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I - Abstract (English) 

 Traditional brain imaging research designs typically include either a contrast of 

brain features between two groups of interest, or an average of brain features within a 

single group. In either case, this relies on the assumption that participants are 

homogenous enough that any differences can be considered negligible. This contrasts 

with more recent research indicating that brain features can vary widely between very 

demographically similar individuals. Particularly in disorders like Alzheimer’s, many 

studies are now demonstrating the diversity in clinical and molecular presentations, 

stressing the need to understand interindividual differences in the brain better. 

 We sought to first understand the extent of these interindividual differences in the 

brain using functional brain imaging in a healthy population spanning the lifespan. We 

found that individuals have a unique signature of brain activity across all ages, with no 

single brain regions commonly contributing to it across individuals. Furthermore, this 

signature was related to atrophy in age-sensitive regions, suggesting clinical relevance. 

Next, we sought to understand the extent of these differences in a clinical population 

using molecular imaging. We found significant heterogeneity in patterns of tau across the 

Alzheimer’s disease spectrum and demonstrated that measures accounting for this 

variability could improve association with clinical outcomes at different stages of the 

disease. Finally, we provide the scientific community with practical software-based tools 

to assess interindividual differences in their research and provide a concrete data science 

industry example where these tools are applied. Overall, this thesis emphasizes the 

importance of accounting for interindividual differences in brain imaging research, be it in 

structural, functional, or molecular imaging, in healthy and clinical populations.  
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II - Résumé (Français) 

 Les devis d’études traditionnels en neuroimagerie incluent soit un contraste de 

caractéristiques cérébrales entre deux groupes d’intérêt ou étudient la moyenne d’un seul 

groupe. Dans les deux cas, ces devis se basent sur l’assomption que les cerveaux des 

participants sont assez homogènes pour que toute différence puisse être considérée 

comme négligeable. Cela contraste avec des études récentes indiquant que les 

caractéristiques du cerveau peuvent varier drastiquement entre des individus 

démographiquement similaires. Particulièrement dans des maladies comme la maladie 

d’Alzheimer, plusieurs études illustrent désormais une vaste diversité de présentations 

cliniques et moléculaires, urgeant le besoin de mieux comprendre les différences 

interindividuelles du cerveau. 

 Nous avons cherché à comprendre l’étendue des différences interindividuelles du 

cerveau en utilisant l’imagerie fonctionnelle du cerveau dans une population en santé de 

tout âge. Nous avons trouvé que les individus ont une signature d’activité cérébrale 

unique à tout âge, avec aucune région cérébrale contribuant à la signature chez tous les 

individus uniformément. De plus, cette signature était associée à de l’atrophie dans des 

régions sensibles à l’effet de l’âge, suggérant une utilité clinique. Ensuite, nous avons 

cherché à comprendre l’impact des différences interindividuelles dans une population 

clinique en utilisant de l’imagerie moléculaire. Nous avons trouvé beaucoup 

d’hétérogénéité dans les patrons d’accumulation de la pathologie tau dans le spectre de 

la maladie d’Alzheimer, et démontré que des mesures prenant compte de cette variabilité 

peuvent améliorer les associations entre la pathologie et les mesures cliniques à 

différents stages de la maladie. Finalement, nous donnons accès à la communauté 
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scientifique les outils développés durant cette thèse et donnons un exemple concret de 

leurs applications dans un contexte de science des données en industrie. Cette thèse 

met l’emphase sur l’importance de prendre en compte les différences interindividuelles 

dans la recherche en neuroimagerie, que ce soit de l’imagerie structurelle, fonctionnelle 

ou moléculaire, dans une population en santé ou clinique.   
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V, Morys F, Rajah N, Villeneuve S, Dagher A, the PREVENT-AD Research Group 
& the Alzheimer’s Disease Neuroimaging Initiative. Pattern and Mechanisms of 
Atrophy Progression in Individuals with a Family History of Alzheimer’s 
Disease: A Comparative Study (Manuscript in preparation) 

 
In this project, I was responsible for preprocessing positron emission tomography data 

from the Alzheimer Disease Neuroimaging Initiative and doing quality control on the 

resulting images. I also drafted a part of the methods section on the collection and 

processing of positron emission tomography data, and I revised the final manuscript.  

B. – Scientific consulting 

 During my program, I also provided scientific counsel to different research teams 

for projects that have not resulted in publications at this time.  

B.1 – Academia 

- Judes Poirier’s laboratory (McGill University) 

I provided scientific advice to two students from the laboratory, mostly related to 

the data structure organization of the PREVENT-AD and Alzheimer’s Disease 

Neuroimaging Initiative. I also cleaned Alzheimer’s Disease Neuroimaging Initiative 

cerebrospinal fluid data for analyses and provided statistical analysis advice. 

- Simon Ducharme’s laboratory (McGill University) 

I preprocessed tau positron emission tomography data for 5 participants. I also 

provided training and supervision on how to preprocess magnetic resonance imaging and 
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positron emission tomography data. Finally, I advised them on interpreting tau positron 

emission data. 

 B.2 – Industry 

 - Optina Diagnostics Inc. (Montreal, Canada) 

During my PhD, I worked as a data science consultant for Optina Diagnostics Inc. 

The goal of the company is to create diagnostic tools for Alzheimer’s Disease using retinal 

scan biomarkers based on artificial intelligence. During this time, I took on multiple 

projects. 

First, I undertook a literature review on the prevalence of amyloid pathology 

(measured with positron emission tomography) in cognitively unimpaired older adults, 

individuals with mild cognitive impairment and individuals with Alzheimer’s disease. The 

review was included as part of a diagnostic tool application presented to the U.S. Food 

and Drugs Administration.  

Second, I managed a research project on comparing amyloid positivity determined 

by a visual read from a neuroradiologist to a quantitative assessment of amyloid 

pathology in data collected by the company. The visual read assessment was used to 

train and test their diagnostic tool—an artificial intelligence algorithm—but the company 

wanted to verify whether a quantitative assessment (standardized uptake value ratios) 

could provide additional information on discrepant cases. This project was done in two 

distinct phases: First, they sent over 150 magnetic resonance imaging and 150 amyloid 

positron emission tomography scans from a multi-site study, which I preprocessed. Then, 

I created and proposed a statistical analysis plan for the comparisons. After incorporating 

feedback from the company, I did the analyses, which I presented in a report. Second, I 
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repeated this process with data collected from 128 participants from the PREVENT-AD 

cohort, which is presented in Annex XI of this thesis. Overall, the results guided the 

company by indicating that quantitative assessment of amyloid load would miss 

participants who are starting to accumulate amyloid but which isn’t yet widespread 

through the brain.  

 Third, I participated in the set-up and recruitment of a clinical project to validate 

their tool. The goal was to recruit participants from the PREVENT-AD cohort to undergo 

a retinal scan and an amyloid positron emission tomography scan. I was responsible for 

creating the recruitment protocol, presenting the consent form to participants, 

coordinating the visits for the retinal and positron emission tomography scans, managing 

the financial aspects of the project, sending the clinical data to the company, and 

preprocessing the positron emission tomography data. A total of 146 participants who 

underwent both procedures were recruited over a one-year period; I participated in the 

recruitment and coordination of approximately 50 participants over 6 months and 

preprocessed the positron emission tomography data for all participants.  
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Chapter 1 – Introduction 

1.1 – Objectives and hypotheses 

The main objective of this thesis was to study multimodal interindividual differences 

in the brain across the lifespan in a cognitively unimpaired population and in the context 

of Alzheimer’s disease. To do so, we conducted two studies. 

 

Chapter 2 – Functional connectome fingerprinting across the lifespan 

In this study, we aimed to describe interindividual differences in the brain across 

the lifespan of cognitively unimpaired individuals. Specifically, we aimed to: 

2.A – Characterize fingerprint stability across the lifespan 

• Our main hypothesis for this objective was that, as functional brain fingerprints are 

stable over years in the literature, we expected that fingerprints would remain 

relatively stable across the lifespan. 

2.B – Determine which regions contribute to fingerprints across the lifespan 

• Previous literature consistently identified the frontoparietal and default-mode 

networks as being the main drivers of accurate fingerprints. As such, we expect 

these networks to be driving identifiability in our analyses as well. 

2.C – Study the association between fingerprints and other age-related markers 

• As brain anatomy varies with increasing age, we expected fingerprint measures 

to be associated with age-related brain volume.  
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Chapter 3 - Tau accumulation and its spatial progression in the late onset 

Alzheimer’s disease spectrum 

 Next, we investigated whether and to which extent interindividual differences 

influenced our understanding of the accumulation of tau pathology in Alzheimer’s disease, 

and whether accounting for these differences could have a clinical impact. Specifically, 

we aimed to: 

3.A – Characterize global tau-PET heterogeneity cross-sectionally and longitudinally 

• As the literature highlights different patterns of tau spreading subtypes, we 

expected heterogeneity at the individual level in tau-PET patterns. 

3.B – Compare group- to individual-level tau-PET in its association with cognition 

• Individualized measures of tau-PET would improve association with cognition as 

they account for different affected regions in each individual 

3.C – Study in which region tau-PET signal is associated with cognition 

• As different clinical variants of AD would show different patterns of tau-PET, 

regional tau-PET associated with cognition would differ across cognitive 

domains 
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1.2 – Alzheimer’s disease dementia 

1.2.1 – Epidemiology 

Alzheimer’s disease (AD) dementia is a highly prevalent neurodegenerative 

disorder, with 10% of older adults over 65 years of age currently diagnosed with AD 

dementia in Canada. This prevalence is estimated to triple by 2040 as the population 

continues to age (Alzheimer’s Society of Canada, 2022). Worldwide, about 44 million 

people suffer from AD dementia, and it is currently the fifth leading cause of death (Nichols 

et al., 2019). The disease doesn’t only affect patients but also imposes an enormous 

burden on healthcare systems and families. In Canada alone, a total of 472 million hours 

are dedicated to informal caregiving for patients with dementia, the equivalent of 227,211 

full-time jobs (Alzheimer’s Society of Canada, 2022). This added burden on families 

means less contribution to the workforce but also increased physical and psychological 

burden to families (Alzheimer’s Association, 2023). These estimates emphasize the 

importance of better understanding AD dementia and its progression to help curb this 

massive public health burden. 

 1.2.2 – Clinical and neuropsychological profile 

 Most patients with AD dementia will present with episodic memory impairments, 

i.e., recalling information related to their everyday life (McKhann et al., 2011; Weintraub 

et al., 2012). This impairment will progress to multiple cognitive domains as the disease 

develops, affecting nearly all cognitive functions (Scheltens et al., 2021; Weintraub et al., 

2012) and, consequently, impairing daily living activities (McKhann et al., 2011). 

Progression of AD dementia is usually considered to be slow; one of the primary 

diagnostic criteria is that symptoms progress over years, not weeks or months (McKhann 



 34 

et al., 2011). On average, patients will usually spend ten years with the diagnosis, seven 

of which with moderate to severe disability (Arrighi et al., 2010). 

 1.2.3 – Pathological presentation 

 A diagnosis of AD dementia cannot be made based on clinical presentation alone 

as different disorders can present with similar symptoms: only a neuropathological 

diagnosis can confirm whether the disease is definitely AD dementia (McKhann et al., 

2011; Scheltens et al., 2021). 

 The main pathological hallmarks of AD are extracellular amyloid-beta (Ab) plaques 

and intracellular tau neurofibrillary tangles (Bloom, 2014; Hardy & Selkoe, 2002). Ab 

plaques tend to aggregate extracellularly over a long period of time before symptoms 

occur (Bateman et al., 2013; Jack et al., 2013). As plaques accumulate, they subtly affect 

synapses and transmission of information, causing injury to neurons—and more 

specifically synapses—over time. These injuries, in turn, alter kinase and phosphatase 

activities within the neuron, causing the formation of hyperphosphorylated tau tangles 

intracellularly. Over time, the accumulation of tau causes neuronal death and, ultimately, 

cognitive symptoms as neurons die (Bloom, 2014; Hardy & Selkoe, 2002). 

 Both pathologies accumulate in their specific stereotypical patterns. Ab plaques 

accumulate mostly following the Thal phases: plaques start in the neocortex before 

spreading to the diencephalic nuclei, striatum and other subcortical structures, and finally 

progressing to the cerebellum and brainstem (Braak & Braak, 1991; Montine et al., 2012; 

Thal et al., 2002). Tau tangles follow the Braak stages: they accumulate more focally at 

first within small structures of the middle temporal lobe—specifically the rhinal and 
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entorhinal cortices—before progressing to other temporal and frontal lobe structures, and 

finally, to the rest of the associative cortex (Braak & Braak, 1991; Montine et al., 2012). 

1.2.4 – Measuring AD pathology in vivo  

 Neuropathological assessment requires a brain biopsy, which can only be 

performed upon a patient’s death. In the past few decades, several methods have been 

developed to find a solution to this problem, including measuring the pathology from 

cerebrospinal fluid, plasma or through molecular imaging such as positron emission 

tomography (PET). 

 Using a lumbar puncture, we can collect cerebrospinal fluid from participants which 

contains information on the level of amyloid (e.g., Ab40, Ab42) and tau (e.g., p-tau) in the 

brain with high accuracy matching autopsy-confirmed diagnoses (Mattsson-Carlgren et 

al., 2022). Cerebrospinal fluid markers also show good predictive power to identify future 

clinical progression to MCI or AD (Salvadó et al., 2023), making them key markers for 

diagnosing AD already a decade ago (McKhann et al., 2011). However, in a few cases, 

participants can experience side effects including headaches, hematoma and pain at the 

puncture site, and in very rare cases, infection or subdural hematoma (Engelborghs et 

al., 2017). Partly for these reasons and for the invasiveness of the procedure, many 

participants are resistant to undergoing lumbar puncture (Tsvetkova et al., 2017). 

 In more recent years, plasma markers have been developed to measure Ab and 

tau pathology in-vivo using a simple blood draw, negating most of the potentially negative 

effects of lumbar puncture and at a lower cost. While they are still being validated for the 

clinic, promising use include ruling out AD in symptomatic participants with low Ab 

pathology, identifying participants with elevated plasma markers without cognitive 
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symptoms for inclusion in clinical trials and, potentially, diagnosing AD by replacing 

cerebrospinal fluid or PET (Blennow et al., 2023). However, evidence is still lacking on 

these potential uses, particularly for the diagnosis of AD (Hansson et al., 2022). Still, 

evidence is mounting on the utility of these markers at the preclinical stage. For instance, 

recent work from our group showed that the plasma marker ptau181 is altered in 

individuals with high levels of cerebral amyloid and tau but with no cognitive symptoms 

(Yakoub et al., 2023).  

  However, a key information missing from cerebrospinal fluid or plasma markers is 

the spatial localization of the pathology. Positron emission tomography (PET) allows us 

to bridge this gap. By tagging pathological proteins in the brain with a radioactive tracer, 

both Ab and tau can be imaged in vivo using PET. Ab was first imaged using the 

Pittsburgh Compound-B (Klunk et al., 2004) almost two decades ago. Since then, many 

different tracers have been developed to tag Ab in vivo and many studies have replicated 

the Thal stages of Ab neuropathology deposition with initial deposits seen in the 

neocortex followed by subcortical structures (Fantoni et al., 2020; Jagust, 2018; Thal et 

al., 2018). More recently, tau pathology can be imaged in-vivo using the AV-1451 tracer 

(Lowe et al., 2016; Marquié et al., 2015) and largely replicates the Braak stages observed 

in neuropathological assessments (Lowe et al., 2016; Schöll et al., 2016; Therriault, 

Pascoal, Lussier, et al., 2022). There is also in vivo evidence of both Ab and tau following 

the Ab cascade hypothesis, with initial deposits of Ab, followed by tau and 

neurodegeneration. (Guo et al., 2021). 

 In addition to replicating neuropathological observations relatively well, measuring 

pathology using PET has many other advantages. First, PET can measure accumulation 
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in real-time during life in individuals rather than only once upon death (Bollack et al., 2023; 

Fantoni et al., 2020). Second, PET has a higher spatial resolution compared to 

neuropathology assessments, leading to a more precise spatial and temporal ordering of 

the pathology progression (Grothe et al., 2017; Villeneuve et al., 2015). Third, PET 

imaging can be combined with other brain imaging modalities to better understand 

different aspects of the disease. For example, functional and structural connectivity has 

been used to explain the spread of pathology in the brain (Vogel et al., 2020). Structural 

imaging can also allow tracking neurodegeneration—i.e., atrophy—concurrently as 

pathology accumulates (Jagust, 2018). In fact, these advantages have slowly pushed 

PET biomarkers to be an integral part of the research field toward a primarily biological 

definition of AD (Jack et al., 2018), though clinical measures in combination with PET are 

still recommended to properly assess the disease (Dubois et al., 2021). PET Ab 

biomarkers are also making slow headway in the clinic as a tool to help clinicians 

distinguish AD dementia from other disorders (Rabinovici et al., 2019). 

 However, PET is not a perfect tool, and some limitations need to be acknowledged. 

First, off-target binding—i.e., the binding of PET tracers to brain regions with no 

pathology—is relatively common, particularly for the tau tracer AV-1451 (Marquié et al., 

2015). This forces the exclusion of some important regions from the analyses (e.g., 

hippocampus). Second, there are differences between different commercial scanners and 

PET tracers making comparisons more difficult across studies, though some efforts to 

harmonize PET results across sites have been pushed forward in recent years (Klunk et 

al., 2015; Villemagne et al., 2023). Third, while the match between neuropathology and 

PET is concordant, there is some mismatch between the two, making comparisons 
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sometimes difficult (Fantoni et al., 2020; Lowe et al., 2016). Finally, access to PET 

imaging is unequal. Many countries do not have access to PET scanners, and even fewer 

have access to cyclotron facilities to produce the tracers necessary for Ab and tau imaging 

(Gallach et al., 2020).  

 

1.3 – Heterogeneity in Alzheimer’s disease 

 Up to now, most of the description of AD included generalized observations across 

individuals: patients usually present with episodic memory impairment, caused by specific 

patterns of Ab and tau accumulation, which can be measured in vivo using PET. However, 

in recent years, more evidence has emerged that AD dementia is heterogenous, with 

many different presentations and potential causes.  

1.3.1 – Clinical heterogeneity 

While participants with AD will present with episodic memory impairment, up to 

30% of patients with AD will present with a different cognitive impairment as their primary 

complaint (Qiu et al., 2019). In fact, it is now well established that AD dementia can 

present under four different clinical phenotypes: classical amnestic type, logopenic 

primary progressive aphasia variant, behavioural/dysexecutive and posterior cortical 

atrophy. (Graff-Radford et al., 2021; Ossenkoppele et al., 2015) In the logopenic primary 

progressive aphasia variant, patients present with single-word aphasia and/or sentence 

repetition impairment. Their symptoms frequently overlap with other forms of primary 

progressive aphasia traditionally associated with frontotemporal dementia (Gorno-

Tempini et al., 2011) or symptoms associated with stroke (Graff-Radford et al., 2021). In 

the behavioural/dysexecutive variant, participants will often present with apathy, loss of 



 39 

social convention, disinhibition, and various executive functioning impairments. Their 

symptoms frequently overlap with the behavioural variant of frontotemporal dementia 

(Ossenkoppele et al., 2021; Rascovsky et al., 2011). In posterior cortical atrophy, patients 

will mostly present with visuospatial complaints, such as spatial or object perception 

issues, dyscalculia, dysgraphia, or difficulties reading. These patients are often diagnosed 

with functional issues such as visual impairment rather than neurological issues. Overall, 

clinical diagnosis of AD dementia is complicated by the frequent symptoms outside of 

classical memory impairment. 

 1.3.2 – Pathological heterogeneity 

 While Ab and tau are the main culprits behind AD, only about a third of patients 

with clinical AD dementia symptoms will exclusively have pathological Ab and tau in their 

brain (Robinson et al., 2018): many other pathologies, such as vascular injuries (Attems 

& Jellinger, 2014; Mehta & Schneider, 2021), TDP-43 (Bejanin et al., 2019) and alpha-

synuclein (Boyle et al., 2019) frequently co-occur and play a role in the cognitive profile 

(Boyle et al., 2019) and the atrophy pattern (Boyle et al., 2019) occurring in AD. 

Unfortunately, most of these co-pathologies cannot be measured in vivo yet, complicating 

the understanding of their impact during disease progression. For now, it is important to 

consider these pathologies as potential sources explaining the variability observed in AD. 

 However, even in patients who only present with “pure” pathological profiles (i.e., 

only Ab and tau at death), only 60% present memory impairment as the predominant 

symptom (Bertoux et al., 2020). As such, even with “homogenous” pathological profiles, 

cognitive profiles may strongly differ across participants. 
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 1.3.3 – Spatial heterogeneity in imaging 

 One possible explanation for “pure” pathological profiles at death presenting 

different cognitive profiles is that neurodegeneration accrues in spatially distinct regions 

across participants. Multiple data-driven studies have demonstrated different subtypes of 

atrophy patterns in AD patients (Sintini et al., 2019; Young et al., 2018) leading to different 

clinical AD variants (Lehmann et al., 2013) and different cognitive profiles (Ferreira et al., 

2020; Ossenkoppele et al., 2020; N. Sun et al., 2019). However, neurodegeneration 

occurs quite late in the classical Ab cascade hypothesis. Logically, patterns of Ab and tau 

accumulation, occurring before atrophy, should also be heterogeneous across 

individuals. 

 Ab has long been considered to accumulate in a homogeneous, widespread 

manner throughout the brain (Grothe et al., 2017; Mattsson et al., 2019; Villeneuve et al., 

2015), even in other clinical variants of AD (La Joie et al., 2020). Yet, recent evidence 

points to different Ab spreading subtypes across individuals (Collij et al., 2022; Y. Sun et 

al., 2023). However, higher Ab accumulation does not consistently reflect subsequent 

cognitive decline (Parent et al., 2023), and associations between Ab and cognition remain 

weak, even in patients with advanced AD (Jagust, 2018; Ossenkoppele et al., 2018). 

Measuring tau pathology tends to be more discriminative than measuring Ab or atrophy 

(Ossenkoppele et al., 2018). In fact, it is once Ab and tau pathology both become 

abnormal that the risk for subsequent cognitive decline increases the most 

(Ossenkoppele et al., 2022; Strikwerda-Brown et al., 2022). 

 As described before, tau pathology was also originally thought to follow relatively 

homogenous patterns measured with PET, following the Braak stages (Lowe et al., 2016; 
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Schöll et al., 2016; Therriault, Pascoal, Lussier, et al., 2022). Yet, persuasive evidence is 

emerging that tau-PET patterns are not uniform across individuals. For instance, the 

different clinical variants of AD show distinct tau-PET patterns, with logopenic primary 

progressive aphasia variant showing strong left lateralization, tau-PET uptake being the 

highest in the left temporal lobe (La Joie et al., 2020), posterior cortical atrophy showing 

highest uptake in the occipital and posterior parietal lobe (La Joie et al., 2020) and the 

behavioural/dysexecutive variant showing a widely heterogeneous pattern, mostly 

affecting the frontal lobe (Singleton et al., 2021). Multiple studies have also derived 

disease subtypes from tau-PET uptake, revealing different trajectories of tau 

accumulation not necessarily dependent on the clinical phenotype (Ossenkoppele et al., 

2019; Therriault, Pascoal, Savard, et al., 2022; Vogel et al., 2021). 

 

1.4 – Interindividual differences in neuroimaging 

 These observations of heterogeneity in AD echo growing evidence of 

heterogeneity measured in the brain from cohorts of cognitively unimpaired participants, 

suggesting that the heterogeneity observed in AD could originate from fundamental 

anatomical or functional differences. Anatomically, the brain shows substantial 

differences between individuals during development (T. T. Brown, 2017) and across the 

lifespan (Bethlehem et al., 2022), measured with grey matter volume or cortical thickness. 

These differences can be observed across the entire cortical mantle (Nadig et al., 2021). 

 Consequently, it is perhaps not surprising that the functional organization of the 

brain also differs substantially across individuals. Functional connectivity—measured with 

functional magnetic resonance imaging (fMRI)—is often used to infer the functional 
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organization of the brain in different networks that each have specific roles and functions 

(Sporns & Betzel, 2016). This is measured at the group level where brain organization is 

inferred to be shared across individuals and a label for a brain network is assigned to 

each of the brain’s voxels to infer the brain organization (Schaefer et al., 2018). 

 Multiple studies demonstrated that the connectivity within these networks varies 

significantly between individuals in a gradient where higher associative cortex regions 

show the most variability and sensorimotor regions show the least (Gratton et al., 2018; 

Ma et al., 2021; Mueller et al., 2013). These patterns of variability are not static: they are 

influenced by the task undergone by an individual in the scanner, suggesting that brain 

activation in the face of the same task can be different between people (Geerligs et al., 

2015; Gratton et al., 2018). Finally, despite similar networks being identified across 

studies, the voxels belonging to these networks vary between individuals (Betzel et al., 

2019; Bijsterbosch et al., 2018; Xu et al., 2016). Even within a single imaging session, 

voxels show a remarkable degree of dynamic interindividual differences in terms of which 

brain network they are assigned to (Liao et al., 2017; Van De Ville et al., 2021). 

1.4.1 – Brain fingerprints and their properties 

 These differences in the functional organization of the brain are of such magnitude 

that they can be leveraged to capture unique brain signatures that accurately distinguish 

an individual’s brain from a larger cohort of participants. This concept is called “brain 

fingerprinting”  (Airan et al., 2016; Amico & Goñi, 2018; Finn et al., 2015, 2017; Peña-

Gómez et al., 2018; Tavor et al., 2016). A brain fingerprint is usually derived by correlating 

the functional connectivity—within a given network or across the brain—of an individual 

during a task or at rest to the functional connectivity pattern of the same individual during 
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a different task or at a different time (self-identifiability). Then, the functional connectivity 

of that individual is correlated to the functional connectivity pattern of all other individuals 

included in the study (others-identifiability). If the self-identifiability of a participant is 

higher than their average others-identifiability, it means that the functional connectivity 

pattern is unique enough to accurately identify a participant, i.e., fingerprint identifiability 

(Amico & Goñi, 2018; Finn et al., 2015). 

 Brain fingerprints possess many interesting properties. They can be identified 

across different fMRI tasks (Amico & Goñi, 2018; Finn et al., 2015, 2017; Vanderwal et 

al., 2017), though some tasks yield more reliable fingerprints than others (Finn et al., 

2017), suggesting that individual responses to tasks may increase the ability to fingerprint. 

Brain fingerprints are also remarkably stable over time, whether scans are days (Finn et 

al., 2015; Jalbrzikowski et al., 2020), weeks (Horien et al., 2019; Hu et al., 2022; Menon 

& Krishnamurthy, 2019) or years apart (Horien et al., 2019; Jalbrzikowski et al., 2020; 

Miranda-Dominguez et al., 2017; Ousdal et al., 2020). They can also be reliably measured 

with scans taken across different imaging sites (Bari et al., 2019). Fingerprints also seem 

to be, at least in part, genetically determined; increased genetic similarity leads to similar 

fingerprint identifiability (Demeter et al., 2020) and brain fingerprints of monozygotic twins 

correlate with one another (Xu et al., 2016). They also seem to be restricted to specific 

areas of the brain, many studies indicate that the best identifiability stems from the 

frontoparietal (Airan et al., 2016; Demeter et al., 2020; Finn et al., 2015; Horien et al., 

2019; Jalbrzikowski et al., 2020; Kaufmann et al., 2017; Waller et al., 2017) or default-

mode (Airan et al., 2016; Demeter et al., 2020; Finn et al., 2015; Jalbrzikowski et al., 

2020) networks. Opposingly, the sensorimotor areas have shown the worst identifiability 
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(Airan et al., 2016; Finn et al., 2015). This matches the areas with the most (frontoparietal) 

and the least (sensorimotor) interindividual differences in functional connectivity (Mueller 

et al., 2013). While most of the research focused on fMRI features, brain fingerprints have 

been shown to be remarkably stable across imaging modalities. Fingerprint identifiability 

has been demonstrated using many different structural measures, including cortical 

folding (Duan et al., 2020; Mansour et al., 2020), cortical thickness (Mansour et al., 2020; 

Valizadeh et al., 2018), grey matter volume (Valizadeh et al., 2018), grey matter surface 

area (Valizadeh et al., 2018) and structural connectivity (Mansour et al., 2020). More 

recently, fingerprint identifiability was also demonstrated with electrophysiological activity 

as measured with magnetoencephalography (da Silva Castanheira et al., 2021) and by 

using both structural and functional modalities at once (Griffa et al., 2022). 

 While fingerprints are reliably demonstrated across many studies, they can be 

strongly affected by several methodological choices. Poor scanner resolution (Horien et 

al., 2018), lower parcellation resolution (Airan et al., 2016; Finn et al., 2015), less 

acquisition time (Airan et al., 2016; Finn et al., 2017; Horien et al., 2018) and bigger 

sample sizes can also lead to less identifiability (Waller et al., 2017), though that last 

factor has not been reliably shown in the literature. Concurrently, methods increasing 

noise removal from brain imaging due to motion or other factors reliably increase the 

identifiability (Airan et al., 2016; Amico & Goñi, 2018; Horien et al., 2018). Overall, this 

suggests that more quality data on the brain tends to increase fingerprint identifiability.  

1.4.2 – Aging and interindividual differences 

 The previous section presented brain fingerprints, which are unique, individual-

specific, genetically determined signatures of brain anatomy or function that are stable 
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across tasks, over time and imaging modalities. This emphasizes just how much 

interindividual differences exist. Yet, there are still major research gaps in our 

understanding of brain fingerprints. 

 For instance, most studies presented until this point stem from a single 

homogenous population: young, healthy, educated, North American, white adults. (Airan 

et al., 2016; Horien et al., 2019; Jalbrzikowski et al., 2020; Peña-Gómez et al., 2018). In 

fact, much of the research on brain fingerprints stems from a single cohort: the Human 

Connectome Project (Amico & Goñi, 2018; Demeter et al., 2020; Finn et al., 2015, 2017; 

Griffa et al., 2022; Horien et al., 2018; Mansour et al., 2020; Menon & Krishnamurthy, 

2019; Miranda-Dominguez et al., 2017; Tavor et al., 2016; Waller et al., 2017; Xu et al., 

2016). The Human Connectome Project recruited approximately 1,200 young adults, 

including twins, aged between 22 and 35 years for a thorough imaging data collection 

with the explicit reasoning that these participants were at their most stable: they had 

reached the maximum brain development milestones and were not yet at risk of potential 

neurodegenerative processes. Furthermore, extensive screening was conducted to 

remove participants with major physical or mental health diagnoses (Van Essen et al., 

2012, 2013). These studies reinforce the importance of interindividual differences as, 

even in this demographically homogenous population, important differences are found, 

but they also leave important gaps, such as what happens to these signatures when the 

brain undergoes important transformations. 

 The brain undergoes massive changes from birth until adulthood. Brain volume 

grows to nearly 80% of its adult size two to three weeks after birth, mostly due to grey 

matter change, with white matter developing more slowly throughout childhood (Gilmore 
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et al., 2018). The development of brain networks and structures also change during 

childhood and teenage before stabilizing in young adults (Váša et al., 2018), following 

relatively well-coordinated and shared patterns across individuals (Bethlehem et al., 

2022; T. T. Brown, 2017; Raznahan et al., 2011). Yet, significant heterogeneity in brain 

structure and function is observed throughout the human development (T. T. Brown, 

2017; Vanderwal et al., 2021). In fact, both cortical folding (Duan et al., 2020) and 

functional connectivity (Vanderwal et al., 2021) have been used to successfully identify 

brain fingerprints in children, even as young as two weeks from birth (Hu et al., 2022). 

However, research on the developing brain indicated that the components of fingerprints 

(e.g., self-identifiability) change during childhood, increasing until early adulthood before 

stabilizing  (Kaufmann et al., 2017). As such, interindividual differences in the brain exist 

since birth, but their properties change during brain development (Bethlehem et al., 2022). 

 At the opposite end of the lifespan, the brain also massively changes during aging. 

The brain accrues significant atrophy with age, but most distinctly in the frontal lobe 

(Binette et al., 2020). Structural covariance (DuPre & Spreng, 2017) and structural 

connectivity (Betzel et al., 2014) also tend to decrease with increasing age across the 

brain during the lifespan. Similarly, the brain exhibits numerous changes in functional 

organization in older adults. Many studies displayed a generalized decrease in within-

network and increase in between-network connectivity in older adults (Betzel et al., 2014; 

Chan et al., 2014; Chen et al., 2016; Chong et al., 2019; Setton et al., 2022).  

 However, little is known about interindividual differences in the brain in older adults. 

Studies on the topic indicate that, despite the widespread convergent brain changes 

observed across older adults, interindividual differences in the cortical thickness (Nadig 
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et al., 2021) and functional connectivity (Geerligs et al., 2015) increase during life. 

However, whether and how this affects brain fingerprints is unknown. Brain fingerprints 

represent an interesting measure as a proxy capturing interindividual differences in the 

brain. To use them in an aging population, however, we first must gain a better 

understanding of brain fingerprints across the entire lifespan in healthy populations. As 

such, this thesis will first study the interindividual differences—measured through 

brain fingerprints—and verify whether they are preserved, or whether their 

properties change during the lifespan.  
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1.5 – Interindividual differences and impact on AD clinical research 

 Despite the consistent demonstration of interindividual differences in the brain, 

their impact is unclear. If behaviours and disease patterns truly are shared across 

individuals, differences in brain structure and function observed across individuals may 

only represent measurement error or other idiosyncratic factors with negligible impact on 

measuring neurological phenomena (Mantwill et al., 2022). 

