself, for a range of lags, for details of its use in FTIR 

spectroscopy see Salje et al. (2000). This calculation produces a new spectrum where each point 

represents the correlation of the original spectrum with a shifted version of itself. The central 

peak of the autocorrelation function is fitted with a Gaussian function,  𝐺(𝑥) =

𝑘0 exp (−
(𝑥−𝑥0)

2

2𝑘2
2 ) and the Gaussian fit is extrapolated to zero lag (ω′=0) (Salje et al. 2000). The 

parameter k2 is related to the line width by Δ𝑐𝑜𝑟𝑟  = 2√2ln 2𝑘2. This extrapolated value Δcorr 

accounts for the broadening without interference from adjacent peaks, and represents the 

weighted average of the line widths of the absorption peaks in the selected IR spectrum segment 

(Salje et al. 2000). 

Grain size and shape can contribute to spectral broadening, but autocorrelation analysis is 

minimally affected by user-controlled factors like grinding time, pellet preparation, dilution, and 

resolution (Blanch et al. 2007). No significant spectral differences were observed in KBr pellets 

with varying concentration ratios (200:1, 100:1, and 500:1). We ground tourmaline to 15–20 µm 

using an agate mill, ensuring uniform particle size across all samples. While MIR particles >2.5 

µm can cause refraction artifacts (McMillan and Hofmeister 1988) and FIR spectra suffer from 

noise due to low detector sensitivity and H2O vapour interference, these effects remain 

consistent. Frequency shifts from TO-LO splitting and surface modes are also potentially present 

(McMillan and Hofmeister 1988) but since we compare relative spectral differences, not absolute 

peak positions, autocorrelation remains robust to these factors. 

3. THERMOGRAVIMETRIC ANALYSIS (TGA) 

Results. A detailed summary of the key features observed in the TGA-DSC experiments is 

presented in Table 4.A (Figures in Appendix 4B). This table provides an overview of the mass 

loss behavior of various tourmaline samples under different thermal conditions, highlighting 

temperature ranges of mass loss steps, weight loss percentages, melting temperatures, and total 

weight loss values. The data include measurements both in air and non-air environments to 

assess the influence of oxidation and dehydration processes. Additionally, Karl-Fisher titration 
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results (Chapter 1) are provided for comparison, offering insights into the consistency between 

water content estimates from independent methods 

Table 4A. Thermogravimetric analysis (TGA) results for selected tourmaline samples. Each 

sample was heated under either inert (N₂) or oxidative (air) conditions, and mass loss was 

monitored as a function of temperature. Three distinct mass loss intervals (T1, T2, T3) are 

reported where applicable, corresponding to devolatilization events observed during heating. The 

table lists the temperature range (°C) and associated weight loss (%) for each step. The melting 

temperature indicates the onset of endothermic melting from differential scanning calorimetry 

(DSC) where available. Total weight loss is the cumulative mass loss over the full TGA run, and 

values corrected to exclude physically adsorbed water are given in the adjacent column. Karl-

Fisher titration values from Chapter 1 provide an independent estimate of structural water. 

Samples measured in air (oxidizing conditions) are indicated with “air” in the name. Bolded 

values highlight measurements outside the expected dehydration behavior, possibly indicating 

experimental artifacts or compositional variability. 
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Tourmaline 

Mass 

loss 

T1 

Wt% 

loss 1 

Mass 

loss 

T2 

Wt% 

loss 2 

Mass 

loss T3 

Wt% 

loss 3 

Melting 

T 

Total 

Weight 

loss 

Total Weight 

loss (no 

absorption) 

Karl-

Fisher 

Tm42 
455-

860 
0.12   860-940 2.80 884.5 2.92 2.80 2.87 

Tm42 air 
200-

953.8 
0.53   953.8-

1032 
1.48 997 2.01 1.48 2.87 

Tm29 
400-

878 
0.27   878-945 2.70 900 2.97 2.70 3.26 

Tm28 air 
200-

929.2 
0.70   929.2-

1024.66 
1.67 971.3 2.37 1.67 3.34 

Tm1 
25-

860 
0.62   860-917 2.59 879 3.21 2.59 3.08 

Tm1 air 
200-

953 
0.88   953-

1031 
1.46 1004 2.34 1.46 3.08 

Tm12 
200-

879 
0.28   879-994 2.88 928 3.16 2.88 3.18 

Tm24 
200-

913 
0.28   913-

1019 
3.07 962 3.35 3.07 3.38 

Tm23 
400-

897 
0.10   897-

1038 
3.43 999 3.53 3.43 3.34 

Tm37A 
200-

534 
0.38 

534-

625 
1.03 

888-

1020 
3.24 950 4.65 3.24 2.26 

bd9   270-

402 
1.43 

910-

1032 
2.96 982 4.39 2.96 3.08 

bd12 
333-

889 
0.26   889-

1025 
3.07 960 3.33 3.07 2.94 

Tm171 
600-

683 
0.28   883-

1020 
3.01 966 3.29 3.01 2.70 

Tm156B 
200-

840 
0.33   840-987 2.60 937 2.93 2.60 2.99 

Tm64 
200-

482 
0.35   861-

1080 
1.72 978 2.07 1.72 0.50 

Olenite   25-

800 
1.93 800-973 2.12 952 4.05 2.12 4.00 

Oxyuvite   25-

861 
1.11 861-990 2.59 945 3.70 2.59 4.06 
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TGA measurements of Tm1 and Tm42 under N₂ and O₂ atmospheres show oxidation-driven 

changes in tourmaline behavior before melting. Under O₂, a gradual mass loss of 0.5-1 wt% 

starts after 200°C, with the melting point increasing by 130°C, resembling buergerite. Total 

weight loss in O₂ is about 1 wt% lower than in N₂. The oxidation of Fe²⁺ to Fe³⁺, balanced by 

deprotonation, follows: 

(Y+Z)Fe²⁺ + (V+W)OH + 1/4 O₂ → (Y+Z)Fe³⁺ + (V+W)O²⁻ + 1/2 H₂O(g) 

This process, first identified by Pieczka and Kraczka (2004) and later confirmed by Castañeda et 

al. (2006) and Bačík et al. (2011), has been observed in Fe-rich tourmalines such as schorl (Filip 

et al. 2012; Liu et al. 2019; Celata et al. 2023b, 2023a) and Fe-containing varieties (Bosi et al. 

2016, 2018, 2019; Altieri et al. 2023). Mossbauer spectra in these studies show increased Fe³⁺, 

and IR spectra indicate OH reduction, confirming deprotonation. However, this reaction does not 

explain the lower H₂O release in O₂ compared to N₂, suggesting the possibility that the 

incongruent melt or the related hydrous product phases (Wolf and London 1997) might retain 

water under oxidized conditions, though this remains unverified as the final reaction products 

were neither preserved nor analysed after the measurements. Under oxidizing conditions, weight 

loss attributed to water release may have been offset by the formation of iron oxides, resulting in 

an apparent mass gain. Network former Fe³⁺ in borosilicate melts retain more water than network 

breaker Fe²⁺ due to hydroxyl stabilization in the higher polymerized structure (Le Losq et al. 

2021), but this behavior is absent in buergerite. Melting volatile release under in O₂ is half of 

what Karl-Fisher titration predicts, possibly indicating a (peritectic or residual) product phase 

that retains the missing water. Alternatively, reduced oxygen (O²⁻) may be incorporated into the 

tourmaline structure, offsetting the weight loss from deprotonation (Vho et al. 2019), but 

Bosi(2016)’s post heat-treated  SC-XRD analysis found no evidence of extra oxygen positions, 

possibly because interstitial oxygen is undetectable due to its random distribution. The loss of 

protons would contrast with the low hydrogen diffusion rates in tourmaline (Desbois and Ingrin 

2007), however diffusion might change when transitions metal oxide however might speed up 

when their charge balance function is no longer need.  Buergerite also exhibited higher than 

expected weight loss, with Karl-Fisher measuring 0.5 wt% and actual loss around 2 wt%, 

suggesting fluorine might be volatilized. Other fluorine-rich tourmalines show similarly higher 

weight losses, though these vary widely and do not correlate well with fluorine concentration. In 
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uvite samples tm37A and bd9, abrupt weight losses at 550°C and 300°C, respectively, likely 

reflect inclusions in the source crystals, resulting in final weights 1.5 wt% lower than expected. 

Chlorite in bd9 caused the 300°C loss, while magnesite in tm37A released CO₂ at 550°C. These 

inclusions were visible in the macrocrystals, and care was taken to exclude them during powder 

preparation, yet some were still incorporated. This suggests TGA is more sensitive than XRD for 

detecting impurities, which remained difficult to identify under optical microscopy. It's possible 

that the powders of these samples used in the solution calorimetry have the same 1–2 wt% 

impurity; however, this is low that it does not significantly affect the enthalpy given the other 

uncertainties in the drop solution calorimetry method and the thermodynamic cycle. Its effect on 

the autocorrelation analysis of the FTIR spectra is also considered minimal due to the high peak 

density and algorithmic removal of CO2 peaks. Lastly, we observed distinct behavior in the 

synthetic samples, olenite and oxyuvite. Both samples exhibited an immediate mass loss of about 

1-2 wt% at the start of the heating cycle in a continuous manner. When the samples melted, only 

half of the total volatile mass was lost, yet the total mass loss was consistent with Karl-Fisher 

titration measurements. This could indicate residual precursor phases, though abrupt signals like 

those from inclusions would be expected. Instead, it might suggest water in synthetic samples 

may be structured differently than in natural ones. However, FTIR spectra showed no significant 

changes in water absorption bands (3400–3700 cm⁻¹ O-H stretching, 1600–1650 cm⁻¹ H-O-H 

bending, 600–800 cm⁻¹ rotational/translational modes), as both natural and synthetic samples 

exhibited peaks in these regions. This overlap prevents determining whether additional water-

related peaks are present in the synthetic samples. Structural differences in synthetic samples 

have important implications for thermodynamic modelling, potentially affecting the reliability of 

their enthalpies in representing natural systems. However, despite TGA inconsistencies, their 

ability to break correlations in regression models, particularly in complex systems like 

tourmalines, justifies their continued use. 

Discussion: Thermogravimetric analysis (TGA)  

We performed a multiple linear regression using the bulk composition thermodynamic model to 

extrapolate melting temperatures under N₂ for endmember compositions, assuming a linear 

dependence on compositional variables. While this assumption is uncertain due to potential 

involvement of unknown product phases in the breakdown reaction, it provides a general trend 
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for breakdown temperatures across tourmaline compositions. The model shows a low percentage 

error of around 1% and a root mean square error (RMSE) of 21, indicating it is a reasonable first-

order approximation, with all melting temperatures for endmembers statistically significant at α 

= 0.05. 

 

Table 4B. Melting temperatures extrapolated to the bulk compositional model endmembers 

using ordinary least squares multiple linear regression on the 14 samples for which melting 

temperatures were obtained. The regression coefficient for each variable represents the predicted 

melting temperature (in °C) of the pure endmember. The 95% confidence intervals indicate the 

uncertainty in this extrapolation, based on the standard error of each coefficient. 

 

Regression Coefficient Confidence Intervals 

─────────────────────────────────────────────────────── 

   95% Confidence 

 Regression Standard Limits of β(i) 

Independent Coefficient Error ─────────────── 

Variable b(i) Sb(i) Lower Upper 

─────────────────────────────────────────────────────── 

srlB 845.3719 89.07264 598.0666 1092.677 

drvB 970.1111 63.79959 792.9751 1147.247 

uvtB 941.8365 47.72369 809.3343 1074.339 

foiB 825.9313 158.609 385.562 1266.301 

oleB 1018.191 330.8616 99.57188 1936.81 

fluvtB 950.2298 35.00741 853.0336 1047.426 

buB 962.3242 73.19888 759.0916 1165.557 

mdtwB 1326.986 359.1925 329.7076 2324.264 

aorsmB 927.3766 103.7292 639.3781 1215.375 

─────────────────────────────────────────────────────── 

Note: The T-Value used to calculate the confidence limits was 2.776. 

 

The observed trend indicates that Fe²⁺ endmembers, such as srlB and foiB, have the lowest 

melting temperatures around 830°C which makes sense as similar trends are observed for other 

minerals like olivine and pyroxene (Beattie 1993). UvtB, fluvtB, and aorsmB melt around 

940°C. DrvB and ferric endmember buB melt at approximately 970°C, with oleB and mdtwB 

melting at even higher temperatures but with greater uncertainties. Extremely high VIF factors 

suggests multicollinearity, particularly among srlB (17), foiB (71), oleB (84), and aorsmB (21), 

highlighting the need for additional data to address notable correlations between drvB and srlB (-
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0.82), oleB and srlB (-0.76), drvB and oleB (0.81), and foiB and aorsmB (-0.88), as well as oleB 

and aorsmB (-0.84). This results in a data-dependent regression, evidenced by the near-zero 

R²Press, indicating low predictability. All melting temperatures exceed 700°C, the solvent 

temperature in the lead borate drop solution calorimetry. Samples must remain stable below this 

to prevent melting before dissolution, ensuring accurate enthalpy measurements. 

4. ENTHALPIC THERMODYNAMIC CYCLES OF TOURMALINE 

Drop enthalpies (ΔHdrop) for our tourmaline samples are found in Table 4C. The enthalpy of the 

sample in kJ/mol is calculated by multiplying the heat signal per gram (Q, in kJ/g) (Table 4C, 

column 2 &3) by the sample’s molar mass (M, in g/mol), as calculated from the mineral formula 

obtained in Chapter 1. Drop solution enthalpy reflects the energy difference between elements in 

tourmaline and their speciation in the lead borate melt, along with the heat content gained as 

tourmaline is heated from room temperature to the solvent temperature (including phase changes, 

oxidation reactions). 

This heat content is governed by the statistical occupation of phonon energy states, described by 

the vibrational density of states (v-DOS). Heat content was measured separately using power-

compensated DSC from room temperature to 500°C in Chapter 3. We applied the Berman and 

Brown (1985) Cp polynomial to fit this data, extrapolated it to 700°C, and integrated over T to 

calculate the heat content. The covariance matrix of the fit provided an estimate of the 

uncertainty. No lead platinates, a common issue with transition metal-containing phases (Lilova 

et al. 2012), formed when using lead borate at 700°C under an O₂ atmosphere, as no reaction 

materials were observed in the platinum crucible after the experiments. 
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Table 4C. Drop-solution enthalpy measurements of tourmaline samples in lead-borate solvent at 

700 °C. The first column lists the number of drops used per sample for calculating the mean and 

the total number of drops. Drops which gave inconsistent results were not used for the 

calculation of the mean. The second and third columns report the measured enthalpies of solution 

in kJ/g. These were converted to molar values using the molar mass of each sample (not shown). 

The fourth and fifth columns give the heat contents (H⁰(700 °C) – H⁰(25 °C)) in kJ/mol, obtained 

by integrating the caloric equations of state (Cp) from 25 °C up to 700 °C. 

Sample 

N (used 

for 

calcualting 

mean of 

drop 

H)/total 

drops 

Drop solution 

Enthalpy 

(kJ/gram) 

Drop solution 

enthalpy 2 SE 

(kJ/gram)  

Heat 

Content 

(J/mol, 

measured 

Cp 

integration) 

Heat 

Content ± 

Error 

(J/mol, 

measured 

Cp 

integration) 

TM42 3/7 0.962226 0.018507 751.16 0.663088 

TM167B 4/6 1.092919 0.007688 759.97 0.466916 

TM163 3/6 1.007662 0.014326 735.136 1.62575 

TM12 5/7 1.042974 0.030646 745.617 0.754499 

TM24 4/6 1.135864 0.034376 742.248 0.825856 

TM23 4/8 1.142477 0.047764 747.973 0.549563 

bd12 6/6 1.20956 0.034858 748.907 0.361851 

bd9 3/6 0.837794 0.022529 752.377 0.441771 

TM37A 4/4 1.214823 0.014147 755.855 0.72471 

TM171 3/4 1.231079 0.017591 735.235 3.16628 

TM28 4/5 1.003929 0.024323 752.668 1.66585 

TM1 4/4 0.87706 0.028466 749.765 1.37012 

TM29 4/5 0.962117 0.009882 750.592 0.145361 

TM64 3/6 0.817223 0.008912 721.013 1.14691 

TM156B 4/8 1.007609 0.013965 762.848 0.514402 

olenite_syn 

1/1 

0.972197 

only 1 

measurement 709.889 1.19978 

 

Thermodynamic Cycles In the calorimetric cycle used here, the reaction measured for 

tourmaline is: 

Tourmaline (s, 298K) → ∑ Oxides (solution, 973K )  

meaning that the crystalline tourmaline at 298 K is dissolved into a high-temperature solvent at 

973 K. 
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Similarly, for each reference oxide, the measured reaction is: 

Oxide (s, 298K) →  Oxide (solution, 973K )  

where the crystalline oxide dissolves into the same solvent at 973 K (Figure 4B). 

To obtain the standard enthalpy of formation of tourmaline from its component oxides at 298 K, 

the drop solution enthalpy of tourmaline is subtracted from the sum of the drop solution 

enthalpies of the oxides. Subtracting these reactions effectively reconstructs the standard-state 

reaction at 298 K, as it automatically removes the heat content (enthalpy increase from 298 K to 

973 K) of the oxides. Therefore, the heat content of tourmaline is not needed. Our analysis of 

tourmaline's thermodynamic cycles follows Hess's Law, ensuring consistency in enthalpy 

calculations. So the enthalpy change for conversion to reference oxides is: Δ𝐻°𝑓, oxide 
tourmaline =

Δ𝐻drop solution 
oxides − Δ𝐻drop solution 

tourmaline . Formation enthalpy from elements, leveraging the path-

independent nature of enthalpy, is given by:  Δ𝐻°𝑓, element 
tourmaline = ∑(Δ𝐻𝑓, element 

oxide ) + Δ𝐻𝑓, oxide 
tourmaline . This 

method is applicable to non-transition metal oxides. For transition metal oxides, we account for 

oxidation in the lead borate melt under oxygen. Each thermodynamic cycle must begin with a 

well-defined initial state and end in a clearly known final state, such as dissolved oxides in a 

Henryian state, evolved gases, and well-defined oxidation states, to ensure accurate calculations 

(Navrotsky et al. 1994). Previous studies show that Fe₂O₃ (Lilova et al. 2012), Mn₂O₃ (Fritsch 

and Navrotsky 1996) , and V₂O₅ (Dorogova et al. 2007) are the final oxidation states of Fe, Mn, 

and V in lead borate under oxygen at 700°C and 1 bar. To account for the oxidation effect in the 

thermodynamic cycles, we used the standard-state enthalpy of reaction from Robie and 

Hemingway (1995) for FeO oxidation: 4FeO + O2 → 2Fe2O3. The drop enthalpy (not drop 

solution enthalpy) for FeO was then calculated using:  Drop Enthalpy
FeO

= Δ𝐻reaction 
298K +

[2Δ𝐻heat content 

Fe3O3 − Δ𝐻heat content 

O2 ]. The drop solution enthalpy of FeO is given by (Figure 4B):  

Drop Solution Enthalpy 
FeO

=
 Drop Enthalpy FeO

4
+ ( Drop Solution 

Fe2O3
− Δ𝐻heat content  

Fe2O3 ). We 

applied an equivalent approach for MnO and V₂O₃. When calculating the enthalpy of formation 

from the elements, we used the enthalpies of formation for all non-transition metal oxides and 

the reduced forms of transition metal oxides. Our methodology assumes complete H₂O 
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devolatilization, with F and volatile metals like Na remaining in the melt during the reactions 

(Westrich and Navrotsky 1981).  

Tourmaline (s, 298K) → ∑ Oxides (solution, 973K )  

Oxide (s, 298K) →  Oxide (solution, 973K )  

 

 

Figure 4B. Thermodynamic Cycle for Formation Enthalpy of Tourmaline This diagram 

outlines the thermodynamic cycle used to derive the enthalpy of formation of tourmaline. The 

cycle begins with drop-solution calorimetry measurements of tourmaline and its reference 

oxides. The formation enthalpy from oxides is calculated as the difference between product and 

reactant solution enthalpies, using the sign convention appropriate for dissolution (opposite to 

formation). To obtain the formation enthalpy from the elements, standard enthalpies of formation 

for the oxides (from Robie and Hemingway, 1995) are added. An oxidation correction is applied 

via Hess’s Law to account for transition metal oxidation during dissolution in lead borate. For 

example, FeO is oxidized to Fe₂O₃, corrected to 973 K using Cp integrals, and hematite’s 

solution enthalpy is incorporated. Dividing the total corrected enthalpy by 4 yields the drop 

solution enthalpy of FeO. This cycle leverages the state function nature of enthalpy to isolate 

measurable steps while highlighting the complexity and error accumulation when multiple oxide 

references are required.  
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Step-by-step enthalpy calculation for tourmaline sample TM42. Thermochemical cycle for 

calculating the enthalpy of formation of tourmaline sample TM42 from the elements. The drop 

solution enthalpy measured in the calorimeter is combined with the enthalpy of the 

corresponding oxide mixture and literature enthalpies of formation using Hess’s Law. Stepwise 

values show intermediate calculations and clarify the role of transition-metal and non-transition-

metal oxides.  The enthalpy of formation values in Step 3 (from oxides) and Step 5 (from 

elements) are reported at standard reference conditions (298.15 K, 1 bar). of the oxides were 

subtracted from their drop solution enthalpies to back-calculate the enthalpy at 298.15 K. 

Importantly, both the drop enthalpy of tourmaline and that of the oxide mixture contain their 

respective heat contents (H₇₀₀ – H₂₉₈), that is, the energy needed to heat each solid from 298.15 K 

to the drop temperature (973 K). Therefore, when the two drop enthalpies are subtracted to 

compute the enthalpy of reaction (tourmaline → oxides), the heat content contributions 

effectively cancel, making it unnecessary to know or use the heat capacity of tourmaline. This 

ensures that the final enthalpies are consistently referenced to standard conditions and satisfies 

Hess’s Law. 

Step Description Formula Value 

0.a Drop enthalpy of tourmaline (measured) Δ𝐻drop solution 
tourmaline  0.96223 kJ/g 

 Molar Formula Weight — 1021.1676 g/mol 
 Conversion to kJ/mol 0.96223 × 1021.1676 982.59 kJ/mol 

 

Step Description Formula Value (kJ/mol) 

1 Drop enthalpy of tourmaline (measured) Δ𝐻drop solution 
tourmaline  982.59 

2a Drop enthalpy of non-TM oxides Δ𝐻drop solution 
non-transition metals oxides  812.20 

2b Drop enthalpy of transition metal oxides Δ𝐻drop solution 
transition metal oxides  -92.69 

2c Total oxide enthalpy Δ𝐻drop solution 
oxides = 812.20 - 92.69 719.51 

3 
Enthalpy of formation from the oxides 

(tourmaline → oxides) 
Δ𝐻°𝑓, oxide 

tourmaline  = 982.59 - 719.51 263.08 

4 
Formation enthalpy of oxides from 

elements (literature) 
 -14,251.90 

5 
Formation enthalpy of tourmaline from 

elements 

Δ𝐻°𝑓, element 
tourmaline = -14,251.90 - 

263.08 
-14,514.98 
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In solution calorimetry, the objective is to determine the stability of a compound relative to a 

reference state defined by the stable elemental forms. Thermodynamically, all compounds are 

positioned relative to an elemental hyperplane, a mathematical surface connecting the enthalpies 

of the pure elements at standard conditions. The enthalpy of formation of a compound 

corresponds to the vertical distance from this hyperplane at its specific composition. Therefore, 

the choice of intermediate reference oxides is not based on structural similarity to the compound 

of interest, but on the use of a compositionally independent and well-characterised set of 

materials with accurately known enthalpies of formation from the elements. An internally 

consistent set ensures that all reference phases are tied to the same elemental baseline, that their 

thermodynamic properties (enthalpy, entropy, volume) are coherent across reactions, and that no 

inconsistencies arise when combining formation data into reactions or phase equilibria 

calculations. 

The reference oxides we used were NaF and MgF₂ (Westrich and Navrotsky 1981), Na₂O and 

K₂O (Kiseleva et al. 1996), SiO₂ (Grevel et al. 2005), MgO (Smelik et al. 1994), Al₂O₃ 

(Navrotsky 2014), CaO (Zhang et al. 2013), TiO₂ (Putnam et al. 1999), Fe₂O₃ (Lilova et al. 

2012), Mn₂O₃ (Fritsch and Navrotsky 1996), Li₂O (Xu et al. 1999), V₂O₅ (Dorogova et al. 2007), 

ZnO (Davies and Navrotsky 1981), SrO (DiCarlo et al. 1993), H₂O (Chase 1998), and B₂O₃ (Wu 

et al. 2019). We selected these reference oxides because, except for H₂O, they were measured at 

Navrotsky’s solution calorimetry lab, which follows the same protocols and uses the same 

instruments as the Guo lab at WSU. This ensures consistency within the dataset, though it carries 

the risk of systematic errors or bias, discussed in the next paragraph. These reference oxides are 

also the same ones used in major databases to ensure that all experimental data are internally 

consistent, e.g. (Holland and Powell 1990). For these oxides, we have reliable enthalpies of 

formation from the elements, which must be especially accurate and precise given the magnitude 

of the values involved. For these enthalpies of formation, we used the enthalpy of formation of 

the oxides from the elements from Robie and Hemingway (1995), and when not available, we 

used Robie et al. (1978). Heat contents were sourced from the NIST-JANAF tables for all 

oxides, except for MnO, Mn₂O₃, and ZnO (hexagonal), which are absent from the JANAF tables; 

for these, we also used Robie and Hemingway (1995). Unfortunately, these sources are not 

internally consistent with one another, but at present, there is no single thermochemical database 
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that provides a complete and self-consistent set of enthalpies and heat contents for all relevant 

oxides. Whereas most of these oxides are stable under experimental conditions and were 

measured directly, some, like Na₂O, K₂O, CaO, and Li₂O, are naturally unstable and were 

derived from their corresponding (stable) carbonates using additional thermodynamic cycles 

(Kiseleva et al. 1996; Xu et al. 1999; Zhang et al. 2013). One could argue that the true reference 

compounds are actually Na₂CO₃, K₂CO₃, CaCO₃, and Li₂CO₃, rather than their respective oxides. 

In this case, it would no longer be referred to as the enthalpy of formation from the oxides, but 

rather from the compounds. Moreover, Li₂CO₃ was measured at 800°C and extrapolated back to 

700°C using heat capacity integrals, as Li₂CO₃ has a melting temperature near 700°C (Xu et al. 

1999). This introduces additional uncertainty, as Li speciation in the melt may change over the 

100-degree range. The currently obtained oxide enthalpies are therefore best estimates, internally 

consistent with these carbonates. Similarly, B₂O₃ was derived from drop solution data of boric 

acid due to the difficulty in obtaining crystalline B₂O₃, as it often occurs in hydrated forms or 

remains amorphous (Wu et al. 2019). All reference oxides must be anchored relative to each 

other, meaning that the true reference structures—to which all values are tied—must be 

extremely well characterised crystal-chemically and calorimetrically. 

Ideally, it would have been preferable if no phase changes occurred in the reference oxides up to 

700°C to minimize uncertainties in heat content due to transitions, as measuring exact transition 

enthalpies is challenging. NaF, MgF₂, Na₂O (Na₂CO₃), MgO, K₂O (K₂CO₃), CaO (CaCO₃), TiO₂, 

Li₂O (Li₂CO₃), ZnO, and SrO exhibit no phase transitions under typical conditions. H₂O 

evaporates at 100°C. Quartz (SiO₂) transitions to β-quartz at 573°C. FeO, often non-

stoichiometric, is particularly challenging as it undergoes symmetry changes between 200-300°C 

and oxidizes to magnetite around 570°C, with further oxidation to hematite around 700°C in an 

O₂ atmosphere. Fe₂O₃ undergoes a magnetic phase transition at a Néel temperature of 675 °C 

(Grønvold and Samuelsen 1975; Harrison 2006). Mn₂O₃ transitions from cubic to orthorhombic 

between 550-600°C, and V₂O₅ melts at 690°C after structural changes starting at 300°C. Boric-

acid first dehydrates into metaboric acid around 100°C, then further decomposes into boron 

oxide (B₂O₃) around 300°C, which melts at approximately 450°C and remains stable in its liquid 

form up to 700°C. All energy contributions were accounted for using integrated heat capacity 

curves from JANAF tables. As discussed in the next paragraph, uncertainties in phase transition 
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enthalpies likely affect thermodynamic cycles by no more than 1–4 kJ/mol. However, their exact 

impact was not evaluated due to the lack of uncertainty data on heat contents in the JANAF 

tables. The thermodynamic cycles can be found in Electronic Appendix 4B 

Precision: Error propagation Tourmaline is a complex solid solution composed of many 

oxides. As the number of steps in our thermodynamic cycles increases as more oxides are 

involved, so does the uncertainty in our calculations. Therefore, it is crucial to perform an 

uncertainty analysis to determine the cumulative effect of these steps on the uncertainties of our 

final enthalpy values and ensure the reliability of our thermodynamic models. We performed 

Monte Carlo (MC) error propagation (Anderson 1976) using the mean and standard error (SE) 

from the composition and measured drop solution enthalpies of oxides and tourmaline, 

generating 2000 random samples with Excel’s NORM.INV(RAND()) function, which showed 

that convergence of the MC mean and standard deviation (SD) was reached after 1000 samples. 

For the mean composition, we used the atoms per formula unit (apfu) derived from the optimised 

mineral formula based on EMPA, LA-ICP-MS, and Mossbauer spectroscopy, incorporating 

electron density per site, bond valence sums, and overall charge and site fraction constraints, 

which was then back-converted to the bulk composition afpu, see Chapter 1. The uncertainty in 

these apfu was obtained through Monte Carlo error propagation of the EMPA, LA-ICP-MS, and 

Mossbauer uncertainties into the 31-oxygen normalization scheme, prior to mineral formula 

optimisation, see Chapter 1 for more details. We included only these uncertainties, excluding 

those from electron density per site, bond valence, and potential uncertainty-reducing constraints 

like site fraction or bond valence sums, as accurately weighing these factors is challenging. Thus, 

the estimate primarily reflects the chemically observed uncertainty after normalization (i.e., 

charge balancing), affecting both the calculation of reference oxide amounts corresponding to 

tourmaline and the conversion of measured enthalpies to molar enthalpies by defining the 

uncertainty in its molar formula weight. In addition to compositional uncertainty, we 

incorporated the analytical uncertainty from drop solution calorimetry, using the 2SE of the 

enthalpies of formation for FeO, MnO, and V₂O₃ oxidation reactions, the drop solution 

enthalpies of the reference oxides, their enthalpies of formation from the elements, and the drop 

solution enthalpies of the tourmaline. The Monte Carlo analysis of the mean enthalpy of 

formation from the elements (ΔHf°el) for tourmalines was conducted by propagating the 2SE 
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(twice the standard error) of all input data. However, the final uncertainty on the ΔHf°el estimate 

was determined using the 2 standard deviations (2SD) of the Monte Carlo iterations, providing a 

direct measure of the spread in the computed enthalpy values. This approach yielded 

uncertainties of approximately 30–50 kJ per mol tourmaline on an average ΔHf°el of ~−15,000 

kJ/mol (0.33 rel%) whereas the measured ΔHf°ox account for about half of this uncertainty (15-

20 kJ/mol tourmaline) on ΔHf°ox of ~-250 kJ/mol (8 rel%). This uncertainty reflects the 

complexity of tourmaline compositions and aligns with uncertainty values reported by 

Ogorodova et al. (2012). Uncertainties in the heat contents of the oxides were not included, as 

the JANAF tables do not provide these values. Table 4D provide the results of the MC analysis. 

This uncertainty analysis emphasizes the importance of accurate mineral characterisation, 

particularly in thermodynamic cycles for enthalpy, where the values are significantly larger than 

those for molar volumes and entropies. In complex mineral solid solutions, such uncertainty is 

often overlooked, leading to enthalpy measurements appearing more precise than they are. Error 

propagation represents a worst-case scenario (Bevington and Robinson 2003), but repeated drop 

solution measurements, ideally by different researchers and instruments, along with repeated 

material characterisation, would provide a more accurate uncertainty estimate. A complete 

covariance matrix of reference oxide uncertainties is essential for accurate uncertainty 

quantification in thermodynamic cycles. Independent error assumptions in Monte Carlo 

simulations can overestimate uncertainties by ignoring systematic correlations from shared 

experimental sources and modelling assumptions (Anderson 1976). Incorporating covariance 

data will improve precision and reliability in such uncertainty calculations. 

While we did not repeated enthalpy measurements, we do have EMPA data from different 

occasions on the selected tourmaline subset. Renormalizing these using the same 31O norm and 

deriving molar enthalpies accordingly yields ΔHf°el values differing by 50–100 kJ (0.3 rel%) and 

ΔHf°ox values differing by 15 kJ (8 rel%) per mol of tourmaline, demonstrating that Monte Carlo 

error propagation effectively captures variability from repeated compositional analyses. The 

thermodynamic cycles including the Monte Carlo simulations can be found in Electronic 

Appendix 4C. 
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Table 4D. Measured enthalpies of formation from the elements for our sample tourmalines. The 

first column lists Δ𝐻°𝑓, oxides 
tourmaline  using preferred values for composition and reference oxide 

enthalpies. The second column is the Δ𝐻°𝑓, element 
tourmaline . The MC mean Δ𝐻°𝑓, element 

tourmaline  is the average 

from 2000 Monte Carlo trials, incorporating the mean and 2SE of compositions and Δ𝐻°𝑓, oxides 
tourmaline  

measurements. 2SD represents the standard deviation of the MC trials. All enthalpy values are at 

standard state (298.15 K, 1bar) 

Sample 
𝚫𝑯°𝒇, oxides 

tourmaline  

(kJ/mol) 

𝚫𝑯°𝒇, element 
tourmaline  

(kJ/mol) 

MC Mean 𝚫𝑯°𝒇, element 
tourmaline  

(kJ/mol) 

MC 𝚫𝑯°𝒇, element 
tourmaline  2SD 

(kJ/mol) 

TM42 -263.08 -14514.98 -14510.46 38.70 

TM167B -406.64 -14876.21 -14875.40 36.64 

TM163 -294.36 -14818.09 -14846.22 40.07 

TM12 -281.21 -14846.66 -14876.99 54.07 

TM24 -292.75 -15178.31 -15229.49 50.81 

TM23 -265.45 -15245.90 -15208.28 57.31 

bd12 -327.56 -15384.83 -15379.88 52.11 

bd9 31.56 -15037.71 -15032.06 42.14 

TM37A -330.10 -15413.66 -15417.50 40.25 

TM171 -342.93 -15432.55 -15427.39 58.53 

TM28 -330.82 -14720.81 -14704.28 42.87 

TM1 -204.16 -14583.82 -14592.17 69.99 

TM29 -247.40 -14723.49 -14707.40 36.35 

TM64 96.56 -14224.72 -14180.42 46.40 

TM156B -370.13 -14599.14 -14632.88 44.37 

olenite_syn -92.63 -15151.16 -15133.43 122.26 

 

Accuracy: Sensitivity Analysis of Thermodynamic Cycles The Monte Carlo analysis 

demonstrated precision challenges, while accuracy is assessed here through sensitivity analysis. 

Iron Transition metals present challenges in solution calorimetry due to variable valence states, 

magnetic effects and high oxidation enthalpies. Iron oxides are particularly problematic: Wüstite 

(Fe₁₋ₓO, where 0 ≤ x ≤ 0.125) exhibits non-stoichiometry and oxidizes to hematite in lead borate 

at 700° (Lilova et al. 2012). This oxidation process means that accurate enthalpy determination 

requires knowledge of wüstite’s heat content, its oxidation enthalpy to hematite, and hematite’s 
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dissolution enthalpy in lead borate. The specific order of these components does not matter, as 

long as the thermodynamic cycle remains closed, in accordance with Hess's Law. Lilova et al. 

(2012) reported stability issues in hematite (α-Fe₂O₃) drop solution measurements in lead borate 

at 700°C, including Pt crucible discolouration and baseline instabilities, necessitating 

measurements at 800°C and subsequent extrapolation. This is likely due to α-Fe₂O₃ undergoing a 

magnetic phase transition around 700°C (Grønvold and Samuelsen 1975). Since our calorimetric 

work in lead borate is performed at 700°C, this extrapolation introduces uncertainty, further 

complicated by potential Fe speciation changes in melts at different temperatures. 

To address these issues, we conducted a sensitivity analysis by varying iron reference materials 

and thermodynamic parameters from the literature. Instead of using Robie and Hemingway’s 

(1995) extrapolated enthalpy for hypothetical stoichiometric FeO to determine the wüstite-to-

hematite oxidation enthalpy at standard state, we based our framework on the standard-state 

properties of wüstite (Fe₀.₉₄O), modifying our tourmaline composition description accordingly. 

In an alternative cycle, we used Lilova et al. (2012)’s directly measured drop enthalpy of wüstite 

at 800°C, extrapolated to 700°C using heat content differences from the NIST-JANAF tables. 

This approach accounts for wüstite heating, oxidation at high temperatures, and Fe₂O₃ 

disintegration in the melt (Navrotsky 2014). By relying solely on drop calorimetry, it minimises 

uncertainty propagation from multiple experimental steps in thermodynamic cycles. In contrast, 

database oxidation enthalpies at standard state compile data from multiple sources, whereas 

Lilova et al. (2012)’s work is based entirely on drop solution calorimetry, providing a more 

direct but method-dependent measurement. Additionally, we evaluated different heat content 

sources, comparing JANAF data with Robie & Hemingway (1995) where available. 

These adjustments resulted in a 1–3 kJ difference in the ΔHf°el (0.02 rel%) and ΔHf°ox  (1.2 rel%) 

per mole of tourmaline. Due to the lack of an ideal iron reference at 700°C in lead borate, we 

will use Lilova et al. (2012)’s Fe₂O₃ measurement at 800°C, JANAF-NIST heat contents, and 

Robie & Hemingway’s (1995) formation and oxidation enthalpies at standard state for 

consistency. However, this underscores the need to refine iron reference materials for lead borate 

calorimetry at 700°C, as most calorimetric work is conducted at this temperature. Since all iron-

containing minerals in thermodynamic databases are anchored to FeO and Fe₂O₃, any uncertainty 
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in these reference data propagates through thermodynamic calculations, directly impacting 

mineral stability predictions and reaction energetics. 

Non transition metals We tested the effect of varying non-transition metal reference oxides 

using the Holland and Powell (2011) database where available. While their individual 

uncertainties are lower, they accumulate to ΔHf°el uncertainties of 1–3 kJ/mol per mole of 

tourmaline, comparable to iron, due to the higher proportion of non-transition metals in 

tourmaline. Fluoride compounds showed the greatest uncertainty due to limited data (Westrich 

and Navrotsky 1981). For tourmalines that had excess F after all Na was accounted for (as was 

referenced to NaF), substituting AlF₃ with MgF₂ yielded similar ΔHf°el shifts per mol tourmaline 

as the uncertainties to iron. The ΔHf°ox due to the fluoride reference switch showed larger 

changes by ~15 kJ/mol tourmaline showing that error cancellation can occur. 

Gibbsite instead of H2O as reference oxide for H While H₂O is commonly used, hydroxide is 

suggested as a potential better reference since structural water contributes differently to ΔH than 

free H₂O, as reflected in the polyhedron method (Van Hinsberg et al. 2005a, 2005b). Aluminum 

and hydrogen were referenced using Al(OH)₃ (gibbsite) instead of Al₂O₃ and H₂O(l), 

respectively, so that Al(OH)₃ serves as the reference oxide for both Al and H in the 

thermodynamic cycle. This led to a difference of up to 100 kJ per mole of tourmaline for its 

ΔHf°el  (0.66 rel%) and about 10 kJ (4 rel%) per mole of tourmaline for its ΔHf°ox. This variation 

stems from the higher enthalpy of formation for gibbsite compared to H₂O. The Al(OH)₃ method 

may account for OH bond breakage, which H₂O evaporation does not, but the 100 kJ difference 

seems too large to be explained solely by this and may reflect uncertainty in the Al(OH)₃ 

measurement. In contrast, H₂O-related energies are relatively small (around 40 kJ/mol) and its 

enthalpy of formation from the elements (~200 kJ) is moderate. The larger enthalpy of formation 

for gibbsite, due to the presence of Al, which makes strong bonds, might obscure small energy 

changes like H₂O bond breakages, leading to higher uncertainties. Given our better 

understanding of water-related enthalpies and to stay consistent with Navrotsky group's papers 

(Navrotsky 2014; Navrotsky and Koryttseva 2023), we prefer to use H₂O as the reference oxide. 

As Ogorodova et al. (2012)'s thermodynamic cycles involve gibbsite, their enthalpy of formation 

for tourmaline is not internally consistent with ours. 
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This underscores the critical need for internal consistency across phases in thermodynamic 

databases or thermodynamic cycles to ensure accuracy. While instrumental precision can be 

improved, addressing accuracy requires a coordinated community effort to establish a rigorously 

consistent reference framework. 

Internally consistent database for reference oxides  The sensitivity analysis highlights the 

need for two key components to improve accuracy: (1) an internally consistent database 

containing the fundamental thermodynamic properties of reference oxides and (2) a 

comprehensive database compiling drop solution enthalpy of these reference materials in their 

respective solvents. Establishing both is essential to improving accuracy and consistency in 

thermodynamic modelling and calorimetric analysis. 

Ideally heat contents, ΔHf°el, and oxidation enthalpies should all be sourced from a single 

internally consistent database. However, the incompleteness of existing datasets (JANAF-NIST 

and Robie and Hemingway (1995) and the complex chemistry of tourmaline make a combination 

of sources almost unavoidable. This lack of a fully internally consistent thermodynamic dataset 

for reference oxides remains a major challenge for the calorimetry community. Future work 

should aim to develop a unified, experimentally verified reference oxide database—an internally 

consistent update of JANAF and Robie & Hemingway (1995), covering a broader compositional 

space. This database should include a complete covariance uncertainty matrix to enhance the 

precision and reliability of drop solution calorimetry for determining enthalpies of formation 

from oxides. 

In addition, the drop solution enthalpies of reference oxides should be compiled into a single, 

accessible database for the calorimetry community. Navrotsky’s review papers (Navrotsky 2014; 

Navrotsky and Koryttseva 2023) provide essential compilations for lead borate and sodium 

molybdate solvents, a crucial step toward this goal. However, they contain occasional errors—

e.g., incorrect references in Table 1 of Navrotsky (2014) and inconsistencies in V₂O₅ 

measurement temperatures. Expanding this effort with data from multiple laboratories is 

necessary. Values in compilations (Navrotsky and Koryttseva 2023) often deviate slightly from 

original studies (see papers above behind the reference oxides), likely due to undocumented 
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corrections for phase transitions or temperature adjustments. These corrections should be 

explicitly stated, with current preferred values clearly identified to ensure transparency. 

Such an internally consistent reference set for calorimetry should be similar to analytical 

geochemistry standards, ensuring accuracy. Reference oxides should be fully characterised by 

multiple labs, with standardized samples distributed for drop solution enthalpy measurements to 

ensure consistency. While Al₂O₃ or Pt serve as primary standards, periodic measurements of 

such reference oxides as secondary standards improve their accuracy and provide essential 

instrumentation checks. This reference database must be continuously updated to maintain 

consistency across the field. 

 

Such standardization prevents discrepancies arising from differences in reference materials, 

measurement protocols, or material purity. For example, Wu et al. (2019) reports the enthalpy of 

formation for B₂O₃ as 46.75 kJ/mol, while Ogorodova et al. (2012) reports 38.77 ± 0.84 kJ/mol, 

highlighting uncertainties introduced by inter-laboratory variability. 

