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Abstract

Automatic differentiation (AD) is ubiquitous in the training of deep neural networks and
other machine learning tasks. The emerging field of differentiable programming has recently
found success in generalizing deep learning by applying gradient-based optimization via AD
to increasingly sophisticated applications in a diverse array of fields [1–5].

However, the most popular tools for AD are hyper-specialized to deep learning workloads.
The performance of both the AD process itself and the resulting differentiated code suffer
as applications veer further away from deep neural networks. The most popular AD tools
also perform differentiation at runtime, which incurs runtime overhead with each of the
potential millions of gradient descent steps. Some of these issues can be mitigated through
performing ahead-of-time AD in a compiler. However, existing compiler-based methods
predominantly operate on low-level compiler intermediate representations (IRs) that lose
context and information after being lowered from the original program. Additionally, the
most common form of AD incurs an asymptotically large memory cost relative to the original
program, regardless of if the AD procedure is done at compile time or run time.

To address these challenges, this thesis introduces LAGrad, a reverse-mode, compile
time AD system that leverages high-level information in MLIR to produce efficient
differentiated code. LAGrad employs a collection of novel static optimizations that benefit
from the semantics of high-level MLIR dialects to exploit the sparsity and structured
control flow of generated code. Using these, LAGrad is able to achieve speedups of up to
2.8× and use 35× less memory relative to state of the art AD systems on real-world
machine learning and computer vision benchmarks. LAGrad is the first tool to the authors’
knowledge to exploit the structure and sparsity inherent in AD through static
optimizations in a compiler.
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Abrégé

La différenciation automatique (DA) est omniprésente dans la formation des réseaux de
neurones profonds et autres tâches d’apprentissage automatique. Le domaine émergeant de
la programmation différenciable a récemment réussi à généraliser l’apprentissage profond en
appliquant une optimisation à base de gradient via la DA à des applications de plus en plus
sophistiquées et diversifiées.

Cependant, les outils les plus populaires pour la DA sont hyper-specialisés pour les
taches d’apprentissage profonde. La performance de la DA elle-même et du code differencié
resultant souffre dès que ses applications se détournent des reseaux de neurones profonds.
Les méthodes de DA les plus populaires effectuent également leure différenciation pendant
l’éxécution, ce qui entrâıne une surcharge d’exécution avec, pour chaque différenciation, des
millions d’étapes nécessaire.

Certains de ces problems peuvent être atténués en utilisant la DA à l’avance dans un
compilateur. Cependant, les méthodes existantes fonctionnent principalement sur des
representations intermédiaires (RIs) de compilateur de bas niveau qui perdent le context et
les information par rapport au programme d’origine. De plus, la forme la plus courante de
la DA entre entrâıne un coût de mémoire asymptotiquement élevé par rapport au program
d’origine, que la procedure de la DA soit effectuée au moment de la compilation ou de
l’exécution.

Pour relever ces défits, cette these introduit LAGrad, un système de la DA en mode
inverse fonctionnant au moment de la compilation qui exploite les informations de haut
niveau dans MLIR pour créer un code différencié plus efficace. LAGrad utilise un collection
de nouvelles optimisiations statiques qui profitent de la sémantique des dialects MLIR de
haut niveau pour exploiter la rareté et le flux de contrôle structuré du code généré. En
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utilisant ceci, LAGrad est capable d’accélérer la vitesse 2.8x en utilisant 35x moins de
mémoire, comparé aux systems de la DA utilisés dans l’apprentissages automatiques et la
vision par ordinateur dans le monde réel. LAGrad est le premier outil connu par l’auteur à
exploiter la structure et la rareté présente dans la DA à l’aide d’optimisation statique dans
un compilateur.
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Chapter 1

Introduction

The widespread adoption of deep learning, paired with the increasing sophistication of

machine learning (ML) models, has led to a growing interest in using gradient-based

optimization to learn parameterized differentiable programs. This new paradigm, known as

differentiable programming, generalizes deep learning to allow ML practitioners to write

increasingly expressive models that combine gradient-based training with domain specific

knowledge. Differentiable programming has already seen success in applications such as

physics simulations [1], ray tracing [3], and many other fields [2, 4, 5].

Differentiable programming relies on the ability to automatically compute gradients of

trainable parameters. The standard way to do this is via Automatic Differentiation (AD),

which applies the chain rule to precisely compute derivatives, gradients, and Jacobians

given only an objective function. AD avoids the disadvantages of finite differences and

symbolic differentiation while relieving programmers from writing gradient code by

hand [8,9]. However, training via AD remains an expensive task which can involve millions

of steps using gradient descent, requiring recomputing the gradient with respect to all
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model parameters at each step.

1.1 The AD Landscape

The current AD landscape consists of three orthogonal, contrasting axes, each of which

are discussed in turn: 1) Operator-overloading vs source-to-source AD; 2) Forward mode

vs reverse mode AD; and 3) Performing AD at different abstraction levels (high-level vs

low-level).

Operator-overloading systems trace program execution at run time, transparently

replacing operations with their differential versions. This sacrifices the potential for

ahead-of-time optimizations of the gradient code. Source-to-source systems, on the other

hands, analyze input programs to generate their differentiated versions at compile time.

These systems have historically been less expressive than their operator-overloading

counterparts, but recent work has shown renewed interest due to the potential for

whole-program optimization of the generated code [10–13], and this the approach taken in

this thesis.

Forward-mode AD augments each step of the input program with dual operations that

compute derivative information in the same order as the original program. Unfortunately,

forward-mode is prohibitively expensive for most ML applications as computing a gradient

vector requires executing the forward sweep for each element of the gradient vector, which

are typically numbered in the millions. For this reason, the majority of this work focuses on

reverse-mode AD.

Reverse-mode AD involves analyzing or running the original program to construct a

computation graph, then propagating derivative information backwards through the graph.
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It is capable of computing an entire gradient vector in a single reverse sweep, but its

inverted control flow means that some required intermediate values could potentially be

overwritten. Reverse-mode AD thus requires a gradient tape: a data structure that records

these intermediate values. This tape can become quite large and be detrimental to

performance, even when so-called “tapeless” approaches are used as the intermediate values

are still stored through mechanisms such as closures and delimited continuations [13–15].

Finally, AD can be applied on languages of dramatically different abstraction levels.

Popular ML frameworks such as PyTorch [16], JAX [17], and TensorFlow [18] perform AD

on high-level multidimensional arrays. AD systems built into language-specific compilers

and libraries become tied to their respective languages, sacrificing generality. In contrast,

Enzyme [11] differentiates at the low-level LLVM IR, which means it can differentiate

through programs written in a large number of source languages that target LLVM.

However, the low-level nature of LLVM IR generated may hinder opportunity for novel,

AD-specific optimizations.

1.2 Contributions

This work introduces LAGrad, a source-to-source AD system that operates on high-level

MLIR. LAGrad aims to maintain the generality of targeting a common compiler IR while

preserving high-level information to facilitate the development of AD-specific optimizations.

As we will see in this thesis, LAGrad applies several optimizations such as tape reduction,

and exploitation of sparsity using the information preserved in high-level MLIR.

The experimental results collected on CPU benchmarks demonstrate the benefit of these

optimizations by achieving up to 2.8× speedup relative to Enzyme [11], the current state-
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of-the-art system, and up to 1400× speedup relative to PyTorch [16], a popular industry-

standard ML library. LAGrad is also able to reduce memory consumption by up to 35×

relative to Enzyme and 103× relative to PyTorch.

The main contributions of this thesis are:

• LAGrad, an MLIR-based AD system that demonstrates the advantage of using high-

level information in source-to-source AD to generate efficient code.

• Three novel static optimizations (tape size reduction, active sparsity, and adjoint

sparsity) that improve efficiency of reverse-mode AD.

• An evaluation of LAGrad against two state-of-the-art systems, PyTorch [16] and

Enzyme [11] on a standard AD benchmark suite [9] that shows it outperforms the

state of the art performance for both run time and memory consumption.

Authors’ Contributions. The contributions of this thesis are published in the following

paper:

• Mai Jacob Peng and Christophe Dubach. 2023. LAGrad: Statically Optimized

Differentiable Programming in MLIR. In Proceedings of the 32nd ACM SIGPLAN

International Conference on Compiler Construction (CC ’23), February 25-26, 2023,

Montréal, QC, Canada.

Mai Jacob Peng performed the implementation, experimental evaluation, and writing of the

paper. Christophe Dubach provided guidance for both the research direction and structure

of the paper, in addition to editing the introduction of the paper.
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Chapter-based Contribution. Every chapter of this thesis was composed and written

by Mai Jacob Peng. Christophe Dubach provided feedback, guidance, and supervision on

every chapter.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

• Chapter 2 includes necessary prerequisite information on Automatic Differentiation

and tensor MLIR, establishing context for the rest of the work. It also covers related

work in the field of AD and discusses the limitations of other approaches.

• Chapter 3 discusses unique characteristics of LAGrad’s AD implementation due to the

semantics of MLIR, in addition to a discussion of tape size reduction.

• Chapter 4 describes the static optimizations employed after the AD process is

completed.

• Chapter 5 evaluates the efficacy of LAGrad’s optimizations both individually and

against existing state-of-the-art methods.

• Chapter 6 concludes with a discussion of limitations and opportunities for future work

in the field of optimizing AD and differentiable programming.
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Chapter 2

Background and Related Work

To contextualize the contribution of this thesis, we will discuss both the necessary

prerequisite concepts and the recent work that has been done within the field of efficient

differentiable programming.

2.1 Background

This section begins by covering the fundamental algorithm of automatic differentiation, with

details on both forward-mode and reverse-mode AD. It then provides an overview of Multi-

Level Intermediate Representation (MLIR) [19] that is followed by a discussion of the specific

technical aspects of MLIR that are employed by this thesis.

2.1.1 Automatic Differentiation

Given a program that computes a function y = f(x), the goal of automatic differentiation is

to compute the derivative dy
dx

. The original program is called the primal while the program

that computes the derivative is called the adjoint.
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AD accomplishes this using the chain rule of calculus:

dy

dx
= dy

dzn

dzn

dzn−1
. . .

dz2

dz1

dz1

dx

The primal is broken down into multiple simple operations, each of which produces a zi

intermediate value.

The two main methods for AD, forward and reverse, differ in the order that the partial

derivative expressions in the chain rule are evaluated. We will see this concretely in a

motivating example. Suppose we have the following function:

y = 1
1 + e−(wx+b)

Our goal is to compute the derivatives of y with respect to both w and b. We begin by

breaking down the function into small pieces and explicitly naming each intermediate value:

Primal

z = wx + b

σ = 1 + e−z

y = 1
σ

We will now examine how to use both forward and reverse mode to compute the desired

derivatives.
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2.1.2 Forward Mode

Forward mode (or tangent-mode) AD requires fixing the gradient of each of a function’s input

x, then computing a dual number for each intermediate value z that stores the derivative

of that value with respect to the input, ż = ∂z
∂x

. In our example, the process is initialized

with ẇ = ∂w
∂w

= 1 and ḃ = ∂b
∂w

= 0. Observe that the fixing of dual numbers implies that

forward mode AD only computes the derivative with respect to one function input at a time

by settings its dual to 1, while setting all others to 0. Since we desire the derivative with

respect to multiple inputs, the forward mode procedure must be run once for each input

with the appropriate initial dual number configuration.

Once initial dual numbers are fixed, the chain rule is traversed from the input to the

output by executing dual (also known as tangent) instructions immediately after their primal

counterparts. This mirrors the evaluation order of the original program:

Primal Tangent (forward)

z = wx + b ż = ẇx + ḃ

σ = 1 + e−z σ̇ = −że−z

y = 1
σ

ẏ = σ̇
1
σ2

Each primal operation is augmented with a pushforward to compute its tangent. The

combined execution of the primal and tangent computations is known as a forward sweep.

Upon completion, the value ẏ now contains the desired ∂y
∂w

. A second forward sweep is

performed as outlined above to compute ∂y
∂b

, only with ḃ = 1 and ẇ = 0. Note that the

tangent computation requires values that are computed as a result of primal operations,

meaning the primal and tangent computations must be performed in tandem to ensure these
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values are available to the tangent operations.

In general, forward mode AD requires as many forward sweeps as there are active input

variables to compute gradient vectors. However, it is able to compute derivatives of a single

input with respect to multiple outputs in a single forward sweep.

In machine learning applications, models typically have millions of trainable

parameters. This results in gradient vectors, as required by gradient-based optimization,

requiring millions of forward sweeps to compute.

2.1.3 Reverse Mode

In contrast to forward mode, reverse mode AD begins by fixing the derivative with respect

to the function’s output, then traversing the chain rule backwards from output to input.

Each differentiated version of a primal operation is known as a pullback [10]. In contrast to

dual numbers in forward mode, the pullback for the operation that produces zi is a function

that takes the propagated gradient signal, zi = dy
dzn

. . . dzi+1
dzi

, and the input(s) zi−1 to output

zi−1. This can be seen below:

Primal Adjoint (reverse)

z = wx + b σ = −(y) 1
σ2

σ = 1 + e−z z = −(σ)e−z

y = 1
σ

w = zx

As seen above, the adjoint expressions for σ and z contain dependencies on

intermediate values computed in the primal (σ and z respectively). In general, the primal
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J ∈ Rm×n = ∂y
∂x

=


∂y1
∂x1

. . . ∂y1
∂xn... . . . ...

∂ym

∂x1
. . . ∂ym

∂xn



Figure 2.1: The general Jacobian matrix for a function y = f(x) : Rn → Rm.

must execute completely to produce these values before the adjoint can be run. If these

values are overwritten prior to their use in the adjoint, they must be explicitly saved to a

data structure known as the tape [10]. The tape is a fundamental data structure of

reverse-mode AD and incurs a memory overhead that does not exist in the original

program. A summary of this example showing the results of both forward and reverse

methods is shown below in Figure 2.2.

When x and y are vectors, AD can be used to compute the Jacobian matrix. The

Jacobian is a matrix where each element is a partial derivative of one output element yi with

respect to one input element xj. This is visualized in Figure 2.1.

