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Abstract

Recent advancements in artificial intelligence have highlighted the strengths of large pre-

trained models across diverse applications. However, these models often struggle with

transformations of input data, which is crucial for tasks demanding invariance or equiv-

ariance. Redesigning each component of existing architectures to achieve equivariance

is difficult and computationally expensive. We investigate the canonicalization frame-

work for designing equivariant architecture and propose a novel prior regularization to

align the canonical inputs with orientations present in pretraining datasets. Experimen-

tal results indicate that our regularization approach effectively preserves performance

while ensuring the robustness of large pretrained and foundation models. Furthermore,

to reduce the canonicalization time and tackle the expressivity limitations in equivariant

canonicalization networks, we introduce a novel approach of employing non-equivariant

pretrained models as canonicalization functions. To facilitate the widespread implemen-

tation of our findings, we develop an open-source Python package, equiadapt, that en-

ables retrofitting existing models with equivariance capabilities. This study addresses the

challenges in designing equivariant architectures and offers a practical way toward more

generalizable and efficient adaptation of AI systems.
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Sommaire

Les récents progrès en matière d’intelligence artificielle ont mis en évidence les atouts

des grands modèles pré-entraînés dans diverses applications. Cependant, ces modèles

ont souvent du mal à gérer les transformations des données d’entrée, ce qui est crucial

pour les tâches exigeant l’invariance ou l’équivariance. Repenser chaque composant des

architectures existantes pour atteindre l’équivariance est difficile et coûteux en termes

de calcul. Nous étudions le cadre de canonisation pour la conception d’une architec-

ture équivariante et proposons une nouvelle régularisation préalable pour aligner les en-

trées canoniques avec les orientations présentes dans les ensembles de données de pré-

entraînement. Les résultats expérimentaux indiquent que notre approche de régularisa-

tion préserve efficacement les performances tout en garantissant la robustesse des grands

modèles pré-entraînés et des modèles de fondation. De plus, pour réduire le temps de

canonisation et résoudre les limitations d’expressivité dans les réseaux de canonisation

équivariants, nous introduisons une nouvelle approche consistant à utiliser des modèles

pré-entraînés non équivariants comme fonctions de canonisation. Pour faciliter la mise

en œuvre généralisée de nos résultats, nous développons une librairie Python en code

source ouvert, equiadapt, qui permet de moderniser les modèles existants avec des ca-

pacités d’équivariance. Cette étude aborde les défis liés à la conception d’architectures

équivariantes et offre un moyen pratique de parvenir à une adaptation plus généralisable

et plus efficace des systèmes d’IA.
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Previously Published Material

This thesis is based on the equivariant adaptation of large pretrained and foundational

models. The motivation for this work is presented in Chapter 1, and an in-depth descrip-

tion is provided in Chapter 3. The outcomes of this research have been published at the

37th Conference on Neural Information Processing Systems as Mondal et al. (2023). As

co-first author, I contributed to the entire scope of the research process, from initial iden-

tification of the problem, experiment setup and evaluation, particularly for the image

domain, and code implementation to writing the publications.

All co-first authors have consented in writing to use the previously published material

in this thesis. The extension of Mondal et al. (2023) to EquiOptAdapt and the use of pre-

trained models as canonicalization networks, described in Section 3.3, is the sole creation

of Siba Smarak Panigrahi. Finally, the authors developed and released an open-source

Python library, EquiAdapt, available on the Python Package Index (PyPI). Siba Smarak

Panigrahi is an active contributor and maintainer of the library, ensuring it stays up-to-

date and functional while also interacting with the user community. The repository is

hosted on GitHub at https://github.com/arnab39/equiadapt.

https://github.com/arnab39/equiadapt
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Chapter 1

Introduction

Large pretrained models have gained a pivotal role in the artificial intelligence (AI) com-

munity, showcasing remarkable capabilities across a broad spectrum of tasks. These mod-

els leverage vast amounts of data, use massive amounts of computing resources to learn

complex patterns, and have fundamentally transformed our approach to solving several

computational problems. A few examples include language generation (Achiam et al.,

2023; Le Scao et al., 2023), document understanding (Liu et al., 2024b; Hu et al., 2024), im-

age classification and segmentation (Dosovitskiy et al., 2020; Radford et al., 2021; Kirillov

et al., 2023), image and video generation (Rombach et al., 2022; Saharia et al., 2022; Singer

et al., 2022; Hu et al., 2023), weather forecasting (Lam et al., 2022; Ravuri et al., 2021), ma-

terial generation (Gruver et al., 2023b; Jiao et al., 2023; Merchant et al., 2023; Zeni et al.,

2023), protein structure prediction (Abramson et al., 2024) and molecular docking (Corso

et al., 2022).

Crucially, these applications often require that the models recognize and adapt to the

inherent symmetries and variations in their inputs and tasks, ensuring robustness against

diverse transformations, such as rotation, translation, and scaling. For instance, deep

learning models tailored for image classification require an object to be invariably recog-

nized, such as a cat, even when the image undergoes Euclidean transformations. Further,
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models developed for predicting crystal properties are expected to treat each crystal with

uniformity, irrespective of its spatial orientation, since the intrinsic properties of the crys-

tal remain unchanged. Such tasks are referred to as invariant tasks. On the other hand,

an example of an equivariant task is image segmentation, wherein the model is required

to segment specific objects. Consequently, it must adjust its output in response to any

transformations in the input.

1.1 Motivation

1.1.1 Equivariant networks

Equivariant and invariant networks are specially crafted to tackle these equivariant and

invariant tasks. The architecture of these networks inherently incorporates the principle

of equivariance to a certain group of transformations. The most popular way is to incor-

porate equivariance into the architecture design (Weiler and Cesa, 2019; Cesa et al., 2022).

Each layer of such a neural network is designed to be equivariant, and the composition of

those layers guarantees the equivariance of the whole model. Equivariant networks also

offer additional significant advantages, including:

1. Enhanced Generalization: These networks can generalize across various transfor-

mations of input data, facilitating robust model performance under these diverse

transformations (Gordon et al., 2020; Elesedy and Zaidi, 2021; Mao et al., 2023).

2. Efficient Learning: Learning from a single data orientation is equivalent to learning

from all possible orientations. This attribute significantly reduces the data required

for training (Wang et al., 2021; Batzner et al., 2022; Mondal et al., 2022).

3. Parameter Efficiency: Equivariant networks promote parameter efficiency by shar-

ing weights across different transformed states of the input.
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1.1.2 Equivariance of large pretrained models

(a) GPT-4 (Achiam et al., 2023) cannot per-
form text detection from inverted input im-
ages.

Segment 
Anything Model

Ground Truth MaskPredicted Mask

Segment 
Anything Model

Ground Truth MaskPredicted Mask

(b) MedSAM (Ma et al., 2024) and SAM (Kirillov
et al., 2023)) are not robust to rotations for segmen-
tation tasks. Segmentation masks for medical im-
ages are generated with MedSAM demo (Link).

Figure 1.1 Issues with large pretrained models on transformed inputs.

Existing large pretrained and foundation models (Bommasani et al., 2021) are typically

not equivariant to most transformations. However, their wide applications across several

domains require them to be robust to unseen transformations and orientations of images.

For instance, Vision Language Models (or VLMs) are designed on top of large language

models (LLMs) to take a text prompt along with images for structured document under-

standing (Hu et al., 2024; Tong et al., 2024; Dong et al., 2024; Liu et al., 2024b,a). Amongst

several tasks, VLMs attempt to solve question-answering, parsing, and information ex-

traction by leveraging the image inputs. In the real world, users capture input document

images at various camera angles and then provide the image to these systems. Thus, it

necessitates that these models be robust to understand transformed inputs, but Figure

1.1a demonstrates that a recent, popular, and one of the best LLMs, GPT-4 (Achiam et al.,

2023), is not robust to trivial rotations.

Another set of examples comes from the systems built on top of the Segment-Anything

Model or SAM (Kirillov et al., 2023). Some systems are expected to aid diagnosis in the

medical domain (Ma et al., 2024; Zhu et al., 2024). Thus, such systems should be able

to accurately detect or segment portions of X-ray, CT Scan, or MRI images in several

https://github.com/bowang-lab/MedSAM/blob/main/tutorial_quickstart.ipynb
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orientations and failure would lead to severe consequences. Again, in the real world,

users capture images from any camera angle, and SAM would be required to segment

instances irrespective of the input orientation. However, in Figure 1.1b, we observe that

both MedSAM and SAM are robust to rotated image inputs.

This motivates us to build equivariant large pretrained models.

1.1.3 Towards equivariant large pretrained models

One straightforward strategy involves replacing individual layers of large pretrained net-

works with equivariant counterparts. While this modification ensures equivariance, it

introduces considerable challenges:

1. Resource intensive Re-training: Re-training these large models from scratch with

massive amounts of data demands considerable computational time and financial

resources, potentially costing millions of dollars, with additional logistical and en-

vironmental impacts.

2. Complex Design Requirements: Crafting equivariant versions of complex opera-

tions presents non-trivial technical difficulties. For instance, the design of equivari-

ant transformer architecture 1 poses a non-trivial effort (Romero and Cordonnier,

2020; Xu et al., 2023).

3. Parameter Increase: Large number of parameters in pretrained models leads to ex-

pensive equivariant counterparts with several parameters, resulting in more costly

models that require longer inference times (Kaba et al., 2023).

These challenges highlight the need for an architecture-agnostic solution to integrate

equivariance into large pretrained models.

1commonly uses self-attention mechanism (Vaswani et al., 2017)
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1.2 Statement of Contributions

In this study, we investigate the adaptation of learning canonicalization functions for pre-

dicting canonical input orientations (Kaba et al., 2023) to enhance the robustness of exist-

ing large pretrained models, resolving the issues with equivariance in Section 1.1.3 while

preserving both performance and inference speeds.

Our initial findings reveal that integrating equivariant canonicalization functions with

a large pretrained model and applying a single task-specific loss diminishes the model’s

downstream performance. To counter this, we introduce a novel prior regularization loss

that aligns the canonical outputs with the orientations in the pretrained model’s original

training dataset. This approach effectively maintains the pretrained model’s original per-

formance and ensures equivariance. We substantiate our claims through experimental

setups that employ both standard testing datasets and their transformed counterparts.