Already, in cognitively unimpaired samples of younger adults, interindividual 

differences in the brain have been shown to be associated with cognitive performance 

including fluid intelligence (Bijsterbosch et al., 2018; Finn et al., 2015; Greene et al., 2018; 

Mansour et al., 2020), information integration (Liao et al., 2017) and motor capability (Ma 

et al., 2021). Interindividual differences in brain structure and function have also been 

linked to clinical measures such as drug and alcohol use (Bijsterbosch et al., 2018; 

Mansour et al., 2020) and mental health diagnoses (Kaufmann et al., 2017, 2018; 

Mansour et al., 2020). Specifically, less interindividual differences was associated with 

increased drug and alcohol use, and with increased severity of mental health diagnoses. 

This preliminary evidence seems to point to interindividual differences being 

meaningful in explaining differences in behavioural measures and clinical diagnoses. This 

suggests that incorporating these differences in clinical measures could help better 

account for differences between participants, and consequently, offer more precise tools 

capturing the reality of individual patients. 

Specifically in AD, a constellation of studies has consistently laid out common 

cognitive and pathological patterns for the disease. Yet, new robust evidence pushes the 

idea that participants actually present a myriad of cognitive and pathological patterns. 
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Most of the research on AD heterogeneity, however, focused on large group subtypes 

rather than on differences between individuals. Considering the high degree of 

interindividual differences even in the brain of cognitively unimpaired participants, we 

wanted to verify whether interindividual differences could help explain discrepancies 

between classical and newer conceptions of the disease, as an example of how 

measuring interindividual differences can help us better understand neurological 

disorders. 

For example, a major conception of AD pathology progression in the brain involves 

the spread of the pathology along structural or, and particularly, functional brain networks 

(Franzmeier et al., 2020; Vogel et al., 2020). This idea gained a lot of traction due to 

convincing evidence of prediction of future pathology accumulation along these networks. 

However, there is still significant variability in these models which remains unexplained. 

One possible explanation is that these models discount interindividual differences and 

generated predictions from group-level networks, and neither did they account for 

differences in the patterns of tau pathology across individuals. 

In the face of this evidence and with the evidence of interindividual differences on 

fMRI in the first objective, as a second objective, this thesis aimed to verify whether 

accounting for interindividual differences can help better explain the accumulation 

of tau pathology in AD dementia across individuals and lead to stronger 

associations with cognition.  
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1.6 – Measuring interindividual differences 

 A common theme in the literature presented so far is that research on the brain 

initially identifies broad universal patterns in brain imaging, with subsequent research 

indicating that these patterns show remarkable heterogeneity across individuals. For 

instance, many studies suggested that functional connectivity decreased in specific brain 

networks in older adults (Betzel et al., 2014), while subsequent research indicated that 

there is a lot of variability in the functional connectivity of older adults (Geerligs et al., 

2015). Similarly, in the patterns of tau pathology in the brain during Alzheimer’s disease, 

research pointed to the Braak staging scheme as a universally shared pattern of tau 

spreading (Braak & Braak, 1991; Schöll et al., 2016) but recent research indicated that 

this patterns differs between individuals (Vogel et al., 2021). 

 From a theoretical point of view, studies directly accounting for interindividual 

differences from their inception could help understand both global and group-level 

neuroimaging patterns shared across individuals as well as understand how idiosyncratic 

(i.e., individual-level) differences play a role in explaining observed differences in the brain 

(Gratton et al., 2018). From a practical—and clinical—point of view, accounting for 

interindividual differences when studying diseases could also help develop personalized 

diagnoses and treatments adapted to the reality of each patient. 

 This is not a new idea, but rather the concept of personalized medicine (Schork, 

2015; Whitcomb, 2012). The concept of personalized medicine was developed on many 

observations that traditional treatments developed in clinical trials show poor efficacy in 

their target population. For instance, only between 7 and 20% of patients using the 

highest-selling drugs in the United States for neurological disorders will experience 
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benefits using these medications (Schork, 2015). One reason for this is the reliance on 

the idea that, in patients sharing a clinical diagnosis, on average, at least some of them 

will respond to the drug as expected (Iturria-Medina et al., 2018). Yet, we know from the 

Alzheimer’s disease literature that while patients can present the same clinical symptoms, 

they may have different underlying pathology patterns (Bertoux et al., 2020; Ferreira et 

al., 2020) and opposingly, different pathology patterns can lead to similar clinical 

symptoms (Robinson et al., 2018).  

 The widespread study of interindividual differences and personalized medicine hits 

multiple obstacles. Systemically, interindividual differences in neuroimaging are not 

included in study designs. Systematic review of brain imaging findings in the last decade 

pointed to less than 14% of studies reporting ethnicity and race information, and nearly 

30% not reporting sex and gender information (Sterling et al., 2022). Furthermore, 

predictions of symptoms based on brain imaging variables are highly dependent on the 

diversity of the clinical sample included (Benkarim et al., 2022), highlighting that the lack 

of consideration for interindividual differences can be detrimental to the generalizability of 

clinical predictions. This issue is not limited to the reporting of these variables, but also to 

the inclusion of participants in clinical trials. For instance, older African Americans and 

Hispanics represent nearly 20% of the population in the United States—a proportion set 

to reach 30% by 2060 (Shaw et al., 2021). They are also 1.5 times more likely to develop 

dementia than non-Hispanic Whites (Alzheimer’s Association, 2023). Yet, they only 

represent about 5% of the population recruited in neurology clinical trials (George et al., 

2014). This lack of representation of diverse populations in trials could explain in part why 

treatments have so little efficacy in the general population (Schork, 2015). Similarly, this 
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could explain why fundamental associations between the brain and behaviours are 

difficult to replicate across studies unless a very large sample size is reached (Marek et 

al., 2022). 

Some of the systemic issues mentioned above stem from a relatively practical 

issue: there is a lack of tools to study and account for interindividual differences. Many of 

the traditional and well-adopted methods in brain imaging assume that interindividual 

differences are noise rather than biologically meaningful (Ashburner, 2007; Brett et al., 

2011; Poldrack et al., 2008). In response, many studies have developed resourceful 

methods to account for interindividual differences in recent years, including devising 

individual-specific predictors and measures, which treat individual differences as a main 

interest instead of noise. However, these methods are not easily accessible by the 

scientific community. The code to reproduce these methods is often not shared (e.g., 

(Franzmeier et al., 2020; Leuzy et al., 2023; Tijms et al., 2013)), or may lack explanations 

to fully reproduce (Nadig et al., 2021). Others may require advanced computing skills and 

extensive data on hand to run the analysis (Iturria-Medina et al., 2018). In all cases, there 

is often a lack of data to test the analysis and ensure comparability between teams. These 

practical issues were kept in mind during the conception and execution of both of this 

thesis’ projects, and led to the creation of a Python package—study of interindividual 

heterogeneity of neuroimaging in Python (sihnpy)—which is presented in the annex of 

this thesis and referred to by the following chapters.  
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1.7 – Interindividual differences beyond academic environments 

Interindividual differences do not only exist in research study participants, but 

extend to the entire population. As such, interindividual differences should also be 

considered in industry research studying the brain. Through my work outside of academia 

during my thesis, I have used the tools I developed (specifically the spatial extent index) 

during my PhD to study and offer recommendations to a private company—Optina 

Diagnostics—doing private research on a medical device aimed at diagnosing 

Alzheimer’s disease. Results and recommendations from this study are presented in 

Annex of this thesis.  
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2.1 – Preface 

 Individual differences in the brain are commonly reported across studies in 

functional connectivity (Mueller et al., 2013), so much so that functional connectivity 

patterns can be uniquely identified at the individual level to form functional connectome 

fingerprints (Finn et al., 2015). These fingerprints were extensively studied in younger 

adults, but less is known about their properties across the lifespan. The overall goal of 

this thesis is to study interindividual differences in the brain during the lifespan and 

Alzheimer’s disease. As the brains of individuals undergo massive group-level changes 

both during aging (Binette et al., 2020; Zonneveld et al., 2019) and Alzheimer’s disease 

(Binette et al., 2020), it is important to consider whether interindividual differences change 

during these processes and whether they impact other variables we associate with the 

brain. In this first project, we first assess interindividual differences using functional 

connectivity across the entire lifespan in 483 cognitively unimpaired individuals, spanning 

18 to 87 years of age from the Cam-CAN cohort (Taylor et al., 2017). These findings were 

published in Network Neuroscience in the October 2023 issue.  
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2.2 – Abstract 

Systematic changes have been observed in the functional architecture of the 

human brain with advancing age. However, functional connectivity (FC) is also a powerful 

feature to detect unique “connectome fingerprints”, allowing identification of individuals 

among their peers. Although fingerprinting has been robustly observed in samples of 

young adults, the reliability of this approach has not been demonstrated across the 

lifespan. We applied the fingerprinting framework to the Cambridge Centre for Aging and 

Neuroscience cohort (n=483 aged 18 to 89 years). We found that individuals are 

“fingerprintable” (i.e., identifiable) across independent functional MRI scans throughout 

the lifespan. We observed a U-shape distribution in the strength of “self-identifiability” 

(within-individual correlation across modalities), and “others-identifiability” (between-

individual correlation across modalities), with a decrease from early adulthood into 

middle-age, before improving in older age. FC edges contributing to self-identifiability 

were not restricted to specific brain networks and were different between individuals 

across the lifespan sample. Self-identifiability was additionally associated with regional 

brain volume. These findings indicate that individual participant-level identification is 

preserved across the lifespan despite the fact that its components are changing non-

linearly. 

  



 58 

2.3 – Introduction 

The structural and functional organization of the brain is reliably consistent within 

species due to strong genetic control of this biological system (Gómez-Robles et al., 

2015). In humans, however, substantial intra-individual variability has been found at a 

fine-grained level (Amico & Goñi, 2018; Finn et al., 2015; Mansour et al., 2020; Mueller 

et al., 2013). An emerging body of evidence suggests that inter-individual differences in 

brain connectomes are sufficient to match brain scans and effectively identify individuals 

among large datasets of brain images. These “signatures” or “fingerprints” (Finn et al., 

2015, 2017) are stable over years (Guo et al., 2012; Horien et al., 2019; Jalbrzikowski et 

al., 2020; Ousdal et al., 2020), between scan conditions (Finn et al., 2015, 2017; 

Vanderwal et al., 2017) and are found using other brain scanning modalities such as 

magnetoencephalography (da Silva Castanheira et al., 2021). Individual participant 

identifiability is observable in homogeneous samples of young adults (Finn et al., 2015; 

Mueller et al., 2013), yet older adults have been relatively neglected in the literature.  

Cross-sectional studies comparing older and younger adult groups have revealed 

substantial differences in FC (Chen et al., 2016; Setton et al., 2022; Zonneveld et al., 

2019), raising questions about the reliability of FC fingerprinting in older adults. Our aims 

were to (i) test the stability of fingerprint identification accuracy (i.e., uniqueness of the 

connectomes, which facilitates individual participant identification), (Finn et al., 2015) (ii) 

determine self-identifiability (i.e., a continuous variable measuring within-individual 

similarity across independent observations) (Amico & Goñi, 2018) and (iii) characterize 

others-identifiability (i.e., a continuous variable measuring how similar an individual is 

relative to others). (Amico & Goñi, 2018) These aims were examined across the lifespan, 
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spanning the full connectome, as well as within and between large-scale networks, using 

functional magnetic resonance imaging (fMRI). We then determined which functional 

connections between regions (i.e., edges) reliably contributed to identification and how 

these patterns varied across the lifespan. Finally, we explored the association between 

identifiability and brain volume, a significant predictor of participant age (Gonneaud et al., 

2021). We derived fingerprint metrics using a pair of fMRI conditions (resting-state and 

sensorimotor task) from cognitively healthy adults across the lifespan in the Cambridge 

Centre for Aging and Neuroscience (Cam-CAN) cohort (n = 483; ages 18-89y) (Shafto et 

al., 2014; Taylor et al., 2017). Our results indicate that fingerprint identifiability is a reliable 

metric across the lifespan. We also show that self- and others-identifiability measures had 

non-linear distributions across the lifespan. Self- and others-identifiability was high in 

young adults, decreased into middle-age, then increased again into older adulthood. 

Elastic net models revealed that the fingerprinting methodology identifies dominant 

individual-specific features of FC, reliably demarcating unique patterns for each healthy 

adult at each decade of life. Finally, self-identifiability, but not others-identifiability, was 

associated with brain volume in regions known to atrophy in the context of normative 

aging. Overall, the results suggest that intra-individual variability in the organization of the 

human brain, particularly in older adults, warrants consideration in parallel with normative 

trajectories of age-related brain change.  
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2.4 – Results 

Analyses were performed on 483 individuals of the Cam-CAN cohort (Shafto et al., 

2014; Taylor et al., 2017) aged 18 to 89 years. Participants were included if they had at 

least two fMRI scans (Rest and Sensorimotor Task modalities) passing quality control. 

Demographic information is presented in Table 2.1. About half of our sample was 

composed of females. Most participants were right-handed. The final sample comprised 

at least 50 individuals in each decade of life, except individuals between 80-89 years of 

age, with only 34 included participants. 

2.4.1 - Fingerprint identification accuracy in a lifespan cohort 

To test the stability of the fingerprint metrics of interest (fingerprint identification 

accuracy, self-identifiability and others-identifiability; Finn et al., 2015), we correlated the 

FC pattern of a given individual to their own FC pattern across Rest and Task conditions 

(self-identifiability) and to the FC pattern of all other individuals (others-identifiability; 

Amico & Goñi, 2018). If the self-identifiability correlation coefficient was stronger than any 

of the others-identifiability correlation coefficient, then the participant was identified as 

having a unique signature (fingerprint identification accuracy). This method is illustrated 

in Figure 2.1A. Edges used in the identification paradigm and the rest of the analyses 

comprised the whole brain connectome, edges within a given network (within-network 

edges), and edges between a given network and all other network nodes (between-

network edges). We used the Schaefer parcellation with 400 nodes (Schaefer et al., 2018) 

and Yeo’s 7-network solution (Yeo et al., 2011) to derive the FC and to compute the 

fingerprint metrics. Results were also replicated using the Power parcellation (264 nodes; 

Supp Fig 2.3A) (Power et al., 2011).
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Table 2.1 – Demographics information 
        Decades of 
                     age 
Variables 

18-29 
(n = 71) 

30-39 
(n = 88) 

40-49 
(n = 95) 

50-59 
(n = 68) 

60-69 
(n = 71) 

70-79 
(n = 56) 

80-89 
(n = 34) 

Overall 
(n = 483) 

Sex (F)  40 43 50 34 30 27 15 239 
Sex (M) 31 45 45 34 41 29 19 244 
 Mean (SD) 
 
Age 
 

25.00 
(3.50) 

34.83  
(2.64) 

44.54  
(3.06) 

54.51  
(2.89) 

64.45  
(2.84) 

75.16 
(2.97) 

83.06 
(2.39) 

50.49  
(18.24) 

 
Handedness 
 

75.01 
(49.57) 

78.08 
(48.75) 

74.22 
(55.35) 

75.91 
(54.06) 

77.15 
(52.92) 

85.09  
(42.77) 

86.53 
(36.06) 

77.82 
(50.12) 

 
Motion (mm) 
(Rest) 
 

0.175 
(0.048) 

0.173 
(0.047) 

0.196 
(0.057) 

0.203 
(0.050) 

0.221 
(0.041) 

0.235  
(0.047) 

0.238 
(0.046) 

0.201 
(0.054) 

 
Motion (mm) 
(Task) 
 

0.153 
(0.044) 

0.147 
(0.042) 

0.170 
(0.051) 

0.182 
(0.049) 

0.198 
(0.046) 

0.209 
 (0.047) 

0.230 
(0.052) 

0.178 
(0.053) 

 
Number of 
frames (Rest) 
 

238.06 
(31.14) 

246.08 
(26.66) 

230.31 
(34.58) 

227.62 
(32.12) 

223.28 
(41.48) 

211.82  
(38.74) 

205.88  
(38.79) 

229.05 
(36.23) 

 
Number of 
frames (Task) 
 

242.18 
(29.75) 

247.85 
(20.68) 

237.46 
(28.61) 

234.29 
(26.11) 

233.41 
(32.38) 

215.39 
(39.24) 

200.44 
(43.10) 

233.84 
(32.90) 

Handedness was measured as a continuous variable from -100 (fully left-handed) to 100 (full right-handed). Motion is reported as the 
average frame displacement for each modality. The number of frames is the number of fMRI frames remaining after removing frames with 
excessive motion. Counts are presented for categorical data while average and standard deviation are presented for continuous data. 
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Figure 2.1 – Illustration of the methodology 

A. Illustration of the fingerprinting framework described in the methods section. 

Fingerprints are established by the correlation of the functional connectivity of participants 

between conditions. The correlation within the same individual constitutes self-

identifiability while the correlation between individuals constitutes others-identifiability. 

(Amico & Goñi, 2018) If the self-identifiability is higher than any other others-identifiability 

for a given participant, they are successfully identified. (Finn et al., 2015) B. Yeo functional 

networks used in the analyses of the paper. V = Visual, S = Somatomotor, L = Limbic, DA 

= Dorsal attention, DM = Default mode, SV = Salience/Ventral attention, F = 

Frontoparietal, W = Whole brain. C. Illustration of the sliding-window approach to select 

sub-groups of participants. Subsamples of participants (window size) were chosen 

iteratively by taking the participants from the cohort, ordered by age, and slowly moving 
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along (step size) the lifespan. This method yields subsets of overlapping participants 

across the lifespan, offering a cross-sectional, semi-continuous overview of changes 

during aging. Window size and step size were varied to obtain different combinations of 

subsamples. 

 Across the full sample, we found high rates—up to 100% in some networks—of 

fingerprint identification (Figure 2.2A). McNemar tests indicated that identification was 

increased when using between-network edges (compared to within-network edges; 

Supplementary Table 2.1) and using higher associative cortices (default, frontoparietal 

and dorsal attention compared to visual, sensorimotor and limbic; Supplementary Table 

2.2). Using between-network edges, we were able to achieve 100% fingerprint 

identification accuracy in the somatomotor, dorsal attention, default and frontoparietal 

networks. Using whole brain connectome and within-network edges in the default 

network, we achieved 100% fingerprint identification accuracy.  

To determine how stable identifiability was throughout the lifespan, we adapted a 

between-participant sliding-window approach (Figure 2.1C) (Váša et al., 2018). Briefly, 

participants were ordered by age and slices of overlapping participants were selected to 

create groups of participants across different ages of the lifespan. Using this approach, 

identifiability was stable throughout the lifespan across networks (Figure 2.2B, Supp Fig 

2.1; approach described in Figure 2.1C). Finally, employing McNemar tests, identification 

rates using within-network edges were similar for partial correlation-derived FC compared 

to product–moment correlation-derived FC, but were superior when using between-

network edges (Supplementary Table 2.3&2.4).  
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Figure 2.2 – Unique connectomes across the lifespan, networks, and tasks 

Fingerprint identifiability in the pair of Rest and Task conditions. Panel A. illustrates the 

fingerprint identification accuracy across the entire sample using within- and between-

network edges. The blue color in the bar graphs and the percentages (with confidence 

intervals; alpha = 0.05) to the right of the graphs indicate the proportion of individuals 

correctly identified. Network acronyms on the y-axes match graphics in Figure 1B and 

represent the specific functional network used for identification. In panel B., we used a 

between-individual, age-group sliding-window approach to plot how stable the fingerprint 

identification accuracy was across the lifespan for each network. 
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We also tested whether using a random collection of nodes selected throughout 

the brain would yield comparable fingerprint identification accuracy rather than using the 

nodes of the defined Yeo networks. We created two random networks by randomly 

selecting a subset of nodes from the Schaefer parcellation, of 22 and 91 nodes, 

respectively matching the size of the limbic and default networks in our study. Using the 

22-node random network yielded worse accuracy than any other network at 16% but 

using the 91-node random network yielded high accuracy at 94% (Supp Fig 2.2A). 

2.4.2 - Both self-identifiability and others-identifiability change non-linearly 

and in parallel across the lifespan 

We found, using quadratic regressions and nested likelihood ratio tests, that both 

self-identifiability and others-identifiability differed non-linearly across the lifespan across 

all networks (both within- and between-network edges) (Figure 2.3). Using Stimson’s 

equation for quadratic models, (Stimson et al., 1978) we further found that both self-

identifiability and others-identifiability appeared to decrease until 49-63 years of age, 

before increasing (Figure 2.3). Results of all models, except for others-identifiability in the 

limbic network, remained significant when bootstrapping and controlling for sex, 

handedness, motion and number of fMRI frames available. Results were also very similar 

when using the Power atlas (Supp Fig 2.3B) across all networks for the self-identifiability, 

and for the whole brain, default, frontoparietal, and dorsal attention networks for the 

others-identifiability. We also found the same results when using our two random 

networks described in the previous section (Supp Fig 2.2B).  
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Figure 2.3 – Differences in self- and others-identifiability across the lifespan  

Change in self- (colors) and others-identifiability (grey) are represented using either 

within-network edges (A.) or between-network edges (B.). Each graph represents a 

different network, following acronyms and color schemes of Figure 1B. The beta 

coefficient of the age term and its quadratic term are presented at the top of the graph. 

We also present the adjusted R2 of the model and the p-value of the nested likelihood 

ratio indicating the non-linearity of the relationship. The p-value of predictors surviving 

inclusion of covariates and execution of the bootstrapping are indicated by asterisks (p < 

0.001 = ***, p < 0.01 = **, p < 0.05 = *, p < 0.1 = °). The age at which the curve changed 

direction was calculated from Stimson’s equation (Stimson et al., 1978) and is illustrated 

on the graphs.  

 

To ensure that the non-linearity of our results wasn’t driven by the oldest 

participants having higher self- and others-identifiability, we excluded participants above 

80 years of age and repeated the analyses. We found nearly identical results (Supp Fig 

2.4). Finally, we tested whether results would be similar when functional connectivity was 

generated using product–moment correlations of the blood-oxygen level dependent 

(BOLD) signal between nodes instead of using partial correlations. We found few 

associations between self-identifiability and age using this method. However, in networks 

where the association existed, it exhibited a U-shape (Supp Fig 2.5). 

2.4.3 - Regions contributing to self-identifiability across the lifespan 

To determine which FC edges contributed to self-identifiability, we used an elastic 

net model paired with the age-group sliding window approach. Specifically, we aimed to 
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determine which combination of FC edges across the brain were predictive of self-

identifiability in both a training and a testing set, in each age window. We applied these 

elastic net models to each age window across our sliding-window parameters. We report 

the model performance of the elastic net models in the left-out test set (i.e., whether edges 

identified in the training model also predicted self-identifiability in the left-out test set). We 

also report the nodal density for each node in each age window. The nodal density 

indicates the extent to which edges from a given node contributes to self-identifiability 

(Amico & Goñi, 2018). For each node, we summed the number of edges identified by the 

elastic net as being important for prediction within each node and divided this number by 

the total number of edges per node (400). While we only report the results for the window 

size 100 and step size 40, the results were identical across sliding window parameters.  

Overall, prediction of self-identifiability within each age window did not generalize 

to any left-out samples and exhibited poor model performance across all age windows 

(Supp Fig 2.6). Furthermore, no specific nodes had more predictive edges than others 

(Figure 2.4). In fact, in many windows, the elastic net did not identify any combination of 

edges that were predictive of self-identifiability. These results suggest that no combination 

of FC brain edges can reliably predict self-identifiability across individuals. 

  



 69 

 

Figure 2.4 – Distribution of nodes predicting self-identifiability across the brain  

For each age window (see sliding-window approach, Figure 2.1C), we plot the nodal 

density (sum of number of edges identified by the elastic net as being predictive of self-
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identifiability divided by the total number of nodes) using the Schaefer atlas (400 nodes). 

A higher nodal density indicates that the node had a higher proportion of edges 

contributing to self-identifiability. Average age in each window match averages in Figure 

2.2.  

A potential issue with using the elastic net model with our data is the massive 

number of predictors in the model (79,800 edges) and the sparse nature of the FC 

matrices derived from partial correlations rather than product–moment correlations. This 

could explain the lack of generalizability in the left-out test sets, as well as the lack of 

nodes identified consistently as predictive. To ensure that our results were not driven by 

these limitations, we adapted three more methods to verify these results: a connectome 

predictive modelling approach, an intra-class correlation approach and a clustering 

approach. The connectome predictive modelling and intra-class correlation approach 

tested whether FC in individual edges in specific networks were driving self-identifiability. 

Alternatively, the clustering approach aimed to confirm whether patterns of individual FC 

were shared across the brain in each age window. Detailed discussions of these methods 

are found in Supplementary materials. All these additional analyses converged toward 

the same conclusion as the elastic net model: regions contributing to self-identifiability 

vary across the lifespan and between individuals (Supp Figs 2.7 to 2.14). 

2.4.4 - Variability in FC, but not variability in BOLD features, differ over the 

lifespan 

We additionally tested whether other markers of variability in fMRI signal differed 

over the lifespan (Supp Fig 2.15). To this end, we derived two types of measures, 

variability in FC and variability in BOLD temporal similarity profile. Within-individual 
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variability in FC was defined as the variance coefficient of FC values within a given 

network for a given individual. We defined the between-individual variability in FC as the 

distance (subtraction) between the variability in FC of an individual to the average 

variability in FC of the group. Variability in temporal similarity profile was defined in the 

same way but using BOLD signal feature profiles instead of FC (Shafiei et al., 2020). 

More information on these measures is available in the Methods section. For both 

measures we calculated a within-individual variance measure and between-individual 

variance measure. These were calculated at the whole-brain and network levels, and for 

each fMRI condition (Rest and Task). In contrast to the fingerprinting results, within-

individual variability in FC decreased linearly across the lifespan in all networks, and 

between-individual variability in FC did not change with age in any network. No 

association were found between age and variability in temporal profile similarity. 

Finally, we tested whether a non-linear change in amplitude of the BOLD signal 

with age could be driving the non-linear association between self-identifiability and age. 

Amplitude was calculated as the average of the amplitude of the BOLD signal for all nodes 

in a given network, for each participant. We found that there was no association between 

amplitude of the BOLD signal and age in the Rest modality. In the Task modality, 

amplitude of the BOLD signal was associated non-linearly with age (Supp Fig 2.16), but 

self-identifiability was not associated with BOLD signal amplitude (Supp Fig 2.17). We 

conclude that it is very unlikely that the BOLD signal amplitude drives the non-linear 

association between self-identifiability and age.  
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2.4.5 - Self-identifiability is associated with grey matter volume  

Our initial results suggest that fingerprint accuracy is reliably achieved in adults 

over the lifespan. This is likely achieved due to the variability across people in the 

strongest FC patterns across the brain. We finally wanted to assess whether this 

identifiability was associated with age-sensitive variables, such as brain volume. To do 

so, we used three morphometric networks derived from an independent study as our 

outcome of interest (Pichet Binette et al., 2020): one frontal network (strongest age-

related changes), a limbic network, which includes the hippocampus and the medial 

temporal lobe (moderate associations with both Alzheimer’s disease and age-related 

changes) and an occipital network (weakest age-related effect). Grey matter volume was 

extracted for all three networks and used in our analyses.  

Lower self-identifiability was associated with lower grey matter volume in the 

frontal structural network over and above the effect of age and other covariates (Figure 

2.5). This connectome-wide result was recapitulated in the within- and between-network 

self-identifiability metrics (except for self-identifiability in the visual networks for within-

network edges and visual and somatomotor networks for between-network edges). 

Others-identifiability was not associated with brain volume (Supp Fig 2.18). Using 

our markers of variability in FC and BOLD signal, we found that decreased within-

individual variability in FC was associated with decreased brain volume across networks 

(Supp Fig 2.19) but to a lower extent than self-identifiability. Similarly to others-

identifiability, there was no association between between-individual variability in FC and 

brain volume. We also did not find any association between variability of temporal profile 

similarity and brain volume. 
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Figure 2.5 – Association between grey matter volume and self-identifiability  

Scatterplots presenting the association between self-identifiability, derived using A. 

within- and B. between-network edges, and grey matter volume in three grey matter 
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morphometric networks: frontal structural network (age-sensitive network), limbic 

structural network (Alzheimer’s/age-related network) and visual structural network 

(“control” network). Data points, regression slopes and bubbles below the graph follow 

the color scheme of Figure 2.1B. The beta coefficient of the relationship between the self-

identifiability and the brain volume is indicated beside each network bubble. The p-value 

of each predictor surviving comparison with covariates and bootstrapping is denoted by 

asterisks next to the beta coefficient (p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *). Models 

surviving all confounders for all three morphometric networks were compared using 

Vuong’s test for non-nested models. A letter at the bottom right of the network acronym 

indicates that the association was stronger using that specific structural network 

compared to the other networks referred to by the letter (V = Visual, F = Frontal, L = 

Limbic).   
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2.5 – Discussion 

We found that connectome-based fingerprinting is reliable across the lifespan. 

Fingerprint identification accuracy was robust even though self-identifiability and others-

identifiability show a non-linear cross-sectional distribution across the lifespan. We also 

found that the highest weighted edges contributing to self-identifiability varied across 

individuals. This inter-individual variability was observed within each decade of life. 

Furthermore, relative to whole-brain and within-network FC, between-network FC 

provided more reliable identification estimates and the number of nodes (and related 

edges) were more important than their localization to identify individuals using brain 

functional proprieties. Finally, we found that self-identifiability (but not others-

identifiability) was associated with frontal brain volume, a morphometric feature known to 

atrophy with advancing age (Pichet Binette et al., 2020).  

 Our findings indicate that fingerprinting remain robust across the lifespan, despite 

observed age-related changes in FC in older adulthood (Geerligs et al., 2015; Zonneveld 

et al., 2019). We found high fingerprinting identification accuracy across the lifespan, with 

perfect to nearly perfect identifiability accuracy in the whole brain connectomes and in the 

frontoparietal and default mode networks. Higher identification rates for associative 

cortical FC compared to unimodal networks has been found previously (Airan et al., 2016; 

Amico & Goñi, 2018; Finn et al., 2015; Horien et al., 2018, 2019; Van De Ville et al., 2021; 

Vanderwal et al., 2021) and has been suggested to be the result of high inter-individual 

variability in FC within these regions (Geerligs et al., 2015; Mueller et al., 2013). While 

this might partly be the case, networks such as the default mode network include a larger 

number of nodes than some unimodal networks. In supplementary analyses we showed 
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that we could achieve almost perfect identification using a large random network 

composed of the same number of nodes as the ones used in the default mode network. 

This identification was significantly diminished in a random network that included the 

same number of nodes as the ones used in the limbic network. These results suggesting 

that high identification may largely depend on the amount of information provided to 

perform this identification. This is in line with previous studies suggesting that finer-

grained parcellations—i.e., more nodes—yield higher identification accuracy (Finn et al., 

2015). The amount of information available for each participant might therefore be more 

important than the specific cortical topography when identifying individuals.  

  Next, we explicated fingerprint identification accuracy into its two components: self-

identifiability and others-identifiability (Amico & Goñi, 2018). We found that both 

components have a non-linear trajectory across the lifespan. These U-shaped trajectories 

comprise high scores in young adults, which decrease into middle age and increase in 

older adulthood. This phenomenon was present across networks, and impacted metrics 

of self-identifiability more than others-identifiability. While U-shape trajectories have 

previously been reported in functional and structural lifespan studies (DuPre & Spreng, 

2017; Kupis et al., 2021; Nadig et al., 2021), the exact cause of this phenomenon is 

unknown. This non-linear trajectory could be explained by a number of factors. Inter-

individual heterogeneity in anatomy is most variable in early and late life, with more 

homogeneity observed between middle-aged adults (Nadig et al., 2021). This variance 

could boost individual identifiability in the youngest and oldest participants.  Additionally, 

middle-aged women may have lower self-identifiability between fMRI sessions due to 

perimenopausal fluctuations in estrogen and progesterone (Pritschet et al., 2020), which 
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impact brain function on multiple scales. Previous studies in young adults found no 

longitudinal change in fingerprinting accuracy over a 2-to-3 year follow-up (Ousdal et al., 

2020), suggesting that a longitudinal lifespan approach is needed to better characterize 

age-related change occurring over decades. 

We also found that change occurring with age in self-identifiability and others-

identifiability mainly occurs in parallel in all networks, including the random networks, 

which likely explain why the high identification accuracy is preserved across the lifespan 

despite age-related changes in its two components. As long as the balance between self-

identifiability and others-identifiability is preserved, healthy individuals can be identified 

among a large group of individuals with similar accuracy (Horien et al., 2019; Kaufmann 

et al., 2018). Findings from developmental cohorts suggest that fingerprint metrics 

increase rapidly from a few days after birth and stabilize in young adults (Horien et al., 

2019; Hu et al., 2022; Jalbrzikowski et al., 2020; Kaufmann et al., 2018; Vanderwal et al., 

2021). Additionally, neuropsychiatric symptoms lead to a decrease in self-identifiability 

(Kaufmann et al., 2017, 2018). From a developmental perspective, fingerprints stabilize 

in early adulthood, but may be disrupted when the brain is affected by an overt 

neuropsychiatric or neurological disorder, or sub-clinical perturbations, resulting in mid-

life declines in identifiability. The older adult cohort could represent either a stabilization 

of these effects, or a more carefully screened sample of healthy individuals that persist in 

the developmental stability of identification.   

 Our findings are consistent with work suggesting that fMRI connectivity is 

composed of distinct, unique individual-specific and shared task-specific components 

(Gratton et al., 2018; Mantwill et al., 2022). Using four different approaches (elastic net, 
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connectome predictive modelling, edge-wise intraclass correlation and clustering) we did 

not find consistent edges contributing to self-identifiability in our sample across 

individuals. This aligns with our large random network yielding high identification 

accuracy, suggesting that brain signatures, and their associated brain regions, are unique 

across individuals. These analytical approaches reinforce the finding that between-

individual variance in functional brain connectomics are critical to the identification of 

individual functional fingerprints.   