Mineral normalization coherence We also observed large differences in enthalpies when 

changing the normalization scheme of tourmaline composition (e.g., normalizing to 31 oxygen 

vs. 18 cations). Given the large ΔHf°el for reference oxides, and even their cumulative effect in 

the calculation of ΔHf°ox of tourmaline even minor compositional changes—within the 

uncertainty of methods like Electron Microprobe, LA-ICP-MS, Karl-Fisher Titration, Mossbauer 

spectroscopy, and single-crystal XRD—can shift the ΔHf°el for tourmalines by 50-100 kJ per 

mole of tourmaline (0.55 rel%). As we saw in the previous paragraph, differences of that scale 

were also observed when using EMPA data from the same tourmalines during the initial search 

for compositions for our thermodynamic model, as well as when comparing the 31-oxygen 

normalised tourmaline before mineral formula optimisation to the optimised bulk mineral 

formula. The choice of normalization scheme leads to changes in tourmaline's ΔHf°ox by as much 

as 20 kJ/mol (8% rel%). This underscores the importance of using the same normalization 

scheme for all tourmalines used to calibrate the thermodynamic models and extend this to the 

unknowns when applying the model, a concept we refer to here as mineral normalization 

coherence. In earlier chapters, we demonstrated that changes in the assumptions made during 

mineral normalization, essentially a form of charge balancing, have a greater impact on the final 
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mineral formula and its uncertainty than the individual propagated uncertainties. This is because 

the mineral formula optimisation tool tends to guide the results toward similar values, regardless 

of input data uncertainty. Only when these assumptions are altered does the optimiser produce 

significantly different values, see Chapter 1. One could argue that mineral normalization 

coherence is just as crucial, if not more important, than internal consistency within the 

thermodynamic database itself, see for example sheet 3 of electronic Appendix 4B where the 

31O normalisation tourmaline is compared to the recalculated tourmaline composition of the 

bulk compositional model. Inconsistent normalization schemes can lead to misleading results, 

affecting both absolute enthalpy values and the relative energies between different tourmaline 

samples. Phase relationships calculated using a thermodynamic model based on one 

normalization scheme and an analysed tourmaline based on another are incomparable, 

potentially leading to major inaccuracies in thermodynamic predictions. Since minerals are often 

measured using different instruments, conditions, and standards, it is challenging to accurately 

link chemical compositions with enthalpy data. While many databases in earth sciences, such as 

Holland and Powell (2011) and Berman (1988), are internally consistent, their solid solution 

model calibrations often lack normalization coherence due to fitting data from various 

experimental sources that have characterised minerals slightly differently. This issue is 

compounded by the fact that there is yet to be universal commons on the normalization of 

complex minerals. This is therefore an inherent limit in modelling accuracy. 

5. BULK COMPOSITIONAL MODEL  

In this study, the regression targets the Δ𝐻°𝑓, element 
tourmaline  of the endemmbers from 

Δ𝐻°𝑓, element 
tourmaline  measured from our solid soluions, i.e., Δ𝐻°𝑓, element 

tourmaline 
 = Δ𝐻°𝑓, element 

tourmaline (X). In principle, 

this relationship does not need to be purely linear: non-ideal interactions between endmembers 

could introduce curvature (nonlinearities) into the mixing behavior, captured through excess 

enthalpy terms (e.g., interaction parameters). However, given the size and distribution of our 

available dataset, we currently do not attempt to resolve such non-idealities. Instead, we assume 

a first-order linear approximation between Δ𝐻°𝑓, element 
tourmaline  and X, acknowledging that subtle 

nonlinear mixing effects may remain unresolved. Δ𝐻°𝑓, element 
tourmaline directly links to the full 

thermodynamic description of the Gibbs free energy. The Gibbs energy is defined as 
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G=G(P,T,X), where P is pressure, T is temperature, and X represents the endmember 

proportions. The enthalpy is related to the Gibbs energy by the fundamental thermodynamic 

relation H=G+TS, where S is entropy. At standard conditions (1 bar and 298.15 K), this 

simplifies to 𝐺𝑖
∘ = 𝐻𝑖

∘ − 𝑇∘𝑆𝑖
∘. Thus, regression of Δ𝐻°𝑓, element 

tourmaline  for the endmembers, which, 

together with S0 obtained from independent calorimetric constraints (Chapter 3), completely 

specifies 𝐺𝑖
∘ for each endmember at standard conditions. This anchors the P–T extrapolation 

needed for phase equilibrium modelling. 

We used a bulk composition model to extrapolate the enthalpies of formation of the measured 

tourmaline solid solutions to their endmembers via multiple linear regression in NCSS (2023), 

employing a no-intercept constraint, as residual energy is not physically meaningful. We 

excluded the synthetic B-olenite sample as our bulk model does not model BT at the moment. 

The small sample-to-parameter ratio of 1.66 (15/9), results in relatively high uncertainties and 

multicollinearity, but the model provides a preliminary foundation for a thermodynamic model 

of tourmaline. The model’s fit shows a root mean squared error (RMSE) of 138.15, 

corresponding to a 0.38% average absolute error. All endmember enthalpies are statistically 

significant with an alpha of 0.05, but the high standard errors indicate large uncertainty, which is 

reflected in the wide 95% confidence intervals for the enthalpy estimates. For comparison, the 

endmember ΔHf°el uncertainties are 10x times than on the measured values. Complete detail of 

the NCSS ordinary least square regression with all assumption tests and residual analysis can be 

found in Appendix 4B. 
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Table 4E. ΔHf°el extrapolated to the bulk compositional model endmembers by ordinary least 

squares multiple linear regression of the 16 samples for with drop enthalpies were obtained.  

Figure of the correlation matrix of the bulk model ΔHf°el is found below. 

Regression Coefficient Confidence Intervals 

─────────────────────────────────────────────────────── 

 ΔHf°el ΔHf°el 95% Confidence 

      Regression Standard Limits of ΔHf°el 

Independent Coefficient Error ──────────────── 

Variable   Lower Upper 

───────────────────────────────────────────────────────

──────────────────────────────────────── 

srlB -14480.29 478.1794 -15650.35 -13310.23 

drvB -15204.97 362.269 -16091.41 -14318.53 

uvtB -15457.77 310.9338 -16218.6 -14696.94 

foiB -14453.62 593.3715 -15905.54 -13001.69 

oleB -15434.25 1295.456 -18604.12 -12264.38 

fluvtB -15494.47 202.6296 -15990.29 -14998.66 

buB -13956.61 415.7634 -14973.94 -12939.27 

mdtwB -15262.03 2408.87 -21156.32 -9367.74 

aorsmB -15091.78 1004.378 -17549.4 -12634.16 

─────────────────────────────────────────────────────── 

Note: The T-Value used to calculate the confidence limits was 2.447 
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The residuals are not normally distributed, and the R²PRESS of 0 indicates the model is highly 

dependent on the data included in each iteration. Significant correlations between endmember 

enthalpies lead to multicollinearity, as shown by the high VIF factors. This suggests that the data 

lacks sufficient spread to separate the enthalpic contributions of some endmembers 

independently. This is unavoidable and can only be solved with more data, and we advocate 

strongly for more measurements to be made by the community 
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Table 4F. Summary of the most important statistical parameters of the ΔHf°el extrapolation to 

the bulk compositional model endmembers by ordinary least squares multiple linear regression 

of the 16 samples for with drop enthalpies were obtained.  Correlations show relationships 

between variables, VIF measures how multicollinearity inflates the variance of regression 

coefficients, R² versus IVs indicates variance explained by other variables, tolerance reflects 

unexplained variance (1 - R²), and diagonal (X'X inverse) reflects sensitivity of coefficients to 

data changes, with larger values suggesting higher instability. 

Endmember  Correlations VIF 
R² Versus 

IVs 
Tolerance 

Diagonal (X'X 

Inverse) 

srlB 
drvB (-0.78), oleB (-0.63), aorB 

(0.66) 
12.60 0.9207 0.0793 11.98 

drvB srlB (-0.78), oleB (0.66) 5.44 0.8162 0.1838 6.88 

uvtB buB (-0.64), aorsmB (-0.68) 3.77 0.7347 0.2653 5.07 

foiB 
oleB (0.86), buB (-0.71), aorsmB (-

0.74) 
12.40 0.9194 0.0806 18.45 

oleB 
srlB (-0.63), drvB (0.66), aorsmB (-

0.79) 
23.84 0.9581 0.0419 87.93 

fluvtB - 1.73 0.4224 0.5776 2.15 

buB 
uvtB (-0.64), foiB (-0.71), aorsmB 

(0.72) 
5.52 0.8189 0.1811 9.06 

mdtwB - 3.93 0.7455 0.2545 304.04 

aorsmB 
srlB (0.66), uvtB (-0.68), oleB (-

0.79), foiB (-0.74), buB (0.72) 
21.35 0.9532 0.0468 52.86 

Residual analysis provides an initial indication of which solid solutions are not well modelled by 

our bulk compositional endmember model. High residuals in relative error percentages are 

observed for some srlB-foiB solid solutions (tm1: 0.61%, Tm167: 0.66%) and drvB-fluvtB solid 

solutions (bd12: 0.48%, bd9: 1.86%, tm171: 0.39%), with bd9 showing the largest deviation. 

Leave-one-out cross-validation reveals that the fluor-buergerite sample (Tm64), which was well 

fit in the original training set, has an exceptionally high Cook’s D (975) and DFFITS (111). This 

indicates that removing fluor-buergerite from the training set would significantly alter its 

predicted values and affect all Fe³⁺ and F- thermodynamic predictions, making it a highly 

influential data point. This shows that near endmember fluor-buergerite behaves very differently 

from other tourmalines with Fe3+. Other samples with high residuals would similarly lead to 

different predicted values when excluded. For example, DFBETAS analysis indicates that 
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Tm167 predominantly influences drvB, foiB, and oleB, while bd9 controls uvtB, foiB, oleB, and 

fluvtB. Tm171 mainly influences fluvtB, and Tm64 strongly impacts all endmember enthalpies 

except fluvtB and aorsmB. Additional enthalpy of mixing interaction terms were not considered 

further, as preliminary subset selection confirmed that none of the additional variables were 

statistically significant (alpha = 0.05). Their lack of statistical significance does not imply that 

enthalpy of mixing is absent but rather that our dataset is too limited to constrain these effects 

with confidence. 

We did not apply robust regression, even though it could potentially improve the estimates by 

reducing sensitivity to outliers. However, multicollinearity in the dataset remains a significant 

issue, limiting the model's ability to accurately isolate individual effects. Our current regression 

approach provides an initial estimate for endmember enthalpies, highlighting areas where 

additional measurements are needed to break correlations and improve the model, rather than 

offering a complete and final set of enthalpies for detailed thermodynamic modelling. 

6. CORRELATION ANALYSIS 

We investigated potential empirical relationships between mineralogical and thermodynamic 

parameters with enthalpy and FTIR 𝛿Δ Corr using a correlation matrix. While correlations 

involving FTIR 𝛿Δ Corr were weak to non-existent, we found strong correlations between 

enthalpy and parameters related to the Fe/Mg ratio, as well as number of electrons at the 

octahedral Y and Z sites in tourmaline. These include schorl (0.71), dravite (-0.87), olenite (-

0.71), AOR (0.77), electron count at the Y site (0.89), electron count at the Z site (0.81), and X-

O2 bond distance (0.85), which connects the Y triangle to the X site. Similar strong correlations 

were observed between Fe/Mg ratios and entropy, resulting in a high correlation between entropy 

and enthalpy (0.82). This trend is typical in silicates, where the enthalpy of formation for Fe-

endmembers is lower than for Mg- or AlVI-endmembers (Holland and Powell 2011). Weaker Fe 

bonds in the octahedral triangle lead to more vibrational modes, while stronger Mg and AlVI 

bonds reduce vibrational freedom. The observed anticorrelation between srlB and drvB in both 

entropy and enthalpy measurements is a direct consequence of using natural samples where 

Fe2+ ⇆ Mg exchange is the dominant  exchange vector (van Hinsberg and Schumacher 2011). 

This anticorrelation has therefore become embedded in all derived enthalpy, entropy, and volume 
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measurements. Moreover, this correlation is also prevalent in other complex solid solutions 

involving Fe and Mg (e.g. biotites; annite-phlogopite (Dachs and Benisek 2021; Dachs et al. 

2021)). It arises due to the natural compositional variability of these elements, making the 

relationship effectively unbreakable unless DFT calculations or synthetic samples are employed 

to independently assess these properties without the inherent correlations present in natural 

samples. 

7. CHALLENGES IN DERIVING ENTHALPIES OF MIXING: INSIGHT 

FROM FTIR SPECTRA BROADENING 

In an attempt to obtain enthalpies of mixing, we used bulk composition and speciation models to 

extrapolate ΔCorr from FTIR spectra for tourmaline solid solutions to endmembers via multiple 

linear regression without intercept in NCSS. We performed the regression with and without 

nonlinear background subtraction of the FTIR data prior to autocorrelation analysis, but since the 

trends remained consistent despite changes in absolute ΔCorr values, we focused on the non-

background-corrected data. The goal was to identify endmember ΔCorr and interaction 

components δΔCorr that could be correlated with enthalpy of mixing, using the same 49 samples 

measured for molar volume, heat capacity, and entropy. 
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Figure 4C. Independent endmember fractions of the Bulk model for the 49 natural samples 

selected for FTIR measurements. Chapter 2 outlines their calculation and defines the Bulk model 

endmember abbreviations. 

FTIR spectra of synthetic samples were sharper than those of natural samples. Without synthetic 

samples, regression models for ΔCorr values against bulk composition and speciation models 

failed, showing scattered data and average absolute errors over 10%, with no significant 

endmember or interaction components identified. Including synthetic samples made most 

endmembers significant, but these results were driven by synthetic samples, primarily fixing 

uvtB and drvB. In the bulk composition model, srlB, foiB, and aorsmB endmembers remained 

unfixed due to the lack of synthetic equivalents, with their ΔCorr values influenced by the high 

X-leverage of the synthetic dravite and uvite samples. In the speciation model, significant 

differences were observed between ordered and disordered endmembers, but the synthetic 
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samples were measured by powder-XRD, with long-range order partitioning assumed based on 

Henry et al. (2011) 's nomenclature rules, meaning they were assumed ordered despite likely 

being disordered due to short crystallisation times. However, they have sharper FTIR lines 

indicating limited SRO (see Appendix 4A). When nonsignificant endmembers (oleB and mdtwB 

for bulk composition; fuvt, ole, mdtw, and pov for speciation) were removed, a single interaction 

parameter became sometimes significant in some subset selection calculations. However, the 

specific parameter that became significant varied across models, suggesting it was likely purely 

by chance. We tested models with an alpha of 0.05, meaning we should expect occasional false 

positives, as approximately 5% of the time, a variable may appear statistically significant due to 

random chance rather than a true effect. We used the average ΔCorr of the synthetic samples as 

anchor points for all endmembers in both models. Despite this, significant interaction 

components were not identified, as subset selection procedures still failed to yield significant 

interaction parameters. The lack of systematic trends in FTIR line broadening in the 

compositional model likely stems from its inability to capture long-range order-disorder in both 

endmember and solid solution, which is thought to be a key driver for FTIR broadening and 

related enthalpy of mixing in bulk composition models. Tourmaline has both ordered and 

disordered endmembers. Similarly, applying anchor points in the speciation model did not lead 

to significant interaction parameters, likely due to the unproven assumption that ΔCorr values for 

both ordered and disordered endmembers are the same. 

In summary, significant endmember components were identified, but interaction parameters were 

not significant. There are likely several reasons for this including lack of well-distributed training 

set, lack of near-endmember compositions, and data scarcity, issues also observed when 

searching for interaction parameters in molar volume, heat capacity, and entropy data. Still their 

absence suggests that these parameters are not of high enough magnitude to invalidate models 

that do not include them, or more likely, correlate with endmember ΔHf°el and are therefore build 

into the endmember data. This means that they are not essential for modelling natural samples. 

Using the rule of thumb that approximately 5 observations are needed per parameter, our dataset 

of 50 measurements can only constrain about 10 parameters, and with 9 endmembers ΔHf°e, this 

would leave only 1 interaction parameter. Given that the tourmaline samples were selected to 

cover a broad compositional range, there is likely insufficient vertical resolution (i.e., limited 
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data density within specific compositional subsets) for any exchange reaction to emerge as 

statistically significant. This supports the use of ideal empirical thermodynamic models for 

natural samples, as the W parameters and long- and short-range disorder appears to be 

incorporated into averaged endmember properties through a sort of DQF framework. The lack of 

line broadening distinction between near-endmember compositions and solid solutions in case of 

natural samples suggests that enthalpies of mixing may not be necessary in these models. The 

volume paper showed that even with tripled measurements by including molar volumes from the 

literature (internal consistency issues aside), it remains challenging to derive interaction 

parameters directly from natural samples. For this reason, many mineral systems rely on 

synthetic samples along single binaries to derive mixing properties. However, synthesizing 

tourmaline along a binary is nearly impossible. We hope that future theoretical work, such as 

DFT calculations, will help determine the interaction parameters needed for further developing 

the tourmaline model, and at the same time providing a stronger physical basis for the empirical 

parameters. 

8. MODEL VALIDATION AND COMPARISON 

Internal Validation Figure 4D shows the measured versus predicted figure for our training set 

tourmalines. The more negative the Enthalpy the more stable the bonds. Note that F-buergerite 

sample (tm64) is the least stable of all tourmalines measured. Note also bd9 which has a 

predicted ΔHf°el much lower than her measured one which might indicate a nonideality along the 

drvB-uvtB binary but data is too scare to make reliable interpretations. 
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Figure 4D. Measured versus Predicted ΔHf°el of our training set tourmalines. Uncertainties are 

the Monte Carlo 2 standard deviations in case of the measured values.  

External Validation At the moment, we only have three tourmaline Δ𝐻°𝑓, element 
tourmaline  measurements 

in the literature to compare directly with our values. Our analysis revealed that, due to the lack of 

normalization coherence and the use of different reference oxides, the original values from 

Ogorodova et al. (2012) (Dravite: 15,410 ± 24 kJ/mol, Schorl: 14,500 ± 44 kJ/mol) and Kuyunko 

et al.(1984) (Mg-foitite: -15,437 ± 19 kJ/mol) are incomparable.  There are significant 
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differences in material characterisation to make them compositionally internally consistent with 

our data. However, we attempted a renormalization of their compositions using a 31 O basis. 

Using their measured tourmaline drop enthalpies and our reference oxide set, we recalculated 

their Δ𝐻°𝑓, element 
tourmaline  values for tourmaline. For schorl_Ogo, which was measured by drop 

calorimetry, the recalculated value could be directly incorporated into our cycles. In contrast, 

dravite_Ogo and Kuyunko were measured by solution calorimetry (no drop). To ensure 

compatibility with our cycle, we calculated their heat contents between 298 and 973 K by 

integrating their high-temperature Cp curves, obtaining values of 432.80 kJ/mol and 358.00 

kJ/mol, respectively.  Ogorodova et al. (2012) (Dravite: -15042.59± 125 kJ/mol, Schorl: 

14836.87 ± 44 kJ/mol) and Kuyunko et al. (1984) (Mg-foitite: -14916.23 ± 44 kJ/mol), where the 

uncertainties are the MC propagated 2SE. The 31O normalised apfu were used to calculate the 

independent bulk endmember fractions of these tourmalines which can be found in e-Appendix 

4D. We then used our Δ𝐻°𝑓, element 
tourmaline  bulk model to predict these three tourmaline propagating 

their undertainties using the covariance matrix of the regression coeffients.  This resulted in:   

Table 4G. Comparison between measured and predicted standard-state enthalpies of formation 

(ΔHf°) for the tourmaline samples schorl_Ogo, dravite_Ogo, and kuyunko. Predicted values and 

their propagated uncertainties are based on regression from endmember enthalpies. The 

difference column shows predicted minus measured ΔHf° values. 

Sample Predicted 

ΔHf° 

(kJ/mol) 

Predicted 

Uncertainty 

(kJ/mol) 

Measured 

ΔHf° (kJ/mol) 

Measured 

Uncertainty 

(kJ/mol) 

Differences 

(kJ/mol) 

schorl_Ogo -14610.5 265.6775 -14836.9 44 226.3942 

dravite_Ogo -15237.7 136.2131 -15042.59 125 -195.156 

kuyunko -14904.4 362.0905 -14916.23 44 11.81223 

 



350 
 

 

Figure 4E. Measured versus predicted standard-state enthalpies of formation (ΔHf°) for 

tourmaline test samples. Error bars represent the propagated uncertainty from the endmember 

regression model. The dashed line indicates the 1:1 line for perfect agreement between predicted 

and measured values. 

The only other thermodynamic model for tourmaline is by Van Hinsberg and Schumacher (2007) 

which is an improvement on an initial model by Garofalo et al. (2000), which derived their 

estimates for the enthalpies of formation for their chosen endmember systems using the 

polyhedral approach as estimation method. This method uses polyhedra, rather than 

endmembers, as chemical components to build their endmembers. Polyhedral energies are 

extracted from large mineral databases and are primarily characterised by their element, 

coordination number, and the presence of hydrogen attached to oxygen within the polyhedra. 

(Hinsberg and Schumacher 2007) However, the method does not account for energy changes due 

to crystal topology or electron density deformation around the polyhedron, i.e., next-nearest 
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neighbor effects. Therefore, the polyhedral energies are not specific to the tourmaline system but 

represent average energies for similar coordination polyhedra in a broad set of minerals. The 

enthalpies obtained from this method were subsequently optimised with a small set of 

experimental data and existing databases (van Hinsberg 2006). 

Comparing the enthalpies of formation from this estimated tourmaline model (Table 4H) shows 

that the uncertainties are of a similar order, and our measurements lie within the 1SE of the 

polyhedral model (and vice versa), meaning they fall well within each other's confidence 

intervals. However, the uncertainties are significant in both our bulk compositional model, which 

is based on only 15 measurements, and the polyhedral model, leading to differences that can still 

amount to 200-300 kJ. These represent absolute differences, assuming the values were 

constrained independently, without accounting for the correlations present in our dataset due to 

multicollinearity.  

Table 4H. ΔHf°el of select bulk model endmembers compared with the same endmembers as 

derived from the polyhedron method of van Hinsberg and Schumacher (2007). 

End-

member 

H 

(kJ/mol) 

Error (1SE) 

(kJ/mol) 

H (kJ/mol) 

Polyhedral 

Error (1SE) (kJ/mol) 

Polyhedral 

Difference 

(kJ/mol) 

srlB -14480 478.179 -14443 340.304 -37.261 

drvB -15205 362.269 -15579.5 325.350 374.506 

uvtB -15458 310.934 -15669.2 313.945 211.383 

foiB -14454 593.372 -14775.2 318.352 321.551 

oleB -15434 1295.460 -15255.7 308.632 -178.548 

buB -13957 415.763 -13752.3 594.539 -204.327 

 

9.  CONCLUSIONS 

A first comprehensive set of standard enthalpies of formation from the elements (Δ𝐻°𝑓, element 
tourmaline ) 

for tourmaline is presented, internally consistent both compositionally and energetically with our 

chosen set of reference oxides. Even though 15 samples were measured, the complexity of 

tourmaline structure still leads to significant uncertainties in endmember properties these data 

should be regarded as starting point for optimisation using natural and experimental 
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compositional constraints in the CALPHAD approach given that the reaction enthalpies 

ΔHrxn°el,<< ΔHf°el in equivalent approach as was done for amphiboles (Dale et al. 2000, 2005). 

The results provide a preliminary thermodynamic framework but highlight challenges such as 

high uncertainties, multicollinearity, and dataset dependence. The impact of reference oxide 

selection, normalization schemes, and mixing behavior underscores the need for methodological 

consistency. Future research should prioritise refining these ΔHf°el, incorporating more 

comprehensive datasets and natural constraint. Employing advanced methods like density 

functional theory (DFT) to enhance the accuracy of endmember and mixing enthalpies provides 

another promising route. DFT can greatly expand the sample space and provide detailed insights 

into atomic interactions and energetics, offering a deeper understanding of the physical origin of 

thermodynamic properties while complementing experimental data. Given the challenges in 

obtaining reliable mixing parameters from natural samples, theoretical modelling and synthetic 

samples could yield a more physically grounded understanding of tourmaline's complex solid 

solutions. Ultimately, these advancements will lead to more accurate thermodynamic models for 

tourmaline, improving predictions of its stability and geochemical behavior across various 

environmental conditions. 
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Bridging Text Between Manuscripts (Chapter 4-Chapter 5) 

Chapter 5 builds upon the compositional foundation and thermodynamic parameter calibration 

established in Chapters 1 through 4 by integrating the results into a complete solution model for 

tourmaline. The preceding chapters defined the composition and speciation space and the 

positions of the training set tourmalines in this space (Chapters 1–2), calibrated the pressure and 

temperature dependence of Gibbs free energy via molar volume (Chapter 2), entropy and heat 

capacity (Chapter 3), and anchored the energy functions with measured enthalpies of formation 

(Chapter 4).  

Chapter 5 formalizes this framework by summarizing the two thermodynamic models: a bulk 

compositional model for use with chemical data alone, and a speciation model incorporating 

crystallographic site populations. These models define the standard state properties and the 

caloric equation of state of tourmaline endmembers and propagate uncertainties using full 

covariance matrices. Importantly, this chapter extends beyond by addressing the configurational 

entropy term—required to complete the Gibbs free energy formulation. The volumetric equation 

of state has minimal effect on solid phases over the pressure–temperature range of interest, and 

as shown by the previous chapters, compositional equations of state could not be meaningfully 

extracted from the data due to statistical insignificance. Consequently, configurational entropy 

emerges as the dominant contributor to non-ideality in the Gibbs energy landscape. It is 

modelled using generalized Bragg-Williams expressions for long-range order (LRO), and 

through molecular mixing approximations for short-range order (SRO), both grounded in the 

degrees of freedom defined by site occupancy and charge balance constraint. 

In doing so, Chapter 5 closes the thermodynamic cycle initiated in Chapter 1, moving from 

empirical measurements and calibrated endmember properties toward a predictive, internally 

consistent solution model suitable for implementation in thermodynamic modelling software. 

The inclusion of configurational entropy, the treatment of disorder among site multiplicities by 

randomization, and the explicit discussion of model dimensionality underscore the complexity. 

This chapter sets the stage for tourmaline’s application in phase equilibria modelling, 

geothermobarometry, and fluid-rock interaction studies. 
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Thermodynamic model for Tourmaline 

 

 

Ludwig Bolzmann, who spent much of his life studying statistical mechanics, died in 1906, by 

his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933.  

 

Now it is our turn to study statistical mechanics… 

 

 

The opening paragraph of Goodstein’s textbook “States of Matter” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Goodstein, David L. States of matter. Courier Corporation, 1985. 
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Chapter 5.  Model Integration and Conclusions 
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1. SUMMARY OF THERMODYNAMIC DATA 

This study develops a thermodynamic model for Li-poor tourmalines in the chemical system Na-

Ca-Mg-Fe2+-Fe3+-Al-Si-B-O-H-F and the preceding chapters have presented newly measured 

data for molar volume (chapter 2), entropy and heat capacity (chapter 3) and enthalpy (chapter 

4), all grounded in a comprehensive and consistent crystallo-chemical characterisation of the 

tourmaline samples set (chapter 1) on which these properties were determined. Here, these data 

are integrated into a tourmaline solution model for use in thermodynamic modelling software 

and remaining limitations and challenges are presented and discussed.  

1.1 Speciation model standard state properties and caloric EoS 

The speciation model consists of the following endmembers (Table 5A) and the thermodynamic 

properties of these endmembers are given in Tables 5B-C. Enthalpy was not defined for the 

speciation model, because of the limited set of measured enthalpies (see chapter 4).  

Table 5A. Speciation independent endmember definitions and independent site fractions. 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

 Endmember 1X 3Y 6Z 6T 3B 27O 3V W
 schorl (srl) Na Fe3 Al6 Si6 B3 O27 OH3 OH

 dravite (drv) Na Mg3 Al6 Si6 B3 O27 OH3 OH
 uvite (uvt) Ca Mg3 MgAl5 Si6 B3 O27 OH3 OH

 feruvite (fuvt)* Ca Fe3 FeAl5 Si6 B3 O27 OH3 OH
 foitite (foi) Vac Fe2Al Al6 Si6 B3 O27 OH3 OH
 olenite (ole) Na Al3 Al6 Si6 B3 O27 O3 OH

 dravite-disordered (drv-dis)* Na Mg2Al MgAl5 Si6 B3 O27 OH3 OH
 oxy-dravite (odrv) Na Al2Mg1 MgAl5 Si6 B3 O27 OH3 O
 fluor-uvite (fluvt) Ca Mg3 MgAl5 Si6 B3 O27 OH3 F
 buergerite (bu)* Na Fef3 Al6 Si6 B3 O27 O3 OH

 magnesium-dutrowite (mdtw)* Na MgTi2 Al6 Si6 B3 O27 O3 O
 boron-olenite (bole) Na Al3 Al6 Si3B3 B3 O27 OH3 OH

 alumina-oxy-rossmanite (aorsm) Vac Al3 Al6 Si5Al1 B3 O27 OH3 O
 povondraite (pov) Na Fef3 Fef4Mg2 Si6 B3 O27 OH3 O )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑥NaX, 𝑥CaX, 𝑥FeY, 𝑥MgY, 𝑥AlY, 𝑥FefY, 𝑥TiY, 𝑥AlZ, 𝑥MgZ, 𝑥FeFZ, 𝑥SiT, 𝑥AlT, 𝑥OHV, 𝑥FW} 

Table 5B. Speciation model molar volume and Entropy at standard state. Note that due to 

multicollinearity present in the data the uncertainties are not independent and it is better to use 
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the covariance matrix which for molar volume can be found in Electronic Appendix 2D and the 

correlation matrix for entropy can be found in Appendix 3D3 (which is the correlation matrix of 

method 2 but only minimal changes are assumed for method 1) 

Endmember 

Molar Volume (298K, 1bar) 

(J/bar/mol) 

 ± Uncertainty 

Entropy (298K, 1bar) (J/K/mol)  

± Uncertainty 

Srl 32.037 ± 0.0422 710.54 ± 18.85 

Drv 31.826 ± 0.0465 621.85 ± 8.77 

Uvt 32.087 ± 0.0490 648.33 ± 16.36 

fuvt 32.362 ± 0.0398 725.19 ± 40.70 

foi 31.612 ± 0.0410 669.94 ± 25.04 

ole 30.854 ± 0.0986 656.99 ± 41.44 

drvdis 31.913 ± 0.0728 641.39 ± 18.50 

odrv 31.713 ± 0.0319 629.22 ± 8.75 

fluvt 31.915 ± 0.0391 641.06 ± 6.46 

bu 31.648 ± 0.1131 657.44 ± 28.02 

mdtw 31.910 ± 0.0650 690.41 ± 43.41 

bole 29.596 ± 0.0297 568.46 ± 15.38 

aorsm 30.964 ± 0.0586 638.87 ± 26.07 

pov 34.557 ± 0.0301 1000.44 ± 120.65 
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Table 5C. Heat capacity coefficients of a Berman and Brown (1985) model fit to speciation 

endmember curves. Due to strong correlations in the Berman polynomial equations, individual 

variance uncertainties are not meaningful. Cp polynomial was calibrated using measured Cp 

between 298-778K.  Instead, uncertainties must be assessed using the covariance matrix, 

provided in Chapter 3. 

Endmember Coefficient (c1) Coefficient (c3) Coefficient (c5) Coefficient (c7) 

srl 1.0892×10³ 9.27407×10³ -1.48237×10⁸ 2.26211×10¹⁰ 

drv 1.27704×10³ 2.25033×10³ -1.12376×10⁸ 1.72737×10¹⁰ 

uvt 1.07092×10³ 9.26158×10³ -1.45642×10⁸ 2.22102×10¹⁰ 

fuvt 5.7365×10² 2.9335×10⁴ -2.85716×10⁸ 4.58651×10¹⁰ 

foi 1.0618×10³ 8.0897×10³ -1.33455×10⁸ 2.03064×10¹⁰ 

ole 7.16118×10² 2.14646×10⁴ -1.96593×10⁸ 2.76376×10¹⁰ 

drvdis 1.08946×10³ 8.2565×10³ -1.37159×10⁸ 2.03493×10¹⁰ 

odrv 1.72823×10³ -1.34833×10⁴ -2.0288×10⁷ 1.80596×10⁹ 

fluvt 1.72914×10³ -1.37634×10⁴ -1.92416×10⁷ 2.30223×10⁹ 

bu 5.62016×10² 2.51396×10⁴ -2.40675×10⁸ 3.83514×10¹⁰ 

mdtw 7.60559×10² 2.02213×10⁴ -2.01319×10⁸ 3.07205×10¹⁰ 

bole 1.65844×10³ -1.16786×10⁴ -5.39347×10⁷ 9.29786×10⁹ 

aorsm 2.31906×10³ -3.55637×10⁴ 1.15461×10⁸ -2.01997×10¹⁰ 

pov 3.2381×10³ -7.01221×10⁴ 3.71811×10⁸ -6.26094×10¹⁰ 

 

1.2 Bulk compositional model, standard state properties and caloric EoS  

The bulk model consists of the following endmembers (Table 5D) and the thermodynamic 

properties of these endmembers are given in Tables 5E-F. The bulk model does not distinguish 

between the Y and Z sites, which corresponds with the fact that element distribution over these 

sites cannot be determined from bulk chemical analyses (e.g. EPMA), but requires crystal-

structure data.  
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Table 5D. Bulk independent endmember definitions and independent bulk parameters. 

(

 
 
 
 
 
 
 
 

1X 9(YZ) 6T 3B 27O 4(VW)
 schorl (srlB) Na Fe3Al6 Si6 B3 O27 OH4

 dravite (drvB) Na Mg3Al6 Si6 B3 O27 OH4
 uvite (uvtB) Ca Mg4Al5 Si6 B3 O27 OH4
 foitite (foiB) Vac Fe2Al7 Si6 B3 O27 OH4
 olenite (oleB) Na Al9 Si6 B3 O27 OH3

 fluor-uvite (fluvtB) Ca Mg4Al5 Si6 B3 O27 OH3F
 buergerite (buB)* Na Fef3Al6 Si6 B3 O27 OH3

 magnesium-dutrowite (mdtwB)* Na MgTi2Al6 Si6 B3 O27 O4
 alumina-oxy-rossmanite (aorsmB) Vac Al9 Si5Al B3 O27 OH3O )

 
 
 
 
 
 
 
 

 

{na, ca, fe, mg, al, fef, ti, si, F}.  

Table 5E.  Bulk model standard state molar volume and Entropy. Note that due to 

multicollinearity present in the data the uncertainties are not independent and it is better to use 

the covariance matrix which for molar volume can be found in Electronic Appendix 2E and the 

correlation matrix for entropy can be found in Appendix 3D2 (which is the covariance matrix of 

method 2 but only minimal changes are assumed for method 1). For the Enthalpy data with 

strong multicollinearity due to the sparse dataset the correlation matrix can be found in Appendix 

4F. 

Mineral 
Molar Volume (298K, 1bar) 

(cm³/mol) ± Uncertainty 

Entropy (298K, 1bar) 

(J/mol·K) ± Uncertainty 

Enthalpy (298K, 1bar) 

(J/mol) ± Uncertainty 

srlB 32.1075 ± 0.0672 714.434 ± 8.497 -14480.29 ± 478.1794 

drvB 31.8568 ± 0.0567 633.572 ± 7.728 -15204.97 ± 362.269 

uvtB 32.0976 ± 0.0477 647.370 ± 6.526 -15457.77 ± 310.9338 

foiB 31.6362 ± 0.1112 655.825 ± 14.005 -14453.62 ± 593.3715 

oleB 31.1157 ± 0.1718 606.501 ± 22.357 -15434.25 ± 1295.456 

fluvtB 32.0113 ± 0.0389 647.343 ± 5.395 -15494.47 ± 202.6296 

buB 32.1980 ± 0.0846 681.534 ± 11.401 -13956.61 ± 415.7634 

mdtwB 31.9796 ± 0.3330 658.136 ± 44.871 -15262.03 ± 2408.87 

aorsmB 30.8704 ± 0.1101 609.034 ± 13.795 -15091.78 ± 1004.378 
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Table 5F. Heat capacity coefficients of a Berman and Brown (1985) model fit to bulk 

endmember curves. Cp polynomial was calibrated using measured Cp between 298-778K Due to 

strong correlations in the Berman polynomial equations, individual variance uncertainties are not 

meaningful. Instead, uncertainties must be assessed using the covariance matrix, provided in 

Chapter 3. 

Endmember Coefficient (c1) Coefficient (c3) Coefficient (c5) Coefficient (c7) 

srlB 1.72655×10³ -1.25681×10⁴ -2.91141×10⁷ 3.91145×10⁹ 

drvB 1.64552×10³ -1.05030×10⁴ -4.07394×10⁷ 5.83319×10⁹ 

uvtB 1.59346×10³ -8.58155×10³ -4.82376×10⁷ 6.83545×10⁹ 

foiB 1.71539×10³ -1.34417×10⁴ -2.81039×10⁷ 4.41008×10⁹ 

oleB 1.62643×10³ -1.05078×10⁴ -2.93238×10⁷ 2.40959×10⁹ 

fluvtB 1.64728×10³ -1.09333×10⁴ -3.31115×10⁷ 4.33330×10⁹ 

buB 1.61351×10³ -1.12091×10⁴ -3.01809×10⁷ 4.25520×10⁹ 

mdtwB 1.23174×10³ 3.20011×10³ -1.06815×10⁸ 1.55868×10¹⁰ 

aorsmB 1.63565×10³ -1.14735×10⁴ -3.03345×10⁷ 3.95967×10⁹ 

In order to propagate the uncertainties in the measured data in thermodynamic modelling, the 

covariance matrix (Σ) is obtained from the correlation matrix (R) using Σ=DRD, where D is a 

diagonal matrix of parameter standard deviations (σi). Each element is computed as Σij=Rij⋅σi⋅σj, 

ensuring that parameter correlations are scaled by their actual variances. This transformation 

accounts for parameter uncertainties and dependencies. 

2. SOLUTION MODEL INTEGRATION 

These standard-state thermodynamic properties provide Gibbs free energies for mechanical 

mixing. No statistically significant excess Gibbs free energy (Gex) was identified, indicating that 

the only remaining energetic component needed for a complete thermodynamic solution model 

for tourmaline is the configurational Gibbs free energy (Gconf). This can be incorporated using 

the integral Gibbs free energy equation: 

𝐺mix = 𝐺mech + 𝐺conf 

where Gmix represents the total Gibbs free energy of mixing, Gmech accounts for mechanical 

mixing contributions, and Gconf  captures the configurational entropy effects. 
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2.1 Configurational entropy  

Configurational entropy (Sconf) depends on two key factors: (1) The number of independent 

components (Thompson Jr. 1982) represents the smallest set of chemical components required to 

fully describe the solid solution, accounting for stoichiometry constraints such as site occupancy, 

and charge balance, which is equal to the system's degrees of freedom (DOF) plus one (to make 

the sum of components add to 1), and (2) the number of equivalent ‘sites’ (sublattices) available 

for these independent components to mix, which determines the spatial distribution of these 

components (Wood and Fraser 1977; Cemic 2005; Connolly 2016). The formula, 

𝑆conf = −𝑅∑  

𝑠

𝑀𝑠 ∑  

𝑛ind𝑠

𝑖=1

𝑥𝑖,𝑠ln 𝑥𝑖,𝑠 

shows that nind,s (independent components) and Ms (number of sites) jointly determine Sconf 

(Vinograd 2001).  It quantifies the number of microstates for a given state (Vinograd 2001), 

assuming a random distribution of independent chemical components across equivalent sites 

(Spear 1993). Derived from statistical mechanics, it measures the system's information 

uncertainty. Jaynes (1957) presents statistical mechanics as a special case of Bayesian inference, 

where the principle of maximum entropy provides a rigorous criterion for constructing 

probability distributions from incomplete information. This approach justifies the randomization 

argument, assigning maximum-entropy states when the order-disorder state is unknown, 

independently of physical assumptions. Whether the uncertainty lies in long-range ordering (as 

in a speciation model) or in bulk parameters (as in a macroscopic model), randomization offers 

the least biased, most noncommittal representation, avoiding unwarranted assumptions and 

yielding the best possible estimate given the available knowledge. As individual ‘site’ 

occupancies are often unmeasurable with current instrumentation, Sconf provides a simplified 

model to represent the uncertainty in the chemical components describing the solid solution. 

In convergent ordering, order-disorder entropy is captured in the heat capacity (Cp) polynomial 

as atomic rearrangements modify the vibrational density of states (v-DOS), shifting phonon 

excitation levels and altering bonding, force constants, or symmetry, creating anomalies 

(Vinograd 2001) that can be separated from third-law effects using macroscopic mean-field 
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models such as Landau free energy expressions (Carpenter 1993; Holland and Powell 1998). 

This indicates that the configurational entropy (Sconf) is T-dependent, can be at least partly 

measured with calorimetry and be explicitly modelled using Landau free energy expressions. 

In nonconvergent ordering, the effect of order-disorder on vibrational density of states (v-DOS) 

is uncertain, as species redistribution may not significantly alter lattice vibrations, making 

configurational entropy (Sconf) a separate term (Vinograd 2001). However, even when Sconf is 

considered temperature-independent, its contribution to the Gibbs free energy, −T· Sconf, is 

inherently temperature-dependent due to the multiplication by T.  

The key question is whether the measured Cp already accounts for the temperature-dependent 

order-disorder entropy—where ∫ Cp dT contributes to enthalpy and ∫ Cp/T dT to entropy—or if 

order-disorder has negligible impact on phonon structure, necessitating an additional fixed T-

independent Sconf. 

The common geoscience assumption that nonconvergent ordering does not affect the vibrational 

density of states (v-DOS), is therefore not measured by calorimetry, and that Sconf should be 

added separately can lead to double-counting in thermodynamic models (Vinograd, 2001), see 

examples below. This assumption (artificially) separates Sconf and Svib as independent quantities. 

While successful for solid solutions involving homovalent substitutions (Thompson Jr and 

Waldbaum 1968, 1969b, 1969a; Waldbaum and Thompson Jr 1968, 1969), it has since also been 

applied to coupled substitutions, despite their need for local charge balancing and extensive 

short-range order (SRO) (Navrotsky 1994).  This is illustrated in Holland and Powell (1996), 

who present clear examples of LRO convergent and non-convergent ordering behavior within a 

Bragg-Williams framework. The effects of LRO are directly modelled through changes in the 

speciation endmember proportions, and both models apply separate configurational entropy 

calculations under the assumption that Sconf  can be separated from the measured heat capacity 

(Cp) curve. It has been assumed that  Sconf  overestimation can be corrected by adding higher Hex 

to counterbalance its effect (Waldbaum 1973), but this renders interaction parameters physically 

meaningless. Originally, Margules parameters (W) had a clear physical meaning as measures of 

excess energy due to interactions between components at infinite dilution, reflecting how one 

species perturbs the host lattice when present in trace amounts (Spear 1993; Sluiter and Kawazoe 
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2002). In modern solid solution models (e.g., White et al. 2007; Holland and Powell 2011; Green 

et al. 2016), W values are empirically calibrated across finite compositions, and thus lose this 

original interpretability (Spear 1993; Sluiter and Kawazoe 2002). As a result, solid solution 

models  use empirical Margules parameters (W) that no longer represent interactions at infinite 

dilution  This problem is further exacerbated as enthalpy, highly uncertain and reference-state 

dependent, is the primary adjustment target in internally consistent database optimisations due to 

its large magnitude (Holland and Powell 1990), see Chapter 5. Interaction parameters and 

endmember properties are strongly correlated (see Chapter 3), therefore requiring simultaneous 

adjustment. 

To gauge the magnitude of order-disorder processes, we can examine the entropy changes 

associated with convergent ordering. Holland and Powell (1998) found integrated disordering 

peaks ranging from ~11 J/(mol·K) for plagioclase (S0~200 J/(mol·K)) to ~25 J/(mol·K) for 

cordierite (S0~450 J/(mol·K)), representing 5–10% of S0 (S0 = standard state entropy at 298 K 

and 1 bar). For disordered systems like tourmaline, with many active sites where order-disorder 

potential takes place, configurational contributions might double this range. This corresponds to 

Sconf values of ~32.5 J/(mol·K) (5%), ~65 J/(mol·K) (10%), based on an average measured 

standard state entropy S0 ~650 J/(mol·K), leading to uncertainties much larger than typical S0 

measurement errors. If Sconf is T-independent, -TSconf increases linearly with T, while H remains 

constant. Enthalpy dominates at low temperatures, favoring order, but as T rises, the growing 

entropy term increasingly governs G = H - TS, stabilizing disorder. At 773 K, the above 

estimates yields −TSconf contributions of approximately −25 kJ/mol (5%), and −50 kJ/mol (10%), 

highlighting the significant energy range involved in configurational effects and underscoring 

Sconf as a major source of uncertainty in thermodynamic models 

LRO and SRO components can explicitly model order-disorder processes, incorporating the 

H−TS interplay, if their associated clusters/endmembers have defined thermodynamic properties. 

In the H−TS interplay, enthalpy (H) and entropy (S) compete: enthalpy favors low-energy, 

ordered states, while the entropy term (−TS) favors disordered, higher-entropy states at elevated 

temperatures, together determining the most stable phase. The relative energy difference between 

configurations as a function of T directly models Sconf(T). The randomization assumption 

simplifies models by treating Sconf as T-independent, maximizing its contribution, but often 
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overcorrects by misrepresenting chemical distributions, requiring further adjustments through 

additional thermodynamic parameters (Will 1998; Connolly 2016). The DOF are fixed by the 

site and charge balance constraints (Thompson Jr 1969), creating a balance between selecting 

enough chemical components to adequately describe the solid solution and relying on theoretical 

models to capture order-disorder effects. More chemical components lower the DOF, 

constraining configurational variability, whereas using a theoretical model like the 

randomization model frees up DOF which then can be used represent the wider LRO 

compositional space. The extent to which the model explicitly incorporates order/disorder effects 

directly influences its accuracy and flexibility.  