Additionally, we recognize a significant challenge when using equivariant networks

as canonicalization functions. Primarily, these networks require a high level of expressive-

ness to accurately map inputs to canonical orientations across extensive datasets, which

leads to longer input canonicalization times. To address this, we demonstrate that non-

equivariant pretrained models can effectively serve as canonicalization functions. This

approach ensures equivariance while alleviating the previously mentioned processing

time delays.

Finally, we release a Python package, equiadapt, for users to build on and easily in-

tegrate the idea of canonicalization with their existing models to convert them into equiv-

ariant models. The code for the same can be found in GitHub2.
2https://github.com/arnab39/equiadapt

https://github.com/arnab39/equiadapt


1 Introduction 6

1.3 Organisation of This Work

In Chapter 2, we give an overview of relevant mathematical concepts, such as group the-

ory and equivariance, along with related literature. We describe the problems with the

existing canonicalization framework and introduce a well-motivated novel prior regu-

larization and non-equivariant canonicalization networks in Chapter 3. We detail our

experiments in Chapter 4 to support our claims and demonstrate the effectiveness of our

proposed methods. Finally, we summarize our work and provide potential future direc-

tions in Chapter 5.
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Chapter 2

Background

This chapter provides a detailed review of key mathematical concepts and relevant litera-

ture on equivariance, focusing on the design of equivariant architectures. We explore tra-

ditional methods for composing equivariant layers to construct equivariant networks and

architecture-agnostic strategies for developing equivariant networks. Finally, we identify

and discuss the limitations inherent in these approaches when adapting large pretrained

models to achieve equivariance.

2.1 Group Theory and Equivariance

2.1.1 Groups, group actions, and group representations

A group is defined as a set of elements that includes an identity element e under an asso-

ciative binary operation ◦. This operation is closed within the group G, meaning for any

two elements a, b ∈ G, the result of the operation, a ◦ b, also belongs to G. Furthermore,

every element g ∈ G has a unique inverse g−1, satisfying g ◦ g−1 = e. Similarly, a subgroup

H is a subset of elements in G satisfying the above properties. A subgroup’s size (or or-

der) is always a divisor of the size of the group. Common examples of discrete groups

encompass permutation groups, denoted as Sn, which represent all permutations of the



2 Background 8

set {1,2, . . . , n}, cyclic groups Cn representing n discrete rotational symmetries, and di-

hedral groups Dn, comprising n discrete rotations coupled with reflections. Examples of

continuous groups include SO(n), which describes continuous rotations in n dimensions,

O(n), extending SO(n) to include reflections. The Euclidean group E(n) incorporates

roto-reflections and translations in n dimensions, i.e., Euclidean transformations that pre-

serve the Euclidean distance between two points.

Groups play a crucial role in understanding symmetry transformations via group ac-

tions. A group action enables an element g from the group G to act on an element w in a

set Ω and defined as a mapping (g,w) → g.w where g.w ∈ Ω. This is typically also noted

as left group action. The action of the identity group element is an identity action which

leaves w unchanged, i.e., e.w = w. Similarly, w.g is the right group action. The concept of

group action can be extended to spaces defined by signals on the underlying set Ω such as

X(Ω) with (g.x)(w) = x(g−1.w). Note that, in both cases, the group action has the compo-

sitional property, i.e., g.(h.w) = (g ◦ h).w and (g.(h.x))(w) = ((g ◦ h).x)(w), where g,h ∈ G.

A few concepts are related to group action, widely used in the literature: assume a group

G acts on Ω, then,

• fixed point of g is an element w ∈ Ω such that g.w = w

• stabilizer Gw of w ∈ Ω is the subgroup {g} of G such that w is a fixed point of g

• orbit of an element w is the set of elements u ∈ Ω, such that g.w = u for some g ∈ G.

Linear group actions, often termed group representations, map each group element g to

an invertible matrix ρ(g). This mapping is described by ρ(g) : G → GL(Ω), where GL(Ω)

represents the set of all invertible linear transformations applicable to the space Ω. For

example, the permutation group Sn representation is given by permutation matrices that

rearrange standard basis vectors. Similarly, for the group SO(2), one of the group rep-

resentations involves 2D rotation matrices, which can act on an image to rotate around
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a specific center point. Concretely, in the case of images, Ω signifies the underlying 2D

discrete grid, and X(Ω) indicates a signal defined on this grid, which is the image itself.

An element g ∈ SO(2) can therefore rotate both the grid (Ω) and the image (X(Ω)).

2.1.2 Equivariance and invariance

A function f : X(Ω) → Y is equivariant to G or G-equivariant if f(ρX(Ω)(g)x) = ρY(g)(f(x))

∀g ∈ G and x ∈X(Ω). This condition implies that applying the function f commutes with

the action of the group G; the order in which the group action and the function are applied

does not alter the result. Since the group representation may differ in the spaces X(Ω)

and Y , they are denoted with ρX(Ω) : G → GL(X(Ω)) and ρY : G → GL(Y). G-invariance is

a special case of G-equivariance when ρY is trivial, ρY(g) = 1∀g ∈ G. Therefore, a function

f : X(Ω) →Y is invariant to G or G-invariant if f(ρX(Ω)(g)x) = f(x)∀g ∈ G and x ∈ X(Ω).

These concepts of equivariance and invariance are critical in many deep learning ap-

plications, where they help define the changes in a function’s output against specific input

transformations. For instance, in the context of image classification, translation (or shift)

invariance is a desired property where the identification of an object in an image should

not depend on its position. This implies that the function f , responsible for classifying

images, should be translation invariant. Similarly, translation equivariance is vital in in-

stance segmentation and object detection tasks. This property ensures that the predicted

segmentation maps or bounding boxes adjust accordingly if the input image is shifted.

Thus, the functions applied in these applications must demonstrate translation equivari-

ance to track accurately and segment objects as their positions change. These characteris-

tics are essential for robust machine learning models that generalize well across varying

inputs.
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2.2 Equivariant Networks from Composition of Equivariant Layers

Several methods exist to build equivariant networks, such as parameter sharing (Ravan-

bakhsh et al., 2017) and self-supervision (Dangovski et al., 2021). However, in this section,

we review one of the most widely-used approaches in the form of group convolution or

linear equivariant layers.

Traditional Convolutional Neural Networks (or CNNs) excel in processing grid-based

signals, such as images (LeCun et al., 1995; Ren et al., 2015; He et al., 2016; Redmon et al.,

2016). They are structured with multiple convolutional layers, each employing convolu-

tion kernels or filters. Mathematically, consider a set of N feature maps arranged on a

discrete grid, denoted by F : Z2 → RN . In a convolutional layer containing L convolu-

tion kernels, each represented as ψi : Z2 → RN , the convolution operation is defined by

the equation: [F ∗ ψi](x) =
∑

y∈Z2

∑N
n=1Fn(y)ψ

i
n(y − x). This operation allows the layer

to extract and leverage spatial and temporal relationships within the data. The inherent

structure of CNNs promotes translation equivariance, meaning the convolution operation

remains consistent under shifts (i.e., commutes with translation) in the input data.

Discrete Group Equivariant CNNs (Discrete G-CNNs), introduced in

(Cohen and Welling, 2016a), extend conventional CNNs to discrete groups such as p4m

and p4, which encompass translations coupled with rotations by 90 degrees, with and

without and flips, respectively. This architecture incorporates two specialized convolu-

tion operations: lifting convolution and group convolution:

• The lifting convolution is the initial layer, which takes a 2D feature map and con-

volves it across the specified group. This is mathematically represented as [F ∗

ψ](g) =
∑

y∈Z2

∑
nFn(y)ψn(g

−1y), where both F and ψ operate over Z2, but the out-

come, F ∗ ψ, is mapped onto the group G.

• Subsequent layers utilize group convolutions, where the convolution kernels them-

selves are defined on the group G, i.e., [F ∗ ψ](g) =
∑

h∈G
∑

nFn(h)ψn(g
−1h).
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This design is followed by projection or pooling layers to adapt to the specific de-

mands of the target task. In summary, the G-CNNs are a more general version of CNNs

where the underlying equivariance is extended to a group G instead of only translation

(Kondor and Trivedi, 2018; Cohen et al., 2019b; Bekkers, 2020).

Subsequent research has broadened the scope of discrete group equivariant CNNs

to other 2D and 3D transformations, addressing complex symmetries. Notably, Hooge-

boom et al. (2018) introduced a model incorporating 6-fold planar rotational symmetry

through hexagonal tiling. Additionally, extensions to three-dimensional transformations

include CubeNet (Worrall and Brostow, 2018), which integrates translations and rotations

at right angles in three-dimensional grids, and 3D roto-translation groups for enhancing

pulmonary nodule detection (Winkels and Cohen, 2022). Lenssen et al. (2018) extend the

equivariance idea to capsule networks (Hinton et al., 2011) and Marcos et al. (2017) to

vector field networks.

Continuous rotation G-CNNs have been further developed, albeit with regular dis-

cretizations featuring SE(2)-group convolution layers. These layers have been success-

fully applied in tasks such as histopathology image analysis and retinal imaging (Bekkers

et al., 2017, 2018; Lafarge et al., 2021), demonstrating improved sample efficiency and su-

perior performance compared to traditional CNNs augmented with data rotation tech-

niques.

Worrall et al. (2017) introduce Harmonic networks as CNNs for equivariance to SO(2)

by replacing regular convolution kernels with circular harmonics. Steerable CNNs (Co-

hen and Welling, 2016b) presented another framework to design continuous group equiv-

ariant networks. In this framework, 2D signals are bundles of feature fibres instead of tra-

ditional stacks of feature maps. Each fibre contains feature vectors. They describe the con-

struction of H-equivariant kernels with the help of a predefined basis that maps an input

signal (bundles of feature fibres) to feature vectors. The framework extends to G-steerable

networks (e.g., p4m), with H (e.g., D4) being a discrete subgroup of G with induced group
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representation. The paper demonstrates the effectiveness of Steerable CNNs in image

classification tasks. Building on this work, (Weiler and Cesa, 2019) proposed a general

theory with irreducible representations to design E(2)-equivariant steerable CNNs. This

theory applies to the E(2) group and subgroups. The key here is defining and solving

the kernel constraint under irreducible representations of the group, which is crucial for

designing effective kernels in these networks. The approach also leverages irreducible

representations (irreps) to facilitate a change of basis. This is particularly useful in man-

aging different types of representations found in neural network layers, such as trivial,

regular, and quotient representations. Finally, (Cesa et al., 2022) extended these concepts

to develop a framework for building E(n)-equivariant steerable CNNs.