 Finally, we aimed to determine whether individual-level FC fingerprint metrics were 

associated with brain volume. We compared brain volume associations with self-

identifiability and others-identifiability. Whole brain connectomes, within-network FC and 

between-network FC self-identifiability was associated with brain volume in frontal areas 

known to be particularly affected by normal age-related atrophy (Pichet Binette et al., 

2020). We also found consistent associations for self-identifiability between default and 

frontoparietal networks and brain volume in the hippocampus and medial temporal lobe 

(limbic structural network; known to be vulnerable in Alzheimer’s disease). The occipital 

structural regions were preserved over the lifespan and did not impact self-identifiability 

(Pichet Binette et al., 2020). In contrast, there was no consistent association between 

others-identifiability and brain volume.  

Self-identifiability may be associated with a number of factors that differentially 

impact individuals over the lifespan (Kaufmann et al., 2017, 2018). For instance, the 

default network is affected by a wide range of neurological disorders (de Lange et al., 

2019) and aging (Zonneveld et al., 2019). Consistent with this idea, reduced fingerprint 

identifiability within the default network has been associated with mental health disorders 
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in youth (Kaufmann et al., 2017) and reduced brain volume in older adults (Ousdal et al., 

2020). Individual-level FC measures, rather than group-level measures, may be more 

appropriate to detect age- or disease-related functional changes (Finn & Constable, 

2016), either by directly accounting for inter-individual differences (Finn & Rosenberg, 

2021) or, at least partially, ignoring group-level noise in fMRI signal (Amico & Goñi, 2018). 

Targeting individual-level differences might be particularly important in aging research, as 

aging individuals present high diversity of lifestyle and medical history, leading to diverse 

age-related outcomes (Daskalopoulou et al., 2019). 

As an additional note, the findings above also expand methodological aspects in 

the field of fingerprinting. First, we used partial correlation to generate FC matrices, which 

were then used for fingerprinting. Partial correlations resulted in higher identification rates 

in our study compared to product–moment correlations. Partial correlations produce 

sparse matrices excluding, to some extent, noise inherent to fMRI (Marrelec et al., 2006). 

Other methods aiming at removing noise in FC matrices have also found success in 

improving fingerprint identification accuracy (Amico & Goñi, 2018). As noise affects 

individuals across the sample in a similar manner (Amico & Goñi, 2018), removing noise 

should therefore better isolate individual-specific features. Second, we computed 

identification using between-network edges as well as within-network edges. In most 

cases, between-network edges provided better identification rates compared to within-

network edges. To our knowledge, all studies on fingerprinting to date have used within-

network edges to compute identification. However, while within-network edges represent 

communities of nodes working tightly together (Sporns & Betzel, 2016), between-network 

connections are necessary to various brain functions. In aging in particular, the 
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segregation of these networks tends to change (Chan et al., 2014) and as such between-

network edges may better represent overall brain network communications. Our study 

therefore also suggests potential methodological aspects to consider in future 

fingerprinting studies, particularly when considering aging populations. 

 2.5.1 – Strengths and limitations 

The main limitation of this study is its cross-sectional nature. As such, it is difficult 

to determine how fingerprint metrics change during the lifespan within individuals, limiting 

the interpretation of our conclusions. Future work would benefit from longitudinal studies 

examining identifiability across scans separated by many years. Similarly, due to quality 

control issues, eldest participants in our cohort were under-represented, and as such, the 

non-linearity of our findings need to be interpreted with caution. However, supporting the 

non-linearity of the findings, the non-linearity between age and self-identifiability was still 

preserved when removing the oldest participants. Finally, we only included two fMRI 

modalities in our analyses. As other studies have shown that the choice of the task can 

influence the ability to fingerprint, future studies should replicate our findings using other 

combinations of fMRI tasks. 

 2.5.2 – Conclusion 

Across our analyses, we found that FC patterns allow for precise fingerprinting 

between individuals and that this discrimination is reliable across the lifespan. High 

identification rates were observed across the Cam-CAN cohort, accompanied by age-

related effects on individual-level (self-identifiability) and group-level (others-identifiability) 

FC patterns. Accurate fingerprinting of FC was observed across the lifespan, even though 

edges contributing to self-identifiability differed between individuals across networks and 
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across the decades of life. Finally, we show that individual-level self-identifiability (instead 

of group-level others-identifiability) is associated with brain volume in regions vulnerable 

to age-related atrophy. Together, the present findings illuminate the potential utility of 

individual-level measures that demarcate age-related brain change. Group-level 

differences in FC have revealed reliable patterns attributed to the aging brain. However, 

individual differences in FC patterns are likely to play a key role in predicting brain health 

and associated functional outcomes. 
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2.6 – Material and methods 

2.6.1 – Participants 

Data used in the preparation of this work were obtained from the Cam-CAN 

repository (available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/). The Cam-CAN 

cohort is a lifespan cross-sectional population-based cohort, composed of cognitively 

healthy participants aged between 18 and 89 years of age residing in the United Kingdom. 

Full details for the study participants and recruitment can be found elsewhere (Shafto et 

al., 2014; Taylor et al., 2017). Participants underwent several brain imaging procedures 

at one timepoint. Special attention was given to recruiting persons from different decades 

and to balance both men and women. This study was approved by the Cambridgeshire 2 

Research Ethics Committee (reference: 10/H0308/50). 

2.6.2 – Magnetic resonance imaging 

Full details on the imaging data collection and on the fMRI tasks used are available 

elsewhere (Taylor et al., 2017). Briefly, MRI data were acquired on a 3T Siemens TIM 

Trio scanner with a 32-channel head coil for a one 1-hour session. T1-weighted MPRAGE 

sequences were acquired for structural imaging, and T2*-weighted EPI sequences were 

acquired for fMRI imaging (261 volumes with 32 axial slices each; slice thickness of 3.7 

mm; interslice gap of 0.74 mm; TR =1970 ms; TE =30 ms; flip angle =78 degrees; FOV 

=192 mm × 192 mm; voxel-size = 3 mm × 3 mm × 4.44 mm). Participants underwent two 

different fMRI conditions during one session: a Resting state condition (Rest), where 

participants were asked to keep their eyes closed for 8min 40s and a sensorimotor task 

(Task), also of 8min 40s in which participants were asked to press a button when audio-

visual stimuli were presented. 

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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Functional images from the two modalities were preprocessed using the 

NeuroImaging Analysis Kit, version 0.12.4 (NIAK; http://niak.simexp-lab.org/; Bellec et al., 

2011; Gonneaud et al., 2020). The first three volumes of each run were suppressed to 

allow the magnetisation to reach equilibrium. Images were slice-timing corrected and 

rigid-body motion parameters were estimated for each time frame. For registration, T1-

weighted images were linearly and non-linearly registered to MNI space. The rigid-body 

transform, fMRI-to-T1 transform, and T1-to-stereotaxic transform were all combined, and 

the functional volumes were resampled in the MNI space at a 3 mm isotropic resolution. 

To account for potentially excessive motion, frame displacement was calculated for each 

volume and those with more than 0.5 frame displacement were removed with one prior 

adjacent frame and two consecutive frames after. Timeseries with less than 40% of their 

original data after removing excessive motion were discarded from subsequent analyses 

(Orban et al., 2015). Next, slow time drifts, cerebrospinal fluid, average white matter 

signal, and motion artifacts (first principal components of the six rigid-body motion 

parameters, and their squares) were removed from the fMRI time series, and fMRI 

volumes were smoothed with a 6mm Gaussian kernel. Finally, fMRI timeseries for each 

region of the Schaefer atlas (n = 400) were extracted using Nilearn 0.6.2 (Abraham et al., 

2014). Partial correlations were used to generate FC between regions, accounting for the 

signal in all other brain regions. This process generates sparser functional connectivity 

matrices that are thought to account for more noise than using simple product–moment 

correlation and represent more direct connections between regions (Marrelec et al., 2006; 

Zalesky et al., 2012). We generated FC matrices for the task and resting-state fMRI runs.  

http://niak.simexp-lab.org/


 84 

 All structural images were pre-processed using Statistical Parametric Mapping 

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB version 2012a, as 

part of a previous study (Pichet Binette et al., 2020). Images were segmented into grey 

matter, white matter, and CSF components. Then, a group-specific template was created 

using the Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra 

toolbox (DARTEL) (Ashburner, 2007), which was then registered non-linearly to the MNI-

ICBM152 template. Finally, each individual participant’s grey matter map was registered 

back to the group template, before being smoothed with an 8mm3 isotropic Gaussian 

kernel. 

2.6.3 – Sliding-window analysis 

Across multiple analyses, we used a between-participant sliding-window approach 

to study differences across the lifespan in a semi-continuous manner (Váša et al., 2018; 

Figure 2.1C). First, participants were ordered by age (from youngest to oldest). Then, we 

iteratively selected subsamples of overlapping participants varying two parameters: 

window size (i.e., the number of participants in each subsample) and step size (i.e., the 

number of participants skipped before selecting the next window). We used window sizes 

of 100 or 150 participants and used a step size of either 25 or 40 participants. As such, 

participants in adjacent windows overlapped by 60 to 80%. Main analyses report results 

using a window size of 100 and step size of 40, while results using other parameters are 

reported in supplementary analyses. 

2.6.4 – Fingerprinting 

Our main interest was functional connectome fingerprinting, which encompasses 

three measures of interest: fingerprint identification accuracy (Finn et al., 2015), self-

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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identifiability and others-identifiability (Amico & Goñi, 2018). In the fingerprinting 

framework, the FC matrix of a given individual obtained from one fMRI condition is 

correlated to the FC matrix of the same individual obtained during a different fMRI 

condition by computing the correlation coefficient of the vectorized upper triangle z-values 

between sessions. This results in a within-individual correlation (i.e., self-identifiability). 

This process is repeated for all within and between participant FC matrices, permitting 

the computation of both within and between-individual similarities (i.e., others-

identifiability). Finally, fingerprint identification accuracy is estimated from both self- and 

others-identifiability measures: a fingerprint is considered identifiable when self-

identifiability exceeds the magnitude of others-identifiability (Amico & Goñi, 2018; Finn et 

al., 2015); see Figure 2.1A. for schematic overview). This process was done for the whole 

brain connectome as well as for within-network and between-network edges for each 

network.  

The fingerprint framework was adapted from the original methodologies by Finn et 

al. (2015) and Amico & Goñi (2018). The FC obtained for the Rest and Task modalities 

were first normalized using Fisher’s r-to-z transform. Product–moment correlations were 

then used to correlate FC matrices obtained from the Rest and Task conditions, deriving 

self-identifiability and others-identifiability. These values where then stored in a similarity 

matrix. For each row of the matrix, a fingerprint identification was considered accurate if 

self-identifiability (diagonal elements of the matrix) was higher than any other others-

identifiability (off-diagonal elements of the matrix). Self-identifiability and others-

identifiability were computed based on the FC between 400 parcels. Additionally, the 

parcel information corresponding to the Yeo seven networks was leveraged to demarcate 
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within-network FC. Then, we composed aggregates of between-network FC by taking any 

edges between each other network. For example, if the visual network was composed of 

nodes 1 to 61 (rows and columns 1 to 61 in the matrix), within-network edges comprised 

edges where both rows and columns were between 1 to 61. Between-network edges 

comprised edges in rows 1 to 61 but in columns 62 to 400 (Yeo et al., 2011). 

Additionally, we created two random networks to test whether we could find high 

identification accuracy using edges belonging to a random assortment of nodes rather 

than using predefined networks. We selected two random sets of nodes across the brain. 

The number of nodes chosen were 22 and 91, to match the size of the smallest (limbic) 

and largest (default) networks (Schaefer et al., 2018; Yeo et al., 2011) included in our 

study. Fingerprinting methodology described above was applied to the edges of these 

two random networks. 

2.6.5 - Predicting self-identifiability using combinations of edges 

 We adapted an elastic net approach to predict self-identifiability from the FC edges 

in our sample. Specifically, we used the sliding window method to select subsamples of 

participants across the lifespan. Within each window, we first removed the diagonal and 

lower triangle of the functional connectivity matrices of the participants and flattened the 

remaining 79,800 edges. The connectivity values were then standardized, and 

participants were randomly split in a training and testing subset (85% training, 15% 

testing). Connectivity values across all 79,800 edges were used to predict self-

identifiability. In the training set, we used a 5 k-fold cross-validation with a grid search to 

select the optimal L1 ratio for our elastic net model. Once the optimal L1 ratio was 

selected, an elastic net model was fitted on the entire training set. The model was then 
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used to predict self-identifiability in the testing set. Performance in the testing set was 

reported as the variance explained (R2) and the RMSE. 

The elastic net outputs coefficients indicating which edges significantly contributed 

to model performance. To determine their topography in the brain, we adapted a nodal 

density approach (Amico & Goñi, 2018). Briefly, edges were resized to a 400x400 

functional connectivity matrix format and binarized. Then, the sum of the binary 

coefficients for each node (i.e., each row of the matrix) was divided by the number of 

edges for that node (i.e., 400). This yields a nodal density measure for all 400 nodes of 

the Schaefer atlas, where more density indicates that edges in that node are more 

important. These results were then projected to a brain map. 

2.6.6 – Age-related outcome: Structural aging morphometric network 

We tested the relationship between functional fingerprint metrics (self-identifiability 

and others-identifiability) and structural age-related changes. Three morphometric 

networks derived in an independent study were used as our outcome of interest (Pichet 

Binette et al., 2020). Briefly, a large cohort of cognitively unimpaired younger and older 

adults and participants on the Alzheimer disease spectrum were grouped and 

independent component analysis was used to derive statistically independent structural 

brain networks. Then, volume in each component was used in a receiver operating 

characteristic analysis to determine whether brain volume could accurately classify 

individuals in their corresponding group. From this study, we chose one frontal network 

(ICA01 in the original study which was the network showing the strongest age-related 

changes), a limbic network (ICA10 that showed moderate associations with both 

Alzheimer’s disease and age-related changes) and an occipital network (ICA15 that 
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showed the weakest age-related effect). Grey matter volume was then extracted for all 

three morphometric networks for each participant. These morphometric networks were 

chosen rather than using parcel-level or network-level gray matter measures as we 

wanted age-associated gray matter measures and as their association with fingerprint 

measures could be more directly comparable between networks. 

2.6.7 – Supplementary analyses on FC variability 

Additionally, we also determined whether other markers of variability in fMRI signal 

changed during the aging process. We derived two types of measures, variability in FC 

and variability in blood-oxygen level dependant (BOLD) temporal similarity profile.  

Both types of measures were calculated using custom Python scripts. Variability 

in FC for each individual was computed as the variance coefficient of FC coefficients at a 

whole brain level and within each network of interest. To obtain between-individual 

variability, we first computed the average variability in FC across the sample. Then, for 

each individual, we computed the absolute distance between their variability and the 

mean variability of the group. A greater distance indicates more between-individuals 

variability. 

Variability within- and between-individuals in BOLD signal features was computed 

as the variance in temporal profile similarity of BOLD signal features (Shafiei et al., 2020). 

To do so, BOLD signals features were extracted from each brain region using the highly 

comparative time-series analysis toolbox (Fulcher et al., 2013; Fulcher & Jones, 2017). 

Timeseries were first z-scored and then fed to the toolbox where 7700 features are 

extracted from the BOLD signal. Because the number of fMRI frames varied between 

individuals after the preprocessing, some features had missing or constant values across 
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participants, and were therefore dropped. This resulted in a final 6192 features remaining. 

Extracted features were then z-scored again to ensure comparability between features. 

For each participant, the extracted features timeseries for each region were correlated 

using product–moment correlations to determine how similar timeseries were between 

each brain region, resulting in a 400x400 temporal similarity profile similarity matrix. 

Finally, variability in temporal similarity profile was computed identically to the variability 

in FC. 

As a final verification, we computed BOLD signal amplitude and related this 

measure to age and self-identifiability. In each of the 400 brain regions, for each 

participant, the amplitude of the timeseries were computed by subtracting the minimum 

from the maximum BOLD value. Then, the amplitude of the nodes within the network was 

averaged to obtain a single amplitude measure for each network for each participant. 

2.6.8 – Software 

The sliding-window, fingerprinting framework, elastic net, edge-wise intraclass 

correlation analyses, connectome predictive modelling, clustering and variability in FC 

analyses were adapted and developed using Python 3.8.5 (Python Software Foundation, 

https://www.python.org/; NumPy 1.19.1 (Harris et al., 2020); pandas 1.1.3 (McKinney, 

2010; The pandas development team, 2020); scikit-learn 0.24.0 (Abraham et al., 2014); 

SciPy 1.7.1 (Virtanen et al., 2020); pingouin 0.5.2 (Vallat, 2018) on Beluga, a high-

performance computing ressource hosted by the Digital Research Alliance of Canada, 

running on CentOS 7.9. The temporal similarity profile analysis was done using 

MATLAB2021B (highly comparative time-series analysis toolbox (Fulcher et al., 2013; 

Fulcher & Jones, 2017)) and Python 3.8.5. All statistical analyses and graphs were done 
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in R v4.1.2 (R Core Team, 2020) (tidyverse 1.3.0  (Wickham et al., 2019); boot 1.3-28 

(Canty & Ripley, 2021; Davidson & Hinkley, 1997); patchwork 1.1.1(Lin Pedersen, 2020); 

ggnewscale 0.4.8 (Campitelli, 2022); ggseg 1.6.5 (Mowinckel & Vidal-Piñeiro, 2020)) 

using R Studio ("Ghost Orchid" Release [077589bc, 2021-09-20]) for macOS Monterey 

12.6. All code related to the analyses are available at 

https://github.com/villeneuvelab/projects. The code related to the fingerprinting analysis 

was also adapted to the openly available sihnpy Python package: 

https://sihnpy.readthedocs.io/ 

2.6.9 – Statistical analyses 

Fingerprint identifiability was computed for all networks for the Rest and Task 

conditions for both within- and between-network edges. Percentage of identified 

individuals with confidence intervals were calculated. Paired McNemar tests were used 

to compare identification in a given network to the identification of the same network using 

a different fingerprint type (i.e., using within- vs. between-network edges). We used this 

approach to compare network performance in fingerprint identifiability within each 

modality pair (e.g., comparing proportion of identification using the default vs. 

somatomotor networks). A family-wise Bonferroni correction was applied to each set of 

comparisons to account for multiple comparisons. Finally, we used the sliding-window 

approach where the fingerprint identification accuracy in each age window was computed 

and visualized. 

To study the relationship between self-identifiability and age, and others-

identifiability and age, we used multiple linear regression models. We used polynomial 

(quadratic) regressions when the linearity assumption was violated and, in that case, used 

https://github.com/villeneuvelab/projects
https://sihnpy.readthedocs.io/
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Stimson’s equation to derive the peak’s coordinates (Stimson et al., 1978). Assumption 

violation was determined by comparing fitted to residual values. We also used nested 

likelihood ratio tests to test whether models using quadratic terms outperformed linear 

models on model fit to confirm the non-linearity of the relationship. Each model included 

common confounders known to affect either FC or fingerprints as covariates of no 

interest: the number of frames post-scrubbing (Amico & Goñi, 2018; Horien et al., 2018; 

Xu et al., 2016), the mean frame displacement (i.e., movement; Amico & Goñi, 2018; 

Geerligs et al., 2017; Guo et al., 2012; Horien et al., 2018; Jalbrzikowski et al., 2020), the 

sex of participants (Finn et al., 2017) and a continuous handedness measure (Bailey et 

al., 2020). One model was generated for each network for both self-identifiability using 

within- and using between-network edges (45 models total). The same number of models 

was generated to study the association between others-identifiability and age. Due to the 

high number of regressions, we applied a bootstrap resampling procedure to each model 

as a way to account for multiple comparison (Westfall, 2011). Specifically, we generated 

bootstrapped bias-corrected and accelerated confidence intervals for the ꞵ-coefficients 

(where coefficients not overlapping with 0 were considered significant) of the main 

exposure. All analyses were repeated using within- and between-individual variability in 

FC and BOLD signal (i.e., variability in FC and variability in temporal similarity profiles) in 

each fMRI task in each network and within the whole brain. 

All procedures described above were reapplied to study the relationship between 

fingerprint metrics and brain volume. Individual variability in FC and temporal similarity 

profile were also associated with age and with gray matter volume using the methodology 

described above. These metrics were used to determine whether other fMRI measures 
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would also show inter-individual variability across the lifespan. To test whether the 

association was stronger in the frontal structural network, the limbic structural network or 

the visual structural network, we used Vuong’s test for non-nested models (Vuong et al., 

1989). Models were repeated including all covariates with and without age. 
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2.10 – Supplementary material of Chapter 2 

2.10.1 – Methods 

Identifying regions contributing to fingerprinting metrics 

a. Connectome predictive modelling 

We tested whether edges most associated with fingerprint metrics changed during 

the lifespan by adapting a connectome predictive modelling approach. (Shen et al., 2017) 

Procedures are illustrated in Supp Fig 2.7 and can be divided in three major sections: I) 

Sample selection, II) Cross-validation and III) Generalizability.   

In the sample selection section, we used the sliding-window approach described 

in the methods section of the manuscript. Once windows were derived, each window was 

split in a training and testing set, where 85% of the participants were retained for training 

and 15% for testing the generalizability of the model. (Varoquaux et al., 2017) 

During the cross-validation section, we used a leave-one-out procedure (1) (Supp 

Fig 2.7C). (Scheinost et al., 2019) In each iteration, each of the 160,000 FC edges for 

participants in the training set were correlated to their measured fingerprint metrics of 

interest (self-identifiability or others-identifiability) using product–moment correlations (2). 

Edges with significant (p < 0.01) negative (lower FC associated with higher fingerprint 

metric) and positive (higher FC associated with higher fingerprint metric) correlations (p 

< 0.01) were kept and considered as potential predictors of the fingerprint metric of 

interest (3). The fingerprint metric of interest was calculated at the whole-sample level, 

and not within individual sliding windows. We then created two binary masks at the whole-

brain level; one including significant edges from positive correlations and the other 

including significant edges from negative correlations (4). After discarding the lower 
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triangle of the binary masks (symmetric projection of the upper triangle), FC values in the 

significant edges were then summed to obtain a single value per participant for each mask 

(5). These sums were used to train the models to predict the fingerprint metric of interest 

(6). We used two different algorithms to train the models: a simple linear regression and 

a support vector regression with radial basis function kernel. For the support vector 

regression, both the feature and outcome were scaled to a mean of 0 and standard 

deviation of 1 before training the model. Hyperparameters (C, gamma and epsilon) for 

the final model were determined during cross-validation using a grid search technique. 

The positive and negative masks were then applied separately to the left-out participant 

(7) and their FC sum (8) was used to validate the models (9). As a last step we developed 

a positive and a negative cross-validated binary mask, where edges that were significant 

across 95% of the cross-validation runs were kept (10), and the rest was discarded. This 

process was done to identify FC edges that were recurrently predictive across participants 

of a given age group bin. 

In the generalization section, we tested the predictive value of the positively 

associated and negatively associated models using the corresponding cross-validated 

binary masks in the test set (i.e., participants that were not used to develop the predictive 

models). The FC values in the cross-validated binary masks were summed for each 

participant of the test set (11) and used to predict the fingerprint metrics (12). Model 

generalizability in the test set was assessed by correlating the predicted and measured 

fingerprint metrics in the test set participants and by measuring the root mean square 

error. 
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Finally, we used the averaged cross-validated positive and negative binary masks 

to determine which inter-regional FC values were associated with our fingerprint metrics 

across the lifespan using the between-individual sliding window approach. Specifically, 

we divided the masks for each subsample in within- and between-network edges for each 

of the Yeo networks. Then, we calculated the proportion of predictive edges in each 

network by dividing the number of predictive edges over the total number of edges in the 

network. These proportions were then plotted for visualization. 

b. Edge-wise intraclass correlation 

We adapted the edge-wise intraclass correlation (ICC) methodology from Amico 

and Goñi (2018) (see Supp Fig 2.10) to determine which edges contributed to self- and 

others-identifiability across the lifespan. In our context, we refer to intra-rater reliability 

ICC measures (as opposed to inter-rater reliability); i.e., how similar a score is for different 

targets within each rater. (Shrout & Fleiss, 1979) Specifically, we use the ICC form 

referred to as ICC(3,1) in the original publication (Koo & Li, 2016; Shrout & Fleiss, 1979) 

for single fixed raters. We consider two types of raters. For the first type, we consider 

each participant as a rater, and we consider targets as the FC of a given edge for both 

modalities. In this analysis, the ICC reflects how consistent the value of the edge is 

between the Rest and Task sessions for each participant. When the edge values of both 

tasks are close to one another (i.e., the difference between the two values is small), 

across all raters, then the ICC value for an edge would be high. Conversely, if the edge 

values are very different between the Rest and Task sessions across all raters, then the 

ICC value for an edge would be low. This first ICC measure relates to self-identifiability. 

While self-identifiability is derived from correlating the entire functional connectivity of a 
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given network during rest to the entire functional connectivity of the same network during 

the task, edges with consistent values (i.e., high ICC) between Rest and Task are likely 

to contribute to higher self-identifiability due to their similarity in each participant. For the 

second intra-rater ICC, we set the raters as the fMRI conditions and the targets as the FC 

of the edge of individual participants within each condition. In this analysis, the ICC 

reflects how consistent the value of an edge is across participants within each modality. 

If the value of the edge is consistent across all participants in both the rest and task 

conditions individually, the resulting ICC will be high. Conversely, if the edge value differs 

between participants in each modality, this would result in a low ICC. This second ICC 

measure relates to others-identifiability. Others-identifiability is computed by correlating 

the functional connectivity of one participant to the functional connectivity of a different 

participant. As such, if an edge has consistent values across participants in each 

modality, it will likely result in a higher others-identifiability. This process was done for 

every age window, and FC edge, yielding two matrices of 160,000 edges per age bin. 

The lower triangle was ignored for the rest of the analyses. 

Once edge-wise ICC were derived, we first thresholded the coefficients to retain 

the edges contributing most to self- or others-identifiability by using values above the 95th 

percentile. Then, we computed the mean and standard deviation of the ICC for both 

within- and between-network FC. Finally, the ICC in each edge retained after thresholding 

was binarized: values above the 95th percentile were set to one and the rest were set to 

zero. The mean and standard deviation of the ICC values were then plotted for each age 

window.  
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Then, we aimed to determine whether edges identified as contributing most to self- 

and others-identifiability would remain the same through the lifespan. To do so, we used 

the binarized matrices of the ICC and the Jaccard Similarity Index (Jaccard, 1912). The 

Jaccard Similarity Index measures the size of the intersection of two binary arrays over 

their union, yielding a score ranging from zero to one, where one is a perfect overlap 

between the two arrays. We applied this measure by comparing the overlap of the binary 

arrays between each pair of adjacent age group bins (e.g., the binary array of the 

youngest group compared to the binary array of the second youngest group). Higher 

values indicate the highest weighted edges that predict identifiability overlap between 

adjacent groups. We also applied this method to compare the overlap between the binary 

arrays of the edges contributing most to self-identifiability and the binary arrays of the 

edges contributing most to others-identifiability. As the Jaccard Index represents a 

proportion of overlap by network, we can compute a 95% confidence interval of that 

proportion, by calculating the standard deviation of the proportion and multiplying it by the 

desired degree of confidence.  

Finally, we checked whether certain nodes have edges which contribute 

predominantly to self- and others-identifiability. Based on methodology by Amico & Goñi 

(2018), we computed the nodal density of each node in the binarized ICC matrix. Briefly, 

each row of the matrix was summed, ignoring the diagonal. Then, the sum was divided 

by the number of edges. This yields a nodal density measure for all 400 nodes of the 

Schaefer atlas. These results were then projected onto a parcellation. 
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c. Clustering 

To determine if specific edges overlapped between individual- and group-level FC 

patterns, we adopted a K-means clustering approach. Specifically, the FC edges of the 

upper triangle of FC matrix (79,800 edges) of all participants within each age window 

were averaged across participants to obtain a group-level average of FC. Then, we used 

a K-means clustering approach to cluster the group-level average edges. We chose a 7-

cluster solution to match the number of expected networks from the Schaefer parcellation 

used throughout the paper. The labels assigned by the clustering algorithm for each edge 

were saved. Then, we repeated the procedure but this time at the individual-level; we 

applied a 7-cluster K-means clustering algorithm to cluster the 79,800 edges of each 

participant. Finally, we computed the overlap of individual- and group-level clusters using 

the Jaccard coefficient. Specifically, for each cluster (from 1 to 7), we computed the 

average overlap between individual participants and the group-level FC average, where 

‘1’ indicates a perfect overlap of the cluster assignments and ‘0’ indicates poor overlap of 

the cluster assignments. 

2.10.2 – Results 

Regions predictive of fingerprint metrics 

a. Connectome Predictive Modelling 

As a complementary analysis, we used a connectome predictive modelling 

approach (Shen et al., 2017) to determine if any individual FC edges were predictive of 

self-identifiability and others-identifiability across adjacent age windows, across different 

sliding-window parameters (Supp Fig 2.8 and 2.9). 
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The connectome predictive modelling approach (Shen et al., 2017) first selected 

edges most associated with self-identifiability using a leave-one-out cross-validation after 

holding out 15% of the sample, and FC in the remaining associated edges were used to 

train linear and support vector regression models predicting self-identifiability. This 

procedure was done in each age window separately. Edges associated with self-

identifiability in 95% of the cross-validations in each age window were deemed as 

contributing to self-identifiability. Prediction within each age window did not generalize to 

left-out samples, and no single network had more predictive edges for self-identifiability. 

Using a random set of edges instead of doing feature selection also yielded similar results 

(not shown). Predicting the self-identifiability across the entire sample, instead of within 

each age window, yielded similar results (not shown). 

b. Edge-wise intraclass correlation 

We used an intra-class correlation (ICC) analysis (Supp Fig 2.10), as proposed by 

Amico and Goñi (2018), paired with the age-group-bin sliding window approach (Figure 

2.1B) to assesses intra-rater reliability. Specifically, we measured to which extent the 

connectivity values in each edge were consistent within each individual across the Rest 

and Task condition. High consistency (i.e., higher ICC) indicated that the edge contributed 

to self-identifiability within each participant. We also measured to which extent the 

connectivity values in each edge were consistent within each fMRI condition across 

participants. In this case high consistency (i.e., higher ICC) indicated that the edge 

contributed to others-identifiability in each fMRI modality. This process yielded two ICC 

values for each edge. Additional explanation on how the intra-rater reliability was derived 

is available in the supplementary methods section. The sliding window approach was 
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used to estimate whether the top 95% edge-weights in each window remained consistent 

across the lifespan. Within each age window, we thresholded the ICC values at the 95th 

percentile to retain edges contributing the most to each of self- and others-identifiability. 

 Thresholded ICC values indicated that edges contributing the most to self-

identifiability were not consistent across individuals as they showed very low ICC values 

despite retaining only the highest 95th percentile edge values (i.e., poor consistency 

within raters between Rest and Task modality), while edges contributing the highest to 

others-identifiability were more consistent across individuals (i.e., high consistency within 

modalities between individual participants; Supp Fig 2.11A). This was observed across 

all age windows, across the whole brain connectome, within- and between-networks, and 

using different sliding window parameters (i.e., size of subsamples and number of 

participants from adjacent age-group bins). We did not find evidence that edges within or 

between any one network were more similar across individuals for edges contributing to 

self- or to others-identifiability (overlapping confidence intervals). Similar results were 

observed using different window parameters (not shown). 

 Next, we evaluated whether the edges contributing the highest to self- and others-

identifiability were similar between subsamples across the lifespan (Supp Fig 2.11B). 

Thresholded edges were binarized: ICC values above the 95th percentile were set as one 

and the rest set as zero. We then computed what proportion of the retained edges 

overlapped between the different age windows using the Jaccard Similarity Index, ranging 

from 0 (no overlap) to 1 (perfect overlap). (Jaccard, 1912) A strong overlap, consistent 

across adjacent age groups, would indicate that edges contributing to either self- or 

others-identifiability were similar across individuals over the lifespan. We found that the 
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overlap of edges contributing to the highest self-identifiability was low between age 

windows: less than 25% of edges within each network overlapped between age windows. 

The only exceptions were the visual and somatomotor networks, where the overlap was 

closer to 50% and 30%, respectively. In contrast, edges contributing the highest to others-

identifiability across individuals were similar across different age windows across the 

lifespan: between 50% to 75% of edges within each network overlapped between different 

age windows. This was the case whether using the whole brain connectome, within- or 

between-network edges, and using different sliding window parameters (not shown). 

 We tested the extent edges contributing to self-identifiability also contributed to 

others-identifiability (Supp Fig 2.11C). Within each age window, we computed the Jaccard 

Similarity Index between the binarized ICC values for edges contributing to self-

identifiability and the binarized ICC values for edges contributing to others-identifiability. 

Here, a strong overlap indicates that edges contributing to self-identifiability also 

contributed to others-identifiability. We found that, across age windows, edges 

contributing to self-identifiability showed little overlap (low Jaccard Index) with edges 

contributing to others-identifiability. This finding was consistent when using either whole 

brain connectome, within- or between-network edges, or when changing the window 

parameters (not shown). 

 Finally, we computed and plotted to which extent each node had a high number of 

edges contributing to self- (Supp Fig 2.12) or others-identifiability (Supp Fig 2.13). 