Statistical Thermodynamic Models Before exploring new approaches to model short-range 

order (SRO) effects, it is important to review how SRO is traditionally treated in statistical 

thermodynamic models. Methods such as the Ising model, cluster expansions, and Monte Carlo 

simulations explicitly capture local atomic interactions, but their reliance on computational 

techniques without closed-form thermodynamic expressions limits their integration into global 

thermodynamic frameworks. This background provides the necessary context for understanding 

the challenges associated with incorporating SRO into thermodynamic models. 

Statistical thermodynamic models extend beyond the Bragg-Williams approximation by 

incorporating short-range interactions (Cohen 1986). In both microscopic and macroscopic 

Bragg-Williams models, each crystallographic site is treated as an average site, and its 

occupancy is scaled by site multiplicity, implicitly assuming that all equivalent sites behave 

identically. However, once short-range order (SRO) is introduced, this assumption breaks down: 

interactions between neighboring atoms cause local environments to diverge, making site 

multiplicities invalid. Each site must then be modelled as a distinct entity, with explicit neighbor-

dependent interactions, as in cluster variation or Ising-type models. The cluster variation method 

(CVM) models local ordering via atomic clusters (Connolly and Williams 1983; de Fontaine and 

Wolverton 1994; Wolverton and Zunger 1994), using cluster expansions calibrated through 

computational methods such as DFT using the single/double defect method  (Sluiter and 

Kawazoe 2002; Vinograd et al. 2013) or empirical potentials (Dove et al. 2000; Bosenick et al. 

2001b, 2001a; Dove 2001). A variant of the cluster expansion method popular in the geosciences 

, J formalism, models mixing and ordering in mineral solid solutions by defining effective 
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pairwise interaction energies (J values) (Dove et al. 2000; Bosenick et al. 2001b; Dove 2001; 

Vinograd et al. 2004). After the energetic properties of the clusters have been established they 

can be used in Monte Carlo simulations to determine cluster frequencies and thermodynamic 

averages (Bosenick et al. 2001a; Warren et al. 2001) or can be analytically calculated using the 

cluster variation method (Vinograd 2001). Thermodynamic integration of Monte Carlo results 

extracts thermodynamic parameters but requires simulations for each temperature, pressure, and 

composition (Warren et al. 2001; Burton and Van de Walle 2006, 2006; Vinograd et al. 2007, 

2009). Often, only nearest-neighbor clusters are considered, enforcing symmetric mixing 

properties (Vinograd et al. 2007). Such interactions are modelled explicitly between individual 

atoms occupying specific sites rather than averaged over site types as in mean-field approaches 

like Bragg-Williams. Mixing energy consists of chemical (ordering) and elastic (size-mismatch) 

contributions, the latter often causing non-linear compositional effects and are responsible for 

Hex (Vinograd et al. 2004). Size mismatch between SRO clusters is therefore a prime driver of 

nonideality. CVM demonstrates that assuming full randomization at long-range order 

overestimates configurational entropy (Sconf), particularly at low temperatures. Sconf remains valid 

mainly at high temperatures, where disorder dominates, while ordered domains stabilize at lower 

temperatures in binary systems (Vinograd 1997; Vinograd et al. 2004, 2007, 2009, 2013). 

Silicate solid solutions involving homovalent cation substitutions of similar size and charge, such 

as Fe-Mg in pyroxenes, are well-modelled by LRO Bragg-Williams models, with SRO 

negligible. However, heterovalent substitutions, such as Al-Mg in phyllosilicates, induce SRO  

(Sanz and Robert 1992). Similarly, Al-Si mixing on tetrahedral sites leads to strong SRO through 

Al avoidance (Kerrick and Darken 1975).  

One criticism is that Monte Carlo methods inherently favor randomization, which can bias 

configurational sampling, particularly in systems with strong short- or long-range order, reducing 

accuracy in predicting ordered states at lower temperatures. While these models offer detailed 

insights, they compute only a single solid solution at a time for a given P and T and lack closed-

form expressions G(P,T,n1,n2..) for differentiation (Gottschalk 2016). Therefore the statistical 

method does not provide predictive equations which can be used in computational 

thermodynamics, limiting integration into modelling software like FactSage (Bale et al. 2002), 
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Theriak-Domino (Capitani and Petrakakis 2010), Perplex (Connolly 2005), or GEM-Selector 

(Kulik et al. 2013). 

SRO in Tourmaline As tourmaline contains all types of coupled substitution, SRO is expected. 

Short-range order in tourmaline is supported by theoretical calculations and bond valence 

analysis, where predicted a-priori cluster bond lengths are compared to those in other mineral 

endmember systems to assess the likelihood of SRO stability (Hawthorne 1996, 2002; Bosi 

2010, 2011, 2013).  

Fourier transform infrared (FTIR) and Raman spectroscopy OH-stretching broadening has been 

linked to short-range order (SRO), but exact assignments remain empirical and challenging 

(Hawthorne 2016). Two models are used: the short-range arrangement model assigns OH-

stretching bands based on local VOH and WOH environments, considering adjacent cations 

(Gonzalez-Carreño et al. 1988; Hoang et al. 2011; Skogby et al. 2012; Fantini et al. 2014; 

Berryman et al. 2016; Kutzschbach et al. 2016, 2021; Bronzova et al. 2019), while the site-

symmetry model (Watenphul et al. 2016, 2017) assumes VOH hydrogen atoms rotate around the 

threefold axis, forming a single phonon mode. This generalizes OH band assignments, treating 

energy influences as cluster-wide rather than local. Due to overlapping OH signals, empirical 

assignments remain qualitative. Using simple synthetic samples (Berryman et al. 2016) or ab 

initio calculations (Fuchs et al. 2022; Balan et al. 2023) offers a promising path forward. 

Magic angle spinning nuclear magnetic resonance (MAS NMR) would be an additional probe for 

SRO and has been used on mainly ordered Al-rich tourmalines. This is due to MAS NMR being 

limited to Fe2+- free tourmaline. (Tsang and Ghose 1973; Marler and Ertl 2002; Lussier et al. 

2008, 2009, 2011). Extending MAS NMR to Fe-free Mg-rich tourmalines could provide insights 

into cation ordering, but challenges like strong quadrupolar broadening, local disorder, and 

spectral complexity must be addressed, but could theoretically supply proof of disordering of Mg 

over the Y and Z-sites without relying on bond valence theory arguments. 

TEM studies reveal that schorl (P3m1) and buergerite (P31m) differ in ordering and plane group 

symmetry (Iijima et al. 1973). Ferrow et al. (1993) identified plane groups along c using 

HRTEM: elbaite (P31m), Fe-elbaite (P3m1), red elbaite (P6), and dravite-schorl (pseudo-P6), 

with only elbaite conforming to R3m. Ferrow (1995) noted that fractional site occupancy 
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complicates TEM interpretation, as contrast depends on atomic overlap, which is minimal along 

c. Additional studies are needed as simulated TEM images require full chemical characterisation 

which none of these studies had.  

Generalized Bragg Williams model (LRO models) The generalized Bragg-Williams model 

(Bragg and Williams 1934, 1935) describes LRO in solid solutions by averaging site occupancies 

and assuming a random distribution of elements across symmetry-equivalent sites, neglecting 

SRO. Site multiplicities represent averaged sites and partial, rather than full, occupancies 

describe the solid solution.  Chemical components are defined based on an LRO averaged unit 

cell constrained by space group symmetry, determined via single-crystal X-ray diffraction (sc-

XRD). This averaged LRO unit cell represents the system being modelled, and configurational 

entropy (Sconf) independent of caloric, volumetric, or compositional equations of state with fixed 

values for each endmember quantifies the number of microstates corresponding to a given 

macrostate and capturing the random arrangements consistent with the averaged LRO structure 

of the endmember. Therefore, it predicts fixed residual Sconf  at 0 K.  

The number of independent endmembers (nind) represent the dimensions of the charge-balanced 

hyperplane polytope (Myhill and Connolly 2021) that concisely describes the tourmaline system 

and is crucial for Sconf. This defines the maximum number of independent components that can 

distribute freely under site fraction and charge balance constraints. nind are given by: 

𝑛ind-mbes − 1 = 𝑛site-species − (𝑛sites + 𝑐) 

(Thompson Jr 1969; Myhill and Connolly 2021). Where the right-hand site is the DOF = 

variables-constraints, c = 1 if charge balance is independent of site constraints (e.g., in 

tourmaline), and c = 0 otherwise (Myhill and Connolly 2021). The number of independent 

endmembers (nind ) is one more than the DOF, so their proportions sum to 1. The total Sconf 

remains unchanged under basis transformation to different sets of independent components, as 

dependent components are fully determined by system constraints (Powell and Holland 1999; 

Myhill and Connolly 2021). 

Negative independent endmember fractions in speciation or bulk models must be transformed 

into positive independent site fractions/bulk parameters (see Chapter 3) for computational 
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reasons. These site fractions are linear combinations of the independent endmember fractions but 

remain positive while preserving the same DOF. This transformation from independent 

endmember coordination space to independent site fraction/bulk parameter space automatically 

incorporates stoichiometry, including charge balance and site occupancy constraints. 

Independent site fractions are essential for calculating Sconf , as positive values are required for 

the ln-term in Sconf calculations. Therefore, these mean field multisite stochastic models allow the 

DOF to be expressed as independent site populations/bulk parameters, which can independently 

mix across multiple crystallographic sites (Wood and Fraser 1977; Will 1998). 

The randomization model maximizes Sconf  for a given DOF, causing LRO models to 

overestimate it, as true randomness is rare due to SRO constraints in real systems. Conversely, 

molecular models (see next paragraph) predict the minimum Sconf for the same DOF, 

representing the two extremes of Sconf (Will 1998). Assuming a randomization model simplifies 

chemical components to their average ones, freeing DOF to better describe the 

compositional/speciation space of LRO systems. The Sconf is one of the largest sources of 

uncertainty in such models. 

In thermodynamic phase calculators like THERMOCALC (Powell et al. 1998), configurational 

normalization constants are required for disordered endmembers (e.g., uvt, foi) to ensure their 

activity approaches 1 at pure composition. This correction is necessary because such programs 

operate with standard states and apply calorimetric, volumetric, and compositional EoS to adjust 

standard-state reactions to specific P-T-X conditions, effectively computing energy differences 

between states. However, when using Gibbs free energy minimisation based solely on integral 

configurational energy (Gconf), normalization is generally unnecessary. Gconf inherently accounts 

for all microstates, meaning total configurational energy suffices without comparison to the 

standard state conditions. 

Speciation Generalized Bragg Williams model The speciation model, XY3Z6T6V3W, explicitly 

models six distinct crystallographic sites with 14 DOF corresponding to 14 independent 

endmembers. Positive independent site fractions were chosen to represent linear combinations of 

these independent speciation endmembers (Chapter 3): 

𝑥NaX, 𝑥CaX, 𝑥FeY, 𝑥MgY, 𝑥AlY, 𝑥FefY, 𝑥TiY, 𝑥AlZ, 𝑥MgZ, 𝑥FeFZ, 𝑥SiT, 𝑥AlT, 𝑥OHV, 𝑥FW. Treating site 
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species as separate entities in the LRO unit cell classifies these Bragg -Williams models as ionic 

(Ganguly 2001), though this is somewhat misleading, these site populations represent elements 

in specific coordination environments, resembling polyhedral units more than isolated ions. 

Starting with the square stoichiometric matrix of speciation endmembers in terms of independent 

site fractions from Chapter 3, we transpose it to express independent site fractions as linear 

combinations of endmembers: 

xnax =   bole + bu +  drv +  drvdis +  ole +  odrv +  pov + srl +  mdtw  

xcax =   fuvt + fluvt + uvt  

xfey =
2 foi 

3
+  fuvt + srl 

xmgy = drv +
2 drvdis 

3
+  fluvt +

 odrv 

3
+

 mdtw 
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 drvdis 

3
+

 foi 

3
+  ole +

2 odrv 

3
 

xfefy =  bu + pov 

xtiy = 
2mdtw

3
 

xalz =   aorsm +  bole +  bu +  drv +
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 bole 

2
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6
 

xOHv =  aorsm +  bole +  drv +  drvdis +  foi +  fuvt +  fluvt +  odrv +  pov + srl + uvt 

xFw =   fluvt  
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Using these independent site fractions, the general Sconf equation yields an average Sconf of 

approximately 48 J/(mol·K) for the tourmalines in the training set (Figure 5A). In Figure 5A, we 

show that the differences between these Sconf models are significant. The associated 

configurational entropies contribute approximately 10% of the standard state entropy and, at 

~1000 K, lower the Gibbs free energy by ~48 kJ/mol—comparable to typical reaction energies—

highlighting their thermodynamic importance. Range and standard deviation cannot be 

calculated here, as the value is fixed by the theoretical model, determined by site multiplicities, 

site populations, and the choice of independent compositional components, rather than arising 

from empirical variability. 

The speciation model includes LRO order/disorder endmembers, providing insight into potential 

magnitude of expected configurational energies for tourmaline. The 𝑆298.15𝐾
773.15 𝐾 differences 

between drv, drvdis, and odrv are minimal (within 5 J/(mol·K)), while Fe3+ and Fe2+ + order-

disorder on Y and Z sites shows larger differences, such as 100 J/(mol·K) for bu vs. (strongly 

extrapolated) pov and 20 J/(mol·K) for uvt vs. fuvt, which also might be largely due to bulk 

composition differences. True ordering energies require basis transformations to independent 

endmembers having the same bulk composition forming isochemical reactions (e.g., drv and 

drvdis) to calculate and convert into Q-ordering vectors. This was not attempted due to 

multicollinearity from data scarcity. This analysis suggests that LRO configurational energy is 

generally small, but Fe³⁺ ordering could have a significant, potentially major impact. 

Bulk compositional Generalized Bragg Williams model In the bulk composition model, 

X(YZ)9SixAl(1-x)(VW)4, with only 9 DOF, some sites were merged, reducing the system to just 4 

distinct sites. The model is formally a reciprocal model. The bulk model significantly 

overestimates Sconf as the merging of sites led to extended site populations which can potentially 

disorder, (X,9(Y+Z),6T, 4(V+W)), which shows that Sconf  is highly dependent on the model 

definition. Merging or splitting octahedral sites notably impacts the calculated entropy. Using 

nine independent bulk parameters as the DOF, representing the linear combination of 

independent bulk endmembers (Na, Ca, Fe2+, Mg, Al, Fe3+, Ti, Si, and F):  
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Na= buB + drvB + oleB + srlB + mdtwB 

Ca = fluvtB +  uvtB 

Fe2+ =  2 foiB + 3srlB 

Mg = 3drvB + 4fluvtB +  mdtwB + 4uvtB 

Al = 10 aorsmB + 6 buB + 6 drvB + 7 foiB + 5 fluvtB + 9 oleB + 6 srlB + 6 mdtwB +

5uvtB 

Fe3+ = 3buB 

Ti = 2mdtwB 

Si = 5 aorsmB + 6buB + 6drvB + 6 foiB + 6 fluvtB + 6 oleB + 6 srlB + 6 mdtwB + 6uvtB 

F = fluvtB 

 

the average bulk compositional reciprocal Sconf is approximately 71 J/(mol·K) (Figure 6A). Most 

of this entropy arises from the octahedral sites, assuming maximum disorder among 9 YZ, and 

the 4 VW sites. In Figure 5A we compare these Sconf models. 

 

The randomization assumption is incorrect, for both sites. At the YZ site, elements are known to 

exhibit site preferences: the Y site favors Mg²⁺, Fe²⁺, and Al³⁺, while the Z site primarily hosts 

Al³⁺, with minor Fe³⁺ and Mg²⁺, and potential Fe²+ (Henry et al. 2011; Bosi 2018). The extent of 

site preference and associated order/disorder remains debated due to challenges in interpreting 

overlapping Mössbauer and optical spectra (Bosi 2008; Ertl et al. 2012; Filip et al. 2012; Bosi 

and Andreozzi 2013; Bosi et al. 2015) and depends on the constraints used in the mineral 

formula optimisations. Heating experiments using FTIR, pXRD, and sc-XRD show electron 

density redistribution, OH loss, and structural changes, suggesting oxidation and order-disorder 

effects (Bosi et al. 2016a, 2016b, 2016b, 2018; Ballirano et al. 2022; Celata et al. 2023). 

However, this would require element mobility, whereas tourmaline has low diffusion rates 

(Desbois and Ingrin 2007), as also shown by preservation of sharp composition and isotopic 

breaks (van Hinsberg and Schumacher 2007; Van Hinsberg and Marschall 2007). This 

potentially implies disorder occurs via local site exchanges, and proton migration (H+ diffusion) 

to mitigate local charge imbalances, where cation rearrangement within Y and Z sites is driven 

by thermal vibrations and charge redistribution, maintaining structural integrity without long-

range diffusion. Anisotropy in H+ diffusion indicate that this is likely within the ring along the c-
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axis (Desbois and Ingrin 2007). Such order disorder without long range diffusion has been 

shown for Fe – Mg in olivine, and Al – Si order-disorder in feldspars (Redfern 2000). 

 

Concerning the V and W sites, F is confined to the W site (Henry and Dutrow 2011). The V site 

in tourmaline, bonded to two Z-site and one Y-site octahedron, is unfavorable for F substitution 

due to its interaction with high-charge cations, which stabilize OH via shared bonding with 

tetrahedral oxygens. In contrast, the W site (O(1)), linked to a single Y-site octahedron, provides 

a more symmetrical charge environment, minimizing structural distortion and making F 

substitution more favorable (Henry and Dutrow 2011). These LRO constraints cannot currently 

be enforced due to the limited DOF available in the bulk compositional model. 

Molecular Mixing models (SRO models) Molecular mixing (simplical) models vary in 

complexity based on the number and definition of charge-balanced SRO molecular endmembers, 

which represent specific chemical or structural configurations (Will 1998). The solid solution is 

modelled as a mixture of these species, ignoring sub-site interactions. In molecular mixing 

models, the "site" is redefined from a polyhedron to a unit cell, which combine to form the solid 

solution, similar to how averaged polyhedra construct an average LRO unit cell. This higher 

structural scale captures local atomic correlations, breaking 𝑅3𝑚 symmetry and reducing the 

unit cell to P1, reflecting the loss of long-range symmetry and increasing model complexity by 

explicitly representing short-range interactions. These types of models are not popular for solid 

solutions (Spear 1993) and have mainly been applied to fluids, e.g. the recent dilute silicate - 

fluid molecular model of Holland et al. 2018). The accuracy of these models depends on the 

number and type of molecular components, determined analytically or theoretically. Sconf  is 

calculated from the random distribution of molecular species across a single "site". Each species 

corresponds to a vertex of a simplex in compositional space, with their proportions representing 

the coordinates within that simplex. This approach consistently gives the minimum Sconf per 

DOF.  

In SRO models, one might assume that linearity and convexity are broken due to local atomic 

correlations and nonlinear interactions, meaning thermodynamic properties cannot be expressed 

as a simple sum of independent endmembers and therefore would need the more elaborate 

statistical thermodynamic models described above. Fully accounting for dependent endmembers 



379 
 

is infeasible due to the combinatorial explosion of configurations (Okhotnikov et al. 2016a, 

2016b; Cadars et al. 2017), requiring approximations using independent SRO endmembers. This 

assumes linearity as a first-order simplification, which cannot fully capture nonlinearity, but is 

effective for LRO models, where randomness preserves additivity. Such assumptions are 

reasonable, as minerals with SRO (P1 symmetry) often exhibit an average LRO unit cell with 

distinct space group symmetry. 

Both bulk compositional and speciation models can be expressed as molecular models, with the 

number of independent molecular clusters determined by the DOF and the limits of instrumental 

measurement. 

Bulk compositional Molecular Mixing Model The bulk compositional model represents the 

simplest molecular approach, treating the nine independent bulk endmembers (srlB, drvB, uvtB, 

foiB, oleB, fluvtB, buB, mdtwB, aorsmB) as fixed-composition SRO molecular clusters that 

randomly mix on a single “site”. This simplification drastically reduces the number of 

microstates per macrostate, with the model's DOF governed by bulk compositional constraints. 

[

NaFe3Al6Si6B3O27(OH)4, NaMg3Al6Si6B3O27(OH)4, CaMg4Al5Si6B3O27(OH)4, VacFe2Al7Si6B3O27(OH)4
, NaAl9Si6B3O27(OH)3, CaMg4Al5Si6B3O27(OH)3F,NaFef3Al6Si6B3O27(OH)3, NaMgTi2Al6Si6B3O27O4,

VacAl9Si5AlBB3O27(OH)3O
] 

No instrument directly measures molecular clusters in tourmalines. Although the model 

describes molecular clusters, it relies on atomic-level measurements, using equations of chapter 3 

to derive independent endmembers from bulk compositional parameters. Independent 

endmembers which can be negative are mapped to positive independent bulk parameters – Na, 

Ca, Fe, Mg, Al, Fef, Ti, Si, and F – aligned with the system's thermodynamic DOF, allowing the 

nine bulk parameters to represent the linear combination of nine independent SRO molecules. 

These positive values are required for the Sconf equation, as ln is undefined for negative or zero 

values. Treating these parameters as mixing on a single site yields an average Sconf of 11.81 

J/(mol·K) (see comparison in Sconf between different models, Figure 5A).  

Speciation Molecular Mixing Model In the speciation model, the DOF increases to 14, 

allowing 14 SRO clusters to mix on a single site. This model uses site fractions to define SRO 
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clusters, equating SRO with long-range order (LRO). For the specified speciation endmembers—

srl, drv, uvt, fuvt, foi, ole, drv-dis, odrv, fluvt, bu, mdtw, bole, aorsm, pov—this corresponds to 

the following 14 SRO molecular clusters: 

NaFe3Al6Si6B3O27OH3OH
NaMg3Al6Si6B3O27OH3OH

CaMg3(MgAl5)Si6B3O27OH3OH
CaFe3(FeAl5)Si6B3O27OH3OH
Vac(Fe2Al)Al6Si6B3O27OH3OH
NaAl3Al6Si6B3O27O3OH

Na(Mg2Al)(MgAl5)Si6B3O27OH3OH
Na(Al2Mg)(MgAl5)Si6B3O27OH3O
CaMg3(MgAl5)Si6B3O27OH3F
NaFef3Al6Si6B3O27O3OH
Na(MgTi2)Al6Si6B3O27O3O
NaAl3Al6(Si3B3)B3O27OH3OH
VacAl3Al6Si5Al1B3O27OH3O

NaFef3(Fef4Mg2)Si6B3O27OH3O

 

The fourteen positive independent site fractions associated with linear combinations of the 

molecular clusters are 

{𝑥NaX, 𝑥CaX, 𝑥FeY, 𝑥MgY, 𝑥AlY, 𝑥FefY, 𝑥TiY, 𝑥AlZ, 𝑥MgZ, 𝑥FeFZ, 𝑥SiT, 𝑥AlT, 𝑥OHV, 𝑥FW}. Treating these 

as mixing on a single site allows Sconf  to be calculated, yielding an average value of 13.9 

J/(mol·K) (Figure 5A). One can see that the addition of these additional molecules does not 

change the Sconf drastically. 

Full Molecular Mixing Model The complete molecular model includes all independent SRO 

molecular clusters, requiring the redefinition of averaged sites (e.g., splitting "3Y" into "Y1, Y2, 

Y3"), increasing degrees of freedom and explicitly capturing local structural ordering (cf. 

Gottschalk 2016). Determining the number of SRO endmembers consistent with site and charge 

balance constraints involves vertex enumeration of the charge-balanced hyperplane through the 

tourmaline polytope, treating each site independently to derive the mineral formula (Myhill and 

Connolly 2021). 
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[Na Ca Vac] 

[Fe2+ Mg Al Fe3+ Ti] [Fe2+ Mg Al Fe3+ Ti] [Fe2+ Mg Al Fe3+ Ti]  

[Al Mg  Fe2+ Fe3+][Al Mg  Fe2+ Fe3+] [Al Mg  Fe2+ Fe3+] [Al Mg  Fe2+ Fe3+] [Al Mg  Fe2+ Fe3+] 

[Al Mg  Fe2+ Fe3+] 

[Si Al B] [Si Al B] [Si Al B] [Si Al B] [Si Al B] [Si Al B] 

[OH O] [OH O] [OH O] 

[OH O F] 

To calculate the number of independent endmembers (nind ), the system's DOF is determined by 

subtracting the number of constraints from the total variables, where total variables are the sum 

of species across all sites:  

 

[Na Ca Vac]: 3 species    [Fe²⁺ Mg Al Fe³⁺ Ti]: 5 species (3 sites) 

[Al Mg Fe²⁺ Fe³⁺]: 4 species (6 sites)  [Si Al B]: 3 species (6 sites) 

[OH O]: 2 species (3 sites)   [OH O F]: 3 species (1 site) 

 

Total variables = 3 + (5 ⋅ 3) + (4 ⋅ 6) + (3 ⋅ 6) + (2 ⋅ 3) + 3 = 69 

The constraints include 20 site occupancy constraints (1 + 3 + 6 + 6 + 3 + 1 = 20) and one charge 

balance constraint, independent of the site fraction constraints in tourmaline, for a total of 21 

constraints. The DOF are calculated as: 

 DOF =  Total variables −  Total constraints = 69 − 21 = 48 

nind is one more than the DOF, as their proportions must sum to 1, adding an additional vertex to 

the simplex. Thus, the polytope has 49 independent endmembers, representing the solution space 

dimension. 

This approach significantly increases the number of endmembers and interaction parameters 

required to fully describe the system, as it aims to capture all possible SRO structures (cf. 

Gottschalk, 2016). However, no current instrumental technique can measure all SRO 
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configurations in a solid solution, so such models must rely on theoretical calculations like 

density functional theory (DFT) (Benisek and Dachs 2018, 2020). With computational advances, 

it is now feasible to calculate these 49 endmembers. For a non-ideal system with 49 independent 

endmembers, the number of binary interaction parameters is: 

(
49

2
) =

49 ⋅ 48

2
= 1176 

The number of ternary interaction parameters is: 

(
49

3
) =

49 ⋅ 48 ⋅ 47

6
= 18,424 

Each endmember in this framework is ordered so has Sconf=0, and the solid solution of these SRO 

clusters can be modelled by defining a single site where all clusters mix. This way all types of 

order disorder will be explicitly modelled. From a bond valence perspective (cf. Brown 2016) 

molecular models with SRO are more appropriate as they inherently account for nearest-

neighbor interactions and treat the entire unit cell as a single entity, similar to bond graphs.  

Incomplete Representation of SRO in Simplified Molecular Models The Bulk and Speciation 

Molecular models represent incomplete SRO polytopes, with nine and fourteen DOF, 

respectively, capturing only a fraction of the 49 independent molecular clusters required to 

describe all possible SRO configurations. While this molecular model reduces the resolution and 

predictive power of thermodynamic frameworks for complex solid solutions (Cohen 1986), these 

models provide a valuable reference frame by representing the minimum configurational entropy 

achievable in the system per DOF. 

Molecular models use DOF to capture SRO instead of LRO  Molecular models prioritise 

SRO over LRO by redistributing thermodynamic DOF to represent solid solutions as mixtures of 

predefined SRO molecular clusters, capturing local atomic arrangements, bonding patterns and 

clustering tendencies. The tradeoff is that this reallocation reduces the DOF available for LRO, 

limiting compositional space, configurational variability, and microstate diversity. By coupling 

atomic site populations into predefined groups, these models create correlated parameters, 
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restricting configurational diversity and failing to capture the full range of atomic-scale 

interactions. 

Although the total DOF remains unchanged, this trade-off allows molecular models to focus on 

SRO complexities while sacrificing broader configurational variability and independent atomic 

distributions required for detailed LRO representation. 
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Figure 5A. Comparison of Configurational Entropy (Sconf) The four bars per sample represent 

independently calculated entropy contributions from different models: LRO Sconf Speciation 

(blue), LRO Sconf Bulk (orange), SRO Sconf Speciation (green), and SRO Sconf Bulk (red). Each 

bar shows the calculated Sconf value in J/(mol·K), with its exact value labeled at the right end of 

the bar. At 1000 K, differences in Sconf  translate into Gibbs free energy differences of ~40–

60 kJ/mol, comparable to many mineral reaction energies, emphasizing that the choice of 

configurational entropy model can significantly affect thermodynamic predictions. 

Discussion of Configurational Entropy Models and Their Implications All solid solution 

models in the Earth Sciences face significant uncertainty from the treatment of configurational 

entropy (Sconf), as different models, bulk vs. speciation, LRO vs. SRO, yield differences of up to 

~10% of total entropy. At high temperatures (~1000 K), these discrepancies translate into Gibbs 

free energy shifts of 40–60 kJ/mol, on par with typical reaction energies, thereby affecting phase 

equilibria and stability predictions. 

Because no single approach to modelling Sconf is universally validated, most thermodynamic 

models absorb these differences into excess enthalpy or volume terms during calibration, 

effectively treating them as hidden fitting parameters. This practice obscures the physical basis 

of interaction parameters and limits model interpretability. 

A more rigorous approach would estimate Sconf from theory (e.g., Monte Carlo simulation, 

cluster variation methods, or DFT-derived cluster expansions) or optimize it as a separate 

component within CALPHAD frameworks. Importantly, this is a testable problem. If accurate 

enthalpy values are available, different Sconf, whose predictions often differ substantially, can be 

directly compared based on their ability to reproduce experimental phase stability data. The most 

effective test would involve both a tourmaline near-endmember composition, where configurational 

entropy is expected to be small and order dominates, and a highly disordered, high-entropy tourmaline 

composition, where Sconf strongly stabilizes the solid solution.  

The fact that tourmaline is observed only as a solid solution, with no true endmembers found in 

nature, further suggests that configurational entropy plays a fundamental role in stabilizing the 

structure across its compositional range. Recognizing and explicitly addressing Sconf uncertainty 
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is therefore crucial for improving the transparency, robustness, and physical realism of 

thermodynamic models for complex mineral solid solutions. 

Size of composition and speciation space 

The bulk model is the only solution model we can fully populate as the limited availability of 

enthalpy data does not permit reliable extrapolation of measured enthalpies to endmember 

species. Comparing the LRO Bragg-Williams bulk model with the SRO molecular bulk model 

highlights a fundamental issue in thermodynamic solution models for phases with intermediate 

complexity (~200 bits, e.g., amphiboles, tourmalines) (Krivovichev 2013; Grew et al. 2016). Bits 

refer to the Shannon information content of a mineral’s crystal structure, quantifying its 

structural complexity in terms of the number of distinguishable configurations or the amount of 

information needed to describe its atomic arrangement (Krivovichev 2013). The size of 

configurational entropy (Sconf) is directly linked to the compositional space allowed by the 

solution model via the DOF allocation. 

As shown in Chapter 3, enumerating independent endmembers for the bulk model results in 

>600 dependent endmembers using the methods of Myhill and Connolly (2021). In the polytope, 

if Mg and Fe²⁺ occupy the Z-site, all six Z sites can, in theory, be filled by these ions. The 

polytope expands with each added endmember, extending not only to that composition but also 

to all linear combinations with other independent endmembers. However, experimental synthesis 

and mineralogical studies show structural limits on element incorporation (Vereshchagin et al. 

2018). Experimental synthesis and crystallographic refinements show that structural limits on 

element incorporation constrain tourmaline stability (Vereshchagin et al., 2018; Bosi, 2018). 

Vereshchagin et al. (2018) demonstrated that instability occurs when the sum ⟨Y–O⟩ + ⟨Z–O⟩ 

deviates from ~3.03 Å, corresponding to a bond-length ratio ⟨Y–O⟩/⟨Z–O⟩ ~1.03. Beyond this, 

incomplete crystallisation or other synthesis phases (oxides, silicates) form. Bosi (2018) further 

showed that when the difference ⟨Y–O⟩ – ⟨Z–O⟩ exceeds ~0.15 Å, long-range order is disrupted 

and continuous solid solution is not maintained. Thus, exceeding these structural limits leads to 

decomposition. As described in Chapter 1, approximately 100 dependent endmembers were 

identified as unstable through first-order bond-valence analysis.  Accessibility to certain 

compositional regions is highly dependent on accuracy of the thermodynamics. If no significant 
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interaction parameters are present, such as in our model, extreme compositions may become 

accessible during Gibbs free energy minimisation. 

We observe three key models: 

1. The Bulk LRO Bragg-Williams model, which overpredicts composition space and 

overestimates Sconf 

2. The Bulk SRO molecular model, which underpredicts composition space and 

underestimates Sconf 

3. The Speciation model, which has the largest speciation space but intermediate Sconf, 

though it lacks sufficient enthalpy data for full calibration. 

This has advantages and drawbacks. Predicting unrealistic compositions reveals missing 

thermodynamic constraints, indicating a need for additional data to refine the model. However, it 

may also reduce model usability for those users that simply want a working thermodynamic 

model for the central compositional range rather than extremes. The choice of regression method 

in Chapter 3 impacts this balance; whether to fit the centroid of data accurately or allow greater 

variance for better generalisation to compositional limits. This bias-variance tradeoff is key in 

thermodynamic solid-solution models. 

Currently, many thermodynamic models in the geosciences are fitted using a subset of 

experimental data, while the rest is often dismissed as incorrect or inconsistent. While this 

approach may have some merit, it has resulted in models that lack proper test sets, leaving the 

task of validation to users attempting to fit their specific rock compositions. Documenting model 

failures is crucial in such testing to identify gaps, improve robustness, and advance future 

models. This would be the merit of having a model with a vast composition space as such 

failures would be clear. However, for users primarily seeking a functional model, one with a 

more constrained compositional space would be preferable, as it minimises unrealistic 

predictions while maintaining practical usability.  

Similar challenges exist beyond tourmaline. White et al. (2007), Holland and Powell (2011) and 

Green et al. 2016 restrict solution space based on a priori knowledge of the likely compositions 

that minerals can have. These constraints are informed by extensive mineral data and natural or 
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experimental compositional measurements, ensuring that the models remain consistent with 

observed mineral chemistry. This Bayesian-like approach basically integrates additional 

constrains besides charge balance and site occupancy used to define the composition polytope to 

prevent unrealistic compositions. In these solution models, such hard limits are fundamental, 

functioning as implicit model parameters although they are never mentioned as such. Models 

with these compositional "infinity walls" behave fundamentally differently in software packages 

where such constraints are enforced, e.g. ThermoCalc (Powell et al. 1998) from those without 

(e.g., Perple_X, Connolly 2005). Removing such limits requires a complete recalibration of 

thermodynamic properties, as interaction parameters (W) in unconstrained models partially 

compensate for these restrictions. In other words, when these "infinity walls" are removed, the 

fitting process yields entirely different thermodynamic parameters, as previously hidden 

constraints must now be explicitly captured within the interaction terms. Therefore, such 

compositional space limits are a fundamental part of the solid solution model, as fundamental as 

their standard state properties and EoS, basically a class of solid solutions models of their own 

kind. Although these models may appear to have fewer parameters, they are not truly low-

parameter models. Many of the constraints, such as infinite W at certain compositional bounds, 

function as hidden parameters that are just as fundamental to the model as the explicitly 

calibrated thermodynamic terms. It is doubtful that W parameters alone could accurately 

replicate infinity walls, as their effect would need to be extremely abrupt. Capturing such sharp 

compositional boundaries may require splitting the composition space into distinct regions to 

model this behavior effectively, as seen in approaches like Darken’s quadratic formalism (DQF) 

(Powell 1987). Consequently, models optimised under strict constraints may fail outside their 

defined compositional space, necessitating model refitting when limits are removed. 

Model calibration in this context resembles a least-squares optimisation with crystal-chemical 

constraints. The key question is whether such additional constraints, such as bond valence 

networks (Chapter 2), should be incorporated into polytope construction or whether interaction 

parameters should be carefully calibrated to impose such limits naturally.  For example, LRO 

endmember definition by charge balance allows two atoms to occupy a site (Hawthorne 2021). 

Short-range order can modify this by locally enforcing bond valence constraints, restricting 

possible ion arrangements (Hawthorne et al. 2021). Such a constraint is now already imposed 
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with the model type chosen, i.e., an incomplete SRO molecular model is and extremely restricted 

example. Comparing the highly restricted molecular model with the extensive compositional 

space of the Bragg-Williams LRO model will help determine what approach ultimately produces 

more robust thermodynamic models. Randomization was the best choice when we had no 

additional information (Jaynes 1957), however, we now do have additional information, which is 

currently largely unused.  

We have already applied crystal chemical constraints and bond valence sum (BVS) calculations 

in optimizing mineral formulas to define endmembers. For example, the assumed Al-Mg 

disorder primarily arises from BVS requirements. While one could discuss the reliability of 

BVS-derived constraints from empirical crystal databases for specific tourmaline structures, our 

results indicate that disorder is largely dictated by bond valence constraints, with no direct 

evidence for Mg occupancy on the Z site. 

Since these constraints have already been used to define the polytope vertices, it follows 

logically that they should also be applied to constrain the rest of the polytope. 

3. CONCLUSION AND SUMMARY 

This study presents a nearly complete thermodynamic solid solution model for tourmaline, 

enabling its integration into the thermodynamic databases for forward modelling exchange and 

net transfer reaction with mineral assemblages, fluids, and melts. Two thermodynamic models 

were developed: a bulk compositional model, applicable when only chemical composition is 

available, and a speciation model, incorporating site occupancies derived from structural data.  

Meeting Research Objectives The research aimed to develop a thermodynamic framework for 

tourmaline by overcoming past reliance on estimation methods and empirical calibrations. This 

was achieved by: 

• Assembling and characterizing a diverse tourmaline dataset (~50 natural and synthetic 

samples) to constrain endmember properties. 
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• Developing a convex polytope representation of tourmaline’s compositional and 

speciation space, allowing rigorous formulation of endmember-dependent 

thermodynamic functions. 

• Using crystal structure and calorimetric measurements (sc-XRD for molar volume, 

relaxation calorimetry for entropy, Differential scanning calorimetry for heat capacity, 

and drop solution calorimetry for enthalpy) to obtain direct thermodynamic data. 

• Applying multiple regression techniques to derive endmember properties, ensuring 

consistency while addressing multicollinearity and uncertainty propagation. 

• Implementing a LRO Bragg-Williams and SRO molecular model, providing a first-order 

approximation of configurational entropy. 

This study therefore results in a thermodynamic model that significantly improves on previous 

estimation-based attempts (Garofalo et al. 2000; van Hinsberg and Schumacher 2007). The 

inclusion of tourmaline in thermodynamic databases represents a major breakthrough, given 

tourmaline’s stability across diverse pressure-temperature conditions and its role as a powerful 

petrogenetic indicator mineral in geologic systems. 

4. IMPLICATIONS AND FUTURE DIRECTIONS  

Despite these advancements, several challenges remain. To properly model tourmaline requires 

that B can exchange among multiple solid, melt and fluid phases, but high-pressure, high-

temperature data for B-species in fluids and melts are currently lacking as are thermodynamic 

data for virtually all other boron-bearing minerals. As a result, boron behavior can only readily 

be incorporated into geochemical models for close to ambient conditions.  

Standard state properties for DFT Density Functional Theory (DFT) is a promising tool for 

determining thermodynamic properties, particularly enthalpies of formation, essential for further 

enthalpic calibration of both our models, especially the speciation model. It has been applied to 

mineral endmembers and excess enthalpy in solid solutions (Benisek and Dachs 2018, 2020, 

2024). DFT-derived enthalpies of formation are obtained by computing the energy difference 

between a fully geometry-optimised mineral structure and a set of reference oxides (e.g., MgO, 

Al₂O₃, SiO₂, B₂O₃, H₂O). These calculations rely on both converged and consistently chosen 
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computational parameters to minimize systematic errors in the derived thermodynamic quantities 

(Benisek and Dachs 2018). 

Among the parameters that must be converged, the k-point grid defines the mesh used to sample 

the Brillouin zone in periodic systems (Benisek and Dachs 2018). A sufficiently dense grid 

ensures accurate integration over the electronic states, and convergence is tested by increasing 

the number of k-points until total energy changes are below a defined threshold (Martin, 2004). 

The plane-wave cutoff energy sets the maximum kinetic energy of the plane waves used to 

expand the electronic wavefunctions and determines the completeness of the basis set. 

Convergence is checked by gradually raising the cutoff until calculated energies and atomic 

forces stabilize (Benisek and Dachs 2020). Geometry optimisation thresholds, particularly force 

and stress criteria, must also be converged to guarantee that the crystal structure is fully relaxed 

and not trapped in a metastable configuration; typically, forces should be below 0.01–0.03 eV/Å 

for accurate thermodynamic results (Benisek and Dachs 2018).  

In contrast, some computational parameters are chosen rather than converged, and must be kept 

consistent across all calculations to allow meaningful energy comparisons. The exchange-

correlation functional, such as the Local Density Approximation (LDA) or Generalized Gradient 

Approximation (GGA), provides an approximate treatment of electron–electron interactions 

(Benisek and Dachs 2018). The choice of pseudopotentials defines the treatment of core 

electrons and must match the chosen functional while being appropriate for the element’s 

oxidation state (Martin, 2004). Spin polarization should be included when unpaired electrons are 

expected, such as in systems containing transition metals, and must be consistently applied 

across all relevant atoms and structures (Martin, 2004). When strongly correlated electrons are 

present, a DFT+U correction may be used to correct for on-site Coulomb interactions; the value 

of U is typically taken from literature or calibrated to reproduce experimental properties 

(Benisek and Dachs 2018).  

While absolute total energies calculated by DFT can contain systematic offsets due to these 

approximations, energy differences, such as those between a compound and its decomposition 

products, often benefit from error cancellation, making them more reliable for thermodynamic 

modelling. Enthalpies of formation from elements from the reference oxide structures are then 
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derived using thermodynamic databases like JANAF (Benisek and Dachs 2018). DFT provides 

enthalpies accurate to a few kJ/mol and entropies within a few J/mol/K, making it reliable for 

modelling reactions with large enthalpy changes. However, its inherent errors become significant 

in low-enthalpy reactions (~few kJ/mol). It also predicts mineral volumes with 1–2% error 

(Benisek & Dachs, 2020), making it suitable for thermodynamic databases. Compressibilities can 

also be obtained via DFT and fitted to volumetric equations of state. The quasi-harmonic 

approximation (Baroni et al. 2010; Qin et al. 2019) enables thermal expansivity calculations but 

at a high computational cost, making direct measurement preferable.  

Excess enthalpies from DFT DFT enhances the resolution of nonlinear mixing behavior, aiding 

in the confirmation of deviations from ideality. It provides insights into the heat of mixing in 

solid solutions, enabling phase equilibrium and solvus predictions, as shown in garnets, 

feldspars, pyroxenes, and amphiboles (Benisek and Dachs 2020). Excess enthalpies of mixing 

are determined using methods such as the single defect method, double defect method, and 

approaches based on microscopic interaction energies. 

The single defect method (Sluiter & Kawazoe, 2002) determines mixing parameters in dilute 

limits where order-disorder effects are negligible. It involves introducing a single substitutional 

defect in a large supercell to compute excess internal energy (ΔEmix), closely approximating the 

enthalpy of mixing (ΔHmix) at low pressure due to the negligible volume term (PΔVmix). This 

method effectively extracts Margules interaction parameters from DFT and has been successfully 

applied to solid solutions including pyrope-grossular, diopside-jadeite, and alkali feldspars, 

showing good agreement with calorimetric data (Benisek and Dachs 2020). The double defect 

method (Vinograd et al. 2009) extends this by incorporating two, simultaneous and coupled 

substitutions, refining estimates of cation interactions, clustering effects, and cross-site 

interaction parameters (e.g., Mg + Si = Al + Al in pyroxenes and biotites). It is particularly 

useful for minerals with strong cation ordering tendencies, where local charge balance and non-

random interactions significantly affect excess enthalpy (Benisek and Dachs 2020). The accuracy 

of both methods depends on the exchange-correlation functional (LDA, GGA-PBE) and 

supercell size, with larger supercells generally yielding more reliable results (Benisek and Dachs 

2020). 
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An alternative approach to obtaining macroscopic excess enthalpy parameters (W) from DFT 

involves first determining microscopic interaction energies (w) for various structures and then 

applying basis transformations to model macroscopic mixing behavior (Myhill and Connolly 

2021). This method circumvents limitations of the single defect method, particularly in systems 

with strong ordering or local charge balance effects. In this approach, DFT calculations are 

performed on multiple structurally distinct configurations of a solid solution, where 

substitutional interactions occur on different crystallographic sites. These calculations yield 

microscopic interaction energies (w) for each substitutional pair (Benisek and Dachs 2024) and 

cross site w.  The resulting microscopic interaction energies (w) are then transformed into 

macroscopic parameters (W) using mathematical frameworks like those of Myhill & Connolly 

(2021). This method provides a systematic framework for decomposing complex substitutional 

behavior, allowing for more accurate predictions of mixing properties across a wide range of 

mineral compositions. For the complex reaction involved between tourmaline endmembers see 

Appendix 5A and 5B for the bulk and speciation models. The interaction energy correlations 

with mineral elasticity and oxygen packing fraction  (Benisek and Dachs 2024) further enhance 

the applicability of this approach in thermodynamic modelling. 