Reverse-mode AD computes the gradient of one element of y with respect to all elements

of x (thus computing a row of the Jacobian) with a single backward pass. This property

makes reverse-mode AD popular in ML applications, which typically have many trainable

parameters and a scalar-valued objective function. Computing the full Jacobian of a function

with m outputs requires m backward passes. Computing the ith row of the Jacobian requires

initializing a seed vector using the ith column of the identity matrix (i.e., 1 in the ith position

and 0 elsewhere).
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Primal Tangent (forward) Adjoint (reverse)

z = wx + b ż = ẇx + ḃ σ = −(y) 1
σ2

σ = 1 + e−z σ̇ = −że−z z = −(σ)e−z

y = 1
σ

ẏ = σ̇
1
σ2 w = zx

Figure 2.2: An example of computing w = ẏ = dy
dw

using forward- and reverse-mode AD.
Both forward and reverse mode precisely compute the desired value, but differ in the order
that they traverse the chain rule.

2.2 Multi-Level Intermediate Representation (MLIR)

Multi-Level Intermediate Representation (MLIR) [19] is a compiler infrastructure and

intermediate representation (IR) designed to be arbitrarily extensible. It is broadly

grouped into dialects, which are collections of conceptually related operations and types.

Different dialects express programs at dramatically varying levels of abstraction. For

instance, the linalg dialect contains operations that express high-level linear algebra

computations such as matrix multiplication and convolution. The scf, or structured

control flow dialect, contains operations such as if-statements and for-loops. In contrast,

the cf, or control flow dialect expresses unstructured control flow primitives such as

conditional and unconditional branches to basic blocks. On the lower levels of abstraction

that MLIR supports, the LLVM dialect closely mirrors the instruction set of LLVM IR with

operations such as getelementptr.

This thesis primarily focuses on the high level linalg, tensor, and scf dialects of MLIR.

The reason for this is these dialects offer semantic guarantees and high-level information

that is unavailable in lower level IRs.
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2.2.1 Tensors and the Linalg Dialect

Tensors in MLIR are an abstract representation of multidimensional arrays without a

concrete underlying memory representation. Tensors are immutable, so operations on

tensors that would update their values semantically return a copy to avoid mutating the

underlying memory. Code that strictly uses tensors is thus free from side effects involving

memory and mutation.

A tensor’s type contains an optional encoding — metadata used to describe tensor data.

As we will see later, LAGrad uses this field to denote structured sparsity patterns.

Tensors are lowered to memrefs, multidimensional arrays that possess explicit underlying

storage, in a process known as bufferization. Memrefs are mutable and must be explicitly

allocated and deallocated. By default, bufferization will allocate new memrefs on every new

tensor and linalg op to preserve that the immutability semantics of tensors.

The linalg dialect consists of operations that perform high-level linear algebra

computation. These operations can all be expressed as the linalg.generic op, which is a

general abstraction over parallel loop nests.

For instance, the following linalg.generic operation computes a dot product:

1 %dot = linalg . generic
2 { indexing_maps = [
3 affine_map <(d0) -> (d0)>,
4 affine_map <(d0) -> (d0)>,
5 affine_map <(d0) -> ()> ],
6 iterator_types = [" reduction "] }
7 ins (%A, %B : tensor <?xf32 >, tensor <?xf32 >)
8 outs (%C : tensor <f32 >) {
9 ˆbb0 (% arg0: f32 , %arg1: f32 , %arg2: f32):

10 %0 = arith.mulf %arg0 , %arg1 : f32
11 %1 = arith.addf %arg2 , %0 : f32
12 linalg .yield %1 : f32
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13 } -> tensor <f32 >

Listing 2.1: A dot product expressed as a linalg.generic op

It contains the following:

• Any number of tensor inputs and outputs (lines 7-8). Inputs provide data to the

operation, while outputs define the shape of each result and initial values in the case

of reductions.

• An indexing map for each input and output, which describes how to index into each

tensor from the induction variables of each loop (lines 2-5).

• An iterator type for each loop, which explicitly define which loops correspond to

reductions of the outputs (line 6).

• A body, which is a basic block that defines what operations must be performed for

each iteration of the innermost loop (lines 9-12).

For simplicity, this thesis makes use of a Tensor Comprehensions (TC) [6] style notation

to compactly show linalg.generic ops. The above dot product can be expressed with the

following TC notation:

1 C[] += A[d0] * B[d0]

This conceptually represents the following pseudocode:

1 for d0 from 0 to <inferred d0 bound >:
2 C[] = C[] + (A[d0] * B[d0])

By modifying the indexing maps and iterator types, a linalg.generic op can be used to

express a wide variety of computation over parallel loop nests. The following op represents

a matrix multiplication:
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1 % matmul = linalg . generic
2 { indexing_maps = [
3 affine_map <(d0 , d1 , d2) -> (d0 , d2)>,
4 affine_map <(d0 , d1 , d2) -> (d2 , d1)>,
5 affine_map <(d0 , d1 , d2) -> (d0 , d1)> ],
6 iterator_types = [" parallel ", " parallel ", " reduction "] }
7 ins (%A, %B : tensor <?x?xf32 >, tensor <?x?xf32 >)
8 outs (%C : tensor <?x?xf32 >) {
9 ˆbb0 (% arg0: f32 , %arg1: f32 , %arg2: f32):

10 %0 = arith.mulf %arg0 , %arg1 : f32
11 %1 = arith.addf %arg2 , %0 : f32
12 linalg .yield %1 : f32 } -> tensor <?x?xf32 >

Listing 2.2: Matrix multiplication as a linalg.generic op in MLIR

Observe the similarities between Listing 2.1 and Listing 2.2. Apart from the shapes of

inputs and outputs, the only differences required to change the dot product to a matrix

multiplication are the modified indexing maps (Lines 2-5) and iterator types (Line 6). The

operations are otherwise completely identical. The equivalent TC-style representation of the

matrix multiplication is:

1 C[d0 , d1] += A[d0 , d2] * B[d2 , d1]

Which corresponds to the following pseudocode:

1 for d0 from 0 to <inferred d0 bound >:
2 for d1 from 0 to <inferred d1 bound >:
3 for d2 from 0 to <inferred d2 bound >:
4 C[d0 , d1] = C[d0 , d1] + (A[d0 , d2] * B[d2 , d1])

In general, a linalg.generic op that takes N input tensors T1, . . . , TN with indexing

maps map1, . . . mapN and contains m iterators d0, . . . , dm to produce output tensor Out

with indexing map mapO via body function f has the following pseudocode representation:

1 for d0 from 0 to <inferred d0 bound >:
2 ...
3 for dm from 0 to <inferred dm bound >:
4 Out[mapO] = f(T1[map1], . . . , TN [mapN ], Out[mapO])
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Observe that each indexing map is a function that maps d0, . . . , dm to a (possibly permuted)

subset of its inputs. The loop bounds of each iterator are inferred by MLIR to iterate

completely over the arguments.

2.3 Related Work

After establishing the necessary prerequisite concepts of automatic differentiation and MLIR,

we turn to related work in the field of efficient differentiable programming. Our discussion

of related work begins with established work in the general field of compiler optimizations

and the precise relation of this work to the field of differentiable programming. We then

turn to alternative, specific methods of performing AD and discuss challenges faced by these

existing methods that this thesis will address.

2.3.1 Related Compiler Optimizations

Slice analysis and activity analysis. In automatic differentiation, there are several cases

where the computation of derivatives with respect to certain program values is not required.

Given the function f(x, y) = x, the derivative ∂f
∂y

is trivially zero. Another instance is when

only some function inputs are considered trainable parameters and thus require gradients.

In neural networks, the gradient with respect to the data is well-defined, but not practically

useful for training. Computing the gradients with respect to data is thus an instance of

unnecessary work.

To reduce the amount of unnecessary computation in AD, activity analysis is a static

analysis that determines which values are relevant to the desired derivatives. Existing

formulations of activity analysis [7, 11] operate on languages with mutation and pointer
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aliasing, resulting in highly complex analyses to identify values that do not require

derivative computation.

However, a much simpler static analysis is slice analysis [20], which determines the set of

program statements (a program slice) that may affect a given program value. Since tensor

MLIR is free from mutation and pointer aliasing, LAGrad employs a version of activity

analysis that is equivalent to computing a program slice for each value. This approach

results in a much simpler analysis than existing methods. A full discussion is presented later

in subsection 3.3.1.

Persistent data structures. While the previous paragraph discusses an advantage of

tensor MLIR’s lack of mutation, there are also important drawbacks with respect to

performance. Recall from subsection 2.2.1 that inserting an element into a tensor requires

returning a copy to avoid mutating the original tensor. This general pattern, known as

copy-on-write, introduces considerable overhead when compared to an in-place update. We

will later see this overhead in the evaluation.

The general problem of optimizing the updates of immutable data structures is exactly

one of the motivations for persistent data structures [21]. These are common in functional

programming languages with immutable data structures. Persistent data structures record

additional metadata to support the same copy-on-write semantics without the need to

create deep copies at every mutation point. However, they create partial copies of data and

introduce both implementation complexity and run-time overhead. For these reasons,

LAGrad employs an alternate heuristic strategy discussed in section 4.1 to optimize the

copy-on-write behaviour of tensors. This alternate method produces in-place updates with

no run-time overhead when it is valid to do so.
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2.3.2 Operator Overloading

The most commonly used methods of automatic differentiation in machine learning are

based on operator overloading (OO). These include PyTorch [16], TensorFlow eager [18],

Autograd [22], and JAX [17]. As OO-based methods perform AD by tracing program

execution at runtime, they give up the potential for whole program optimization that is

possible in source-to-source methods. These methods will implicitly unroll loops, losing any

structured control flow present in the primal. This creates programs that scale linearly in

size with respect to the number of loop iterations, making compiler optimizations

impractical on these representations [10].

A consequence of the larger program size of OO methods is that the overhead of any

transformation on the program scales linearly with respect to that program’s size. AD is one

such example of a program transformation, but recent trends towards Just-In-Time (JIT)

compilation within systems such as JAX have seen increased JIT compilation overhead as a

direct result of OO-based tracing methods 1.

As we will see, retaining structured control flow when differentiating aids in reasoning

about and optimizing the auxiliary data structures when computing adjoints. In addition,

the large program size from unrolled loops adds a nontrivial compilation overhead even

outside of the context of AD.

2.3.3 Source Transformation

Zygote [10] performs source transformation on an SSA-form IR in the Julia compiler. Unlike

MLIR, this IR is not a compilation target supported by multiple frontends. This hurts the

reusability of optimizations implemented for language-specific approaches and does not have
1https://jax.readthedocs.io/en/latest/faq.html#jit-decorated-function-is-very-slow-to-compile

https://jax.readthedocs.io/en/latest/faq.html#jit-decorated-function-is-very-slow-to-compile
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the potential for bringing in generic optimizations such as those present in MLIR.

Tapenade [23] supports both forward and reverse mode AD on Fortran and C code. It,

along with Zygote, operate on compiler intermediate representations that lose the structured

control flow present in programs. This improves the system’s generality by operating on

programs without structured control flow, at the expense of losing this information and

hindering the application of aggressive optimizations that exploit this structured control

flow. Additionally, the Fortran and C languages reason about arrays as pointers, which

dramatically increases the complexity of incorporating sparsity-based optimizations. This is

due to how sparsity-based optimizations greatly rely on static rank and shape information

of arrays.

Tangent [24] performs source-to-source AD on high level code, which is a similarity with

the approach taken in this work. It boasts improved debugging by generating readable

Python code, but is not built with performance as a goal. It incurs interpreter overhead

for both primal and adjoint code, which presents challenges in performance critical ML

workloads.

Fsmooth [12] differentiates a functional array language using compiler rewrite rules to

produce optimal derivative expressions. The level of abstraction of functional primitives

carries less static information than MLIR. By not supporting reverse mode, it also has the

limitations of forward mode AD when computing gradient vectors of many parameters.

To the best of the authors’ knowledge, no other AD system operates on immutable

arrays with the semantics of tensor MLIR. As we will show, this reduces the complexity of

performing AD-specific static analyses and optimizations.
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Chapter 3

Automatic Differentiation on MLIR

Tensors

The next two chapters build upon the background and prior work of Chapter 2 by

describing the unique approach taken by this thesis. This chapter outlines an overview of

this work within the context of the broader automatic differentiation landscape, then

details the contributions of this work that occur during the AD procedure. This includes

both 1) the differentiation procedure for high level operations in MLIR, and 2) tape size

reduction, an optimization that is performed during AD. The next chapter continues the

technical contribution of this thesis by describing the optimizations that occur after the

AD procedure.

3.1 Overview

This thesis proposes performing AD at the tensor MLIR [19] level, striking a middle ground

between high-level operator-overloading libraries and low level LLVM IR first discussed in
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Primal
Tensor-based 

AD (Ch. 3)

Enzyme [11]

Post-AD

Optimizations 

(Ch. 4)
High Level

Low Level

Lowering [19] Lowering [19]

Adjoint

Linalg

MLIR

LLVM ∂LLVM

∂Linalg

MLIR

Figure 3.1: An overview of the approach taken in this work. The path of lowering before
AD is the current state-of-the-art approach. The alternate path denoted by bolded arrows
is taken by LAGrad, the contribution of this work.

section 1.1 and later expanded in section 2.3. An overview of this work is outlined in

Figure 3.1. This chapter outlines how differentiating at the MLIR level produces adjoint

code that preserves the structure of the primal and is amenable to high-level optimizations.

MLIR expresses programs in Static Single Assignment (SSA) form [25], but differs from

traditional SSA-form IRs by including the ability to express control flow through structured

constructs (scf.if, scf.for, and linalg.generic) rather than basic blocks in a control

flow graph. As we will see, the use of structured control flow enables AD-specific static

optimizations that would be much harder to express on unstructured control flow graphs.