Following Amico & Goñi (2018), we computed the nodal density for each of the 400 nodes 

included in the Schaefer atlas. For each node, we summed the number of edges above 

the 95th percentile contributing to either self- or others-identifiability and divided this 
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number by the total number of edges per region (400). The resulting nodal density 

indicates to which extent edges from a given node contribute to self- or others-

identifiability. Overall, consistent with our previous result, all nodes tended to contribute 

relatively similarly to self-identifiability. 

c. Clustering 

We additionally used a clustering approach to confirm that FC patterns across the 

whole brain at the individual-level differed from group-level FC. This was to confirm that 

there were no evident patterns of individual-level FC that were shared across individuals 

and age windows, which we would expect to see if specific edges contributed to self-

identifiability. In each age window, we applied a 7-cluster K-means clustering approach 

to FC edges in two ways: on the average FC values of all edges at group-level and on 

the FC values of all edges for each participant separately. We then computed the overlap 

between the clusters obtained at the group-level and at the individual-level, with the 

reasoning that individual-level cluster assignments should overlap strongly with group-

level assignments if FC patterns are more similar across individuals. In line with the other 

previous analyses, we found very little overlap between the clusters obtained at the 

group-level and the clusters obtained at the individual-level (average Jaccard score 

across cluster labels and windows of 0.06; Supp Fig 2.14). Furthermore, the overlap 

between individual- and group-level clusters varied between age windows, highlighting 

again that slightly different group selection yields different results. 
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2.10.3 – Supplementary Figures 

Supplementary Figure 2.1 

 

Supplementary Figure 2.1 - Fingerprint identification accuracy across the lifespan 

using different window parameters. Like in Figure 2.2B, we illustrate the fingerprint 

identification accuracy using a sliding window approach, varying the size of the window 

(100 or 150) and the step size (40 or 25). Figure 2.2B uses a window size of 100 and a 

step size of 40. Accuracy using within-network (left) and between-network (right) edges 

are represented.  
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Supplementary Figure 2.2 

 

Supplementary Figure 2.2 – Fingerprint identification accuracy, and self- and 

others-identifiability using a randomized subset of nodes. We randomly selected two 

subsets of nodes from the Schaefer atlas across all regions and calculated the fingerprint 

identification accuracy (panel A) and the self- and others-identifiability (panel B) in both 

networks. The number of nodes were chosen to mirror the number of nodes in the 

smallest (limbic – 22 nodes) and the largest (default-mode – 91 nodes) Yeo networks 

using the Schaefer atlas. Edges within the randomly selected nodes were used to 

calculate the accuracy and the identifiability. 
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Supplementary Figure 2.3 
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Supplementary Figure 2.3 – Fingerprint identification accuracy, and self- and 

others-identifiability using the Power atlas. We replicated our results from Figure 2.2A 

and Figure 2.3A using a different brain parcellation: the Power atlas (Power et al. 2011). 

All networks from the Power atlas were replicated and the network acronyms are as 

follow: U (beige) = Uncertain, SA (light purple) = Salience, CO (dark purple) = Cingulo-

opercular, DA (dark green) = Dorsal attention, F (light green) = Frontoparietal, A (pink) = 

Auditory, DM (red) = Default-mode, V (blue) = Visual, C (light blue) = Cerebellar, VA (teal) 

= Ventral attention, S (cyan) = Somatomotor, W (black) = Whole brain, SU (brown) = 

Subcortical. 
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Supplementary Figure 2.4 
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Supplementary Figure 2.4 – Differences in self- and others-identifiability across the 

lifespan, excluding the last decade. Change in self-identifiability (colors) and others-

identifiability (grey) are represented using either within-network edges (A.) or between-

network edges (B.). Each graph represents a different network, following acronyms and 

color schemes of Figure 1B. The beta coefficient of the age term and its quadratic term 

are presented at the top of the graph. We also present the adjusted R2 of the model and 

the p-value of the nested likelihood ratio indicating the non-linearity of the relationship. 

The p-value of predictors surviving inclusion of covariates and execution of the 

bootstrapping are indicated by asterisks (p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *). The 

age at which the curve changed direction was calculated from Stimson’s equation and is 

illustrated on the graphs. Participants aged 80-89 were excluded. 
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Supplementary Figure 2.5 
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Supplementary figure 2.5 – Association between self- and others-identifiability and 

age across the lifespan using product–moment-calculated functional connectivity. 

Change in self-identifiability (colors) and others-identifiability (grey) are represented using 

either within-network edges (A.) or between-network edges (B.). Each graph represents 

a different network, following acronyms and color schemes of Figure 2.1B. The beta 

coefficient of the age term and its quadratic term are presented at the top of the graph. 

We also present the adjusted R2 of the model and the p-value of the nested likelihood 

ratio indicating the non-linearity of the relationship. The p-value of predictors surviving 

inclusion of covariates and execution of the bootstrapping are indicated by asterisks (p < 

0.001 = ***, p < 0.01 = **, p < 0.05 = *). The age at which the curve changed direction 

was calculated from Stimson’s equation and is illustrated on the graphs. 
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Supplementary figure 2.6 

 

Supplementary Figure 2.6 – Model performance of elastic net models predicting 

self-identifiability from FC edges. Performance of the elastic net models is presented 

with two metrics: variance explained (R2; A) and root mean square error (RMSE; B) for 

each age window using a window size of 100 and a step size of 40. 
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Supplementary Figure 2.7 
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Supplementary Figure 2.7 - Illustration of the connectome predictive modelling 

Illustration of the connectome predictive modelling in a simulated sample. The modelling 

is done in three main steps: Sample selection, Cross-validation, and Generalizability. 

Briefly, subsets of participants are chosen using a sliding-window approach. Then, 

functional connectivity in each edge is correlated to the fingerprint metric of interest during 

the cross-validation. Significantly correlated edges are used to form a mask in which we 

sum the FC values. These sums are then used to train a model predicting the fingerprint 

metric of interest. For each cross-validation, the mask derived in step 4 is applied to the 

left-out participant (step 7) and the sum of FC values of that participant is used to predict 

the fingerprint metric. In the final generalization step, edges predictive of the fingerprint 

metric in 95% of participants are kept. We then sum the FC values within these significant 

edges and use the sums to predict the fingerprint metric in the participants of the left-out 

test set (step 12). Both the self- and others-identifiability used in the modelling are 

calculated in the whole sample before the modelling. 
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Supplementary Figure 2.8 
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Supplementary Figure 2.8 – Connectome predictive modelling performance and 

predictive edges of self-identifiability (Rest modality). Point and line graphs 

representing A. model performance (correlation of predicted and measured fingerprint 

values in the test set) and B. network over-representation of predictive edges in predicting 

self-identifiability. In A., models using support vector regression (SVR) are presented in 

dashed lines and models using linear models (LM) are presented in solid lines. Average 

root mean square error (RMSE) across windows is presented in each graph. Graphs are 

presented by window size (number of participants) and step size (difference in 

participants included compared to previous windows). In B., representative example of 

the proportion of edges predictive of self-identifiability in each network following cross-

validation. The proportion is the number of predictive edges over the total size of the 

network. 
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Supplementary Figure 2.9 
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Supplementary Figure 2.9 - Connectome predictive modelling performance and 

predictive edges of self-identifiability (Task modality). Point and line graphs 

representing A. model performance (correlation of predicted and measured fingerprint 

values in the test set) and B. network over-representation of predictive edges in predicting 

self-identifiability. In A., models using support vector regression (SVR) are presented in 

dashed lines and models using linear models (LM) are presented in solid lines. Average 

root mean square error (RMSE) across windows is presented in each graph. Graphs are 

presented by window size (number of participants) and step size (difference in 

participants included compared to previous windows). In B., representative example of 

the proportion of edges predictive of self-identifiability in each network following cross-

validation. The proportion is the number of predictive edges over the total size of the 

network. 
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Supplementary Figure 2.10 

 

Supplementary Figure 2.10 - Illustration of the edge-wise intra-class correlation 

(ICC) methodology adapted from Amico & Goñi (2018). For each edge, we derive that 

edge’s contribution to self-identifiability and to others-identifiability (ICC coefficient 

ranging from 0 to 1). A high ICC for self-identifiability indicates that the edge’s contribution 

to self-identifiability is shared across individuals. In contrast, a high ICC for others-

identifiability indicates that the edge’s contribution to others-identifiability is shared across 

individuals. 
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Supplementary Figure 2.11 
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Supplementary Figure 2.11 - Edge-wise contribution to self- and others-

identifiability (window size = 100, step size = 40) A. Average intraclass correlation 

(ICC) coefficients by network—for within- and between-network edges—in edges 

contributing the highest to self- and others-identifiability (values within each age window 

above the 95th percentile). Full circles and lines represent the average ICC of edges 

contributing the highest to self-identifiability while downward facing triangles and dashed 

lines represent the average ICC of edges contributing the highest to others-identifiability. 

Each average is accompanied by the standard deviation as an error bar. B. Overlap of 

edges contributing the most to self- (full lines and circles) and to others-identifiability 

(dashed lines and triangles), as measured by the Jaccard Similarity Index (0 = no overlap, 

1 = perfect overlap). The average age of age windows demonstrating overlap are 

indicated in square brackets. The 95% confidence interval of the standard error for the 

proportion of overlap, as a function of each network size, is illustrated with error bars. C. 

Overlap of edges contributing the most to both self- and others-identifiability within each 

age window as measured by the Jaccard Similarity Index. The 95% confidence interval 

of the standard error for the proportion of overlap is illustrated with error bars. 
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Supplementary Figure 2.12 
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Supplementary Figure 2.12 – Nodal density of edges highly contributing to self-

identifiability. For each age window, we plot the nodal density (sum of number of edges 

above the 95th percentile threshold of the highest intraclass correlation divided by the 

number of edges for a given node) using the Schaefer atlas (400 nodes). A higher nodal 

density means that the node had a higher proportion of edges contributing to self-

identifiability. 
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Supplementary Figure 2.13 
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Supplementary Figure 2.13 – Nodal density of edges highly contributing to others-

identifiability. For each age window, we plot the nodal density (sum of edges above the 

95th percentile threshold of the highest intraclass correlation divided by the number of 

edges for a given node) using the Schaefer atlas (400 nodes). A higher nodal density 

means that the node had a higher proportion of edges contributing to others-identifiability. 
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Supplementary Figure 2.14 

 

Supplementary Figure 2.14 – Average overlap between group-level and individual-

level clustering of functional connectivity edges. For each cluster label derived by the 

7-cluster K-means, we computed the average overlap between the cluster labels 

assigned to group-level connectivity and the individual-level connectivity using the 

Jaccard coefficient. A coefficient closer to 1 indicates that the clusters overlap more 

between group- and individual-level connectivity, while a coefficient closer to 0 indicates 

that the clusters overlap less between group- and individual-level connectivity. 
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Supplementary Figure 2.15 
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Supplementary Figure 2.15 - Change in within- and between-individual variability 

in functional connectivity across the lifespan and across tasks. This figure presents 

the association between FC variability within- (panel A.) and between-individual (panel 

B.) and age. It also presents the association between variability in temporal similarity 

profile within- (panel C.) and between-individuals (panel D.). Each network is color-coded 

based on the abbreviation and color scheme presented in Figure 2.1B. A lozenge next to 

the network acronym representing the network at the bottom of each graph indicates that 

the model survived controlling for confounders and bootstrap resampling. 
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Supplementary figure 2.16 
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Supplementary Figure 2.16 – Association between BOLD signal amplitude and age 

across the lifespan. The amplitude of the fMRI BOLD signal was computed in both the 

Rest (A) and Task (B) modality separately. Then, the amplitude was related to age using 

a non-linear (quadratic) model. The beta coefficient of the age term and its quadratic term 

are presented at the top of the graph. We also present the adjusted R2 of the model and 

the p-value of the nested likelihood ratio indicating the non-linearity of the relationship. 

The p-value of predictors surviving inclusion of covariates and execution of the 

bootstrapping are indicated by asterisks (p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *, p < 

0.1 = °). 
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Supplementary Figure 2.17 
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Supplementary Figure 2.17 – Association between BOLD signal amplitude and self-

identifiability across the lifespan. The average amplitude of the fMRI BOLD signal was 

computed in both the Rest (A) and Task (B) modality separately. Then, the amplitude was 

related to age using a non-linear (quadratic) model. The beta coefficient of the age term 

and its quadratic term are presented at the top of the graph. We also present the adjusted 

R2 of the model and the p-value of the nested likelihood ratio indicating the non-linearity 

of the relationship. The p-value of predictors surviving inclusion of covariates and 

execution of the bootstrapping are indicated by asterisks (p < 0.001 = ***, p < 0.01 = **, 

p < 0.05 = *, p < 0.1 = °). 
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Supplementary Figure 2.18 

 

Supplementary Figure 2.18 - Association between grey matter volume and others-

identifiability. Scatterplots presenting the association between others-identifiability and 

grey matter volume in three morphometric networks: frontal structural network (age-

sensitive network), limbic structural network (Alzheimer’s/age-related network) and visual 

structural network (“control” network). Data points, regression slopes and bubbles below 

the graph follow the color scheme of Figure 2.1B. A “◆” at the upper right of the bubble 

indicates that the association survived when using bootstrapping and controlling for 

covariates (including age). Panel A. presents the results for within-network edges while 

panel B. presents the results for the between-network edges. 
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Supplementary Figure 2.19 

 
  



 148 

Supplementary Figure 2.19 – FC variability and grey matter associations. 

Scatterplots presenting the association between within-individual (panels A. and B.) and 

between-individual variability in FC (panels C. and D.), and grey matter volume in three 

morphometric networks: frontal structural network (age-sensitive network), limbic 

structural network (Alzheimer’s/age-related network) and visual structural network 

(“control” network). Data points, regression slopes and bubbles below the graph follow 

the color scheme of Figure 2.1B. A “◆” at the upper right of the bubble indicates that the 

association survived when using bootstrapping and controlling for covariates (including 

age). 
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Supplementary Table 2.1 – McNemar tests comparing fingerprint identification 

accuracy obtained from within-network edges and between-network edges 

 

Network 
Within-network 

accuracy 

Between-network 

accuracy 
Statistic 

Visual 
75.6 

(71.7-79.4) 

99.8 

(99.4-100) 

c² (df = 1, p < 

0.001) = 113.08 

Somatomotor 
80.7 

(77.2-84.3) 

100 

(-) 
n/a 

Limbic 
81.2 

(77.7-84.6) 

97.9 

(96.7-99.2) 

c² (df = 1, p < 

0.001) = 63.92 

Dorsal 

attention 

93.2 

(90.9-95.4) 

100 

(-) 
n/a 

Default mode 
100 

(-) 

100 

(-) 
n/a 

Salience 
69.6 

(65.6-73.7) 

99.6 

(99.0-100) 

c² (df = 1, p < 

0.001) = 143.01 

Frontoparietal 
98.3 

(97.2-99.5) 

100 

(-) 
n/a 

In cases where all participants were identified accurately, the McNemar test cannot 

be calculated. 
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Supplementary Table 2.2 – McNemar tests comparing the fingerprint identification 

accuracy between networks (within-network edges) 

 

 Visual 

(75.6%) 

Somato-

motor 

(80.7%) 

Limbic 

(81.2%) 

Dorsal 

attention 

(93.2%) 

Default 

mode 

(100%) 

Salience 

(69.6%) 

Fronto-

parietal 

(98.3%) 

Visual (75.6%)  c² (df = 1, p = 

0.037) = 

4.331 

c² (df = 1, 

p = 0.012) 

= 6.322 

c² (df = 1, p 

< 0.001) = 

62.284 

n/a 
c² (df = 1, p 

= 0.0293) = 

4.752 

c² (df = 1, p < 

0.001) = 104.22 

Somato-motor 

(80.7%) 

  c² (df = 1, 

p = 0.603) 

= 0.271 

c² (df = 1, p 

< 0.001) = 

44.444 

n/a 
c² (df = 1, p 

< 0.001) = 

23.025 

c² (df = 1, p < 

0.001) = 79.281 

Limbic  

(81.2%) 

   c² (df = 1, p 

< 0.001) = 

30.533 

n/a 
c² (df = 1, p 

< 0.001) = 

23.841 

c² (df = 1, p < 

0.001) = 65.878 

Dorsal 

attention 

(93.2%) 

    

n/a 

c² (df = 1, p 

< 0.001) = 

97.714 

c² (df = 1, p < 

0.001) = 17.633 

Default 

mode (100%) 

     
n/a n/a 

Salience 

(69.6%) 

      c² (df = 1, p < 

0.001) = 133.17 

Fronto-parietal 

(98.3%) 
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McNemar tests were calculated for every pair of networks that didn’t have perfect identification 

accuracy. To simplify the table, only the upper half was completed (the diagonal yields a chi-

square of 0, and the lower half would be exactly symmetric to the upper half) 
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Supplementary Table 2.3 – McNemar tests comparing fingerprint identification 

accuracy from product–moment-derived FC and from partial correlation derived FC 

(within-network edges) 

Network 
Product–moment 

FC 

Partial correlation 

FC 
Statistic 

Visual 
76.6 

(72.8-80.4) 

75.6 

(71.7-79.4) 

c² (df = 1, p = 

0.705) = 0.144 

Somatomotor 
77.7 

(73.9-81.4) 

80.7 

(77.2-84.3) 

c² (df = 1, p = 

0.301) = 1.070 

Limbic 
79.3 

(75.7-82.9) 

81.2 

(77.7-84.6) 

c² (df = 1, p = 

0.423) = 0.643 

Dorsal 

attention 

91.9 

(89.5-94.4) 

93.2 

(90.9-95.4) 

c² (df = 1, p = 

0.450) = 0.571 

Default mode 
96.3 

(94.6-98.0) 

100 

(-) 
n/a 

Salience 
97.7 

(96.4-99.1) 

69.6 

(65.6-73.7) 

c² (df = 1, p < 

0.001) = 123.14 

Frontoparietal 
98.3 

(97.2-99.5) 

98.3 

(97.2-99.5) 

c² (df = 1, p = 1) 

= 0 

Whole brain 
95.4 

(93.6-97.3) 

100 

(-) 
n/a 

In cases where all the sample was identified accurately, the McNemar test cannot 

be calculated. 
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Supplementary Table 2.4 – McNemar tests comparing fingerprint identification 

accuracy from product–moment-derived FC and from partial correlation derived FC 

(between-network edges) 

Network 
Product–moment 

FC 

Partial correlation 

FC 
Statistic 

Visual 
66.7 

(62.5-70.9) 

99.8 

(99.4-100) 

c² (df = 1, p < 

0.001) = 158.01 

Somatomotor 
80.3 

(76.8-83.8) 

100 

(-) 
n/a 

Limbic 
90.0 

(87.4-92.7) 

97.9 

(96.7-99.2) 

c² (df = 1, p < 

0.001) = 24.45 

Dorsal 

attention 

93.2 

(90.9-95.4) 

100 

(-) 
n/a 

Default mode 
91.1 

(88.6-93.6) 

100 

(-) 
n/a 

Salience 
92.5 

(90.2-94.9) 

99.6 

(99.0-100) 

c² (df = 1, p < 

0.001) = 28.658 

Frontoparietal 
94.9 

(93.1-97.0) 

100 

(-) 
n/a 

In cases where all the sample was identified accurately, the McNemar test cannot 

be calculated. 
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3.1 – Preface 

 Results from Chapter 2 indicated that interindividual differences remain in 

functional networks all throughout life, no matter the age of participants. We also showed 

that these differences were associated with age-related grey matter volume. Overall, this 

suggests that interindividual differences can have an impact on other variables we 

measure and associate with the brain. This last point is echoed in the literature, as studies 

suggest that individual-specific functional connectivity is associated with lifestyle 

variables in healthy populations (Bijsterbosch et al., 2018; Mansour et al., 2020) and 

clinical information in patients with schizophrenia (Kaufmann et al., 2018), with different 

psychopathologies (Kaufmann et al., 2017) or with cognitive decline (Sorrentino et al., 

2020). 

 Taken together, the literature and Chapter 2 suggest that interindividual 

differences in the brain can help bridge our understanding of the brain and its role in 

disease-related variables. This doesn’t only have implications in cognitively unimpaired 

participants, but also impacts how we understand disorders. For example, research in 

recent years has indicated that there is significant heterogeneity in the brains of patients 

with AD (Ferreira et al., 2020). This heterogeneity seems particularly important in 

predicting the spread of tau pathology—one of the main hallmarks of AD associated with 

cognitive decline (Ossenkoppele et al., 2018)—where individualized markers of tau 

pathology outperform group-level markers (Franzmeier et al., 2020; Leuzy et al., 2023) to 

track the pathology. However, this clashes somewhat with previous literature indicating 

that tau pathology follows a stereotypical gradient from the middle temporal to the 

sensorimotor cortex (Braak & Braak, 1991; Therriault, Pascoal, Lussier, et al., 2022). 
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 As such, in Chapter 3, we developed a tool, the spatial extent, that computes the 

extent to which tau pathology has spread in the brains of participants at the individual 

level. This was done so we could specifically study interindividual differences in the 

accumulation of tau pathology and compare it to the traditionally accepted patterns of tau 

pathology. We also related this spread at the individual level to cognition in order to 

establish a potential clinical relevance of individual-level markers of tau pathology.  
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3.2 – Abstract 

The accumulation of tau abnormality in sporadic Alzheimer’s disease is believed 

typically to follow neuropathologically defined Braak staging. Recent in-vivo positron 

emission tomography (PET) evidence challenges this belief, however, as accumulation 

patterns for tau appear heterogeneous among individuals with varying clinical 

expressions of Alzheimer’s disease.  We, therefore, sought a better understanding of the 

spatial distribution of tau in the preclinical and clinical phases of sporadic Alzheimer’s 

disease and its association with cognitive decline. 

Longitudinal tau-PET data (1,370 scans) from 832 participants (463 cognitively 

unimpaired, 277 with mild cognitive impairment and 92 with Alzheimer’s disease 

dementia) were obtained from the Alzheimer’s Disease Neuroimaging Initiative. Among 

these, we defined thresholds of abnormal tau deposition in 70 brain regions from the 

Desikan atlas, and for each group of regions characteristic of Braak staging. We summed 

each scan’s number of regions with abnormal tau deposition to form a spatial extent index. 

We then examined patterns of tau pathology cross-sectionally and longitudinally and 

assessed their heterogeneity. Finally, we compared our spatial extent index of tau uptake 

with a temporal meta region of interest—a commonly used proxy of tau burden—

assessing their association with cognitive scores and clinical progression. 

More than 80% of amyloid-beta positive participants across diagnostic groups 

followed typical Braak staging, both cross-sectionally and longitudinally. Within each 

Braak stage, however, the pattern of abnormality demonstrated significant heterogeneity 

such that the overlap of abnormal regions across participants averaged less than 50%, 

particularly in persons with mild cognitive impairment.  Accumulation of tau progressed 
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more rapidly among cognitively unimpaired and participants with mild cognitive 

impairment (1.2 newly abnormal regions per year) compared to participants with 

Alzheimer’s disease dementia (less than one newly abnormal region per year). 

Comparing the association of tau pathology and cognitive performance our spatial extent 

index was superior to the temporal meta-ROI for identifying associations with memory in 

cognitively unimpaired individuals and explained more variance for measures of executive 

function and language in mild cognitive impairment and Alzheimer’s disease dementia 

participants.  

Thus, while participants broadly followed Braak stages, significant individual 

regional heterogeneity of tau binding was observed at each clinical stage. Progression of 

the spatial extent of tau pathology appears to be fastest in cognitively unimpaired and 

persons with mild cognitive impairment. Exploring the spatial distribution of tau deposits 

throughout the entire brain may uncover further pathological variations and their 

correlation with cognitive impairments. 
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3.3 – Introduction 

The first positron emission tomography (PET) tracers of tau pathology were 

developed almost a decade ago (Xia et al., 2013). These tracers have advanced our 

understanding of the role of tau pathology in aging and Alzheimer’s disease (Leuzy et al., 

2019; Lowe et al., 2016; Marquié et al., 2015; Schöll et al., 2016). However, several 

questions remain, including the spatial progression of the disease across the whole brain. 

Our principal aim was to provide a comprehensive view and the clinical relevance of 

cross-sectional and longitudinal tau-PET binding in late-onset sporadic Alzheimer’s 

disease. Using data from the Alzheimer’s disease neuroimaging initiative (ADNI) we here 

report the abnormal tau PET binding patterns in individuals classified as being cognitively 

unimpaired [CU] or having mild cognitive impairment [MCI] or Alzheimer’s disease 

dementia. We also report the amount and the spatial extent of tau abnormality across 

these clinical groups both cross-sectionally and over time. Finally, we describe their 

association with cognitive impairment. 

The progression of tau pathology in the brain is generally believed to follow a 

stereotypical pattern approximating the Braak stages defined post-mortem, where tau 

starts accumulating in medial temporal regions (Braak I-II) before accumulating in limbic 

regions (Braak III-IV) and finally to the whole cortical mantle (Braak V-VI). (Braak & Braak, 

1991) Many PET studies have confirmed this pattern in-vivo (Sanchez et al., 2021; Schöll 

et al., 2016; Therriault et al., 2022), and studies investigating associations between tau 

and clinical variables usually average tau from a predefined set of temporal regions (i.e., 

a temporal meta-region of interest or ROI) to approximate the early stages of tau 
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accumulation (Jack et al., 2017; Ossenkoppele et al., 2018; Strikwerda-Brown et al., 

2022). 

Reports in recent years have highlighted the limitations of this homogenous 

approach as tau progression patterns can differ across individuals (Franzmeier et al., 

2020; Vogel et al., 2021) and between different disease variants (La Joie et al., 2020; 

Ossenkoppele et al., 2020; Singleton et al., 2021). These inter-individual differences 

would seem important to track longitudinal changes, and it has been suggested that tau 

accumulation is better captured when using individualized ROIs (Franzmeier et al., 2020; 

Leuzy et al., 2023). Inter-individual differences in tau pathology may become particularly 

critical when tracking clinical progression. The evidence thus far highlights that tau, rather 

than amyloid-beta (Ab) alone, is a reliable indicator of future clinical progression 

(Ossenkoppele et al., 2022; Strikwerda-Brown et al., 2022), and is well associated with 

cognitive change in the early stages of Alzheimer’s disease (Biel et al., 2021; Hanseeuw 

et al., 2019; Ossenkoppele et al., 2021; Pontecorvo et al., 2017, 2019). Therefore, if tau 

patterns and their progression are indeed heterogeneous, it is likely that tracking tau with 

a single set of regions across participants may misrepresent a significant portion of them. 

Leveraging 1,370 tau PET scan visits from 832 ADNI participants across the 

Alzheimer’s disease spectrum, we characterized the spatial extent of tau pathology 

across the whole brain (70 brain regions) both cross-sectionally and longitudinally. We 

summarized these measures by developing a novel index, the spatial extent index. This 

index accounts for individual differences in tau-PET patterns by evaluating the extent of 

tau pathology for any single individual across the whole brain. We then evaluated how 

the spatial extent index related to performance in different cognitive domains. We 
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compared this approach with more traditional measures of Braak staging and tau-PET 

uptake in a temporal meta-region of interest (ROI) (Jack et al., 2017). We hypothesized 

that a region-specific analysis of tau-PET abnormality would offer a more useful measure 

of cognitive impairment than other approaches that rely on tracer uptake in one set of 

regions across all individuals.  
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3.4 – Methods 

3.4.1 – Participants 

We used data from ADNI, a multi-site study launched in 2003 as a public-private 

partnership. The primary goal of ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early Alzheimer’s disease. For up-to-date 

information, see www.adni-info.org. We conducted the analyses using ADNI longitudinal 

data available in May 2022. We included participants who had at least one available tau 

(flortaucipir) and one Ab (florbetapir or florbetaben) PET scan, and who had an available 

diagnostic assessment within two years from the tau scan in ADNI3. 

3.4.2 – PET acquisition and processing 

We used fully preprocessed data from the ADNI consortium.  Details on PET 

acquisition and preprocessing procedures can be found elsewhere 

(http://adni.loni.usc.edu/methods/documents/). Briefly, for tau-PET, the flortaucipir tracer 

([18F] AV-1451) was used and images were acquired 75-105 minutes post-injection. For 

Ab-PET, florbetapir or florbetaben were used, and images were acquired 50-70- and 90-

110-minutes post-injection, respectively. Briefly, PET images were realigned, averaged, 

resliced to 1.5mm3 and smoothed to a resolution of 8mm3 full width at half-maximum. 

Then, the closest T1-weighted MRI available for a participant was processed and 

segmented using FreeSurfer 7.1.1, and co-registered to the PET scan using SPM. 

SUVRs were extracted from each cortical region of the Desikan atlas (Desikan et al., 

2006). The inferior cerebellum was used as the reference region for flortaucipir, and the 

whole cerebellum was the reference region for Ab-PET. As suggested by the ADNI PET 

http://www.adni-info.org/
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core group, we divided the SUVR values provided by ADNI by the SUVR values in the 

reference region for each tracer. 

Ab-PET positivity status was determined according to the cutoff derived from the 

ADNI PET core based on a neocortial composite region: participants exceeding 1.11 

SUVR for florbetapir or 1.08 SUVR for florbetaben were considered positive. We also 

converted the SUVR values into centiloid units for supplementary analyses, following 

established formulas from the ADNI PET core (Royse et al., 2021). 

3.4.3 – Regional tau-PET and other measures of interest 

Our main interest was to study the patterns of elevated regional tau-PET uptake 

across the brain at the individual level. For this aim, we derived an SUVR cutoff for each 

brain region of interest using Gaussian-mixture modeling (GMM) on the entire cross-

sectional sample of ADNI participants. This procedure is illustrated in Figure 3.1. We fitted 

a two-component GMM for each region and used the SUVR closest to the 50% probability 

of belonging to the abnormal (high values) distribution as the regional cutoff, as done 

previously (Pichet Binette et al., 2022; Vogel et al., 2020). The GMMs were initialized 

using k-means and parametrized using scikit-learn’s v1.2.1 default settings. We ensured 

that a two-component solution was a better fit compared to a single-component solution 

by verifying that the Bayesian Information Criterion of the two-component solution was 

higher. The brain regions of interest were the 34 bilateral cortical regions of the Desikan 

atlas (Desikan et al., 2006) and the amygdalae. We then binarized the tau SUVR from 

each region, and values at or exceeding the cutoff were coded as one and a score lower 

than the cutoff as zero. From there, we derived our main measure of interest: the spatial 

extent index, which is the sum of regions exceeding the regional thresholds for a given 
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participant. Regional thresholds for each region are provided in Supplementary Table 3.1. 

The main results were replicated by setting regional thresholds based on 2 standard 

deviations from the mean of the tau SUVR of CU Ab- participants and deriving the spatial 

extent with these alternative thresholds (see Supplementary Results, Supplementary 

Tables 3.2 and 3.5, and Supplementary Fig. 3.9 to 3.13). 

 

 

Figure 3.1 Spatial extent methodology. For each cortical region of the Desikan atlas 

and the bilateral amygdalae, we extract the standardized uptake value ratio (SUVR) of 

our participants (1). Then, a two-component gaussian mixture modelling technique is 

applied to the SUVR values in each region (2-3). The second distribution is considered to 

reflect abnormally high SUVR tau values. We extract the probability that each participant 

belongs to the “abnormal” distribution and establish a threshold that individuals with over 

50% probability are considered positive for the given region (4). Once thresholds are 

derived across all regions, we derive the spatial extent index for each participant by 

summing the number of positive regions across the brain. (5). We also apply the same 
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methodology to the average SUVR within each aggregate composing Braak stages I and 

III through VI (warmer to colder colors) (6). To compare our spatial extent index in the 

cognition analyses, we also compute the average SUVR in a classic temporal meta-ROI. 

(7) CU = Cognitively unimpaired, MCI = Mild cognitive impairment, AD = Alzheimer’s 

disease. Figure adapted from sihnpy’s documentation (https://sihnpy.readthedocs.io/) 

with permission of the first author. 

We also derived a more typical temporal meta-ROI (Jack et al., 2017) and the 

regions composing the Braak staging scheme (Braak & Braak, 1991; Schöll et al., 2016; 

Therriault et al., 2022). The temporal meta-ROI was the average SUVR from key regions 

harboring elevated tau-PET SUVR in Alzheimer’s disease: the entorhinal cortex, the 

parahippocampal, inferior temporal, the middle temporal and fusiform gyri, and the 

amygdalae (Jack et al., 2017). In the Braak Staging scheme, pathology accumulation 

follows a predetermined order ranging from Braak I to VI until the whole cortical mantle is 

affected by tau (see Supplementary Table 1 for all regions included in each stage) (Braak 

& Braak, 1991; Therriault et al., 2022). Braak II (hippocampus) was excluded from our 

analyses owing to the known choroid plexus off-target binding effect of the flortaucipir tau-

PET tracer (Lowe et al., 2016). We averaged the tau-PET SUVR values in bilateral 

regions comprising each Braak stage, following methods described previously 

(McSweeney et al., 2020; Schöll et al., 2016). We then applied the GMM approach, as 

described in Figure 3.1, to determine a data-driven threshold for each Braak stage. These 

thresholds were then applied to assign which individuals were positive on each Braak 

stage. 

https://sihnpy.readthedocs.io/
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A subset of 195 participants had at least two tau-PET scans for longitudinal 

analyses, with 100 having three such scans.  The same regional binarization of positive 

(score 1) or negative (score 0) using the regional cutoffs was applied to all time points. 

 

3.4.4 – Neuropsychological measures 

To compare the clinical implications of our regional index score vs. a typical meta-

ROI analysis, we compared the association of each with composite cognitive scores for 

memory, executive function (Gibbons et al., 2012), language and visuo-spatial 

performance (Mukherjee et al., 2022). The cognitive performance data were taken as the 

test timepoint closest in time to tau-PET. As well, we assessed cognitive decline in 

participants by estimating slopes of annual change for each cognitive composite score 

using linear mixed effects models with random slopes and intercepts.  For these analyses 

the cognitive score at each visit was the outcome, with the exposure being time since the 

initial cognitive test score in ADNI.  These analyses considered all ADNI visits for the 

whole sample, thereby maximizing the number of timepoints contributing to estimates of 

individual slopes. For all cognitive domains, models met assumptions of linearity, 

homoscedasticity, and normality of residuals, except for the visuospatial score, where 

very small change over time was observed. 

3.4.5 – Statistical analyses 

All statistical analyses were run using Python v3.9.2 (numpy v1.23.1; pandas 

v1.4.3; scipy v1.9.3; scikit-learn v1.2.1; matplotlib v3.6.3), R v4.2.0 (Packages: lme4 v1.1-

30; tidyverse v1.3.1; lmerTest v3.1-3; lmtest 0.9-40; nonnest2 v0.5-5; tableone v0.13.2; 

patchwork v1.1.2; ggseg v1.6.5; ggnewscale v0.4.7; glue v1.6.2; MASS v7.3-59; cocor 
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v1.1-4; performance v0.10.1; pscl v1.5.5.1) and R Studio "Prairie Trillium" Release 

(1db809b8, 2022-05-16) for macOS. 