Spectroscopy from DFT Beyond thermodynamics, DFT provides electronic structure insights, 

enabling spectroscopic property calculations, such as: 

• Electron density distributions to reveal charge localization, bonding characteristics, and 

their link to thermodynamic properties like enthalpy. 

• Optical absorption spectra for interpreting electronic transitions in the complex optical 

spectra of tourmaline. 

• Mössbauer spectra, EFG tensors, and Mössbauer parameters. 

• Vibrational spectra (FTIR, Raman) for identifying lattice dynamics. 

DFT-based spectroscopy is particularly valuable for minerals like tourmaline, where overlapping 

spectral features complicate experimental interpretation. It enables rigorous deconvolution of 

spectra, distinguishing site occupancies, bond distortions, and structural variations with atomic-

scale precision, which is particularly important for tourmaline Mössbauer measurements, as 
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these are our best method for constraining Fe2+/Fe3+ ratios, but have significant uncertainty at 

present as discussed in chapter 2.  

Thermodynamic Scaling Exploratory calculations to obtain enthalpy and mixing parameters 

from DFT modelling have been conducted as part of this study and highlighted as a major 

challenge defining and constructing the supercells required to properly capture intermediate 

compositions. While DFT provides valuable thermodynamic and spectroscopic parameters, 

careful validation against experimental calorimetric, volumetric, and spectroscopic data remains 

essential, especially for complex solid solutions with significant cation ordering due to coupled 

substitutions. Large unit cell requirements and ordering effects complicate direct DFT 

applications of tourmaline, highlighting the need for hybrid approaches that integrate DFT with 

empirical calorimetric scaling. 

Short- and long-range order effects in tourmaline require further study, as current models do not 

fully capture their impact on entropy and enthalpy of mixing. Calculating the 49 independent 

SRO structure would enable the first SRO molecular model for tourmaline. Combining these 

results with direct measurements allows for DFT calibration and the construction of an internally 

consistent thermodynamic model across the full tourmaline compositional space. 

Internal Consistency with databases Ensuring internal consistency in thermodynamic 

databases requires aligning tourmaline properties with other minerals using experimental 

constraints. The model will be tested against phase assemblages containing tourmaline in nature 

and experiments, as well as well-constrained Fe-Mg KD values (e.g., Morgan and London 1989; 

von Goerne et al. 1999, 2011; van Hinsberg and Schumacher 2009; London 2011). Refinements 

should prioritise measured properties, adjusting only standard state enthalpy – the most uncertain 

parameter, while keeping entropy, Cp and volume fixed for reliable Gibbs free energy 

extrapolations. A Bayesian approach (Khan et al., 2021). integrates prior knowledge with 

experimental data, capturing parameter correlations and uncertainties more effectively than least-

squares regression. This enhances phase equilibria predictions, resolves discrepancies between 

experimental and modelled stability fields (Connolly & Khan, 2016). Its adaptability allows 

continuous model updates, enhancing predictions phase equilibria (Khan et al., 2021). By 

constraining solutions within physically meaningful limits, Bayesian methods mitigate 
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overfitting and ensure thermodynamic consistency (Connolly, 2016), making them particularly 

effective for optimizing high-dimensional solid solution models like tourmaline. 

Crystal chemical assumptions Crystal chemical assumptions are among the strongest 

constraints in mineral formula optimisation and must be rigorously validated against 

experimental data. Due to spectral overlap in optical spectroscopy, FTIR, and Mössbauer, 

multiple techniques must be combined to refine the tourmaline structural formula. Local bond 

lengths are essential for constraining site occupancies. X-ray absorption spectroscopy, being 

element-specific, can determine which sites elements occupy. Additionally, pair distribution 

functions from diffuse X-ray scattering at synchrotron sources could provide comprehensive 

bond length data. While likely complex, this spectrum could be decomposed using element-

specific X-ray absorption data, resolving debates on site assignments, such as Mg and Fe²⁺ on Y 

vs. Z and Ti site preferences. Reverse Monte Carlo methods (Tucker et al. 2001; Dove et al. 

2002) could further refine unit cell fitting using multiple SRO structures. 

The spin-glass state of tourmaline significantly influences its entropy. More data is needed to 

determine its magnetic state below the transition temperature, particularly for povondraite. 

Phonon lattice models (e.g calibrated using the Fourier transform infrared spectra (Kieffer 1979a, 

1979b, 1979c, 1980, 1982) should be fitted to heat capacity (Cp) curves to separate lattice and 

magnetic contributions. The resulting magnetic Cp curves can then be tested for linearity across 

the solid solution series. Since such transitions remain challenging to model with DFT, these 

empirical results can serve as correction factors for computational entropy values. 

Tourmaline model Case studies The resulting tourmaline thermodynamic model can be 

implemented in petrological software like PerpleX (Connolly, 2005) to model tourmaline 

formation and its exchange with other phases, including fluids (cf. Galvez et al. 2015; Connolly 

and Galvez 2018). Tourmaline chemistry in rocks from the 3.2 Ga Tartoq Belt, SW Greenland, 

provides insights into Archean seawater composition, crustal fluids during metamorphism in a 

proposed early subduction setting, and late-stage hydrothermal fluids responsible for high-grade 

orogenic gold mineralization, as we showed in van Hinsberg et al. (2019). As a well-preserved 

remnant of Mesoarchean oceanic crust, the Tartoq Belt records seawater interaction, early-type 

subduction metamorphism, and orogenic gold formation. Tourmaline, present in all units, 
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exhibits concentric zoning, preserving a time-integrated record of the belt’s geological history 

and would therefore provide an excellent case study for geologic history and fluid chemistry 

reconstruction. 

Advancing Tourmaline Thermodynamic Modelling and Its Geologic Applications Despite 

its limitations, this study represents a critical step forward, enabling tourmaline’s reliable 

inclusion in thermodynamic modelling for the first time. Future refinements through high-PT 

studies, improved experimental constraints, and advanced computational methods will enhance 

predictive accuracy. Addressing a key challenge from the 2011 Canadian Mineralogist special 

issue on tourmaline (van Hinsberg et al. 2011), it enables compositional zoning to be read as a 

mineral record in space and time. Given tourmaline’s ubiquity, this model benefits metamorphic, 

igneous, and hydrothermal studies, supporting pseudosection thermobarometry, provenance 

analysis, mineral exploration, and fluid and magma reconstruction. 
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APPENDIX 1B. EMPA Details 

EMPA Matrix correction details  

Averaged k-ratios far from 1 (F (0.010), Na (0.138), Si (0.572), Mg (0.370), Al (1.481), K 

(0.004), Ca (0.059), Ti (0.005), Fe (0.078), Mn (0.005), Cr (0.000)) and density differences 

between primary standards and tourmaline emphasized the need for accurate matrix corrections. 

To linearize the calibration curve and relate measured k-ratios directly to concentration ratios, 

second-generation X-Phi ZAF corrections were applied, incorporating ϕ(ρz)-based absorption 

adjustments for matrix differences between tourmaline and standards, i.e., 𝑘𝑖 =
𝐼𝑖

𝐼𝑖
std =

𝑐𝑖

𝑐𝑖
std [𝑍𝐴]F 

via: 

𝑘𝑖 =
𝐼𝑖

𝐼𝑖
std 
=

𝑐𝑖 ∫  
∞

0
𝜙𝑗(𝜌𝑧)exp [− (

𝜇
𝜌)𝜌𝑧csc (𝜓)] 𝑑𝜌𝑧

𝑐𝑖
std ∫  

∞

0
𝜙𝑗

std (𝜌𝑧)exp [− (
𝜇
𝜌)

std 

𝜌𝑧csc (𝜓)] 𝑑𝜌𝑧

×
(1 + ∑𝑓c + 𝑓b)

(1 + ∑𝑓c + 𝑓b)std 
 

where the Beer-Lambert exponential term exp [− (
𝜇

𝜌
) 𝜌𝑧csc (𝜓)] multiplied with the ϕ(ρz) 

distributions adjusts for photo-electronic absorption (ZA in ZAF), with μ/ρ as the mass 

absorption coefficient (MAC), ρz the depth, and ψ the take-off angle (Llovet et al., 2021). 

 X-Phi employs Gaussian ϕ(ρz) for x-ray depth production (Merlet 1992, 1994; Lavrent’ev et al. 

2004) and MAC30 values from Heinrich (1987) for 30° takeoff angle, but for boron initial values 

from Henke et al. (1982) were empirical corrected using a borides database (Bastin and 

Heijligers 1986). Using MAC30 at 40° may cause slight errors, especially for light elements due 

to absorption path differences. The fluorescence correction 
(1+Σ𝑓𝑐+𝑓𝑏)

(1+Σ𝑓𝑐+𝑓𝑏)
𝑠𝑡𝑑 accounts for 

enhancement from characteristic and continuum fluorescence, backscattering, and ionization 

potential differences between the sample and standard (F in ZAF) (Llovet et al. 2021). The 

matrix correction is calculated iteratively until convergence, as the absorption depends on the 

averaged MAC, via the additive rule (Llovet et al. 2023), which is influenced by unknown 

concentrations (Reed 2005). Fixed estimates of B₂O₃ (10%) and H₂O (2.5%) were essential for 

accurate matrix corrections, as their inclusion lowered SiO₂ (-0.6 wt%) and increased Al₂O₃ 

(+0.4 wt%), FeO (+0.2 wt%), or MgO (+0.16 wt%), due to boron’s dilution effect which absorbs 
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fewer heavy-element x-rays but affects Si Kα absorption. EMPA measurements of tourmaline 

excluding light elements in matrix corrections may show higher Si in the T-site, and also in 

JEOL versus CAMECA instruments due to more pronounced Mg and Si peak shifts (Llovet et al. 

2021). Due to the high and uncertain MAC values of light elements like fluorine in matrices like 

oxygen and calcium, EMPA measurements are more uncertain, further compounded by peak 

shifts, Fe interference, and absorption by carbon coating (Llovet et al. 2021). The variance of 

light element MAC values between matrix correction algorithm (Llovet et al. 2023) is shown by 

the difference of about 0.3% when we use PAP (Pouchou and Pichoir 1991) instead of X-Phi for 

Si (effected by B). 

EMPA LOD details Average detection limits for each major element were calculated using the 

Goldstein method (Goldstein et al. 2003), which defines the limit as 3σ above the background. 

While the Ancey method (Ancey et al. 1978), based on Poisson statistics, rendered all our F 

measurements below limit of detection (LOD), we opted for Goldstein due to the consistency of 

repeated measurements, even those "below Ancey’s LOD”.   

****************************************************************************** 

EMPA Condition File. 

Xtal information 

 

Xtal parameters: 

  

F  Ka Sp1 LTAP (2d= 25.745 K= 0.002180) 

Na Ka Sp4 TAP (2d= 25.745 K= 0.002180) 

Si Ka Sp2 LTAP (2d= 25.745 K= 0.002180) 

Mg Ka Sp2 LTAP (2d= 25.745 K= 0.002180) 

Al Ka Sp4 TAP (2d= 25.745 K= 0.002180) 

K  Ka Sp3 LPET (2d= 8.75 K= 0.000144) 

Ca Ka Sp3 LPET (2d= 8.75 K= 0.000144) 

Ti Ka Sp3 LPET (2d= 8.75 K= 0.000144) 

Fe Ka Sp5 LLIF (2d= 4.0267 K= 0.000058) 

Mn Ka Sp5 LLIF (2d= 4.0267 K= 0.000058) 

Cr Ka Sp5 LLIF (2d= 4.0267 K= 0.000058) 
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Pha parameters : 

 Elt. Line Spec Xtal Bias Gain Dtime Blin Wind Mode 

    (V)  (µs) (mV) (mV)  

F  Ka Sp1 LTAP 1301 2991 3 825 2922 

Na Ka Sp4 TAP 1297 2959 3 820 4180 

Si Ka Sp2 LTAP 1307 3023 3 830 4170 

Mg Ka Sp2 LTAP 1307 3023 3 830 4170 

Al Ka Sp4 TAP 1297 2959 3 820 4081 

K  Ka Sp3 LPET 1856 1042 3 740 3728 

Ca Ka Sp3 LPET 1856 1042 3 1060 3940 

Ti Ka Sp3 LPET 1856 1042 3 534 3480 

Fe Ka Sp5 LLIF 1841 445 3 699 2054 

Mn Ka Sp5 LLIF 1841 445 3 953 2252 

Cr Ka Sp5 LLIF 1841 445 3 802 2144 

 

****************************************************************************** 

Acquisition information 

 

Elt. Line Spec Xtal Peak Pk Time Bg Off1 Bg Off2 Slope/IBgBg Time Calibration Intensity 
    Time/Repeat  Range #Channels  (cps/nA) 
 
F  Ka Sp1 LTAP 71296 20 -1800 1400  10 CAF2_20kV_FKa-Sp1-LTAP3 13.0 
Na Ka Sp4 TAP 46358 20 -2200 2040  10 AALB_20kV_NaKa-Sp4-TAP3 24.3 
Si Ka Sp2 LTAP 27742 20 -2200 1800  10 Diop_20kV_SiKa-Sp2-LTAP_CaKa-Sp3-
LPET3 946.2 
Mg Ka Sp2 LTAP 38529 20 -1900 1300  10 Diop_20kV_MgKa-Sp2-LTAP3 162.6 
Al Ka Sp4 TAP 32471 20 -1740 1500  10 Sanidine_20kV_AlKa-Sp4-TAP_SiKa-
Sp2-LTAP_KKa-Sp3-LPET3 111.1 
K  Ka Sp3 LPET 42767 20 -1450 1200  10 Sanidine_20kV_AlKa-Sp4-TAP_SiKa-
Sp2-LTAP_KKa-Sp3-LPET3 281.4 
Ca Ka Sp3 LPET 38386 20 -1320 1450  10 Diop_20kV_SiKa-Sp2-LTAP_CaKa-Sp3-
LPET3 634.3 
Ti Ka Sp3 LPET 31412 10 -2030 1050  5 TiO2_20kV_TiKa-Sp3-LPET3 2868.8 
Fe Ka Sp5 LLIF 48082 20 -1200 1300  10 Fe2O3_20kV_FeKa-Sp5-LLIF3 929.7 
Mn Ka Sp5 LLIF 52196 20 -1150 1150  10 Spess_20kV_MnKa-Sp5-LLIF3 353.5 
Cr Ka Sp5 LLIF 56862 20 -1050 1050  10 CHRO_20kV_CrKa-Sp5-LLIF3 327.7 
 Eds Time = 60s 
 

****************************************************************************** 
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APPENDIX 1D. Karl fisher titration details  

The titration setup consists of an RF generator, sample chamber, CuO oven, temperature display, 

and moisture meter. Samples, placed in platinum crucibles, were heated to 1000°C in a high-

frequency induction furnace. An argon stream, dried with a molecular sieve, carried volatiles 

from the sample to the titration cell through a Cu contact at 300°C. 

Measurement System Water content was measured with a Mitsubishi CA-200 moisture meter, 

featuring separate anolyte and catholyte cells. The anolyte cell contains Aquamicron AX solution 

(up to 100 mg H₂O capacity), while the catholyte cell holds Aquamicron CXU, separated by a 

diaphragm that forms the electrochemical generator electrode (Scholz 2012). 

Karl Fischer Reaction 

In the anolyte cell, the Karl Fischer reaction occurs as follows (Fischer 1935): 

I₂ + SO₂ + 3Base + ROH + H₂O → (2Base・HI) + (Base + HSO₄R) 

where iodine, sulphur dioxide, base, and methanol (solvent) react with water. Iodine is generated 

electrochemically by anodic oxidation: 

2I⁻ - 2e → I₂  

Balanced by a reduction in the catholyte compartment, positive hydrogen ions are reduced to 

hydrogen. Each molecule of iodine reacts with a molecule of water, detected by a double 

platinum electrode, which regenerates iodine through electrolysis (Meyer and Boyd 1959). 

Faraday’s laws link iodine production to water quantity (1 mg H₂O = 10.712 Coulombs), 

measured by current integration. 

End-Point Detection 

The endpoint is indicated by electrodes maintaining an alternating current, where a decrease in 

voltage signals excess iodine (Scholz 2012). 
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APPENDIX 1E. Mossbauer details 

Limits of the single Lorenzian Model Physically interpretable tourmaline hyperfine 

interactions ideally require a static Hamiltonian per Fe SRO cluster, but underdetermination 

necessitates empirical fits. Each SRO cluster has distinct Lorentzian peaks, as seen in MO 

studies on octahedral clusters (Evans 2004, 2005) and silicates like omphacite, where local 

distortions shift quadrupole splittings up to 0.3 mm/s (Katerinopoulou et al. 2013). Although 

Lorentzian fits suit uniform Fe environments, tourmaline’s varied Fe-O, OH, F, and second-

neighbor cation configurations broaden and overlap peaks, making multiple Lorentzian fits non-

unique (Pieczka et al. 1998; Pieczka and Kraczka 2004). Systems without SRO preference 

produce Gaussian-distributed set of Lorentzian peaks, while preferred clusters and electron 

hopping result in non-Gaussian broadening (Rancourt and Ping 1991; Rancourt 1994). Andreozzi 

(2008) noted broadening but incorrectly applied an excessive Lorentzian linewidth, which 

overestimates wings and underestimates peaks due to its 1/x² decay and lead to matrix correction 

errors. The Lorentzian linewidth of 0.194 mm/s should remain fixed as it is derived from 

Heisenberg’s uncertainty principle, where the minimum 57Fe transition linewidth of 0.097 mm/s 

doubles through the convolution of absorption (Γa) and emission (Γs) (Gütlich et al. 2010). 

Minor deviations (±0.05 mm/s) can occur from sample thickness effects, but further adjustments 

lack physical basis (Rancourt 1994). 

Data Normalization To relate Fe²⁺/Fe³⁺ doublet area ratios in Mössbauer spectra to 

concentration ratios, a matrix correction C accounts for differences in linewidth Γ, saturation 

correction G, and recoil-free fractions f (Lamb-Mössbauer factor). The relation 
𝐴1

𝐴2
= 𝐶

𝑁1

𝑁2
, uses 

𝐶 =
Γ1𝐺1𝑓1

Γ2𝐺2𝑓2
 (Bancroft 1973). Assumptions like Γ1=Γ2 , G1=G2 and f1=f2 are often made or 

assumed to cancel out via Γ1*G1*f1 = Γ2*G2*f2 (Hawthorne 1988) but require verification.  

To balance spectral distortion and signal-to-noise, we used a 5 mg/cm² Fe absorber, exceeding 

the 0.5 mg/cm² thin limit (Ping and Rancourt 1992), which may introduce 5–10% area errors 

affecting all doublets (Rancourt et al. 1993). To correct for these thickness effects without full 

deconvolution or having to solve the full transmission integral we adjusted Lorentzian linewidths 

(±0.03 of 0.2 mm/s) using the same Γ for each doublet , which keeps G1/G2≈1 (Fultz 2011). 

Such simplified corrections suffice for ratio calculations but make exact site assignments from 
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doublets uncertain. Individual doublet line broadening (Andreozzi et al. 2008) renders Γ1≠Γ2 

and complicates G1/G2≈1 and consistency in the matrix correction. 

Assuming f=f for VIFe²⁺ and VIFe³⁺ may seem reasonable, but size and distortion differences (Ertl 

et al. 2002) indicate otherwise. The recoil-free fraction f varies with site geometry and valence 

(Dyar et al. 2008), affecting partial vibrational density of states (p-vDOS). Fe³⁺, being smaller 

and more charged, forms a rigid lattice, enhancing recoil-free absorption, while Fe²⁺, with longer, 

flexible bonds and Jahn-Teller distortion, reduces f (Grodzicki and Lebernegg 2011). Incorrect 

assumptions can cause errors up to 30%, averaging 15% (Whipple 1974), and depend on site and 

composition (De Grave and Van Alboom 1991). No f differences for tourmaline were estimated 

using Debye models fitting to temperature-dependent center shifts, though these oversimplify 

mineral complexity and require accurate doublets (Saegusa 1978). First-principles or NRIXS 

provide p-vDOS allowing f to be derived from the thermalized mean squared displacement ⟨u2⟩ 

with Bose-Einstein weightings, as 𝑓 = 𝑒(𝑢
2⟩𝑘2 with k as the gamma-ray wave vector (Dauphas et 

al. 2018). NRIXS Bulk Fe²⁺ in schorl show 74.83% recoil-free fraction (Nie et al. 2021), but due 

to data absence on Fe³⁺ in tourmaline and site dependency, f=f was maintained, adding 

uncertainty to the Fe³⁺/Fe²⁺ ratios, common in all tourmaline Mössbauer studies. Fractionation of 

57Fe between sites and valences is assumed negligible. 

Intervalence charge transfer (IVCT) IVCT in tourmaline, studied via optical and Mössbauer 

spectroscopy, involves Mn²⁺-Ti⁴⁺, Fe²⁺-Ti⁴⁺, and Fe²⁺-Fe³⁺ mechanisms. Optical studies show that 

Fe²⁺-Fe³⁺ IVCT enhances Fe²⁺ bands without forming new peaks, intensifies at low temperatures, 

weakens Fe³⁺ features, and causes the black colour in Fe-rich varieties (Faye et al. 1974), unlike 

Fe²⁺-Ti⁴⁺, which forms new IVCT peaks. This effect is stronger in tourmaline than in other 

minerals and lacks a theoretical basis and mechanism (Mattson and Rossman 1987) (e.g., polaron 

hopping, band-like behavior, or covalent exciton formation). Mössbauer spectroscopy with 

slower timescales (~10⁻⁸ to 10⁻¹⁰ s) than optical spectroscopy (~10⁻¹⁵ s), reveals broad spectra 

and intermediate isomer shifts, indicating electron delocalisation and thermally activated 

hopping without an electric field. Sharp spectra from limited low-temperature (~20–80 K) data  

(Scorzelli et al. 1976; Ferrow et al. 1988; Ferrow 2009) suggest potential electron localization, 

supporting the thermal nature of electron hopping, though phonon mode effects may also 

contribute.  Mössbauer IVCT interpretation is challenged by cation variability, Y and Z site 
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symmetry differences, and weak support for doublet averaging (Ferrow 2009), with Fe 

interaction with Ti⁴⁺, Mn³⁺, or vacancies producing nonaveraging peaks due to varying electric 

field gradients. The ionic model’s integer charge assumption overlooks covalency, leading to 

delocalized electron density and blurred valence distinctions, which are dynamically influenced 

by temperature, composition, and electronic density of states (e-DOS) in solid solutions. Similar 

broad features appear in EPR (Babińska et al. 2008) , XANES (Levy et al. 2018), and XPS (Li 

2022). 

APPENDIX 1E. Mossbauer Figures 

This Appendix contains all Mossbauer Figures. 
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APPENDIX 1F. p-XRD details 

Rietveld refinement theoretical background (Redhammer 2021) The measured intensities of 

a powder diffraction pattern are related to the structure factors by the equation 𝐼ℎ𝑘𝑙 = 𝑠 ⋅ 𝐾 ⋅

𝐿(𝜃) ⋅ 𝑃(𝜃) ⋅ 𝐴 ⋅ 𝐸 ⋅ 𝐻 ⋅ |𝐹ℎ𝑘𝑙
2 |, where s is a scale factor, K combines various constants, L(θ) is 

the Lorentz correction that accounts for geometric factors and the time the reciprocal lattice 

vector spends at the reflection position, P(θ) is the polarization correction, A is the absorption 

correction, E is the extinction correction, and H is the multiplicity, which accounts for the 

superposition of diffraction peaks caused by scattering from equivalent reciprocal lattice point. 

The structure factor, Fhkl is given by: 

𝐹ℎ𝑘𝑙 = ∑  𝑛=𝑁
𝑛=0 𝑓𝑛 ⋅ 𝑜𝑐𝑐 ⋅ exp [2𝜋𝑖(ℎ𝑥𝑛 + 𝑘𝑦𝑛 + 𝑙𝑧𝑛)] ⋅ exp (−𝐵

sin2 𝜃

𝜆2
), where fn  is the atomic 

scattering factor, occ the occupancy of the n-th atom, and (xn,yn,zn) are the fractional atomic 

coordinates of the n-th atom. The term exp(−Bsin2θ/λ2)) represents the temperature factor, which 

accounts for the thermal vibrations of atoms, and λ is the wavelength of the X-ray radiation. 

Accurate determination of crystal occupancies must consider Wyckoff positions to correctly 

represent the number of equivalent atoms in the unit cell. 

In Rietveld refinement, a theoretical powder diffraction spectrum Y(calc) is generated using 

models for background, peak shape, peak width, instrumental configuration, and crystal 

structure. This Y(calc) is compared to the observed spectrum Y(obs), and the model parameters 

are refined using a weighted non-linear least squares method. The equation Y(calc) = 𝑠 ∑  𝑛𝑘𝑙 𝐿𝐾 ⋅

𝑃𝑘 ⋅ 𝐻 ⋅ 𝐴 ⋅ 𝐸 ⋅ 𝑆𝑟 ⋅ 𝑃𝑂𝑘 ⋅ |𝐹ℎ𝑘𝑙|
2 ⋅ 𝐺(2𝜃 − 2𝜃𝑘) + 𝑦𝑖𝑏 includes terms for surface roughness (Sr) 

and preferred orientation (PO), with G(2θ−2θk) representing the reflection profile function. For 

multiphase samples, Y(calc) is the sum of contributions from each phase, and the scale factors 

are proportional to their respective phase percentages; 𝑤𝑖 =
𝑠𝑖⋅(𝑍𝑀𝑉)𝑖

∑  𝑛
𝑘=1 𝑠𝑘⋅(𝑍𝑀𝑉)𝑘

. Where s are the scale 

factors, The density ρ (g cm−3) of a phase is calculated as ρ=ZMV , where Z is the number of 

formula units per unit cell, M is the molecular mass of the formula unit, and V is the unit cell 

volume. If the sample contains amorphous or unidentified phases, the calculated phase 

proportions may be overestimated. 
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APPENDIX 1K1. Bond Valence Table 
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APPENDIX 1K2. Bond Valence Table for X-vacant tourmaline 
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APPENDIX 1L. Stability indices Bond Valence Theory 

Stability Indices Gagné & Hawthorne (2020) For comparison, we calculated Δtopo and 

Δcrystal (=Δelectrosteric) for the unit cell by expanding Gagné & Hawthorne (2020) polyhedral 

formulation. While Gagné's unit cell Δcrystal formula resembles the Bond Strain Index (BSI) 

(e.g., Eq. 7 in Gagné and Hawthorne (2016)), it differs in order of operations: BSI squares before 

summing and then takes the square root, while Δcrystal applies the absolute value before 

summing, affecting bond strain accumulation. The formulas used were: 

Δtopo =
∑( Catmult 1

𝑇 ⋅ 𝑤1
𝑇 ⋅∣ 𝐼 −  Pauling ∣)

∑( Catmult 1
𝑇 ⋅ 𝑤1

𝑇)

Δcrystal =
∑( Catmult 1

𝑇 ⋅ 𝑤1
𝑇 ⋅∣ 𝐼 −  BVtable 1

𝑇 ∣)

∑( Catmult 1
𝑇 ⋅ 𝑤1

𝑇)

 

Polyhedral versions (Gagné and Hawthorne 2020): 

 

Δtopo_poly_gagne (𝑗) =
∑(multiPoly ⋅ |𝐼Poly − PaulingPoly |)

𝑛coord 

Δcrystal_poly_gagne (𝑗) =
∑(multiPoly ⋅ |𝐼Poly − BVtablePoly |)

𝑛coord 

 

These indices, not being physical observables, don’t require specific scaling—what matters is 

quantifying deviations from theoretical regularity. Consistency in operation order, as in the BSI 

formula, ensures normalization and comparability, and this is the reason we prefer our versions 

of the equations over the formulations provided in Gagné & Hawthorne (2020). 

APPENDIX 1M. Bosi and Lucchesi (2004) method 

Bosi and Lucchesi (2004) method to obtain mean local bond lengths in tourmaline Local 

Mean bond lengths for the elements were obtained from a database of optimised tourmaline 

structures by Bosi & Lucchesi (2004). Mean local bond length for T, Y and Z sites were 

calculated as functions of site fractions Xi and local mean bond lengths: 
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⟨𝑍 − 0⟩ calc = Σ𝑋i⟨𝑍 − 0⟩i
⟨𝑌 − 0⟩ calc = Σ𝑋i⟨𝑌 − 0⟩i
⟨𝑇 − 0⟩ calc = Σ𝑋i⟨𝑇 − 0⟩i

 

Observed mean bond lengths: 

⟨𝑍 − 𝑂⟩𝑜𝑏𝑠 = (𝑍𝑂3 + 𝑍𝑂6 + 𝑍𝑂7𝐷 + 𝑍𝑂7𝐸 + 𝑍𝑂8 + 𝑍𝑂8𝐸)/6
⟨𝑌 − O⟩𝑜𝑏𝑠 = (𝑌OI + 2 ⋅ 𝑌O2 + 𝑌O3 + 2 ⋅ 𝑌O6)/6
⟨𝑇 − O⟩𝑜𝑏𝑠 = (𝑇O4 + 𝑇O5 + 𝑇O6 + 𝑇O7)/4

  

The O6 site was chosen as a reference for bond length calculations due to its shared connectivity 

with Z-, Y-, and T-sites, standardizing measurements and reducing errors from positional shifts 

caused by variable fractional coordinates in tourmaline, ensuring consistent accuracy. The bond 

lengths were calculated using the general formula for the distance between two points in a 3D 

space: 

𝑑2 = 𝑎2(𝑥1 − 𝑥2)
2 + 𝑏2(𝑦1 − 𝑦2)

2 + 𝑐2(𝑧1 − 𝑧2)
2 + 2𝑎𝑏 cos(𝛾) (𝑥1 − 𝑥2)(𝑦1 − 𝑦2) +

2𝑎𝑐 cos(𝛽) (𝑥1 − 𝑥2)(𝑧1 − 𝑧2) + 2𝑏𝑐 cos (𝛼)(𝑦1 − 𝑦2)(𝑧1 − 𝑧2)  

Which simplifies in the hexagonal system since a=b, α=β=90∘, and γ=120∘ to: 

𝑑2 = 𝑎2[(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 − (𝑥1 − 𝑥2)(𝑦1 − 𝑦2)] + 𝑐
2(𝑧1 − 𝑧2)

2.  

This equation derived the specific bond lengths between cation sites and O6, such as the Z-O6 

bond length: 

(𝑍𝑂6)
2 = 𝑎2[(𝑥𝑍 − 𝑥𝑂6)

2 + (𝑦𝑍 − 𝑦𝑂6)
2 − (𝑥𝑍 − 𝑥𝑂6)(𝑦𝑍 − 𝑦𝑂6)] + 𝑐

2(𝑧𝑍 − 𝑧𝑂6)
2.  

For Y-O6: 

(𝑌𝑂6)
2 = 𝑎2 [(𝑥𝑌 − 𝑥𝑂6)

2 + (
1

2
𝑥𝑌 − 𝑦𝑂6)

2

− (𝑥𝑌 − 𝑥𝑂6) (
1

2
𝑥𝑌 − 𝑦𝑂6)] + 𝑐

2(𝑧𝑌 − 𝑧𝑂6)
2  

The factor  
1

2
𝑥𝑌 arises from Y sharing its y-coordinate with two O6 anions due to symmetry.  

For T-O6: 
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(𝑇𝑂6)
2 = 𝑎2[(𝑥𝑇 − 𝑥𝑂6)

2 + (𝑦𝑇 − 𝑦𝑂6)
2 − (𝑥𝑇 − 𝑥𝑂6)(𝑦𝑇 − 𝑦𝑂6)] + 𝑐

2(𝑧𝑇  − 𝑧𝑂6)
2 

Simplifying by fixing the z-coordinates  𝑧𝑍, and 𝑧𝑌 and  𝑧𝑇 (=1) reduces non-linear 

dependencies. Although these fractional coordinates can vary in tourmaline, this approach 

simplifies the bond length equations. Defining: 

𝑍𝑍𝑍 = [(𝑥Z − 𝑥O6)
2 + (𝑦Z − 𝑦O6)

2 − (𝑥Z − 𝑥O6)(𝑦Z − 𝑦O6)]

𝑌𝑌𝑌 = [(𝑥Y − 𝑥O6)
2 + (1/2𝑥Y − 𝑦O6)

2 − (𝑥Y − 𝑥O6)(1/2𝑥Y − 𝑦O6)]

𝑇𝑇𝑇 = [(𝑥T − 𝑥O6)
2 + (𝑦T − 𝑦O6)

2 − (𝑥T − 𝑥O6)(𝑦T − 𝑦O6)]
𝑆Z = 𝑍O3 + 𝑍O7D + 𝑍O7E + 𝑍O8 + 𝑍O8E
𝑆𝑌 = 1/2(𝑌O1) + 𝑌O2 + 1/2(𝑌O3)
𝑆𝑇 = 𝑇O4 + 𝑇O5 + 𝑇O7

 

the equations for ⟨𝑍 − 𝑂⟩𝑜𝑏𝑠, ⟨𝑌 − 𝑂⟩𝑜𝑏𝑠, ⟨𝑇 − 𝑂⟩𝑜𝑏𝑠 can be rewritten as functions of lattice 

parameters a, c, and the fractional coordinate zO6.  

(𝑍𝑍𝑍)𝑎2 + (𝑧𝑍 − 𝑧𝑂6)
2𝑐2 = [6 < 𝑍 − 𝑂 > 𝑜𝑏𝑠 − (𝑆𝑍)]2 

(𝑌𝑌𝑌)𝑎2 + (𝑧𝑌 − 𝑧𝑂6)
2𝑐2 = [3 < 𝑌 − O > 𝑜𝑏𝑠 − (𝑆𝑌)]2 

(𝑇𝑇𝑇)𝑎2 + (1 − 𝑧O6)
2𝑐2 = [4⟨𝑇 − O⟩ 𝑜𝑏𝑠 − (𝑆𝑇)]2 

Fixing 𝑧𝑍, 𝑧𝑌, and 𝑧𝑇= simplifies mean bond length equations by reducing complex quadratic 

terms to linear relationships in terms of a, c, and zO6. This allows for solving using linear 

methods instead of non-linear optimisation.  This system of three equation with three unknown 

(a, c, zO6) can be solved to get equation for a, c and ZO6 expressed in terms of ⟨𝑇 −

O⟩𝑜𝑏𝑠, ⟨𝑌 − O⟩𝑜𝑏𝑠 and ⟨𝑍 − O⟩obs see long expressions in the Appendix of Bosi & Lucchesi 

(2004). 

The equations for a, c, and zO6 can now also be solved using the calculated ⟨𝑇 − O⟩𝑐𝑎𝑙𝑐,  ⟨𝑌 −

O⟩𝑐𝑎𝑙𝑐, and ⟨𝑍 − O⟩𝑐𝑎𝑙𝑐 , derived from site fractions and local bond lengths ⟨𝑇 − O⟩i  , ⟨𝑌 −

O⟩i and ⟨𝑍 − O⟩i. Initial values for these local bond lengths are based on the Shannon (1976) 

ionic radii. The optimisation adjusts these local bond lengths until the calculated a, c, and zO6 

match the observed values by minimizing the objective function  
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G(𝑋𝑖, 𝐷𝑖) =
∑F(𝑋𝑖)

 (number samples) 
 

In this objective function the Xi are fixed?. Simultaneous optimisation of mean bond lengths, 

unit cell parameters, and zO6 was necessary as direct multiple linear regression of the local mean 

bond lengths per elements using only site fractions and mean bond lengths does not maintain 

required symmetry constraints. 

Appendix 1N. A-priory bond lengths 

These tables present the range of a-priori bond lengths for cations at the X, Y, Z, and T sites in 

nomenclature tourmaline endmembers, calculated using bond valence methods. Each range 

reflects how variations in local coordination and neighboring site occupancy affect ideal bond 

lengths under full site occupancy. For each element, the tables list the minimum and maximum 

bond lengths, the total range, and the endmembers defining these extremes. Variability is largest 

for larger, more polarizable cations (e.g., Na, Ca, Mg) and smallest for rigidly bonded cations 

like Al and Si. 

Table A1N.1. A-priory bond length of LRO endmembers. 

 

Table 1. X  Site Bond Length Ranges (Full Occupancy) 

Element 
Bond Length 

Range 

Differ

ence 
Tourmalines Contributing to the Range 

Tourmaline with 

Minimum Bond 

Length 

Tourmaline with 

Maximum Bond Length 

Ca 
2.5306 - 

2.5564 

0.025

8 

[Ca][Fe]₃[Mg₁/₆Al₅/₆]₆[Si]₆[OH]₃[OH], 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[F], 

[Ca][Mg]₃[Al]₆[Si]₆[OH]₃[O], 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[OH] 

[Ca][Fe]₃[Al]₆[Si₅/₆Al₁

/₆]₆[OH]₃[OH] 

[Ca][Fe]₃[Al]₆[Si]₆[OH]₃[O

] 

Na 
2.6224 - 

2.6699 

0.047

5 

[Na][Fe₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Al]₃[Al]₆[Si₄/₆B₂/₆]₆[OH]₃[O], 

[Na][Fef]₃[Al₄/₆Fe₂/₆]₆[Si]₆[OH]₃[O], 

[Na][Fef]₃[Al]₆[Si]₆[O]₃[F], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[F], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[F], 

[Na][Fef]₃[Al₄/₆Mg₂/₆]

₆[Si]₆[OH]₃[O] 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[

OH] 
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Element 
Bond Length 

Range 

Differ

ence 
Tourmalines Contributing to the Range 

Tourmaline with 

Minimum Bond 

Length 

Tourmaline with 

Maximum Bond Length 

[Na][Mg₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Al]₃[Al]₆[Si]₆[O]₃[OH], 

[Na][Al₂/₃Mg₁/₃]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[

O], [Na][Fe₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Fef]₃[Fef₄/₆Mg₂/₆]₆[Si]₆[OH]₃[O], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[OH] 

 

Table 2. Y Site Bond Length Ranges (Full Occupancy) 

Eleme

nt 

Bond 

Lengt

h 

Range 

Differen

ce 

Tourmalines Contributing to the 

Range 

Tourmaline with Minimum 

Bond Length 

Tourmaline with Maximum 

Bond Length 

Al 

1.913

6 - 

1.914 

0.0004 

[V][Al]₃[Al]₆[Si₅/₆Al₁/₆]₆[OH]₃[O], 

[Na][Al]₃[Al]₆[Si]₆[O]₃[OH], 

[Na][Al]₃[Al]₆[Si₄/₆B₂/₆]₆[OH]₃[O] 

[Na][Al]₃[Al]₆[Si₄/₆B₂/₆]₆[OH]₃[

O] 
[Na][Al]₃[Al]₆[Si]₆[O]₃[OH] 

Fe 

2.146

3 - 

2.193

8 

0.0475 

[Ca][Fe]₃[Al]₆[Si₅/₆Al₁/₆]₆[OH]₃[O

H], 

[Ca][Fe]₃[Mg₁/₆Al₅/₆]₆[Si]₆[OH]₃[

OH], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[OH], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[F] 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[F] [Ca][Fe]₃[Al]₆[Si]₆[OH]₃[O] 

Fef 

2.009

8 - 

2.020

8 

0.0110 

[Na][Fef]₃[Al₄/₆Fe₂/₆]₆[Si]₆[OH]₃[

O], 

[Na][Fef]₃[Fef₄/₆Mg₂/₆]₆[Si]₆[OH]₃

[O], [Na][Fef]₃[Al]₆[Si]₆[O]₃[F] 

[Na][Fef]₃[Al]₆[Si]₆[O]₃[F] 
[Na][Fef]₃[Al₄/₆Mg₂/₆]₆[Si]₆[OH]

₃[O] 

Mg 

2.081

9 - 

2.139

1 

0.0572 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[OH], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[F], 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[

OH], 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[

F], [Ca][Mg]₃[Al]₆[Si]₆[OH]₃[O] 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH

]₃[F] 
[Ca][Mg]₃[Al]₆[Si]₆[OH]₃[O] 
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Table 3. Z Site Bond Length Ranges (Full Occupancy) 

Elemen

t 

Bond 

Lengt

h 

Range 

Differenc

e 

Tourmalines Contributing to the 

Range 

Tourmaline with 

Minimum Bond Length 

Tourmaline with Maximum 

Bond Length 

Al 

1.9059 

- 

1.9096 

0.0037 

[Ca][Fe]₃[Al]₆[Si₅/₆Al₁/₆]₆[OH]₃[OH

], [V][Al]₃[Al]₆[Si₅/₆Al₁/₆]₆[OH]₃[O], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[OH], 

[Na][Fe₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Fef]₃[Al]₆[Si]₆[O]₃[F], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[F], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[F], 

[V][Fe₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[OH], 

[Na][Mg₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O], 

[V][Mg₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[OH

], [Ca][Mg]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Al]₃[Al]₆[Si]₆[O]₃[OH], 

[V][Fe₁/₃Al₂/₃]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Fe₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[OH] 

[Ca][Fe]₃[Al]₆[Si]₆[OH]₃[O

] 

[Na][Al]₃[Al]₆[Si₄/₆B₂/₆]₆[OH]₃[O

] 

 

Table 4. T Site Bond Length Ranges (Full Occupancy) 

Eleme

nt 

Bond 

Length 

Range 

Differ

ence 

Tourmalines Contributing to the 

Range 

Tourmaline with Minimum 

Bond Length 

Tourmaline with Maximum 

Bond Length 

Si 
1.6193 - 

1.6254 

0.006

1 

[Na][Fef]₃[Al₄/₆Mg₂/₆]₆[Si]₆[OH]₃[

O], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[OH], 

[Na][Fe₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O]

, 

[Na][Fef]₃[Al₄/₆Fe₂/₆]₆[Si]₆[OH]₃[O

], [Na][Fef]₃[Al]₆[Si]₆[O]₃[F], 

[Na][Mg]₃[Al]₆[Si]₆[OH]₃[F], 

[Na][Fe]₃[Al]₆[Si]₆[OH]₃[F], 

[V][Fe₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[

OH] 

[Ca][Fe]₃[Mg₁/₆Al₅/₆]₆[Si]₆[OH]

₃[OH] 
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Eleme

nt 

Bond 

Length 

Range 

Differ

ence 

Tourmalines Contributing to the 

Range 

Tourmaline with Minimum 

Bond Length 

Tourmaline with Maximum 

Bond Length 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[

F], [Ca][Fe]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Mg₅/₆Ti₁/₆]₃[Al]₆[Si]₆[OH]₃[O

], 

[V][Mg₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[O

H], [Ca][Mg]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Al]₃[Al]₆[Si]₆[O]₃[OH], 

[Na][Al₂/₃Mg₁/₃]₃[Al₅/₆Mg₁/₆]₆[Si]₆

[OH]₃[O], 

[V][Fe₁/₃Al₂/₃]₃[Al]₆[Si]₆[OH]₃[O], 

[Na][Fe₂/₃Al₁/₃]₃[Al]₆[Si]₆[OH]₃[O]

, 

[Na][Fef]₃[Fef₄/₆Mg₂/₆]₆[Si]₆[OH]₃[

O], [Na][Fe]₃[Al]₆[Si]₆[OH]₃[OH], 

[Ca][Mg]₃[Al₅/₆Mg₁/₆]₆[Si]₆[OH]₃[

OH] 
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Appendix 2A. Endmember fraction Box and Violin plots 

TRAINING SET FIGURES 

Bulk compositional model 
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Figure 2A.1. Bulk compositional model training set endmember fractions 

 

Figure 2A.2. Violin plots showing the distributions of the bulk compositional model training set 

endmember fractions 

 

Speciation model 
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Figure 2A.3 Speciation model training set endmember fractions 



470 
 

 

Figure 2A.4. Violin plots showing the distributions of the speciation model training set endmember 

fractions 

 

TEST SET FIGURES 

Bulk compositional model 
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Figure 2A.5. Bulk compositional model test set endmember fractions 

 

Figure 2A.6. Violin plots showing the distributions of the bulk composition model test set 

endmember fractions. 

Speciation model. 
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Figure 2A.7. Speciation model test set endmember fractions. 

 

 

Figure 2A.8. Violin plots showing the distributions of the speciation model test set endmember 

fractions. 

APPENDIX. COMBINED DATASET 

Bulk compositional model 
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Figure 2A.9. Bulk composition model combined dataset endmember fractions. 

 

 

Figure 2A.10. Violin plots showing the distributions of the bulk compositional model combined 

dataset endmember fractions. 

Speciation model 
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Figure 2A.11. Speciation model combined dataset endmember fractions. 

 

 

Figure 2A.12. Violin plots showing the distributions of the speciation model combined dataset 

endmember fractions. 
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Appendix 2B. Details of regression methods 

We examine advanced regression methods, or supervised learners, each defined by distinct complexity-

reducing assumptions, numerical techniques, and their balance between bias (underfitting) and variance 

(overfitting). 