The complete set of operations supported by LAGrad consist of basic mathematical

operations (e.g., arith.addf, math.tanh), if-statements (scf.if), and looping constructs

(e.g., scf.for, linalg.generic).
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Operation Pushforward Pullback
z = a + b ż = ȧ + ḃ (z, z)
z = a × b ż = ȧb + aḃ (zb, za)

z = exp(a) ż = ȧ exp(a) (z exp(a))
z = sin(a) ż = ȧ cos(a) (z cos(a))

Table 3.1: Pushforwards and pullbacks of elementary operations.

3.2 Differentiating Operators in MLIR

The discussion of differentiating MLIR programs will begin with differentiating linear

sequences of elementary operations without control flow, then move on to the special

handling required for each supported control flow construct.

In the absence of control flow, AD simply follows the process outlined in

subsection 2.1.1. Forward mode involves augmenting each function with a pushforward

that propagates tangent information through the computation, while reverse mode

traverses the primal operations in reverse order and appends pullbacks to the adjoint

program. In both instances, the conversion from mathematical concepts to MLIR code is

straightforward. This is demonstrated in Figure 3.2, which converts the previously seen

Figure 2.2 from math to MLIR. Pushforwards and pullbacks are registered for each

supported op, with some examples detailed in Table 3.1.

Basic mathematical MLIR operations like arith.addf and math.tanh can operate on

scalars or tensors with identical shapes. These operations are elementwise where the same

operation is performed for every element (or pair of elements) of its inputs. These can be

differentiated identically to scalar arguments without special handling.
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// z = wx + b
%wx = arith.mulf %w, %x
%z = arith.addf %wx , %b

// sigma = 1 + eˆ(-z)
%negz = arith.negf %z
%exp = math.exp %negz
%sigma = arith.addf 1, %exp
// y = 1 / sigma
%y = arith.divf 1, %sigma

// dsigma = -dy / sigma ˆ2
% sigmasq = arith.mulf %sigma , %sigma
%ndy = arith.negf %dy
% dsigma = arith.divf %ndy , % sigmasq
// dz = -dsigma * exp(-z)
% ndsigma = arith.negf % dsigma
%exp = math.exp %negz
%dz = arith.mulf %ndsigma , %exp
// dw = dz * x
%dw = arith.mulf %dz , %x

Figure 3.2: The primal (left) and reverse-mode adjoint (right) from Figure 2.2, expressed
in MLIR.

3.2.1 scf.if

Like if-expressions in high level languages, scf.if ops in MLIR are composed of a boolean

predicate, a then block that executes if the predicate is true, and an else block that executes

if the predicate is false. Due to the side-effect free nature of tensor MLIR, scf.if ops are

expressions that produce values, not statements. This implies that an scf.if op must contain

an else block to be valid.

Reverse Mode. To produce adjoints for conditionals in the form of scf.if ops, LAGrad

need only ensure that the condition value remains accessible so the adjoint can “replay” the

branch that was taken. Immutable semantics generally guarantee this, though LAGrad will

explicitly store condition values in memory to access them later if required (this is further

discussed later with the tape in Subsection 3.2.2). LAGrad then collects free values, which

are values used inside a block that are defined outside of that block. For each free value that

appears in either branch of the scf.if op, a corresponding adjoint scf.if op is produced by

recursively differentiating both then then and else blocks.
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This mathematically corresponds to the following piecewise derivative rule:

z =


f(x) if p

g(x) otherwise
=⇒ x =


z ∂f(x)

∂x
if p

z ∂g(x)
∂x

otherwise
(3.1)

For example, consider the following primal scf.if op, which contains an SSA value %x has

been previously defined and is thus free in the context of the if op.

1 %res = scf.if %p -> f64 {
2 scf.yield %x : f64
3 } else {
4 %0 = arith.mulf %x, 2 : f64
5 scf.yield %0 : f64 }

Listing 3.1: Example primal scf.if op.

The resulting pullback for %x is simply a mechanical translation of the above piecewise

derivative rule shown in Equation 3.1:

1 %dres = ... // incoming gradient
2 %adj = scf.if %p -> f64 {
3 scf.yield %dres : f64
4 } else {
5 %d0 = arith.mulf %dres , 2 : f64
6 scf.yield %d0 : f64

Listing 3.2: Pullback of Listing 3.1

Observe from line 2 of Listing 3.2 that the same condition value is used in both primal

and pullback (%p). The then block of the pullback (Listing 3.2, Line 3) differentiates the

then block of the primal (Listing 3.1, Line 2) and vice versa with the else block.

Forward Mode. Like reverse mode, forward mode differentiation requires that the same

branches are taken in both primal and tangent, meaning the same condition values must be
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used. The pushforward for scf.if ops look quite similar to the pullback in reverse mode:

z =


f(x) if p

g(x) otherwise
=⇒ ż =


ẋ∂f(x)

∂x
if p

ẋ∂g(x)
∂x

otherwise

However, forward mode computes primal operations in tandem with their pushforwards

instead of at the end of the primal. This conceptually results in augmenting the primal

scf.if op such that the primal and tangent operations are computed together:

1 %res , %dres = scf.if %p -> (f64 , f64) {
2 scf.yield %x, %dx : f64 , f64
3 } else {
4 %0 = arith.mulf %x, 2 : f64
5 %d0 = arith.mulf %dx, 2 : f64
6 scf.yield %0, %d0 : f64 , f64
7 }

Listing 3.3: Augmented primal and tangent (highlighted) of Listing 3.1.

3.2.2 scf.for

Reverse Mode. The process to differentiate loops involves emitting an adjoint loop that

iterates the same number of times as the primal, but in reverse. The loop body is then

recursively differentiated with respect to both loop-carried iteration arguments and free

variables.

This is described below in Listings 3.4 and 3.5, where x describes any free values that

appear in the loop while zi describes any loop-carried values.
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1 z0 = initial_value

2 for i from lb to ub:

3 zi+1 = f(zi, x)

Listing 3.4: A primal loop.

1 for i from reversed (lb to ub):

2 x += zi
∂f(zi,x)

∂x

3 zi−1 = zi
∂f(zi,x)

∂zi

Listing 3.5: Its corresponding adjoint.

Observe that the body of Listing 3.5 contains derivative expressions that potentially

depend on zi for all iterations of the primal loop. However, zi may be overwritten during

the course of the primal loop, making it inaccessible during the adjoint execution.

For this reason, loop-carried values that are overwritten with every subsequent iteration

(represented by zi) must be recorded to memory in a data structure known as the tape [7,10].

This results in the following generalized pattern:

1 tape = initialize a stack

2 z0 = initial_value

3 for i from lb to ub:

4 tape.push(zi)

5 zi+1 = f(zi, x)
6

7 for i from reversed (lb to ub):

8 zi = tape.pop ()

9 x += zi
∂f(zi,x)

∂x

10 zi−1 = zi
∂f(zi,x)

∂zi

In general, the primal loop must execute to fully populate the zi values required in the

adjoint. This is consistent with how the primal computation must fully execute prior to the

adjoint when differentiating linear sequences of instructions.

The tape introduces a memory overhead that is avoidable in certain contexts, which is

later discussed in Section 3.4.
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Forward Mode. Unlike reverse mode, forward mode absolves the need for the gradient

tape because of how primal and tangent ops are computed together. This guarantees that

intermediate values required by tangent computations will always be accessible:

1 z0, ż0 = initial_values

2 for i from lb to ub:

3 zi+1 = f(zi, x)
4 żi+1 = żi

∂f(zi,x)
∂x

While reverse mode requires the creation of a new loop, forward mode reuses the primal

loop by merely augmenting the loop body with tangent operations.

3.2.3 linalg.generic

Recall from subsection 2.2.1 that linalg.generic ops represent an abstraction over arbitrary

computation within parallel loop nests.

Reverse Mode. Differentiating a linalg.generic op will produce new linalg.generic

ops. For simplicity, our discussion assumes each op produces one result. Multiple results

involve performing the same procedure for each result.

Recall the pseudocode representation of a linalg.generic op, first discussed in

subsection 2.2.1:

1 for d0 from 0 to <inferred d0 bound >:

2 ...

3 for dm from 0 to <inferred dm bound >:

4 Out[mapO] = f(T1[map1], . . . , TN [mapN ], Out[mapO])

Suppose the pullback with respect to Ti, 1 < i < N is desired. Its differential value Ti

is assigned indexing map mapi, then f is differentiated to yield f ′ with respect to Ti[mapi].

This produces the following adjoint:

1 for d0 from 0 to <inferred d0 bound >:
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1 % result = linalg . generic
2 { indexing_maps = [
3 affine_map <(d0 , d1 , d2) -> (d0, d2)>,
4 affine_map <(d0 , d1 , d2) -> (d2 , d1)>,
5 affine_map <(d0 , d1 , d2) -> (d0, d1)> ],
6 iterator_types = [ " parallel ",
7 "parallel",
8 "reduction" ] }
9 ins(%A, %B : tensor <?x?xf32 >, tensor <?x?

xf32 >)
10 outs(%C : tensor <?x?xf32 >) {
11 ˆbb0 (% arg0: f32 , %arg1: f32 , %arg2: f32)

:
12 %0 = arith .mulf %arg0 , %arg1 : f32
13 %1 = arith .addf %arg2 , %0 : f32
14 linalg . yield %1 : f32 } -> tensor <?x?

xf32 >

C[i, j] += A[i, k] ∗ B[k, j]

(a) The linalg.generic matrix multiply.

% pullback = linalg . generic
{ indexing_maps = [

affine_map <(d0 , d1 , d2) -> (d0, d1)>,
affine_map <(d0 , d1 , d2) -> (d2 , d1)>,
affine_map <(d0 , d1 , d2) -> (d0, d2)> ],

iterator_types = [ " parallel ",
"reduction",
"parallel" ] }

ins(%dC, %B : tensor <?x?xf32 >, tensor <?x?
xf32 >)

outs(%dA : tensor <?x?xf32 >) {
ˆbb0 (% arg0: f32 , %arg1: f32 , %arg2: f32)
:

%0 = arith .mulf %arg0 , %arg1 : f32
%1 = arith .addf %arg2 , %0 : f32
linalg . yield %1 : f32 } -> tensor <?x?

xf32 >

dA[i, k] += dC[i, j] ∗ B[k, j]

(b) The pullback with respect to %A.

Figure 3.3: A matrix multiplication and its corresponding pullback in MLIR (and simplified
TC notation [6]). The differences as a result of the AD process are highlighted.

2 ...

3 for dm from 0 to <inferred dm bound >:

4 Ti[mapi]=f ′(T1[map1], . . . , TN [mapN ], Out[mapO], Ti[mapi])

Iterator types of the adjoint are inferred by examining mapO. Input dimensions that

appear in the map’s results are marked "parallel", while others are marked "reduction".

A full MLIR code example of this process is found in Figure 3.3. The values %dA and

%A use the same indexing map, as do %dC and %C. The iterator types are inferred based on

mapA.

This differentiation procedure requires that the output argument of the generic op is

not effectively used, meaning its value is not a direct data dependency of the adjoint. The

reason for this is further discussed in section 3.4 after covering the tape in more detail. If

this condition is not met, a fallback is to immediately lower the generic op to a nest of
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scf.for ops and differentiate it as such.

Forward Mode. Rather than creating a distinct pullback op, forward AD creates an

augmented pushforward that iterates in the same order as the primal:

1 for d0 from 0 to <inferred d0 bound >:

2 ...

3 for dm from 0 to <inferred dm bound >:

4 Out[mapO] = f(T1[map1], . . . , TN [mapN ], Out[mapO])
5 ˙Out[mapO]=f ′(T1[map1], Ṫ1[map1] . . . , TN [mapN ], ṪN [mapN ], Out[mapO], ˙Out[mapO])

Each active input tensor Ti is augmented with a corresponding dual Ṫi that is assigned

the same indexing map mapi. The iterator types of the augmented primal are the same as

the original.

3.2.4 Differentiation Summary

We have now covered the differentiation rules for each of the supported complex control

flow operators in MLIR. As we have seen, reverse mode has greater complexity than forward

mode AD due to the additional overhead stemming from the reversed control flow and the

tape. However, recall that this complexity is a worthwhile tradeoff because machine learning

applications often require differentiating a scalar output with respect to many inputs, which

reverse mode AD can complete with a single pass. Forward mode AD requires as many

passes as inputs to complete the same task, but excels at differentiating functions with more

outputs than inputs.

To maximize flexibility, LAGrad supports both modes of AD with optimizations that

benefit both. Optimizations performed during AD are covered in section 3.4, while

optimizations performed after AD are covered in chapter 4. Before discussing the former

kind of optimizations, we will cover To Be Recorded analysis, an important analysis that is
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common in AD systems. One component of To Be Recoded analysis is effective use

analysis, which will be reused in the novel optimization discussed in section 3.4.

3.3 To Be Recorded Analysis in MLIR

As previously discussed in subsection 3.2.2, the reversed control flow of reverse-mode

automatic differentiation implies that some values required in the adjoint are overwritten

during the execution of the primal. These values must be recorded on the gradient tape to

ensure they are accessible. However, not all values from the primal need to be written to

the tape.

Consider Listing 3.6, where all primal values are recorded to the tape by default. Lines

2-9 make up the augmented primal, where Lines 3-4 allocate tapes for primal values and

Lines 7-8 store their values across loop iterations. Lines 11 and onward make up the adjoint

where x is computed:

1 func mul(x: f64 , n: i64):
2 // Primal
3 x_tape = initialize empty stack
4 s_tape = initialize empty stack
5 s = 0
6 for i from 0 to n:
7 x_tape .push(x)
8 s_tape .push(s)
9 s = s + x

10

11 // Adjoint
12 ds = 1, dx = 0
13 for i from reversed (0 to n):
14 x = x_tape .pop ()
15 s = s_tape .pop ()
16 dx += ds
17 return dx

Listing 3.6: A primal and adjoint loop that stores all primal values to tapes.
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1 func pow(x: f64 , n: i64):
2 // Primal
3 x tape = initialize empty stack
4 p_tape = initialize empty

stack
5 for i from 0 to n:
6 x tape.push(x)
7 p_tape .push(p)
8 p = p * x
9

10 // Adjoint
11 dp = 1, dx = 0
12 for i from reversed (0 to n):
13 x = x tape.pop()
14 p = p_tape .pop ()
15 dx += p * dp
16 dp = dp * x
17 return dx

(a) A naive adjoint implementation that
records both x and p to the tape.

func pow(x: f64 , n: i64):
// Primal

p_tape = initialize empty
stack

for i from 0 to n:

p_tape .push(p)
p = p * x

// Adjoint
dp = 1, dx = 0
for i from reversed (0 to n):

p = p_tape .pop ()
dx += p * dp
dp = dp * x

return dx

(b) An equivalent implementation that reads
the value of x (Line 16) instead of storing it.