While these methods are fundamental for developing equivariant neural networks,

they present notable challenges, particularly when considering large pretrained and foun-

dation models. Firstly, constructing such large networks from scratch is a non-trivial task.

Secondly, retraining these extensive models from scratch demands significant data and

computational resources, which entail additional consequences. We have discussed these

issues in detail in Section 1.1.3. Consequently, our attention turns to architecture-agnostic

strategies that guarantee equivariance with minimal or no modifications to the existing

architecture.
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2.3 Equivariant Networks from Model Agnostic Approaches

2.3.1 Symmetry regularization

Shakerinava et al. (2022) explore a complex scenario with unknown and potentially non-

linear group actions. Equivariance is obtained through objective functions rather than

architectural design. The objective function comprises injectivity promoting and invari-

ance of the considered group. They show that an injective function f : X → Z , enforced

with logarithmic barrier function or hinge loss, can behave as an equivariant map to any

transformation function tX in the input space X , and transformation function tZ in the

embedding space Z . Here, tX is unknown, whereas tZ is inherently complex and can be

pushed towards a simple (linear) action of our choice. The authors ensure the regular-

ization of the latent embedding within the constraints of E(n) or O(n) groups, aiming to

preserve either the Euclidean distance or the orthogonal distance (inner product), which

aligns with the group invariants. This framework is termed symmetry regularization.

(Gupta et al., 2023) extended this work to propose an equivariant contrastive learning

framework where an additional invariance loss was used along with the above objective

functions to ensure minimal shifts in the embedding space in response to slight augmen-

tations or transformations in the input space.

Despite this approach’s potential, its application to large pretrained models faces prac-

tical constraints. Specifically, the process requires multiple expensive forward passes

through the large pretrained model f . Furthermore, we know apriori, the exact trans-

formation group to which the model’s equivariance should be adapted.

2.3.2 Symmetrization and frame averaging

Symmetrization refers to the fact that any arbitrary function can be made G-equivariant

or G-invariant by averaging over the group (Yarotsky, 2022). For example, given function

Φ : V →W , then
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Ψ(X) =
1

|G|
∑
g∈G

g.Φ(g−1.X) (2.1)

is G-equivariant. Similarly, invariant functions can be designed when the action of g on

Φ is trivial. Murphy et al. (2018) used this approach to design permutation-invariant

functions.

Symmetrization in its vanilla form becomes computationally infeasible over larger

groups due to the forward passes with all transformations in G of the input. Therefore,

several works have limited their analysis to small finite groups. Basu et al. (2023b) pro-

poses equi-tuning as a fine-tuning method to convert pretrained non-equivariant models

to equivariant models through symmetrization and support their claims across a diverse

set of tasks, including image and natural language tasks. Equi-tuning employs an equal

weighting scheme for outputs from the pretrained model, whereas Basu et al. (2023a)

devises a learnable weighting scheme to perform a weighted average of transformed out-

puts.

A key observation in Puny et al. (2021) is that the group average over the entire group

can be replaced with averaging over an input-dependent subset of group elements, i.e.,

F(X) ⊂ G, where |F(X)| is typically small and F(X) is G-equivariant. The main findings

highlight that the frame-averaging framework can be used for designing universal func-

tions. This approach also retains the expressive power of the original backbone function.

In contrast, equivariant networks generally are computationally expensive (Morris et al.,

2019; Kim et al., 2021; He et al., 2021; Kaba et al., 2023) and lack expressivity (Xu et al.,

2018; Maron et al., 2019; Azizian et al., 2020; Zhang et al., 2022; Joshi et al., 2023) due to

additional constraints on network design to guarantee equivariance. The effectiveness of

this approach to build equivariant network has been demonstrated across several appli-

cations, particularly in shape space learning (Atzmon et al., 2022), materials modelling

(Duval et al., 2023), point cloud processing (Finkelshtein et al., 2022), and 3D shape anal-
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ysis (Li et al., 2023).

In principle, Equation 2.1 can be alternatively written as an expectation over a uniform

distribution defined on the group G, i.e.,

Ψ(X) = Eg∼Unif(G)[g.Φ(g
−1.X)] (2.2)

Therefore, a sampling-based average can estimate Equation 2.2 (Murphy et al., 2018,

2019). Kim et al. (2023) demonstrate that the uniform distribution Unif(G), can be re-

placed with a parameterized distribution pθ(g|x) and the whole framework is equivariant

as long as pθ(g|x) is probabilistically equivariant (Bloem-Reddy et al., 2020). The authors

use reparameterization (Kingma and Welling, 2013) to replace pθ(g|x) with a combination

of invariant noise ϵ and equivariant network qθ.

While symmetrization is an approach for adapting large pretrained models to exhibit

equivariance, it faces challenges due to the requirement for multiple, computationally in-

tensive forward passes through large pretrained models during fine-tuning and inference.

This arises from the necessity of averaging the outputs across various input transfor-

mations, thereby substantially increasing computational overhead. Consequently, scal-

ing this method to large-scale foundation models, such as the Segment-Anything Model

(SAM, Kirillov et al. (2023)) and GPT-4V (Achiam et al., 2023), proves challenging. The

ideal solution for equivariant adaptation would seamlessly integrate with these models

as a plug-and-play module, reducing the number of necessary forward passes to one,

thus enhancing feasibility and efficiency.

2.3.3 Canonicalization

In canonicalization, the function Φ only processes one canonical (or standard) orientation.

For the invariance task, mapping all members in the orbit of an input to a canonical input

from the orbit before the function application is enough. For equivariance, elements are
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mapped to a canonical sample and following function application, the outputs are trans-

formed back according to their original position in orbit. The setup can be formulated

as

Ψ(x) = c′(x).Φ(c(x)−1.x) (2.3)

where c :X → G is a canonicalization function, Φ :X → Y can be any prediction func-

tion and Ψ : X → Y its equivariant version, c(x)−1.x is the canonical input in the orbit of

x, and c′(x) is the counterpart of c(x) on the output. It is implicit that c(x) and c′(x) act

on x and output of Φ with the group representation ρX and ρY respectively. We define

canonicalizer as a function which outputs the canonical input, i.e., C(x) = c(x)−1.x.

Several earlier works leverage hand-engineered heuristics to canonicalize inputs (Lowe,

2004) with poor generalization. Spatial transformer (Jaderberg et al., 2015) learns input

transformations across layers, thus requiring modifications in the architecture for easier

processing in downstream vision tasks. Its equivariant version (Esteves et al., 2018b; Tai

et al., 2019) fixes a canonical coordinate but fails to handle groups larger in dimension

than the size of the underlying grid.

Kaba et al. (2023) demonstrate that c(x) can be learned and it is enough for c(x) to be

continuous and G-equivariant i.e., c(ρX(g).x) = ρG(g).c(x) for Ψ to be a universal approx-

imator of G-equivariant functions. Additionally, we could impose certain symmetries

to Φ(x) and perform partial canonicalization for additional symmetries with c(x)1. For

instance, a CNN could be made E(2)-equivariant with an O(2)-equivariant c(x), and p4-

equivariant with C4-equivariant c(x).

They jointly train an equivariant canonicalization network c(x) with relatively small

parameters and a prediction network Φ(x) of choice from scratch, where the canonical-

ization network learns to output a suitable canonical orientation. The approach’s effec-

tiveness is demonstrated with larger discrete groups where it maintains the expressivity

of Φ at a much lower parameter cost than G-CNNs (Cohen and Welling, 2016a).

1Theorem 3.1 and 3.2 in Kaba et al. (2023)
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Since these approaches require single forward pass through prediction models due to

a single (canonical) orientation while being model-agnostic, we focus on learned canon-

icalization (Kaba et al., 2023) as a suitable approach for equivariant adaptation of large

pretrained models. We first analyze the problems with trivially using the framework for

our goal and propose appropriate solutions and improvements.

Finally, since we demonstrate the use of our proposed approach on pretrained models

for image-based applications, in the above literature review, we concentrated on equivari-

ant networks designed for image processing that address global symmetries, excluding

local gauge transformations (Cohen et al., 2019a). Additionally, we do not cover equiv-

ariant networks tailored for processing sets (Zaheer et al., 2017; Qi et al., 2017), meshes

(De Haan et al., 2020), general graphs (Maron et al., 2018; Gasteiger et al., 2019; Atz et al.,

2021; Brandstetter et al., 2021; Satorras et al., 2021), and arbitrary manifolds (Weiler et al.,

2021).
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Chapter 3

Equivariant Adaptation of Large

Pretrained Model

In this chapter, we first introduce the process of integrating the canonicalization frame-

work with large pretrained models, aiming to develop equivariant large pretrained mod-

els and also provide critical insights that underscore the adoption of a novel prior regular-

ization within this framework. Subsequently, we address concerns about the expressiv-

ity and canonicalization time of equivariant canonicalization networks and explore non-

equivariant pretrained models as alternatives for these networks. Effectively, we propose

a pipeline that utilizes non-equivariant networks to achieve equivariance. Lastly, we de-

tail our experimental setup and methodologies to validate and support our claims.

3.1 Designing Equivariant Canonicalization Networks

As motivated in Section 2.3.3, we build upon the learned canonicalization framework

to achieve equivariant adaptation of large pretrained models. The framework requires

learning an equivariant canonicalization network c(x) simultaneously with a prediction

network Φ(x). Two approaches were proposed in Kaba et al. (2023) for designing c(x):



3 Equivariant Adaptation of Large Pretrained Model 19

direct approach and optimization approach. We interchange network with function in the

text.

3.1.1 Direct approach

Existing equivariant networks (refer to Section 2.2) can be selected as canonicalization

networks and trained to output group elements. This is referred to as direct approach.

As an example, consider using a C4-equivariant G-CNN (Cohen and Welling, 2016a)

as a canonicalization network, which outputs a group element g ∈ C4. Due to the design,

each layer operation in c(x) is equivariant to C4. Thus, if input x was transformed with

g1 ∈ C4, then the output group element will be ρG(g1).c(x).