Ordinary Least Squares (OLS) OLS models systems with a global linear function Y= XT β + ε, 

capturing relationships among predictors and responses (Hastie et al. 2017). If the predictors (X) have 

constraints, such as summing to a constant, all values cannot be zero, rendering the intercept—

representing Y when all predictors are zero—physically meaningless. OLS has low variance, potentially 

high bias, and generalizes well but risks underfitting (Hastie et al. 2017). OLS find coefficients 𝛽̂ls by 

minimizing the squared difference, RSS (𝛽̂ls) = (𝐲 − 𝐗𝛽̂ls)𝑇(𝐲 − 𝐗𝛽̂ls) (Hastie et al. 2017). 

Differentiating RSS(𝛽̂ls) with respect to 𝛽̂ls and setting it to zero yields the normal equation 𝛽̂ls =

(𝑋𝑇𝑋)−1𝑋𝑇𝑦  (Hastie et al. 2017). Solving the matrix inversion in the normal equation employs different 

techniques based on X's characteristics: LU decomposition for square full-rank matrices, QR for 

rectangular or near-singular matrices, and SVD decomposition 𝛽̂ls= VΣ−1UTy with [𝑈, Σ, 𝑉] = svd([𝑋])  

for improved numerical stability in ill-conditioned or near-singular cases (Trefethen and Bau 2022) . The 

fitted values are 𝐲̂ = 𝐗𝛽̂ls = H y, where the hat matrix 𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇computes the orthogonal 

projection of y onto the column space of X (Hastie et al. 2017). The diagonal elements of H, known as 

leverage scores, quantify each observation's influence on the fitted values. 

OLS requires linearity in parameters, a full-rank, non-singular, positive-definite design matrix for a 

unique solution, and uncorrelated, homoscedastic, Gaussian residuals for valid inference (Freedman 

2009). Proper model specification, including avoiding omitted variables and measurement errors in 

predictors, ensures unbiased estimates (Freedman 2009). Nonorthogonal predictors due to the narrow 

subspace collection lead to multicollinearity, which introduces correlation among regression coefficients, 

making it difficult to attribute changes in the thermodynamic property to specific endmembers (Hastie et 

al. 2017). Violations such as multicollinearity, heteroscedasticity, or correlated residuals destabilize 

estimates and compromise inference. The solution provided is valid only within the complexity-reducing 

constraints assumed (Hastie et al. 2017). 

The variance-covariance matrix of regression parameters is Var (𝛽̂lŝ) = (𝐗𝑇𝐗)−1𝜎2, assuming constant 

σ2, estimated as 𝜎̂2 =
1

𝑁−𝑝−1
∑  𝑁
𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)

2 (Wurm 2021), where n and p are the number of 

observations and parameters. OLS assumptions enable inference, such as hypothesis testing and 
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confidence intervals. The F-statistic tests the significance of coefficient groups by measuring the change 

in residual sum of squares per added parameter, normalised by variance (Hastie et al. 2017). 

Weighted Least Squares (WLS) WLS extends LS to handle heteroscedasticity by weighting y inversely 

to its variances, assuming no deviations in X (WX = 0) and no correlations between X and y (WXy = 

0)(NCSS 2023). The solution is: 𝛽̂wls = (𝑋𝑇W𝑦
−1𝑋)−1𝑋𝑇𝑊𝑦

−1𝑦 where Wy is the diagonal variance 

matrix of y (NCSS 2023). WLS minimises the weighted sum of squared residuals.  

Total Least Squares (TLS) TLS is a globally fitting method for linear equations that accounts for 

measurement uncertainties in all variables (Markovsky and Van Huffel 2007). TLS minimises the 

perpendicular distances between data points and the regression hyperplane, assuming equal variances in X 

and y. The solution is derived via singular value decomposition (SVD) on the combined matrix [X, y], 

i.e., [𝑈, Σ, 𝑉] = svd([𝑋, 𝑦]):     

[𝑿    𝒚] = [𝑼𝑝    𝒖𝑞] [
𝚺𝑝    

    𝜎𝑞
] [
𝑽𝑝𝑝    𝒗𝑝𝑞
𝒗𝑞𝑝    𝑣𝑞𝑞

]
⊤

 

(Gavin 2025). Here Up and Vpp are N×p and p×p orthogonal matrices, where N is the number of 

observations and p the number of regression coefficients. The columns of U span the column space of 

[X,y], representing directions of maximum variance in observations, while the columns of V span the row 

space representing variance in variables. Σ is a (p+1)-dimensional diagonal matrix, with singular values 

σ1≥ σ2≥ σq≥0  of the matrix [𝑿   𝒚] (Gavin 2025). All other values are scalars associated with the 

augmentation by y. The closest rank-n approximation to [𝑿   𝒚], defined as [𝑿   𝒚] + [𝑿̃   𝒚̃], minimises 

the Frobenius norm of the residuals and modifies [𝑿   𝒚] such that the smallest singular value becomes 0, 

while preserving the original singular vectors from the SVD: 

[𝑿 + 𝑿̃, 𝒚 + 𝒚̃] = [𝑼𝑝    𝒖𝑞] [
𝚺𝑝    

    0
] [
𝑽𝑝𝑝    𝒗𝑝𝑞
𝒗𝑞𝑝    𝑣𝑞𝑞

]
⊤

. 

(Gavin 2025). By rearranging and simplifying this rank-n approximation, the TLS solution is derived by 

utilising the smallest principal components from the V matrix as: 

𝛽̂tls = −𝑣pq𝑣𝑞𝑞
−1 

where vpq represents the first n elements, and vqq is the (n+1)-th element of the last column of the right 

singular vector matrix V (Gavin 2025). The covariance matrices of the regression coefficients are 
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calculated by mse* (XTX- σ2
n+1 I)-1 with σn+1, the smallest singular value of augmented matrix [X, 𝒚] 

(Wurm 2021). 

The predicted values ŷTLS for the training dataset are calculated as ŷTLS = [𝑿 + 𝑿̃ ] 𝛽̂tls, requiring both 𝛽̂tls 

and the perturbations 𝑿̃ in the endmember fractions (Gavin 2025). Since the TLS solution is based on a 

perturbed basis, 𝛽̂tls cannot be directly compared to OLS coefficients, complicating its application to 

parameterized functional forms where predictions are needed at fixed new X. Formally, TLS cannot 

predict ŷ for new X (Gavin 2025). However, when perturbations 𝑿̃  are minimal, TLS regression 

coefficients can be applied within an OLS-based predictive model. This only works when the units of 

the predictors are higher than the units of the predictors as one problem with TLS estimates is 

that they depend on the units in which variables are measured. This does make the method 

success depend on the choose of units. The method does give more flexibility to fitting however 

how flexible should it be? 

Scaled Total Least Squares (scaled-TLS) extends TLS by allowing different variances for X and y while 

assuming homoscedasticity within each (Wurm 2021).  

Generalized Total Least Squares (GTLS) GTLS assumes a fixed covariance matrix for all regression 

coefficients or observations, acting as a covariance-weighted TLS, see Wurms (2021) and references 

therein. Row (PC) and column (PR) correlation matrices can be used for weighting . Using Cholesky 

factorization, GTLS is reformulated into an ordinary TLS problem for solution: 

𝐶𝐶
T𝐶𝐶 = 𝑃𝐶           𝐶𝑅

T𝐶𝑅 = 𝑃𝑅 

, the GTLS weight matrices, WC = CC
-1 (column) and WR = CR

-1 (row), convert the GTLS problem into a 

weighted TLS problem solvable via SVD (Rhode et al. 2014; Wurm 2021). 

𝛽̂tls′ = tls (𝑾𝑹
T[𝑿, 𝒚]𝑾𝑪) 

The final regression coefficients are derived by rescaling the weighted TLS solution (Wurm 2021): 

 

𝛽̂gtls = gtls([𝑋, 𝑦], 𝑃𝐶 , 𝑃𝑅) =
𝑊𝐶11𝛽̂

tls′ −𝑊𝐶12
𝑊𝐶22

. 
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Where the WC11, WC12 and WC22 are obtained from  𝑾𝐶 = (
𝑛 1

𝑾𝐶11 𝑾𝐶12

𝟎 𝑾𝐶22

)
𝑛
1

 

the covariance matrix of the regression coefficient is calculated using 

 𝚺𝒙,gtls([𝑋, 𝒚]) =
𝑾𝐶11⋅𝚺𝑥,tls(𝑊𝑅

T[𝑋,𝑦]𝑊𝐶)⋅𝑾𝐶11
T

𝑾𝐶22
2  (Rhode et al. 2014; Wurm 2021). 

 

Iteratively Reweighted Least Squares (Robust regression) We performed robust regressions using 

MATLAB 2022a’s robustfit to assess outlier influence, using weight functions based on residuals to 

reduce their impact (Huber 1981; “Matlab” 2022): 

Table 2B.1. Weight functions used by the robustfit algorithm in Matlab2022a. 

Weight 

Function Equation 

Tuning 

Constant 

Description 

andrews 
𝑤 = (|𝑟| < 𝜋) ⋅

sin (𝑟)

𝑟
 

1.339 

Zero weight for residuals outside [−𝜋, 𝜋]; weights 

decrease smoothly as the residual grows, using a 

sine function 

bisquare 𝑤 = (∣ 𝑟 ∣< 1) ⋅ (1 − 𝑟2)2  4.685 

Reduces weight with increasing r2 (a.k.a. 

biweights). Decreases sharply to zero beyond a 

cutoff. 

cauchy 
𝑤 =

1

1 + 𝑟2
 

2.385 

Slowly reduces weight inversely proportional to 

the square; always assigns nonzero influence to 

outliers 
 

fair 
𝑤 =

1

1+∣ 𝑟 ∣
 

1.400 

Reduces weight inversely to the absolute residual 

huber 
𝑤 =

1

max (1, ∣ 𝑟 ∣)
 

1.345 

Full weight for small residuals; linear decrease for 

large residuals 

logistic 
𝑤 =

tanh (𝑟)

𝑟
 

1.205 

Smooth logistic reduction in weight as residual 

increases 

talwar 𝑤 = 1 × (∣ 𝑟 ∣< 1) 2.795 Full weight below a threshold, zero beyond 

welsch 𝑤 = exp (−𝑟2) 2.985 

Exponential weight reduction; diminishes outlier 

influence without exclusion 
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The tuning constant defines the cutoff for reducing weights on outliers, balancing robustness against 

sensitivity and ensuring inliers retain influence. Regression coefficients are initialized using OLS to 

calculate starting residuals (“Matlab” 2022). In iterative WLS, weights are updated based on residual 

size—smaller residuals receive higher weights, while larger ones contribute less (Huber 1981). 

Coefficients and residuals are recalculated at each step until convergence, indicated by minimal changes 

in coefficients. 

York regression The York et al. (2004) regression method, widely used in geochronology (e.g., Isoplot 

(Ludwig 1991; Vermeesch 2018)), is a 2D iterative reweighted least squares (IRLS) method for errors-in-

variables regression, providing an alternative to total least squares (TLS). Unlike TLS, York minimises a 

weighted vertical residual loss function (York 1966): 

𝜒2 =∑ 

𝑛

𝑖=1

𝑊𝑖(𝑌𝑖 − 𝑏𝑋𝑖 − 𝑎)
2 

where Wi is the weight (York et al. 2004): 

𝑊𝑖 =
𝜔(𝑋𝑖)𝜔(𝑌𝑖)

𝜔(𝑋𝑖) + 𝑏
2𝜔(𝑌𝑖) − 2𝑏𝑟𝑖√𝜔(𝑋𝑖)𝜔(𝑌𝑖)

. 

Here, 𝜔(𝑋𝑖) and 𝜔(𝑌𝑖) are inverses of variances, and ri is the correlation coefficient. Starting with an 

OLS estimate of the slope b, the method iteratively updates weights and recalculates the regression 

coefficients until convergence. Weighted means of X and Y (𝑋̅ =
∑  𝑛
𝑖=1𝑊𝑖𝑋𝑖
∑  𝑛
𝑖=1𝑊𝑖

  and 𝑌̅ =
∑  𝑛
𝑖=1𝑊𝑖𝑌𝑖

∑  𝑛
𝑖=1𝑊𝑖

) are 

computed (York et al. 2004). These weighted means are subtracted from the actual values in order 

to normalize them 𝑉𝑖 = 𝑌𝑖 − 𝑌̅  , and 𝑈𝑖 = 𝑋𝑖 − 𝑋̅. The Wi, Ui, Vi are used to calculate 𝛽𝑖 = 

𝑊𝑖 [
𝑈𝑖

𝜔(𝑌𝑖)
+

𝑏𝑉𝑖

𝜔(𝑋𝑖)
− (𝑏𝑈𝑖 + 𝑉𝑖)

𝑟𝑖

𝛼𝑖
] and these parameters combined are used to calculate the 

weighted sums necessary to obtain an improved estimate of regression coefficient b (York et al. 

2004): 

𝑏 =
∑𝑊𝑖𝛽𝑖𝑉𝑖
∑𝑊𝑖𝛽𝑖𝑈𝑖

, 𝑎 = 𝑌̅ − 𝑏𝑋̅, 

Then for each Xi and Yi we can calculate the least square adjusted values xi and yi with 𝑥𝑖 = 𝑋̅ + 𝛽𝑖 and 

𝑦𝑖 = 𝑌̅ + 𝑏𝛽𝑖. The adjusted xi are used together with Wi to calculate the weighted  𝑥̅ = 
∑𝑊𝑖𝑥𝑖

∑𝑊𝑖
 and ui = xi - 
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𝑥̅, which are the parameters needed to calculate the uncertainties of the regression coefficients (York et al. 

2004): 

𝜎𝑏
2 =

1

∑𝑊𝑖𝑢𝑖
2 

𝜎𝑎
2 =

1

∑𝑊𝑖
+ 𝑥2⃗⃗⃗⃗ 𝜎𝑏

2, 

One assumption of York method is that the uncertainties in x and y are normally distributed 

(York et al. 2004). Goodness-of-fit is assessed using reduced 𝜒2 (a.k.a. Mean Square of the Weighted 

Deviates; MSWD) (Wendt and Carl 1991): 

𝜒𝜈
2 =

𝜒2

𝑛 − 2
=
∑𝑊𝑖(𝑌𝑖 − 𝑏𝑋𝑖 − 𝑎)

2

𝑛 − 2
. 

If weighted residuals follow a 𝜒2 distribution, 𝜒2 equals the degrees of freedom (ν=n−p) on 

average, so 𝜒𝜈
2≈1 for an ideal fit (Wendt and Carl 1991); 𝜒𝜈

2>1 indicates underestimated 

uncertainties or poor fit, while 𝜒𝜈
2<1 suggests overestimated uncertainties or overfitting. The 

confidence interval 𝜒𝜈
2 > 1 + 2√2/𝑓, 𝑃 < 0.05. Wendt and Carl (1991), accounts for statistical 

variability in 𝜒𝜈
2, permitting slightly higher thresholds for small df with values beyond this 

indicating a poor fit or underestimated uncertainty. The York method retains compatibility with 

conventional WLS metrics, simplifying posterior regression diagnostics. 

Regression Diagnostics WLS to use for York regression 

PRESS The sum of squares of predictions (PRESS) is computed via leave-one-out cross-

validation for York regression fits on both training and test datasets (Quenouille 1956). For a 

dataset with n observations, each observation is excluded one by one, and a regression equation 

is built using the remaining n−1 observations to predict the omitted response. The PRESS 

residual is the difference between the actual and predicted values, calculated as (NCSS 2023): 

PRESS =∑ 

𝑛

𝑖=1

𝑤𝑗(𝑦𝑖 − 𝑦̂𝑖(𝑖))
2
. 

Smaller PRESS indicates better generalisation and model robustness.  
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Residual Analysis Residual analysis identified leverage and poorly represented samples using 

these metrics, See NCSS (2023) for details: 

𝐇 = 𝐗col(𝐗col
′ 𝐖𝐗col)

−1𝐗col
′ 𝐖 

DFFITS𝑗 =
𝑦̂𝑗 − 𝑦̂𝑗(𝑗)

𝑠(𝑗)√ℎ𝑗𝑗
 

𝐶𝑜𝑜𝑘 𝐷𝑗 =
∑  𝑁
𝑖=1 𝑤𝑗[𝑦̂𝑗 − 𝑦̂𝑗(𝑗)]

2

𝑝𝑠2
 

 CovRatio 𝑗 =
det[𝑐𝑜𝑣(𝛽(𝑗))]

det[𝑐𝑜𝑣(𝛽) ]
 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑘𝑗 =
𝛽𝑘 − 𝛽𝑘(𝑗)

𝑠(𝑗)√(𝐗′𝐖𝐗)−1
 

Here, (j) indicates the York fit without observation j. H measures the weighted leverage of each 

sample on the regression model, DFFITS quantifies the change in an observation's predicted 

value when it is omitted, Cook’s D assesses the impact of omitting a sample on all predicted 

values, CovRatio evaluates changes in the covariance matrix of regression coefficients when a 

sample is omitted, and DFBETAS indicates the influence of a sample on individual regression 

coefficients k when excluded j (NCSS 2023). These statistics were normalised (subtracting the 

median and dividing by the MAD) to identify outliers, visualized via a heatmap highlighting 

influential samples, revealing composition-dependent biases in the training and test datasets in 

the selfwritten Matlab scripts. 
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Appendix 2C. OLS Regression Analysis 

Table 2C.1 X(YZ)9SixAl(1-x)(VW)4 model without interaction parameters. 

Table 0. Descriptive Statistics. 

 

Variable Count 
Standard  

Deviation 
Mean Minimum Maximum 

srlB 52 0.1437 0.2666 -0.2376 0.6829 

drvB 52 0.2537 0.2416 -0.2054 0.6935 

uvtB 52 0.0028 0.2347 -0.6961 0.8989 

foiB 52 0.1251 0.2416 -0.7191 0.5411 

oleB 52 0.0566 0.1513 -0.2647 0.3046 

fluvtB 52 0.2409 0.2216 0.0026 0.8569 

buB 52 0.0882 0.1337 0.0000 0.8047 

mdtwB 52 0.0396 0.0302 0.0000 0.1410 

aorsmB 52 0.0495 0.2121 -0.2382 0.7940 

Molar Volume (J/mol/bar) 52 0.1621 31.84 31.51 32.24 

Table 1. Model Fit Statistics. 

 

Sample Size R² Mean Square Error (MSE) Square Root of MSE Average Percent Error R²Press Residual Normality 

52 1 0.0048 0.069 0.136 0.65 Not Normal 

Table 2. Regression Coefficients.  

 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srlB 32.2600 0.0755 32.1078 32.4123 

drvB 31.9559 0.0636 31.8275 32.0842 

uvtB 32.1924 0.0536 32.0844 32.3004 

foiB 31.8305 0.1249 31.5787 32.0823 

oleB 30.7905 0.1929 30.4014 31.1795 

fluvtB 31.9544 0.0437 31.8663 32.0425 

buB 31.9170 0.0950 31.7254 32.1086 

mdtwB 31.5006 0.3739 30.7466 32.2545 

aorsmB 30.7689 0.1237 30.5195 31.0183 

Table 3. Correlations Between Endmember Volumes. 

 

Endmember Pair Correlation Coefficient 

srlB and drvB -0.83 

oleB and srlB -0.69 

drvB and oleB 0.68 

foiB and oleB 0.83 

aorsmB and srlB 0.75 

aorsmB and drvB -0.68 

aorsmB and foiB -0.86 

aorsmB and oleB -0.75 

Table 4. Multicollinearity VIF Factors. 

 

Endmember VIF Factor 
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Endmember VIF Factor 

foiB 9.78 

oleB 9.16 

aorsmB 7.39 

Table 5. Residual Analysis. 

 

Observation Residual Hat Diagonal (h) Cook's D DFFITS CovRatio 

tm164 -0.27 - 0.29 -2.11 2.02 

tm24 0.12 - - - - 

tm25 0.11 - - - - 

tm28 0.11 - - - - 

tm29 -0.12 - 0.17 -1.28 - 

tm156B - 0.39 - - 2.02 

tm43 - 0.30 - - - 

tm64 - 0.94 3.96 -6.05 15.07 

tm183 - 0.35 - - - 

oxyuvite - 0.48 - - 2.31 

uvit - 0.39 - - - 

Table 6. DFBETAS (>0.28). 

 

Observation Affected Variables 

tm164 drvB, uvtB, foiB, fluvtB (strong), buB, aorsmB 

tm1 foiB 

tm171 fluvtB 

tm64 All except fluvtB 

tm166 fluvtB 

tm183 srlB, mdtwB 

tm25 mdtwB 

tm28 foiB 

tm29 srlB, foiB (strong), oleB 

tm39 uvtB, oleB, fluvtB, buB 

 

OLS REGRESSION ANALYSIS. 

Table 2C.2  X(YZ)9SixAl(1-x)(VW)4 model with interaction parameters. 

Table 1. Model Fit Statistics. 

Sample Size R² Mean Square Error (MSE) Square Root of MSE Average Percent Error R²Press Residual Normality 

52 1 0.0039 0.0625 0.123 0.66 Normal 

Table 2. Regression Coefficients. 

 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srlB 32.2057 0.0707 32.063 32.3484 

drvB 32.1520 0.0852 31.9799 32.3242 

uvtB 32.1098 0.0622 31.9842 32.2353 

foiB 31.7031 0.1283 31.4439 31.9623 

oleB 30.5885 0.1923 30.2002 30.9768 
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Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

fluvtB 32.1204 0.0921 31.9344 32.3065 

buB 31.7374 0.1267 31.4816 31.9933 

mdtwB 31.7992 0.3555 31.0812 32.5172 

aorsmB 30.7690 0.1134 30.5400 30.9980 

WdrvB-fluvtB -1.2770 0.4236 -2.1326 -0.4215 

WfoiB-fluvtB 0.7117 0.3105 0.0847 1.3387 

Table 3. Correlations Between Endmember Volumes. 

 

Endmember Pair Correlation Coefficient 

srlB and drvB -0.83 

oleB and srlB -0.69 

drvB and oleB 0.68 

foiB and oleB 0.83 

aorsmB and srlB 0.75 

aorsmB and drvB -0.68 

aorsmB and foiB -0.86 

aorsmB and oleB -0.75 

WdrvB-fluvtB and fluvtB 0.64 

WfoiB-fluvtB and buB -0.60 

Table 4. Multicollinearity VIF Factors. 

Endmember VIF Factor 

foiB 12.54 

oleB 11.03 

aorsmB 7.54 

WdrvB-fluvtB 9.89 

Table 5. Residual Analysis. 

 

Observation Residual Hat Diagonal (h) Cook's D DFFITS CovRatio 

tm164 -0.18 - 0.55 -2.91 4.71 

tm155 - 0.76 0.18 -1.39 4.71 

tm64 - 0.95 3.91 -6.65 15.60 

tm166 - - 0.13 1.25 - 

tm29 -0.12 - 0.16 -1.40 - 

tm74 - - 0.11 1.17 - 

uvit - - 0.13 -1.19 - 

oxyuvite - 0.48 - - 2.47 

Table 6. DFBETAS (>0.28). 

 

Observation Affected Variables 

tm1 aorsmB, W parameters 

tm164 All parameters 

tm155 All except aorsmB, WdrvB-fluvtB, srlB, drvB 

tm171 fluvtB 

tm64 All except WdrvB-fluvtB 

tm166 All except drvB, srlB, uvtB, aorsmB 

tm183 mdtwB 
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Observation Affected Variables 

tm25 mdtwB 

tm28 foiB 

tm29 srlB, foiB (strong), oleB, aorsmB 

tm74 drvB, uvtB, buB, aorsmB, WdrvB-fluvtB 

 

OLS REGRESSION ANALYSIS. 

Table 2C.3. X(YZ)9SixAl(1-x)(VW)4 model without interaction parameters using the combined dataset. 

 
Table 0. Descriptive Statistics. 

Variable Count Mean 
Standard  

Deviation 
Minimum Maximum 

srlB 149 0.1768 0.2386 -0.24 0.7667 

drvB 149 0.2485 0.2514 -0.69 0.8264 

uvtB 149 -0.2326 0.3223 -1.36 0.8989 

foiB 149 0.1774 0.2260 -0.95 0.6494 

oleB 149 0.0293 0.1478 -0.87 0.3905 

fluvtB 149 0.4135 0.2921 0 1.5 

buB 149 0.0941 0.1400 0 1.1167 

mdtwB 149 0.0369 0.0345 0 0.2806 

aorsmB 149 0.0561 0.1594 -0.238 0.95 

Molar Volume (J/mol/bar) 149 31.8114 0.2005 31.16 33.02 

 
Table 1. Model Fit Statistics. 

 

Sample Size R² Mean Square Error (MSE) Root MSE Average Percent Error R²Press Residual Normality 

149 1 0.0065 0.0809 0.159 0.79 Not Normal 

 

 
Table 2. Regression Coefficients. 

 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srlB 32.2109 0.0438 32.1242 32.2975 

drvB 31.8811 0.0294 31.8229 31.9393 

uvtB 32.0942 0.0350 32.0251 32.1633 

foiB 31.5882 0.0453 31.4987 31.6777 

oleB 31.1132 0.0730 30.9689 31.2575 

fluvtB 31.9883 0.0341 31.9208 32.0558 

buB 32.1628 0.0674 32.0296 32.2961 

mdtwB 31.6753 0.2197 31.2409 32.1097 

aorsmB 30.6837 0.0755 30.5344 30.8330 

 
Table 3. Correlations Between Endmember Volumes. 

 

Endmember Pair Correlation Coefficient 

srlB and drvB -0.75 

uvtB and fluvtB -0.75 

oleB and buB -0.68 

oleB and Molar Volume -0.68 
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Endmember Pair Correlation Coefficient 

foiB and aorsmB -0.76 

 
Table 4. Multicollinearity VIF Factors. 

Endmember VIF Factor 

All <3.3  

 
Table 5. Residual Analysis. 

 

Observation Residual Hat Diagonal (h) Cook’s D DFFITS CovRatio 

tm164 -0.29 - 0.06 - - 

tm64 -0.29 0.36 1.35 -3.77 1.66 

tm24 0.15 - - - - 

tm25 0.12 - - - - 

tm28 0.15 - - - - 

tm74 0.11 - - - - 

oxyuvite - 0.25 0.07 - - 

uvit - 0.20 - - - 

103 -0.13 - - - - 

133 - 0.22 - - - 

148 - 0.12 - - - 

156 - 0.39 0.05 - 1.66 

161 - 0.29 - - 1.50 

168 0.12 - - - - 

169 0.10 - - - - 

170 0.10 - - - - 

173 - 0.14 - - - 

174 - 0.13 - - - 

177 0.10 - - - - 

206 0.20 0.44 1.07 3.242 1.50 

15 -0.11 - - - - 

17 0.21 - 0.03 - - 

92 -0.1 - - - - 

9 -0.46 - 0.15 -1.30 - 

14 -0.13 - - - - 

33 -0.19 - 0.08 - - 

Table 7. DFBETAS (Threshold > 0.163) 

 

Observation Affected Variables 

tm164 All except srlB, oleB, and mdtwB 

tm37A uvtB, fluvtB 

tm183 mdtwB 

tm24 oleB, fluvtB, mdtwB 

tm25 mdtwB 

tm28 foiB 

tm74 aorsmB, odrvB 

tm64 oleB, fluvtB, buB, mdtwB 

103 aorsmB 
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Observation Affected Variables 

138 drvB 

139 srlB, drvB 

156 uvtB, fluvtB, mdtwB 

160 drvB, mdtwB 

162 srlB 

169 drvB 

170 drvB 

177 srlB, drvB, uvtB, foiB, fluvtB 

181 drvB 

206 drvB, oleB, buB (strong), aorsmB 

86 foiB, oleB 

15 fluvtB 

17 srlB, foiB, oleB, buB 

92 srlB, foiB, aorsmB 

87 foiB 

9 uvtB, foiB, fluvtB, buB, mdtwB 

33 uvtB, fluvtB, mdtwB 

 

OLS REGRESSION ANALYSIS. 

Table 2C.4. X(YZ)9SixAl(1-x)(VW)4 model with interaction parameters using the combined dataset. 

Table 0. Significant Interaction Parameters from Subset Selection 

 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) T-Statistic P-Value Reject H0 at α = 0.05? Power- 

srlB 32.0626 0.0511 627.922 0.0000 Yes 1.0000 

drvB 31.9672 0.0557 574.113 0.0000 Yes 1.0000 

uvtB 32.1764 0.0397 809.569 0.0000 Yes 1.0000 

foiB 31.6773 0.0489 647.677 0.0000 Yes 1.0000 

oleB 31.2184 0.0791 394.867 0.0000 Yes 1.0000 

fluvtB 32.0692 0.0361 889.369 0.0000 Yes 1.0000 

buB 31.6972 0.1178 269.091 0.0000 Yes 1.0000 

mdtwB 31.8263 0.2082 152.860 0.0000 Yes 1.0000 

aorsmB 30.7758 0.0804 382.674 0.0000 Yes 1.0000 

WsrlB-buB 1.6419 0.3703 4.434 0.0000 Yes 0.9927 

WdrvB-buB 1.1901 0.2938 4.051 0.0001 Yes 0.9804 

WdrvB-fluvtB -0.6646 0.1835 -3.622 0.0004 Yes 0.9491 

WdrvB-uvtB -0.6416 0.1815 -3.535 0.0006 Yes 0.9395 

WdrvB-foiB -0.4704 0.1593 -2.953 0.0037 Yes 0.8346 

 
 

Table 1. Model Fit Statistics. 

 

Sample Size R² Mean Square Error (MSE) Root MSE Average Percent Error R²Press Residual Normality 

149 1 0.005 0.07 0.156 0.83 Not Normal 

 
Table 2. Regression Coefficients. 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 
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Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srlB 32.0626 0.0511 31.9616 32.1636 

drvB 31.9672 0.0557 31.8571 32.0774 

uvtB 32.1764 0.0397 32.0978 32.2550 

foiB 31.6773 0.0489 31.5806 31.7740 

oleB 31.2184 0.0791 31.0621 31.3748 

fluvtB 32.0692 0.0361 31.9979 32.1405 

buB 31.6972 0.1178 31.4642 31.9301 

mdtwB 31.8262 0.2082 31.4145 32.2380 

aorsmB 30.7758 0.0804 30.6167 30.9348 

WsrlB-buB 1.6419 0.3703 0.9096 2.3741 

WdrvB-buB 1.1901 0.2938 0.6090 1.7712 

WdrvB-fluvtB -0.6646 0.1835 -1.0277 -0.3018 

WdrvB-uvtB -0.6416 0.1815 -1.0006 -0.2827 

WdrvB-foiB -0.4704 0.1593 -0.7854 -0.1554 

 

Table 3. Correlations Between Endmember Volumes. 

Endmember Pair Correlation Coefficient 

srlB and drvB -0.7525 

uvtB and fluvtB -0.7563 

foiB and aorsmB -0.7652 

oleB and Molar Volume (J/mol/bar) -0.6828 

WsrlB-buB and buB 0.7548 

WdrvB-uvtB and uvtB -0.8510 

WdrvB-foiB and foiB 0.7165 

Table 4. Multicollinearity VIF Factors. 

Endmember VIF Factor 

WdrvB-fluvtB 21.73 

WdrvB-uvtB 12.66 

buB 7.38 

WsrlB-buB 6.71 

drvB 5.32 

Table 5. Residual Analysis: Residual and Model Fit Metric Changes Due to Interaction Parameters 

Observation Residual Change Hat Diagonal Change Cook's D Change DFFITS Change CovRatio Change 

173 0.11 - - - - 

177 0.14 +0.13 - -0.8 - 

206 0.11 +0.1 -0.7 -0.97 - 

tm64 - +0.3 -0.7 +0.7 +1.75 

tm72B - +0.16 +0.11 -1.23 - 

 
Table 6. DFBETAS (>0.163): effects on W’s. 

Observation Influenced Parameters 

129 WsrlB-buB (-0.20) 
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Observation Influenced Parameters 

164 WdrvB-fluvtB (-0.60), WdrvB-uvtB (-0.62), WdrvB-foiB (-0.25) 

tm64 WsrlB-buB (1.42), WdrvB-buB (1.87), WdrvB-fluvtB (-0.85), WdrvB-uvtB (-0.59), WdrvB-foiB(-0.34) 

tm72B WsrlB-buB (-0.57), WdrvB-buB (-0.23) 

oxyuvite WdrvB-fluvtB(-0.16), WdrvB-uvtB (-0.32) 

128 WdrvB-uvtB (0.22) 

138 WdrvB-fluvtB(0.42), WdrvB-uvtB (0.26), Wdrv-foit (0.36) 

139 WdrvB-fluvtB(0.23), WdrvB-foiB(0.19) 

160 WsrlB-buB (-0.18), WdrvB-fluvtB(-0.30), WdrvB-uvtB (-0.23), WdrvB-foiB(-0.25) 

173 WdrvB-buB (-0.24), WdrvB-fluvtB(0.80), WdrvB-uvtB (0.83), WdrvB-foiB(0.49) 

174 WdrvB-buB (-0.42), WdrvB-fluvtB(-0.19), WdrvB-foiB(-0.16) 

177 WdrvB-foiB(0.18) 

206 WsrlB-buB (0.75), WdrvB-buB (0.95) 

15 WdrvB-fluvtB(-0.18) 

9 WsrlB-buB (1.49), WdrvB-buB (0.44), WdrvB-fluvtB (-0.46), WdrvB-uvtB (-0.55), WdrvB-foiB(-0.40) 

33 WdrvB-foiB(0.33) 

 

OLS REGRESSION ANALYSIS. 

Table 2C.5. X(YZ)9SixAl(1-x)(VW)4 model with subregular interaction parameters using the combined dataset. 

 

Table 1. Model Fit Statistics. 

 

Sample Size R² Mean Square Error (MSE) Root MSE Average Percent Error R²Press Residual Normality 

149 1 0.0056 0.075 0.154 0.76 Not Normal 

 
 

Table 2. Regression Coefficients. 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

slrB 32.1255 0.0513 32.0239 32.2270 

drvB 31.9755 0.0565 31.8637 32.0873 

uvtB 32.1800 0.0406 32.0996 32.2603 

foiB 31.6687 0.0502 31.5695 31.7679 

oleB 31.2316 0.0816 31.0703 31.3929 

fluvtB 32.0650 0.0366 31.9925 32.1374 

buB 31.8112 0.1060 31.6016 32.0207 

mdtwB 31.8761 0.2141 31.4526 32.2994 

aorsmB 30.7580 0.0818 30.5962 30.9197 

WdrvB-buB 0.8708 0.2755 0.3260 1.4156 

WdrvB-fluvtB -0.6413 0.1865 -1.0102 -0.2724 

WdrvB-uvtB -0.6184 0.1842 -0.9828 -0.2540 

WdrvB-foiB -0.4738 0.1642 -0.7986 -0.1490 

WslrB-srlB-buB 1.1376 0.5243 0.1005 2.1747 

WslrB-buB-buB 1.3871 0.4580 0.4812 2.2930 

──────────────────────────────────────────────────────────── 

 

OLS REGRESSION ANALYSIS. 
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Table 2C.6 XY3Z6T6V3W model without interaction parameters. 

 

Table 0. Descriptive Statistics. 

 

Variable Count Mean Standard Deviation Minimum Maximum 

srl 53 0.1166 0.2097 -0.2701 0.5452 

drv 53 0.1705 0.1515 -0.1470 0.5817 

uvt 53 -0.0263 0.2322 -0.6965 0.8494 

fuvt 53 0.0280 0.0419 0.0000 0.1780 

foi 53 0.1142 0.1943 -0.6256 0.5427 

ole 53 -0.0690 0.0696 -0.2487 0.1274 

drvdis 53 -0.2038 0.2189 -0.5970 0.3886 

odrv 53 0.4460 0.3233 -0.7466 0.8067 

fluvt 53 0.2370 0.2213 0.0032 0.8569 

bu 53 0.0497 0.0981 -0.0215 0.6492 

mdtw 53 0.0393 0.0310 0.0000 0.1455 

bole 53 0.0157 0.1144 -0.0007 0.8328 

aorsm 53 0.0660 0.1332 0.0000 0.7466 

pov 53 0.0160 0.0211 0.0000 0.0824 

Molar Volume (J/mol/bar) 53 31.8000 0.3199 29.8234 32.2403 

 

Table 1. Model Fit Statistics. 

Sample Size R² Mean Square Error (MSE) Square Root of MSE Average Percent Error R²Press Residual Normality 

53 1 0.0058 0.077 0.142 0 Not Normal 

 
Table 2. Regression Coefficients 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srl 31.9482 0.2529 31.4367 32.4597 

drv 31.7589 0.2094 31.3353 32.1825 

uvt 32.1568 0.1807 31.7913 32.5222 

fuvt 32.1492 0.3859 31.3687 32.9296 

foi 31.7070 0.2919 31.1164 32.2974 

ole 30.9781 0.3788 30.2119 31.7443 

drvdis 31.8729 0.2330 31.4017 32.3441 

odrv 31.6974 0.0935 31.5083 31.8866 

fluvt 31.9845 0.0646 31.8538 32.1152 

bu 31.4036 0.3294 30.7374 32.0699 

mdtw 31.7836 0.4038 30.9669 32.6004 

bole 29.5442 0.1459 29.2492 29.8392 

aorsm 31.1208 0.3270 30.4593 31.7822 

pov 35.6274 1.1422 33.3171 37.9378 

 
Table 3. Correlations Between Endmember Volumes 

Endmember Pair Correlation Coefficient 

foi and uvt -0.62 



496 
 

Endmember Pair Correlation Coefficient 

odrv and foi 0.71 

foi and aorsm -0.76 

odrv and aorsm -0.71 

pov and bu 0.68 

bole and Molar Volume -0.86 

 
Table 4. Multicollinearity VIF Factors 

Endmember VIF Factor 

srl 24.86 

drv 8.89 

uvt 15.56 

foi 28.42 

drvdis 22.99 

odrv 8.07 

bu 9.23 

aorsm 16.76 

 
Table 5. Residual Analysis 

Observation Residual Hat Diagonal (h) Cook's D DFFITS CovRatio 

tm164 -0.31 - 0.26 -2.71 - 

tm24 0.10 - - - - 

tm25 0.13 - - - - 

tm28 0.13 - 0.09 1.16 - 

tm29 -0.12 - 0.19 -1.69 - 

tm64 - 0.98 2.45 -5.81 98.12 

olenite - 1.00 21013 536.88 1824375 

oxyuvit - 0.61 - - 3.49 

uvit - 0.60 0.13 -1.19 3.21 

 
Table 6. DFBETAS (Threshold >0.30) 

Observation Affected Variables 

tm164 All except fuvt, mdtw, and ole 

tm144 mdtw 

tm156B mdtw 

tm150A drv 

tm160A pov 

tm64 ole, fluvt, bu, mdtw 

tm28 All except fluvt, bu, mdtw, aorsm 

tm29 srl, fuvt, fluvt, ole, aorsm 

tm40 fuvt, fluvt, ole, pov 

tm42 fuvt, odrv 

olenite bole (strong) 

uvite srl, drv, uvt, drvdis, bu 

 

OLS REGRESSION ANALYSIS. 
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Table 2C.7. XY3Z6T6V3W model without interaction parameters using the combined dataset. 

 
Table 0. Descriptive Statistics  

Variable Count Mean Standard Deviation Minimum Maximum 

srl 157 0.1463 0.2367 -0.6067 0.8248 

drv 157 0.1270 0.2869 -0.9867 0.9416 

uvt 157 -0.0476 0.2575 -0.9324 0.8600 

fluvt 157 0.0309 0.0832 -0.0800 0.5546 

foi 157 0.1608 0.2111 -0.9500 0.9100 

ole 157 -0.0729 0.0810 -0.4623 0.1689 

drvdis 157 -0.1110 0.4646 -1.4143 1.8500 

odrv 157 0.3853 0.3082 -0.7500 1.1800 

fluvt 157 0.1899 0.1945 0.0000 0.9670 

bu 157 0.0482 0.0888 -0.1424 0.6492 

mdtw 157 0.0357 0.0346 0.0000 0.2809 

bole 157 0.0189 0.1069 -0.0007 0.8328 

aorsm 157 0.0707 0.1260 -0.0000 0.9500 

pov 157 0.0179 0.0458 -0.0000 0.4700 

Molar Volume (J/mol/bar) 157 31.7545 0.3715 29.7100 33.0200 

 
Table 1. Model Fit Statistics. 

 

Sample Size R² Mean Square Error (MSE) Root MSE Average Percent Error R²Press Residual Normality 

149 1 0.0089 0.0945 0.199 0.91 Not Normal 

 
Table 2. Regression Coefficients. 

Independent Variable Coefficient (b(i)) Standard Error (Sb(i)) 95% CI Lower 95% CI Upper 

srl 32.2215 0.0666 32.0898 32.3531 

drv 31.9271 0.0477 31.8327 32.0214 

uvt 32.1432 0.0591 32.0264 32.2601 

fuvt 32.6133 0.1270 32.3622 32.8644 

foi 31.5301 0.0471 31.4370 31.6232 

ole 30.9624 0.1602 30.6457 31.2791 

drvdis 31.9376 0.0367 31.8651 32.0101 

odrv 31.6456 0.0309 31.5846 31.7066 

fluvt 31.9946 0.0452 31.9053 32.0840 

bu 31.7001 0.1341 31.4351 31.9651 

mdtw 31.4303 0.2593 30.9177 31.9429 

bole 29.4129 0.0793 29.2562 29.5696 

aorsm 30.5382 0.1079 30.3248 30.7515 

pov 34.2256 0.1795 33.8708 34.5803 

 
 

 

Table 3. Correlations Between Endmember Volumes. 

Endmember Pair Correlation Coefficient 

drv and drvdis -0.73 

foi and aorsm -0.69 
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Endmember Pair Correlation Coefficient 

bole and Molar Volume -0.83 

 

Table 4. Multicollinearity VIF Factors. 

Variable VIF Value 

drvdis 5.0 

uvt 4.0 

srl 3.3 

aorsm 3.2 

 
Table 5. Residual Analysis. 

Observation Residual Hat Diagonal Cook’s D DFFITS CovRatio 

tm64 - 0.89 - - 11.00 

tm164 -0.30 - 0.05 -0.91  

olenite 0.27 0.40 0.69 3.27 - 

oxyuvite - 0.27 0.076 1.03 - 

uvt - 0.21 - - - 

1 - 0.31 0.03 - - 

2 - 0.21 - - - 

9 -0.40 - 0.22 -1.89 - 

14 -0.16 - - - - 

23 0.39 - 0.15 1.57 - 

87 0.18 - 0.04 - - 

103 -0.13 - 0.03 - - 

130 - 0.35 - - 1.66 

148 - 0.20 - - - 

155 -0.14 - 0.03 - - 

156 -0.15 0.41 0.24 - - 

159 -0.15 - - - - 

160 - 0.25 - - - 

161 - 0.38 - - 1.78 

162 - 0.34 - - 1.64 

173 - 0.19 - - - 

175 -0.27 - 0.076 -1.00 - 

178 - 0.37 - - 1.69 

179 -0.23 0.19 0.12 -1.33 - 

206 0.07 0.71 0.25 1.88 3.28 

 
 

Table 6. DFBETAS (>0.16) 

Observation Affected Variables 

tm164 foi, fluvt 

tm171 fluvt 

tm23 odrv 

tm37A fluvt 

tm166 fluvt 

tm183 srl, fluvt, mdtw 
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Observation Affected Variables 

tm24 srl, uvt, fluvt, odrv, aorsm 

tm28 foi 

olenite srl, uvt, foi, odrv, bu, bole (Strong) 

oxyuvite drv, uvt, odrv, aorsm 

1 bole 

2 bole 

10 drv, foi, drvdis 

23 All except fluvt and pov 

103 srl, drv, uvt, fluvt, odrv, bu, aorsm 

137 odrv 

138 drv, drvdis, odrv 

148 fluvt, bu 

155 uvt, fluvt, ole, drvdis, odrv, fluvt, mdtw 

156 All except fluvt, ole, bole, pov 

159 srl, uvt, aorsm 

162 fluvt 

173 mdtw 

175 All except fluvt, foi, mdtw, pov 

178 foi, odrv 

179 All except foi, fluvt, mdtw, pov 

206 srl, uvt, fluvt, foi, ole, bu, mdtw, pov 

85 pov 

93 srl, uvt, aorsm 

92 srl 

142 foi 

87 All except srl, fluvt, foi, mdtw, bole, aorsm 

9 All except foi, bu, bole, pov 

33 fluvt 

 

 

  



500 
 

Appendix 2D. Model Selection Bulk Model 

Bulk compositional model X(YZ)9SixAl(1-x)(VW) 

Table 2D.1. Bulk Model. Best performing models based on a single statistic 

Weighted Optimisation Results 

Unweighted y residual metrics. 

Minimum MSE: 0.006957 (Model_Method: Bulk_noW_robust cauchy) 

Minimum MAE: 0.051623 (Model_Method: Bulk_noW_robust cauchy) 

Minimum MAD: 0.050339 (Model_Method: Bulk_noW_robust cauchy) 

Maximum Adj_R_squared: 0.794640 (Model_Method: Bulk_noWno164 gtls block diag) 

 

Weighted York residual metrics. 