Figure 3.4: An example adjoint implementation where a value x is stored to the tape
but never modified over the primal, making its storage unnecessary. The unnecessary tape
instructions are highlighted.

Observe the adjoint loop (Lines 13-16). Lines 14 and 15 emit pops to the stored values of

x and s, but these values are unused in the rest of the adjoint loop body. This is due to the

generated pullback for the addition operator (Line 16), which does not have dependencies

on either x or s. Thus, neither x nor s need to be written to the tape to the compute the

adjoint.

As another example, consider Figure 3.4a. Due to the pullback for the multiplication

operation (Lines 15 and 16), the values of both x and p are required in the adjoint.

However, observe that the value of x is never overwritten during the course of the program.
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n copies of x are written to the tape during the primal execution (Line 6), but it is possible

to simply use the initial value of x in the adjoint without changing the final computation of

x. To summarize, primal values need not be recorded to the tape if either 1) their values

are not actually used in the adjoint, or 2) their values are directly accessible in the adjoint

since they are not overwritten.

To this end, To Be Recorded (TBR) analysis [7] is a static analysis with the goal of

determining which values must be recorded to the tape, such that unnecessary values are

not recorded. The initial formulation of TBR analysis was implemented to work using C

as the source language in the Tapenade AD system. This thesis builds on prior work [7] to

extend TBR analysis to tensor MLIR, which has key semantic differences from C.

Like Tapenade, LAGrad implements TBR analysis in three stages: activity analysis,

effective use analysis, and killed analysis. The results of activity analysis are used during

effective use analysis, and the results of effective use analysis are reused in tape size reduction,

one of the novel optimizations presented in this thesis. These three phases are each discussed

in turn.

3.3.1 Activity Analysis

The goal of activity analysis is to determine the set of values within a program that can

potentially influence the derivative computation. This is equivalent to finding the set of

values v that require differential values v to be computed.

Users of AD systems specify a subset of function inputs X and function outputs Y that

they wish to differentiate with respect to, yielding ∂y
∂x

for all x ∈ X , y ∈ Y . First, top-down

activity analysis is run to find all values v that depend on some x ∈ X , then bottom-up

activity analysis is run to find all values w such that some y ∈ Y depends on w. The final
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active set is the set intersection of top-down and bottom-up active values.

If the input programs are free from memory side effects, the notion of dependence can be

computed by traversing define-use and use-define chains, which is straightforward given the

SSA nature of tensor MLIR [25]. However, with programs that contain side effects, there

may be additional data dependencies that arise from reading from and writing to memory,

adding to the complexity of activity analysis. Fortunately, tensor MLIR is free from such

side-effects and thus activity analysis in LAGrad is able to elide much of the complexity

present in other AD systems [7, 11].

3.3.2 Effective Use Analysis

The process of effective use analysis is to determine which primal values are required when

computing the adjoint. Recall from Table 3.1 that the pullback of a multiplication z = a × b

introduces a dependency on its primal operands (zb, za), while the pullback of an addition

does not. Effective use analysis computes AdjU sets: each value v has a corresponding set

AdjU(v), which is the set of primal values required to compute v.

To compute AdjU for a function, each operation e in the function has its corresponding

AdjU(e) computed per the rules in Table 3.2. Then, AdjU sets are computed by traversing

operations in a top-down data flow manner per the equations in Table 3.3, which account

for control flow that may occur in the program in addition to propagating effective use

information through sequential operations. Table 3.3 refers to Kill sets, which are generally

empty in tensor MLIR and further explained in subsection 3.3.3. Finally, the result of

effective use analysis is the AdjU(t) for each value t that is returned from the function.

Prior work [7] shows that AdjU computation generally requires an iterative, fixed point

algorithm on programs with unstructured control flow. However, the data flow equations
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Operation (e) Resulting AdjU(e)
arith.addf e1, e2
arith.subf e1, e2

AdjU(e1) ∪ AdjU(e2)

arith.mulf e1, e2
arith.divf e1, e2

linalg.dot ins(e1, e2)
linalg.matvec ins(e1, e2)
linalg.vecmat ins(e1, e2)
linalg.matmul ins(e1, e2)

linalg.batch matmul ins(e1, e2)

(if e1 active then AdjU(e1) ∪ {e2}) ⋃
(if e2 active then AdjU(e2) ∪ {e1})

log(e1), exp(e1),
sin(e1), cos(e1),

tanh(e1), . . .
AdjU(e1) ∪ {e1}

tensor.insert e1 into e2[e3] AdjU(e1) ∪ AdjU(e2) ∪ {e3}

tensor.extract e1[e2] AdjU(e1) ∪ {e2}

tensor.insert slice e1 into e2[e3][e4][e5] AdjU(e1) ∪ AdjU(e2) ∪ {e3, e4, e5}

tensor.extract slice e1[e2][e3][e4] AdjU(e1) ∪ {e2, e3, e4}

Table 3.2: AdjU construction rules for individual operations.

with structured control flow can be computed top-down in a single pass without requiring

iterative methods.

3.3.3 Killed Analysis

The final stage of TBR analysis is killed analysis, where the aim is to find values that have

been overwritten or would otherwise be inaccessible in the adjoint unless explicitly written

to the tape. As MLIR is in SSA form, killed analysis is greatly simplified due to the inability

to overwrite SSA values. As such, the only values that are overwritten in tensor MLIR with

structure control flow are loop-carried iteration arguments and arguments that depend on

them.
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Control-flow construct (B) Data Flow Equation (AdjU(B))
Sequential, B = B1 → B2 AdjU(B) = ((AdjU(B1) \ Kill(B2)) ∪ AdjU(B2))

B = scf.if p {B1} else {B2} AdjU(B) = AdjU(B1) ∪ AdjU(B2)
B = scf.for ... {B1} AdjU(B) = AdjU(B1)

Table 3.3: Structured data-flow equations for AdjU construction with control flow, as
formulated by [7].

The final set of values resulting from TBR analysis is the intersection of loop iteration

arguments with the AdjU set of the function.

Full TBR Example. Consider the following program.

1 func @myfunc (%x: f64 , %n: i64) -> f64 {
2 %sf , %rf = scf.for %iv = 0 to %n iter_args (%s = 0.0, %r = 1.0) {
3 % s_next = arith.addf %s, %x
4 % r_next = arith.mulf %r, %x
5 scf.yield %s_next , % r_next
6 }
7 %final = arith.addf %sf , %rf
8 return %final
9 }

Suppose we want to differentiate with respect to %x. The first stage of TBR analysis is

activity analysis. Top down activity analysis begins from %x, then propagates through its

def-use chains to yield {%x, %s_next, %r_next, %s, %r, %sf, %rf, %final}. Bottom up

activity analysis begins with %final, then propagates through its use-def chains to yield the

same set. The intersection of top-down and bottom-up activity analyses are the same, thus

all of those values are marked active.

We next consider effective use analysis. The process is initialized by setting AdjU(%v) =

∅ for all SSA values %v in the program. We begin by computing AdjU sets for primitive

operations, which consist of arith.mulf and arith.addf operations. These correspond to
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multiplication and addition, which have construction rules detailed in the first two rows of

Table 3.2. From these rules, AdjU(%r_next) = {%r, %x}, while the AdjU sets for all other

values remain empty. The data flow equations in Table 3.3 are then employed to propagate

the AdjU sets down to the final return value, which results in the final AdjU set of {%r, %x}.

Finally, we consider killed analysis. The set of loop carried iteration arguments and values

that depend on them is {%s, %r, %s_next, %r_next}. The intersection of AdjU and killed

values is {%r}, and thus %r is the only value that must be written to the tape to compute

the adjoint. Such an adjoint is shown below:

1 func @myfunc (%x: f64 , %n: i64) -> f64 {
2 %tape = memref .alloc (%n) : memref <?xf64 >
3 %sf , %rf = scf.for %iv = 0 to %n iter_args (%s = 0.0, %r = 1.0) {
4 memref .store %r, %tape [%iv]
5 % s_next = arith.addf %s, %x
6 % r_next = arith.mulf %r, %x
7 scf.yield %s_next , % r_next
8 }
9 %final = arith.addf %sf , %rf

10

11 % dfinal = 1.0
12 %ds = % dfinal
13 % dr_init = % dfinal
14 % dx_init = 0.0
15 scf.for %iv = %n to %0 iter_args (%dx = %dx_init , %dr = % dr_init ) {
16 %r = memref .load %tape [%iv]
17 scf.yield %dx + (%r * %dr) + %ds , %x * %dr
18 }
19 return %dx
20 }
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3.4 Tape Size Reduction

While TBR analysis aims to minimize the set of values that are written to the tape, it does

not consider that values can sometimes be recomputed instead of stored. Recomputation

of primal values generally alleviates the memory overhead of the gradient tape, but can

result in asymptotically worse performance as a trade-off. However, there exist instances of

differentiated programs where recomputation does not incur this asymptotically worse cost.

LAGrad employs a novel static analysis that builds on prior work [7] with the aim of deciding

whether to store or recompute primal values.

3.4.1 Motivating Examples

A primal loop typically contains values that are overwritten during its execution. Given

the immutable nature of SSA values in MLIR, these overwritten values must be explicitly

represented in the iter_args of loops.

Example 1. Consider Listing 3.7, which implements a simple function as an MLIR loop.

Line 2 shows %res_it, a loop carried dependency that receives an initial value of 0.0, then

is overwritten by the value yielded on Line 4 at the start of the next iteration.

A naive adjoint of this program is shown in Listing 3.8. It requires the primal value %y

from all iterations of the primal loop, as shown by its usage in Lines 12-13. Observe that

while the original program requires O(1) memory, the overhead of the tape requires O(n)

memory where n is the number of loop iterations.

However, it is possible to recompute %y rather than writing it to the tape. This is shown

in Listing 3.9, where %y is recomputed in the adjoint on Line 5 rather than being loaded

from the tape. In addition to no longer requiring the tape, the primal loop is trivially
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1 func @f(%x: f32 , %n: index) -> f32 {
2 %res = scf.for %iv = 0 to %n iter_args (% res_it = 0.0) {
3 %y = %iv * %iv : f32
4 scf.yield % res_it + (%y * %x) : f32
5 }
6 return %res : f32
7 }

Listing (3.7) The primal function f(x, n) = ∑n
i=0 xi2, expressed in MLIR.

1 func @grad_f_v1 (%x: f32 , %n: index) -> f32 {
2 %tape = memref .alloc (%n) : memref <?xf32 >
3 // Primal loop
4 %res = scf.for %iv=0 to %n iter_args (% res_it =0.0) {
5 %y = %iv * %iv : f32
6 memref .store %y, %tape [%iv]
7 scf.yield % res_it + (%y * %x) : f32 }
8

9 %dres = arith. constant 1.0 : f32
10 // Adjoint loop
11 %dx = scf.for %iv=%n-1 to -1 step -1 iter_args (% dx_it =0.0) {
12 %y = memref .load %tape [%iv] : f32
13 scf.yield %dx_it + %dres * %y : f32
14 }
15 return %dx : f32
16 }

Listing (3.8) A naive adjoint of Listing 3.7. The computation, storage, and usage
of primal value %y is highlighted.

1 func @grad_f_v2 (%x: f32 , %n: index) -> f32 {
2 %dres = arith. constant 1.0 : f32
3 // Adjoint loop
4 %dx = scf.for %iv = %n to -1 step -1 iter_args (% dx_it =0.0) {
5 %y = %iv * %iv : f32
6 scf.yield %dx_it + %dres * %y : f32
7 }
8 return %dx : f32
9 }

Listing (3.9) An optimized adjoint of Listing 3.7 that recomputes primal values
rather than storing them to the tape. The primal loop is elided due to no longer
being necessary. The recomputation of %y is highlighted.

Figure 3.5: A primal loop, naive adjoint, and optimized adjoint demonstrating the benefit
of recomputing primal values.
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elided through MLIR’s dead code elimination because it is no longer required. Listing 3.9

demonstrates that choosing to recompute yields an adjoint that can be computed using

O(1) memory, just like the primal in Listing 3.7. Furthermore, since the recomputation is

relatively cheap, the overall runtime complexity of this adjoint is O(n), which is the same as

the primal. In other words, recomputation allows for an asymptotic reduction in the memory

usage of AD without compromising on runtime performance.

Example 2. However, the process of recomputing primal values is not always inexpensive.

Consider Listing 3.10, in which the %p intermediate value is a loop carried dependency and

thus requires its previous value at each iteration.

The corresponding pullback is shown in Listing 3.11, which again has an O(n) memory

overhead from the tape, in contrast to the O(1) memory usage of the primal. To elide the

tape, the value %p used in the adjoint loop must be recomputed instead of loaded from the

tape. The first adjoint iteration requires the last value of %p, the second adjoint iteration

requires the second last value, and so on. However, as nothing is cached on the tape and

%p depends on its previous value, recomputing it requires starting from the very first primal

iteration for every adjoint iteration.

This results in the adjoint shown in Listing 3.12. Though the adjoint now uses O(1)

memory like the primal, the recomputation of %p results in a triangular lattice of computation

across the now nested loops (Lines 3-4). This is visualized in Figure 3.7 and results in the

adjoint program having a computational complexity of O(n2) rather than O(n) of both the

original computation and the tape-based adjoint in Listing 3.11. In contrast to the previous

example, recomputation incurs an asymptotically worse performance as a trade-off for saving

on memory.