3.1.2 Optimization approach

Another method suggests that c(x) can be defined as the set of elements that minimize an

arbitrary function q : ρ(G)×X → R, if q(ρ(g), x) satisfies the following constraints (here, q

can be a neural network):

1. Equivariance

q(ρ(g), ρ(g1).x) = q(ρ(g1)
−1ρ(g), x),∀g1 ∈ G (3.1)

2. Uniqueness up to input symmetry. The outcome of the optimization process can lead

to non-unique canonical orientations in a single orbit. In this case, we can select one

of them as the canonical input (Kaba and Ravanbakhsh, 2023).

Equivariant networks trivially satisfy these constraints. However, the interesting al-

ternative is a non-equivariant network that represents a distance function (or energy),

i.e., q(ρ(g), x) = E(ρ(g)−1.x) and is minimized at canonical inputs through optimization.

We build upon this idea and propose a contrastive loss to train existing non-equivariant

architectures and obtain equivariant canonicalization networks in Section 3.3.
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Figure 3.1 Direct approach and optimization approach for canonicalization.
In both methods, our goal is to predict the group element(s) that can be used
to canonicalize. Figures adapted from Kaba et al. (2023).

3.2 EquiAdapt

The canonicalization framework allows equivariant adaptation of existing large pretrained

models. In our initial investigation, we train an equivariant canonicalization function c(x)

while optionally finetuning the large pretrained model Φ(x) using the same task objec-

tive. We consider both zero-shot and finetuning setups to derive insights regarding the

training dynamics and propose a novel prior regularization.

3.2.1 Augmentation and alignment

Alignment. The performance of the above combination requires the alignment of canon-

icalization and prediction function. For example, suppose the canonicalization network

produces images in a less preferred orientation (e.g., upside-down) compared to those

the pretrained network expects. In that case, the overall performance is significantly de-

graded.
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Augmentation. In addition to alignment, there is an augmentation effect that further

adds complexity: during its training, the canonicalization network performs data aug-

mentation with respect to the group G, where the canonicalization network is G-equivariant.

Suppose a prediction network is engineered to be equivariant to group G through

canonicalization. At the start of training, the randomly initialized weights of the canoni-

calization function produce random canonical orientations for each data point. This mim-

ics the data augmentation effect with transformations through elements of group G for

the prediction network. As the training progresses, the canonical orientations for visu-

ally similar images gradually converge, as illustrated in Figure 3.2, thereby reducing the

augmentation effect. Consequently, canonicalization ensures equivariance and offers an

additional augmentation effect to the prediction network.

Figure 3.2 Visualization of the diminishing augmentation effect introduced
by learning canonicalization (Kaba et al., 2023) during training for the Rotated-
MNIST dataset (Larochelle et al., 2007). In this visualization, the leftmost im-
age represents the original training images. Moving towards the center, we
present the canonicalized images at the beginning of the training process. Fi-
nally, the rightmost image unveils the transformation of the canonicalized im-
ages after training the model for 100 epochs.

However, there are two scenarios where the augmentation provided by learning the

canonicalization function can be detrimental:
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First, augmentation with the full range of transformations in a group G can hamper

the early stages of training or fine-tuning if the training benefits from smaller changes to

the input. This is particularly pronounced in natural image datasets like CIFAR datasets

(Krizhevsky et al., 2009), where image transformations with small rotation angles (rang-

ing from −10◦ to +10◦) are typically advantageous. In contrast, a canonicalization func-

tion might introduce rotations spanning from −180◦ to +180◦ at the beginning of training.

Further, such extensive input modifications can destabilize the prediction network’s train-

ing, leading to a diminished performance by exposing it to data that deviates significantly

from the training distribution. This phenomenon is illustrated in Table 4.1, where we com-

pare the impact of different rotational augmentations — including those introduced by

learned canonicalization (Kaba et al., 2023) — on the performance of prediction networks

trained with CIFAR datasets. The decrease in performance tends to be more pronounced

in networks trained from scratch on more complex datasets featuring a higher number of

labels. This scenario exemplifies the variance-invariance tradeoff described by Chen et al.

(2020a). Training with arbitrary augmentations biases the prediction function since the

test distribution is not perfectly symmetric under rotations.

Second, although Kaba et al. (2023) advocates relying solely on the task loss objective

to learn the canonicalization network, we observe that it is insufficient to learn the cor-

rect orientation when used with large pretrained models. To support this hypothesis, in

Figure 4.2a, we plot the distribution over the canonical orientations during inference and

notice that the canonical orientations from the canonicalization function are inconsistent

with the desired canonical outputs for the prediction network, impacting its performance.

This could be due to the small size of the finetuning dataset compared to the pretraining

dataset. For instance, on the CIFAR10 dataset (Krizhevsky et al., 2009) without any aug-

mentations, we expect the canonical orientation for every data point to be identical after

training. However, from Figure 4.2a, we can see that the canonical orientations for the

test set are distributed uniformly from −180◦ to +180◦ after training until convergence of
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the task objective. Consequently, during inference, the prediction network will receive

images with different orientations and underperform. This issue arises because the pre-

diction networks are not inherently robust to these transformations.

Therefore, when analyzing the performance of this type of equivariant network, both

alignment and augmentation effects must be considered.

• When both networks are trained together from scratch, the alignment is a non-issue,

and (unwanted) augmentation can degrade or improve performance, depending on

the extent of symmetry in the dataset, e.g., in Kaba et al. (2023), augmentation effect

enabled equivariant networks in canonicalization framework to achieve higher per-

formance on Rotated-MNIST dataset (Larochelle et al., 2007) while as shown in Ta-

ble 4.1, the performance degrades due to unwanted augmentation in both CIFAR10

and CIFAR100 datasets (Krizhevsky et al., 2009).

• However, when dealing with pretrained prediction networks, one must consider

the alignment effect. One could then think of freezing the pretrained prediction

network, avoiding unwanted augmentation and backpropagating the task loss to

align the canonicalization network. However, task loss alone is not sufficient, and

this can become computationally expensive for large pretrained models, such as

Segment-Anything Model (SAM, Kirillov et al. (2023)) considered in this work.

Therefore, we propose an alternative: directly regularizing the canonicalization net-

work to produce canonical forms consistent with the (pre)training data, aligning with the

prediction network.

3.2.2 Prior regularization

In Section 3.2, we discussed how the canonicalization networks can deviate canonical ori-

entations away from those present in the pretraining datasets. To address this issue, we

introduce canonicalization prior, a regularizer that will encourage the canonicalization
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network, along with the task-specific loss, to align inputs in an orientation favourable for

the prediction network. This approach is motivated by the observation that the orienta-

tions of inputs in the fine-tuning dataset, such as images or point clouds, hold valuable

information. These orientations are presumed to be analogous to those in the pretraining

dataset. Consequently, we assume that the canonicalization process should align inputs

to mirror the distribution of orientations within the fine-tuning dataset as accurately as

possible.

Deriving the regularizer. The task of the canonicalization network is to map each in-

put data point to a distribution over the group G of transformations. We introduce two

important distributions below:

1. Pc(x) is the distribution induced by the canonicalization function c(.) over G for a

given input data point x, i.e., the predicted distribution over transformations by

canonicalization function.

2. PD is the canonicalization prior which is a distribution over G associated with a

dataset D, i.e., the distribution over transformations present in the dataset D. More

generally, the canonicalization prior can be defined as PD(x), i.e., the canonical ori-

entation depends on input x. However, for pretraining datasets, we assume the

same prior for all x.

We enforce the prior regularization to minimize the Kullback-Leibler (KL) divergence

between PD and Pc(x) over the entire dataset D that is

Lprior = Ex∼D[DKL(PD ∥ Pc(x))]

To simplify further, define the prior to follow a probability density function q(R),

where R is selected as a placeholder, such as rotations. Then, the prediction from canoni-

calization function c can be defined as Pc(x) = p(R|c(x)). Since the prior distribution is kept
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constant, minimizing the KL divergence is equivalent to minimizing the cross-entropy,

and Lprior simplifies to:

Lprior = −Ex∼D ER∼q(R)[log p(R|c(x))] (3.2)

We separately derive the prior regularization for the discrete and continuous rotation

groups.

Discrete Rotations

The group of 2D discrete rotations (cyclic group Cn) can be seen as a discrete approxi-

mation of its continuous rotation group counterpart SO(2). In this case, we consider the

canonicalization prior to be a categorical distribution over group elements, with the prior

distribution having a probability mass of 1 for the identity element. Then

PD(R) = δR,I

, where δR,I is the Kronecker delta function and Equation 3.2 becomes

Lprior = −Ex∼D log p(I|c(x))

.

In other words, the regularization loss is simply the negative logarithm of the prob-

ability assigned by the canonicalization function to the identity element I of the group.

Details on practical implementations can be found in Section 4.1.1.

Continuous rotations

We use the matrix Fisher distribution (Downs, 1972) in the case of canonicalization with

continuous rotations. It is the analogue of the Gaussian distribution on the SO(n) mani-
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fold and is defined as

p(R|F) = 1

n(F)
exp(Tr[FTR]) (3.3)

where F ∈ Rn×n is the parameter of the distribution and n(F) is a normalization constant.

Interpretation of the parameter F and useful properties of the distribution are provided

in (Khamsi and Kirk, 2011; Lee, 2018; Mohlin et al., 2020). In particular, considering the

proper singular value decomposition F = USVT , we find that R̂ ≡ UVT is the mode of

the distribution and the singular values S can be interpreted as concentration parame-

ters in the different axes. We therefore set S = sI to obtain the isotropic version of the

distribution,

p(R | R̂, s) =
1

n(s)
exp(sTr[R̂

T
R]) (3.4)

where the normalization constant only depends on s (Theorem 2.1 of Lee (2018)). Note

that this becomes the Von-Mises distribution, as expected, on SO(2).

Proposition 1. Let p and q be matrix Fisher distributions of R

p(R | R̂, sp) =
1

n(sp)
exp(spTr[R̂

T

p R]), q(R | R̂, sq) =
1

n(sq)
exp(sqTr[R̂

T

q R]).

The cross-entropy is given by

ER∼q

[
log p(R | R̂p, sp)

]
= N(sq)spTr(R̂

T

p R̂q) + log c(sp) (3.5)

Proof. The cross-entropy is given by

ER∼q

[
log p(R | R̂p, sp)

]
=

∫
SO(n)

q(R | R̂q, sq) log p(R | R̂p, sp)dR, (3.6)
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where dR is the invariant Haar measure on SO(n). Here, we assume that it is scaled

such that
∫
SO(n)

dR = 1.