Minimum wMSE: 0.005127 (Model_Method: Bulk_noW_robust cauchy) 

Minimum wMAE: 0.046395 (Model_Method: Bulk_noW_robust cauchy) 

Minimum wMAD: 0.001323 (Model_Method: Bulk_noWno164 cwtls block diag) 

Maximum AdjR_: 0.754749 (Model_Method: Bulk_noWno164 gtls row column) 

Maximum RsquaredPress: 0.746464 (Model_Method: Bulk_noWno164 gtls row column) 

 

Bias Integral. 

Minimum IntegralBetweenYorkand1_1: 0.028353 (Model_Method: Bulk_noW cwtls block diag) 
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Table 2D.2. Bulk model Z-score heuristics combining the sample amount averaged index 

performance on the training and test sets. For the meaning of the different Z scores and how they 

are summed into one heuristic, see main text. Best performing robust regression method and x-

uncertainty regression methods with lowest sum Z scores are in bold and yellow. 

Model Method MSE_Z MAE_Z MAD_Z 

Adj R 

Squared 

Z 

Integral 

Between 

York 

and 

1_1_Z 

wMSE_Z AdjR_Z 
Rsquared 

Press Z 
Sum Z Scores 

Bulk_noWno164 

cwtls block diag 
-0.78 -0.51 -0.75 -0.81 -3.59 -0.42 -1.29 -1.37 -9.52 

Bulk_noWno164 gtls 

block diag 
-0.93 -1.24 -1.13 -0.96 -0.60 -0.81 -1.73 -1.79 -9.20 

Bulk_noWno164 gtls 

fullW 
-0.89 -1.15 -1.03 -0.92 -1.02 -0.57 -1.68 -1.74 -8.99 

Bulk_noW_robust 

cauchy 
-0.98 -1.60 -1.57 -0.92 0.90 -1.49 -1.19 -1.19 -8.03 

Bulk_noW_robust 

welsch 
-0.93 -1.51 -1.50 -0.85 1.01 -1.44 -1.07 -1.07 -7.36 

Bulk_noW_robust 

bisquare 
-0.92 -1.48 -1.47 -0.83 0.97 -1.40 -1.02 -1.01 -7.15 

Bulk_noW_robust 

andrews 
-0.91 -1.47 -1.46 -0.82 0.97 -1.39 -1.01 -1.00 -7.11 

Bulk_noWno164 

TLS 
-0.88 -0.96 -0.92 -0.93 -0.40 -0.80 -0.97 -1.01 -6.87 

Bulk_noWno164 

OLS 
-0.88 -0.96 -0.92 -0.93 -0.40 -0.79 -0.96 -1.00 -6.84 

Bulk_noWno164 gtls 

cov data 
-0.88 -0.95 -0.92 -0.93 -0.38 -0.79 -0.95 -1.00 -6.81 
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Figure 2D.1. Bulk model. OLS without interaction parameters and tm164. A) training set fit. B) test set 

fit. Green bands show confidence intervals for the mean response, while blue bands represent prediction 

intervals for individual measurements 

 

 

 

 

 



504 
 

 

 



505 
 

Figure 2D.2. Bulk model. CWTLS without interaction parameters and tm164. A) training set fit. B) test 

set fit. Green bands show confidence intervals for the mean response, while blue bands represent 

prediction intervals for individual measurements 
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Figure 2D.3. Bulk model. Cauchy robust fit without interaction parameters. A) training set fit. B) test set 

fit. Green bands show confidence intervals for the mean response, while blue bands represent prediction 

intervals for individual measurements 
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Appendix 2E. Model Selection Speciation model 

 

Table 2E.1. Speciation Model. Best performing models based on a single statistic 

 

Unweighted y residual metrics. 

Minimum MSE: 0.013006 (Model_Method: Speciation_noW cwtls block diag) 

Minimum MAE: 0.080412 (Model_Method: Speciation_noW cwtls block diag) 

Minimum MAD: 0.068460 (Model_Method: Speciation_noW cwtls block diag) 

Maximum Adj_R_squared: 0.891693 (Model_Method: Speciation_noW cwtls block diag) 

 

Weighted York residual metrics. 

Minimum wMSE: 0.005334 (Model_Method: Speciation_noW cwtls block diag) 

Minimum wMAE: 0.051389 (Model_Method: Speciation_noW cwtls block diag) 

Minimum wMAD: 0.002261 (Model_Method: Speciation_noW cwtls block diag) 

Maximum AdjR_: 0.927919 (Model_Method: Speciation_noW cwtls block diag) 

Maximum RsquaredPress: 0.925424 (Model_Method: Speciation_noW cwtls block diag) 

 

Bias Integral. 

Minimum IntegralBetweenYorkand1_1: 0.146839 (Model_Method: Speciation_noW gtls y scaled) 

 

Table 2E.2. Speciation model. Top 10 Model-method combination based oon total Z-score 

minimisation. Z-score heuristics combining the sample-amount averaged index performance on 

the training and test sets. For the meaning of the different Z scores and how they are summed 

into one heuristic, see main text. Best performing robust regression method and x-uncertainty 

regression methods with lowest sum Z scores are in bold and yellow. 

Model Method MSE_Z MAE_Z MAD_Z 

Adj R 

Squared 

Z 

Integral 

Between 

York and 

1_1_Z 

wMSE_Z AdjR_Z 
Rsquared 

Press Z 

Sum Z 

Scores 

Speciation_noW cwtls block 

diag 
-0.96 -1.34 -1.60 -0.94 -1.07 -1.06 -1.85 -1.87 -10.69 

Speciation_noWno164 

xyscaledTLS 
-0.63 -0.84 -0.95 -0.67 -0.64 -0.76 -0.92 -0.94 -6.35 

Speciation_noWno164 gtls -0.63 -0.84 -0.94 -0.67 -0.63 -0.75 -0.91 -0.93 -6.30 
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Model Method MSE_Z MAE_Z MAD_Z 

Adj R 

Squared 

Z 

Integral 

Between 

York and 

1_1_Z 

wMSE_Z AdjR_Z 
Rsquared 

Press Z 

Sum Z 

Scores 

cov data y scaled 

Speciation_noW cwtls fullW -0.52 -0.41 -0.71 -0.50 -0.98 -0.67 -0.95 -0.99 -5.73 

Speciation_noW_robust 

WLS 
-0.61 -0.81 -0.87 -0.60 -0.60 -0.63 -0.73 -0.76 -5.60 

Speciation_noW xyscaledTLS -0.56 -0.74 -0.84 -0.56 -0.69 -0.60 -0.73 -0.76 -5.48 

Speciation_noW gtls cov data 

y scaled 
-0.56 -0.74 -0.83 -0.56 -0.68 -0.60 -0.72 -0.75 -5.44 

Speciation_Wcombi_robust 

WLS 
-0.33 -0.48 -0.69 -0.30 -0.42 -0.69 -0.85 -0.85 -4.61 

Speciation_Wcombi gtls cov 

data y scaled 
-0.27 -0.40 -0.63 -0.24 -0.48 -0.66 -0.84 -0.84 -4.37 

Speciation_Wcombi 

xyscaledTLS 
-0.24 -0.37 -0.63 -0.21 -0.51 -0.66 -0.84 -0.85 -4.31 
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Figure 2E.1. Speciation model. OLS without interaction parameters. A) training set fit. B) test set fit. 

Green bands show confidence intervals for the mean response, while blue bands represent prediction 

intervals for individual measurements 
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Figure 2E.2. Speciation model. OLS without interaction parameters. A) training set fit. B) test set fit. 

Green bands show confidence intervals for the mean response, while blue bands represent prediction 

intervals for individual measurements 

 

 

  



514 
 

Appendix 2F. Model Assessment 

Bulk compositional model. 

Table 2F.1. Cauchy Robust Regression without interaction parameters including outlier tm164; Internal and External validation. 

Internal validation using the training data. The results of the internal validation of the X(YZ)9SixAl(1-x)(VW) model. 

 

Table 1. Model Fit Statistics. 

Mean Squared Error (MSE) Mean Absolute Error (MAE) Median Absolute Deviation (MAD) Adjusted R² 

0.007 0.045 0.0457 0.67 

 

Table 2. York Regression Metrics 

Weighted MSE 

(wMSE) 

Weighted MAE 

(wMAE) 

Weighted MAD 

(wMAD) 

Adjusted 

Weighted R² 

Overall Weighted 

PRESS R² 

Bias 

Integral 

0.004 0.04 0.0015 0.75 0.75 0.0062 

 

External validation using the test data. The results of the external validation of the X(YZ)9SixAl(1-x)(VW) model. 

 

Table 1. Model Fit Statistics. 

Mean Squared Error (MSE) Mean Absolute Error (MAE) Median Absolute Deviation (MAD) Adjusted R² 

0.007 0.055 0.053 0.84 

 

Table 2. York Regression Metrics 

Weighted MSE 

(wMSE) 

Weighted MAE 

(wMAE) 

Weighted MAD 

(wMAD) 

Adjusted 

Weighted R² 

Overall Weighted 

PRESS R² 

Bias 

Integral 

0.005 0.05 0.002 0.68 0.67 0.51 
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Speciation model. 

Table 2F.2. CWTLS without interaction parameters with outlier tm164. 

Internal validation using the training data.  

 

Table 1. Model Fit Statistics. 

Mean Squared Error (MSE) Mean Absolute Error (MAE) Median Absolute Deviation (MAD) Adjusted R² 

0.0050 0.0521 0.0521 0.9317 

 

Table 2. York Regression Metrics 

Weighted MSE 

(wMSE) 

Weighted MAE 

(wMAE) 

Weighted MAD 

(wMAD) 

Adjusted 

Weighted R² 

Overall Weighted 

PRESS R² 

Bias 

Integral 

0.0036 0.0454 0.0011 0.9014 0.8992 0.0061 

 

External validation using the training data.  

 

Table 1. Model Fit Statistics. 

Mean Squared Error (MSE) Mean Absolute Error (MAE) Median Absolute Deviation (MAD) Adjusted R² 

0.017 0.096 0.077 0.87 

 

Table 2. York Regression Metrics 

Weighted MSE 

(wMSE) 

Weighted MAE 

(wMAE) 

Weighted MAD 

(wMAD) 

Adjusted 

Weighted R² 

Overall Weighted 

PRESS R² 

Bias 

Integral 

0.006 0.0546 0.0029 0.942 0.94 0.276 
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Appendices Chapter 3 
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Appendix 3A. Theoretical framework Entropy and Cp(T) 

Caloric equation of state Cp(T). The caloric equation of state, Cp(T), and its integral to standard 

state conditions (vibrational entropy S) reveal Gibbs free energy (G) changes with temperature, 

where 𝐶𝑝 = −𝑇 (
𝜕2𝐺

𝜕𝑇2
)
𝑃

, 𝑆 = −(
𝜕𝐺

𝜕𝑇
)
𝑃

. Direct Cp and S measurements anchor these first- (slope) 

and second-derivative (curvature) properties in the T dimension in thermodynamic database 

optimisations using phase equilibria, reducing parameter correlations and enabling independent 

refinement of high-uncertainty parameters like enthalpy (H), which sets the absolute magnitude 

of G in P-T space (Ganguly 2008). 

In solid solutions, Cp macroscopically parameterizes thermal behavior and microscopically 

reflects the energy required to excite quasiparticles to higher states. For tourmaline, energy states 

include lattice vibrations (phonons) and, in magnetically ordered state, spin waves (magnons). At 

very low temperatures, limited energy levels for distinguishable particles (e.g., electronic, spin, 

phonon, or spin waves) can lead to Schottky anomalies (Miller 1988). The thermodynamic heat 

capacity of a mineral is determined by the average properties of the combined density of states of 

all thermally excitable energy levels and their occupation (Kieffer 1979).  

Third law of Thermodynamics The third law of thermodynamics states that as T→0, the 

entropy S of a perfect crystal without disorder approaches a common value (Anderson 2005), 

conventionally set as S(0)=0 J/(K·mol) (Melrose 1970). As T→0, vibrational modes freeze into 

their ground states, leaving no accessible microstates for phono quasiparticles to distribute upon. 

This freezing causes both the heat capacity Cp and the vibrational entropy Svib to approach zero. 

Although the system retains zero-point energy due to quantum mechanical constraints, this 

energy does not contribute to entropy, ensuring that Svib vanishes. Consequently, the entropy 

expression 𝑆(𝑇) = ∫  
𝑇

0

𝐶𝑝

𝑇
𝑑𝑇  converges without indefinition (Gopal 1966). Therefore, to satisfy 

the third law and ensure accurate entropy calculations, both Cp and Svib must be extrapolated to 0 

J/(K·mol) at 0 K. 

For perfect crystalline substances, the total entropy 𝑆 = 𝑆vib + 𝑆conf approaches zero as the 

crystal exists in a single microstate, where S= 𝑘𝐵ln Ω and Ω=1. However, in solid solutions, 

disorder persists at low T, making Sconf  finite and referred to as residual entropy (Anderson 
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2005). Since this finite entropy is not measurable by calorimetry unless the disorder can be 

quenched, e.g. (Benisek and Dachs 2015; Benisek et al. 2023) , it must be estimated using 

theoretical statistical mechanics, making it dependent on the statistical model used to describe 

the system. 

Collective Excitations and Transitions in Crystals: The Role of Phonons and Magnons in 

Thermal, Magnetic, and Phase transition behavior 

Phonons: Vibrational Contributions The vibrational contribution to heat capacity is modelled 

using the harmonic approximation, treating thermal vibrations as the superposition of 

independent quantum mechanical harmonic oscillations, represented by quasiparticles called 

phonons (Dove 1993). Phonons describe collective atomic vibrations and behave like an ideal 

gas of non-interacting particles. Key assumptions include the Born-Oppenheimer approximation, 

where the electronic ground state distribution instantaneously follows nuclear motion, and 

periodic boundary conditions (Born–van Karman), ensuring Cp remains consistent regardless of 

unit cell choice (Born and Huang 1954) (i.e., closely linked to the validity of the configurational 

entropy equation). Quantum mechanics governs energy level spacing, while statistical mechanics 

defines their occupancy under specific P-T conditions.  

Simple lattice dynamic models There are two simple endmember lattice dynamical models for 

monoatomic solids.  

Einstein model (Einstein 1907). In the Einstein model, the solid is treated as a collection of 

uncoupled linear oscillators, each vibrating at the same frequency, ωE  (the Einstein frequency), 

neglecting the wave nature of phonons and localizing them on individual atoms. The vibrational 

density of states (V-DOS) is a delta function: 𝑔(𝜔)=3𝑁𝛿(𝜔−𝜔𝐸), where N is the number of 

atoms, and 3N accounts for three degrees of freedom per atom (Navrotsky 1994) . The specific 

heat capacity CV is given by: 𝐶𝑉 = 3𝑁𝑘𝐵 (
ħ𝜔𝐸

𝑘𝐵𝑇
)
2 𝑒ħ𝜔𝐸/𝑘𝐵𝑇

(𝑒ħ𝜔𝐸/𝑘𝐵𝑇−1)
2, which derives from applying 

Bose-Einstein statistics to quantum harmonic oscillators, describing the phonon energy level 

occupancy in a solid as function of temperature. At low temperatures (𝑇≪𝜃E, where 𝜃𝐸 =
ħ𝜔𝐸

𝑘𝐵
, 

the Einstein temperature), CV approaches zero exponentially, reflecting the freezing out of 
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phonon modes. Although the model poorly captures the commonly observed T3 behavior at low 

temperatures, it matches experimental data well at higher temperatures. 

Einstein model in Polyhedron method Estimation methods like the polyhedron method, which 

applies the Kopp-Neumann law to polyhedral chemical constituents instead of individual atoms, 

rely on a simplified Einstein model to predict endmember thermodynamic properties (Holland 

1989). However, its linear nature cannot account for interaction effects. For materials with 

phonons of significantly different frequencies—arising from variations in bonding, atomic 

masses, or crystallographic directions—a single Einstein frequency is insufficient. Instead, 

multiple Einstein terms, each with a distinct frequency 𝜔𝑖 can be summed to account for different 

atomic motions (e.g., along various crystal axes or involving distinct atomic species): 

𝐶𝑉 = 3𝑘𝐵∑ 

𝑀

𝑖=1

𝑓𝑖 (
ħ𝜔𝑖
𝑘𝐵𝑇

)
2 exp(ħ𝜔𝑖/𝑘𝐵𝑇)

(exp (ħ𝜔𝑖/𝑘𝐵𝑇) − 1)2
 

Here, M is the number of distinct Einstein frequencies, 𝑓𝑖  is the fraction of modes (or effective 

number of atoms) oscillating at 𝜔𝑖, and the condition ∑  𝑀
𝑖=1 𝑓𝑖 = 𝑁 ensures the total number of 

degrees of freedom is conserved. 

Debye model (Debye 1912). The Debye model is a lattice dynamic model that assumes atoms 

are coupled and vibrate collectively at various frequencies. It treats phonons as elastic waves 

with a linear dispersion relation 𝜔=𝑣𝑠𝑘, where vs is the speed of sound, valid up to the Debye 

frequency 𝜔𝐷. The vibrational density of states (V-DOS) is proportional to ω2 for frequencies 

below 𝜔𝐷 and zero above it (Stølen and Grande 2004): 

g(ω) =
9N

ωD
3 ω

2 for ω ≤ ωD 

The specific heat capacity CV is given by: 

CV = 9NkB (
T

θD
)
3

∫  

θD
T

0

x4ex

(ex − 1)2
dx 
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where θD is the Debye temperature (θD = ħωD/kB), and the integral is over the reduced variable 

x = ħω/kBT. The Debye model effectively captures low-temperature heat capacity, influenced 

by low-frequency acoustic vibrations, with wavelengths much larger than interatomic distances, 

resembling an elastic continuum (Kieffer 1979). The Debye temperature marks the point where 

all vibrational modes contribute to the heat capacity. These models are useful for simple 

structures, but minerals are more complex, composed of discrete atoms and are not monoatomic. 

Generalized lattice dynamics model Phonon DOS is derived from dispersion relations obtained 

by diagonalizing the dynamic matrix, which depends on force constants and e-DOS (Dove 

1993). Phonon frequencies, calculated from the dynamic matrix eigenvalues, define acoustic 

branches with in-phase oscillations, starting at zero and linear at low k, and optical branches with 

out-of-phase oscillations and nonzero frequencies at the Brillouin zone center but flatter 

dispersion (Dove 1993). Acoustic branches dominate low frequencies, while optical branches 

contribute at higher frequencies. Crystal anisotropy splits these branches into one longitudinal 

and two transverse modes, based on displacement direction relative to the wave vector (Dove 

1993). Sampling phonon frequencies across the Brillouin zone and counting states per frequency 

interval constructs the DOS, representing the number of phonon states per unit frequency, 

summing contributions from all branches (Kittel and McEuen 2018). 

The Born and von Karman lattice dynamics model (Born and Von Kármán 1912) uses the true 

V-DOS derived from dispersion relations, unlike the simple approximations in basic lattice 

models. The Cv is given by: 

𝐶𝑉 = ∫  
∞

0

𝑘𝐵 (
ħ𝜔

𝑘𝐵𝑇
)
2 exp(ħ𝜔/𝑘𝐵𝑇)

(exp (ħ𝜔/𝑘𝐵𝑇) − 1)2
𝑔(𝜔)𝑑𝜔 

where 𝑘𝐵  is the Boltzmann constant, ħ is the reduced Planck’s constant, and ω is the angular 

frequency of the phonons and 𝑔(𝜔) the phonon density of states. The term (
ħ𝜔

𝑘𝐵𝑇
)
2

 scales the 

contribution of each phonon mode by its energy relative to thermal energy, while the Bose-

Einstein factor 
exp(ħ𝜔/𝑘𝐵𝑇)

(exp (ħ𝜔/𝑘𝐵𝑇)−1)2
 accounts for the occupancy of each mode at thermal equilibrium 

(Miller 1988). High-frequency modes contribute less to CV due to the exponential suppression, 

while low-frequency modes dominate at lower temperatures. 
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Empirical Fits for Low-Temperature Lattice Heat Capacity Models The low-T heat capacity 

of crystalline solids is modelled using the Debye T3 law for acoustic phonons, with higher-order 

anharmonic terms (T5, T7) added to account for optical phonons and interactions, expressed as 

(Rosen and Woodfield 2020): 

𝐶lattice = 𝑎𝑇
3 + 𝑏𝑇5 + 𝑐𝑇7. 

For systems with low-energy vibrational gaps in the v-DOS, an exponential term is included: 

𝐶gap = 𝐵gap 𝑇
𝑚𝑒−

Δ
𝑇 , 

where Δ is the gap energy and m is material-dependent (Schliesser and Woodfield 2015). 

However, our FTIR spectra of tourmaline (chapter 4) do not show any gaps making this an 

unlikely contribution. 

Magnons: Magnetic Contributions Magnetic contributions to heat capacity in tourmalines with 

open-shell transition metals arise from electron spins. In paramagnetic materials, random spin 

orientation prevents magnetic heat capacity. In ferromagnetic and antiferromagnetic materials, 

quantum exchange interactions create ordered spin arrangements. Perturbing a spin propagates 

disturbances as spin waves, absorbing heat (Gopal 1966). The quantized energy of these waves, 

called magnons, behaves as bosons and follows Bose-Einstein statistics. Their heat capacity 

contribution is calculated using the Born and von Karman Cv formula, similar to phonons. 

The density of states differs from phonons differing nature of the magnon dispersion relations, 

influenced by the type of magnetic exchange interactions, magnetic ordering 

(ferro/antiferromagnetism), and anisotropies. Exchange interactions include: 1) direct exchange 

from orbital overlap of neighboring atoms, 2) superexchange via intermediaries, 3) double 

exchange through hopping, 4) dipole-dipole interactions, 5) Dzyaloshinskii-Moriya (DM) 

interaction from spin-orbit coupling, and 6) frustration, where geometric constraints prevent 

energy minimisation, leading to noncollinear spin arrangements (Blundell 2001). 

Simple magnon dynamics models The magnon contribution to heat capacity (CV) in ordered 

magnetic materials is estimated using simplified dispersion models. In ferromagnets, direct 
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exchange creates a quadratic dispersion with magnon DOS scaling as 𝜔1/2, resulting in 𝐶𝑉 ∝

𝑇3/2 at low-T, described by: CV = βT
3 + δT

3

2, where the T3 term arises from phonons and β and 

δ depend on the material (Miller 1988). A plot of 𝐶𝑉/𝑇3/2 versus 𝑇3/2 should appear linear. In 

antiferromagnets, linear dispersion produces a DOS proportional to ω2, yielding CV∝T3 identical 

to phonons. Separation from lattice contributions is only feasible in insulators with a Néel 

temperature much lower than the Debye temperature, indicated by Cp/T versus T2 plots (Miller 

1988). Indirect exchanges (superexchange), double exchange, and frustration alter magnon 

dispersions, leading to anomalous Cp behavior that deviates from standard 𝑇3/2 or 𝑇3 laws 

(Blundell 2001). In anisotropic systems, an exponential spin gap term is added: 

𝐶magnon = 𝐴𝑇
𝑛 + 𝐵magnon 𝑇

𝑚𝑒−
Δ
𝑇 . 

(Schliesser and Woodfield 2015). These terms capture both collective excitations and localized 

spin-wave effects, improving accuracy for complex materials 

Generalized magnon dynamics model The Heisenberg model describes magnetic interactions 

in a spin lattice through exchange interactions characterised by J (Tsang et al. 1971). For 

ferromagnetic systems, isotropic interactions (Jx=Jy=Jz) are assumed with the Hamiltonian: 

𝐻 = −∑  
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝐒𝑖 ⋅ 𝐒𝑗 , 

where 𝐒𝑖 and 𝐒𝑗 are spin operators at sites i and j, summed over neighboring pairs (Blundell 

2001). For antiferromagnetic systems, anisotropic effects are significant, modelled by the 

Hamiltonian:  

𝐻 = −∑  

⟨𝑖,𝑗⟩

(𝐽𝑥𝑆𝑖
𝑥𝑆𝑗

𝑥 + 𝐽𝑦𝑆𝑖
𝑦
𝑆𝑗
𝑦
+ 𝐽𝑧𝑆𝑖

𝑧𝑆𝑗
𝑧) 

where Jx,Jy,Jz represent direction-dependent exchange interactions, see Zherebetskyy et al. 

(2012) for a silicate example. Exchange interactions, from mechanisms like direct, 

superexchange, or double exchange, contribute individual or get averaged into an effective J 
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(Geiger et al. 2019).  Additional terms, such as Dzyaloshinskii-Moriya or higher-order effects, 

extend the Heisenberg model for complex magnetism (Blundell 2001). 

Magnetic Phase transition At high temperatures, thermal agitation disrupts spin alignments, 

causing paramagnetic behavior in materials with transition metals. Near the critical temperature, 

magnetic order-disorder transitions, such as lambda-type singularities in second-order 

transitions, significantly affect heat capacity. Macroscopic mean field models fit transition 

curves but simplify by ignoring explicit microscopic interactions. Mean field models like the 

Weiss molecular field (Weiss 1914), Bragg-Williams approach (Bragg and Williams 1934), and 

Landau power series expansion (Landau 1937) simplify spin interactions by assuming a field 

dependent on the system's average magnetic moment (Redfern 2000) . In ferromagnets, the Curie 

temperature marks the transition to paramagnetism, while in antiferromagnets, the Néel 

temperature signals antiferromagnetic ordering. 

Spin Glass Behavior Spin glasses are magnetic systems with short-range order (SRO) where 

spins are randomly arranged and interact in a frustrated manner, creating a complex energy 

landscape (Miller 1988). Unlike ferromagnets (aligned spins) or antiferromagnets (alternating 

spins) the lack of long-range order and the presence of frustration and disorder in spin glasses 

result in localized spin wave-like excitations with a broad energy spectrum, reflecting variations 

in local magnetic environments. Near the spin glass transition temperature, heat capacity peaks 

as the system can suddenly access a large number of nearly degenerate configurations requiring 

minimal energy for transitions.  

Landau treatment of the (spin glass) magnetic phase transition The linear Cp term at low-T 

can be explained using Landau phenomenological mean field theory (Landau 1937), which can 

be seen as a generalisation of the Weiss model for ferromagnetism and the Bragg-Williams 

model for order-disorder transitions. This theory, applicable to magnetic phase transitions, 

including spin glass systems, describes critical transitions using the Landau free energy (energy 

tailored to describe critical transitions) expanded in terms of the order parameter M 

(magnetization) near the antiferromagnetic Néel temperature (TN):  

𝐹(𝑀) = 𝐹0 +
1

2
𝑎(𝑇)𝑀2 +

1

4
𝑏𝑀4 
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(Landau 1937). Where F0 is the free energy in the absence of the order parameter, 𝑎(𝑇) is a 

temperature-dependent coefficient and b is a temperature-independent, positive coefficient for 

stability. For the AFM to PM transition, 𝑎(𝑇) changes sign at 𝑇𝑁: 𝑎(𝑇) = 𝑎0(𝑇 − 𝑇𝑁). 

Minimizing the free energy  
∂𝐹

∂𝑀
= 𝑎(𝑇)𝑀 + 𝑏𝑀3 = 0 gives M=0 in the paramagnetic phase 

(T>TN) and in the AFM phase (T<TN), non-zero solutions for 𝑀 can be found by solving 

𝑀(𝑎(𝑇) + 𝑏𝑀2) = 0 which gives 𝑀 = √
𝑎0(𝑇𝑁−𝑇)

𝑏
. Substituting M into the Landau free energy 

equation gives 𝐹 ≈ 𝐹0 −
𝑎0
2(𝑇𝑁−𝑇)

2

4𝑏
 . Cp is then 𝐶𝑝 = −𝑇

∂2

∂𝑇2
(−

𝑎0
2(𝑇𝑁−𝑇)

2

4𝑏
) =

𝑎0
2𝑇

2𝑏
 a linear term 

with T (Landau 1937, pp451, Blundell 2001, pp 115). However, Landau theory oversimplifies, 

predicting a vertical jump in Cp at TN, while experiments show a gradual decrease due to short-

range spin order not covered by mean field theory (Holland and Powell 1990). 

Localized States and Specific Heat: Understanding the Schottky Anomaly in Paramagnetic 

Materials  

Schottky anomaly A Schottky anomaly in specific heat (Cp) arises from thermal excitations of 

distinguishable particles between two discrete, non-degenerate energy levels, often observed in 

systems with localized electronic or spin states where internal fields lift degeneracies (Miller 

1988). Localized states, created by impurities, defects, or strong electron-electron interactions 

within the valence band near the band gap, become thermally populated at low temperatures 

when thermal energy matches the energy gap (Δ). This reduces the system to an effective two-

level state, as most energy levels are "frozen out". These energy levels can include electronic, 

spin, phonon, or magnon states, (Rosen and Woodfield 2020),  but a two-level system is rare for 

phonons and magnons due to their nonlocal, collective excitations and continuous low-

temperature DOS. Schottky theory assumes independent ions, making it suitable for localized 

electronic or spin states in paramagnetic materials, where weak spin-spin coupling and internal 

fields create discrete energy levels. It also applies to magnetic impurities, which introduce 

localized states, unlike magnetically ordered systems with collective excitations. In this idealized 

two-level system, the DOS consists of two delta functions at the energy levels, simplifying 

analysis. The heat capacity contribution is modelled as: 
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𝐶𝑝 = 𝑅 (
Δ

𝑇
)
2

(
𝑔0
𝑔1
)

exp (
Δ
𝑇)

[1 + (𝑔0 + 𝑔1) exp (
Δ
𝑇)]

2 

(Gopal 1966). Here, R is the gas constant, and g0 and g1 are ground and excited states 

degeneracies. The introduction of more energy levels would significantly increase the 

complexity of the analysis. Since Cp is an integrative property, it does not directly reveal specific 

energy levels, their separations, or degeneracies. Theoretical models and experimental 

techniques like spectroscopy and magnetic susceptibility are needed to interpret Schottky Cp 

data accurately. The Schottky anomaly peak occurs at a temperature approximately equal to 

Δ/kB (Stølen and Grande 2004), providing an indirect method to estimate the energy gap, but 

other level interactions or degeneracies can shift the peak slightly. The peak height reflects the 

degeneracies of the states involved (Gopal 1966). At temperatures much lower than Δ/kB , Cp 

increases exponentially as 𝐶𝑝 ∝ exp (−
Δ

𝑘𝐵𝑇
), while at temperatures much higher than Δ/kB , it 

follows a T−2 decay as the population difference between levels diminishes (Miller 1988). 

If the Schottky anomaly occurs between 2-5 K, it dominates Cp since its magnitude is on the 

order of R, much larger than lattice or electronic contributions (10−2) (Miller 1988). Even in 

magnetically ordered systems with magnons, the anomaly can still be resolved. At higher 

temperatures, separating the Schottky anomaly from magnetic or lattice contributions becomes 

difficult, but comparison with similar structures lacking the anomaly can help. Below 2 K, the 

high-temperature tail of the anomaly is modelled with 𝑏𝑇3(phonon) +𝐷𝑇−2 (Schottky), and a 

𝐶𝑝𝑇2 versus 𝑇5 plot yields a straight line (Miller 1988).  

Schottky anomalies can arise from electron hopping between Fe²⁺ and Fe³⁺ ions, where electrons 

transition between oxidation states, creating discrete energy levels. Thermal excitation at low 

temperatures populates these states, producing a characteristic heat capacity peak associated with 

the tunneling energy gap (Miller 1988). 

Experimental Distinctions Between Schottky Anomalies and Magnetic Phase Transitions 

Experimental distinctions between a Schottky anomaly and a magnetic phase transition include 

the sensitivity to external magnetic fields and the type of complementary measurements. In a 
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magnetic phase transition, Cp behavior is field-dependent, with shifts in critical temperature or 

changes in the anomaly magnitude; In contrast, a Schottky anomaly remains largely unaffected 

by magnetic fields unless they significantly alter the local energy levels (López et al. 2002). 

Magnetic transitions can be further confirmed with susceptibility or magnetization 

measurements, which show peaks or changes at the transition temperature, often with critical 

scaling or hysteresis during heating and cooling, e.g. (Filip et al. 2008). Additionally, low-

temperature neutron diffraction reveals the long-range magnetic order. 
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Appendix 3B. Theoretical framework Calorimetry 

Relaxation calorimetry Theory (Dachs and Bertoldi 2005; Rosen and Woodfield 2020). 

Relaxation calorimetry with a Quantum Design PPMS uses a relaxation method to measure heat 

capacity by monitoring the temperature of a small sample with a short relaxation time to a heat 

sink when the heater is switched off. relaxation curves are measured by heating the sample with 

a controlled heat pulse and monitoring its exponential temperature decay (Dachs and Bertoldi 

2005). Heat capacity is determined from the time constant of the exponential temperature decay, 

allowing precise measurements between 2.5 K to 298 K, referred to as the lowT-Cp signal. 

The following description of the relaxation calorimetry method is a summary of what is more 

extensively described in Dachs and Bertoldi (2005) and Dachs and Geiger (2006): The process 

begins with an addenda measurement to account for the heat capacity of the sample platform and 

components like Apiezon N grease. The platform's temperature response to a heat pulse is 

modelled with a one-tau (τ) model using the energy balance equation: 

𝑐pl
𝑑𝑇p(𝑡)

𝑑𝑡
= 𝑃in(𝑡) − 𝐾𝑤(𝑇pl(𝑡) − 𝑇𝑏) 

where cpl is the platform heat capacity, Pin(t) is input power, Kw is the thermal conductance of 

wires, and Tpl(t) and Tb are platform and bath temperatures, respectively. The platform's 

temperature rise and relaxation are fitted to an exponential function, yielding the time constant τ: 

𝜏 =
𝑐pl

𝐾𝑤
 

The sample measurement uses the two-tau model to account for thermal interactions between the 

platform and the sample. The heat capacities of both components are considered, with the 

thermal response described by two coupled equations: 

𝑐pl
𝑑𝑇p(𝑡)

𝑑𝑡
= 𝑃in(𝑡) − 𝐾𝑤(𝑇pl(𝑡) − 𝑇𝑏) − 𝐾𝑔 (𝑇pl(𝑡) − 𝑇𝑠(𝑡)) 

for the platform, and 
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𝑐𝑠
𝑑𝑇𝑥(𝑡)

𝑑𝑡
= 𝐾𝑔 (𝑇pl(𝑡) − 𝑇𝑠(𝑡)) 

for the sample, where cs is the sample's heat capacity, Kg is the thermal conductance due to the 

grease, and Ts(t) is the sample temperature. 

By eliminating Ts(t), a second-order differential equation describes the temperature response 

during heater-on and heater-off periods. The analytical solutions are: 

𝑇on (𝑡) = 𝑇𝑏 +
𝑃0
𝐾𝑤

+
𝑃0

2𝛽𝐾𝑤
(𝑒

−
𝑡
𝜏2 − 𝑒

−
𝑡
𝜏1)  for 0 ≤ 𝑡 ≤ 𝑡0 

𝑇off (𝑡) = 𝑇𝑏 +
4𝛽𝑃0

𝐾𝑤
(
𝑒−(𝑡−𝑡0)//2−𝑒

−(𝑡−𝑡𝑡0)//1

2−
1

𝛽
(𝑒−𝑡0/𝑒2−𝑒−𝑡0/𝜏1)

)  for 𝑡 > 𝑡0 

where τ1 and τ2 are the time constants: 

𝜏1 =
1

𝛼 − 𝛽
, 𝜏2 =

1

𝛼 + 𝛽
, 

with: 

𝛼 =
𝑐pl

𝐾𝑔
+
𝑐𝑠
𝐾𝑔
+
𝑐p𝑐𝑠

𝐾𝑤
, 𝛽 = √𝛼2 −

4𝑐p𝑐𝑠

𝐾𝑤
. 

This model enables precise heat capacity determination by fitting temperature responses to these 

equations using nonlinear least-square fitting routines. 

During low-temperature magnetic first-order order-disorder phase transitions, significant heat 

capacity peaks and critical fluctuations may disrupt stable heat flow dynamics, leading to 

deviations from exponential decay (Lashley et al. 2003). These transitions may also face 

challenges from internal equilibration times, reducing model accuracy for precise heat capacity 

values near critical regions (Rosen and Woodfield 2020). Fortunately, in our case we have 

second order phase transitions which do not have such sharp features. 
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DSC theory  DSC measures the differential heat flow (ΔQ) between sample and reference pans 

during temperature scanning, directly correlating to the sample's heat capacity (Mraw 1988). 

Independent heaters on a common heat sink maintain a constant temperature difference, 

monitored by thermocouples, and the power-compensated DSC adjusts the heater power to 

maintain temperature equilibrium. The differential heat flow is described as: 
𝑑𝑄𝑠

𝑑𝑡
−
𝑑𝑄𝑟

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
(𝐶𝑝,𝑠 − 𝐶𝑝,𝑟),  where Cp,s and Cp,r are the heat capacities and Qs and Qr are the powers supplied 

to the respective pans of the sample and reference. The reference chamber remains constant 

empty pan, while the sample chamber can be empty, contain a reference material, or hold the 

sample (Höhne et al. 2003). After dynamic equilibrium is reached (
𝑑𝑇

𝑑𝑡
=
𝑑𝑇𝑠

𝑑𝑡
=
𝑑𝑇𝑟

𝑑𝑡
), user-defined 

scan rate), the sample temperature lags behind the thermometer due to platform and pan thermal 

resistance, scan rate, and R×ΔT, causing minor horizontal shifts in the Cp curve (a few tenths of 

Kelvin) (Mraw 1988), which are negligible except during transitions, absent for tourmaline. 

Consistent use of cooling bath, purge gas, and sample pans ensures uniform temperature lag for 

blank, reference and sample and its effect mostly removed with the black subtraction. 

DSC Instrumental drift correction Figures 

Heat flow versus time signal of the DSC before and after drift correction. See main text for 

details. 
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Figure A3B.1. DSC signal before drift correction. Isothermal sections should be the same for 

blank (black), reference (green) and sample (red). The fact they are not the same indicates 

instrumental drift. 
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Figure A3B.2. DSC signal after drift correction. Isotermal sections are made the same for blank 

(black), reference (green) and sample (red). 
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Appendix 3C. Magnetic Spin Glass Transition Proof The magnetic structure of 

tourmaline, particularly its variation across the solid solution, remains poorly understood. 

Magnetic susceptibility measurements show that buergerite, Fe2+ and Fe3+ rich schorl at first 

order can be analysed using the Heisenberg spin-exchange model. Strong crystal field quenching 

in high-spin Fe3+ (d5, S=5/2) and the dominance of spin-allowed Fe2+ (d6, S=2) transitions in 

optical spectroscopy (Mattson and Rossman 1987; Altieri et al. 2022) indicate suppressed orbital 

contributions due to quenching and lifted orbital degeneracy, respectively. This leaves primarily 

spin-driven magnetic interactions for both valence states. A single exchange constant J is used to 

describe both Fe3+ and Fe2+ interactions, a simplification, as VIFe2+ is sensitive to Jahn-Teller 

distortions and crystal field effects. The Heisenberg Hamiltonian ℋ = −∑  ⟨𝑖,𝑗⟩ 𝐽𝑖𝑗𝐒𝑖 ⋅ 𝐒𝑗 , captures 

short-range magnetic exchange.  Y-Y, Z-Z, and Y-Z pathways correspond to the exchange 

constants J, J′, and J′′, respectively. More theoretical detail can be found in Appendix 3A. 

In buergerite weak magnetic anisotropy and dominant Y-Y exchange (J/kB=7.5 K (Tsang et al. 

1971) up to J/kb ~ 20 K (Mattson and Rossman 1984)) govern short-range antiferromagnetic 

interactions (Weiss T ~ -100 K). The inability to fit high- and low-T susceptibility with a single J 

reflects site or cluster dependent interactions and model fits improve when an additional weaker 

J exchange is added (Tsang et al. 1971; Mattson and Rossman 1984).  In Fe2+ -rich schorl, the 

magnetic susceptibility is anisotropic, likely due to exchange anisotropy and/or Jahn-Teller 

distortions of Fe2+ in Y or Z sites. The average exchange Javg/kB and combined strength 

(2J′+J′′)/kB≈8 K provide a good fit to the data (Tsang et al. 1971). In Fe3+ rich schorl with minor 

Y-site Fe2+ the susceptibility is again isotropic, and the simultaneous fit to both schorls led to 

J/kB=7.5 K, J′/kB=1 K, and J′′/kB=6K. In both schorls, the Curie-Weiss T θ θ=+9 K indicates 

weak ferromagnetic or frustrated antiferromagnetic coupling. This simplified framework, with 

uncertain site occupancy due to a lack of structural measurements for the schorls, qualitatively 

suggests multiple pathways, with J’s Y-Y > Z-Z >Y-Z (Tsang et al. 1971). 

A single neutron powder diffraction measurement at 4.2 K confirms the absence of magnetic 

LRO in buergerite down to 4.2 K, attributing this to geometric frustration within the triangular 

Y-site lattice and weak inter-triangle coupling, which confine interactions to short-range order 

and suppress magnetic coherence and preventing a single antiferromagnetic ground state (Tippe 

and Hamilton 1971). 
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Using well-characterised samples, Fillip et al. (2012), demonstrated the effect of disorder. 

Untreated schorl has a low Curie constant Cmol=13.2 emuK/molOe and a Weiss T θ=−32 K, 

indicating moderate antiferromagnetic interactions, while fully oxidized at 700C under air shows 

a larger Curie constant (172.5 emuK/molOe) and more negative θ=−165 K, reflecting stronger 

antiferromagnetic coupling. These results align with Tsang et al. (1971) and Mattson and 

Rossman (1984), for schorl and buergerite. The heated schorl, treated at 700°C under reduction, 

retains a similar Fe3+/Fe2+ ratio but with increased disorder, maintaining a weak Curie constant 

Cmol=20.1 emuK/molOe, but an extreme θ=−592 K. The small Curie constant indicates weak or 

sparse magnetic moments, while the large negative Weiss T point to strong short-range 

antiferromagnetic interactions, due to frustration. Hysteresis loops at 2 K (-70 to +70 kOe) show 

narrow, symmetric loops with negligible coercivity, confirming antiferromagnetic behavior in all 

samples. Minimal differences between the untreated and heated reduced samples were observed, 

whereas the fully oxidized sample shows low-field saturation, reflecting reduced frustration and 

easier spin alignment. 

The pronounced decrease in Mössbauer peak width from 298 K to 5 K in ferric-rich tourmaline 

is attributed to enhanced cross-relaxation between Fe³⁺ and Fe²⁺ ions at low T (Mattson and 

Rossman 1984). Energy transfer from Fe³⁺ to Fe²⁺, which relaxes rapidly via spin-lattice 

mechanisms, narrows the peaks. This effect is not structural or compositional, as indicated by T-

independent quadrupole splitting and the absence of broad peaks. Instead, it is driven by stronger 

Fe²⁺-Fe³⁺ interactions at lower T, supported by intensified Fe²⁺ optical absorption bands under 

similar conditions (Mattson and Rossman 1984, 1987).  

Additional unpublished 5 K Mössbauer spectra of Fe-rich tourmalines from the thesis of Saegusa 

(1978) (Figure A3C.1) reveal a magnetic sextet, indicating magnetic ordering at low T, though 

the influence of magnetic inclusions cannot be excluded.  
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Figure A3C.1. Mössbauer spectra of tourmaline samples Pa (Fe: 2.73 apfu), Y (Fe: 1.92 apfu), 

MC (Fe: 0.795 apfu), and UM (Fe: 0.6 apfu). Downward-pointing arrays indicate a magnetic 

sextet, possibly from magnetic ordering in tourmaline at 5 K. However magnetic inclusions can 

also be the culprit. Figure (4.18) and sample spectra from thesis of Saegusa (1978). 

Optical spectroscopy in the paramagnetic state reveals short-range interactions, with Fe3+-rich 

schorl showing intensified Fe2+-Fe³⁺ interactions, where Fe2+ absorption bands are enhanced by 

Fe3+ without new visible Fe3+ bands (Mattson and Rossman 1987). Strong polarization effects, 

particularly in the E⊥c direction, distinguish site-specific interactions (e.g., trimer or helical Y-Z 

configurations). Ferric tourmalines also lack Fe3+ bands and exhibit intense absorption bands at 

485 nm (E⊥c) and 540 nm (E‖c), attributed to Fe3+-Fe³⁺  ion-pair interactions within Y-Y trimer 

and helix sites, driven by antiferromagnetic exchange (Mattson and Rossman 1984). The 

exchange spectra, particularly for Fe2+-Fe³⁺, are P- and T-dependent (Taran and Rossman 2002). 

A caveat to tourmaline's spectroscopic analysis is its reliance on accurate spectral fitting, 

complicated by overlapping optical and Mössbauer features. Optical and Mössbauer studies at 5 

K are needed to assess whether these exchange interactions persist or intensify at low T. 