3.4.5.1 – Demographics 

We compared groups on their demographic information by their diagnostic status 

separately for Aβ+ and Aβ- participants using one-way ANOVA and Tukey post-hoc tests 

being used for continuous variables and chi-square tests for categorical variables. 

3.4.5.2 – Cross-sectional characterization of tau 

We first compared tau levels of Aβ-positive vs. Aβ-negative individuals. For the 

three diagnostic groups of CU, MCI, or Alzheimer’s disease dementia, we compared our 

spatial extent index with the temporal meta-ROI SUVR contrasting Aβ+ and Aβ- 

individuals within each clinical group using ANOVA and post-hoc Tukey tests. Logistic 

regression complemented this analysis by quantifying the probability of having a spatial 

extent index of at least one based on a continuous burden of Aβ pathology (centiloid 

values). The linearity of log odds of having a spatial extent of at least one to centiloid 

values was verified. As tau-PET binding was typically low in Aβ- participants, all 

subsequent analyses were done separately in each diagnostic group in the Aβ+ sample. 

We calculated the extent to which each participant’s tau pathology was consistent with 

Braak staging. To do this, at each Braak stage, we computed the percentage of 

participants who were tau-positive both at their more advanced Braak stage and at all 

previous stages (e.g., if a participant was positive on Braak IV, and was also positive on 

Braak III and I, then this participant was judged to have data in accord with Braak staging). 
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3.4.5.3 – Longitudinal characterization of tau 

We used linear mixed-effect models to calculate the annual change of the tau 

spatial extent and the temporal meta-ROI (tau as the outcome; time since first tau scan 

as exposure) with random slopes and intercepts for each participant for the temporal 

meta-ROI. As the spatial extent index represents a count of regions, we used a Poisson 

mixed model to model the longitudinal change correcting for zero inflation as the models 

significantly underfitted the zero counts. At the group level, we used linear mixed-effect 

models with random slopes and intercepts to track the annual change in positivity across 

the cohort and the annual change in SUVR in each brain region and plotted the regions 

on a template brain map. We calculated the extent to which Braak stages were followed 

by participants longitudinally. For each Braak stage, we computed the percentage of 

participants who became positive at each stage, and who were already positive or 

progressed in the previous Braak stages (e.g., if a participant became positive on Braak 

IV at their last visit and was already positive or progressed in Braak III and I, the 

participant followed the Braak stages). 

3.4.5.4 – Tau-PET heterogeneity 

We computed the overlap between the patterns of abnormal tau at baseline or over 

time between participants in the same diagnostic group using the Jaccard Similarity index. 

The index ranges from zero to one where zero indicates that not a single positive region 

overlaps between participants, and one indicates that all positive regions between two 

participants perfectly overlap. We then averaged the values so that each participant would 

be left with a single value representing, on average, how similar their tau positivity pattern 
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was to the rest of their diagnostic group at the whole brain level. Analyses were always 

restricted to individuals with at least one positive region. 

3.4.5.5 – Associations with demographic variables and cognition 

We assessed whether the spatial extent index was associated with demographic 

characteristics (i.e., age, gender, education and ApoE4 genotype) using linear models, 

controlling for the other three factors. Then, we studied the association between our tau 

spatial index measures at baseline and the cognitive performance at the time of the PET, 

and the cognitive decline (slope) across all available cognitive visits using linear models. 

Beta, standardized beta, P-values and model fit (R2 and AIC), are reported. Models were 

adjusted for age, sex and education and were also subjected to a false discovery rate 

(FDR) multiple comparison correction. Differences in model fit between different tau 

measures were assessed using Vuong’s closeness test (i.e., non-nested likelihood ratio 

test; Vuong et al., 1989). As complementary analyses, we also assessed the association 

between tau uptake and cognitive performance in each of the 70 brain regions. Tau SUVR 

in each region was associated with cognitive performance and cognitive decline for each 

diagnostic group, controlling for age, sex, and education. Within each group, a False 

Discovery Rate (FDR) correction was applied.  

As complimentary analyses, we assessed the association between tau uptake and 

cognitive performance in each of the 70 brain regions. Tau SUVR in each region was 

associated with cognitive performance and cognitive decline for each diagnostic group, 

controlling for age, sex, and education. Within each group, a False Discovery Rate (FDR) 

correction was applied to avoid multiple comparison issues. Beta coefficients of the 

surviving relationships were plotted on brain templates. 
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3.4.6 – Data availability 

Data used in this study come from the Alzheimer’s disease neuroimaging initiative 

(ADNI). Investigators interested in obtaining the data can apply for access on ADNI’s 

website: https://adni.loni.usc.edu/. The code used to compute the spatial extent measures 

is publicly available in sihnpy as of version v0.2, a Python package freely available for 

download (https://sihnpy.readthedocs.io/). The code used for the statistical analyses and 

for the figures is also made available freely on Github 

(https://github.com/villeneuvelab/projects). 

Figure 3.2 Amyloid and tau status in the cohort. (A) Ab/tau (AT) status in the included 

participants from ADNI. Ab positivity was established using ADNI’s tracer-specific 

recommendations for both florbetapir and florbetaben. Tau positivity was defined as 

having at least one region positive for tau pathology (spatial extent index of one and 

https://adni.loni.usc.edu/
https://sihnpy.readthedocs.io/
https://github.com/villeneuvelab/projects


 172 

above). (B) Scatterplot of the probability of having at least one positive tau region (i.e., 

spatial extent index equal to or higher than one) as a function of the Ab load (in centiloid). 

The probability was extracted from a logistic regression. Odds ratio (and confidence 

interval) derived from a logistic regression is presented at the bottom of the graph. Note 

that the points were jittered by a factor of 0.065x0.065 for visualization purposes. 
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3.5 – Results 

3.5.1 – Participants 

A total of 1,370 tau scans from 832 unique participants had at least one Aβ- and 

tau-PET scan. At the time of the baseline tau scan, 463 participants were cognitively 

unimpaired (CU), 277 had mild cognitive impairment (MCI) and 92 had Alzheimer’s 

disease dementia. About half of the sample (51%) were female, and 34% had at least 

one ApoE4 allele. Participants were on average 73.56 ± 7.95 years old. Overall, 35.1% 

(n = 107) of CU individuals, 47.7% (n = 132) individuals with MCI, and 83.7% (n = 77) 

individuals with AD were Aβ-positive. Full demographic information is available in Table 

3.1.  

In the Aβ-positive sample, 12.1% (n = 56) of CU participants, 36.1% (n = 100) of 

MCI and 73.9% (n = 68) of Alzheimer’s disease patients had at least one region of tau 

positivity (Fig. 3.2A, heatmap in Fig. 3.3A). In the Aβ-negative sample, a small percentage 

of participants had at least one tau-positive region (heatmap in Supplementary Fig. 3.1B 

and Supplementary Fig. 3.2) and had lower tau SUVR in the temporal meta-ROI 

(Supplementary Fig. 3.2). Every increase of 1 Aβ centiloid unit increased the odds of 

having at least one brain region with abnormal tau tracer uptake abnormal by 4% (Fig. 

3.2B). Considering these findings, and our focus on tau pathology, we restricted the rest 

of the main analyses to Aβ-positive individuals (n = 372). 

3.5.2 – Cross-sectional tau-PET patterns 

We found that, across diagnostic groups, the entorhinal cortex (Braak I) was the 

region most positive across Aβ-positive individuals (CU = 17.2%, MCI = 59.9%, 



 174 

Alzheimer’s disease = 74.7%; Fig. 3.3B, Supplementary Fig. 3.3 & Supplementary Table 

3.2). 
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Table 3.1 – Demographic information 
 Ab-negative (n=460) Ab-positive (n=372) 
 CU  

(n=300) 
MCI 

(n=145) 
AD 

(n=15) 
CU 

(n=163) 
MCI 

(n=132) 
AD 

(n=77) 
Sex, n Females, (%) 176 (58.67) 56 (38.62) 5 (33.33) 96 (58.90) 65 (49.24) 32 (41.56) 

APOE4 carriers, n (%) 66 (22.00) 23 (15.86)          5 (33.33) 73 (44.79) 70 (53.03) 48 (62.34) 
       

Age (years) 71.48 (7.31)       73.72 (8.48)       73.83 (8.43)       74.82 (7.57)       74.36 (7.39) 77.35 (8.93) 
Education (years) 16.83 (2.30)       16.32 (2.74)       16.07 (2.60)       16.64 (2.34)       15.99 (2.49) 15.55 (2.48) 

Centiloid values 4.09 (8.11)        1.18 (10.53)       1.63 (11.27) 53.47 (30.83)      75.78 (35.15) 90.14 (32.86) 
       

Memory composite 
score 1.08 (0.61) b,c 0.52 (0.62) a,c -0.55 (0.48) a,b 1.00 (0.62) b,c 0.07 (0.59) a,c -0.77 (0.57) a,b 

Executive composite 
score 1.20 (0.82) b,c 0.61 (0.82) a,c -0.47 (0.95) a,b 0.92 (0.77) b,c 0.19 (0.92) a,c -0.79 (1.16) a,b 

Language composite 
score 0.89 (0.51) b,c 0.52 (0.50) a,c -0.21 (0.39) a,b 0.75 (0.49) b,c 0.41 (0.55) a,c -0.18 (0.61) a,b 

Visuospatial composite 
score 0.13 (0.29) b 0.01 (0.34) a -0.07 (0.44) 0.06 (0.36) c 0.00 (0.38) c -0.43 (0.72) a,b 

Longitudinal sub-
sample 

CU 
(n=96) 

MCI 
(n=40) 

AD 
(n=10) 

CU 
(n=90) 

MCI 
(n=66) 

AD 
(n=39) 

Average number of tau 
PET scan per participant 2.56 (0.87) 2.52 (0.72) 2.20 (0.42) 2.68 (0.75) 2.58 (0.66) 2.54 (0.60) 

Average number of 
cognitive visits per 

participant 
6.24 (3.45) 8.75 (5.59) a, c 3.80 (3.88) 6.18 (3.83) 5.55 (4.21) 4.54 (4.02) 

a : significantly different from CU group, b: significantly different from MCI group, c: significantly different from AD group. Values 
correspond to mean (standard deviation) unless otherwise specified. APOE4 positivity corresponds to having at least 1 e4 allele. 
Statistical tests were performed within each of Ab-negative and Ab-positive groups. 
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In all diagnostic groups, the five regions that were most often tau positive after the 

entorhinal cortex were, in order, the inferior temporal (Braak IV), the amygdalae (Braak 

III), the parahippocampal gyri (Braak III), the middle temporal (Braak IV) and the fusiform 

gyri (Braak III). All the regions above constituted the temporal meta-ROI (Jack et al., 

2017). Similarly, we found that participants largely follow the Braak staging scheme (Fig. 

3.3A): across all Braak stages up to and including Braak V, over 91% of participants 

positive on any given Braak stage were also positive on all previous Braak stages. 

3.5.3 – Longitudinal tau-PET patterns 

We repeated the analyses in our longitudinal sample (n = 195). Specifically, we 

assessed whether participants becoming positive in a Braak stage at their last tau scan 

were either already positive in preceding Braak stages or also progressed in previous 

stages during the follow-up period. 

We quantified which brain regions were negative at baseline and became positive 

over time (progressor), were positive at baseline and became negative over time 

(regressor), were positive at both visits (stable positive) or were negative at both visits 

(stable negative). Similar to the cross-sectional results, we found that participants largely 

followed the Braak staging scheme (Fig. 3.4A): across all Braak stages up to and 

including Braak V, over 80% of participants who progressed on a Braak stage at follow-

up were already positive or progressed on all previous Braak stages. 
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Figure 3.3 Spatial extent of abnormal tau deposition in amyloid positive 

participants of the ADNI cohort. (A) Based on the method discussed in Figure 3.1, 

abnormality thresholds were determined for each I. Braak stages (except stage II) and for 

each II. region of the cortical mantle and the bilateral amygdalae (70 regions). One row 

on the heatmap correspond to an individual participant, while each column represents a 

distinct cortical region. Within each diagnostic group, participants were sorted from 

individuals with lowest to highest spatial extent index. Regions on the x-axis in II. are 

sorted by Braak stages. (B) Regional average SUVR, by diagnostic status. (C) Brain 

maps representing the percentage of participants having abnormal levels of tau in each 

region, by diagnostic status. 

Patterns of progression across the brain however were different between clinical 

stages (Fig. 3.4; Supplementary Table 3.3). Specifically, CU participants mostly 

progressed in the entorhinal cortex (Braak I) while tau abnormality in participants with 

MCI progressed across the entire cortex, and few participants with Alzheimer’s disease 

dementia accrued additional tau abnormal regions (Fig. 3.4C). Based on the tau spatial 

extent, the annual rate of regions progressing from negative to positive was 1.2 region 

per year in participants with MCI, which was similar to CU (1.3 region/year) but higher 

than participants with Alzheimer’s disease dementia (0.988 region/year). (Supplementary 

Fig. 3.4B). CU and MCI showed a significant rate of change over time compared to 

participants with Alzheimer’s disease dementia, which was similar in the temporal meta-

ROI. 

Few regressions from positive to negative were observed. In terms of Braak 

stages, 4 participants with MCI and 3 participants with Alzheimer’s disease dementia (4% 
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of total participants) regressed from a Braak positive to a negative status (usually Braak 

III, V or VI). In most cases, the participants only regressed on a single Braak stage. At the 

regional level, thirty participants (15%) had at least one individual region regressing from 

positive to negative. The rate of regression was lower in CU (3%) and participants with 

MCI (18%) compared to participants with Alzheimer’s disease dementia (38%), which 

could be explained by the higher number of positive regions in these participants.  
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Figure 3.4 Spatial localization of abnormal tau accumulation over time in amyloid-

positive participants of the ADNI cohort. (A) Abnormal accumulation is presented by 

(I.) Braak stages and (II.) all 70 individual brain regions of the Desikan atlas. Colors 

denote the change in the region between the baseline and the last available visit. A stable 

region (negative or positive; blue or yellow) did not change status during the follow-up. A 

progressing region (red) was originally negative and subsequently became positive over 

time. A regressing region (teal) was originally positive and became negative over time. 

(B) Brain maps presenting the average SUVR change per region per year. (C) Brain maps 

representing the percentage of participants becoming tau positive in each region 

annually. In both (B) and (C), values in the bilateral amygdalae are represented by small 

colored circles in the medial view of the brain, and the annual change is calculated in 

each region using linear mixed effect models with random slopes and intercepts. Only 

participants with at least three tau scans (n = 100) were kept for (B) and (C) to ensure a 

constant sample across the longitudinal follow-ups. 

Overall, we found that participants overwhelmingly followed the Braak staging 

scheme, demonstrated cross-sectionally and longitudinally, except for the very last Braak 

stage. However, we also show that there are substantial individual differences in 

abnormal regions at baseline and in the regional progression of tau pathology. 

3.5.4 – Heterogeneity of regional tau-PET abnormality 

While abnormal tau accumulation followed Braak staging, regional tau abnormality 

across the whole brain and within each Braak stage showed heterogeneity across 

individuals (Fig. 3.3A; Supplementary Table 3.2). CU participants demonstrated the least 

heterogeneity with an average overlap of 0.74 (± 0.15), participants with MCI had an 
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average overlap of 0.58 (± 0.14) and participants with Alzheimer’s disease dementia 

demonstrated the most heterogeneity with an average overlap of 0.46 (± 0.08). Within 

each Braak stage, the difference in heterogeneity was greatest between CU and MCI, 

with the MCI group showing more heterogeneity in the pattern of tau abnormal regions. 

The difference between MCI and AD was less pronounced and often not significant 

(Supplementary Fig. 3.5A). Results were also similar when considering heterogeneity in 

the progression of regional tau abnormality over time (Supplementary Fig. 3.5B). 

3.5.5 - Associations with demographic information, cognitive profiles and 

cognitive decline 

Given the heterogeneity in regions showing tau abnormality at the individual level 

across the AD continuum, we then evaluated if the measure of tau spatial extent could 

yield stronger associations with demographics and cognitive measures than the classical 

temporal meta-ROI. Of note, the temporal meta-ROI SUVR and the spatial extent 

correlated well with each other, showing the highest correlation in the MCI group, followed 

by Alzheimer’s disease and CU (Supplementary Fig. 3.2C). 

Younger participants with MCI (Spatial extent index: bstd = -0.22, p < 0.05, R2adj 

= 0.08; Temporal meta-ROI SUVR: bstd = -0.20, p < 0.05, R2adj = 0.07) or Alzheimer’s 

disease dementia (Spatial extent index: bstd = -0.65, p < 0.001, R2adj = 0.39; Temporal 

meta-ROI SUVR: bstd = -0.46, p < 0.001, R2adj = 0.17) had higher spatial extent index 

and temporal meta-ROI SUVR (Supplementary Fig. 3.6). We also found that ApoE4 

carriers in the MCI group had greater tau levels  (bstd = 0.41, p < 0.05, R2adj = 0.09 for 

the spatial extent index; bstd = 0.49, p < 0.05, R2adj = 0.10 for Temporal meta-ROI 
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SUVR). Sex and education were not associated with the spatial extent index or the 

temporal meta-ROI. 

 

Figure 3.5 Association between tau-PET measures, and memory performance and 

decline. (A) Memory performance closest in time to the tau-PET scan and (B) memory 

decline computed across the study period were associated to both temporal meta-ROI 
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SUVR and spatial extent index in Ab-positive participants using linear regressions. 

Cognitive decline was computed for each participant with more than two cognitive 

timepoints using linear mixed effect models with random slopes and intercepts. In each 

panel, columns represent a diagnostic group (leftmost/black: whole sample, second from 

the left/blue: cognitively unimpaired, second from the right/orange: mild cognitive 

impairment, right-most/red: Alzheimer’s disease). Simple and standardized b coefficients, 

adjusted R2 and AIC, controlled for age sex and education, are shown on the graphs. P-

value of models are indicated next to the simple beta coefficients. (° : P < 0.1, * : P < 0.05, 

** : P < 0.01, *** P  < 0.001) Results remained significant after a multiple comparison false 

discovery rate (FDR) correction. 

In CU participants, the spatial extent index was associated with the memory 

composite score (standardized [std] b = -0.20, P = 0.01, R2adj = 0.24) (Fig. 3.5) while the 

temporal meta-ROI was not (std b = -0.12, P > 0.10, R2adj = 0.21). The difference in model 

fit was not significant (Vuong’s z = -1.13, P = 0.13), however, suggesting that the spatial 

extent index provided only a marginally better model fit when compared to the more 

traditional temporal meta-ROI. In CU participants, neither the spatial extent index nor the 

temporal meta-ROI were associated with any other cognitive composite (executive, 

language or visuospatial) (Supplementary Fig. 3.5-3.7). In participants with MCI, both the 

spatial extent index and the temporal meta-ROI were nearly equally associated with the 

memory composite, and there were no differences in model fit (Vuong’s z = -1.35, P = 

0.089). However, the association between the executive composite (Vuong’s z = -2.77, p 

= 0.003), as well as the language composite (Vuong’s z = -1.89, p = 0.029) and the spatial 

extent index was stronger than that with the temporal meta-ROI. There was no 
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association between the spatial extent index or the meta-ROI and the visuospatial 

composite. In participants with Alzheimer’s disease, results were similar to participants 

with MCI: spatial extent index and temporal meta-ROI were both equally associated with 

the memory and the spatial extent index was more strongly associated with the executive 

composite than the temporal meta-ROI (Vuong’s z = -1.88, P = 0.030). However, the 

spatial extent index was not more strongly associated with the language composite 

compared to the temporal meta-ROI SUVR (Vuong’s z = 0.04, P = 0.516). There was no 

association between the spatial extent index or the temporal meta-ROI and the 

visuospatial composite. Looking at cognitive decline, the spatial extent index was more 

strongly associated with executive function decline compared to the temporal meta-ROI 

SUVR in participants with MCI (Vuong’s z = -1.695, P = 0.045). In all other cognitive 

domains, the temporal meta-ROI and spatial extent index offered a similar model fit for 

cognitive decline. 

In supplementary analyses, we also investigated regional associations between 

tau-PET SUVR and cognition (Fig. 3.6A). In CU participants, no individual region was 

associated with cognitive performance on any composite score. In participants with MCI, 

tau levels most associated with memory were largely comprised of regions within the 

temporal lobe, with some weaker associations in the parietal and frontal lobes. Tau levels 

most associated with executive functions comprised regions across the cortex. 

Associations with language were almost unilaterally restricted to the left temporal lobe. 

No associations survived multiple corrections for the visuospatial composite. Results 

were similar for participants with Alzheimer’s disease dementia with one exception; 
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region-wise associations with the visuospatial composite were significant and spanned 

outside of the temporal lobe. 

Looking at the association between baseline tau and longitudinal cognitive decline, 

region-wise analyses between tau SUVR and cognitive decline largely replicated our 

findings at the cross-sectional level (Fig. 3.6B). 

We also repeated the main analyses when deriving the spatial extent using 

alternative regional thresholds based on two standard deviations from CU Ab- participants 

(see Supplementary Results and Supplementary Fig. 3.10 to 3.14). Briefly,  analyses 

related to memory and executive function remained similar. The notable difference was 

that the group of A-T+ significantly increased in CU and MCI, as tau thresholds, mostly in 

regions outside of the temporal lobe, were lowered. 
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Figure 3.6 Region-wise associations between regional tau-PET SUVR and cognitive 

performance and decline in participants with MCI and Alzheimer’s disease. 
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Association between tau-PET SUVR and cognitive performance (A) and cognitive decline 

(B) in participants with MCI and with Alzheimer’s disease across four cognitive domains 

(memory, executive functioning, language and visuospatial). Cognitive decline was 

computed for each participant with more than two cognitive timepoints using linear mixed 

effect models with random slopes and intercepts. The standardized b coefficients of the 

associations between tau-PET SUVR in a specific region and each cognition measure is 

displayed if it survives adjustment for age, sex and education and a multiple comparison 

false discovery rate (FDR) correction (Pcorrected < 0.05). 

 

  



 189 

3.6 – Discussion 

We found that tau accumulation in late-onset sporadic Alzheimer’s disease, tau 

pathology and follows broad stages of pathological progression (i.e., Braak stages) 

uniformly across individuals, with early accumulation largely constrained to temporal lobe 

regions. However, abnormality in cortical tau at a finer-grain regional level is 

heterogeneous between participants, particularly as clinical symptoms progress. This 

effect was strongest in participants with mild cognitive impairment, who also showed the 

fastest region-to-region accumulation of abnormal tau across the whole brain. Finally, we 

also found that in cognitively unimpaired individuals the association between tau and 

memory was only significant using the spatial extent index while in participants with MCI 

or Alzheimer’s disease dementia the spatial extent index was more strongly associated 

with executive function performance than temporal meta-ROI SUVR. 

In line with the literature (Braak & Braak, 1991), we found that tau pathology usually 

accumulates in the entorhinal cortex (Braak I) before accumulating in other temporal 

regions (Braak III-IV; Berron et al., 2021; Krishnadas et al., 2023; Lee et al., 2022; 

Sanchez et al., 2021; Vogel et al., 2020) and finally large frontal and parietal regions 

(Braak V-VI; Therriault et al., 2022). Similarly to previous work (Lee et al., 2022; Ozlen et 

al., 2022; Sanchez et al., 2021; Vogel et al., 2020), this accumulation of abnormal 

amounts of tau pathology was mostly restricted to participants with high levels of Ab—as 

opposed to Ab-negative participants who showed little tau abnormality. An addition from 

our study is that these stages are followed not just cross-sectionally, but also over time. 

Overall, our results recapitulate and solidify our current understand that tau pathology 



 190 

largely accumulates following the broad Braak stages in late onset sporadic Alzheimer’s 

disease. 

Despite these uniform broad inter-individual patterns, we found that within Braak 

stages, tau abnormality is regionally and inter-individually heterogeneous, especially in 

more advanced disease stages (i.e., MCI or Alzheimer’s disease). Alzheimer’s disease is 

known to present many different clinical variants (Weintraub et al., 2012) and 

heterogeneous neuroimaging profiles (Ferreira et al., 2020; Ossenkoppele et al., 2020). 

Specifically looking at tau pathology, several “subtypes” of tau pathology have been 

suggested (Vogel et al., 2021) and different clinical variants of AD have also shown 

distinct tau deposition patterns (La Joie et al., 2020; Singleton et al., 2021). Other studies 

have used continuous variables of heterogeneity rather than subtypes, but always 

aggregating large swaths of brain regions together in smaller samples and with limited 

insight in more advanced participants (Mohanty et al., 2023; C. B. Young et al., 2022). 

Furthermore, using individualized tau measures have been shown to better associate with 

future accumulation of tau pathology compared to using only Braak stages, demonstrating 

substantial inter-individual variability (Franzmeier et al., 2020). As such, it is possible that 

while a large portion of the cortex may become abnormal following a specific sequence, 

regional patterns may differ between individuals. This was also suggested by a recent 

study which highlighted that despite tau pathology accumulating mostly in the temporal 

lobe, individualized regions of interest better capture change in tau overtime (Leuzy et al., 

2023). Our results suggest that this heterogeneity emerges in participants with MCI. 

Specifically, these participants accumulated abnormal amounts of tau pathology across 

the entire brain faster than CU participants and participants with Alzheimer’s disease, 
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highlighting that the heterogenous accumulation of pathology appears once tau appears 

outside of the temporal lobe. To note, we also found that higher levels of tau pathology at 

baseline were associated with faster accumulation of tau pathology over time across 

diagnostic groups, but that the spatial extent seems to plateau at the stage of Alzheimer’s 

disease dementia. This suggest that there is a stage of the disease where the number of 

abnormal regions is reached, even though tangles (i.e., SUVR) continue to accumulate. 

This is somewhat contrary to Ab pathology which seems to plateau over time at the late 

stage of the disease (Jagust & Landau, 2021). Overall, these results suggest that fine-

grain regional heterogeneity exists in tau deposition and accumulation, despite broad 

stages being followed uniformly, and that this heterogeneity starts to appear in 

participants with MCI. 

Another key finding from the study is that the extent of tau pathology across the 

brain is associated with cognitive performance across cognitive domains on par with tau 

in the temporal meta-ROI in most domains, except for memory in cognitively unimpaired 

individuals and executive functioning in individuals with cognitive impairments where 

spatial extent of tau was more strongly associated with cognition than the temporal meta-

ROI. Literature in recent years has repetitively shown that tau—rather than Ab—is the 

pathological hallmark most strongly associated with cognitive decline (Ossenkoppele et 

al., 2021). This is also echoed by research on Alzheimer’s disease clinical variants. 

Previous work demonstrated that, while Ab deposition patterns were similar across 

individuals from different clinical variants, tau patterns differ according to the variants, 

often affecting regions responsible for the main cognitive domain affected (La Joie et al., 

2020; Singleton et al., 2021). This distinct topography of tau for each cognitive domain 
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was also found in our study: tau was associated with the memory composite mostly in the 

temporal and frontal lobes bilaterally, tau was associated with the executive composite 

across the brain and tau was associated with language mostly unilaterally to the left 

hemisphere. Overall, our results suggest that regional tau topography is associated with 

specific cognitive domains, and that leveraging the spatial extent index may uncover 

stronger associations between tau and cognitive performances. 

3.6.1 – Strengths and limitations 

The strengths of our study include a large sample size and a large longitudinal tau-

PET sample. Cognition was collected over a long follow-up period; for at least 5 years in 

most cases. 

Our study also has some limitations to acknowledge. We staged disease 

progression following the clinical diagnosis as attributed by physicians from memory 

clinics. However, not everyone with the same clinical label may be at the same “biological” 

stage of the disease, i.e., two individuals with an MCI diagnosis may not have the same 

tau-PET patterns simply because they haven’t started to present symptoms at the same 

time (Vogel et al., 2021; A. L. Young et al., 2018). As such, the heterogeneity observed 

within each clinical diagnosis could be due to participants being at more advanced 

disease stages. Furthermore, we use the overlap of spatial extent patterns to define 

heterogeneity which somewhat lacks spatial resolution. It is possible that the same index, 

e.g., 0.5, represents the positive overlap of a small set of regions spatially close to one 

another or the overlap of a large set of regions spatially distant from one another. 

Nonetheless, our results are reassuring: if biological staging had been the driver of the 

heterogeneity in the tau patterns cross-sectionally, our longitudinal results would have 
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shown that participants had less (not more) heterogeneity, and we replicated most of the 

findings of heterogeneity within each Braak stage. 

Our main method to derive the spatial extent index relies on unsupervised GMM, 

where participants are clustered in either one of two groups: “normal” or “abnormal” tau. 

Some of the limitations of these methods include the need to set in advance certain 

components of the models, including the number of clusters—two in the case of this 

paper—which may preclude more complex underlying patterns in the data. However, we 

ensured that a two-component method was a better fit compared to a single component 

using the Bayesian Information Criterion. Due to the data-driven nature of the method, 

should the proportion of participants with high levels of tau included change, the 

thresholds will also likely change. However, in supplementary analyses, we showed that 

GMM thresholds were likely less influenced by outliers in the data compared to other 

methods for deriving thresholds such as 2 standard deviations from CU Ab- participants. 

This suggests that other traditional methods are likely plagued by the same issue, and 

the main results of the paper were not dependent on the choice of how to derive the 

thresholds. 

A major limitation is ADNI’s inclusion criteria. By design, ADNI includes participants 

with amnestic disease presentation (Weiner et al., 2017). However, atypical variants of 

AD may not present with memory impairment at the forefront of their cognitive complaints 

(Weintraub et al., 2012). As such, ADNI’s sample may be by design very homogenous. 

This could explain why the spatial extent performed relatively similarly to the meta-ROI 

across cognitive composites. Despite this homogenous sample, we still found 
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heterogenous tau patterns and diverse tau-cognition associations, and a stronger 

association of individualized measures with executive functioning and language. 

Many participants have the same visuospatial score cross-sectionally and over 

time, which could stem from an error in the database. Any results related to this composite 

index should be carefully considered in this context. 

Finally, due to molecular limitations of the Flortaucipir tracer which presents off-

target binding in the hippocampus, we excluded this region from our spatial extent index. 

However, there is convincing evidence that some patients with Alzheimer’s disease 

dementia will present more (medial temporal subtype) or less (hippocampal sparring 

subtype) neurodegeneration in the hippocampus (Ferreira et al., 2020), suggesting that 

tau within the hippocampus is also an important source of heterogeneity which is missed 

by the spatial extent index from the current paper. Future research should aim to confirm 

these findings using tau-PET tracers less sensitive to off-target binding in the 

hippocampus such as MK6240. 

3.6.2 – Conclusion 

While our study confirms that participants accumulate tau pathology following the 

broad Braak stages, we also demonstrate that regional accumulation is subject to 

significant heterogeneity—particularly as the disease progresses. This heterogeneity 

seems to take hold during the MCI stage, as these participants accrue more tau abnormal 

regions faster than both CU and participants with Alzheimer’s disease dementia. We also 

illustrate that the topography of the tau pathology is differentially associated with cognitive 

domains, and that using the spatial extent (i.e., tau abnormality across the brain) can lead 

to stronger associations with executive functioning in MCI and individuals with 
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Alzheimer’s disease dementia. Taken together, our results suggest that using a method 

that captures regional tau might help uncover associations with cognition, and we propose 

a simple research method to investigate these regionalities going forward.  
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3.11 – Supplementary results 

We replicated our main results using a spatial extent index derived from regional 

thresholds using 2 standard deviation from the mean of CU Ab- participants instead of 

the GMM approach. Using the CU-based thresholds, we recharacterized AT status in the 

cohort (Supplementary Figure 3.9; original Figure 3.2A). The proportion of A+T+ (12.1% 

to 18.4%;  c2 = 27.034, p < 0.001) and A-T+ (3.2% to 14.9%; c2 = 50.019, p < 0.001) 

increased in CU participants with the CU-based thresholds. We found similar results in 

participants with MCI for the proportion of A+T+ (36.1% to 41.1%; c2 = 13.067, p < 0.001) 

and the proportion of A-T+ participants (8.7% to 16.9%; c2 = 21.043, p < 0.001). The 

proportions did not change in participants with AD. Additionally, the proportion of A-T+ 

participants increased more than the proportion of A+T+ participants in CU participants 

(c2 = 5.975, p = 0.015), but not in participants with MCI (c2 = 1.290, p = 0.256). Recreating 

the heatmap represented in Figure 3.3A using the CU-based thresholds (Supplementary 

Figure 3.10), we found that our previous main findings remained: Braak stages were 

followed across all Braak stages up to and including Braak V in over 84% of participants, 

while patterns were heterogenous within regions.  

We tested whether spatial extent index derived from CU Ab- thresholds would 

retain its advantage over the temporal meta-ROI SUVR in cognitive performance 

(Supplementary Figure 3.12) and decline (Supplementary Figure 3.13). Overall, the CU-

derived spatial extent index was associated similarly with cognition than the GMM-based 

measure across cognitive domains. However, the CU-derived spatial extent index was no 

longer superior to the temporal meta-ROI SUVR in the association with executive 

performance at baseline in participants with MCI (z = -0.742, p = 0.771) or AD (z = -1.534, 
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p = 0.063) and over time for participants with MCI (z = -0.007, p = 0.497). It was also no 

longer superior for the language performance at baseline in participants with MCI (z = -

0.983, p = 0.163). Interestingly, in some language and visuospatial associations, less 

cognitive decline was associated with more CU-based spatial extent index. 

We investigated what could be driving the differences between both methods. 