We obtain

ER∼q

[
log p(R | R̂p, sp)

]
=

∫
SO(n)

q(R | R̂q, sq)(spTr[R̂
T

p R]− log c(sp))dR, (3.7)

ER∼q

[
log p(R | R̂p, sp)

]
= spTr(R̂

T

p ER∼q[R])− log c(sp). (3.8)

From Theorem 2.2 and Lemma 2.2 of Lee (2018), we have

ER∼q[R] =
d log c(sq)

dsq
R̂q. (3.9)

Therefore, we find

ER∼q

[
log p(R | R̂p, sp)

]
=
d log c(sq)

dsq
spR̂q − log c(sp), (3.10)

which completes the proof.

Setting the location parameters of the estimated and prior distributions as Rc(x) and

R̂q = I respectively, we find that the canonicalization prior Equation 3.2 is given by

Lprior = −λTr(Rc(x)) =
λ

2
||Rc(x) − I||F (3.11)

where we have eliminated terms that do not depend on Rc(x) and λ = N(sq)sp. Fol-

lowing intuition, the strength of the regularization is determined by the concentrations of

the distributions around their mode. Details on practical implementations can be found

in Section 4.1.2.



3 Equivariant Adaptation of Large Pretrained Model 28

3.2.3 Training and inference with prior regularization

𝒟

e

SO(2)

e

SO(2)Distribution of image  
orientations in dataset

ρg̃−1 . II

Predicted image 
orientations distribution

g

(argmax)

Prior Regularisation 
(Minimising KL)

Training

Ir = ρg . I

e

SO(2)

ρg−1 . Ir

g̃

Canonicalization function

Inference

⇒

Figure 3.3 Training and inference with our proposed prior regularized
canonicalization method. The canonicalization function outputs a distribution
over image orientations, and a group element is sampled from this distribu-
tion to canonicalize the input image. Additionally, this predicted distribution
is regularized during training to match the orientations seen by the large pre-
trained model in the pretraining dataset.

Training The pipeline consists of two networks - a canonicalization network c(.) fol-

lowed by a prediction network Φ(.), which is a large pretrained model. The overall

pipeline is represented in Equation 2.3. Depending on the task, we must modify the pre-

diction network output, i.e., for an invariant task, the output of Φ(.) is the final output,

while for an equivariant task, the outputs of Φ(.) must be transformed to correspond to

input orientations. There are two ways to train this pipeline:

• simultaneously training the canonicalization network with prior-regularization loss

Lprior and fine-tuning the prediction network with a task-specific loss Ltask, i.e.,

Ltotal = Ltask + β.Lprior. The canonicalization network receives signal from both

Lprior and Ltask.

• only training the canonicalization network with prior regularization loss Lprior, i.e.,

Ltotal = Lprior. This removes the requirement to train the canonicalization network
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separately for each prediction network since a trained c(.) can be placed before any

prediction network.

Inference Inference involves the canonicalization network predicting a distribution over

transformations followed by sampling a transformation to canonicalize the input. The

canonicalized input is passed through the prediction network, and the output is trans-

formed depending on the type of task. The training and inference of the canonicalization

network is shown in Figure 3.3. The overall canonicalization pipeline with equivariant

canonicalizer is presented in Figure 3.4.

Figure 3.4 Canonicalization with an equivariant canonicalization network.
We use an equivariant network to predict a distribution over apriori-defined
transformations to canonicalize the input.

3.2.4 Expressivity of equivariant canonicalization networks

In our formulation with prior regularization, during training, the canonicalization net-

work has to predict a distribution similar to the prior distribution. Particularly, as shown
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above in Section 3.2.2, it should place a significantly higher probability mass on group

identity e.

This capacity to map inputs to group transformations as per a defined prior relates

to the expressivity of the canonicalization network. Since explicitly designed equivari-

ant networks are constrained, we require deep equivariant networks to obtain expressive

models for learning this mapping. However, this comes at the cost of training and infer-

ence speeds. We observe and report this in the case of instance segmentation task with the

Microsoft COCO dataset (Lin et al., 2014) in Table 4.5 and Table 4.6. This motivates us to

replace equivariant networks with more expressive and faster non-equivariant networks

and leverage the optimization approach described in Section 3.1.2. We design losses to

learn a desired energy function and propose EQUIOPTADAPT where the canonicalization

network can also be non-equivariant.
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3.3 EquiOptAdapt

3.3.1 Contrastive loss

We extend the optimization approach to enable the use of any neural network for canoni-

calization. The optimization formula for a discrete group of transformations, denoted by

G, is (Section 3.1.2):

g ∈ argming∈GE(ρ(g)
−1x) (3.12)

Assuming there are no symmetric elements in the orbit represented by {ρ(g)−1x|g ∈

G}, it’s essential to ensure the functionE(.) has a unique minimum to establish a canonical

orientation. Additionally, should symmetric elements exist within the orbit, and if the

minimum is attained among these symmetric positions, selecting one of them will yield

the correct orientation (Kaba et al., 2023; Kaba and Ravanbakhsh, 2023).

To design this function E(.) and learn unique representations for each element in the

orbit, we learn it using a neural network and minimize the similarity among the output of

the elements in the orbit. We output vectors corresponding to every element in orbit using

a standard neural network sθ(.), which allows us to use techniques from self-supervised

learning (SSL) literature to prevent representation collapse Oord et al. (2018); Wang and

Isola (2020); Chen et al. (2020b); Balestriero et al. (2023) including non-contrastive ap-

proaches that rely on maximizing the eigenspectrum of the covariance matrix (Zbontar

et al., 2021; Bardes et al., 2021).

Since outputting scalars directly from the neural network can make optimization dif-

ficult, we limit ourselves to contrastive learning techniques. We define the function E(.)

is obtained by taking a dot product of outputs of sθ(.) with a reference vector vR, which

we can either learn or keep fixed. We get the distribution induced by the canonicalization

function Pc(x) by taking a softmax over {vR · sθ(ρ(g)−1x)/τ |g ∈ G}, where τ is a temperature
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parameter to control the sharpness of the distribution. The final optimization formulation

becomes:

g ∈ argming∈G −
exp(vR · sθ(ρ(g)−1x)/τ)∑

g′∈G exp(vR · sθ(ρ(g′)−1x)/τ)
(3.13)

Now, we train sθ(.) to output different vectors for every unique element in the orbit

using the following loss:

LOpt = Ex∈D[
∑

gi,gj∈G,gi ̸=gj

sθ(ρ(gi)
−1x) · sθ(ρ(gj)−1x)] (3.14)

where D is the training dataset. This loss prevents the collapse of learnt vectors in the

output space of sθ(.) for different transformations of x by minimizing their similarity. In

the context of training from scratch (Kaba et al., 2023), this loss can be jointly optimized

with the task loss. Similarly, for fine-tuning or zero-shot adaptation (Mondal et al., 2023),

an additional prior regularization loss is used, which is given by:

Lprior = Ex∈Df
[− log

( exp(vR · sθ(ρ(g)−1x)/τ)∑
g∈G exp(vR · sθ(ρ(g)−1x)/τ)

)
] (3.15)

where Df is the finetuning dataset, and the identity transformation is assumed to be

the prior for natural image dataset (Mondal et al., 2023). Figure 3.5 shows a schematic of

our approach.

Typically, we choose sθ() that are smaller and faster than the large prediction network

Φ. Therefore, requiring |G| forward passes in parallel through sθ() instead of the pre-

diction function Φ, makes our method significantly more efficient than symmetrization

based methods (Basu et al., 2023a,b). However, since we don’t use equivariance as an
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Figure 3.5 Learning equivariant canonicalizer with a non-equivariant canon-
icalization network. All the group transformations are applied to the input
image and passed through the canonicalization network in parallel. A dot
product of the output of the canonicalization network with a reference vec-
tor gives us a distribution over the transformations to canonicalize the input.
We also minimize the similarity between the vectors to get a unique canonical
orientation.

inductive bias explicitly in the canonicalization function, this framework aims to achieve

approximate instead of exact equivariance.

3.3.2 Pretrained models as canonicalization networks

As our formulation in Section 3.3.1 transfers the equivariance constraint of Equation 3.1

to finding the minima of Equation 3.14, we can conveniently initialize the sθ(.) with a pre-

trained network to ease the optimization process further. In our experiments, we initialize

the non-equivariant canonicalization network with popular pretrained ResNet (He et al.,

2016) and WideResNet (Zagoruyko and Komodakis, 2016) 1 weights. Although these pre-

1https://pytorch.org/vision/main/models/wide_resnet.html

https://pytorch.org/vision/main/models/wide_resnet.html
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trained models have a higher number of parameters than their equivariant counterparts,

they are significantly faster and have higher expressivity. We perform transfer learning

by replacing the final layer with a new trainable, fully connected layer with the output

size of reference vector |vR|.

3.4 Evaluation Setup

Our evaluation setup attempts to investigate the performance (e.g., accuracy, mean Av-

erage Precision or mAP) on the original test set and a transformed test set to measure

the robustness and equivariance of the models. If the models are equivariant, then the

difference between the performance on the original and transformed test sets should be

minimal, ideally zero. In the case of image inputs, this difference can be non-zero due to

the appearance of rotation artifacts, particularly in the image corners when the images are

rotated. More details on task-specific evaluation are provided below, Section 3.4.1 for im-

age classification, which is an invariant task and Section 3.4.2 for instance segmentation

task, which is an equivariant task.

Prior to evaluating the metrics, we analyze the capabilities of the canonicalization

framework with and without our novel prior regularization and demonstrate the effec-

tiveness of regularization loss in enabling the canonicalization network to map the inputs

to the defined prior distribution. Further, we observe a direct correlation between the

performance of the prediction network on the original test set and the capability of the

canonicalization network to predict distribution similar to the prior distribution. This can

be explained intuitively; original test sets contain image orientations that follow the prior

distribution. Thus, for the canonicalization framework to retain the performance of the

large pretrained model, it has to map the images to the prior distribution.
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3.4.1 Invariant task: image classification

For image classification, we rely on the accuracy. Thus, the metric for the original test

set is termed as Accuracy. We use cyclic group G = C8 (8 discrete rotations) for obtaining

the transformed test set for EquiAdapt while cyclic group G = C4 (4 discrete rotations) for

EquiOptAdapt to avoid rotation artifacts while training non-equivariant canonicalization

networks. We categorize the metric as G-Average Accuracy, where G = C4,C8. We observe

that the explicitly designed equivariant networks are comparatively more robust to ro-

tation artifacts than non-equivariant networks trained with an optimization approach.