The Cp anomaly indicates a magnetic spin glass phase transition, driven by short-range 

antiferromagnetic interactions, geometric frustration, and localized spin dynamics (Tippe and 

Hamilton 1971; Tsang et al. 1971; Filip et al. 2012). The magnetism arises from strong Y, 

secondary Z-site coupling, and weak Y-Z interactions. Trigonal symmetry and weak triangle-

helix connections prevent long-range order, with the overall response reflecting localized 

exchanges. The analysis of the frustrated spin glass is complicated by the superposition of SRO 

clusters each with variations in Fe ratios, non-magnetic substitutions, and spatial arrangements, 

creating distinct exchange strengths and non-linear effects. In addition, phonon- or photon-

activated Fe2+-Fe³⁺and Fe3+- Fe3+ interactions, introduces dynamic effects and site-specific 

variability. Spin-glass behavior significantly affects S0 in tourmaline, and many solid solutions 

with dilute Fe may exhibit this effect, making it crucial to account for in thermodynamic models. 

The origin of the second Cp peak in F-buergerite around 2.5 K is uncertain. One possibility is 

staggered magnetic spin glass transitions on distinct octahedral sites. Alternatively, it could be a 

Schottky anomaly from thermal excitations between discrete energy levels, such as electronic or 
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spin states (see Appendix 3A). This is consistent with the 2–5 K range and peak magnitude, 

which aligns with the order of R. Potential mechanisms include electron hopping between Fe²⁺ 

and Fe³⁺ ions or energy level splitting due to internal magnetic fields. Differentiating a Schottky 

anomaly from a magnetic phase transition requires complementary techniques, such as Cp 

analysis under a magnetic field, since Schottky peaks are largely field-independent, unlike 

magnetic transitions. (Blundell 2001). 
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Appendix 3D. Method 2 Bulk and Speciation Model 

1. BULK COMPOSITIONAL MODEL: ENTROPY AT 298 K (METHOD 2) 

Method 2 derived endmember entropies OLS regression a set of sample entropies obtained prior 

via integration over T of the linear interpolation low-T Cp sample curves, minimizing sensitivity 

to low-T Cp variations while yielding a robust regression model, i.e., RPress
2=0.87. The details of 

the regression, done in NCSS, can be found in the end of the Appendix. The model achieved an 

MSE of 41.62 higher than the better fit obtained by regressing the low-T Cp curves directly 

(MSE=32.8). Residuals followed a normal distribution. 

SrlB (718.48 J/mol·K) and drvB (632.97 J/mol·K) were the most critical endmembers, with their 

correlated Fe-Mg exchange (r=−0.82) explaining most of the variance (R2=0.88) underscored by 

strong positive and negative correlations of entropy with srlB (+0.88) and drvB (−0.79), 

respectively. Other endmembers, such as uvtB (647.22 J/K·mol), foiB (658.77 J/K·mol), and 

oleB (608.38 J/K·mol), play secondary roles 

Influential observations such as the synthetics, F-buergerite (tm64) and Fe3+ rich tourmalines 

exhibit high leverage and residuals, respectively, significantly impacting predictions. Figure 

A3D.1 illustrates the internal validation of Method 2, comparing measured versus predicted 

entropy using both the standard error (SE) of the confidence interval (CI) and the SE of the 

prediction interval (PI). The LOOCV indicate F-buergerite and synthetic uvite predictions 

diverging significantly from the rest of the dataset. 
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Figure A3D.1. Measured versus predicted entropy using Method 2. A) using the SE of the 

confidence interval. B) using the SE of the prediction interval. 
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Comparing Figure 3Q and Figure A3D.1. shows that Method 1 provides a superior fit, with 

lower MSE and reduced compositional bias measured by the integral between the York fit and 

the 1:1 line, whether using confidence or prediction interval standard errors. We recommend 

regression on the low-T Cp curve followed by integration, as it allows Cp and entropy 

predictions below 298.15 K and improves training set fits. However, without a test set, potential 

overfitting cannot be ruled out, potentially making Method 1 less reliable for low-T Cp 

predictions far from the calibration set, where robust methods such as performing the regression 

on the S0 directly might perform better. 

 

2. BULK COMPOSITIONAL MODEL: 𝑺𝟐𝟗𝟖.𝟏𝟓𝑲
𝟕𝟕𝟑.𝟏𝟓 𝑲 (METHOD 2)  

We performed an OLS regression on the vibrational entropy gained prior by integrating Cp/T 

from 298.15 K to 773.15 K, ignoring S₀ and Sconf, equivalent to Method 2 low-T Cp regression. 

SrlB and drvB maintain a strong negative correlation (-0.82), while other endmember 

correlations vanish, and no endmember fractions correlate with 𝑆298.15𝐾
773.15 𝐾, consistent with 

Dulong-Petit behavior. Endmembers with X and V site vacancies, like foiB, aorsmB, and buB, 

show lower integrated Cp values, with Fe³⁺-rich buB having the lowest and Fe²⁺-rich srlB the 

highest, reflecting limited phonon excitation of high-frequency OH vibrations in OH-poor 

tourmaline. Outlier diagnostics highlight influential points, notably F-buergerite (tm64), 

impacting regression coefficients. DrvB emerges as the primary source of variance, with 

hierarchical subset selection confirming no excess Cp above 298.15 K. In contrast to low-T Cp, 

the measured versus predicted plot demonstrates that Method 1 and Method 2 yield identical 

results, indicating that the order of integration and regression does not affect the outcome. This 

consistency likely arises from the smooth and less variable nature of the high-T Cp curve. 
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Figure A3D.2. Measured versus predicted 𝑆298.15𝐾
773.15 𝐾 using Method 2. Prediction uncertainty based 

on the confidence interval. This figure is identical to Method 1(Figure 3U) showing that the 

order of integration and regression does not matter for high-T Cp data. 

1. SPECIATION MODEL: ENTROPY AT 298 K (METHOD 2) 

Method 2 derived endmember entropies via integration over temperature (T) of linear 

interpolation low-T Cp sample curves, with subsequent OLS regression performed using NCSS 

on the XY3Z6T6V3W basis set and a sample size of 50. The model’s mean entropy was 653.28 

J/mol·K, with a standard deviation of 25.64 J/mol·K, and an entropy range from 574.16 to 

709.54 J/mol·K. Model fit statistics showed an MSE of 40.66 which is larger than method 1. An 

RPRESS² of 0 indicate the lack of robustness and the data dependent nature of the regression 

model. Residuals followed a normal distribution.  The correlation matrix showed that 

correlations between srl and drv, and drv and S₀ in the bulk compositional model were broken in 
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the speciation model. However, srl-S₀ remained at 0.81, and pov-S₀ was high at 0.71, indicating 

these endmembers largely influence S₀ in the solid solution. Outlier diagnostics identified 

synthetic B-olenite as highly influential due to its unique bole component, along with synthetic 

samples (oxyuvite, uvit, dravsyn) whose exclusion would alter predictions. In the measured 

versus predicted plot (Figure A3D.3) there is a slight improvement in compositional bias with 

method 1 compared to method 2. Differences between predicted entropies of the training set 

samples is at average overestimated in method 2 with an maximus difference of 5 J/mol·K. 
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Figure A3D.3. Measured versus predicted entropy using method 2 using CI and PI uncertainties. 

1. SPECIATION MODEL: 𝑺𝟐𝟗𝟖.𝟏𝟓𝑲
𝟕𝟕𝟑.𝟏𝟓 𝑲 (METHOD 2)  

The NCSS OLS regression on the 𝑆298.15𝐾
773.15 𝐾 obtained by Cp/T integration of the sample Cp 

curves also yielded endmember 𝑆298.15𝐾
773.15 𝐾.  The mean Cp is 976.8 J/mol·K with a standard 

deviation of 12.76 J/mol·K, showing limited variance. The model's MSE is 64.8, similar to 

Method 1. Key regression coefficients show strong associations with pov (1045.22 J/mol·K), 

fuvt (1010.09 J/mol·K), and ole (1010.98 J/mol·K), while bole (919.58 J/mol·K) and aorsm 

(961.91 J/mol·K) have lower coefficients. Compared to the bulk composition model, integrated 

Cp for srl, drv, uvt, foi, fluvt, and sorsm are similar. Ole is larger in the speciation model (1010 

J/mol·K) than in the bulk model (976 J/mol·K). Ole is larger (1010 J/mol·K) and Buergerite 

smaller (941 J/mol·K) in the speciation model compared to the bulk model (976 J/mol·K and 951 
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J/mol·K, respectively), while mdtw increased to 1012 J/mol·K from 987 J/mol·K. Drv, drvdis, 

and odrv show similar integrated high-T Cp 

The pattern observed in the bulk compositional model, where endmembers with X and V site 

vacancies, such as foiB, aorsmB, and buB, show lower Cp values, remains true. However, in the 

speciation model, ole, which had intermediate Cp values just below vacancy-free endmembers in 

the bulk compositional model, now has a higher 𝑆298.15𝐾
773.15 𝐾 than many endmembers without 

vacancies, indicating that speciation effects might play a role as well. 

Strong multicollinearity affects endmember independence, leading to correlations like uvt and foi 

(-0.62), odrv and foi (0.70), foi and aorsm (-0.77), odrv and drvdis (-0.60), odrv and aorsm (-

0.72), bu and pov (0.67). The correlation of B-Olenite with Cp (-0.66) shows significant 

influence on 𝑆298.15𝐾
773.15 𝐾. 

The model's R² of 0 shows it is not robust and data-dependent, particularly on synthetic data and 

F-Buergerite, which significantly influence many endmembers. Similar to the bulk compositional 

model, Method 1 and Method 2 yield identical results, indicating the order of integration and 

regression does not affect the outcome. The hierarchical subset selection procedure indicates no 

significant interaction parameters, and excess Cp at T > 298.15K is absent. 
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APPENDIX. REGRESSION ANALYSIS DETAILS 

Least Squares Entropy NCSS 

bulk Compositional Model, X(YZ)9SixAl(1-x)(VW)4    

Table 1. Model Fit Statistics 

Model MSE Average Percent Error (%) R² Press Residual Normality 

Reciprocal Model 41.62 0.68 0.87 Normal 

 
Table 2. Regression Coefficient Confidence Intervals 

Reciprocal Model with AlT Speciation 

Independent 

Variable 

Coefficient 

(b(i)) 

Standard Error 

(Sb(i)) 

Lower 95% 

CI 

Upper 95% 

CI 

srlB 718.48 6.69 704.96 732.00 

drvB 632.97 6.09 620.66 645.27 

uvtB 647.21 5.14 636.82 657.59 

foiB 658.76 11.03 636.46 681.05 

oleB 608.37 17.61 572.78 643.95 

uvtB 647.36 4.25 638.77 655.95 

buB 686.81 8.98 668.66 704.96 

mdtwB 664.25 35.34 592.83 735.67 

aorsmB 609.77 10.86 587.81 631.73 

 
Table 3. Correlations Between Endmembers and Entropy 

Variables Correlation Coefficient 

srlB and drvB −0.82 

Entropy and srlB +0.88 

Entropy and drvB −0.79 

srlB and oleB −0.69 

Entropy and oleB −0.70 

 
Table 4. Variance Inflation Factors (VIF) 

Variable VIF Value 

oleB 8.8 

foiB 8.5 

aorsmB 6.4 

 
Table 5. Outliers and Influence Diagnostics 

Observation Percentage Difference (%) Residual Cook's D(>0.08) Hat Diagonal (>0.42) DFFITS 

tm144 1.76 −11.17 - - −1.15 
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Observation Percentage Difference (%) Residual Cook's D(>0.08) Hat Diagonal (>0.42) DFFITS 

tm38B 1.54  +10.37 - - - 

tm129 2.73  −18.20 0.13 - −1.25 

tm40 1.71  −11.26 - - - 

uvit 2.05  +13.73 0.54 - 2.41 

Tm64    0.94 2.95 

oxyuvit   0.25 0.48 -1.5 

Tm183   0.12  1.07 

 
 

Table 6. Observations with High DFBETAS (>0.28) 

Observation Affected Variables 

tm144 uvtB, buB, mdtwB 

tm6 foiB 

tm169 srlB, aorsmB, fluvtB 

tm150 drvB, foiB, oleB, mdtwB 

tm156B drvB, aorsmB, mdtwB 

tm38B drvB, uvtB, oleB, mdtwB 

tm64 All except fluvtB 

tm129 srlB, drvB, uvtB, foiB, oleB 

tm183 All except drvB, foiB, oleB 

tm43 srlB 

tm29 foiB, aorsmB 

tm40 uvtB, fluvtB 

oxyuvit uvtB, aorsmB 

uvit uvtB (strong), foiB, oleB, fluvtB 

dravsyn srlB, foiB, oleB, aorsmB 
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Least Squares Integrated High-T Cp Curve NCSS.  

bulk Compositional Model, X(YZ)9SixAl(1-x)(VW)4. 

Table 1. Model Fit Statistics 

Model MSE Average Percent Error (%) R² Press Residual Normality 

Reciprocal Model 62.50 0.59 0 Normal 

 
Table 2. Regression Coefficient Confidence Intervals 

 

Reciprocal Model with AlT Speciation 

Independent 

Variable 

Coefficient 

(b(i)) 

Standard Error 

(Sb(i)) 

Lower 95% 

CI 

Upper 95% 

CI 

srlB 1000.42 8.20 983.85 1017.00 

drvB 980.98 7.46 965.91 996.06 

uvtB 991.71 6.30 978.98 1004.44 

foiB 962.18 13.52 934.87 989.50 

oleB 976.65 21.58 933.04 1020.26 

uvtB 982.51 5.21 971.98 993.03 

buB 951.34 11.00 929.10 973.57 

mdtwB 987.51 43.31 899.98 1075.03 

aorsmB 956.58 13.31 929.68 983.49 

 
Table 3. Correlations Between Endmember Variables 

Endmember Pair Correlation Coefficient 

srlB and drvB -0.82 

srlB and aorsmB 0.74 

srlB and oleB -0.69 

drvB and oleB 0.69 

drvB and aorsmB -0.69 

foiB and oleB 0.82 

aorsmB and foiB -0.86 

oleB and aorsmB -0.76 

 
Table 4. Variance Inflation Factors (VIF) 

Variable VIF Value 

oleB 8.8 

foiB 8.5 

aorsmB 6.4 

 
 

Table 5. Outliers and Influence Diagnostics 
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Observation Absolute Percent Error (%) Residual Hat Diagonal DFFITS Cook's D 

tm169A 1.04 -10.35 - - - 

tm150A 1.34 -12.91 - - - 

tm38B 1.40 13.90 - - - 

tm129 1.43 -13.90 - - - 

tm40 1.30 -12.61 - - - 

tm42 1.15 11.40 - - - 

tm74 1.05 -10.16 - - - 

uvit 1.65 16.70 0.39 2.39 - 

tm156B - - 0.39 - - 

tm64 - - 0.94 3.68 1.51 

tm183 - - 0.35 - - 

oxuvit - - 0.48 -1.38 - 

 
Table 6. Observations with High DFBETAS (>0.28) 

Observation Affected Variables 

tm144 mdtwB 

tm169A srlB, aorsmB 

tm150 drvB, oleB, mdtwB 

tm150A drvB, oleB, mdtwB 

tm156B mdtwB 

tm160A foiB, oleB, buB 

tm38B oleB 

tm64 All except fluvtB 

tm43 srlB, foiB, oleB, aorsmB 

tm39 uvtB, fluvtB, oleB 

tm40 fluvtB 

oxuvt uvtB, aorsmB 

uvit uvtB (strong), fluvtB, aorsmB 
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APPENDIX. REGRESSION ANALYSIS 

Least Squares Entropy NCSS 

Speciation Model, XY3Z6T6V3W 

 
Table 0. Descriptive Statistics 

Metric Value 

Sample Size 50 

Mean Entropy 653.28 

Standard Deviation Entropy 25.64 

Minimum Entropy 574.16 

Maximum Entropy 709.54 

 
Table 1. Model Fit Statistics 

Model MSE Average Percent Error (%) R² Press Residual Normality 

Speciation Model 40.66 0.58 0 Normal 

 
Table 2. Regression Coefficient Confidence Intervals 

 

Speciation Model. 

Independent 

Variable 

Coefficient 

(b(i)) 

Standard Error 

(Sb(i)) 

Lower 95% 

CI 

Upper 95% 

CI 

srl 716.74 14.87 686.59 746.89 

drv 621.67 6.92 607.64 635.70 

uvt 650.05 12.91 623.87 676.23 

fuvt 732.73 32.11 667.61 797.85 

foi 675.64 19.75 635.58 715.71 

ole 664.34 32.69 598.04 730.64 

drvdis 643.99 14.59 614.39 673.59 

odrv 630.19 6.90 616.19 644.19 

fluvt 640.69 5.09 630.36 651.01 

bu 665.16 22.10 620.33 709.98 

mdtw 697.89 34.24 628.44 767.33 

bole 567.62 12.13 543.03 592.22 

aorsm 639.49 20.57 597.78 681.20 

pov 1006.53 95.17 813.51 1199.55 

 
Table 3. Correlations Between Endmember Variables 

Endmember Pair Correlation Coefficient 

srl and drv -0.82 

srl and ole -0.69 
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Endmember Pair Correlation Coefficient 

srl and Entropy 0.81 

drv and ole 0.69 

drv and aorsm -0.69 

foi and ole 0.82 

aorsm and foi -0.77 

ole and aorsm -0.76 

drvdis and odrv -0.60 

bu and pov 0.67 

 
Table 4. Variance Inflation Factors (VIF) 

Variable VIF Value 

srl 11.5 

uvt 11.40 

drvdis 12.1 

aorsm 9.36 

foi 18.8 

 
Table 5. Outliers and Influence Diagnostics 

Observation Absolute Percent Error (%) Residual 
Hat Diagonal 

(>0.52) 
DFFITS Cook's D (>0.08) 

tm38B 1.70 11.46 - - - 

tm129 2.43 -16.20 - -1.55 0.13 

Tm183     0.18 

Tm163     12` 

uvit 2.36 15.86 0.39 3.27 0.55 

tm64 - - 0.98 0.36 0.36 

oxyuvit - - 0.61 -2.54 0.42 

dravsyn - - 0.85 -8.47 3.94 

olenite - - - 3152 311051 

 
Table 6. Observations with High DFBETAS (>0.30) 

Observation Affected Variables 

tm144 mdtw 

tm163 uvt, odrv, bu, aorsm 

tm171 fuvt 

tm64 ole, bu, mdtw 

tm129 All except drv, fuvt, bole, aorsm, pov 

tm183 All except drv, foi, fuvt, ole, aorsm, pov 

tm29 fuvt 
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Observation Affected Variables 

tm39 fuvt, pov 

olenite mdtw, Strong Influence on bole 

oxyuvt srl, drv, drvdis, bu, aorsm 

uvit All except foi, fuvt, mdtw, aorsm, bole 

dravsyn All except fuvt, pov 

 

APPENDIX. REGRESSION ANALYSIS 

Least Squares Integrated High-T Cp Curve NCSS 

Speciation Model, XY3Z6T6V3W 

 
Table 0. Descriptive Statistics 

Metric Value 

Sample Size 50 

Mean Cp 976.80 

Standard Deviation 12.76 

Minimum Cp 917.81 

Maximum Cp 1012.83 

 
Table 1. Model Fit Statistics 

Model MSE Average Percent Error (%) R² Press Residual Normality 

Speciation Model 64.8 0.54 0 Normal 

 

Table 2: Regression Coefficient Confidence Intervals 

Speciation Model. 

Independent 

Variable 

Coefficient 

(b(i)) 

Standard Error 

(Sb(i)) 

Lower 95% 

CI 

Upper 95% 

CI 

srl 1003.39 18.76 965.34 1041.44 

drv 982.36 8.73 964.65 1000.06 

uvt 992.98 16.29 959.95 1026.02 

fuvt 1010.09 40.52 927.91 1092.28 

foi 968.63 24.93 918.07 1019.19 

ole 1010.98 41.26 927.31 1094.66 

drvdis 985.08 18.42 947.73 1022.44 

odrv 979.15 8.71 961.48 996.82 

fluvt 978.60 6.43 965.57 991.64 

bu 941.42 27.89 884.85 997.99 

mdtw 1012.67 43.21 925.03 1100.31 
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Independent 

Variable 

Coefficient 

(b(i)) 

Standard Error 

(Sb(i)) 

Lower 95% 

CI 

Upper 95% 

CI 

bole 919.58 15.31 888.54 950.62 

aorsm 961.91 25.96 909.27 1014.56 

pov 1045.22 120.11 801.62 1288.82 

 
Table 3. Correlations Between Endmember Variables 

Endmember Pair Correlation Coefficient 

uvt and foi -0.62 

odrv and foi 0.70 

foi and aorsm -0.77 

odrv and drvdis -0.60 

odrv and aorsm -0.72 

bu and pov 0.67 

bole and Cp -0.66 

 
Table 4. Variance Inflation Factors (VIF) 

Variable VIF Value 

srl 11.5 

uvt 11.40 

drvdis 12.1 

aorsm 9.36 

foi 18.8 

 
Table 5. Outliers and Influence Diagnostics 

Observation Absolute Percent Error (%) Residual Hat Diagonal DFFITS Cook's D 

tm12 1.05 10.4 - - - 

Tm150A 1.08 -10.45    

tm38B 1.54 15.34 - - - 

tm129 1.22 -11.77 - -1.55 0.13 

tm42 1.33 13.22 - - - 

Tm156B   0.46   

tm64 - - 0.98 -1.96 0.28 

Tm166   0.43   

Tm183   0.40   

Tm29   0.48   

Tm39   0.49   

Tm40   0.49 -1.46  

olenite - - 1.00 682.00 33828.00 

oxyuvit - - 0.61 -2.16 0.32 

uvit 1.63 16.63 0.42 2.54 0.38 
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Observation Absolute Percent Error (%) Residual Hat Diagonal DFFITS Cook's D 

dravsyn - - 0.85 -7.18 3.04 

 
Table 6. Observations with High DFBETAS (>0.30) 

Observation Affected Variables 

tm144 mdtw 

tm12 bu, pov 

tm169A srl, aorsm 

tm160A srl, ole, bolenite, pov 

tm38B uvt 

tm64 ole, bu, mdtw 

tm129 uvt, ole, drvdis, mdtw 

tm183 odrv, mdtw 

tm43 srl, fuvt, foi, fuvt, bu, bole, aorsm, pov 

tm40 fuvt, foi, ole, drvdis, fuvt, mdtw, bolenite, aorsm, pov 

tm42 fuvt, ole, drvdis, odrv, mdtw 

tm74 ole, drvdis 

olenite Strongly on bole 

oxyuvt srl, drv, aorsm 

uvit All except foi, fuvt, mdtw, bole, aorsm 

dravsyn Strongly on all except fuvt, pov 

 

  



557 
 

Appendix 3E. Bulk Model endmember curves 

This Appendix contains all the Bulk model endmember Cp curves. 
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Appendix 3F. Method 1 Statistics Summary Bulk and Speciation 

Low-T Cp curve regression 

 

 

Table 1. Model Comparison for Entropy and MSE 

Model 
Mean Relative 

% 

Mean 

MSE 

Median 

MSE 

MSE 

Entropy 

Median MSE 

Entropy 

X(YZ)₉SixAl(1-

x)(VW)₄ 
-1.05% 12.13 5.5 32.8 10.6 

XY₃Z₆T₆V₃W -0.67% 10.7 5.4 28.5 5.9 

 

Table 2. LOOCV Metrics 

Model 
LOOCV Mean 

MSE 

LOOCV 

Median MSE 

LOOCV MSE 

Entropy 

LOOCV Median 

MSE Entropy 

X(YZ)₉SixAl(1-

x)(VW)₄ 22.7 
3.32 60.2 14.3 

XY₃Z₆T₆V₃W 47.6 4.26 118.3 11.4 

 

 

 

 

 

Model Largest MSE LOOCV MSE 

X(YZ)9SixAl(1-

x)(VW)4 

 

31.5 fschorl, 21.68 tm144, 31.62 tm11coreA, 

46.6 tm150, 45.8 tm38B, 0.25 tm64, 38.5 

tm129, 20.72 tm183, 30.6 tm39,59.3 tm40, 

29.14 oxyuvit,57.5 uvite 

47.1 fschorl, 37.3 tm144 , 38.3 

tm11coreA, 64.9 tm150, 61.0 

tm38B, 97.0 tm64, 49.8 tm129, 

49.3 tm183, 52.4 tm39,77.0 tm40, 

108.2 oxyuvit,156.9 uvite 

XY3Z6T6V3W 
 

27.7 fschorl, 22.4 tm11coreA, 30.0 tm150, 55.0 

tm38B, 35.0 tm129, 27.9 tm183, 28.9 oxyuvit, 

94.9 uvite  

42.0652 fschorl, 29.5423 

tm11coreA, 41.0307 tm150, 

71.6864 tm38B, 321.662 tm64, 

53.8623 tm129, 77.8844 tm183, 

2.57011*107 olenite, 190.7 

oxyuvit, 283.0 uvite, 864.8 

dravsyn 
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High-T Cp curve regression 

Model Largest MSE LOOCV MSE 

X(YZ)9SixAl(1-

x)(VW)4 

 

5.5 tm64, 337.5 uvite, 300.3 tm129, 200.9 

tm150, 73.6 oxyuvit, 210.0 tm38B, 170.7 

tm40, 150.8 tm42, 84.2 tm160A, 147.6 

tm112, 150.0 tm25 

2090.0 tm64, 920.2 uvite, 390.5 

tm129, 282.1 tm150, 273.3 oxyuvit, 

284.6 tm38B, 222.7 tm40, 217.5 

tm42, 187.2 tm160A, 174.2 tm112, 

169.1 tm25 

 

XY3Z6T6V3W 
 

138.3 tm112, 2.6 tm163, 4.0 tm171, 2.1 

tm13rim, 0.2 tm64, 1.8 tm166, 124.1 tm65, 

314.6 uvite,78.5 dravsyn 

932.9 tm112, 887.4 tm163, 549.0 

tm171, 786 tm13rim, 1010 tm64, 

829.2 tm166, 504.5 tm65, 592.1 

uvite, 3556.2 dravsyn 

 

Table 1. Model Comparison for Entropy and MSE 

Model 
Mean Relative 

% 

Mean 

MSE 

Median 

MSE 

MSE 

Entropy 

Median MSE 

Entropy 

X(YZ)₉SixAl(1-

x)(VW)₄ 
-1.05% 67.2 37.6 51.02 42.3 

XY₃Z₆T₆V₃W -0.00005 61.1 31.2 46.6 21.1 

 

Table 2. LOOCV Metrics 

Model 
LOOCV Mean 

MSE 

LOOCV 

Median MSE 

LOOCV MSE 

Entropy 

LOOCV Median 

MSE Entropy 

X(YZ)₉SixAl(1-

x)(VW)₄ 
149 44.6 60.2 39.10 

XY₃Z₆T₆V₃W 217 59.1 162.1 55.5 

 

LOOCV mean is calculated excluding synthetic B-olenite sample.  

 

 

 

  



563 
 

Appendix 3G. Bulk Model. 4 Temperature Zoom in Predicted vs Measured 

This Appendix contains all the Bulk Model. 4 Temperature Zoom in Predicted vs Measured for 

298.15, 373.15, 573.15 and 773.15K. 
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Appendix 3H. Speciation Model Regression 

2. SPECIATION MODEL: LOW-T CP (METHOD 1) 

The same methods described for the bulk model were also applied using the speciation 

model. Method description is therefore not repeated. Endmember fraction ranges can be 

found in chapter 2 and show good coverage for drv, uvt, odrv, flvt, bu, bole, and aorsm (0.6-

0.9), intermediate for srl, foi, and drvdis (0.35-0.55), and poor for fuvt (0.18), ole (0.12), 

mdtw (0.14), and pov (0.08). The later are extrapolated with higher uncertainties. 

 

Figure A3H.1. Speciation endmember low-T Cp curves with their confidence intervals.  

Figure A3H.1 shows the speciation endmember curves. The individual curves can be found in 

Appendix 3J. All confidence limits are tight except for fuvt and pov in the speciation model, with 

pov exhibiting the highest Cp curve, entropy, and uncertainty. The stark contrast between the 

highly extrapolated Cp curve for pov (highest Cp) and the other tourmalines highlights its 

distinct behavior and the non-smooth cp curve its elevated uncertainty. Pov dominates the 
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heatmap as well (Figure A3H.2). Other endmember low-T cp curves behave similarity to their 

bulk composition equivalent. Minimal differences between drv, odrv and drvdis mainly occur 

<150K.

 

Figure A3H.2. Heatmap of speciation model Cp curves Z-scores at 0.1 K intervals, comparing 

each endmember to the mean of all endmembers. White indicates Cp near the mean, blue lower 

than the mean, and red higher. The plot highlights how relative differences between curves vary 

with temperature. 

The SE’s, nearly linear in absolute values, again show sharp increases in relative uncertainty 

below 50 K (Figure A3H.3), particularly around 15–20 K due to the small magnitudes of Cp in 

this temperature range, especially for drv/uvt. Severe multicollinearity in srl (VIF=15.1), uvt 

(VIF=11.5), foi (VIF=25.2), ole (VIF=12.0), drvdis (VIF=23.3), odrv (VIF=17.64), bu 

(VIF=7.2), aorsm (VIF=11.8), and pov (VIF=7.7) complicate the independence of the regression 
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coefficients and hint to data scarcity and insufficient datapoint to constrain all the endmembers 

(Figure A3H.4). The similarity between ordered and disordered endmembers, such as drv, 

drvdis, and odrv, simplifies the derivation of isochemical reaction equations but increases 

collinearity, which hinders the independent estimation of endmember properties and induces 

spurious correlations between them. This challenge is relevant to nearly all thermodynamic 

models involving ordered endmembers, particularly in solid solution models in the H&P 

database (Holland and Powell 2011; White et al. 2014; Green et al. 2016) . 

 

Figure A3H.3. The relative uncertainty in endmember in low-T Cp (J/K/mol) and its 

dependence on T. 
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Figure A3H.4. VIF factors for the speciation model. VIF factors depend on the designer matrix 

and are therefore equal for all regressions relating to the speciation model.  
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Figure A3H.5 Mean Squared Error (MSE) of Cp curve versus Measured Entropy (J/K/mol) for 

the low-T Cp curve regression of the speciation model. 

 

 

Figure A3H.6  Relative residuals (%) between measured and predicted low-T Cp curves for the 

speciation model, plotted on a log scale. Higher uncertainties (>1%) occur below 100 K, while 

they remain <2% above 100 K. 

Endmember Cp curves were piecewise linearly interpolated and integrated over T to compute 

standard state entropies at 298.15 K, with uncertainties derived by integrating standard errors 

from the regression covariance matrix at each temperature.  

Table A3H.1. Standard State Entropy of the endmembers obtained using method 1 for the 

speciation model. 

Endmember Name Entropy (J/K/mol) Entropy Uncertainty (J/K/mol) 
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Endmember Name Entropy (J/K/mol) Entropy Uncertainty (J/K/mol) 

srl 710.54 18.85 

drv 621.85 8.77 

uvt 648.33 16.36 

fuvt 725.19 40.70 

foi 669.94 25.04 

ole 656.99 41.44 

drvdis 641.39 18.50 

odrv 629.22 8.75 

fluvt 641.06 6.46 

bu 657.44 28.02 

mdtw 690.41 43.41 

bole 568.46 15.38 

aorsm 638.87 26.07 

pov 1000.44 120.65 

Bulk compositional vs Speciation S0. The comparison between the bulk compositional and 

speciation models is valid, as the training set differs only by an additional synthetic B-olenite 

sample and basis set formulation differences. S₀ values for srl, uvt, and fluvt are nearly identical 

in both models. However, the S₀ of ordered drv is predicted to be 10 J/K/mol smaller, while 

dravdis is 10 J/K/mol larger. Odrv lies between these values, aligning with bulk composition 

drvB S₀, indicating a 20 J/K/mol S₀ difference between Mg/Al ordering states on the Y and Z 

sites. Due to strong multicollinearity, these values are not statistically independent, making 

interpretation of individual effects less reliable. Foi’s S₀ is higher than foiB but within the bulk 

compositional CI. Ole’s S₀ is much higher, outside the bulk compositional CI, and 25 J/K/mol 

smaller than aorsm in the speciation model. Bu’s S₀ is lower, while mdtw’s is larger than in the 

bulk compositional model. 

Internal Validation. Predicted and measured Cp curves were integrated over T to compare 

entropies, as shown in Figure A3H.7. Entropies MSE was 28.5 (median 5.9). Gibbs free energy 

differences due to model simplifications at 298.15 K remained mainly within 2 kJ for the 

speciation model, consistent with the bulk compositional model. Significant outliers include the 

synthetic uvite sample and Fe³⁺-rich tm38B, which were also outliers in the bulk compositional 

model. Residuals for tourmalines with high nonbuergeritic Fe³⁺ content decreased significantly 

but did not vanish entirely. 
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Figure A3H.7. Measured versus predicted entropy using Method 1 

Low-T Cp Curve Regression Details.  To evaluate regressions along the Cp curve, 55 points 

were generated per sample using piecewise linear interpolation at 5 K intervals up to 100 K and 

20 K intervals from 100 to 800 K to evaluate regression metrics and linearity. 

At low T (1–21 K), endmembers such as ordered drv, fluvt, bole, aorsm, and pov are not 

significant. bole, aorsm, and drv exhibit unphysical negative Cp values (-0.29, -0.02, -0.03 

J/K/mol, respectively), while fluvt (0.04 J/K/mol) and olenite (0.8 J/K/mol) have very low Cp 

values. Pov has a high Cp (2.5 J/K/mol), but this results from highly uncertain extrapolation. The 

previously observed correlation (~0.75) between srl-drv and drv-S0 (~ -0.7 J/K/mol) in the bulk 

compositional models is absent at low T Cp in the speciation model, likely due to the division of 

bulk drv into ordered and disordered forms. RPRESS
2 is ~0.90 at 1 K, drops to 0 at 61 K, rises to 

0.7 at 80 K, and again falls to 0 at 100 K. 
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Strong multicollinearity is observed among speciation endmembers in the speciation model, 

unlike the bulk composition model. In the molar volume model, this issue was resolved only by 

including a literature dataset, which does not exist for entropy. At 1 K, multicollinearity results 

in significant correlations among speciation endmembers include foi-uvt (-0.62), foi-aorsm (-

0.77), foi-odrv (0.7), drvdis-odrv (-0.60), odrv-aorsm (-0.72), and bu-pov (0.67). Additionally, 

endmember-Cp correlations, such as srl-Cp (0.62) and pov-Cp (0.69), highlight their strong 

contributions to Cp. These correlations increase with temperature, reaching srl-Cp (0.8) and pov-

Cp (0.73) at 100 K, but decrease to 0.57 and 0.26 at 310 K, and 0.34 and 0 at 800 K. bole 

correlations shift from 0 at 1 K to -0.73 at 240 K, stabilize until 450 K, and decline to -0.5 at 800 

K. Buergerite starts at 0.52, switches sign near 298 K, and becomes -0.36 at 800 K. 

LOOCV. The speciation model is less robust than the bulk model, with MSE and derived 

entropy quadrupling in LOOCV and their median doubling due to high-leverage samples like 

buergerite and synthetics, which often single-handedly define endmembers. These samples are 

well fit by the model but poorly predicted when excluded. 

3. SPECIATION MODEL HIGH-T Cp (METHOD 1) 

Endmember Cp curves. Speciation endmember high-T Cp curves (>298.15 K) can be found in 

Figure A3H.8. Standard error analysis shows absolute uncertainty linearly increases with 

temperature, while relative stays relatively constant. The confidence intervals are broader than in 

the bulk compositional model however behave smoothly, except for pov which is very poorly 
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constrained.

 

Figure A3H.8. Speciation endmember high-T Cp curves with their confidence intervals. 

XY3Z6T6V3W 
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Figure A3H.9: Heatmap of speciation model high-T Cp curves Z-scores at 1 K intervals, 

comparing each endmember to the mean of all endmembers. XY3Z6T6V3W 

The heatmap of Z-scores across temperatures shows that pov, mdtw, ole, and fuvt exhibit the 

highest high-T Cp curves, while foi, bu, and bole have the lowest (Figure A3H.9). In the bulk 

compositional model, uvtB has high Cp curves, but in the speciation model, it shows 

intermediate values. This is likely due to the iron-rich versions of these endmembers in the 

speciation model having their own separate endmembers. 

. 
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Figure A3H.10. The relative uncertainty in Cp (J/K/mol) dependence on T. XY3Z6T6V3W. 

Uncertainty is high for the pov endmember.  

Internal Validation. The Berman Cp model regression coefficients for endmembers were used 

to predict Cp curves for training samples, with a mean MSE of 61.1 (median 31.2), similar to the 

bulk compositional model. Residuals showed no temperature dependency and relative deviations 

within 1%, with outliers reaching 2% (Figure A3H.13). The mean  S298.15K
773.15 K MSE is 46.6, with a 

median of 21.1, half that of the bulk compositional model, indicating that while outliers are not 

better fit, the centroid of the data is. This is also reflected in the delta G values, where outliers 

remain similar but centroid free energies differences decrease (Figure A3H.12). 

Predicted versus measured plots show that in the speciation model, compositional bias is much 

less extreme than in the bulk model, with more samples clustering around the 1:1 line (Figure 

A3H.10). In contrast to the bulk model, predicted differences between endmembers at high T 

still exist, suggesting the speciation model extrapolates better to high T. However, direct 

comparison of integral differences between the two models is not possible due to the inclusion of 

the low-entropy synthetic B-Olenite sample. 
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Figure A3H.11. Measured versus predicted entropy using Method 1. Uncertainties are 

propagated from the polynomial model fit and therefore assumed a ‘perfect’ Berman model. 
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Figure A3H.12. Distribution of ΔG differences at 773.15 K arising from discrepancies between 

measured and predicted Cp for the speciation model. The figure highlights the contributions from 

differences in standard state entropy (S₀), integrated entropy along the high-T Cp curve (𝑆298.15𝐾
773.15 𝐾

), and their combined impact on ΔG values at 773.15 K. 

 

 

Figure A3H.13. Relative deviations between training set data and model for high-T Cp. 

XY3Z6T6V3W. 

At 300.15 K, 373.15 K, 573.15 K, and 773.15 K, measured versus predicted Cp comparisons 

showed good agreement with the 1:1 line (Figure A3H.14). While the systematic offset observed 

in the bulk compositional model is also present in the speciation model, the compositional bias is 

reduced, indicating that adding additional endmembers improves sensitivity in the flat parts of 

the high-T Cp curve. Therefore, speciation models may extrapolate better to high temperatures 

than bulk compositional models. 
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Figure A3H.14. Predicted versus measured Cp at four different T with the 1:1 line, highlighting 

the more horizontal distribution of samples at higher T, though less pronounced than in the bulk 

compositional model.  

LOOCV The LOOCV MSE for high-T Cp and 𝑆298.15𝐾
773.15 𝐾 quadrupled instead of tripled for the 

speciation model showing that the speciation model is more data dependent. This makes sense as 

many endmembers in the speciation model are dictated by only 1-2 samples and therefore is not 

robust when such samples are removed from the training set data.  
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Fe3+ Speciation effects Figure A3H.14 a) and b) shows that bu and pov have drastically different 

effects on molar volume, S₀, and 𝑆298.15𝐾
773.15 𝐾. 
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Figure A3H.15. Pov versus bu endmember fraction. Size of points indicate molar volume 

whereas the colour indicates in a) standard state entropy and in b) 𝑆298.15𝐾
773.15 𝐾. Note the difference 

in scale for the pov and bu axis. The figures do show how pov and bu have drastically different 

properties. 
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Appendix 3I. Speciation Model 4 Temperature Zoom in Predicted vs 

Measured 

This Appendix contains all the Speciation Model. 4 Temperature Zoom in Predicted vs Measured 

for 298.15, 373.15, 573.15 and 773.15K. 
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Appendix 3J. Speciation Model endmember curves 

This Appendix contains all the Speciation model endmember Cp curves. 
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Appendix 3K. Alternative Regression Methods 

 

ALTERNATIVE REGRESSION METHODS 

We applied alternative fitting methods to OLS on entropies obtained by integrating piecewise 

linear interpolation of the measured Cp curve, following the method in chapter 3 for molar 

volume data. The techniques, including x uncertainties for both the bulk and speciation models, 

consisted of total least squares (TLS), x-scaled TLS, x and y-scaled TLS, y-scaled generalized 

TLS (gtls-y-scaled), generalized TLS with covariance matrix from the full dataset (gtls-cov-

data), gtls-cov-data-y-scaled, gtls-row-column, gtls-block-diag, cwtls-block-diag, gtls-fullW, and 

cwtls-fullW. We used the MATLAB scripts from chapter 3 modified from Wurm (2021), which 

combine these x-uncertainty methods with additional robust regression methods, and included a 

leave-one-out cross-validation procedure (LOOCV) to assess model robustness, which, in data-

scarce situations, is dominated by the removal of high-leverage samples that disrupt centroid 

correlations. This favors models that fit the centroid but does not assess predictive capability or 

extrapolation to new data. 

 

As in chapter 3 for molar volume regressions, we used the absolute uncertainties. While 

uncertainties in molar volumes and endmembers were similar (0.1), the larger entropy 

uncertainties (~1-5 J/K/mol) introduced a bias, making the regression more sensitive to entropy 

than to x uncertainties. This bias was less pronounced in the speciation model due to its higher 

cumulative x-uncertainty from more endmembers. We did not normalize, but the difference in 

magnitudes adjusted the tolerance, allowing CWTLS to work with a higher regularisation 

parameter to ensure nonsingular, positive definite matrices. In the future, normalizing x and y 

variables would help equalize their importance, though there are more x variables than y 

variables. 

Bulk Compositional Model The LOOCV MSE is highest for OLS (65), and similarly low for x-

uncertainty methods (>52), and robust methods (>52). However, the exact robustness varies 

depending on the specific variant of the method, reflecting differences in how each approach 

handles data fitting (Table 3K1, Table 3K2). In case of x-uncertainty methods CWTLS-fullW 

using the full weight matrix including the covariances of block diagonal covariances had the 
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lowest LOOCV MSE and in case of robust methods the iteratively reweighted least squares 

(IWLS) with Cauchy weighting yielded the lowest LOOCV MSE, MAE, MAD, adjusted R², and 

compositional bias integral in case of the robust methods (Table 3K1, Table 3K2). Compared to 

OLS, the Cauchy robust model predicted LOOCV for F-Buergerite (tm64) more accurately, 

staying closer to the true value. This is because both high-pov and high-bu samples are high-

leverage outliers, and the centroid fit captures a balance between the two main data trends 

(Figure 3Z). The higher compositional bias integrals of the CWTLS methods indicate they fit 

extreme data more aggressively, leading to higher LOOCV MSE when these outliers are 

excluded. 

In cross-validation studies, the performance of regression methods such as OLS, CWTLS, and 

robust methods (e.g., Cauchy) highlights their differing capacities for generalisation and 

sensitivity to dataset characteristics. For the bulk compositional models, OLS, which minimises 

the sum of squared residuals without accounting for data point uncertainties or multicollinearity, 

treating all data points equally, tends to overfit high leverage extreme data points. This is 

reflected in its high LOOCV MSE, as single-point removal often disrupts its overfitted structure, 

particularly in datasets with outliers or high variability. In contrast, x-uncertainty methods such 

as CWTLS incorporates weights and constraints to address data uncertainties and correlations, 

striking a balance between generalisation and fit. It offers greater flexibility to fit the data and 

improve generalisation but remains sensitive to dataset structure, due to the unequal treatment of 

data points, which can result in significant effects from single-point removal during LOOCV. 

Robust methods, such as IWLS designed to minimize the influence of outliers by down-

weighting extreme residuals, excel in LOOCV scenarios. By prioritizing the central trend, they 

avoid overfitting and maintain the smallest LOOCV MSE, offering the best generalisation 

performance for the average tourmaline. However extreme samples are not well predicted and 

therefore the chemical subspace where such empirical models can be used in extremely limited. 

Table 3K.1. Bulk Model: LOOCV MSE and Mean Residual Analysis. The LOOCV MSE and 

mean residuals assess the performance and robustness of different regression methods. Negative 

mean residuals indicate general underestimation, while positive values suggest general 

overestimation. LOOCV MSE highlights model sensitivity to extreme outliers, reflecting method 
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robustness. The most robust models balance low MSE with minimal bias in residual means and 

are indicated with yellow. OLS is the reference method. 