First, we found that, on average, thresholds from the GMM were 0.10 SUVR (t = 20.57, 

df = 69, p < 0.001) higher than thresholds from CU Ab- participants, but this varied across 

the brain where left temporal regions presented the least difference between methods 

and frontal regions presenting the most (Supplementary Figure 3.9A). Second, we 

investigated the extent to which the distribution of tau in CU Ab- participants influenced 

the thresholds derived from both methods. We considered the distribution of tau using the 

max-min range (spread of the entire data).  Considering the total range of each region, 

spatial extent from the GMM (r = 0.31, p = 0.009; Supplementary Figure 3.9C) was 

associated with the range, but the spatial extent from the 2SD CU Ab- method showed a 

stronger association with the total range (r = 0.66, p < 0.001; Supplementary Figure 3.9D), 

which was higher than the spatial extent from the GMM (z = -5.43, p < 0.001). 
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Supplementary Figure 3.1 
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Supplementary Figure 3.1 Spatial extent of abnormal tau deposition and 

accumulation in amyloid negative participants of the ADNI cohort. (A) Based on the 

method discussed in Figure 3.1, abnormality thresholds were determined for each (I.) 

Braak stages (except stage II) and for each (II.) region of the cortical mantle and the 

bilateral amygdalae (70 regions). One row on the heatmap correspond to an individual 

participant, while each column represents a distinct cortical region. Within each diagnostic 

group, participants were sorted from individuals with lowest to highest spatial extent 

index. Regions on the x-axis in II. are sorted by Braak stages. (B) Abnormal accumulation 

is presented by (I.) Braak stages and (II.) all 70 individual brain regions of the Desikan 

atlas. Colors denote the change in the region between the baseline and the last available 

visit. A stable region (negative or positive; blue or yellow) did not change status during 

the follow-up. A progressing region (red) was originally negative and subsequently 

became positive over time. A regressing region (teal) was originally positive and became 

negative over time. 
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Supplementary Figure 3.2 

 

Supplementary Figure 3.2 Tau measures by amyloid and clinical status. (A) Average 

tau SUVR within the temporal meta-ROI by amyloid positivity and diagnostic status. (B) 

Spatial extent index (i.e., number of tau abnormal regions) by amyloid positivity and 

diagnostic status. In both panels, ANOVAs were used to compare tau measures between 

Aβ- and Aβ+ participants (e.g., Aβ- compared to Aβ+ cognitively unimpaired participants).  
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As all analyses yielded that Aβ+ had more tau—across all diagnostic groups—at P < 

0.001 significance, we did not plot the model significance on the figure. (C) Association 

using linear models between temporal meta-ROI SUVR and spatial extent index in Aβ+ 

participants of each diagnostic group. Beta coefficients and adjusted R2 are presented at 

the bottom of the graph (*** = P < 0.001). 
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Supplementary Figure 3.3 

 

Supplementary Figure 3.3 Annual change in tau-PET measures. Annual change of 

(A) standardized uptake value ratio (SUVR) in the temporal meta-ROI and annual change 

of (B) spatial extent index in CU (blue), MCI (orange) and AD (red). Rates of annual 

change, computed with linear mixed models for temporal meta-ROI SUVR and zero-

inflated Poisson mixed models for the spatial extent index, are presented at the top right 

corner of the graphs. Models’ significance when controlling for age, sex and education 

are denoted by stars next to the rate. Brackets and stars between two slopes denote a 

significant group difference in the rate of change (* = P < 0.05). 
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Supplementary Figure 3.4 

 

Supplementary Figure 3.4 Heterogeneity in tau-PET spatial extent at baseline and 

longitudinally. (A) Across the whole brain and within each Braak stage, we computed 

how, on average, the patterns of tau abnormality (i.e., positivity for specific sets of brain 

regions) overlapped between participants of the same diagnostic group using the Jaccard 

similarity index. An index closer to one means a bigger overlap on average between 

participants in terms of regions that are positive, while an index closer to zero means 

more heterogeneity on average between participants. For each diagnostic group, we only 

retained participants who had at least one tau positive region. (B). Across the brain we 

computed how, on average, the patterns of change in tau abnormality (i.e., stability, 

progression, or regression for specific sets of brain regions) overlapped between 

participants of the same diagnostic group using the same method described in (A). In 

both (A) and (B), difference in average similarity was compared using Kruskal-Wallis 

tests. Post-hoc Dunn tests (with Bonferroni correction) were conducted when the result 
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was significant. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. CU = Cognitively unimpaired, 

MCI = Mild cognitive impairment, AD = Alzheimer’s disease 
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Supplementary Figure 3.5 
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Supplementary Figure 3.5 Association between tau-PET measures, and executive 

functioning performance and decline. (A) Executive functioning performance closest 

in time to the tau-PET scan and (B) executive functioning decline computed across the 

study period were associated to both temporal meta-ROI SUVR and spatial extent index 

in Ab+ participants using linear regressions. Cognitive decline was computed for each 

participant with more than two cognitive timepoints using linear mixed effect models with 

random slopes and intercepts. In each panel, columns represent a diagnostic group 

(leftmost/black: whole sample, second from the left/blue: cognitively unimpaired, second 

from the right/orange: mild cognitive impairment, right-most/red: Alzheimer’s disease). 

Simple and standardized b coefficients, adjusted R2 and AIC, controlled for age sex and 

education, are shown on the graphs. P-value of models are indicated next to the simple 

beta coefficients. (° : P < 0.1, * : P < 0.05, ** : P < 0.01, *** P  < 0.001) Results remained 

significant after a multiple comparison false discovery rate (FDR) correction. 
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Supplementary Figure 3.6 
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Supplementary Figure 3.6 Association between tau-PET measures, and language 

performance and decline. (A) Language performance closest in time to the tau-PET 

scan and (B) language decline computed across the study period were associated to both 

temporal meta-ROI SUVR and spatial extent index in Ab+ participants using linear 

regressions. Cognitive decline was computed for each participant with more than two 

cognitive timepoints using linear mixed effect models with random slopes and intercepts. 

In each panel, columns represent a diagnostic group (leftmost/black: whole sample, 

second from the left/blue: cognitively unimpaired, second from the right/orange: mild 

cognitive impairment, right-most/red: Alzheimer’s disease). Simple and standardized b 

coefficients, adjusted R2 and AIC, controlled for age sex and education, are shown on the 

graphs. P-value of models are indicated next to the simple beta coefficients. (° : P < 0.1, 

* : P < 0.05, ** : P < 0.01, *** P  < 0.001) Results remained significant after a multiple 

comparison false discovery rate (FDR) correction. 
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Supplementary Figure 3.7 
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Supplementary Figure 3.7 Association between tau-PET measures, and 

visuospatial performance and decline. (A) Visuospatial performance closest in time to 

the tau-PET scan and (B) visuospatial decline computed across the study period were 

associated to both temporal meta-ROI SUVR and spatial extent index in Ab+ participants 

using linear regressions. Cognitive decline was computed for each participant with more 

than two cognitive timepoints using linear mixed effect models with random slopes and 

intercepts. In each panel, columns represent a diagnostic group (leftmost/black: whole 

sample, second from the left/blue: cognitively unimpaired, second from the right/orange: 

mild cognitive impairment, right-most/red: Alzheimer’s disease). Simple and standardized 

b coefficients, adjusted R2 and AIC, controlled for age sex and education, are shown on 

the graphs. P-value of models are indicated next to the simple beta coefficients. (° : P < 

0.1, * : P < 0.05, ** : P < 0.01, *** P  < 0.001) Results remained significant after a multiple 

comparison false discovery rate (FDR) correction. 
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Supplementary Figure 3.8 

 

Supplementary Figure 3.8 Association between tau measures and age. Age at 

baseline was associated with temporal meta-ROI SUVR (first row) and spatial extent 

index (second row) in Ab+ participants using linear regressions. In each panel, columns 

represent a diagnostic group (leftmost/black: whole sample, second from the left/blue: 

cognitively unimpaired, second from the right/orange: mild cognitive impairment, right-

most/red: Alzheimer’s disease). Simple and standardized b coefficients, adjusted R2 and 

AIC, controlled for sex and education, are shown on the graphs. P-values of models are 

indicated next to the simple beta coefficients. (° : P < 0.1, * : P < 0.05, ** : P < 0.01, *** P 

< 0.001) Results remained significant after a multiple comparison false discovery rate 

(FDR) correction. 
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Supplementary Figure 3.9 

 

Supplementary Figure 3.9 Amyloid and tau status in the cohort using thresholds 

from cognitively unimpaired Ab- participants. Ab positivity was established using 

ADNI’s tracer-specific recommendations for both Florbetapir and Florbetaben. Tau 

positivity was defined as having at least one region positive for tau pathology (spatial 

extent index of one and above). The spatial extent was derived across regions by using 

the mean plus two standard deviations of tau-PET values in CU Ab- participants. 
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Supplementary Figure 3.10 

 

Supplementary Figure 3.10 Spatial extent using CU-based thresholds for abnormal 

tau deposition in amyloid-positive participants of the ADNI cohort. Replication of 

Figure 3A, but the regional spatial extent was instead derived from thresholds based on 

the mean plus two standard deviations of CU Ab- participants. Abnormality thresholds 

were determined for each I. Braak stages (except stage II) and for each II. region of the 

cortical mantle and the bilateral amygdalae (70 regions). One row on the heatmap 

correspond to an individual participant, while each column represents a distinct cortical 

region. Within each diagnostic group, participants were sorted from individuals with lowest 

to highest spatial extent index. Regions on the x-axis in II. are sorted by Braak stages. 
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Supplementary Figure 3.11 

 

Supplementary Figure 3.11 Association between spatial extent index derived from 

CU Ab- thresholds, and cognitive performance. Association between the cognitive 

performance closest in time to the tau-PET scan and cognitive performance at baseline. 

Each row represents a cognitive measure (from top to bottom, memory, executive 

function, language and visuospatial) and each column represents a diagnostic group 
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(leftmost/black: whole sample, (leftmost/black: whole sample, second from the left/blue: 

cognitively unimpaired, second from the right/orange: mild cognitive impairment, right-

most/red: Alzheimer’s disease). Simple and standardized b coefficients, adjusted R2 and 

AIC, controlled for age sex and education, are shown on the graphs. P-value of models 

are indicated next to the simple beta coefficients. (° : P < 0.1, * : P < 0.05, ** : P < 0.01, 

*** P  < 0.001) Results remained significant after a multiple comparison false discovery 

rate (FDR) correction. 
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Supplementary Figure 3.12 

 

Supplementary Figure 3.12 Association between spatial extent index derived from 

CU Ab- thresholds, and cognitive decline. For each domain, cognitive decline was 

computed for each participant with more than two cognitive timepoints using linear mixed-

effect models with random slopes and intercepts.  Each row represents a cognitive 

domain (from top to bottom, memory, executive function, language and visuospatial) and 

each column represents a diagnostic group (leftmost/black: whole sample, 
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(leftmost/black: whole sample, second from the left/blue: cognitively unimpaired, second 

from the right/orange: mild cognitive impairment, right-most/red: Alzheimer’s disease). 

Simple and standardized b coefficients, adjusted R2 and AIC, controlled for age sex and 

education, are shown on the graphs. P-value of models are indicated next to the simple 

beta coefficients. (° : P < 0.1, * : P < 0.05, ** : P < 0.01, *** P  < 0.001) Results remained 

significant after a multiple comparison false discovery rate (FDR) correction. 
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Supplementary Figure 3.13 
 

 
 
Supplementary Figure 3.13 Comparison of spatial extent approaches. A) The 

percent difference in thresholds for tau-PET positivity across brain regions derived from 

applying GMM on the whole ADNI sample or by taking 2SD from the mean of CU Ab-. On 

average, thresholds from the GMM were 0.10 SUVR higher than the 2SD method. The 

small sphere in the medial view of the brain represents the amygdala. B) Correlation 

between thresholds from the GMM method and 2SD from the mean of CU Ab-. C) 

Correlation between the regional thresholds derived from the GMM and the range (max-

min) of SUVR values in all regions. D) Correlation between the regional thresholds 

derived from the 2SD CU Ab- method and the range (min-max) of SUVR values in all 

regions. In all three panels, each point corresponds to a brain region, with the colour 
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representing their Braak stage and the shape the left or the right hemisphere (** : P < 

0.01, *** P  < 0.001). 
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Supplementary Figure 3.14 

 

Supplementary Figure 3.14 Spatial extent of tau abnormality in CU Ab+ participants 

at baseline. Replication of Figure 3C for CU Ab+ participants, but with a colour scale 

allowing to see the pattern specific to this group. 
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Supplementary Table 3.1 – Regional thresholds of tau positivity 

  Threshold value  

(SUVR) 
Braak 
stage Region LH RH 
I entorhinal 1.344 1.349 

III 

amygdala 1.498 1.501 
fusiform 1.434 1.421 
parahippocampal 1.319 1.330 
lingual 1.328 1.322 

IV 

temporalpole 1.395 1.402 
inferiortemporal 1.464 1.440 
middletemporal 1.423 1.421 
isthmuscingulate 1.360 1.360 
caudalanteriorcingulate 1.342 1.372 
insula 1.332 1.346 
posteriorcingulate 1.362 1.384 
rostralanteriorcingulate 1.414 1.391 

V1 

lateraloccipital 1.390 1.390 
inferiorparietal 1.420 1.403 
superiortemporal 1.333 1.347 
bankssts 1.490 1.525 
precuneus 1.407 1.387 
superiorparietal 1.317 1.310 
supramarginal 1.361 1.349 
transversetemporal 1.260 1.209 

V2 

parsopercularis 1.362 1.381 
parsorbitalis 1.486 1.483 
parstriangularis 1.424 1.423 
frontalpole 1.328 1.357 
caudalmiddlefrontal 1.320 1.292 
lateralorbitofrontal 1.491 1.534 
medialorbitofrontal 1.462 1.425 
rostralmiddlefrontal 1.349 1.342 
superiorfrontal 1.280 1.266 

VI 

pericalcarine 1.382 1.400 
cuneus 1.353 1.369 
paracentral 1.258 1.292 
postcentral 1.237 1.229 
precentral 1.244 1.225 

LH = Left hemisphere, RH = Right hemisphere, SUVR = 
Standardized uptake value ratio. V2 represents Braak V region in the 
frontal lobe while V1 regroups the remaining Braak V regions. 
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Supplementary Table 3.2 Regional thresholds of tau positivity based on 2 
standard deviation from cognitively unimpaired Aβ- participants 

  Threshold value  

(SUVR) 
Braak 
stage Region LH RH 
I entorhinal 1.339 1.320 

III 

amygdala 1.409 1.402 
fusiform 1.418 1.332 
parahippocampal 1.287 1.249 
lingual 1.240 1.225 

IV 

temporalpole 1.316 1.284 
inferiortemporal 1.463 1.346 
middletemporal 1.421 1.316 
isthmuscingulate 1.255 1.253 
caudalanteriorcingulate 1.238 1.226 
insula 1.290 1.284 
posteriorcingulate 1.270 1.259 
rostralanteriorcingulate 1.249 1.254 

V1 

lateraloccipital 1.249 1.256 
inferiorparietal 1.323 1.332 
superiortemporal 1.267 1.277 
bankssts 1.171 1.193 
precuneus 1.182 1.186 
superiorparietal 1.347 1.362 
supramarginal 1.279 1.276 
transversetemporal 1.210 1.217 

V2 

parsopercularis 1.148 1.151 
parsorbitalis 1.272 1.258 
parstriangularis 1.303 1.285 
frontalpole 1.267 1.222 
caudalmiddlefrontal 1.487 1.376 
lateralorbitofrontal 1.270 1.260 
medialorbitofrontal 1.191 1.179 
rostralmiddlefrontal 1.253 1.230 
superiorfrontal 1.212 1.189 

VI 

pericalcarine 1.278 1.272 
cuneus 1.252 1.243 
paracentral 1.202 1.196 
postcentral 1.121 1.118 
precentral 1.137 1.140 

LH = Left hemisphere, RH = Right hemisphere, SUVR = 
Standardized uptake value ratio. V2 represents Braak V region in the 
frontal lobe while V1 regroups the remaining Braak V regions. 
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Supplementary Table 3.3 – Regional tau abnormality across regions of interest 

  CU Aβ+ 

(n = 163) 

MCI Aβ+ 

(n = 132) 

AD Aβ+ 

(n = 77) 

CU Aβ- 

(n = 300) 

MCI Aβ- 

(n = 145) 

AD Aβ- 

(n = 15) 
Braak 
stage Region LH RH LH RH LH RH LH RH LH RH LH RH 
I entorhinal * 17.8 16.6 58.3 61.4 74 75.3 2 2 6.2 4.8 26.7 6.7 

III 

amygdala * 9.8 6.7 46.2 43.9 67.5 70.1 0.3 0.3 4.8 2.8 13.3 6.7 
fusiform * 5.5 5.5 31.8 35.6 62.3 61 0.3 0.3 2.1 2.8 0 0 
parahippocampal * 9.8 6.1 44.7 37.9 66.2 55.8 1 0.3 4.1 2.8 0 6.7 
lingual 1.8 2.5 12.1 15.9 35.1 31.2 0.7 0 0.7 0.7 0 0 

IV 

temporalpole 2.5 3.7 23.5 18.9 48.1 41.6 0.7 0.3 2.8 1.4 6.7 13.3 
inferiortemporal * 8.6 9.8 34.1 37.1 68.8 68.8 0.7 0.3 2.1 1.4 0 0 
middletemporal * 6.7 6.7 33.3 33.3 62.3 63.6 0.7 0.7 0 0.7 0 0 
isthmuscingulate 3.1 4.3 22 26.5 41.6 41.6 0.3 0 0.7 0.7 0 0 
caudalanteriorcingulate 1.8 1.8 7.6 5.3 11.7 13 0 0 0.7 0 0 0 
insula 4.3 2.5 16.7 16.7 35.1 28.6 0.7 0.7 1.4 2.1 0 0 
posteriorcingulate 3.1 2.5 19.7 17.4 35.1 31.2 0.7 0.3 1.4 1.4 0 0 
rostralanteriorcingulate 1.2 0.6 2.3 4.5 11.7 11.7 0 0 0.7 0 0 0 

V1 

lateraloccipital 4.9 4.3 18.2 18.9 37.7 40.3 0.3 0 0.7 0 0 0 
inferiorparietal 4.9 6.1 22 27.3 54.5 49.4 0.3 0.7 0 0 0 0 
superiortemporal 4.3 1.8 17.4 17.4 33.8 27.3 0.7 0.3 0.7 0 0 0 
bankssts 7.4 2.5 25 19.7 51.9 44.2 0.7 0.3 0.7 0.7 0 0 
precuneus 2.5 4.3 15.9 18.9 37.7 41.6 0 0 0.7 0.7 0 0 
superiorparietal 4.3 4.3 14.4 14.4 41.6 36.4 0.3 0.3 0.7 1.4 0 0 
supramarginal 3.7 2.5 15.2 15.2 35.1 36.4 0.7 0.7 0 0 0 0 
transversetemporal 1.8 4.3 9.8 9.8 19.5 22.1 0.3 1.3 2.1 2.1 0 0 

V2 

parsopercularis 1.8 1.2 11.4 10.6 26 23.4 0.7 0.7 0 1.4 0 0 
parsorbitalis 1.2 1.2 6.8 7.6 16.9 19.5 0 0 0 0 0 0 
parstriangularis 1.2 1.2 6.8 5.3 20.8 18.2 0.3 0.7 0 0 0 0 
frontalpole 1.2 0.6 3.8 4.5 15.6 16.9 0 0.3 0 0 0 0 
caudalmiddlefrontal 3.1 2.5 15.9 19.7 37.7 37.7 0.3 0.7 0.7 2.1 0 0 
lateralorbitofrontal 0.6 0.6 9.8 9.1 22.1 18.2 0 0 0.7 0.7 0 0 
medialorbitofrontal 1.2 0.6 4.5 8.3 14.3 18.2 0.3 0 0 1.4 0 0 
rostralmiddlefrontal 1.8 3.7 12.1 15.2 22.1 23.4 0 0 0 0 0 0 
superiorfrontal 1.8 2.5 8.3 9.8 23.4 23.4 0 0 0.7 0.7 0 0 

VI 

pericalcarine 0.6 0.6 6.8 7.6 23.4 15.6 0.3 0 0.7 0.7 0 0 
cuneus 1.8 1.2 12.9 11.4 31.2 28.6 0 0 0.7 0 0 0 
paracentral 3.1 1.8 6.1 4.5 18.2 13 0.7 0.3 2.8 1.4 0 0 
postcentral 1.8 2.5 4.5 3 16.9 20.8 0.3 1 0 0 0 0 
precentral 1.2 1.8 8.3 6.1 20.8 26 0.3 0.7 0.7 1.4 0 0 

CU = Cognitively unimpaired, MCI = Mild cognitive impairment, AD = Alzheimer’s disease, LH = Left hemisphere, 
RH = Right hemisphere, Aβ = Amyloid. V2 represents Braak V region in the frontal lobe while V1 regroups the 
remaining Braak V regions. An asterisk next to the region name indicate that this region is part of the temporal 
meta region of interest (Jack et al., 2017) 
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Supplementary Table 3.4 – Regional tau abnormality progression across regions 
of interest 

  CU Aβ+ 

(n = 90) 

MCI Aβ+ 

(n = 66) 

AD Aβ+ 

(n = 39) 

CU Aβ- 

(n = 96) 

MCI Aβ- 

(n = 40) 

AD Aβ- 

(n = 10) 
Braak 
stage Region LH RH LH RH LH RH LH RH LH RH LH RH 
I entorhinal * 8.9 14.4 12.1 4.5 10.3 5.1 3.1 1.0 5.0 2.5 0.0 0.0 

III 

amygdala * 3.3 6.7 10.6 9.1 2.6 0.0 1.0 1.0 2.5 2.5 10.0 0.0 
fusiform * 4.4 4.4 16.7 12.1 2.6 10.3 2.1 1.0 5.0 2.5 0.0 0.0 
parahippocampal * 7.8 7.8 6.1 13.6 5.1 5.1 1.0 3.1 2.5 5.0 10.0 0.0 
lingual 2.2 1.1 10.6 9.1 2.6 2.6 2.1 1.0 0.0 0.0 0.0 0.0 

IV 

temporalpole 6.7 5.6 12.1 16.7 12.8 15.4 1.0 1.0 2.5 0.0 10.0 0.0 
inferiortemporal * 4.4 4.4 12.1 13.6 2.6 7.7 2.1 2.1 2.5 7.5 0.0 0.0 
middletemporal * 5.6 6.7 12.1 12.1 5.1 2.6 1.0 1.0 2.5 0.0 0.0 0.0 
isthmuscingulate 4.4 2.2 10.6 4.5 7.7 5.1 1.0 2.1 0.0 0.0 0.0 0.0 
caudalanteriorcingulate 4.4 0.0 6.1 4.5 2.6 0.0 2.1 1.0 0.0 0.0 0.0 0.0 
insula 4.4 6.7 7.6 6.1 12.8 7.7 2.1 3.1 2.5 0.0 0.0 0.0 
posteriorcingulate 4.4 3.3 10.6 7.6 7.7 7.7 1.0 2.1 0.0 0.0 0.0 0.0 
rostralanteriorcingulate 2.2 1.1 3.0 3.0 5.1 0.0 2.1 1.0 0.0 0.0 0.0 0.0 

V1 

lateraloccipital 2.2 2.2 12.1 9.1 5.1 7.7 1.0 1.0 2.5 2.5 0.0 0.0 
inferiorparietal 1.1 4.4 15.2 13.6 0.0 2.6 1.0 2.1 0.0 0.0 0.0 0.0 
superiortemporal 4.4 7.8 7.6 6.1 5.1 10.3 1.0 2.1 2.5 0.0 0.0 0.0 
bankssts 1.1 5.6 6.1 9.1 0.0 2.6 1.0 1.0 2.5 0.0 0.0 0.0 
precuneus 2.2 2.2 12.1 12.1 5.1 0.0 2.1 1.0 0.0 0.0 0.0 0.0 
superiorparietal 3.3 3.3 10.6 12.1 2.6 7.7 1.0 1.0 0.0 0.0 0.0 0.0 
supramarginal 4.4 4.4 10.6 12.1 12.8 2.6 1.0 1.0 0.0 0.0 0.0 0.0 
transversetemporal 4.4 1.1 3.0 9.1 10.3 2.6 2.1 3.1 0.0 0.0 0.0 0.0 

V2 

parsopercularis 4.4 2.2 7.6 12.1 5.1 5.1 2.1 2.1 0.0 0.0 0.0 0.0 
parsorbitalis 2.2 1.1 3.0 0.0 2.6 0.0 2.1 3.1 0.0 0.0 0.0 0.0 
parstriangularis 2.2 1.1 1.5 9.1 5.1 0.0 2.1 2.1 0.0 0.0 0.0 0.0 
frontalpole 2.2 2.2 1.5 4.5 2.6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
caudalmiddlefrontal 3.3 7.8 7.6 4.5 2.6 2.6 2.1 0.0 0.0 0.0 0.0 0.0 
lateralorbitofrontal 3.3 1.1 7.6 7.6 0.0 0.0 2.1 2.1 0.0 0.0 0.0 0.0 
medialorbitofrontal 2.2 2.2 7.6 7.6 7.7 2.6 1.0 4.2 0.0 0.0 0.0 0.0 
rostralmiddlefrontal 4.4 5.6 4.5 3.0 7.7 2.6 2.1 2.1 0.0 0.0 0.0 0.0 
superiorfrontal 3.3 4.4 10.6 7.6 5.1 0.0 3.1 2.1 0.0 0.0 0.0 0.0 

VI 

pericalcarine 1.1 1.1 0.0 1.5 2.6 5.1 3.1 1.0 0.0 0.0 0.0 0.0 
cuneus 0.0 3.3 4.5 4.5 5.1 2.6 3.1 1.0 0.0 0.0 0.0 0.0 
paracentral 1.1 2.2 9.1 6.1 12.8 7.7 3.1 1.0 0.0 0.0 0.0 0.0 
postcentral 0.0 2.2 7.6 1.5 5.1 7.7 1.0 1.0 0.0 0.0 0.0 0.0 
precentral 2.2 4.4 7.6 7.6 2.6 5.1 2.1 1.0 0.0 0.0 0.0 0.0 

Numbers are in percentages. CU = Cognitively unimpaired, MCI = Mild cognitive impairment, AD = Alzheimer’s 
disease, LH = Left hemisphere, RH = Right hemisphere, Aβ = Amyloid. V2 represents Braak V region in the frontal 
lobe while V1 regroups the remaining Braak V regions. An asterisk next to the region name indicate that this 
region is part of the temporal meta region of interest (Jack et al., 2017) 
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Supplementary Table 3.5 Braak stages thresholds 

 Threshold value  
Region GMM-based CU-based 
Braak I 1.325 1.299 
Braak III 1.359 1.274 
Braak IV 1.347 1.249 
Braak V 1.331 1.204 
Braak VI 1.260 1.155 
Temporal meta-ROI 1.398 1.311 
Thresholds were derived by taking the composite regions and using the 
GMM method described in Figure 1, or using the mean plus two standard 
deviation of CU Ab- participants 
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Chapter 4 – General discussion 

4.1 – Summary of thesis conclusions 

The overall goal of this thesis was to investigate the extent of interindividual 

differences in the brain of participants across the lifespan and in Alzheimer’s disease. We 

first characterized functional connectome fingerprints and their integrity in a lifespan 

cognitively unimpaired cohort using functional MRI. Then, we identified interindividual 

differences in tau-PET patterns of participants on the spectrum of Alzheimer’s disease 

using positron emission tomography. 

In the first project (Chapter 2), we found that interindividual differences measured 

using functional magnetic resonance imaging—despite significant population-level 

changes in older adults recorded in the literature—persist through the entire lifespan. 

Furthermore, this signature doesn’t seem to involve the same regions for every 

participant: each participant has a unique set of regions contributing best to their own 

fingerprint. Finally, lower self-identifiability was associated with lower grey matter volume 

in age-vulnerable regions, suggesting that these interindividual differences are not only 

an inherent property of the brain: they may also be associated with clinically relevant 

outcomes. 

Next, we investigated whether these interindividual differences could influence our 

understanding of pathology patterns observed in a clinical population, specifically on tau-

PET patterns in Alzheimer’s disease (Chapter 3). We show that while some patterns are 

shared across individuals (i.e., following the Braak stages), abnormality in individual 

regions differs drastically across individuals, particularly during clinical progression. We 

also show that accounting for these differences in individual-specific tau-PET patterns 
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can result in better associations for cognitive deficits outside of memory impairment, 

perhaps due to the localization of the associations between tau and cognition across the 

cortex. 

Through both projects, we concurrently developed sihnpy, a Python-based 

package which contains the tools we adapted and developed in Chapters 2 and 3. The 

package—presented in the Annex—is fully downloadable and made open to the entire 

scientific community. This toolbox will provide scientists with concrete methods to 

investigate interindividual differences and transparently replicate findings from Chapters 

2 and 3. Interindividual differences are not limited to the brains of participants included in 

research studies. I also applied the spatial extent index developed in sihnpy to quantify 

the spread of amyloid pathology at an individual level in a data science project conducted 

during an internship in industry. These results are also presented in the Annex. 

4.2 – The brain is made of shared and idiosyncratic patterns  

 A common theme echoed across the thesis is that the brain exhibits shared, group-

level characteristics, but there are important interindividual differences. This idea is not 

novel as others suggested this from data from a small group of younger adults (Gratton 

et al., 2018). However, this thesis emphasizes that this is a phenomenon that is preserved 

even when the brain undergoes significant transformation such as aging or AD. 

 In aging for instance, there have been multiple consistent studies showing that 

functional connectivity in older adults tends to decrease within networks and increase 

between networks (i.e., decreased segregation) (Chan et al., 2014). However, in Chapter 

2, we demonstrated that functional connectivity has a high degree of uniqueness that is 

preserved throughout life. Similarly, in AD, many studies consistently identify that 
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pathology follows stereotypical patterns such as Thal phases for amyloid (i.e., neocortical 

to subcortical) (Thal et al., 2002) or Braak for tau (i.e., early middle temporal to late 

sensorimotor cortex) (Braak & Braak, 1991). In Chapter 3, we show that this pattern for 

tau is not uniformly followed across all participants and it is therefore heterogenous. 

 These findings have significant implications for neuroimaging research. Many 

mainstream methods for analyzing brain data relies on some level of group-averaging like 

selecting anatomical borders for segmenting the brain (Desikan et al., 2006), warping the 

brain of an individual to a group-level template (Ashburner, 2007) or averaging a brain 

variable within a group (Brett et al., 2011). Considering that individuals demonstrate 

significant heterogeneity, it is possible that these methods lead to biased estimates that 

are not easily replicable in other cohorts. In parallel, the field of neuroimaging is going 

through a replication crisis, where studies asking the same scientific question do not 

obtain the same results (Botvinik-Nezer et al., 2020). Multiple factors can play into this 

lack of replication, including the lack of consensus in terms of methodology used to obtain 

the results (Botvinik-Nezer et al., 2020; Xifra-porxas et al., 2020) and limited sample sizes 

(Marek et al., 2022). These factors aim mostly to reduce the variability between different 

cohorts to obtain consistent results across teams.  

However, what this thesis argues is that there is significant heterogeneity even 

within cohorts considered homogenous which should also be accounted. Potentially 

promising solutions that could help with these issues include the sihnpy package which 

proposes measures to account for these differences, but other methods also exist at 

different steps of the analysis pipeline. Preprocessing methods such as hyperalignment, 

which aligns individual brains to a group-level template while preserving individual-level 
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topographical information (Haxby et al., 2020) can help early in the process to mitigate 

the impact of interindividual differences on results. Many new methods are also appearing 

to account for these differences in data analyses. For instance, brain charts (Bethlehem 

et al., 2022) offer a way to account for population-level changes in the brain but directly 

acknowledge variability between individuals. Other methods, such as creating 

individualized masks for predicting pathology accumulation have been shown to 

outperform group-level methods in AD (Franzmeier et al., 2020; Leuzy et al., 2023). 

Overall, one main message from this thesis is that the brain is made of group- and 

individual-level patterns that can be measured and are of great magnitude: individual 

differences are a core aspect of the brain, healthy or pathological.  Researchers should 

account for this when considering preprocessing and analysis of their neuroimaging data. 

  

4.3 – Interindividual differences impact our understanding of the brain 

 Another point driven by this thesis is that interindividual differences are not simply 

noise (Brett et al., 2011; Poldrack et al., 2011); they are associated with other variables 

related to healthy and pathological aging. 

 In a cognitively unimpaired lifespan cohort (Chapter 2), we found that lower self-

identifiability—an individual-specific measure of functional connectivity—was associated 

with lower grey matter volume in age-related brain regions. This is similar to existing 

literature where lower self-identifiability over time was associated with lower total grey 

matter volume in older adults (Ousdal et al., 2020). In participants with MCI and AD, we 

found that tau (Chapter 3) at the individual level (i.e., spatial extent index) outperformed 

traditional group-level measures when measuring certain cognitive domains.  
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 Individual-specific functional connectivity measures have been known to associate 

with health and behavior profiles of young CU healthy participants (Bijsterbosch et al., 

2018; Mansour et al., 2020), indicating potential clinical usefulness. In more clinical 

settings, fingerprint measures of functional connectivity were shown to be systematically 

different between patients with schizophrenia (Kaufmann et al., 2018) or patients with 

varied psychopathologies (Kaufmann et al., 2017) during development, suggesting that 

fingerprints could capture individual-specific indicators of disease. More relevant to this 

thesis, a few preliminary studies have also found that individual-specific markers of 

functional connectivity can help distinguish participants with MCI or AD (Sorrentino et al., 

2020) and identify cognitive deficits in these populations (Svaldi et al., 2021). This 

suggests significant heterogeneity in brain features of participants on the AD spectrum. 