Note that transformations with group elements of C4, i.e., multiples of 90◦, do not in-

troduce rotation artifacts. We evaluate Accuracy and Cn-Average Accuracy for popular

networks pretrained on ImageNet-1K dataset (Deng et al., 2009) such as ResNet50 (He

et al., 2016) and ViT-Base (Dosovitskiy et al., 2020) on datasets used widely to test trans-

fer learning properties, such as CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and STL10

dataset (Coates et al., 2011).

3.4.2 Equivariant task: instance segmentation

We report mean zero-shot Average Precision or mAP for the original val set of Microsoft

COCO 2017 (Lin et al., 2014) for Mask-RCNN (He et al., 2017) and Segment-Anything

Model (SAM, Kirillov et al. (2023)), which are pretrained on Microsoft COCO (Lin et al.,

2014) and SA-1B Kirillov et al. (2023) datasets respectively. We perform instance segmen-

tation, i.e., predicting the correct mask for instances present in the image for Mask-RCNN.

These classes are already defined in the Microsoft COCO. However, since the Segment-

Anything Model can segment all possible objects in an image, we resort to prompted in-

stance segmentation - we provide the ground truth bounding box in the images around

the objects defined in Microsoft COCO. For the transformed val set, we perform augmen-

tations with C4 to maintain the structure of bounding boxes and masks while avoiding

rotation artifacts. This metric is termed as C4− Average mAP.



36

Chapter 4

Experimental Results and Discussion

4.1 Implementation of Canonicalization Networks

Below, we describe the architectural details of equivariant canonicalization networks used

for discrete Cn and continuous SO(2) rotation groups. The design of a non-equivariant

canonicalization network is straightforward and described in Section 3.3.2. We exten-

sively use escnn library (Weiler and Cesa, 2019; Cesa et al., 2022) to build equivariant

networks.

4.1.1 Discrete rotation group

The canonicalization network needs to output logits corresponding to every group ele-

ment in the discrete cyclic group Cn. This can be achieved by using a G-CNN (Cohen and

Welling, 2016a) or an E(2)-Steerable Network (Weiler and Cesa, 2019) that produces out-

puts using regular representation. Each layer of theCn-equivariant convolutional network

consists of convolution with regular representation except the first layer, which maps the

trivial representation of the Cn group to its regular representation. We use equivariant

implementation of batch normalization, ReLU activation function, and drop out as pro-

posed in Weiler and Cesa (2019); Cesa et al. (2022). Major hyperparameters tuned include
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the number of layers, kernel sizes, dropout, and learning rates. We use n = 4,8 when we

evaluate C4- and C8−Average Accuracy respectively.

C4−equivariant WideResNet, used for comparing the effect of canonicalization net-

work expressivity in instance segmentation task in Table 4.5, includes repetitive stacking

of equivariant versions of basic residual blocks on several consecutive bottleneck residual

blocks (for details on these residual blocks, we refer readers to Figure 1 in Zagoruyko and

Komodakis (2016)). The rest of the architecture details and hyperparameters are identical

to the design of the C8-equivariant convolutional network above.

We follow the overall implementation proposed in Kaba et al. (2023) to design the

canonicalization function. We take a spatial average and get logits corresponding to ev-

ery element in the group along the fibre dimension. Now, we get a discrete distribution

over the group elements by taking a softmax and minimizing the Ltotal objective. Dur-

ing training, we utilize the argmax operation instead of sampling from this distribution

using Gumbel Softmax (Jang et al., 2016) and employ the straight-through gradient trick

(Bengio et al., 2013). All our image-based experiments use this discrete rotation group

canonicalization function.

4.1.2 Continuous rotation group

In this case, the canonicalization network needs to output rotation matrices Rc(x) ∈ SO(2)

that equivariantly transforms with the input (image). This can be achieved using a E(2)-

Steerable Network (Weiler and Cesa, 2019) that outputs two vector fields. To design

the canonicalization function, we can take a spatial average over both vector fields and

Gram-Schmidt orthonormalize the vectors to get a 2D rotation matrix. While this sounds

promising in theory, in practice, we found it empirically challenging to optimize using

the loss to enforce canonicalization prior in Equation 3.11 for images.



4 Experimental Results and Discussion 38

Distribution of angles after trainingDistribution of angles at the start of training

Figure 4.1 Distribution of angles output from steerable canonicalization
function in SO(2) with prior regularization (Equation 3.11) for CIFAR10
(Krizhevsky et al., 2009) before and after training. x-axis denotes angles from
−180◦ to +180◦. Frequency denotes the number of images mapped to a partic-
ular angle.

Optimization challenges. In Figure 4.1, we present the distributions of predicted angles

ranging from −180 to +180. Our analysis shows that the mean and standard deviation

of the predicted angles on the test set are −0.54 and 80.23, respectively. This observation

signifies that while the prior guides the canonicalization function to output angles close to

0 (identity element of SO(2)), there exist instances where angles significantly deviate from

this central value. We leave this investigation as future work and expect to reduce the

standard deviation with additional regularization during training and more expressive

networks.
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4.2 Augmentation and Alignment Effects

To understand the augmentation and alignment effect with the canonicalization network

(Section 3.2.1), we train from scratch and fine-tune1 a ResNet50 (He et al., 2016) in the

canonicalization framework in different augmentation setups - no rotation augmentation,

small rotation angles, large rotation angles, and learned canonicalization. Note that this

effect can be observed with both equivariant and non-equivariant canonicalization net-

works. However, we follow the learned canonicalization framework in Kaba et al. (2023)

and investigate the issue with an equivariant network. As explained before, learned

canonicalization also provides an augmentation effect when initially the canonicaliza-

tion network is initialized randomly. We report Accuracy and C8−Average Accuracy on

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009).

Table 4.1 Augmentation and alignment effect on the prediction network.
Top-1 classification accuracy and G-Averaged classification accuracy for CI-
FAR10 and CIFAR100 (Krizhevsky et al., 2009). C8−Avg Acc refers to the top-
1 accuracy on the augmented test set obtained using the group G = C8, with
each element of G applied on the original test set.

Dataset → CIFAR10 CIFAR100

Prediction Network ↓ Rotation Augmentation Acc C8-Avg Acc Acc C8-Avg Acc

ResNet50 (He et al., 2016)

None 91.64 ± 0.22 43.82 ± 0.75 77.57 ± 0.37 38.20 ± 0.24
−10 to +10 degrees 90.96 ± 0.41 44.87 ± 0.60 74.83 ± 0.15 37.14 ± 0.42

−180 to +180 degrees 84.60 ± 1.83 81.04 ± 1.86 61.07 ± 0.27 59.42 ± 0.70
Learned Canonicalization (LC) (Kaba et al., 2023) 83.11 ± 0.35 82.89 ± 0.41 59.84 ± 0.67 59.45 ± 0.49

None 97.44 ± 0.03 57.47 ± 0.14 85.11 ± 0.06 44.34 ± 0.09
−10 to +10 degrees 96.97 ± 0.01 57.77 ± 0.25 85.84 ± 0.10 44.86 ± 0.12

ResNet50 −180 to +180 degrees 94.91 ± 0.07 90.11 ± 0.19 80.21 ± 0.09 74.12 ± 0.05
(pretrained on ImageNet) Learned Canonicalization (LC) (Kaba et al., 2023) 93.29 ± 0.01 92.96 ± 0.09 78.50 ± 0.15 77.52 ± 0.07

We observe that training with no or small rotation angles leads to the best downstream

performance on the test set but reduces the robustness, as we observe in C8−Average

Accuracy for both datasets. However, training with large rotation angles improves the

performance on the augmented test set but significantly affects the results on the original

1pretrained on ImageNet-1K(Deng et al., 2009)
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test set and does not guarantee equivariance. Finally, training with a learnable canoni-

calization network guarantees equivariance but reduces the original test set performance

due to the augmentation effect. This observation is identical for training from scratch as

well as fine-tuning. To obtain the best of both worlds, we introduce the prior regulariza-

tion in the canonicalization framework to improve alignment with small augmentations

while guaranteeing equivariance.

4.3 Image Classification

In this section, we first describe the considered baselines in Section 4.3.1 followed by the

effect of our proposed prior regularization in learning the correct orientations in the fine-

tuning dataset in Section 4.3.2. We detail the improvements in results with EquiAdapt

over other baselines in Section 4.3.3 and further the benefits of EquiOptAdapt in Section

4.3.4. As mentioned in Section 3.4.1, we use C8 and C4 groups for evaluating EquiAdapt

and EquiOptAdapt, respectively.

4.3.1 Baselines

We compare different fine-tuning setups for the invariant image classification task in CI-

FAR10, CIFAR100 (Krizhevsky et al., 2009), and STL10 (Coates et al., 2011) datasets:

1. Vanilla: The Vanilla model refers to fine-tuning the pretrained checkpoints using

data augmentations such as horizontal flips and small angle rotations.

2. Rotation Augmentation: The Rotation Augmentation is identical to Vanilla setup and

additionally performs augmentation with angles ranging from −180◦ to +180◦ in-

stead of small rotation angles.

3. Learned Canonicalization (LC): This is identical to direct approach of Kaba et al.

(2023) described in Section 3.1.1.
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4. C8-Augmentation: This is a strong baseline where we perform augmentation only

with group G = C8 since we evaluate with C8−Average Accuracy. While this is a

competitive baseline, it does not guarantee equivariance and is expensive for larger

augmented test sets with Cn where n is larger.

5. EquiAdapt: Our proposed prior-regularization with canonicalization framework

(Section 3.2). Note, we set the beta value, the strength of prior loss Lprior to 100.

6. EquiOptAdapt: Our proposed prior-regularization with non-equivariant canonical-

ization network (Section 3.3). Note, we use the size of the reference vector |vR|= 128.

4.3.2 Learning Prior Distribution

We present a comprehensive analysis of the output distribution over eight discrete angles

predicted by the canonicalization function, both before and after training, on the test set.

These findings are depicted in Figure 4.2a for LC, and Figure 4.2b for EquiAdapt. Here,

the numbers 0 to 7 correspond to angles that are multiples of 45◦, ranging from 0◦ to 315◦,

respectively.