As we have seen, there are some loops where recomputing primal values instead of
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1 func @g(%x: f32 , %n: index) -> f32 {
2 %r = scf.for %iv = 0 to %n iter_args (%p = 1.0) {
3 scf.yield %p * x : f32
4 }
5 return %r : f32
6 }

Listing (3.10) The primal function g(x, n) = xn

1 func @grad_g (%x: f32 , %n: index) -> f32 {
2 %tape = memref .alloc (%n) : memref <?xf32 >
3 // Primal loop
4 %r = scf.for %iv = 0 to %n iter_args (%p = 1.0) {
5 memref .store %p, %tape [%iv]
6 scf.yield %p * x : f32
7 }
8

9 // Adjoint loop
10 %dx , %dr = scf.for %iv = %n-1 to -1 step -1 iter_args (% dx_it =0.0 , %dr_it

=1.0) {
11 %p = memref .load %tape [%iv]
12 scf.yield %dx_it + %p * %dr_it , %dr_it * x
13 }
14 return %dx
15 }

Listing (3.11) The adjoint of Listing 3.10, using a tape.

1 func @grad_g_v2 (%x: f32 , %n: index) -> f32 {
2 // Adjoint loop
3 %dx , %dr = scf.for %iv = %n-1 to -1 step -1 iter_args (% dx_it =0.0 , %dr_it

=1.0) {
4 %p = scf.for %jv = 0 to %iv iter_args (% p_it = 1.0) {
5 scf.yield %p_it * x : f32
6 }
7 scf.yield %dx_it + %p * %dr_it , %dr_it * x
8 }
9 return %dx

10 }

Listing (3.12) The adjoint of Listing 3.10 that recomputes instead of using the tape. The nested
loop in the adjoint results in O(n2) computation.

Figure 3.6: A primal loop and two adjoints that demonstrate recomputing is not always
beneficial.
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i = n − 1, pn−1 = x × x × . . . × x × x

i = n − 2, pn−2 = x × x × . . . × x

...
i = 2, p2 = x × x × x

i = 1, p1 = x × x

i = 0, p0 = x

Figure 3.7: The triangular lattice of computation required by eliding the tape in Listing 3.11
to produce Listing 3.12.

storing them on the tape can improve memory usage without incurring worse computation

overhead, while other loops result in asymptotically worse performance when recomputing

primal values. This work introduces tape size reduction, a novel static analysis that detects

when the resulting overhead of recomputation is not asymptotically worse than the original

computation.

3.4.2 Tape Size Reduction Algorithm

Observe that every loop contains some values that depend on previous iterations, and others

that do not. For a loop ℓ, we define the following sets:

• V als(ℓ): the set of values defined in the body of ℓ.

• IterV als(ℓ): the set of values that are carried through ℓ, or equivalently, the set of

values that possibly have data dependencies on previous iterations of ℓ.

IterV als(ℓ) can be computed by traversing the iter_args of loops to find values that

depend on the iter_args.
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When loops are differentiated, the primal loop ℓ yields an adjoint loop ∂ℓ. We define the

set AdjU(ℓ) as the set of values defined in ℓ and used in ∂ℓ. We say values in AdjU(ℓ) are

effectively used. The computation of AdjU(ℓ) is prior work done by implementing a static

analysis outlined in [7].

If AdjU(ℓ) ∩ IterV als(ℓ) = ∅, then all required primal values in the adjoint loop can

be recomputed with one iteration of the primal, signalling that recomputation is cheap.

Otherwise, recomputation will require multiple primal iterations for each adjoint iteration,

incurring an asymptotically worse complexity than the original program.

If both recomputation is cheap and the result of the primal loop is not effectively used,

LAGrad emits an adjoint that does not include the primal loop because it is unnecessary

for the adjoint computation. Required primal values are recomputed within the body of the

adjoint.

Other source-to-source AD systems are able to detect similar opportunities to avoid tape

usage in simple examples via existing optimizations in LLVM [10, 11]. However, this new

approach scales to arbitrarily complex code containing nested loops, conditionals, and linalg

ops. We will see the effect this has on memory usage in the evaluation.

The potential presence of the tape when is why linalg ops cannot be differentiated when

their output arguments are effectively used. When these output arguments are stored to

the tape, they must be read during the adjoint in precisely the reverse order of the primal.

This implies a dependency on the primal iteration order, violating the parallel semantics of

linalg iterators. This necessitates that such ops to be first lowered to sequential loops.
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3.5 Summary

In this chapter, we have covered the procedure to differentiate high-level constructs in

tensor MLIR with both elementary operations and structured control flow. We have also

covered tape size reduction, an optimization that detects cases to improve the memory

usage of reverse mode AD without incurring runtime overhead. We will now discusses

static optimizations that are performed after the completion of the AD process.
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Chapter 4

Post-AD Optimizations

Once adjoint code is generated, it can be optimized by the compiler prior to being bufferized

and lowered to executable code. This chapter discusses optimizations performed immediately

after AD is performed.

The optimizations discussed in this chapter are independent of automatic differentiation

and thus could be applied outside of AD contexts, but programs generated by the AD process

demonstrate particular characteristics that present opportunities for these optimizations to

be beneficial.

4.1 In-place Bufferization

Recall that MLIR’s default bufferization will allocate new memory on each tensor op to

preserve the immutable semantics of tensors. As we will see, this process incurs a potentially

large performance and memory overhead. To combat this, LAGrad contains a number of

methods to statically determine when it is safe to lower these ops to in-place updates that

avoid unnecessary allocations and copies.
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4.1.1 Memory Conflicts and Dominance-based Heuristics

Consider the following code snippet, where Line 2 semantically creates a new tensor by

setting %t at index %idx to %val, leaving all other elements equal to their original values:

1 func @insert (% val: f64 , %t: tensor <1024 xf64 >, %idx: index) {
2 %t_new = tensor . insert %val into %t[% idx] : tensor <1024 xf64 >
3 // ... uses of %t_new , %t...
4 }

Tensors in MLIR semantically represent immutable, multidimensional arrays that

intentionally have their underlying memory abstracted away. To produce code that can be

executed, tensor-level code must be bufferized to code that contains explicit memory

buffers. Multiple bufferization implementations are possible, meaning the underlying

memory of tensors is not necessarily a straightforward, one-to-one mapping of the tensor’s

shape to a block of memory. One such instance of this is in sparse tensors, where a

potentially large tensor is mapped to a sparse storage scheme [26].

By default, MLIR will produce the following code as a result of bufferization (noting that

the types of input parameters have been converted).

1 func @insert (% val: f64 , %t: memref <1024 xf64 >, %idx: index) {
2 %t_new = memref .alloc () : memref <1024 xf64 >
3 linalg .copy (%t, %t_new)
4 memref .store %val , %t_new [% idx] : memref <1024 xf64 >
5 // ... uses of %t_new , %t...
6 }

Line 2 allocates an entirely new memory buffer, line 3 copies over all elements of the

original buffer into the newly allocated buffer, then line 4 updates the single desired element.

Note that the memref.store is an explicit store to memory, while tensor.insert merely

describes the creation of a new tensor and leaves the implementation up to a downstream

lowering pass.
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This default bufferization is an O(n) operation where n is the number of elements of the

tensor, which is significantly more expensive than the O(1) operation of updating a single

number in memory. However, consumers of %t expect to read its unmodified value, meaning

the allocation and copy are required to ensure the correctness of the program.

Crucially, the tensor.extract of %original involves a use of %t that postdominates the

tensor.insert to %t. When bufferizing an insert (or insert slice) to a tensor t, if there are no

uses of t that postdominate the insert (resp. insert slice), the compiler can guarantee that

it is safe to lower to an in-place update which avoids the extra allocation and copy.

LAGrad makes use of MLIR’s existing dominance analysis to implement this. Given the

following code, which no longer has a data hazard due to the lack of postdominating uses of

%t:

1 func @insert (% val: f64 , %t: tensor <1024 xf64 >, %idx: index) {
2 %t_new = tensor . insert %val into %t[% idx] : tensor <1024 xf64 >
3 // ... uses of %t_new ...
4 return
5 }

LAGrad will produce the following lowered code:

1 func @insert (% val: f64 , %t: memref <1024 xf64 >, %idx: index) {
2 memref .store %val , %t[% idx] : memref <1024 xf64 >
3 // ... uses of %t_new are replaced with %t...
4 return
5 }

There is an analogous heuristic that is applied to tensor.extract_slice ops, which

extract a slice (i.e., a portion, which is itself a smaller tensor) of a source tensor. Consider

the following example, where a row of %t is extracted to make %slice on line 2:

1 func @extract_slice (%t: tensor <1024 x1024xf64 >, %idx: index) {
2 %slice = tensor . extract_slice %t[%idx , 0] [1, 1024] [1, 1] :

tensor <1024 x1024xf64 > to tensor <1024 xf64 >
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3 // ... uses of %slice ...
4 return
5 }

The semantics of the program require that %slice and %t are independent of each other,

such that modifications to one will not affect the other. Default bufferization therefore inserts

an extra memory allocation for the slice that is copied over, resulting the following:

1 func @extract_slice (%t: memref <1024 x1024xf64 >, %idx: index) {
2 %slice = memref .alloc () : memref <1024 xf64 >
3 %view = memref . subview %t[%idx , 0] [1, 1024] [1, 1] : memref <1024

x1024xf64 > to memref <1024 xf64 >
4 linalg .copy (%view , %slice)
5 // ... uses of %slice ...
6 return
7 }

Lines 2 to 4 demonstrate the required allocate, subview, then copy pattern that is required

to ensure the immutability of both the source and destination buffers. However, for a given

extract slice of a source tensor t, it is safe to avoid an extraneous allocation and copy if there

are no uses of t that postdominate the extract slice op. In particular, a postdominating use

may mutate the underlying memory of t, violating the correctness of consumers of its slice.

In the absence of such a use, LAGrad will produce the following lowered code:

1 func @extract_slice (%t: memref <1024 x1024xf64 >, %idx: index) {
2 %slice = memref . subview %t[%idx , 0] [1, 1024] [1, 1] : memref <1024

x1024xf64 > to memref <1024 xf64 >
3 // ... uses of %slice ...
4 return
5 }

The same optimization is not required for tensor.extract ops because such ops produce

a scalar SSA value. These SSA values will be lowered to registers that will not change even

if the underlying memory of the source tensor is mutated.



4. Post-AD Optimizations 47

1 %slice = tensor . extract_slice %A[2] : tensor <4 x5xf64 > to
tensor <5xf64 >

2 % updated = linalg . generic ... outs (% slice) ...
3 % result = tensor . insert_slice % updated into %A[2] : tensor <5

xf64 > into tensor <4 x5xf64 >

Listing 4.1: A tensor program that exhibits the read/compute/write pattern optimizable
to an in-place update.

4.1.2 Insert-Extract Analysis

Consider Listing 4.1, where a slice of the tensor %A is read from (line 1), used to compute a

new tensor of the same shape (line 2), then the new tensor slice is written back into %A at the

same location (line 3). Our previous dominance heuristics will fail to efficiently bufferize this

code because the insert slice of %A (line 3) postdominates the extract slice (line 1), resulting

in a new buffer allocations for each op:

1 // Listing 4.1, Line 1: allocate + copy for tensor . extract_slice
2 %slice = memref .alloc () : memref <5xf64 >
3 % subview = memref . subview %A[2] : memref <4 x5xf64 > to memref <5xf64 >
4 linalg .copy (% subview , %slice)
5 // Listing 4.1, Line 2: allocate + copy for linalg . generic
6 % updated = memref .alloc () : memref <5xf64 >
7 linalg .copy (% slice , % updated )
8 linalg . generic ... outs (% updated ) ...
9 // Listing 4.1, Line 3: allocate + 2 copies for tensor . insert_slice

10 % result = memref .alloc () : memref <4 x5xf64 >
11 linalg .copy (%A, % result )
12 % write_view = memref . subview % result [2] : memref <4 x5xf64 > to memref

<5xf64 >
13 linalg .copy (% updated , % write_view )

However, it is possible to bufferize the listing to an in-place update where the linalg.

generic op updates the underlying memory of %A directly:

1 %slice = memref . subview %A[2] : memref <4 x5xf64 > to memref <5xf64 >
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2 linalg . generic ... outs (% slice) ...

This read/compute/write pattern is prevalent in the generated output of LAGrad due

to the accumulation of gradient signals. As such, this work introduces Insert-Extract (IE)

Analysis to find patterns where a slice of a tensor may be updated in place. The following

conditions must be met:

• The destination of the extract slice must have exactly one use that postdominates the

extract slice. That use must be in the destination of an insert slice, which is termed

the matching insert slice.

• The matching insert slice must have the same indexing operands (offsets, sizes, and

strides) as the extract slice.

• The destination of the insert slice must not have any uses that postdominate the insert

slice.

• The result of the extract slice must appear as an output of a linalg.generic op, and the

result of the linalg.generic op must be used as the input to the insert slice.

If IE Analysis determines these conditions to be met, it will group the paired

extract/compute/insert ops and bufferize them to avoid any extraneous memory

allocations.

4.1.3 Summary

Using a combination of more straightforward dominance-based heuristics and Insert-Extract

Analysis, LAGrad is able to perform aggressive bufferizations that update memory in-place

rather than creating extra allocations and copies. All of these are heuristics, meaning there
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may be cases where in-place updates are valid that remain undetected, but these heuristics

are designed to be conservatively correct when applied.

4.2 Active Sparsity

Activity analysis is the process of determining which values can carry gradient signal from an

input variable to an output variable. Determining activity is important as only active values

require their gradients computed during AD [7]. However, most AD systems reason about

activity at a coarse-grained level. When tensors are involved, this means that if a single

element is active, the entire tensor is considered active. In practice, there are instances

where only some elements of a tensor can propagate gradient information. This presents an

optimization opportunity by only computing gradients for the active elements.

Consider the example in Listing 4.2. Lines 3 and 4 construct a 2 by 2 array where only

the element at [1, 0] can carry a gradient signal. However, the entire array is involved

in downstream computation and most AD systems compute gradients with respect to all

elements of the array. This is shown in line 13, where the computation of Y involves 8

multiplications since both Y and Z are 2 by 2 arrays. Once computed, only one entry of Y

is relevant to the gradient of the output, as shown on line 15.