 Amyloid, tau, and subsequently atrophy, are often considered the trifecta of 

cognitive decline in AD: amyloid lays down the foundation for the disease, tau then 

spreads and consequently triggers neuronal death (i.e., atrophy). All three brain features 

have been consistently associated with either clinical progression of AD (Ossenkoppele 

et al., 2022; Strikwerda-Brown et al., 2022), though amyloid seems to be less associated 

with cognition than tau pathology (Ossenkoppele et al., 2018; Ozlen et al., 2022; Parent 

et al., 2023). Despite the many studies indicating heterogeneity in amyloid (Collij et al., 

2022), tau (Vogel et al., 2021) and atrophy (Ferreira et al., 2020), few leveraged or 

accounted for this heterogeneity and fewer still studied whether this heterogeneity directly 

impacts clinical measures. We could also not find studies using individually defined 

measures of amyloid-PET, but group-level subtypes of amyloid patterns were associated 

with diverging clinical patterns (Y. Sun et al., 2023). Individually defined tau-PET burden 
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at baseline was shown to better capture longitudinal change in tau-PET over time 

(Franzmeier et al., 2020; Leuzy et al., 2023), but individually defined measures of tau-

PET have never been associated with cognition. One study using individual-specific 

measures of atrophy found significant associations with cognition but did not establish 

whether these measures outperformed group-based measures (Verdi et al., 2023). This 

thesis provides evidence that individual-specific measures of pathology—specifically 

tau—can improve associations between pathology and specific cognitive domains, 

reinforcing the idea that heterogeneity can provide meaningful clinical information. 

Results should be replicated with amyloid and atrophy. 

This will be particularly important when considering clinical trials and interventions 

in AD. Despite decades of research, patients with AD have very few options to treat the 

disease (J. L. Cummings et al., 2014) due to the frequent failure of clinical trials. Newer 

treatment options are emerging, such as Aducanumab (J. Cummings et al., 2021), 

Lecanumab (Van Dyck et al., 2023) and Donanemab (Sims et al., 2023), but benefits on 

cognition remain minimal and side effects are prevalent, and—in some cases—life-

threatening. Many reasons are cited for the chronic failure of clinical trials in AD, including 

targeting a wrong or unimportant molecular process or targeting patients too late in the 

disease process where the damage cannot be reversed. However, another potential 

source highlighted by this thesis is between-individual heterogeneity. 

Currently, in the US, only between 7 and 20% of patients with neurological 

disorders using the highest-selling drugs designed to treat these disorders gain 

meaningful clinical benefits from using the drugs (Schork, 2015). This is partly due to the 

idea that in a pool of patients sharing a diagnosis, on average, at least a significant 
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proportion will respond to the drug as expected (Iturria-Medina et al., 2018). In AD, it is 

well known that participants can present with different symptoms and clinical variants, 

with their specific patterns of tau-PET pathology matching these symptoms (La Joie et 

al., 2020). Consequently, in AD drug trials, stringent inclusion criteria are often applied to 

ensure that participants present with the same disease phenotype (i.e., amnestic) as 

patients should present the same disease etiology and, consequently, should respond 

similarly to the same treatment (Van Dyck et al., 2023). However, this thesis sheds some 

doubt on this approach. In Chapter 3, we focused our results on participants from the 

ADNI cohort. Like clinical trials, ADNI has stringent inclusion criteria meant to primarily 

recruit patients with amnestic disease presentation. While theoretically, they should share 

similar disease patterns and progression, we found heterogeneity in these measures.  

Overall, the findings in this thesis are critical for trials as they indicate that even 

with stringent criteria meant to retain a homogenous group of participants, there is still 

significant heterogeneity in biomarkers, changing with the progression of the disease and 

yielding stronger associations with cognition. This could foreshadow poor disease 

outcomes, as is suggested in other neurological disorders (Schork, 2015) if treatments 

are given in the same way to every patient despite positive trial results. Researchers 

should continue investigating the impact of these interindividual differences, in AD and in 

other neurological disorders, particularly using trial data, to ensure that this variability is 

properly accounted for and to understand if and why certain groups of patients respond 

more or less to the interventions. 

 



 246 

4.4 – Creating tools to assess and leverage interindividual differences 

 The main conclusions of this thesis point to heterogeneity being a core feature of 

the brain and affecting clinical measures. From a more practical point of view, very few 

tools are openly available for researchers to study this heterogeneity. We have already 

detailed some of the barriers in the general introduction of this thesis: there are not a lot 

of tools available to study interindividual differences, and fewer still are accessible. This 

lack of tools led us to develop a more practical project included in the annex of this thesis 

with the creation of sihnpy. 

 With the exception of the spatial extent, all of the ideas behind each of sihnpy’s 

modules were not newly developed during this Ph.D. work but were rather adapted from 

existing work during the writing of Chapter 2 and 3. The code for fingerprinting (Finn et 

al., 2015), sliding-window (Váša et al., 2018) and imbalance mapping (Nadig et al., 2021) 

were all available in MATLAB, R and R, respectively. While imbalance mapping was not 

included in the publications, it was developed in the package as a potential useful tool. 

The process behind the spatial extent—particularly the Gaussian Mixture method—to 

determine abnormality of pathology is not novel (Franzmeier et al., 2020; Ozlen et al., 

2022; Vogel et al., 2020), but its systematic application across the whole brain and the 

subsequently resulting measures are novel. However, all of the existing methods had 

common flaws: they lacked documentation and structure for replication and widespread 

use. Most of the work in the development of sihnpy was, in fact, more related to refactoring 

the scripts to allow for greater scalability with different types of data, translating all of them 

to a single programmatic language, producing more extensive documentation with step-

by-step instructions and ensuring its accessibility for a wide scientific audience. 
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 One major issue in the field of neuroimaging is the lack of replication between 

studies (Botvinik-Nezer et al., 2020): different teams use different software or 

preprocessing methods to prepare and analyze data. One cause behind this is the strong 

diversity of tools and a lack of universal standards for methods to be used. In the case of 

the existing scripts for fingerprinting, sliding window and imbalance mapping, none of the 

original articles released the data used specifically with their methods, making replication 

by other users more difficult. This was also one of the driving forces behind sihnpy. Open 

data from the PREVENT-AD was preprocessed and integrated into sihnpy. Furthermore, 

sihnpy’s tutorial executes the data analyses step-by-step and show the users what the 

results should look like. This makes the reproduction of the methods more likely and less 

prone to errors when users test the methods before applying them to their data.  

 Contrary to the chapters of this thesis which resulted in static products (i.e., 

publications), sihnpy is a living tool. Left open to the scientific community on GitHub, it will 

continue to evolve as feedback and issues arise and with new modules being integrated. 

However, the goal behind sihnpy will always remain the adaptation of tools to investigate 

interindividual differences, be it the creation of new tools, or the integration of previously 

existing tools. 

 

4.5 – Strengths and limitations 

 The field of interindividual differences in the brain is still young. We can reliably 

demonstrate their existence, but the potential for their utility remains still largely 

unexplored. While the work of this thesis paves the path for this research, many limitations 

must be acknowledged.  
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 First, it is important to acknowledge that, despite the associations with clinically 

relevant variables across both studies, the role of the different measures in clinical 

research studies must be better defined. The spatial extent demonstrated the best 

capacity for clinical research, but while the gain in variance explained for tau (Chapter 3) 

is significant, this is only evident in circumscribed cognitive domains. More studies are 

needed to establish exactly how these measures could help with tracking clinically 

relevant processes in the brain.  

 Second, all the methods presented across chapters rely heavily on arbitrary 

choices. It is still unclear how choices from users can impact the results. However, in 

Chapter 2, we carefully studied the impact of different methodological choices on 

fingerprinting and sliding window approaches and detailed them extensively. However, 

the main messages remained the same. In Chapter 3, we tried to be as transparent as 

possible on the methods and the choices made so others could consider these choices 

when designing studies including these methodologies. 

 Third, though this was chosen by design, the study populations in Chapters 2 and 

3 were largely homogenous: participants overwhelmingly identified as white, were all from 

highly industrialized nations and mostly had higher levels of education. In Chapter 3, 

participants were recruited from ADNI, which comprises participants with amnestic 

symptoms at the forefront of their clinical presentation, which does not represent a large 

proportion of patients with different clinical presentations. These choices were made 

initially mostly for practical reasons: very few datasets have lifespan neuroimaging data 

available yet, and very few tau-PET datasets are openly available yet, let alone datasets 

with significant diversity. Future studies should validate these results in more diverse 
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populations. However, the fact that we were able to find significant interindividual 

differences in highly homogenous cohorts reinforces the conclusion that interindividual 

differences are incredibly common. 

 Fourth, results in Chapter 3 use a coarse brain parcellation of 68 cortical regions. 

In Chapter 2, we demonstrate that an increase in brain resolution (i.e., more brain region) 

tends to increase identifiability suggesting that including more brain regions helps 

highlight the heterogeneity. As such, it is possible that including more brain regions for 

PET imaging would also increase the heterogeneity observed. Future research should 

confirm whether this is the case. However, despite the relatively coarse brain resolution, 

we were able to identify significant heterogeneity and relate it to clinical variables. 

 Fifth, the methodology used in Chapter 3 to capture abnormal tau-PET distribution 

binarizes information for each brain region. While this has the advantage of being easy 

to interpret (i.e., number of brain regions), particularly for clinical use, this binarization 

limits further interpretation of the data and precludes data patterns exclusive to 

continuous SUVR data.  

  



 250 

4.6 – Future directions 

 In 2023, the year where this thesis is submitted, nearly 43.8 million individuals live 

with AD or related dementia worldwide (Nichols et al., 2019). Closer to home, nearly 10% 

of older adults over 65 years in the Canada live with AD, a proportion projected to double 

by 2050 (Alzheimer’s Society of Canada, 2022). This high prevalence, mixed with critical 

failures of clinical trials to treat the disease (J. L. Cummings et al., 2014), emphasizes the 

importance of developing accurate tools to identify patients and their prognoses. 

 The current thesis, suggesting high inter-individual differences between patients, 

points to personalized medicine as a future avenue of research. Personalized medicine 

tools offer individual-specific measures that can track the progress of the disease, 

accounting for each participant’s unique life trajectories and realities (Iturria-Medina et al., 

2018). Already, individual-specific tools in AD and dementia demonstrate good prognostic 

ability to track disease progression over group-level measures (J. A. Brown et al., 2019; 

Franzmeier et al., 2020; Leuzy et al., 2023), emphasizing the advantages of these 

methods. This research field must expand and validate the clinical utility of these tools 

above and beyond existing ones. 

 This thesis, and most of the research on individual-specific measures, usually 

focus on descriptive or accurate modelling of the differences and often do not account for 

other important differences between individuals. There is a vast body of literature on many 

risk factors influencing pathology amount and progression in AD: decreased sleep and 

exercise, increased cardiovascular burden, certain personality types (Ourry et al., 2023), 

being a woman (Buckley et al., 2020) or a person of color (Morris et al., 2019), having 

specific genetic risk factors (Angelopoulou et al., 2021; Cai et al., 2023) or family history  
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(Arenaza-Urquijo et al., 2020), increased age and decreased education (Arce Rentería et 

al., 2019) are all factors associated with increased pathology and disease progression at 

the group-level. An advantage of personalized measures is that these factors are implicitly 

accounted for as each individual become their own reference point. Still, more research 

is needed to evaluate how each of the factors—and their combination—influences 

individual-specific measures. This will likely require massive amounts of data to ensure 

that all these factors are well represented in the data. 

 Another important aspect that should be addressed in personalized medicine 

research is that heterogeneity in the brain spans multiple modalities. This is implicit in this 

thesis, as we demonstrate heterogeneity in functional and molecular imaging, and this 

was also shown in other studies (Mansour et al., 2020). Still, the impact of this multimodal 

heterogeneity has not been studied extensively in AD, nor on its spread (Iturria-Medina 

et al., 2018). Incorporating information from multiple heterogenous sources of brain 

structure and function could help provide even more precise information in predicting 

outcomes in AD. 

4.7 – General conclusions 

 The work in this thesis challenges traditional views in neuroimaging research by 

demonstrating that grouping individuals from populations thought to be homogeneous 

can miss significant and clinically relevant heterogeneity in both healthy and pathological 

cohorts and using functional, structural, and molecular imaging. We also propose a 

collection of tools that other researchers can use to study this heterogeneity. Researchers 

should carefully examine the impact of heterogeneity in brain features before grouping 

participants in their analyses.  
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X – Annex: sihnpy documentation 

 This annex presents sihnpy, a Python-based package developed to bundle and 

offer openly available tools to study interindividual differences in brain data. sihnpy adapts 

four tools: fingerprinting originally developed in MATLAB (Finn et al., 2015), spatial extent 

originally developed in Python in Chapter 3 of this thesis (St-Onge et al., 2023), sliding-

window originally developed in R (Váša et al., 2018) and the imbalance mapping originally 

developed in R (Nadig et al., 2021). sihnpy also includes data from the PREVENT-AD 

Open Dataset (Tremblay-Mercier et al., 2021), a repository of data collected from 

cognitively unimpaired participants at risk of developing Alzheimer’s disease, to allow 

users to test the functionalities of the package. This annex will present each of the module 

by describing their rationale, their definitions and methods, their use cases, limitations 

and strengths and briefly demonstrating their application on PREVENT-AD data. Detailed 

information on data preprocessing for the datasets module is also included. Finally, this 

annex will discuss potential applications and future directions. Full-fledged tutorials, 

examples, and explanations are available on the original web-based documentation at 

https://sihnpy.readthedocs.io/en/latest.  

  

https://sihnpy.readthedocs.io/en/latest
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X.I – Introduction to sihnpy 

 Variability between individuals is usually ignored in brain imaging research. Most 

statistical methods derive an average signal across individuals and attribute deviation 

from the norm to random, statistical noise (Brett et al., 2011; Poldrack et al., 2011). Yet 

emergent research suggests that interindividual variability is instead a core, genetically 

determined (Demeter et al., 2020) feature of the brain. Variability in functional 

organization (Mansour et al., 2020; Mueller et al., 2013), brain anatomy, (Mansour et al., 

2020) and electrophysiological (da Silva Castanheira et al., 2021) patterns have all been 

reliably shown across cognitively healthy individuals. 

 Despite this evidence of interindividual differences, much of the research in brain 

disorders, such as on Alzheimer’s disease (AD) dementia, still heavily relies on the 

“group-average” assumption. In AD, clinical symptoms—mainly episodic memory 

(Scheltens et al., 2021; Weintraub et al., 2012)—are thought to be caused by the 

accumulation of two pathological hallmarks, amyloid (Thal et al., 2002) and tau (Braak & 

Braak, 1991) misfolded protein, in a similar spatial pattern across individuals. Originally 

studied using histopathology, advancements in recent years with positron emission 

tomography (PET) now allow for in-vivo measurements (Grothe et al., 2017; Therriault, 

Pascoal, Lussier, et al., 2022).  

Research in the past decade shed doubt on the vision that patients all share the 

same pathological patterns. Evidence is emerging that patterns of amyloid (Collij et al., 

2022), tau (Vogel et al., 2021), atrophy (Ferreira et al., 2020), and consequently, clinical 

presentations (La Joie et al., 2020) differ significantly between participants. This, in 

conjunction with evidence that patient-centred methods offer a significant improvement in 
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predicting the spread of pathology over time (Franzmeier et al., 2020; Leuzy et al., 2023), 

suggests that integrating interindividual differences in tools used in AD research is likely 

to yield better accuracy and outcomes for patient research, in line with the concept of 

precision medicine (Iturria-Medina et al., 2018). 

Yet, scientists are still faced with important methodological challenges: few tools 

exist to measure interindividual differences, and existing tools are often not shared openly 

(Franzmeier et al., 2020; Leuzy et al., 2023; Tijms et al., 2012), lack thorough 

explanations to use for scientists with less computing experience (Nadig et al., 2021) or 

require massive amounts of data to work (Iturria-Medina et al., 2018). This prompted us 

to create sihnpy, a Python-based package that provides the scientific community with 

open, easy-to-use tools to investigate interindividual differences in brain data. sihnpy 

integrates these tools (fingerprinting, spatial extent, sliding window and imbalance 

mapping) with reproducible and detailed tutorials as well as open-access and simulated 

data from the PREVENT-AD cohort for scientists to test out the functions of the package 

before using them on other datasets (Tremblay-Mercier et al., 2021). In this shortened 

documentation, we present the modules of sihnpy and its application to brain imaging 

data from the PREVENT-AD cohorts. 
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Figure X.I – Illustration of sihnpy’s modules. A) In the fingerprinting module, the data from 

each participant—here illustrated with functional connectivity matrices—is correlated to their own 

data at a different timepoint (self-identifiability) and to the data from all other participants (others-

identifiability). A stronger self-identifiability indicates an accurate fingerprint. Panel adapted from 
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St-Onge et al. 2023a. B) In the sliding-window module, subgroups of overlapping participants are 

selected based on a continuous variable (e.g., age), by varying the size of the subgroups (window 

size) and the size of the overlap (step size). Panel adapted from St-Onge et al. 2023a. C) In the 

spatial extent module, the data from each brain region (1) is used to determine a threshold over 

which the data should be considered abnormal. The default method in sihnpy is to use Gaussian 

Mixture modelling (2) to derive a threshold based on the probability of belonging to the cluster 

with highest pathology (3). Then, the value of the participant with the probability closest to the 

probability threshold is used as the actual threshold to determine if a participant has normal or 

abnormal value in a given region (4). The sum of all regions above threshold is the spatial extent 

index (5). sihnpy provides additional measures of tiered spatial extent (6) and weighted masks 

(7) further described in the method section. Panel adapted from St-Onge et al. 2023b. D) In the 

imbalance mapping module, the values in each pair of brain feature is correlated using orthogonal 

distance regression (1). The figure illustrates this correlation using PREVENT-AD Open Dataset 

volumetric data: the red line represents the correlation from the orthogonal distance regression 

and the black line represents the correlation from a classical ordinal least square regression. For 

each pair of region, the perpendicular distance between an individual’s values and the regression 

line is calculated (2). This represents the imbalance that the individual has for a given pair of 

region. Then, different measures are calculated, such as a global average by person, an average 

for each brain region for each person and an average for each region at the group-level (3). Panel 

adapted from Nadig et al. 2021. 
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X.II – Description of sihnpy’s modules 

 X.II.I – Software development and general philosophy 

sihnpy was developed using Python v.3.9 and Poetry v.1.4.1 in a Conda 

environment v.23.1.0. Package development followed the principles outlined in Beuzen 

& Timbers (Beuzen & Timbers, 2022). This includes continuous integration and testing, 

and a continuous deployment workflow set-up on GitHub 

(https://github.com/stong3/sihnpy), allowing for automatic testing of package 

modification, automatic deployment of the package to PyPi 

(https://pypi.org/project/sihnpy/) and automatic update of the documentation hosted on 

ReadTheDocs (https://sihnpy.readthedocs.io/). 

 The package was developed with three principles in mind: open tools accessible 

to all, ease of use and thorough explanations. To this end, extensive step-by-step 

documentation was developed for all modules. We also focused on using similar code 

architecture between modules to facilitate their use. Nearly all functions in sihnpy work 

with two simple Python objects: numpy-based n-dimensional arrays and pandas-based 

dataframes. Numpy arrays are objects containing many data of the same type (e.g., 

floats) structured alongside one or multiple dimensions (Harris et al., 2020). Pandas-

based dataframes are tabular objects with columns and rows where each column 

represents a variable and each row an observation (The pandas development team, 

2020). This choice was made as both types of Python objects are relatively easy to 

understand, they both work well with one another and they can usually be exported 

relatively easily to spreadsheets. Finally, while a basic understanding of both object types 

https://github.com/stong3/sihnpy
https://pypi.org/project/sihnpy/
https://sihnpy.readthedocs.io/
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is recommended, the package instructions usually allow users to run the functions 

regardless. 

 X.II.II – Datasets module 

sihnpy is shipped with a small subset of data from the PREVENT-AD Open Dataset 

(Tremblay-Mercier et al., 2021), with access from the Canadian Open Neuroscience 

Platform (Poline et al., 2023). The goal is to provide users with data to familiarize 

themselves with the different modules and what the results from these modules should 

look like, but at the same time to not make the package too memory-heavy for users. 

Instead, we invite users to visit the documentation online which describes in further details 

how to download data from the PREVENT-AD. Here, we describe the data available in 

the package and how it was derived. 

 Data on 308 participants from the PREVENT-AD Open Dataset were available for 

download. First, we downloaded a random subset of 15 participants with baseline resting-

state functional MRI (fMRI) available. A smaller subset of participants also had fMRI data 

available during memory encoding and memory retrieval tasks, and a smaller subset still 

also had fMRI data available at the 12-month follow-up. We used fMRIPrep v.20.2.0 to 

preprocess all fMRI scans available for the 15 participants. Then, we used Nilearn v.0.9.2 

for Python 3.9 with partial correlations to calculate pair-wise functional connectivity in the 

Schaefer 400 atlas (Schaefer et al., 2018). Partial correlation was chosen specifically 

because the fMRI data is used to test the fingerprinting package, and we found that partial 

correlation tends to yield much more accurate fingerprint measures than product-moment 

correlations (St-Onge, Javanray, et al., 2023). We chose only 15 participants as including 

functional connectivity data for all 308 participants would have made the package 
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particularly memory-heavy and 15 participants is sufficient to test the module. Specific 

details on the preprocessing of fMRI scans can be found in the Data Preprocessing 

section. 

 We preprocessed structural T1-weighted MRI for 308 participants who had at least 

one baseline MRI scan available using FreeSurfer v6.0.0. A total of 306 baseline scans 

were successfully preprocessed without error. From these participants, a subset of 234 

participants had 12-month follow-up scan that we also pre-processed. We extracted grey 

matter volume and thickness data for all baseline and follow-up scans available for all 

regions of the Desikan atlas (Desikan et al., 2006). We additionally extracted the grey 

matter volume in subcortical regions. All of the resulting data was made available within 

sihnpy. 

 To allow users to test the spatial extent module, we simulated tau positron 

emission tomography (PET) data to replicate the use of the tool in the original publication 

on this method (St-Onge, Chapleau, et al., 2023). While PREVENT-AD participants do 

have tau-PET data available, they are not yet made openly available to the research 

community. As such, we generated simulated tau-PET data based on the regional 

average of tau-PET data within the ADNI. Specifically, to ensure we would have two 

Gaussian distributions for the Gaussian Mixture models, we generated random data for 

our 308 participants from the PREVENT-AD for each region from two distributions based 

on a normal distribution around the average tau-PET SUVR of CU amyloid-negative 

participants and on the average tau-PET SUVR of participants with AD dementia who 

were amyloid-positive. We then split our sample of 308 participants into two unequal 

parts: 100 participants with data taken from the high tau-PET distribution and 208 



 295 

participants with data taken from the low tau-PET distribution. For two regions (right 

precentral and right postcentral gyri), we purposefully took random data from a single 

distribution or inverted the number of participants from the low and high tau-PET 

distribution to introduce errors in the test data. This was done so users can see these 

issues arise and understand potential solutions to apply should these errors occur in their 

own data. 

 Finally, we wanted to give users a continuous demographic variable to test the 

sliding window analysis. This is usually done using the age of participants. However, due 

to confidentiality issues, age of PREVENT-AD participants is not disclosed in the Open 

dataset. Instead, we once again simulated the age of our participants using a Gaussian 

distribution centred on the average and standard deviation of the age of participants in 

the PREVENT-AD (65 years ± 5), with the additional requirement that age could not be 

lower than 55 years. This was to match the inclusion criteria of the cohort (Tremblay-

Mercier et al., 2021). 

 X.II.III. – Fingerprinting module 

 Rationale 

Fingerprinting is a methodology aiming to derive unique individual-level signatures 

of brain patterns (Finn et al., 2015). Originally studied using functional connectivity 

patterns (Amico & Goñi, 2018; Finn et al., 2015), the method was successfully used in 

many different data types, including structural (Mansour et al., 2020) and 

electrophysiological (da Silva Castanheira et al., 2021) imaging. In a fingerprinting 

analysis, as illustrated in Figure X.IA, the brain features of an individual (e.g., regional 

brain volume) are first correlated to the brain features of the same participant scanned 
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during a different scan and/or at a different time point (self-identifiability) (Amico & Goñi, 

2018). Then, the brain features of the first individual are correlated to the brain features 

of all other participants in the dataset (others-identifiability) (Amico & Goñi, 2018). 

Accurate identification of a unique signature of brain features for an individual occurs 

when the self-identifiability of that individual is higher than any others-identifiability across 

all the other participants. This is referred to as fingerprint accuracy (Amico & Goñi, 2018; 

Finn et al., 2015). 

Fingerprints were previously associated with different health outcomes 

(Bijsterbosch et al., 2018; Mansour et al., 2020) and cognitive measures (Finn et al., 

2015). This suggests that fingerprints could have potential clinical utility outside of 

personal identification. 

 Definitions and methods 

 sihnpy computes fingerprints as the correlation between two vectors of brain 

features (e.g., volume/functional connectivity in a set of brain regions). Fingerprinting can 

be performed with two different types of input. First, sihnpy accepts local paths to two 

folders containing functional connectivity matrices from two different scanning sessions 

or timepoints. In that case, sihnpy will first import the functional connectivity matrices and 

remove the diagonal and lower half of the matrix (as a functional connectivity matrix is 

symmetric). Then, the rest of the connectivity values will be vectorized. The user also has 

the option to normalize the values at this stage using a Fisher r-to-z transformation. 

Finally, the script will correlate the connectivity values of each participant in the first 

modality or timepoint to all participants in the second modality or timepoint. This is done 

by default using a product-moment correlation but can be adjusted to Spearman or 
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Kandall correlation. Second, sihnpy also accepts two pandas dataframes (i.e., two tables) 

with columns as brain regions and rows as individual participants. This second option will 

be the case most of the time when a single measure (e.g., volume) is available in each 

brain region. The software performs exactly the same steps as with the connectivity 

matrices, but with the additional restriction that at least some participant IDs must match 

between the two dataframes. 

 sihnpy outputs a single dataframe following the calculations containing, for each 

participant, the self-identifiability (i.e., correlation within the same individual across scans) 

the average other-identifiability (i.e., the average correlation between a given individual 

and all other individuals in the cohort), the differential identifiability (i.e., the difference 

between the self- and average other-identifiability) and the fingerprint identifiability 

accuracy (i.e., whether the participant was accurately identified). sihnpy also outputs a 

similarity matrix with the individual correlations between each participant, which can be 

useful to study the similarity between a specific set of participants. 

 Several options are available for users such as normalizing—or not—the data with 

the Fisher transformation before executing the fingerprinting, the type of correlation and 

which brain regions are selected in the analysis. 

 Use cases, strengths and limitations 

 The fingerprinting methodology can usually be applied when the data is highly 

dimensional for each participant, i.e., a lot of brain regions being measured. Each 

participant must also have two brain scans to be able to do the correlation. In terms of 

strengths, the fingerprinting module is easy to apply, and the software’s options are 

flexible even with minimal Python knowledge. In terms of limitations, fingerprinting 
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measures can be hard to interpret (i.e., is an accurate identification positive or negative 

regarding other outcomes?), they are highly dependent on the resolution of the data as 

less data per participant will produce poor identification and the implementation in sihnpy 

is computationally expensive due to its operations being done in sequence rather than in 

parallel, which can result in high computational time. 

 Demonstration 

 In the documentation, a step-by-step tutorial is given with code to follow along to 

obtain the fingerprinting measures for the PREVENT-AD data. For brevity, interested 

parties are directed to the documentation. Users can derive fingerprinting measures using 

either functional connectivity or structural—thickness or volume—data available from the 

datasets module. 

 Functional connectivity is available on 15 participants and was measured during a 

resting-state, a memory encoding or memory retrieval task. A subset of these participants 

has longitudinal data available 12 months later. Tutorial demonstrations are done with the 

resting-state data available at baseline and at the 12-month follow-up. Using these data, 

all 15 participants are correctly identified at 12 months. Users are invited to try different 

combinations of the data as they see fit. 

 Regional thickness and volume are available on 306 participants and was available 

at baseline and at 12-months for a subset of participants. Tutorial demonstrations are 

done use brain volume in the left and right hemispheres for fingerprinting. Using these 

data, 98.29% of participants were accurately identified.  
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 X.II.IV. – Spatial extent module 

 Rationale 

The goal of the spatial extent module is to calculate the spatial extent index, i.e., 

the number of regions, that a given pathology is present throughout the brain of individuals 

(St-Onge et al., 2023). This is done by determining a threshold at which each region has 

an abnormal level of pathology. In sihnpy, this is implemented using a Gaussian mixture 

framework, where a threshold is established based on the probability that the data from 

a participant belongs in the abnormal distribution of the data. This method was originally 

developed using PET data (Ozlen et al., 2022; St-Onge et al., 2023; Vogel et al., 2020) 

as both amyloid and tau naturally presents a bimodal distribution when pathology 

accumulates. 

 Definitions and methods 

 The spatial extent is a simple framework in which the spatial distribution of a 

specific pathology in the brain is regionally binarized by applying a threshold to each 

region of the brain to determine which regions are abnormal at the individual level. In 

sihnpy, this is coded in two major steps. In the first step, sihnpy derives thresholds for 

each region of interest. This is done by applying a two-component Gaussian Mixture 

model to the values in each brain region. More details on the specific steps of the 

Gaussian Mixture approach can be found in Figure 1C. sihnpy users using this approach 

can choose multiple probability thresholds. sihnpy also provides several checkpoints to 

ensure that the data provided is adequate for the Gaussian Mixture approach such as 

ensuring that a two-component solution is appropriate and making sure that the final 

thresholds are not too high or too low in the original scale of the data. The file provided 
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by sihnpy for thresholds is made of columns representing the different probability 

thresholds chosen by the user and the rows represent the different brain regions where 

the thresholds were applied. In the second step, sihnpy applies the thresholds to the data. 

By default, sihnpy accepts thresholds derived from its “apply” step, but it will also accept 

any thresholds derived by users if the format of the file matches what is normally output 

by sihnpy. In this second and last step, sihnpy will output a spatial extent index for each 

participant (i.e., the number of regions above thresholds), a binary mask for each 

participant indicating which regions are above threshold and a weighted mask where the 

binary mask is multiplied by the original data, such that regions below threshold have a 

value of 0 and regions above threshold have the original value. 

 Use cases, strengths and limitations 

 In terms of conditions and limitations, the spatial extent module needs data on 

more than one brain region. The module can still be used to derive thresholds in individual 

regions or markers, but won’t provide an index in the second step. Finally, the data fed to 

the module should be able to be binarized: the module will not provide accurate thresholds 

in the case of only 1 normal distribution being found nor will it able to find more than two 

clusters in each region. In terms of strengths, the module is easy to apply to data. It is 

also an easy-to-interpret individual-specific measure as the spatial extent index simply 

counts the number of regions above regional thresholds. It also provides users with good 

flexibility as it allows for multiple thresholds to be derived at once and it provides a variety 

of different measures (global number of regions, binary mask of regions and weighted 

mask of regions). However, this method can lose information as it forces binarization of 

the data. Furthermore, if different teams use different methods to derive thresholds or use 



 301 

different number of brain regions, results may not be comparable. Deriving thresholds 

with Gaussian Mixture also comes with some limitations, including the arbitrary choice of 

probability thresholds and the possibility that the data will not conform to Gaussian 

distributions. 

 Demonstration 

 At the time sihnpy was created, there was no PET data openly available from the 

PREVENT-AD. To allow users to test the package, simulated data was instead created. 

We selected 14 bilateral brain regions: entorhinal, amygdala, fusiform, parahippocampal, 

inferior temporal, middle temporal, precentral and postcentral. All of these, with the 

exception of the precentral and postcentral gyri, are regions where tau pathology tends 

to accumulate in priority in patients with Alzheimer’s disease. Tau pathology data tends 

to present in a bimodal distribution: a large proportion of individuals with little to no tau, 

tightly distributed, and a small proportion of individuals with high amounts of tau loosely 

distributed. To simulate this distribution, we used Gaussian randomizers. To start the 

randomizers, we extracted the average and standard deviation of tau standardized uptake 

value ratio (SUVR; i.e., amount of tau) from the data we used in Chapter 3 in each of the 

brain regions of interest. We used the values of cognitively unimpaired amyloid-negative 

participants to simulate “low tau” data and the values of patients with Alzheimer’s disease 

and amyloid-positive to simulate “high tau” data. Ten thousand numbers were generated 

for “high tau” and “low tau” distributions. We then randomly selected 200 values from the 

“low tau” values and 108 values from the “high tau” values and assigned them to 

PREVENT-AD participants. 
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 While this yields cleanly separated distributions, this is not always the case when 

dealing with actual PET data. Gaussian Mixture Models can identify a single distribution 

of the data rather than two, and it can also misidentify the “high tau” distribution as being 

the “low tau” distribution. To simulate these issues for users, two regions (precentral and 

postcentral gyri) were modified. In the first case, a single Gaussian randomizer was used 

to create simulated data for all 308 participants. In the second, 108 random data from the 

“low tau” distribution were taken, while 200 random data from the “high tau” distribution 

were taken. The full tutorial addresses how to handle these scenarios for users. 

 

 X.II.V. – Sliding-window module 

 Rationale 

 Contrary to other modules in sihnpy, which provide individual-level measures of 

heterogeneity, the sliding window instead targets group-level heterogeneity. Specifically, 

in the sliding-window analysis, the sample of interest is sorted and divided into 

overlapping subgroups based on ascending or descending values on a specific variable 

(St-Onge, Javanray, et al., 2023; Váša et al., 2018). The size of each subset and the 

degree of overlap are determined by the user when creating the groups. This method 

allows to verify whether a variable, or association, of interest changes based on a third 

variable.  