We demonstrate that incorporating prior regularization into the canonicalization func-

tion aids in mapping the images to the identity prior (represented by 0). This improve-

ment positively impacts the accuracy of the original test set, as evidenced by the results

in Table 4.3. Conversely, relying solely on the classification task loss yields no signifi-

cant alteration in the angle distribution, as the post-training test set distributions remain

random.

Additionally, we provide valuable insights into the fraction of images mapped to the

identity element in Table 4.2. It is important to note that the expressivity of the canonical-

ization function, specifically employing lightweight equivariant networks, contributes to

the inability to map all images to the identity elements. This observation calls for further

exploration in understanding the role of expressivity and generalization within canoni-
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Group elements Group elements

Distribution of  elements at the start of trainingC8 Distribution of  elements after trainingC8

(a) Learned Canonicalization (LC)

Group elements

Distribution of  elements at the start of trainingC8 Distribution of  elements after trainingC8

Group elements

(b) EquiAdapt (ours)

Figure 4.2 Distribution of angles output from canonicalization function in
C8 for a considered canonicalization framework for CIFAR10 before and after
training. We use indices on the x-axis instead of angle values to represent
the corresponding multiple of 45◦. Frequency denotes the number of images
mapped to a particular multiple of 45◦. The histograms show that EquiAdapt
is able to map most of the elements to the desired canonical orientation while
Learned Canonicalization fails to do so.
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calization networks with known prior orientations.

Table 4.2 Fraction of images mapped to identity group element.

Training Completed

Dataset ↓ Model × ✓

CIFAR10 (Krizhevsky et al., 2009)
Learned Canonicalization (LC) 0.11 0.23

EquiAdapt (ours) 0.11 0.76

4.3.3 EquiAdapt results

Table 4.3 Performance comparison of large pretrained models fine-tuned on
different vision datasets. Both classification accuracy and G-averaged classifi-
cation accuracies are reported. Acc refers to the accuracy on the original test
set, and C8-Avg Acc refers to the accuracy on the augmented test set obtained
using the group G = C8.

Pretrained Large Prediction Network → ResNet50 ViT

Datasets ↓ Model Acc C8-Avg Acc Acc C8-Avg Acc

CIFAR10 (Krizhevsky et al., 2009)

Vanilla 97.33 ± 0.01 57.77 ± 0.25 98.13 ± 0.04 63.59 ± 0.48
Rotation Augmentation 94.91 ± 0.07 90.11 ± 0.19 96.26 ± 0.15 93.67 ± 0.39

Learned Canonicalization (LC) 93.29 ± 0.01 92.96 ± 0.09 95.00 ± 0.01 94.80 ± 0.02
C8-Aug. 95.76 ± 0.07 94.36 ± 0.09 96.36 ± 0.02 94.17 ± 0.08

EquiAdapt (ours) 96.19 ± 0.01 95.31 ± 0.17 96.14 ± 0.14 95.08 ± 0.10

CIFAR100 (Krizhevsky et al., 2009)

Vanilla 85.84 ± 0.10 44.86 ± 0.12 87.91 ± 0.28 55.87 ± 0.14
Rotation Augmentation 80.21 ± 0.09 74.12 ± 0.05 82.59 ± 0.44 78.39 ± 0.89

Learned Canonicalization (LC) 78.50 ± 0.15 77.52 ± 0.07 80.86 ± 0.17 80.48 ± 0.20
C8-Aug. 83.00 ± 0.09 79.72 ± 0.10 83.45 ± 0.09 80.08 ± 0.38

EquiAdapt (ours) 83.44 ± 0.02 82.09 ± 0.09 84.27 ± 0.10 83.61 ± 0.01

STL10 (Coates et al., 2011)

Vanilla 98.30 ± 0.01 75.68 ± 1.43 98.31 ± 0.09 76.66 ± 0.93
Rotation Augmentation 98.08 ± 0.06 94.97 ± 0.08 97.85 ± 0.17 94.07 ± 0.11

Learned Canonicalization (LC) 95.30 ± 0.19 93.92 ± 0.10 95.11 ± 0.01 94.67 ± 0.02
C8-Aug. 98.31 ± 0.01 96.31 ± 0.13 97.83 ± 0.08 94.45 ± 0.35

EquiAdapt (ours) 97.01 ± 0.01 96.37 ± 0.12 96.15 ± 0.05 95.73 ± 0.16

We compare EquiAdapt with other baselines in Table 4.3. As anticipated, we found

that large pretrained networks for images are not robust to rotation transformations, as

indicated by the significant drop in performance from the accuracy to its C8-averaged
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counterpart for both ResNet50 and ViT. Nevertheless, we observe that ViT is more robust

to higher-order rotations compared to ResNet50, which has also been observed by Gru-

ver et al. (2023a). We notice that augmenting with a full range of rotation angles during

training improves the C8-Average Accuracy as demonstrated by our Rotation Augmenta-

tion baseline. However, it hurts the accuracy of the prediction network in the original test

set and does not guarantee equivariance. Augmenting with necessary rotations in C8-

Augmentation does not ensure equivariance to C8 but retains performance on the original

test set and reduces the gap between original and C8-averaged accuracies.

LC guarantees equivariance, which can be seen from the minor difference between the

accuracies of the original and augmented test sets. Nevertheless, in every dataset, we can

observe a significant drop in accuracy for the original test set. We extensively discussed

this issue in Section 3.2.1. However, with EquiAdapt method, we can reduce the gap be-

tween the accuracy on the original test set while still being equivariant to rotations. This

demonstrates that this prior regularization is a promising direction to improve the perfor-

mance of large-pretrained models while guaranteeing robustness to out-of-distribution

samples resulting from transformations like rotation.

Ideally, the original test set’s accuracy should be nearly identical for both the Vanilla

and EquiAdapt setup. However, we observed a slight difference between their corre-

sponding accuracies. This disparity arises because the canonicalization model cannot

perfectly map all data points (images) to the identity element e as demonstrated in Sec-

tion 4.3.2.

4.3.4 Comparison between EquiOptAdapt and EquiAdapt

We compare our two proposed methods in Table 4.4. Our findings demonstrate that

EquiOptAdapt, similar to EquiAdapt, also exhibits comparable performance to the Vanilla

setup in terms of test-set accuracy, with EquiOptAdapt showcasing superior performance.

This suggests that non-equivariant canonicalizers can be designed to be expressive, thereby
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Table 4.4 Performance comparison between EquiOptAdapt and EquiAdapt
fine-tuning setups for large pretrained models on different vision datasets.
Both Accuracy (Acc) and C4-Average Accuracy (C4-Avg Acc) are reported.
Acc refers to the accuracy on the original test set, and C4-Avg Acc refers to the
accuracy on the augmented test set obtained using the group C4.

Pretrained Large Prediction Network → ResNet50 ViT

Datasets ↓ Model Acc C4-Avg Acc Acc C4-Avg Acc

CIFAR10 (Krizhevsky et al., 2009)

Vanilla 97.33 ± 0.01 69.72 ± 0.25 98.13 ± 0.04 68.98 ± 0.48
EquiAdapt 96.19 ± 0.01 96.18 ± 0.02 96.14 ± 0.14 96.12 ± 0.11

EquiOptAdapt 97.16 ± 0.01 97.16 ± 0.01 96.96 ± 0.02 96.96 ± 0.02

STL10 (Coates et al., 2011)

Vanilla 98.30 ± 0.01 88.61 ± 0.34 98.31 ± 0.09 78.63 ± 0.25
EquiAdapt 97.01 ± 0.01 96.98 ± 0.02 96.15 ± 0.05 96.15 ± 0.05

EquiOptAdapt 98.04 ± 0.05 98.04 ± 0.04 97.32 ± 0.01 97.32 ± 0.01

enhancing their ability to learn to predict the prior distribution over the elements of the

considered group. Additionally, we observe that more expressive canonicalizers lead to

higher performance. Further, no gap exists between accuracy and C4-average accuracy,

demonstrating the successful equivariant adaptation of the considered models.

4.4 Instance Segmentation

In this section, we first demonstrate the effect of increasing the expressivity of equivariant

canonicalization networks in Section 4.4.1. A more expressive canonicalization network

achieved better mAP values as a consequence of the enhanced ability to learn the prior

and thus map the input images in the original test set to identity group element. Further,

we demonstrate the additional benefits of EquiOptAdapt over EquiAdapt in Section 4.4.2.

4.4.1 Expressivity of canonicalization network

We compare the zero-shot results for the equivariant instance segmentation task in COCO

2017 val set (Lin et al., 2014). First, we perform an ablation on the expressivity of the
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Table 4.5 Zero-shot performance comparison of large pretrained segmenta-
tion models with trained equivariant canonicalization functions (EquiAdapt)
of different expressivity levels on COCO 2017 dataset (Lin et al., 2014). We re-
port mAP and C4-averaged mAP values. † indicates G-CNN and ‡ indicates a
more expressive G-WRN for canonicalization.

Pretrained Large Segmentation Network → MaskRCNN SAM

Datasets ↓ Model mAP C4-Avg mAP mAP C4-Avg mAP

COCO (Lin et al., 2014)
Zero-shot 48.19 29.34 62.32 58.77

EquiAdapt† 35.77 35.77 59.28 59.28
EquiAdapt‡ 46.80 46.79 62.10 62.10

canonicalization network in EquiAdapt setup in Table 4.5. We use a C4−equivariant G-

CNN and a C4−equivariant WideResNet to record the zero-shot results. Each of these

networks was trained only with Lprior, which requires the networks to map each image to

identity (since our prior distribution is an identity distribution). Thus, a more expressive

network will perform better than a less expressive version.

We observe that irrespective of the expressivity of the canonicalization network, our

prior regularization method is successful in equivariant adaptation of the prediction net-

work. However, a more expressive network retains the performance of the prediction net-

work on the original val set. A few qualitative examples with C4−equivariant WideRes-

Net as canonicalization network are provided in Figure 4.3. Note that the canonicalization

network was trained independently and utilized for both the prediction network. This fur-

ther demonstrates the superiority of our proposed approach. Inspired by these insights,

we train a non-equivariant pretrained model as a canonicalization network and achieve

excellent results.
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Ground Truth Mask

Prediction from SAM

Prediction from our  
equivariant SAM 

Canonicalization cost:  parameters = +0.3% ;  inference time: +7.3%Δ Δ
Figure 4.3 Predicted masks from the Segment Anything Model (SAM, (Kir-
illov et al., 2023)), showcasing both the original model and our proposed
EquiAdapt for 90◦ counter-clockwise rotated input images taken from the
COCO 2017 dataset (Lin et al., 2014).