To address this, we define sparsely active tensors with the following criteria:

1. At least 50% of the entries are zero.

2. Those same entries are constant with respect to the input, and as such their gradient

values will be unused.

LAGrad optimizes these sparsely active tensors when the patterns of active elements follow a

statically known shape, such as being in the lower or upper triangular portion of the tensor.
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1 def f(x: float):
2 # Most elements of Y are constant , thus inactive
3 Y = np.zeros ((2, 2))
4 Y[1, 0] = x
5 Z = Y ** 2
6 return Z.sum ()
7

8 def grad_f (x: float , g: float):
9 Y = np.zeros ((2, 2))

10 Y[1, 0] = x
11

12 dZ = np. broadcast_to (g, (2, 2))
13 dY = 2 * Y * dZ
14 # Inactive elements of dY are unused , meaning their computation

could have been avoided .
15 dx = dY[1, 0]
16 return dx

Listing 4.2: Primal and adjoint functions containing sparsely active arrays, where most
elements are constant with respect to the function input. Expressed in high-level Python for
readability.

Y =
[
0 0
x 0

]
Z =

[
0 0
x2 0

]

Z =
[
g g
g g

]
Y =

[
0 0

2xg 0

]
x = 2xg

Figure 4.1: Visualization of the sparsity of primal (top) and adjoint (bottom) values in
Listing 4.2.
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1 // Ver. 1
2 func trmv_full (N, L, x, out):
3 for i from 0 to N:
4 for j from 0 to N:
5 out[i] += L[i,j] * x[j]
6

7 // Ver. 2: Optimized compute , dense memory .
8 func trmv_triangular_computation (N, L, x, out):
9 for i from 0 to N:

10 for j from 0 to i:
11 out[i] += L[i,j] * x[j]
12

13 // Ver. 3: Optimized compute , packed memory .
14 func trmv_packed_computation (N, Lpacked , x, out):
15 for i from 0 to N:
16 for j from i + 1 to N:
17 Lidx = j - (i+1) + i * (2 * N - (i+1)) / 2
18 out[j] += Lpacked [Lidx] * x[i]

Listing 4.3: Pseudo-code comparison of triangular matrix-vector multiplication. The
compiler will automatically generate these examples from the same linalg op depending
on the tensor encoding of L.

Note that the values in the example in Listing 4.2 satisfy this property in the lower triangular

case.

To perform these optimizations, the IR must “merely” be annotated such that the

tensor encoding contains the sparsity pattern of the operand. The compiler then

transforms linalg ops that contain a sparse operand into loops that iterate over the

nonzero elements of their operands by modifying the resulting loop bounds. This

transformation optimizes computation while leaving zero values materialized in memory.

Building on this, LAGrad contains an additional optimization that automatically convert

triangular tensors into packed representation, such that only nonzero values are stored in

memory [27]. This process automatically generates code to map iteration variables to the
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indexing scheme of packed triangular storage. These methods are shown in Listing 4.3.

The packing of lower triangular tensors potentially improves cache locality of computation

operating on these tensors.

Concretely, the function shown in Listing 4.2 will have the following representation when

expressed in MLIR:

1 func @f(%x: f64) -> f64 {
2 % Y_space = linalg . init_tensor [2, 2] : tensor <2 x2xf64 >
3 %zero = arith. constant 0.0 : f64
4 % Y_init = linalg .fill (%zero , % Y_space ) : f64 , tensor <2 x2xf64 >
5 %Y = tensor . insert %x into % Y_init [1, 0]
6 %Z = math.powf % Y_init : tensor <2 x2xf64 >
7 %sum = linalg . generic ... ins (%Z: tensor <2 x2xf64 >) {
8 ˆbb0 (%in: f64 , %out: f64):
9 linalg .yield %in + %out : f64

10 }
11 return %sum : f64
12 }

To generate sparse code, one must annotate the tensor types in the program with their

static sparsity as follows:

1 func @f(%x: f64) -> f64 {
2 % Y_space = linalg . init_tensor [2, 2] : tensor <2 x2xf64 >
3 % Y_packed = lagrad.pack % Y_space : tensor <2 x2xf64 > to tensor <2

x2xf64 , "pltri">
4 %zero = arith. constant 0.0 : f64
5 % Y_init = linalg .fill (%zero , % Y_packed ) : f64 , tensor <2 x2xf64 , "

pltri">
6 %Y = tensor . insert %x into % Y_init [1, 0]
7 %Z = math.powf % Y_init : tensor <2 x2xf64 , "pltri">
8 %sum = linalg . generic ... ins (%Z: tensor <2 x2xf64 , "pltri" >) {
9 ˆbb0 (%in: f64 , %out: f64):

10 linalg .yield %in + %out : f64
11 }
12 return %sum : f64
13 }
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
0 0 0 0
a 0 0 0
b d 0 0
c e f 0

 =⇒
[
a b c d e f

]

Figure 4.2: Conversion of lower triangular matrix (tensor<4x4xf64, "pltri">) to packed
representation (tensor<6xf64>) in the 4 × 4 case. a to f represent nonzero scalar elements.

Note the addition of the lagrad.pack op, which denotes a conversion between an empty tensor

and a packed representation (such as in Figure 4.2). This is necessary because the linalg.

init_tensor op used to initialize new tensors (which ultimately lower to buffer allocations)

does not support initializing tensors with nonstandard encodings.

The packing transformation converts annotated tensors to column-major packed

representations, such that each operation that operates on a value with type

tensor<2x2xf64, "pltri"> is converted to have type tensor<1xf64>. In general, each

packed tensor of rank r where the final two dimensions are of size d is converted to a tensor

of rank r − 1 where the final two dimensions are replaced with a single dimension of size
d(d−1)

2 . This allows for conversion of batches of sparse matrices without additional handling.

Elementwise operations are converted by changing the type of the result, which is

sufficient to change the semantics of the operation to skip over zero elements. This includes

ops in the arith and math dialects, in addition to certain operations such as linalg.fill.

For example, arith.mulf %x : tensor<2x2xf64, "pltri"> becomes

arith.mulf %x : tensor<1xf64>.

linalg operands are converted to loop nests with modified bounds that include explicit

index computation to convert indices with respect to the fully materialized storage scheme

into indices with the packed storage. An example of this is shown between versions 1 and 3
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of Listing 4.3.

These optimizations are not intrinsically linked to AD, but will be applied to both the

primal and adjoint versions of ops containing these sparse tensors. This is due to how the

gradient of every value v in LAGrad has the same type as the primal value v. Thus, primal

values that are manually marked lower triangular will have their gradients automatically

annotated lower triangular, resulting in both primal and gradient computation benefiting

from the optimization.

4.2.1 Summary

Recall from subsection 3.3.1 that activity analysis typically reasons about the activity of

values in a coarse-grained manner, such that a single active element within a tensor implies

the activity of that entire tensor. In contrast, Active Sparsity is a foray into a finer-grained

notion of activity where only some parts of tensors are considered active. By looking at

structured patterns, the overhead of tracking this finer-grained activity is constant with

respect to the size of the tensors being tracked.

As we will see in the evaluation, this finer-grained tracking allows for reducing the required

computation by half.

4.3 Adjoint Sparsity

In addition to active sparsity, another form of sparsity present in AD is when computing

full Jacobian matrices. Recall that the process of computing a full Jacobian matrix involves

repeated backward passes using columns of the identity matrix as seed vectors.

These seed vectors, when used as an argument in linalg ops, result in many highly
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A =

• • •
• • •
• • •

 , B =

 •

 =⇒ C =

• • •


C[j, i] += A[i, k] ∗ B[k, j]

D =

•
•
•

 , E =

• • •

 =⇒ F =

• • •


F [i, j] = D[i] ∗ E[i, j]

Figure 4.3: Examples of propagating per-dimension sparsity patterns through linalg ops.
• represents a nonzero entry.

sparse intermediate values. Crucially, these sparse values follow predictable patterns such as

having a single element, row, or column be nonzero. The notion of sparsity is tied to each

dimension, where a sparse dimension can contain at most one location where nonzero values

appear. For example, in the two-dimensional case:

• A tensor with two sparse dimensions will only contain one nonzero element.

• A tensor with [sparse, dense] dimensions will contain a single nonzero row.

• A tensor with [dense, sparse] dimensions will contain a single nonzero column.

We refer to these tensors as having one-hot dimensions. This notion can be extended to

few-hot dimensions when there is a small number of valid indices per dimension that can

contain nonzero elements. These tensors are visualized in Figure 4.3, where the sparsity of C

and F are automatically inferred through the sparsity of the inputs and the indexing maps

of each linalg op. Opportunities for sparse code generation are present when computing F
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despite its lack of inferred sparsity.

Sparse Propagation. A key property of one-hot and few-hot tensors is that their use in

linalg ops results in propagation of sparsity. As sparsity is tied to dimensions, the sparsity

of linalg results is statically determined as follows:

• For every linalg op in a program with input tensors InTensors and output tensors

OutTensors, let Dims(t) be the set of loop dimensions for

t ∈ InTensors ∪ OutTensors.

• Let SparseDims(t) be the set of loop dimensions that iterate over a sparse dimension

of t.

∀o ∈ OutTensors, sparse dimensions are computed as:

SparseDims(o) =
⋃

t∈InT ensors

SparseDims(t) ∩ Dims(o)

For example, consider the op in the first example of Figure 4.3, where the second argument

B is sparse along both dimensions. This op has these indexing maps for B and C:

mapA = (d0, d1, d2) → (d0, d2)

mapB = (d0, d1, d2) → (d2, d1)

mapC = (d0, d1, d2) → (d1, d0)

Note that A, being fully dense, does not contribute to the inferred sparsity of the output.
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This results in the following:

Dims(A) = {d0, d2}, SparseDims(A) = {}

Dims(B) = SparseDims(B) = {d2, d1}

Dims(C) = {d1, d0}

=⇒ SparseDims(B) ∩ Dims(C) = {d1}

The final result is that C has dimensions [sparse, dense], meaning it contains a nonzero

row. This procedure is initialized with an explicit annotation on the seed vector of each

differentiated function, then propagates top-down to maximize the sparsity found within

each intermediate value.

4.3.1 Code Generation

Once the process of sparse propagation has completed, the resulting sparsity information is

used to generate code that skips over sparse dimensions. Concretely, the above example is

expressed as the following linalg op:

1 % result = linalg . generic {
2 indexing_maps = [
3 (d0 , d1 , d2) -> (d0 , d2),
4 (d0 , d1 , d2) -> (d2 , d1),
5 (d0 , d1 , d2) -> (d1 , d0)],
6 iterator_types = [" parallel ", " parallel ", " reduction "]
7 }
8 ins (%A, %B : tensor <?x?xf64 >, tensor <?x?xf64 >) outs (%C : tensor <?x

?xf64 >) {
9 ˆbb0 (%a: f64 , %b: f64 , %c: f64):

10 linalg .yield %a * %b + %c
11 }
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Without any modification from sparse propagation, the default lowering of this op would

be to the following loop nest (with inferred loop bounds to iterate completely over their

arguments):

1 for d0 from 0 to <inferred d0 bound >:
2 for d1 from 0 to <inferred d1 bound >:
3 for d2 from 0 to <inferred d2 bound >:
4 C[d1 , d0] += A[d0 , d2] * B[d2 , d1]

Sparse code generation results in omitting loop iterations from the inferred sparsity of

the inputs to the linalg op. Recall that in our example, B is one-hot sparse along both

dimensions, so SparseDims(B) = {d2, d1}. When iterating over sparse dimensions, only

the nonzero index along those dimensions must be read. When a generated loop iterates

over a one-hot dimension, it can be replaced as it will only read a nonzero value during one

of its iterations. Thus, rather than generating the three nested loops, LAGrad emits only

the loop for d0 after determining that the loops for d1 and d2 can be elided:

1 // within the compiler : d1 , d2 = indices [B][1] , indices [B][0]
2 for d0 from 0 to <inferred d0 bound >:
3 C[d1 , d0] += A[d0 , d2] * B[d2 , d1]
4 // within the compiler : indices [C][0] = d1

Listing 4.4: Code generated from a sparse linalg op

Note that an auxiliary compile-time data structure, indices, is used to record the location

of nonzero values for each tensor. indices is a two-level nested dictionary within the compiler

that maps each sparse dimension of each tensor to the indices of the nonzero values for that

dimension. indices is populated by traversing the program in a top-down fashion at compile

time, again making use of the predictable structured control flow of valid LAGrad programs.

An example of this mapping is seen in Listing 4.4, where d1 and d2 are read from the indices

data structure. After the execution of the lowered computation, indices is then updated
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M =

• • •
• • •
• • •

 , N =

 •
•
•

 =⇒ O =

• • •
• • •
• • •


O[i, j] += M [i, k] ∗ N [j, k]

Figure 4.4: A matrix multiplication with potential for adjoint sparsity optimizations in
spite of producing a dense result.

to store the location of the nonzero row of C. However, indices is not materialized in the

generated code.

If A has size m × k and B has size k × n, this computes the correct value of C while

reducing the computational complexity of the operation from O(mnk) to O(m).

We now turn our attention to another example in which the result of an operation is not

sparse, but opportunities for sparse code generation are still present. Consider the operation

shown in Figure 4.4, where SparseDims(N) = {d2}. A default lowering to loop nests would

produce three triply-nested loops, exactly like the previous example:

1 for d0 from 0 to <inferred d0 bound >:
2 for d1 from 0 to <inferred d1 bound >:
3 for d2 from 0 to <inferred d2 bound >:
4 O[d0 , d1] += M[d0 , d2] * N[d1 , d2]

Due to the sparsity of N , the sparse code generation of LAGrad elides the innermost

loop without changing the correctness of the result:

1 // within the compiler : d2 = indices [N][1]
2 for d0 from 0 to <inferred d0 bound >:
3 for d1 from 0 to <inferred d1 bound >:
4 O[d0 , d1] += M[d0 , d2] * N[d1 , d2]

This sparsity-based optimization is possible even though the resulting O is fully dense.