Regression Method LOOCV MSE Mean Residual 

OLS-regression then integrate 60.20  

OLS 65.00 0.48 

TLS 59.10 0.23 

xscaledTLS 61.29 0.31 

xy-scaled-TLS 62.68 -0.12 

gtls-y-scaled 61.11 -0.18 

gtls-cov-data 61.03 0.31 

gtls-cov-data-y-scaled 63.92 -0.09 

gtls-row-column 61.74 0.31 

gtls-block-diag 61.73 -0.42 

cwtls-block-diag 54.54 -0.38 

gtls-fullW 85.43 -0.58 

cwtls-fullW 52.24 -0.34 

robust andrews 64.20 -0.29 

robust bisquare 64.00 -0.29 

robust cauchy 52.66 -0.11 

robust fair 54.72 0.03 

robust huber 52.85 -0.13 

robust logistic 53.17 -0.10 

robust talwar 66.62 0.35 

robust welsch 59.71 -0.18 

WLS 65.53 0.02 
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Table 3K.2. Bulk model Z-score heuristics using the LOOCV as an estimate for the test set show 

which models have lowest training set uncertainty and is most robust. For the meaning of the 

different Z scores and how they are summed into one heuristic, see Chapter 3. Best performing 

robust regression method and x-uncertainty regression methods with lowest sum Z scores are in 

bold and yellow. 

 

Model 

Method 
MSE_Z MAE_Z MAD_Z 

Adj R 

Squared 

Z 

Integral 

Between 

York 

and 

1_1_Z 

wMSE_Z AdjR_Z 
Rsquared 

Press Z 

Sum Z 

Scores 

 

robust 

cauchy 
-1.12 -1.37 -1.40 -1.12 -0.18 -0.93 -1.22 -1.18 -8.51 

 

robust 

huber 
-1.14 -1.09 -1.11 -1.14 -0.33 -1.04 -1.19 -1.17 -8.21 

 

robust 

logistic 
-1.07 -1.25 -1.27 -1.07 -0.30 -0.83 -0.99 -0.95 -7.72 

 

cwtls 

fullW 
-1.10 -2.01 -2.00 -1.10 2.66 0.03 -1.53 -1.55 -6.61 

 

robust 

fair 
-0.90 -0.79 -0.80 -0.90 -0.57 -0.84 -0.84 -0.81 -6.45 

 

cwtls 

block 

diag 

-0.88 -1.30 -1.31 -0.88 2.67 0.19 -0.98 -0.93 -3.42 

 

robust 

welsch 
-0.15 -0.44 -0.40 -0.15 0.26 -0.33 -0.75 -0.74 -2.69 

 

TLS -0.40 0.30 0.32 -0.40 -0.71 -0.57 0.31 0.26 -0.88  

gtls 0.28 -0.10 -0.12 0.28 -0.28 0.66 -0.83 -0.69 -0.80  
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Model 

Method 
MSE_Z MAE_Z MAD_Z 

Adj R 

Squared 

Z 

Integral 

Between 

York 

and 

1_1_Z 

wMSE_Z AdjR_Z 
Rsquared 

Press Z 

Sum Z 

Scores 

 

block 

diag 

gtls cov 

data 
-0.15 0.52 0.54 -0.15 -0.60 -0.63 0.29 0.24 0.05 
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Figure 3K.1. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, York 

Regression, and Integral Difference for OLS. Notice the high LOOCV MSE of F-buergerite 

(tm64). 
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Figure 3K.2. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, York 

Regression, and Integral Difference for CWTLS using the Full weight matrix with block 

diagonal covariances of each sample and covariances of the covariances. While overall fit is 

good there is compositional bias as demonstrated by the high integral difference between the 

York line and the 1:1 line.  
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Figure 3K.3. Bulk model measured entropy versus LOOCV Entropy with Uncertainties, York 

Regression, and Integral Difference for robust regression using the Cauchy weight function. The 

most robust method. 

Speciation Model 

In the speciation model, OLS is highly data-dependent, with single samples often dictating 

endmember regression coefficients, leading to higher LOOCV MSE than in the bulk 

compositional model. The synthetic B-Olenite sample was excluded from the LOOCV MSE 
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calculation. Like the bulk model, the inclusion of x-uncertainty in case of CWTLS-fullW 

decreased LOOCV MSE in the speciation model, suggesting that added flexibility increased its 

robustness. As the parameter-to-data increases, model sensitivity rises, and CWTLS is still prone 

to overfitting as its flexibility amplify its responsiveness to dataset structure, leading to a 

relatively high LOOCV MSE. Note that all other x-uncertainty method do worse due to its data 

structure dependence. This sensitivity arises from the disruption of weighted constraints during 

single-point removal, as influential points often dictate the speciation endmember, destabilizing 

predictions. OLS, despite its limitations, benefits from its simplicity by treating all data points 

equally in high-parameter settings, avoiding the overfitting tendencies of the other x-uncertainty 

models and yielding moderate LOOCV MSE. Robust methods, due to their resistance to 

overfitting and ability to focus on the underlying trend of the bulk of the data—primarily the 

natural samples with inherent correlations—minimize sensitivity to noise or compositional 

extremes. 

Table 3K.3. Speciation Model: LOOCV MSE and Mean Residual Analysis.  

Method LOOCV MSE LOOCV mean(residual) 

OLS-regression then integrate 118.30  

OLS 119.76 -0.73 

TLS 134.59 -1.60 

xscaledTLS 133.25 -1.56 

xy-scaled-TLS 126.82 -1.57 

gtls-y-scaled 127.35 -1.60 

gtls-cov-data 134.40 -1.58 

gtls-cov-data-y-scaled 127.14 -1.50 

gtls-row-column 134.52 -1.60 

gtls-block-diag 158.52 -0.09 

cwtls-block-diag 145.17 -1.04 

gtls-fullW 149.42 -0.18 
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Method LOOCV MSE LOOCV mean(residual) 

cwtls-fullW 114.71 -0.92 

robust andrews 87.91 0.64 

robust bisquare 88.02 0.63 

robust cauchy 149.42 0.99 

robust fair 98.54 -0.69 

robust huber 97.26 -0.32 

robust logistic 96.50 -0.38 

robust talwar 122.73 -0.86 

robust welsch 110.95 0.97 

WLS 116.74 -1.11 
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Table 3K.4. Speciation model Z-score heuristics using the LOOCV as an estimate for the test set 

show which models have lowest training set uncertainty and is most robust. For the meaning of 

the different Z scores and how they are summed into one heuristic, see Chapter 3. Best 

performing robust regression method and x-uncertainty regression methods with lowest sum Z 

scores are in bold and yellow. 

 

Model 

Method 

MSE_

Z 

MAE_

Z 

MAD_

Z 

Adj R 

Square

d Z 

Integral 

Betwee

n York 

and 

1_1_Z 

wMSE_

Z 

AdjR_

Z 

Rsquare

d Press Z 

Sum 

Z 

Score

s 

robust fair -1.25 -1.46 -1.59 -1.25 -0.90 -1.01 -1.00 -1.00 -9.46 

robust 

logistic 
-1.33 -1.56 -1.67 -1.32 -0.69 -0.93 -0.95 -0.95 -9.41 

robust huber -1.30 -1.45 -1.55 -1.29 -0.69 -0.89 -0.88 -0.89 -8.94 

WLS -0.28 -0.99 -0.85 -0.28 -0.06 -0.93 -0.94 -0.98 -5.32 

robust 

bisquare 
-1.49 -0.67 -0.71 -1.53 0.58 -0.16 -0.34 -0.31 -4.63 

robust 

andrews 
-1.58 -0.80 -0.90 -1.61 0.59 0.34 0.04 0.07 -3.85 

OLS -0.30 -0.25 -0.31 -0.27 -0.90 -0.33 -0.24 -0.23 -2.84 

gtls cov data 

y scaled 
0.24 -0.49 -0.28 0.24 0.44 -0.82 -0.90 -0.94 -2.52 

xyscaledTL

S 
0.21 -0.42 -0.21 0.21 0.56 -0.79 -0.88 -0.92 -2.23 

gtls y scaled 0.24 -0.37 -0.16 0.24 0.60 -0.78 -0.87 -0.92 -2.03 
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Figure 3K.4. Speciation model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for OLS. Notice the high LOOCV MSE of F-

buergerite (tm64). 
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Figure 3K.5. Speciation model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for CWTLS using the Full weight matrix with block 

diagonal covariances of each sample and covariances of the covariances.  
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Figure 3K.6. Speciation model measured entropy versus LOOCV Entropy with Uncertainties, 

York Regression, and Integral Difference for robust regression using the Flair weight function.  
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Each regression technique has its strengths and limitations, and the best model can only be 

determined with a separate test set. Model performance depends on dataset structure and the 

number of parameters, meaning the optimal method in one case may not be the best in another. 

For instance, OLS tends to overfit noise in bulk models but is relatively robust in high-parameter 

settings due to its simplicity. Robust methods fit central data well but are limited by extreme 

compositional bias, affecting their ability to predict outliers. CWTLS, with its added flexibility, 

often generalizes effectively but is highly sensitive to dataset structure, particularly in high-

parameter models. These nuances highlight the importance of tailoring regression methods to the 

specific characteristics of each dataset rather than relying on a one-size-fits-all approach.  

 

Without a test set, we cannot determine which method performs best. LOOCV, while useful for 

assessing robustness, falls short of providing an accurate estimate of test set error in small 

datasets with few correlation-breaking outliers. This leads to the trivial conclusion that robust 

methods are the most robust. In the absence of a test set, OLS is preferred for its unbiased, 

efficient estimates, minimizing squared residuals under normality assumptions. Its simplicity, 

robustness, and reliability make it an optimal baseline. Overfitting of high-leverage samples is 

considered beneficial, as it provides the correlation-breaking samples necessary for obtaining 

independent regression estimates. If the model is truly overfitting, this can be tested by future 

entropy measurements of extreme tourmaline compositions, observing how well it performs on 

tourmalines that are far removed from the calibration dataset. 

 

REFERENCES 

Wurm, M. (2021) A universal and fast method to solve linear systems with correlated 

coefficients using weighted total least squares. Measurement Science and Technology, 

33, 015017. 
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Appendix 3L. Derivation of Holland and Powell (1990) Landau tricritical 

Derivation of Holland and Powell (1990) tricritical S and Cp equations from Landau free energy 

expression. 

Define the Landau Free Energy The general Landau free energy expansion is: 𝐺(𝑄) = 𝐺0 +

𝑎(𝑇 − 𝑇𝑐)𝑄
2 + 𝑏𝑄4 + 𝑐𝑄6 +⋯, where Q is the order parameter, a, b, and c are constants, and 

Tc is the critical temperature (Landau 1937). For a tricritical transition (b=0): 𝐺(𝑄) = 𝐺0 −

𝑎

2
(𝑇𝑐 − 𝑇)𝑄

2 +
𝑐

6
𝑄6, here a>0 and c>0. Excess properties are modelled by: Δ𝐺(𝑄) =

−
𝑎

2
(𝑇𝑐 − 𝑇)𝑄

2 +
𝑐

6
𝑄6, after subtracting the vibrational heat capacity baseline (cpvib) and 

removing G0, which does not affect the phase transition (Holland and Powell 1990). 

The stability criterion 𝑇𝑐 = 𝑐/𝑎 ensures the free energy  𝐺(𝑄) = −
𝑎

2
(𝑇𝑐 − 𝑇)𝑄

2 +
𝑐

6
𝑄6 remains 

bounded by balancing the destabilizing Q2 term, which changes sign at Tc, with the stabilizing 

Q6 term at large Q. The entropy maximum criterion Smax=a/2 arises from maximal thermal 

fluctuations at Tc, where the temperature-dependent Q2 term leads to a peak in entropy and heat 

capacity (Holland and Powell 1990). 

Experimentally, cp(T) measurements require subtracting the lattice contribution to isolate 

tricritical behavior. The peak of the corrected cp(T) curve indicates Tc, and integrating cp 

confirms Smax=a/2. Fitting the curve to the Landau model determines c, a, and their ratio c/a. 

To derive the expression for Q in terms of Tc when 𝑇𝑐 = 𝑐/𝑎,  

Derivation expression Q 

1. Equilibrium Condition: Minimize G(Q), by setting 
𝜕𝐺(𝑄)

𝜕𝑄
= 0: 

𝜕𝐺(𝑄)

𝜕𝑄
= −𝑎(𝑇𝑐 − 𝑇)𝑄 + 𝑐𝑄

5 = 0 

Simplify: 

𝑄[−𝑎(𝑇𝑐 − 𝑇) + 𝑐𝑄
4] = 0. 
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Solutions : 
𝑄 = 0 (stable for 𝑇 > 𝑇𝑐 ) 

𝑄4 =
𝑎

𝑐
(𝑇𝑐 − 𝑇)( for 𝑇 < 𝑇𝑐).

 

2. Substitute 𝑇𝑐 =
𝑐

𝑎
: 

𝑄4 =
𝑎

𝑐
(
𝑐

𝑎
− 𝑇) 

Simplify: 𝑄4 =
𝑎

𝑐
⋅
𝑐−𝑎𝑇

𝑎
= 1 −

𝑇

𝑇𝑐
.. 

3. Solve for Q: 

𝑄 = (1 −
𝑇

𝑇𝑐
)
1/4

 

Derivation of 𝚫𝐒 

1. Free Energy and Entropy Relation: 

𝑆 = −
𝜕𝐺

𝜕𝑇
 

2. Differentiate G(Q) w.r.t. T: 

From G, only the first term depends on T, −
𝑎

2
(𝑇𝑐 − 𝑇)𝑄

2: 

𝜕𝐺

𝜕𝑇
= −

𝜕

𝜕𝑇
[−
𝑎

2
(𝑇𝑐 − 𝑇)𝑄

2] = −
𝑎

2
𝑄2 

3. We include a reference standard state entropy contribution S0 (when Q=0), making it a 

ΔS: 

Δ𝑆 =
𝑎

2
(1 − 𝑄2) 

As 𝑆𝑚𝑎𝑥 =
𝑎

2
 

Δ𝑆 = 𝑆𝑚𝑎𝑥(1 − 𝑄2) 

Derivation of Cp equation 



612 
 

1. Expand Q2 

From 𝑄 = (1 −
𝑇

𝑇𝑐
)
1/4

, squaring gives: 𝑄2 = (1 −
𝑇

𝑇𝑐
)
1/2

. 

Substituting Q2 into Δ𝑆 = 𝑆𝑚𝑎𝑥(1 − 𝑄2): 

𝑆 = 𝑆𝑚𝑎𝑥 (1 − (1 −
𝑇

𝑇𝑐
)
1/2

) 

2. Relate S to Cp: 

The heat capacity is: 

𝐶𝑝 = 𝑇
𝑑𝑆

𝑑𝑇
 

3. Differentiate S: 

𝑑𝑆

𝑑𝑇
= 𝑆𝑚𝑎𝑥 ⋅

𝑑

𝑑𝑇
[1 − (1 −

𝑇

𝑇𝑐
)

1
2
] 

Using the chain rule 

𝑑

𝑑𝑇
[(1 −

𝑇

𝑇𝑐
)

1
2
] =

1

2
(1 −

𝑇

𝑇𝑐
)
−
1
2
⋅
𝑑

𝑑𝑇
(1 −

𝑇

𝑇𝑐
) 

The derivative of 1 −
𝑇

𝑇𝑐
 with respect to T is: 

𝑑

𝑑𝑇
(1 −

𝑇

𝑇𝑐
) = −

1

𝑇𝑐
. 

Thus: 

𝑑

𝑑𝑇
[(1 −

𝑇

𝑇𝑐
)

1
2
] =

1

2
(1 −

𝑇

𝑇𝑐
)
−
1
2
⋅ (−

1

𝑇𝑐
) 
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Simplify: 

𝑑

𝑑𝑇
[(1 −

𝑇

𝑇𝑐
)

1
2
] = −

1

2𝑇𝑐
(1 −

𝑇

𝑇𝑐
)
−
1
2
 

𝑑𝑆

𝑑𝑇
= 𝑆𝑚𝑎𝑥 ⋅ [−

1

2𝑇𝑐
(1 −

𝑇

𝑇𝑐
)
−
1
2
] 

4: Substitute 
𝒅𝑺

𝒅𝑻
 into Cp 

𝐶𝑝 = 𝑇 ⋅ (−
𝑆𝑚𝑎𝑥
2𝑇𝑐

(1 −
𝑇

𝑇𝑐
)
−
1
2
) 

Simplify: 

𝐶𝑝 = −
𝑇𝑆𝑚𝑎𝑥

2𝑇𝑐
(1 −

𝑇

𝑇𝑐
)
−1/2

. 

5. Rewrite in Terms of Tc – T. 

Rewrite 1 −
𝑇

𝑇𝑐
 as 

𝑇𝑐−𝑇

𝑇𝑐
: 

𝐶𝑝 = −
𝑇𝑆𝑚𝑎𝑥

2𝑇𝑐
⋅ (
𝑇𝑐−𝑇

𝑇𝑐
)
−1/2

. 

Simplify: 

(
𝑇𝑐 − 𝑇

𝑇𝑐
)
−
1
2
= √𝑇𝑐 ⋅ (𝑇𝑐 − 𝑇)

−
1
2 

Substitute this back: 

𝐶𝑝 = −
𝑇𝑆𝑚𝑎𝑥
2𝑇𝑐

⋅ √𝑇𝑐 ⋅ (𝑇𝑐 − 𝑇)
−
1
2 
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Combine terms: 

𝐶𝑝 = −
𝑇𝑆𝑚𝑎𝑥√𝑇𝑐

2𝑇𝑐

3
2

⋅ (𝑇𝑐 − 𝑇)
−
1
2 

Simplify 𝑇𝑐
3/2

: 

𝐶𝑝 =
𝑇𝑆𝑚𝑎𝑥

2√𝑇𝑐
(𝑇𝑐 − 𝑇)

−1/2 

 

REFERENCES 

Holland, T.J.B., and Powell, R. (1990) An enlarged and updated internally consistent 

thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–

CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. Journal of metamorphic 

Geology, 8, 89–124. 

Landau, L.D. (1937) On the theory of phase transitions. Zhurnal Eksperimental’noi i 

Teoreticheskoi Fiziki, 7, 926. 
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Appendix 3M. Improvements suggestions for the Polyhedron Method 

Debye model inclusion The polyhedron method’s vibrational model, based on Einstein 

oscillators with fixed frequencies for each polyhedron, fails to capture the continuous vibrational 

density of states in a coupled lattice crystal (Holland 1989). A Debye-like correction factor is 

needed to transition from discrete frequencies to a continuous vibrational spectrum of an 

endmember unit cell. Volume corrections have been proposed using 𝑆𝑗 = ∑𝑛𝑖𝑆𝑖 + 𝑘(𝑉𝑗 −

∑𝑛𝑖𝑉𝑖), where k is a scaling constant correlates entropy to volume changes, as predicted by 

Debye theory (Holland 1989). While effective for moderately complex structures, this correction 

fails for highly polymerized systems (Van Hinsberg et al. 2005a, 2005b; Van Hinsberg and 

Schumacher 2007). In tourmaline, where high-T optical phonons depend more on bond stiffness 

and polyhedral distortions than volume expansion (see next paragraph), an alternative approach 

is needed to account for cooperative lattice vibrations. 

Magnetic entropy overestimation The maximum magnetic entropy is derived from the 

Boltzmann formula 𝑆𝑚𝑎𝑥
magnetic

= 𝑅ln Ω, where Ω =2𝐽 + 1 where J = |𝐿 − 𝑆|, … , 𝐿 + 𝑆 is the total 

angular momentum quantum number combining spin S and orbital L contributions through spin-

orbit coupling (Blundell 2001). This model assumes equally accessible states in the paramagnetic 

phase at high T, where thermal energy exceeds state energy gaps. 

For high-spin Fe³⁺ (𝑆 =
5

2
, 𝐿 =

5

2
) in octahedral environments, the symmetric d5 configuration 

and weak Jahn-Teller effects result in crystal field splitting that quenches L, leaving the entropy 

dominated by spin 𝑆𝑚𝑎𝑥
magnetic 

= 𝑅 ln(6) = 14.89 J/mol · K.  In rare cases, distortions can preserve 

partial orbital contributions, described by an effective Leff, where 𝑆𝑚𝑎𝑥
magnetic

= 𝑅ln [(2𝑆 +

1)(2𝐿eff + 1)], applies under weak spin-orbit coupling (Blundell 2001), which would make 

𝑆𝑚𝑎𝑥
magnetic

 much larger. 

For high-spin Fe²⁺ (S = 2, L = 2) the asymmetric d6 configuration and Jahn-Teller effects can 

prevent full quenching of L, enhancing spin-orbit coupling (Blundell 2001). In perfect octahedral 

symmetry, crystal field splitting fully quenches L, and the spin-only entropy 𝑆𝑚𝑎𝑥
magnetic 

= 𝑅ln (5) 

applies. Distorted environments allow residual Leff from 0 to 2. In tourmaline, stronger 
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distortions at the Y site and the rigid symmetry of the Z site and nearest neighbor inductive 

effects create varying Fe2+ environments (Ertl et al. 2002) as demonstrated by Mössbauer 

spectroscopy (Andreozzi et al. 2008). Optical spectroscopy reveals significant 𝑡2𝑔−𝑒𝑔 splitting 

dominated by spin-allowed transitions, favoring orbital quenching. Weak signals suggest spin-

forbidden transitions, indicating residual Leff (Altieri et al. 2022).   

In SRO or spin glass systems, local distortions cause Leff  or J to vary across regions, with the 

solid solution behaving as an average. The average can be tested by fitting a lattice dynamics 

model to the heat capacity curve, isolating and integrating the magnetic contribution to determine 

if it aligns with S, S+Leff, or J formulations of Smag. Additionally, electron delocalisation in 

tourmaline is indicated by intensified Fe2+ optical peaks in the presence of Fe3+ (Mattson and 

Rossman 1987). Electron hopping between Fe2+ and Fe3+ could dynamically affect the crystal 

fields and spin orbit coupling. 

The polyhedron method estimates Smag  in tourmalines with Fe²⁺ and Fe³⁺ as xFe2+ ⋅ 𝑅 ⋅ ln (5) +

xFe3+ ⋅ 𝑅 ⋅ ln (6), where x is the apfu value. This assumes fully quenched orbital contributions, 

but crystal field effects and distortions could increase Leff, expanding microstates despite spin-

orbit coupling’s tendency to reduce them. 

Rethinking of Order-Disorder correction in Training dataset Subtracting a T-independent, 

heavily model-dependent Sconf constant from measured entropies in the training database of van 

Hinsberg (2005) introduces significant noise into thermodynamic property derivations, especially 

for the few disordered samples used and when the appropriate Sconf is unclear, particularly in 

minerals with high site multiplicities and diverse elemental populations. This practice can lead to 

unphysical negative polyhedron entropies, as observed for the BIII polyhedron (Hinsberg and 

Schumacher 2007). While bulk compositional endmember formulas in the training dataset are 

detailed in van Hinsberg (2005a), the structural formulas used for Sconf calculations of disordered 

endmembers remain unknown. The reference state for minerals used to derive polyhedral 

thermodynamic properties assumes order, but anion sites were treated as disordered, introducing 

uncorrected Sconf. 
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Configurational Entropy The treatment of Sconf in the polyhedron method requires refinement 

due to inconsistencies in its application. Sconf depends on the number of independent component 

and equivalent sites (Ms) for mixing and is calculated using the Bolzmann formula:  

𝑆conf = −𝑅∑  

𝑠

𝑀𝑠 ∑  

𝑛indi ,𝑠

𝑖=1

𝑥𝑖,𝑠ln 𝑥𝑖,𝑠 

To calculate nind the formula is: 

𝑛𝑖𝑛𝑑 =  total species − ( number of sites +  charge balance constraint ) + 1 

Which is the degree of freedom (variables-constraints) + 1 to add a dependent endmember so the 

simplex sums to 1 (Myhill and Connolly 2021). 

The charge balance constraint is problematic, as polyhedra like AlOHO imply >1 OH groups and 

are not necessarily charge balanced.  

A fundamental question remains: does the polyhedron method, i.e., summing polyhedra, 

represent short-range order (SRO) molecular clusters or can long-range order (LRO) unit cells be 

derived as well? SRO models minimize Sconf by mixing charge-balanced molecules (Will 1998) 

on individual sites, while LRO models maximize it by assuming complete randomization (e.g., 

Bragg-Williams, (Bragg and Williams 1934, 1935)). This distinction significantly influences the 

treatment of configurational entropy.  

LRO Sconf For an endmember configuration with 1 X-site, 9 YZ-sites, and 6 T-sites, as the V and 

W sites are incorporated into the species, The species distributions are: 

X-site: 3 species – Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, and vacancy (vac).  

YZ-site: 5 species – Alᴼᴴᴼ, Mgᴼᴴᴼ, Fe²⁺ᴼᴴᴼ, Fe³⁺ᴼᴴᴼ and Tiᵒᶜᵗ, 

T-site:  3 species – Siᵀ, Alᵀ, Bᵀ 

 

With a total of 11 species (3+5+3), 3 distinct sites, and a charge balance constraint (c) of 1, we 

calculate: 
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𝑛𝑖𝑛𝑑 = 11 − (3 + 1) + 1 = 8 

This calculation provides the independent components required for accurate Sconf determination.  

 

The independent polyhedra would be Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, Alᴼᴴᴼ, Mgᴼᴴᴼ, Fe²⁺ᴼᴴᴼ, Fe³⁺ᴼᴴᴼ, Tiᵒᶜᵗ, Siᵀ. 

Sconf using these 8 independent bulk parameters and 3 sites with their site multiplicities on the 

tourmaline training dataset results in an average Sconf of 63.35 J/K/mol. 

 

SRO Sconf Using the independent polyhedra Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, Alᴼᴴᴼ, Mgᴼᴴᴼ, Fe²⁺ᴼᴴᴼ, Fe³⁺ᴼᴴᴼ, Tiᵒᶜᵗ, 

Siᵀ as positive polyhedra as linear combinations of the molecular clusters the Sconf using these 8 

independent bulk parameters and 1 site on the tourmaline training dataset results in an average 

Sconf of 10.8 J/K/mol. 

OOH and Oxy Ambiguity also arises in treating components like OOH and Oxy as distinct and 

whether ordered or disordered OH groups should be assumed.  If Alᵒᶜᵗ, Mgᵒᶜᵗ, Fe²⁺ᵒᶜᵗ, and Fe³⁺ᵒᶜᵗ 

are added as mixing components on the YZ site: 

X-site: 3 species (Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, vac). 

YZ-site: 9 species (Alᴼᴴᴼ, Mgᴼᴴᴼ, Fe²⁺ᴼᴴᴼ, Fe³⁺ᴼᴴᴼ, Tiᵒᶜᵗ, Alᵒᶜᵗ, Mgᵒᶜᵗ, Fe²⁺ᵒᶜᵗ, Fe³⁺ᵒᶜᵗ). 

T-site: 3 species (Siᵀ, Alᵀ, Bᵀ). 

Total species = 15 

Using nind formula 𝑛ind = 15 − (3 + 1) + 1 = 12 

The 12 independent components would include Naᵐᵘˡᵗⁱ, Caᵐᵘˡᵗⁱ, all 9 YZ species, and Siᵀ. Adding 

these increases Sconf due to the greater configurational randomness. However, this only modifies 

the values slightly, in case of the ordered V+W formula; Bulk LRO Sconf = 65.37 and SRO Sconf = 

10.98. In case of the disordered V+W formula which changes the distribution of Oxy and OHO 

polyhedra would result in Bulk LRO Sconf = 87.24 and SRO Sconf = 12.36. 
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The bulk compositional generalized Bragg-Williams model overestimates randomness and 

inflates entropy values. For example, adding the bulk compositional Sconf derived above to 

measured Cp curves, which lack theoretical Sconf, results in overpredictions. This is because the 

assumption of complete randomization is incorrect; elements exhibit site preferences due to long-

range order (LRO) constraints. For instance, Mg²⁺, Fe²⁺, and Al³⁺ favor the larger Y site, while 

the smaller Z site primarily hosts Al³⁺, with minor Fe³⁺, Mg²⁺, and minimal Fe²⁺ (Bosi 2018). F is 

largely restricted to the W site. These preferences are not enforced in bulk compositional models 

due to limited degrees of freedom (DOF). As we have the measured mineral formula, we also 

attempted to add the speciation model Sconf, however also here this leads to an overpredicting of 

Sconf (~47 J/K/mol). 

Integrating short-range order (SRO) Sconf into the polyhedron method is feasible and improves 

accuracy by halving the mean absolute deviation (Table 3M.1).  

Table 3M.1. Adding molecular (SRO) model Sconf to the polyhedron method estimates. 

Model Name 
Mean Absolute Relative 

Deviation (%) 

Residual 

Range (%) 

Median 

Residual (%) 

With Sconf.    

Oxy+OHO Polyhedra, Ordered 

V+W, with Svib + Smag + Sconf 
2.9 -1.2 to 19 1.8 

Oxy+OHO Polyhedra, Disordered 

V+W, with Svib + Smag + Sconf 
4.8 0.3 to 18 4.5 

OHO Polyhedra, with Svib + Smag + 

Sconf 
2.3 -1 to 8 1.8 

A molecular mixing model is suitable since polyhedra, as molecular clusters, inherently involve 

mixing. Under this approach, polyhedra are treated as charge-neutral entities without any form of 

polymerization, aligning the model with realistic mixing behavior while retaining essential site-

specific constraints via the DOF. However, since the polyhedron method tends to underestimate 

thermodynamic properties and molecular configurational entropy is inherently small, adding this 
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correction could merely serve as an arbitrary adjustment to improve the fit without a strong 

physical basis. 
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Appendix 3N. State Variable Correlations 

• This Appendix contains all the state variables correlations. Note ‘a cell’ means  the 

hexagonal cell a axis.  

. 
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Appendix 4A. Theoretical Framework: Empirical Link Between 

Broadening of FTIR Spectra and Enthalpy of Mixing and Disorder 

Influence of Strain and its Length Scale on the Enthalpy of Mixing in Solid Solutions The 

enthalpy of mixing (ΔHmix) in solid solutions reflects the differences in energy of the solution 

compared to a mechanical mixture of long-range ordered (LRO) endmembers. This difference 

depends on electronic and elastic components (Vinograd 2001). Elastic component is mainly due 

to as atomic (or cluster/endmember) sizes, introduces strain fields, and leads to a balance 

between short-range order (SRO) and configurational disorder in the crystal lattice. Local 

distortions and strain fields from cation substitutions affect average bond lengths and angles 

(Bosenick et al. 2001). The elastic contribution results from lattice deformation and is always 

positive, scaling with volume differences between substituting species (atoms, SRO clusters, 

endmembers) (Geiger 2001). The correlation between ΔHmix and volume differences is primarily 

driven by this elastic component, which remains composition-dependent (O’Neil and Navrotsky 

1984; Vinograd 2001). The electronic component depends on orbital character (ionic or 

polarizable), and charge differences between substituting cations, which affect the electronic 

density of states (e-DOS) in the unfolded band structure. The chemical contribution arises from 

changes in atomic pairs, three-body interactions, clusters, and thermal disorder (Vinograd 2001). 

Even with constant total cluster energy, shifts in their proportions affect enthalpy. Both factors 

are not well captured by LRO ideal endmember formulations (Ganguly 1976; Cohen 1986; 

Wolverton and Zunger 1995; Bosenick et al. 2001; Carpenter and Ballaran 2001; Geiger 2001; 

Urusov 2001; Vinograd 2001). Elastic strain, where the lattice is "bent" or "compressed," has 

been described macroscopically by ‘order parameters’ (Ballaran 2003), bypassing the need for 

microscopic details. Many researchers have attempted to develop microscopic models of such 

strain fields and link elastic strain energy theoretically to the enthalpy of mixing, aiming to 

derive empirical or phenomenological equations (Geiger 2001; Christian 2002).  However, the 

theoretical framework for determining the length scale of these strain fields and how to measure 

them directly remains unclear which complicates the selection of the spectral range where these 

effects are expected to influence spectroscopic measurements (Boffa Ballaran et al. 1999; Salje 

et al. 2000). 
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For a long time, oxides and silicates were considered largely ionic (Gale 2001), dominated by 

long-range Coulombic forces and, as such, the LRO unit cell provided the base for 

thermodynamic model building (Ganguly and Saxena 2012). However, nearest and next-nearest 

neighbors, as well as different short-range order (SRO) clusters, play a crucial role in defining 

structures and their thermodynamic properties (Navrotsky 1994a, 1994b). Melting preserves 

coordination polyhedra and bond lengths, with enthalpies of fusion being larger than solid-solid 

transitions but smaller than vaporization enthalpies (Navrotsky 1994b). Nearest neighbor and 

next nearest neighbor effects significantly influence NMR, ESR, EXAFS, XANES, and 

Mössbauer spectra by modifying local electronic structure and bonding interactions at the short-

range order (SRO) scale (Navrotsky 1994b) . In NMR, neighboring atoms affect shielding and 

resonance frequencies (Kirkpatrick et al. 1985), while ESR signals are altered by exchange 

interactions and dipolar coupling (Calas 1988). EXAFS and XANES probe local scattering and 

absorption changes tied to bond lengths (Brown et al. 1988), coordination, and valence states, 

while Mössbauer spectra are shaped by electric field gradients and magnetic hyperfine 

interactions (Hawthorne 1988). These techniques provide critical insight into SRO structures, 

essential for understanding structural, electronic, and magnetic properties in complex materials. 

DFT calculations show that electron density distribution is closely correlated with nearest 

neighbors (Vinograd et al. 2009), supporting the success of polyhedral models (Van Hinsberg et 

al. 2005a, 2005b) and molecular orbital calculations to describe periodic crystal systems. It is 

therefore argued that the strain fields responsible for the macroscopic enthalpy of mixing are due 

to variations in SRO clustering (Vinograd 2001). The partial occupancy of a site in a unit cell is 

derived from the bulk compositional mineral description and is impossible and supercells are 

therefore required to describe solid solutions. When the SRO clusters are considered in the 

mineral this leads to the breakdown of Bloch’s theorem, i.e., it would lose it’s periodicity and 

parameters including as unit cell volumes no longer have meaning as for each SRO cluster, the 

molar volume would be different. Each SRO cluster will have its own e-DOS and the band 

structure of supercells of various of these SRO structures combined would need to be unfolded to 

compare it with the band structure of the pure ordered endmember components.  

In most spectroscopic methods, sharp lines broaden into absorption bands due to interactions 

with the surrounding environment. The more variable the local environment, the broader the 
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absorption peak, reflecting a range of slightly different energy states (White 1974). For example, 

Al-Si ordering in the ring silicate, cordierite, has been extensively studied using various 

techniques, including XRD, solution calorimetry, NMR, IR, and Raman spectroscopy (Putnis 

1980; Fyfe et al. 1983; Putnis and Bish 1983; McMillan et al. 1984). Each of these techniques 

emphasizes different aspects of the ordering process, offering unique insights. Capturing the 

mesoscale supercell with SRO clusters in cordierite is challenging due to its complex framework, 

which permits variable cation ordering, channel occupancy, and dynamic disorder across 

different scales, limiting resolution by a single spectroscopic or diffraction technique. Many solid 

solutions with disordered or SRO structures, such as feldspars, pyroxenes, and spinels, exhibit 

supercells larger than 50–100 Å (Vinograd 1997, 2001). The character and dynamics of these 

systems are not fully understood because no spectroscopy can directly probe the 20 to 100 Å 

scale, and, therefore, no instrumental technique can currently unequivocally detect these SRO 

clusters (Navrotsky 1994a). 

This theoretical analysis indicates that if strain fields arise from the distribution of SRO 

structures, they would span large length scales, comparable to multiple unit cells. Given that 

vibrational properties of SRO distributions involve many unit cell lengths, IR and Raman spectra 

in the MIR and FIR region are the most suitable candidates for probing these effects (Boffa 

Ballaran et al. 1999; Salje et al. 2000). 

FTIR Spectroscopy basics In Fourier Transform Infrared Spectroscopy (FTIR) (McMillan et al. 

1984; McMillan 1985; McMillan and Hofmeister 1988), broadband infrared (IR) light from an 

IR source is split by a beamsplitter into two beams—one directed to a stationary mirror and the 

other to a moving mirror. The differing path lengths of these beams, created by the moving 

mirror, result in an interference pattern when the beams are recombined. This interferogram 

contains all contributions of IR frequencies simultaneously, varied by moving the mirror, 

allowing rapid spectral data collection (McMillan 1985). The recombined light then passes 

through the sample, where certain frequencies are absorbed depending on the lattice dynamics of 

the sample. The interferogram of many frequency contributions are, through a Fourier transform, 

converted back into an IR spectrum displaying light absorption over the range of frequencies 

(King et al. 2004). IR light excites phonons from their vibrational ground state to higher 

quantized vibrational states through perturbations caused by the interaction between the 
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oscillating electric field vector of the light and the instantaneous dipole moment (u= Q*r, where 

Q is the charge and r is the separation distance) vector of the cooperative lattice distortions, 

phonons, within the unit cell (McMillan and Hofmeister 1988).  The individual peaks in the 

FTIR spectrum are therefore the energies of vibrational transitions, which are called the 

frequencies of the vibrational modes. The phonons responsible for dipole changes can only 

interact with IR light when their wavelength is comparable to that of the incoming light. The 

wavelength of IR light ranges from approximately 5000 to 200,000 Å (2000 to 50 cm-1), while 

the typical size of a unit cell in a crystal is on the order of tens of angstroms (Å). Because of this 

significant difference in scale, IR light predominantly interacts with long-wavelength phonons, 

particularly those near the center of the Brillouin zone where the wavevector k is close to zero 

(i.e., k→0, 𝜆 → ∞) (Kieffer 1979). Due to this long-wavelength interaction, dispersion effects, 

which are changes in the frequency of phonons as a function of k, are usually not observed in IR 

spectra. In a crystal lattice of N atoms per unit cell, the 3 acoustic phonon branches involve 

collective atom movement in the same direction without dipole changes, whereas 3N−3 optical 

branches involve relative atom displacements that alter the dipole moment and interact with light 

(Kieffer 1979). This is why IR spectroscopy typically does not provide information about the 

entire phonon dispersion curve but rather focuses on the zone-center optical phonons (Dove 

1993). The intensities of these peaks are dependent on the dipole moment change of the 

vibrations, i.e., the more ionic the atoms involved in the vibration, the stronger its intensity. 

Although the frequencies and intensities of FTIR spectra are relatively well understood, 

broadening of these peaks is not. 

Broadening of IR and Raman spectra, unlike frequencies and intensities, cannot currently be 

predicted well using DFT methods (Clark et al. 2005). This is because DFT methods primarily 

describe endmember structures and do not account for the effects due to disordered or mixed 

structures that would result in broadening.  

Theory FTIR powder spectrum broadening 

Measuring the enthalpy of mixing directly by drop calorimetry is challenging due to the 

uncertainties mostly from the thermodynamic cycles being of the same order of magnitude of the 

ΔHmix. No statistically significant ΔHmix was found in subset selection analysis of the dataset 
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presented here. However, the vibrational spectrum depends on interatomic forces, so the band-

unfolded e-DOS (electronic part of the enthalpy of mixing) indirectly affects the vibrational 

properties of minerals. Different e-DOS result in different dynamical matrices, altering forces 

and eigenvalues, which changes phonon dispersion relationships (Dove 1993). If Bloch’s 

theorem is satisfied, integrating these relationships over the Brillouin zone yields a different v-

DOS (Navrotsky 1994a). In supercells with multiple SRO clusters, each cluster has its own e-

DOS and v-DOS, leading to broadening when these are superimposed. Distributions of SRO 

should thus cause specific patterns of line broadening by modifying local bonding environments 

and elastic strain fields. While mineral or site specific adjustment can enhance or reduce the 

spectral broadening, in general, a less dilute solid solution with diverse SRO clusters should 

produce broader spectra due to the superposition of diverse v-DOS. The zone-center optical 

phonons measured by FTIR should show such broadening. 

Macroscopically, Salje (2000) underscores that the scaling between vibrational damping and the 

order parameter Q is essential for understanding phase transitions, cation ordering, and structural 

changes using FTIR spectra. Damping shortens vibrational lifetimes through interactions with 

defects, disordered atoms and multitudes of SRO clusters, leading to broader powder FTIR peaks 

(Salje et al. 2000). The extent of broadening reflects the level of damping from these material 

interactions. Such broadening by extrinsic factors such as local structural heterogeneities, 

compositional fluctuations, and defects would likely be inhomogeneous, i.e., only effect certain 

phonon branches (Jenkins et al. 2018). Additionally, homogeneous broadening from intrinsic 

factors like phonon-phonon interactions and anharmonic effects may also occur (Salje et al. 

2000). Band broadening in disordered and amorphous materials has been linked to the loss of 

translational symmetry, which allows dispersion effects to manifest in infrared spectra (Shuker 

and Gammon 1970). The loss of long-range order in these materials results in a breakdown of the 

strict IR selection rules that govern crystalline solids. Consequently, broader and more complex 

spectral features can emerge, as phonon modes that would be forbidden in a perfect crystal may 

become active in disordered systems (Shuker and Gammon 1970).  

Peak broadening has been proposed to correlate with the enthalpy of mixing, primarily due to 

local strain energies affecting the v-DOS (Ballaran 2003). The relationship between line 

broadening Δν and the enthalpy of mixing ΔHmix can be expressed as: ΔHmix∝Δν2 (Boffa 
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Ballaran and Carpenter 2003). Similar quadratic relationships have also been found theoretically 

and empirically in lattice strain theory in the case of trace element substitutions, bond valence 

theory, computational studies and links the strain part of the enthalpy of mixing with volume 

mismatches  (Greenwood 1979; Davies and Navrotsky 1983; Bosenick et al. 2001; Blundy and 

Wood 2003; Stølen and Grande 2003; Bosi 2014) and dominant Q2 term in Landau serie 

expansion for excess enthalpy of phase transitions. Autocorrelation analysis quantifies spectral 

broadening by correlating the spectrum with itself. The autocorrelation function Corr(α,ω′) is 

defined as: Corr (𝛼, 𝜔′) = ∫  
∞

−∞
𝛼(𝜔)𝛼(𝜔 + 𝜔′)𝑑𝜔 where 𝛼(𝜔)is the spectrum of interest and 

𝛼(𝜔 + 𝜔′)is the same spectrum offset by ω as implemented by (Salje et al. 2000; Jenkins et al. 

2014, 2018). This function produces a symmetric spectrum from a potentially complex and 

asymmetric one, allowing for systematic comparison of relative differences in spectral 

broadening due to lattice strain from order/disorder and compositional solid solution. 𝛿Δ Corr  is 

calculated as the deviation from linearity of ΔCorr between two endmembers (Etzel and Benisek 

2008). This allows precise and systematic quantification of broadening, making autocorrelation 

analysis a robust tool for investigating strain-induced spectral changes, see (Rodehorst et al. 

2004; Etzel et al. 2007; Jenkins et al. 2014). 

Broadening has been shown to differ depending on the spectral range analysed, with its specifics 

varying by mineral (Boffa Ballaran and Carpenter 2003). For example, broadening per 

wavenumber does not change significantly in (almandine-grossular) (Boffa Ballaran et al. 1999) 

or plagioclase (albite-anorthite), but it does in pyroxene (augite-jadeite) and (clinoenstatite-

clinoferrosilite) (Boffa Ballaran and Carpenter 2003). The difference is that substitutions in the 

former effect all polyhedrons whereas in pyroxene, substitutions effect one polyhedron but not 

the other. As lower wavenumber phonons correlate with longer strain field scales, lower 

frequencies in FTIR have shown clearer correlations with enthalpy of mixing (Boffa Ballaran 

and Carpenter 2003), although Jenkins (2018) demonstrated that mid-infrared (MIR) regions also 

relate to mixing enthalpies in carbonates. The accuracy of these correlations is complicated by 

factors such as crystallite size, strain introduced during sample grinding, and the differences in 

strain fields observed in Raman versus IR spectra (Geisler et al. 2016; Jenkins et al. 2018). While 

empirical correlations have been established between FTIR spectral broadening and enthalpy of 

mixing for several minerals (Boffa Ballaran et al. 1999; Boffa Ballaran and Carpenter 2003; 



635 
 

Rodehorst et al. 2004; Etzel and Benisek 2008; Jenkins et al. 2014, 2018; Geisler et al. 2016), no 

universal relationship applies to all minerals over all wavenumbers, necessitating mineral group-

specific studies. The connection between spectral broadening and excess energy depends on 

relative, rather than absolute, broadening differences. Dapiaggi et al. (2005) related microscopic 

strain, measured by synchrotron powder XRD at 5 K, to the enthalpy of mixing in the pyrope-

grossular garnet binary. Using Rietveld refinement with the fundamental parameter approach, 

they established empirical correlations between strain and enthalpy of mixing at the scale of 

multiple unit cells, offering a more direct measurement of strain (Redhammer 2021). This study 

benefits from XRD line broadening, which has a well-established theoretical framework, making 

it more quantifiable than broadening in FTIR or Raman spectra, where phonon interactions and 

local bonding effects introduce complexities. 
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Appendix 4B. TGA-DSC signals 

• This Appendix contains all the TGA-DSC Figures. 
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Appendix 5A. Bulk model exchange reactions relating the endmembers 

• This Appendix contains all the Bulk model exchange reaction between endmembers. 
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Appendix 5B. Speciation model exchange reactions relating the endmembers 

This Appendix contains all the Speciation model exchange reaction between endmembers. 
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