4.4.2 Comparison between EquiOptAdapt and EquiAdapt

Table 4.6 presents the results for various setups. Our analysis reveals that both pro-

posed EquiAdapt and EquiOptAdapt effectively achieve architecture-agnostic equivari-

ant adaptation of large pretrained models while maintaining their mean Average Preci-

sion (mAP) performance. Notably, EquiOptAdapt outperforms EquiAdapt in this regard.

The inference times for EquiOptAdapt and EquiAdapt indicate that the canonicalization

process is 2× faster for EquiOptAdapt.

Additionally, we also compare the relative wall clock time (in minutes) to learn the

prior distribution Pc(x) during training between EquiOptAdapt and EquiAdapt in Figure

4.4. Since our chosen Pc(x) is a δ-distribution centred on the identity element e of the group

(identity prior), we assess the accuracy of mapping the inputs to the identity element e

and refer it as the identity metric. We demonstrate that EquiOptAdapt can learn the prior

distribution faster than EquiAdapt. This results from using any existing non-equivariant

pretrained WideResNet model that trains and runs faster than its equivariant counterpart
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Table 4.6 Zero-shot performance comparison and inference times of large
pretrained segmentation models with both non-equivariant (EquiOptAdapt)
and equivariant (EquiAdapt) canonicalization functions on the validation set
of COCO 2017 dataset (Lin et al., 2014).

Network (→) MaskRCNN SAM MaskRCNN SAM

Setup (↓) mAP C4-Avg mAP mAP C4-Avg mAP Inference times (↓)

Zero-shot 48.19 29.34 62.32 58.77 23m 53s 2h 28m 43s
EquiAdapt 46.80 46.79 62.10 62.10 27m 09s (+13.68%) 2h 34m 36s (+3.96%)

EquiOptAdapt 48.01 48.01 62.30 62.30 25m 35s (+7.12%) 2h 30m 42s (+1.33%)

in EquiAdapt. Therefore, our findings suggest that EquiOptAdapt generally offers better

performance and faster training and inference times than EquiAdapt.

4.5 Additional Results on Point Cloud Domain

Below, we provide additional results on the point cloud domain - specifically, classifica-

tion and part segmentation.

Datasets. For our experiments involving point clouds, we utilized the ModelNet40 (Wu

et al., 2015) and ShapeNet (Chang et al., 2015) datasets. The ModelNet40 dataset com-

prises 40 classes of 3D models, totalling 12,311 models. Among these, 9,843 models were

allocated for training, while the remaining models were reserved for testing in the clas-

sification task. In the case of part segmentation, we employed the ShapeNet-part subset,

which encompasses 16 object categories and over 30,000 models. We only train the canon-

icalization function using the prior loss Lprior in Eq. 3.11.

Evaluation protocol. To ensure consistency and facilitate comparisons, we followed the

established conventions set by Esteves et al. (2018a) and adopted by Deng et al. (2021)
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Figure 4.4 Identity metric vs. Relative wall-time (in minutes). We define the
identity metric as the percentage of input images mapped to the identity group
element e, which is our prior distribution Pc(x). Therefore, it is the accuracy of
learning the identity prior. This figure demonstrates that EquiOptAdapt can
learn the prior faster than EquiAdapt.

for the train/test rotation setup in the classification and segmentation tasks. The nota-

tion x/y indicates that transformation x is applied during training, while transformation

y is applied during testing. Typically, three settings are employed: z/z, z/SO(3), and

SO(3)/SO(3). Here, z denotes data augmentation with rotations around the z-axis dur-

ing training, while SO(3) represents arbitrary rotations. However, since we regularize the

output of the canonicalization with the identity transformation, we trained our canonical-

ization function and fine-tuned our pretrained model without any rotation augmentation.

During inference, we tested on z and SO(3) augmented test datasets.

Results. We present our results on Table 4.7. Notably, our method showcased superior

robustness, outperforming existing methods for point cloud tasks. Specifically, including

the prior loss has led to a significant improvement in PointNet’s performance compared

to DGCNN. This observation aligns with our analysis in Section 3.2.1, where we high-
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Table 4.7 Classification accuracy of different point cloud models on the Mod-
elNet40 dataset (Wu et al., 2015) in different train/test scenarios and ShapeNet
(Chang et al., 2015) Part segmentation mean IoUs over 16 categories in differ-
ent train/test scenarios. x/y here stands for training with x augmentation and
testing with y augmentation. z here stands for aligned data augmented by ran-
dom rotations around the vertical/z axis, and SO(3) indicates data augmented
by random 3D rotations.

Task → Classification Part Segmentation

Dataset → ModelNet40 ShapeNet

Method ↓ z/z z/SO(3) SO(3)/SO(3) z/SO(3) SO(3)/SO(3)

PointNet (Qi et al., 2017) 85.9 19.6 74.7 38.0 62.3
DGCNN (Wang et al., 2019) 90.3 33.8 88.6 49.3 78.6

VN-PointNet 77.5 77.5 77.2 72.4 72.8
VN-DGCNN 89.5 89.5 90.2 81.4 81.4
LC-PointNet (Kaba et al., 2023) 79.9 ± 1.3 79.6 ± 1.3 79.7 ± 1.3 73.5 ± 0.8 73.6 ± 1.1
LC-DGCNN (Kaba et al., 2023) 88.7 ± 1.8 88.8 ± 1.9 90.0 ± 1.1 78.4 ± 1.0 78.5 ± 0.9

Ours (with pretrained PointNet and DGCNN for each task)

no-aug/z no-aug/SO(3) no-aug/SO(3)

EquiAdapt-PointNet 84.1 ± 1.1 84.3 ± 1.2 82.6 ± 1.3
EquiAdapt-DGCNN 90.2 ± 1.4 90.2 ± 1.3 84.3 ± 0.8

light that training the prediction network with large rotations can hinder its performance

and serve as a bottleneck for equivariance within the learnt canonicalization framework.

The empirical evidence, particularly in the SO(3)/SO(3) results of vanilla PointNet and

DGCNN, where we notice a more pronounced drop in PointNet’s performance, supports

this and strengthens our findings.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we delved into the architecture-agnostic equivariant adaptation of large pre-

trained models, tackling the significant challenge of ensuring robust performance under

various transformations. Our investigation revealed that directly applying the canonical-

ization framework to this problem results in reduced downstream task performance for

the models under consideration. To address this issue, we highlighted the necessity of

introducing a novel prior regularization to refine the canonicalization approach for large

pretrained networks.

In response, we proposed two frameworks - EquiAdapt and EquiOptAdapt, featuring

equivariant and non-equivariant canonicalization networks, respectively. These frame-

works were extensively evaluated against multiple baselines, particularly tasks in com-

puter vision and point cloud processing. Our results demonstrated their effectiveness in

achieving equivariant versions of existing large pretrained and foundation models with-

out compromising their inference speed and performances. To encourage the adoption

of our findings, we have made available an open-source Python package, equiadapt1.

1https://github.com/arnab39/equiadapt

https://github.com/arnab39/equiadapt
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This package provides a user-friendly, plug-and-play solution for transforming existing

networks into equivariant networks, thereby facilitating the wider use and integration of

our proposed frameworks.

5.2 Key Findings

This thesis tackles the critical challenge of ensuring robustness in large pretrained models

by leveraging equivariance with respect to known transformation groups through the

canonicalization framework. The most important takeaways are listed below:

• We identified that the canonicalization framework (Kaba et al., 2023) struggles with

alignment issues when trained with large pretrained models due to the insufficient

signal from using the task loss, leading to a mismatch in the large pretrained net-

work between the orientations encountered during pretraining and training for the

downstream task.

• These alignment issues can be addressed with our proposed novel prior regulariza-

tion technique to align canonical orientation with the orientations present in pre-

training datasets. We termed this approach EquiAdapt. Our results indicated that

EquiAdapt effectively maintained the performance of pretrained models while en-

hancing their robustness to transformations.

• Despite its potential, we found that equivariant networks face challenges in effec-

tively predicting the prior distribution of orientations due to their limited expres-

sivity. To overcome this, we leveraged ideas from contrastive learning literature

to train highly expressive pretrained non-equivariant networks as canonicalization

functions. This approach resulted in the creation of EquiOptAdapt, which not only

achieved faster inference times and more efficient learning of the prior distribution

but also outperformed EquiAdapt in performance.
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5.3 Future Work

There are several interesting directions for our work which can result in improved core

ideas of our prior-regularized canonicalization framework and wider applicability:

• A straightforward extension involves applying EquiAdapt and EquiOptAdapt to

continuous groups, such as the group of 2D rotations SO(2). For EquiAdapt, this

would include addressing the optimization problems with SO(2)−Steerable net-

works (Section 4.1.2), potentially by increasing the expressivity of canonicalization

networks. Similarly, for EquiOptAdapt, using continuous group will require test

time optimization using the output energy values, which can make inference signif-

icantly more expensive.

• Other than continuous rotations, another similar extension involves applying

EquiOptAdapt to higher-order discrete rotations. The finer rotation angles present

an intriguing challenge for both continuous and higher-order discrete rotations due

to the artifacts introduced at the corners of images. To address this, we aim to de-

sign novel techniques to make the pretrained non-equivariant canonicalization net-

work robust to the effect of artifacts. Moreover, exploring other non-contrastive

correlation-based methods to train the canonicalizer is another direction for future

research.

• Automating prior discovery based on the performance of the pretrained model over

the different transformations of the input in the finetuning data can, in principle,

replace manually specifying the prior distribution. This leads to a more general

equivariant adaption technique agnostic to the choice of model and data.

• Finally, future research could extend the canonicalization framework to other trans-

formations and tasks beyond image and point-cloud domains. This includes scien-

tific applications such as materials and molecule generation, broadening the impact
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and utility of our findings.

5.4 Outlook

EquiAdapt and EquiOptAdapt offer straightforward, architecture-agnostic methods for

designing equivariant architectures in the era of large pretrained and foundation models.

We integrate novel prior regularization and non-equivariant networks in a canonicaliza-

tion framework to provide practical and efficient solutions for enhancing the robustness

of AI models. We release equiadapt python package for easier integration of our con-

tributions to relevant applications. Finally, we hope our research contributions will have

significant implications for designing and deploying robust AI systems, promoting the

development of more generalizable and efficient models.
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