The density of O also implies that the indices data structure does not need to be updated.
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Given that M has size m × k and N has size n × k, the computational complexity of the

operation is reduced from O(mnk) to O(mn).

4.3.2 Loop Nest Analysis

The high-level information available in linalg ops makes the process of sparse propagation

straightforward. However, there are some nested loops that are not able to be represented

using linalg ops due to restrictions in the IR. Consider the following loop:

1 func reduce_some (x, idxs , result ):
2 for i from 0 to 3:
3 result [i] = x[idxs[i]]

This can be expressed equivalently in MLIR as a linalg op:

linalg . generic
{ indexing_maps = [(d0) -> (d0), (d0) -> (d0)],

iterator_types = [" reduction "] }
ins (% idxs)
outs (% result ) {

ˆbb0 (% idx: index , %out: f64) {
%xval = tensor . extract %x[% idx]
linalg .yield %xval

}
}

In pseudocode, this produces the following adjoint:

1 func adj_reduce_some (x, indices , dresult ):
2 dx = zeros_like (x)
3 for i from 3 to 0:
4 dx[idxs[i]] = dresult [i]

Listing 4.5: A loop that does not write to every element of dx.

However, a problem arises when trying to express Listing 4.5 as a linalg op. linalg

operations have the property of writing completely to their output operands, while the
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loop above only writes to parts of dx. The selective updates follow an unpredictable pattern

depending on the values in indices, which is only known at run time. Due to this, there is no

indexing map that appropriately expresses the write pattern to dx, and thus the adjoint loop

cannot be expressed as a linalg op. A fallback to produce a correct adjoint is to generate

the loop as an scf.for op rather than a linalg op, but this approach is incompatible with

sparse propagation analysis because the scf.for ops lack explicit indexing maps that make

sparse propagation analysis possible.

To address this, this work introduces loop nest analysis to rediscover the information

present in a linalg op (particularly the indexing maps) from a nest of scf.for ops. To this

end, we define the term well-behaved loop nest to refer to loop nests that satisfy the following

criteria:

1. The loop nest consists of an innermost loop and zero or more outer loops. Each outer

loop contains exactly one loop directly within its body.

2. The operations in the innermost loop are tensor.extract ops, tensor.insert ops, or

ops that operate on scalars. Well-behaved innermost loops do not contain operations

that use tensors or other aggregates types.

3. All yielded operands in the innermost loop are the result of tensor.insert ops. All

yielded operands in outer loops pass along the results of their direct child loop in the

order they are given.

Well-behaved loop nests are somewhat like linalg ops, but can express some

computations (such as Listing 4.5) that are impossible to express using only linalg ops.

We will later see that they are useful when propagating sparsity when some information is

not known at compile time. To further illustrate this concept, the following is an example
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of a well-behaved loop nest per the analysis:

1 %res = scf.for i from 0 to M iter_args (%0 = ..., %1 = ...) {
2 %res_0 :2 = scf.for j from 0 to N iter_args (%2 = %0, %3 = %1) {
3 %res_1 :2 = scf.for k from 0 to K iter_args (%4 = %2, %5 = %3) {
4 %in_0 = tensor . extract %x[i, j]
5 %in_1 = tensor . extract %y[j, k]
6 %bb0 = arith.subf %in_0 , %in_1 : f64
7 %bb1 = arith.mulf %in_0 , %in_1 : f64
8 %out_1 = tensor . insert %bb0 into %x[i, j]
9 %out_0 = tensor . insert %bb1 into %y[j, k]

10 scf.yield %out_1 , %out_0
11 }
12 scf.yield %res_1 #0, %res_2 #1
13 }
14 scf.yield %res_0 #0, %res_0 #1
15 }

Conversely, the following is not a well-behaved loop nest due to the highlighted reasons:

1 %res = scf.for i from 0 to M iter_args (%0 = ..., %1 = ...) {
2 %res_0 :2 = scf.for %j = 0 to N iter_args (%2 = %0, %3 = %1) {
3 // Use of tensor computation in the innermost loop
4 %in_0 = tensor . extract_slice %x[i] : tensor <?x?xf64 > to tensor <?

xf64 >
5 %bb0 = arith.mulf %in_0 , %in_0 : tensor <?xf64 >
6 scf.yield %bb0 , %bb0
7 }
8 // More than one loop as a direct child
9 scf.for %j = 0 to N iter_args (%2 = %0) {}

10 // A value other than %res_0 was yielded
11 scf.yield %y
12 // This would also result in the nest not being well -behaved ,
13 // as the order of yielded operands does not match the order
14 // they are produced .
15 // scf.yield %res_0 #1, %res_0 #0
16 }

All loop nests generated from lowering linalg ops are considered well-behaved loop nests.

Additionally, Listing 4.5 is recognized as a valid loop nest despite not being able to be

expressed as a linalg op.
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Once input and output tensors are obtained, their corresponding indexing maps are

inferred from their extract and insert ops. In particular, extract/insert ops that index using

loop induction variables result in indexing maps that use dimension expressions, while other

values produce a special unknown value.

Given the adjoint pseudo-code from before:

1 func adj_reduce_some (x, idxs , dresult ):
2 dx = zeros_like (x)
3 for i from 3 to 0:
4 dx[idxs[i]] = dresult [i]

This results in the following loop nest, expressed as a pseudo linalg op:
1 linalg . generic
2 { indexing_maps = [(d0) -> (d0), (d0) -> (<unknown >)] }
3 ins( dresult )
4 outs(dx) {
5 ˆbb0 (%in , %out):
6 linalg .yield %in
7 }

The end result is the pseudo linalg op, which is a step towards being able to apply sparse

propagation. However, the existing sparse propagation procedure will not work due to the

unknown indexing map of the output. To remedy this, observe that the loop nest satisfies a

few criteria that allow it to be more predictable. 1) It has a single input operand with an

identity indexing map, meaning the loop nest will iterate over every element of its input. 2)

Zero values from the input will also be propagated to its output. 3) If its input has only a

single nonzero element, then the output must also have a single nonzero element. Thus, our

sparse propagation analysis can recognize this case and correctly mark our output as one-

hot sparse (sparse along all dimensions), even without statically knowing what position the

nonzero value is in. To further propagate sparsity, the compiler-internal indices dictionary

is updated with the indices of the tensor.extract op used to write to the outputs of the
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loop nest.

Loop nest analysis is a way to recognize these special cases even when static

information (such as the indexing map of the output) is not available at compile time. The

information derived from loop nests with missing information is less comprehensive than

information derived from linalg ops, but this enables sparse propagation to continue to

propagate downstream when information is missing or incomplete.

4.4 Summary

This chapter has discussed the novel optimizations of active sparsity and adjoint sparsity,

optimizations that take place after automatic differentiation and exploit the high-level

information available in the IR. It covers the concepts, analyses, and code generation

procedures required to implement both of these optimizations. Following this, we will now

evaluate the efficacy of the optimizations covered in the previous two chapters.
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Chapter 5

Evaluation

The performance of both forward mode and reverse mode of LAGrad are evaluated in

separate stages. As the majority of optimizations in this work are specific to reverse mode,

most of the evaluation focuses on that mode. First, individual optimizations are selectively

enabled to examine the effect of each optimization’s individual contribution. Then, the

variant of LAGrad with all optimizations enabled is evaluated against both Enzyme [11]

and PyTorch [16]. Finally, the chapter concludes with a brief exploration of forward mode

performance compared to its reverse mode counterpart.

Enzyme is chosen as a baseline because it, like LAGrad, performs source-to-source AD

in a compiler infrastructure. Enzyme performs differentiation on low-level LLVM IR while

LAGrad performs differentiation on high-level tensor MLIR, so the purpose of this

comparison is to evaluate the difference made by the level of abstraction of the input

programs. Conversely, PyTorch is compared against to examine the difference between

performing AD at run time versus compile time while both systems differentiate high-level

programs. These two comparison axes are visualized in Figure 5.1.
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Figure 5.1: The unique position of LAGrad in the automatic differentiation landscape.

5.1 Experimental Methodology

The performance of all AD systems are evaluated using ADBench [9], a standard machine

learning benchmark suite. ADBench consists of a gaussian mixture model (GMM), bundle

adjustment (BA), a hand tracking model (Hand), and a long short term memory network

(LSTM).

Datasets for each ADBench benchmark are chosen in figures to demonstrate the

performance of the smallest problem size that both Enzyme and LAGrad require more

than 5 milliseconds to finish (labelled small in the figures), the largest problem size that

both tools can finish within 40 minutes (labelled large), and the median problem size

between the two (labelled medium). Measurements for smaller datasets introduce higher

variance in the results and are thus excluded, while runs longer than 40 minutes are

considered timeouts.

In addition, a triangular matrix vector multiplication pullback (TRMV-Row) is used to

measure the isolated effect of active sparsity, and a two-layer multi-layer perceptron (MLP)
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is used to evaluate LAGrad on a classical neural network application. The triangular matrix

vector multiplication is evaluated using a single pullback because this is how the computation

would commonly appear within the context of a larger reverse-mode computation. The

evaluated sizes are [1024, 2048, 4096] for the TRMV-Row benchmark and hidden size [256,

512, 1024] for the MLP benchmark.

All experiments are run on a 2015 MacBook Pro with a 2.2 GHz Quad-Core Intel Core

i7 processor and 16 GB of RAM. The operating system is macOS Catalina version 10.15.5.

Run time evaluations are measured by taking the median runtime of running each

benchmark 5 times with 1 warmup run. Memory consumption is measured by taking the

peak resident set size during the execution of each benchmark via the task_info kernel

function on Darwin. Relative memory reduction is reported, where a value of 2 means

LAGrad used 2× less memory than the compared tool.

Baseline LAGrad . Each benchmark from the ADBench suite is translated by hand

to high level MLIR in the linalg, tensor, and scf dialects. They are then run through

LAGrad to produce differentiated code. The generated adjoints are first bufferized to linalg-

on-memrefs, then lowered to loops in the scf dialect before being lowered to the LLVM

dialect. Finally, the programs are translated to LLVM IR, then compiled to object files with

clang using the -O3 optimization level.

5.2 Effect of Optimizations

The optimizations presented in this work are evaluated by enabling them one at a time to

augment the baseline pipeline. The benchmarks are evaluated after enabling each

optimization in the given order: in-place bufferization, stack buffer promotion, active
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Figure 5.2: Performance impacts of individual optimizations in the LAGrad pipeline.
The baseline used is LAGrad run through -O3 without any of the custom optimizations
implemented in this work.

sparsity, adjoint sparsity, and library call (OpenBLAS) integration. The cumulative effects

of enabling each optimization are summarized in Figure 5.2.

Active Sparsity is evaluated in two stages via first enabling only triangular

computation while maintaining full materialization of actively sparse triangular tensors

(Active Sparsity (Materialized)), then enabling triangular packing to compress the memory

representation of tensors (Active Sparsity (Packed)). The benchmarks that present

opportunities for active sparsity are the TRMV-Row and GMM benchmarks. Note that the

GMM benchmark contains a triangular matrix vector multiplication in addition to

computation of matrix norms of triangular tensors. The TRMV-Row benchmark primarily

benefits from optimizing computation with modest cache locality gains from packing, while

the cache benefit of packing is more strongly felt in the GMM benchmark due to the

matrix norm computations.

Adjoint Sparsity benefits the computation of full Jacobian matrices. Hand tracking is

the one evaluated benchmark that performs this, which results in a number of dimension-

level sparse values. The resulting speedup of sparse code generation is greater for larger
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baseline is Enzyme performing AD on the translated benchmarks in high-level MLIR, while
Enzyme performing AD on the original C programs from ADBench is also included. A red
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datasets which have Jacobians with a larger number of rows.

Stack Buffer Promotion is a built-in MLIR pass that promotes memref allocations

statically known to be below a set size from the heap to the stack. This can improve

performance when all buffers required to compute an adjoint are small, such as in the BA

benchmark, which consists entirely of computations on tensors with fewer than 12 elements.

Applying stack buffer promotion to BA results in the adjoint program allocating memory

entirely on the stack, leading to the speedup observed in Figure 5.2.

Library Call Integration. The high-level nature of linalg ops in MLIR makes it

straightforward to target optimized linear algebra libraries. LAGrad has basic support for

replacing named ops in the linalg dialect (linalg.matmul, linalg.matvec) and their

pullbacks with calls to OpenBLAS [28] routines.
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Figure 5.4: Relative peak memory use reduction of LAGrad vs Enzyme and PyTorch
(higher is better).

5.3 Comparison with State of the Art

After evaluating individual optimizations, we now turn our attention to comparing the fully

optimized LAGrad variant with Enzyme [11]. Results are summarized in Figure 5.3 with

geometric means displayed in Table 5.1.

Enzyme is evaluated with two different pipelines for completeness. The first pipeline

begins from the MLIR translation of each benchmark, while the second begins from the C

implementations provided in ADBench. Both are lowered to LLVM IR before being run

through Enzyme’s optimization pipeline outlined by Moses and Churavy [11]. The purpose

of including both pipelines is to compare Enzyme and LAGrad from the same starting

program, while also comparing against the baseline C implementations evaluated by Moses

and Churavy [11].

TRMV-Row demonstrates one of the benefits of performing AD on linalg ops. Enzyme

differentiates TRMV-Row as a nested loop without the context of it being a linear algebra

operation. This results in it storing a value to the tape for every loop iteration, using

O(n2) memory. In contrast, LAGrad produces a linalg op as its pullback with no memory
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overhead. LAGrad is then able to remove the primal op as it is unneeded, an optimization

that both PyTorch and Enzyme are unable to perform in this case. PyTorch cannot remove

the primal op because its run-time AD requires execution of the complete primal to track

which ops to differentiate. LAGrad outperforms PyTorch via active sparsity, in spite of

PyTorch’s usage of high performance libraries.

Gaussian Mixture Models (GMM). LAGrad displays comparable performance with

Enzyme on Gaussian Mixture Models. Notably, the GMM benchmark contains operations

on actively sparse lower triangular tensors. Both Enzyme and LAGrad use packed triangular

tensors, but the burden of programming with the packed representation is placed entirely

on the programmer in the case of Enzyme (see Version 3 of Listing 4.3). The primal must

directly contain these index computations for Enzyme to generate efficient code, while the

LAGrad compiler can automatically generate the same code from an annotated linalg op

in MLIR.