 Definitions and methods 

 In the sliding-window analysis, groups of overlapping participants are created 

along a continuous variable of interest (Váša et al., 2018). The goal of this procedure is 

to test whether an outcome remains the same across slight variations in the variable of 
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interest. It starts with the user determining the size of the group of interest (window size) 

and the size of the overlap between groups (step size). Then, the user must input a 

dataframe to sihnpy with the one variable to use to split the groups. The variable must be 

continuous, and ideally, different enough between participants so they can be accurately 

sorted. The dataframe is then sorted in ascending order and sihnpy computes the number 

of windows (i.e., subgroups) it should build based on the sample size. sihnpy will select 

the first N participants for the first window where N is the window size, skip S participants 

where S is the step size and select the next N participants for the second window. Finally, 

sihnpy will output a spreadsheet for each window created which will contain the IDs of the 

participants included as well as their value on the splitting variable. It will also output a 

single spreadsheet with the average value of the splitting variable in each window, which 

can be useful when plotting results from this analysis. 

 Use cases, strengths and limitations 

 The only requirement for this module to function is that the splitting variable must 

be continuous and, ideally, should vary enough between individuals so that no or few 

participants share the same value. This method has the advantage of being easy to use 

and creates more data-driven group divisions rather than splitting on an arbitrary number. 

However, it still requires the users to choose arbitrary values such as the size of the 

groups and their overlap. Consequently, users should test multiple window and step sizes 

when using this method to ensure that results are congruent. Furthermore, as window 

and step sizes will rarely result in an exact division of participants, the last window created 

will always have an unequal number of participants. While you can somewhat control this 

behaviour in sihnpy by adjusting whether the last window has more or fewer participants 
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than other windows, any projects using this method will need to acknowledge this 

limitation. 

 Demonstration 

 Demographic information on the PREVENT-AD participants is limited due to 

ethical reasons. Normally, age is used in the sliding window analysis, but this information 

is not available in the open dataset. Instead, similarly to the tau-PET data, we simulated 

the age of participants with a Gaussian randomizer based on the inclusion criteria in the 

PREVENT-AD. We used an average age of 65 years and a standard deviation of 5 years. 

Additionally, we capped the minimum age at 55 years (i.e., minimum age criteria to be 

included in the PREVENT-AD). 

 X.II.VI. – Imbalance mapping module 

 Rationale 

 Imbalance mapping is an analysis that calculates the distance between an 

individual’s brain feature and the average of their sample, with the idea that the further a 

person is from their population average, the more imbalance they present (Nadig et al., 

2021). This is calculated using a covariance analysis, where the values of each brain 

feature are correlated to the values of each other brain feature across the group. The 

population average (i.e., regression line) and the individual distances (i.e., individuals’ 

residuals from the regression line) are computed using an orthogonal distance regression 

method based on principal component analysis (Jollife & Cadima, 2016; Nadig et al., 

2021). Contrary to other regression methods, such as ordinal least squares, orthogonal 

distance regression assumes that values in each brain feature both present errors that 

need to be accounted for, deriving distances with less bias between regions. In this 
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analysis, a greater distance means more difference from the population for a given 

individual. 

 Definitions and methods 

 In a traditional covariance analysis, values in each region of the brain are 

correlated to values in all other regions across a group of participants using a linear 

model. The deviation (i.e., imbalance) for a single participant is then determined as the 

distance between the predicted covariance and the actual covariance. In a regular linear 

model with an ordinal least square estimator, the distance from the predicted value is 

assumed to stem only from an error or difference in the outcome variable. However, in 

the case of a covariance analysis involving brain regions, the degree of error cannot be 

reliably attributed only to the outcome or predictor. Instead, we can use an orthogonal 

distance regression to compute the individual distance between the predicted and actual 

covariance and assume that the distance is a mixture of error from the outcome and 

predictor variable. Several methods exist to estimate an orthogonal distance regression 

(Carr, 2012), but the original imbalance mapping methodology leverages a principal 

component analysis to find a regression line that minimizes the orthogonal distance 

between the observed covariance and the predicted covariance (Nadig et al., 2021). The 

method was initially developed in R but was translated to Python and integrated into 

sihnpy. As input, sihnpy requires a single dataframe where each row is a unique 

observation, and each column is a brain region. sihnpy will then compute the orthogonal 

distance regression between each pair of brain regions and will calculate the individual-

level imbalance for each pair of regions. Finally, sihnpy will output a global imbalance 



 306 

average across the whole brain for each participant, an average imbalance by region for 

the group and an average imbalance by region for each individual. 

 Use cases, strengths and limitations 

 As a basic condition of use, you must have values for at least two brain regions to 

launch the imbalance mapping analysis. In terms of strengths, the method is easy to use 

and provides rich data for each participant and at the group level. It is also relatively 

computationally inexpensive to run. However, interpreting the data is more difficult as it 

is unclear whether having more imbalance is detrimental in the long term. Structural 

covariance, which imbalance mapping is based on, is also subject to multiple limitations 

that should be accounted for by users (Carmon et al., 2020), such as poor estimation in 

small sample sizes, with low-resolution images and in smaller parcellations. Furthermore, 

users should also check that orthogonal distance assumptions are respected before 

launching the method. 

 Demonstration 

 Thickness and volume data is available for 306 participants within the dataset to 

test the imbalance mapping functions. In the tutorial, this is demonstrated with volume 

data from participants with baseline data available. 

X.II.VII. – Data preprocessing  

This section contains additional information on how the data in sihnpy’s datasets 

module was preprocessed. This includes specifically the functional connectivity matrices 

and the volume and thickness measures. Most preprocessing information below comes 

from the boilerplate citations recommended by fMRIPrep and FreeSurfer. 

 Functional connectivity 
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 fMRI data from a resting-state task, an encoding and a retrieval task was 

preprocessed using fMRIPrep for 15 participants. We used fMRIPrep v20.2.0 (Esteban, 

Markiewicz, et al. (2018); Esteban, Blair, et al. (2018), which is based on Nipype 1.5.1 

(Gorgolewski et al. (2011); Gorgolewski et al. (2018). 

 First, all available T1-weighted (T1w) images for each participant across visits 

were used. They were corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 

2008). The T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as the target 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) and 

gray matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, Zhang, 

Brady, and Smith 2001). A T1w-reference map was computed after registration of all T1w 

images (after INU-correction) using mri_robust_template (FreeSurfer 6.0.1, Reuter, 

Rosas, and Fischl 2010). Brain surfaces were reconstructed using recon-all (FreeSurfer 

6.0.1, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (Klein et al. 2017). 

Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) 

was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using 

brain-extracted versions of both T1w reference and the T1w template. The following 

template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 

template version 2009c [Fonov et al. (2009); TemplateFlow ID: MNI152NLin2009cAsym] 

Note that while the Prevent-AD Open Dataset BIDS does contain other brain imaging 
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modalities that can be leveraged by fMRIPrep (e.g., FLAIR), it is not consistent across 

participants. As such, preprocessing was restricted to T1w and EPI images only. 

 The following preprocessing was performed for each BOLD run found per subject 

(across all tasks and sessions). First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map (or 

fieldmap) was estimated based on a phase-difference map calculated with a dual-echo 

GRE (gradient-recall echo) sequence, processed with a custom workflow of SDCFlows 

inspired by the epidewarp. The full script and further improvements in HCP Pipelines 

(Glasser et al. 2013). The fieldmap was then co-registered to the target EPI (echo-planar 

imaging) reference run and converted to a displacements field map (amenable to 

registration tools such as ANTs) with FSL’s fugue and other SDCflows tools. Based on 

the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference 

was calculated for a more accurate co-registration with the anatomical reference. The 

BOLD reference was then co-registered to the T1w reference using bbregister 

(FreeSurfer), which implements boundary-based registration (Greve and Fischl 2009). 

Co-registration was configured with six degrees of freedom. Head-motion parameters for 

the BOLD reference (transformation matrices and six corresponding rotation and 

translation parameters) are estimated before spatiotemporal filtering using mcflirt (FSL 

5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from 

AFNI 20160207 (Cox and Hyde 1997). The BOLD time series (including slice-timing 

correction when applied) were resampled onto their original, native space by applying a 

single composite transform to correct for head motion and susceptibility distortions. These 

resampled BOLD time series will be called preprocessed BOLD in the original space or 
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just preprocessed BOLD. The BOLD time series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a 

reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. Several confounding time series were calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD was computed using two formulations following Power (absolute sum of 

relative motions, Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated 

for each functional run, both using their implementations in Nipype (following the 

definitions by Power et al. 2014). The three global signals are extracted within the CSF, 

the WM, and the whole-brain masks. Additionally, physiological regressors were 

extracted for component-based noise correction (CompCor, Behzadi et al. 2007). 

Principal components are estimated after high-pass filtering the preprocessed BOLD time 

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: 

temporal (tCompCor) and anatomical (aCompCor). tCompCor components are 

calculated from the brain mask's top 2% variable voxels. For aCompCor, three 

probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical 

space. The implementation differs from that of Behzadi et al. in that instead of eroding the 

masks by 2 pixels on BOLD space; the aCompCor masks are subtracted a mask of pixels 

that likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask 

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are 

resampled into BOLD space and binarized by thresholding at 0.99 (as in the original 
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implementation). Components are also calculated separately within the WM and CSF 

masks. For each CompCor decomposition, the k components with the largest singular 

values are retained, such that the retained components’ time series are sufficient to 

explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or 

temporal). The remaining components are dropped from consideration. The head-motion 

estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global 

signals was expanded by including temporal derivatives and quadratic terms for each 

(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations 

(i.e. head-motion transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 

were performed using antsApplyTransforms (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-

gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). Many 

internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014), mostly within the 

functional processing workflow. For more pipeline details, see the workflow section in 

fMRIPrep’s documentation. 

 Finally, we extracted the functional connectivity using Nilearn v.0.6.2. Once 

preprocessed by fMRIPrep; confounds were removed from the images and frames with 

excessive motion were scrubbed using Nilearn. Time series were extracted in 400 brain 

parcels from the Schaefer atlas (Schaefer et al. 2018). The time series in each region 
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were correlated with every other region using partial correlations to generate the 

functional connectivity matrices. This process yielded 400x400 matrices representing the 

functional links between each brain region of the atlas. 

Volume and thickness 

 Longitudinal structural MRI data is available for most participants within the 

PREVENT-AD Open Dataset. In our case, we preprocessed baseline and follow-up at 

12-month structural MRI of all 308 cohort participants. This yielded 543 structural MRIs 

available for preprocessing. Two scans failed preprocessing, producing a final number of 

541 scans. Preprocessing was done using FreeSurfer 7.1.0., described below. 

 Cortical reconstruction and volumetric segmentation were performed with the 

Freesurfer image analysis suite, which is documented and freely available for download 

online (http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are 

described in prior publications (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 

2000; Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 2004a; Fischl et al., 1999a; 

Fischl et al., 1999b; Fischl et al., 2004b; Han et al., 2006; Jovicich et al., 2006; Segonne 

et al., 2004, Reuter et al. 2010, Reuter et al. 2012). Briefly, this processing includes 

motion correction and averaging (Reuter et al. 2010) of multiple volumetric T1 weighted 

images (when more than one is available), removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Segonne et al., 2004), automated Talairach 

transformation, segmentation of the subcortical white matter and deep gray matter 

volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles) 

(Fischl et al., 2002; Fischl et al., 2004a) intensity normalization (Sled et al., 1998), 

tessellation of the gray matter white matter boundary, automated topology correction 
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(Fischl et al., 2001; Segonne et al., 2007), and surface deformation following intensity 

gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at the 

location where the most significant shift in intensity defines the transition to the other 

tissue class (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000). Once the 

cortical models are complete, several deformable procedures can be performed for 

further data processing and analysis, including surface inflation (Fischl et al., 1999a), 

registration to a spherical atlas which is based on individual cortical folding patterns to 

match cortical geometry across subjects (Fischl et al., 1999b), parcellation of the cerebral 

cortex into units for gyral and sulcal structure (Desikan et al., 2006; Fischl et al., 2004b), 

and creation of a variety of surface-based data including maps of curvature and sulcal 

depth. This method uses both intensity and continuity information from the entire three-

dimensional MR volume in segmentation and deformation procedures to produce 

representations of cortical thickness, calculated as the closest distance from the 

gray/white boundary to the gray/CSF boundary at each vertex on the tessellated surface 

(Fischl and Dale, 2000). The maps are created using spatial intensity gradients across 

tissue classes and are therefore not simply reliant on absolute signal intensity. The maps 

produced are not restricted to the original data's voxel resolution and thus can detect 

submillimeter differences between groups. Procedures for measuring cortical thickness 

have been validated against histological analysis (Rosas et al., 2002) and manual 

measurements (Kuperberg et al., 2003; Salat et al., 2004). Freesurfer morphometric 

procedures have shown good test-retest reliability across scanner manufacturers and 

field strengths (Han et al., 2006; Reuter et al., 2012). While longitudinal data was available 

and used in this package, each session was processed individually. 
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The aseg atlas is built from 40 subjects acquired using the same mp-rage 

sequence (by people at Wash U ages ago in collaboration with Randy Buckner). The 

subjects that make up the atlas are distributed in 4 groups of 10 subjects each: (1) young, 

(2) middle-aged, (3) healthy older adults, and (4) older adults with AD. 

Following preprocessing, volume and thickness were extracted from the 68 

bilateral parcels comprising the Desikan atlas (Desikan et al., 2006). The volume in the 

Aseg atlas was also extracted. Volume and thickness in the Desikan and Aseg atlas are 

shipped with sihnpy.  
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X.III. – Discussion 

 This annex presented sihnpy, an openly available Python package comprising 

analytical methods from Chapters 2 and 3. The goal was to adapt and provide these tools 

openly for the scientific community in a user-friendly manner. More broadly, through the 

use of open access data, this project promotes open access to advance science forward. 

sihnpy, contrary to traditional scientific publications, is a living tool.  New modules will 

continue to be developed with the aim of providing scientists with more tools to investigate 

interindividual differences, based on user feedbacks, scientific discoveries and research 

in the field of interindividual differences.  



 315 

XI – Annex: Optina Diagnostics – Data science report 

 During my thesis work, I was recruited for an internship at Optina Diagnostics Inc. 

financed by Mitacs in May 2020. Optina Diagnostics is a biomedical company working on 

an artificial intelligence algorithm to classify individuals with low or high levels of amyloid 

pathology based on a retinal scan. I worked on multiple projects for the company between 

May 2020 and September 2023 where I recruited participants for a study, preprocessed 

positron emission tomography and structural magnetic resonance imaging, and analyzed 

quantitative SUVR measurements. This culminated in the report presented in this Annex, 

where the goal of the study was to compare positivity from visual readings of expert 

neuroradiologists to quantitative SUVR measurements in participants recruited within the 

PREVENT-AD. While not central to this project, I also utilized sihnpy to apply the spatial 

extent methodology which revealed insights on the spread of amyloid in the brain of 

participants at the individual level. Overall, the report found that neurologist visual reads 

will only identify scans as positive when amyloid is widespread throughout the brain, likely 

missing early regional-only amyloid cases. I also revealed significant discrepancies 

between visual readers, suggesting that some readers are more sensitive to regional 

amyloid. As the consensus visual reading is the variable used to train their algorithm, I 

made recommendations to either 1) include only participants where the scans were 

declared positive or negative by all readers, which will effectively strengthen the training 

of the model on more clearly labelled data, or 2) use a tiered approach to capture regional 

amyloid should they want their algorithm to identify early accumulation of amyloid.   
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Section 1 – Summary and recommendations 

 Optina Diagnostics is developing an artificial-intelligence-based retinal imaging 

biomarker to detect amyloid positivity in patients with Alzheimer’s disease based on 

majority voting from a panel of three neuroradiologist experts. After recruiting 128 

participants from the PREVENT-AD cohort, the company asked me to describe the data, 

and particularly, to compare amyloid positivity derived from majority visual reading from 

experts to quantitative standardized uptake value ratio (SUVR)-based methods. 

 Overall, the report found that SUVR-based methods are usually as accurate as the 

majority voting neuroradiological readings in identifying amyloid positive cases. However, 

SUVR thresholds identified by this report matching the accuracy of the visual reads were 

much higher than based on data-driven methods. Diving in this discrepancy revealed that 

neuroradiologists were more conservative than data-driven methods, only classifying 

participants as positive once amyloid was widespread across the entire brain, despite 

evidence of regional accumulation. We found discrepancies between neuroradiologists, 

with one specifically identifying regional accumulation of amyloid not identified by others. 

Majority voting visual reads also missed significant longitudinal accumulation of amyloid. 

 In the future, if the objective is to capture early accumulation, the company is likely 

to miss it when using majority voting of visual read as an indicator of amyloid positivity in 

cognitively unimpaired participants at risk of AD. The company could use instead 

categorical unanimous voting (positive, ambiguous, negative) or weighting visual reads 

by the SUVR amount when training the algorithm. Another solution could be to train a 

different algorithm specifically for participants without cognitive impairments based on 

their SUVR values.  
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Section 2 – Introduction and objectives 

Optina Diagnostic Inc. is currently developing an artificial intelligence-based retinal 

imaging marker that uses features of hyperspectral imaging in the retina to predict 

amyloid positivity status in the brain of participants based on amyloid positron emission 

tomography (PET) scans. The company currently uses a majority vote of 

neuroradiologists to establish whether a participant has a positive amyloid PET scan. 

Between July 2021 and December 2022, the VilleneuveLab collected amyloid 

positron emission tomography (PET) with the NAV tracer for Optina Diagnostics Inc. My 

project aimed at describing and comparing amyloid positivity status of participants 

included in the study measured with the qualitative gold-standard visual read method the 

company is currently using to quantitative standardized uptake value ratio (SUVR) 

methods used in academic settings to quantify amyloid accumulation in the brain. A 

subset of participant also had longitudinal data available. 

The overall goal of this project is to describe the preliminary data and to give 

recommendations on the development of the algorithm designed by Optina to detect 

amyloid positivity in the retina in this population. 

This report will: 

1) Describe demographics, neuroradiological visual reads, and quantitative PET 

SUVR positivity. 

2) Compare visual reads to PET SUVR information. 

3) Explore discordant cases between visual read and PET SUVR. 

4) Describe preliminary longitudinal data. 
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Section 3 – Methodology 

 Section 3.1 – Participants 

After exclusions, 128 participants from the PREVENT-AD cohort underwent a PET 

scan with the amyloid-specific tracer [18F]NAV4694 and a retinal scan for Optina. 

Inclusion criteria for the PREVENT-AD cohort are described elsewhere (Tremblay-

Mercier et al., 2021). For this specific study, participants were recruited if they had no 

counter-indications to undergo the PET and the retinal imaging. We made no restriction 

on the cognitive status of participants, so participants recruited were cognitively 

unimpaired or had mild cognitive impairment at the time of the scans. 

Optina Diagnostics initially recruited a subtotal of 20 participants in 2018 for a pilot 

study during which they underwent a retinal and PET scan, and then came back for the 

study in 2022-2023. These participants have longitudinal data available. 

Section 3.2 – Data gathering and preprocessing 

 Participants included are all participants within the larger PREVENT-AD study. We 

pooled demographic and genetic information from these participants from the data dump 

of the PREVENT-AD on August 30th 2023. Optina attributed participants a unique 

identifier, starting with PAM for the study in 2018 and PAD for the study in 2022. We 

matched visual reads back to the Optina IDs using an identifying list kept by the 

PREVENT-AD team. 

The VilleneuveLab received and preprocessed scans from the Montreal 

Neurological Institute scanning site. We preprocessed them using an in-house pipeline, 

described elsewhere (Ozlen et al., 2022; McSweeney et al., 2020). Briefly, each PET 

scan is first realigned, averaged and coregistered to the closest magnetic resonance 
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imaging scan that the participant has available. These images were transferred to Optina 

for the visual readings. Then, each PET scan was segmented in the cortical regions 

defined by Desikan et al. (2006) and the PET uptake in each brain region is calculated as 

a ratio to the reference region (i.e., cerebellum cortex) which yields standardized uptake 

value ratios (SUVR). 

Section 3.3 – Variables 

 The primary goal of the analyses is to compare SUVR-based measures to visual 

reads. Three neuroradiologists experts in PET and dementia executed the visual reads. 

Positivity was determined by blind majority voting.  

We computed multiple SUVR based measures as comparators. First, we 

computed a global SUVR average comprising brain regions spanning the frontal, 

temporal, and parietal lobes. Second, we calculated a spatial extent index based on a 

recent method from our group (St-Onge et al. 2023), which calculates how many regions 

have abnormal levels of SUVR based on region-specific thresholds at the individual level. 

See Figure 1A for more details. Third, based on other papers from our group (Villeneuve 

et al., 2015; Ozlen et al., 2022), we know amyloid pathology accumulates early in 7 key 

bilateral regions of the brain. We derived the average SUVR in these seven bilateral 

regions. We also used the spatial extent method to derive a categorical variable 

representing whether participant had: 1) no regions within the 7 that were abnormal 

("Negative"), 2) at least 1 of the seven regions that was abnormal ("Regional") or 3) all 

seven regions were abnormal ("Widespread"). We also derived the SUVR in these 7 

bilateral regions for the ROC curve analysis. For all three variables, we established 

thresholds for abnormality by using the probability of being abnormal as calculated with 
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Gaussian Mixture Models. Other than traditional data cleaning, no additional 

transformations were applied to the rest of the variables available for analysis. 

 

Figure 1 – Presentation of the method used to derive SUVR-based measures. Other 

than calculating the average SUVR across regions of the brain, we apply a method known 

at the spatial extent to derive measures of abnormal amyloid across the brain. For each 

brain region, we extract the standardized uptake value ratio (SUVR) of our participants 

(1). Then, a two-component Gaussian mixture modelling technique is applied to the 

SUVR values in each region (2-3). The second distribution is considered to reflect 

abnormally high SUVR tau values. We extract the probability that each participant 

belongs to the “abnormal” distribution and establish a threshold that individuals with over 

50% probability are considered positive for the given region (4). Once thresholds are 

derived across all regions, we derive the spatial extent index for each participant by 

summing the number of positive regions across the brain. (5). We also apply this 

methodology to 7 bilateral regions known for early amyloid accumulation (“Regional 

amyloid deposition”). Note that while the original figure include cognitively unimpaired 

(CU) participants, participants with mild cognitive impairment (MCI) or participants with 

Alzheimer’s disease (AD). Figure adapted from sihnpy’s documentation 

(https://sihnpy.readthedocs.io/) with permission of the first author. 

https://sihnpy.readthedocs.io/
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  Section 4 – Results 

Section 4.1 – Describe demographics, neuroradiological visual reads and 

quantitative PET SUVR positivity 

Table 1 – Demographic information 

Variables  

Sample size 128 

N females (%) 90 (70.3) 

Education in years 

(mean (SD)) 
15.53 (3.10) 

Apoe4 (%)  

Homozygote (E4/E4) 4 (3.10) 

Heterozygote (E3/E4) 50 (39.1) 

No allele (E3/E3) 28 (21.9) 

Majority read (% positive) 28 (21.9) 

Unanimous read (%)  

Negative 88 (68.8) 

Ambiguous 19 (14.8) 

Positive 21 (16.4) 

Global SUVR positivity at 

1.31 (%) 
39 (30.5) 

Regional SUVR positivity (%)  

Regional negative 74 (57.8) 

Regional positive 28 (21.9) 

Regional widespread 26 (20.3) 

Global SUVR values 

(mean (SD)) 
1.33 (0.35) 

Spatial extent of amyloid 

(mean (SD)) 
12.89 (22.20 
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Conclusions: 

- Most are women (70%), aged 70 years and highly educated 

- Close to half have an ApoE4 allele; i.e., increased risk of AD 

- 21% are positive by majority vote visual read (2/3 readers); 16% when considering 

unanimous votes of all three readers 

- 31% are positive with the PREVENT-AD threshold (derived from Gaussian Mixture 

Modelling in 239 participants from the PREVENT-AD); 42% have at least one early 

amyloid region with abnormal amyloid levels 
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Section 4.2 – Compare visual reads to PET SUVR information  

Next, we explored the different SUVR measures in relation to the visual reads. 

Visual reads are currently considered the gold-standard to identify whether or not a scan 

is positive. However, a the majority visual read classification is a binary evaluation. SUVR 

can bring depth to the analysis by quantifying the amount and the location of pathology. 

To compare the different SUVR measures to the visual reads, we first did a ROC 

curve analysis where we computed the area under the curve for each SUVR measure 

when compared to the visual read (Figure 2A) to determine how well the SUVR measures 

performed at identifying amyloid positive cases. Next, we used the Youden Index to find 

the threshold that would maximize the sensitivity and specificity of the SUVR measures 

compared to the visual reads (Table 2). Finally, we illustrated the global amyloid SUVR, 

the most common SUVR measure used in the field, in relation to the visual read using a 

histogram (Figure 2B) to visually compare the sensitivity of SUVR and visual read 

measures to detect abnormal amyloid. 

 

Figure 2 – Comparison of SUVR methods and visual readings. A) ROC curve 

representing the prediction of amyloid positivity from visual reading by the different SUVR 
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methods. Area under the curve (AUC) represents the accuracy of the measure (0.5 = no 

better than luck at predicting the visual reads). B) Distribution of global amyloid SUVR in 

the 128 participants included in the study, colored by their majority vote visual read. The 

dashed lines represent the thresholds determined by the PREVENT-AD group and 

determined by the Youden Index (see Table 2). 

 

Table 2 – Optimal amyloid thresholds 

Variable Threshold Sensitivity Specificity FP (n) FN (n) 

Global SUVR PREVENT-AD 1.31 0.93 0.88 12 1 

Global SUVR Youden Index 1.37 0.92 0.97 3 2 

Spatial Extent Index 12 0.96 0.94 5 2 

Regional SUVR 1.54 0.89 0.97 3 4 

Thresholds in the table above were derived on SUVR values, excepted for the Spatial Extent Index which 
was derived on the number of abnormal regions. The Global SUVR - PREVENT-AD threshold was 
derived from a Gaussian Mixture Model with 2 components applied to all 239 participants with a baseline 
amyloid PET scan in the PREVENT-AD. 

 

 

Conclusions Section 4.2: 

- All SUVR measures can accurately predict majority visual reading 

- Readers classify participants as positive when amyloid is widespread (> 12 regions in 

the brain with abnormal amyloid) 

- The data-driven threshold in PREVENT-AD is lower than the threshold predicting 

visual reads, but it is unclear whether the false positives are the result of early 

detection of amyloid. 
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Section 4.3 - Exploring discordant cases between visual read and PET SUVR 

To understand the mismatch between the SUVR and visual reads, we need to 

study who are the individuals who mismatch between the SUVR and visual reads. We 

hypothesize that the SUVR threshold on global amyloid in the PREVENT-AD captures 

earlier accumulation of amyloid. Using that threshold, let's take a look at false negative 

and false positive participants. 

Table 3 – False positive and false negative participants’ characteristics 

False Negative (n = 1) False positive (n = 12) 

- Unanimously positive with visual read 

- Negative on all SUVR measures 

o Global SUVR = 1.11 

o No positive region 

- ApoE4 carrier 

- Male 

- 10 years of education 

- All participants had abnormal regional 

amyloid 

- 10/12 cases are ambiguous (1 or 2 

readers classified them as positive) 

 

Upon exploration of the scans, the false negative participant incurred a co-

registration error during the creation of the SUVR image. The new data release of this 

participant is being prepared, but a preliminary check of their SUVR image indicates a 

SUVR of 1.80, which is clearly positive. 

 Meanwhile, false positive cases seem to have a meaningful accumulation of 

regional amyloid, with some disagreements between readers on positivity. We can 

explore this disagreement further, in Figure 3. 
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 Figure 3 – Reader agreement by the amount of amyloid. A) Amount of global 

amyloid in the participants included, colored by the reader agreement on the positivity of 

the scan. B) Spatial extent index of participants colored by reader agreement. Positive 

shows all readers marked the scan as positive, negative shows all readers marked the 

scan as negative, ambiguous shows one or two readers dissented from the rest. 

 

Conclusions: 

- False positive cases likely are participants with regional amounts of participants. They 

are also ambiguous cases for readers 

- What leads to the ambiguity between readers? What can explain the discrepancies 

between SUVR and visual reads? 
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Section 4.3.1 – Demographic differences in ambiguous reads 

One explanation could be that the ambiguous cases differ systematically based on 

specific demographic differences. We tested whether age, education, sex or ApoE4 

status influenced the ambiguity of the reading. We also tested whether participants with 

ambiguous reads had higher SUVR values. We used ANOVA and Tukey HSD post-hoc 

for continuous measures and chi-square test for categorical measures. 

 

Conclusions: 

- Age, sex and education were not different between positive, ambiguous and negative 

cases 

- Ambiguous participants were more likely to be ApoE4 carriers compared to 

unanimously negative participants 

- Ambiguous participants had higher amyloid (global SUVR and spatial extent index) 

compared to negative participants, but lower amyloid than positive participants 
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Section 4.3.2 – Localization differences in ambiguous reads 

 Another explanation is that amyloid uptake in ambiguous readings is located in 

regions that are not typically considered for positivity by the visual readers. We can plot 

the positivity and SUVR in each region in individuals with negative, ambiguous and 

positive readings to determine if there are specific patterns. 

 

Figure 4 – Localization of amyloid by agreement. Brain templates illustrating A) the 

percentage of participants with abnormal amounts of amyloid pathology in each cortical 

region, divided by groups based on their overall visual read, and B) the average SUVR in 

each brain region by their overall visual read. 

 

Conclusions: 

- Similarly to the previous points, positive reads have positive regions all across the 

brains, while ambiguous reads have specific region uptake 

- However, regions with abnormal amyloid are regions readers would look for when 

determining a visual read positivity 

- Perhaps certain readers are more sensitive to regional abnormality? 
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Section 4.3.3 – Reader-specific biases in visual readings 

 Results thus far are suggesting that participants with ambiguous readings are 

accumulating more pathology than participants with fully negative readings, indicating that 

these participants are likely to have abnormal amounts of pathology. If that is the case, 

why aren't more participants identified by readers? Do they identify participants in the 

same way? 

 Overall, reader OPET01 identified 22 cases as positive, OPET03 identified 27 

cases, and OPET04 identified 40 cases. We used Cohen’s Kappa to measure agreement 

between ratings of all three readers. Overall, readers presented substantial agreement (> 

0.61). Rater "OPET4" had the lowest agreement with the other readers: 0.63 with OPET1 

and 0.74 with OPET3. However, these score are still considered as substantial 

agreement. 

 To test whether specific readers were more sensitive to regional differences in 

amyloid, we used logistic regressions. Reader OPET1 and OPET3 identified participants 

as positive only when amyloid was widespread, however OPET3 sometimes identified 

participants as positive when amyloid was only regional. OPET4 was more likely to 

identify participants as positive when participants had regional amounts of amyloid. 

 

Conclusions: 

- Readers had clear discrepancies between them, with nearly twice the number of 

cases being identified by OPET4 compared to OPET1. 

- OPET4, and to some extent OPET3, identified participants as being positive when 

they had regional amounts of pathology, where as OPET1 did not. 
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Section 4.4 – Longitudinal data 
 
 A small subset of 20 participants had longitudinal data available, with both a retinal 

scan visit in 2018 and a new visit between 2021 and 2022. We investigated whether visual 

reads for these participants changed over time in relation to their change in SUVR and 

spatial extent index.  
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Figure 5 – Longitudinal change in visual reading status. Both rows present the 

longitudinal change in SUVR (A) or spatial extent index (B) between the two visits, colored 

by their visual reading status: in the first row, the status of the majority voting reads are 

used, while in the second row, we use the unanimous reading status. In all panels, the 

dashed red lines represent the thresholds derived in Section 4.2: 1.31 SUVR (PREVENT-

AD threshold) for panels A and 12 spatial extent index (visual reads-based threshold). 

 

 

Conclusions: 

- Participants accumulating amyloid did not accumulate enough in 4.5 years to be 

positive by a majority of reader 

- Some participants who were negative became positive using SUVR-based measures, 

but not on majority visual reading 

- Participants who became positive on SUVR-based measures were ambiguous when 

considering unanimous visual readings 
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Section 5 – Conclusions and recommendations 

 In summary, this report finds that, while SUVR measures can identify amyloid 

positive cases with a similar accuracy to blind majority voting visual reads, these 

thresholds are higher than data-driven thresholds within the PREVENT-AD. Exploring the 

discrepant cases between the two methods revealed that readers typically only identify 

cases as positive once abnormal SUVR is present across the whole brain. Yet, 

participants identified as positive by the SUVR methods are at risk of progression (i.e., 

higher likelihood of ApoE4, higher amount of amyloid and more positive regions) and have 

more regional amounts of amyloid. Importantly, there were discrepancies between 

readers, cases with regional amyloid being flagged as positive by one reader but not by 

others. 

 Overall, the results suggest that if Optina trains their algorithm using majority voting 

visual reading, their algorithm will probably miss participants with significant amounts of 

regional amyloid at risk of progressing. 

 

Recommendations: 

o Use a categorical variable rather than a binary variable for majority visual reads 

(i.e., unanimously positive, ambiguous, unanimously negative) 

o If possible, the visual reads could be weighed by the amount of SUVR or the 

number of regions with abnormal amyloid in the brain of participants 

o Consider training a different algorithm to identify amyloid positivity in cognitively 

unimpaired participants 
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Future directions: 

o Visual reading on the whole PREVENT-AD cohort to increase sample size 

o Comparison to other cohorts collected by Optina (CQDM and Ottawa site sub-

studies had higher agreement between readers) 

o Prediction of other markers (tau, cognition, clinical progression to MCI) from 

baseline visual read or SUVR 
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XII – Copyright 

Chapter 2 was previously published in the journal Network Neuroscience. All 

figures, text and information contained in the article is full reproducible because of its CC-

BY Open License. Chapter 3 was posted as a pre-print on medrxiv. It is also fully 

reproducible because of a CC-BY Open License. sihnpy, presented in Annex X, is a fully 

downloadable package through the PyPi repository, with an MIT license. Annex XI is fully 

reproducible because of a CC-BY Open License. 