Bundle Adjustment (BA). The speedup over Enzyme with bundle adjustment is due

to stack buffer promotion. Enzyme crucially cannot benefit from the same optimization due

to the unstructured nature of the control flow graphs of LLVM IR. Buffers allocated on

the stack in the primal are often moved to heap allocations by Enzyme to ensure that they

are accessible in the adjoint. However, LAGrad preserves the structured control flow of the

primal when generating the adjoint, making this optimization safe to perform.

Long Short Term Memory (LSTM). The performance difference of LAGrad over

Enzyme is primarily due to the difference in memory usage. The MLIR variant of Enzyme

is penalized by naive bufferization, as Enzyme must produce gradients of every intermediate

buffer. LAGrad does not have this issue by virtue of operating at the tensor level, where

memory is abstracted.
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Hand Tracking (Hand). Hand tracking involves a full Jacobian computation. It thus

benefits from the propagation and code generation of adjoint sparsity. The benefit is more

pronounced as the size of the Jacobian increases, and would be much more challenging to

implement in Enzyme due to needing to recover the high level information that is directly

included in linalg ops in MLIR.

Multi-Layer Perceptron (MLP). The performance of the MLP benchmark is almost

entirely dominated by dense linear algebra kernels, something that Enzyme is currently

unable to efficiently differentiate. LAGrad and PyTorch both leverage high-performance

BLAS libraries to outperform Enzyme. The speedup LAGrad observes over PyTorch is due

to the performance of OpenBLAS, which LAGrad uses, over the PyTorch CPU backend.

Run Time Variance. LAGrad demonstrates the lowest variance of the measured tools

with a relative standard deviation of under 3.7% in its run time on all benchmarks but the

multi-layer perceptron, which has a slightly higher relative standard deviation of 7%.

Enzyme shows a similar low variance with a relative standard deviation of under 3.8%

on all benchmarks with the exception of the triangular matrix-vector multiplication. On

TRMV-Row, Enzyme shows a relative standard deviation of up to 7.2%.

PyTorch has the highest variance in its run time performance among the measured tools.

On the ADBench benchmarks it has a relative standard deviation of under 4.1%, though

on the multi-layer perceptron its relative standard deviation goes up to 10.6% and on the

TRMV-Row benchmark it has a relative standard deviation of up to 34%.
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Benchmark Speedup w.r.t.
Enzyme (MLIR)

Memory reduction
w.r.t. Enzyme (MLIR)

Speedup w.r.t.
PyTorch

Memory reduction
w.r.t. PyTorch

TRMV-Row 6.9 2.2 1.8 5.1

GMM 1.1 35.0 6.4 74.0

BA 2.1 0.9 1419.1 103.1

Hand 2.8 7.8 168.7 61.0

LSTM 1.5 3.9 268.6 38.6

MLP 79.6 8.0 2.3 8.8
Geomean 4.2 5.2 34.6 30.5

Table 5.1: Geometric mean speedups and relative memory reduction of each benchmark
across all evaluated datasets.

5.4 Forward Mode

In addition to the focus on reverse mode AD in this work, LAGrad implements forward mode

AD. However, the majority of optimizations in this work are reverse mode-specific and do

not benefit forward mode AD for the following reasons.

Tape Size Reduction. The gradient tape is fundamentally a structure of reverse mode

AD. As tangent numbers are computed in tandem with primal numbers with the same control

flow, there are no intermediate values that are overwritten prior to their value being used in

the gradient computation. As such, forward mode has no tape to reduce.

Adjoint Sparsity. The applicability of adjoint sparsity in forward mode is complex.

On one hand, the computation of full Jacobian matrices in forward mode requires the use

of one-hot seed vectors just as in reverse mode, meaning there are similarly many sparse

differential values in forward mode. However, there exists less of a clean separation between

primal and tangent ops due to the coupled control flow between the two.

For instance, when differentiating a linalg op with reverse mode, the result is a pullback
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Figure 5.5: TRMV-Col, a forward-mode version of the TRMV-Row benchmark. This
demonstrates the speedup of active sparsity in forward mode AD.

which is a distinct op from the primal. In contrast, the equivalent pushforward augments

the primal op such that both primal and tangent results are computed at the same time.

Adjoint sparsity optimizes by skipping over zero values in the tangent values, but applying

these same optimizations to forward mode would result in skipping over nonzero values in

the primal, leading to incorrect results.

There exists the potential to separate out primal and tangent computation in forward

mode, though the resulting complexity of this direction is outside the scope of this work.

Active Sparsity. In contrast to the other optimizations in this work, active sparsity is

trivially applicable to forward mode in addition to reverse mode. This is because the notion

of propagating differential values through only a subset of array elements is not specific to

forward or reverse mode. A corollary of this is that activity analysis (subsection 3.3.1) is

completely agnostic to the mode of differentiation. In addition, the code transformations

around sparsely active tensors can be run on the augmented pushforward ops because primal

and tangent values have the same active sparsity patterns, unlike the sparsity patterns of

adjoint sparsity.

Figure 5.5 demonstrates this, showing a modified version of the TRMV-Row benchmark
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Figure 5.6: Speedup of forward mode LAGrad vs reverse mode.

that computes a single pushforward instead of a single pullback (TRMV-Col). This modified

TRMV-Col benchmark demonstrates similar performance benefits from the active sparsity

optimization as the reverse mode TRMV-Row benchmark.

5.4.1 Experimental Methodology

The evaluation of forward mode AD in LAGrad is measured in comparison to its reverse mode

implementation with all optimizations enabled. Though both Enzyme and PyTorch offer

experimental forward mode implementations, neither is able to differentiate the benchmarks

evaluated in this work. For that reason, the performance of LAGrad’s forward mode is solely

compared against its reverse mode implementation with all optimizations enabled.

The same machine, datasets, and experimental methodology is otherwise applied. This

includes taking the median run time of 5 runs with 1 warmup run and the timeout limit of

40 minutes.
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TRMV-Row GMM BA LSTM Hand MLP
# Inputs 2389 1808276 7.5 415 1 934239

# Outputs 1 1 1 1 3973 1

Table 5.2: Average ratio of inputs to outputs for each benchmark.

5.4.2 Comparison with Reverse Mode

The majority of benchmarks evaluated in this work favour reverse mode due to having

significantly more active inputs than active outputs. This is shown in Table 5.2, which lists

the average ratio of number of active inputs to active outputs for each benchmark evaluated.

This is equivalent to the ratio of number of columns to number of rows of the corresponding

Jacobian matrices, and explains the relative number of forward sweeps required to compute

the same number of entries computed by one reverse sweep.

Notably, Hand Tracking is the one benchmark where the number of outputs is greater

than the number of inputs. This is reflected in how the performance of its forward mode

Jacobian computation is several orders of magnitude faster than its reverse mode

computation. The relative performance of the other benchmarks is roughly correlated to

the relative input-to-output ratios. Results are summarized in Figure 5.6.

5.5 Summary

This chapter has evaluated the effectiveness of performing compile-time automatic

differentiation on a high-level language. The comparison against Enzyme has demonstrated

the benefit of operating on high-level programs instead of low-level programs in a

compile-time system, while the comparison against PyTorch has shown the advantage of
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performing AD at compile time instead of run time.

We have also seen the effects of individual optimizations in isolation. While each

benchmark shown in Figure 5.2 tends to benefit from a different set of optimizations, all of

these optimizations are performed statically and benefit from the high level of abstraction

upon which LAGrad operates.

Finally, the exploration of forward mode differentiation has shown that the sparsity

optimizations introduced in this thesis have the potential to generalize to forward mode in

addition to reverse mode. The deeper exploration of this potential is a promising area for

future work.
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Chapter 6

Conclusion

As the algorithmic engine that drives the ever-increasing computational needs of deep

learning, Automatic Differentiation and its resource cost are significant factors in the

computational needs of the modern world. The optimizations presented in this thesis

demonstrate that there remain many avenues for optimizing these computational needs.

Applications such as masking in transformers [29] and padding in convolutional neural

networks [30] both introduce sources of active sparsity, and our evaluation has

demonstrated that industry standard AD systems have many cases in which they fail to

perform well.

Beyond deep learning, the field of differentiable programming represents a future path

of augmenting gradient-based optimization with domain-specific expertise. This has the

potential of curbing the trend of merely increasing data and computation. Instead, this

direction could actually decrease model size in favour of producing trainable models that

incorporate human knowledge.

By targeting the compiler lingua franca of MLIR, LAGrad can combine the flexibility of
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differentiable programming approaches with the performance of novel optimizations.

Motivations of MLIR include improving reusability of high-level compiler optimizations

and targeting heterogeneous hardware accelerators. As MLIR matures towards these goals,

LAGrad may further benefit in tandem.

6.1 Summary of Contributions

This thesis has demonstrated the benefit of performing source-to-source AD on a high level

language. It extends TBR analysis [7] to support high level linear algebra operations and

shows how the nature of the input language results in simpler analyses than what other

source-to-source AD systems require. It introduces three novel static optimizations that

leverage the unique position in the automatic differentiation ecosystem that LAGrad

occupies.

These optimizations would be either impossible or more challenging to apply in other

systems. Tape size reduction explicitly relies on structured control flow in MLIR, which is

a unique characteristic not present in the input languages of other AD systems. Operator-

overloading systems fully unroll loops, making tape size reduction infeasible because loop

structure is lost. Other compile-time systems operate on SSA form IRs that lack structured

control flow constructs. LAGrad is able to automatically discover opportunities to elide the

gradient tape, long considered a fundamental challenge of reverse-mode AD.

The two sparsity-based optimizations rely on high level information that can be read

from linalg ops. Implementing these in low-level intermediate representations would require

rediscovering this information, a complex and error-prone task.
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6.2 Critical Analysis

Though this thesis demonstrates the performance benefits of the presented approach, it is

not without limitations. We now discuss the most pertinent ones.

Manual translation. An important limitation performed in this work is the overhead

of translating existing code to MLIR by hand. The textual format of MLIR is verbose due

to the explicit information in the IR, which gives the process of manual translation a high

engineering overhead. MLIR as a project is relatively new, meaning there is currently a lack

of mature front-ends that target it. However, there is ongoing work with examples such as

SharkPy and Intel’s Python front-end that allow generating MLIR from high-level Python

code, and Polygeist which generates MLIR from C and C++. This is a key reason that the

number of benchmarks in the evaluation is relatively limited. The ongoing growth of the

MLIR front-end ecosystem will remove the need for manual translation in the future.

Expressiveness of the linalg dialect. Another limitation is that the primary

performance optimizations in this work depend on the semantic information at the linalg

dialect level. As discussed in subsection 4.3.2, the linalg dialect contains restrictions such

that some computation cannot be expressed using its operations. In this case, the potential

for applying analyses such as sparse propagation and active sparsity will be limited,

meaning the behaviour and performance of LAGrad will be roughly analogous to Enzyme

due to the shared usage of the LLVM infrastructure.

Integration with core MLIR optimizations. The majority of optimizations with

the greatest impact involved custom analyses and transformations that were implemented

with this work. A stated goal of the MLIR infrastructure is to create an ecosystem of

general, composable transformations that can benefit a wide variety of applications. One

such instance is the sparse compiler infrastructure in core MLIR [26], which provides code
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generation to optimize both computation and memory of sparse tensors. In contrast, the

adjoint sparsity implementation in this work optimizes computation but not memory of

sparse tensors, leaving zeros fully materialized in memory. This decision to use a custom

lowering instead of the core MLIR sparse infrastructure is made due to the relative

immaturity of the MLIR ecosystem; at time of writing, the core sparse infrastructure does

not support the full set of ops used by the benchmarks in this work. In the future,

improved integration with more mature transformations will further benefit LAGrad.

6.3 Future Work

The field of Automatic Differentiation remains populated with directions for future research.

Beyond Forward and Reverse AD. From an algorithmic perspective, forward- and

reverse-mode AD are two extreme ways to traverse the chain rule to compose derivative

expressions. One recent extension beyond this is mixed-mode automatic differentiation [31],

which embeds a piece of forward-mode computation within a larger reverse-mode process.

This approach is shown to be general in the specialized case of broadcast operations in GPU

kernels, but it remains an open problem to determine if it provides advantages in more

general cases.

Jacobian Sparsity and Graph Colouring. The sparsity used in this work are

merely two cases where sparsity inherent in Jacobian matrices can be used to optimize their

computation. Recall that computation of Jacobian matrices using either forward or reverse

mode AD require repeated calls with varying one-hot seed vectors to produce the columns

or rows of the Jacobian matrix. If a seed vector is used that has two or more 1s, the result

of the AD process will be the sum of the respective columns/rows. A corollary of this is
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that if two or more columns of the Jacobian are sparse such that their nonzero values are

never in the same row, running AD with both columns seeded will compute the nonzero

elements of both columns in a single pass. Then, both columns are reconstructed from the

known sparsity pattern. This approach can greatly reduce the number of passes required to

compute Jacobians, and is shown to be equivalent to a graph coloring problem [32,33].

Existing approaches assume a known sparsity pattern, but fine-grained activity analysis

between individual elements of input and output vectors has the potential to automatically

determine the sparsity patterns of Jacobians. A challenge of this approach is that such a

fine-grained analysis scales with the number of elements in an array and requires reasoning

about data flow in a much more complex fashion than coarse-grained analyses at the tensor

level.

Beyond Tensors and Structured Control Flow. While restricting the input

language to tensor MLIR with structured control flow is shown to simplify the necessary

optimizations, there exist applications that are most naturally expressed using code with

memory side effects and require unstructured control flow. The extensibility of MLIR

imply that users will continue to create new, custom dialects that match their specific use

cases. A future direction made feasible by MLIR is to define the minimum set of

information required to differentiate arbitrary ops in arbitrary dialects. Extending the

optimizations presented in this work to a greater diversity of dialects, computation models,

and hardware accelerators remains an open problem.
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